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Editorial on the Research Topic
Cardio-oncology: mechanisms and therapeutics

Cancer and cardiovascular disease share similar risk factors and are both prevalent among

aging populations. Individuals with a history of cancer are exposed to a 2–3 times higher

chance of getting acute coronary syndrome (ACS), which can persist for up to 10 years

after a cancer diagnosis (1). Cancer patients with cardiovascular comorbidity have worse

survival rates than cancer patients alone (2, 3). Reciprocally, myocardial infarction also

hastens the spread of cancer and worsens the prognosis of cancer patients (4, 5). In this

regard, understanding the interaction between cancer and cardiovascular disease may help

avoid tackling diseases in a siloed approach and improve the outcome of these patients

with comorbidity.

In addition, novel cancer therapies have tremendously improved the survival of cancer

patients but also increased treatment-related side effects (6, 7). Cardiovascular toxicities

are the most common adverse effects, threatening survival and impairing life quality of

the cancer survivors (8). Cancer survivors’ early morbidity and death are largely affected

by these side effects (9). Understanding the mechanisms underlying anticancer treatment-

induced cardiotoxicity can help develop novel therapeutics to avoid or lessen it.

The purpose of this research topic is to bring together a collection of works that provide

novel insights into interactions between cancer and cardiovascular disease as well as

mechanisms and therapeutics of anticancer treatment-induced cardiotoxicity. All

contributions to this research topic concentrate on one or more of the above-mentioned

study topics and several studies referenced below are representative.
N6-Methyladenosine in cyclophosphamide-induced
cardiotoxicity

The RNA epitranscriptomics represented by N6-Methyladenosine (m6A) are increasingly

recognized to play important roles in physiology and disease (10). Cyclophosphamide is

frequently prescribed to treat various types of cancers and autoimmune conditions.

Accumulated doses of this drug may result in fatal hemorrhagic myocarditis (11). Zhu et al.

demonstrated that the pathogenesis of cyclophosphamide-induced cardiotoxicity involves

the downregulation of Junctophilin 2 (JPH2) levels. The proper structure and function of

junctophilin-2 (JPH2) are recognized to be indispensable for proper excitation-contraction

coupling in cardiomyocytes (12). The increased m6A level of JPH2 mRNA induced by N6-

Methyladenosine writer METTL3 decreased its expression levels, and consequently
01 frontiersin.org8
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dysregulated calcium signaling in cardiomyocytes. These results

identified a novel epitranscriptomic mechanism regulating JPH2

expression and offers novel approaches to the management of

cyclophosphamide-induced cardiotoxicity.
miR-194-5p contributes to
doxorubicin-induced cardiotoxicity

Doxorubicin is a popular anticancer agent but is well-known

for its cardiotoxicity in many patients. The mechanisms

underlying doxorubicin (DOX)-induced cardiotoxicity remain

not fully understood. miRNAs are widely involved in the

progression of various cardiovascular diseases (13). Fa et al.

revealed the important role of miR-194-5p in the pathogenesis of

DOX-induced cardiotoxicity. MiR-194-5p silencing reduced

doxorubicin (DOX)-induced cardiotoxicity in vitro and in vivo

by upregulating PAK2 and XBP1s. Overexpression of PAK2 or

XBP1s reduced miR-194-5p- exacerbated cardiomyocyte

apoptosis. This work was the first to identify a novel pathogenic

miR-194-5p/PAK2/XBP1s axis in DOX-induced cardiotoxicity,

hence proposing a potential target for the prevention and

treatment of DOX-induced cardiotoxicity.
NT-proBNP can predict cardiovascular
symptoms caused by Pd-1 inhibitor
therapy

In recent years, immunotherapy has achieved great success in

cancer treatment. Unfortunately, cardiotoxicity appears to have

emerged as an unneglectable issue recently (14). The work by

Peng et al. suggested that NT-proBNP could predict cardiovascular

symptoms in individuals with myocardial damage following PD-1

inhibitor therapy, while highly sensitive troponin T (hsTnT) is the

best cardiac biomarker for mortality prediction in symptomatic

patients. This study may help medics to perform risk stratification

for patients at an earlier time and to implement effective

interventions at the early stage of PD-1 inhibitor-related myocarditis.
A large-scale observation in cancer
patients suffering from infective
endocarditis

Infective endocarditis (IE) occurs more frequently in cancer

patients as compared with the general population (15). IE was

predominantly community-acquired (74.8%) in cancer patients,

according to Cosyns et al. The most common complications were

acute renal failure (25.9%), embolic events (21.7%), and

congestive heart failure (18.1%). This is a sizable observational

cohort of IE patients with cancer. It sheds light on current IE

cancer patient profiles, treatment, and outcomes. Considering the

lack of randomized and large-scale observational data on IE

cancer patients, this registry provides a unique viewpoint on IE

management in cancer patients.
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D-Dimer is a predictive factor for
cancer therapeutics-related cardiac
dysfunction

Improved early detection methods have allowed a larger

number of cancer patients with cancer therapeutics-related

cardiac dysfunction (CTRCD) to live longer (16). Oikawa et al.

consecutively enrolled 169 patients who planned to receive

cardiotoxic chemotherapy for 12 months of follow-up and found

that the incidence of CTRCD was greater in the high D-dimer

group than in the low D-dimer group (16.2 vs. 4.5%, p = 0.0146).

High D-dimer levels at baseline were an independent predictor of

the development of CTRCD, according to multivariable logistic

regression analysis [odds ratio 3.93, 95% CI (1.00–15.82), p = 0.

047]. It is suggested that D-dimer may be a potential predictor of

CTRCD and has clinical practical value.
Low LVEF after chemotherapy was
associated with blood RNA viruses

It has been hypothesized that immunosuppression after

chemotherapy increases opportunistic viral infections (17).

Varkoly et al. performed high-throughput sequencing analysis of

RNA obtained from blood samples of 28 patients with

hematological malignancies who had undergone chemotherapy.

The result suggested that patients with low LVEF had influenza

orthomyxovirus, avian paramyxovirus, and retrovirus sequences

present. This is the first study to use high-throughput, blinded,

unbiased sequencing to test for RNA viruses in circulating blood

and associate those findings with abnormalities in heart function

in patients who have recently finished chemotherapy. This study

raises attention to RNA virus infections in individuals with

chemotherapy-related cardiomyopathy.
Cardiovascular outcomes in patients
with colorectal cancer

Colorectal cancer (CRC) patients are potentially at high

cardiovascular risk (18). Hang et al. followed up 197, 699

colorectal cancer patients for 37 months and examined the risks

of cardiovascular death (CVD) in patients with CRC. They

revealed that CVD ranked first and accounted for 41.69% of the

major cause of non-cancer deaths. In addition, the nomogram

for CVD prediction in CRC patients was created. This

nomogram performed quite well and might assist physicians in

providing customized care in clinical settings.
Perspectives

With the generous support from all editors, publishers,

reviewers, and authors involved in this research topic, we have

successfully finalized this wonderful collection focusing on
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mechanisms and therapeutic in Cardio-Oncology. Future studies

on the mechanism and management of cardio-oncology are

expected to continually improve the survival and life quality of

cancer survivors. The enormous issues posed by tumor-

cardiovascular comorbidity, however, deserve more attention

given its rising incidence and the continuously aging population.

There is substantial opportunity for the collaboration between

oncologists and cardiologists to work together to improve the

outcome of cancer patients with cardiovascular comorbidity.
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Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai,
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Background: Doxorubicin (Dox) is one of the most effective chemotherapy agents

used in the treatment of solid tumors and hematological malignancies. However, it

causes dose-related cardiotoxicity that may lead to heart failure in patients. Luteolin

(Lut) is a common flavonoid that exists in many types of plants. It has been studied

for treating various diseases such as hypertension, inflammatory disorders, and cancer.

In this study, we evaluated the cardioprotective and anticancer effects of Lut on Dox-

induced cardiomyopathy in vitro and in vivo to explore related mechanisms in alleviating

dynamin-related protein (Drp1)-mediated mitochondrial apoptosis.

Methods: MTT and LDH assay were used to determine the viability and toxicity of

cardiomyocytes treated with Dox and Lut. Flow cytometry was used to examine ROS

levels, and electron and confocal microscopy was employed to assess the mitochondrial

morphology. The level of apoptosis was examined by Hoechst 33258 staining. The

protein levels of myocardial fission protein and apoptosis-related protein were examined

using Western blot. Transcriptome analysis of the protective effect of Lut against Dox-

induced cardiac toxicity in myocardial cells was performed using RNA sequencing

technology. The protective effects of Lut against cardiotoxicity mediated by Dox in

zebrafish were quantified. The effect of Lut increase the antitumor activity of Dox in breast

cancer both in vitro and in vivo were further employed.

Results: Lut ameliorated Dox-induced toxicity in H9c2 and AC16 cells. The level

of oxidative stress was downregulated by Lut after Dox treatment of myocardial

cells. Lut effectively reduced the increased mitochondrial fission post Dox stimulation

in cardiomyocytes. Apoptosis, fission protein Drp1, and Ser616 phosphorylation

were also increased post Dox and reduced by Lut. In the zebrafish model, Lut
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significantly preserved the ventricular function of zebrafish after Dox treatment. Moreover,

in the mouse model, Lut prevented Dox-induced cardiotoxicity and enhanced the

cytotoxicity in triple-negative breast cancer by inhibiting proliferation and metastasis and

inducing apoptosis.

Keywords: luteolin, cardiac dysfunction, doxorubicin, breast cancer, mitochondrial dysfunction

INTRODUCTION

Doxorubicin (Dox), an anthracycline chemotherapeutic agent,
has been widely used to treat a variety of tumors including
breast cancer, ovarian cancer, and hematological malignancies
(1–4). However, the clinical utility of Dox in chemotherapy is
limited by its adverse dose-dependent cardiotoxicity, which often
results in left ventricular dysfunction, cardiomyopathy, and
even heart failure (5, 6). Over the decades, novel insights into
Dox-induced oxidative stress in cardiomyocytes emerged since
current interventions to lessen the incidence of cardiotoxicity
after prolonged Dox treatments are unsatisfactory (7–9).
Increasing evidence proved that Dox facilitates cardiomyocyte
apoptosis and programmed death by damaging mitochondrial
structure and its biologic function, which is ascribed to the
disorder of mitochondrial oxidation-reduction homeostasis
and mitochondrial dynamics (10). Nevertheless, effective
interventions for Dox-induced cardiotoxicity still need to be
explored and developed.

Dexrazoxane is the only drug currently approved by the FDA
that provides protection against Dox-induced cardiotoxicity.
However, dexrazoxane not only causes side effects, such
as hematological toxicity and myelosuppression, but also
decreases the antitumor efficacy of Dox (11, 12). For instance,
the activation of hypoxia-inducible transcription factor, an
oncogene, may contribute to the protective effect of dexrazoxane
against anthracycline cardiotoxicity in dexrazoxane-treated
H9c2 cardiomyocytes (13). Interestingly, numerous studies
have demonstrated that different herbal products and
bioactive phytochemicals could counterbalance Dox-induced
cardiotoxicity as add-on therapies (14, 15). Therefore, developing
a drug that confers cardioprotection during Dox treatment and
improves the chemotherapeutic efficacy of Dox in cancer cells
is important.

Luteolin (Lut), 3′,4′,5′,7′-tetrahydroxyflavone, a naturally
occurring flavone, which are widely enriched in plants. Lut has
shown beneficial effects in several biological processes including
anti-tumorigenesis, anti-inflammation, antiapoptotic activities,
and antioxidative stress (Figure 1A) (16, 17). Plants rich in
Lut have been used as traditional Chinese medicine (TCM) for
hypertension, inflammatory diseases, and cancers (14, 18). In
China, traditional herbal medicine has been commonly used
for the treatment of breast cancer and its complications (19).
Among them, Platycodon grandiflorum is widely used, alone or in
combination with other herbal medicines, to treat patients with
early breast cancer receiving anthracycline-based chemotherapy.
Our previous clinical study found that Platycodon grandiflorum
has cardioprotective effects for early breast cancer patients who
received Dox-based chemotherapy (20). Basic experiment studies

revealed that Platycodon grandiflorum prevents Dox-induced
cardiotoxicity in a mouse model of breast cancer (21). However,
the potential mechanisms behind the cardioprotective effects
remain unknown.

Lut is one of the major metabolites upon oral administration
of luteolin-7-O-glucoside and is generally absorbed by intestinal
mucosa into the systemic circulation after oral administration
with an oral bioavailability at ∼26% (22). Importantly, the
flavonoid Lut is recognized as an important regulator of
myocardial function providing myocardial protection during
times of stress and can largely protect the myocardium against
IR injury, partly through the downregulation of antioxidant
and apoptosis properties (23, 24). Importantly, as the main
component of Platycodon grandiflorum, Lut exerts multiple
cellular effects in vitro, including antiproliferative effects in
cancer cells and anti-inflammatory and antioxidative effects in
various cell types. However, the molecular mechanisms by which
Lut exerts these effects remain unclear.

Previous studies shown that Dox may activate apoptotic
signaling through multiple mechanisms, including
mitochondria-related apoptotic signaling (25). Dox-induced
mitochondrial fission is a dynamin-related protein 1 (Drp1)
signaling-dependent process, Drp1 might be a potential
target against Dox-induced cardiotoxicity (26, 27). Given that
hepatotoxicity and heart failure due to different medicines
and toxins can be attenuated by Lut, we hypothesized that Lut
may have protective effects on cardiotoxicity due to Dox via
regulating mitochondrial damage. Therefore, the aim of this
work was to investigate the protective effect of Lut against Dox-
induced cardiotoxicity. The results showed that this protection
was mediated through Drp1-regulated mitochondria-related
apoptosis both in vitro and in vivo. In addition, Lut enhanced the
chemotherapeutic efficacy of Dox in breast cancer.

MATERIALS AND METHODS

Cell Cultures
H9c2 (rat cardiomyocytes), AC16 (human cardiomyocytes), 4T1
(mouse breast cancer cell), and MDA-MB-231 (human breast
cancer cell) cell lines were purchased from the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China). H9c2, AC16,
and MDA-MB-231 cells were maintained in DMEM medium
supplemented with 10% (v/v) FBS, 100 U/mL penicillin, and 100
mg/L streptomycin. The 4T1 cells were maintained in RPMI 1640
medium supplemented with 10% (v/v) FBS, 100 U/mL penicillin,
and 100 mg/L streptomycin. The cells were incubated at 37◦C in
a 5% CO2 incubator with saturated humidity.
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FIGURE 1 | Effect of Lut in attenuating Dox-induced cardiotoxicity in H9c2 and AC16 cells. (A) Chemical structure of Lut. (B,C) Effects of different concentrations of

Lut on cell viability and toxicity in H9c2 and AC16 cells. (D) Effects of different concentrations of Dox on cell toxicity in H9c2 and AC16 cells. (E) Effects of Lut in

attenuating Dox-induced cardiotoxicity in H9c2 and AC16 cells. Mean ± SD, n = 3 independent experiment. *P < 0.05; **P < 0.01 compared with control group. #P

< 0.05; ##P < 0.01 compared with Dox group.

Cell Viability and Cytotoxicity Assays
The cell viability and cytotoxicity of H9c2 and AC16 cells
were detected by MTT assay and LDH assays. Briefly, the cells
were plated in 96-well plates at a density of 5,000 cells/well,
incubated overnight, and then exposed to 1µM Dox with or
without various concentrations of Lut for another 24 h. Cells were
supplemented with 20 µL MTT and incubated for 4 h at 37◦C.
The formazan crystals that formed were subsequently dissolved
in 150 µL DMSO, and the OD490 values were measured with a
BioTek instrument (Winooski, Vermont, USA). For cytotoxicity
assay, the release of LDH into the medium was determined using
a Cytotoxicity Detection Kit (Beyotime, Shanghai, China). The
absorbance was measured with a microplate reader at 490 nm.

Oxidative Stress Analysis
After 24 h of Dox (1µM) treatment with or without Lut
(20µM), H9c2 and AC16 cells were loaded with 10µM

DCFH-DA in medium for 30min at 37◦C. After incubation,
the ROS levels were measured using a flow cytometer. For SOD
analysis, cell supernatants were collected by centrifugation after
treatment. The solution was measured by the WST-8 method
according to the manufacturer’s instructions. The SOD activity
was presented as percent inhibition of the reduction of the
chromogenic substrate.

Cell Microfilament Cytoskeleton Staining
H9c2 and AC16 cells were seeded into 6-well plates. After 24 h
of Dox (1µM) treatment with or without Lut (20µM), cells
were fixed with 4% paraformaldehyde in PBS for 15min. Suitable
media were washed twice with wash buffer and permeabilized
with 0.1% Triton X-100 in PBS for 5min at room temperature.
Following two washes with wash buffer, cells in suitable media
were covered with dilute FITC-conjugated phalloidin in PBS
immediately prior to use and incubated for 30min to stain
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the actin. Nuclei counterstaining was performed by incubating
cells with 0.1µg/mL DAPI for 15min. Fluorescence images were
captured with a laser scanning confocal microscope.

Cell Apoptosis Analysis
H9c2 and AC16 cells were seeded in 6-well flat-bottommicrotiter
plates at an initial cell density of 105 cells/well and cultured
overnight. After 24 h of Dox (1µM) treatment with or without
Lut (20µM), cells were incubated with fresh medium containing
0.1 mmol/L Hoechst 33258 (Beyotime, Shanghai, China) in the
dark for 10min. The cells were washed three times with PBS,
and the apoptotic cells were observed under a fluorescence
microscope (Olympus, Tokyo, Japan).

Western Blot
Western blot was used to evaluate the apoptosis-related
protein in cells. Primary rabbit antibodies, such as Bax (#2772,
1:1,000), Bcl-2 (#3498, 1:1,000), Bcl-XL (#2764, 1:1,000),
Caspase-3 (#9662, 1:1,000), Cleaved Caspase-3 (#9664, 1:1,000),
β-actin (#3700, 1:1,000), GAPDH (#5174, 1:1,000), Drp1
(#8570, 1:1,000), phospho-Drp1 (Ser616) (#3455, 1:1,000),
and horseradish peroxidase (HRP)-conjugated secondary
antibody (#7074s, 1:5,000) were purchased from Cell Signaling
Technology, Inc. (Beverly, MA, USA). Cells were washed with
PBS for three times and lysed with lysis buffer. After incubation
on ice for 30min, the lysates were centrifuged at 12,000 g for
15min at 4◦C. Protein sample was denatured at 100◦C for
10min, separated by sodium dodecyl sulfate–polyacrylamide
gel electrophoresis, and then transferred to PVDF membrane
(Millipore). The membrane was incubated with the primary
antibodies overnight. Then, the membrane was washed and
incubated with secondary HRP-conjugated goat anti-rabbit or
anti-mouse antibodies. Finally, the blots were developed with
Enhanced ECL System (Beyotime, Shanghai, China), and the
signal was quantified by Quantity One software (Bio-Rad).

Confocal Microscopy and Electron
Assessment on Mitochondrial Morphology
Mitochondrial morphology was assessed by confocal microscopy.
After 24 h of Dox (1µM) treatment with or without Lut (20µM),
the media were removed from the dish, and staining solution
containing MitoTracker probe (Yeasen Biotech, Shanghai,
China) was added. The lyophilized MitoTracker was dissolved
in anhydrous dimethyl sulfoxide to a final concentration of
100 nmol/L and incubated for 30min. Images were captured
with a laser scanning confocal microscope (Olympus, Tokyo,
Japan). Following Dox treatment with or without Lut, the H9c2
and AC16 cells were washed with PBS, collected, and fixed
in 2.5% glutaraldehyde for over 2 h at 4◦C. The specimens
were subsequently rinsed with PBS, fixed in 1% osmium
tetroxide for 1–2 h, and then dehydrated sequentially in graded
concentrations of 50, 70, 80, 90, and 100% ethanol for 15min.
The specimens were then processed for EponTM embedding and
observed under a transmission electron microscope (CM100,
Philips, Netherlands).

Molecular Docking
Molecular docking was used to interpret the binding area of
small molecule ligands and macromolecular receptors through
computer simulation and then calculate the physical and
chemical parameters for predicting the affinity between the
two. The mol2 format of the active ingredient was downloaded
from the PubChem database. Its energy was minimized through
Chem3D and converted into pdb format. Small molecule
compounds were imported into AutoDock Tools-1.5.6 software.
Water molecules were deleted, atomic charges were added, and
atom type was allocated. All flexible keys can be rotated by default
and finally saved as a pdbqt file. The PDB format file of the
crystal structure of the target was downloaded from the PDB
database (Protein Data Bank). Pymol 2.3 software was used to
delete irrelevant small molecules in the protein molecule. Then,
we imported the protein molecule into the AutoDock Tools-1.5.6
software to delete water molecules and add hydrogen atom, and
finally saved it as a pdbqt file. The processed active ingredient
is a small molecule ligand, and the protein target is used as a
receptor. The center position and length, width, and height of the
Grid Box were determined according to the interaction site of the
small molecule and the target. Finally, batch docking was carried
out through AutoDock vina and python script. In analyzing the
molecular docking results, we visualized the binding effect of
compounds and proteins using Pymol 2.3 software.

RNA Sequencing
H9c2 and AC16 cells were harvested after drug treatment
(three samples per group). The total RNA of each sample was
extracted using TRIzol (Thermo Fisher). The quality of the
RNA was measured by the Agilent 2100 Bioanalyzer with the
RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA). The
RNA concentration, RIN value and fragment length distribution
were analyzed. Construction of the sequencing library and RNA
sequencing were performed by Sangon (Shanghai, China) using
the Illumina NovaSeq Platform.

Identification of Differentially Expressed
Genes (DEGs) and Functional Enrichment
Analysis
Limma package (version 3.40.2) of R software was used to
screen out the DEGs in the Dox–Lut group compared with Lut-
treated group and Dox-treated group compared with control
group in H9c2 and AC16 cells. “Adjusted P < 0.05 and
Log (Fold Change| >1)” were defined as the cutoff for the
identification of differentially expressed mRNAs. To further
confirm the underlying function of potential targets, the data
were analyzed by functional enrichment. Gene Ontology (GO)
is a widely used tool for annotating genes with functions,
especially molecular function (MF), biological pathways (BP),
and cellular components (CC). Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis is a practical database
for analytical study of functional annotations and associated
high-level genome-wide pathways. The results of functional
enrichment are displayed in bubble charts.
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Zebrafish Maintenance and Drug
Treatment
Tg (cmlc2: GFP) zebrafish with GFP specifically expressed
in myocardial cells were used in this study. Zebrafish were
maintained as described in the Zebrafish Handbook (28). All
animal experiments were approved by the Animal Research
Ethics Committee of Shanghai University of Traditional Chinese
Medicine. Pair-wise mating (6–12 months old) was used to
generate the zebrafish embryos, which were maintained in
embryo medium at 28.5◦C. All embryos were then raised in
the embryo medium containing 1-phenyl-2-thiourea (200mM)
after 48 hpf. Zebrafish (2 dpf) at the same developmental stage
were distributed into a 24-well microplate (5 fish per well). After
co-treatment with Dox (10µM) and different concentrations of
Lut (5, 10, 20µM) for 24 h, ventricular functions of zebrafish
were examined by assessing various parameters and morphology.
The morphology and functions of zebrafish heart were measured
by an imaging system comprising a microscope (Olympus).
Zebrafish were placed into 1% low-melting-point agarose (Gibco)
to restrict their movement, and videos of zebrafish heartbeat
were recorded for 10 s at room temperature. The parameters and
morphology of ventricular function of zebrafish were measured.

Wound Healing Assay
Cells were seeded in 6-well plates at a density of 1 × 105 cells
per well, and when cellular confluence reached about 90%, a
200 µL pipette tip was used to create wounds in confluent
cells. After removing the floating cells by washing the scraped
surface with PBS, wounded monolayers were photographed with
a microscope. Cells were then incubated containing Dox (2µM)
with or without Lut (40µM) for 24 h. The images of cells
migrating into the wound surface and the average distance of
migrating cells were determined under a microscope 24 h later.

Colony Formation Assay
To further determine the inhibitory effect of Lut on the
tumorigenicity of triple-negative breast cancer (TNBC) cells,
colony formation assays were performed. Five hundred 4T1 or
MDA-MB-231 cells were seeded into 6-well plates to incubate
overnight. The cells were then incubated with Dox (2µM) with
or without Lut (40µM) for 7–10 days. After fixing with 4%
paraformaldehyde and staining with a crystal violet solution,
colonies containing more than 30 individual cells were counted
under a stereomicroscope.

Cell Invasion Assay
The invasive ability of 4T1 and MDA-MB-231 cells were
measured using 24-well Transwell with polycarbonate filters
(pore size, 8µm) coated on the upper side with Matrigel (BD,
Bedford, MA, USA). 1× 103 cells in 100mLmediumwere seeded
in the top chamber. The bottom chamber contained 10% fetal calf
serum medium. After 24 h incubation, non-invasive cells were
removed with a cotton swab. Cells that migrated to the bottom
surface of the membrane were fixed in formaldehyde, stained
with crystal violet solution, and counted under a microscope.

Xenograft Mouse Experiments
Seven-week-old female BALB/c mice (18–20 g) were obtained
from the Shanghai SLAC Laboratory Animal Technology Co.,
Ltd. (Shanghai, China). The animals were housed under
standardized conditions in animal facilities at 20 ± 2◦C
temperature, 40% ± 5% relative humidity, and a 12-h
light/dark cycle with dawn/dusk effect. The protocol was
approved by the Animal Research Ethics Committee of Shanghai
University of Traditional Chinese Medicine (Permit Number:
PZSHUTCM18122103). 4T1 cells (2× 106) were resuspended in
10mL PBS, and 100 µL of cell suspension was subcutaneously
injected into the second pair of breast fat pads on the left
side of each mouse. The tumors formed approximately 14
days after the inoculation. Then, all mice were randomly
divided into three groups (n = 5): control group (ip, saline),
Dox group (ip, 2.5 mg/kg Dox), and Dox combined with
Lut group (ip 2.5 mg/kg Dox + ip 30 mg/kg Lut). The
mice were administered with Dox or Dox combined with Lut
solution once per 2 days continuously for 2 weeks. At the
experimental endpoint, all animals were euthanized. Then, the
size and weight of tumors were measured. Lungs and tumors
were excised and then fixed in 4% paraformaldehyde overnight
until further analysis. For echocardiographic studies, the mice
were anesthetized with 2.5% isoflurane in 95% oxygen and 5%
carbon dioxide and then situated in the supine position on a
warming platform to maintain the core temperature at 37◦C.
Cardiac function was evaluated via echocardiography by using
a High-Resolution Small Animal Imaging System (Vevo2100,
Visual Sonics Inc., Toronto, Canada). Two-dimensional and
M-mode echocardiographic images of the long and short axis
were recorded. Left ventricular ejection fraction (LVEF) and
left ventricular fractional shortening (LVFS) were measured and
calculated using the Vevo Strain Software Work Station.

Statistical Analysis
All results are presented as mean ± standard deviation (SD).
Two-tailed analysis of variance followed byDunnett’s post hoc test
and Fisher’s test was used to determine the statistical significance.
P < 0.05 was considered significant for all tests.

RESULTS

Lut Attenuates Dox-Induced Cardiotoxicity
in H9c2 and AC16 Cells
The H9c2 (rat) and AC16 (human) cardiomyocytes were treated
with elevated concentration (0, 2.5, 5, 10, 20, and 40µM)
of Lut for 24 h. As shown in Figure 1B, cell viability was
markedly increased with Lut (P < 0.05). As detected by LDH
assay, the increased Lut concentration was not significantly
correlated with LDH release until the Lut concentration was
increased to 40µM (P < 0.05; Figure 1C). Dox (0, 0.25, 0.5,
1, 2, 4, and 8µM) treatment for 24 h markedly decreased cell
viability (P < 0.01; Figure 1D). Co-treatment with Lut and Dox
significantly increased cell viability compared with Dox alone
(P < 0.05; Figure 1E). Lut could significantly attenuate Dox-
induced cardiotoxicity in H9c2 and AC16 cells.
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Lut Attenuates Dox-Induced Oxidative
Stress and Cytoskeletal Damages in H9c2
and AC16 Cells
We then detected changes of oxidative stress in H9c2 and
AC16 cells after 24 h drug treatments using flow cytometry.
The results showed that Lut treatment did not significantly
change the ROS level, but it could significantly reduce the
elevated ROS level induced by Dox (P < 0.05; Figures 2A,B).
Similarly, the decreased SOD activity induced by Dox could
be significantly increased by Lut treatment, which could even
reach a level higher than that in the Lut-alone group (P <

0.05; Figures 2C,D). The integrity of the myocardial cytoskeleton
plays an important role in the physiological function of the
heart. Interestingly, cytoskeleton staining suggested that the
cytoskeleton of the Dox treatment group was damaged with
disappearance of microfilaments and microtubules in the cell
membrane and loss of cell fiber tension. However, this damage
could be markedly recovered by Lut in the combined treatment
group (white arrows, Figures 2E,F). In conclusion, Lut could
significantly attenuate Dox-induced oxidative stress and restore
cytoskeletal alterations in H9c2 and AC16 cells.

Lut Inhibits Dox-Induced Cardiomyocyte
Apoptosis in H9c2 and AC16 Cells
TUNEL assay was performed to assess apoptosis
following Lut and Dox treatment in H9c2 and AC16 cells
(Supplementary Figures 1A,B). Compared with the control
group, Dox challenge for 24 h significantly increased cell
apoptosis as evidenced by the elevated number of TUNEL-
positive cardiomyocytes (P < 0.05), while the effect was
significantly inhibited by Lut treatment (P< 0.05; Figures 3A,B).
Meanwhile, Western blot indicated that Dox treatment
upregulated the levels of Bax and Cleaved Caspase-3 and
downregulated Bcl-2 and Bcl-XL levels in H9c2 and AC16 cells.
Importantly, the regulation induced by Dox was conversely
regulated by Lut treatment (P < 0.05; Figures 3C,D). Taken
together, Lut treatment could significantly inhibit Dox-induced
cardiomyocyte apoptosis through the Bax/Bcl-2/Caspase-3
pathway in H9c2 and AC16 cells.

Lut Attenuates Dox-Induced Excessive
Mitochondrial Division of H9c2 and AC16
Cells
Next, we explored the effect of Lut on the mitochondrial
morphological change of cardiomyocytes induced by Dox. As
shown in Figure 4A, fluorescence microscopy showed that
the mitochondria of normal cardiomyocytes were reticulated.
After being stimulated with Dox (1µM) for 24 h, compared
with the normal group, cell mitochondria were divided, and
the morphology of cell mitochondria changed significantly,
transforming from a reticulate to a punctate phenotype. In
addition, compared with the Dox-treated group, Lut (20µM)
markedly inhibited the excessive division of mitochondria and
restored the mitochondrial morphology of H9c2 and AC16
cells. Using transmission electron microscopy, we observed the
ultrastructure of cells. After 24 h of Dox treatment, vacuoles

appeared in cardiomyocytes, and a “hair ball” structure appeared
in the mitochondria (red arrow, Figure 4B). After Lut treatment,
the morphology of cell mitochondria was restored, and the
morphology of cell nucleus and chromatin returned to normal.

Lut Attenuates Dox-Induced Drp-1
Phosphorylation in H9c2 and AC16 Cells
We tried to explore the mechanism of Lut to restore Dox-
induced mitochondrial morphological alterations and used a
molecular docking algorithm to predict the binding mode and
affinity between the receptor and the drugmolecule in Figure 5A.
The results suggested a high affinity for docking between Drp-
1 and Lut (affinity = −8.31 kcal/mol). Western blot revealed
a significantly elevated p-Drp-1/Drp-1 ratio in the Dox-treated
group, while the phosphorylation level of Drp-1 significantly
decreased with additional Lut treatment in a dose-dependent
manner compared with the Dox-treated group (P < 0.05;
Figures 5B,C). Overall, Lut could significantly attenuate Dox-
induced mitochondrial morphological changes via regulating
Drp-1 phosphorylation in H9c2 and AC16 cells.

Lut Reduces Heart Damage Induced by
Dox in vivo
The protective effects of Lut against cardiotoxicity mediated by
Dox in zebrafish were quantified. As shown in Figure 6A, we
constructed a zebrafish heart injury model using 10µM Dox.
After co-administration of Dox and different concentrations of
Lut for 24 h, the zebrafish pericardium of the model group
showed obvious edema compared with the negative control
group. Moreover, we found a significantly decreased zebrafish
heart rate, increased SV–BA distance, and decreased stroke
volume in the Dox-induced group (P < 0.05; Figures 6B–D),
indicating severe heart damage. Compared with the doxorubicin-
induction group, we found significantly increased heart rate,
shortened SV–BA distance, and markedly improved stroke
volume of zebrafish after 24 h of intervention with medium and
high doses of Lut (P < 0.05; Figures 6B–D).

Lut Interferes With Dox-Induced
Transcriptome Sequencing of
Cardiomyocytes in AC16 and H9c2 Cells
Subsequently, to identify DEGs and hallmarks related to
the process of Lut in attenuating the toxicity of Dox
to cardiomyocytes, we used RNA sequencing and selected
upregulated DEGs in the Dox group compared with control
group and downregulated DEGs in the Dox–Lut group compared
with Dox group. We screened out a total of 137 overlapped hub
genes in AC16 cells and 123 overlapped hub genes in H9c2 cells
(Figures 7A,B). Similarly, we identified downregulated DEGs in
the Dox group compared with the control group and upregulated
DEGs in the Dox–Lut group compared with the Dox group.
Then, we screened out a total of 32 overlapped hub genes in AC16
cells and 814 overlapped hub genes in H9c2 cells (Figures 7A,B).
Next, we explored the functional annotations of different genes
in cardiomyocytes using GO and KEGG algorithm. The DEGs
were significantly involved in biological process (GO: BP),
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FIGURE 2 | Effect of Lut treatment on Dox-induced oxidative stress and cytoskeletal damages in H9c2 and AC16 cells. (A,B) ROS and (C,D) SOD levels in H9c2 and

AC16 cells after Dox and Lut treatment. (E,F) Cytoskeleton staining in H9c2 and AC16 cells after Dox and Lut treatment (630×). White arrows show microfilaments

and microtubules. Mean ± SD, n = 3 independent experiment. *P < 0.05 compared with control group. #P < 0.05 compared with Dox group.

including actin filament bundle organization, Golgi vesicle
transport, Ras protein signal transduction, organelle transport
along microtubule, microtubule organizing center organization,

and microtubule cytoskeleton organization involved in mitosis;
cellular function (GO: CC), including chromosomal region,
mitotic spindle, P-body, Golgi-associated vesicle membrane, and
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FIGURE 3 | Effect of Lut treatment on Dox-induced cardiomyocyte apoptosis. (A) Quantified TUNEL-positive cells from three fields per group in H9c2 and (B) AC16

cells. (C) Representative Western blot images of H9c2 and (D) AC16 apoptosis using Bax, Bcl-2, Bcl-XL, and Cleaved Caspase-3. Mean ± SD, n = 3 independent

experiment. *P < 0.05 compared with control group. #P < 0.05 compared with Dox group.
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FIGURE 4 | Effect of Lut treatment on Dox-induced changes in cardiomyocyte mitochondrial morphology. (A) Representative fluorescence images of the morphology

of mitochondria in H9c2 (left) and AC16 (right) cells (630×). (B) Transmission electron microscopy images of the morphology of mitochondria in H9c2 (left) and AC16

(right) cells (12,000×). Red arrows show autophagosome.
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FIGURE 5 | Lut attenuated Dox-induced Drp-1 phosphorylation in H9c2 and AC16 cells. (A) Detailed molecular docking simulations. The blue circle on the left

represents the binding site of the small-molecule compound, and the bar graph on the right describes the specific form of this interaction. Representative Western blot

images of Drp-1 and p-Drp-1 in H9c2 (B) and AC16 (C) cells. Mean ± SD, n = 3 independent experiment. *P < 0.05 compared with control group. #P < 0.05

compared with Dox group.

cleavage furrow; and molecular function (GO: MF), including
kinase regulator activity, GTPase activator activity, tubulin
binding, cytoskeletal protein binding, and microtubule binding
(Figures 7C–E). Additionally, DEGs of AC16 and H9c2 cells
significantly participated in cellular senescence, AMPK signaling
pathway, viral carcinogenesis, and human T-cell leukemia

virus 1 papillomavirus infection, suggesting that drug-induced
cellular senescence may increase the virus susceptibility and
carcinogenicity of cardiomyocytes (Figure 7F). We found that
the DEGs not only markedly participated in Hippo/Wnt,
AMPK/MAPK, and TGF-β signaling pathways and animal
mitophagy process, but were also involved in transcriptional
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FIGURE 6 | Lut protected the loss of ventricular function in zebrafish. (A) Representative images of zebrafish heart after treatment with Dox in the presence or

absence of Lut. A: atrium, V: ventricle. Zebrafish were co-treated with Dox and Lut. The changes in (B) heart rate and (C) SA–BA (D) stroke volume were measured.

Mean ± SD, n = 3 independent experiment. *P < 0.05 compared with control group. #P < 0.05 compared with Dox group.

misregulation and pathways in cancers, such as hepatocellular,
breast, gastric, and thyroid cancer.

Lut Promotes the Antitumor Effect of Dox
in 4T1 and MDA-MB-231 Cells
To further explore the effect of Lut on the antitumor efficacy
of Dox, we explored the malignant biological behavior of
different treatments in invasive TNBC 4T1 and MDA-MB-231
cell lines. As shown in Figures 8A,B, the cell viability was
markedly decreased in the Lut-added group compared with
the Dox-induced group in 4T1 and MDA-MB-231 cells (P <

0.05). Wound healing test showed significantly reduced wound
width after 24 h of induction of Lut or Dox compared with
the negative control group, while the combination of Lut and
Dox remarkably decreased wound healing width compared with

the single-drug treatment group (P < 0.05; Figures 8C,D). In
addition, Lut significantly enhanced the antitumor efficacy of
Dox by decreasing the colony formation and invasion ability of
breast cancer cells (P < 0.05; Figures 8E–H). In general, Lut
could not only significantly inhibit the malignant behavior of
tumor cells, but also enhance the antitumor efficacy of Dox in
4T1 and MDA-MB-231 cells.

Lut Promotes Dox-Induced Cell Apoptosis
via the Bax/Bcl-2/Caspase-3 Pathway in
4T1 and MDA-MB-231 Cells
Next, we explored the effect of Lut on the apoptosis of triple-
negative breast cancer cells induced by Dox. Western blot
indicated upregulated levels of Bax and Cleaved Caspase-3 in
conjunction with downregulated Bcl-2 levels in Dox-treated
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FIGURE 7 | GO and KEGG analysis of DEGs in the Dox–Lut group compared with Dox group. (A) Venn diagram. The intersection in the figure is the gene with the

opposite differential expression, which is defined as the gene affected by Lut in AC16 and (B) H9c2 cells. (C) Biological processes, (D) cellular component, (E)

molecular function, and (F) KEGG pathways involved in resveratrol-affected genes.

or Lut-treated 4T1 and MDA-MB-231 cells. Importantly, the
regulation of cell apoptosis induced by Dox was significantly
enhanced by additional Lut treatment (P < 0.05; Figures 9A,B).

Taken together, Lut treatment could significantly enhance Dox-
induced tumor cell apoptosis through the Bax/Bcl-2/Caspase-3
pathway in 4T1 and MDA-MB-231 cells.
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FIGURE 8 | Lut promotes the antitumor effect of Dox in 4T1 and MDA-MB-231 cells. (A) 4T1 and (B) MDA-MB-231 cells were treated with Dox or Dox added with

Lut (40µM) at concentrations of 0, 1, 2, 4, 8, or 16µM for 24 h. MTT assays were performed, and cell viability was determined. Photographs and quantification of

wounds, colony formation, and cell migration to (C,E,G) 4T1 and (D,F,H) MDA-MB-231 cells treated with Dox (2µM) or Dox added with Lut (40µM). Mean ± SD, n =

3 independent experiment. *P < 0.05 compared with control group. #P < 0.05 compared with Dox group.

Lut Prevents the Cardiotoxicity and
Promotes the Antitumor Effect Induced by
Dox in vivo
A xenograft of 4T1 cells in 7-week-old BALB/c mice
was established for in vivo exploration (Figure 10A).
Echocardiographic examination showed that the Dox-treated
group had an ∼20% decrease in LVEF and LVFS compared
with the control group. Lut treatment significantly attenuated
cardiac dysfunction in the Dox-treated mice, as indicated by the
increased LVEF and LVFS (P < 0.05; Figure 10B). Additionally,
Dox did not alter the cardiac structure, including the diastolic left
ventricular internal dimension (LVIDd), diastolic left ventricular
posterior wall (LVPWd), and diastolic interventricular septum
(IVSd) (Supplementary Figure 2). As shown in Figure 10C,
the tumor volume and weight were significantly decreased in
the Dox-induced group compared with the control group and
was even further reduced in the Dox–Lut group (P < 0.05;
Figure 10C). Notably, Lut also significantly enhanced the Dox-
induced reduction of the number of lung metastatic nodules in
xenograft models (P < 0.05; Figure 10D). Taken together, Lut
could significantly promote the antitumor efficiency induced by
Dox in a xenograft of highly aggressive 4T1 cells.

DISCUSSION

Breast cancer is one of the most prevalent malignancies and
associated with significant morbidity among females worldwide
(29). Among the treatments of primary breast cancer, an
anthracycline-based regimen is the standard of care (29, 30).
According to the latest National Comprehensive Cancer Network
guidelines, 5-fluorouracil, epirubicin, and cyclophosphamide
adjuvant chemotherapy regimen followed by paclitaxel or
paclitaxel combined with anti-human epidermal growth factor-
2 trastuzumab is the recommended regimen for breast cancer
(31). Anthracyclines represented by Dox are the first-line
chemotherapy for breast cancer, and they play an irreplaceable
role in current clinical treatment of breast cancer. Unfortunately,
the adverse effects of Dox, such as immunosuppression,
hepatotoxicity, and especially dose-dependent cardiotoxicity,
limit its efficacy and application because treatment-related
cardiotoxic adverse events have become one of the common
causes of breast cancer mortality (32, 33). Current prevention
and treatment cannot effectively solve the problem of Dox-
induced cardiotoxicity (34, 35). Therefore, improved approaches
to reduce Dox side effects and enhance Dox efficiency need to
be developed.
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FIGURE 9 | Lut promotes Dox-induced cell apoptosis via the Bax/Bcl-2/Caspase-3 pathway in TNBC cancer. Western blot images of Bax, Bcl-2, and Cleaved

Caspase-3 expression in 4T1 (A) and MDA-MB-231 (B) cells after treatment with Dox (2µM) or Dox added with Lut (40µM) at the indicated concentrations for 24 h.

Quantification of protein expression is shown below the Western blots. *P < 0.05 compared with control group. #P < 0.05 compared with Dox group.

FIGURE 10 | Lut prevents the cardiotoxicity and promotes the antitumor effect induced by Dox in vivo. (A) Diagram showing the scheme for tumor implantation and

Lut treatment. (B) Echocardiographic assay was used to determine the attenuated left ventricular dysfunction of Lut on Dox-induced cardiac dysfunction in mice. (C)

Image of tumors from different groups. The weight and size of the tumor was measured. (D) Typical lung nodules in mice from different groups. *P < 0.05 compared

with control group. #P < 0.05 compared with Dox group.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 14 October 2021 | Volume 8 | Article 75018624

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Shi et al. Luteolin in Doxorubicin-Treated Breast Cancer

TCM becoming increasingly important in cancer treatment
and modern cardiotoxicity protective pharmacology. The
identification of cardiotoxic protective drugs with unique
pharmacological effects from TCM has become a new direction
(36). For example, Zheng et al. found that the TCM Bu-Shen-
Jian-Pi-Fang could inhibit tumor proliferation by enhancing
GLUT-1 related glycolysis and may alter the immune-rejection
microenvironment in renal cell carcinoma patients (37).
Ginsenoside Re functions as an antioxidant, protecting
cardiomyocytes from oxidant injury induced by exogenous
and endogenous oxidants, and protects against apoptotic cell
death (38, 39). Notably, previous attempts to explore the cancer
prevention and therapeutic potential of Lut have systematically
indicated its potential as an anticancer agent for various
cancers (40). Lut can attenuate antitumor activity and drug
resistance via reducing Bcl-2 expression in cancer cells (41).
Interestingly, a previous study demonstrated the protective
features of Lut against Dox-induced cardiotoxicity, possibly
related to its ability of improving Drp1-regulated mitochondrial
morphology alteration (42). However, it emphasized on TFEB-
mediated mitochondrial regulation and the association between
Drp-1 and mTOR, thus ignoring the positive effect of Lut in
inhibiting Dox-induced cardiotoxicity in cardiomyocytes and
tumor cells.

This study showed that Lut, the core component of
Platycodon grandiflorum, markedly reduced the level of
apoptosis and inhibited the activation of the Bax/Bcl-2/Caspase-
3 signaling pathway of cardiomyocytes induced by Dox.
Moreover, cytoskeleton damage ruptures cardiomyocytes in
Dox-induced cardiotoxicity (43). In this work, Lut protected
the cardiomyocyte cytoskeleton damage caused by Dox and
maintained the integrity of the cardiomyocyte cytoskeleton.
Therefore, cardioprotection from the perspective of protecting
the cytoskeleton may be an effective target of Lut for the
treatment of Dox-induced cardiotoxicity.

Cardiac autophagic processes lead to ROS overproduction
and 1ψm dissociation, contributing to mitochondria-mediated
apoptosis and death (44, 45). Our present work confirmed that
Lut effectively reduced the level of cardiomyocyte oxidative
stress and mitochondrial autophagy and inhibited mitochondrial
division and the recruitment of Drp-1 phosphorylation.
Subsequently, we performed transcriptome analysis to further
explore the protective role of Lut in Dox-induced cardiotoxicity.
Consistent with previous research (46), our findings indicated the
role of Lut in the regulation of mitochondrial morphology, such
as Ras protein signal transduction, microtubule cytoskeleton
organization, cytoskeletal protein binding, and microtubule
binding of molecular function, in GO enrichment analysis.
Moreover, we found that the DEGs not only markedly
participated in the Hippo/Wnt, AMPK/MAPK, and TGF-β
signaling pathways and animal mitophagy process, but were
also involved in apoptosis, transcriptional misregulation,
and pathways in cancers, such as hepatocellular, breast,
gastric, and thyroid cancer. In light of the findings, we
carried out follow-up studies on breast cancer cells (4T1

and MDA-MB-231). Notably, Lut exerted a protective effect
on Dox-induced cardiotoxicity, improved cardiac function
parameters, and enhanced the anticancer therapeutic effects
of Dox in vivo. Interestingly, combined treatment of Lut and
Dox alleviated cardiomyocyte apoptosis but enhanced the
apoptosis of breast cancer cells, which were in accordance
with previous pharmacokinetics studies highlighting that
Platycodon grandiflorum combined with Dox can increase the
concentration of Dox in the lung and tumor and decrease
the concentration of Dox in the heart of breast cancer mice
(21). Doubtlessly, the comprehensive findings of Lut and Dox
combination in cardiomyocytes and breast cancer cells facilitate
its clinical application.

The innovation of this research lies in the mutual
verification of in vivo and in vitro experiments. For the
first time, we studied the protective effect of Lut on Dox
cardiotoxicity on the basis of a transgenic zebrafish animal
model. Second, this study first explored the effect of Lut,
the active ingredient of Platycodon grandiflorum, on the
mitochondrial fusion–division process of cardiomyocytes
and the role in the Drp1–Caspase apoptosis signaling
pathway. Third, on the basis of transcriptomic sequencing,
the mechanism of Lut inhibition of Dox cardiotoxicity
was validated in cardiomyocytes and breast cancer cells,
which shed light on increasing clinical significance to novel
treatment strategies.

Despite the strengths of this study, a number of
experimental limitations existed in this study. First and
foremost, our study was a cell lines-based study lacking
the Dox-induced neonatal rat left ventricle myocyte
cardiotoxicity model. Lut retards Dox cardiotoxicity
in-depth work is needed in neonatal rat left ventricle
myocyte. In addition, the regulation of Lut on Drp-
1 phosphorylation and potential binding site remains
to be elucidated. Meanwhile, the molecular mechanism
of Drp1-dependent mitochondrial autophagy remains
unclear. Moreover, the opposite mechanism of Lut-induced
apoptosis has not been fully elucidated in cardiomyocytes
and tumor cells, more in-depth work is needed for the
precise mechanism.

CONCLUSION

The protective effect of Lut against Dox-induced cardiac
dysfunction is associated with alleviating Drp1-mediated
mitochondrial dysfunction. This study first revealed that Lut
could potentiate the anticancer effects of Dox in breast tumor
cells via the Bax/Bcl-2/Caspase-3 pathway.
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Supplementary Figure 1 | (A,B) Representative TUNEL staining depicting H9c2

and AC16 cell apoptosis after Dox and Lut treatment (200×). White arrows show

positive cells.

Supplementary Figure 2 | Echocardiographic assay was used to determine the

attenuated cardiac structure of Lut on Dox-induced cardiac dysfunction in mice.
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Cyclophosphamide (CYP)-induced cardiotoxicity is a common side effect of cancer

treatment. Although it has received significant attention, the related mechanisms of CYP-

induced cardiotoxicity remain largely unknown. In this study, we used cell and animal

models to investigate the effect of CYP on cardiomyocytes. Our data demonstrated

that CYP-induced a prolonged cardiac QT interval and electromechanical coupling time

courses accompanied by JPH2 downregulation. Moreover, N6-methyladenosine (m6A)

methylation sequencing and RNA sequencing suggested that CYP induced cardiotoxicity

by dysregulating calcium signaling. Importantly, our results demonstrated that CYP

induced an increase in the m6A level of JPH2 mRNA by upregulating methyltransferases

METTL3, leading to the reduction of JPH2 expression levels, as well as increased field

potential duration and action potential duration in cardiomyocytes. Our results revealed

a novel mechanism for m6A methylation-dependent regulation of JPH2, which provides

new strategies for the treatment and prevention of CYP-induced cardiotoxicity.

Keywords: cyclophosphamide, cardiotoxicity, JPH2, m6A methylation, METTL3, cardiomyocyte

INTRODUCTION

Although improved treatments have been effective in increasing the survival of patients with
tumors, an increase in the number of side effects of cancer treatment have led to mortality
(1, 2). Tumor therapy-induced cardiotoxicity as a common side effect has received increasing
attention. Many countries and regions have issued relevant practice guidelines for cardiovascular
toxicity induced by cancer treatments (3). Both conventional chemotherapies and targeted drug
therapies reportedly induce cardiovascular toxicity events. One traditional antineoplastic agent,
cyclophosphamide (CYP), is employed in the treatment of various cancers, including breast,
lymphoid, and hematologic malignancies (4). Up to 28% of patients who received a high dose of
CYP suffered from cardiac arrhythmias (3) and even heart failure (5). Further, CYP is widely used
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in the treatment of other diseases, such as refractory
neuromyelitis optica spectrum disorder (200 mg/kg) (6)
and rapidly progressive systemic sclerosis (300 mg/kg) (7), all
of reportedly cause severe cardiotoxicity. Even in the clinic, oral
administration of a low dose (50 or 100 mg/day) for systemic
sclerosis or lupus erythematosus for 1 week has caused cardiac
electrical alteration (prolonged QT interval) in some patients.
However, little is known about the mechanism underlying
CYP-related cardiovascular toxicity. In particular, CYP has often
been used in combination with other antineoplastic agents,
including anthracyclines, docetaxel, and trastuzumab. This has
led to difficulty in assessing the contribution of CYP in multidrug
schemes (8).

CYP and other alkylating agents are the most common types
of DNA damaging agents used in the treatment of various
cancers. Alkylating agents exhibit pharmacological toxicity by
adding methyl and other hydrocarbon groups to the DNA bases,
resulting in base mutations, pair mismatches, and eventually
fatal DNA cytotoxicity (9). The pharmacological mechanism is
fatal to rapidly proliferating tumor cells. However, the cardiac
cytotoxicity induced by alkylating agents is rarely discussed
for non-proliferating cardiomyocytes. Because alkylating agents
adduct DNA bases (A, T, G, and C) to induce DNA methylation
(9), alkylating agents might affect RNA methylation. N6-
adenosine methylation (m6A) of RNA transcripts is the most
prevalent RNA modification (10). This modification regulates
RNA stability (11), gene expression (12), mRNA alternative
splicing (13), embryonic and stem cell differentiation (13–
15), and various diseases including cancer (16) and cardiac
dysfunctions (11, 17). Hence, we hypothesized that CYP induces
cardiotoxicity through RNA m6A modification.

We treated rat neonatal cardiomyocytes (NRCMs), human
embryonic stem cell-derived cardiomyocytes (hESCs-CMs), and
a rat model with CYP to explore solutions for this problem.
This was followed by combining action and field potential
detections, RNA sequencing, and RNAm6Amethylation analysis
to explore the toxicity mechanism underlying CYP-induced
cardiac electrical and mechanical alterations. Our results may
provide drug targets and preventive measures for treating CYP-
induced cardiotoxicity.

MATERIALS AND METHODS

Animals
All Sprague-Dawley (SD) rats in this study were purchased
from Beijing Vital River Laboratory Animal Technology
Company (Beijing, China). Twelve 8-week-old male SD
rats with a mean weight of 273.7 ± 3.2 g were randomized
into two groups: six rats were subjected to saline (Double
Crane Pharmaceutical Co. Ltd, Wuhan, China) peritoneal
injection (vehicle group), whereas six rats were intraperitoneally
injected with CYP (Jiangsu Hengrui Medicine Co., Ltd.
Lianyungang, China) at a dose of 100 mg/kg (CYP treatment
group). Echocardiography (echo) and electrocardiography
(ECG) were performed at different time points (0, 1, and
3 days).

In vivo ECG Recording
Continuous recordings of heart rate were obtained with a
surface ECG. Rats were anesthetized with 3% isoflurane and
were subsequently fixed on a wooden board. ECG recording
was performed using the limb lead. Three electrodes on an
ECG monitor were inserted into the subcutaneous tissues of the
rats’ left and right shoulders and the right hind leg. The signal
was amplified and recorded on a personal computer using an
ECG Processor (EP-2B, Softron Beijing Incorporated, China) and
stored on a data acquisition program (SP2006, Softron Beijing
Incorporated, China).

ECG and Electromechanical Coupling Time
Measurement
ECG measurement was performed as described previously (18).
ECG was performed using a Vevo 2,100 system (FUJIFILM
VisualSonics, Canada), and the cardiac dimensions and
functional parameters were measured. The tissue Doppler
imaging (TDI) echo combined with ECG was used to measure
the electromechanical coupling time at the lateral wall of the left
ventricle as described previously (19).

Neonatal Rat Cardiac Myocytes Culture
NRCMs were isolated from newborn SD rats aged 1–2 days as
described previously (20). These isolated NRCMs were grown
in Dulbecco’s modified Eagle’s medium supplemented with 10%
fetal bovine serum and 100 U/ml penicillin/streptomycin, and
maintained at 37◦C in 5% CO2.

Cardiac Differentiation of Human
Embryonic Stem Cells (hESC)
H9 human embryonic stem cells were purchased from the Beijing
Cellapy Biological Technology Company (Cellapy, China). H9
cells were cultured and differentiated into cardiomyocytes
following previously described procedures (21). In brief, H9
cells were cultured on 35-mm dishes (Corning, USA) with
PSCeasy hESC culture medium (Cellapy, Beijing, China). Cells
were cultured to reach ∼90% confluency and differentiated into
ESC-CMs using a chemical method as described previously (22).
Immunofluorescent staining with primary antibodies against
TNNT2 (Santa Cruz, USA) and α-actinin (Abcam, UK) validated
the purity of human cardiomyocytes.

Immunofluorescence
Cells were cultured on glass slides, washed with PBS three times,
fixed in 4% paraformaldehyde for 5min, and then permeabilized
with PBS containing 0.5% Triton X-100 (Sigma, USA) for
10min. After 1 h of blocking with 5% BSA (Amresco, USA),
the slides were incubated with primary antibodies followed by
incubation with secondary antibodies. After the slides were
washed, they were studied with a confocal fluorescence imaging
microscope (DMI 4000B, Leica, Germany). The primary and
secondary antibodies and their appropriate dilutions are listed in
Supplementary Table 1.
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Microelectrode Array (MEA) Analysis
MEA recording in cardiomyocytes was performed as described
previously (23). In brief, 2 × 104 cells were plated on
CytoView MEA plates (Axion Biosystems, USA) pre-coated
with 5% matrigel, followed by treatment with CYP at different
concentrations (0 and 500 µmoL/L). The experimental data
were acquired using a Maestro EDGE (Axion Biosystems, USA)
according to the MEA operation manual.

RNA Extraction and Quantitative
Real-Time PCR
Total RNA was extracted from NRCMs using the TRIzol reagent
(Invitrogen) and subjected to reverse transcription (RT) and real-
time PCR. The primers used are listed in Supplementary Table 2.
RT was performed using a 2,720 Thermal Cycler (Applied
Biosystems, USA). Real-time PCR was performed using a
QuantStudio 3 apparatus (Applied Biosystems, USA).

Western Blot Analysis
Proteins were extracted from cells in RIPA lysis buffer
(Solarbio, China) containing 1 mmol/L PMSF (Solarbio, China)
and protease inhibitor cocktail (Bimake, China) for western
blot analysis. In total, 50 µg of protein were subjected to
SDS-PAGE, transferred to a PVDF membrane (Millipore,
USA), and incubated with the primary antibodies. These
primary antibodies and their appropriate dilutions are listed
in Supplementary Table 1. The membrane was then incubated
with HRP-conjugated goat anti-mouse IgG (1: 2000, ZSGB-
BIO) or HRP-conjugated goat anti-rabbit IgG (1: 2000, ZSGB-
BIO). GAPDH was used as a control. Protein levels were
determined using the Immobilon R© Western Chemiluminescent
HRP substrate (Millipore, UK).

Cell Treatments
In the CYP treatment assays, 250, 500, and 750 µmol/L of CYP
(Selleck, USA) were added to the cell complete culture medium
for 2 or 4 days for NRCMs and for 2 or 5 days for hESCs-
CMs. To impede the expression of METTL3 in cardiomyocytes,
adenoviruses harboring the specific small interference RNA
(siRNA) sequences of METTL3 were used individually to infect
cardiomyocytes at an optimized MOI for 24 h, followed by
treatment with 500 µmol/L CYP for an additional 24 h as the
MEA assay. The siRNA and negative control (NC) sequences
used are listed in Supplementary Table 2.

RNA m6A Dot Blot Assay
An RNA m6A dot blot assay was performed as previously
described (24). In brief, 1.5 µg of total RNA was spotted onto
a positively charged nylon-based membrane (GE Healthcare),
blocked with 5%milk at room temperature for 2 h, and incubated
with anti-m6A antibodies (1: 2000, Abcam) at 4 ◦C overnight
and secondary antibodies (1: 3000, Abcam) at room temperature
for 2 h. The same RNAs were spotted on the positively charged
nylon-based membrane and stained with 0.02% methylene
blue in 0.3M sodium acetate (pH 5.2), which ensured loading
consistency among different samples.

Methylated RNA Immune Precipitation
(MeRIP) Sequencing
High throughput m6A sequencing was performed with the
support of Kangchen Biotech (Shanghai, China). Briefly, total
RNA was extracted from NRCMs treated with 500 µmol/L
CYP or DMSO (solvent control) for 48 h, followed by
random fragmentation to 100–150 nucleotides using RNA
fragmentation reagents. Fragmented RNA was subjected to m6A
antibody immunoprecipitation following the Magna MeRIP
m6A kit protocol (17-10499, Merk Millipore, USA) as described
previously (25). An RNA library from immunoprecipitated RNA
and input RNA was created on an Illumina HiSeq platform.
Differential m6A peaks (fold change≥1.5 and P ≤ 0.05) between
CYP and solvent controls were used for gene ontology (GO)
enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis.

Ca2+ Imaging
Ca2+ imaging in cardiomyocytes was performed as described
previously (21). In brief, hESCs-CMs inoculate with the
green fluorescent calcium-modulated protein (GCaMP) calcium
sensor (H9-GCaMP-CMs) were seeded onto confocal dishes.
Confocal microscope (Leica, TCS5 SP5, Germany) was used for
intracellular calcium imaging. Spontaneous Ca2+ transients were
recorded at 37◦C and 5% CO2 according to the standard line-
scan methods (26, 27). A total of 8,192 line scans were acquired
for a duration of 8.192 s. The imaging results were analyzed using
the Image J and Igor pro software.

Statistical Analysis
All statistical analyses were conducted using the SPSS 20.0
software (IBM Corp., USA) and Graphpad Prism software
(version 8.0, GraphPad Software Inc., USA). The data are
expressed as the mean ± standard error (SE). A Student’s t-test
detected the differences between groups. P values of ≤ 0.05 were
considered as statistically significant.

RESULTS

CYP Increased the Field Potential Duration
and Decreased the Contractile Amplitudes
of Cardiomyocytes
To clarify the cellular significance of CYP in cardiomyocytes,
we first performed the CCK-8 assay to examine the effects of
CYP on the viability of cardiomyocytes. The result confirmed
that CYP had no significant effect on NRCMs viability
(Supplementary Figure 1A). However, we observed that the
levels of atrial natriuretic factor (ANP) and brain natriuretic
peptide (BNP) had increased after NRCMs were treated with
500µmoL/L CYP for 48 h (Supplementary Figures 1B,C). These
results suggested that CYP induced slight cardiotoxicity, but did
not affect cell viability. CYP was closely associated with cardiac
arrhythmias related to QT prolongation and the acute and
chronic toxicity of chemotherapy (3). A prolonged QT interval is
an important monitoring indicator for myocyte toxicity caused
by anticancer agents according to the guidelines issued by
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the International Conference on Harmonization of Technical
Requirements for Registration of Pharmaceuticals for Human
Use (28). Therefore, we seeded cardiomyocytes onmultielectrode
array (MEA) probes to evaluate the effect of CYP on myocardial
electrophysiological properties. The time between depolarization
and repolarization is the FPD (Figure 1A), which corresponds
to the QT interval in an ECG. Compared with solvent control
(CON), the FPD of NRCMs treated with CYP increased at
12, 24, and 48 h (Figure 1B). Meanwhile, the impedance of
the CON cells showed no significant changes (Figure 1C). We
observed that the impedance of NRCMs treated with CYP
decreased with time (Figure 1D). These observations indicated
that CYP negatively regulated the rhythm and contractility
of cardiomyocytes.

Furthermore, we used human embryonic stem cell-derived
cardiomyocytes (hESCs-CMs) (Supplementary Figure 1D)
to evaluate the effect of CYP on cellular viability. Consistent
with this finding in NRCMs, CYP had no significant effect
on the viability of hESCs-CMs (Supplementary Figure 1E)
but increased the RNA levels of ANP and BNP
(Supplementary Figures 1F,G). Intriguingly, exposing hESCs-
CMs to CYP (500 µmol/L) for 9 days resulted in a significant
increase in FPD (Figure 1E) and reduction of contractile
amplitudes (Figure 1F). These results supported QT interval
prolongation and cardiac contractile dysfunction in rats.

CYP-Induced Cardiac Electrical and
Mechanical Alterations and Decreased
Cardiac Contractile Function in Rats
To further investigate the effect of CYP on cardiac functions,
we used intraperitoneally injected CYP to treat the rats with
CYP at a dose of 100 mg/kg, which was converted from the
clinical dose for treatment of cancer. In vivo ECG recording
data (Figure 2A) showed QT interval prolongation in rats
after CYP-treatment for 1 day compared with that in rats
administered saline (82.17 ± 1.70 vs. 65.17 ± 3.02ms, P <

0.001; Figure 2B). Corrected QT interval (QTc) prolongation
also showed the same variation as QT prolongation (199.83 ±

4.03 vs. 167.67 ± 6.83ms, P < 0.01; Figure 2C). Further, the
prolonged QT and QTc would restore to preadministration levels
after CYP-treatment for 3 days (Supplementary Figures 2A,B).
These results were consistent with the clinical side effects
of CYP.

Electromechanical coupling disturbances were closely
related to the long QT syndrome (29, 30). Hence, we
further explored the effect of CYP on cardiac electrical and
mechanical alterations. Four electromechanical coupling time
courses (Qsb, Qst, Rsb, and Rst) were measured with TDI
echo combined with ECG (Figure 2D). The measurement
results showed that four electromechanical coupling time
courses in CYP-treated rats were longer than those in saline
controls (Figures 2E–H), particularly in terms of Qst and
Rst courses (P < 0.05, Figures 2E,G). Moreover, ultrasound
echocardiography (Figure 2I) showed that the fractional
shortening percentage (FS%; Figure 2J) and left ventricular
ejection fraction (LVEF; Figure 2K) were significantly

lower in rats after CYP-treatment for 1 day. These results
suggested that CYP induces cardiac electrical and mechanical
alterations and decreases the excitation-contraction (E-C)
coupling efficiency, leading to cardiac contractile dysfunction.
Consistent with the results of QT and QTc, the prolonged
electromechanical coupling time courses would restore after
CYP treatment for 3 days (Supplementary Figures 2C–F)
and the decreased FS and LVEF induced by CYP also
showed a regression in CYP-treated rats after 3 days
(Supplementary Figures 2G,H).

CYP-Induced the Decrease of JPH2
Expression in Cardiomyocytes
Previous studies demonstrated that junctophilin-2 (JPH2)
that anchor the sarcoplasmic reticulum to T-tubules is the
key regulator of Ca2+ influx between L-type Ca2+ channels
(LCCs) and ryanodine receptors (RyRs) and E-C coupling in
cardiomyocytes (31, 32), is reportedly associated with atrial
fibrillation (33) and arrhythmias (34). Based on the phenomena
observed in the above cell and animal experiments, we
further investigated the effect of CYP on JPH2 expression in
NRCMs and hESCs-CMs at different treatment time points.
Notably, a dose-dependent reduction in JPH2 RNA and protein
levels occurred in NRCMs treated with CYP for 2 or 4
days (Figures 3A,B). Similarly, different concentrations of CYP
treatments decreased JPH2 both in RNA and protein levels
at day 2 or 5 in hESCs-CMs (Figures 3C,D). Similarly, JPH2
downregulation occurred in heart tissues of rats treated with
CYP (Supplementary Figure 3). These results suggested that
CYP induced cardiac electrical and mechanical alterations and
cardiac contractile dysfunction by decreasing the expression
of JPH2.

To explore the underlying mechanisms involved in
the suppression effects of CYP on JPH2 expression in
cardiomyocytes, we further investigated the effect of CYP
on miR-24 and miR-331 expressions, which were shown
to inhibit the expression of JPH2 in our previous studies
(31, 35). The real-time PCR analysis revealed that the
expression of miR-24 and miR-331 did not significantly
change in NRCMs after CYP treatment for 2 days
(Supplementary Figures 4A,B). Therefore, it suggested that
CYP decreased JPH2 expression through other transcriptional
regulatory mechanisms.

CYP-Induced Substantial m6A Changes in
Cardiomyocytes
N6-methyladenosine (m6A) is the most prevalent modification
that widely exists in mRNAs, which is associated with post-
transcriptional gene expression regulation (12), and mRNA
stabiltity (36). We next investigated whether CYP plays an
important role in m6A RNAmethylation in NRCMs, considering
that CYP can induce nucleic acid methylation. The m6A dot
blot testing showed that total m6A levels significantly increased
in NRCMs treated with CYP for 2 days (Figures 4A,B). Next,
methylated RNA immune precipitation sequencing (MeRIP-
seq) was performed to compare the global profiling of m6A
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FIGURE 1 | CYP increased the field potential duration (FPD) and decreased contractile amplitudes of cardiomyocytes. (A) Schematic of FPD of cardiomyocytes. (B)

The FPD analysis of NRCMs with 500 µmol/L of CYP at 0, 6, 12, 24, and 48 h. (C) Representative images of the relative cell amplitude of NRCMs treated with solvent

control (CON) or CYP. The data were shown as the mean of triplicate experimental wells. (D) The cell amplitude analysis of NRCMs treated with 500 µmol/L CYP at 0,

6, 12, 24, and 48 h. The FPD (E) and cell amplitude (F) analysis of hESCs-CMs treated with 500 µmol/L CYP at 1, 2, 3, 4,7,8, and 9 days. The data are shown as the

mean±SE, n = 3. *P < 0.05, **P < 0.01, ***P < 0.001 vs. CON.

target genes between solvent controls and CYP-treated NRCMs.
As shown in Figure 4C, the sequence motif “GGAC” was
highly enriched in m6A immunoprecipitated RNAs, consistent
with the findings of previous studies (37, 38). We found 585
significantly increased m6A peaks distributed in 259 genes,
whereas 277 genes had 548 statistically decreased m6A peaks
in CYP-treated NRCMs relative to controls. Notably, we
observed that reduced m6A peaks were mainly localized in
the 5′ untranslated region (5′ UTR), whereas increased m6A
peaks were distributed in the coding sequence (CDS) and 3′

untranslated region (3′ UTR; Figure 4D). The pie charts showed
that these statistically differentially distributed m6A peaks were
mainly noted in the CDS and 3′ UTR of genes in CYP-
treated NRCMs regarding CON cells (Figure 4E). To explore the
physiological and pathological significance of m6A modification
after CYP treatment, we analyzed the KEGG pathway on

the significantly altered m6A peaks. Our results showed that
upregulated m6A peaks in the CYP-treated NRCMs were
significantly related to the cAMP signaling pathway, adrenergic
signaling in cardiomyocytes, calcium signaling pathway, GnRH
signaling pathway and other dysregulation pathways in cancer
(Figure 4F).

Furthermore, RNA sequencing was also performed on
NRCMs treated with solvent control (CON) or CYP.
Compared with CON, 369 genes were significantly
downregulated, and 74 genes were upregulated in the
CYP-treated group (Supplementary Figure 5A). The GO
enrichment and KEGG analysis of the total DEGs showed
that these DEGs were enriched in the NF-κB, TNF, and
calcium signaling pathways (Supplementary Figures 5B,C).
Remarkably, with the combined MeRIP-seq and RNA-seq
results, we found upregulated m6A methylation sites in
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FIGURE 2 | The effect of CYP on QT intervals, cardiac electromechanical coupling and cardiac function. Electrocardiogram recording (A) showing QT intervals (B)

and QTc (C) prolongation in rats treated with CYP for 1 day. (D) Schematic of four time courses of cardiac electromechanical coupling in the lateral wall of the left

ventricle of rats. Qsb time course is the duration from the onset of Q wave on ECG to the beginning of S wave. Qst time course is the duration from the onset of Q

wave on ECG to the top of S wave. Rsb time course is the duration from the top of R wave on ECG to the beginning of S wave. Rst time course is the duration from

(Continued)
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FIGURE 2 | the top of R wave on ECG to top of S wave. The TDI echo combined with ECG measurement revealed an increase in Qsb (E), Qst (F), Rsb (G), and Rst

(H) in CYP-treated rats compared with that in vehicle-treated rats. (I) Representative M-mode echocardiography in rats treated with vehicle and CYP for 1 day.

Echocardiography revealed that fractional shortening (FS) (J) and left ventricular ejection fraction (LVEF) (K) decreased in CYP-treated rats as compared with that in

vehicle-treated rats. The data are represented as mean ± SE, n = 6. *p < 0.05, **P < 0.01, ***P < 0.001 vs. vehicle.

FIGURE 3 | CYP induced the downregulation of JPH2 expression in cardiomyocytes. Real-time PCR (A) and western blot (B) analysis of JPH2 expression in NRCMs

treated with CYP for 2 or 4 days. Real-time PCR (C) and western blot (D) analysis of JPH2 expression in hESCs-CMs treated with CYP for 2 or 5 days. The data are

shown as the mean ± SE of three experiments. *P < 0.05, **P < 0.01, *** P < 0.001 vs. CON.

the 5′UTR and CDS of JPH2 mRNA, accompanied with
the downregulation of JHP2 expression on the RNA level.
These results suggested that CYP induces calcium signaling
changes through JPH2 downregulation caused by increasing
m6A modification.

CYP-Induced Calcium Handling
Abnormalities in hESCs-CMs
Calcium is a fundamental regulator of E-C coupling and
electrophysiological signaling in cardiac myocytes (39).
The above MeRIP-seq and RNA-seq results showed that

the calcium signaling pathway played an important role in
CYP-induced cardiotoxicity. We next verified and analyzed
the Ca2+ handling properties of hESCs-CMs with CYP
treatment by using H9-GCaMP derived cardiomyocytes
(H9-GCaMP-CMs) (21). Compared with CON, hESCs-
CMs treated with different concentrations of CYP (250,
500, and 750 µmoL/L) demonstrated significant Ca2+

transient irregularities, which were virtually absent in CON
cells. As shown in Figure 5A, H9-GCaMP-CMs treated
with 250 µmoL/L CYP showed no significant changes
in the rhythm of Ca2+ transient release and reabsorption
regarding CON on day 2. As the treatment time prolonged, the
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FIGURE 4 | Overview of altered m6A-tagged transcripts landscape in NRCMs with or without CYP. (A) The m6A dot blot assay was conducted in NRCMs after

treatment with CYP or solvent control (CON) for 2 days. Methylene blue staining was used as the loading control. (B) Quantitative analysis of m6A abundance in

NRCMs treated with CYP or CON for 2 days. (C) Top sequence motif identified from MeRIP-seq peaks in control and CYP-treated NRCMs. (D) Metagene plots

showing the region of average m6A peaks identified across all transcripts in NRCMs with solvent control or CYP. (E) Pie charts showing m6A peak distribution in

DEGs between CYP and control (CON) groups. (F) The top twenty significantly enriched pathways of upregulation of m6A peaks transcripts. The data are shown as

the mean ± SE from three separate experiments. *P < 0.05; ** P < 0.01; *** P < 0.001 vs. CON.

cardiomyocytes exhibited longer Ca2+ transient durations
on day 4 and slower beating rate, lower Ca2+ release
amplitude, and longer transient durations on days 6 and
8 (Figures 5B–D). We noted a similar pattern of changes
in H9-GCaMP-CMs treated with 500 or 750 µmoL/L

CYP at different time points. On days 2 and 4, compared
with CON, CYP-treated H9-GCaMP-CMs exhibited lower
Ca2+ release amplitude (Figure 5B) and longer transient
durations (Figure 5D). Interestingly, in addition to lower
Ca2+ release amplitude, slower Ca2+ transient durations
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FIGURE 5 | hESCs-CMs treated with CYP exhibited abnormal Ca2+ handling properties. (A) Representative line-scan images in H9-GCaMP cell-derived

cardiomyocytes treated with different concentrations of CYP at 2, 4, 6 and 8 days. Quantification of peak (B), time to peak (C), and calcium transient duration (D) in

CON and CYP-treated H9-GCaMP-CMs. The data are shown as the mean ± SE, n = 3. *P < 0.05, **P < 0.01, ***P < 0.001 vs. CON.

were observed to occur in H9-GCaMP-CMs treated with
CYP at dose of 500 or 750 µmoL/L(Figures 5A,D). On
day 8, compared with CON, H9-GCaMP-CMs treated with

low, medium and high concentrations of CYP exhibited
lower Ca2+ release amplitude, and longer time to peak and
transient durations (Figures 5A–D). These observations
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FIGURE 6 | CYP induced the downregulation of JPH2 expression through upregulating METTL3 expression. (A) Western blot analyses of METTL3, METTL14, WTAP,

FTO and ALKBH5 expression in NRCMs with or without CYP for 2 or 4 days. Quantitative analysis of protein levels of METTL3 (B), METTL14 (C), WTAP (D), FTO (E),

and ALKBH5 (F) in NRCMs treated with CYP for 2 or 4 days. The data are shown as the mean ± SE of three experiments. *P < 0.05, **P < 0.01 vs. CON. Real-time

PCR analysis of METTL3 (G) and JPH2 (H) expression in NRCMs transfected with si-METTL3, or NC sequences with/without CYP. CYP did not decrease the

expression of JPH2 in METTL3-deficient NRCMs. The data are shown as the mean ± SE of three experiments. ** P < 0.01; *** P < 0.001 vs. negative control (NC).

indicated that CYP could induce abnormal electrophysiological
and contractile alterations in cardiomyocytes, consistent

with the findings of the RNA sequencing and
clinical data.
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CYP Inhibited JPH2 Expression by
Modulating the m6A Writer METTL3
To understand whether m6A RNA methylation plays an
important role in the suppression effects of CYP on JPH2
expression in NRCMs, we further investigated the effect of
CYP on m6A writers (METTL3, METTL14, and WTAP) and
erasers (FTO, and ALKBH5) in CYP-treated cardiomyocytes.
Intriguingly, exposing NRCMs to different doses of CYP (250,
500, and 750 umoL/L) for 2 or 4 days resulted in a significant
increase in the expression of METTL3 (Figures 6A,B), whereas
the expression of METTL14, WTAP, FTO, and ALKBH5 was
not significantly altered (Figures 6A,C–F). Similar results were
observed in rats treated with CYP. The RNA level of METTL3
increased in hearts (Supplementary Figure 6). These results
suggested that CYP induces the m6A methylation of JPH2
mRNA through increasing METTL3 expression, leading to
downregulation of JPH2 expression.

To investigate the biological effect of METTL3 on the
reduction of JPH2 expression, we designed small interfering
RNAs to silence METTL3 in NRCMs. Intriguingly, silencing
METTL3 (Figure 6G) resulted in an increase in JPH2 expression
(Figure 6H). Additionally, CYP induced JPH2 downregulation
in NRCMs transfected with NC sequences. However, there was
no reduction effect of CYP on JPH2 expression in si-METTL3
cardiomyocytes (Figure 6H). These data indicated that CYP
decreased JPH2 expression by upregulating METTL3.

Disruption of METTL3 Eliminated
CYP-Induced Electrical Alterations of
Cardiomyocytes
To determine whether the disruption of METTL3 affects cardiac
electrical and mechanical alterations in cardiomyocytes, we
performed MEA in si-METTL3 and NC cardiomyocytes treated
with CYP. Compared with NRCMs treated with NC, the FPD
increased in NRCMs treated with CYP for 1 day (Figure 7A),
whereas knock out of METTL3 significantly eliminated the
increased FPD induced by CYP (Figure 7A). Similarly, the
MEA results showed that the action potential duration (APD)
(Figure 7B) was prolonged in NRCMs treated with NC after CYP
treatment for 1 day (Figures 7C,D). However, the prolonged
APD did not occur in si-METTL3 cardiomyocytes treated
with CYP compared with the NRCMs treated with solvent
control (Figures 7C,D). The above results demonstrated that the
disruption of METTL3 eliminated the electrical alterations of
cardiomyocytes induced by CYP.

DISCUSSION

CYP is strongly correlated with cardiac electrical and contractile
alterations (3, 40, 41). This study found that CYP was
associated with QT prolongation, a decrease in E-C coupling
efficiency, and cardiac contractile dysfunction. Specifically, our
findings demonstrated that CYP induced RNAm6Amodification
by upregulating METTL3 expression and suppressing JPH2
expression (Figure 8). These results suggested novel therapeutic
and preventive targets for CYP-induced cardiotoxicity.

CYP is widely used an antineoplastic and immunosuppressive
agent. The cytotoxic effect of CYP is induced by its biologically
active metabolites (4, 42). CYP decomposes into acrolein
and phoramide mustard (43), which further produces an
unstable cation that may attack guanine bases (4), resulting in
methylated bases. These DNA methylations lead to mutations
and pair mismatches linked with its therapeutic effects on tumor
cells. In fact, alkylating agents cause various DNA alkylation
lesions including base methylation (9), which also induce RNA
methylation. In our study, total m6A levels significantly increased
in NRCMs after CYP treatment. Our experimental results
showed that the m6A writer METTL3 significantly increased in
cardiomyocytes treated with CYP, leading to an increase in m6A
methylation of JPH2 mRNA. Promotion of the upregulation of
METTL3 expression by CYP needs further exploration, however,
the results suggested that RNA methylation played an important
role in CYP-induced cardiotoxicity.

Previous study highlighted that CYP induced cardiac
apoptosis when administered at a high dose (44), because the
metabolite of CYP acrolein could promote the formation of
reactive oxygen species (ROS) (45, 46). Hence, some studies
have aimed to inhibit reactive oxygen-generators and regenerate
other antioxidants that could prevent or treat CYP-induced acute
cardiotoxicity (47). In this study, no myocardial death occurred
in rats after treatment with CYP. We also observed no significant
effect on the viability of cardiomyocytes in NRCMs treated
with CYP at high concentrations. However, ANP and BNP
both increased in cardiomyocytes treated with CYP, consistent
with the findings of a previous study that showed CYP could
induce cardiac hypertrophy (44). In this study, there was no
obvious ventricular wall thickening in the ultrasound results
owing to the short duration of CYP treatment in rats and
administration being performed only once. However, increased
ANP and BNP levels suggest that the molecular pathological
changes may precede structural changes and the prolonged CYP
treatment is required for organic changes to occur. Meanwhile,
we found cardiac electrical alterations and decreased E-C
coupling efficiency in rats after CYP administration. Although
FS and LVEF did not decrease to heart failure in rats treated
with CYP, these results were a 1-time consequence of CYP
treatment with normal doses. Although prolonged QT and QTc
interval, as well as E-C coupling time courses would recover
after 3 days of administration, our results have implications for
some patients with potential risk of ECG abnormalities during
therapy for cancer and immune diseases. Interestingly, our data
showed that CYP induced cardiac prolonged QT intervals and
electromechanical coupling time courses accompanied by the
downregulation of JPH2 expression. Calpain hydrolyzes JPH2
at the protein level (48), but CYP-induced decrease in JPH2
expression initiated from the RNA level in this study. To verify
whether CYP-induced downregulation of JPH2 expression is
mediated by miR-24 (31) and miR-331 (35), we further explored
the effect of CYP on the biogenesis of the two miRNAs. There
were no increases in the effect of CYP on miR-24 and miR-331,
suggesting other regulatory mechanisms for JPH2. Interestingly,
our subsequent results showed that m6A RNA methylation was
associated with decreased expression of JPH2. These results
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FIGURE 7 | Disruption of METTL3 expression eliminated the increased field potential duration (FPD) and action potential duration (APD) induced by CYP in

cardiomyocytes. (A) Silencing METTL3 expression eliminated the increase in FPD induced by CYP. (B) Schematic of APD by the MEA processing of cardiomyocytes.

(C) Representative images of APD in NRCMs transfected with si-METTL3, or negative control (NC) sequences with/without CYP. (D) Quantification of APD in NRCMs

transfected with si-METTL3 or NC sequences with/without CYP. Silencing METTL3 expression eliminated the increased APD induced by CYP. The data are shown as

the mean ± SE of three experiments. * P < 0.05; ** P < 0.05 vs. NC.

suggested that the increase in m6A of JPH2 mRNA is a novel
mechanism in CYP-induced cardiotoxicity.

To investigate the mechanisms underlying of CYP-induced
cell toxicity, we performed RNA sequencing to explore the
potential targets and pathways. Our results showed that these
DEGs were enriched in the biological process categories
of leukocyte, lymphocyte and T cell-mediated immunity,

which corresponded to a recent study that CYP actively
recruited macrophages into the bone marrow and eliminated
drug-resistant malignant tumor cells (49). However, whether
the positive regulation of immunity induces cardiac injury
requires further study. These DEGs enriched in molecular
function categories of phosphatidylinositol bisphosphate,
phosphatidylinositol-4,5-bisphophate binding, ATPase activity,
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FIGURE 8 | Schematic of CYP-induced cardiac electrical and mechanical alterations. CYP decreased JPH2 expression by upregulating METTL3 expression, leading

to Ca2+ transient irregularities and cardiac dysfunction.

and metal ion transmembrane transporter activity were
associated with reduced ATP production and failure of Ca2+

transient in cardiomyocytes. According to this finding, the
KEGG analysis showed that these DEGs were involved in the
inflammation and calcium signaling pathways. Interestingly,
we observed that cAMP signaling and the GnRH pathway
were closely associated with the calcium signal and cardiac
contraction (50, 51). The calcium signaling pathway was
enriched in upregulated DEGs from MeRIP sequencing. In
subsequent exploration of the effect of CYP on calcium signal,
we found that CYP induces lower calcium release amplitude, and
longer time to peak and transient durations. CYP-treated H9-
GCaMP-CMs even exhibited lower calcium transient durations.
These results are consistent with the adverse cardiac phenotype
caused by CYP, suggesting that the calcium signaling pathway
plays an important role in CYP-induced cardiotoxicity. Notably,
the expression of JPH2, a key regulator for the Ca2+ influx and E-
C coupling in cardiomyocytes (31, 52), significantly reduced after
CYP treatment. Because decreased JPH2 is reportedly associated
with atrial fibrillation (33) and arrhythmias (34), consistent
with CYP-induced cardiotoxicity events, CYP-induced cardiac
electrical and mechanical alterations may be closely related to
the downregulation of JPH2 in this study. However, we cannot
exclude other potential genes that play roles in regulating the
process, such as paralemmin 2 (Palm-2), which upregulated m6A
peaks and downregulated gene expression, was associated with
cAMP-PKA signaling pathway, which has a strong influence
on intracellular cation concentrations in the heart tissue or
cardiomyocytes (53).

Previous epidemiological studies have suggested that
prolonged QT intervals are closely associated with abnormal
sodium, and potassium channels (54). However, the relationships
between calcium ion binding protein imbalance and the
pathological mechanism of QT prolongation are unknown.
Recent studies have shown that Ca2+ binding proteins such
as calmodulin (55, 56), and triadin (57), are associated with
the long QT syndrome. These studies suggested that calcium
plays an important role in the pathogenesis of cardiomyocyte
repolarization and QT interval prolongation (58). JPH2 is
the key regulatory protein that maintains a normal distance
between LCCs and RyRs, which are important structures for
Ca2+ release and recovery in cardiomyocytes. Moreover, a
recent study demonstrated that the N-terminal part of JPH2

could bind and interact with caveolin-3 (59), which is a
critical mediator for fixing LCCs on caveolar membrane in
the plasma membrane and associated with long QT syndrome
(60). Caveolin-3 is an important member of muscle-specific
structural proteins of caveolae, which are also localized in
T-tubules (61). These studies suggested that JPH2 interacts with
caveolin-3 to mediate the junctional membrane complexes
and Ca2+-induced Ca2+ release in the cardiomyocytes
(59). Although abnormal JPH2 expression decreases the
fixation with caveolin-3, leading to disruption of the normal
junctional membrane complexes and efficient Ca2+ transient,
it may positively affect the QT interval. In this study, CYP
induced the downregulation of JPH2 expression, resulting in
increased FPD and APD in cardiomyocytes, which would be
eliminated by silencing METTL3. Our results suggested that
JPH2 aberration is closely related to the long QT syndrome.
However, clinical data is warranted to determine whether
the absence of JPH2 leads to the prolonged QT interval in
future studies.

Despite these encouraging results, it is necessary to point
out the limitations of this study. Silencing METTL3 increases
the JPH2 expression, and JPH2 is not further downregulated
in si-METTL3 NRCMs after CYP treatment. It is significant
to use METTL3 knockout transgenic mice to verify whether
CYP induced cardiac electrical and mechanical alterations by
increasing m6A levels. Additionally, there are m6A methylation
sites in both the 5’UTR and CDS of JPH2 mRNA, and
the m6A methylation modification sites that regulate the
expression of JPH2 need to be further clarified. Furthermore,
the m6A levels and JPH2 expression abnormalities in CYP-
induced cardiotoxicity should be confirmed in the clinic in
future studies.

In summary, our results indicated that CYP-induced cardiac
electrical and mechanical alterations and Ca2+ dyshomeostasis
are associated with m6A methylation modifications and
decreased JPH2. Our study found that CYP increased RNA
m6A levels by altering METTL3 expression. Furthermore,
decreased JPH2 expression plays an important role in
CYP-induced cardiac electrical and mechanical alterations
by blocking Ca2+ influx between transverse tubules and
sarcoplasmic reticulum. Our findings demonstrated that RNA
m6A methylation is a potential therapeutic intervention for
CYP-induced cardiotoxicity.
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Background: The interplay between cancer and IE has become of increasing interest.

This study sought to assess the prevalence, baseline characteristics, management, and

outcomes of IE cancer patients in the ESC EORP EURO-ENDO registry.

Methods: Three thousand and eighty-five patients with IE were identified based on

the ESC 2015 criteria. Three hundred and fifty-nine (11.6%) IE cancer patients were

compared to 2,726 (88.4%) cancer-free IE patients.

Results: In cancer patients, IE was mostly community-acquired (74.8%). The most

frequently identified microorganisms were S. aureus (25.4%) and Enterococci (23.8%).

The most frequent complications were acute renal failure (25.9%), embolic events

(21.7%) and congestive heart failure (18.1%). Theoretical indication for cardiac surgery

was not significantly different between groups (65.5 vs. 69.8%, P = 0.091), but was

effectively less performed when indicated in IE patients with cancer (65.5 vs. 75.0%,

P = 0.002). Compared to cancer-free IE patients, in-hospital and 1-year mortality

occurred in 23.4 vs. 16.1%, P = 0.006, and 18.0 vs. 10.2%; P < 0.001, respectively.

In IE cancer patients, predictors of mortality by multivariate analysis were creatinine > 2

mg/dL, congestive heart failure and unperformed cardiac surgery (when indicated).
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Conclusions: Cancer in IE patients is common and associated with a worse outcome.

This large, observational cohort provides new insights concerning the contemporary

profile, management, and clinical outcomes of IE cancer patients across a wide range

of countries.

Keywords: cancer, cardiac surgery, infective endocarditis, registry, valve disease

INTRODUCTION

Infective endocarditis (IE) is a severe disease, associated with
important morbidity and mortality (1–4). Some IE patients have
active, previously diagnosed cancer. In other patients, IE might
be a marker of a new, unsuspected neoplasia (5, 6). The interplay
between cancer and IE has become of increasing interest (5, 7).
Cancer patients may be at higher risk for IE, because of reduced
immunity (e.g., due to antineoplastic therapy), central venous
lines or portal catheters (8). Moreover, the clinical presentation
of IE patients with cancer could be less specific. Additionally,
therapeutic options might be limited, due to frailty and a
potentially higher mortality risk in case of surgery.

The ESC EORP European Endocarditis (EURO-ENDO)
registry is a multicentre, prospective, observational cohort study
of IE patients at hospitals in Europe and ESC-affiliated/non-
affiliated countries. The aim of EURO-ENDO is to investigate
the care and outcomes of IE (9). This sub-analysis sought to
assess the prevalence of cancer in IE patients and to determine
baseline characteristics, management, and outcomes compared
to IE patients that are free of cancer.

MATERIALS AND METHODS

Study Design and Data Collection
The detailed methodology of the ESC EORP EURO-ENDO
registry has been previously reported (9). Briefly, from 1
January 2016 to 31 March 2018, patients older than 18 years
who presented with IE were included. Inclusion criteria were
a diagnosis of definite IE (or possible IE, but considered and
treated as IE) based on the ESC 2015 IE criteria (10). IE
patients with previously diagnosed cancer were identified.
Cancer was defined as a previous or active, solid tumor, or
hematologic malignancy. Data were collected at inclusion and
during hospitalization, including demographics, patient history,
Charlson index, age, and comorbidities (11). Moreover, data
were collected concerning clinical, biological, microbiological,
and echocardiographic findings, use of other imaging techniques
[computed tomography (CT) scan, 18F-FDG PET/CT, leucocyte
scintigraphy], medical therapy, complications, theoretical
indications for surgery and in-hospital mortality (9). This
study complies with the Declaration of Helsinki. National
coordinators, in conjunction with local centers managed

Abbreviations: CHF, Congestive heart failure; COPD, Chronic obstructive

pulmonary disease; CT, Computed tomography; IE, Infective endocarditis;

MI, Myocardial infarction; MRI, Magnetic resonance imaging; TIA, Transient

ischemic attack; TOE, Transoesophageal echocardiography; TTE, Transthoracic

echocardiography.

the approvals of national or regional ethics committees or
Institutional Review Boards, according to local regulations.
Informed consent has been obtained from all subjects (or their
legally authorized representative).

Data Management and Statistical Analysis
Data were collected by the collecting officers at the participating
sites and entered in an online electronic case report form (CRF).
Data quality was monitored by the ESC EORP Registry Project
and Data management teams. Data quality control followed a
data validation plan defined by the Registry Executive Committee
team in collaboration with the EORP team. The first author
had full access to all the study data and takes responsibility
for its integrity and the data analysis. Continuous variables
are expressed as mean ± standard deviation or as median
and interquartile range. Comparisons among groups have been
performed using Kruskall Wallis test for non-parametric data.
Categorical variables are expressed as frequency and percentages.
Among-group 2 × 2 comparisons were made using Pearson’s
Chi-squared χ

2-test or Fisher’s exact test if any expected cell
count was < 5. In other cases, the Monte-Carlo estimate of
the exact P-value was used. Univariable analysis was applied to
both continuous and categorical variables. Pairwise correlations
between all candidate variables (variables with P < 0.10 in
univariable) within the model were tested before proceeding to
themultivariable model. In case of correlation, some criteria were
not taken into account. Plots of the Kaplan–Meier curves have
been used to assess survival and event-free survival. A backward
multivariable Cox regression analysis has been performed to
evaluate possible predictors of outcomes in cancer patients. A
significance level of 0.05 was required to allow a variable to
stay within the model. Some measures of model of fit have
been considered: concordance and the Goodness of fit test
proposed by May and Hosmer. In addition, the proportional
hazard ratios assumptions were graphically verified with the
Schoenfeld residuals test. All analyses were performed using
SAS statistical software version 9.4 (SAS Institute, Inc., Cary,
NC, USA).

RESULTS

Three thousand and eighty-five IE patients were included (12).
Three hundred and fifty-nine (11.6%) IE patients with cancer
were identified and compared to 2,726 (88.4%) IE patients
without cancer. IE was definite in 304/359 (84.7%) and possible
in 55/359 (15.3%) cancer patients. The age of and most frequent
types of cancer can be found in Supplementary Table 1.
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Patient Demographics and Characteristics
The main demographic and characteristics of IE cancer patients
are displayed in Table 1. IE was community-acquired in 74.8%
and healthcare associated in 25.2% (nosocomial in 18.6%, non-
nosocomial in 6.6%), native in 209 (60.4%), prosthetic in 97
(28.0%), device-related in 30 (8.7%), and repaired valve IE in
23 (2.9%) cancer patients. There were no significant differences
with the cancer-free group. Valvular IE location was aortic in
52.7%, mitral in 47.0%, tricuspid in 5.7%, pulmonary in 0.9%
of IE cancer patients. IE affected two or more valvular locations
in 17.9%.

Clinical and Biological Features
Clinical features are displayed in Supplementary Table 2. For
IE cancer patients, significantly less time passed between first
symptoms and first hospitalization (23.7 ± 46.4 vs. 30.1 ± 70.6
days; P = 0.009), as well as between first hospitalization and
suspected IE (9.1± 20.1 vs. 9.2± 42.5 days; P < 0.001) compared
to IE patients without cancer. Platelets were significantly lower
in the IE cancer group (194.5 vs. 214 K/mm3, P < 0.001), but
otherwise there was no significant difference in biochemistry
between groups (data not shown). Blood cultures were positive
in 303/359 (84.4%) IE cancer patients (vs. 78.4%, P = 0.009).
The most frequently identified microorganisms were S. aureus in
77/303 (25.4 vs. 31.8%, P = 0.024), Enterococci in 72/303 (23.8
vs. 14.8%, P < 0.001), and Streptococcus gallolyticus in 33/303
(10.9 vs. 5.9%, P = 0.001) IE cancer patients.

Imaging
Transthoracic echocardiography (TTE) was performed in 93.9%
and transoesophageal echocardiography (TOE) in 82.2% IE
cancer patients. There were significantly more mitral valve
vegetations (39.9 vs. 34.8%, P = 0.020), but less tricuspid valve
vegetations (5.3 vs. 10.5%, P = 0.008) in IE cancer patients. No
significant difference in vegetation length was found between IE
cancer and cancer-free groups (data not shown).

18F-FDG positron emission tomography/computed
tomography was performed in 74 (20.6%) and positive in
55 IE cancer patients. There was 69.1% extra-cardiac uptake, vs.
54.3% in cancer-free IE patients (P = 0.042). On multislice CT,
there was significantly more perivalvular abscess formation in
IE cancer compared to cancer-free IE patients (78.6 vs. 50.5%,
P = 0.049).

In-hospital and One-Year Follow-Up Under
Treatment
The main in-hospital complications are shown in
Supplementary Table 3.

Acute renal failure was the most frequent in hospital
complication in IE cancer patients, followed by embolic events
and congestive heart failure (CHF).

After 1 year, there was no significant difference in
IE recurrence rate (P = 0.243) or other complications
between groups.

Cancer IE patients were significantly more treated with
amoxicillin (35.8 vs. 26.3%; P < 0.001), ceftriaxone (36.3 vs.
31.1%; P = 0.047) and daptomycin (15.2 vs. 10.6%; P = 0.010),

but less frequently treated with vancomycin (34.6 vs. 44.9%,
P < 0.001) compared to cancer-free IE patients.

Following ESC guidelines, theoretical indication for cardiac
surgery was not significantly different between both groups (65.5
vs. 69.8%, P = 0.091), but was effectively less performed when
indicated in IE cancer patients during hospitalization (65.5 vs.
75.0%, P = 0.002). The most frequent surgical indication in both
groups was infectious (57.4 vs. 64.9%, P= 0.018). Reasons for not
performing surgery in IE cancer patients were most frequently
the surgical risk (80.2 vs. 54.0%, P < 0.001), death before surgery
(17.3 vs. 22.9%, P = 0.260) and patient refusal (16.0 vs. 19.3%,
P = 0.486), among others.

Death occurred in hospital in 84 (23.4 vs. 16.1%, P < 0.001)
and at 1-year follow-up in 43 additional IE cancer patients
(18.0 vs. 10.2%; P < 0.001). Causes of all-cause in-hospital
and 1-year mortality are reported in Tables 2, 3, respectively.
Predictors of in hospital and 1-year mortality by univariate Cox
regression analysis can be found in Supplementary Tables 4, 5,
respectively. Predictors of in hospital and 1-year mortality by
multivariable analysis in IE cancer patients are shown in Table 4

and Supplementary Table 6, respectively.
Kaplan-Meier survival curves for in hospital and 1-year all-

cause mortality according to cancer and adjusted for surgery are
shown in Figures 1, 2.

DISCUSSION

The following key findings arise from the EURO-ENDO analysis
regarding cancer in IE patients: 1. Cancer is common in IE
patients with a prevalence of 11.6%. 2. IE cancer patients are
significantly older, receive more long-term immune-suppressive
treatment and have more IV catheters. 3. The most frequently
identified microorganisms are S. aureus and Enterococci. The
source of infection is mainly community-acquired and preceded
by non-dental procedures. 4. In hospital and long-termmortality
is significantly increased and often related to the neoplasia. 5.
Theoretical indication for cardiac surgery is not significantly
different, but surgery is significantly less performed when
indicated in IE cancer patients compared to IE patients
without cancer.

Demographics, Clinical and
Microbiological Characteristics of IE
Cancer Patients
Cancer is common in IE patients, with a prevalence of 11.6%.
Preceding studies have shown a similar prevalence ranging from
5.6 to 17.6% (6, 8). Prostate- and intestinal neoplasms were found
most frequently, which is consistent with previous reports (6, 7).
The older age of IE cancer patients has been consistently reported
in other series (6, 8, 12). IE cancer patients weremore oftenmales,
as in the cancer-free group. One study found a slightly significant
male predominance in IE cancer patients (6), while another was
in agreement with this cohort (8). No gender-based differences
were found.

IE cancer patients more often had a history of arterial
hypertension, ischemic disease, aortic valve stenosis, atrial
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TABLE 1 | Demographics and clinical characteristics of infective endocarditis patients.

Total IE + cancer IE – cancer P-value

Demography

N 3,085 359 2,726

Age (years)

Mean ± SD 59.21 ± 18.06 70.33 ± 11.47 57.74 ± 18.26 <0.001

Median (IQR) 63.0 (46.0–73.0) 72.0 (64.0–79.0) 61.0 (43.0–72.0) <0.001

< 65 years old 1,655/3,085 (53.6%) 90/359 (25.1%) 1,565/2,726 (57.4%) <0.001

65–80 years old 1,060/3,085 (34.4%) 191/359 (53.2%) 869/2,726 (31.9%)

≥80 years old 370/3,085 (12.0%) 78/359 (21.7%) 292/2,726 (10.7%)

Females (%) 961/3,085 (31.2%) 110/359 (30.6%) 851/2,726 (31.2%) 0.824

History of cardiovascular diseases

Heart failure 652/2,809 (23.2%) 75/307 (24.4%) 577/2,502 (23.1%) 0.592

Congenital heart disease 362/3,083 (11.7%) 11/359 (3.1%) 351/2,724 (12.9%) <0.001

Ischemic heart disease 613/2,866 (21.4%) 89/318 (28.0%) 524/2,548 (20.6%) 0.002

Atrial fibrillation 756/2,887 (26.2%) 113/323 (35.0%) 643/2,564 (25.1%) <0.001

Hypertrophic cardiomyopathy 63/2,809 (2.2%) 4/307 (1.3%) 59/2,502 (2.4%) 0.239

Known valve murmur 955/2,809 (34.0%) 97/307 (31.6%) 858/2,502 (34.3%) 0.347

Previous endocarditis (%) 271/3,085 (8.8%) 33/359 (9.2%) 238/2,726 (8.7%) 0.772

Device therapy 532/3,085 (17.2%) 80/359 (22.3%) 452/2,726 (16.6%) 0.007

History of valve disease

Aortic valve stenosis 375/2,608 (14.4%) 52/277 (18.8%) 323/2,331 (13.9%) 0.028

Aortic valve surgery 793/3,085 (25.7%) 101/359 (28.1%) 692/2,726 (25.4%) 0.263

Mitral valve surgery 376/3,085 (12.2%) 40/359 (11.1%) 336/2,726 (12.3%) 0.519

Risk factors

Previous stroke/TIA 337/2,832 (11.9%) 51/312 (16.3%) 286/2,520 (11.3%) 0.010

Previous pulmonary embolism 64/2,802 (2.3%) 14/307 (4.6%) 50/2,495 (2.0%) 0.005

Arterial hypertension 1,483/3,081 (48.1%) 217/358 (60.6%) 1,266/2,723 (46.5%) <0.001

Previous hemorrhagic events 128/2,802 (4.6%) 23/305 (7.5%) 105/2,497 (4.2%) 0.008

COPD/asthma 315/3,081 (10.2%) 48/358 (13.4%) 267/2,723 (9.8%) 0.034

Chronic renal failure 544/3,083 (17.6%) 79/359 (22.0%) 465/2,724 (17.1%) 0.021

Dialysis 160/544 (29.4%) 15/79 (19.0%) 145/465 (31.2%) 0.028

HIV 31/3,011 (1.0%) 2/349 (0.6%) 29/2,662 (1.1%) 0.572

Hypo/hyperthyroidism 224/2,792 (8.0%) 33/306 (10.8%) 191/2,486 (7.7%) 0.060

Chronic autoimmune disease 106/3,075 (3.4%) 15/357 (4.2%) 91/2,718 (3.3%) 0.406

Current pregnancy 8/3,062 (0.3%) 1/358 (0.3%) 7/2,704 (0.3%) >0.999

Smoking 750/2,911 (25.8%) 73/330 (22.1%) 677/2,581 (26.2%) 0.108

Intravenous drug dependency 212/3,038 (7.0%) 3/354 (0.8%) 209/2,684 (7.8%) <0.001

Alcohol abuse 223/2,974 (7.5%) 23/349 (6.6%) 200/2,625 (7.6%) 0.493

Immunosuppressive treatment 104/2,809 (3.7%) 36/307 (11.7%) 68/2,502 (2.7%) <0.001

Long corticotherapy 126/2,809 (4.5%) 28/307 (9.1%) 98/2,502 (3.9%) <0.001

Intravenous catheter 248/3,074 (8.1%) 53/358 (14.8%) 195/2,716 (7.2%) <0.001

Charlson index mean ± SD 3.48 ± 2.92 6.16 ± 3.35 3.13 ± 2.67 <0.001

Antithrombotic treatment on admission 1,686/2,977 (56.6%) 217/340 (63.8%) 1,469/2,637 (55.7%) 0.005

Other non-cardiac intervention

Colonoscopy 90/2,710 (3.3%) 24/295 (8.1%) 66/2,415 (2.7%) <0.001

Gastrointestinal intervention 102/3,025 (3.4%) 26/351 (7.4%) 76/2,674 (2.8%) <0.001

Urogenital intervention 87/3,026 (2.9%) 28/352 (8.0%) 59/2,674 (2.2%) <0.001

Dental procedure 224/2,849 (7.9%) 16/329 (4.9%) 208/2,520 (8.3%) 0.032

COPD, Chronic obstructive pulmonary disease; HIV, Human Immunodeficiency Virus; IE, Infective endocarditis; TIA, Transient ischemic attack.
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TABLE 2 | In-hospital mortality in infective endocarditis patients.

Total

(n = 3,085)

IE + cancer

(n = 359)

IE – cancer

(n = 2,726)

P-value

Death 524/3,085 (17.0%) 84/359 (23.4%) 440/2,726 (16.1%) <0.001

Cause of death

Cardiovascular 149/523 (28.5%) 15/84 (17.9%) 134/439 (30.5%) 0.067

Non-cardiovascular 155/523 (29.6%) 25/84 (29.8%) 130/439 (29.6%)

Cardiovascular + Non-cardiovascular 190/523 (36.3%) 39/84 (46.4%) 151/439 (34.4%)

Unknown 29/523 (5.5%) 5/84 (6.0%) 24/439 (5.5%)

If cardiovascular:

Heart failure 239/339 (70.5%) 40/54 (74.1%) 199/285 (69.8%) 0.530

Arrhythmia 41/339 (12.1%) 3/54 (5.6%) 38/285 (13.3%) 0.108

Cardiac perforation/tamponade 11/339 (3.2%) 4/54 (7.4%) 7/285 (2.5%) 0.080

Acute MI 7/339 (2.1%) 2/54 (3.7%) 5/285 (1.8%) 0.309

Cerebral embolism 41/339 (12.1%) 4/54 (7.4%) 37/285 (13.0%) 0.249

Pulmonary embolism 13/339 (3.8%) 0/54 (0.0%) 13/285 (4.6%) 0.236

Peripheral embolism 3/339 (0.9%) 0/54 (0.0%) 3/285 (1.1%) >0.999

If non-cardiovascular:

Neoplasia 12/345 (3.5%) 11/64 (17.2%) 1/281 (0.4%) <0.001

Sepsis 265/345 (76.8%) 38/64 (59.4%) 227/281 (80.8%) <0.001

MI, Myocardial infarction.

TABLE 3 | One-year mortality in infective endocarditis patients.

Total

(n = 3,085)

IE + cancer

(n = 359)

IE – cancer

(n = 2,726)

P-value

Death 233/2,108 (11.1%) 43/239 (18.0%) 190/1,869 (10.2%) <0.001

Cause of death

Cardiovascular 57/233 (24.5%) 6/43 (14.0%) 51/190 (26.8%) 0.240

Non-cardiovascular 65/233 (27.9%) 16/43 (37.2%) 49/190 (25.8%)

Cardiovascular + Non-cardiovascular 49/233 (21.0%) 9/43 (20.9%) 40/190 (21.1%)

Unknown 62/233 (26.6%) 12/43 (27.9%) 50/190 (26.3%)

If cardiovascular:

Heart failure 74/106 (69.8%) 9/15 (60.0%) 65/91 (71.4%)

Arrhythmia 9/106 (8.5%) 3/15 (20.0%) 6/91 (6.6%)

Cardiac perforation/tamponade 1/106 (0.9%) 0/15 (0.0%) 1/91 (1.1%)

Acute MI 7/106 (6.6%) 1/15 (6.7%) 6/91 (6.6%)

Cerebral embolism 7/106 (6.6%) 2/15 (13.3%) 5/91 (5.5%)

Pulmonary embolism 5/106 (4.7%) 1/15 (6.7%) 4/91 (4.4%)

Peripheral embolism 1/106 (0.9%) 0/15 (0.0%) 1/91 (1.1%)

Other cardiovascular 27/106 (25.5%) 1/15 (6.7%) 26/91 (28.6%)

If non-cardiovascular:

Neoplasia 22/114 (19.3%) 15/25 (60.0%) 7/89 (7.9%)

Sepsis 60/114 (52.6%) 7/25 (28.0%) 53/89 (59.6%)

Other 41/114 (36.0%) 6/25 (24.0%) 35/89 (39.3%)

MI, Myocardial infarction.

fibrillation and previous stroke, probably due to older age.
There exists an overlap between cancer and cardiovascular
disease, with shared biological mechanisms, risk factors and
genetic predisposition (13). Cancer patients had a less typical
clinical presentation with significantly less fever and new heart

murmur compared to cancer-free IE patients. Nevertheless,
cancer patients were hospitalized and diagnosed significantly
faster, probably due to close follow-up care. There was no
significant difference in embolic events at admission between
groups, despite significant more antithrombotics use in IE cancer
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patients. This was probably compensated by the older age and
prothrombogenic status in the cancer group.

IE could be a consequence of cancer management, as
immunosuppressive therapy, intravenous access and portal

TABLE 4 | Multivariate Cox regression analysis for in hospital all-cause mortality

(1-month period) in IE cancer patients.

Hazard ratio 95% CI P-value*

Creatinine > 2 mg/dl 2.34 [1.29–4.25] 0.005

Chronic Heart Failure 2.16 [1.18–3.95] 0.013

Surgery: Indication – not performed 2.41 [1.20–4.81] 0.013

Surgery: Indication – performed 0.56 [0.25–1.24] 0.151

Goodness of Fit test: P = 0.50. Concordance = 0.74 – Global Schoenfeld residual test

P = 0.21.

*P-value corresponds to the results of the Wald test. For indication – surgery performed,

the reference is: no indication.

catheters were significantly more present in the IE cancer
subpopulation, as previously described (6). Nevertheless, the
source of infection was mainly community-acquired in this
cohort, and comparable to the cancer-free population (74.8 vs.
74.2%, P = 0.06). In contrast, previous studies had reported
increased nosocomial IE in cancer patients, but the reason
for this discrepancy is unclear (6–8, 14). The most frequent
preceding non-cardiac interventions performed in IE cancer
patients within the last 6 months were non-dental: urogenital
and intestinal (including colonoscopy), as previously reported
(6, 8). The significantly higher burden of enterococcal IE might
be related to the portal of entry, but also to increased age, as
seen in the general population (8, 15). As reported in previous
studies, S. aureus remained the most frequent causative organism
(6, 8). These results, combined with low oral Streptococci
(8.9 vs. 12.9%, P = 0.05) in blood cultures [compared to
the general population in the EuroHeart Survey (15%) (16),
the 2008 French registry (20.6%) (10), and the International
Collaboration on Endocarditis-Prospective Cohort Study (17%)

FIGURE 1 | Kaplan-Meier curves for in hospital mortality (1-month) according to cancer and surgery. Mortality was particularly elevated in the IE cancer group when

surgery was indicated but not performed.
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FIGURE 2 | Kaplan-Meier curves for 1-year mortality according to cancer and surgery. Mortality was particularly elevated in the IE cancer group when surgery was

indicated but not performed.

(3)], reinforce the recommendations of the 2015 ESC guidelines
regarding the restriction of the use of antibiotic prophylaxis
to high risk populations undergoing at-risk dental procedures
(10). Conversely, there might be opportunities for IE prevention
in invasive urogenital and gastrointestinal procedures in cancer
patients (8).

About 16% of cancer patients had culture-negative
endocarditis, which is lower than previously reported, but
not significantly different compared to the non-cancer group
(8, 17). In these cases, non-bacterial thrombotic endocarditis
could not be ruled out.

Imaging
The transformation in the use of imaging techniques observed
in the EURO-ENDO population since the publication of the
2015 ESC guidelines was similarly applicable for IE cancer
patients (12). 18F-FDG PET/CT showed more extracardiac liver
uptake in IE cancer patients compared to non-cancer patients.
Unfortunately, it’s difficult to differentiate between metastatic
lesions, inflammatory foci and embolic lesions related to IE.

Management and Outcome of IE in Cancer
Patients
Surgery
Surgery was performed in ∼50% of patients, similar to previous
surveys (3, 16). Bioprosthetic valves were used in most IE cancer
patients (aortic bioprosthesis: 76.3 vs. mechanical 14.0%; mitral
bioprosthesis: 41.5 vs. mechanical 18.5%): more than in non-
cancer patients (aortic bioprosthesis: 56.2%, P < 0.001; mitral
bioprosthesis: 37.2%, P = 0.003) and much higher than observed
in the Euro heart survey, in which mechanical prosthesis were
more prominent (74%). This change might be related to older
age, the possible need for further surgical procedures and to
an increased risk of bleeding in some neoplasms (18). Mitral
valve repair techniques were also more frequently used in cancer
compared to non-cancer IE patients (40 vs. 23.4%; P = 0.003).
This might be explained by a selection bias in the IE cancer
group that was accepted for surgery, with a lower operative
risk and less valvular destruction (19). Indication for surgery
during hospitalization was comparable in cancer vs. non-cancer
IE patients. However, when indicated, cardiac surgery was
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effectively less often performed in cancer compared to cancer-
free IE patients. Patients of both groups were mainly denied
because of high surgical risk or a significant delay leading to death
before surgery.

Complications
Acute renal failure was the most frequent complication, followed
by embolic events and CHF in IE cancer patients. The older
IE cancer group had significantly more underlying chronic
renal failure.

There was a significant lower incidence of pulmonary
embolism in cancer IE patients. This might be explained by
reduced IV drug abuse and less tricuspid valve vegetations in the
IE cancer group, as well as a higher proportion of antithrombotic
treatment. Nevertheless, this was not reflected by a significant
reduction in other embolic events between groups at admission
or during hospitalization.

CHF and cardiogenic shock occurred significantly more
frequently in IE cancer patients, possibly due to the presence of
more cardiovascular disease and frailty in this older population.

In-hospital and 1-Year Mortality
In-hospital and long-term all-cause mortality was significantly
increased in IE cancer patients compared to the non-cancer
population. However, there was no significant difference in
cardiovascular death between groups. A main driver of all-cause
mortality in cancer patients was the neoplasia, especially at 1-year
follow-up. This might be explained by the necessity to interrupt
the cancer treatment due to IE, as noted in previous studies
(6, 8). Mortality was particularly elevated in the IE cancer group
when surgery was indicated but not performed, emphasizing the
need for early discussion with surgeons within the IE team, as
recommended by the ESC guidelines (19).

Study Limitations
This sub-analysis has the same inherent limitations as the EURO-
ENDO registry, particularly selection bias as the majority of
patients (88.2%) were enrolled in high-level centers in western
Europe. Moreover, the study is unlikely to be a true population-
based sample, as it was based on voluntary participation and
thus it is unsure whether all centers included their patients
consecutively and prospectively (12). As a consequence, the
true prevalence of cancer in IE patients remains uncertain.
As this study was selected from IE patients and not cancer
patients, we are also unable to provide incidence data on
IE in cancer patients. Moreover, all cancer types might not
be appropriately represented, details are missing about cancer
characteristics (history, stage, active, or previous treatment) and
further investigations are warranted in the occurrence of IE in
solid vs. non-solid (e.g., hematological) malignancies, as well
as the proportion of metastatic cancer which could influence
mortality (8). Moreover, the influence of cancer treatment
cessation on mortality should also be taken into consideration.
The reason for denial of surgery should be more thoroughly
investigated in future studies of IE cancer patients. Clinical
reasons could range from a high age, frailty, comorbidities,
expected poor prognosis from the underlying malignancy to

significant immunosuppression which might render surgery
either futile or risky. Moreover, the valvular heart disease
guidelines are not specifically written for patients with co-
existent malignancies.

As cancer plays a major ponderation in the Charlson score, a
sub analysis using an adjusted Charlson score excluding cancer
is merited. Additionally, data regarding the occurrence of newly
discovered cancer in IE patients, e.g., colon cancer diagnosed
by colonoscopy, is absent in this registry. It has been suggested
that IE could be an early marker or consequence of occult
cancer, particularly that of gastrointestinal or urinary origin
(6, 7, 20). Finally, it would be of interest to relate preceding
invasive procedures for different types of solid cancers to the
bacterial etiologies of IE. These limitations were counterbalanced
by the high number of enrolled patients, the quality of CRF
completion, and representation of a wide range of both university
and non-academic hospitals in many countries around the world.

CONCLUSION

This is a large, observational cohort of IE patients with cancer.
It provides new insights concerning the contemporary profile,
management and clinical outcomes of IE cancer patients. Given
the paucity of randomized and large-scale observational data in
IE patients with cancer, this registry offers a unique perspective
on the current care of IE cancer patients across a wide range
of countries.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Materials, further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Argentina: Comité de Ética de la Investigación,
Hospital Italiano de la Plata; Comité de Ética en Investigación,
Hospital El Cruce, Florencio Varela; Comite de Investigaciones
Médicas, Instituto de Cardiologia de Corrientes JF Cabral;
Belgium: Comité d’Ethique hospitalo-facultaire, Université
Catholique de Louvain; Comité Local d’Ethique Hospitalier
(O.M. 007), Centre Hospitalier Universitaire Saint Pierre,
Bruxelles; Commissie Medische Ethiek (O.G. 016), Universitair
Ziekenhuis Brussel; Brazil: Comitê de Ética em Pesquisa
da Universidade Federal de São Paulo; Comitê de Ética
em Pesquisa do Hospital de Messejana, Fortaleza; Comitê
de Ética em Pesquisa do Hospital Israelita Albert Einstein,
São Paulo; Comitê de Ética em Pesquisa, Faculdade de
Medicina de Marília; Comitê de Ética em Pesquisa, Instituto
de Cardiologia, Fundacão Universitaria de Cardiologia, Porto
Alegre; Comitê de Ética em Pesquisa, Universidad Federal de
Minas Gerais; Canada: Comité d’éthique de la recherche de
l’Institut Universitaire de Cardiologie et de Pneumologie de
Québec, Université Laval; Comité d’éthique de la recherche du

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 November 2021 | Volume 8 | Article 76699650

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Cosyns et al. Cancer and Infective Endocarditis

Centre Intégré Universitaire de Santé et de Services Sociaux
du Nord-de-l’Île-de-Montréal; Czech Republic: Etická komise,
Fakultní nemocnice Hradec Králové; Etická komise, Všeobecné
fakultní nemocnice v Praze; France: Direction générale de
la recherche et de l’innovation, Comité Consultatif sur le
traitement de l’information en matière de Recherche dans le
domaine de la Santé; Germany: Ethik-Kommission an der
Medizinishen Fakultät der Universität Leipzig; Ethikkommission
der Universität Leipzig, Ethikkommission der Medizinischen
Fakultät des Ruhr-Universität Bochum; Ethikkommission der
Universität Leipzig, Ethik-Kommission des FB Medizin; Greece:
Laiko General Hospital Managing Committee, Athens; Scientific
Council of the University Hospital of Ioannina; India: Medanta
Instututional Ethics Committee, Medanta the Medicity, Gurgon;
Sengupta Hospital & Research Institute Ethics Committee;
Iran: University/Regional Research Ethics Committee, Rajaie
Cardiovascular Medical and Research Center; Italy: Comitato
Etico Campania Sud, Azienda Sanitaria Locale Napoli 3
Sud; Comitato Etico dell’Ospedale San Raffaele, Istituto di
Ricovero e Cura a Carattere Scientifico, Milano; Comitato
Etico Milano Area 3, Azienda Socio Sanitaria Territoriale
Grande Ospedale Metropolitano Niguarda; Comitato Etico
Provinciale, Azienda Ospedaliero-Universitaria di Modena;
Comitato Etico Regionale per la Sperimentazione Clinica
della Provincia di Padova,; Comitato Etico Regionale per la
Sperimentazione Clinica della Toscana, Area Vasta Centro,
Azienda Ospedaliero-Universitaria Careggi Firenze; Comitato
Etico Regionale per la Sperimentazione Clinica della Toscana,
Area Vasta Sud Est, Azienda Ospedaliero-Universitaria Senese;
Japan: Nagoya City University Internal Review Board for
Clinical Studies; Korea: Institutional Review Board, AsanMedical
Center; Institutional Review Board, Samsung Medical Center,
Seoul; Lithuania: Lietuvos Bioetikos Komitetas, National Ethics
Committee, Vilnius; Moldova: Comitetului de Etica a Cercetarii,
N.Testemitanu, State University of Medicine and Pharmacy,
Chisinau; Netherlands: Medical Ethics Review Committee of
VU University Medical Center, Amsterdam; Portugal: Comissão
Nacional de Protecção de Dados, Comissão de Ética para
Saude de Centro Hospitalar Universitário de Lisboa Central;
Romania: Comisia de Etica a Institutului Inimii de Urgenta
pentru Boli Cardiovasculare Niculae Stancioiu, Cluj-Napoca;
Comisia de Etica in Cercetare-Dezvoltare, Institutului de
Boli Cardiovasculare, University of Medicine & Pharmacy,
Timisoara; Russia: Local Ethics Committee City Clinical
Hospital (named after V. V. Vinogradov), City Clinical
Hospital 64 Moscow; Serbia: Etičkog odbora KBC Zemun,
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With the development of anti-tumor drugs, tyrosine kinase inhibitors (TKIs) are

an indispensable part of targeted therapy. They can be superior to traditional

chemotherapeutic drugs in selectivity, safety, and efficacy. However, they have been

found to be associated with serious adverse effects in use, such as myocardial infarction,

fluid retention, hypertension, and rash. Although TKIs induced arrhythmia with a lower

incidence than other cardiovascular diseases, much clinical evidence indicated that

adequate attention and management should be provided to patients. This review

focuses on QT interval prolongation and atrial fibrillation (AF) which are conveniently

monitored in clinical practice. We collected data about TKIs, and analyzed the molecule

mechanism, discussed the actual clinical evidence and drug-drug interaction, and

provided countermeasures to QT interval prolongation and AF. We also pooled data

to show that both QT prolongation and AF are related to their multi-target effects.

Furthermore, more than 30 TKIs were approved by the FDA, but most of the novel drugs

had a small sample size in the preclinical trial and risk/benefit assessments were not

perfect, which led to a suspension after listing, like nilotinib. Similarly, vandetanib exhibits

the most significant QT prolongation and ibrutinib exhibits the highest incidence in AF,

but does not receive enough attention during treatment.

Keywords: TKIs, QT prolongation, atrial fibrillation, molecule mechanism, therapeutic strategies,

pharmacokinetics

INTRODUCTION

Protein kinases are enzymes that catalyze adenosine triphosphate (ATP) γ-phosphate transfer to
tyrosine residues of the substrate protein and regulate many essential cellular biochemical functions
including differentiation, proliferation, and death (1). More than 500 kinases have been discovered,
and depending on their substrate specificity, they can be divided into two categories: catalytic
tyrosine/tyrosine-like phosphorylation and serine/threonine phosphorylation (2). More than 30%
of proteins may be modified by the kinases in the human body (3) and over 50% of proto-oncogene
and oncogene products have protein tyrosine kinase activity (4). In this way, tyrosine kinase
inhibitors (TKIs) by competitive inhibition of the ATP binding pocket, inhibit tumor proliferation,
which has been widely used in cancer target therapy (1, 5).
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TKIs can be divided into monoclonal antibody drugs and
small molecule TKIs. Monoclonal antibody drugs are mainly
bound to unique epitopes on the extracellular matrix to
regulate downstream signal transduction, thereby inhibiting the
proliferation, invasion, and angiogenesis of tumor cells. Small
molecule TKIs act by intracellular inhibition of phosphorylation
(6). So, inherently, small molecule TKIs are less selective
than monoclonal antibodies and may lead to more adverse
effects (AEs).

After the first TKI drug imatinib was approved in the US
in 2001, a total of more than 30 TKIs were approved by
the FDA up to 2020 (7). Although all the approved TKIs
can inhibit BCR-ABL1, they still have different targeted sites
and distinctive potency and activity. First-generation TKIs, like
imatinib, dramatically improved the 5-year survival from 11
to 90% in Philadelphia chromosome-positive chronic myeloid
leukemia (CML) patients (8). Second-generation TKIs, such as
nilotinib (9) and dasatinib (10), exhibited the ability to overcome
imatinib resistance and a more rapid molecule response. Third-
generation TKI ponatinib is the only drug that works against
BCR-ABL1T315I mutation (11).

As successful as TKIs are, they still face some challenges,
such as AEs caused by drug poor selectivity, drug resistance, and
other reasons. According to the FDA’s Adverse Effects Reporting
System (FARES) database’s cardiovascular (CV) toxicity section,
TKIs were considered to be the suspected drug in 83.2% of CV
events. And torsade de pointes/QT prolongation was considered
the only acute event, which had a 6.8% incidence, higher
than other anticancer drugs (1.4%) (12). Similarly, correlations
were found between QT prolongation with increased risk
of polymorphic ventricular tachycardia, which leads to lethal
arrhythmia and subsequent sudden cardiac death (SCD) (3,
7, 12). The mechanisms and countermeasures of TKI-induced
arrhythmia are still unknown. To this purpose, we wrote this
paper to provide a broad overview for the potential of approved
TKIs in prolonging QT interval and atrial toxicity and systemic
and comprehensive treatment for patients.

As shown in Figure 1, the data for this review were identified
by searches of PubMed and references from relevant articles
using the search terms “TKIs,” “QT prolongation,” “atrial
fibrillation,” and “on and off-target.” We identified 6,151 records
through the PubMed database. We removed 2,759 records as
they were review papers (n = 1,267), meta-analyses (n = 1,181),
or case reports (n = 311). A total of 2,931 studies on TKIs
combined with other anticancer drugs were also removed. Then,
407 records were excluded by reading the abstract. Finally, 54
records were enrolled. Only articles published in English between
2005 and 2021 were included.

POTENTIAL MOLECULE MECHANISM OF
QT PROLONGATION AND ATRIAL
TOXICITY

Most TKIs are multi-target drugs, and the target receptors
include vascular endothelial growth factor receptor (VEGFR),
BCR-ABL, platelet-derived growth factor receptor (PDGFR),

epidermal growth factor receptor (EGFR), and c-KIT, etc. (13,
14). Then they regulate the downstream signaling pathways, for
example, PI3K, MEK, and AKT, etc. (14, 15). Only a few TKIs
have only one or two targets, such as axitinib, bosutinib, and
gefitinib (3). Due to the numerous targets of TKIs, the potential
mechanisms of TKI-related side effects previously proposed can
be divided into: “on-target” and “off-target” (14, 16) effects.

On-Target
On-target means that the targets of TKIs exist in the tumor cell,
but also play an important role in other normal organ cells, which
may damage the biochemical function of normal cells (17, 18). A
typical example of an on-target effect was observed in the Lu et al.
trial. They designed an experiment to expose canine ventricular
myocytes to drugs that have been demonstrated to prolong
QT interval. As the result showed, the inhibition of the PI3K
signaling pathway was the actual reason for QT prolongation.
After blocking PI3K signaling, with the increase of persistent
sodium current (INaP) and the decrease of L-type calcium current
(ICaL) and potassium current (IKr and IKs), the total sodium
and potassium current change accounted for over 70% of the
whole prolongation, not just the potassium channels. And then,
PI3K and its second message manager phosphatidylinositol
3,4,5-trisphosphate (PIP3) could affect multiple ion channels,
similarly, resulting in action potential duration (APD). They
also confirmed this result by breeding mice with reduced PI3K
signaling showed QT prolongation (19).

Then, inMcMullen’s trial, they found thatmice with decreased
activity of the PI3K-Akt pathway was associated with higher
susceptibility to AF and the same observation was relevant in
humans. This pathway is an important regulator of cardiac
protection under stress conditions. Other experiments also made
a hypothesis that AF was related to ROS signaling, which would
occur in abnormal Ca2+ release and atrial remodeling (20).

Off-Target
Off-target refers to a non-selective TKI acting on normal organ
cells. However, the target does not exist in tumor cells (21,
22). Generally, whether a TKI drug has the effect of QT
prolongation, we can first observe whether there are fluorophenyl
or fluoromethyl-phenyl rings in the molecular structure of the
drugs (23). Drugs inhibit the hERG (human ether-a-go-go)
subunit with which the channel conducts the main ventricular
repolarization potassium current (IKr) potential during phases
2–3 of the action potential (3, 24, 25). And hERG is regulated
by cAMP and cAMP-dependent PKA. Vandetanib has been
demonstrated to have values of hERG IC50 of 0.4µM, and its
metabolites are also active. In in vivo studies, a dose-dependent
increase in QT prolongation has been demonstrated in dogs (3).

For instance, ibrutinib influences tumor cells by inhibiting
Bruton tyrosine kinase (BTK); it also has off-target effects
on Tec protein tyrosine kinase (TEC) (26). Both BTK and
TEC transcripts have been demonstrated to express in cardiac
tissue and at a higher expression when AF occurs rather than
sinus rhythm. The PI3K-Akt pathway is regulated by BTK and
TEC, and plays an important role in cardiac protection under
conditions of stress (27).
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FIGURE 1 | Search strategy and selection criteria.

Even if some drugs act on the same target or class of targets, it
cannot be proved that these drugs have the effect of a prolonged
QT interval. For example, sorafenib, vandetanib, and axitinib act
on VEGFR, but only sorafenib and vandetanib will induce QT
prolongation (23).

SELECTED REPRESENTATIVE DRUGS

Vandetanib
Vandetanib has the most significant prolongation of corrected
QT interval according to Fridericia’s formula (QTcF). It is an
oral multitarget TKI drug, which inhibits VEGFR-2, EGFR, and
the activity of tyrosine kinase. It was approved for the treatment
of metastatic medullary thyroid cancer (MTC) by the FDA in
2011 (28).

In an early report, Ghatalia et al. initiated a meta-analysis
about QTcF interval prolongation with VEGFR TKIs (29). They
studied 13 clinical trials that included 4,204 patients with multi-
tumor types who received 100 or 300mg of vandetanib daily.
The incidence of QT prolongation ranged from 0.3 to 23.9%, AF
incidence ranged from 0.43 to 1.79%, and all-grade arrhythmia
ranged from 0 to 1.69%. A high dose of vandetanib was associated
with a high risk of QT prolongation by the authors. Then,
under an approved dosage, phase II trial, multicenter, open-
label study, 17 patients with metastatic or recurrent NSCLC
with a RET rearrangement and against platinum-based doublet
chemotherapy were treated with 300mg of vandetanib once daily.
A total of 6 out of 17 patients had grade 3 AEs, 2 were QT

prolongation (11%) (30). In another phase III, double-blind,
placebo-controlled clinical trial, 331 patients with advanced
or metastatic MTC were randomized 2:1 to receive 300mg
of vandetanib daily orally (n = 231) or placebo (n = 100).
During the treatment, most AEs could be well-managed by
dose interruption or reduction, QT prolongation occurred in 14
patients in all grades (31).

Vandetanib is metabolized by cytochrome P450 enzyme
(CYP) 3A4, which inhibits or promotes activity by many
common drugs (32). In a phase I trial, healthy individuals
received 200mg of itraconazole daily and were given a single dose
of 300mg of vandetanib on day 1 and day 4. A slight increase
(9%) was observed in the serum concentration of vandetanib
(33). Other substrates of CYP3A4, such as ketoconazole and
rifampicin should be considered in the drug combination. In
addition, other drugs which may induce QT prolongation need
to be considered in the drug combination.

Ibrutinib
Ibrutinib has the highest incidence of AF. It is an oral irreversible
small molecule inhibitor of Bruton’s tyrosine kinase (BTK), which
is inhibited by a covalent bond with the specific cysteine Cys-
481 of BTK, thereby inhibiting the proliferation and survival
of malignant B cells, as well as reducing their migration and
substrate adhesion (34, 35). Through the inhibition of BTK,
downstream signaling pathways (MAPK, PI3K, and NF-?B)
and phosphorylation functions (PLCγ, ERK, and AKT) are
influenced (35–37).
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In a preclinical in vitro study, it was demonstrated that there
were effects on hERG, but no specific risks for human cardiac
issues, by the authors. In the in vivo safety study of dogs, ibrutinib
may increase PR interval, decrease heart rate, and shorten heart
rate-corrected QT interval (38). Besides, its use is associated with
atrial toxicity. The possible mechanisms are still not entirely clear,
but it has been demonstrated that AF is an off-target effect (39).
Xiao et al., who used a mouse model and conducted chemo-
proteomic analysis of cardiac lysates, found that C-terminal Src
kinase (CSK) was the most likely target for ibrutinib-induced AF
(40). Jiang et al. created a C57BI/6 mice model where an ibrutinib
group received 25 mg/kg/d of ibrutinib and a control group
was treated with hydroxypropy1-β-cyclodextrin for 4 weeks.
Compared with the control group, the ibrutinib group displayed
Ca2+ dysregulation in atrial myocytes, it increased spontaneous
Ca2+ release, CaMKII level, phosphorylated CaMKII, and other
related sites, and reduced sarcoplasmic Ca2+ capacity (41); both
may lead to AF. Ibrutinib is an independent risk factor for
the development of atrial arrhythmias, with an incidence of
AF of more than 10–15% (42–44). Based on Alexandre’s paper,
ibrutinib is themost frequent anticancer drug to cause AF (45). In
addition to straightforward arrhythmias, other potential effects of
ibrutinib on ECG are little known. In early clinical trials,∼6–16%
of participants had an increased risk of AF (46). A review of 16
studies showed that the incidence of ibrutinib-associated AF was
5.77 per 100 person-years (27). Fradley et al. enrolled 137 patients
who were treated with ibrutinib, 21 pre- and post-ibrutinib ECG
readings were obtained. Compared with the pre ibrutinib ECG,
after administration, the ECG showed QT interval shortening
from 446 to 437ms, based on Bazett’s formula (47). In another
phase II clinical trial, a mean 7.5ms shortening of the corrected
QT interval was found after ibrutinib treatment (34). However,
no significant QT effects were found in healthy subjects. Ibrutinib
showed concentration-dependent mild shortening of the QT
interval and PR prolongation, but seemed to have no significant
clinical meaning (38).

Ibrutinib is metabolized by CYP3A4, therefore the
coadministration of calcium channel blockers and other
enzyme inhibitors should be fully considered. Besides, ibrutinib
may increase the P-glycoprotein (P-gp) substrate level, such as
digoxin and omeprazole, etc. (27, 48, 49).

Ponatinib
Ponatinib is a third-generation TKI, which was designed by a
computational and structure-based approach (50). It was created
with a unique carbon-carbon triple bond linkage that overcomes
the steric hindrance caused by the T315I mutant in CML or
Ph+ acute lymphoblastic leukemia (ALL) (50, 51). The toxicity
is mostly explained as a lack of selectivity, and on and off-target
effects. Ponatinib inhibits over 60 kinases, including PDGFR,
c-KIT, VEGFR, and EGFR. It also acts on perturbation of
pro-survival signaling pathways, the AKT and ERK pathways
impact cardiac function (52, 53). And in the Sharma et al.
trial, they used human-induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs) to evaluate the 21 approved TKIs,
and demonstrated that ponatinib is the most toxic (54).

In a pre-clinical trial, ponatinib was not associated with
cardiotoxicity. However, it exhibited a high occurrence of cardiac
events in follow-up trials (11, 55). One year after being approved
by the FDA, ponatinib was suspended because of safety concerns
(56). At the dose of 50 mg/kg, the mean tumor volume decreased
by 96%, so 45mg once daily has been suggested, but the label
cautions that an optimal dosage has not been identified (52, 57).
In Sonnichsen’s trial, 39 patients received ponatinib treatment
at 30-, 45- and 60-mg dose levels, and the QTcF changes from
baseline showed −10.9, −3.9, and −5.0ms. Seventy-five patients
in different dose levels were enrolled to evaluate the PK-PD effect,
no significant correlation was found between drug exposure and
QT changes (50). For the FDACV events report for TKIs in 2020,
14.4% were found to be related to ponatinib (12). And in another
clinical trial, 78 patients with CML were treated with ponatinib,
the most common CAEs were arrhythmia (9%), higher than
hypertension (7.7%) and myocardial infarction (3.8%) (58). In a
ponatinib vs. imatinib phase III trial, 307 newly diagnosed CML
patients were assigned to receive ponatinib (n= 155) or imatinib
(n= 152). The results showed that no significant differences were
observed in major molecule response at 12 months, but three
serious AFs were observed in the ponatinib group, while no AFs
occurred in the imatinib group (59).

Ponatinib is mostly metabolized by CYP3A4/5, but also by
the substrates of CYP2C6 and CYP2C8. When co-administered
with ketoconazole, the AUC0−∞, AUC0−t, and Cmax indicated
increased exposures to ponatinib of 78, 70, and 47%, respectively.
So, a dose decreased to 30 from 45mg daily could be considered
when combined with strong CYP3A4 inhibitors (60, 61).

Nilotinib
Nilotinib also has strong cardiotoxicity. Its ability to prolong
QT interval and induce AF is just after that of vandetanib and
ibrutinib. It is an orally administered small molecule TKI that was
designed with a lipophilic structure which competitively binds to
the inactive conformation of the ABL kinase domain and leads to
a higher and faster molecule response than imatinib in patients
(62, 63). Nilotinib is more selective than imatinib, and does not
have an effect on Src, EGFR, and VEGF kinase at a concentration
<3,000 nM (64–66). However, it targets PDGFRa, PDGFRb, c-
kit, DDR, and colony-stimulating factor receptor 1, which is
similar to imatinib (65).

Under the multi-target effect, nilotinib induce cardiotoxicity.
In a preclinical safety study, nilotinib inhibited the hERG
channel at an IC50 value of 0.13µM (3), and exhibited the
signs of QT prolongation in an isolated rabbit heart, but no
toxicity in neonatal rat ventricular myocytes (67). There was
no evidence that nilotinib had an effect on QTc in dogs at the
dose up to 300mg (3). In a response and safety phase I study,
33 patients with CML-BP were enrolled and received second-
line nilotinib treatment. Thirteen patients (39%) achieved a
hematologic response. As for arrhythmia, the QTcF increased
by 5–15ms in the study group, and one patient developed AF
(grade = 2) (9). Then, in a phase II study, 280 patients with
CML were enrolled, 6-month major cytogenetic responses were
achieved in 48% of patients, and only 1% (3 of 280) had QTcF >

500ms (62). In another phase II study, 44 patients with CML-AP
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or CML-CP were enrolled, and 6.1% displayed QT prolongation
at all grades (68). A positive correlation was found between
QT prolongation and nilotinib exposure in many trials (69–
71). In patients, as Cmax increased by 1,000 ng/ml, the QTcF
also increased by 4.2ms; an increase of 1,000 ng/ml in Ctrough

brought on an increase of 6.9ms in QTcF (70, 71). Contrary
to the earlier study, the 2020 FDA CV events report showed
that QTc prolongation (any grade) induced by TKI was almost
28.8%, among these events 38.7% was due to nilotinib (12).
It was significantly higher than early clinical trials. Alexandre
et al. used the World Health Organization (WHO) individual
case safety report database, vigibase, to identify the correlation
between anticancer drugs and AF. As the results showed, 11,757
of 2,124,646 AF cases were associated with 176 anticancer drugs,
and nilotinib accounted for 241 cases (2%) (45).

Nilotinib is also metabolized in the liver and is the competitive
inhibitor of CYP3A4/5, CYP2C8, CYP2C9, CYP2D6, and uridine
diphosphate glucuronosyltransferase 1A1 (UGT1A1) (72, 73).
When co-administered with ketoconazole, the area under the
curve (AUC) increased by 3-fold and Cmax by 1.8-fold (74). Other
drugs like rifampicin and esomeprazole reduced the plasma
concentration to different degrees (72, 75).

Dasatinib
Dasatinib seems to rarely cause QT interval prolongation
events, and pooled safety data suggest that the overall risk for
cardiotoxicity is minimal in dasatinib. But it still occurs in clinical
use (76). Dasatinib is an effective BCR-ABL inhibitor in the
treatment of CML and Philadelphia chromosome-positive acute
lymphoblastic leukemia (Ph+ ALL) after relapse or resistance to
imatinib (77, 78). It acts on the targets BCR-ABL, c-Kit, Src family
kinases (SFKS), and PDGFR-α/β. By acting on BCR-ABL and
the Src family, dasatinib inhibits the downstream PI3K signaling
pathway (3, 79), which may induce cardiotoxicity.

The IC50 of the effect on hERG is 14.3µM, which is safer than
vandetanib in QT effects. In an in vivo study, no QT prolongation
was found in monkeys using a body-weight dose strategy (10 or
70 mg/kg). In a clinical trial, 2,182 patients were treated with
dasatinib, 21 displayed QT ≥ 500ms, all patients had a mean
increase from baseline of 3–5ms (3). In another retrospective
study, 115 cancer patients received dasatinib treatment, 41.7% of
patients showed QT prolongation and the mean (SD) of pre- and
post- therapeutic QT interval change was 30 ms (12).

Dasatinib influences CYP3A4 and CYP2C8 enzymes and the
drug transporter P-gp. In drug-drug interaction, omeprazole,
esomeprazole, and pantoprazole will inhibit the P-gp to decrease
absorption and lead to higher exposure. Metoclopramide has an
additive effect on dasatinib which will increase the incidence
of QT interval (80, 81). In a phase I PK and drug interaction
study, 17 patients were enrolled to determine whether the
coadministration of ketoconazole affected the PK of dasatinib
(82). Rhe result showed that ketoconazole led to an increase in
dasatinib exposure and may correlate to an ∼6ms prolongation
in QT interval.

The current study showed that QT prolongation occurred
in nearly 30% of patients who received TKIs treatment, and
20% were high grade (7). Onco-cardiology is essential for cancer

treatment because the incidence of cancer and cardiovascular
diseases (CVD) is concentrated in middle-aged and senior
patients. During the cancer treatment, it may aggravate CVD,
and its side effects may lead to failure of cancer treatment
(6). Other unexpected side effects include: Human epidermal
growth factor receptor 2 (HER2) and trastuzumab are associated
with left ventricular ejection fraction (LVEF) decrease and
congestive heart failure (CHF) (83); anti-VEGF drugs were found
to significantly increase the incidence of hypertension (84).
However, arrhythmia could be induced by lots of targets.

These five TKIs all have obvious characteristics, mechanisms,
aim targets, and AEs. Vandetanib and ibrutinib were found
to have high incidences of arrhythmia but dasatinib was
recommended not to be much concerns about cardiotoxicity.
All of them exhibit an effect on QT interval and atria toxicity
in clinical application. And, according to the FDA and WHO
databases, the impact of some TKIs in QT and AF is much
higher than in previous clinical trials (12, 45). Although QT
interval prolongation has a lower mortality than hypertension or
coronary heart disease, it is convenient as a monitoring strategy
of CVD, and evaluation of QT interval changes can maximize
the optimization of drug cessation or reduction. The main
information of the selected representative drugs is summarized
in Table 1.

MANAGEMENT

Arrhythmia induced by TKIs is easily monitored and can be
an early warning of other serious CVD. For the agents with
risk factors, routine monitoring methods such as ECG, blood
pressure, electrolytes, and cardiac biomarkers are recommended
during the course of treatment. In addition, collecting past
medical history and physical function evaluation of patients
are recommended to identify those at heightened risk for
cardiovascular events. Once the arrhythmia occurs, beta-blockers
and type I and III antiarrhythmic drugs are helpful for patients.

Primarily, CVD risk factors should be carefully evaluated
before deciding to use TKIs. When patients are diagnosed with
underlying diseases, like hypertension, coronary heart disease,
diabetes, and other CVDs, they need to be carefully monitored
based on their cardiac function. Baseline electrocardiograms
(ECGs) should be obtained which will evaluate the risk
of arrhythmia. Myoglobin (MYO), B-type natriuretic peptide
(BNP), and other biochemical indexes should be obtained and
corrected (85–87).

Second, electrolytes should be monitored, especially Na+, K+,
and Ca2+ which have an influence on heart rhythm. Abnormal
electrolytes will be a potential risk of arrhythmia and should be
corrected immediately (87, 88).

Third, drug-drug interaction should be fully considered. Most
TKIs are metabolized by CYP enzymes and transported by P-gp;
other drugs influencing CYP enzymes and the competitive bond
to P-gp should be fully considered during coadministration. And
drugs that have been proved to prolong the QT interval or induce
AF should be avoided (89, 90).
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TABLE 1 | Target, effect on QT interval/AF, and metabolism of selected representative TKIs.

Name Vandetanib Ibrutinib Ponatinib Nilotinib Dasatinib

Target VEGFR-2; EGFR; RET BTK; MAPK; PI3K BCR-ABL; PDGFR;

c-KIT; VEGFR; EGFR

BCR-ABL; PDGFR-α/β;

c-kit; DDR

BCR-ABL; c-KIT;

SFKS; PDGFR-α/β

Effect on QT interval Prolong QT interval and

with a positive drug

exposure-dependent

risk

Shorten QT interval Prolong QT interval, no

correlation was found

between drug exposure

and QT prolongation

Prolong QT interval

with a positive

correlation between

exposure and risk

Rarely causes QT

interval prolongation

Effect on AF With a low incidence

from 0.43 to 1.79%

Highest incidence of

AF, nearly 10–15%

With a low incidence,

about 1.29%

With a high incidence

followed by ibrutinib

Rarely causes AF

Metabolized by CYP3A4 CYP3A4 CYP3A4/5, CYP2C6,

CYP2C8

CYP3A4 CYP3A4, CYP2C8

Fourth, reducing doses or stopping TKI treatment in time
are of vital importance, especially when the QT interval is
≥500ms, or the change of QT is > 60ms compared with
baseline. TKIs could be restarted when the QT is < 450ms. If
ventricular tachycardia, syncope, or other serious cardiovascular
adverse reactions occurred again, the drugs should be stopped
permanently (76, 91).

Fifth, after taking medicine, if a faint, headache, or irregular
heartbeat occurs, healthcare should be provided immediately.
The decision of heart rate or rhythm control should be
patient-centered and symptom-oriented (87), beta-blockers may
be the first choice for heart rate control, and type Ic and type III
antiarrhythmic drugs are helpful for heart rhythm (87, 91).

CONCLUSION

To conclude, we focused on the molecule mechanism, clinical
outcome, coadministration, and countermeasures of TKI drugs
in arrhythmia. There is commonality and variability coexistence
in TKI class, studies showed that QT prolongation is the most
significant in vandetanib, AF most occurs in ibrutinib, and
nilotinib has a high incidence of QT prolongation and AF.
Their actual incidence and life-threatening status are higher

than preclinical trials, lots of them do not get a black box
warning from the FDA. But CVD caused by antitumor drugs
needs to be avoided during treatment. Therefore, early diagnosis,
convenient monitoring measures, and appropriate treatment
methods should be provided to patients. So, ECGs monitoring
should bemore widely used in cancer patients, existing guidelines
should be more specific, more real-world clinical trials need to be
done, and on-target and off-target toxicity should be completely
understood in the future.
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Coronary artery reperfusion is essential for the management of symptoms in the

patients with myocardial ischemia. However, the benefit of reperfusion often comes

at an expense of paradoxical injury, which contributes to the adverse events, and

sometimes heart failure. Reperfusion is known to increase the production of reactive

oxygen species (ROS). We address whether N-acetylcysteine (NAC) reduces the ROS

and alleviates reperfusion injury by improving the clinical outcomes. A literature search for

the randomized controlled trials (RCTs) was carried out in the five biomedical databases

for testing the effects of NAC in patients undergoing coronary artery reperfusion by

percutaneous coronary intervention, thrombolysis, or coronary artery bypass graft. Of

787 publications reviewed, 28 RCTs were identified, with a summary of 2,174 patients.

Ameta-analysis using the random effectsmodel indicated that NAC administration during

or prior to the reperfusion procedures resulted in a trend toward a reduction in the level

of serum cardiac troponin (cTn) [95% CI, standardized mean difference (SMD) −0.80

(−1.75; 0.15), p = 0.088, n = 262 for control, 277 for NAC group], and in the incidence

of postoperative atrial fibrillation [95% CI, relative risk (RR) 0.57 (0.30; 1.06), p = 0.071,

n = 484 for control, 490 for NAC group]. The left ventricular ejection fraction or the

measures of length of stay in intensive care unit (ICU) or in hospital displayed a positive

trend that was not statistically significant. Among the nine trials that measured ROS,

seven showed a correlation between the reduction of lipid peroxidation and improved

clinical outcomes. These lines of evidence support the potential benefit of NAC as an

adjuvant therapy for cardiac protection against reperfusion injury.

Keywords: N-acetylcysteine, coronary artery bypass, percutaneous coronary intervention, atrial fibrillation,

antioxidants, reactive oxygen species, acute coronary syndrome, stable angina
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INTRODUCTION

A reperfusion injury has long been an unavoidable complication
of the coronary artery revascularization procedures for the
patients with acute or chronic myocardial ischemia. Although
essential for the survival or for the relief of symptoms,
reperfusion can contribute to as much as 40% of the final
infarct size (1). The most common reperfusion procedure for
the patients with myocardial ischemic is percutaneous coronary
intervention (PCI). When reperfusion cannot be achieved
successfully by PCI alone or in the setting of multivessel
coronary disease, open heart surgery of coronary artery bypass
graft (CABG) may be performed. Thrombolytic therapy can be
prescribed during PCI, or alone when PCI and CABG are not
readily available or impossible to perform due to the condition
of a patient. One complication for each of these reperfusion
treatments is periprocedural myocardial injury (PMI), which is
linked to arrhythmias or reinfarction and in some cases heart
failure. The release of massive amounts of reactive oxygen species
(ROS) during reperfusion is thought to be an important cause
of PMI.

Periprocedural myocardial injury is measurable with a
number of clinical parameters, such as elevation of circulating
cardiac troponins (cTn) or creatine kinase muscle band (CK-
MB). Whereas, the amplitude or duration of cTn elevation
can be predictive for the adverse events and heart failure
(2–4), the extent of PMI is associated with the incidence of
post-operative atrial fibrillation (POAF) (5). As a common
complication following an open-heart surgery, the incidence of
POAF can reach up to 70% in the patients after an elective CABG
(6). POAF can cause stroke and increase the length of stay (LOS)
in the intensive care unit (ICU) or in hospital. There is evidence
supporting the concept that ROS and cytokine storm play a key
role in the pathogenesis of POAF (7).

Despite a well-established association, ROS remains a
neglected therapeutic target for the patients undergoing coronary
reperfusion procedures. Administration of N-acetylcysteine
(NAC) before reperfusion is expected to reduce the ROS
generation. While a few randomized controlled trials (RCTs)
showed a significant inhibition of cTn or CK-MB release or the
incidence of POAF, other RCTs did not report positive outcomes.
Given these inconsistences, it is prudent to address whether
NAC provides a benefit for the coronary reperfusion procedures
through a systematic review and meta-analysis approach.

A few meta-analyses have assessed the cardioprotective effect
of NAC during cardiac surgery (8–12). However, each of these
reports has a limited number of references. More importantly,
none of these reports have included consideration of PCI. About
90% of the patients with ST segment elevation myocardial
infarct (STEMI) and 50% of the patients with non-STEMI are
treated with PCI (13), supporting the importance of PCI when
considering the benefit of NAC during reperfusion. Nevertheless,
none of these published meta-analyses have determined the
impact of NAC on all the common clinical measures, such as
elevation of cTn or CK-MB, change in left ventricular ejection
fraction (LVEF), and ICU or hospital length of stay (LOS).
In addition, whether the clinical outcomes correlate with the

reduction of ROS has not been determined. Here, we address
the cardioprotective effect of NAC when administered before
PCI, CABG, or thrombolysis by summarizing the data from
the publications with relevant clinical measures. In addition,
the levels of antioxidants and ROS are captured to support the
cause-effect relationship.

METHODS

The Preferred Reporting Items for Systematic Reviews (PRISMA)
guideline was adopted for this systematic literature review using
an a-priori inclusion and exclusion criteria (14).

Inclusion and Exclusion Criteria
A-priori inclusion criteria were: (1) the RCTs assessing the effect
of NAC in the patients >18 years old who underwent coronary
reperfusion by PCI, CABG, or thrombolysis; (2) NAC was
administered within 24 h before or during coronary reperfusion;
(3) the RCTs should have measured the effect of NAC in
comparison to a control group; (4) the control group should
have received either placebo or standard care; (5) the published
manuscripts and abstracts for the RCTs; (6) the RCTs published
in any language; (7) the RCTs should not have selectively included
the participants with any degree of renal insufficiency; and (8) the
RCTs published from inception to September 18, 2021.

We excluded those RCTs in which the effect of NAC was not
compared with a control group, but instead was compared with
another pharmacologic agent. In addition, we excluded those
RCTs reporting the trials designed for the selective patients with
renal insufficiency, since renal insufficiency itself causes increased
levels of cTn and CK-MB (15), potentially underestimating the
beneficial effect of NAC on cardiac injury.

We considered both the clinical cardiac endpoints and
mechanistic measures in this systematic review. The clinical
endpoints included biomarkers of myocardial injury (cTn and
CK-MB), cardiac contractility (left ventricular ejection fraction,
LVEF), infarct size, incidence of POAF, and postoperative ICU
or hospital LOS. The mechanistic measures consisted of markers
for total antioxidant capacity (TAC) and ROS. To reduce the
complexity of the data, we only extracted the serum and urine
levels of the non-clinical markers and excluded the measures
from the biopsy samples.

Literature Search and Data Extraction
A comprehensive search strategy was developed with the
assistance of a health science librarian (Rachel Walden) using a
combination of keywords and controlled vocabulary to identify
the studies reporting the use of NAC in the patients undergoing
coronary artery reperfusion with PCI, CABG, or thrombolysis.
The search strategy was developed for PubMed/Medline (NLM)
and was subsequently translated to carry out the searches in four
other biomedical bibliographic databases: Embase (Elsevier),
Web of Science (Clarivate Analytics), Cumulative Index to
Nursing and Allied Health Literature (CINAHL), and Cochrane
Library (Wiley). In addition to searching the five bibliographic
databases, a search of the gray literature (Clinicaltrials.gov) was
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FIGURE 1 | Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram. The numbers document the literature search results.

performed. We searched for the trials from inception through
September 18, 2021.

The following keywords were used to create the search
strategy: myocardial reperfusion, T-Plasminogen activator,
TPA, activase, alteplase, percutaneous transluminal coronary
angioplasty, coronary balloon angioplasty, transluminal coronary
balloon dilation, percutaneous coronary revascularization,
percutaneous coronary intervention, PCI, coronary artery bypass
grafting, CABG, aortocoronary bypass, coronary artery bypass
surgery, coronary artery bypass, and acetylcysteine (as shown in
Supplementary Material for full search strategy).

The primary (SAK) and the secondary reviewer (AMC)
independently searched and screened the reports. Rayyan QCRI
Systematic Reviews Web Application was used after careful
removal of duplicate records (16). No major discrepancies were
noted among the two independent reviewers in the shortlisted
trials. The primary reviewer extracted the data and assessed the
risk of bias for each RCT, while the secondary reviewer validated
the data for each publication. Minor discrepancies were noted in
the extracted data, which were resolved with discussion reaching
a mutual agreement. The PRISMA flowchart summary is shown
in Figure 1.

Quality Assessment of Included Trials
The revised Cochrane risk of bias tool for randomized trials
(RoB2) was applied by the primary and secondary reviewers to
assess the risk of bias for each included trial [https://methods.
cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-
tool-randomized-trials (2020, accessed 10 May 2020)]. The
following domains were evaluated: random sequence generation,
allocation concealment, blinding of patients and personnel,
blinding of outcome assessment, and incomplete outcome data.
Similar to the data extraction process, minor discrepancies in
the risk of bias assessment were resolved through discussion for
consensus generation.

Statistical Analysis
The measurements in cTn, CK-MB, LVEF, and LOS were treated
as the continuous variables with reported means and SDs, while
the incidence of POAF was treated as a dichotomous variable.
Instead of applying the fixed effects models, which operate under
the assumption that the estimated effects across the studies were
pulled from a single population, we employed the random effects
models to calculate the pooled effects, as the true effectmay derive
from a distribution, due to the fact that multiple studies were
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pulled from the different populations (17). The Sidik–Jonkman
estimator was used for estimating the variance of the distribution
of the true effect (18). The false positive rate increases when a
small number of studies are enrolled and the outcome measures
vary largely between the trials (19, 20).

In this NAC meta-analysis, the number of studies for each of
six types of outcome measures varied from 5 to 12. Therefore,
the Hartung-Knapp-Sidik-Jonkman method was also utilized to
generate more robust estimates of the variance of pooled effects
(19). When the outcome measures were continuous variables,
the standardized mean difference (SMD) was calculated as a
measure of effect size, as this is appropriate when different
units were used across the studies (21). The SMD standardizes
outcome measures in various units so that they are comparable
at the same scale. Within a study, the SMD divides the mean
difference of values of a measure by the pooled SD, thus SMD
becomes a unitless standardized value. Hence, the SMDs can be
compared across the studies for the related measures without
the consideration of their respective units. The meta-analysis
produces a pooled SMD, which denotes a change in the combined
SD for a specific measure.

For dichotomous variables, relative risk (RR), a measure of
effect size, was used as the likelihood of an event occurring
between the two groups (NAC vs. control). The between-study
heterogeneity was reported by I2. The individual effect size for
each study and its weight, as well as confidence interval (CI) for
the individual studies and pooled estimates, were included in the
results. All the statistical analyses were performed using R version
3.6 (https://www.r-project.org/) (2013, accessed 10 May 2020).
Specifically, the meta-analysis was performed by the packages
meta (22), metafor (23), and dmetar (24).

RESULTS

Characteristics of the Trials
Figure 1 shows the PRISMA flowchart and the number of
publications evaluated, leading to the selection of 28 trials
in 32 publications for this systematic review (25–56). The
characteristics of the included trials are summarized in Table 1.
Geographically, the reported trials were carried out in 10
countries: Turkey (10), Iran (5), India (3), Germany (2),
Uzbekistan (1), Czech Republic (1), Finland (1), Canada (1),
Australia (1), Brazil (1), Korea (1), and China (1). The total
sample size, by adding the number of patients in the final
statistical analyses for each of the 28 included trials, was 2,174.
Among the 26 trials with the gender and age distribution
indicated as shown in Table 1, the mean age of the patients
ranged from 53 to 71.5 years old. The two trials did not disclose
the age distribution (30, 56).

N-acetylcysteine was administered via intravenous (IV)
infusion in the 23 trials and the oral route (PO) in the 3
trials. The two trials administered NAC via both IV and PO.
One trial did not report the route of NAC administration or
dose (30). The dose of NAC ranged from 20 to 150 mg/kg in
the 19 trials, and 0.3–4.2 g in nine trials (Table 1). NAC was
administered during coronary reperfusion in the 16 trials, while
8 trials administered NAC within 30–120min before the start

of reperfusion procedures. Four trials administered NAC the
same day but before reperfusion procedure without specifying
the timing (25, 28, 30, 34).

Among the 32 publications for the 28 trials included,
30 were journal articles and 2 were published abstracts.
Twenty trials assessed the effect of NAC during CABG, five
during PCI, two during thrombolysis, and one trail during
PCI in combination with thrombolysis. Twenty-one trials had
placebo controls, whereas seven practiced standard care in
the control group. CABG was mostly elective for coronary
artery disease, whereas the PCI and thrombolysis cases were
urgent for acute coronary syndrome, except one trial where
PCI was elective (39). All the included trials were published
in English except one in Chinese (56), which was translated
to English.

Risk of Bias Analysis
The results from the risk of bias analysis are indicated in Figure 2.
Each domain was assigned with a low, unclear, or high risk of bias
score. Among the 28 included trials, low risk of bias was noted in
the 25 trials, while some concern for risk of bias was noted in 3
trials as indicated in Figure 2. None of the trials showed a high
risk of bias. Hence all the trials were included for the synthesis of
final results.

Effect of NAC Administration on the
Clinical Outcomes
Serum cTn Elevation
Eight trials reported the means and SDs for the serum levels of
either cardiac troponin I (cTnI) or troponin T (cTnT) following
CABG or PCI (25, 33, 34, 40, 42, 46, 47, 49). The units of the
measures are indicated in Figure 3 legend. Two of the reports
did not include units for troponin (34, 47). The inquires to the
authers of one report were not answered. A meta-analysis using
SMD allows us to pool the values of cTnI and cTnT in a scaleless
format into one analysis (57). This method does not require units
for troponin. The means and SDs were extracted from each trial
for the meta-analysis, with the form of troponin measured from
each trial indicated in the figure legend (Figure 3A). Adding the
enrollments from these trials yielded a total number of 271 for
NAC and 262 for the control group. With a 95% CI, the pooled
SMDwas−0.80, with a range from−1.75 to 0.15 (p= 0.088). The
value−0.8 implies that cTn decreased by 0.8 times the pooled SD,
which was 1.1, as a result of the NAC treatment when compared
with placebo or standard care. This indicates a notable decrease
in the cTn levels, even though the p-value for such decrease is
0.088, not significant but showing a trend. As expected, a high
heterogeneity was observed across the trials (I2 = 92%, p< 0.01).

One trial was not entered into the meta-analysis due to
reported median and interquartile ranges (IQR) for cTn, instead
of means and SDs (43); hence, ineligible for grouping with the
rest of the studies to perform the meta-analysis. This study used
low dose NAC, 0.3 g, and did not indicate whether the reduction
in the median cTn levels was significant due to NAC treatment
[NAC group 4.8 (IQR 2.7, 6.0)] vs. control [5.5 (IQR 2.8, 6.4)].
Overall, our meta-analysis of eight trials suggests that there is a
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TABLE 1 | The characteristics of 28 randomized controlled trials (RCTs) meeting the inclusion and exclusion criteria.

References Origin Procedure n (Ctr, NAC) Age [Yr, Mean ± SD, or

median (IQR)]

Sex (male) n (%) Route Ctr Tx NAC dose

Ctr NAC Ctr NAC

Shafiei et al. (25)a Iran CABG◦ 58 (30, 28) 61.6 ± 7.7 57.7 ± 11.2 14 (46.7) 18 (64.3) PO PLB 4.2 g

Soleimani et al. (26)c Iran CABG◦ 141 (69, 72) 60.7 ± 8.4 62.4 ± 8.9 34 (49.2) 39 (54.1) IV PLB 0.05 g/kg

Pasupathy et al. (27)d Australia PCIp 112 (59, 53) 63 ± 14 64 ± 15 31 (52.5) 33 (62.2) IV PLB 1.2 g

Aldemir et al. (28)e Turkey CABG◦ 60 (30, 30) 70.50 (68–73.2) 71.5 (69–73.5) 22 (73) 18 (60) IV PLB 0.15 g/kg

Erdil, et al. (29) Turkey CABG◦ 82 (40, 42) 58.8 ± 9.9 58.6 ± 10.1 36 (85) 35 (83.3) PO, IV PLB 0.6 g/d × 3 d, 0.3 g

Nizomov et al. (30)n Uzbekistan PCIp 52 (25, 27) NA NA NA NA NA PLB NA

Jalakandan et al. (31) India CABG◦ 50 (25, 25) 56.5 ± 6.7 59.8 ± 8.1 21 (84) 18 (72) IV PLB 0.15 g/kg

Talasaz et al. (32)n

Nozari et al. (33) b
Iran PCIp 100 (50, 50) 58.3 ± 11.3 57.6 ± 11.5 36 (72) 42 (84) IV IC PLB IV 0.1 g/kg/30 mins

+IC 480 mg/20

mins+IV10 mg/kg/h for

12 h

Talasaz et al. (34)b Iran PCIp, TLp 88 (38, 50) 61 (40–86) 61 (42–92) 31 (82) 41 (82) PO PLB 1.2 g/d × 3 d

Kazemi et al. (35) Iran CABG◦ 240 (120, 120) 58.2 ± 12.7 61.3 ± 9.8 88 (73.3) 91 (75.8) PO PLB 1.2 g

Ozaydin et al. (36, 37)f Turkey CABG◦ 208 (104,104) 62 ± 9 63 ± 9 76 (73.1) 81 (77.9) IV PLB 0.05 g/kg

Kim et al. (38) Korea CABG◦ 48 (24, 24) 65.3 ± 7.6 60.8 ± 8.4 22 (91.6) 21 (87.5) IV PLB 0.1 g/kg

Buyukhatipoglu et al. (39) Turkey PCI◦ 60 (30, 30) 61.8 ± 10.0 58.9 ± 11.1 21 (70) 21 (70) IV Std 0.6 g

Kurian et al. (40) India CABG◦ 50 (25, 25) 60.1 ± 9.4 61.1 ± 10.3 17 (68) 15 (60) IV PLB 0.02 g/kg

Thiele et al. (41)g Germany PCIp 251 (125, 126) 68 (57–75) 68 (56–76) 82 (66) 89 (71) IV PLB 1.2 g

Prabhu et al. (42) India CABG◦ 53 (25, 28) 53.0 ± 8.1 54.2 ± 9.9 NA NA IV Std 0.05 g/kg

Rodrigues et al. (43)h Brazil CABG◦ 20 (10, 10) 53 ± 7 54 ± 11 4 (40) 6 (60) IV Std 0.3 g

Köksal et al. (44) Turkey CABG◦ 30 (15, 15) 62.9 ± 4.9 63.4 ± 5.9 13 (86.6) 11 (73.3) IV Std 0.6 g

Ozaydin et al. (45)

Peker et al. (46)

Turkey CABG◦ 115 (57, 58) 59 ± 9 57 ± 11 44 (77.2) 47 (81) IV PLB 0.05 g/kg

El-Hamamsy et al. (47) Canada CABG◦ 100 (50, 50) 61.3 ± 7.4 59.8 ± 7.8 46 (92) 43 (86) PO, IV PLB 0.6 g, 0.05 g/kg

Koramaz et al. (48)

Karahan et al. (49)

Turkey CABG 44 (23, 21) 56.4 ± 3.1 58.6 ± 2.7 13 (56.5) 12 (57.1) IV Std 0.05 g/kg

Orhan et al. (50) Turkey CABG◦ 20 (10, 10) 61.8 ± 4.32 59.6 ± 5.48 6 (60) 7 (70) IV PLB 0.05 g/kg

Fischer et al. (51)i Germany CABG◦,p 40 (20, 20) 66.5 ± 6.5 66.2 ± 11.8 19 (95) 12 (60) IV PLB 0.1 g/kg,

Sucu et al. (52) Turkey CABG◦ 40 (20, 20) 64 ± 6 66 ± 4 14 (70) 15 (75) IV PLB 0.050 g/kg/d × 3 d

Eren et al. (53) Turkey CABG◦ 20 (10, 10) 60.5 ± 5.7 61.1 ± 4.8 7 (70) 8 (80) IV PLB 0.1 g/kg

Vento et al. (54)j Finland CABG 35 (20, 15) 60.2 ± 1.7 63.1 ± 1.9 20(100) 15(100) IV Std 0.098 g/kg

Sochman et al. (55)k Czech TLp 30 (16, 14) 54.2 ± 7.2 52.2 ± 14.3 NA NA IV PLB 0.1 g/kg

Yang et al. (56) China TLp 27 (7, 20) NA NA NA NA IV Std 1.2 g

Ctr, control group; NAC, N-acetylcysteine group; n, enrollment number; Yr, year/s; IQR, interquartile range; CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention; TL, thrombolysis; NA, not available; IV,

intravenous; IC, intracoronary; PO, per oral; PLB, placebo; Std, standard care; g, gram or grams; Kg, kilogram or kilograms; g/kg, gram of NAC per kg of body weight; d, day or days. The numbers without italic indicate mean +/−

standard deviation (SD), whereas the numbers with italic indicate median with interquartile range (IQR) in parentheses.

The trial did not have a funding source unless indicated by “a−m′′

, “a
′′

funding from the Research Deputy of Bushehr University of Medical Science, Iran; “b
′′

funding from the Tehran Heart Center, Tehran University of Medical Sciences;

“c
′′

the Research Deputy of Mazandaran University of Medical Sciences; “d
′′

funded by the Australian National Heart Foundation, “e
′′

funding from the University Scientific Research Projects Unit; “f
′′

Daiichi-Sankyo Co provided test-kits

for TAC and TOS levels; “g
′′

funding from the University of Leipzig; “h
′′

funded by Fundação de Amparo à Pesquisa do Estado de São Paulo and Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da

Faculdade de Medicina de Ribeirão Preto-USP; “i
′′

funding from the German Research Foundation; “j
′′

funded by the Helsinki University Central Hospital; and “k′′ indicates funding by the Internal Grant Agency of the Ministry of Health

of the Czech Republic.

All the trials are journals articles unless indicated by “n′′ , which indicates abstract. Under the procedure for CABG, PCI, or TR,“o
′′

indicates an elective procedure for stable atherosclerotic coronary artery disease, “p′′ indicates an

emergency procedure for unstable atherosclerotic coronary artery disease.
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FIGURE 2 | Risk of bias of 28 included trials. The plus sign in green (+) shows “low risk” for bias and the question or exclamation mark in yellow (?/!) shows “some

concerns” for bias. None of the trials show high risk for bias per RoB2 analyses.

trend toward the reduced levels of cTn in the NAC group when
compared with the control group with 95% CI.

Serum CK-MB Elevation
The means and SDs for the serum CK-MB concentrations
were reported in 10 trials following CABG, PCI, or only
pharmacological therapy (33, 34, 40, 44, 46, 47, 50, 51, 54, 55).
With a meta-analysis using a 95% CI, we obtained a SMD value
of 0.04, ranging from −0.43 to 0.50 (p = 0.861) (Figure 3B).
The heterogeneity was moderate across the trials (I2 = 73%,
p < 0.01). One trial was not compatible for the meta-analysis,

due to reporting median and IQR instead of the means and
SDs. This trial indicated no significant difference between the
NAC and control groups [338 (IQR 290, 383) vs. 313 (IQR 260,
356) µmol/L/h, p = 0.13] (41). Overall, the NAC treatment had
no significant effect on the procedure-associated elevation of
CK-MB in the serum.

Infarct Size
Three trials measured the infarct size after a coronary reperfusion
procedure at 7 days (27, 41, 55). The infarct size was measured
using cardiac magnetic resonance imaging (CMR) (27, 41) or
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FIGURE 3 | Forest plots of random effects model meta-analysis with 95% confidence interval (CI) comparing NAcetylcysteine (NAC) group vs. control group. The

plots are showing standard mean difference (SMD) for continuous variables along with standard deviations (SD) or risk ratio (RR) for binary variables along with events

for (A) serum troponin levels at 24 h after procedure. Shafiei et al. (25) measured cTnI in ng/ml, Nozari et al. (33) measured high sensitivity TnT (hs-TnT) in ng/dl,

Talasaz et al. (32, 34) measured hs-TnT (unit not available, inquires not answered), Kurian et al. (40) measured cTnI in ng/ml, Karahan et al. (49) measured cTnT in

ng/ml, Prabhu et al. (42) measured cTnI in ng/ml, Peker et al. (46) measured cTnT in ng/ml, and El-Hamamsy et al. (47) measured cTnT in ng/l (per response to

inquires). (B) Serum CK-MB levels, (C) left ventricular ejection fraction (LVEF), (D) post-operative atrial fibrillation (POAF), (E) length of stay (LOS) in intensive care unit

(ICU), and (F) LOS in hospital.
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electrocardiography (55). While one trial showed no significant
difference [NAC group 17.4% (IQR 9.1, 25.9, n= 126) vs. control
group 14.3% (IQR 8.0, 26.2, n= 125), p= 0.47] (41), the two trials
reported significantly smaller infarct size in the NAC vs. control
groups [11% (IQR 4.1, 16.3, n = 53) vs. 16.5% (IQR 10.7, 24.2,
n= 59), p= 0.02; or 16.3± 10.5, n= 14 vs. 24.4%± 9.5, n= 16,
p < 0.05) (27, 55). Furthermore, Pasupathy et al. (27) measured
infarct size at 3 months and reported a significant reduction with
the NAC treatment, with the infarct size in the NAC group being
5% on average (IQR 0.7, 12.4, n= 26) compared with the control
group, which was 10.2% (IQR 6.8, 14.8, n= 29 p= 0.02). Overall,
the two trials showed significant reduction of infarct size, while
one trial showed no significant reduction; hence, the results are
inconclusive with regard to whether or not NAC can reduce the
infarct size.

Left Ventricular Ejection Fraction
Left ventricular ejection fraction was measured within 7 days
after coronary reperfusion in the five trials with a sum of 182
enrollments for NAC and 184 for the control group (26, 27, 42,
48, 55). The reported means and SDs were used for the meta-
analysis (Figure 3C). With a 95% CI, the SMD was 1.25 with a
range of −0.70 to 3.20 (p = 0.150). The heterogeneity was high
across the trials (I2 = 94%, p < 0.01). Although the statistical
results do not support that NAC had a significant influence on
the LVEF, the distribution of means plus SMD value point to a
trend of NAC benefit in improving the LVEF.

Not included in the meta-analysis were 4 trials, with a total
enrollment of 442, due to reported median instead of means
or the differences in time points of the LVEF measurements
(27, 30, 41, 56). Nizomov et al. (30) measured LVEF at 1- and
3-month after PCI and indicated a significantly smaller number
of participants with LVEF <50% in the NAC vs. control groups
[11% vs. 16% at 1 month, p= 0.046, and 4% vs. 16% at 3 months,
p = 0.017], suggesting a benefit of the NAC treatment. Thiele
et al. (41) reported that the median values of LVEF measured at
7 days were not significantly different [NAC 52.1% (IQR 43.5,
59.2) vs. control 50.6% (IQR 41.6, 58.6), p = 0.23]. Pasupathy
et al. (27) did not find a significant difference (NAC 59.6 ±

11.1% vs. control 56.7 ± 10.5%, p = 0.33) in LVEF measured
at 3 months. Yang et al. (56) neither revealed the time point
of measurement nor reported significant difference in LVEF
between the NAC and control groups (57 vs. 53%, no SDs or
p-values provided). Overall, the results are inconclusive based on
the reported median values of LVEF.

Post-operative Atrial Fibrillation
The incidence of POAF was reported in the 9 trials after CABG
with a total combined patient number of 490 for NAC and 484
for control (26, 29, 35, 36, 38, 45, 47, 50, 53). It is known that
POAF is a rare event following PCI, providing an explanation
for the lack of POAF in the PCI trials. The number of patients
developing POAF after reperfusion was registered either during
the postoperative ICU stay or during the first 3 days of hospital
stay. Using the binary outcome of the meta-analysis due to the
report of events, we obtained the relative risk (RR) value of
0.57 with 95% CI, ranging from 0.30 to 1.06 (p = 0.071). The

heterogeneity was low across the trials (I2 = 35%, P = 0.14). The
meta-analysis points to a reduction, close to 50%, in the incidence
of POAF with NAC treatment (Figure 3D).

LOS in ICU
The nine trials reported the LOS in ICU with means and SDs for
an added-up enrollment of 362 for the NAC group or 361 for
the control group (26, 28, 29, 35, 38, 42, 49, 50, 54). The meta-
analysis yielded SMD −0.38 with 95% CI, ranging −0.91 to 0.15
(p = 0.137, Figure 3E). The heterogeneity was high across the
trials (I2 = 81%, p < 0.01). Although the meta-analysis results
did not reveal a significant difference per 95% CI, there is a trend
toward the reduction of LOS in ICU by the NAC treatment.

LOS in Hospital
Hospital LOS with means and SDs were reported in 11 trials
with a total enrollment adding up to 470 (NAC treated) or
468 (control) (26, 28, 29, 35, 38, 42, 45, 47, 49, 50, 54). The
meta-analysis produced a SMD of −0.21 with 95% CI, ranging
−0.54 to 0.12 (p = 0.180), and high heterogeneity (I2 = 70%,
p < 0.01) (Figure 3F). Similar to LOS in ICU, a trend toward
the reduction in hospital LOS in the NAC group is shown by the
upper boundary of the 95% CI close to 0.

Effect of NAC on the Antioxidant Reservoir
and ROS
Eighteen publications contained the measures for antioxidants
and ROS, among which the nine trials had clinical outcome
measures along with the lipid peroxidation product
malondialdehyde (MDA). There is a lack of uniformity in
the assays or time point of measurements between the studies,
and most of the measures at a specific time point have less than
five trials, which is not ideal for a meta-analysis. Nevertheless, for
most of the measures, there was consistent reduction between
the trials.

Total Antioxidant Capacity (TAC)
Seven trials measured the antioxidant levels after the coronary
reperfusion procedures (31, 37, 39, 40, 42, 44, 56) (Table 2).
These studies reported the levels of antioxidants at the baseline
and different time points after coronary reperfusion, from
10min to 48 h. The measurements included reduced glutathione
(GSH) or the activities of glutathione peroxidase, glutathione
reductase, superoxide dismutase, and catalase in the serum.
Two trials reported the outcomes as total antioxidant capacity
(TAC) without specifying the scaled measures (37, 39). One
trial measured the urine levels of TAC in addition to the serum
levels (39).

The measurements of GSH between 1 and 12 h showed
significant increases in the three trials (Table 2). No significant
differences in the activity of glutathione peroxidase were
observed, but there was a slight improvement in glutathione
reductase in the 2 trials (Table 2). The data on superoxide
dismutase and catalase are inconsistent among the 3 trials
(Table 2). Ozaydin et al. (37) reported an improvement of TAC
at 24–48 h after NAC, but not by Buyukhatipoglu et al. (39).
The latter trial used a much lower dose of NAC (0.6 g, which
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TABLE 2 | Total antioxidant capacity (TAC) after coronary artery reperfusion.

References Measure Baseline 10 min 30 min 1–12 h 24–48 h

Jalakandan et al. (31) GSH (nmol/ml) Ctr 32.79 ± 15.78 24.25 ± 11.56

NAC 28.18 ± 10.14 33.82 ± 11.70

P 0.225 0.005

Ozaydin et al. (37) TACa (mmol Trolox/L) Ctr 1.6 (0.7–3.0) 1.4 (0.6–3.2)

NAC 1.6 (0.7–2.9) 1.9 (0.9–3.9)

P 0.89 <0.0001

Buyukhatipoglu et al.

(39)

serum TAC (mmol

Trolox/L)

Ctr 0.84 ±0.14 0.77 ±0.09

NAC 0.88 ±0.12 0.81 ±0.07

P NS NS

urine TAC (mmol

Trolox/L)

Ctr 1.52 ± 0.10 1.47 ± 0.16

NAC 1.56 ± 0.12 1.49 ± 0.10

P NS NS

Kurian et al. (40) glutathione peroxidase

(U/g Hb)

Ctr 6.30 ± 1.2 6.33 ± 1.1 5.89 ± 0.9 5.26 ± 0.9

NAC 6.41 ± 1.1 5.41 ± 1.0 4.36 ± 0.8 5.26 ± 0.9

P NS NS <0.05 NS

glutathione reductase

(U/g Hb)

Ctr 1.08 ± 0.16 0.41 ± 0.07 0.42 ± 0.08 0.68 ± 0.08

NAC 1.106 ± 0.16 0.426 ± 0.07 0.496 ± 0.08 0.747 ± 0.08

P NS NS <0.05 <0.05

Superoxide dismutase

(U/g Hb)

Ctr 3829.1 ± 323 1218.6 ± 255 1258.9 ± 213 1375.9 ± 221

NAC 3938.8 ± 340 1264.7 ± 241 1334.1 ± 254 1461.8 ± 222

P NS NS <0.05 <0.05

Catalase (pM

H202 /min /g Hb)

Ctr 625.72 ± 20.5 985.27 ± 37.6 901.02 ± 36.1 869.93 ± 33.7

NAC 620.44 ± 21.73 955.87 ± 39.14 859.47± 35.22 741.38 ± 34.23

P NS NS <0.05 <0.05

Prabhu et al. (42) GSH a (mg/g Hb) Ctr 0.7 ± 0.08 1.3 ± 0.20 1.25 ± 0.18 1.21 ± 0.15

NAC 0.75 ± 0.03 1.6 ± 0.10 1.66 ± 0.05 1.31 ± 0.14

P NS <0.001 <0.01 NS

Glutathione

peroxidasea (U/g Hb)

Ctr 42.6 ± 2.7 80.4 ± 6.4 59 ± 8 51.6 ± 5.6

NAC 40.6 ± 3.4 85.7 ± 3.7 62.7 ± 2.7 55 ± 1.4

P NS <0.01 NS <0.05

Glutathione reductasea

(µg/min/g Hb)

Ctr 8.6 ± 0.4 9.9 ± 0.48 10.1 ± 0.5 9.8 ± 0.4

NAC 8.6 ± 0.4 10.5 ± 0.5 10.4 ± 0.4 9.5 ± 0.1

P NS <0.001 <0.001 NS

Superoxide dismutase
a (U/g Hb)

Ctr 367 ± 33 644 ± 31 564 ± 31.8 531 ± 31

NAC 377 ± 27 708 ± 15 582 ± 18 537 ± 32

P NS <0.001 NS NS

Catalase a (µmol

H2O2/ min/g Hb)

Ctr 3.7 ± 1.30 6.0 ± 0.42 5.8 ± 0.60 5.7 ± 0.30

NAC 4.0 ± 1.0 6.4 ± 0.47 5.8 ± 0.10 5.4 ± 0.40

P NS <0.01 NS NS

Köksal et al. (44) Glutathione peroxidase
a (U/g Hb)

Ctr 24.3 ± 10.7 22.5 ± 8.9

NAC 27.7 ± 8.3 28.7 ± 12.9

P NS NS

Yang et al. (56) GSH (mol/L) Ctr 2.0 ± 2.4 1.4 ± 0.3 1.4 ± 0.4

NAC 2.2 ± 2.4 2.8 ± 1.3 2.8 ± 1.2

P NS <0.05 <0.05

All numbers represent means± SDs unless they are italicized, which indicate median (with interquartile ranges, IQR). Ctr: control group, NAC: N-acetylcysteine group. NS: non-significant.

“a
′′

indicates that the value was extracted from the figures of the cited publication. TAC: total antioxidant capacity, GSH: reduced glutathione, U/g: units per gram, Hb: Hemoglobin,

mmol: millimole(s), nmol: nanomole(s).
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translates to 0.01 g/kg per 60 kg body weight) than the average
dose of 0.1 g/kg dose. Overall, there is evidence to support the
possibility that the administration of NAC before a coronary
reperfusion procedure leads to an increase of glutathione redox
system activity as expected.

Reactive Oxygen Species
Fourteen publications reported the levels of ROS markers
after the coronary reperfusion procedures (25, 27, 31, 37,
39–42, 44, 48, 49, 52, 53, 56) (Table 3). The time points
of measurements include the baseline and 15min to 72 h
after coronary reperfusion. The ROS was measured as MDA,
myeloperoxidase (MPO) activity, oxidized glutathione (GSSG),
advanced oxidation protein products (AOPP), or oxidized low
density lipoprotein (LDL). The two trials reported the outcomes
as the total oxidative stress (TOS) or total oxidant capacity
(37, 39). All of these trials measured the serum levels of ROS
markers except one trial, which also reported the urinary levels
in addition to the serum levels (39).

Malondialdehyde was measured in the 9 trials, all of them
showed significant reduction with the NAC treatment at
different time points regardless of the reperfusion procedure
performed, either PCI, CABG, or thrombolytic therapy (Table 3).
MPO showed significant reduction in one trial but not
the other (Table 3). Decreases of oxidized glutathione were
observed in one trial (Table 3). Overall, there is evidence that
the administration of NAC before the coronary reperfusion
procedure significantly lowers the levels of ROS markers in the
patients receiving NAC at various time points as compared with
the control group.

Correlation of ROS Reduction With the
Clinical Outcomes
Table 4 compares NAC induced improvements in the TAC or
ROS reduction with the clinical outcome measures. It is evident
that a significant improvement of TAC or ROS reduction due to
NAC correlates with the reduced levels of cTn, increased LVEF,
and decreased LOS in ICU or hospital. Such correlation supports
the cause-effect relationship of TAC or ROS with the improved
clinical outcomes. This suggests that NAC might have mediated
the improved clinical outcomes through the reduction of ROS.

Sensitivity Analysis
We performed a sensitivity analysis to assess both the between-
study heterogeneity and publication bias to ensure that the
pooled effects for meta-analysis were indeed robust (58, 59).
Between-study heterogeneity may be caused by a trial with either
an extreme enrollment size or a larger impact on the pooled
effect. To detect an influential trial, the Cook’s distance, a well-
established influential point detection method, was used (60).
A trial may be considered as an influential case if the Cook’s
distance is>0.45 (17). Supplementary Figure 1 shows the Cook’s
distance for eachmeasure in themeta-analyses, with the potential
influential study highlighted in red. For cTn, CK-MB, or POAF,
none of the trials have a Cook’s distance over 0.45, indicating that
there is no influential trial. For LVEF, LOS ICU, or hospital LOS,
one potential influential study was detected, which is by Prabhu

et al. (42). To verify if the influential trial affects the summary data
or the conclusion, we compared the results from the random-
effects model with vs. without the influential trial. Removal of
Prabhu et al. (42) trial reduced the heterogeneity for LVEF, LOS
ICU, or hospital LOS, but did not improve the p-value or the
direction of SMD (Supplementary Table 1), and therefore did
not affect our conclusions.

Another potential issue for the meta-analysis is the
publication bias due to the trials with a small sample size
(17). We checked the small-study effects using the funnel
plots, which display the relationship between the SMD of
studies against its standard error (61). When there is no
publication bias, the distribution of the trials in points (one point
represents each trial) is symmetric and fits into the shape of
an upside-down funnel. In the case of this NAC meta-analysis,
a few trials landed outside the funnel area, but the asymmetry
is not across all the different outcome measures (as shown
in Supplementary Figure 2). Since visual inspection can be
subjective, we performed the Egger’s regression test (62) to
evaluate the asymmetry quantitatively in the funnel plot for
the continuous outcome measures, cTn, CK-MB, LVEF, LOS
in ICU, and LOS in hospital, and Peters’ regression test (63)
for the binary outcome measure POAF. The results are shown
in Supplementary Table 2. None of the statistical tests have a
significance at the threshold of 0.05, suggesting that the funnel
plots are roughly symmetrical. This indicates that the publication
bias is not a major concern in the meta-analysis.

DISCUSSION

The administration of NAC prior to the coronary reperfusion
procedures was associated with a trend toward the inhibition of
cTn elevation, reduced incidence of POAF, and lowered levels
of ROS. The decrease of cTn by NAC treatment is considered
notable due to the summary SMD being −0.8 in reference to
the SD of 1.1 from the meta-analysis of eight trials (Figure 3A).
However, the overall p-value of 0.088 suggests that the decrease
is close to 0.05 but not truly significant in the statistical analysis
using 95% CI. While improvement in LVEF or reduction in ICU
and hospital LOS were not statistically significant at 95% CI, the
meta-analyses suggested a minor trend toward the improvement
for thesemeasures (Figures 3C,E,F). The effect of NAC on infarct
size remains inconclusive due to the smaller number of trials. CK-
MB represents the only outcome that did not show improvement
with the administration of NAC. Given the fact that POAF is
associated with older age and an increase in all-cause mortality
(64), and whereas the level of cTn elevation predicts the incidence
of adverse events and the risk of heart failure (2–4), adding NAC
as an adjuvant therapy for reperfusion may provide benefit in
these parameters. By decreasing these clinical complications, it
could be expected that NAC administration might reduce the
adverse events and the development of heart failure as well as
possibly improving the long-term mortality.

An acute kidney injury (AKI) is often an additional
complication of reperfusion procedures. We did not include this
measure in our study due to the lack of such information in
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TABLE 3 | Total oxidative stress (TOS) after coronary reperfusion.

References Measure Baseline 15–30 min 1–3 h 3–8 h 12 h 24 h 48–72 h

Shafiei et al. (25) MDA (nmol/ml) ctr 35.96 ± 10.37 42.53 ± 12.37 45.13 ± 12.52

NAC 22.92 ± 4.33 14.11 ± 8.02 11.74 ± 6.17

p NS <0.05 <0.05

Pasupathy et al. (27) (log) MDA (µM) ctr 0.81 ± 0.03

NAC 0.82 ± 0.03

p <0.01

(log) MPO a

(ng/ml)

ctr 2.31 ± 0.09

NAC 2.37 ± 0.06

p 0.64

Jalakandan et al.

(31)

MDA a (nmol/ml) ctr 1.40 ± 0.63 2.26 ± 1.03

NAC 1.70 ± 0.87 1.58 ± 1.12

p 0.164 0.033

Ozaydin et al. (37) TOS a (mmol h2o2/L) ctr 19.2 (4.9–38.8) 24.2 (2.2–41.9)

NAC 18.7 (3.0–65.0) 19.3 (4.0–41.0)

p 0.81 <0.0001

Buyukhatipoglu

et al. (39)

Serum TOC (µmol

H2O2/L)

ctr 13.80 ±3.64 20.38 ±5.58

NAC 15.35 ±4.30 18.90 ±5.58

p NS NS

Urine TOC (µmol

H2O2/L)

ctr 19.46 ±5.96 28.99 ±9.23

NAC 21.02 ±7.17 29.27 ±7.99

p NS NS

Kurian et al. (40) MDA (nM/g Hb) ctr 0.9 ± 0.11 3.379 ± 0.18 3.121 ± 0.18 2.324 ± 0.14

NAC 0.955 ± 0.10 2.685 ± 0.19 2.198 ± 0.11 1.501 ± 0.12

p NS NS <0.05 <0.05

Thiele et al. (41) AOPP a

(µmol/L)

(fold of baseline)

ctr 40.4

(27.5–54.3)

1.025 ± 0.32 1.083 ± 1.12 0.9 ± 0.45

NAC 40.9

(29.9–58.9)

0.9 ± 0.67 0.77 (NA) 0.85 (NA)

p 0.3 NS <0.05 NS

oxidized LDL a (ng/ml)

(fold of baseline)

ctr 32.3

(12.7–141.8)

1.07 ± 0.22 1.07 ± 0.34 1.12 ± 0.34

NAC 34.8

(16.4–95.1)

0.91 ± 0.45 0.8 ± 0.45 0.83 ± 0.56

p 0.94 NS <0.05 <0.05

Karahan et al. (49) MDA (nmol/ml) ctr 1.46 ± 0.23 3.11 ± 0.70 2.81 ± 0.61 2.41 ± 0.56 2.04 ± 0.41

NAC 1.45 ± 0.24 2.2 ± 0.38 1.85 ± 0.31 1.58 ± 0.27 1.46 ± 0.24

p 0.909 <0.001 <0.001 <0.001 <0.001

Prabhu et al. (42) MDA (nM/gHb) ctr 15 ± 1.3 19 ± 2.5 17.5 ± 1.5 16 ± 1.3

NAC 14 ± 2.6 18 ± 2.3 16.5 ± 1.4 14 ± 1.2

p NS <0.05 <0.05 <0.001

Köksal et al. (44) MDA a (nmol/ml) ctr 0.72 ± 0.13 0.89 ± 0.20

NAC 0.67 ± 0.13 0.76 ± 0.14

p NS <0.05

Koramaz et al. (48) MDA a(nmol/ml) ctr 1.62 ± 0.31 2.6 ± 0.15 2.6 ± 0.77 2.25 ± 0.50 2 ± 0.04

NAC 1.5 ± 0.31 1.4 ± 0.12 1.4 ± 0.39 1.3 ± 0.31 1.1 ± 0.03

p NS <0.05 <0.05 <0.05 <0.05

Sucu et al. (52) MPO a

U (mg protein)−1h −1

ctr 0.034 ± 0.01 0.062 ± 0.02 0.055 ± 0.02 0.038 ± 0.01

NAC 0.032 ± 0.01 0.04 ± 0.06 0.038 ± 0.01 0.031 ± 0.01

p 0.592 0.000 0.000 0.000

MDA a (nmol/ml) ctr 7.1 ± 5.4 12.6 ± 5.7 14.75 ± 5.9 10.1 ± 4.7

NAC 7.5 ± 3.3 8.75 ± 2.9 10.25 ± 2.5 7.8 ± 2.8

p 0.675 0.000 0.000 0.000

Eren et al. (53) MDA (nmol/ml) ctr 2.34 ± 0.31 2.84 ± 0.72

NAC 2.19 ± 0.42 2.51 ± 0.65

(Continued)
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TABLE 3 | Continued

References Measure Baseline 15–30 min 1–3 h 3–8 h 12 h 24 h 48–72 h

p NS 0.043

Yang et al. (56) GSSH (mol/L) ctr 0.15 ± 0.23 0.12 ± 0.08 0.11 ± 0.07

NAC 0.14 ± 0.11 0.08 ± 0.05 0.05 ± 0.03

p NS NS <0.05

All numbers represent means ± SDs unless they are italicized, which indicate median (with IQRs). Ctr, control group; NAC, N-acetylcysteine group. NS, non-significant. “a
′′

indicates

that the values were extracted from figures of the cited reference. MDA, malanodealdehyde; TOC, total oxidant capacity; AOPPs, advanced oxidation protein products; MPO,

myeloperoxidase; TOS, total oxidative stress; LDL, low density lipoprotein; GSSH, oxidized glutathione; Hb, Hemoglobin; g, gram(s); L, liter(s); ml, milliliter(s); nmol, nanomole(s).

TABLE 4 | Correlation of reactive oxygen species (ROS) and TAC with the clinical outcomes.

References n TAC ROS cTn CK-MB LVEF POAF LOS ICU LOS hospital

Shafiei et al. (25) 58 MDA

Pasupathy et al. (27) 112 MDA

Ozaydin et al. (36, 37) 172 TAC TOS

Kurian et al. (40) 50 SOD, GR MDA

Karahan et al. (49) 44 MDA

Prabhu et al. (42) 53 GSH MDA

Köksal et al. (44) 30 GPX MDA

Koramaz et al. (48) 30 MDA

Eren et al. (53) 20 MDA

n, indicates sample size; ROS, reactive oxygen species; TAC, total antioxidant capacity; cTn, cardiac troponin; CK-MB, creatine kinase muscle band; LVEF, left ventricular ejection

fraction; POAF, post-operative atrial fibrillation; LOS, length of stay; ICU, intensive care unit; SOD, superoxide dismutase; GR, glutathione reductase; GSH, reduced glutathione; GPX,

glutathione peroxidase; MDA, malondialdehyde; TOS, total oxidative stress. indicates increase. indicates decrease. indicates minor increase. indicates no change.

majority of the clinical trials on NAC for cardiac protection
and the recently published systematic reviews with meta-analysis
on the topic. Guo et al. (65) used the random effects model
to evaluate the seven clinical trials for the effects of NAC on
contrast-induced AKI in the patients with STEMI following PCI.
This report showed a significantly reduced rate of AKI and all-
cause hospital mortality with NAC compared with the placebo
group (65). However, a meta-analysis of eight trials by Mei
et al. using the random effects model for perioperative NAC
among the patients with cardiac surgery concluded that there was
no significant benefit in the prevention of AKI. The American
College of Cardiology Foundation (ACCF) and American Heart
Association (AHA) Guideline for Coronary Artery Bypass Graft
Surgery noted the controversy surrounding the use of NAC
for the prevention of CABG-associated AKI (66). However,
the benefit of NAC as a potential intervention for POAF was
not addressed.

Our data on POAF reduction with NAC are consistent with
the published meta-analyses reporting the benefit of NAC for the
patients with cardiac surgery. Two meta-analyses used the fixed
effects model to determine the impact of NAC on POAF when
administered before CABG among the eight trials, and showed a
significant reduction of POAF (10, 12). In addition, the reduction
of POAF was reported by Liu et al. (9), who summarized 10
publications (without the consideration of redundancy in trials)
with meta-analysis using the fixed effects model. Wang et al.
(11) registered seven trials for meta-analysis using the random

effects model and discovered a trend toward improvement in the
incidence of POAF with NAC.

The additional clinical measures are less convincing for
the benefit of NAC examining in our data and that of
others. Pereira et al. (8), compiled 12 trials for meta-analysis
with the random effects model and showed a trend but not
statistical significance toward an improvement in the post-
operative cardiac insufficiency, ICU LOS, or hospital LOS,
and incidence of post-operative acute myocardial infarction or
cardiac arrhythmias. Gu et al. (10) did not find that NAC reduced
ICU LOS using a fixed effects model for a meta-analysis of four
trials. Similarly, Liu et al. (9) did not find significant improvement
or a trend toward the improvement of ICU or hospital LOS with
five trials. Wang et al. (11) showed neither statistical significance
nor a trend toward improvement in the incidence of acute
myocardial infarction, the need for ionotropic support, and ICU
LOS, or hospital LOS with a random effects model meta-analysis
of up to six trials. By consolidating the data from 10 trials, we
observed a trend toward but not a significant reduction in LOS in
ICU or hospital.

N-acetylcysteine is being used clinically for several decades.
The main clinical uses for NAC to date include its mucolytic
capacity in bronchi, as an antidote for acetaminophen
toxicity, and as a protective agent against contrast-induced
nephrotoxicity. NAC as a protective agent against reperfusion
injury was first reported in 1992 by Sochman and Peregrin
(6, 67, 68), who discovered total recovery of left ventricular
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function after acute myocardial infarction when NAC was
administered along with the coronary artery thrombolysis
during the PCI. Multiple RCTs have been published since to
address possible beneficial effects of NAC during the coronary
artery reperfusion. Twenty-eight of these RCTs reviewed
in this study revealed a trend toward the improvement in
several clinical measures, with a correlation to reduction of
ROS or lipid peroxidation. The correlation approach provides
evidence for the mechanistic basis of the observed benefit
of NAC.

Strengths and Limitations
We have included three types of coronary artery
revascularization procedures for the clinical practice, PCI,
thrombolytics, and CABG. This differs from the other
published meta-analyses, which focused on one type of
reperfusion procedure. Additionally, we have evaluated
the most common clinical measures, cTn or CK-MB,
LVEF, POAF, and ICU or hospital LOS, and provided a
correlation for the levels of antioxidants or ROS to the
clinical measures. This differentiates our study from the other
published meta-analyses.

The included RCTs were from multiple countries, with most
trials having a placebo control. There were minimal losses
to follow-up across the trials. The data were generated from
multiple healthcare centers with multi-ethnicities due to a
diverse distribution of recruitment among the different countries.
Additionally, none of the RCTs presented here were funded by a
for-profit organization and the risk of bias was low in most of
the trials.

The negative factors affecting our analysis power include
limited regions of the trials, sample size, gender distribution,
and substantial heterogeneity. While there was no restriction
on the country or language for trial inclusion, over 50% of
the evaluated studies originated from Turkey (10 trials) or
Iran (5 trials), and none of the trials were carried out in
the United States. Although many factors may explain the
uneven distribution for the trial origins, the genetic background
in association with a unique region, and the differences in
socioeconomic status for the healthcare provision may prohibit
extrapolation of the findings to all case scenarios worldwide.
Additionally, most of the included trials had an enrollment
below 100 individuals. The participants were mostly middle-
aged men, prohibiting the generalization to other age groups or
female patients.

We have detected a large between-study heterogeneity in
most of the outcome measures, with I2 varying from 35 to
94% (Figure 3). Several variables in the trials contributed to the
substantial heterogeneity: (a) non-uniform coronary reperfusion
procedures, with either PCI, CABG, or thrombolysis in different
trials; (b) the dosage and the route of NAC administration
differed among the trials, with three trials using the low doses
of NAC, 0.3–0.6 g (39, 43, 44); (c) the patient populations carried
distinctive diagnoses, from acute coronary syndrome requiring
an emergency reperfusion procedure to stable coronary artery
diseases treated with an elective reperfusion protocol; (d) a
lack of information on timing from the onset of chest pain to

the reperfusion procedures. The large regional differences in
such timing may affect the clinical outcome of reperfusion and
NAC treatment; and (e) the healthcare facility and supportive
infrastructure among the different countries or regions may
influence the clinical outcome. If it had been possible to increase
the sample sizes or reduce the heterogeneity, the statistical
analyses would likely have yielded the p-values indicating
significant differences supporting the benefit of NAC on multiple
clinical outcome measures.

Clinical Implications
Our findings suggest a trend toward the benefit of NAC
treatment. The trend in the reduction of cTn suggests a potential
reduction of cardiac injury by NAC. It is important to note
that NAC, despite its low cost and multiple clinical implications
already, is not free of side effects. Nausea and vomiting may
be associated with an unpleasant odor during oral intake. For
intravenous NAC, an anaphylactoid reaction occurs in 8.2%
cases, such as cutaneous (acute flushing, pruritus, and rash) or
systemic symptoms (bronchospasm, angioedema, hypotension,
and chest pain) (69, 70). Additionally, NAC may have a negative
impact on hemostasis in the patients under certain conditions. In
a post-hoc analysis of an RCT of NAC in the patients undergoing
cardiac surgery with an estimated glomerular filtration rate of
<60 ml/min, administration of NAC (100 mg/kg IV bolus,
followed by 20 mg/kg/h until 4 h after CABG) was associated
with a greater blood loss and an increased need for transfusions
(71). Therefore, the benefit of NAC remains to be fully established
with larger controlled clinical trials measuring multiple clinical
end-points. The risk vs. benefit analysis in such a trial would also
be needed.

If well done, the RCTs with large numbers of patients
were shown to be positive, then the addition of antioxidant
therapy to the patients following reperfusion therapy or
cardiopulmonary bypass would be a simple and inexpensive
therapy. NAC, vitamin C, and other antioxidant agents are
generic, inexpensive, generally safe, and would presumably
be administered for a relatively short period of time,
possibly hours to days. The long-term clinical implications
of such therapy are not yet known and would need to
be assessed.
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Background: There is a large amount of evidence that anti-angiogenic drugs are

effective safe. However, few studies have evaluated the specific effects of anti-angiogenic

drugs on myocardial enzyme injury biomarkers: aspartate aminotransferase (AST), lactic

dehydrogenase (LDH), creatine kinase (CK) and creatine kinase isoenzyme (CK-MB). The

purpose of our study was to determine whether anti-angiogenic drugs serum AST, LDH,

CK, and CK-MB activities of cancer patients treated with anti-angiogenic drugs.

Methods: This study retrospectively analyzed 81 cancer patients. Patients who had

used anti-angiogenic drugs were selected. Serum AST, LDH, CK, and CK-MB activities

were measured before and after treatment with anti-angiogenic drugs for 3 weeks.

Results: A total of 16 cancer types were analyzed. The distribution of the cancer types

in the patients was mainly concentrated in lung, gastric, and colorectal cancers. The

anti-angiogenic treatment markedly increased AST, LDH, CK, and CK-MB activities by

32.51, 7.29, 31.25, and 55.56%, respectively in serum.

Conclusions: Our findings suggest that patients, who had used anti-angiogenic drugs

were likely to have elevated AST, LDH, and CK, indicators of myocardial muscle injury.

Use of anti-angiogenic drugs should not be assumed to be completely safe and without

any cardiovascular risks.

Keywords: anti-angiogenic drugs, cancer, AST, LDH, CK, CK-MB

INTRODUCTION

Anti-angiogenic treatment is an effective and targeted therapy strategy that can be used to control
and kill tumors (1). Although chemotherapeutics can kill tumor cells, the remaining tumor cells
can still survive and continue to grow due to the support of peripheral blood vessels. Meanwhile,
abnormal tumor blood vessels reduce the delivery of drugs into tumor tissues, which ultimately
leads to limited efficacy of anti-cell proliferation therapy. Therefore, the treatment for cancer
should not only be directed against tumor cells, but also against the tumor microenvironment,
in particularly tumor angiogenesis (2).

Vascular endothelial growth factor (VEGF) is the master effector of the angiogenic response in
cancers (3). Anti-angiogenic drugs can be used to specifically bind to VEGF to prevent it from
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interacting with receptors, which play a critical role in tumor
blood vessels. Further, this limits exposure to oxygen and other
nutrients required for tumor cell growth, thereby weakening
the ability of tumor growth and metastasis. Anti-angiogenic
agents targeting the VEGF and HIF-α pathways include
monoclonal antibodies to VEGF (4), such as bevacizumab and
resumumab, small-molecule tyrosine kinase inhibitors (TKIs),
such as anlotinib, sorafenib, and sunitinib, and VEGF receptor
(VEGFR)2 inhibitors, such as regorafenib and ramucirumab
(5). These compounds can lead to a reduction in the
tumor blood supply and growth of the tumor blood vessels.
Unfortunately, cardiovascular toxicity is a potential limitation
associated with the long-term use of anti-angiogenic agents in
cancer and requires further study to assess the value of anti-
angiogenic treatment.

Aspartate aminotransferase (AST) is a pyridoxal-5′-
phosphate-dependent enzyme that is widely distributed in
heart, liver, skeletal muscle, kidney and brain. It plays a key role
in the metabolism of amino acids, synthesis of purine/pyrimidine
bases, urea and protein synthesis, and gluconeogenesis (6). Lactic
dehydrogenase (LDH) is a type of enzyme, which plays an
important role in making body’s energy. It can be found in
almost all the body’s tissues, including those in the blood,
heart, kidneys, brain, and lungs. LDH is released from damaged
tissues, and can serve as a biomarker for damaged heart tissue.
Creatine kinase (CK) is a guanidino-kinase that catalyzes the
reversible phosphorylation of creatine to phosphocreatine, and
is primarily distributed in bone and myocardium. The plasma
activity of creatine kinase isoenzyme (CK-MB), one of the
isoenzymes of CK, is generally used to evaluate acute coronary
syndrome. The detection of serum CK isozymes, especially
serum CK-MB, is helpful for judging the degree of myocardial
injury. Comprehensively, monitoring serum AST, LDH, CK and
CK-MB activities for cardiac biomarkers can be valuable for
assessing patient status (7, 8).

Unfortunately, few studies have focused on the measuring
changes in serum AST, LDH, CK and CK-MB activities before
and after anti-angiogenic treatment for cancer. In this study, we
conducted a retrospective investigation focused onmeasuring the
changes in serum AST, LDH, CK and CK-MB in serum on cancer
patients receiving anti- angiogenic targeted therapy. The results
suggested that in serum AST, LDH, CK and CK-MB activities
of patients who had used anti-angiogenic drugs were likely to
have elevated.

MATERIALS AND METHODS

Patients
This was an observational, retrospective study that obtained
informed consent from all subjects, and this research was
approved by the Ethics Committee of Guang’anmen hospital,
China Academy of Chinese Medical Sciences with code number
2020-073-KT. The study followed the ethical principles of the
Declaration of Helsinki 1964.

From Jan 2014 to Dec 2020, cancer 81 patients treated
with apatinib, anlotinib, regorafenib, bevacizumab, sorafenib, or
sunitinib at the oncology department, Guang’anmen hospital,

China Academy of ChineseMedical Sciences were retrospectively
recruited for this study. Patients with active infection, systemic
corticosteroid treatment within 1 year, or hematological
malignancy were excluded since these conditions might affect
the hematological laboratory markers. Meanwhile, 81 gender
and age matched healthy control were enrolled from physical
examination center, Guang’anmen hospital, China Academy of
Chinese Medical Sciences.

Data Collection
The following variables were extracted from the medical records
of the patients: AST, LDH, CK and CK-MB results, age, gender,
histological diagnosis, and the choice of anti-angiogenic drugs
(such as apatinib, anlotinib, regorafenib, bevacizumab, sorafenib,
or sunitinib), history of prior heart disease, pharmacohistory of
cardiovascular drugs, smoking and drinking history, and effect of
chemotherapeutic drugs on cardiotoxicity. Additionally, routine
complete blood counts and coagulograms (including the AST,
LDH, CK andCK-MB activities) were carried out before and after
first 1 cycle of therapy The first effective evaluationwas proceeded
after 21 days of treatment. All the examining were detected in the
laboratory department, Guang’anmen hospital, China Academy
of Chinese Medical Sciences, by using full-automatic chemistry
analyzer (AU5800 series, Beckman Coulter).

Statistical Analysis
Statistical analyses were performed using GraphPad Prism8
(GraphPad Software, San Diego, CA, USA) and SPSS statistical
software version 24.0 (SPSS Inc., Chicago, IL, USA). Serum
AST, LDH, CK and CK-MB activities after first one cycle
of treatment were compared to that with no treatment were
analyzed. Considering the predictor variables, such as age,
gender, histological diagnosis, and the choice of anti-angiogenic
drugs, history of prior heart disease, pharmacohistory of
cardiovascular drugs, smoking and drinking history, and effect
of chemotherapeutic drugs on cardiotoxicity, the statistics were
done by mixed linear modeling. All data were non-normally
distributed, that reported by the median, interquartile range,
and min-max. The differences between tumor patient group
and matched healthy control group were compared with Mann-
Whitney U test. A two-sided P < 0.05 was deemed as
statistically significant.

RESULTS

Patient Characteristics
A total of 81 patients were treated by anti-angiogenic drugs
during the study period. Table 1 presents the detailed patient
characteristics. There were 41 (50.6%, 95% CI: 0.397 ∼ 0.615)
males and 40 (49.4%, 95% CI: 0.385 ∼ 0.603) females in the
total cohort, with a median age of 63 years (Quartiles 25–75%,
56–70). Among the patients, there were 42.0% (34/81, 0.312 ∼

0.527) have prior heart disease history, 35.8% (29/81, 0.254 ∼

0.462) have cardiovascular drugs use history. Meanwhile, a total
of 34.6% (28/81, 0.242 ∼ 0.449) have smoking history and 23.4%
(19/81, 0.142 ∼ 0.327) have drinking history. All the patients
have been treated with different chemotherapy, nevertheless,
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TABLE 1 | Patients’ characteristics.

Variables N % 95% CI

Age

Median 63

Quartiles 25–75% 56–70

Gender

Male 41 50.6 0.397 ∼ 0.615

Female 40 49.4 0.385 ∼ 0.603

Prior heart disease history

Yes 34 42.0 0.312 ∼ 0.527

No 47 58.0 0.473 ∼ 0.688

Cardiovascular drugs use history

Yes 29 35.8 0.254 ∼ 0.462

No 52 64.2 0.538 ∼ 0.746

Smoking history

Yes 28 34.6 0.242 ∼ 0.449

No 53 65.4 0.551 ∼ 0.758

Drinking history

Yes 19 23.4 0.142 ∼ 0.327

No 62 76.5 0.673 ∼ 0.858

Effect of chemotherapeutic drugs on cardiotoxicity

Yes 3 3.7 −0.004 ∼ 0.078

No 78 96.3 0.922 ∼ 1.004

Cancer type tumor stage

Lung cancer 23 28.4 0.186 ∼ 0.382 IV

Gastric cancer 13 16.1 0.081 ∼ 0.240 III∼IV

Colorectal cancer 15 18.5 0.101 ∼ 0.270 IV

Ovarian cancer 5 6.2 0.009 ∼ 0.114 IV

Liver cancer 5 6.2 0.009 ∼ 0.114 IV

Renal cancer 4 4.9 0.002 ∼ 0.097 IV

Metrocarcinoma 3 3.7 −0.004 ∼ 0.078 IV

Esophagus cancer 2 2.5 −0.009 ∼ 0.058 IV

Pancreatic cancer 2 2.5 −0.009 ∼ 0.058 IV

Urethral carcinoma 2 2.5 −0.009 ∼ 0.058 IV

Osteocarcinoma 2 2.5 −0.009 ∼ 0.058 IV

Breast cancer 1 1.2 −0.012 ∼ 0.036 IV

Cholangiocarcinoma 1 1.2 −0.012 ∼ 0.036 IV

Thyroid cancer 1 1.2 −0.012 ∼ 0.036 IV

Duodenal cancer 1 1.2 −0.012 ∼ 0.036 IV

Thymoma 1 1.2 −0.012 ∼ 0.036 IV

Anti-angiogenic therapy

Apatinib 27 33.3 0.231 ∼ 0.436

Anlotinib 25 30.9 0.208 ∼ 0.409

Regorafenib 12 14.8 0.071 ∼ 0.226

Bevacizumab 10 12.3 0.052 ∼ 0.195

Sorafenib 6 7.4 0.017 ∼ 0.131

Sunitinib 1 1.2 −0.012 ∼ 0.036

there were 3/81 patients were affected by chemotherapeutic drugs
on cardiotoxicity.

A total of 28.4% (23/81, 95% CI: 0.186 ∼ 0.382) patients had
lung cancer, 16.1% (13/ 81, 95% CI: 0.081 ∼ 0.240) had gastric
cancer, 18.5% (15/81, 95% CI: 0.101 ∼ 0.270) had colorectal

cancer, 6.2% (5/81, 95% CI: 0.009 ∼ 0.114) had ovarian cancer,
and 6.2% (5/81, 95% CI: 0.009 ∼ 0.114) had liver cancer. A small
number of renal cancer (4.9%, 4/81), metrocarcinoma (3.7%,
3/81), esophagus cancer (2.5%, 2/81), pancreatic cancer (2.5%,
2/81), urethral carcinoma (2.5%, 2/81), osteocarcinoma (2.5%,
2/81), breast cancer (1.2%, 1/81), cholangiocarcinoma (1.2%,
1/81), thyroid cancer (1.2%, 1/81), duodenal cancer (1.2%, 1/81),
and thymoma (1.2%, 1/81) cases were included too. Except one
patient is III gastric cancer, all other cancer patients were at
staged IV depending on the TNM (Tumor, lymph Node, distant
Metastasis). In addition, 27 of 81 patients (33.3%, 95% CI: 0.231
∼ 0.436) were treated with apatinib, 25 of 81 patients (30.9%, 95%
CI: 0.208 ∼ 0.409) were treated with anlotinib, 12 of 81 patients
(14.8%, 95% CI: 0.071∼ 0.226) were treated with regorafenib, 10
of 81 patients (12.3%, 95% CI: 0.052 ∼ 0.195) were treated with
bevacizumab, six patients were treated with sorafenib, and one
patient (12.3%) were treated with sunitinib (Table 1).

Evaluation of Serum AST and LDH
Activities in Patients and Health Control
Table 2 displays the detailed characteristics of serum AST, LDH,
CK, and CK-MB activities in patients and health control. Health
control was matched in serum AST, LDH. Serum AST and LDH
were markedly increased in patients after treatment compared
with health control (p < 0.01, p < 0.001). In addition, it was
significantly increased in patients before treatment compared
with health control in serum LDH (p < 0.001), (Figure 1).

The Effects of Predictor Variables on
Serum AST, LDH, CK, and CK-MB Activities
in Patients
Afterwards, considering the predictor variables, such as
age, gender, histological diagnosis, and the choice of anti-
angiogenic drugs, history of prior heart disease, pharmacohistory
of cardiovascular drugs, smoking and drinking history,
and effect of chemotherapeutic drugs on cardiotoxicity, the
statistics were done by mixed linear modeling. As Tables 3–6
showed, the influence of age, gender, cancer type, the choice
of anti-angiogenic drugs, drinking history, and effect of
chemotherapeutic drugs on cardiotoxicity were eliminated in
this study.

Exclude the influence of the above factors, the median of
AST activities were 18.40 (10.20, 12.10–126.70) before treatment
and 26.70 (24.00, 12.00–209.10) after anti-angiogenic treatment,
which was markedly decreased (P = 0.002). The mean AST
activities were 11.26 higher after anti-angiogenic treatment
than before, Tables 2, 7. The median of LDH activities were
192.00 (103.00, 100.00–753.00) before treatment and 206 (122.00,
123.00–1,135.00) after anti-angiogenic treatment, which was
significantly decreased (P = 0.022). The mean LDH activities
were 38.58 higher after anti-angiogenic treatment than before,
Tables 2, 7.

Interestingly, serum CK and CK-MB activities have been
affected by anti-angiogenic treatment, history of prior heart
disease, pharmacohistory of cardiovascular drugs, and smoking
history. The mean serum CK activities was 14.35, significantly
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TABLE 2 | The detailed characteristics of serum AST, LDH, CK and CK-MB activities in patients and health control.

Group Number Median Interquartile range Min Mix

AST Before treatment 81 18.40 10.20 12.10 126.70

After treatment 81 26.70 24.00 12.00 209.10

Health control 81 19.90 6.20 14.30 37.80

LDH Before treatment 43 192.00 103.00 100.00 753.00

After treatment 43 206.00 122.00 123.00 1,135.00

Health control 81 176.00 98.00 119.00 217.00

CK Before treatment 43 32.00 31.00 12.00 144.00

After treatment 43 42.00 40.00 10.00 244.00

CK-MB Before treatment 47 9.00 217.52 0.48 218.00

After treatment 47 13.00 20.00 0.35 252.00

In our laboratory, 90–50 U/L is adopted as the cut-off value for normal AST; <247 U/L is adopted as the cut-off value for normal LDH; < 171 U/L is adopted as the cut-off value for

normal CK; < 25 U/L is used as the cut-off value for normal CK-MB.

FIGURE 1 | Serum AST and LDH activities in patients and health control. ***P < 0.001, **P < 0.001.

increased after anti-angiogenic treatment than before (P =

0.032). Patients who had cardiovascular drugs history had
84.48 lower serum CK activities (P = 0.028) than those
without cardiovascular drugs history. Smoking history is another
predictor variables, patients who had smoking history was 47.38
higher than those without (P = 0.042), Table 7. Serum CK-
MB activities were mainly history of prior heart disease and
cardiovascular drugs. Patients who had prior heart disease history
was 129.04 higher serum CK-MB activities (P = 0.005) than
those without prior heart disease history. Conversely, Patients

who had cardiovascular drugs history was 149.10 lower serum
CK-MB activities (P = 0.002) than those without cardiovascular
drugs history.

DISCUSSION

This retrospective study revealed the blood biomarkers, such
as AST, LDH and CK were markedly increased with use of
anti-angiogenic drugs, indicating that use of anti-angiogenic
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TABLE 3 | Type III test of fixed effects of AST.

Source Numerator

df

Denominator

df

F Sig.

Age 1 53.000 0.593 0.445

Gender 1 53 0.672 0.416

Cancer type 15 53 1.679 0.084

Choice of anti-angiogenic drugs 5 53.000 0.550 0.738

Before/after treatment 1 80 10.287 0.002

History of prior heart disease 1 53.000 0.140 0.710

History of cardiovascular drugs 1 53.000 0.984 0.326

Smoking history 1 53 0.000 0.999

Drinking history 1 53.000 0.042 0.838

Effect of chemotherapeutic

drugs on cardiotoxicity

1 53.000 0.029 0.866

TABLE 4 | Type III test of fixed effects of LDH.

Source Numerator

df

Denominator

df

F Sig.

Age 1 21.002 0.147 0.705

Gender 1 21.000 0.591 0.451

Cancer type 10 21.006 1.353 0.268

Choice of anti-angiogenic drugs 4 21.006 1.225 0.330

Before/after treatment 1 42.066 5.672 0.022

History of prior heart disease 0 – – –

History of cardiovascular drugs 0 – – –

Smoking history 1 21.000 3.814 0.064

Drinking history 1 21.004 0.348 0.561

Effect of chemotherapeutic

drugs on cardiotoxicity

1 21.000 1.421 0.247

TABLE 5 | Type III test of fixed effects of CK.

Source Numerator

df

Denominator

df

F Sig.

Age 1 21.000 0.461 0.505

Gender 1 21.000 2.961 0.100

Cancer type 9 21.000 1.608 0.177

Choice of anti-angiogenic drugs 4 21.000 0.897 0.483

Before/after treatment 1 42.000 4.946 0.032

History of prior heart disease 1 21.000 4.299 0.051

History of cardiovascular drugs 1 21.000 5.540 0.028

Smoking history 1 21.000 4.708 0.042

Drinking history 1 21.000 0.798 0.382

Effect of chemotherapeutic

drugs on cardiotoxicity

1 21.000 0.324 0.575

drugs may be related to an increased risk of myocardial
damage. Moreover, serum CK and CK-MB activities have
been affected by history of prior heart disease, cardiovascular
drugs, and smoking. The determination of myocardial enzymes
mainly includes AST, LDH, CK and CK-MB. When the

TABLE 6 | Type III test of fixed effects of CK-MB.

Source Numerator

df

Denominator

df

F Sig.

Age 1 24.000 0.340 0.565

Gender 1 24.000 1.520 0.230

Cancer type 10 24.000 2.034 0.075

Choice of anti-angiogenic drugs 4 24.000 2.042 0.120

Before/after treatment 1 46.000 1.621 0.209

History of prior heart disease 1 24.000 9.675 0.005

History of cardiovascular drugs 1 24.000 12.163 0.002

Smoking history 1 24.000 3.065 0.093

Drinking history 1 24.000 0.016 0.899

Effect of chemotherapeutic

drugs on cardiotoxicity

1 24.000 0.299 0.590

cardiomyocytes have inflammation (myocarditis) or necrosis
(myocardial infarction) due to various reasons, the enzymes
contained in the cardiomyocytes can enter the blood, and the
activity (content) of these enzymes in the blood increases.
Elevation of these serummarkers in this study did not exceed the
normal upper limit, but it may indicate a tendency for long-term
use to accumulate toxicity.

AST is one of the most important aminotransferases in the
body. It is mainly found in tissue cells such as myocardium, liver,
skeletal muscle, kidney, pancreas, spleen, lung, red blood cells,
as well as in normal human plasma, bile, cerebrospinal fluid,
and saliva. Medium, but it cannot be detected in urine without
kidney damage. The content of AST in the myocardium is the
most abundant, so it has certain significance for the diagnosis
of myocardial infarction. When acute myocardial infarction
(AMI) occurs, the serum AST activity generally rises to 4–5
times the upper limit of the reference value. If it reaches 10–
15 times the upper limit of the reference value, it is often
fatal infarction occurred. However, the rise of AST is later than
CK in AMI, and recovers earlier than LDH, diagnostic value
of AST for AMI is becoming less and less. Nevertheless, AST
is an indispensable evaluation index in the clinical research
of oncology drug evaluation. The study determined the safety
and effectiveness of anti-angiogenic therapy with sorafenib
and bevacizumab in patients with advanced HCC and results
found that dose-limiting toxicities included hypertension, AST
increase, creatinine increase, etc. (9). Patients receive intravenous
ramucirumab (8 mg/kg) every 2 weeks were observed in a
phase 3 clinical trial. Hypertension (34 [12%] of 277 patients
treated with ramucirumab), increased AST concentration (15
[5%]), thrombocytopenia (13 [5%]), etc. were occurred with
grade 3 or greater adverse events (10). LDH is an extremely
important enzyme that regulates the conversion of pyruvate to
lactic acid in anaerobic glycolysis and play an important role in
cancer metabolism (11). Meanwhile, LDH is a useful marker for
predicting the efficacy of bevacizumab-containing chemotherapy
in patients with metastatic colorectal cancer (12). It is widely
present in the cytoplasm and mitochondria of tissue cells such
as liver, heart, skeletal muscle, lung, spleen, brain, red blood
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TABLE 7 | Estimates of fixed effect of treatment, cardiovascular drugs history, history of prior heart disease, and smoking history on serum AST, LDH, CK, and CK-MB

activities.

Dependent Variable Parameter Estimate SE df t Sig. 95% CI

AST treatment=before −11.26 3.51 80 −3.207 0.002 −18.24∼-4.27

treatment =after 0 0 – – – –

LDH treatment=before −38.58 16.20 42 −2.382 0.022 −71.27∼-5.89

treatment=after 0 0 – – – –

CK treatment=before −14.35 6.45 42 −2.224 0.032 −27.37∼-1.33

treatment=after 0 0

cardiovascular drugs history=yes −84.48 35.89 21 −2.354 0.028 −159.12∼-9.84

cardiovascular drugs history=no 0 0 – – – –

smoking history=yes 47.38 21.84 21 2.170 0.042 1.97∼92.80

smoking history=no 0 0 – – – –

CK-MB history of prior heart disease=yes 129.04 41.49 24 3.111 0.005 43.42∼214.67

history of prior heart disease=no 0 0 – – – –

cardiovascular drugs history=yes −149.10 42.75 24 −3.488 0.002 −237.34∼-60.86

cardiovascular drugs history=no 0 0 – – – –

cells, platelets, etc. LDH is a tetramer composed of two different
subunits (LDHA and LDHB), forming 5 isoenzymes with
M-type and H-type subunits: H4(LD1), MH3(LD2), M2H(LD3),
M3H(LD4), M4(LD5). Different tissues have their characteristic
isoenzymes. The ratios of LD isoenzymes in the heart, kidney and
red blood cells are similar, with LD1 and LD2 dominating. When
the myocardium is damaged, the myocardial cell membrane
ruptures, and the mitochondria and cytoplasmic substances leak
out into the intercellular fluid and periphral blood. In response
to the hypoxic characteristic of the tumor microenvironment,
cancer cells generate a large amount of lactate via the metabolism
of glucose and glutamine (13, 14). High levels of LDHA
expression serves as a prognostic indicator in patients with
different type of cancers (15). LDH increased production of
reactive oxygen species and regulate cell apoptosis and autophagy
(16). Thus, the role of LDH in tumor biology is more complex
andmay as a potential target in the treatment of cancer. Although
in this study, the elevation of AST and LDH in patients did not
exceed the normal upper limit, there was a significant increase
in serum AST and LDH activities, compared with the matched
healthy control.

But it is regrettable that the serum CK and CK-MB activities
of matched healthy control were not found. All healthy control
were from a medical examination at our hospital, serum CK and
CK-MB activities are not included in the physical examination at
present. Interestingly, serum CK and CK-MB activities have been
affected by history of prior heart disease, cardiovascular drugs,
and smoking.

CK mainly exists in skeletal muscle and cardiac muscle, and
brain tissue. CK is an important energy regulating enzyme in
the myocardium. Under the energy provided by ATP, it catalyzes
the reversible phosphorylation of ATP and creatine to ADP
and phosphocreatine in cellular energy metabolism, which can
be transported to the cytoplasm and stored. Serum CK can be
increased in various types of progressive muscle atrophy. CK
begins to increase 2–4 h after AMI and can reach 10–12 times

the upper limit of normal. It has higher specificity than AST and
LDH for diagnosing myocardial infarction, but the increase of
this enzyme lasts for a short time, and it returns to normal after
2–4 days. There are three isoenzyme formations for CK: CK-MB
(mostly in the heart), CK-MM (mostly in the muscle), or CK-BB
(mostly in the brain) (17). CK-MB activity has been recognized
as a specific and sensitive biomarker of clinical and subclinical
myocardial injury (8, 18). CK-MB activities are significantly
positively correlated with the extent of myocardial injury, so
serum CK-MB can be used as a biomarker for AMI (19). The
presence of CK-MB in patients with cancers may cause confusion
with AMI. Serial determinations of both CK and LDH are of great
help in differential diagnosis 3512170. In addition, a previous
study demonstrated that an elevated serum CK-MB in cancer
patients may be associated with cardiac insufficiency, severe
illness status, and have high mortality (20). Even a slight increase
in CK-MB indicated the possibility of myocardial infarction (21).
There has been no retrospective report focusing on CK, CK-MB
and anti-angiogenic therapy. In the present study, both CK and
CK-MB levels were significant elevated after use anti-angiogenic
drug. Myocardial ischaemia might be the reason for the slight
increase in CK and CK-MB. Furthermore, Some studies have
demonstrated that CK-MB-to-total-CK ratio could be clinically
utilized as a primary screening tool for cancer (22), which is an
easily available indicator. In this study, we found that patients
who had prior heart disease history had a higher serum CK-MB
activities, while in patients who had cardiovascular drugs history
had a lower serum CK and CK-MB activities on the contrary.
The reason for the result is likely to be that people with previous
cardiovascular disease have damage to heart muscle cells, while
the drugs reduce the damage, which need to be further studied.

CONCLUSIONS

Our findings suggest that the serum AST, LDH and CK activities
of patients who had used anti-angiogenic drugs were likely
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to have elevated. History of prior heart disease, cardiovascular
drugs, and smoking should be considered in the anti-angiogenic
treatment. AST, LDH, CK and CK-MB are indicators of
myocardial muscle injury, such as myocarditis or myocardial
infarction. Use of anti-angiogenic drugs should not be assumed
to be completely safe and without any cardiovascular risks. In
addition, attention should also be paid to long-term use to
accumulate toxicity. Apparently, the number of cases in patients
should be expanded and more detailed research should be done
in the future.
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Introduction: Ibrutinib, a Bruton’s tyrosine kinase inhibitor (TKI) used primarily in the

treatment of hematologic malignancies, has been associated with increased incidence

of atrial fibrillation (AF), with limited data on its association with other tachyarrhythmias.

There are limited reports that comprehensively analyze atrial and ventricular arrhythmia

(VA) burden in patients on ibrutinib. We hypothesized that long-term event monitors could

reveal a high burden of atrial and VAs in patients on ibrutinib.

Methods: A retrospective data analysis at a single center using electronic medical

records database search tools and individual chart review was conducted to identify

consecutive patients who had event monitors while on ibrutinib therapy.

Results: Seventy-two patients were included in the analysis with a mean age of 76.9 ±

9.9 years and 13 patients (18%) had a diagnosis of AF prior to the ibrutinib therapy. During

ibrutinib therapy, most common arrhythmias documented were non-AF supraventricular

tachycardia (n= 32, 44.4%), AF (n= 32, 44%), and non-sustained ventricular tachycardia

(n = 31, 43%). Thirteen (18%) patients had >1% premature atrial contraction burden;

16 (22.2%) patients had >1% premature ventricular contraction burden. In 25% of the

patients, ibrutinib was held because of arrhythmias. Overall 8.3% of patients were started

on antiarrhythmic drugs during ibrutinib therapy to manage these arrhythmias.

Conclusions: In this large dataset of ambulatory cardiac monitors on patients

treated with ibrutinib, we report a high prevalence of atrial and VAs, with a high

incidence of treatment interruption secondary to arrhythmias and related symptoms.

Further research is warranted to optimize strategies to diagnose, monitor, and manage

ibrutinib-related arrhythmias.

Keywords: cardio-oncology, tyrosine kinase inhibitor, atrial fibrillation, ventricular arrhythmia, ibrutinib,

ambulatory event monitor

INTRODUCTION

Atrial fibrillation (AF) is the most common sustained arrhythmia in the world, affecting at least
33 million individuals. The burden of AF has been rapidly increasing worldwide due to growing
awareness and the broader application of portable event monitors and wearables and also due to
shifts in demographics and an increase in the prevalence of risk factors (1). Moreover, with the
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growing use of cancer therapies in clinic, antineoplastic agents
such as paclitaxel, mitoxantrone, doxorubicin, and TKIs have
been associated with an increased risk of developing AF (2–5).

Ibrutinib is a Bruton’s TKI that is used in a growing number of
hematologic malignancies. It irreversibly binds Bruton’s tyrosine
kinase, which plays a critical role in B-cell development and
proliferation, and thereby exerts its anticancer activity primarily
in B-cell malignancies including chronic lymphocytic leukemia,
mantle cell lymphoma, and Waldenström’s macroglobulinemia
(6). The use of ibrutinib has been associated with increased
incidence of AF (5); with limited data on its association with
other arrhythmias. These arrhythmias lead to a relatively high
treatment interruption rate and cause significant morbidity in
this patient population (4). There are limited data to date that
comprehensively analyze both atrial and ventricular arrhythmia
(VA) burden in patients on ibrutinib, and subsequent referral
to subspecialty care, antiarrhythmic drug use, and treatment
interruption patterns. Therefore, we hypothesized that long-
term event monitors, as defined by continuous ECG monitoring
>48 h, could reveal a high burden of atrial and VAs in patients on
ibrutinib therapy which may lead to treatment cessation.

METHODS

We performed a single-center, retrospective cohort study to
analyze consecutive patients on ibrutinib therapy, who had event
monitors of at least 3 days of duration for any indication while on
ibrutinib therapy between the years 2014 and 2021.

Data Source and Covariates
Patient data including demographics, past medical history,
history of AF, echocardiographic data (including left ventricular
ejection fraction (LVEF), left atrial volume index (LAVI), and
left atrial diameter), 12-lead ECGs, and event monitors with
autotriggers were collected from electronic medical records.
Event monitors were manually reviewed to confirm the diagnosis
of AF, patterns of other arrhythmias seen, and assess the types
of ventricular tachycardia (monomorphic vs. polymorphic).
CHA2DS2-VASc score was automatically calculated from these
data using age, sex, history of heart failure, hypertension, stroke,
TIA, vascular disease, and diabetes.

Outcomes
We compared the cohort that had AF seen on the event monitor
against the cohort that did not, and the cohort that had ibrutinib
held vs. those in whom ibrutinib was continued. We also
conducted univariate analyses to identify the correlation between
the development of AF and any clinical risk factors including
ECG and echocardiographic parameters, and also a correlation
between ibrutinib being held and any clinical risk factors.

Statistics

Statistical analyses were done using SPSS version 27 (IBM SPSS
Statistics for Mac, IBM Corporation, Armonk, NY). Continuous
data are reported as mean± standard deviation, unless otherwise
stated, and are tested for normality using the Shapiro–Wilk test
(p > 0.05). Independent-samples t-test and Mann–Whitney U

test were run to determine whether there were differences in
mean values between cohorts and for analysis of continuous
data. Categorical variables were compared using the Pearson’s
chi-squared test or Fisher’s exact test where expected frequencies
were <5. Statistical significance was assumed at the 5% level.
This study was approved by the Institutional Review Board of
Stanford University.

RESULTS

Clinical Characteristics
Of 755 patients who were on ibrutinib therapy for hematologic
malignancies at Stanford Hospital between 2014 and 2019, 72
patients had event monitors (Zio, iRhythm Technologies, Inc.,
CA) while on ibrutinib therapy and were included in this analysis
(Table 1). Thirteen patients (18%) carried a diagnosis of AF
prior to ibrutinib therapy but the majority of the patients did
not have a screening Holter monitoring, and therefore, the
burden of pre-ibrutinib therapy arrhythmia is unknown. The
most common indications for event monitoring included atrial
arrhythmias (50%), palpitations (23%), abnormal EKG (14%),
and syncope (6%). The 72 patients who were included in the
analysis had a mean age of 76.9 ± 9.9 years, 25% were women,
68% with a diagnosis of hypertension, 62% with hyperlipidemia,
13% with COPD, 10% with prior history of cardiac surgery,
mean BMI of 24.8 ± 4.1, and mean CHA2DS2-VASc score of
4 ± 2 (Figure 1A). The mean LVEF was 58.1 ± 9.1% and
the mean LAVI was 36.4 ± 13.0 (ml/m2). Thirteen (18%)
patients had a history of AF prior to initiation of ibrutinib. The
average duration of time on ibrutinib therapy for all patients
with event monitors was 31.9 ± 22.3 months. The median
number of months on ibrutinib therapy was 28 months (range
1–111 months).

Arrhythmia Patterns on Long-Term Event
Monitors
Most common arrhythmias documented were non-AF
supraventricular tachycardia (SVT, in n = 32, 44.4% of
patients), AF (n = 32, 44.4%), and non-sustained ventricular
tachycardia (NSVT n = 31, 43.1%). Fourteen (19.4%) patients
had >1% premature atrial contraction (PAC) burden; 16 (22.2%)
patients had >1% premature ventricular contraction (PVC)
burden (Figure 1B). Out of patients that had NSVT, five patients
had polymorphic NSVT whereas the rest had monomorphic
NSVT. Median QTc in patients with NSVT was 422ms (range
375–507). Sixteen (22.2%) patients had both NSVT and AF
recorded, which is about half of the population which had
either NSVT or AF (Figure 2). A small proportion of these
patients were followed by electrophysiologists (n = 20, 27.8%),
whereas a higher proportion were followed by cardiologists (n=

50, 69.4%).

Factors Associated With Ibrutinib Therapy
Interruption
In 18 (25%) patients, ibrutinib therapy was held because of
arrhythmias and/or related symptoms (Table 2). Six (8.3%)
patients were started on antiarrhythmic drugs during ibrutinib
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TABLE 1 | Baseline demographics for patients undergoing ibrutinib therapy with cardiac monitor while on ibrutinib, divided by patients in whom therapy was held vs.

continued.

Characteristic All patients (n = 72) Patients in whom

ibrutinib was held

(n = 18)

Patients who continued

ibrutinib (n = 54)

p

Age (years) 76.9 ± 9.9 78.6 ± 11.2 76.3 ± 9.5 0.391

Sex (N, %) 0.753

Male 54 (75.0%) 13 (72.2%) 41 (75.9%)

Female 18 (25.0%) 5 (27.8%) 13 (24.1%)

Body mass index (kg/m2 ) 24.8 ± 4.1 24.2 ± 3.4 25.1 ± 4.3 0.520

LA volume index (ml/m2 ) 36.4 ± 13.0 43.6 ± 16.3 33.6 ± 10.5 0.008

EF (%) 58.1 ± 9.1 55.1 ± 11.1 59.2 ± 8.1 0.204

Comorbid medical

conditions (N, %)

Congestive heart failure

26 (36.1%) 9 (50.0%) 17 (31.5%) 0.157

Valvular disease 31 (43.1%) 9 (50.0%) 22 (40.7%) 0.492

Hypertension 49 (68.1%) 13 (72.2%) 36 (66.7%) 0.662

Hyperlipidemia 44 (61.8%) 10 (55.6%) 34 (63.0%) 0.557

Diabetes mellitus 13 (18.1%) 2 (11.1%) 11 (20.4%) 0.376

Coronary artery disease 38 (38.9%) 5 (27.8%) 23 (42.6%) 0.264

Obstructive sleep apnea 23 (31.9%) 7 (38.9%) 16 (29.6%) 0.466

Chronic kidney disease 28 (38.9%) 9 (50%) 19 (35.2%) 0.264

History of AF (prior to

ibrutinib therapy)

13 (18.1%) 4 (22.2%) 9 (16.7%) 0.725

Duration of Ibrutinib

therapy (months)

31.6 ± 22.3 25.6 ± 20.2 33.6 ± 22.8 0.190

Patients on

antiarrhythmic drug

therapy (N, %)

9 (12.5) 5 (27.8%) 4 (7.4%) 0.038

Patients on

antiarrhythmic drug

therapy that was initiated

after ibrutinib treatment

(N, %)

6 (8.3) 4 (22.2%) 2 (3.7%) 0.031

Care team involvement

(N, %)

General cardiologist 50 (69.4) 16 (88.9%) 34 (63%) 0.039

Electrophysiologist 20 (27.8) 8 (44.4%) 12 (22.2%) 0.068

therapy to manage these arrhythmias. Three patients required
at least one direct current cardioversion (DCCV) for poorly
controlled AF. Interruptions in ibrutinib therapy were associated
with >1% PAC burden on event monitor while on ibrutinib
therapy (p = 0.002) and a prior history of VT (p = 0.017); but
not with the presence of the PVC burden of >1%, SVT, AF,
or NSVT (all, p > 0.05) on the event monitor. Neither history
of prior AF nor gender correlated with the frequency at which
Ibrutinib was held. Patients in whom ibrutinib was held for
arrhythmias were more likely to be seen by a cardiac specialist (p
= 0.005), along with patients on ibrutinib whose Holter monitors
showed NSVT (p < 0.001). Female patients were referred to a
cardiac specialist less frequently than their male counterparts (p
= 0.14).

When looking at transthoracic echocardiography data,
patients in whom ibrutinib was held for arrhythmia had a
lower LVEF vs. those in whom ibrutinib was not held, albeit

not statistically significant (55.1 ± 10.7 vs. 59.3 ± 8.2%; p
= 0.09). However, for patients who had an LVEF ≤ 50%, 5
out of 12 (41.7%) had ibrutinib held for arrhythmias, which is
considerably higher than the entire cohort (25%). Patients with
a larger LA volume index had a higher probability of having
ibrutinib held for arrhythmias (LAVI 43.3 ± 15.9 vs. 33.6 ± 10.7
ml/m2; p = 0.007). For those who were detected to have AF
on event monitors (n = 32, 44%), EF was slightly lower (55.8
± 8.9% vs. 60.0 ± 8.9%; p = 0.059), although it did not reach
statistical significance.

There was no statistically significant relationship between AF
on eventmonitor and risk factors such as age, hypertension, EKG,
and echocardiographic parameters. No statistically significant
difference was found between the cohort that developed AF
and the cohort that did not. There was no statistically
significant relationship between prior AF history and LA size
or EF.
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FIGURE 1 | (A) Arrhythmias noted on cardiac monitor while on ibrutinib. (B) Distribution of arrhythmias during ibrutinib treatment. The pie chart depicts breakdown of

total arrhythmia events detected and showing what the pattern of arrhythmias is on ibrutinib therapy as a percentage of all arrhythmias seen.

FIGURE 2 | Overlap of atrial and VAs in patients on ibrutinib.

DISCUSSION

In this large dataset of long-term event monitors on patients
treated with ibrutinib, we conduct detailed characterization of
their arrhythmias which demonstrate a high burden of both
atrial and VAs, with a high incidence of treatment interruption
secondary to arrhythmias and a low rate of referral to specialists
for arrhythmia management.

The incidence of atrial arrhythmias during ibrutinib therapy
is well documented, ranging from 8 (7) to 14% (8) in prospective
studies, and up to 40% in patients referred to cardio-oncology
clinics (9). Compared with other TKIs, ibrutinib therapy has
been the most consistent and independent risk factor associated
with subsequent AF. These are several-fold higher than the

reported incidence of both AF and NSVT on patients with non-
cancer who received event monitors (10, 11). Despite the high
incidence of AF in this population, it remains unknown which
patients are at a higher risk for developing AF. While limited
studies suggest advanced age, valvular disease, and prior history
of AF to increase this risk (12, 13), these risk factors were not
consistently found significant. Moreover, in this study, we did
not find significant correlation with any clinical or demographic
factors in patients who developed AF, which may be due in part
to the limited sample size. We also did not find any significant
correlation between the duration of the ibrutinib therapies
and the development of AF. To better identify risk factors or
predictors of ibrutinib-related AF, a more comprehensive large
cohort study would be warranted.

In this study, ibrutinib therapy was held in 18 (25%) patients
because of arrhythmias and/or related symptoms. We identified
factors such as >1% PAC burden on event monitor while on
ibrutinib therapy, a prior history of VT (p = 0.017), a high
LA volume index, and low LVEF to be significantly associated
with increased likelihood of ibrutinib therapy interruption due to
arrhythmia or related symptoms. We believe a high LA volume
index which correlates with high LA pressure and/or low LVEF
may be significant as they can predispose the myocardium to
develop subsequent arrhythmia. Otherwise, we were unable to
obtain reliable data regarding rates of ibrutinib being held in the
cohort that did not have event monitors. According to limited
study reports available, rates of ibrutinib discontinuation are as
high as 35% and AF seems to be the most common reason for
ibrutinib being held in a comparable population of patients with
hematologic malignancies (14, 15).

Data regarding VA during ibrutinib or other TKI therapies
are rather scant. Some studies have used large registries
of patients with cancer and looked at adverse events of
VAs while on ibrutinib therapy. They found that even after
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TABLE 2 | Detailed personalized information about patients in whom ibrutinib therapy was held.

Patients in

whom

ibrutinib

was held

Reason for ibrutinib

interruption

Time on

ibrutinib

(months)

History of

arrhythmia

(AF or VT)

prior to

ibrutinib

initiation

EF (%) NSVT on Zio QTc (ms) Re-challenge

Patient 1 New atrial flutter with rapid

ventricular response

64 No 41 Yes 419 Yes

Patient 2 Symptomatic persistent AF 17 No 55 N/A N/A No

Patient 3 Persistent atrial flutter 23 AF 61 Yes 432 No

Patient 4 Recurrent AF 24 No 68 No N/A Yes

Patient 5 New symptomatic AF 5 No 57 No N/A No

Patient 6 AF, Tachyarrhythmia mediated LV

dysfunction

31 No 42 Yes 445 No

Patient 7 Worsening of existing AF 18 AF 65 Yes 414 No

Patient 8 New AF, bleeding issues with

anticoagulation

56 No 60 No N/A No

Patient 9 New AF 67 No 51 No N/A No

Patient 10 Symptomatic AF 22 No 69 No N/A No

Patient 11 Uncontrolled AF 13 AF 42 Yes 445 Yes

Patient 12 New AF 40 No 60 Yes 384 No

Patient 13 New AF 36 No 60 Yes 435 Yes

Patient 14 Symptomatic AF 3 No 70 Yes 410 No

Patient 15 New AF 1 No 57 No N/A No

Patient 16 New AF 15 No 56 No N/A Yes

Patient 17 New AF 23 No 35 Yes 486 Yes

Patient 18 Recurrent AF 4 AF 41 No N/A No

accounting for baseline CV risk factors, ibrutinib was associated
with a much higher incidence of VAs compared to similar
patients not taking ibrutinib with a risk ratio up to 12.4
(16). When estimating the incidence of VAs in clinical trials
involving ibrutinib, it was found that the incidence of VAs
was significantly higher in patients receiving ibrutinib therapy
compared to non-ibrutinib therapies (17). Yet, the detailed
characterization, subtypes, and true incidence of VAs remain
unknown as only symptomatic, clinical events were included in
the analysis.

This study is unique in that it utilizes Holter event
monitors which record all arrhythmic events, inclusive
of both symptomatic and asymptomatic, over 2 weeks to
comprehensively and unbiasedly characterize VAs among the
patients treated with ibrutinib. In this study, the incidence of VAs
was substantially higher with NSVTs captured in 43% of patients
and a >1% burden of PVCs in up to 22% of symptomatic or
arrhythmia-prone patients who were treated with ibrutinib and
required Holter monitor screening. The observed rate of NSVT
is an order of magnitude higher than the reported incidence
of NSVT without known heart disease, which is generally in
the range of 0.5–1% (18). Our results support the notion that
ibrutinib is associated with a more frequent occurrence of VAs
than previously believed. This finding also raises the question
of underdiagnosis of VAs in patients treated with ibrutinib and
emphasizes the need for further research in and more intensive

monitoring of arrhythmias associated with ibrutinib therapy,
and also other TKIs.

Multiple mechanisms have been proposed regarding the
pathogenesis of TKI-induced arrhythmia. A recent study showed
that off-target inhibition of C-terminal Src kinase (CSK), a non-
receptor tyrosine kinase that inhibits Src kinase family members,
may be responsible for the increased arrhythmogenicity seen with
ibrutinib therapy (19).While CSKwas reported to be expressed at
a lower level in bulk ventricular vs. atrial tissue (19), it was found
in both atrial and ventricular myocytes to a similar level (20) at
the individual cell level which might explain the high burden
of VAs observed in our study. Other proposed mechanisms for
VAs due to ibrutinib include QTc prolongation and enhanced
automaticity. In our cohort, the QTc of patients who developed
NSVT was not found significantly prolonged (median duration
of 422 ms).

Limitations of our study include patients enrolled in a single
center, relatively small size of patients, and the absence of event
monitors in all patients on ibrutinib. Notably, patients included
in our study had an event monitor placed due to symptoms,
ranging from palpitations to syncope, which can induce a
selection bias to overestimate the incidence of arrhythmias in
this patient population. Our cohort also consisted of older
patients with a mean age of 77 years, more male patients,
and patients with a modest burden of cardiovascular risk
factors, all of which are known risk factors for developing
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atrial or VA. No statistically significant correlation was found
between development of AF and clinical risk factors which
have been shown to be related in larger studies such as age
and hypertension, likely due to the small sample size of our
cohort. Given the limited size of the cohort, only descriptive
and univariate statistical analyses were performed. Additional
clinical data such as alcohol intake data and prescription of
other AF-inducing drugs could not be reliably obtained from
our retrospective chart review and therefore not included
in this analysis. Regarding non-AF SVT, we were unable to
further classify the subtypes due to the limited quality of
signals. Finally, we were unable to get the rates of ibrutinib
discontinuation from the cohort that did not have event monitors
placed to compare them to the patients included in this
analysis. As such, a prospective and multicenter study would
be warranted to better characterize arrhythmia associated with
ibrutinib therapy.

CONCLUSION

In this large dataset of Holter monitors on patients treated
with ibrutinib, we find a significant burden of both
atrial and VAs resulting in treatment interruption due to
arrhythmias and related symptoms. Our results highlight
the need for intentional monitoring and management
of both atrial and VAs when patients are treated with
ibrutinib therapy.
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In recent years, the incidence of breast cancer has been increasing on an annual

basis. Human epidermal growth factor receptor-2 (HER-2) is overexpressed in 15-20%

human breast cancers, which is associated with poor prognosis and a high recurrence

rate. Trastuzumab is the first humanized monoclonal antibody against HER-2. The

most significant adverse effect of trastuzumab is cardiotoxicity, which has become an

important factor in limiting the safe use of the drug. Unfortunately, the mechanism

causing this cardiotoxicity is still not completely understood, and the use of preventive

interventions remains controversial. This article focuses on trastuzumab-induced

cardiotoxicity, reviewing the clinical application, potential cardiotoxicity, mechanism and

discussing the potential interventions through summarizing related researches over the

past tens of years.

Keywords: trastuzumab, cardiotoxicity, breast cancer, adverse reaction, rational drug use

INTRODUCTION

Currently, the incidence of breast cancer has been increasing year by year, and now has
the greatest incidence of malignant tumors worldwide, with obvious geographical differences.
According to GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the
International Agency for Research on Cancer, female breast cancer has surpassed lung cancer
as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (1). Human
epidermal growth factor receptor-2 (HER-2) is an important biomarker for breast cancer as
well as a therapeutic target. Of breast cancer patients, 15-20% are HER-2 positive, which is
usually considered the most serious subtype due to its poor prognosis and high recurrence
rate (2, 3). Trastuzumab is a humanized monoclonal antibody directed against HER-2, initially
approved as first-line treatment of HER-2-positive recurrent metastatic breast cancer in 1998.
Introduction of trastuzumab to chemotherapeutic regimes has significantly increasing the life
expectancy of patients with HER-2 positive, aggressive breast cancer. Meanwhile, there have been
increasing reports of trastuzumab-induced cardiotoxicity (TIC) in recent years. To date, the most
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relevant clinical solution for TIC is trastuzumab interruption,
but this approach may cause cancer recurrence. Therefore,
understanding the mechanism of TIC and the related preventive
measures is paramount for the safe and effective treatment of
HER2-positive breast cancer patients. Here, we have attempted
to provide an overview of our current knowledge of this
effect, focusing primarily on clinical manifestations, influencing
factors and mechanism. We also discussed the prevention and
pretreatment, with the goal of providing reference for related
research and clinical use.

OVERVIEW OF TRASTUZUMAB FOR
HER-2-POSITIVE BREAST CANCER

Trastuzumab is an important HER-2 targeted drug. The gene
encoding HER-2 is localized on chromosome 17 (4) and encodes
a transmembrane glycoprotein with tyrosine kinase activity
that plays an important role in cell survival, proliferation, and
differentiation (5, 6). HER-2 is a member of the epidermal
growth factor receptor (EGFR) family and has two forms of
activation, homodimerization and heterodimerization with other
receptors in the family (HER-1, HER-3, HER-4), either of which
triggers cellular pathways including MEK/Erk, PI3K/Akt (7, 8).
The mechanism of trastuzumab has not been fully elucidated and
may be related to inhibiting the formation of the homodimer
by binding to the HER2 extracellular structural domain IV,
blocking downstream cellular pathways and thus blocking
tumor cell proliferation (9, 10). Recently, Tsao et al. (11) found
that the dominant therapeutic mechanism of trastuzumab is
through its elicitation of tumor associated macrophages, which
mediated antibody-dependent cellular phagocytosis. After HER2
overexpression was discovered to be associated to poor clinical
outcomes in breast cancer patients, it quickly became the focus of
intensive investigations. In 1989, Hudziak et al. (12) found that
a mouse monoclonal antibody to HER-2 successfully inhibited
the proliferation of breast cancer cells. Researchers humanized
mouse-derived 4D5 monoclonal antibodies and the most active
of these was named trastuzumab (13). It was approved by the
FDA in 1998 for first-line treatment of HER-2-positive recurrent
metastatic breast cancer. Trastuzumab in combination with other
agents significantly prolonged median survival (25.1 vs. 20.3
months; p< 0.008), progression-free survival (7.4 vs. 4.6 months;
p < 0.001), improved objective remission rates (50 vs. 32%; p <

0.001), and reduced one-year mortality (22 vs. 33%; p < 0.008)
(14). Several large foreign clinical trials have shown that the use
of trastuzumab after receiving chemotherapy can significantly
reduce the risk of breast cancer recurrence and death (15–17).
Furthermore, a joint analysis of two large clinical trials (NCCTG
N9831 and NSABP B-31) found that patients with early-stage
HER2-positive breast cancer benefited from the addition
of trastuzumab to conventional chemotherapy followed by
treatment with paclitaxel, resulting in a significant and sustained
reduction in cancer recurrence rates and a 37% improvement
in overall survival (18). Both Chinese guidelines for diagnosis
and treatment of pancreatic cancer 2019 and NCCN Clinical
Practice Guidelines in Oncology recommend trastuzumab

as the first choice in combination with chemotherapy
drugs (19).

CLINICAL MANIFESTATIONS OF
TRASTUZUMAB-INDUCED
CARDIOTOXICITY

It is generally accepted that, unlike anthracyclines, the
cardiotoxicity caused by trastuzumab is not dose-dependent,
does not occur in all patients, and is reversible (20). Left
ventricular dysfunction (LVD) and heart failure (HF) are
relatively common and severe manifestations of cardiotoxicity
in cancer therapy (21). The Cardiac Review and Evaluation
Committee (CREC) defined the cardiotoxicity as one of the
following: (1) cardiomyopathy characterized by a decrease in
cardiac left ventricular ejection fraction (LVEF) that was either
global or more severe in the septum; (2) symptoms of congestive
heart failure (CHF); (3) associated signs of CHF, including but
not limited to S3 gallop, tachycardia or both; and (4) decline
in LVEF of at least 5 to <55% with accompanying signs or
symptoms of CHF or a decline in LVEF of at least 10% to <55%
without accompanying signs or symptoms (22). Any of the above
can be defined as cardiotoxicity. A frequently used definition of
treatment-related cardiotoxicity in clinical trials is an absolute
decrease in LVEF of 10% to a value of <55% (23). Of these
definitions, there may be differences between individual patients
regarding the decrease in LVEF. Researchers analyzed 1,437
echocardiograms from 324 patients over a follow-up period of
up to 3.5 years, and revealed three main patterns of LVEF change
over time: (1) steady decline over time; (2) mild early and late
sustained decline; (3) early significant decline with late partial
recovery (24).

In addition to left ventricular dysfunction and heart failure,
studies also reported the development of arrhythmias, sick
sinus node syndrome, and atrial flutter in patients undergoing
treatment with trastuzumab (25). Recently, through a secondary
analysis of a clinical trial, investigators found that TIC is
characterized by the presence of both left ventricular dysfunction
and reversible myocardial inflammation and edema, and that
trastuzumab may be associated with deleterious changes in
cardiac metabolic phenotype (26).

THE INCIDENCE AND INFLUENCING
FACTORS OF TIC

Many clinical studies have demonstrated the cardiotoxicity
associated with trastuzumab, and this article focuses on a few
large clinical studies of adjuvant therapy with combination
or sequential trastuzumab. In the N9831 study (27), in the
two trial groups using trastuzumab, the cumulative incidence
of CHF or cardiac death over 6 years was 2.8 and 3.4%,
respectively, resulting in risks that were 4.7 and 5.7 times
higher than not using trastuzumab. The BCIRG006 (17) study
found that the addition of trastuzumab after anthracycline
treatment significantly increased the odds of CHF, and the risk of
decreased LVEF was 1.6 times greater than without trastuzumab.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 January 2022 | Volume 8 | Article 82166394

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Lin et al. Trastuzumab-Induced Cardiotoxicity

Furthermore, the incidence of cardiac events reported by NSABP
B-31were 1.3% in the control group and 4.0% in the trastuzumab
group, with 15.5% of the trastuzumab group discontinuing the
drug for cardiac reasons (28). The BIG1-01 (HERA) study (16,
29) conducted a comparative trial of 5102 HER-2 positive early-
stage breast cancer patients over 1 and 2 years, respectively.
Although the incidence of severe CHF was 0.8% in both groups,
the incidence of asymptomatic drop in LVEF was significantly
higher in patients on trastuzumab for 2 years (7.2%) than for 1
year (4.1%). The rate of discontinuation of treatment due to TIC
was 5.2% during the 1-year period and 9.4% during the 2-year
period. Additionally, an 11-year follow-up of the study found that
the most of the TIC occurred during the patients’ dosing period
and no delayed cardiotoxicity was seen (See Table 1).

The incidence varies depending on the assay and criteria for
cardiotoxicity used by researchers amongst the different clinical
trials, as well as on the selection of patients participating in
the trials. For example, in the HERA trial, a lower incidence
of cardiotoxicity may be due to the exclusion of patients who
had a cardiac event prior to treatment from the trial. Because
patients with significant disease, including those at high risk
for cardiovascular disease, are often excluded from randomized
controlled trials, the incidence may differ from the real world. A
real-world study based on trastuzumab for cardiotoxicity due to
HER2-positive breast cancer that included more than 3,700 study
subjects showed a CHF incidence of 2.8%, with a 1.0% incidence
of severe CHF (31).

Risk factors for development of TIC include previous
anthracycline exposure and conventional cardiovascular risk
factors. Several clinical studies have demonstrated that previous
anthracycline exposure appears to be the most important factor
in worsening cardiotoxicity (32, 33). This may be related to the
fact that the inhibition of the HER2 pathway by trastuzumab
exacerbates damage caused by oxidative stress induced by
anthracyclines, allowing for further accumulation of ROS (34).

In addition to co-administration, conventional cardiovascular
risk factors have been associated with TIC. A recently published
systematic review and meta-analysis focusing on the relationship
between conventional cardiac risk factors and trastuzumab-
induced cardiotoxicity in breast cancer treatment showed that
age ≥ 60 (OR 2.03, 95% CI 1.38-3.00, P = 0.0004), hypertension
(OR 2.01, 95% CI 1.30-3.09, P = 0.002), smoking (OR 1.33,
95% CI 1.07-1.65, P = 0.01), diabetes (OR 1.49, 95% CI 1.22-
1.81, P = 0.0001), family history of coronary artery disease
(OR 5.51, 95% CI 1.76-17.25, P = 0.00001), known history of
coronary artery disease (OR 6.27, 95% CI 2.22-17.69, P= 0.0005)
were strongly associated with the development of TIC (35).
Besides, combination of obesity and being overweight was also
a significant influencing factor (36).

MECHANISM OF
TRASTUZUMAB-INDUCED
CARDIOTOXICITY

The exact mechanism of TIC has not been fully elucidated,
and numerous in vitro and in vivo studies suggest that it

may involve multiple cellular and molecular mechanisms (37).
The inhibition of NRG-1/HER and downstream signaling
pathways has always posed a plausible explanation for TIC, but
the underlying molecular mechanisms still remain undefined.
In addition, recent research has investigated the inhibition
of autophagy and alterations in cellular metabolic pathways
in cardiomyocytes as potential causes for the development
of cardiotoxicity.

Downregulation of HER2 Signaling and
Cardiotoxicity
In addition to being expressed in tumor tissue, HER2 has been
shown to be expressed in adult cardiomyocytes along with
other members of the family (HER1, HER3 and HER4) (8).
HER2, together with its ligand, NRG1, is closely tied to the
maintenance of adult cardiac function and the development
of cardiomyocytes. When the heart becomes hemodynamically
unstable or stimulated, cardiac microvascular endothelial cells
can release NRG1 (38, 39). After acting in a paracrine form in
cardiomyocytes, NRG1 binds to HER4 and triggers HER4/HER4
homodimerization or HER4/HER2 heterodimerization, which
can later trigger a series of pathways including the MAPK
pathway and PI3K-Akt (40).

The activation of the Akt family can trigger many proteins
through phosphorylation, thereby initiating tumor cell survival
and inhibiting apoptosis (41). Ravingerova et al. (42) used
a chronic cardiac ischemia rat model to discover that Akt
also increases glucose and lipid metabolism in cardiomyocytes
through nutrient uptake and ensures energy in cardiomyocytes
during hypoxia. Furthermore, the activation of the PI3K-
Akt pathway promotes nitric oxide (NO) production in adult
ventricular myocytes, thereby protecting them from oxidative
stress. Moreover, Akt can initiate alterations in mitochondrial
respiration, thereby reducing reactive oxygen species (ROS)
production and improving cell survival. If HER2 signaling is
blocked, PI3K-Akt pathway blockade will cause the accumulation
of ROS in cardiomyocytes, thereby triggering the apoptosis of
cardiomyocytes (43).

The MAPK pathway is another pathway associated with TIC.
The MAPK pathway consists mainly of three protein kinases,
Raf/MEK/ERK, that cascade to amplify external signals and
thus cause cell proliferation and differentiation (44). Meanwhile,
the phosphorylation of ERK1/2, inhibits the opening of the
mitochondrial osmotic transition pore and suppresses the
decrease in membrane potential, thus stabilizing mitochondrial
function (45).

In summary, the activation of NRG1/HER and downstream
signaling pathways plays an important role in protecting
the stability of cardiac function. Trastuzumab inhibits the
dimerization of HER4/HER2 by binding to HER2 and thereby
inhibiting the above pathways (see Figure 1), which may be
one of the potential mechanisms for TIC. In fact, NRG1/HER
signaling in the heart is part of a stress-activated compensatory
system that plays a minor role under physiological conditions,
but can play a protective role when the heart is exposed to
cardiotoxic drugs or ischemia, which is consistent with the reality
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TABLE 1 | Cardiac toxicity induced by trastuzumab.

TRIAL (Ref.) Median

follow-up time

Enrolled

patients

Design Asymptomatic drop

in LVEF (≥10-55%)

Severe

CHF/CE

NCCTG(Alliance)N9831 (27) 9.2 1,944 AC-paclitaxel

AC-paclitaxel-H

AC-paclitaxel plus H-H

20.5%

19.6%

22.5%

0.6%

2.8%

3.4%

BCIRG006 (17) 5 3,222 AC-docetaxel plus H

AC-docetaxel

Docetaxel-carboplatin-H

18.6%

11.2%

9.4%

2.0%

0.7%

0.4%

NSABP B-31 (28) 7 1,830 AC-paclitaxel

AC-paclitaxel plus H-H

NO MENTIONED 1.3%

4.0%

HERA(BIG1-01) (29) 8 3,387 Observation

1 Year of H

2 Year of H

0.9%

4.1%

7.2%

0

0.8%

0.8%

PHARE (30) 3.5 3,384 1 year of AC-H

6 months of AC-H

6%(CHF, or LVEF ≥ 10-55%)

2%(CHF, or LVEF ≥ 10-55%)

A, anthracyclines; C, cyclophosphamide; H, trastuzumab; CE, cardiac event.

CHF, congestive heart failure.

FIGURE 1 | A proposed cellular mechanism of the cardiotoxicity of trastuzumab. Trastuzumab inhibited Her2/4 dimerization, preventing autophosphorylation and

subsequent downstream pathways such as PI3K/Akt and MAPK.

that trastuzumab increases cardiotoxicity when combined with
anthracyclines (46, 47).

Inhibition of Autophagy
Autophagy is a catabolic process that aims to recycle cellular
components and damaged organelles in response to different
stress conditions (48). Thomas et al. found that deletion of the
anti-apoptotic protein MCL-1 in mouse cardiomyocytes leads

to the inhibition of autophagy, eventually resulting in heart
failure, and further indicated that MCL-1 deficiency is associated
with mitochondrial dysfunction (49). Mohan et al. found that
trastuzumab treatment decreased the protein expression of
autophagy-related signaling molecules such as ATG5-12, ATG7,
ATG14, and Beclin 1, and also demonstrated that trastuzumab-
mediated inhibition of autophagy resulted in increased ROS
production in cardiomyocytes (50). In earlier years, some
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researchers found that anthracycline increases autophagy and
that this is closely related to its cardiotoxicity, which also suggests
that anthracyclines and trastuzumab differ in their mechanisms
of inducing cardiotoxicity (51, 52).

Alterations of Cardiomyocyte Metabolism
The inhibition of the NRG1/HER signaling pathway still does
not fully answer the question of why trastuzumab causes
cardiotoxicity. For example, TIC is often reversible in clinical
settings, which contradicts the above explanation that blocking
the HER2 pathway leads to cardiomyocyte apoptosis. Alterations
in cardiac energymetabolism are a key feature of heart failure and
are thought to exacerbate its progression (53). Necela et al. (54)
found that after trastuzumab treatment, there was a reduction
in glucose uptake in human induced pluripotent stem cell-
derived cardiomyocytes (IPSC-CMs) as well as a significant
downregulation of SLC6A6. SLC6A6 is a metabolism-related
gene, and SLC6A6 knockout mice exhibit a cardiomyopathy
with myocardial atrophy phenotype, which also provides a
potential mechanism for TIC (55). Recently, investigators have
found that clinically relevant doses of trastuzumab impaired the
contractile and calcium regulatory functions of IPSC-CMs but
did not lead to cardiomyocyte death, and that further RNA-SEQ
with subsequent functional analysis revealed that mitochondrial
dysfunction and altered cardiac energy metabolic pathways
were the main causes of the TIC phenotypes, thus suggesting
that metabolic modulators are important for the treatment of
TIC (56).

PREVENTION AND TREATMENT OF TIC

Monitoring of TIC
Strict monitoring of cardiotoxicity during the treatment
of trastuzumab facilitates timely adjustment of dosing and
optimization of treatment regimens by clinicians. LVEF,
measured by cardiovascular magnetic resonance (CMR) or
2-dimensional echocardiography (2DE), is currently the most
commonly used index for monitoring left ventricular function,
but LVEF has limitations and often underestimates cardiac
compromise in patients. In a retrospective study, investigators
found that baseline left ventricular end-diastolic volume (LEVD)
was an independent predictor of cardiotoxicity and more reliably
identified patients at high risk of cardiotoxicity (57). Besides,
echocardiographic measurement of longitudinal shortening of
the heart during contraction, or global longitudinal strain (GLS),
can identify early changes in left ventricular contractility before
ejection fraction (EF) declines. Researchers found that1GLS at 6
months were predictors of decrease in EF at 12 months (58). And
GLS-guided cardioprotective therapy (CPT) prevents reduction
in LVEF and development of cardiac dysfunction in high-risk
patients undergoing potentially cardiotoxic chemotherapy,
compared with usual care (59). Improvements in testing
technology have allowed for the emergence of serum biomarkers
that play an increasing role in the monitoring of cardiotoxicity.
The 2016 ESC Position Paper on cancer treatments and
cardiovascular toxicity published by the European Society of
Cardiology (ESC) proposed that the use of serum biomarkers

is an important tool for baseline risk assessment and diagnosis
of cardiovascular disease. The statement recommends cardiac
troponin (CTn) baseline measurement for all cancer patients,
as the strongest independent predictor of cardiotoxicity, and in
patients with early invasive HER2+ breast cancer undergoing
neoadjuvant or adjuvant therapy. B-type natriuretic peptide
(BNP)/amino-terminal pro-B-type natriuretic peptide (NT-
proBNP) with CTn testing were recommended after receiving
trastuzumab (60). In recent years, soluble growth-stimulating
expression gene 2 protein (sST2) has received wide attention
as a novel heart failure marker. Some studies have shown that
sST2 levels correlate with the severity of heart failure, LVEF
and NT-proBNP in patients (61). In addition, Zhang et al. (62)
analyzed 65 HER2-positive breast cancer patients treated with
trastuzumab and applied ordered logistic regression to analyze
the relationship between serum miR-222-3p and adverse events
and found that serum miR-222-3p was a potential predictor
of TIC.

Choosing an Anthracycline-Free Regimen
In the BCIRG006 clinical trial, the regimen combining
anthracyclines with trastuzumab had similar long-term survival
rates as the paclitaxel and cyclophosphamide combined with
trastuzumab regimen, while the incidence of cardiotoxicity in the
latter group was much lower than former (17). A randomized
multicenter phase III trial of 438 patients with stage II and III
HER2-positive breast cancer showed an estimated 3-year event-
free survival rate of 93% in patients treated with anthracyclines
and 94% in patients not using, while decrease in LVEF was
more common in the anthracycline group (63). This suggests
that avoiding anthracyclines when using trastuzumab in favor of
other classes of drugs may reduce the likelihood of cardiac events
without compromising efficacy.

In addition to its use in combination with chemotherapeutic
agents, trastuzumab has shown a good prognosis in combination
with other antitumor drugs. Unlike trastuzumab, pertuzumab is
a humanized monoclonal antibody against the extracellular
structural domain II region of HER2, which inhibits
the heterodimerization of HER2 with HER3, thereby
blocking pathways including phosphatidylinositol 3-kinase
(PI3K/AKT/mTOR) and mitogen-activated protein kinase
(RAS/RAF/MEK/ERK) (64, 65). It acts at a different site from
trastuzumab in the extracellular structural domain of HER2
and there may be a synergistic effect when they are combined
(see Figure 2). The NeoSphere phase II study evaluated
the efficacy and safety of trastuzumab with pertuzumab in
combination with docetaxel in HER2-positive breast cancer
patients treated with neoadjuvant therapy, and showed that the
dual-target combination chemotherapy significantly increased
the pathologic complete remission rate (pCR) as compared to the
single-target, while the adverse effects were broadly consistent
with the trastuzumab monotherapy arm (66). Furthermore,
the TRYPHAENA trial demonstrated that the combination of
trastuzumab and pertuzumab, whether co-administered with
anthracyclines or with carboplatin, was usually well-tolerated
and also showed a higher rate of pCR and a lower incidence
of cardiotoxicity in the anthracycline-free trial group (67).
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FIGURE 2 | Trastuzumab and pertuzumab bind to different regions on HER2.

Trastuzumab is a humanized monoclonal antibody to IV subdomain of HER2.

Pertuzumab is a humanized monoclonal antibody to subdomain II of the

dimerization arm of HER2.

Similarly, the PEONY study demonstrated that dual-targeted
combination therapy significantly improved the pCR rate (68).
The 2019 NCCN guidelines recommend the TCHP regimen
[trastuzumab (H) + pertuzumab (P) in combination with
docetaxel (T) + carboplatin (C)] as a first-line treatment option
for HER-2-positive breast cancer. This regimen is anthracycline-
free and therefore has a higher safety profile for patients with
potentially dangerous cardiac function.

Pharmacological Prevention
Unlike anthracyclines, LVD caused by trastuzumab is usually
reversible, thus the ESMO guidelines mainly recommend
strategies such as observation and discontinuation of the drug
(69). However, a large retrospective cohort study found that
discontinuation of trastuzumab led to adverse clinical outcomes
(70). Therefore, it is necessary to use appropriate cardioprotective
agents in the clinical setting.

Angiotensin-Converting Enzyme Inhibitor or

β-Receptor Inhibitors
Early research found that NRG-1/HER signaling regulates
myocardial contractility and is influenced by circulating
catecholamines and angiotensin-II in animal models (39).
This may provide some theoretical basis for the use of ACEI
or β-receptor inhibitors in the prevention of TIC. Several
small randomized trials and single-center studies have also
reported that ACEI and β-blockers ameliorate chemotherapy-
induced cardiotoxicity, but these studies all emphasized
high-dose anthracycline-induced cardiotoxicity and have
limited clinical applicability in TIC (71, 72). In 2016, the
MANTICORE 101-Breast randomized clinical trial specifically
investigated the pharmacological prevention of TIC and found
that Perindopril and Bisoprolol were well-tolerated in the
prevention of TIC and attenuated the decrease in LVEF, but
trastuzumab-induced left ventricular remodeling was not
reversed (73). In another randomized clinical trial, however,

concomitant use of the angiotensin II receptor inhibitor
Candesartan did not prevent a reduction in LVEF (74). In 2019,
researchers evaluated the preventive effect of Lisinopril and
Carvedilol on cardiotoxicity with or without anthracyclines
prior to trastuzumab administration and found that both
drugs were more protective in patients who had exposure to
anthracyclines. Patients receiving pharmacological interventions
were more likely to benefit compared to the placebo group [(75);
Table 2].

Statins
A retrospective case control study found that in women with
HER2+ breast cancer receiving trastuzumab-based therapy with
or without anthracyclines, concomitant statin use was associated
with a lower risk of cardiotoxicity (76). And a recent meta-
analysis also showed that patients receiving statins during cancer
treatment had a lower incidence of cardiotoxicity and were more
likely to maintain LVEF during the follow-up period, suggesting
that statins have the potential to mitigate the cardiotoxic effects
of anthracyclines and trastuzumab (77). Rosuvastatin is a statin
with anti-lipid peroxidation effects (78). Kabel et al. (79) found
that rosuvastatin had a protective effect against TIC in mice due
to the antioxidant and anti-inflammatory properties combined
with its ability to induce STAT-3 expression and preserve the
morphology of the cardiomyocytes. This study also demonstrated
better results in combination with ubiquinone, the oxidized form
of coenzyme Q10.

AMPK Agonist
AMPK (Adenosine 5’-monophosphate (AMP)-activated
protein kinase) is considered to be a key regulatory kinase
of myocardial energy metabolism (80). Recently, researchers
identified mitochondrial dysfunction and altered cardiac energy
metabolic pathways as important potential mechanisms of
trastuzumab-induced cardiotoxicity (56). Susheel et al. (81)
found that low-dose metformin improved mitochondrial
function and provided significant myocardial protection against
ischemic heart failure by activating AMPK and downstream
signaling pathways involving eNOS and PGC-1. Wang et al.
(82) observed a heterodimeric shift of AMPKα2 to AMPKα1
in the hearts of heart failure patients and mice with transverse
artery constriction. They further found that overexpression
of AMPKα2 prevented drug-induced chronic heart failure
by increasing mitochondrial phagocytosis and improving
mitochondrial function in isolated adult mouse cardiomyocytes.
This is consistent with the finding that AMPK agonists (AICAR,
metformin) improve trastuzumab-induced symptoms of cardiac
insufficiency in IPSC-CMS (56). Although there are no relevant
clinical studies to prove whether an AMPK agonist has the
function of preventing trastuzumab cardiotoxicity, targeting
cellular energy metabolism is a potential research direction.
Additionally, it has been shown that activation of AMPK
can inhibit the growth of breast cancer cells and increase the
sensitivity of breast cancer as well as various other cancers, to
chemotherapy and radiotherapy (83). Therefore, it is of great
clinical interest to investigate whether AMPK agonists can be
used to combat TIC.
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TABLE 2 | Primary cardiac prevention studies in patients with breast cancer receiving trastuzumab.

References Enrolled

patients

Treatment Cardiac prevention strategy Results

Heck et al. (72) 130 Epirubicin (n = 28 with

trastuzumab)

candesartan 32 mg, metoprolol

100 mg, placebo (2 x 2 design)

Absolute LVEF change:

2.6% in placebo,

0.8% in candesartan;

Pituskin et al. (73) 99 Trastuzumab (n = 22 with

doxorubicin)

perindopril 8mg, bisoprolol

10mg, placebo (1:1:1)

LVEDVI not different among

arms

Boekhout et al. (74) 206 Epirubicin with trastuzumab candesartan 32mg, placebo LVEF decline:

19% in candesartan,

16% in placebo

Guglin et al. (75) 468 Trastuzumab (n = 189 with

doxorubicin)

carvedilol 10 mg, lisinopril

10 mg, placebo

LVEF decline:

32% in placebo,

29% in carvedilol,

30% in lisinopril.

LVEDVI, left ventricular end-diastolic volume index.

TABLE 3 | Active ingredients of Chinese medicine against cytotoxic drug–induced cardiotoxicity through regulation of the PI3K/Akt signaling pathway.

Active ingredients of Chinese

medicine (Ref.)

Experimental model dose/route/time Treatment Findings

Ferulic acid

Apigenin (85)

Wistar rats 100 mg/kg; p.o. for 7 days Doxorubicin ↓NF-κB/PKC-δ

↓p53/p38/JNK

↑PI3K/ Akt/mTOR

Cardiomyocytes 50µM for 24 h

Salvianolic acid B

(86)

BALB/c mice 2 mg/kg; i.v., for 7 days Doxorubicin arsenic

trioxide

↑PI3K/Akt

↓ GSK3β/ER

Cardiomyocytes 10µM for 12 h

Paeonol (87) BALB/C Mice 50 mg/kg, for 6 days Epirubicin ↓PI3K/Akt/mTOR

↓NF-κB

H9c2 cells 50 mg/kg, for 6 days

Rutin (88) C57BL/6 mice 30 and 50 mg/kg; i.v. for 7

days

Pirarubicin ↑PI3K/Akt/mTOR

↓NF-κB

H9c2 cells 10, 30, 50, and 70µM for

1 h

Astragalus polysaccharide (89) C57BL/6 mice 1.5 g/kg; p.o. for 3 days Doxorubicin ↑PI3K/Akt

↓p38 MAPK

Rat Cardiac Myocytes 50µg/ml for 1 h

Calycosin (90) Kunming mice 50 and 100 mg/kg; i.p. for

7 days

Doxorubicin ↑PI3K-Akt

↑Sirt1/NLRP3

H9c2 cells 200µM for 24h

Total flavonoids from

Clinopodium

Chinense (91)

Male Sprague-Dawley

(SD) rats

80 mg/kg, i.p. for 15 days Doxorubicin ↑PI3K/Akt

↑Nrf2/HO-1

H9c2 cells 6.25, 12.5, 25, and

50µg/ml for 24 h

Ginkgolide B (92) C57BL/10 mice 100 mg/kg, i.p. for 5days Doxorubicin ↑PI3K/Akt

↓p38 MAPK

H9c2 cells 1, 5 and 50µM for 30min

Saponins from leaves of Panax

Quinquefolius (93)

ICR mice 125 and 250 mg/kg; p.o. for

15 days

Cisplatin ↓NF-κB

↑PI3K/Akt/GSK-3β

Neferine (94) H9c2 cells 10µM for 24 h Doxorubicin ↑IGF-IR/PI3K/Akt

Potential Role of Traditional Chinese Medicine on TIC
There are many studies on the prevention and treatment
of anthracycline-induced cardiotoxicity in Traditional Chinese
Medicine (TCM), but reports regarding TIC are rare. The

inhibition of the NRG1/HER pathway is one of the possible
mechanisms of TIC. It has been suggested that activation of
Akt may protect cardiac function by inhibiting apoptosis (84).
Many active ingredients in Chinese medicine have been reported
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to show protective effects against cardiac injury by interfering
with the PI3K/Akt signaling pathway, as shown in Table 3 (85–
94). In addition, Zhang et al. (95) used network pharmacology
analysis to find that Shenmai injection has multi-target and
multi-pathway synergistic effects, which may exert myocardial
protective effects through the PI3K-Akt signaling pathway and
tumor microRNAs. The Shenmai injection treatment group
improved cardiac structure and function, reduced myocardial
pathological damage as well as the number of autophagic
vesicles in mice compared with the control group. Targeting
the inhibition of autophagy by trastuzumab, Liu et al. (96)
investigated the protectivemechanism of ginsenoside Rg2 against
TIC in human cardiac myocytes (HCMs), and found that it could
induce autophagy in HCMs by upregulating the expression levels
of p-Akt, p-mTOR, Beclin 1, LC3, and ATG5, thus providing
protection against TIC. At present, TCM is playing an increasing
adjuvant role in the process of cancer treatment, while its role in
the prevention and treatment of TIC has yet to be fully explored.
Further in-depth studies are of great significance to ensure the
safe use of trastuzumab as well as to promote the development of
TCM in China.

SUMMARY AND PROSPECTS

Trastuzumab is a landmark agent in the treatment of HER2-
positive breast cancer. It has changed the treatment paradigm
for HER2-positive breast cancer patients and has no alternative
to its status as a first-line drug for breast cancer. At the same
time, its cardiotoxicity remains a major constraint to its use.
The mechanism of trastuzumab cardiotoxicity has not been
fully elucidated, and there is no specific drug to prevent it in
clinical practice. Fewer studies have been conducted specifically
on the cardiotoxicity of trastuzumab than on anthracyclines.
Researchers should further clarify the mechanism of TIC,

establish a reasonable model of myocardial injury, determine

appropriate detection indicators, and conduct research on
relevant cardioprotective agents in response to the mechanism
in order to provide the possibility of safer use of trastuzumab.
In addition, TCM has shown great potential in the prevention
of antineoplastic drug-induced cardiotoxicity, and while few
studies have been conducted specifically for trastuzumab, this
provides a research direction for the prevention and treatment
of TIC. There are several hurdles at the clinical study level
given that studies evaluating patients treated with trastuzumab
alone are lacking, strategies to prevent anthracycline-induced
cardiotoxicity are not always applicable to trastuzumab, and
the definition and evaluation metrics of cardiotoxicity have
yet to be standardized. In clinical application, physicians as
well as pharmacists should fully understand the risk factors
and fully evaluate basic information such as age, previous
cardiovascular history, medication history, and the physical
condition of patients before drug administration. In addition,
high-risk patients need to be monitored closely throughout the
oncology treatment process. These efforts will maximize efficacy
while minimizing adverse effects.
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D-Dimer Is a Predictive Factor of
Cancer Therapeutics-Related
Cardiac Dysfunction in Patients
Treated With Cardiotoxic
Chemotherapy
Masayoshi Oikawa*, Daiki Yaegashi, Tetsuro Yokokawa, Tomofumi Misaka,

Takamasa Sato, Takashi Kaneshiro, Atsushi Kobayashi, Akiomi Yoshihisa,

Kazuhiko Nakazato, Takafumi Ishida and Yasuchika Takeishi

Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan

Background: D-dimer is a sensitive biomarker for cancer-associated thrombosis,

but little is known about its significance on cancer therapeutics-related cardiac

dysfunction (CTRCD).

Methods: Consecutive 169 patients planned for cardiotoxic chemotherapy were

enrolled and followed up for 12 months. All patients underwent echocardiography and

blood test at baseline and at 3-, 6-, and 12 months.

Results: The patients were divided into two groups based on the level of D-dimer

(>1.65µg/ml or ≦ 1.65µg/ml) at baseline before chemotherapy: high D-dimer group

(n = 37) and low D-dimer group (n = 132). Left ventricular ejection fraction (LVEF)

decreased at 3- and 6 months after chemotherapy in high D-dimer group [baseline,

65.2% (62.8–71.4%); 3 months, 62.9% (59.0–67.7%); 6 months, 63.1% (60.0–67.1%);

12 months, 63.3% (58.8–66.0%), p= 0.03], but no change was observed in low D-dimer

group. The occurrence of CTRCD within the 12-month follow-up period was higher in

the high D-dimer group than in the low D-dimer group (16.2 vs. 4.5%, p = 0.0146).

Multivariable logistic regression analysis revealed that high D-dimer level at baseline

was an independent predictor of the development of CTRCD [odds ratio 3.93, 95% CI

(1.00–15.82), p = 0.047].

Conclusion: We should pay more attention to elevated D-dimer levels not only as a

sign of cancer-associated thrombosis but also the future occurrence of CTRCD.

Keywords: cardio-oncology, D-dimer, cancer therapeutics-related cardiac dysfunction, heart failure, troponin I

INTRODUCTION

Recent advances in the diagnosis and treatment of cancers improve its prognosis. However,
anticancer drugs, namely, anthracyclines, monoclonal antibodies, tyrosine kinase inhibitors,
etc., induce cardiac dysfunction, resulting in poor prognosis in cancer survivors (1). Several
cardiac biomarkers and echocardiographic parameters, such as troponins, myeloperoxidase,
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interleukin-1β (IL-1β), Nucleotide-binding domain-like receptor
family pyrin domain containing 3, and reduced global
longitudinal strain, are proposed to detect the early phase
of cancer therapeutics-related cardiac dysfunction (CTRCD)
and prompt cardioprotective treatment can improve cardiac
function (2–7). Although those parameters are useful, careful
monitoring is required for all patients to detect early signs
of CTRCD. Thus, a novel biomarker that identifies high-risk
patients before chemotherapy is desirable to perform effective
clinical monitoring.

D-dimer is a sensitive biomarker for cancer-associated
thrombosis, but accumulating evidence suggests that
pretreatment D-dimer can be used as a prognostic biomarker for
patients with solid tumors (8). In cardiovascular fields, elevated
D-dimer is associated with not only thromboembolic events but
also heart failure mortality in heart failure patients with reduced
and preserved ejection fraction (EF) (9, 10).

Although D-dimer is a promising biomarker in the cardio-
oncology field, little is known about the relationship between
D-dimer and CTRCD. The present study aimed to evaluate
the predictive impact of D-dimer before chemotherapy on the
development of CTRCD.

METHODS

Study Subjects and Protocol
We enrolled 202 consecutive cancer patients, planned for
cardiotoxic chemotherapy, such as anthracyclines, human
epidermal growth factor receptor 2 (HER2) inhibitors, tyrosine
kinase inhibitors, and proteasome inhibitors, at Fukushima
Medical University hospital from November 2016 to March 2019
(Figure 1). Patients were excluded if they died or were transferred
to other hospitals within 12 months follow-up period (n = 33).
The remaining 169 patients were divided into two groups based
on the cut-off value of D-dimer, which was defined by the receiver
operator characteristic curve analysis to detect the occurrence of
CTRCD (Figure 2).

Hypertension was defined as a history of use of an
antihypertensive drug or systolic blood pressure of ≥140 mmHg
and/or diastolic blood pressure≥90mmHg. Diabetes was defined
as recent use of insulin treatment or hypoglycemic drug or
hemoglobin A1c ≥6.5%. Dyslipidemia was defined as a history
of use of cholesterol-lowering drugs, or triglyceride was ≥150
mg/dl, low-density lipoprotein cholesterol was ≥140 mg/dl,
and/or high-density lipoprotein cholesterol was ≤40 mg/dl. A
cumulative dose of anthracycline was expressed as a doxorubicin
equivalent (1). HER2 inhibitors included trastuzumab and
pertuzumab. Tyrosine kinase inhibitors included dabrafenib,
trametinib, lenvatinib, sorafenib, dasatinib, bevacizumab, and
pazopanib. Proteasome inhibitors included carfilzomib and
bortezomib. Radiation therapy was defined as irradiation to the
mediastinum and/or the heart field within the follow-up period.
Transthoracic echocardiography and blood sampling test were
performed at baseline as well as at 3, 6, and 12 months after
the administration of cardiotoxic chemotherapy. All procedures
used in this research were approved by the Ethical Committee of
Fukushima Medical University.

Echocardiography
Transthoracic echocardiography was performed by a trained
sonographer, and images were checked by another trained
sonographer and an echo-cardiologist. We measured cardiac
function using EPIQ 7G (Philips Healthtech, Best, The
Netherlands). Left ventricular (LV) EF was calculated using the
modified Simpson’s method according to the guideline from
the American Society of Echocardiography and the European
Association of Cardiovascular Imaging (11). The LV mass was
calculated using the following formula:

Left ventricular (LV)mass=0.8

×






1.04×















LV diastolic diameter+

interventricular septum wall

thicness+LV posterior wall thicness





3

− (LV diastolic diameter)3
















+0.6g (11).

Cancer therapeutics-related cardiac dysfunction was defined as
a decrease in EF by more than 10% points, to a value <53%
(12). The LV end-diastolic volume index, LV end-systolic volume
index, LVmass index, and left atrial volume index were measured
using the B-mode ultrasound.

Blood Sampling
High sensitivity cardiac troponin I (TnI) was measured using an
assay based on Luminescent Oxygen Channeling Immunoassay
technology and run on a Dimension EXL Integrated Chemistry
System (Siemens Healthcare Diagnostics, Deerfield, IL, USA).
B-type natriuretic peptide (BNP) levels were measured using a
specific immunoradiometric assay (Shionoria BNP kit, Shionogi,
Osaka, Japan). D-dimer was measured using a latex agglutination
method (Lias Auto D-dimer Neo, Sysmex, Kobe, Japan).

Statistical Analysis
All statistical analyses were performed using Prism 9 (GraphPad
Software, San Diego, CA, USA) or R software packages version
3.6.3 (R core team 2020, Vienna, Austria). We used the Shapiro-
Wilk test to discriminate which variables were normally or
not normally distributed. Normally distributed variables were
shown as mean ± SD. Non-normally distributed variables
were indicated by a median with interquartile range. Category
variables were shown in numbers and percentages. Student’s t-
test was used for variables following a normal distribution, the
Mann-Whitney U-test was used for variables of the non-normal
distribution, and the chi-square test was used for categorical
variables. The time course of EF (baseline, 3-, 6-, and 12 months
after the administration of anthracyclines) was evaluated using
the Friedman test.

Logistic regression analysis was performed to identify the
variables to predict the occurrence of CTRCD. We selected
variables relating to the general condition and cardiac function,
i.e., age, echocardiographic parameters, use of anthracyclines,
BNP, hemoglobin, estimated glomerular filtration ratio, and the
elevation of D-dimer. The variables presenting p < 0.05 in the
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FIGURE 1 | Patient cohort selection.

FIGURE 2 | ROC curve analysis of D-dimer predicting the occurrence of

cancer therapeutics-related cardiac dysfunction. ROC, receiver operator

characteristic curve.

univariable analysis were entered into the multivariable analysis.
A receiver operating characteristic curve analysis was performed
to determine the optimal cut-off value of the D-dimer for
predicting the occurrence of CTRCD. The p of 0.05 or less was
defined as significant.

RESULTS

First, we performed a receiver operating characteristic curve
analysis to identify the threshold level of D-dimer to predict the
occurrence of CTRCD (Figure 2). A total of 12 patients suffered
from CTRCD within 12 months follow-up period. When we set
the cut-off value of D-dimer at 1.65µg/ml, sensitivity, specificity,

and area under the curve to predict CTRCD were 50.0%, 80.3%,
and 0.661, respectively. Then, we divided the patients into
two groups based on the cut-off value. Table 1 shows patient
characteristics at the baseline before chemotherapy. There were
no statistical differences in age, sex, and the usage of angiotensin-
converting enzyme inhibitors/angiotensin II receptor blockers
and β-blockers. The high D-dimer group included a lower rate
of breast cancer (35 vs. 67%, p = 0.0005), a higher rate of
ovarian/uterine cancer (19 vs. 6%, p = 0.0151), and a higher
rate of leukemia (16 vs. 4%, p = 0.0068) than low D-dimer
group. Echocardiographic data demonstrated that EF was slightly
higher in the high D-dimer group (67 ± 5 vs. 64 ± 5%, p =

0.0019). In laboratory data, the high D-dimer group showed
lower hemoglobin values and higher BNP values.

Time-dependent changes in EF are displayed in Figure 3. Low
D-dimer group showed no changes in EF within the follow-
up period, but EF was decreased at 3- and 6 months after
chemotherapy in high D-dimer group [baseline, 65.2% (62.8–
71.4%); 3 months, 62.9% (59.0–67.7%); 6 months, 63.1% (60.0–
67.1%); 12 months, 63.3% (58.8–66.0%), p= 0.03, Figures 3A,B].
The reduction of EF from baseline was larger in high D-dimer
group than in low D-dimer group (3 months:−4.0± 7.1 vs.−0.5
± 5.3, p = 0.0015; 6 months: −4.8 ± 8.0 vs. −0.2 ± 6.2, p =

0.0004; 12 months:−4.5± 7.3 vs.−0.4± 6.6%, p= 0.0024).
The occurrence of CTRCD during the 12-month follow-

up period was higher in the high D-dimer group than in the
low D-dimer group (16.2 vs. 4.5%, p = 0.0146). Multivariable
logistic regression analysis revealed that LV end-diastolic volume
index [odds ratio 0.95, 95% CI (0.91–0.99), p = 0.0122] and
high D-dimer levels [odds ratio 3.93, 95% CI (1.00–15.82), p =

0.0469] before chemotherapy were independent predictors of the
development of CTRCD (Table 2).
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TABLE 1 | Baseline clinical characteristics of patients with elevated or non-elevated D-dimer.

Variable Entire cohort (n = 169) Low D-dimer (n = 132) High D-dimer (n = 37) P-value

Age, years 57 ± 12 56 ± 12 58 ± 14 0.6265

Female, n (%) 146 (86%) 117 (89%) 29 (78%) 0.1078

Medications

Use of ACEi or ARB 23 18 5 0.9846

Use of β-blockers 4 3 1 0.8791

Cancer types

Breast cancer, n (%) 101 (60%) 88 (67%) 13 (35%) 0.0005

Lymphoma, n (%) 28 (17%) 20 (15%) 8 (22%) 0.3495

Ovarian or uterine cancer, n (%) 15 (9%) 8 (6%) 7 (19%) 0.0151

Leukemia, n (%) 11 (7%) 5 (4%) 6 (16%) 0.0068

Bone cancer, n (%) 2 (2%) 2 (2%) 0 (0%) 0.4513

Other cancers, n (%) 12 (7%) 9 (7%) 3 (8%) 0.7872

Cancer therapy

Anthracyclines 138 (82%) 104 (79%) 34 (92%) 0.0687

HER2 inhibitors 36 (21%) 31 (23%) 5 (14%) 0.1905

Tyrosine kinase inhibitors 8 (5%) 6 (5%) 2 (5%) 0.8277

Proteasome inhibitors 5 (3%) 5 (4%) 0 (0%) 0.2295

Dose of anthracyclines(doxorubicin equivalent), mg/m2 200 [161–240] 200 [180–240] 180 [112–300] 0.3874

Radiation therapy, n (%) 20 (12%) 15 (11%) 5 (14%) 0.7205

Cardiovascular risk factors

Hypertension, n (%) 40 (24%) 31 (24%) 9 (24%) 0.9154

Smoking history, n (%) 47 (28%) 37 (28%) 10 (27%) 0.9042

Diabetes mellitus, n (%) 16 (10%) 13 (10%) 3 (8%) 0.7493

Dyslipidemia, n (%) 44 (26%) 38 (29%) 6 (16%) 0.1235

Echocardiographic parameter

LV end-diastolic volume index, mm/m2 45 [36–55] 45 [36–55] 46 [36–55] 0.6517

LV end-systolic volume index, mm/m2 15 [13–20] 15 [13–19] 16 [12–20] 0.6431

LV mass index, g/m2 70 [59–85] 70 [59–85] 75 [60–87] 0.4644

LA volume index, ml/m2 23 [17–30] 23 [17–28] 23 [19–32] 0.3159

LV ejection fraction, % 65 ± 5 64 ± 5 67 ± 5 0.0019

E/A 1.0 [0.8–1.2] 1.0 [0.8–1.2] 0.9 [0.8–1.1] 0.5788

Laboratory data

Aspartate aminotransferase, IU/L 19 [15–23] 19 [16–23] 19 [15–26] 0.7973

Alanine aminotransferase, IU/L 15 [12–22] 15 [12–21] 15 [12–23] 0.7960

eGFR, ml/min/1.73 m2 72 [64–85] 73 [65–82] 69 [57–88] 0.3472

Hemoglobin, g/dl 13 [11–14] 13 [12–14] 11 [9–13] 0.0001

Uretic acid, mg/dl 4.7 ± 1.4 4.6 ± 1.3 4.7 ± 1.7 0.8197

B-type natriuretic peptide, pg/ml 12 [7–22] 11 [7–20] 17 [9–38] 0.0440

Troponin I, ng/ml 0.017 [0.017–0.017] 0.017 [0.017–0.017] 0.017 [0.017–0.017] 0.5440

D-dimer, µg/ml 0.6 [0.5–1.4] 0.5 [0.5–0.7] 3.1 [2.2–8.1] <0.0001

ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker; HER2, human epidermal growth factor receptor 2; LV, left ventricular; E/A, early to late diastolic

transmitral flow velocity; eGFR, estimated glomerular filtration ratio.

DISCUSSION

In the present study, we revealed the predictive features of
D-dimer in patients treated with cardiotoxic agents. First,
the threshold level of D-dimer was 1.65µg/ml to predict
the development of CTRCD. Second, EF was decreased
time-dependently in high D-dimer patients. Third, the
occurrence of CTRCD was significantly higher in high
D-dimer patients.

D-dimer is a pivotal biomarker of hypercoagulability and
thrombosis. Fibrin-bound plasmin degrades the fibrin network
into soluble fragments D-dimers and E fragments, thus increased
levels of D-dimer represent a global activation of coagulation
and fibrinolysis (13). Cancers produce hypercoagulable
and prothrombotic situations by secreting several pro-
thromboembolic factors, such as mucins, cysteine protease,
and tissue factors (14). Therefore, thrombi are easily generated
in patients with cancer, and thromboembolism is the second
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FIGURE 3 | Time-dependent changes in EF after chemotherapy. Data are expressed in mean with SD. Statistics is performed using Friedman’s test with Dunn’s

multiple comparisons test. EF, ejection fraction. (A) Changes in EF in the low D-dimer group. (B) Changes in EF in the high D-dimer group. EF, ejection fraction.

TABLE 2 | Parameters associated with the occurrence of CTRCD.

Univariate Multivariate

OR (95% CI) P-value OR (95% CI) P-value

Age, per 1 year increase 1.01 (0.96–1.05) 0.8470

Male 1.79 (0.32–33.57) 0.5852

Use of anthracyclines 1.18 (0.29–7.94) 0.8353

BNP, per 1 pg/ml increase 0.99 (0.98–1.02) 0.4239

LV ejectioin fraction, per 1% increase 1.07 (0.95–1.22) 0.2591

LV end-diastolic volume index, per 1 ml/m2 increase 0.95 (0.91–0.99) 0.0099 0.95 (0.91–0.99) 0.0122

E/A, per 1 increase 0.24 (0.05–1.39) 0.0934

Left atrial volume index, per 1 ml/m2 increase 0.99 (0.94–1.05) 0.7157

Hemoglobin, per 1 g/dl increase 1.13 (0.85–1.45) 0.3539

Estimated GFR, per 1 ml/min/1.73 m2 0.98 (0.95–1.02) 0.2989

Elevated D-dimer (1.65 mg/dl) 4.07 (1.20–13.84) 0.0218 3.93 (1.00–15.82) 0.0469

CTRCD, cancer therapeutics-related cardiac dysfunction; BNP, B-type natriuretic peptide; E/A, early to late diastolic transmitral flow velocity; LV, left ventricular; GFR, glomerular

filtration ratio.

leading cause of cancer-related morbidity and mortality (15, 16).
Although D-dimer is an established and widely used biomarker
for the screening of thrombus formation in patients with cancer,
prognostic features of D-dimer have become clinically overt
recently. The link between D-dimer and cancer progression
is reported in several papers (17, 18), and higher levels of
D-dimer are associated with poor prognosis in cancer patients
(18). Although the precise mechanisms are still complex and
uncovered, the pro-coagulable state may produce a suitable
milieu for cancer progression by recruitment of pro-metastatic
leukocytes, adhesion to the endothelium, transendothelial
migration, and restriction in natural killer cell-mediated
clearance of micrometastasis (19, 20). Accumulating evidence
showed that abnormal inflammation and oxidative stress are
key factors to the development of heart failure, and these also
play important roles in cancer progression and thrombus
formation (21–25). For example, IL-1β, a representative
inflammatory cytokine, induces cardiac dysfunction and
thrombus formation (26). IL-1β activates myddosome complex,
such as nuclear factor κB, myeloid differentiation factor
88, cryopyrin, and p38-MAPK, in cardiomyocytes, leading

to dysregulates metabolism in the sarcoplasmic reticulum,
calcium homeostasis, and myocardial apoptosis and necrosis
(7). In addition, IL-1β increased pro-coagulant state through
activating tissue factor-dependent mechanisms in endothelial
cells (27). Gomes et al. reported that blockade of IL-1 receptor
abolished the neutrophil extracellular traps-dependent pro-
thrombotic state and attenuated cancer-associated thrombosis
in murine breast cancer model (25). Considering the fact that
inflammation is a major contributor to cardiac dysfunction
and thrombus formation, cancer patients with high D-dimer
may be predisposed to cardiac dysfunction due to a chronic
inflammatory state. Cardiotoxic chemotherapeutic agents
are crucial and indispensable to performing cancer treatment.
Anthracyclines induce pro-inflammatory responses by increasing
tumor necrosis factor α (TNF-α), IL-1β, and IL-6, leading to
tumor cell death (28). Not only anthracyclines but also targeted
chemotherapy, such as trastuzumab and bevacizumab, increased
inflammatory cytokines after the treatment (29, 30). In the
present study, the patients with a high D-dimer group may
already have been exposed to an inflammatory state before
chemotherapy and were vulnerable to additional inflammatory
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stress by cardiotoxic agents, resulting in the development of
CTRCD. To elucidate the precise mechanisms was beyond
this study, but the importance of D-dimer should be noted
in the cardio-oncology field. Intervention with Pravastatin in
Ischemic Disease (LIPID) study revealed that elevated D-dimer
levels predict long-term risk of arterial and venous events,
cardiovascular disease mortality, in addition to that, increased
cancer incidence and mortality rate (31). To the best of our
knowledge, this is the first report assessing the relationship
between D-dimer levels and the development of CTRCD.
The importance of D-dimer should be taken into account
when managing patients with cancer who are treated with
cardiotoxic chemotherapy.

LIMITATION

This study has several limitations. First, this study was performed
using a relatively small number of patients and a short follow-
up period by a single center. Slight differences in EF at baseline
may be due to the small sample size of the high D-dimer
group. Second, although not statistically significant, a higher
proportion of patients in the high D-dimer group received
anthracycline-containing chemotherapies. This might affect the
results in the reduction in EF in the high D-dimer group.
Longer follow-up and larger population data were needed to
confirm the importance of D-dimer to the development of
CTRCD and cardiovascular prognosis. Third, D-dimer has
modest sensitivity and specificity to predict CTRCD in the
present study. The mechanisms by which CTRCD development
must be complicated, thereby predicting CTRCD by a single
biomarker is still challenging. D-dimer is frequently analyzed
in daily clinical practice to detect cancer-associated thrombosis.
Therefore, we think D-dimer is easy and useful for predicting
both CTRCD and thrombus formation.

CONCLUSION

Elevated D-dimer is a pivotal biomarker to predict CTRCD.
D-dimer should be taken into account when managing cancer
patients treated with cardiotoxic chemotherapy.
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Doxorubicin (DOX) is an extremely effective and wide-spectrum anticancer drug, but its

long-term use can lead to heart failure, which presents a serious problem to millions

of cancer survivors who have been treated with DOX. Thus, identifying agents that

can reduce DOX cardiotoxicity and concurrently enhance its antitumor efficacy would

be of great clinical value. In this respect, the classical antidiabetic drug metformin

(MET) has stood out, appearing to have both antitumor and cardioprotective properties.

MET is proposed to achieve these beneficial effects through the activation of AMP-

activated protein kinase (AMPK), an essential regulator of mitochondrial homeostasis

and energy metabolism. AMPK itself has been shown to protect the heart and modulate

tumor growth under certain conditions. However, the role and mechanism of the

hypothesized MET-AMPK axis in DOX cardiotoxicity and antitumor efficacy remain to

be firmly established by in vivo studies using tumor-bearing animal models and large-

scale prospective clinical trials. This review summarizes currently available literature for

or against a role of AMPK in MET-mediated protection against DOX cardiotoxicity. It

also highlights the emerging evidence suggesting distinct roles of the AMPK subunit

isoforms in mediating the functions of unique AMPK holoenzymes composed of different

combinations of isoforms. Moreover, the review provides a perspective regarding

future studies that may help fully elucidate the relationship between MET, AMPK and

DOX cardiotoxicity.

Keywords: doxorubicin, metformin, AMPK, doxorubicin cardiotoxicity, cardio-oncology

INTRODUCTION

The anthracycline doxorubicin (DOX) has been widely used for over 5 decades and is a
highly effective chemotherapeutic agent for the treatment of a broad spectrum of cancers
including various solid tumors and leukemia. Unfortunately, DOX chemotherapy can cause severe
cardiotoxic effects (1–3). Acute toxicity occurs immediately after treatment and is generally
transient. Chronic cardiotoxicity is more serious and culminates in irreversible congestive heart
failure. Currently, only the iron chelator dexrazoxane has been approved for limited clinical
use for reducing DOX cardiotoxicity in certain pediatric or breast cancer patients (4–7). Given
the continuing widespread use of DOX in cancer chemotherapies, it is imperative to identify
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new strategies that can protect against DOX cardiotoxicity
without compromising the anti-tumor activity of DOX.
Metformin (MET), a drug used for the first-line treatment of
type 2 diabetes, has been suggested as such a dual-function agent
that can simultaneously decrease DOX cardiotoxicity (8–11) and
increase its anticancer activity (12, 13). The differential effects
of MET on cardiomyocytes and cancer cells may be related to
the differences in cellular energy metabolism. Cardiomyocytes
are highly dependent on mitochondria for energy supply, while
cancer cells primarily use glycolysis-generated ATP. Therefore,
drugs such as MET that modulate mitochondrial function may
have substantially different effects on the heart as compared
to tumors. AMP-activated protein kinase (AMPK), a cellular
energy sensor, is activated by MET and implicated in both
cardioprotection and tumor growth. Most cell-based studies
have suggested AMPK as a downstream effector of MET that
functions to reduce DOX cardiotoxicity (9, 11, 14–17). However,
the role of AMPK in cancer has been controversial (18). It
remains uncertain whether and how AMPK affects the ability of
MET to modulate DOX cardiotoxicity or tumor growth in vivo.
This mini-review will extract evidence from currently available
literature for or against a role of AMPK in MET-mediated
protection against DOX cardiotoxicity. For the effects of MET
and AMPK in antitumor therapies, the readers are referred to
other review articles published elsewhere (18–24).

DOX CARDIOTOXICITY IS A SERIOUS
CLINICAL PROBLEM

Dox is an extremely effective and wide-spectrum antineoplastic
drug that can lead to dose-dependent cardiotoxicity, culminating
in heart failure (1–3). This presents a serious problem to millions
of cancer survivors who have been treated with DOX. Indeed, the
cardiovascular mortality in cancer survivors exceeds that caused
by cancer per se (25). DOX cardiotoxicity is even more significant
in childhood cancer since about half of all pediatric patients are
treated with anthracyclines andmany childhood cancer survivors
go on to develop cardiac dysfunction (26–28). Due to the dose-
dependent risk, the lifetime cumulative dose of DOX has been
recommended not to exceed 450 mg/m2 per patient (1). Thus,
DOX cardiotoxicity is a significant life-long health concern for
cancer survivors.

DOX INDUCES CARDIOTOXICITY VIA
MULTIPLE MECHANISMS

Several mechanisms have been proposed to account for the
ability of DOX to produce cardiotoxicity. DOX is concentrated
in the mitochondria and its quinone moiety is reduced by the
oxidoreductases to a semiquinone form which in turn donates
its excess electron to O2, leading to the formation of reactive
oxygen species (ROS) including superoxide anions (29, 30).

Abbreviations: DOX, doxorubicin; MET, metformin; ROS, reactive oxygen

species; AMPK, AMP-activated protein kinase; TOPIIα/β, topoisomerase IIα/β;

ACE, angiotensin-converting enzyme; IGF1, Insulin-like growth factor 1; P-gp,

P-glycoprotein; LKB1, Liver Kinase B1; MEFs, mouse embryonic fibroblasts.

Although the long-held ROS and oxidative stress theory of
DOX cardiotoxicity is strongly supported by numerous animal
studies (31–33), clinical trials have failed to demonstrate the
efficacy of antioxidant supplements in reducing DOX-triggered
cardiac injury (34, 35), suggesting that oxidative stress is not the
only mechanism that mediates DOX cardiotoxicity. Interestingly,
DOX has been shown to either bind with free iron (36)
or cause mitochondrial iron accumulation in the heart (37),
which may directly cause mitochondria-dependent ferroptosis
or produce additional ROS intensifying the oxidative stress (38).
The contribution of iron to DOX cardiotoxicity is demonstrated
by the ability of the iron chelator dexrazoxane to attenuate
DOX-induced cardiomyopathy (4, 5, 37). Another recognized
culprit of DOX cardiotoxicity is mitochondrial dysfunction
(39). Being the major site of DOX-induced ROS production,
mitochondria themselves are vulnerable to oxidative injury.
DOX interacts with the acidic lipoprotein cardiolipin in the
inner mitochondrial membrane, resulting in its peroxidation
and the opening of mitochondrial permeability transition pores
which in turn triggers cytochrome c release and apoptosis (40,
41). The third mechanism proposed for DOX cardiotoxicity is
through its effect on topoisomerase IIβ (TOPIIβ). While the
antitumor effect of DOX is through DNA intercalation and
TOPIIα inhibition (42–44), DOX also binds to TOPIIβ which
is expressed mainly in quiescent cells such as cardiomyocytes.
Mice null for TOPIIβ do not exhibit cardiotoxic effects with
DOX treatment (45), suggesting that TOPIIβ is a major mediator
of DOX cardiotoxicity. DOX is proposed to complex with
TOPIIβ, leading to the activation of p53 mediated DNA
damage pathways and the inhibition of genes implicated in
mitochondrial biogenesis. Interestingly, dexrazoxane is shown
to protect the heart by transiently depleting TOPIIβ levels in
cardiomyocytes, suggesting that dexrazoxane may reduce DOX
cardiotoxicity via both TOPIIβ depletion and iron chelation (46).
The last potential mechanism of DOX cardiotoxicity relates to
autophagy, a catabolic process for the cell to degrade long-lived
proteins and organelles in the lysosome. The exact function
of autophagy in DOX cardiotoxicity remains hotly debated,
which is not surprising given the dynamic nature of the multi-
step autophagic process and the numerous pathways implicated
in its regulation. Indeed, DOX has been shown to either
activate autophagy (17, 47–50) or inhibit autophagy (51–53),
paradoxically, both of which contribute to cardiotoxicity. Adding
to the confusion, DOX-triggered suppression of autophagy is
seemingly cardioprotective (54). These conflicting results may
be attributable to the differences in the experimental models
used, the developmental stages of cardiomyopathy, and the
dose and duration of DOX treatment, as well as the methods
applied to manipulate different steps of the autophagic process
and the techniques used to measure autophagic activities (49,
55). An early sign of DOX-induced mitochondrial damage
is the loss of mitochondrial membrane potential (56–58).
The latter is a major mechanism that triggers mitochondrial
degradation by autophagy, a process known as mitophagy.
However, as with autophagy, it remains controversial whether
DOX activates or inhibits mitophagy and whether mitophagy
contributes to or protects against DOX cardiotoxicity (59–62).
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FIGURE 1 | DOX induces cardiotoxicity via multiple mechanisms. DOX enters mitochondria triggering increased production of ROS, iron accumulation, cardiolipin

peroxidation, and mitochondrial injury. DOX also binds to topoisomerase IIβ (TOPIIβ), resulting in DNA damage and reduced mitochondrial biogenesis. In addition,

DOX causes autophagy/mitophagy dysfunction, leading to either reduced or excessive elimination of injured mitochondria, worsening cardiac injury.

Further investigation is needed to measure mitophagy flux and
elucidate the role of mitophagy in DOX cardiotoxicity by using
more reliable approaches and more clinically relevant animal
models. In summary, it is likely that DOX induces cardiotoxicity
via multiple mechanisms, including ROS generation, iron
accumulation, cardiolipin peroxidation/mitochondrial injury,
topoisomerase binding, and autophagy/mitophagy dysfunction
(Figure 1).

NEW STRATEGIES TO DIMINISH DOX
CARDIOTOXICITY IN CANCER PATIENTS
ARE DESPERATELY NEEDED

The current approach for reducing DOX cardiotoxicity is to
limit the overall cumulative dose of the drug. However, this
also narrows the therapeutic window for cancer treatment.
Other strategies for limiting its cardiotoxicity have been pursued.
Attempts to develop chemical analogs that retain anti-tumor
properties but have reduced cardiotoxicity have had minimal
success (63). Liposomal DOX has improved pharmacokinetics
and reduced accumulation in the heart (64) but has failed
to replace conventional DOX for treatment of most solid
tumors (65). An additional approach is to combine DOX
with a cardioprotective agent during treatment. Common
neurohormonal antagonists, such as β-adrenergic receptor
blockers and angiotensin-converting enzyme inhibitors, are
routinely used for treating non-cancer-related heart failure, but
they are not recommended for preventing and managing DOX
cardiotoxicity due to the marginal benefits and related adverse
events (66). Currently, only the iron chelator dexrazoxane has
been approved for clinical use for reducing DOX cardiotoxicity
(4, 5). Unfortunately, dexrazoxane is not a ubiquitous treatment
for anthracycline cardiotoxicity, and its use has been limited to
pediatric patients with high risk acute lymphoblastic leukemia

and breast cancer patients on high doses of DOX, given
the possibility of dexrazoxane to cause myelosuppression and
secondary malignancies (6, 67, 68). Therefore, it is imperative
to develop new strategies to protecting against DOX-induced
heart damage without compromising the anti-tumor activity of
DOX. In this regard, the antidiabetic drug metformin (MET) has
appeared to be such a promising dual-function agent that can
improve the clinical use of DOX.

METFORMIN PROTECTS THE HEART
AGAINST VARIOUS PATHOLOGICAL
CONDITIONS INCLUDING DOX
CARDIOTOXICITY

Metformin (MET) is an oral biguanide agent that was first
utilized to treat diabetes in France in 1957 (69) and approved
by the US FDA in 1994 and has since been widely used as
the first-line treatment for Type II diabetes due to its safety,
efficacy and tolerability (70, 71). MET has been shown to
protect the heart in people with or without diabetes mellitus
(72). Indeed, MET is associated with decreased risk of heart
failure (73) and reduced cardiovascular mortality independent
of its glucose lowering effects (74). The cardioprotective effects
of MET have been repeatedly confirmed by numerous pre-
clinical studies under various cardiac conditions (75–79). Not
surprisingly, MET can also reduce DOX cardiotoxicity in
many animal studies (8–11). This may hold true in humans
as well, given the ability of MET to attenuate radiation
cardiotoxicity in breast cancer patients (80). Unfortunately, a
phase II clinical trial “Use of Metformin to Reduce Cardiac
Toxicity in Breast Cancer” was prematurely terminated due to its
failure to meet target accrual (https://clinicaltrials.gov/ct2/show/
NCT02472353). Apparently, further clinical trials are needed to
confirm the cardioprotective effects of MET in cancer patients
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FIGURE 2 | MET reduces the toxic effects of DOX on cardiomyocytes but concurrently enhances the anticancer effects of DOX on tumor cells. As shown in the left

panel (heart), MET antagonizes DOX cardiotoxicity through several mechanisms, including attenuation of ROS generation and oxidative stress, inhibition of

mitochondrial damage and maintenance of energy production, increased expression of ferritin heavy chain, and activation of AMPK. At the same time, MET enhances

DOX antitumor effects (tumor, the right panel) through reduction of blood glucose, inhibition of cancer stem cells, reduction of IGF-1, modulation of adenosine A1

receptor (A1R), down-regulation of drug-resistant gene P-glycoprotein (P-gp), induction of apoptosis, inhibition of midkine, inhibition of mTOR, and activation of

AMPK. Of note, AMPK activation has been suggested to be the major mechanism that mediates both the anti-tumor and cardioprotective effects of MET. On the other

hand, the effects of MET on autophagy/mitophagy are not very clear. ↑, increase or upregulation; ↓, inhibition or downregulation; ROS, Reactive oxygen species;

TOPII, Topoisomerase II; A1R, Adenosine A1 receptor; IGF1, Insulin-like growth factor 1; P-gp, P-glycoprotein.

treated with DOX. MET has been suggested to antagonize
DOX cardiotoxicity through several mechanisms (left panel in
Figure 2), including attenuation of ROS generation and oxidative
stress, inhibition of mitochondrial damage and maintenance of
energy production (82), normalization of autophagy markers (8),
increased expression of ferritin heavy chain in cardiomyocytes,
and activation of AMP-activated protein kinase (AMPK) (11).
The role of AMPK in MET-induced protection against DOX
cardiotoxicity has been supported by numerous studies either in
cultured cells or in animals (8–11).

METFORMIN HAS ANTITUMOR
PROPERTIES THAT MAY SYNERGIZE
WITH THE ANTITUMOR ACTIVITY OF DOX

Several epidemiological studies, meta-analyses and animal
studies have revealed that MET has anti-neoplastic and
chemopreventive activities (20, 81) despite mixed results
observed in other studies (82, 83). Indeed, diabetic patients

taking MET have significantly reduced risk of cancer and lower
cancer-related mortality (84–89). Several small-scale clinical
trials have shown the ability of MET to induce favorable
cellular and molecular changes in cancer patients (90–93).
For example, clinical trials in pre-surgical endometrial cancer
patients exhibited a significant decrease in Ki67 with MET
monotherapy (19). Another study showed the ability of MET
to inhibit the increase of Insulin-like growth factor 1 (IGF-
1) and maintain the levels of IGF binding protein-1 although
the progression-free survival was not affected (91). In addition,
numerous animal studies have shown that MET can enhance
the anticancer activity of DOX (11–13, 94, 95). Thus, it
is highly desirable that large scale randomized clinical trials
be conducted to confirm the usefulness of MET in cancer
chemotherapy. Nevertheless, given the demonstrated anti-tumor
and cardioprotective properties ofMET, it is reasonable to believe
that MET can be used in DOX-containing chemotherapy to
enhance the antitumor activity of DOX and at the same time to
reduce its cardiotoxic effect (96). Metformin is believed to exert
its antitumor effects via multiple mechanisms (right panel in
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Figure 2), including activation of AMPK and inhibition ofmTOR
(13, 97, 98), reduction of blood glucose (21), reduction of insulin
and IGF-1(98), inhibition of cancer stem cells (99), modulation
of adenosine A1 receptor (100), down-regulating drug-resistant
gene P-glycoprotein (P-gp) (94), inhibition of midkine (101),
and induction of apoptosis (102, 103). Among them, AMPK
activation has been suggested to be the major mechanism
that mediates both the anti-tumor and cardioprotective effects
of metformin (11, 13, 21, 97). If this is true, modulation
of AMPK per se should improve the application of DOX in
antitumor therapy.

AMPK SIGNALING MAY PROTECT
AGAINST DOX CARDIOTOXICITY

AMP-activated protein kinase (AMPK) is a heterotrimeric
protein kinase composed of a catalytic α subunit and two
regulatory subunits (β and γ). Each subunit hasmultiple isoforms
encoded by distinct genes (α1, α2, β1, β2, γ1, γ2, and γ3),
and they combine to form 12 different AMPK holoenzymes
(104). All isoforms except for γ3 are expressed in mouse and
human heart, which can form 8 AMPK holoenzymes (105).
As an energy sensor, AMPK detects and reacts to fluctuations
in intracellular ATP levels under normal and stress conditions.
The activated AMPK affects multiple metabolic pathways to
maintain an energy homeostasis conducive to stress resistance
and cell survival (106). There has been continuous intense
research targeting AMPK for the treatment of multiple prevalent
diseases, such as obesity, diabetes, cancer and cardiovascular
diseases (107–109). Using AMPK deficient mice and chemical
activators of AMPK such as AICAR and MET, numerous studies
have shown that AMPK exerts a cardioprotective effect against
myocardial ischemic injury (110, 111), diabetic cardiomyopathy
(112), pathological cardiac remodeling (113), and heart failure
(109). However, the use of MK-8722, a pan-AMPK activator,
induces cardiac hypertrophy despite its ability to improve glucose
homeostasis in rodents and rhesus monkeys (114), casting some
doubt on the notion that AMPK activation always benefits the
heart. Indeed, the gain-of-function mutations of the AMPK
γ2 subunit result in severe cardiomyopathy in humans (115,
116), suggesting that the activation of some AMPK isoforms
or holoenzymes can be detrimental to the heart under certain
conditions. Interestingly, AMPK holoenzymes containing the
α2 rather than the α1 subunit are the primary mediators of
the cardiac phenotype of γ2 mutations (117), suggesting that
α1-AMPK may play a different role than α2-AMPK, which
underscores the complexity of isoform-specific functions of
AMPK. This isoform-specific phenomenon was also observed
in skeletal muscle where α2 but not α1 AMPK is responsible
for AICAR-induced glucose uptake (118). When it comes to
DOX cardiotoxicity, most cell-based studies have suggested
AMPK as cardioprotective (9, 11, 14–17) despite the fact that
DOX has been reported to either increase or decrease cardiac
AMPK activity depending on the dose and duration of DOX
treatment as well as the experimental models used (59, 119, 120).
Pharmacological agents including MET, statins and many others

can simultaneously activate AMPK and protect against DOX
cardiotoxicity, but this remains an association and the causality
between these two effects has not been established (119, 120).
For example, the proposed role of AMPK in MET-mediated
protection against DOX cardiotoxicity remains to be determined
by using genetic animal models lacking AMPK function. Also,
it remains essentially unknown which of the 8 isoform-specific
AMPK holoenzymes mediates the putative protective effects on
DOX cardiotoxicity in vivo.

AMPK PLAYS TEMPORAL AND
ISOFORM-DEPENDENT DICHOTOMOUS
ROLES IN CANCER

AMPK is considered to be both a tumor suppressor and an
oncogene depending on the context (22). Studies have suggested
AMPK as a tumor suppressor before disease arises, which is
further enhanced by the biguanide phenformin. However, once
cancer has occurred, AMPK becomes a tumor promoter to
enhance cancer cell survival by protecting against metabolic,
oxidative and genotoxic stresses (23). Indeed, the Liver Kinase
B1 (LKB1)/AMPK pathway contributes to tumor cell survival
by promoting cellular sensing of and adaptation to bioenergetic
stress. Repression of LKB1 by miR-17∼92 sensitizes MYC-
dependent lymphoma to biguanide treatment (121). In addition,
a loss of both AMPK α1 and α2 subunit isoforms in H-
Ras-transformed mouse embryonic fibroblasts (MEFs) caused a
complete failure of their growth in vivo in immunodeficient mice
(122). However, a loss of AMPK α2 alone caused the tumors
to grow more rapidly (123), suggesting isoform-dependent
differential effects of AMPK on tumor growth. In summary,
whether AMPK behaves as a tumor suppressor or a promoter
depends on the developmental stage of the tumor and the specific
isoform of the AMPK subunits.

MET ACTIVATES AMPK, BUT IT IS
UNKNOWN IF AMPK IS RESPONSIBLE
FOR CARDIOPROTECTION BY MET

Met has been shown to activate the AMPK pathway, and this
has been proposed as the major mechanism that mediates
the cardioprotective (9, 11, 109, 119, 120) and antitumor
(13, 96, 97, 124) effects of MET. Thus, pharmacologically
activating the AMPK pathway seems to be a two-birds-with-
one-stone strategy to simultaneously reduce DOX cardiotoxicity
and enhance its antitumor activity. However, it remains to
be determined whether AMPK is indeed responsible for the
potential double benefits of MET in humans or in clinically
relevant animal models. Indeed, MET is shown to reduce
pathological cardiac remodeling in the absence of AMPKα2
(76), suggesting the possibility that MET may reduce DOX
cardiotoxicity independently of AMPK. Given the dual role of
AMPK in tumor growth, it is equally unclear if the antitumor
effects of MET are mediated by AMPK or its subunit isoforms.
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SUMMARY AND FUTURE PERSPECTIVES

MET has been safely used to treat diabetes for several decades,
making it a good candidate for repurposing (19). Indeed, many
animal and preclinical studies suggest that MET has both
cardioprotective and antitumor properties, which lends itself
as a promising adjuvant drug for DOX anticancer therapies
to reduce cardiotoxicity. MET is proposed to achieve these
beneficial effects through the activation of AMPK that itself has
been shown to protect the heart and modulate tumor growth
under certain conditions. However, the role and mechanism of
the hypothesized MET-AMPK axis in DOX cardiotoxicity and
antitumor efficacy have not been firmly established. Convincing
in vivo studies using tumor-bearing animal models and large-
scale prospective clinical trials are needed to fully establish
MET as an effective antitumor agent either alone or together
with DOX. Also, the proposed role of AMPK in MET-mediated
protection against DOX cardiotoxicity should be validated in
genetic animal models lacking AMPK in the heart. Given
the emerging evidence suggesting distinct functional roles
of the AMPK isoforms, it is important to investigate how
different AMPK holoenzymes containing unique combinations
of isoforms will modulate the ability of DOX to affect either
heart function or tumor growth. Future studies should also
explore the cellular and molecular mechanisms that account for
the differential responses of cardiomyocytes vs. cancer cells to
DOX and MET, either individually or in combination. Without
any doubt, answers to the above questions are expected to have
a positive impact on the treatment of many types of cancers
with DOX. For example, if it is firmly established that MET

can reduce DOX cardiotoxicity and concurrently maintain its
antitumor activity, the results could be rapidly translated into
use for cancer patients because MET has been used in diabetic
patients for decades. Specifically, including MET in a therapeutic
protocol could reduce the amount of DOX needed to achieve
the same antitumor effect. Alternatively, MET could make it
possible to use larger doses of DOX to eradicate cancer more
effectively without increasing cardiac damage. In short, MET
could improve the therapeutic window for DOX, allowing greater
flexibility in designing regimens for treating cancer. Finally, a
comprehensive understanding of the relationship between DOX
cardiotoxicity, antitumor efficacy, and individual isoforms of
AMPK will guide novel mechanism-based therapeutic strategies
that target AMPK.
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Cardio-oncology requires a good knowledge of the cardiotoxicity of anticancer drugs,

their mechanisms, and their diagnosis for better management. Anthracyclines, anti-

vascular endothelial growth factor (VEGF), alkylating agents, antimetabolites, anti-human

epidermal growth factor receptor (HER), and receptor tyrosine kinase inhibitors (RTKi)

are therapeutics whose cardiotoxicity involves several mechanisms at the cellular and

subcellular levels. Current guidelines for anticancer drugs cardiotoxicity are essentially

based on monitoring left ventricle ejection fraction (LVEF). However, knowledge of

microvascular and metabolic dysfunction allows for better imaging assessment before

overt LVEF impairment. Early detection of anticancer drug-related cardiotoxicity would

therefore advance the prevention and patient care. In this review, we provide a

comprehensive overview of the cardiotoxic effects of anticancer drugs and describe

myocardial perfusion, metabolic, and mitochondrial function imaging approaches to

detect them before over LVEF impairment.

Keywords: cardio-oncology, cardiotoxicity, perfusion, metabolism, mitochondria, magnetic resonance

spectroscopy or MRS, magnetic resonance imaging, nuclear imaging

INTRODUCTION

Cancer therapy significantly improves patient survival but is sometimes accompanied by
cardiotoxic effects. Cardiotoxic complications can range from myocardial abnormalities, valvular
abnormalities, pericardial diseases, coronary artery disease (CAD), and alteration in left ventricle
ejection fraction (LVEF).

Anthracyclines, one of the most used and oldest chemotherapies, are the archetypal cardiotoxic
anticancer drug, ultimately leading to the heart failure (1). In addition, the emerging field of cardio-
oncology has seen the development of new anticancer drugs such as antiangiogenics also leading
to cardiotoxicity with endothelial dysfunction, forcing a reconsideration of the stages, timing, and
levels of cardiotoxicity.

Initial evaluation of LVEF and subsequent evaluation under anticancer therapy is paramount
as the most guidelines for cardiotoxicity are based on LVEF impairment (2). To date,
echocardiography remains the most frequently used method to detect LVEF alteration, but also
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by assessment of left ventricle (LV) longitudinal strain evaluation
that might identify early LVEF dysfunction (3). Although not
considered the first-line method, cardiac magnetic resonance
imaging (CMR) can assess cardiac anatomy, structure, and tissue
properties in addition to LVEF.

These modalities have been able to detect impaired cardiac
function in the later stages of cardiac side effects (4).
Myocardial perfusion imaging and metabolic imaging are
powerful approaches providing novel biomarkers that can
improve early detection of cardiotoxicity before irreversible
cardiac damage occurs. This review summarizes the alterations
in cardiac perfusion and metabolism that occur in anticancer
drug-related cardiotoxicity and the advantage of assessing
perfusion and metabolism non-invasively in the beating heart
with cardiac imaging.

MYOCARDIAL VASCULAR AND
METABOLIC EFFECTS OF ANTICANCER
DRUGS

Overview of the Link Between Myocardial
Circulation and Metabolism
There is a close relationship between myocardial blood
circulation, which delivers oxygen and nutrients, tissue
metabolism, and oxidative stress. The heart has a very high
energy demand to sustain contractile function and synthesizes
adenosine triphosphate (ATP) through oxidative metabolism of
free fatty acids (FFA), glucose, ketones, and lactate (5).

The adult heart normally obtains 50–70% of its ATP from
fatty acid β-oxidation in the presence of oxygen. However,
it must adapt, switching from one substrate to another, to
sustain demand depending upon the metabolic state and
physical conditions at the time (5). Under well-perfused aerobic
conditions, glucose and FFA are catabolized into pyruvate or
acyl-CoA, respectively, both of which are catabolized to acetyl-
CoA to enter the tricarboxylic acid (TCA, Krebs) cycle. Most
of the energy supply is then derived from the mitochondrial
oxidative phosphorylation system. The main cardiac energy
reserve is phosphocreatine (PCr), which is maintained by the
following creatine kinase (CK) reaction:

PCr + ADP +H+
↔ ATP + Creatine

This system facilitates intracellular delivery of energy from
mitochondria to cytoplasmic sites of ATP utilization and
maintains a high level of ATP during changes in energy
demand (6).

Direct damage to the mitochondria, blood supply, and
myocardial metabolism will be responsible for abnormal
production of reactive oxygen species (ROSs). ROS are reactive
intermediates of the molecular oxygen that are essentially
generated during mitochondrial oxidative phosphorylation (7).
Cellular sources of ROSs are cardiomyocytes, endothelial cells,
stromal cells, and inflammatory cells in the heart (8). One of
the major ROSs is the proximal mitochondrial ROSs (superoxide
anion), which can be generated by a loss of ATP production or
when there is a high NADH/NAD+ ratio in the mitochondrial

matrix (9). An imbalance between ROS production and
antioxidant cell response leads to endothelial dysfunction, the
release of proinflammatory cytokines, and vasoconstriction of
epicardial and microvascular coronary arteries (10). The heart
is particularly sensitive to oxidative stress because of its low-
antioxidant resources (11–13). One of the main mechanisms
of ROS leading to endothelial dysfunction is the uncoupling
of endothelial nitric oxide (NO) synthase, which usually
facilitates NO production (14), ultimately leading to reduce NO
bioavailability. Indeed, the endothelium synthetizes the NO (15),
which acts as a vasodilator, an antithrombotic, and an anti-
atherosclerotic molecule (14). Endothelial nitric oxide synthase
(eNOS) is the type III of NO synthases (NOS) that will lead to NO
radicals synthesis from L-arginine and is expressed in endothelial
cells. But in the inflammatory situation, the other NO synthases
are neuronal NOS (type I) and inducible NOS (iNOS, type II).
The latter will be expressed in blood vessels under pathological
conditions such as inflammation or oxidative stress (16). Major
cell structure and function damages will result reaction of NO
with superoxide anion leading to peroxynitrite (17).

Interestingly, initial vascular injury also results in the
production of ROSs species derived from NAD(P)H (18).
Oxidative inflammation will ultimately cause adventitial fibrosis
and smooth muscle hypertrophy (18). The latter phenomenon
can also be observed in the media and intima through paracrine
effects of adventitial inflammation. As a result, medial layers
of vessels do not respond to NO to adapt blood flow and
assure normal myocardial perfusion (19), resulting in impaired
endothelium-dependent relaxation.

It is important to bear in mind that impaired myocardial
perfusion and/or subsequent alteration of metabolic pathways,
substrate preferences, and bioenergetics (i.e., reduced PCr/ATP
ratio) might contribute to the development of several common
cardiovascular diseases (20). For these reasons, perfusion and
metabolic imaging are preferred methods to study early vascular
and metabolic cardiotoxic effects.

Anticancer Drugs
The vascular and metabolic cardiotoxic effects of the various
anticancer drugs are given in Table 1.

Anthracyclines
Anthracyclines are a group of chemotherapy broadly used in
cancer treatment, with doxorubicin (DOX) being one of the most
widely used. Its cardiotoxicity is well-known with cumulative
toxicity ultimately leading to permanent cardiac alteration (21).
The initial alteration of this end state is thought to be at
a microvascular level through ROS production (22–24), with
mitochondrial superoxide production increasing with DOX
dose (25).

Excessive production of ROS by DOX leads to apoptosis,
cardiac function impairment, inflammation, and vascular injury
(25, 26). Both the cardiomyocytes and arterial endothelial cells
can experience mitochondrial dysfunction under anthracyclines
(27, 28). These properties suggest that, in addition to its known
direct effect on deoxyribonucleic acid through topoisomerase
II beta inhibition (29), endothelial cells injury could be one
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TABLE 1 | Myocardial vascular and metabolic effects of common anticancer

drugs.

Anticancer

drugs

Mechanisms of cardiotoxicity

Anthracyclines Microcirculation alteration

Endothelial dysfunction (NO)

Microcirculation increased thickening

Altered oxidative metabolism

Impaired energetics

ROS

Mitochondrial dysfunction

Antimetabolites Vasospasm

Vasoconstriction

Endothelial dysfunction (NO)

Smooth cell dysfunction

Altered oxidative metabolism

Impaired energetics

Mitochondrial dysfunction

ROS

RTKi Inhibits angiogenesis

Endothelial dysfunction (NO)

Vasoconstriction

Altered oxidative metabolism

Myocardial insulin resistance pattern

Impaired energetics

ROS

Mitochondrial dysfunction

Anti-VEGF Ab Inhibits angiogenesis

Capillary rarefaction

Impaired energetics

ROS

Mitochondrial dysfunction

Anti-HER2 Ab Microcirculation alteration (neuregulin 1)

Disruption of cardioprotective Neuregulin-1

pathway

ROS

Mitochondrial dysfunction

ICI Microcirculation alteration → vascular sequelae

Dysregulated myocardial metabolism

Taxanes Impaired energetics

Endothelial damage

Capillary rarefaction

Alkylating agents Endothelial dysfunction (NO)

ROS

Free fatty acids accumulation

Vasoconstriction

Mitochondrial dysfunction

Ab, antibody; NO, nitric oxide; ROS, reactive oxygen species.

cause of anthracycline cardiotoxicity. Although anthracyclines
cardiotoxicity is usually detected at a stage of altered ejection
(21), studies suggest that anthracyclines cardiotoxicity occurs in

a continuum, challenging the hypothesis of irreversible cardiac
injury (30, 31).

Current guidelines suggest monitoring of patients with
cancer undergoing chemotherapy by echocardiography since
most definitions of cardiotoxicity are based on LVEF decline
(2), but the literature reports microcirculation changes long
before any LVEF or contraction alterations occur (31, 32).
This myocardial perfusion alteration could be the result of
increased arterial walls thickening, which can occur early and
even after a single DOX injection (31, 33), but is more overt with
repeated injections (33). The increase in intima-media thickness
under anthracyclines (34) is in part secondary to oxidative
inflammation. Thus, anthracyclines cardiotoxicity appears at the
histological level and these microcirculation alterations appear to
be an early form of the well-known anthracyclines cardiotoxicity,
suggesting modalities to assess the initial endothelial cell damage
and better prevent its progression. Moreover, the combination
of radiotherapy with anthracyclines potentiates heart damage.
Radiotherapy has been reported as responsible for cardiac
perfusion defect development, however, myocardial perfusion
imaging of the combination of radiotherapy with anthracyclines
remains poorly described (32).

Antimetabolites
5-Fluorouracil (5-FU) is a part of antimetabolite agents and
is commonly used in the treatment of malignancies. One of
the major cardiotoxicities of 5-FU is coronary vasospasm that
can lead to ischemia. Its mechanism remains uncertain, with
some suggesting an endothelial-dependent mechanism through
endothelial dysfunction, but others an endothelium-independent
with vasoconstriction of dysfunctional smooth muscle cells (35).
Studies in animal models demonstrated that altered erythrocyte
metabolism decreases erythrocyte ability to bring oxygen to the
myocardium (36, 37). 5-FU reduces oxidative metabolism (38),
impairs energetics (38), and induces mitochondrial uncoupling
reducing aerobic efficiency (39). At a subcellular level, the toxicity
of 5-FU and another antimetabolite drug, the capecitabine, have
been shown to be mediated through oxidative stress with ROS
generation leading to altered mitochondrial membrane potential
in isolated rat cardiomyocytes (40).

Alkylating Agents
One of the main alkylating agents, mostly used in hematologic
cancers, is cyclophosphamide, for which dose-mediated
cardiotoxicity is one of the notable toxic effects. The metabolites
of cyclophosphamide reported to be involved in cardiotoxicity
are acrolein and 4-hydroxy-cyclophosphamide. These
metabolites are involved in ROS generation (41, 42) that damage
mitochondrial membrane by decreasing its detoxifying capacity,
but also by disrupting normal vasotone response pathway
through NO reduction or an increase in the vasoconstrictor
endothelin-1 (23). In addition, cyclophosphamide is responsible
for FFA accumulation and reduction of ATP production
resulting in the release of proinflammatory cytokines (41).
Cardiac microscopic findings of alkylating agents consist of
interstitial damages, myocardial necrosis, vacuolar changes,
and intramural changes in small coronary vessels (43). Similar
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disturbances have also been reported with cisplatin-based
chemotherapy, another alkylating agent (44).

Taxanes
Taxanes are antimicrotubules whose main cardiotoxicity
is disruption of cardiac rhythm and conduction. Heart
failure (possibly in combination with DOX), ischemia, and
microvascular rarefaction because of the endothelial damage
might also occur (45).

Receptor Tyrosine Kinase Inhibitors
Receptor tyrosine kinase inhibitors (RTKi) include sorafenib,
pazopanib, and sunitinib. As a part of antiangiogenic therapy,
RTKi inhibits the tyrosine kinase activity of the vascular
endothelial growth factor (VEGF) receptor, thereby blocking the
VEGF pathway, but also platelet-derived growth factor receptors
and c-kit (46). Oxidative stress and dysregulation of NO signaling
have been proposed to mediate RTKi-induced hypertension, as
they are known to be involved in the VEGF pathway (47, 48).
However, sunitinib-induced hypertension has been associated
with upregulation of the endothelin peptide (49–51), a potent
vasconstrictor known to induce cardiac endothelial dysfunction
(52). Experimental studies investigating the effects of VEGFR
blockade on cardiac microvasculature did not reveal any changes
in the number of capillaries (50, 53). Nevertheless, sunitinib
induces a loss of coronary microvascular pericytes in mice (53),
which might explain the impaired coronary flow reserve (CFR)
of sunitnib-induced cardiotoxicity (49, 53).

Carbohydrate metabolism is altered in the myocardium of
sunitinib-treated mice, which exhibits higher glucose uptake,
higher gene expression of pyruvate dehydrogenase kinase, and
of the pyruvate kinase isoform 2 (54), a signature of fetal
myocardium in which the metabolism is mostly anaerobic. The
sensor of cardiac energetic metabolism, AMP-activated protein
kinase, is inhibited by sunitinib (55). Energy impairment because
of the loss of mitochondrial membrane potential resulting in
reduced ATP has been reported in the early stages of sunitinib-
treated cardiomyocytes (56).

In a comparative study, only sorafenib among others
RTKi directly impaired mitochondrial function and oxidative
metabolism at clinically concentrations (57), but ROS generation
was documented in several RTKi-treated myocardium (58, 59).

Anti-vascular Endothelial Growth Factor (VEGF)

Monoclonal Antibody
Another antiangiogenic approach consists of blocking VEGF
with a humanizedmonoclonal antibody, which traps endogenous
VEGF and inhibits its binding with the receptor. Bevacizumab
was the first anti-VEGF antibody with a rate of sytemic
hypertension as high as 70%, probably because of the vascular
resistance, endothelial dysfunction, and capillary rarefection
(39). Bevacizumab induces mitochondrial dysfunction plus
ROS formation in isolated rat heart (60, 61) and in isolated
cardiomyocytes (62).

Anti-human Epidermal Growth Factor Receptor

(HER 2)
Human epidermal growth factor receptor 2 is a receptor that
promotes cell growth, proliferation, and repair in the body.
Tumors can hijack these functions to proliferate. Therefore, one
treatment option is to specifically target this receptor, with anti-
HER2 therapy, led by Trastuzumab, which has revolutionized
the treatment and prognostic of patients with HER2 positive
breast cancer (63). Trastuzumab will result in ROS production,
mitochondrial dysfunction, and proapoptotic signals release in
cardiomyocytes (64). Unlike anthracyclines, cardiotoxicity of
anti-HER2 is dose-independent and often reversible. However,
it results in greater cardiotoxicity in the presence of or after
anthracyclines (65).

Anti-HER2 might cause cardiomyocyte damage by disrupting
the neuregulin-1 axis that normally activates protective pathways
in response to stress (66), which could lead to LVEF
decrease. Neuregulin-1 is a cardioactive growth factor that
normally participates in the dimerization of HER receptors on
cardiomyocytes to provide cell protection. However, the fact
that neuregulin-1 is released from the endothelial cells in the
heart leads to the question of whether the impaired LVEF
is due to a direct impact of anti-HER2 on cardiomyocytes
or an indirect impact via endothelial cells of the altered
coronary microvasculature (67). Interestingly, a decrease in
neuregulin-1 levels has been associated with CAD (68). The
same neuregulin-1/HER pathway may also explain the increased
susceptibility to anthracyclines cardiotoxicity when the two
treatments are combined.

Immune Checkpoint Inhibitors (ICIs)
Immune checkpoint inhibitors are monoclonal antibodies that
restore antitumor immunity by targeting inhibitory receptors
on the lymphocytes surface, such as cytotoxic T-lymphocyte-
associated protein 4, programmed cell death receptor 1 (PD1),
and its ligand. By reactivating the immune response against
the tumor, ICIs can lead to immune-related cardiovascular
adverse events that, although rare, present a case-fatality rate as
high as 50% (69). The most-reported cardiac complications of
ICIs are ICI-induced myocarditis but also pericardial diseases,
cardiomyopathy, myocardial fibrosis, and acute heart failure
(70). Microvascular damage leading to vascular sequelae has also
been reported with ICI (10). Furthermore, studies are needed to
explore all the different pathways involved in the cardiotoxicity
of ICIs with possible yet unknown microcirculation damage. A
recent in vivo study in mice showed that anti-PD1 drugs cause
myocardial dysfunction and altered myocardial metabolism,
suggesting damage at a subcellular level (71).

IMAGING

Imaging modalities in cardio-oncology and their assessment of
anticancer-drug-related cardiotoxicity are given in Figure 1.

Perfusion Imaging
Perfusion imaging involves assessing the delivery of oxygen and
nutrients to tissues through blood flow. It aims to describe
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FIGURE 1 | Imaging modalities in the field of cardio-oncology and their assessment of anticancer-drug related cardiotoxicity. CMR, cardiac MRI; CMRS, cardiac

magnetic resonance sprectroscopy; FDG, fluoro-D-glucose; FFA, free fatty acid; SPECT, single-photon emission CT.

microvasculature that can be altered under the effect of
anticancer drugs. Since 1997, Hasdai et al. reported that coronary
endothelial dysfunction may be associated with myocardial
perfusion defects (72). Both radiotherapy and chemotherapy
have shown to be associated with microvascular dysfunction (2),
although the effect of non-radiation therapies on the latter is
less well-described (31). Knowing the effects of anticancer drugs
on myocardial microcirculation, myocardial perfusion imaging
appears to be an attractive modality to detect anticancer drug-
relatedmyocardial toxicity. Moreover, by the time cardiotoxicity-
associated LV dysfunction is detectable by echocardiography,
it is often too late, emphasizing the need to assess the initial
microvasculature dysfunction to better prevent it.

Symptomatic oxygen supply-demand mismatch can be
evaluated invasively by invasive coronary angiography (ICA),
but myocardial microcirculation disturbance can occur before
any visible epicardial coronary on ICA (73), requiring blood
flow measurements to assess myocardial function. Myocardial
malperfusion can be unmasked through fractional flow reserve
(FFR), which is an invasive measurement under hyperemia
to determine the significance of an epicardial coronary artery
stenosis, with an FFR ≤ 0.80 considered to be ischemia prone
(74), and defined as the ratio of maximal blood flow distal to
proximal to the stenosis. The invasive measurement of CFR is
intended to study the vascular bed and describe the myocardial
reserve capacity for vasodilatation, and is defined as the ratio of
maximal hyperemic to the resting coronary blood flow (75).

Another interesting measure to evaluate coronary
microvascular dysfunction is the index of microcirculatory

resistance (IMR) (76) which is an index of coronary
microvasculature and considered as abnormal if ≥25
independently of epicardial stenosis (77). However, these
different parameters remain invasive, which could explain their
low use in clinical practice for monitoring patients undergoing
anticancer therapy, and should be discussed with respect to
non-invasive techniques for the assessment of myocardial
perfusion, which we review here.

Nuclear Imaging
Nuclear imaging techniques include single-photon emission
computerized tomography (SPECT) and PET. These techniques
are based on the detection of radioactive gamma rays
and photons (after positrons annihilation) from an injected
radioactive compound, respectively.

Single-Photon Emission CT (SPECT)
Impairment of epicardial arteries vasodilatation, by evaluation
of change in coronary diameters under pharmacological stress,
has been reported after DOX infusions on CT angiography
suggesting dysfunction of smooth cells and the microvascular
bed (78). However, the resolution of cardiac CT is insufficient
to visually assess microvessels, underlining the need for cardiac
perfusion CT to assess myocardial microcirculation by detecting
hypoperfused territories. Coupling of metabolic information by
traditional radiotracers 201Tl-chloride, 99mTc- sestamibi, and
99mTc- tetrofosmin, is obtained by myocardial perfusion SPECT.
SPECT is performed at rest and under stress, which can be
achieved by exercise or pharmacologically with vasodilators (79).
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The added value of SPECT is that the radiotracers will be
delivered to the myocardium in proportion to flow and therefore
be able to unmask a myocardial perfusion defect secondary
to CAD. Territories with myocardial perfusion abnormalities
may not only be secondary to CAD but reflect the myocardial
cardiotoxicity at a microvascular level.

Studies have reported increased perfusion defects in DOX-
treated patients with a history of radiotherapy (32, 80). Galluci et
al., have suggested myocardial perfusion abnormalities, assessed
by SPECT, without LVEF dysfunction in patients who had
undergone chemotherapy and radiotherapy (32). However, this
observational study could not strictly conclude that the findings
were only due to the chemotherapy because of the lack of
a control group before cancer treatment, and because of the
inclusion of patients with a history of radiotherapy.

Some studies described LVEF dysfunction after the
introduction of DOX in patients with cancer (81), but there
are very little data on the incidence of SPECT perfusion defect
in patients under DOX alone. One study on 36 patients with
breast carcinoma evaluated before and after anthracyclines
found no significant perfusion defect after anthracyclines (34),
leaving the question of myocardial perfusion monitoring with
99mTc-sestamibi SPECT subject open to debate.

Positron Emission Tomography
Compared with SPECT, PET allows assessment of myocardial
blood flow with better spatial resolution and sensitivity. CFR
can be quantified as the ratio of myocardial blood flow
between stress and rest on PET (82). The most commonly used
and validated radionuclide for cardiac perfusion evaluation is
rubidium-82 (82Rb) (82). Although 82Rb PET is often used for
semiquantitative myocardial perfusion, it may assess coronary
microvascular function by absolute quantification of myocardial
perfusion andmyocardial perfusion (or flow) reserve (MPR) (83).
MPR is the ratio of stress flow to resting flow and describes the
capacity of the coronary bed to maximize flow (84).

Myocardial perfusion reserve has been reported to be
decreased after DOX exposure, representing a possible early
marker of DOX myocardial cardiotoxicity (85). Detection of
changes in mitochondrial function, estimation of myocardial
blood flow and myocardial oxygen consumption, and thus,
the ability of coronary arteries to respond to stress, can also
be assessed by 11C-acetate rest stress PET. Using the latter,
a decrease in myocardial perfusion and oxygen consumption
reserve in DOX-treated rats compared with the control animals
has been reported (86). 11C-acetate PET is not only used to
investigate DOX cardiotoxicity but has also been evaluated in
sunitinib-induced cardiotoxicity. Similarly, an in vivo study in
rats described a decrease in myocardial perfusion, evaluated by
11C-acetate PET, as early as 5 days after treatment initiation (87).

Cardiac MR
Common practices remain the assessment of cardiotoxicity by
echocardiography because of its ability and availability to detect
LVEF alteration, which is the current standard for oncologic
treatment cardiotoxicity (88). However, the gold standard in

LVEF evaluation remains CMR imaging (89). But in addition
to LVEF assessment, it is currently admitted that CMR with
vasodilator stress perfusion should be performed to non-
invasively investigate microvascular dysfunction (90). Yet, we
know that anthracyclines may be responsible for myocardial
damage at a histologic level long before any overt LVEF decrease
(91). Although most studies of anthracyclines have focused on
their effect onmyocyte damages (92), more recent studies suggest
that DOX cardiotoxicitymay present as direct vascular injury and
arterial damage with coronary arteriolar wall abnormalities (31,
33, 93, 94). Some mechanisms of microcirculation damage arise
from increased thickening of microcirculatory arterioles and loss
of smooth muscle cells, which may contribute to myocardial
perfusion defects.

Thus, the literature reports that DOX cardiotoxicity results
in microvascular dysfunction, and we know that microvascular
can technically be assessed by myocardial perfusion on CMR.We
had to wait until 2021 to finally find a study that proved in vivo
that there was a reduction in myocardial perfusion well before
any overt LVEF alteration. Indeed, to the best of our knowledge,
Galán-Arriola et al. (31) were the first to describe in large animals
the impact of DOX on coronary microcirculation, assessed
by CMR but also by invasive measurement and histology,
under different DOX protocols. In this study, the alteration of
myocardial perfusion by CMR followed a similar pattern to that
observed in the assessment of microcirculatory function by CFR.
Indeed, they showed that in the early stages of DOX treatment,
there was a decline in CMR perfusion. This decline in perfusion
was present although LVEF, cardiac motion, cardiac contractility
were not impaired; and was persistent as long-term changes with
cumulative doses of DOX.

Myocardial perfusion assessment by CMR is a validated non-
invasive assessment of microvascular CAD (95) and has been
shown to outperform SPECT in detecting obstructive CAD (96–
99). Newer CMR techniques that could quantitatively detect
epicardial and microvascular CAD have correlated well with
IMR and FFR measurements (77), and coronary sinus flow
evaluation could be a good surrogate for CFR measurements
(100). Although to the best of our knowledge, no study has yet
reported myocardial perfusion CMR findings of anthracyclines-
treated patients, it is legitimate to speculate that vasoconstriction
and increased wall thickness of the heart microvasculature may
reveal a myocardial perfusion defect and decreased myocardial
blood flow reserve. Myocardial perfusion is acquired during the
first pass of gadolinium-based contrast agents, based on an ECG-
triggered fast T1-sensitive pulse sequences that can be acquired
both at rest and with stress. The additional benefit of stress in
CMR perfusion compared with resting perfusion alone is still
debated but is theoretically used to unmask myocardial perfusion
defect that could be compensated at rest (101). Indeed, stress
could reveal insufficient coronary reserve resulting in decreased
perfusion and ischemia in territories with thickened vessels walls
and impaired ability to respond to stress-induced vasodilation.
Although the mechanisms leading to 5-FU-related cardiotoxicity
are numerous and detailed elsewhere (102), ischemia, especially
secondary to vasospasm, can be imaged by perfusion defect in the
coronary territory of the vasospasm (103, 104).
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Regarding the evaluation of anti-VEGF myocardial
cardiotoxicity with perfusion CMR, there are very sparse
data in the literature. A small study on 9 patients evaluated both
resting and stress perfusion with CMR before treatment and
at 4 and 6 weeks of treatment (105). They were able to show
a decrease in myocardial blood flow on resting perfusion after
treatment introduction but no difference under stress, and an
increase in vascular permeability. These preliminary findings
suggest that anti-VEGF cardiotoxicity leads to microvascular
constriction, which may, fortunately, be reversible, and that
microvascular endothelial dysfunction may be responsible in
part for impaired LVEF.

Metabolic Imaging
Metabolic imaging focuses and targets changes in metabolic
pathways and energetics. It includes CMRS and nuclear imaging
techniques such as SPECT and PET.

Cardiac Magnetic Resonance Spectroscopy
Cardiac magnetic resonance spectroscopy has several advantages
for metabolic imaging since it is able of measuring several
metabolic biomarkers without using ionizing radiation (106).
Metabolites containing proton (1H) such as creatine or lipids;
containing carbon (13C) such as glucose, and containing
phosphorus (31P) such as PCr or ATP can be assessed by
CMRS. In addition, the development of 31P saturation magnetic
resonance spectroscopy allows the measurement of the metabolic
rate of ATP production via the enzyme creatine kinase (= CK
flux) (106, 107).

Early studies performed on isolated animal hearts have
demonstrated several alterations in the cardiac metabolic. The
injection of [1-13C]glucose into isolated perfused hearts treated
for 10 weeks with anthracyclines highlighted altered glycolytic
metabolism (108). Similarly, abnormal cardiac bioenergetics,
as revealed by a reduced PCr/ATP ratio, was measured
with 31P-CMRS in an isolated animal hearts of acute (109)
and chronic (110–112) anthracycline-related cardiotoxicity. In
addition, Bittner et al. showed that hearts chronically exposed to
DOX failed to adapt metabolically, as evidenced by the delayed
recovery of PCr after hemodynamic stress (113). Recently,
Henderson et al. showed that acute and clinically relevant
exposure to DOX in isolated, perfused rat hearts induced a
reduction in energy reserve, as measured by a decrease in PCr,
in response to the cardiac-stimulant isoproterenol (114). These
studies demonstrated abnormal cardiac energetics production
and utilization, even in the setting of acute anthracycline
exposure. Interestingly, the myocardial PCr/ATP ratio was
reduced after 6 weeks of anthracycline treatment without
evidence of cardiac damage in an in vivo study (110). In
addition, the authors showed a strong correlation between
cardiac energetics and LV systolic and diastolic dysfunction after
8 and 10 weeks of treatment. The same group then demonstrated
that the absolute concentration of PCr was decreased in DOX-
treated mice and that 31P-CMRS also detected a reduced rate
of ATP synthesis through CK reaction (115). Importantly,
overexpression of cardiac-specific myofibrillar isoform of CK
restored impaired PCr and CK flux, which was associated

with improved LVEF and survival in DOX-treated mice (115),
opening up a new possibility for preventive therapy.

Recent research has focused on improving the signal-to-
noise ratio of conventional CMRS, with the development of
hyperpolarization CMRS: the injection of hyperpolarized [1-
13C]pyruvate and [2-13C]pyruvate enables measurement of
the flux through the pyruvate dehydrogenase (PDH) complex
and TCA flux, respectively (116). A decrease in PDH flux,
representative of reduced oxidative mitochondrial carbohydrate
metabolism, was observed in the myocardium of DOX-treated
rats for 3 weeks without impairment of cardiac function (117).
After 6 weeks of treatment, the authors showed, in addition
to reduced PDH activity, a decrease of TCA cycle flux and
impaired cardiac function. This altered carbohydrate metabolism
reflected the loss of mitochondrial integrity, which was not
because of the oxidative stress in this study, and preceded cardiac
function impairment.

The exploration of cardiac energetics in the clinic has been
recently proposed. The authors found no difference in cardiac
PCr/ATP ratio of anthracycline-treated women despite a 5%
reduction in LVEF between the start and end treatment (118).
This could be explained, at least in part, by the small number of
patients in whom CMRS was possible (11 patients).

Nuclear Imaging
Several radiopharmaceuticals can be used as biomarkers of
myocardial metabolism using nuclear imaging, the two best
known being iodine-123 betamethyl-iodophenyl-pentadecanoic
acid (BMIPP) for the assessment of myocardial FFA uptake
and 2’-deoxy-2’-[18F]fluoro-D-glucose (FDG) for the assessment
of cardiac glucose uptake. Because myocardial metabolism is
tightly regulated, the heart switches from FFA metabolism to
glycolysis in high-insulin/glucose levels and low oxygen by
increasing its glucose transporter protein translocation to the
plasma membrane (119). Hence, PET with FDG under fasting
condition is preferred for oncology study (minimize myocardial
uptake) but is performed under fasted condition or with glucose
load after an overnight fasting for cardiac study (maximize
myocardial uptake).

Early studies conducted two decades ago showed a
significantly lower myocardial BMIPP uptake in patients
treated with DOX (120) and taxanes (121), but other studies
showed that only one in four (122), and one in six (123) patients
displayed hypomyocardial BMIPP accumulation. Importantly,
modeling of kinetics, which was measured by the acquisition of
dynamic time sequences in the latter study, revealed a significant
decrease in BMIPP flux in DOX-treated patients (123). This
analysis more accurately reflects the features of fatty acid
metabolism disorders by measuring the metabolic flux of the
tracer rather than its accumulation in the myocardium. The
lower cardiac uptake of BMIPP, which is a biomarker of impaired
fatty acid beta-oxidation, was predictive of LV dysfunction (120).

An exciting exploration in cardio-oncology is ketone body
imaging. This has been proposed with cardiac 11C-acetoacetate
PET. As a ketone body, acetoacetate can be used as a substrate
by the heart and be involved in cardioprotection through
its antioxidant activity plus mitochondrial membrane repair
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(124, 125). Greater uptake and retention of 11C-acetoacetate
in the myocardium was found in non-fasted rats treated for 6
weeks with DOX, which may be associated with mitochondrial
membrane alteration (126). Although it has been studied only
once in this field, ketone body imaging may hold promise as a
theranostic approach.

In 2012, Borde et al. first described enhanced 18F-FDG
uptake in the myocardium of DOX-treated patients, highlighting
the ability of PET to early detect cardiotoxicity (127). Similar
observations have been reproduced by others attempting to
better understand the increased myocardial 18F-FDG uptake in
animals and patients treated with chemotherapy. First, DOX
dose-dependently increased myocardial metabolic flux of 18F-
FDG measured by dynamic PET in the fasted mice (128).
The same group demonstrated that a low pretreatment 18F-
FDG standardized uptake value (SUV) in Hodgkin’s disease
patients may predict the development of chemotherapy-induced
cardiotoxicity, which was subsequently detected by a higher
myocardial 18F-FDG SUV (128). Another study showed that 12%
of 121 patients with breast cancer treated with anthracycline
or trastuzumab had increased 18F-FDG uptake in the right
ventricle, which was significantly associated with cardiotoxicity
(129). Second, increased LV 18F-FDG uptake correlated with
LVEF decline after two cycles and at the end of DOX therapy
in a retrospective study including a cohort of 43 patients
(130). Another interesting study explored 18F-FDG myocardial
uptake and myocardial perfusion (through 99mTc-tetrofosmin
SPECT) in a retrospective cohort of 332 patients followed for
malignant disorders (131). As part of an oncologic PET protocol,
patients were fasted to avoid myocardial 18F-FDG uptake: 36%
of patients had no 18F-FDG uptake, 22.5% had diffuse 18F-
FDG uptake, 8% had focal 18F-FDG uptake, and 30.5% had
a focal uptake overlying the diffuse pattern 18F-FDG uptake.
Among all the patients, multivariate logistic regression identified
focal myocardial 18F-FDG uptake as a predictor of impaired
LVEF and myocardial perfusion (131). It is important to bear
in mind two interesting points. First, no direct mechanisms
that could explain the increased cardiac 18F-FDG uptake have
been explored in these reports. This could be because of the
recruitment of inflammatory cells, switch to anaerobic glycolysis,
or being associated with other pathological mechanisms. Second,
the correlation between 18F-FDG uptake and LV function was
made at the same time, which cannot directly prove the ability
of early detection of cardiotoxicity before the decline of LV
function. In terms of mechanisms and correlations, the increase
in cardiac uptake of 18F-FDG seven days after DOX treatment in
mice was directly correlated with oxidative stress and antioxidant
mechanisms assessed by biochemical measurements (132). This
is particularly interesting knowing the close relationship between
metabolic imbalance (i.e., mismatch of oxidative metabolism plus
reduced ATP production) and ROS generation in mitochondria
(133, 134).

Chemotherapy-induced cardiotoxicity is not limited to an
increase in 18F-FDG uptake. The SUV of 18F-FDG was
significantly reduced in the fasted rats treated for 6 weeks (135)
and in non-fasted rats treated for 4 weeks (136) with DOX.
18F-FDG PET could have detected a loss of cell viability and

necrosis in these experimental models, which was associated with
decreased LVEF (136). This supports the fact that dietary status is
important in the cardiac 18F-FDG PET investigation.

With respect to antiangiogenic therapies, few reports have
described the role of 18F-FDG PET. In 2011, a case report
described decreased myocardial 18F-FDG uptake in patients
treated with imatinib plus sorafenib who later developed a cardiac
event (137). Later, O’Farrell et al. also showed an increase in
18F-FDG uptake 2–3 days after the introduction of sunitinib in
mice and 5 days in rats (87). In another study, sunitnib induced
higher 18F-FDG uptake after 1 week of treatment in fasted mice
but not in non-fasted mice (138), highlighting once again a role
of the dietary status on myocardial 18F-FDG uptake for further
investigations. In both studies, this early side effect was associated
with a switch from oxidativemetabolism to glycolyticmetabolism
(138) and correlated with late myocardial hypertrophy measured
after 6 weeks of treatment (139). Moreover, the metabolic flux
of 18F-FDG from the blood to the cytoplasmatic glycolysis,
measured by dynamic time sequence acquisition and kinetic
modeling, was reduced after 3 weeks of treatment (87, 138)
with sunitinib and was associated with an insulin resistance
pattern (138).

Mitochondrial Function Imaging
In-vivo assessment of cardiotoxicity-induced ROS production
is tempting as there is a close relationship between altered
circulation, metabolism, and oxidative stress. 18F-labeled analog
of dihydroethidium (18F-DHMT) is a radioactive compound that
can assess free radicals because it is trapped in the cell when
oxidized by ROS (140, 141). In an initial in-vivo study in mice,
the authors reported a 2-fold increase in cardiac retention of
18F-DHMT after a single injection of DOX, which revealed ROS
production compared with controls (141). This observation was
later confirmed with an increased cardiac uptake of 18F-DHMT
in DOX-treated rats following 4 and 6 weeks of treatment (142).
Interestingly, no impairment of cardiac function was found after
4 weeks of treatment, but 6 weeks of DOX treatment induced a
decrease in LVEF (142). In another study, dynamic time sequence
18F-DHMT PET and kinetic modeling confirmed higher absolute
quantification of myocardial ROS production in beagle dogs
following 2 weeks of DOX treatment (143).

Similarly, new radiopharmaceuticals have been developed
to assess early DOX myocardial cardiotoxicity detection,
such as 18F-labeled lipophilic cation PET tracers (144). Its
principle is to image mitochondrial damage by 18F-labeled
lipophilic tracers, which diffuse across mitochondrial membranes
depending upon the mitochondrial membrane potential (144).
The tracers will therefore accumulate in cardiac tissue in case of
mitochondrial damage, which is one of the possible mechanisms
of myocardial cardiotoxicity of DOX, allowing early detection of
its cardiotoxicity.

In SPECT imaging, in the same perspective, the usual 99mTc-
sestamibi, which is used to assess myocardial perfusion, is also a
lipophilic cation and so its myocardial distribution depends on
the mitochondrial membrane potential additionally to regional
myocardial perfusion. Safee et al. recently demonstrated in a
rat model a correction tool to free the 99mTc-sestamibi from its
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TABLE 2 | This table summarizes early perfusion, metabolic and mitochondrial function imaging findings suggestive of DOX myocardial toxicity that subsequently revealed

impaired left ventricle ejection fraction.

Reference Early myocardial toxicity

with no overt cardiac

dysfunction

Late cardiac dysfunction Species

Saito et al. (120) Reduced 123 I-BMIPP [2 to

3 weeks]

Decreased LVEF [variable] Human

Maslov et al. (110) Decreased PCr/ATP ratio

[6 weeks]

Systolic and diastolic

dysfunction [8 and

10 weeks]

Mouse

Bauckneht et al. (128) Lower pre-treatment
18F-FDG Increased 18F-FDG

[4-6 weeks and 6 months

follow up]

Decreased LVEF [median =

27 months, range 8-96]

Human

Boutagy et al. (142) Increased 18F-DHMT

[4 weeks]

Decreased LVEF [6 weeks] Rat

Timm et al. (117) Decreased PDH flux

[3 weeks]

Decreased LVEF [6 weeks] Rat

Galán-Arriola et al. (31) Decreased

CMR-determined

myocardial perfusion

Decreased CFR [weeks 6]

Decreased LVEF [weeks 16] Pig

[time] = from the beginning of treatment to the assessment of alteration on imaging.

CFR, coronary flow reserve; CMR, cardiac MRI; 18F-DHMT, 18F-labeled analog of dihydroethidium; DOX, doxorubicin; 18F-FDG, 18F-Fluoro-D-glucose; 123 I-BMIPP, 123 I-Betamethyl-

iodophenyl-pentadecanoic acid; LVEF, left ventricle ejection fraction; PCr, phosphocreatine; PDH, pyruvate dehydrogenase.

perfusion imaging, to assess only the mitochondrial potential,
and thus, its possible perturbation by anthracyclines (145).
They proposed to correct the 99mTc-sestamibi with a lipophilic
uncharged radiotracer that would thus be a perfusion tracer
independent of the mitochondrial membrane potential [the
bis (N-ethoxy-N-ethyldithiocarbamato)nitrido 99mTc(V)]. The
latter 99mTc-NOET would, therefore, be able to detect DOX
cardiotoxicity through its mitochondrial damage.

PERSPECTIVES

We are convinced that the assessment of the mechanisms of
anticancer drug cardiotoxicity by imaging is a cornerstone
in the new era of cardio-oncology. Table 2 supports our
assertion by summarizing studies that demonstrate DOX-
induced cardiotoxicity early before overt LVEF impairment
(Table 2).

Imaging Opportunities
We have seen throughout this review that most studies have been
conducted in animal models. We are confident that this research
has been and will be of great importance for the development of a
standardized protocol to predict drug-related cardiotoxicity and
to test preventive interventions.

Early detection of metabolism and vascular alteration
is paramount to prevent DOX-induced permanent cardiac
dysfunction (Table 2) and could be extended to other anticancer
drugs since several vascular and metabolic cardiotoxic effects
have been described in this review (Table 1). The assessment
of myocardial cardiotoxicity by CMR seems to be of interest,

to seek other complications of oncologic therapies such as ICI-
induced cardiotoxicity. The major cardiotoxicity reported in
this therapeutic class is myocarditis, with CMR being of great
importance when suspected (146). Although not a commonly
used modality for myocardial inflammation (147), increased
18F-FDG uptake on PET could be found in myocarditis,
including in ICI myocarditis (148). Interestingly, 18F-FDG
uptake has also been reported as a marker of anthracyclines
cardiotoxicity, either via inflammatory response or altered
myocardial metabolism (149). Fusion between 18F-FDG and
CMR have also been reported (148) for simultaneous vascular,
metabolic, and functional imaging and may benefit from
creatine measurement with proton CMRS (150) since creatine
is decreased in both ischemic (151) and non-ischemic (152)
cardiovascular disease.

Clinical Feasibilities
Because most studies of perfusion and metabolic imaging have
been performed in animal models, their clinical relevance
in routine practice is questionable. Anyhow, further clinical
studies are required to ensure the utility of early detection of
anticancer drugs.

Cardiac magnetic resonance imaging appears to be a
non-invasive, radiation-free tool for monitoring patients with
cancer, capable of imaging microcirculation, metabolism, and
myocardial inflammation, which could be offered routinely
before and after the introduction of an anticancer drug. We
believe that CMR could be a justifiable perfusion approach
as a part of standard patient care. Indeed, we have seen that
altered myocardial perfusion in large animal models has been
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reported by resting myocardial perfusion on CMR (31). Multiple
other CMR parameters have been reported to be related to
cardiotoxicity of anticancer drugs (153–156), so the addition
of a rapid perfusion sequence to the CMR protocol would be
sufficient to obtain an argument for cardiotoxic effect. As the
gold standard, CMR would also provide an accurate evaluation
of LVEF. Unfortunately, LVEF assessment is so far performed
in daily practice by echocardiography because of the lack of
access to CMR. This would be the only limitation we see
for its routine integration into the health care of patients
with cancer.

We believe that the use of nuclear perfusion imaging in daily
practice is difficult to justify. One of the main possible obstacles is
the use of radiation and the cost of the technique that would allow
assessment of myocardial perfusion without assessing oncologic
follow-up. Nevertheless, it may be interesting to consider the
integration of 18F-FDG PET in the follow-up of patients with
cancer in order to assess tumor progression and, at the same time,
to look for possible cardiotoxic effects. Indeed, the most PET
scans for oncology monitoring use 18F-FDG, which is also, as
mentioned earlier, sensitive to myocardial metabolic imbalance
and also to myocardial inflammation. This capability of PET
for whole-body imaging would be attractive in patients with
cancer to concomitantly allow imaging of tumor progression in
addition to an assessment of myocardial toxicity, thus providing
a unique modality. We believe that further studies regarding
the place of PET imaging in the future of cardio-oncology
are required.

CONCLUSION

Early detection of cardiotoxicity is crucial and offers the
opportunity for early therapeutic intervention. In this
review, we have shown that perfusion imaging, metabolic
imaging, and mitochondrial function imaging are capable of
assessing myocardial cardiotoxic effects of cancer therapeutics
before irreversible cardiac damage occurs (Figure 1, Table 2).
Knowledge of these possible early imaging findings in anticancer
drug-related myocardial toxicity could change the paradigm of
“late-onset cardiotoxicity.” Earlier detection would allow for
better prevention, with specific therapeutics attempting in part
to reduce oxidative stress. Current guidelines on cardiotoxicity
do not include myocardial and metabolic perfusion imaging,
but in light of this review, it may be worthwhile to add these
parameters to better detect and prevent dramatic progression.
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Background and Aims:With the increasing coexistence of cardiovascular disease and

cancer in contemporary clinical practice, studies on the outcomes in acute myocardial

infarction (AMI) patients with cancer has not been systematically investigated. This study

sought to investigated the effect of coexisting cancer on the treatment and clinical

outcomes among AMI patients.

Methods: We retrospectively integrated and analyzed cardiovascular data of 6,607

AMI patients between June 2016 and December 2019. Patients with cancer were

compared with pair-matched cancer-naive patients. Cox proportional hazards models

were constructed to compare the differences in outcomes.

Results: Of 6,607 patients, 2.3% (n = 150) had been diagnosed with cancer. Patients

with cancer were older (70.3 ± 10.0 vs. 63.9 ± 11.5 years, P < 0.001) and had a higher

burden of comorbidities. Moreover, patients with cancer tended to receive clopidogrel

(52.0 vs. 40.0%, P = 0.004) rather than ticagrelor (45.6 vs. 58.2%, P = 0.003) than

those without cancer. After pairwise matching, patients with cancer were less likely to

undergo in-hospital percutaneous coronary intervention (61.3 vs. 70.0%, P= 0.055). And

after 3-year follow-up, the cumulative incidence of cardiovascular death (14.0 vs. 8.3%;

adjusted HR, 1.93; 95% CI, 1.11–3.39; P = 0.021) among patients with cancer was

significantly higher than that among the matched controls, a similar pattern was observed

for the composite outcome of cardiovascular death, non-fatal myocardial infarction, and

non-fatal stroke (16.0 vs. 10.3%; adjusted HR, 1.98; 95% CI, 1.21–3.26; P = 0.007).

Moreover, patients with a historical cancer diagnosis within 5 years had a higher risk of

cardiovascular ischemic events.

Conclusions: AMI patients with a concomitant diagnosis of cancer tended to be

treated with conservative therapies and were at substantially higher risk for adverse

cardiovascular outcomes.

Keywords: cancer, acute myocardial infarction, cardiovascular outcomes, percutaneous coronary intervention,

conservative therapies
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INTRODUCTION

Cancer and cardiovascular disease are the leading causes of
disease-related death worldwide, together accounting for nearly
70% (1). Due to earlier detection and modern treatment
regimens, cancer-related mortality has decreased significantly
(2), and two-thirds of patients with cancer can survive at least
5 years with the disease (3). Likewise, there has been a global
decline in deaths from acute myocardial infarction (AMI) (4).
Although cancer and cardiovascular disease are regarded as two
distinct disease processes, there is a considerable overlap of
risk factors for these diseases, such as advanced age, diabetes
(5), smoking (6), and obesity (7). As life expectancy increases,
non-cancer-related mortality from cardiovascular disease has
become more important during cancer survivorship (8, 9), and
cardiovascular disease has been shown to be the leading cause of
death in cancer patients (10, 11).

When cancer patients present with AMI, their management
poses unique challenges for clinicians. Many old and new
emerging anti-cancer agents are associated with cardiovascular
toxicities (12, 13). The lasting cardiovascular side effects of cancer
treatmentsmeans that the compensatory reserve for acute clinical
events such as AMI may also be reduced (14). At a cumulative
(i.e., lifetime) dose of 400–450 mg/m2 doxorubicin, a 10% rate
of heart failure can be expected among patients aged over 65
years (15). In addition, cancer is commonly associated with
hematologic and coagulation abnormalities (16), which poses
a major obstacle to percutaneous coronary intervention (PCI)
and the use of antithrombotic agents. Unfortunately, patients
with cancer are commonly excluded from randomized controlled
trials exploring best practices for the treatment of AMI, leading
to a scarcity of reliable data on clinical outcomes in this cohort to
guide clinical decision-making, which compounds the dilemma
faced by clinicians.

Therefore, in this retrospective cohort study, we analyzed the
clinical characteristics, treatment patterns, and outcomes in AMI
patients with cancer and sought to define the influence of cancer
duration and treatment pattern on the cardiovascular outcomes.

MATERIALS AND METHODS

Study Design and Patient Population
A retrospective, single-center study was performed at the Second
Affiliated Hospital of Harbin Medical University, which was
approved by the ethics committee of Harbin Medical University.
The study procedures were conducted in compliance with the
principles of the Declaration of Helsinki, and patient information
was collected anonymously. All AMI patients from June 2016
to December 2019 were included in the study. Myocardial
infarction (MI) was defined according to the fourth universal
definition of MI (17). The population included in the final
analysis consisted of 6,607 AMI patients. All detailed clinical data
of those patients were collected from electronic medical records,
including age, sex, type of malignancy, cardiovascular risk factors
[smoking status, hypertension, hyperlipidemia, diabetes mellitus,
and previous coronary heart disease (CHD)], treatment, and
outcomes. During a 3-year follow-up period, patients were

surveyed semi-annually via telephone aboutmajor adverse events
using a standardized questionnaire.

Outcomes
Our primary outcome was defined as cardiovascular mortality
during follow-up. Secondary outcomes included all-cause
mortality, major adverse cardiovascular and cerebrovascular
events (MACCE), non-fatal MI, non-fatal stroke, and
revascularization. MACCE is composed of cardiovascular
death, non-fatal myocardial infarction, or non-fatal stroke.

Statistical Analysis
For all statistical tests, a two-tailed P-value < 0.05 indicated
statistical significance, and data analyses were performed using
R version 3.6.2 software (R Institute Inc.). Continuous variables
are presented as the means ± standard deviations (SDs) if
normally distributed or presented as medians with interquartile
ranges (IQRs) if non-normally distributed. discrete variables are
presented as frequencies (percentages), and missing data were
excluded from the summary statistic calculations. To evaluate
the differences in baseline characteristics between unmatched
groups, Student’s t-test was used for nearly normally distributed
continuous variables, the Wilcoxon rank-sum test was used
for non-normally distributed continuous and ordinal discrete
variables, and Categorical data have been compared using
the χ

2 or Fisher’s exact test. Furthermore, to make the two
groups comparable with regard to the vast majority of baseline
characteristics, pairwise matching was performed via a greedy
matching algorithm to match each pair of reference patients
and patients with cancer according to the following restrictions:
(1) age within 1 year, (2) sex, (3) hyperlipidemia status, (4)
smoking status, and (5) diabetes status. The control group
allowed a variable number of reference matches and a maximum
of 4 matches per patient with cancer. Except for unpaired
patients, each patient pair was used once in the further analyses.
Comparisons between reference patients and patients with
cancer were tested via the same test for baseline characteristics
and outcomes. To evaluate the incremental relative risk increase
among subgroups in the heterogeneity analysis, models were fit
with an indicator for any history of cancer and with another
indicator for the subgroup. Forest plots were drawn to analyze
the heterogeneity of the effect of coexisting cancer on the event
risk between subgroups.

RESULTS

Patient Characteristics
A total of 6,607 AMI patients were included between June 2016
and December 2019. Among those patients, 150 (2.3%) had been
diagnosed with cancer. According to the order of frequencies, the
most prevalent malignancies were lung (31, 20.7%), colorectum
(21, 14.0%), stomach (19, 12.7%), and breast (15, 10.0%) cancers
(Supplementary Table S1).

The characteristics of the overall cohort and matched cohort
are summarized in Table 1. Before matching, the group of
patients with cancer was older (70.3 ± 10.0 vs. 63.9 ± 11.5
years, P < 0.001) and had higher proportions of patients with
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TABLE 1 | Clinical characteristics.

Unmatched Matched

No cancer Cancer P-value No cancer Cancer P-value

N 6,457 150 542 150

Age 63.9 ± 11.5 70.3 ± 10.0 <0.001 70.3 ± 9.4 70.3 ± 10.0 >0.999

Male 4,447 (68.9) 93 (62.0) 0.088 340 (62.7) 93 (62.0) 0.946

STEMI 4,156 (65.5) 85 (64.4) 0.861 331 (62.0) 85 (64.4) 0.681

BMIa 24.9 ± 3.7 24.5 ± 3.8 0.179 24.9 ± 3.6 24.5 ± 3.8 0.295

Risk factors

Hypertensiona 3,428 (53.2) 89 (60.1) 0.110 312 (57.7) 89 (60.1) 0.657

Hyperlipidemiaa 1,462 (22.7) 46 (31.3) 0.018 160 (29.5) 46 (31.3) 0.753

Diabetesa 1,559 (24.2) 57 (38.3) <0.001 194 (35.8) 57 (38.3) 0.648

Current smokera 3,140 (48.7) 46 (31.1) <0.001 170 (31.4) 46 (31.1) >0.999

Comorbidities

Coronary heart diseasea 1,656 (25.7) 66 (44.9) <0.001 145 (26.8) 66 (44.9) <0.001

History of MIa 711 (11.0) 32 (21.8) <0.001 60 (11.1) 32 (21.8) 0.001

History of strokea 1,320 (20.5) 30 (20.4) >0.999 142 (26.2) 30 (20.4) 0.183

History of PCIa 470 (7.3) 24 (16.3) <0.001 32 (5.9) 24 (16.3) <0.001

History of CABGa 18 (0.3) 1 (0.7) 0.349b 0 (0.0) 1 (0.7) 0.213b

Peripheral vascular diseasea 158 (2.5) 10 (6.8) 0.002 19 (3.5) 10 (6.8) 0.127

Liver diseasea 130 (2.0) 6 (4.1) 0.147 13 (2.4) 6 (4.1) 0.412

Chronic kidney diseasea 239 (3.7) 14 (9.5) <0.001 26 (4.8) 14 (9.5) 0.048

Clinical presentation

LDL-C, umol/mLa 2.0 ± 5.6 1.8 ± 0.6 0.646 1.9 ± 0.8 1.8 ± 0.6 0.701

Troponin I, ng/mLa 2.1 (0.3–10.9) 1.7 (0.4–8.6) 0.687 2.1 (0.4–11.9) 1.7 (0.4–8.6) 0.456

Pro-BNP, pg/mLa 294.0 (82.0–1,156.0) 428.5 (102.8–428.5) 0.353 473.0 (119.0–2,018.0) 428.5 (102.8–428.5) 0.085

LVEF ≤ 40% 409 (6.3) 4 (2.7) 0.096 39 (7.3) 4 (2.7) 0.062

Diastolic cardiac dysfunctiona 3,808 (63.2) 88 (62.9) >0.999 356 (70.2) 88 (62.9) 0.119

Angiographic presentation

Lesion location

LM 313 (4.9) 8 (5.3) 0.935 41 (7.6) 8 (5.3) 0.430

LAD 3,979 (61.6) 89 (59.3) 0.628 341 (63.5) 89 (59.3) 0.403

LCX 1,729 (26.8) 31 (20.7) 0.114 142 (26.4) 31 (20.7) 0.182

RCA 3,266 (50.6) 70 (46.7) 0.387 286 (53.3) 70 (46.7) 0.182

TIMI flow 0 or 1 in any lesion 2,396 (37.1) 53 (35.3) 0.720 205 (38.2) 53 (35.3) 0.589

In-hospital procedures

PCI 4,261 (66.0) 92 (61.3) 0.270 376 (70.0) 92 (61.3) 0.055

PTCA 849 (13.2) 17 (11.3) 0.597 47 (8.75) 17 (11.3) 0.422

Thrombus suction pipe 1,456 (22.6) 32 (21.3) 0.800 102 (19.0) 32 (21.3) 0.601

Thrombolysisa 268 (4.2) 6 (4.1) >0.999 14 (2.6) 6 (4.1) 0.495

Aspirina 6,285 (97.4) 143 (96.0) 0.439 523 (97.4) 143 (96.0) 0.525

Clopidogrela 2,582 (40.0) 77 (52.0) 0.004 246 (45.8) 77 (52.0) 0.212

Ticagrelora 3,760 (58.2) 68 (45.6) 0.003 285 (53.1) 68 (45.6) 0.130

Statina 6,263 (97.0) 143 (96.0) 0.616 520 (96.8) 143 (96.0) 0.795

ACEIa 3,026 (46.9) 67 (45.3) 0.761 251 (46.7) 67 (45.3) 0.822

ARBa 174 (2.7) 6 (4.1) 0.455 19 (3.5) 6 (4.1) 0.961

Beta-blockera 3,947 (61.1) 88 (59.5) 0.743 332 (61.8) 88 (59.5) 0.669

In-hospital complications

Reinfarctiona 5 (0.1) 0 (0.0) >0.999 0 (0.0) 0 (0.0) 1

Malignant arrhythmia 204 (3.2) 2 (1.3) 0.301 25 (4.7) 2 (1.3) 0.107

Cardiogenic shocka 142 (2.2) 2 (1.3) 0.663 13 (2.4) 2 (1.3) 0.624

Cardiopulmonary arresta 93 (1.4) 1 (0.7) 0.658 9 (1.7) 1 (0.7) 0.598

Death 154 (2.4) 2 (1.3) 0.571 15 (2.8) 2 (1.3) 0.471

Values are mean ± SD, median (interquartile range) or n (%).
a Include some missing values since some patients did not accept these examinations.
bResult of fisher’s exact test.

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; CABG, coronary artery bypass grafting; LAD, left anterior descending artery;

LDL-C, low-density lipoprotein cholesterol; LM, left main coronary artery; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NT-proBNP, N-terminal pro–brain natriuretic

peptide; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; SD, standard deviation; STEMI, ST segment elevation myocardial infarction;

TIMI, Thrombolysis In Myocardial Infarction.
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hyperlipidemia (31.3 vs. 22.7%, P = 0.018) and diabetes (38.3
vs. 24.2%, P < 0.001). The group of patients with cancer had
a lower proportion of current smokers (31.1 vs. 48.7%, P <

0.001) but higher proportions of patients with comorbidities.
Furthermore, the group of patients with cancer had higher
proportions of patients with previous CHD (44.9 vs. 25.7%, P <

0.001), previous MI (21.8 vs. 11.0%, P < 0.001) and previous PCI
(16.3 vs. 7.3%, P < 0.001) than the group without cancer. During

hospitalization, patients with cancer tended to receive clopidogrel
(52.0 vs. 40.0%, P = 0.004) rather than ticagrelor (45.6 vs. 58.2%,
P = 0.003) given an aspirin background. In addition, matching
was possible for 542 pairs of reference patients and patients
with cancer, and those patients constituted our matched study
groups. After controlling for these heterogeneous covariates, such
as age, sex, diabetes, smoking habits, and hyperlipidemia, the
baseline characteristics were similar between the groups after

FIGURE 1 | Clinical outcomes among AMI patients with and without cancer. Displayed are the cumulative incidence curves for (A) cardiac mortality and (B) MACCE

for cancer patients vs. controls. AMI, acute myocardial infarction; MACCE, major adverse cardiovascular and cerebrovascular events.
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FIGURE 2 | Subgroup stratified analysis of cardiovascular survival among AMI patients with and without cancer. AMI, acute myocardial infarction; BMI, body mass

index; CI, confidence interval; MI, myocardial infarction; PCI, percutaneous coronary intervention; STEMI, ST segment elevation myocardial infarction.

matching with the exception of higher proportions of patients
with previous CHD (44.9 vs. 26.8%, P < 0.001), previous MI
(21.8 vs. 11.1%, P = 0.001) and previous PCI (16.3 vs. 5.9%,
P < 0.001) in the group of patients with cancer than in the
matched controls. Moreover, patients with cancer were less likely
to undergo in-hospital PCI (61.3 vs. 70.0%, P = 0.055).

Outcomes in the Cancer and Matched
Non-cancer Groups
With regard to the long-term outcomes, patients with cancer
had a significantly higher cumulative incidence of all-cause
mortality (22.7 vs. 9.8%; adjusted HR, 2.40; 95% CI, 1.52–
3.79; P < 0.001) (Supplementary Figure S1) and cardiovascular
mortality (14.0 vs. 8.3%; adjusted HR, 1.934; 95% CI, 1.11–
3.39; P = 0.021) (Figure 1; Supplementary Table S2). MACCE
were also significantly higher in the patients with cancer than
in the matched non-cancer group (16.0 vs. 10.3%; adjusted
HR, 1.98; 95% CI, 1.21–3.26; P = 0.007). Moreover, there
was no significant difference in MI (2.7 vs. 1.7%; adjusted

HR, 1.64; 95% CI, 0.50–5.41; P = 0.419), stroke (0.7 vs.
0.9%; adjusted HR, 0.84; 95% CI, 0.10–7.34; P = 0.876), and
revascularization (1.3 vs. 4.6%; adjusted HR, 0.259; 95% CI,
0.061–1.097; P= 0.067) between patients with or without cancer.
Cardiovascular mortality tended to be similar across all pre-
specified subgroups (Figure 2), as was all-cause mortality and
MACCE (Supplementary Figures S2, S3).

Among 150 patients with cancer, 52 had a historical cancer
diagnosis beyond 5 years before AMI, 59 had a historical cancer
diagnosis within 5 years before AMI, and the other 39 had
a current cancer diagnosis after AMI. The incidences of all-
cause mortality, cardiovascular mortality and MACCE were
significantly higher among patients with a historical cancer
diagnosis within 5 years than among those without cancer
(adjusted HR, 3.38; 95% CI, 1.88–6.04; P < 0.001; adjusted HR,
2.59; 95% CI, 1.25–5.35; P = 0.010; and adjusted HR, 2.66;
95% CI, 1.39–5.11; P = 0.003, respectively) (Table 2). A similar
pattern was observed for all-cause mortality among patients
with a current cancer diagnosis (adjusted HR, 2.71; 95% CI,
1.25–5.88; P = 0.012).
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TABLE 2 | Outcomes according to the timing of the cancer diagnosis.

Outcome Events

(N/All)

HR (95%CI)

(Cancer vs.

no cancer)

P-value Adjusted HRa (95%CI)

(Cancer vs.

no cancer)

Adjusted

P-valuea

All-cause death

All cancer 34/87 2.465 (1.581–3.843) <0.001 2.402 (1.523–3.789) <0.001

History > 5 years 8 1.460 (0.692–3.081) 0.320 1.453 (0.685–3.082) 0.331

History ≤ 5 years 16 3.271 (1.833–5.836) <0.001 3.375 (1.884–6.044) <0.001

Current 10 3.099 (1.523–6.304) 0.002 2.708 (1.248–5.875) 0.012

Cardiac death

All cancer 21/66 2.075 (1.206–3.569) 0.008 1.934 (1.105–3.386) 0.021

History > 5 years 6 1.717 (0.730–4.040) 0.216 1.649 (0.697–3.904) 0.255

History ≤ 5 years 10 2.550 (1.239–5.246) 0.011 2.589 (1.253–5.348) 0.010

Current 5 1.879 (0.674–5.241) 0.228 1.348 (0.406–4.473) 0.626

MACCE

All cancer 24/80 2.302 (1.251–3.303) 0.004 1.982 (1.205–3.261) 0.007

History > 5 years 7 1.530 (0.697–3.358) 0.289 1.542 (0.700–3.397) 0.282

History ≤ 5 years 11 2.571 (1.346–4.910) 0.004 2.661 (1.385–5.111) 0.003

Current 6 2.031 (0.814–5.071) 0.129 1.647 (0.578–4.692) 0.350

CI, confidence interval; HR, hazard ratio; MACCE, major adverse cardiovascular and cerebrovascular events.
aHRs were calculated using adjustments for history of coronary heart disease, history of myocardial infarction, history of percutaneous coronary intervention and history of chronic

kidney disease.

DISCUSSION

The main findings of this study are as follows: (a) among AMI
patients, those with cancer were generally older and more often
presented with comorbidities than those without cancer; (b)
patients with cancer tended to be treated with conservative
medical strategies with a weaker P2Y12 inhibitor in dual anti-
platelet therapy (DAPT) and less PCI; (c) patients with cancer had
a significantly higher incidence of cardiovascular mortality and
MACCE; (d) patients with a historical cancer diagnosis within 5
years had a higher risk of cardiovascular ischemic events.

Patients With Cancer Tended to Be Treated
With Less PCI
We found that patients with cancer are less likely to undergo
PCI treatment during hospitalization than those without cancer,
and they were also less likely to undergo revascularization
during follow-up. According to previous data, patients with
active cancer have ∼2- and 3-fold higher risks of 90 days for
readmission with AMI or major bleeding after PCI, respectively,
than patients without cancer (18). Thus, clinicians are often
wary of performing invasive therapies in patients with cancer.
However, data from large retrospective studies showed that
PCI results in significantly lower risks of in-hospital all-cause
mortality and MACCE than conservative treatment, irrespective
of whether the patient had a cancer diagnosis, and PCI did
not increase the risk of in-hospital complications, including
massive bleeding and stroke (19). To date, there has been
no large randomized trial to assess the benefits and risks
of invasive and conservative approaches to treating AMI in
patients with cancer, and such patients are often excluded
from clinical trials. The current guidelines recommend that

percutaneous revascularization should be considered even in
cancer patients with an expected survival duration of <1 year
(20). Balloon angioplasty without stents are recommended to
limit the duration of antiplatelet therapy. If stents need to be used,
those with fast reendothelialization rates may be a better choice.

Clinicians Prefer Conservative Clopidogrel
Rather Than Ticagrelor for Aspirin-Based
DAPT
The coexistence of high risks of ischemia and major bleeding
presents a challenge for clinicians when treating AMI patients
with cancer with regard to antiplatelet therapy. When faced
with this dilemma, clinicians prefer conservative approaches with
regard to aspirin-based DAPT. A less potent P2Y12 inhibitor,
namely, clopidogrel rather than ticagrelor, was administered to
AMI patients with cancer, but there is a lack of reliable evidence
to confirm the greater benefits of clopidogrel among such high-
risk patients.

Patients With Cancer Had a Significantly
Higher Incidence of Adverse
Cardiovascular Outcomes Than Those
Without Cancer
A previous study that included 6,563,255 AMI patients revealed
that patients with cancer, irrespective of the cancer type, had
higher risks of in-hospital mortality, MACCE, and stroke than
those without cancer (21). Inflammation plays a vital role in the
progression of both cancer and atherosclerotic lesions (including
CHD) (22). Although the mechanism underlying this association
is unclear, we propose that local malignancies might increase
vascular wall inflammation by releasing inflammatory cytokines
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and that this circulatory inflammationmight subsequently lead to
progressive coronary atherosclerosis. In addition, cardiotoxicity
can be a major complication of cancer treatment, radiotherapy
is recognized as a cardiovascular risk factor among patients
with cancer, and many anticancer drugs (anthracyclines, vinca
alkaloid anti-metabolites, and biologics) are known to be closely
associated with acute early and late cardiovascular adverse
events. Perhaps because of the overlap of common risk factors
for cancer and CHD and the susceptibility to atherosclerosis
caused by oncology treatments (such as radiation therapy
or tyrosine kinase inhibitors), patients with cancer tend to
exhibit a relatively higher cardiovascular risk. In particular,
there was no significant difference in cardiovascular mortality
and MACCE for 1 year, but we found that there was no
significant difference in cardiovascular mortality and MACCE
for 1 year (Supplementary Table S3), and the 3-year incidences
of all-cause mortality, cardiovascular mortality and MACCE
were significantly higher among patients with cancer than
among those without cancer (Supplementary Table S2). These
problems highlight the fact that cardiovascular diseases become
more important during the long-term survival of patients with
cancer. Advances in screening, big data, targeted and immune
therapies, and significant new knowledge of cancer biology are
changing the prevention, detection, diagnosis, treatment and
survival of cancer. However, the current treatments are still
mostly based on extrapolation from non-cancer patient data, and
there remain some gaps in achieving the goal of personalized
treatment for AMI patients with cancer.

Patients With a Historical Cancer
Diagnosis Within 5 Years Had a Higher Risk
of Adverse Cardiovascular Outcomes
Among All Subgroups
Furthermore, subgroup analysis was performed according to the
time between the diagnosis of cancer and the occurrence of
AMI. The results showed that the incidences of all-cause death,
cardiovascular death and MACCE in the group with a historical
cancer diagnosis within 5 years were significantly higher than in
those without cancer, and the risks in that subgroup were the
highest among all subgroups. This connection is not accidental,
and a large-scale study from Sweden also found that patients
with cancer had the highest risk of CHD in the first 6 months
after diagnosis (23). Another previous study reported similar
results: the risks of in-hospital mortality and MACCEs were
higher by at least 50% among AMI patients with a current cancer
diagnosis than among those without cancer, whereas they were
not higher among patients with a historical cancer diagnosis
(21). Our findings also underscore the importance of vigilance
in cardiovascular risk monitoring after cancer treatment. It is
critical to continue assessing the risk of potential cardiovascular
events among patients with cancer, and future randomized trials
are needed to evaluate the effectiveness of such surveillance.

Limitations
(a) We acknowledge all limitations inherent to a retrospective,
single-center study, which restrict the generalization of our

findings and the inference of causality. (b) The overall cancer
population was relatively small, and the subgroups related to
cardiovascular safety concerns were potentially underpowered.
In addition, the patients with cancer were a heterogeneous
population with different cancer types and stages, and the sample
size was too small to evaluate each cancer type separately. (c)
Although the data for AMI patients were abundant, the lack of
complete cancer history and cancer types may be considered a
limitation of this study. The missing data on cancer metastasis,
stages, and cancer treatment limits the further understanding of
the differences in outcomes between AMI patients with cancer
and those without cancer.

CONCLUSIONS

AMI patients with cancer tended to have a significantly higher
risk of cardiovascular adverse outcomes than those without
cancer. Given the limited evidence-based guidance, clinicians
are more likely to empirically initiate conservative treatment
when faced with the dilemma of ischemia and the risk of major
bleeding. Thus, it is vital to raise awareness of cardiovascular
risk management and continuously optimize cardiovascular
treatment among patients with cancer.
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Advances in tumor diagnosis and treatment, especially the use of targeted therapies,

have remarkably improved the survival rate of patients with renal cell carcinoma (RCC),

accompanied by higher hypertension (HTN) incidence among patients with RCC,

reflecting the coming of a cardio-oncologic era. Therefore, for patients with RCC and

HTN simultaneously, finding risk factors for the comorbidity and giving better clinical

treatment have been urgent problems. In this review, we thoroughly investigated risk

factors for the comorbidity of HTN and RCC based on preclinical and clinical studies.

Firstly, RCC and HTN may have common risk factors, such as obesity, smoking, and

other modifiable lifestyles. Secondly, RCC and HTN may lead to each other directly or

indirectly by their therapies. We then discussed measures of reducing the comorbidity

and treatment of HTN in patients with RCC. We also discussed the deficiency of current

studies and pointed out future directions. In conclusion, this review aims to deepen the

understanding of cardio-oncology and bring benefit to the population who are at high

risk of getting or have already got RCC and HTN simultaneously.

Keywords: hypertension, kidney cancer, comorbidity, targeted therapy, antihypertensive drug, cardio-oncology

INTRODUCTION

The prevalence of hypertension (HTN) and renal cell carcinoma (RCC) keeps increasing. In 2019,
one-third of people between 30 and 70 years old were estimated to have HTN globally and the
number has doubled from 648 to 1.2 billion in the past 3 decades (1). HTN was the most frequent
comorbidity with malignant tumors, seen in 38% of patients with cancer (2). RCC accounted for
about 90% of renal malignancies (3). According to GLOBOCAN in 2020, the patients with kidney
cancer were more than 1.2 million and new cases were estimated to be 431,288 globally (4). RCC
prevalence in the United States was increasing owing to a higher incidence which had doubled
compared with the incidence in 1975 (15.6 vs. 7.1 per 100,000 persons) and longer 5-year relative
survival (75.6 vs. 52.3%), reported by the SEER program (5).
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Since the prevalence of HTN and RCC is increasing, patients
with RCC and HTN simultaneously are estimated to increase for
the following reasons: HTN is a potential risk factor for RCC (6)
and RCC can cause HTN due to paraneoplastic syndrome (7),
nephrectomy (8), and targeted therapies (9). Besides, prolonged
survival rates andmodern lifestyles may increase the comorbidity
of HTN and RCC (10). The above-mentioned situation raised
our questions: (1) What are the risk factors for the comorbidity
of HTN and RCC in cardio-oncologic era? (2) How to decrease
the comorbidity of HTN and RCC? (3) How to give better
antihypertensive treatment for the patients with RCC with HTN?
To answer these questions, we did a thorough search and
reviewed the relationship between HTN and RCC based on
clinical evidence and basic researches (Figure 1).

METHODS

A literature review of publications about RCC and HTN has been
performed. A manuscript outline was formed before searching
for relevant publications. PubMed (1946–2021) and Cochrane
Library (1996–2021) were employed as the source of initial
searches. Hand searching was also used to find relevant studies
in PubMed and other websites (e.g., FDA and SEER). Besides,
valuable publications recommended by experts were included as
well. Key search words include HTN, antihypertensive agents,
and kidney neoplasms. Detailed search queries and search results
are available (Supplementary Material). In total, 7,279 studies
were found. These studies were screened for eligibility using
title and abstract. The remaining studies were then retrieved
as full texts and checked with inclusion and exclusion criteria.
We considered studies that were related to: (1) epidemiology
about RCC or HTN; (2) risk factors causing RCC or HTN; (3)
mechanisms for the formation of RCC or HTN; (4) treatment
of HTN in patients with RCC. We excluded studies that were:
(1) not in English; (2) duplicate; (3) clinical studies with similar
results but lower evidence level or out of date; and (4) could not
find full text. The review process is conducted independently by
3 authors. Discrepancies were solved by consensus.

COMMON MODIFIABLE RISK FACTORS

Obesity, inadequate physical activity and alcohol are well-known
dose-dependent risk factors for HTN (11). The relationship
between smoking and HTN is complex, but it is certain that
cessation of smoking can dramatically reduce the cardiovascular
disease burden (12). It is noteworthy that obesity, smoking, and
inadequate physical activity are also risk factors for RCC (13)

Abbreviations: ACEI, angiotensin-converting enzyme inhibitor; a-MSH, a-

melanocyte-stimulating hormone; ARB, angiotensin receptor blockade; BMI, body

mass index; BP, blood pressure; CCB, calcium channel blocker; DBP, diastolic blood

pressure; HR, hazard ratio; HTN, hypertension; IGF-1, insulin-like growth factor-

1; mRCC, metastatic RCC; mTOR, mammalian target of rapamycin; OR, odds

ratio; OS, overall survival; PFS, progression-free survival; PN, partial nephrectomy;

RCC, renal cell carcinoma; RR, relative risk; RN, radical nephrectomy; SBP,

systolic blood pressure; tHTN, targeted therapy-related HTN; TKI, tyrosine kinase

inhibitor; VEGF, vascular endothelial growth factor; VSP, vascular endothelial

growth factor signaling pathway.

while alcohol exerts a protective effect on RCC development
(14). Besides, diets play important roles in HTN and RCC. For
example, excess salt intake increases blood pressure (BP) (11),
whereas heavy meat and fatty food are risk factors for RCC,
and lack of vegetables or fruits may also increase RCC incidence
(15), but the common unhealthy diets for both RCC and HTN
still need further study. In summary, obesity, smoking, and
inadequate physical activity are common modifiable risk factors
for RCC and HTN, we will discuss the clinical evidence and
potential mechanisms below.

Obesity as a Risk Factor for RCC
A meta-analysis of 24 cohort studies showed that the relative
risk (RR) of kidney cancer was 35% higher (RR = 1.35, 95%
CI = 1.27–1.43) in overweight [body mass index (BMI): 25–30]
and 76% higher (1.76, 1.61–1.91) in patients of obesity (BMI >

30) compared with the normal weight population (16). Several
indicators of obesity were used in clinical studies, such as BMI,
waist and hip circumference, and body fat percentage, but the
results were consistent (15). A large cohort study demonstrated
that per unit increase in BMI will increase 5% risk of RCC
(17). Both pre-existing obesity in adulthood and obesity near
diagnosis of RCC could increase the risk of renal cancer [odds
ratio (OR) = 1.6, same] (18). Of note, a cohort study in Japan
demonstrated that low BMI (<21) may also increase the risk
of kidney cancer [hazard ratio (HR) = 1.86; 95% CI: 1.01–3.45]
compared with BMI of 23.0–24.9 (19). Interestingly, obesity was
found to increase the risk of clear-cell RCC while decreasing
the risk of papillary RCC (14). Such heterogeneity may be
associated with demographic difference considering the fact that
papillary RCC is more common in women, the older and the
black (20).

Obesity-induced chronic renal hypoxiamay play an oncogenic
role mainly through upregulating the vascular endothelial
growth factor (VEGF) pathway (21). Obesity could cause lipid
peroxidation and then facilitate the formation of RCC (22).
Obesity-induced renal hyperfiltration may increase the exposure
to oncogenic nephrotoxins (23). Increased estrogen in adiposity
patients also facilitates RCC by upregulating the insulin-like
growth factor-1 (IGF-1) receptor, enhancing the oncogenic
influence of IGF-1 (24). Metabolism disorders caused by obesity
are also oncogenic. Overexpressed insulin and IGF-1 could
promote the formation of RCC. Adiponectin, secreted by fatty
tissue, is an anti-angiogenic factor by suppressing the VEGF
pathway. However, the serum adiponectin is expressed lower
in obesity (15). Besides, increased leptin in obesity, which is a
kind of adipokine, promotes RCC by regulating VEGF, the Janus
kinase/signal transducer and activator of transcription 3 and
extracellular signal-regulated kinase 1/2 pathways (25). Obesity-
induced inflammatory response increases levels of interleukin-6,
which is also an oncogenic adipokine because it can protect RCC
cells from immune attacks (26).

Insulin resistance and increased circulating insulin observed
in obesity could induce HTN by increasing renal sodium
reabsorption and activating the sympathetic nervous system (27).
Elevated leptin can also promote HTN mediated by increasing
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FIGURE 1 | Risk factors for comorbidity of hypertension (HTN) and renal cell carcinoma (RCC). This figure outlines risk factors for the comorbidity of hypertension and

renal cell carcinoma. Arrows indicate a potential causality relationship. Words in red color highlight risk factors confirmed by high-level evidence and have achieved

consensus. Words in black color indicate risk factors lack strong evidence or the evidence are still conflictive. Words in blue indicate risk factors that may decrease the

risk of comorbidity and have protective roles. ACEI/ARB, angiotensin-converting enzyme inhibitors/angiotensin receptor blockades; VSP, vascular endothelial growth

factor signaling pathway.

sympathetic nervous system activity (28). Furthermore, a-
melanocyte-stimulating hormone (a-MSH) that is a hormone
secreted by melanocytes could regulate BP by suppressing
adrenocorticotropic hormone. Interestingly, a-MSH could also
inhibit obesity progress by targeting melanocortin 4 receptor.
Therefore, it is hypothesized that sunshine may increase levels
of a-MSH and then protect obese patients from inflammation-
induced HTN (29).

Smoking as a Risk Factor for RCC
A meta-analysis of 24 studies reported that smokers have a
higher risk for RCC (RR = 1.38, 95% CI: 1.27–1.50) and a dose-
dependent relationship was seen both in men and women (30).
Remarkably, passive smoking increases the risk of RCC either
(31). Cessation of smoking for more than 30 years reduced 50%
risk of RCC (CI: 0.3–0.8), while quitting smoking shorter than
30 years showed no significant difference in RCC incidence (32).
A retrospective study revealed that smoking is positively related

to increased risk of clear-cell RCC rather than papillary RCC.
However, this heterogeneity may be attributable to the skewed
distribution of smoking patterns (14).

Some ingredients contained in cigarettes are carcinogenic.
Nicotine could induce angiogenesis of RCC, while N-
nitrosamines and Benzo[α]pyrene diol epoxide correlate
with renal oxidative stress which could lead to DNA damage
or gene aberration, thus facilitating the formation of RCC
(15). Smoking-related chronic respiratory diseases and carbon
monoxide could cause hypoxia of renal tissue (10) and lipid
peroxidation is another possible mechanism (22).

Grassi et al. (33) found that smoking-induced acute increase
of BP attributes to higher dose of catecholamines at the
neuroeffector junctions. In addition, smoking was demonstrated
to cause increased arterial wave reflection and stiffness of large
arteries, thus enhancing BP (34). Smokers with atherosclerotic
renal artery stenosis were more common than non-smokers, and
renal vascular stenosis could cause refractory HTN (35).
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Low Physical Activity as a Risk Factor for
RCC
Low physical activity is regarded as a risk factor for RCC (36–
38). An American cohort study of 482,386 participants with a
median follow-up of 8.2 years showed that the multivariate RR
for those with current exercise more than 4 times per week
was 0.77 (95% CI: 0.64–0.92) compared with the never exercise
population. Besides, regular exercise and activity in youth is also
protective (36). Similarly, a meta-analysis including 19 studies,
which was conducted in 2013, showed that adequate physical
activity was a protective factor for RCC (RR = 0.88, 95% CI:
0.79–0.97) (37). Physical activity like running or walking had
a dose–response relationship with a decreased risk (1.9% risk
decline per metabolic equivalents hour/week) of kidney cancer
after adjustment for age and sex (38).

Physical activity may decrease the risk of RCC in a directly
or indirectly manner. Physical activity could directly inhibit RCC
formation by decreasing insulin resistance, circulating IGF-1, and
lipid peroxidation (37). Some researchers thought the lack of
exercise was an indirect risk factor because a low level of energy
consumption could cause obesity and subsequently promotes
RCC formation (13). Furthermore, more activity could prevent
HTN and diabetes, which are also confounding factors (38).

The mechanisms for inactivity-induced HTN have not been
clearly demonstrated. Murine studies showed that insulin
resistance and imbalance of sympathetic and vagus nerves are
potential reasons (39). Another animal study demonstrated
that resistance training could contribute to the regulation of
vessel constriction and keep luminal diameter (40). Other
factors that explain inactivity-induced HTN include vascular
resistance, arterial stiffness, oxidative stress, inflammation, BMI,
and endothelial function (41).

HTN AS A DIRECT RISK FACTOR FOR RCC

A meta-analysis of 18 prospective studies and 14 case–control
studies showed that each 10 mmHg increase of systolic BP (SBP)
led to 5% higher risk (95% CI: 1.03–1.06) of RCC and 10 mmHg
increase of diastolic BP (DBP) with 7% higher risk (95% CI:
1.04–1.10) (42). However, extremely high pressure (SBP > 150
mmHg or DBP > 100 mmHg) will cause a rapid increase of RCC
incidence rather than linear growth (6, 43). It is noteworthy that
even high-normal BP (SBP: 130–140mmHg, DBP: 80–90mmHg)
could increase the risk of RCC (44).

Women with HTN may be more susceptible to RCC. A
recent meta-analysis showed that women with HTN have a 54%
higher risk than men (RR = 63 vs. 29%), but the difference was
substantially reduced (1.40, 1.12–1.74 for men and 1.54, 1.17–
2.04 for women) after adjustment for age, cigarette, family history
of RCC, obesity, alcohol, and physical activity (42).

Age may influence the incidence of RCC in the patients
of HTN while this hypothesis is still controversial. A study
suggested that HTN was not an independent risk factor for
RCC in adolescence (45), while another study got the opposite
conclusion that younger patients with HTN were more likely to
develop RCC (44).

It is worth mentioning that HTNmay have a synergistic effect
with obesity on RCC formation. A prospective study showed that
the risk of obesity-caused RCC will increase significantly when
BP was very high (SBP > 160 mmHg or DBP > 100 mmHg) (6).

A cohort study conducted in Sweden with amean follow-up of
16 years among 3,63,992men using repeatedmeasurements of BP
showed that RCC incidence decreased with the reduction of BP
and especially, in those with a reduction of more than 14 mmHg
in DBP, the RR for RCC decreased 40% (46). Thus, HTN is a
modifiable risk factor for RCC and effective control of BP is of
great value.

However, some factors may influence the reliability of these
researches. HTN shares several common risk factors with RCC
(43), which highlights the necessity of sufficient adjustment
for these confounding factors during the investigation of
the causality between HTN and RCC. Besides, the way of
defining and measuring HTN varies (47). Of note, if RCC were
diagnosed in patients with HTN in the first several years after
enrollment in a cohort, it is difficult to determine the occurrence
sequence of RCC and HTN. But such bias could be avoided by
excluding data of the first several years of follow-up (46). In
conclusion, well-designed prospective studies are warranted to
clarify their causality.

As to the mechanisms of HTN-induced RCC, HTN could
result in chronic inflammation, making the kidney in a state
of hypoxia and then upregulating the expression of hypoxia-
inducible factors, causing overexpressed VEGF and platelet-
derived growth factors which could facilitate the tumor genesis
(2). Overexpressed angiotensin receptors and angiotensin-
converting enzyme in the patients with HTN could upregulate
the angiotensin II, and cause the overexpression of oncogenic
VEGF (42, 48). In addition, HTN is related to dysfunction and
remodeling of blood vessels, which could increase the number
of reactive oxygen species and eventually promote the formation
and progress of tumor (44). Similar to obesity, an increased level
of lipid peroxidation in the patients of HTN is supposed to
participate in RCC carcinogenesis (22).

ANTIHYPERTENSIVE DRUGS AS A
POTENTIAL RISK FACTOR FOR RCC

In general, antihypertensive drugs are not risk factors for cancers
(49). However, a recent cohort study in Korea showed that the
use of antihypertensive drugs in patients of HTN was related
to increased risk of RCC (HR = 1.74, 95% CI: 1.64–1.84) and
those with two or more classes of antihypertensive drugs have
an even higher risk (HR = 1.80, 95% CI: 1.69–1.91) without
adjusting for HTN (44). Another cohort study supported this
result after adjusting for HTN, sex, age, BMI, and smoking
(6). There seemed to be a linear relationship between the RCC
incidence and the duration of antihypertensive drugs, and the
risk will increase 2% per year (95% CI: 1.01–1.02) (50). However,
different kinds of antihypertensive drugs play different roles
in RCC development. Diuretics have been convincingly shown
to be tumorigenic for kidney, while angiotensin-converting
enzyme inhibitor/angiotensin receptor blockades (ACEI/ARBs)
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are possible anti-cancer drugs. The role of calcium channel
blockers (CCB) and β-blockers is still in dispute. The tumorigenic
role of these antihypertensive drugs will be elaborated below.

Diuretics
Many researchers argued that diuretics are risk factors for RCC
(47, 48, 50–53). A systematic review of observational studies in
2020 found that diuretics could increase 34% RCC risk (95%
CI: 1.19–1.51) (50). Another meta-analysis showed that the
risk effect of diuretics was still significant after adjustment for
smoking, obesity, and HTN (47). Several cohort studies and
case–control studies drew similar conclusions (48, 51). Women
with diuretics (OR = 1.92, 95% CI: 1.59–2.33) seemed to have
a higher risk of RCC than men (OR = 1.18, 95% CI: 0.93–
1.49) (47). The sexual difference may be explained by the
hypothesis that estrogens could intensify the effect of thiazide
in the distal tubule, and women consume more diuretics than
men (52). Some possible underlyingmechanismsmay explain the
carcinogenic role of diuretics. First, hydrochlorothiazide could be
converted in the stomach to nitroso derivatives and cause genetic
mutations (53). Second, diuretics may exert a little carcinogenic
function on their target, the renal tubular cells (51). More
detailed preclinical studies are necessary to clarify the possible
tumorigenic mechanisms of diuretics.

Calcium Channel Blockers
The role of CCB on RCC carcinogenesis has not been determined
yet (54). In patients without HTN, the use of CCB increased the
risk of papillary RCC rather than clear-cell RCC, demonstrated
by a retrospective study (55). CCB may predispose the patients
with HTN to RCC by impeding DNA fragmentation and
cell apoptosis (44). However, other clinical studies showed
insignificant results which denied its carcinogenic role (54).

β-Blockers
The role of β-blockers for RCC incidence is less well-studied. A
recent cohort study showed that β-blockers have higher HR for
RCC than other antihypertensive drugs (44). However, another
large cohort study showed that β-blockers may not increase
the risk of total cancer incidence (56). Thus, the exact role of
β-blockers as a possible cancer-promotor is far from clear.

Angiotensin-Converting Enzyme
Inhibitors/Angiotensin Receptor Blockades
The role of ACEI/ARBs is still in dispute (57). A meta-
analysis showed that ACEI increased the risk of RCC (RR
= 1.50, 95% CI: 1.01–2.23) (58). ACEI may increase the
amount of bradykinin which may facilitate RCC formation
(57). Interestingly, ACEI/ARBs are also considered as possible
anti-cancer drugs since overexpressed angiotensin receptors and
angiotensin II is associated with upregulated VEGF (59).

Even though many clinical studies have managed to clarify
the causality between antihypertensive drugs and RCC, there are
still no conclusive results because of some limitations. Firstly,
it is quite difficult to exclude the effect of HTN per se (10).
For example, a large prospective study in 2008 showed that in
those with SBP < 160 mmHg or DBP < 100 mmHg, the use

of antihypertensive drugs did not show a significant difference
compared with non-users while in those with poorly controlled
BP, antihypertensive medication increased the risk of RCC,
which highlighted the confounding role of HTN (6). Secondly,
other confounding factors like age, sex, obesity, smoking, and
physical activity are sometimes not adjusted because of the small
sample size or poor statistical design. Thus, a well-designed large
prospective clinical study is needed to clarify the relationship
between antihypertensive drugs and RCC.

RCC DIRECTLY CAUSE HTN

TheHTNdirectly caused by RCC is considered as amanifestation
of paraneoplastic syndrome and in the population with
malignant HTN, the prevalence of RCC was 1.2%, much higher
than those without malignant HTN (0.01%) (7), indicating
malignant HTN could be a clue for the diagnosis of RCC. The
severity of paraneoplastic HTN varies and can sometimes cause
refractory HTN. Most of the paraneoplastic HTN will recover
after nephrectomy (60–62).

Tumor compression, renal arteriovenous fistula, and ureteral
obstruction could cause renal ischemia, thus activating the
rein-angiotensin-aldosterone system, leading to HTN (63, 64).
Besides, ectopic hormones secretion, such as catecholamines,
erythropoietin correlated with paraneoplastic HTN (7, 60).
Hypercalcemia, which increased vascular resistance or indirectly
increased catecholamines, could also cause HTN (61, 62).
In addition, paraneoplastic nodular polyarteritis correlated
with renal vascular HTN (59). It is rarely reported that
brain metastasis from RCC could cause intracranial HTN by
compressing dural venous sinuses (65).

TREATMENT OF RCC CAUSE HTN

The treatment of RCC mainly includes surgery for localized
RCC, targeted therapy, and immunotherapy for metastatic
RCC (mRCC) (3). The excision of kidney jeopardizes kidney
function and then increases the risk of cardiovascular disorders,
such as coronary heart disease, HTN, cardiomyopathy, heart
failure (HF), and dysrhythmias (66). Considering that partial
nephrectomy (PN) can better preserve kidney function than
radical nephrectomy (RN), PN is recommended to treat patients
with early stage tumors (3). Nephrectomy-related HTN (NR-
HT) has been reported by several studies, but robust high-
level evidence is still needed (8, 67–69). The use of targeted
therapies, especially vascular endothelial growth factor signaling
pathway (VSP) inhibitors, has remarkably increase the life
expectancy of patients with mRCC while the increased risk of
cardiovascular events turns out to be its obvious side effect
(5, 70). Apart from HTN, VSP inhibitors could also cause
venous thromboembolism (VTE), HF, arterial thromboembolism
(ATE), myocardial infarction (MI), long Q-T syndrome (LQTS)
and Torsade de Pointes (TdP). Detailed information is listed
in Table 1. Immnunotherapy is also a first-line therapy for
mRCC but significant cardiovascular side effects have not been
found yet (3, 70).
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TABLE 1 | Incidence of targeted therapy associated hypertension (HTN) in patients with metastatic renal cell carcinoma (mRCC).

Drugs FDA approved year Any grade HTN (%) Grade 3/4 HTN (%) Other associated cardiovascular complications

Temsirolimus 2007 7 - VTE, thrombophlebitis

Everolimus 2009 1–10 3 Non-infectious pneumonitis with pulmonary HTN, VTE, tachycardia, HF

Bevacizumab 2004 4–34 1–11 ATE, VTE, HF

Sorafenib 2005 12–34 4–11 MI, LQTS

Sunitinib 2006 24–41 8–15 MI, HF, cardiomyopathy, LQTS, TdP

Pazopanib 2009 13–57 4 LQTS, TdP, HF, ATE, VTE, thrombotic microangiopathy

Axitinib 2012 40–42 8–16 ATE, VTE, HF, MI

Lenvatinib 2015 42 13 cardiomyopathy, HF, ATE, LQTS

Cabozantinib 2016 37–81 15–28 MI, ATE, VTE

Tivozanib 2021 44–45 12–22 HF, MI, ATE, VTE

This table shows data about incidence of tHTN collected from FDA, Phase III clinical trials and meta-analysis or other high-grade evidences. The Grade 3/4 HTN data about Temsirolimus

has not been found. HTN, hypertension; VTE, venous thromboembolism; HF, heart failure; ATE, arterial thromboembolism; MI, myocardial infarction; LQTS, long Q-T syndrome; TdP,

Torsade de Pointes.

Nephrectomy-Related HTN
As for PN, a cross-sectional survey showed that PN was
independently associated with NR-HT (OR = 2.93, p = 0.022)
(8). There are several hypotheses for NR-HT after PN. The
compressed renal parenchyma due to renal hematoma, bolsters,
or sclerotic tissue could cause insufficient renal perfusion and
renin-angiotensin system activation, which refers to the “page
kidney” hypothesis (71). In addition, vascular clamping in PN
process could cause vasculitis and intimal hyperplasia, which
would aggravate renal artery stenosis, resulting in the decline of
glomerular capillary pressure and activated rennin-angiotensin
system, leading to NR-HT (72). However, some studies drew
opposite conclusions (67, 73). A retrospective study involving
264 patients with PN showed that BP had no significant change
after surgery (67). A plausible explanation is that PN may treat
paraneoplastic HTN, which can mask NR-HT, thus resulting in
a statistically insignificant difference. Another study showed the
BP decreased 1.9 mmHg (p = 0.01) in 5 years after PN and
the decrease of BP is thought to be associated with more BP
measurements during follow-up and increased antihypertensive
medications (73). Considering the conflicting results, well-
designed prospective researches are warranted for NR-HT.

As for RN, it is still uncertain for its facilitating HTN role
owing to insufficient evidence. After more than 10 years of
follow-up, a small cohort study showed that 40% of patients with
RN developed NR-HT and the mechanisms of RN leading to NR-
HT are most likely due to functional renal parenchyma deficits
and secondary end-stage renal disease (68). However, another
cross-sectional cohort study showed that there was no significant
difference in BP among RCC patients who underwent RN (69).
Besides, the circadian rhythm of BP may also be affected after
bilateral RN (74).

Targeted Treatment-Related HTN
Targeted therapies for mRCC have prolonged the overall survival
(OS) and progression-free survival (PFS) significantly and now
have been listed as the standard treatment for mRCC (3).
However, the number of patients with mRCC complicated with

targeted therapy-related HTN (tHTN) as the on-target effect has
dramatically increased (75).

These targeted drugs formRCCmainly include VSP inhibitors
and phosphatidylinositol-3-kinase–protein kinase B/mammalian
target of rapamycin (mTOR) inhibitors. Bevacizumab is a
monoclonal antibody to VEGF, often accompanied by the use of
IFN-α (3). Multitargeted tyrosine kinase inhibitors (TKIs), which
can bind to VEGF receptors and suppress the VEGF pathway,
include sunitinib, sorafenib, pazopanib, axitinib, tivozanib, and
cabozantinib (76). The mTOR inhibitor includes everolimus and
temsirolimus (3). According to a report of real-world treatment
patterns, the most common first-line used of targeted drugs in
2015 in the United States are sunitinib and pazopanib accounting
for about 70% (77).

Strong evidence showed that targeted therapy, especially VSP
inhibitors, could induce HTN. We collect data about tHTN
from FDA (70), Phase III clinical trials, meta-analysis, or other
high-grade evidence RCC (78–84) (Table 1). The Common
Terminology Criteria for Adverse Events classified the tHTN
into 5 grades. A meta-analysis of randomized controlled trials
in 2015 showed that patients with TKIs have a significantly
higher grade 3 or 4 HTN incidence compared with IFN-α or
placebo (RR= 6.00, 95%CI: 3.36–10.69) (9). A large retrospective
real-world study from 2006 to 2015 showed the total tHTN
incidence rate was 69.1 per 100 patient-years and VSP inhibitors
were higher than mTOR inhibitors (71.7 vs. 47.8 per patient-
years) (77). The newer generation of VSP inhibitors which are
more powerful to inhibit the VEGF pathway, tended to have
higher HTN incidence (85). In addition, higher doses and longer
duration of VSP inhibitors will increase the incidence and degree
of HTN, which showed a dose-dependent relationship (2, 85, 86).
Germline polymorphisms (86), high SBP at baseline (87), aging
and other cardiovascular risk factors (88) may also affect the
onset of tHTN. The tHTN could occur within hours or days
after receiving VSP inhibitors (9) and drop quickly after drug
withdrawal (89). The average onset time of tHTN was 131 days
for bevacizumab (78), 116.5 days for mTOR inhibitors, and 70.0
days for VSP inhibitors (77). The newly proved lenvatinib has
a median onset time of 35 days, reported by the FDA (70).
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The use of antihypertensive drugs may affect the onset time of
severe HTN (9).

The mechanisms for tHTN are still elusive. VSP inhibitors
could cause depletion of nitric oxide and prostacyclin which are
vasodilators as well as increased vasoconstrictive endothelin-1
(89). In addition, increased reactive oxygen species, functional
decreasedmicrovascular density, increased vascular stiffness, and
salt sensitivity are other possible reasons (90).

The tHTN could be seen as a biomarker for the on-target
effect of VSP inhibitors and indicated a better prognosis (75).
A multicenter retrospective study in 2020 demonstrated that
patients with tHTN had higher PFS (12 months, 95% CI = 9–
21 months) than those without tHTN (9 months, 95% CI: 7–12
months) (86). Similar results were shown among other TKIs and
Bevacizumab (2, 75).

However, HTN that is not induced by targeted therapy could
increase the risk of RCC mortality (OR = 1.75, 95% CI: 1.61–
1.90) demonstrated by a review such as 6,964 patients of RCC
in 2002 (91). Severe HTN in patients of RCC could cause HF,
leukoencephalopathy, suspend, or cessation of targeted drugs
(75, 90), which will do harm to the prognosis and well-control
of BP during targeted therapy could improve prognosis (92).

Selection of Antihypertensive Drugs for
tHTN
There is no conclusion about the best antihypertensive drugs
for tHTN (81). The current opinion is the selection of
antihypertensive drugs should be individualized, but there are
indeed some preferences (93).

Angiotensin-converting enzyme inhibitors/ angiotensin
receptor blockades are potential better antihypertensive drugs
for VSP inhibitors users. Several retrospective studies showed
that patients of mRCC treated with sunitinib or other VSP
inhibitors had better OS and PFS if received ACEI/ARBs
(92, 94). ACEI/ARBs may be more recommended in patients
with mRCC undergoing nephrectomy, considering its renal
protective function (95). ACEI/ARBs could also treat proteinuria
and left ventricular systolic dysfunction induced by targeted
treatment (81, 90). ACEI/ARBs may prevent sarcopenia in
patients with RCC and then reduce overexposure and toxicity
of TKIs which could decrease the treatment interruption
rate (95). However, a case report claimed that ACEI may
decrease the effect of bevacizumab in ovarian cancer (96) and
another case reported that combinatorial therapy of ACEI
and everolimus may increase the risk of angioedema (97). A
pooled-analysis reported that baseline use of ACEI/ARB is not
significantly associated with OS or PFS (81). Thus, even with
much supporting evidence, the priority of ACEI/ARB in mRCC
needs further studies.

Dihydropyridine CCB can control tHTN as well as other
antihypertensive drugs, considering the function of inhibiting
arterial wall contractility (98). In addition, CCB was thought to
inhibit chemoresistance of RCC and thus enhance drug efficacy
(88). Besides, animal studies showed that CCB could increase
the density of micro-vessels (89). But non-dihydropyridine CCB
should not be used in patients receiving VSP inhibitors because

they would competitively inhibit the activity of P450 3A4, thus
increasing the circulating VSP inhibitors concentrations (2).

A retrospective study showed that the patients with mRCC
treated with sunitinib or pazopanib with β-blockers have better
PFS and OS than other antihypertensive drugs (99). Animal
studies have shown that β-blockers could inhibit the proliferation
of cancer, but the anti-cancer role of β-blockers in human is still
in controversy (100).

The use of diuretics should consider the probability of
dehydration and electrolyte disorders, since patients treated with
VSP inhibitors like sunitinib have the higher risk of diarrhea
and electrolyte imbalances (95). Fluid retention due to sodium
excretion depletion may explain tHTN occurred weeks later and
diuretics are a potential preference in this condition (101).

DISCUSSION

What Are the Risk Factors for Comorbidity
of HTN and RCC?
The relationship between HTN and RCC is complex (Figure 1).
HTN and RCC share several common modifiable risk factors,
such as obesity, smoking, and low physical activity. These risk
factors may induce RCC and HTN through several common
mechanisms, for example, chronic inflammation, oxidative stress
like lipid peroxidation, interleukin-6, insulin, IGF-1, leptin, and
VEGF pathway (48). There are also some potential common risk
factors, like unhealthy diet, alcohol, but need further study to
confirm their roles.

Hypertension is a direct risk factor for RCC with a dose-
dependent relationship. HTN may also play a synergistic role
with other risk factors like obesity to facilitate RCC. Meanwhile,
the risk of RCC caused by antihypertensive drugs has not been
excluded and diuretics are with great suspicion to cause RCC.
Notably, ACEI/ARBs are potential anti-cancer drugs considering
their mechanisms of function.

Renal cell carcinoma can directly cause HTN by the formation
of arteriovenous fistula, tumor compression-induced renin
secretion, ectopic hormone syndromes, paraneoplastic vasculitis,
and brain metastasis. Treatment of RCC can also induce HTN.
Nephrectomy may affect BP. The use of targeted therapy is
strongly associated with HTN. This kind of increased BP is
short-term, reversible, and dose-dependent and indicates the
effect of targeted therapy. As to medicine for tHTN, there is
no strong evidence proving a preference for a certain kind of
antihypertensive drugs.

There are some guiltless factors responsible for the increasing
comorbidity. For example, population growth and aging,
advances in cancer treatment and prolonged survival, widespread
use of advanced imaging techniques, improved public awareness
for annual medical examination (44, 48, 102).

How to Decrease the Comorbidity of HTN
and RCC?
There are some factors that we can handle to decrease the
comorbidity and the suggestions are discussed below (Figure 2).
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FIGURE 2 | Suggested measures for decreasing the comorbidity of HTN and RCC. This figure illustrates aspects that cause the increasing comorbidity of HTN and

RCC and proposes related measures. HTN, hypertension; RCC, renal cell carcinoma; BP, blood pressure; VSP, vascular endothelial growth factor signaling pathway.

Obesity, smoking, and lack of physical activity all show a
dose-dependent relationship with RCC and HTN. Obesity was
supposed to be associated with 78% patients of HTN, and
increased 60% risk of RCC (90). The risk of RCC doubled in
people smoking more than 20 cigarettes a day while cessation
of smoking more than 30 years reduced the 50% risk of RCC
(32). Adequate physical activity can reduce 12% risk of RCC (37).
It is known that prevention is more favorable than treatment,
both for patients and for society. Thus, public awareness of
developing a healthy lifestyle should be raised and effective public
health policies should be implemented to reduce the modifiable
risk factors.

Poor control of essential HTN facilitates the rising prevalence
of RCC. Globally, it is estimated that only half patients of HTN
are diagnosed and one-fifth patients of HTN have well-controlled
BP (1). Thus, improvement of the awareness and treatment rate
of HTN is quite urgent.

Diuretics exert a potential carcinogenic effect, thus it should
be prescribed after comprehensive thought of the risk/benefit
ratio (103). For those with severe HF, refractory HTN, or
edema, the benefit is higher than the risk. Considering
the carcinogenic risk of diuretics is low and needs long-
term accumulation to be significant, younger women who

need decades of use of diuretics are at high risk than
the elderly and if not necessary, better change to other
antihypertensive drugs.

For those with obesity, smoking exposure, low activity, and
unhealthy diets, the risk of RCC or HTN is high. For those
with long-term HTN and diuretics history, RCC will occur in
higher possibility. People with malignant HTN also have a higher
incidence of RCC (7). These groups with a high risk of RCC are
recommended for regular renal imaging examination. And for
those already diagnosed with RCC and HTN, cardio-oncologic
teams are needed to give better clinical care.

How to Give Better Antihypertensive
Treatment for the Patients With RCC With
HTN?
Regular and accurate BP measurement is fundamental. If the
patients with RCC are treated with nephrectomy and targeted
therapy, clinicians need to predict the possible changes of blood
pressure and monitor BP regularly. As to tHTN, guideline
recommend well-controlled BP before targeted treatment and
weekly monitor during the first treatment cycle and monitor
every 2–3 weeks in the remaining treatment cycle (76). For
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those with a history of HTN or coronary heart disease,
the risk of cardiovascular event is significantly higher when
receiving VSP inhibitors and should be monitored with
caution (104). Hypotension may also occur as a manifestation
of hypersensitivity/infusion reactions when receiving targeted
therapy (70). Thus, BP should be monitored throughout
the infusion process and necessary supportive care should
be prepared. Notably, white-coat HTN, masked HTN may
conceal the exact BP, so out-of-office measurements are also
necessary (105).

Well-control of BP can improve the prognosis of RCC by
preventing severe cardiovascular diseases or discontinuation
of targeted drugs (104). The HTN caused by VSP inhibitors
is usually mild and reversible (106). According to ACC/AHA
guidelines, for people taking VSP inhibitors, the recommended
BP is below 140/90 and below 130/80 if with cardiovascular
risk factors (105). However, there is limited evidence to support
this antihypertensive target. The patients with RCC with VSP
inhibitors developed stage I HTN or DBP increased >20 mmHg
should use antihypertensive drugs (107). The pros and cons of
each kind of antihypertensive drugs have been discussed above.
If the HTN could not be controlled well with a single agent,
consider combined therapy methods. If the HTN is uncontrolled
with end organ damage, the cessation of VSP inhibitors is
recommended (108). Paraneoplastic HTN is usually reversible
after renal tumor removal and there is a lack of evidence
for antihypertensive therapies for NR-HT. Besides, better pain
control and psychotherapy are necessary in the control of BP in
the patients with RCC (2).

However, in view of the lack of high-level evidence for
the management of HTN in the patients with RCC and
different comorbidity conditions of patients, the strategy of blood
pressure control is often best guided by a team of oncologist,
cardiologist, and clinical pharmacist (108). It is necessary
to improve the understanding of “cardio-oncology” among
health professionals. The term “cardio-oncology” highlights
the complex relationship between cardiovascular diseases and
cancer, and encourages the corporation of cardiovascular
specialists and oncologists to give better clinical care for
cancer survivors.

CONCLUSIONS

In modern society, owing to the change of lifestyle and use of
VSPs, the number of patients with HTN and RCC simultaneously
is increasing, which turns out to be a heavy disease burden.
This review thoroughly investigated the relationship between
RCC and HTN from basic, epidemiological, and clinical aspects,
aiming to deepen the understanding of the comorbidity and
benefit of these patients. However, many problems remain to
be resolved. Apart from obesity, smoking, and low physical
activity, there are still other possible common modifiable risk
factors without robust evidence. Besides, the exact roles of
antihypertensive drugs on tumor formation are uncertain and
high quality evidence regarding the management of HTN
secondary to RCC is far from enough to generate guidance
for clinicians. Thus, we appealed to the corporation of basic
scientists, public health officers, oncologists, cardiologists, and
other health experts to solve these cardio-oncologic problems.
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Left ventricular (LV) mass loss is prevalent in doxorubicin (DOX)-induced cardiotoxicity

and is responsible for the progressive decline of cardiac function. Comparing with the

well-studied role of cell death, the part of cardiomyocyte atrophy (CMA) playing in the

LV mass loss is underestimated and the knowledge of the underlying mechanism is

still limited. In this review, we summarized the recent advances in the DOX-induced

CMA. We found that the CMA caused by DOX is associated with the upregulation of

FOXOs and “atrogenes,” the activation of transient receptor potential canonical 3-NADPH

oxidase 2 (TRPC3-Nox2) axis, and the suppression of IGF-1-PI3K signaling pathway.

The imbalance of anabolic and catabolic process may be the common final pathway of

these mechanisms. At last, we provided some strategies that have been demonstrated

to alleviate the DOX-induced CMA in animal models.

Keywords: doxorubicin, cardiotoxicity, cardiomyocyte atrophy, left ventricular mass loss, cell death

INTRODUCTION

Doxorubicin (DOX), the most prescribed anthracycline chemotherapy agent, remains one of the
most commonly used anti-cancer drugs among the world while its clinical application is limited
by its cumulative dose-dependent cardiotoxicity (1, 2). The congestive heart failure (CHF) is the
end stage of DOX-induced cardiotoxicity (DIC) and predicts poor prognosis. The incidence of
DOX-related CHF reaches to 26% in patients received DOX at a cumulative dose of 550 mg/m2 (3).
The health of patients with cancer and cancer survivors is threatened by the DIC, unfortunately,
the number of both is large. For cancer survivors only, it was reported that there are more than
16.9 million cancer survivors until January 1, 2019 in the United States; this number is estimated to
reach more than 22.1 million in the next decade based on the growth and aging of the population
alone (4). Nowadays, several strategies are recommended for patients planning to receive high-dose
anthracyclines to prevent DIC, such as the use of dexrazoxane or liposomal formulation of
doxorubicin, continuous doxorubicin infusion (evidence based; strength of recommendation:
moderate) (5). However, there is still lack of evidence to confirm whether these strategies are safe
and effective for all patients with cancer receiving chemotherapy (5–7). Although small clinical
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trials have revealed that conventional drug of heart failure
therapy may be beneficial against DIC (8, 9). Cardinale et al.
reported that with conventional heart failure therapy, only 11%
patients showed complete recovery from DIC in a heterogeneous
cohort study of 2,625 patients (10). Therefore, it is vital to
uncover the key mechanism of DIC and find a new approach to
prevent it.

Several studies have revealed that anthracycline-based
chemotherapy (ANbC) accounts for the left ventricular (LV)
mass loss in patients with cancer and cancer survivors. In
patients receiving ANbC, the LV mass decrease was detected as
early as 1 month after the initiation of the therapy (11) and a
5% reduction in LV mass in 6 month was found based on the
cardiovascular magnetic resonance detection (12). In the studies
focusing on the pediatric and adult cancer survivors, the LV
mass reduction still exists more than 20 years after the ANbC
therapy (13–17). The severity of LV mass loss is correlative
with the cumulative dose of DOX (14, 18). Further, there may
not be a safe dose of DOX to avoid cardiotoxicity for that the
cardiac abnormalities, such as significantly reduced LV mass
and dimension was found in patients who received as low as 45
mg/m2 cumulative dose (18).

Although there are multi-factors that can be resulted into the
LV mass loss, for example, cancer-associated cachexia like food
intake reduction and excess catabolism (19), heart load alteration
(20), denervation (21), and bed rest (22). Jordan et al. found that
the reduction of LV mass is not necessarily accompanied with
the decline of body weight and the heart failure (HF) symptom
is not associated with the body weight decrease in patients who
received ANbC, indicating a process other than cancer-associated
cachexia leads to LV mass loss (12). Consistent finding was
reported in animal models, DOX itself caused the heart weight
loss in healthy mice and the heart weight (HW)/body weight
(BW) index decreases in a dose-dependent fashion of DOX
treatment, implicating the possibility that the HW loss is out
of portion of BW loss and is caused by the chemotherapy (11).
Intriguingly, Pietzsch et al. reported that the cardiac dysfunction
induced by cancer alone would nearly recover to the base line,
while tumor-bearing mice with DOX treatment showed lower
survival rate in the acute phase and long-lasting damage in the
gene expression system (23).

The LV mass loss is correlative to the decline of life quality
(12) and the increase ofmajor adverse cardiovascular events, such
as cardiovascular death, implantable cardioverter-defibrillator
therapy, and decompensated heart failure (14). Generally, the LV
afterload decreases, the LV mass reduces (20). However, a high
afterload was paradoxically found in ANbC-treated patient (12).
The same phenomenon was found in animal models. Matsumura
et al. found that DOX caused the cardiac atrophy and induced
higher blood pressure after angiotensin II treatment (24). In
addition, DOX-treated juvenile mice failed to develop cardiac
hypertrophic response to late-onset hypertension induced by
angiotensin II, which resulted into higher blood pressure,
cardiac output decline, and overt mortality (24). Maayah et al.
also reported that DOX treatment led to the impairment of
the adaptive hypertrophic response to hypertrophic stimuli
(25). Insufficient ventricular mass plus high chronic afterload

contributes to the progressive contractile deficit, decreased
cardiac output, and the establishment of cardiomyopathy (18).
These may explain why hypertension markedly increased the risk
for coronary artery disease, HF, valvular disease, and arrhythmia
in aging adult survivors of childhood cancer (26).

The LV mass loss derives from both cell death (27, 28) and
cardiomyocyte atrophy (CMA) (11), leads to cardiac atrophy.
It should be noted that cardiac atrophy is different from CMA.
The term of cardiac atrophy generally defined as an acquired
reduction in the size and mass of the heart (29), is usually
evaluated by HW, HW/BW ratio, or HW/tibia length (TL) ratio
in animal DIC model. A great number of studies have revealed
that DOX caused cardiac atrophy, as indicated by the decrease of
HW, HW/TL ratio or HW/BW ratio (30–35). However, several
studies reported that DOX caused a reduction of HW and
BW, did not affect or increase the HW/BW ratio (36–38). It
was reported that the delivery of DOX through intraperitoneal
route resulted into peritoneal damage, which interfered the food
intake and absorption and caused BW loss (39). Therefore, the
preserved or increased HW/BW ratio may originate from the
greater BW reduction. Therefore, it may be more appropriate to
evaluate the cardiac atrophy byHW/TL ratio or HWalone, which
is more evident mostly.

Despite numerous studies focusing on the cell death, less
attention was paid on the CMA in DIC studies. However, the
weight of cardiomyocyte apoptosis in DIC might be overstated
(40). Several studies demonstrated that the contribution of
cardiomyocyte apoptosis is low in acute DIC model. Willis
et al. reported that CMA rather than cell death determines the
cardiac atrophy in acute DIC mice model. They sacrificed mice
7 days after injected with DOX (20 mg/kg) and found that
there were barely no increase of serum Troponin-I level and
TUNEL-stained cell number in DOX treated mice, however, a
44% reduction of cell cross-section area and an obvious cardiac
atrophy were detected (11). Little doxorubicin-induced apoptotic
effect in acute DIC model was reported by other groups (41–
44). However, it was also reported that DOX caused a great
amount of apoptotic cardiomyocyte in an acute DIC model
(45–47). Maybe apoptosis plays less important role in cardiac
atrophy of acute DIC than we thought. While in a chronic DIC
model, cardiomyocyte may undergo a hypertrophy response in
a compensated manner (48), CMA was also found in a chronic
DICmodel (49–51). The controversial results will require further
research to clarify, and the role of CMA in the DIC model should
be evaluated. In a study including 27 women with breast cancer,
patients received the cardiac magnetic resonance image exam at
351–700 days after anthracycline therapy (240 mg/m2). Ferreira
et al. found that the LV mass index in these patients is correlated
with intracellular water lifetime (τ ic; a cardiomyocyte sizemaker)
other than with extracellular volume (ECV), indicating that the
cardiac atrophy originates from CMA (52). Cell size shrinkage
alone accounted for an ∼44% reduction in LV mass, while the
increased ECV may attenuate the LV mass loss (52). Except
for apoptosis, other forms of cell death had been found and
demonstrated to participate in DIC (27), the relative contribution
of cell death and CMA in DOX-induced cardiac atrophy needs
further studies to illustrate.
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Here, we aim to emphasize the importance of CMA in cardiac
atrophy, summarize the current knowledge of the effect of DOX
on CMA, and provide insight into the underlying molecular
mechanism of it, finally discuss some approaches that have been
identified to protect it.

MOLECULAR MECHANISM

Forkhead Box O1 (FOXO1)
Forkhead box O (FOXO) proteins are transcription factors
regulating multi physiological and pathological processes
included in cardiovascular system. The family contains four
members in human, FOXO1, FOXO3, FOXO4, and FOXO6 (53).
FOXOs are key regulators in maintaining the muscle mass (54).
Depletion of FOXOs has been reported to prevent the muscle loss
and weakness through suppressing autophagy–lysosome systems
(ALS) and ubiquitin–proteasome systems (UPS) via inhibiting
the AKT activity (55). Sengupta et al. reported that FOXOs
activation may reduce the cardiomyocyte size by promoting
autophagy (56). Additionally, Skurk et al. (57) reported that
AKT-FOXO3a signaling regulates cardiomyocyte cell size against
hypertrophy via mediating the expression of atrophy-related
genes “atrogenes”. Actually, FOXOs regulates half of the
atrogenes by binding their promoters, such as muscle RING
finger 1 (MuRF1), muscle atrophy gene-1 (atrogin-1/MAFbx),
and Bcl-2 19-kDa interacting protein 3 (Bnip3) (55). Atrogin-1
and MuRF-1 are two members of E3 ubiquitin ligases mastering
the ubiquitin-mediated protein degradation (58). Bnip3, an
autophagy-related gene, has been reported to regulate CMA in a
model of mechanical unloading (59).

It has been reported that high dose (20 mg/kg) of
DOX treatment activated FOXO1 phosphorylation at Ser-249
and upregulated nuclear FOXO1 levels, accompanied with
the increased expression of its target gene, MuRF1 within
24 h. Pharmacological inhibition of FOXO1 with AS1842856
decreased MuRF1 and prevented DOX-induced CMA and LV
mass loss (60). Consistently, Willis et al. reported that DOX
treatment resulted into a significant upregulation of MuRF1 and
Bnip3, while MuRF1 depletion reversed DOX-induced cardiac
atrophy in mice (11). Yamamoto et al. reported that DOX-
induced CMAwas abrogated byMG-132, a proteasome inhibitor,
indicating that the atrophy response is involved in the UPS
(61). Wang et al. reported that 3-MA, an autophagy inhibitor,
alleviated the DOX-induced CMA in vitro and Ghrelin, a multi-
functional peptide hormone, attenuated DOX-induced CMA by
inhibiting the excessive autophagy (62) (Figure 1).

The expression of FOXO1 and its target genes might be
induced by DOX in a time- and dose-dependent manner. Low
dose (5 mg/kg) of DOX failed to induce MuRF1 expression at
24 h (60). In addition, the mRNA levels of FOXO1and Atrogin-1
were not upregulated in mice 7 days after injected with 20 mg/kg
DOX (11).

In conclusion, DOX triggers catabolic process involving the
induction of ALS and UPS via activating FOXO1 and its target
genes, which contributes to the CMA. However, FOXOs are
classified as tumor suppressor genes (63), inhibition of FOXOs
may compromise the anti-tumor effect of DOX. Therefore, more

precise and comprehensive studies need to be conducted to figure
out if FOXOs inhibition is benefit in DIC therapy in patients with
cancer (Figure 1).

Transient Receptor Potential Canonical 3
(TRPC3)-NADPH Oxidase 2 (Nox2) Axis
Transient receptor potential canonical (TRPC) proteins,
regulating intracellular Ca2+, K+, and Na+, are involved
in a variety of physiological and pathological processes in
cardiovascular system (64). It has been reported that TRPC3 is
a risk factor deteriorating the pathological cardiac remodeling
(65, 66). TRPC3 was upregulated underlying the DOX-induced
hypoxia stress, silence of TRPC3 ameliorated DOX-induced
CMA (29). NADPH oxidase 2 (Nox2) is a key regulator
accounting for the major reactive oxygen species (ROS)
generation in response to cardiac injury. Nox2 knock-out mice
exhibited ameliorated CMA and improved the cardiac function
against accumulative DOX toxicity, which may be associated
with the decrease of NADPH oxidase activity and oxidation (67).

Transient receptor potential canonical 3 (TRPC3) protects
Nox2 from proteasome-dependent degradation via interacting
with it at the specific C-terminal sites and promotes its
activation by regulating Ca2+ entry (65). The functional
interaction of TRPC3 and Nox2 is required for DOX-induced
CMA, as the supplement of the TRPC3-C terminal fragment
peptide, which disrupted the TRPC3-Nox2 complex without
affecting the TRPC3 channel activity, attenuated DOX-induced
CMA (29). Further, pharmacological inhibition of TRPC3-Nox2
complex by pyrazole-3 (Pyr3) abrogatedDOX-induced CMA and
ameliorated cardiotoxicity (29).

However, the downstream mechanism of TRPC3-Nox2 in
DOX-induced CMA remains poorly known. It was reported
that the mitochondrial dysfunction promoted muscle disuse
atrophy by increasing oxidation stress, impairing Ca2+ handling,
and activating associated cellular degradation processes (68, 69).
TRPC3 was found to translocate to the mitochondria to mediate
mitochondrial Ca2+ homeostasis and regulate the mitochondrial
function (70). The number of evidence has revealed that the
TRPC3-induced ROS emission and mitochondrial dysfunction
participate in cardiac remodeling (65, 66, 71). Ca2+ overload
is one of the major causes of DIC, Chen et al. reported
that the upregulation of TRPC3 and TRPC6 contributed to
the Ca2+ overload in DIC (72). Calmodulin is a ubiquitously
expressed calcium binding protein which plays a key role in
transducing intracellular calcium signal (73). Trifluoperazine, a
strong calmodulin antagonist, was found to alleviate myofibril
degeneration and cardiac atrophy induced by DOX (74).
Calpains are Ca2+-activated neutral cysteine proteases and
comprise two major molecules, calpain-1 and calpain-2 (75).
Min et al. reported that DOX-induced skeleton and cardiac
atrophy requiring the increased mitochondrial emission of ROS
and calpain activation (76). Therefore, it can be speculated
that DOX might induce CMA through TPRC3-Nox2 axis by
disrupting the mitochondrial function, increasing Ca2+ entry,
and activating the Ca2+-associated calpain protein degradation
system (Figure 1).
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FIGURE 1 | The related molecular mechanism of doxorubicin (DOX)-induced cardiomyocyte atrophy (CMA). ALS, autophagy–lysosome systems; atrogin-1/MAFbx,

muscle atrophy gene-1; Bnip3, Bcl-2 19-kDa interacting protein 3; DOX, doxorubicin; FOXO1, forkhead box O1; IGF-1, insulin-like growth factor; IGF-1R, IGF-1

receptor; MuRF1, muscle RING finger 1; mTOR, mammalian target of rapamycin; Nox2, NADPH oxidase 2; PI3K, phosphoinositide 3-kinase; p38 MAPK, p38

mitogen-activated protein kinase; TRPC3, transient receptor potential canonical 3; UPS, ubiquitin–proteasome systems.

Phosphoinositide 3-Kinase (PI3K)
Insulin-Like Growth Factor 1 (IGF-1) and PI3K
Insulin-like growth factor 1 (IGF-1), a key growth factor
controlling both anabolic and catabolic pathways, plays a
critical role in modulating the muscle size and function
(76). IGF-1 binding to IGF-1 receptor (IGF-1R) leads to
increased phosphorylation of insulin receptor substrate-1 (ISR-
1), which recruits phosphoinositide 3-kinase (PI3K) and activates
downstream the AKT signaling pathway (77). Besides, IGF
binding protein (IGFBP) regulated IGF-1 activity by keeping it
away from IGF-1R (78). DOX was reported to impair IGF-1R
and upregulate IGFBP via p53 activation in H9C2 cells (79, 80).
Restoration of IGF-1R-PI3K-AKT signaling pathway increased
the cell survival ability against DIC (79, 80). Apart from that,
exogenous IGF-1 (81) or insulin (82) were reported to alleviated
DOX-induced cardiomyocyte apoptosis via stimulating PI3K-
AKT. Interestingly, Mousa et al. discovered that the co-treatment
of human umbilical cord blood mesenchymal stem cells

(hUCB-MSCs) and carvedilol alleviated DOX-induced decrease
of cardiac muscle fiber diameter, which is accompanied with
the elevation of IGF-1, GATA-binding protein 4 (GATA-4),
and vascular endothelial growth factor (VEGF) (83). Studies
have uncovered that IGF-1 is a pro-hypertrophic inducer in
cardiomyocyte (84, 85). Further, exogenous IGF-1 reversed
cisplatin-induced skeleton muscle atrophy through inhibiting
PI3K-AKT-FOXO mediated UPS (86). Overexpression of IGF-1
was also found to ameliorate cardiac atrophy in spinal muscular
atrophy mice (87). However, whether IGF-1/IGF-1R have the
potent to rescue CMA induced by DOX remains unknown
(Figure 1).

PI3K and AKT
The PI3K-AKT signaling pathway plays a vital role in regulating
the muscle hypertrophy and atrophy response (77). Studies have
revealed that DOX inhibited PI3K-AKT activity both in vivo
and in vitro (79, 88–90). PI3K, a lipid kinase family transducing
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receptor tyrosine kinase signaling, is aberrantly upregulated
in human cancers frequently (91). Though targeting PI3K is
effective in cancer therapy, inadvertently increases its side effect
on the heart (92). PI3K is a key note in growth factor signaling
as well as a modulator in heart muscle mass and contractility
(93). Brent et al. found that specific inhibition of PI3Kα by
BYL719 decreased the cross-sectional area of cardiomyocyte
and induced cardiac atrophy (94). The use of PI3K inhibitor
enhanced the anti-tumor effect of chemotherapy drugs, such as
DOX (95, 96), while cotreatment of DOX and BYL719 aggravated
CMA and cardiotoxicity compared with DOX alone (94). In
addition, several studies shed the relationship of PI3K-AKT and
cardiac atrophy as well. For example, Chen et al. found that total
flavonoids stimulated PI3K-AKT and attenuated DOX-induced
HW loss, while inhibition of PI3K-AKT abrogated the protection
of total flavonoids against DIC (97). Meeran et al. revealed that
nerolidol, a sesquiterpene from the essential oils of aromatic
plants, alleviated DOX-induced cardiac atrophy possibly via
the PI3K-AKT pathway (88). Intriguingly, both upregulation
and downregulation of PI3K-AKT triggered by DOX has been
reported (98, 99). The discrepancy may be explained by different
DIC models and detected time. Interestingly, Cao et al. found
that AKT activity was induced by DOX in the beginning, while
this was suppressed in the long term (100). In addition, it
was reported that PI3Kγ inhibition ameliorated DOX-induced
CMA and cardiotoxicity as well as reduced tumor growth (101).
Therefore, the role of PI3K-AKT in DIC requires deeper research
to clarify and subunit specific inhibition of PI3K might be a
promising idea.

Phosphoinositide 3-kinase-AKT activation promotes FOXOs
to transport from nucleus to cytoplasm, where FOXOs are
sequestered by 14-3-3 proteins and stay inactive (102). Several
studies have revealed that the inhibition of PI3K-AKT signaling
pathway promoted muscle atrophy via FOXOs-mediated
activation of UPS (103–105). Moreover, Spurthi et al. reported
that toll-like receptor 2 deficiency suppressed PI3K-AKT and
activated FOXO1-atrogin-1/MuRF1, which resulted into cardiac
atrophy in aging mice (106). Ni et al. found that angiotensin
II induced cardiac hypertrophy via PI3K-AKT-FOXO pathway
(107). Therefore, DOX-induced CMA may be associated with
PI3K-AKT-FOXO pathway, which need further exploration.
Worth tomention, Yamamoto et al. reported that DOX treatment
induced a rapid increase of atrogin-1 mRNA expression via
activation of p38 mitogen-activated protein kinase (MAPK)
pathway without modulating the AKT-FOXO pathway (61).

Mammalian target of rapamycin (mTOR), acts as a
serine/threonine kinase, plays an important role in regulating the
protein synthesis and modulating autophagy by phosphorylating
p70S6K and 4E-BP and Ulk-1, respectively (108, 109). The
activity of mTOR regulates the cell growth and organ size
(110). The AKT-mTOR axis has been reported to be involved
in cardiac hypertrophy during volume overload (111). Further,
the PI3K-AKT-mTOR signaling pathway has been found to
participate in the DOX-induced skeleton muscle atrophy
and cancer cachexia-related cardiac atrophy (112, 113). DOX
was reported to impair AKT-mTOR axis by several research
(82, 114–117). As reported, β2-agonist formoterol was reported

to decrease protein degradation partially through inhibiting
PI3K-AKT-mTOR mediated ALS, which prevented the muscle
mass loss in fasted mice (118). Apart from that, the activation
of PI3K-AKT signaling pathway prevented muscle atrophy via
mTOR-mediated inhibition of ALS (119, 120). Wang et al. found
that ghrelin ameliorated DOX-induced CMA by inhibiting excess
autophagy via stimulating mTOR (62). Additionally, Hullin et al.
revealed that enalapril protected against cardiotoxicity and CMA
caused by DOX possibly through activating the PI3K-AKT-
mTOR pathway (50). To sum up, DOX might cause CMA via
inhibiting protein synthesis and activating ALS by suppressing
the PI3K-AKT-mTOR pathway (Figure 1).

PI3K and p38 MAPK
The p38 MAPK family, which responses to the stress stimuli,
plays an important role in cardiac development and function
(121). The in vivo and in vitro evidence has shown that DOX
activated the p38 MAPK pathway, which contributed to the DIC
(89, 100, 122, 123). McLean et al. reported that suppression
of PI3Kα with BYL719 or DOX activated p38 MAPK (94).
The stimulation of p38 MAPK is correlative with the muscle
wasting. Puigserver et al. found that p38 MAPK activation led
to mitochondrial uncoupling and energy expenditure in muscle
wasting (124). In addition, Fukawa et al. reported that cancer-
secreted inflammatory factors resulted into the excessive fatty
acid oxidation and the activation of p38 MAPK, which led to
muscle atrophy (125). Several studies have revealed that the
activation of p38 MAPK was responsible for DOX-induced
CMA. Szeto-Schiller 31 (SS31), an antioxidant peptide, inhibited
p38 MAPK phosphorylation and CMA induced by DOX (122).
Diosgenin, a steroidal saponin of Dioscorea opposite, alleviated
DOX-induced HW and HW/BW ratio reduction possibly via
suppressing p38 MAPK (123). Further, therapeutic inhibition
of p38 MAPK signaling mitigated DOX-induced CMA (94).
However, the mechanism that downstream the p38 MAPK in
DOX-induced CMA is beyond well established. It was reported
that p38 MAPK activation resulted into the upregulation of
atrogin-1 and the activation of catabolic process in cancer-
induced muscle wasting (126). Pharmacological inhibition of
p38 MAPK blunted DOX-induced atrogin-1 upregulation in
cardiomyocytes and overexpression of atrogin-1 resulted into
CMA (61). Besides, Odeh et al. reported that compromised
p38 MAPK activity prevented the denervation-induced muscle
atrophy through inhibiting UPS, decreasing oxidation stress,
and increased clearance of damaged mitochondria (127). Ding
et al. found that Activin A induced skeleton muscle atrophy via
p38 mediated activation of UPS and autophagy, shown by the
upregulation of atrogin-1 and LC3II (128). Therefore, DOX may
induce CMA by activating catabolic process though PI3K-p38-
atrogin-1 signaling pathway (Figure 1).

THERAPY STRATEGIES

Exercise
Appropriate exercise has been demonstrated to be beneficial
for alleviating the muscle atrophy and improving the muscle
strength (129). Wang et al. reported that moderate aerobic
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exercise decreased DOX exposure in cardiac tissue without
altering the microvascular density (130). They found that
moderate aerobic exercise during DOX treatment counteracted
heart mass loss and cardiac function decline in juvenile tumor-
bearing nude mice, while failed to preserve the cardiac function
when exercise started after the closure of chemotherapy (130).
Gomes-Santos et al. (131) found that aerobic exercise training
prevented CMA, ameliorated cardiac atrophy, and attenuated
exercise intolerance in mice developed with chronic DIC.
While the LVEF reduction and fibrosis were not mitigated
by it. Several studies have revealed the molecular mechanism
underlying the effect of exercise in ameliorating DOX-induced
CMA. Activation of TRPC3-Nox2 pathway contributes to the
DOX-induced CMA, it was reported that voluntary exercise
downregulated TRPC3 and Nox2 in a posttranslational manner
(29). Further, it was reported that exercise upregulated IGF-1
mRNA expression (132) and activated PI3K-AKT impaired by
DOX (133). Additionally, Kavazis et al. reported that the short-
term endurance exercise training attenuated mRNA expression
of some negative regulators of cardiac mass, such as FOXO1,
MuRF1, myostatin but not atrogin-1, and Bnip3, which was
probably associated with the activation of AMPK/PGC-1α
pathway (134).

Non-Coding RNA (NcRNA)
Non-coding RNA (ncRNA), such as microRNA, small
interference RNA (siRNA), long non-coding RNA (lncRNA),
and circular RNA (cirRNA), plays an important role in regulating
the cardiovascular system (135). Hu et al. reported that DOX
treatment resulted into miR-200a downregulation both in vivo
and in vitro, overexpression of miR-200a alleviated DOX-
induced cardiac atrophy and cardiac dysfunction via nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) activation (136). Li
et al. (137) also found that DOX caused elevation of miR-451
expression and miR-451 inhibition prevented the whole body
wasting and cardiac atrophy and alleviated cardiotoxicity
through AMPK signaling pathway in DIC mice. Moreover,
Gupta et al. found that miR-212/132, a pro-hypertrophic cluster,
ameliorated DOX-induced CMA and improved cardiac function
by inhibiting downstream fat storage-inducing transmembrane
protein 2 (Fitm2) (138). In addition, they found that Quaking, an
RNA-binding protein, exerted cardiac protective effect against
DOX-induced CMA and cardiotoxicity via mediating cardiac
cirRNAs derived from Titin (Ttn), Formin homology 2 domain
containing 3 (Fhod3), and Striatin calmodulin-binding protein 3
(Strn3) (139). It seems that interfering with ncRNAs may provide
a new strategy in reversing the DOX-induced CMA, however,
the related studies remain limited.

Hormones and Growth Factors
Growing evidence has demonstrated that part of endogenous
hormones and growth factors have protective effect in
cardiovascular diseases (140–143). Vascular endothelial growth
factor-B (VEGF-B), one of the five known members of VEGF
that regulate endothelial function (144), has been demonstrated
to show potent in promoting coronary arteriogenesis and
physiological cardiac hypertrophy (145). Räsänen et al. reported

that overexpression of VEGF-B reversed CMA and cardiac mass
loss through protecting endothelial in DOX-treatedmice without
compromising the anti-tumor effect of DOX (146). Li et al. (44)
reported that exogenous supplementation of erythropoietin
ameliorated DOX-induced CMA and cardiac dysfunction. The
same team found that the atrophic response was attenuated by
giving granulocyte colony-stimulating factor (G-CSF) in acute
DIC mice in their following study (43). Interestingly, Esaki et al.
reported that artificial upregulation of hepatocyte growth factor
(HGF) at 2 weeks after the establishment of acute DIC model
mitigated DOX-induced CMA and cardiac dysfunction (42).
The related mechanism underlies the anti-atrophic effect of
erythropoietin, G-CSF, and HGF might be similar, which was
related to the activation of extracellular signal-regulated kinase
(ERK) as well as the restoration of the expression of GATA-4
and its downstream 3 sarcomeric proteins, myosin heavy chain,
troponin I, and desmin (42–44). GATA-4, a member of the
GATA family of zinc finger transcription factors, is a major
transcription factor regulating sarcomeric genes (147). DOX
treatment caused a decrease in the level of GATA-4 DNA-binding
activity as a result of downregulation of GATA-4 (148), which
downregulated the sarcomeric proteins, and resulted into the
degeneration of myofibrils in response to DOX.

Polyphenolic Compounds
The plant-derived polyphenolic compounds exert powerful
antioxidant activity and have showed their beneficial effects in
cardiovascular disease, such as DIC (149). The polyphenolic
compounds can be classified as flavonoids, stilbenes, phenolic
acids, and lignans based on the molecular structure (150).
Rutin, a polyphenolic flavonoid, prevented DOX-induced
cardiac atrophy and dysfunction via inhibiting excessive
autophagy, reducing apoptosis, and restoring AKT activity (151).
Isorhapontigenin, a new derivative of stilbene, alleviated CMA
and cardiac atrophy caused by DOX, which is associated with
the upregulation of yes-associated protein 1 expression (31).
Resveratrol (3,5,4′-trihydroxy-trans-stilbene, RES), a natural
polyphenol which can be found mainly in grapes, red wine,
soy, and peanuts, has been well studied in DIC protection
(152). Earlier, Zhang et al. found that RES prevented DOX-
induced HW, BW, HW/BW ratio reduction, and cardiotoxicity
via sirtuin 1(SIRT1)-p53 pathway (153). Furthermore, Arafa
et al. revealed that RES was capable of alleviating cardiac
atrophy caused by DOX (154). Several studies have implicated
the possible molecular mechanism of the protection of RES
on DOX-induced cardiac atrophy. It was reported that RES
inhibited DOX-induced catabolic process as indicated by the
downregulation of MuRF1 and ubiquitin-specific protease 7
(USP7) via increasing the deacetylase activity of SIRT1 in
young mice (155). RES was reported to suppress DOX-
induced p38 MAPK activation (24, 156) and restore VEGF-
B and AKT impaired by DOX (157). Recently, Maayah
et al. reported that RES ameliorated DOX-induced cardiac
atrophy and cardiotoxicity through inhibiting nucleotide-
binding domain-like receptor protein-3 (NLRP3) and systemic
inflammation in juvenile mice (25). Interestingly, they found
that RES restored DOX-induced deficiency of compensated
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hypertrophic response to the late-onset hypertension, as
indicated by the alleviated CMA and increased heart wall
thickness (25). Of note, some polyphenolic compounds have
shown the effectiveness against cancer cells both in vivo and
in vitro (158).

Clinical Drugs
The advantage of clinical drugs is the proved relative safety
and the convenience for application. Here, we presented several
studies about the protective effect of clinical drugs in DOX-
induced CMA. Although the results of clinical study showed
that only 11% patients showed complete recovery from DIC
receiving conventional HF drugs (10), which may be associated
with the underlying mechanism of DIC is cardiac atrophy rather
than pathological hypertrophy. Losartan, a clinical used AT1
receptor antagonist, exerted cardioprotective effect against DOX-
induced CMA possibly by inhibiting the Nox2 activity (67).
Controversial studies about the effect of eplerenone on DIC were
reported (50, 159). Enalapril, an angiotensin converting enzyme
inhibitor (ACEI), attenuated DOX-induced CMA possibly via
stimulating the PI3K-AKT-mTOR pathway and maintaining the
normal levels of connective tissue growth factor (50). So, it
reminds us that is it possible for some specific group population
to benefit from the conventional HF drugs in DIC therapy? Oral
supplementation of folic acid prevented myofibrils disruption,
ameliorated DOX-induced CMA, and improved cardiac function
(160). Of note, Durham et al. reported that upregulation of high-
density lipoprotein (HDL) by overexpressing apolipoprotein A1
abrogated DOX-induce CMA in mice, which was required for
the high-affinity HDL receptor, scavenger receptor class B type
1 (49). This study implicates that a lipid-lowering therapy may be
beneficial for DOX-induced CMA.

The phosphodiesterase 5 (PDE5) inhibitors, such as tadalafil,
sildenafil, and vardenafil, have been demonstrated to show
protection in cardiovascular system (161). Koka et al. revealed
that tadalafil, a long-acting selective inhibitor of cGMP-specific
PDE5, improved cardiac function, reduced oxidation stress,
attenuated apoptosis, and prevented cardiac atrophy in DIC
mice (162). Prysyazhna et al. found that tadalafil protected
against DOX-induced LV mass loss via attenuating protein
kinase G Iαoxidation (163). Moreover, Jin et al. reported
that tadalafil ameliorated the downregulation of 3 sarcomeric
proteins, myosin heavy chain, troponin I, desmin, and alleviated
CMA caused by DOX in mice (41). Another PDE5 inhibitor,
sildenafil, has been verified to attenuate cardiac dysfunction,
apoptosis, mitochondrial damage, and myofibrillar disarray
induced by DOX (164). Multiple studies have reported that the
administration of PDE5 inhibitors did not affect the anticancer
effect but enhanced chemotherapeutic efficacy of DOX in animal
tumor models (165–168). However, Poklepovic et al. found that
sildenafil was safe, but did not show cardiac protection following
DOX treatment in a small randomized clinical trial (169). The
effect of sildenafil in DIC will require deeper research to verify.
Worth to mention, several studies have shed light into the cardiac
protective effect of other PDE inhibitors against DIC. Nishiyama
et al. found that ibudilast, a PDE4 inhibitor already used in clinic,

exerted cardioprotective effect against DOX-induced CMA by
interfering the TRPC3-Nox2 complex without affecting the
TRPC3 activity (170). Recently, Chen et al. reported that PDE10A
deficiency ameliorated DOX-induced CMA and cardiotoxicity
via cGMP and cAMP, and PDE10A inhibition antagonized
tumor growth (171). Inspiringly, the safety of several PDE10A
inhibitors have been demonstrated in phase I clinical trial (171).
Zhang et al. revealed that PDE1C deficiency or suppression
of ameliorated DOX-induced cardiac atrophy and improved
cardiac function via adenosine A2 receptor stimulation (172).
Cilostazol, a potent PDE3 inhibitor, also alleviated HW loss in
DIC (173).

DISCUSSION

In this review, we pointed out the importance of CMA inDIC and
then, summarized recent advances in the molecular mechanism
and the promising therapy strategies of DOX-induced CMA.
Here, we paid more attention to the studies involving DOX-
induced CMA, but not merely cardiac atrophy. Cardiac atrophy
is a common finding and a major cause in the DIC. The weight of
CMA in cardiac atrophymight be greater than we thought before.
In addition, the reversibility of DIC also supports it (174). We are
not going to say that we should downgrade the role of cell death
yet. Although several studies have reported that little apoptotic
effect was found in acute DIC models, the part of cardiomyocyte
necrosis was not evaluated (11, 42–44). The apoptotic rate may
be underestimated due to the secondary necrosis (175, 176).
So, the relative contribution of CMA and cell death in DOX-
induced cardiac atrophy is worth to elucidate in the future
study. Inhibiting cellular degradation processes and promoting
synthesis processes might be the key idea in preventing the DOX-
induced CMA. The DOX-induced CMA is a degenerated process,
which explains the protective effect of pro-growth therapy, such
as exercise and supplementation of growth factors. Pathological
hypertrophy is found in multi cardiovascular diseases; however,
appropriate hypertrophy can be helpful for alleviating the DOX-
induced CMA as proved by Gupta et al. (138). Considering that
the cardiac regeneration technology is still far from application in
clinic nowadays (177), reversing CMA serves an alternative and
promising strategy in DIC therapy.
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Objective: Many studies have reported that microRNAs (miRs) are involved in the
regulation of doxorubicin (DOX)-induced cardiotoxicity. MiR-194-5p has been reported
significantly upregulated in patients with myocardial infarction; however, its role in
myocardial diseases is still unclear. Various stimuluses can trigger the endoplasmic
reticulum (ER) stress and it may activate the apoptosis signals eventually. This study
aims to explore the regulatory role of miR-194-5p in DOX-induced ER stress and
cardiomyocyte apoptosis.

Methods: H9c2 was treated with 2 µM DOX to induce apoptosis, which is to stimulate
the DOX-induced cardiotoxicity model. The expression of miR-194-5p was detected
by quantitative real-time PCR (qRT-PCR); the interaction between miR-194-5p and
P21-activated kinase 2 (PAK2) was tested by dual luciferase reporter assay; terminal
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and caspase-3/7
activity were used to assess apoptosis; trypan blue staining was applied to measure cell
death; Western blotting was performed to detect protein expressions; and ER-related
factors splicing X-box binding protein 1 (XBP1s) was detected by polyacrylamide gel
electrophoresis and immunofluorescence to verify the activation of ER stress.

Results: MiR-194-5p was upregulated in cardiomyocytes and mouse heart tissue
with DOX treatment, while the protein level of PAK2 was downregulated. PAK2
was predicted as the target of miR-194-5p; hence, dual luciferase reporter assay
indicated that miR-194-5p directly interacted with PAK2 and inhibited its expression.
TUNEL assay, caspase-3/7 activity test, and trypan blue stain results showed that
either inhibition of miR-194-5p or overexpression of PAK2 reduced DOX-induced
cardiomyocyte apoptosis. Silencing of miR-194-5p also improved DOX-induced cardiac
dysfunction. In addition, DOX could induce ER stress in H9c2, which led to XBP1 and
caspase-12 activation. The expression level of XBP1s with DOX treatment increased
first then decreased. Overexpression of XBP1s suppressed DOX-induced caspase-3/7
activity elevation as well as the expression of cleaved caspase-12, which protected
cardiomyocyte from apoptosis. Additionally, the activation of XBP1s was regulated by
miR-194-5p and PAK2.
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Conclusion: Our findings revealed that silencing miR-194-5p could alleviate DOX-
induced cardiotoxicity via PAK2 and XBP1s in vitro and in vivo. Thus, the novel
miR-194-5p/PAK2/XBP1s axis might be the potential prevention/treatment targets for
cancer patients receiving DOX treatment.

Keywords: doxorubicin, cardiotoxicity, miR-194-5p, ER stress, apoptosis

INTRODUCTION

Doxorubicin (DOX) is a broad-spectrum antitumor drug
that can be used to treat a variety of cancers. However, the
clinical utility of DOX is confined due to its cumulative
cardiotoxicity (1, 2). In the past decades, the mechanisms
of DOX-induced cardiotoxicity have been extensively
studied, mainly including accumulation of reactive oxygen
species (ROS), mitochondrial dysfunction, endoplasmic
reticulum (ER) stress, and disturbance of calcium homeostasis
(3–8). However, the exact mechanism underlying DOX
cardiotoxicity has not been fully discovered. In addition,
the aberrant apoptosis caused cardiomyocytes number
decrease is the predominant cellular event in DOX-induced
cardiomyopathy, which was confirmed by morphological
changes and terminal deoxinucleotidyl transferase dUTP
nick-end labeling (TUNEL) assay (9–11). Therefore, to further
explore the mechanisms of DOX-induced cardiomyocytes
apoptosis will help minimize its adverse effects and benefit the
clinical application.

MicroRNA (miR, miRNA) is a type of non-coding RNA with
a length of approximately 22 nucleotides, and they exert their
functions by degrading target mRNAs and inhibiting protein
expressions, therefore, participate in various biological processes,
such as proliferation, migration, differentiation, and cell death
(12, 13). Many studies have reported that miRNAs play important
roles in the DOX-induced cardiotoxicity (14–17). Recently, it
has been reported that miR-194 is upregulated in the serum of
patients with myocardial infarction and is closely correlated with
impaired cardiac function (18). In addition, the expression level
of circulating exosomal miR-194 was also upregulated in patients
with obese cardiomyopathy, which was closely related to the
mitochondrial activity and cardiac function (19). However, the
role of miR-194 in DOX-induced cardiotoxicity is unclear.

P21-activated kinase 2 (PAK2), a Rac1/Cdc42 activated
signaling effector, belongs to the PAK family of serine/threonine
kinases (20). The antiapoptotic effect of PAK2 has been
demonstrated in multiple cancer studies (21–23). Recently,
PAK2 has been reported to exert cardioprotective role by
improving ER function through the inositol-requiring enzyme
1 (IRE1)/X-box binding protein 1 (XBP1)-dependent pathway
(24). In cardiomyocytes hypoxia and reoxygenation model,
the decrease of PAK2 is associated with ER stress, oxidative
stress, calcium overload, caspase-12 (cas-12) activation, and
apoptosis (25). Activation of 5′ AMP-activated protein kinase
(AMPK)-p21-activated kinase 2 (PAK2) signaling attenuated ER
stress and myocardial apoptosis induced by ischemia/reperfusion
injury (26). Nonetheless, the role of PAK2 in DOX-induced
cardiotoxicity has not been elucidated.

It has been reported that ER stress is involved in DOX-
induced cardiotoxicity (27, 28). When the ER is under stress that
cannot afford the excessive unfolded proteins to be processed,
the unfolded protein response (UPR) is triggered to restore
the ER homeostasis (29, 30). Severe or prolonged ER stress
will switch the cells from adaptive phase to apoptosis. XBP1 is
the key transcription factor in the IRE pathway in response to
UPR. During UPR, XBP1 is activated and its mRNA is cleaved
to form the splicing XBP1 (XBP1s) (31). XBP1s can bind to
ER stress response elements in promoters of many UPR target
genes, therefore help to fold and degrade proteins, promoting
ER adaption and cytoprotection (32, 33). Studies reported that
XBP1s also plays a key role in cardiovascular disease. A recent
study showed that XBP1s modulates vascular endothelial growth
factor-mediated cardiac angiogenesis and contributes to the
development of adaptive hypertrophy (34). Similarly, in the
transgenic mouse model, overexpression of XBP1s showed
protective effect on reperfusion injury (35). However, the role of
XBP1 in DOX-induced cardiotoxicity needs further study.

In this study, we reported that the expression of miR-194-
5p increased in DOX-induced cardiomyocytes and mouse
heart tissue and was involved in the regulation of DOX-
induced cardiotoxicity by targeting PAK2. Inhibition of
miR-194-5p attenuated DOX-induced apoptosis, and PAK2
showed important role in maintaining endoplasmic reticulum
homeostasis to exert cardioprotective effects via the key
transcription factor-XBP1. The present results revealed the
regulatory role of miR-194-5p/PAK2/XBP1s axis in DOX-
induced cardiotoxicity and provided a theoretical basis for the
development of therapeutic targets.

MATERIALS AND METHODS

Animal Experiments
A 8-week old male C57BL/6J mice were randomly divided
into the 4 groups: the control group, the DOX treatment
group, the DOX and antagomir negative control group, and
the DOX and miR-194-5p antagomir group. All the mice
were housed on a 12-h light/12-h dark cycle in a pathogen-
free environment and allowed ad libitum access to food and
water. Adenovirus-harbored miR-194-5p antagomir (5 × 1010

vector genomes) was synthesized by Hanbio Corporation
Ltd. (Shanghai, China). The animals in the antagomir group
and its negative control (NC) group were injected via tail
vein with miR-194-5p antagomir 50 µl or same dosage of
antagomir NC. On day 7, the experimental groups (DOX group,
DOX + antagomir NC group, and DOX + miR-194-5p antagomir
group) were intraperitoneally injected with DOX hydrochloride
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15 mg/kg once. Same dose of normal saline was injected to
the control group. Cardiac function was tested 1 week after
DOX administration and mice were euthanized after in vivo
evaluations of cardiac function. Then, hearts were rapidly excised
and immediately cut into two parts. One part was snap-frozen
in liquid nitrogen and the remaining part was fixed in 4%
polyformaldehyde solution and embedded in paraffin. All the
procedures involving animals were reviewed and approved by
the Institutional Animal Care and Use Committee of Qingdao
University Medical College.

Cell Culture and Treatment
H9c2 cells (rat cardiomyocytes) were purchased from the
Shanghai Institutes for Biological Sciences (Shanghai, China),
which were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) (Gibco; Thermo Fisher Scientific, Waltham, MA,
United States) supplemented with 10% fetal bovine serum (FBS),
100 U/ml penicillin, 100 µg/ml streptomycin, and 110 mg/l
sodium pyruvate at 37◦C in a humidified atmosphere containing
5% CO2. The cells were treated with 2 µM or 0.2 µM DOX
(Aladdin., Shanghai, China) at the indicated times.

Cell Transfection
H9c2 cells were transfected with the Lipofectamine 3000
Transfection Reagent when they reached approximately 70%
confluence for 24 h according to the manufacturer’s instructions.
PAK2 and XBP1s were cloned into the pcDNA3.1 expression
and synthesized by Tsingke (Beijing, China). The empty vector
of pcDNA3.1 and scramble control were used as negative
controls for overexpression and small interfering RNA (siRNA),
respectively. MiR-mimic, miR-inhibitor, and si_PAK2 were
purchased from Shanghai GenePharma (Shanghai, China). Their
sequences are shown in Table 1.

Quantitative Real-Time PCR
Total RNA obtained from the H9c2 cells or left ventricle
tissue was extracted using Trizol reagent. RNA was reverse
transcribed with HiScript III RT SuperMix for qPCR (+ gDNA
WIper) reverse transcription kit (Vazyme, Nanjing, China) for
mRNA levels testing. Stem-loop quantitative real-time PCR
(qRT-PCR) for mature miRNAs was performed as previously
described (36) with miRNA 1st Strand cDNA Synthesis Kit
(by stem-loop) (Vazyme, Nanjing, China) for miRNA levels

TABLE 1 | The sequences of synthesized mimic, inhibitor, small-interfering
RNA (siRNA).

Gene Sequence

miR-194-5p mimic F: UGUAACAGCAACUCCAUGUGGA

R: CACAUGGAGUUGCUGUUACAUU

mimic-NC F: UUCUCCGAACGUGUCACGUTT

R: ACGUGACACGUUCGGAGAATT

miR-194-5p inhibitor 5′-UCCACAUGGAGUUGCUGUUACA-3′

Negative control 5′-CAGUACUUUUGUGUAGUACAA-3′

Si_PAK2 5′-GGGAAUGGAAGGCUCAGUUTT-3′

Scramble control 5′-UUCUCCGAACGUGUCACGUTT-3′

TABLE 2 | Real-time quantitative PCR (qRT-PCR) primers used in this study.

Gene Sequence

U6 F: ATTGGAACGATACAGAGAAGATT

R: GGAACGCTTCACGAATTTG

miR-194-5p F: CGCGTGTAACAGCAACTCCA

R: AGTGCAGGGTCCGAGGTATT

GAPDH F: GCCCATCACCATCTTCCAGGAG

R: GAAGGGGCGGAGATGATGAC

XBP1s F: TGAGAACCAGGAGTTAAG

R: CCTGCACCTGCTGCGGAC

testing. The miR-194-5p stem-loop primer sequence: 5′-GT
CGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC
GACTCCACA-3′. According to the manufacturer’s instructions,
the cDNA was mixed with the corresponding fluorescent dye
SYBR, and the test was carried out in the CFX96 real-time PCR
system (Bio-Rad, Hercules, CA, United States). The results were
put into the 2−11CT formula for calculation. MiR-194-5p
expression was normalized to that of U6, while XBP1s mRNA
level was normalized to that of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). The primers are shown in Table 2.

Cell Apoptosis Assay
The sterile slides were placed in the 24-well plate and then the
H9c2 cells were planted on top of the slides. After transfection
and treatment, 4% paraformaldehyde added to fix the cells
for at least 1 h in room temperature. Cell apoptosis was
characterized via a TUNEL assay using the TUNEL Apoptosis
Detection Kit (YEASEN, Shanghai, China) according to the
manufacturer’s instructions. The samples were mounted with
mounting medium containing 4′,6′-diamidino-2-phenylindole
(DAPI) (Vector Laboratories, Burlingame, CA, United States)
to stain nuclei. The stained-glass slides were observed and
photographed under a fluorescence microscope. The percentage
of the apoptotic nuclei was calculated by the number of apoptotic
cells/the number of total nuclei. We randomly measured 150
cells from each experiment to calculate the apoptotic rate.
Caspase-3/7 activity assay was performed using the Caspase
3/7 Activity Assay Kit (Meilunbio, Dalian, China) according
to the manufacturer’s instructions. Masson’s trichrome staining
was performed using the staining kit (Solarbio, Beijing, China)
following the manufacturer’s instructions.

Trypan Blue Stain
Cell death rate was measured by trypan blue stain (Solarbio,
Beijing, China). The supernatant and adherent cells were
collected. The cell was prepared and stained by trypan blue
according to the manufacturer’s instructions. The percentage
of the cell death was calculated by the number of trypan blue
positive cells/the number of total cells, which were counted
under the microscope.

Western Blot Analysis
Total protein was extracted from H9c2 cells or mouse
left ventricle tissue by the radio immunoprecipitation assay
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(RIPA) Lysis Buffer (Solarbio, Beijing, China) according to
the manufacturer’s instructions. Proteins were separated by
electrophoresis on the sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) (10–12% polyacrylamide gels) and
then transferred to polyvinylidene fluoride (PVDF) membranes.
Subsequently, the PVDF membranes were blocked in 5%
non-fat milk for 2 h and then incubated overnight at 4◦C
with anti-PAK2 (1:1,000, Cell Signaling Technology, Danvers,
MA, United States), or anti-XBP1s (1:1,000, Cell Signaling
Technology, Danvers, MA, United States), or anti-β-actin
(1:2,000, Santa Cruz Biotechnology, Dallas, TX, United States),
or anti-GAPDH (1:100,000, ABclonal, Wuhan, China), or anti-
cas-12 (1:2,000, Abcam, United States) primary antibodies after
washing with TBS-Tween 20 (TBST) three times, 10 min
each time. Horseradish peroxidase (HRP)-conjugated secondary
antibodies were incubated at room temperature for 1 h, then
washed with TBST three times, 10 min each time. Membranes
were visualized using enhanced chemiluminescence. Protein
expression was quantified using ImageJ, and β-actin or GAPDH
was used as the internal control.

Dual-Luciferase Reporter Gene Assay
The wild-type (WT) and mutated-type (MT) PAK2 fragments
of the miR-194-5p binding region were, respectively, inserted
into the pGL3 vector immediately downstream of the stop
codon of the luciferase gene, to synthesize the reporter
gene plasmid (Tsingke, Beijing, China). A luciferase activity
assay was performed as described previously (37). Briefly,
phRL-TK reporter plasmid and miR-194-5p mimic (or
mimic-NC) were cotransfected into HEK-293 cells, which
were seeded in 48-well plates. The cells were collected
and lysed after 24 h, then the firefly and Renilla luciferase
activities were detected by the Dual–Luciferase Reporter
Assay System (Promega, Madison, WI, United States).
Firefly luciferase activities were normalized to Renilla
luciferase activity.

Polymerase Chain Reaction Product
Polyacrylamide Gel Electrophoresis
The extracted RNA was first reverse transcribed into cDNA with
HiScript III RT SuperMix for qPCR (+ gDNA wiper) (Vazyme,
Nanjing, China). The cDNA was amplified by PCR with Gold
Mix rapid PCR enzyme (Tsingke, Beijing, China). About 10% of
polyacrylamide gel (per 10 ml: 30% acrylamide 3.33 ml, 10X TBE
1 ml, ddH2O 5.614 ml, N,N,N′,N′-Tetramethylethylenediamine
(TEMED) 5 µl, 10% ammonium persulfate (APS) 50 µl)
were prepared. Electrophoresis was performed in 1 × TBE
solution and the PCR products were separated. Then gel was
stained in Gelred non-toxic nucleic acid dye in the dark
(dye: water = 1:10,000 ratio) for 30 min and visualized using
chemiluminescence.

Immunofluorescence
Cells were planted and fixed in the same manner as TUNEL assay.
About 0.5% Triton X-100 was used for cell permeability treatment
for 30 min. After discarded Triton X-100, cells were rinsed with

phosphate-buffered saline (PBS) for three times, 5 min each time.
Blocked with goat serum for 1 h, then washed with PBS for three
times, 5 min each time. Added primary antibody and incubated
overnight at 4◦C, then washed with PBS. Fluorescent secondary
antibody was added and incubated in dark for 1 h. After washing
with PBS, slides were mounted with DAPI to stain nuclei. The
slides were observed and photographed using an inverted two-
photon laser confocal microscope.

Echocardiographic Assessment
Generally, mice were mildly anesthetized with intraperitoneal
injection of 4% chloral hydrate 0.1 ml/10 g, and the hair
over the chest region was removed. The mice were then
placed in a supine position and transthoracic echocardiography
was performed using a VINNO 6 Lab system (VINNO,
Suzhou, China). Two-dimensional guided M-mode tracings were
recorded in parasternal long and short axis views at the level
of the papillary muscles. Left ventricular ejection fraction (EF)
and fractional shortening (FS) were recorded by the system.
All the measurements were obtained for greater than three
beats and averaged.

Statistical Analysis
The experimental data were analyzed using GraphPad Prism
version 5 software and the data were presented as mean ± SD.
T-test was used to compare the data between the two groups.
One-way ANOVA was used to compare the mean values of
multiple groups. Tukey’s post hoc test was used for pairwise
comparison between the multiple groups. All the experiments
were repeated three times and p < 0.05 was indicated as
statistically significant.

RESULTS

MicroRNA-194-5p Participated in
Doxorubicin-Induced Cardiomyocyte
Apoptosis
We first investigated the sequences of miR-194-5p, and found
that they are homologous in human, rat, and mouse according to
miRBASE (miRBASE Sequence database-release 22.1). In order
to explore the role of miR-194-5p in DOX-induced cardiotoxicity,
rat myocardial cell line H9c2 was treated with 2 µM DOX to
simulate the cell model of DOX-induced cardiotoxicity. With
2 µM DOX treatment, the expression of miR-194-5p increased in
a time-dependent manner (Figure 1A). Transfection with miR-
194-5p inhibitor could effectively suppress the expression of miR-
194-5p (Figure 1B), while transfection with miR-194-5p mimic
enhanced its expression (Figure 1C). Next, we further studied the
potential role of miR-194-5p in DOX-induced cardiomyocytes
apoptosis. When miR-194-5p expression was inhibited, DOX-
induced apoptosis was significantly reduced on TUNEL assay
(Figures 1D,E). In addition, inhibition of miR-194-5p attenuated
DOX-induced caspase-3/7 activity elevation (Figure 1F). On
the other hand, in order to demonstrate whether miR-194-
5p participate in regulating the sensitivity of cardiomyocytes
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to DOX, low dose of DOX (0.2 µM) was used to treat
cardiomyocytes. Under low DOX concentration stimulation,
overexpression of miR-194-5p sensitized cardiomyocytes to
cas-3/7 activity elevation (Figure 1G). Since apoptosis is the
predominant cell death mode in DOX-induced cardiotoxicity,
the detection of cell death rate can also reflect the degree of DOX-
induced cardiotoxicity. Finally, increased cell death induced by
low dose DOX was further aggravated by miR-194-5p mimic
(Figure 1H). Taken together, miR-194-5p was upregulated in
cardiomyocytes with DOX treatment, and inhibition of miR-194-
5p could alleviate DOX-induced apoptosis.

MicroRNA-194-5p Directly Targeted
P21-Activated Kinase 2
It was predicted that miR-194-5p directly binds to PAK2 3′
untranslated region (UTR) region on the bioinformatics program
TargetScan. Moreover, PAK2 has conserved binding sites for
miR-194-5p (Figure 2A). Hence, we tested PAK2 expression
level in DOX-treated H9c2, and the result showed that its
expression level was significantly decreased 12 h after treatment
(Figure 2B). Then, we speculated the regulatory effect of miR-
194-5p on DOX-induced cardiomyocyte apoptosis achieved by
targeting PAK2. To verify whether miR-194-5p directly binds
to PAK2, we first constructed the luciferase plasmid containing
the wild type of the predicted PAK2 3′UTR binding site (WT)
or mutant binding site (MT) (Figure 2C). Dual luciferase
reporter assay demonstrated that the fluorescence activity was
inhibited when the WT plasmid was cotransfected with miR-
194-5p mimic. The fluorescence activity remained unchanged
when the MT plasmid was cotransfected with a miR-194-5p
mimic, which indicated that miR-194-5p directly bound to
PAK2 3′UTR region (Figure 2D). Next, we transfected miR-
194-5p inhibitor and mimic into H9c2 cells to investigate
their effects on PAK2 protein expression. MiR-194-5p inhibitor
enhanced PAK2 expression (Figure 2E), while miR-194-5p
mimic suppressed PAK2 expression (Figure 2F). These results
indicated that miR-194-5p directly targeted PAK2 and negatively
regulated its expression.

P21-Activated Kinase 2 Attenuated
Doxorubicin-Induced Cardiomyocyte
Apoptosis
We further investigated the role of PAK2 in DOX-induced
cardiomyocytes apoptosis. The PAK2 plasmid was able
to enhance its expression and si_PAK2 inhibited the
expression (Figures 3A,B). Functionally, overexpression
of PAK2 significantly decreased DOX-induced apoptosis
(Figures 3C,D) and caspase-3/7 activity (Figure 3E). In addition,
PAK2 overexpression abolished the effects of miR-194-5p on
DOX-induced cell death (Figure 3F), indicating that PAK2
was the downstream target of miR-194-5p. Contrarily, cell
death induced by 0.2 µM DOX was further increased with
si_PAK2 (Figure 3G). The above findings indicated that
the PAK2 could alleviate apoptosis in H9c2 cells exposed
to DOX treatment.

X-Box Binding Protein 1 Participated in
Doxorubicin-Induced Cardiotoxicity
It has been reported that DOX-induced cardiotoxicity may
activate multiple UPR pathways (28). The key transcription factor
XBP1s is regulated by PAK2 in the heart (24). Therefore, we first
explored the XBP1s expression in DOX-induced cardiotoxicity.
Similarly, H9c2 was treated with 2 µM DOX for the indicated
time, and the XBP1s expression reached peak at 3 h and decreased
thereafter, which indicated the activation of the IRE/XBP1
pathway of UPR (Figures 4A,B).

Cas-12 as an indicator of ER-mediated apoptosis was
investigated as well. The expression of its activated form—
cleaved cas-12 (cl cas-12) was significantly increased 12 h
onward under 2 µM DOX treatment (Figures 4A,C). Next,
we detected the mRNA level of XBP1s, and the result
showed the same trend with its protein expression levels
(Figure 4D). When XBP1 was activated, XBP1 mRNA was
spliced and 26 bases were cut off to form the splicing
XBP1, also known as its activated form (XBP1s). Thus, we
measured the cDNA level after reverse transcription from
total RNA. The results also showed that significant XBP1s
band appeared at 3 h after DOX treatment (Figure 4E). It
has been reported that the XBP1s can be translocated from
cytoplasm to nucleus once activated (38), and this can be
confirmed by immunofluorescence experiments (Figure 4F).
Next, Thapsigargin, an ER stress inducer, was used as the
positive control to verify that DOX could trigger the UPR and
activate the XBP1s (Figures 4G,H). The inhibition of the ER
stress by 4-PBA inhibited the DOX-triggered XBP1s at 3 h
(Figure 4I). Taken together, the UPR was involved in DOX-
induced cardiotoxicity, in which XBP1 was activated. In addition,
the XBP1s expression reached its peak at 3 h in DOX-treated
H9c2, and then decreased.

X-Box Binding Proteins 1 Attenuated
Doxorubicin-Induced Cardiomyocyte
Apoptosis
Several studies have reported that XBP1s plays protective
roles in the heart. In our study, we also confirmed the role
of XBP1s in DOX-induced cardiotoxicity. The overexpression
of XBP1s was verified by WB after transfection of XBP1s
plasmid (Figure 5A). Cleaved caspase-12 expression increased
in DOX-induced cardiomyocytes, indicating that the DOX-
induced ER-related apoptosis, which decreased when XBP1s
was overexpressed (Figure 5B). In addition, the overexpression
of XBP1s significantly inhibited the DOX-induced increase
in cas-3/7 activity (Figure 5C). Trypan blue stain assay
showed the same result that the overexpression of XBP1s
inhibited increased cell death rate induced by the DOX
(Figure 5D). These results indicated that XBP1s could alleviate
the ER-related apoptosis induced by the DOX and play the
cardioprotective role.

Activation of XBP1 has been shown to require the
presence of PAK2 in cardiomyocytes. Next, we verified the
relationship between miR-194-5p, PAK2 and XBP1s on the
regulation of cardiomyocyte apoptosis. Firstly, inhibition of
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FIGURE 1 | MiR-194-5p participated in doxorubicin (DOX)-induced cardiomyocyte apoptosis. (A) H9c2 cells were treated with 2 µM DOX for the indicated times.
The expression levels of miR-194-5p were measured by qRT-PCR. ∗p < 0.01 vs. control. (B) MiR-194-5p expression after transfection with miR-194-5p inhibitor for
24 h was measured by real-time quantitative PCR (qRT-PCR). (C) MiR-194-5p expression after transfection with miR-194-5p mimic for 24 h was measured by
qRT-PCR. (D–F) Suppressed miR-194-5p expression with miR-194-5p inhibitor for 24 h and exposed cells to 2 µM DOX for 24 h. Apoptosis was detected by
terminal deoxinucleotidyl transferase dUTP nick-end labeling (TUNEL) assay (D). Green, TUNEL-positive nuclei; blue, 4,6-diamidino-2-phenylindole (DAPI)-stained
nuclei; scale bar, 200 µm. Statistical analysis of TUNEL-positive cells (E) and caspase 3/7 activity (F) are shown. (G,H) Enhanced miR-194-5p expression with
miR-194-5p mimic for 24 h and exposed cells to 0.2 µM DOX for 24 h. Caspase-3/7 activity (G) and cell death rate (H) are shown. All the experiments have been
performed independently in triplicate, and the data were expressed as mean ± SD. ∗p < 0.01 as indicated.

miR-194-5p could alleviate the downregulation of XBP1s
expression and the upregulation of cl cas-12 expression
levels under the DOX treatment (Figure 6A). Next, PAK2
restoration by transfection with its overexpression plasmid
also reduced the downregulation of XBP1s expression and
the upregulation of cl cas-12 expression levels (Figure 6B).
When cotransfected, XBP1s partially eliminated miR-194-
5p mimic caused elevation of cleaved cas-12 and cell death
(Figures 6C,D). Similarly, XBP1s also partially eliminated
si_PAK2 caused elevation of cleaved cas-12 level and cell death

(Figures 6E,F). Thus, those data suggested that miR-194-5p
and PAK2 regulated DOX-induced cardiomyocyte apoptosis
via XBP1s.

MicroRNA-194-5p Was Involved in
Doxorubicin-Induced Cardiotoxicity
in vivo
We further explored the role of miR-194-5p in the DOX-
induced cardiotoxicity in the mouse model. We found
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FIGURE 2 | MiR-194-5p directly targeted PAK2. (A) Prediction of the PAK2 3′UTR potential binding site of miR-194-5p via bioinformatics program TargetScan.
Potential complementary bases are shown in red. (B) H9c2 were treated with 2 µM DOX for the indicated times. The expression levels of PAK2 were detected by
Western blots and the quantitative histogram was shown. ∧p < 0.05 vs. control. ∗p < 0.01 vs. control. (C) Schematic diagram of the reporter containing the
putative miR-194-5p binding site in the PAK2 3′UTR region. WT, wild-type; MT, mutant. (D) Luciferase activity detected in HEK-293 cells transfected with
miR-194-5p mimic or negative control along with luciferase reporter constructs, as indicated. (E) H9c2 was transfected with miR-194-5p inhibitor for 24 h. The
expression levels of PAK2 were detected by Western blot and the quantitative histogram was shown. (F) H9c2 was transfected with miR-194-5p mimic for 24 h. The
expression levels of PAK2 were detected by Western blot and the quantitative histogram was shown. All the experiments have been performed independently in
triplicate, and the data were expressed as mean ± SD. ∗p < 0.01 as indicated.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 March 2022 | Volume 9 | Article 815916174

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-815916 March 1, 2022 Time: 16:37 # 8

Fa et al. MiR-194-5p in Doxorubicin-Induced Cardiotoxicity

FIGURE 3 | PAK2 attenuated DOX-induced cardiomyocyte apoptosis. (A) H9c2 was transfected with PAK2-overexpressing plasmid for 24 h. The expression levels
of PAK2 were detected by Western blot and the quantitative histogram was shown. (B) H9c2 was transfected with PAK2 small-interfering RNA (siRNA) for 24 h. The
expression levels of PAK2 were detected by Western blot and the quantitative histogram was shown. (C–E) Enhanced PAK2 expression with PAK2-overexpressing
plasmid for 24 h and exposed to 2 µM DOX for 24 h. Apoptosis was detected by TUNEL assay (C). Green, TUNEL-positive nuclei; blue, DAPI-stained nuclei; scale
bar, 200 µm. Statistical analysis of TUNEL-positive cells (D) and caspase-3/7 activity (E) are shown. (F) H9c2 was cotransfected with miR-194-5p mimic and
PAK2-overexpressing plasmid for 24 h and then exposed to 0.2 µM DOX for 24 h. Cell death rate was analyzed. (G) H9c2 was transfected with PAK2 siRNA for
24 h and exposed to 0.2 µM DOX for 24 h. Cell death rate was analyzed. All the experiments have been performed independently in triplicate, and the data were
expressed as mean ± SD. ∗p < 0.01 as indicated.

that DOX treatment induced an increase in miR-194-
5p expression levels in the heart (Figure 7A). Moreover,
the protein expression levels of PAK2, XBP1s decreased,
and cl cas-12 level increased (Figure 7B). Next, we
validated the role of miR-194-5p in vivo. Injection with
adenovirus-harbored miR-194-5p antagomir could reverse
the expression of PAK2, XBP1s, and cl cas-12 induced

by the DOX (Figure 7B). Furthermore, suppression of
the miR-194-5p significantly improved cardiac function
(Figures 7C,D), attenuated DOX-induced cardiomyocyte
apoptosis (Figures 7E,F), and ameliorated myocardial fibrosis
(Figure 7G). Taken together, our in vivo results showed a
significant protective role of miR-194-5p antagomir in the
DOX-induced cardiotoxicity.
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FIGURE 4 | X-box binding protein 1 (XBP1) participated in DOX-induced cardiotoxicity. (A–E) H9c2 was treated with 2 µM DOX for the indicated times. The XBP1s
levels were detected using Western blots (A) and the quantitative histogram was shown (B,C), and also detected using qRT-PCR (D). ∧p < 0.05 vs. control.
∗p < 0.01 vs. control. Spliced bands of XBP1 were detected by polyacrylamide gel electrophoresis (E). (F) H9c2 was treated with 2 µM DOX for 3 and 24 h. The
localization of XBP1s in cells was detected by immunofluorescence experiment. Green, XBP1s; blue, DAPI-stained nuclei; scale bar, 50 µm. (G,H) H9c2 was treated
with 2 µM DOX or 50 nM TG for the indicated times. The XBP1s levels were detected by Western blots and the quantitative histogram was shown (G), and the
spliced bands were detected by polyacrylamide gel electrophoresis (H). TG, thapsigargin. (I) H9c2 was treated with 2 µM DOX for 3 h, which was pre-treated with
5 mM 4-PBA for 3 h. The XBP1s levels were detected by Western blots and the quantitative histogram was shown. All the experiments have been performed
independently in triplicate, and the data were expressed as mean ± SD. ∧p < 0.05 vs. control. ∗p < 0.01 vs. control.

DISCUSSION

Doxorubicin is the representative of anthracycline family, one
of the most widely used effective antitumor drugs. However,
DOX-induced cardiotoxicity is the major limiting factor for its

application, and the cardiomyopathy may not be detected until
years after the DOX completion. It has been reported that 10% of
patients receiving DOX developed symptomatic cardiomyopathy
within 15 years after the end of treatment (39). Studies over
the years have revealed that oxidative stress and mitochondrial
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FIGURE 5 | XBP1s attenuated DOX-induced cardiomyocyte endoplasmic reticulum (ER) stress and apoptosis. (A) H9c2 was transfected with
XBP1s-overexpressing plasmid for 24 h. The expression levels of XBP1s were determined using Western blot and the quantitative histogram was shown. (B–D)
Enhanced XBP1s expression in H9c2 cells with XBP1s-overexpressing plasmid for 24 h and exposed to 2 µM DOX for 24 h. The expression levels of cleaved
caspase-12 were determined using Western blot and the quantitative histogram was shown (B). Caspase-3/7 activity (C) and cell death rate (D) were analyzed. All
the experiments have been performed independently in triplicate, and the data were expressed as mean ± SD. ∧p < 0.05 vs. control. ∗p < 0.01 vs. control.

damage are the predominant mechanisms of DOX-induced
cardiotoxicity. However, the simply use of antioxidants does not
provide much protection against heart damage caused by DOX
(40). This suggests that the DOX-induced cardiotoxicity may be
the result of multiple mechanisms. In this study, we explored
the molecular mechanisms involved in ER stress-related DOX
cardiotoxicity, which provides a new strategy for the prevention
and control of DOX-induced cardiotoxicity.

A growing number of studies have proposed miRNAs
as potential targets for the DOX-induced cardiotoxicity. For
example, in the DOX-induced cardiotoxicity, miR-15b-5p, miR-
23a, miR-29b, and miR-146a have been proved to be related to
mitochondrial damage; miR-30 family, miR-140-5p, and miR-
451 are related to oxidative stress; miR-378 is associated with
the ER stress and miR-320 is related to the microvascular density
(17). We reported here that miR-194-5p participated in the DOX-
induced cardiotoxicity and suppression of miR-194-5p alleviated
the DOX-induced cardiomyocyte apoptosis.

In recent years, the role of ER stress in the DOX-induced
cardiomyopathy gained attentions. Studies have shown that the
DOX caused significant ER dilatation in human hearts (27).
The effectors of ER stress were activated in the DOX-treated

heart tissue, indicating that UPR was involved in regulating
cardiomyocyte survival or death. Recent study has shown that
PAK2 regulation of the protective ER function was through
the IRE1/XBP1-dependent UPR pathway and this regulation
was conferred by PAK2 inactivation of PP2A. Mice with PAK2
deletion showed defective response to ER stress, increasing
cardiomyocyte damage (24). In our study, we demonstrated that
PAK2 as the target gene of miR-194-5p exerted antiapoptotic
effect in the DOX-induced cardiotoxicity.

In addition, the activation of the transcription factor
XBP1 upregulates the expression of ER chaperone and
ER associated degradation (ERAD) components to relieve
ER stress and promotes cell survival (38). For example,
XBP1−/− livers showed increased apoptosis, and XBP1−/−

mouse embryos could not survive, while XBP1 transgenic
reversed this embryonic lethality (41). In cardiovascular
disease, cardiomyocyte-specific deletion of XBP1 aggravated
cardiac dysfunction in ischemia-reperfusion injury, suggesting
that XBP1s has a protective effect (35). The expression of
XBP1s was decreased in the heart tissue of both human and
rodents with heart failure, heart-specific XBP1 overexpression
prevented the development of cardiac dysfunction, and XBP1s
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FIGURE 6 | MiR-194-5p participated in DOX-induced ER stress and cardiomyocyte apoptosis through PAK2 and XBP1s. (A) Suppressed miR-194-5p expression
with miR-194-5p inhibitor for 24 h and exposed to 2 µM DOX for 24 h. The expression levels of PAK2, XBP1s, and cleaved caspase-12 were detected by Western
blot and the quantitative histogram was shown. (B) Enhanced PAK2 expression with PAK2-overexpressing plasmid for 24 h and exposed to 2 µM DOX for 24 h. The
expression levels of PAK2, XBP1s, and cleaved caspase-12 were detected by Western blot and the quantitative histogram was shown. (C,D) H9c2 was
cotransfected with miR-194-5p mimic and XBP1s-overexpressing plasmid for 24 h, then exposed to 0.2 µM DOX for 24 h. The expression levels of cleaved
caspase-12 were detected by Western blot and the quantitative histogram was shown (C) and cell death rate was analyzed (D). (E,F) H9c2 was co-transfected with
PAK2 siRNA and XBP1s-overexpressing plasmid for 24 h, then exposed to 0.2 µM DOX for 24 h. The expression levels of cleaved caspase-12 were detected by
Western blot and the quantitative histogram was shown (E) and cell death rate was analyzed (F). All the experiments have been performed independently in
triplicate, and the data were expressed as mean ± SD. ∧p < 0.05 vs. control. ∗p < 0.01 vs. control.
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FIGURE 7 | MiR-194-5p was involved in DOX-induced cardiotoxicity in vivo. (A) The expression levels of miR-194-5p in mice heart tissue were detected after DOX
treatment by qRT-PCR. (B) Adenovirus-harbored anta-miR-194-5p was injected into the mice 1 week before DOX treatment. The expression levels of PAK2, XBP1s
and cleaved caspase-12 were detected by Western blot. Echocardiographic analysis of left ventricular cardiac function in mice, EF (C) and FS (D) results are shown.
EF, ejection fraction; FS, fractional shortening. Apoptosis was measured by TUNEL assay (F) and apoptotic rates were analyzed (E). Green, TUNEL-positive nuclei;
blue, DAPI (4,6-diamidino-2-phenylindole)-stained nuclei; scale bar, 500 µm. (G) Masson trichrome staining for collagen performed. scale bar, 200 µm. Anta-194,
adenovirus-harbored miR-194-5p antagomir. N = 4, and the data were expressed as mean ± SD. ∧p < 0.05 vs. control. ∗p < 0.01 vs. control.

stimulated adaptive heart growth by activating mammalian
target of rapamycin (mTOR) signal (42). In vascular smooth
muscle cells, XBP1s promoted the repair of vascular injury
or the formation of neointimal (43). These results indicated
that XBP1s is involved in the regulation of cardiovascular
disease and plays a protective role. Besides, other ER stress
sensor, such as, binding immunoglobulin protein (BiP)
was reported to bind to the IRE1 and protein kinase R-
like endoplasmic reticulum kinase (PERK) via its nuclei

binding domain (44); ER stress with prolonged activation of
the UPR-initiated apoptotic cell death via the upregulation
of C/EBP-homologus protein (CHOP). Previous studies
showed that the DOX treatment increased CHOP, BiP, and
cas-12 activation to initiated apoptosis (45, 46). In the case
of DOX-induced cardiotoxicity, a study also revealed that
XBP1s significantly inhibited the cleaved cas-12 expression
(an ER-specific apoptotic factor) and alleviated cell apoptosis
(27). This present study, we measured levels of cl cas-12 by
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the DOX treatment to indicate the apoptosis induced by ER
stress, and further to investigate the changes of XBP1s during the
ER stress. The expression of XBP1s was increased and nuclear
translocated when applied DOX to H9c2 within 3 h, indicating
that the DOX-induced UPR and alleviated ER stress by increasing
XBP1s expression in a short time. With the extension of induction
time, the level of XBP1s decreased, which was consistent with
the decrease of PAK2 expression level and indicated that lack of
PAK2 affected the activation of IRE/XBP1 pathway. Functionally,
XBP1s as the downstream factor of miR-194-5p and PAK2,
protected from DOX-induced cardiotoxicity.

Our result was consistent with other studies, showing that
the XBP1s exerts cardioprotective effect. However, the expression
levels of XBP1s under DOX treatment remain controversial. In
a similar study of DOX-induced cardiotoxicity, the expression
of XBP1s was downregulated in both 15 mg/kg (i.p.) DOX
injected Institute of Cancer Research (ICR) mouse heart tissue
and DOX-treated cardiomyocytes (27). In a study using SD rats,
there was no significant change of XBP1s expression level in rat
heart tissue after a single injection of DOX at 20 mg/kg (i.p.)
(47). In another study on the role of ER stress in regulating the
DOX-induced cardiotoxicity, XBP1 expression was upregulated
in the heart tissues of C57BL/6J mice with a single injection of
20 mg/kg DOX (i.p.) (48). Unfortunately, neither of the latter two
studies was conducted in vitro experiments nor was the function
of XBP1 explored. These contrary results may be partially due
to species heterogeneity, the difference in the dosage of DOX,
and the selected myocardial tissue sites. These results indicated
that ER stress is involved in the complexity of pathological
mechanism regulation, and different induction conditions and
external factors may cause different degrees of damage.

Currently, studies on miR-194 in cardiovascular diseases have
involved in its serum expressions and the association with
cardiac function impairment, suggesting the potential of miR-
194 as a circulating marker. MiRNAs attracted extensive attention
as potential biomarkers because they have many advantages:
high conserved between species (12), partial tissue specificity
(49), and stability of expression in circulation (50). In addition,
miRNAs can be detected using sensitive techniques such as
quantitative real-time PCR and next-generation sequencing.
Therefore, whether miR-194-5p expression is also upregulated in
circulation during the DOX-induced cardiotoxicity, and whether
this abnormal expression can be used as a biomarker of the
DOX-induced myocardial injury, remains to be further explored.

CONCLUSION

In the DOX-induced cardiotoxicity, the miR-194-5p expression
level was upregulated, and inhibition of miR-194-5p expression
significantly alleviated the DOX-induced cardiotoxicity in vitro
and in vivo, suggesting that the upregulation of miR-194-5p
may be the cause of DOX-induced cardiotoxicity. Mechanically,
miR-194-5p directly targeted PAK2 inhibited its expression, and
participated in the regulation of DOX-induced cardiomyocyte
apoptosis by affecting ER stress. Overexpression of PAK2 or
XBP1s partially eliminated miR-194-5p induced cardiomyocytes
apoptosis. Our study first identified the regulatory role of miR-
194-5p/PAK2/XBP1s axis in DOX-induced cardiotoxicity, which
provides a potential target for the prevention or treatment of the
DOX-induced cardiotoxicity in its clinical applications.
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Background: Viral infections are pervasive and leading causes of myocarditis.

Immune-suppression after chemotherapy increases opportunistic infections, but the

incidence of virus-induced myocarditis is unknown.

Objective: An unbiased, blinded screening for RNA viruses was performed after

chemotherapy with correlation to cardiac function.

Methods: High-throughput sequencing of RNA isolated from blood samples was

analyzed following chemotherapy for hematological malignancies (N= 28) and compared

with left ventricular ejection fraction (LVEF).

Results: On initial rigorous analysis, low levels of influenza orthomyxovirus and avian

paramyxovirus sequences were detectable, but without significant correlation to LVEF

(r = 0.208). A secondary broad data mining analysis for virus sequences, without filtering

human sequences, detected significant correlations for paramyxovirus with LVEF after

chemotherapy (r = 0.592, P < 0.0096). Correlations were similar for LVEF pre- and

post- chemotherapy for orthomyxovirus (R = 0.483, P < 0.0421). Retrovirus detection

also correlated with LVEF post (r = 0.453, p < 0.0591), but not pre-chemotherapy, but

is suspect due to potential host contamination. Detectable phage and anellovirus had no

correlation. Combined sequence reads (all viruses) demonstrated significant correlation

(r = 0.621,P< 0.0078). Reduced LVEFwas not associatedwith chemotherapy (P=NS).

Conclusions: This is the first report of RNA virus screening in circulating blood

and association with changes in cardiac function among patients post chemotherapy,
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using unbiased, blinded, high-throughput sequencing. Influenza orthomyxovirus, avian

paramyxovirus and retrovirus sequences were detectable in patients with reduced

LVEF. Further analysis for RNA virus infections in patients with cardiomyopathy after

chemotherapy is warranted.

Keywords: virus, infection, RNA, immune suppression, chemotherapy, LVEF, cardiomyopathy, cancer

INTRODUCTION

The use of chemotherapy in treatment for neoplastic disease
is associated with frequent side effects and non-therapeutic
toxicities (1–3). Chemotherapy associated cardiac toxicity is
well-described for some chemotherapeutic agents, however,
for many agents the cause of cardiac toxicity is not defined
(1–3). Chemotherapy-associated heart failure has considerable
associated mortality and morbidity. Amongst 3,234,256 cancer
patients in the United States, 38% have died from cancer and
about 1 in 3 have died from cardiovascular disease (CVD).
Among the deaths from CVD, 76% were in patients younger
than 35 years. The incidence of all chemotherapy-associated
cardiotoxicities is reported to be ∼10% in all treated patients,
and this is projected to increase as more patients receive
chemotherapy (1–3).

Chemotherapy induces leukocyte cytotoxicity and immune
suppression with increased risk of opportunistic infections,
including bacteria, fungi and viruses (4–6). Viruses are the
most common cause for myocarditis in patients without
cancer or chemotherapy (7–9) and myocarditis is linked to
a wide array of viruses, in some cases with severe heart
failure (10–17). While opportunistic bacterial and fungal
infections are frequently reported after chemotherapy and
immunosuppression, opportunistic viral infections are less often
reported. Herpesvirus, hepatitis B/C, influenza and parainfluenza
viruses, respiratory syncytial virus (RSV), and retrovirus
infections have been reported after chemotherapy (7–9), but the
role of viruses in myocarditis in immunosuppressed patients
after chemotherapy has not been studied. Opportunistic viral
infection after chemotherapy is thus predicted to contribute to
heart damage and heart failure.

Among the RNA viruses, Coxsackie virus B3 (CVB3), human

parvovirus B19 (B19V), measles, retroviruses and influenza
viruses have been implicated in myocarditis among other viruses,

and these viruses have been detected after chemotherapy (7–

16). B19V and the enterovirus, coxsackievirus, are considered

leading causes of viral myocarditis (7–15). DNA viruses are
also linked to myocarditis, specifically cytomegalovirus (CMV),
Epstein bar virus (EBV), human herpes simplex virus-6 (HHV6)
also cause myocarditis (17–19). In the past year, the RNA virus,
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) infection has also been implicated in acute myocarditis (14–
16). Viral infections thus present a risk for myocarditis after
immune suppression with chemotherapy.

In patients with chronic unexplained heart failure positive
for B19V and treated with intravenous immunoglobulins
(IVIG), a significant decrease in B19V load has been observed

with improved cardiac function, symptoms, and decreased
end diastolic volume (8). Other treatments that selectively
target specific viruses, such as acyclovir that inactivates herpes
simplex virus (HSV) DNA polymerase for herpes myocarditis or
antiretroviral therapy for human immunodeficiency virus (HIV)
infections have proven beneficial (8–19). Development of new
vaccines to target viral infections are highly effective as for SARS-
CoV-2 and COVID-19, but viruses with the potential to cause
chemotherapy induced myocarditis must be identified in order
to develop effective vaccines and treatments.

Accordingly, we postulated that immune suppression caused
by chemotherapy, or by the cancer itself, will increase
susceptibility to viral infections, and therefore myocarditis. This
study presents an unbiased, blinded screen for RNA viruses
in blood samples obtained from patients after chemotherapy
for hematological malignancies. In this pilot study, reductions
in measured left ventricular ejection fraction (LVEF) on 2D
echocardiogramwere correlated with measured levels of detected
RNA virus gene signatures. To the best of our knowledge,
this is the first screen for detectable RNA virus sequences
in blood samples from cancer patients with evidence for
myocarditis and reduced LVEF after chemotherapy. Information
on opportunistic viral infections seen after immune suppression
and chemotherapy will foster a defined preventative approach,
such as development of vaccines or treatment with specific anti-
viral agents designed to reduce the risk of cardiac damage.

MATERIALS AND METHODS

Patient Population
Twenty-eight patients were enrolled in the Cardio-Oncology
(AL) and the Hematologic Malignancies / Stem Cell
Transplantation clinics (SC, JM) at the University of Florida
after written informed consent. All patients and samples were
assigned a randomized number after informed consent. The
study was approved by the Institutional Review Boards (IRB) at
all institutions involved in the study.

Patient ages ranged from 18 to 85 years; all had a diagnosis
of cancer and a range of chemotherapeutic agents including
dexamethasone, lanolidomide, rituximab, bortezomib, and
cyclophosphamide, as well as combinations as noted (Table 1;
Figure 1). Themajority of patients had a history of hematological
malignancy (25/26 hematological malignancy and 1/26 breast
cancer) (Table 1). Six patients had a history of prior diagnosed
ischemic heart disease, one with documented coronary artery
disease and stent implant. Of the enrolled patients, 26 had
complete viral sequencing (ST, SS-C) (Table 1). Eighteen patients
had LVEF measured post chemotherapy, 22 patients had
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TABLE 1 | Study patient demographics.

Patient ID Diagnosis Age Chemotherapy Repeat chemotherapy Stage Diagnosis of

prior heart

disease

Ejection

fraction (EF)

prior to

chemotherapy

Ejection fraction

(EF) post

chemotherapy

PJ0266_R2 Multiple myeloma

(MM)

70–85 Velcade and

dexamethasone

(2010–2012) –>

12/7/2012

(ASCT)–>revlimid

maintainance (2013 till

1/2015)

None IIIA No 60 30

PJ0267_R2 Follicular lymphoma 80–85 Bendamustine and

rituximab(1/19/2016–

4/12/2016) f/b rituximab

8/2016–1/2018)

Rituximab IIA IHD 60 40

PJ0268_R2 Multiple myeloma

(MM)

60–65 Revlimid, velcade, dexa

(1st)–> CVD

CVD, IIIB No 60 50

PJ0269_R2 Chronic lymphocytic

leukemia (CLL)

75–80 Ibrutinib NA NA IHD 60 NA

PJ0270_R2 Multiple myeloma

(MM)

70–75 Revlimid, velcade NA IIIA IHD 60 NA

PJ0271_R2 Multiple myeloma

(MM)

70–75 Velcade,

dexamethasone–>

pomalidomide, dex

NA IA No 60 NA

PJ0272_R2 Mantle cell

lymphoma

50–55 Rituximab, fludarabine,

cyclophosphamide->

busulfan,

cyclophosphamide,

vincristine

(conditioning)_->

rituximab maintenance

NA IVA No 60 60

PJ0273_R2 Multiple myeloma

(MM)

50–55 Velcade, revlimid, dexa

(2014)–> revlimid (2015,

2016)–> melphalan and

transplant

Revlimid, transplant NA No NA 60

PJ0274_R2 Multiple myeloma

(MM)-kappa LC

45–50 RVD RVD, ASCT, velcade IIIA (II) No 60 65

PJ0275_R2 Multiple myeloma

(MM)-IgG kappa

70–75 CTX/velcade Dexa, CTX, VCR, Mel, IIA (I) IHD 30 40

PJ0276_R2 Multiple myeloma

(MM)-IgG lambda

70–72 RT, CVD Dara/Velcade/Dexa IIIA No 60 NA

PJ0277_R2 Multiple myeloma

(MM)-IgG kappa

50–55 RVD-CVD, revlimid

maitenance, relapse #1,

Kyprolis, pomalyst, VBCP

VBCP, Dara IA (I) No 55 55

(Continued)
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TABLE 1 | Continued

Patient ID Diagnosis Age Chemotherapy Repeat chemotherapy Stage Diagnosis of

prior heart

disease

Ejection

fraction (EF)

prior to

chemotherapy

Ejection fraction

(EF) post

chemotherapy

PJ0278_R2 Multiple myeloma

(MM)-KLC

50–55 CVD Revlimid, velcade,

melflufen, Dexa

IIIB (III) No 35 45

PJ0279_R2 Multiple myeloma

(MM)-PCL-LLC

65–70 CVDX 4 Revlimid, prednisone NA No 60 40

PJ0280_R2 Multiple myeloma

(MM)-KLC

65–70 CVD X 4 Revlimid IIIA (I) No 60 ND

PJ0281_R2 Multiple myeloma

(MM)-KLC

65–70 VD X 6 None IB (II) No NA 70

PJ0282_R2 Multiple myeloma

(MM)-IgG kappa

75–80 VTD, RVD CVD, PD, PD+Elo,

Dara, Dara+Velcade

IIIA (?) No 60 60

PJ0283_R2 Multiple myeloma

(MM)-IgA Lambda

65–70 CVD Revlimid maintenance IIIA (II) No 60 ND

PJ0284_R2 Multiple myeloma

(MM)-IgG lambda,

Acute lymphocytic

leukemia (ALL)

60–65 VD Revlimid maintenance IIIA (II) No 60 55

PJ0285_R2 Multiple myeloma

(MM)-IgG kappa

70–75 CVD Revlimid, RVD, Kyprolis,

pomalidomide

IIIA (?) No 55 20

PJ0286_R2 Multiple myeloma

(MM)-IgG lambda

70–75 Thal/Dexa Revlimid, CTX, RCD,

high dose kyprolis

IIIA (II) No 60 55

PJ0287_R2 Multiple myeloma

(MM)-IgG kappa

70–75 VAD Revlimid maintenance,

velcade/pomalidomide/dexa

Dara, CTX, CVD,PD,

VBCP,Kyprolis,

VTD-PACE

No 55 25%

PJ0288_R2 Cirrhosis, DCIS,

CAD

50–55 TAM NA IHD 65 60

PJ0289_R2 Multiple myeloma 70–75 Velcade and dexa

(2010–2012) –>

12/7/2012

(ASCT)–>revlimid

maintainance (2013 till

1/2015)

NA No NA NA

PJ0290_R2 Follicular lymphoma 80–85 Bendamustine and

rituximab(1/19/2016 -

4/12/2016) f/b rituximab

8/2016- 1/2018)

Rituximab IIA IHD 60% 40–45%

PJ0291_R2 Multiple myeloma 60–65 Revlimid, velcade, dexa

(1st)–> CVD

NA NA NA NA

dexa, dexamethasone; RVD, revlimid, velcade, dexa; ASCT, autologous stem cell transplant; CTX, cyclophosphamide; DCIS, ductal carcinoma in situ; VCR, vincristine; CVD, velcade, cyclophosphamide, dexa; Mel, melphalan; Dara,

daratumumab; VD, velcade and dexamethasone; RT, radiation therapy; VBCP, vincristine, BCNU, cyclophosphamide, and prednisone; Thal/Dex, thalidomide and dexamethasone; PD, pomalidomide and dexamethasone; PD+ Elo,

PD and Elotuzumab; VTD, velcade, thalidomide and dexa; VAD, vincristine, Adriamycin and dexamethasone; RCD, revlimid, cyclophosphamide and dexa; VTD-PACE, Velcade, thalidomide, dexamethasone, platinum, Adriamycin,

cyclophosphamide, and etoposide; TAM, tamoxifen.
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FIGURE 1 | Bar graphs demonstrating mean LVEF ± SE with chemotherapy. No significant change in LVEF, as assessed by ANOVA, was detected for treatments

with dexamethasone (A), revlimid (B), lenolidomide (C), bortezomib (D), cyclophosphamide (E), cancer diagnosed (F), or gender (G). Simple regression analysis

demonstrates a significant correlation between LVEF post chemotherapy and increased age (H).

LVEF measured before chemotherapy, and 16 had both. One
patient had confirmation of LVEF by cardiac catheterization.
Chemotherapy given was recorded for each patient.
Echocardiograms were ordered by the attending physician
based upon perceived clinical risk, but were not mandated.
Cardiac dysfunction was defined as a decrease in ejection
fraction (EF) <45% as demonstrated on echocardiography.
LVEF data was available but more comprehensive data such as
fractional shortening was not provided.

Virome Sequencing of Blood Samples
Blood samples were obtained 2–4 weeks after chemotherapy,
once informed consent was obtained. Venous blood was collected
in clinic at 2–4 weeks after the last chemotherapy in tubes
containing 3mL of Ethylenediaminetetraacetic acid (EDTA).
RNALater (Life Technologies, Bleiswijk, The Netherlands) was
added at a ratio of 2:1 RNALater to whole blood and samples
stored at −80◦C until analysis. Blood samples were anonymized
blood samples and were sent to St Jude’s Hospital (SCC, ST);
where investigators were masked to cancer type, chemotherapy,
and LVEF findings.

Samples were fragmented prior to RNA extraction as
previously described (20). RNA was isolated using the QIAamp
cador Pathogen Mini kit (Qiagen, Hilden, Germany) according
to manufacturer’s instructions. First strand synthesis was
completed using the random-primer technique described by
Wang et al. (21). Briefly, Super Script III (Invitrogen, Carlsbad,
CA, USA) first strand synthesis was carried out using primer
A (5’-GTTTCCCAGTCACGATANNNNNNNNN), followed by
Sequenase (Affymetrix, Santa Clara, CA, USA) for second

strand synthesis. Finally, PCR amplification utilized Primer
B (5’-GTTTCCCAGTCACGATA) for 40 cycles. Samples were
electrophoresed in an agarose gel to confirm product.

Samples were run on a 1% agarose gel and imaged to confirm
the presence of DNA (between 500 bp and 1 kb). To prepare
for sequencing, samples were purified using AMPure XP beads
(Beckman Coulter, Brea, CA, USA) followed by analysis on a
Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA). A Nextera DNA library preparation kit (Illumina, San
Diego, CA, USA) was used for sample genome sequencing using
the Illumina MiSeq Amplicon application for virome reference
genomes. Quality control of input nucleic acid and final libraries
were checked using Agilent TapeStation 4200.

Bioinformatics Analysis
In an initial analysis, Illumina sequencing data sets were
examined for viral pathogen detection. The quality of raw
reads was assessed using FastQC (version 0.11.9) (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Trimmomatic
was used to trim the adapters from the paired-end reads (22).
Taxonomic classification was performed for blood samples using
Kraken2 (version 2.0.7b). Illumina sequencing data sets were
initially analyzed for detection of RNA viruses (23–25). The RNA
viral reads that were viral-like were also checked using BLASTn
against a viral RefSeq database. Sequencing data is available,
Bioproject accession number NCBI, PRJNA794842, temporary
submission ID SUB10902989, release date: 2022-01-06.

For the broader viral RNA sequence analysis (SS-C, ST), a
custom viral database, containing complete viral genomes cross
referenced to RefSeq (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/)
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with taxonomic classifications, was built using Kraken2 (26).
Following that, Kraken reports were analyzed, visualized and
summarized using Pavian [(27), Supplementary Figure 1]. The
database used for taxonomic classification included all viral
genomes in RefSeq. Contigs sequences were used to identify
the viral genetic sequences. To verify that human endogenous
retrovirus K (HERV K) is detected correctly, we extracted the
raw reads that classify as HERV K. The extracted raw retrovirus
K reads were then mapped to human endogenous retrovirus
reference genome (NC_022518.1) and human reference genome
(GRCh38) separately. The quality of mapping to both reference
genomes was assessed.

Statistical Analysis—Correlation of Viral
Genetic Sequences With Cardiac Function
and Chemotherapy
Levels of viral gene sequences detected in blood samples
were correlated with heart function (LVEF) before and
after chemotherapy using simple regression analysis with
confirmation by our statisticians (PM,AV,SK at ASU; ST, SS-C
at St Judes). All statistics were performed using Statview,
version 5.01 (SAS, Inc., Cary, NC) or Graphpad Prism
(GraphPad). Multiple-group comparisons were performed
using analysis of variance (ANOVA) with Fishers protected
least significant difference (PLSD) and unpaired two-
tailed Student’s t-test for subgroup analysis. A P < 0.05 is
considered significant.

RESULTS

Analysis of Associations Between Cardiac
Function and Chemotherapy
No significant correlation was detected for the specific
chemotherapy given to each patient and LVEF post
chemotherapy, measured as LVEF (Table 1); p = 0.5339
for dexamethasone (Figure 1A), p = 0.3158; lenolidamide
(Figure 1B), p = 0.3158; rituximab (Figure 1C), p = 0.8859;
bortezomib (Figure 1D), p = 0.4179; and cyclophosphamide
(Figure 1E), p = 0.3609. When a chemotherapeutic agent
was used in only one of the patients, this was considered
an inadequate number to allow analysis for correlation with
LVEF. Analysis of changes in LVEF with specific cancer
diagnosis demonstrated no significant correlation between
diagnosed cancer type and LVEF (Figure 1F, p = 0.8659).
No significant association was made between patient sex and
measured LVEF (p = 0.8107, Figure 1G). Simple regression
analysis did demonstrate a significant correlation between an
increased age of patients and reduced LVEF, both pre and
post chemotherapy (for post chemotherapy—r = 0.510, p <

0.0365) (Figure 1H). The minority of patients were receiving
cardiovascular medications at enrollment, 6/ 26 patients had
diagnosis of IHD listed (Table 1; ANOVA P = 0.056) and
diagnosed IHD and CVD medications were not associated with
changes in LVEF (p= 0.8659).

High Throughput Sequencing of RNA Virus
in Blood Samples From Patients
Low levels of RNA virus sequences were detected in blood
samples isolated from patients post chemotherapy. Detection of
virus sequences using a strict, blinded analysis with either Blastn
or Kraken 2 programs, and removing all potential contaminating
human sequences, detected low levels of paramyxovirus and
orthomyxovirus, as representative of potential opportunistic
infections. The avian Avulavirus, a paramyxovirus, and Influenza
A, an orthomyxovirus, were consistently identified on sequence
analysis using both methods for RNA Seq analysis (Blastn
and Kraken 2), indicating low levels of these RNA viruses
after chemotherapy. The paramyxovirus avian Avulavirus and
the orthomyxovirus Influenza A were the most frequently
identified sequences.

Effects of Chemotherapy on Strict RNA
Virus Sequence Read Detection
Potential correlations were assessed for detected RNA virus
sequences and treatments with individual chemotherapeutic
agents. Levels of virus sequences detected were increased with
bortezomib and dexamethasone (Figure 2), however, there was
only a trend toward increased detection of virus sequences
in blood samples; p = 0.0623 for orthomyxovirus detection
(Figure 2A), p= 0.1726 for paramyxovirus detection (Figure 2B)
and p = 0.0767 for retrovirus sequences (Figure 2C) after
bortezomib and p = 0.1061 for paramyxovirus (Figure 2D)
after dexamethasone, none reaching significance. Analysis of
a combined count of all detected RNA virus sequences
in patients with bortezomib chemotherapy again detected a
borderline increase (p = 0.053) (Figure 2E). Lenolidomide and
cyclophosphamide treatment had no clear trend nor significant
change in RNA virus gene sequence detection. In contrast,
rituximab treatment was associated with a non-significant
trend toward decreased virus sequence detection (not shown).
Detection of RNA virus sequences in blood samples from cancer
patients was not linked to gender (p= 0.1028, Figure 2F) nor age
(p= 0.245, Figure 2G).

Initial Strict Analysis of RNA Virus
Sequence Detection and Cardiac Function
After Chemotherapy
On an initial rigorous, or strict, analysis, removing all potential
contaminating human, bacterial or phage sequences, RNA
virus sequences in the paramyxovirus (28) and orthomyxovirus
(29) families were detected. Virus sequence detection was
read blinded by four investigators (ST, SS-C, AV, AL). No
significant correlations were detected for measured LVEF post
chemotherapy; r = 0.177 for paramyxovirus (p = 0.4961,
Figure 3A), and r = 0.208 for orthomyxovirus (p = 0.4229,
Figure 3B). Screening for LVEF and a combined analysis of
paramyxovirus and orthomyxovirus virus sequences detected a
minimal, but again non-significant, increase in the correlation
with reductions in LVEF reported on 2D echo post chemotherapy
(r= 0.233, p= 0.3732, Figure 3C). This would suggest that RNA
virus gene signatures are detectable at low levels in blood samples
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FIGURE 2 | RNA virus sequence reads detected in blood samples demonstrated no significant association for orthomyxovirus (A), paramyxovius (B) nor retrovirus (C)

with bortezomib or with dexamethasone for detected paramyxovirus reads (D). Bortezomib chemotherapy was associated with a trend toward detection of all

paramyxo-, orthomyxo- and retro-virus sequences detected (E). Analysis for virus detection with gender (F, ANOVA) and age (G, simple regression analysis) detected

no significant changes.

from patients with reduced LVEF post chemotherapy, but do not
have a significant correlation for reduced LVEF for individual
detectable viruses in this small patient cohort.

Secondary Custom Database Analysis of
RNA Virus Sequence Detection and
Cardiac Function After Chemotherapy
A secondary, broad, customized Kraken2 database was next
designed to detect a wider spectrum of RNA virus sequences
as a metagenome analysis platform. This secondary analysis
was performed without rigorous filtering of potential human
genome sequences, and accepting both unidirectional as
well as bidirectional reads. With this broad analysis an
increased correlation was detectable for RNA virus sequences
(Illustrated via Pavian software, Supplementary Figure 1).
Bidirectional reads were used for analysis of correlations
between detected virus gene signatures with measured LVEF
post chemotherapy. Correlations of virus sequence detection
with LVEF recorded prior to chemotherapy was used as
a control to assess changes in LVEF prior to treatment
with chemotherapy.

Paramyxovirus sequence detection and retrovirus sequence
detection, using bidirectional reads from this more permissive
analysis, had increased correlation when comparing LVEF
post chemotherapy and LVEF measured pre chemotherapy;
For paramyxovirus the correlation increased from r =

0.484 pre chemotherapy LVEF (P < 0.0452) to r = 0.592
for LVEF measured post chemotherapy (P < 0.0096,

Figure 4A), with a clear increase in significance. Albeit
both achieve significance.

Conversely, orthomyxovirus sequence detection, specifically
for influenza A, had similar correlations when comparing
paramyxovirus sequence reads to LVEF measured prior to or
after chemotherapy (r = 0.513 pre, P < 0.0248 and r = 0.483
post, P < 0.0421). Although both analyses for influenza A
reached significance prior to or after chemotherapy, the fact
that there was a significant and greater correlation prior to
chemotherapy would suggest no specific association between
orthomyxovirus detection and developing cardiac dysfunction
after chemotherapy. Overall, orthomyxovirus and paramyxovirus
sequences were again detected in this broad, less strict analysis,
but with increased numbers of detectable reads using this
custom platform.

Other RNA virus sequence reads were also detected
using this broad analysis (Figure 5). One of the most
prominent was the retrovirus HERV K (30). For retrovirus
sequences, the correlation increased from r = 0.034 for
LVEF measured pre chemotherapy (P = 0.8904, non-
significant) to r = 0.453 post chemotherapy with a
borderline trend toward significance (P = 0.0591, Figure 5C).
Retrovirus sequences detected were predominantly human
endogenous retrovirus K (HERV K), a retrovirus commonly
detected in the human genome. Retrovirus sequences
may represent activation from the native human cell
genome, during the stress of cancer, chemotherapy or
extrinsic infections.

Among other sequences detected there were Molivirus,
Pandoravirus and Pandoravirus dulcis, Lambdina fiscellaria
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FIGURE 3 | An initial rigorous analysis for detected virus sequences in blood samples with reduced LVEF detected no significant correlation. Analysis of paramyxovirus

(A) orthomyxovirus (B) or total combined paramyxovirus and orthomyxovirus (C) sequences detected no significant correlation on simple regression analysis.

FIGURE 4 | A secondary broad analysis demonstrated a correlation between paramyxovirus bidirectional sequence reads with LVEF pre and post chemotherapy, but

with greater correlation and significance post chemotherapy LVEF (A). Similar correlations were detected for orthomyxovirus both pre and post chemotherapy (B).

Retrovirus reads had no detectable correlation with LVEF pre chemotherapy, but a trend to increased correlation post chemotherapy (C). Analysis of all RNA virus

reads for paramyxovirus, orthomyxovirus and retrovirus reads detected a significant correlation for changes in LVEF post chemotherapy (D).

nucleopolyhedrovirus, Leukania separata nucleopolyhedrovirus,
and several phage including Proteus virus mirabilis Isfaham,
Aeromonas virus 25AhydR2PP and Aes 12, Caulobacter virus
CcrBL10, Vibrio phage Eugene 12A 10, Streptomyces virus
Izzy, and Pseudomonas phage OBP and PAJU2. None of
these additional virus sequence reads demonstrated significant
correlations for changes in LVEF post or even pre chemotherapy
for hematological cancers (Figure 5 illustrates some of these
analyses). For these virus sequences compared to LVEF post
chemotherapy, the following r values were obtained: Molivirus
r = 0.251, P = 0.3306; Pandoravirus and Pandoravirus dulcis
r= 0.015, P= 0.9538; Lambdina fiscellaria nucleopolyhedrovirus

r = 0.435, P = 0.3289; Leukania separata nucleopolyhedrovirus
r = 0.114–0.201, P = 0.4372–0.6725; and several phage
including Lactococcus phage BK5-T r = 0.228, P = 0.3625;
Streptomyces virus Izzy r = 0.221, P = 0.4104; Proteus
mirabilis virus Isfaham r = 0.433, P = 0.0826; Aeromonas
virus 25AhydR2PP r = 0.447, P = 0.1088; Aes 12 r= 0.124,
P = −0.6483; Caulobacter virus CcrBL10 r = 0225, P =

0.3849; Vibrio phage Eugene 12A 10 r = 0.376, P = 0.5429,
Pseudomonas phage OBP and PAJU2, r = 0.240–0.356, P =

0.1927–0.3536. A circular DNA Anellovirus, signature was
detected in one patient withmultiple myeloma and demonstrated
no correlation.
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FIGURE 5 | Other virus sequences detected on the broader platform for RNA viruses demonstrated no significant correlations between viral sequence reads and

LVEF post chemotherapy; Molivirus (A), Pandora virus (B), Panderina fiscellaria nucleopolyhedrovirus (C), Proteus (D), Pseudomonas phage (E) and Streptomyces (F)

phage.

A potential correlation between changes in LVEF pre and
post chemotherapy with an analysis of a combined RNA virus
sequence reads for virus sequence detection where trends toward
increased RNA viral sequence correlations with reduced LVEF
were demonstrated was then examined. A combined read for
detcted paramyxo- orthomyxo- and retro-virus sequnces was
assessed using this broad screen (Figure 4D). On this final
analysis of combined RNA virus sequences for each sample,
the correlation increased from r = 0.233 (p = 0.3732) for pre
chemo LVEF to r = 0.621 (P < 0.0078) for post chemo LVEF, a
markedly significant increase. Thus, increased detection of three
detectable RNA virus sequence reads, paramyxo, orthomyxo- and
retro-viruses after chemotherapy did demonstrate an apparent
significant association with measured reductions in LVEF after
chemotherapy (Figure 4D).

DISCUSSION

Dilated cardiomyopathy in cancer patients is a critically
important complication after chemotherapy produced by
cardiotoxicity with associated increased mortality (1–3).
Immunosuppression with secondary opportunistic viral
infection increases the risk for virus-induced myocarditis
and heart damage after chemotherapy (4–9). Individual
chemotherapeutic regimes have proven cardiotoxicity, but
there are multiple molecular mechanisms for cardiac damage
that differ for individual chemotherapeutic agents and some
have no known etiology for cardiotoxicity (31–35). Viral
infections are a leading cause for myocarditis in patients without

cancer or chemotherapy (7–16, 36) and immunosuppression
after chemotherapy increases the risk for opportunistic viral
infections. We have performed a pilot study to screen for
potential correlations between RNA virus sequences detected in
blood samples and reduced LVEF post chemotherapy in patients
with hematological tumors.

Chemotherapy is used for both hematological cancers and
solid tumors with proven cytotoxicity, with a variety of non-
therapeutic and potentially adverse side effects. Myocardial
toxicity leads to left ventricular dysfunction (LVD), heart
failure (HF), endothelial dysfunction, thrombogenesis, ischemia,
vasospasm, pericardial disease, hypertension, and rhythm
disturbances (1–3, 31–35). Incidence and cardiotoxic effects
vary with individual chemotherapy agents. The incidence of
LVD is 3–26% for Doxyrubicin (anthracycline), 7–28% for
Cyclophosphamide, 17% for Ifosfamide, 1–3% for Bevacuzimab
2–28% for Trastuzumab therapy and 0.5–1.7% for Imatinib
mesylate therapy (1, 2). Causes for cardiac toxicity varies
from direct cardiomyocyte toxicity to vascular injury. Several
mechanisms have been proposed for each class of agent, but
individual chemotherapeutic reagents have differing molecular
targets and reported causes for heart damage; there is, as
might be expected, no unifying mechanism. The mechanism
underlying anthracycline-induced cardiotoxicity has been
reported as interference with topoisomerase II beta and
secondary free-radical formation; apoptosis; transcriptional
changes in intracellular adenosine triphosphate (ATP);
reduced sarcoplasmic reticulum calcium-ATPase expression;
prolonged depression in cardiac glutathione peroxidase
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activity; and respiratory defects associated with mitochondrial
deoxyribonucleic acid damage (12, 31–35). Cyclophosphamide-
induced cardiotoxicity is postulated to be caused by endothelial
injury through toxic metabolites that damage cardiomyocytes
and secondary intracapillary microemboli and coronary
vasospasm (1, 2). The mechanism of HF associated with
bevacizumab is believed to be associated with uncontrolled
HTN and inhibition of vascular endothelial growth factor
(VEGF)/VEGF receptor signaling (1–3). Damage to the
myocardium after treatment with chemotherapy thus has
differing etiologies dependent upon the underlying cancer,
treatment used, and the cause is incompletely defined for
many newer chemotherapies. The potential for viral infection
and secondary myocarditis after immunosuppression with
chemotherapy for cancer has not been systematically examined
as a potential cause for cardiomyopathy after chemotherapy.

In this study we measured RNA virus sequences in blood
samples obtained from patients after chemotherapy using RNA
Seq screening, RNA isolates were assessed both by an initial
rigorous analysis that removed any potential human sequence
contamination as well as with a subsequent broader, customized
virome analysis. This was an unbiased screen for the detection
of RNA virus sequences in venous blood samples in cancer
patients receiving chemotherapy. On the initial more rigorous
analysis, both paramyxovirus and orthomyxovirus sequences
were detectable, but had no clear correlation with changes in
LVEF (Figure 3). The orthomyxovius Influenza A has a well-
known association with viral myocarditis, but demonstrated
similar correlations with LVEF measured prior to, or after,
chemotherapy (6–9). Both paramyxovirus and orthomyxovirus
families have been reported as causes for myocarditis in patients
without known prior cancer or chemotherapy. The detectable
sequences for orthomyxovirus matched to influenza A (29) and
those for paramyxovirus with avulavirus (28). On a secondary
broad analysis using a customized screen, we were able to detect
larger numbers of RNA virus sequences for orthomyxovirus
influenza A and paramyxovirus Avulavirus, as well as a larger
array of RNA viruses including retroviruses, insect viruses and
phage. In this second analysis we identified correlations between
the detected paramyxovirus and retrovirus with changes in LVEF.

The increase in the paramyxovirus Avulavirus, sequences
does demonstrate an increase in sequence detection and
reduced LVEF after chemotherapy, with a greater correlation
for post chemotherapy LVEF than for pre-chemotherapy LVEF.
Orthomyxovirus influenza A was also detected, but with similar
detected sequence counts and correlations for LVEF measured
pre- or post-chemotherapy (Figure 4B); this correlation was
stronger for pre-chemotherapy. Influenza is a common upper
respiratory infection and the detection of this orthomyxovirus
may be attributed to the prevalence of influenza A virus
in the general population, with a generalized increase in an
immunocompromised cohort. This suggests a general association
of influenza A, the orthomyxovirus, with a reduction in
LVEF that is unrelated to chemotherapy. The paramyxovirus
Avulavirus sequence detection was also detectable, but the
correlation was greater for LVEF measured after chemotherapy,
albeit a small increase (Figure 4A). On the secondary, broader
analysis, the greatest increase in correlation was seen with the

HERV K retrovirus sequence on the post chemotherapy sample.
Simple regression analysis for pre-chemotherapy LVEF analysis
exhibited a flat, unresponsive regression with no evidence for
correlation with LVEF pre chemotherapy, but with a clear
inverted, negative correlation for detected HERV K sequences
with post-chemotherapy LVEF (Figure 4C).

Retroviruses are reported to represent up to 8% of the
human genome (37–41). Retrovirus sequence detection may
represent activation of latent human retroviruses rather than
opportunistic infection, as has been reported. Retrovirus K
reads may represent reactivation from the human genome
induced by the stress from chemotherapy and/ or cancer. Blast
confirmation indicated that all reads belonged to the human
genome suggesting reactivation rather than de novo infections.
HERV-K is the most transcriptionally active retrovirus in man,
representing up to 8% of the human genome, and thus may
also represent a contamination. HERV-K has been associated
with neurodegenerative disorders, cancer, and an overall higher
tumor burden (38–41). HERV K genes, like nuclear protein-1,
has important roles in the generation of reactive oxygen species
and other tumorigenic characteristics that may act in synergy
with chemotherapeutics to decrease LVEF. HERV-K has also been
reported to be upregulated after chemotherapy and could suggest
that the stress of chemotherapy or the immunosuppression may
have induced increased HERV-K expression.

Phage infect bacteria and alter bacterial responses after
chemotherapy. We detected some phage sequences and these
might be considered contaminants, as are the pandoraviruses.
However, recent reports have demonstrated high levels of phage
in many organs outside the gut (42, 43). Increased levels of
phage are reported in the circulating blood in patients with
increased gut permeability in leukemic patients where “leaky
gut” is suspected to allow phages to translocate from the gut
to the plasma (43). In this study, no correlation was uncovered
between the detected phage sequences and insect virus reads with
LVEF post chemotherapy (Figure 5). No correlation was found
between anellovirus and reduced LVEF. These identified virus
reads likely represent incidental detection of DNA viruses during
analysis of RNA virus cDNA.

Bortezomib was associated with a borderline increase in
detection of viral sequences (P = 0.0532). Other than age,
none of the other parameters, chemotherapeutic agent, gender,
cancer diagnosis and none of the other chemotherapeutic drugs
demonstrated clear correlations with reduced LVEF pre- or
post-chemotherapy.

This study was realized as an unbiased survey, a pilot
study, to detect RNA virus sequences in blood samples in post
chemotherapy patients with hematological cancers. In this study
we were able to detect paramyxovirus, orthomyxovirus,
and retroviruses in venous blood samples taken post
chemotherapy for hematological malignancy. With a broad
analysis, correlations were detected with LVEF measured post
chemotherapy. This is, however, limited to a correlation without
a definitive cause-and effect. A comprehensive analysis of
correlations between detected virus sequences and reduced LVEF
with scheduled blood samples, LVEF analysis, and heart damage
markers prior to and after chemotherapy should be considered
and has the potential to demonstrate chemotherapy induced
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immune suppression and the risk of heart damage due to viral
infection and/or reactivation.

LIMITATIONS OF STUDY

This study is limited by the small numbers of patients studied,
variability in temporality of blood sample collection, as well
as an incomplete data set for echocardiogram measured LVEF
and longer term follow up for cardiac function. A control
group of patients not receiving chemotherapy is not available,
however the pre-treatment LVEF analysis by 2D echo provide an
internal control. Echocardiograms were ordered at the discretion
of the attending clinic physician and not all patients had
LVEF measured.

CONCLUSIONS

In summary, low levels of RNA virus sequences are detectable
in venous blood samples taken from patients with hematological
cancers after chemotherapy. Analysis of these detected RNA virus
sequences suggest that there is increased detection of RNA virus
sequences in blood samples from patients after chemotherapy.
Chemotherapeutic immune suppression increases the risk for
chemotherapy induced myocarditis and cardiomyopathy with
reduced LVEF. A comprehensive, structured study of cancer
patients for sequential detection for RNA virus sequences
after chemotherapy and correlation with LVEF analysis at
predetermined follow up times, as well as an analysis for
other markers for cardiac damage and immunosuppression is
needed. A structured sequential analysis, as well as a comparison
to patients without chemotherapy, will allow identification of
opportunistic viral infections and identify potential approaches
to prevent or treat viruses identified as risk factors formyocarditis
and cardiomyopathy after chemotherapy.

CLINICAL
PERSPECTIVES—TRANSLATIONAL
OUTLOOK

Further investigation into the role of RNA viruses as a significant
underlying etiology for myocarditis and cardiomyopathy after
chemotherapy with associated immunosuppression is needed.

Understanding the role of virus induced myocarditis and
cardiomyopathy after chemotherapy will allow for further
treatment, both preventative through vaccines and for selective
anti-viral treatment.
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Cancer mortality has improved due to earlier detection via screening, as well as due

to novel cancer therapies such as tyrosine kinase inhibitors and immune checkpoint

inhibitions. However, similarly to older cancer therapies such as anthracyclines,

these therapies have also been documented to cause cardiotoxic events including

cardiomyopathy, myocardial infarction, myocarditis, arrhythmia, hypertension, and

thrombosis. Imaging modalities such as echocardiography and magnetic resonance

imaging (MRI) are critical in monitoring and evaluating for cardiotoxicity from these

treatments, as well as in providing information for the assessment of function and

wall motion abnormalities. MRI also allows for additional tissue characterization using

T1, T2, extracellular volume (ECV), and delayed gadolinium enhancement (DGE)

assessment. Furthermore, emerging technologies may be able to assist with these

efforts. Nuclear imaging using targeted radiotracers, some of which are already clinically

used, may have more specificity and help provide information on the mechanisms

of cardiotoxicity, including in anthracycline mediated cardiomyopathy and checkpoint

inhibitor myocarditis. Hyperpolarized MRI may be used to evaluate the effects of

oncologic therapy on cardiac metabolism. Lastly, artificial intelligence and big data

of imaging modalities may help predict and detect early signs of cardiotoxicity and

response to cardioprotective medications as well as provide insights on the added

value of molecular imaging and correlations with cardiovascular outcomes. In this

review, the current imaging modalities used to assess for cardiotoxicity from cancer
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treatments are discussed, in addition to ongoing research on targeted molecular

radiotracers, hyperpolarized MRI, as well as the role of artificial intelligence (AI) and

big data in imaging that would help improve the detection and prognostication of

cancer-treatment cardiotoxicity.

Keywords: cardiotoxicity, cardiovascular imaging, big data, cancer therapy-associated cardiotoxicity, molecular

imaging

INTRODUCTION

Cancer incidence is expected to increase by 50% by 2050, but
over the past two decades, cancer mortality has improved in part
due to earlier detection via screening and the advent of novel
therapies such as tyrosine kinase inhibitors (TKI) for cancers
like chronic myelogenous leukemia (CML), liver, gastrointestinal
and lung cancers, as well as immunotherapy, such as checkpoint
inhibitors, for metastatic disease and an expanding list of
indications including triple negative breast cancer, lung cancer,
melanoma, bladder cancer, and renal cell cancer (1–6).

However, with the rise of newer oncologic therapies, there
have been a spectrum of adverse cardiovascular toxicities
including cardiomyopathy (CM), myocardial infarction,
myocarditis, arrhythmia, hypertension (HTN) and thrombosis
that have been associated with these agents. More traditional
cardiotoxic agents like anthracyclines (i.e., doxorubicin), one of
the most widely used class of chemotherapeutics due to improved
overall cancer and survival outcomes has been shown to alter
myocardial energetics, promote mitochondrial dysfunction,
increase reactive oxygen species levels leading to activation of
matrix metalloproteases, inhibit topoisomerase IIb and cause
DNA strand breaks, thereby promoting cardiomyopathy (7–9).

HER2 inhibitors like trastuzumab has also been shown to
increase risk of CM via antagonizing important pro survival
as well as other important signal transduction pathways for
metabolism in the heart (10). Platinum agents like cisplatin have
been shown to increase oxidative stress and increased apoptosis
and has been associated with cardiomyopathy in rare instances
(11). Alkylating agents like cyclophosphamide, which can cause
oxidative damage and direct endothelial cell damage have been
linked to myocarditis and cardiomyopathy (12). Antimetabolites
like 5 fluorouracil (5FU), which is commonly used in head and
neck cancers as well as gastrointestinal cancers has been shown
to increase risk of coronary vasospasm andmyocardial infarction
(13, 14). Multiple myeloma therapies (bortezomib, lenalidomide)
and vascular endothelial growth factor (VEGF) inhibitors
like bevacizumab have been associated with thrombosis and
hypertension by promoting endothelial cell dysfunction (15–18).
TKIs like ibrutinib has been associated with atrial fibrillation,

Abbreviations: AI, artificial intelligence; CM, cardiomyopathy; CML, chronic

myelogenous leukemia; DGE, delayed gadolinium enhancement; DNA,

Deoxyribonucleic acid; ECV, extracellular volume; GLS, global longitudinal

strain; ICI, checkpoint inhibitors; HER2, human epidermal growth factor receptor

2; HF, heart failure; HTN, hypertension; MI, myocardial infarction; MUGA,

multigated acquisition; ROS, reactive oxygen species; TdP, torsades de pointe;

TKI, tyrosine kinase inhibitor; VTE, venous thromboembolism.

while other TKIs such as ponatinib, sorafenib, sunitinib have been
associated with CM and myocardial infarction (MI) (19–21).

Of the close to 2 million patients diagnosed with cancer in
2019, it is estimated that 38.5% are eligible for ICI therapy
(22, 23). In addition to increased risk of myocarditis, pericarditis
and vasculitis, immune checkpoint inhibitors (ICI) have been
associated with increased risk of plaque rupture/acceleration
of atherosclerosis and thrombosis (24). ICI myocarditis is
characterized by lymphocytic infiltration with CD4 and CD8 cells
and mortality is high if not identified and if left untreated (25).

Newer immunotherapies may also increase risk of
myocarditis, such as cellular therapies like CART and molecular
inhibitors such as CCR4 antagonist, mogamulizumab, which is
used to treat T cell lymphomas (26–28). However, evaluation of
the earliest signs of immune cell infiltration in the myocarditis
process is limited (Table 1; Figure 1). Imaging modalities like
echocardiography (echo) and magnetic resonance imaging
(MRI) are routinely used to monitor and evaluate for the
aforementioned oncologic therapy related cardiotoxicity,
with both allowing for assessment of function and wall
motion abnormalities and MRI allowing for additional tissue
characterization using T1, T2, extracellular volume (ECV) and
delayed gadolinium enhancement (DGE) assessment. While
nuclear studies like multi-gated acquisition (MUGA) scans
have fallen out of favor for the evaluation of cardiomyopathy
mediated by oncologic therapy due to the higher sensitivity, and
availability of echo and MRI, emerging nuclear imaging using
molecularly targeted radiotracers may confer more specificity
and help elucidate the mechanisms of cardiotoxicity, many of
which are already in clinical use for oncology purposes and thus
can be adapted to evaluate their signal/role in cardiotoxicity
(Table 1). In addition to molecular targets, hyperpolarized MRI
has emerged as a potential imaging modality to evaluate effects
of oncologic therapy on cardiac metabolism and has reached
human studies. Finally, artificial intelligence and big data of
imaging modalities including electrocardiograms may be able
to help predict and detect early signs of cardiotoxicity and
response to cardioprotective medications once cardiomyopathy
develops but also help provide insights on diagnostic and
prognostic value of molecular based imaging. We review current
imaging modalities used to assess for cardiovascular toxicities
associated with oncologic therapies and highlight ongoing
research in the areas of molecular imaging, targeted molecular
radiotracers and hyperpolarized MRI as well as the role of
artificial intelligence (AI) and big data in imaging that would
help improve detection, prognostication of oncologic therapy
related cardiotoxicity.
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TABLE 1 | Cancer therapy, associated CV toxicity and imaging assessment.

Cancer therapy Associated CV toxicity Imaging modality/method for

evaluating cardiotoxicity

Novel molecular imaging

approaches

Stage preclinical

vs. clinical

Anthracyclines:

Doxorubicin, daunorubicin

Cardiomyopathy (29)

Early stages of toxicity

MRI, echo, nuclear Molecular nuclear imaging for

cardiotoxicity:

SPECT radiotracers:

123 I-meta-iodobenzylguanidine

(MIBG) (30)

Clinical

99mTc-RP805 (31) Preclinical

111 In-antimyosin (30) Clinical (32)

99mTc-annexin (33) Clinical (34)

PET radiotracers:

18F-DHMT (35) Preclinical

68Ga-Galmydar (36) Preclinical

Changes in metabolism:

Hyperpolarized magnetic resonance

(37)

Clinical

13C pyruvate (38, 39)

Other: Topoisomerase I/II

inhibitors, taxols,

cyclophosphamide,

paclitaxel

Hyperpolarized magnetic resonance

(37)

Clinical

Platinum agents: cisplatin,

oxaliplatin, carboplatin

Checkpoint inhibitors

Pembrolizumab Myocarditis (40), vasculitis,

pericarditis (41, 42),

atherosclerosis (43)

Echo for function/strain, MRI for

function, tissue characterization

i.e.,

Molecular imaging for myocarditis:

Ipilimumab MRI: 89Zr-DFO-CD4 and 89Zr-DFO-CD8a

(44)

Clinical

Nivolumab Edema/scar imaging 68Ga-FAPI (45) Clinical

Atezolizumab PET:

Avelumab 18FDG to evaluate for vasculitis. Fibrosis imaging:

Cemiplimab 82Rb to evaluate for ischemic

disease

68Ga-collagelin (46) Preclinical

SPECT:

99mTc-tetrofosmin or
99mTc-sestamibi to evaluate for

ischemic disease

TKIs

Imatinib HF (47) MRI, echo, nuclear SPECT

Bosutinib Thrombosis (48) Thrombosis imaging

Evaluation of fibrin

64CU-FBP8 (49) Clinical trials (50)

Evaluation of glycoprotein IIb/IIIa

receptor

Dasatinib Thrombosis (51), HTN, QT

prolongation (52)

18F-GP1 (53) Clinical trial (53)

Ponatinib Thrombosis (54), HF (55),

HTN, ischemia

MRI, echo

Nilotinib Thrombosis, QTC

prolongation (52)

Ibrutinib A Fib (19)

Sunitinib HF (56), HTN, QTC

prolongation (57)

MRI, echo

(Continued)
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TABLE 1 | Continued

Cancer therapy Associated CV toxicity Imaging modality/method for

evaluating cardiotoxicity

Novel molecular imaging

approaches

Stage preclinical

vs. clinical

Sorafenib MI, HF, HTN, QTC

prolongation

CT coronary, PET/SPECT for

ischemic evaluation

Hyperpolarized magnetic resonance Clinical

68Ga-DOTATATE (58) Clinical (59)

Vendetanib HF, HTN (60), QTC

prolongation, TdP (61)

Afatinib None so far (62)

Erlotinib MI (rare) (63)

Lapatinib HF, QT prolongation (64) MRI, echo

Gefitinib HF (65) MRI, echo

axitinib HF, HTN (66) MRI, echo

bevacizumab HTN, thrombosis Hyperpolarized magnetic resonance

to evaluate hypertensive stress (67)

Clinical

Trastuzumab Heart failure (68–70) MRI, ECHO, nuclear (MUGA)

Pertuzumab

Neratinib

Tucatinib

Anti metabolite

5 FU Coronary vasospasm

(14, 71)

CT coronary, PET or SPECT to

rule out obstructive disease

Hyperpolarized magnetic resonance Clinical

CURRENT IMAGING MODALITIES USED
TO INTERROGATE ONCOLOGIC THERAPY
CARDIOTOXICITY

Echo and MRI in Evaluation of
Cardiotoxicity
Cardiotoxicity due to anthracycline use (often dose dependent,
but can occur at any dose) are common, up to 5%with cumulative
doses <400 mg/kg, but up to 20% for those treated with 700
mg/kg or more (72). HER2 inhibitor mediated cardiomyopathy
can occur in 5–10% of patients and is increased when
given in conjunction with anthracyclines up to 27% (73, 74).
Oncologic therapy mediated cardiomyopathy can be evaluated
by traditional imaging modalities such as echo and MRI, which
are able to evaluate wall motion, left and right ventricular
function and even early signs of toxicity via changes in strain,
namely global longitudinal strain (75, 76). The European Society
for Medical Oncology (ESMO) and the American Society of
Echo (ASE) recommend 2D/3D echo or MRI for assessing
left ventricular function including strain for monitoring of
known cardiotoxic therapies such as anthracyclines or anti-Her2
therapies and the American Society of Clinical Oncology (ASCO)
recommends echo or MRI as first line imaging modalities with
MUGA as a second line if echo/MRI are not available or if not
technically feasible for MRI (77–81). Due to reduced variability
compared to 2D echo, 3D echo or MRI are recommended for
sequential follow up (82).

In addition to being the gold standard for volumetrics and
ejection fraction, MRI has additional evaluation capabilities
including tissue characterization for injured cells such as changes
in ECV and increased native T1 times, shown with anthracycline

use and increased T2 relaxation times with anthracycline toxicity
(83–86). The presence of DGE post trastuzumab, a HER2
inhibitor, was associated with cardiomyopathy (87).

Strain as a Predictor of Cardiomyopathy
Feature tracking global longitudinal strain (GLS) was first
used in echo to show that it could be predictive of future
cardiomyopathy in multiple studies of cancer patients
undergoing cardiotoxic chemotherapy with anthracycline
or trastuzumab. For example, an increase in GLS >12 or
15% was associated with a significant drop in LVEF >10% 6
months after in several studies (88, 89). MRI has subsequently
shown that use of tagging, feature tracking strain or fast strain
encoded (SENC) assessment are sensitive and highly accurate
in detecting subclinical cardiotoxicity as evidenced by an
increase in GLS for patients on cardiotoxic chemotherapy
such as anthracyclines, with SENC having a higher accuracy
that was less dependent on loading conditions (90–94).
However, strain assessment in MRI is largely used in a
research setting and is not routinely used in the clinical
practice yet.

MRI Evaluation of Adverse Immune
Related Cardiac Events
ICI myocarditis can occur in 1–2% of patients and has a
high mortality of up to 50% if untreated (25, 95). MRI has
become a work horse for evaluation of immunotherapy related
cardiotoxicities. In addition to T1, and ECV changes, T2
abnormalities allow for assessment of myocardial edema in
patients on checkpoint inhibitors with concern for myocarditis
or pericarditis and DGE, a marker of myocardial injury
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FIGURE 1 | Imaging modalities and evaluation of cardiotoxicities of oncologic therapies. For evaluation of peripheral artery disease (PAD) (top left), FDG, FAP and

SSTR2 imaging may be able to identify vulnerable plaque, while CT and MRI can help evaluate degree of stenosis. For evaluation of thrombosis (top right), nuclear

imaging may be able to identify early clot formation with radiotracers directed at fibrin or glycoprotine IIb/IIIa, and MRI can use a long inversion time to identify

thrombus, as with TI600. For evaluation of cardiomyopathy/myocarditis (middle), echo and MRI can evaluate ejection fraction as well as myocardial strain. For

myocarditis, MRI can evaluate tissue characteristics such as T1, T2 and DGE, which are now components of the Lake Louise criteria for myocarditis. Nuclear can

evaluate for T cell infiltration using tracers targeting CD4, CD8 cells. Tracers directed against FAP, such as 68Ga-FAPI has been shown to be increased in an animal

model of checkpoint inhibitor myocarditis. Evaluation of pericarditis (bottom left), a complication of checkpoint inhibitors can be assessed by echo for detection of

pericardial effusion, but with greater specificity MRI can identify edema and DGE. Atherosclerosis (bottom right) can be evaluated by traditional SPECT and PET

techniques to evaluate for perfusion with stress and rest. CT coronary is now first line for evaluation of those with intermediate risk chest pain to rule out obstructive

disease. Stress MRI or DGE can also be performed to evaluate for prior myocardial infarction as well as myocardial viability.

or scarring is another tissue characterization parameter
that can evaluate for immunotherapy toxicities. MRI is
recommended by specialty society guidelines as part of
the evaluation and monitoring of ICI myocarditis using
the Lake Louise criteria, updated in 2018 to require both
increased myocardial signal intensity ratio >2 or increased
myocardial relaxation times or visible myocardial edema in
T2-weighted images and increased myocardial relaxation
times or extracellular volume fraction or DGE in T1-weighted
images for the imaging diagnosis of myocarditis (80, 96–100).
However, DGE is non-specific and cannot distinguish from
cell damage vs. end stage fibrosis and current standard clinical
imaging modalities are lacking in assessment of potential
molecular correlates, such as collagen deposition and scar.
Thus, molecularly targeted imaging tracers may shed light on
both mechanism and help increase the specificity of cardiac
imaging findings.

MOLECULAR TARGETED NUCLEAR
IMAGING MODALITIES TO EVALUATE
ONCOLOGIC THERAPY RELATED
ADVERSE CARDIOVASCULAR
PATHOLOGIES

Molecular Nuclear Imaging for Evaluation
of Anthracycline Cardiotoxicity
Anthracycline mediated cardiotoxicity has been associated

with an increase in reactive oxygen species (ROS) levels in the
heart. ROS levels have been shown to confer cardiotoxicity by

increased apoptosis, inflammation, mitochondrial dysfunction

and activation of matrix metalloproteases (31). Molecular

nuclear imaging studies have helped shed light on mechanisms of
anthracyclinemediated cardiotoxicity. Increased ROS levels in an
animal model of doxorubicin cardiotoxicity showed that a novel
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PET tracer, 18F-labeled radioanalog of dihydroethidium, [18F]-6-
(4-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-5-
methyl-5,6 dihydrophenanthridine-3, 8-diamine ([18F]·DHMT),
which targets superoxide, was able to reveal an elevation
in superoxide levels in the heart at least 2 weeks prior to
a drop in the left ventricular ejection fraction (35). ROS
activation of MMPs downstream can then promote adverse
cardiac remodeling (101). Renin-angiotensin-aldosterone
system (RAAS) activation has been shown to augment the
progression of anthracycline induced cardiotoxicity and
inhibition via RAAS inhibitors like angiotensin receptor blockers
or angiotensin converting enzyme inhibitors have been able
to prevent and treat anthracycline mediated cardiomyopathy
(102, 103). Use of a novel angiotensin receptor-neprilysin
Inhibitor, sacubitril/valsartan in a rodent model of anthracycline
cardiotoxicity was able to attenuate cardiotoxicity. MMP
imaging of activated MMPs using SPECT radiotracer 99mTc-
RP805 showed that sacubitril/valsartan in conjunction with
doxorubicin was able to significantly attenuate MMP activation
as well as prevent a decline in LVEF compared to doxorubicin
alone vs. doxorubicin and valsartan groups. Myocardial MMP
activity as assessed by 99mTc-RP805 uptake was inversely
related to left ventricular ejection fraction (31). In addition to
MMP activation and adverse remodeling, ROS can also injure
endothelial cells. Anthracycline use has been associated with
capillary loss in the heart in some rodent models and protection
of endothelial cells with vascular endothelial growth factor-B
(VEGF-B) treatment led to preservation of capillary mass (104).

ROS has also been shown to confer mitochondrial
dysfunction. Disruption of mitochondrial membrane potential
in mitochondrial dysfunction mediated by anthracycline can
be evaluated by 68Ga-Galmydar. In a rodent model, uptake
of 68Ga-Galmydar was reduced by 2-fold with anthracycline
treatment compared to control and in H9c2 rat cardiomyoblasts,
this was associated with activation of the apoptosis cascade (36).

Early markers of anthracycline cardiotoxicity include an
increased uptake of indium-111-labeled antimyosin in the
heart, which occurs due to myocyte damage and subsequent
association of antimyosin with myosin, which is normally
intracellular. Increased uptake of 111In-antimyosin in patients on
anthracycline was associated with LV dysfunction (30). Detection
of the earliest stages of apoptosis can also signal early toxicity.
Annexin V has a high affinity for phosphatidylserine, which gets
exposed on the cell surface during apoptosis. Use of annexin V
imaging has allowed for detection of cells undergoing apoptosis.
In a rodent model of doxorubicin cardiotoxicity, radiolabeled
annexin V, 99mTc-annexin was used to visualize apoptosis
that corresponded to histological evidence of apoptosis on
TUNEL staining (33). Finally, sympathetic nervous innervation
of the myocardium has also been shown to be disrupted with
anthracycline toxicity. An assessment of myocardial sympathetic
innervation impairment was done by evaluating a radiotracer
that is an analog of norepinephrine, iodine-123-labeled meta-
iodobenzylguanidine (123I-MIBG). A decrease in 123I-MIBG
uptake with increasing cumulative doses of anthracyclines in
human patients was associated with LV dysfunction. However,
it takes higher cumulative doses of anthracycline to see a drop in

123I-MIBG uptake, thus this agent would be less useful if earlier
detection of toxicity is desired. However, 123I-MIBG is clinically
available and routinely used to evaluate for adrenaline secreting
tumors (30) (Figure 2).

CD4, CD8 Imaging in ICI Myocarditis
Molecularly targeted radiotracers in nuclear medicine are
emerging to evaluate processes such as fibrosis, inflammation and
thrombosis, extending beyond nuclear cardiology’s traditional
use to evaluate perfusion deficits in ischemic heart disease
via single photon emission computed tomography (SPECT)
and positron emission tomography (PET), tissue viability
or inflammation with PET fluorodeoxyglucose (FDG), which
evaluates for glucose uptake predominantly by inflammatory
cells, such as myeloid and T cells (106). These processes are
common adverse effects of oncologic and immunotherapies.

Detection of the earliest signs of myocardial inflammation in
ICI myocarditis, which occurs in 1-2% of patients on these agents
remains a clinical challenge (95, 107). The ability to detect the
initial infiltration of inflammatory cells such as CD4 or CD8
cells before injury has occurred could help reduce morbidity
and high mortality associated with this condition (25). Emerging
molecularly targeted probes against CD4, 89Zr-DFO-CD4 and
CD8 cells, 89Zr-DFO-CD8a may be a potential avenue to detect
inflammation at these earliest of stages, which can prompt more
frequent follow ups, biomarker checking and earlier therapy (44).
Determining specificity of these findings will also be important
as to avoid withholding cancer fighting immunotherapy or
treatment with steroids, which may potentially lower the efficacy
of the immunotherapy agent (108–110). Checkpoint inhibitors
have been shown to accelerate atherosclerosis and increase risk
of plaque rupture in addition to the risk for myocarditis and
pericarditis by driving increased inflammatory cells, including
CD8T cell infiltration into plaques in animal models and patients
on checkpoint inhibitors (43, 111, 112). Thus, evaluation of
atherosclerotic lesions with CD8 radiotracers, may be able to
identify those at risk for myocardial infarction in patients on
checkpoint inhibitor therapy.

Detection of Vulnerable Plaque
Both checkpoint inhibitor use and certain TKIs like ponatinib
and sorafenib have been associated with increased risk of
myocardial infarction (43, 113). ICIs have also been associated
with increased risk of stroke (114). Use of ICIs have been
associated with increased infiltration of CD3, CD8 and CD68
cells, markers for T cells and macrophages respectively into
atherosclerotic lesions (115). Increased somatostatin receptor 2
(SSTR2) on the cell surface of inflammatory macrophages is a
marker of macrophage activation. In a study of symptomatic
stroke patients, increased uptake of SSTR2 in culprit vessels
assessed by PET tracer 68Ga-DOTATATE was shown to predict
plaque rupture (58). Thus, evaluation of SSRT2 levels in patients
on ICI therapymay help identify vulnerable plaques and warrants
further investigation. The mechanisms for TKI mediated MI on
the other hand are attributed to endothelial cell dysfunction and
activation of apoptosis pathways, although direct evidence for
MI mechanisms are still lacking, thus further research would be
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FIGURE 2 | Molecular nuclear imaging elucidates anthracycline cardiotoxicity mechanisms. Anthracyclines can increase ROS levels (which can be assessed by

nuclear tracer 18F-DHMT), which can activate MMPs (which can be assessed by 99mTc-RP805) (bottom left), leading to adverse cardiac remodeling. ROS levels can

also promote mitochondrial dysfunction, which can disrupt the mitochondrial membrane potential and thereby reduce 68Ga-Galmydar uptake (middle bottom).

Mitochondrial damage can lead to apoptosis, which can be detected by Annexin V positivity (detected by 99mTc-Annexin (bottom right). Damage to cardiomyocytes

can lead to release of intracellular myosin, which can thereby be assessed by (105). In-myosin (right of ROS). In addition to ROS increase, anthracyclines can also

directly bind and inhibit Topoisomerase II, which can lead to double-stranded DNA breaks (right) and cause further mitochondrial dysfunction and prevent

mitochondrial regeneration. Finally, anthracyclines can lead to impaired sympathetic innervation over time for mechanisms that are unclear but is associated with

cardiac dysfunction and this can be assessed by 123 I-MIBG uptake (top left).

needed to see if macrophage activation is involved and whether
activated macrophage imaging would help risk stratify patients
on these TKIs (113).

FAP Imaging in ICI Myocarditis
Another potential marker of early stages of ICI myocarditis
is fibroblast activating protein (FAP), which is a protein that
gets significantly upregulated in cancer tissue, atherosclerosis,
arthritis and fibrosis. It is emerging as an imaging marker for
fibroblast activation and fibrosis (116, 117). A PET radiotracer
tracer targeting FAP is 68Ga-FAPI. In a recent study, 68Ga-FAPI
was shown to be a potential early marker of ICI myocarditis
with median standardized uptake values (SUV) 1.79 (IQR 1.62,
1.85) in myocarditis patients vs. 1.15 (IQR 0.955, 1.52) in non-
myocarditis patients (45). FAP has also been used to evaluate post
myocardial infarction fibrosis, but its level in the blood vessels
and myocardium of patients on checkpoint inhibitors is unclear
(118, 119).

PD1 Imaging as a Potential Risk Factor for
ICI Myocarditis
Another challenge with checkpoint inhibitor myocarditis is
trying to figure out who is at increased risk. Programmed cell

death protein 1 (PD1), a target of checkpoint inhibitors like
pembrolizumab and its expression on cardiomyocytes warrants
additional research as a potential risk factor. PET radiotracer,
64Cu-DOTA-pembrolizumab can detect PD1 in rodent hearts as
well as on the surface of human blood cells and may be used in
such an investigation (120).

MRI DGE Limitations in Fibrosis
Assessment and Collagen Imaging
A higher burden of DGE and presumed scarring in hypertrophic
cardiomyopathy is associated with worse cardiovascular and
death outcomes (121, 122). In a retrospective study of ICI
myocarditis patients who underwent cMRI, DGE evaluation
did not correlate with cardiovascular outcomes, nor fibrosis,
with only 35% of pathology proven fibrosis cases showing
DGE on MRI (96, 121, 123, 124). Further, of the 56 patients
with histopathology available either through biopsy or autopsy,
98% had lymphocytic infiltration but only 38% had DGE and
26% with T2 positivity (96). Thus in addition to evaluation of
lymphocytic infiltration with targeted radiotracers for CD4 and
CD8 cells to identify early stages of myocarditis and increase
sensitivity of diagnosis, late stages of myocardial injury that can
result in scar and thus collagen deposition can be evaluated
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by radiotracers targeting collagen. The PET radiotracer 68Ga-
collagelin targets collagen, which can help quantify the burden
of scarring or end stage fibrosis, which was shown to be able
to detect pulmonary fibrosis in a mouse model of bleomycin
induced pulmonary fibrosis and correlated with fibrosis on
pathology (46) (Figure 3). MRI with DGE is able to evaluate
for possible scarring, but it is not able to distinguish between
early vs. late stage fibrosis, with the former having potential
reversibility and may partially explain the differential outcomes
we see between HCM and ICI myocarditis patients when it
comes to the differences in the fibrosis processes between the
two conditions and correlation of scar burden as quantified by
DGE and outcomes (125). There is also a MRI collagen type I
targeted probe EP-3533 that is conjugated to gadolinium, which
was shown to be able to visualize pulmonary, liver and bowel
fibrosis in rodent models, but these have not yet advanced to use
in humans (126–128).

Thrombosis Imaging
Pathologic thromboses like pulmonary embolism (PE), deep vein
thrombosis (DVT) carries high morbidity and mortality (129).
Cancer patients are at increased risk of thrombosis and some of
their oncologic therapies can increase that risk further (130, 131).
ICI, VEGF inhibitors and lenalidomide have been associated
with increased thrombosis risk. Increasing the sensitivity of
diagnosing blood clots so treatment can be timely instigated
may help avoid complications and help improve outcomes (132–
134). Radiotracers that can target fibrin, a molecular precursor
of blood clotting can be useful in detection of blood clots. PET
radiotracer 64CU-FBP8 can target fibrin and has been used to
identify thrombi in animal models, particularly earlier stages of
clots (49). Another PET radiotracer, 18F-GP1 that targets the
glycoprotein IIb/IIIa receptors on activated platelets and has
been demonstrated to detect venous thrombosis and arterial
thromboses (53, 135). A phase 1, first-in-human study of 18F-
GP1 positron emission tomography for imaging acute arterial
thrombosis is underway (53). These PET thrombosis imaging
agents may be of utility for detection of DVTs and PEs in cancer
patients, especially for those who may have contraindications to
contrast, such as those with chronic kidney disease or those who
have an allergy to contrast.

MOLECULAR MRI AND MR
SPECTROSCOPY

Hyperpolarized MRI for Evaluation of
Cardiac Metabolism in vivo
As the human heart failures, it has been shown to shift its
metabolism from predominantly fatty acid oxidation to more
glucose utilization (136). Changes in oxidative phosphorylation
or substrate utilization may reflect early signs of cardiotoxicity,
yet in vivo real time detection of cardiac metabolism has
been limited to small studies with radioactive tracers using
PET. More recently, substrate utilization and metabolism have
been evaluated using magnetic resonance (MR) imaging and
spectroscopy. Hyperpolarized carbon-13 (13C) labeled pyruvate

imaging is different from standard clinical MRI using gadolinium
contrast, in that it provides information on how tissue uses
carbon-based nutrients (37). In rodent models of anthracycline
cardiotoxicity, carbon-13 MR spectroscopy (MRS) was used to
assess changes to oxidative phosphorylation and tricarboxylic
acid (TCA) cycle flux in vivo. These studies showed that
doxorubicin lead to reduced cardiac oxidative phosphorylation
in a rat model as evidenced by increased 13C lactate production
(38). First in humanMRSwas used to evaluate tumormetabolism
in prostate cancer and ongoing clinical trials are evaluating
hyperpolarized MR in tumor metabolism and correlations
with outcomes in prostate and pancreatic cancer (137–139).
First use of hyperpolarized 13C metabolic MRI in human
heart involved evaluation of pyruvate metabolism in healthy
individuals (39). Hyperpolarized MR imaging may allow for
visualization of changes in cardiac energetics, particularly from
fatty acid metabolism to more glucose utilization in an evolving
cardiomyopathy in response to cardiotoxic chemotherapy and to
evaluate response to cardioprotective medications such as beta
blockers and angiotensin converting enzyme inhibitors in real
time (140).

Apoptosis Evaluation by MRI
Various chemotherapy agents, most notably anthracyclines are
known to increase cardiomyocyte apoptosis. Molecular MRI
probes conjugated to superparamagnetic iron oxide (SPIO) and
human annexin was shown to be able to visualize apoptosis in real
time in a rodent model following ischemia and post doxorubicin
exposure, but these MRI molecular probes have not gone beyond
animal studies thus far but have the potential to detect early signs
of cell death in the myocardium (105, 141).

Inflammation Imaging by MRI
In addition to T1, ECV and T2 signal changes, use of ultrasmall
superparamagnetic particles of iron oxide (USPIOs) in MRI
may confer insights on inflammation via increased macrophage
activity. USPIOs have been shown to be taken up bymacrophages
and correlates with plaque inflammation in animal studies (142).
In a study of patients with severe carotid stenosis, uptake of
USPIOs corresponded to inflamed plaques on histology. Uptake
of USPIOs induced areas of signal loss on T∗

2-weighted magnetic
resonance imaging within the vessel wall. Whether this can help
predict plaque vulnerability in those on checkpoint inhibitors or
help identify ICI myocarditis is untested and warrants further
investigation (143). However, this has been used clinically and
may have potential to distinguish vulnerable plaque from less
vulnerable plaque.

Barriers to Advancing Molecular Imaging
For the molecular imaging tracers that are already clinically
used, barriers to use include radiation exposure, so deciding
who should get the test, when to get it and how often will have
to be established. For example, if FAP is associated with ICI
myocarditis as a potential early marker, then perhaps it should
be obtained when there is suspicion for myocarditis or when
troponin becomes positive. Timed with evaluation of this marker
for residual disease, it can also help with monitoring of resolution
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FIGURE 3 | Imaging modalities in the evaluation of immunotherapy related cardiotoxicities. Imaging modalities that can be used to monitor myocardial inflammation

due to immunotherapy include: MRI (top) using tissue characterization assessments such as T2, T1/ECV, delayed gadolinium enhancement (DGE) and cine to

evaluate wall motion and function; Nuclear Imaging (middle) approaches involving molecularly targeted probes conjugated to radiotracers facilitating evaluation of

CD4 cells with 89Zr-DFO-CD4, CD8 cells with 89Zr-DFO-CD8, early signs of fibrosis with fibroblast activation protein (FAP), expression of PD1 on cardiomyocytes,

which can be seen with 64Cu-DOTA-pembrolizumab and may reflect increased risk of checkpoint inhibitor myocarditis, FDG that allows for monitoring of inflammation,

and the final stages of inflammation with tissue damage and fibrosis and scar deposition assessed with collagen imaging with 68Ga collagelin; Echocardiography

(bottom) is able to evaluate regional and global strain to detect signs of chemotherapy related toxicity and myocarditis.

of myocarditis, potentially complementing cardiacMRI or taking
place of MRI for those who cannot tolerate MRI, which is
usually used for monitoring. Access is another challenge. Access
to molecular nuclear studies are often available through large
hospital systems and for agents with shorter radioisotope half-
lives like Gallium-68 (68Ga) with average half-life of 68min, an
onsite germanium-68/gallium-68 generator is needed along with
accompanying nuclear accreditation, thus, more rural hospitals
or private practices may have to refer out to larger centers in
order to obtain these tests at high volume imaging centers (144).
Finally, nuclear studies tend to be more expensive than echo and
either on par or more expensive thanMRI studies due to the costs
associated with radiolabeled probes, thus being able to get these
studies approved can also be a challenge for providers even if it
is clinically used and indicated. For the molecular tracers that
are in the preclinical stage, the usual barriers exist for clinical
translation, including establishing safety, a favorable target to
noise ratio in humans and correlation with outcomes to achieve
FDA approval and ultimately clinical use. For those radiotracers
that are already in clinical use for oncology indications, such

as FAP, CD4, CD8 and PD1, incidental detection in the heart
and correlation with outcomes is possible and can be further
explored for future dedicated cardiac imaging and may provide
unique clinical value. The power of machine learning, artificial
intelligence and big data in evaluation of imaging signals can
help unlock patterns that humans may not readily be able to see,
such as in a recent evaluation of cardiac fibrosis by T1 imaging
by MRI and be able to correlate these imaging findings with
outcomes (145).

ROLE OF ARTIFICIAL INTELLIGENCE (AI)
AND BIG DATA IN CARDIO-ONCOLOGY
AND IMAGING

Overview of Current AI Applications in
Cardio-Oncology
Artificial intelligence (AI), through the training of machine
and deep learning models, has shown remarkable potential in
the prevention and diagnosis of cancer therapeutics-related
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FIGURE 4 | Applications of artificial intelligence, big data in cardio-oncology. Artificial intelligence (AI) can improve our understanding of the early molecular and

phenotypic changes that occur prior to the development of clinical cancer therapeutics-related cardiac dysfunction. Machine learning approaches enable

high-throughput screening of novel therapeutics using preclinical models, such as induced pluripotent stem cells as well as in silico simulations using libraries of drugs

and molecular targets. In the clinical setting, AI can improve risk prediction of left ventricular dysfunction, arrhythmias as well as facilitate accurate and standardized

assessment of chamber size, function and coronary calcification, all hallmarks of cardiovascular disease that can be caused or exacerbated by cancer therapeutics.

Therefore, AI offers an opportunity for early diagnosis and deployment of strategies to prevent the progression to overt cardiovascular disease. Images have been

reproduced under a Creative Commons Attribution 3.0 Unported License from smart.servier.com. CAD, coronary artery disease; CT, computed tomography; ECG,

electrocardiography; hiPSC, human induced pluripotent stem cell; LV, left ventricular; MRI, magnetic resonance imaging; SPECT, single photon emission computed

tomography.

cardiac dysfunction (CTRCD). With applications across
all stages of the natural history of CTRCD, AI can assist
scientists and physicians in screening for molecular interactions
between novel therapeutic agents and the cardiovascular
system, as well as detecting subclinical cardiovascular
effects prior to the development of overt clinical disease
(Figure 4).

At the pre-clinical stage, AI techniques have been used for
high-throughput screening of cancer agents using a variety of
disease models. These range from human induced pluripotent
stem cell-derived cardiomyocytes (hiPSC-CMs) exposed to
antineoplastic agents, screening of drug libraries to detect agents
that interact with channel proteins resulting in QT prolongation,
all the way to exome sequencing to identify variants in cardiac
injury pathway genes that protect against anthracycline-induced
cardiotoxicity and dual transcriptomic and molecular machine

learning to predict different types of cardiotoxic response (146–
150). Such approaches can de-risk early-stage drug discovery
but also contribute to post-marketing surveillance to maximize
patient safety. On the same note, pharmacovigilance in cardio-
oncology can be assisted by machine learning-guided monitoring
of electronic health records that includes patient demographics,
echocardiography, laboratory values to detect signals suggestive
of increased cardiac risk with specific therapies or practices
(151, 152).

For therapies that form the mainstay of cancer therapy,
ranging from chemotherapy to immunotherapy and radiation
therapy, active surveillance protocols have been proposed
and implemented, particularly for therapies with known
cardiotoxic effects, such as anthracyclines and HER-2/neu
inhibitors. Here, non-invasive cardiac imaging (by means
of transthoracic echocardiography and/or magnetic resonance
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imaging (MRI)) and electrocardiography (ECG) represent the
modalities of choice in the screening of conditions, such as
anthracycline-induced cardiotoxicity and immune checkpoint-
induced myocarditis (78, 153). Whereas AI applications in
cardiovascular imaging have traditionally been developed in the
general population, shared phenotypes seen in both CTRCD and
non-cancer-related cardiac dysfunction, may extend the use of
these technologies to cardio-oncology.

An expanding body of research has in fact demonstrated
the ability of deep learning-enhanced interpretation of ECG in
screening for and improving the diagnosis of left ventricular
dysfunction, essentially functioning as a gatekeeper to the use
of more advanced imaging modalities (154). It is notable that
this tool was tested in a randomized controlled trial and
demonstrated effectiveness in increasing the early diagnosis of
decreased left ventricular ejection fraction (LVEF) without an
increase in the use of echocardiography (155). Similarly, AI-
guided ECG assessment can also predict the future incidence
of atrial fibrillation (156). In childhood cancer survivors,
machine learning algorithms of baseline and follow up ECGs
were able to predict future cardiomyopathy (157). However,
whether these results generalize to cardio-oncology, such as
in the monitoring of anthracycline or Herceptin mediated
cardiotoxicity, or ibrutinib-associated atrial fibrillation remains
unknown and should be explored in future studies (158, 159).

AI has contributed to a more efficient and standardized
interpretation of several non-invasive cardiovascular imaging
modalities. For instance, in the field of transthoracic
echocardiography, deep learning video-based models now
enables fast and automated calculation of LVEF, with variance
that is comparable to that or even lower of a human observer
(160, 161). Similarly, combined assessment of ECG- and
echocardiography-derived AI models has shown good
discrimination in detecting cardiac amyloidosis, a rare disorder
that is however more prevalent among patients with cancer
compared to the general population (162). Similar approaches
can be found in the field of computed tomography (CT) imaging,
where automated tools enable an accurate assessment of coronary
artery calcium burden, which can be generalized to both gated
and non-gated CT scans of the chest, with the latter often used
in the staging or monitoring of patients (163, 164). Therefore,
such tools may refine a patient’s baseline cardiovascular risk
and inform risk-benefit discussions about the deployment of
potentially cardiotoxic therapies. Finally, automated chamber
size quantification, tissue characterization parameters such as
T1, T2, extracellular volume and functional indices that can
be extracted from cardiac MRI images can have the ability to
confer insights into cardiotoxicity including the potential to
identify early to late cardiotoxicity mediated by chemotherapy
or immunotherapy agents via detection of changes in chamber
size, abnormal T1, T2 relaxation times and delayed gadolinium
enhancement patterns (86, 95, 96, 99, 145, 165–167). Deep
learning models have also shown promise in the standardized
interpretation of functional nuclear modalities, such as SPECT
(single photon emissions computed tomography) myocardial
perfusion imaging with good discrimination for the presence of
obstructive coronary artery disease (168). However, as these tools

become clinically available, prospective validation and possibly
recalibration specifically in patients with cancer will be required
to ensure their validity and generalizability.

Strengths and Weaknesses of Current
Methods and Barriers for Clinical
Translation
To better understand the strengths and weaknesses of AI
applications in cardio-oncology, one first needs to review key
definitions. AI refers to the ability of an automated system
to perform tasks that are typically characteristic of human
intelligence, such as image and pattern recognition, as well as
prediction and classification. Machine learning describes the
process by which a system gains the ability to perform such
tasks. This learning process can be further divided into supervised
and unsupervised learning. The former describes the analysis of
labeled datasets with the goal of predicting the label of a given
datapoint based on a set of independent predictors. The latter
refers to the analysis of unlabeled and unclassified datasets where
the algorithm attempts to discover patterns within the data on its
own. Algorithms may range from traditional regression models
to deep neural networks, consisting of multiple layers of neurons
and nodes which operate in a manner similar to the human
brain (169, 170). However, independent of the algorithm used,
machine learning systems rely on high-quality input to deliver
high-quality output. This is where “big data” become relevant,
describing the need for datasets that are large enough to ensure
adequate variance, remain representative of their original and
target populations, enable time-efficient analyses and have been
carefully rather opportunistically curated to address a specific
question (171).

With those key concepts in mind, some of the limitations
of machine learning applications in cardio-oncology become
apparent. First, cardiovascular disease is often listed as an
exclusion criterion in major cancer trials, thus resulting in under-
representation of patients with cardiovascular disease in pivotal
cancer trials (172). However, the inclusion of cardiovascular
outcomes in cancer trials will be able to help fill this data
gap if sufficient baseline and follow up data are acquired
(molecular biomarkers, baseline imaging prior to oncologic
therapy and follow up that can be used as input). Second,
while AI systems can learn patterns in the data, explaining
what drives those predictions or establishing causal inference is
not a straightforward task (173). Moreover, cancer is a highly
heterogeneous condition with multiple molecular, histological,
and clinical subtypes that often respond differently to the
same therapies (174). Therefore, ensuring generalizability of
models across different cancer subtypes, treatments and patient
populations may be an insurmountable task without access
to vast amounts of accurately labeled data. Third, there is
often significant delay in the timing between data collection,
model training and the final model deployment. As a result, AI
models are often outdated when deployed for clinical use, thus
highlighting the need for more efficient pathways that would
enable real-time updates. Finally, AI models are bias-prone often
reproducing biases that are inherently present in the datasets
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used for training. Ensuring representation of diverse patient
populations is of paramount importance to promote an equitable
impact of AI in healthcare delivery and outcomes (175).

Future Applications of AI in
Cardio-Oncology and Molecular Imaging
With careful consideration of these limitations, AI has the
potential to advance cardio-oncology in many different
directions. Radiomic applications, which extract several metrics
based on the shape, dimensions, signal density and spatial
interrelationship of voxel signals in a given tissue, have been
found to be superior to conventional readouts in reflecting
tissue composition, as well as metabolic or inflammatory activity
(176–178). In fact, some of the most exciting applications
of AI lie beyond structural imaging in molecular imaging.
In the recent past, deep learning and generative adversarial
networks have successfully reconstructed PET images directly
from raw sinogram data effectively maximizing image quality
(179, 180). In other applications, AI tools have generated
full-dose PET images from low-dose images, thus maximizing
signal-to-noise ratio at lower radiation levels (181, 182). In
another example, convolutional neural networks have enabled
the development of cMRI virtual native imaging technologies
which generate late gadolinium enhancement-like images in an
accurate and reproducible manner without the need for contrast
administration (183). Though originally developed in patients
with hypertrophic cardiomyopathy, this technology may be of
value in cardio-oncology and the monitoring of ICI-myocarditis.
Further, for molecular imaging targeting biomarkers like FAP
and PD1, these are already used clinically in oncology to monitor
for residual disease and assess response to immunotherapy
respectively, thus if the heart is captured in existing data sets,
AI/ML can help to predict whether the presence of these markers
are associated with adverse cardiovascular outcomes. Coupled
with improvements in the speed and accuracy of segmentation
algorithms, AI can accelerate the clinical deployment of
molecular imaging approaches in the timely detection of
cardiovascular toxicity (184).

CONCLUSIONS

Imaging advances, particularly molecularly targeted imaging
modalities may help detect cardiotoxicities at the earliest stages
with greater specificity, shed light on mechanism as well as
response to cardioprotective medications such as beta blockers,
angiotensin converting enzyme inhibitors, etc. Newer MRI
metabolic evaluation techniques such as hyperpolarized MRI
may allow for a non-invasive approach to evaluate cardiac
metabolism in real time. To complement imaging studies, use
of AI and big data on imaging parameters and forthcoming
molecular imaging datasets, in addition to patient demographics
may help predict or detect cardiovascular toxicities at their
earliest stages. Inclusion of diverse patient cohorts as well as
cardiovascular parameters/biomarkers and imaging in cancer
trials can enable AI/Ml to increase accurate categorization as
well prediction models in cardio-oncology patients. Additional
research in these areas and advancing animal studies toward
human studies may further help improve cardiovascular
outcomes in cancer patients.
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Background: N6-methyladenosine (m6A) plays important roles in various cardiovascular

diseases (CVDs), including cardiac hypertrophy and heart failure. Sunitinib (SUN) is a

tyrosine kinase inhibitor (TKI) that is widely used in the treatment of different types

of solid and blood tumors, but its efficacy is restricted by a concomitant rise in

cardiotoxicities. However, the methylation modification of m6A messenger RNA (mRNA)

in cardiomyocytes treated with TKI has not been investigated.

Methods: The global m6Amethylation level of SUN-induced cardiotoxicity was detected

by m6A dot blot and colorimetric methylation assay. MeRIP-Seq (methylated RNA

immunoprecipitation sequencing) and RNA-seq (RNA sequencing, input) were employed

to depict the landscapes of transcriptome and epitranscriptome in TKI. Changes in major

m6A-related enzymes were detected by qRT-PCR and Western blot. In addition, the

effects of FTO on SUN-induced cardiotoxicity were evaluated by gain and loss of function

studies.

Results: In this study, we observed that the m6A methylation level was

significantly elevated in SUN-treated human-induced pluripotent stem cell-derived

cardiomyocytes (hiPSC-CMs) and paralleled a positively correlated cellular damage

level. Through a genome-wide analysis of m6A mRNA methylation by methylated RNA

immunoprecipitation sequencing (MeRIP-seq) and input RNA sequencing (RNA-seq), we

identified a total of 2,614 peaks with significant changes, of which 1,695 peaks were

significantly upregulated and 919 peaks were significantly downregulated. Quantitative

reverse transcription PCR (RT-qPCR), immunofluorescence, and Western blotting

revealed that the RNA demethylase fat mass and obesity-associated protein (FTO) was

downregulated, whereas the RNA methylases methyltransferase-like 14 (METTL14) and

wilms’ tumor 1-associating protein (WTAP) were upregulated. Furthermore, gain- and

loss-of-function studies substantiated that FTO is cardioprotective in TKI.

Conclusion: This study deciphered the methylation modification of m6A mRNA in

hiPSC-CMs post-TKI treatment and determined that FTOmay be a promising therapeutic

target for TKI-induced cardiotoxicity.

Keywords: tyrosine kinase inhibitor (TKI), hiPSC-CMs, N6-methyladenosine, FTO, cardiotoxicity
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INTRODUCTION

Tyrosine kinase inhibitors (TKIs) have been widely used in
the treatment of various types of cancer, some of which are
in different stages of clinical development, which shows the
importance of tyrosine kinase as the main target of new
antitumor drugs (1). However, the widespread use of TKIs was
restricted due to their cardiovascular toxicity, which threatened
patients’ medication compliance and quality of life (2). Therefore,
the study of the cardiovascular toxicity mechanism of TKIs
is of great significance for circumventing these cardiovascular
complications. Sunitinib (SUN), a small-molecule, multitarget
receptor tyrosine kinase (RTK) inhibitor, was approved by the
US Food and Drug Administration (FDA) in 2006 to treat
kidney cancer, gastrointestinal stromal tumors, and endocrine
tumors (3). Its targets include vascular endothelial growth factor
receptors (VEGFRs), platelet-derived growth factor (PDGFR),
and mast/stem cell growth factor receptor (SCFR) (4). In the
cardiovascular system, SUN impairs cell signal transduction,
cell cycle regulation, and cell metabolism, increasing the
incidence of cardiac events in patients with cancer (5). However,
cardioprotective strategies based on these mechanisms are
controversial and have not been proven in humans, suggesting
that SUN-mediated cardiotoxicity may also be mediated by other
mechanisms (6).

Ribonucleic acid methylation constitutes more than 60% of
all the RNA modifications and N6-methyladenosine (m6A) is
the most prevalent RNA modification in mammalian mRNA
and long non-coding RNAs (lncRNAs) (7, 8). The m6A
modification mainly occurs on adenine in the “RRACH” motif
and its state is tightly controlled by “writer” methyltransferases
(methyltransferase-like 3 (METTL3), methyltransferase-like 14
(METTL14), and wilms’ tumor 1-associating protein (WTAP)),
“eraser” demethylases [fat mass and obesity-associated protein
(FTO) and Alk B homologue 5 (ALKBH5)], and “reader”
m6A binding proteins (YT homology domain containing1
(YTHDC1), YTHDC2, YT homology domain family (YTHDF1),
YTHDF2, YTHDF3, heterogeneous nuclear ribonucleo protein
C (HNRNPC), heterogeneous nuclear ribonucleoprotein A2B1
(HNRNPA2B1), eukaryotic initiation factor 3A (EIF3A),
and EIF3C) (9, 10). Ample evidence suggests that m6A
modification regulates a variety of RNA metabolic processes,
such as mRNA stability, splicing, nuclear transport, and
translation capabilities (11–13). Given the importance of m6A
modification in RNA metabolism, we were, thus, curious to
discover whether m6A modification had potential effects on
TKI-induced cardiotoxicity.

Abbreviations: METTL14, methyltransferase-like 14; WTAP, Wilms’ tumor 1-

associating protein; ALKBH5, Alk B homologue 5; YTHDF, CYT homology

domain family, HNRNPC, heterogeneous nuclear ribonucleo protein C;

HNRNPA2B1, heterogeneous nuclear ribonucleoprotein A2B1; EIF3A,

eukaryotic initiation factor 3A; RPMI, Roswell Park Memorial Institute;

IWR-1, Wnt/β-catenin inhibitor; FB23-2, FTO Demethylase inhibitor; RIPA,

Radio-Immunoprecipitation Assay; PVDF, poly vinyli dene fluoride; TBST,

Tris-Buffered Saline and Tween; ECL, enhanced chemiluminescence; GAPDH,

glyceraldehyde-3- phosphate dehydrogenase; DTT, DL-Dithiothreitol; MIT,

Massachusetts Institute of Technology; AAV9, adeno-associated virus 9.

Furthermore, previous studies have proposed a
cardioprotective role of m6A demethylase FTO-mediated
demethylating effects in various cardiovascular pathologies. First,
reduced FTO expression was observed in failing human hearts
and hypoxic cardiomyocytes, thereby increasing m6A in RNA
and deteriorating cardiomyocyte contractile dysfunction via
regulating the methylation of cardiac contractile transcripts (7).
Moreover, elevated m6A-RNA methylation and FTO repression
were causatively involved in myocardial inflammation and
dysfunction during endotoxemia in mice (14). Another study
showed that FTO overexpressionmitigated apoptosis of hypoxia-
/reoxygenation-treated myocardial cells by demethylating Mhrt
(15). However, the role of FTO in TKI-induced myocardial
injury remains to be further revealed.

In this study, we used methylated RNA immunoprecipitation
sequencing (MeRIP-seq) and input RNA sequencing (RNA-
seq) to study the transcriptome and m6A modification
epitranscriptome in human-induced pluripotent stem cell-
derived cardiomyocytes (hiPSC-CMs) treated with SUN. To
gain further insights into the pathological significance of m6A
modification in TKI-induced cardiotoxicity, the Gene Ontology
(GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were performed on
the key genes identified by MeRIP-seq and input RNA-seq.
Furthermore, we revealed a cardioprotective role of FTO in
SUN-treated hiPSC-CMs. This study is the first study to show
that m6A methylation may play an indispensable role in TKI-
induced cardiotoxicity.

MATERIALS AND METHODS

Cell Culture
Urinary epithelial cell-derived hiPSCs were cultured in
Matrigel (Invitrogen, Carlsbad, California, USA)-coated 6-
well plates in E8 medium (Invitrogen, Carlsbad, California,
USA) containing 0.5% penicillin/streptomycin. HiPSCs were
induced to differentiate into cardiomyocytes when cultured at
80% confluence, as previously reported (16, 17). In short, cells
were treated with 6µM of selective inhibition CHIR99021, a
selective inhibitor of glycogen synthase kinase 3ß, in roswell
park memorial institute (RPMI) medium supplemented with
B27 (Invitrogen, Carlsbad, California, USA) for 48 h, followed
by 5µM of Wnt/β-catenin inhibitor (IWR-1), a Wnt antagonist
(Sigma-Aldrich), for another 48 h, and the medium was changed
every 3 days. On the 10th day, the beating cardiomyocytes
were purified by the glucose starvation method for 5 days for
further tests.

Isolation and Culture of Cardiac
Microvascular Endothelial Cells (CMECs)
and Cardiac Fibroblasts (CFs)
Primary CMECs and CFs were isolated, cultured, characterized,
and subjected to subsequent experiments, as previously reported
(18, 19).

Silence and Overexpression of FTO
We employed commercially available ready-to-use lentiviral
constructs pLenti-GIII-CMV (Applied Biological Materials
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Incorporation, CAT. NO 210500610196) and FTO small hairpin
RNA (shRNA) lentiviral particles (Santa Cruz Biotechnology
Incorporation, CAT. NO sc-75002-V) to overexpress or
knockdown FTO in hiPSC-CMs. The transfection process was
done as per the manufacturer’s instructions. Lentivirus particles
were transfected at a multiplicity of infection (MOI) of 20.

Cell Viability Assay
Cell viability was detected with a Cell Counting Kit-8 (CCK-8)
(C0037, Beyotime, Shanghai, China). The culture medium was
aspirated and the precoated Matrigel hiPSC-CMs were washed
with phosphate-buffered saline (PBS) once. Then, 100 µl of
working buffer was added to hiPSC-CMs in 96-well plates and the
cells were incubated at 37◦C for 30min in the dark. A microplate
reader (Tecan, Switzerland) was used to automatically measure
the absorbance at a wavelength of 450 nm.

Drug Treatment
Our preliminary results showed that the half-maximal
inhibitory concentration (IC50) of SUN treatment for
24 h (cell viability serving as the readout) is around 6µM
(Supplementary Figure S1A); thus, the subsequent experiments
were carried out with 6µM SUN (SU11248, Sellect, Shanghai,
China) treatment for 24 h and equal volume of dimethyl sulfoxide
(DMSO) treatment for 24 h served as the control group. For
FTO Demethylase inhibitor (FB23-2) (S8837, Sellect, Shanghai,
China) treatment, 20µM FB23-2 was added simultaneously with
SUN for 24 h. The concentration of FB23-2 was chosen based on
a previous report (20).

Western Blot Analysis
Cell protein was extracted with Radio-Immunoprecipitation
Assay (RIPA) Lysis Solution (P0013C, Beyotime, Shanghai,
China) from hiPSC-CMs for Western blot detection.
Protein extractions and molecular weight standards were
separated by 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) gels and transferred to poly
vinyli dene fluoride (PVDF) membranes (Bio-Rad, USA).
After blocking, the membrane was incubated with primary
antibodies [methyltransferase-like 3, (METTL3) ab195352,
Abcam; METTL14, ab220030, Abcam; FTO, ab126605, Abcam;
ALKBH5 aa302-330, LifeSpan Biosciences; WTAP, 56501,
Cell Signaling Technology; and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) ab8245, Abcam] at 4◦C overnight in a
5% bovine serum albumin (BSA) blocking solution. After being
washed with Tris-Buffered Saline and Tween (TBST) buffer,
the membrane was incubated in 5% blocking buffer for 1 h at
room temperature with the secondary antibody (1:800 dilution,
7074, Cell Signaling Technology, USA) at the recommended
dilution. Protein bands were detected with the enhanced
chemiluminescence (ECL) chemiluminescent kit (P0018S,
Beyotime, Shanghai, China) in a dark room and assessed with
Image Lab software (Bio-Rad, USA).

N6-Methyladenosine Dot Blot
The mRNA was isolated with the Dynabeads R© mRNA
Purification Kit (61006, Invitrogen, Carlsbad, California,

USA) and the purity of mRNA was detected by the NanoDrop
method for further tests. The serially diluted mRNA was
denatured at a high temperature of 95◦C and cooled immediately
after denaturation. The 2 µl sample was transferred directly onto
a nucleic acid-optimized nylon membrane (1620153, Bio-Rad,
USA). After a regimen UV cross-linking and methylene blue
(M4591, Sigma-Aldrich, USA) staining, the membrane was
blocked by soaking in 5% BSA buffer and incubated with the
anti-m6A antibody (ab284130, Abcam, Shanghai, China) in
5% BSA for 30min at room temperature. Then, the membrane
was incubated with horseradish peroxidase (HRP)-conjugated
secondary antibody (ab97051, Abcam, Shanghai, China) for
30min, followed by incubation with the ECL reagent (P0018S,
Beyotime, Shanghai, China) for 1min, covered with plastic wrap,
and exposed to different lengths of exposure in a dark room. The
test sample was compared with the signal of the standard sample
to detect its concentration.

m6A RNA Methylation Assay (Colorimetric)
The m6A RNA Methylation Assay Kit (ab185912, Abcam,
Shanghai, China) was used to measure the m6A level of mRNA.
According to the instructions, 80 µl of binding solution was
added to each well and negative control, diluted positive control,
and 200 ng of mRNA were added to each well and incubated at
37◦C for 90min. Fifty microliter of diluted capture antibody was
added for incubation at room temperature for 60min and then
50 µl of diluted detection antibody was added to each well for
30min. Finally, 100 µl of developing solution was used for the
reaction and after incubation in the dark at room temperature
for 10min, stop solution was added and the absorbance was
measured at 450 nm.

Lactate Dehydrogenase (LDH) Release
The LDH Release Detection Kit (C0016, Beyotime, Shanghai,
China) was used to detect cell cytotoxicity according to
the instructions. Sixty microliter of LDH detection working
solution was added to each well. The sample was incubated at
room temperature (∼25◦C) in the dark for 30min. Then, the
absorbance was measured at 490 nm.

Quantitative Reverse Transcription PCR
(RT-qPCR)
Total RNA was extracted from hiPSC-CMs using the RNAsimple
Total RNAKit (DP419, Tiangen, Beijing, China). Onemicrogram
of total RNA was used for complementary DNA (cDNA)
synthesis reaction, as previously described (21). The isolated
mRNA was reverse transcribed into cDNA with the High
Capacity cDNA Reverse Transcription Kit (4368814, Invitrogen,
Carlsbad, California, USA) and cDNA was amplified with the
Takara’s Perfect Real-Time PCR Kit (RR037A, Takara Bio, Otsu,
Japan). The primers and probes were ordered from TaqMan
(Invitrogen, Carlsbad, California, USA). The relative level of
each mRNA was quantified by GAPDH and expressed as a
relative ratio.
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Methylated RNA Immunoprecipitation
Sequencing
Guangzhou Epibiotek Corporation Ltd. (Guangzhou,
China) provided the MeRIP-seq service. Briefly, m6A RNA
immunoprecipitation was performed with the GenSeqTM

m6A RNA IP Kit (GE-ET-001, GenSeq Incorporation, China)
according to the manufacturer’s instructions. Both the input
samples were obtained by ribosomal RNA (rRNA) removal and
smart principles and first-strand cDNA PCR-enriched library
fragments were synthesized. Themagnetic bead library fragments
were purified by DNA and the ultrafine RNA methylated m6A
detection library was obtained. The library quality was evaluated
using the Bioptic Qsep100 Analyzer (Agilent Technologies
Incorporation, USA). Library sequencing was performed on an
Illumina HiSeq instrument in PE150 sequencing mode.

Methylated RNA Immunoprecipitation
Sequencing Data Processing
Cutadapt (version 2.5) was used to trim adapters and filter
for sequences. The remaining reads were then aligned to the
human Ensemble genome GRCh38 (mouse Ensemble genome
GRCm38) using Hisat2 aligner (version 2.1.0) under the
following parameters: “–rna-strandness RF.” m6A peaks were
identified using the exome Peak R package (version 2.13.2) under
the parameter: “peak_cutoff_p-value = 0.05, peak_cutoff_false
discovery rate (FDR)= NA, and fragment_length= 200.”

Differential m6A peaks were identified using the exome Peak
R package under the following parameters: “peak_cutoff_p-value
= 0.05, peak_cutoff_FDR = NA, and fragment_length = 200.”
The GO and the KEGG analyses were performed using the cluster
profile R package (version 3.6.0). m6A RNA-related genomic
features were visualized using the Guitar R package (version
1.16.0). Identified m6A peaks with p-values < 0.05 were chosen
for the de-novomotif analysis using homer (version 4.10.4) under
the parameter “-len 6-rna.”

Long RNA-seq
The EpiTM Mini LongRNA-SEQ Kit (E1802, Epibiotek,
Guangzhou, China) and the EpiTM DNA Clean Beads Kit
(R1809, Epibiotek, Guangzhou, China) was used for long RNA
sequencing. DNase I was added to the RNA samples and digested
at 37◦C for 30min to remove the residual DNA in the samples
and the RNA was purified and recovered by magnetic beads.
rRNA removal and RNA fragmentation: 5XRT buffer was added
to sample RNA, a rRNA probe, and a temperature gradient
reaction was used to fragment RNA samples and remove rRNA.
Synthesis of first-strand cDNA: EpiScriptTM IV, RNase inhibitor,
DL-Dithiothreitol (DTT), Template-Switching oligonucleotide
(TSO), and random primers were added to the RNA samples in
Step 2. Aftermixing with the wall of the tube, rapid centrifugation
was carried out in the PCR machine according to the following
procedures: 37◦C, 90min; 70◦C, 15min. 2XpfuMax HiFi PCR
ProMix and sequencing primers were added to the first-strand
cDNA samples and then amplified in a PCR apparatus after
mixing. The EpiTM DNA Clean Beads were used to purify PCR
products in a 1X ratio. DNA fragments (300–400 bp) were
recovered from the purified products with magnetic beads in a
0.65/0.2X ratio for a second round of PCR amplification to enrich

300–400 bp DNA fragments. The Bioptic Qsep100 Analyzer
was used to conduct quality inspection of the library to detect
whether the size distribution of the library conformed to the
theoretical size.

Ribonucleic Acid Sequencing Data
Processing
Cutadapt (version 2.5) was used to trim adapters and filter
for sequences and the remaining reads were then aligned
to the human Ensemble genome GRCh38 (mouse Ensemble
genome GRCm38) using Hisat2 aligner (version 2.1.0) under
the parameter “–rna-strandness RF.” The reads mapping the
genome were calculated using feature counts (version 1.6.3).
Differential gene expression analysis was performed using the
DESeq2 R package. Enrichment analysis was performed using
the clusterProfiler R package for the GO terms and the KEGG
database pathways.

Immunostaining and Immunofluorescence
Analysis
Human-induced pluripotent stem cell-derived cardiomyocytes
were separated and placed in 6-well plates (Corning, New York,
USA). The combined staining of α-actinin (ab137346, Abcam),
immunoglobulin G (IgG) H&L (Alexa Fluor R© 488) (ab150077,
Abcam), and propidium iodide (PI) 1µg/ml (ST511, Beyotime,
Shanghai, China) was used to detect cardiomyocyte death. The

nucleus was stained with 4
′

,6-diamidino-2-phenylindole (DAPI)
(C1002, Beyotime, Shanghai China) and the dead cells were
labeled with PI to pass through the damaged cell membrane.
A Nikon A1R HD25 confocal microscope was used to capture
images. The total number of cells in the PI-positive and five
randomly selected fields was counted using ImageJ software by
a researcher blinded to the treatment assignments. A manual
pipeline (CellProfiler, Broad Institute of Massachusetts Institute
of Technology (MIT) and Harvard in Cambridge) was used to
determine the cell surface area (22). Briefly, 5 to 6 random
pictures were taken with 20X magnification and 150–200
cells/per condition were analyzed in order to determine cell size
following the instructions of the software.

Statistical Analyses
Continuous data are expressed as the mean ± SD unless
otherwise specified. Comparisons between the two or more
groups were performed using the Student’s t-test and ANOVA for
normal variables or the Mann–Whitney U test and the Kruskal–
Wallis test for non-normal variables. R software (version 3.4.2)
and GraphPad Prism software (version 8.00) were used for
statistical analysis. Biological replicates (individual mice) are
shown as individual data points superimposed on bar charts.
Significance was conventionally accepted at p < 0.05.

RESULTS

Global m6A Level Was Upregulated in
SUN-Injured hiPSC-CMs
The treatment dose and duration of SUN were determined
based on preliminary experiments. Our preliminary
results showed that the IC50 of SUN treatment for 24 h
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FIGURE 1 | The global N6-methyladenosine (m6A) methylation level of sunitinib (SUN)-treated human-induced pluripotent stem cell-derived cardiomyocytes

(hiPSC-CMs). (A) Representative images after SUN treatment for 24 h and measurement of lactate dehydrogenase (LDH) release level and cell viability are shown (n =

5). (B) The levels of m6A methylation in the normal control (NC) and SUN groups detected by m6A antibody-based immunofluorescence. Red denotes α-actinin, green

denotes m6A, and blue denotes 4
′

,6-diamidino-2-phenylindole (DAPI). (C) The m6A level of total RNA of hiPSC-CMs is indicated by an m6A dot blot. Corresponding

RNAs were loaded equally by a 2-fold serial dilution with 500 ng and 250 ng of methylene blue staining served as a loading control. (D) The RNA m6A level detected

by the colorimetric method. (E) The m6A level of messenger RNA (mRNA) and the level of LDH release exhibit a time-dependent gradual increase after SUN treatment

and the two indicators are positively correlated. “**” indicates p < 0.01, “***” indicates p < 0.001, and “****” indicates p < 0.0001.

(cell viability serving as the readout) is around 6µM
(Supplementary Figure S1A); thus, the subsequent experiments
were carried out with 6µM SUN treatment for 24 h and
equal volume of DMSO treatment for 24 h served as the
control group. Furthermore, we also explored the time kinetics
of 6µM SUN in hiPSC-CMs; these results were given in
Supplementary Figure S1B.

Figure 1A shows the optical microscope morphology of

hiPSC-CMs treated with 6µM of SUN for 24 h. The cell surface

area decreased, accompanied by a significant elevation in LDH
release and a significant reduction in cell viability in SUN-

treated hiPSC-CMs. Furthermore, the immunofluorescence
results suggested that the global m6A levels in the SUN group
increased and that the structure of myocardial sarcomeres
became disorganized (Figure 1B). The m6A dot blot validated
that the global m6A level was indeed elevated in the
SUN group (Figure 1C). In addition, the colorimetric kit
method also verified the upregulation of the global m6A
level (Figure 1D). Linear regression was used to analyze the
relationship between the mRNA m6A level and LDH release
of hiPSC-CMs after SUN treatment and it was found that
a positive correlation was identified between the global m6A
level and LDH release (r = 0.6096, p < 0.01) and the
global m6A level and LDH release gradually increased as the
treatment time was prolonged (Figure 1E). Overall, these results

indicated that the dysregulated m6A modification in SUN-
injured hiPSC-CMs may play important roles in TKI-induced
cardiotoxicity.

Overview of the m6A Methylation Map in
SUN-Injured hiPSC-CMs
Next, to further decipher the role of elevated m6A in SUN-
injured hiPSC-CMs, three biological copies of hiPSC-CMs from
either the normal control (NC) group or the SUN group were
sent for MeRIP-seq and m6AMeRIP enrichment regions (peaks)
were analyzed after sample normalization (Figure 2A). The m6A
modification mostly occurred in mRNAs (Figure 2B). A total of
16,399 m6A peaks from 4,499 coding gene transcripts (mRNAs)
were identified in the NC group. In the SUN group, there were
16,732 m6A peaks within 4,427 mRNAs (Figure 2C). To reveal
the preferential distribution of m6A in transcripts, the metagene
profiles of all the identifiedm6Apeaks in the entire transcriptome
were probed. The results show that the m6A peak is preferentially
enriched in two sets of coding DNA sequences (CDSs) and the

3
′

-untranslated region (UTR) (Figures 2D,E). To learn whether
a consensus motif existed in the identified m6A peaks, we used
HOMER software to map the m6A methylation. The results
showed that m6A mainly exists in the consensus sequence of

5-RRAH-3
′

and 5-RRAH-3
′

(R = A or G; H = A, C, or U)
(14). Among the identified m6A peaks, the top five conserved
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FIGURE 2 | Overview of the m6A methylation map in SUN-treated hiPSC-CMs. (A) Sequencing sequences were compared to the genome and the distribution

intensity and abundance of normalized expression quantities are described. (B) Pie chart showing the distribution of m6A peaks in mRNAs and non-coding RNAs

(ncRNAs). (C) The histogram displays the unique and common m6A peaks in the two sets of mRNAs. (D) The density curve shows the distribution of the m6A peak on

the transcript, which is divided into three parts: 5
′

-UTR, CDSs, and 3
′

-UTRs. (E) Pie charts showing the proportion of the m6A peak distribution in the NC and SUN

groups. (F) The top five motifs enriched across the m6A peaks. SUN, sunitinib; CDS, coding DNA sequence; UTR, untranslated region.

motifs are shown in Figure 2F, which was consistent with the
well-known “RRACH” consensus motif of m6A modification.

Conjoint Analysis of the MeRIP-seq and
RNA-seq Data in SUN-Injured hiPSC-CMs
To further clarify the changes in m6A methylation associated
with TKI-induced cardiotoxicity, we performed a conjoint
analysis of the MeRIP-seq and RNA-seq data. As shown
in Figure 3A, 20,072 m6A peaks (representing 9,892
genes) were identified and there were 2,614 differentially
methylated peaks (representing 2,066 genes), among which
919 differentially methylated peaks had hypermethylation and
1,695 differentially methylated peaks had hypomethylation
at the log fold change cutoff of (±1) and FDR cutoff of
<0.05. The top 10 hypermethylated genes and the top 10
hypomethylated genes are shown in Table 1. The analysis of
the differentially methylated peak (DMPeaks) distribution at
different chromosome loci revealed that the chromosomes
with the most m6A methylation were chromosome 1 with
308 m6A methylation peaks, chromosome 2 with 170 m6A
methylation peaks, and chromosome 17 with 164 m6A
methylation peaks (Figure 3B). In parallel, RNA-seq was used
to determine the transcriptome profile of altered genes. We
identified 1,906 differentially expressed genes (DEGs) between
the NC and SUN groups, including 990 upregulated DEGs
and 916 downregulated DEGs (fold changes 2, p < 0.05;

Figures 3C,D). The top 10 upregulated mRNAs and the top
10 downregulated mRNAs are shown in Table 2. Furthermore,
among the 20,072 m6A peaks (representing 9,892 genes)
identified, there were 2,614 differentially methylated peaks
(representing 2,066 genes), 919 hypermethylated peaks, and
1,695 hypomethylated peaks. Accordingly, we identified 244
mRNAs with significant changes in their m6A peaks and
levels and they could be divided into four quadrants: both
the mRNA expression and m6A peaks were upregulated
(55), mRNA and m6A peaks were both downregulated
(74), m6A peaks were upregulated and mRNA peaks were
downregulated (37), and m6A peaks were downregulated and
mRNA peaks were upregulated (78) (Figure 3E). We have
validated the transcriptomic study by examining the gene
expression level of top 5 upregulated and top 5 downregulated
protein coding genes among the 244 intersection genes by
RT-qPCR assay. The RT-qPCR results were mostly consistent
with RNA-seq (Supplementary Figure S2), which might be
helpful to solidify our sequencing result. The list of 244
DEGs with significant differential m6A peaks is given in
Supplementary Table S2. Their GO term for enrichment
analysis is given in Supplementary Figure S3. The GO analysis
showed that the biological functions of the 244 mRNAs were
mainly enriched in mitogen-activated protein kinase (MAPK)
and p53 signaling pathway, while the KEGG analysis repetitiously
pointed to apoptotic signaling pathways.
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FIGURE 3 | Joint analysis of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) data. (A) The volcano plot shows the

difference in m6A methylation peaks, fold changes ≥2, and p-values < 0.05. The red image represents the high methylation peak of m6A and the blue image

represents the low methylation peak of m6A. (B) The histogram shows the distribution of the m6A peak on chromosomes. (C) Heatmap showing upregulated and

downregulated mRNAs. (D) The volcano map shows differentially expressed genes, p-value < 0.05, and double change ≥2. The red area represents upregulated

genes and the blue area represents downregulated genes. (E) Four-quadrant diagram showing the relationship between mRNA m6A methylation and mRNA

expression.

The GO and the KEGG Enrichment
Analyses Revealed the Biological
Information Underlying DEGs and
Differentially Methylated Genes (DMGs)
To explore the physiological and pathological significance of the

DEGs and DMGs, the GO and the KEGG pathway analyses

were performed on the key genes identified. The GO analysis

showed that the biological functions of upregulated DEGs were
mainly enriched in the regulation of angiogenesis and apoptosis
signaling pathways (Figure 4A). The downregulated DEGs
were mainly involved in microtubule cytoskeleton organization,
endomembrane system organization, protein tetramerization,
and protein heterodimerization (Figure 4B). Through the KEGG
analysis, the upregulated DEGs were mainly enriched in
pathways in cell adhesion molecules (CAMs), extracellular
matrix (ECM)-receptor interaction, and ribosome biogenesis in
eukaryotes (Figure 4C). The downregulated DEGs were mainly
involved in cancer pathways, the MAPK signaling pathway,
cytokine–cytokine receptor interactions, and the p53 signaling
pathway (Figure 4D). In addition, we also performed enrichment
analyses on DMGs. These genes were mainly enriched in
pathways such as nuclear transport, nucleocytoplasmic transport,

regulation of cell cycle phase transition, and histone modification
(Figure 4E). The KEGG analyses showed that these DMGs were
related to pathways in cancer, focal adhesion, regulation of
actin cytoskeleton, and protein processing in the endoplasmic
reticulum (Figure 4F).

Expression of FTO Was Downregulated,
While the Expressions of MELLT14 and
ALKBH5 Were Upregulated in SUN-Treated
hiPSC-CMs
To further explore whether the m6A modification enzyme was
involved in SUN-induced hiPSC-CM injury, we examined the
expression levels of major methyltransferases and demethylases.
Compared with the NC group, the mRNA expression levels
of the methylases WTAP and METTL14 in the SUN group
were significantly upregulated (p < 0.05), whereas the mRNA
expression level of FTO (demethylase) was significantly
downregulated in the SUN group (p < 0.01) (Figure 5A). The
downregulation of FTO was again verified in the SUN group by
immunofluorescence (IF) staining (Figure 5B). However, the
expression of the other two enzymes, METTL3 and ALKBH5,
was not altered in SUN-treated hiPSC-CMs. Consistent with the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 March 2022 | Volume 9 | Article 849175218

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ma et al. m6A in TKI-Induced Cardiotoxicity

TABLE 1 | List of the top 10 hypomethylated genes and the top 10 hypermethylated genes.

Genes Description Chromosome Peak start Peak end log2 Fold change P-value Up/down

FAM69B Family with sequence similarity 69

member B

9 136,723,693 136,724,020 −5.65 1.023e-8 Down

ATXN1 Ataxin 1 6 16,300,520 16,300,791 −5.46 1.58e-4 Down

SLC30A6 Solute carrier family 30 member 6 2 32,224,109 32,224,289 −5.39 4.07e-4 Down

JAM2 Junctional adhesion molecule 2 21 25,716,872 25,717,262 −5.04 0.0036 Down

NRDE2 Nuclear RNAi defective 2 14 90,270,343 90,270,584 −5.02 3.31e-4 Down

MANEL Mannosidase like protein 1 37,799,732 37,800,181 −4.98 5.89e-5 Down

PLAGL2 Pleiomorphicad-enomagene like 2 20 32,195,399 32,195,639 −4.82 7.41e-5 Down

TRPS1 Trichorhinophalangeal syndrome

type 1

8 115,412,594 115,412,805 −4.42 0.0024 Down

TSPAN5 Tetraspanin 5 4 98,472,253 98,472,524 −4.33 0.0013 Down

RPS23 Ribosomal protein S23 5 82,275,563 82,275,772 −4.29 0.0043 Down

RGMB Repulsive guidance molecules B 5 98,795,779 98,796,079 6.15 4.47e-8 Up

TTN Titin 2 178,693,982 178,702,575 5.98 0.0035 Up

NEBL Nebulette 10 20,831,577 20,845,420 5.89 0.0010 Up

FABP3 Fat acid binding protein 3 1 31,369,427 31,372,984 5.64 1.70e-4 Up

STOX2 Stork head box 2 4 184,009,557 184,009,768 4.98 0.0051 Up

DYRK3 Dual-specificity

tyrosine-(Y)-phosphorylation

regulated kinase 3

1 206,647,569 206,647,839 4.94 0.0054 Up

BRAT1 Breast cancer type 1 associated

ring domain 1

7 2,542,069 2,542,339 4.83 1.15e-4 Up

ZNF697 Zinc finger protein 697 1 119,624,014 119,625,981 4.52 1.82e-5 Up

LSM14A RNA-associated protein 55A, 19 34,228,887 34,229,157 4.49 1.70e-5 Up

CCDC184 Coiled-coil domain containing 184 12 48,184,769 48,185,096 4.44 4.57e-4 Up

TABLE 2 | List of the top 10 upregulated messenger RNAs (mRNAs) and the top 10 downregulated mRNAs.

Description log2 Fold change P-value Up/down

CATSPER2 The cation channel of sperm receptor 2 −9.1720856 1.01E-07 Down

ITGB7 Integrin Beta 7 −8.6837258 3.99E-05 Down

CLDN20 Claudin 20 −8.6824254 8.49E-06 Down

GMPR Guanosine monophosphate reductase −8.6137908 0.00021296 Down

USP50 Ubiquitin-specific peptidase 50 −8.5858481 9.24E-06 Down

PCDHA7 Protocadherin alpha 7 −8.402541 0.00040126 Down

ZP1 Zona pellucida glycoprotein 1 −8.3886407 0.00054659 Down

SLC37A4 Glucose-6-phosphate transporter member 4 −8.3131318 2.82E-05 Down

KCNC1 Potassium voltage-gated channel 1 −8.2366521 0.00065662 Down

LPAR4 Lysophosphatidic acid receptor 4 −8.1447607 0.00105897 Down

PGF Vascular endothelial growth factor 9.66737242 2.05E-08 Up

AVPI1 Arginine vasopressin-induced 1 9.44284665 8.06E-09 Up

ANKRD45 Ankyrin repeat domain 45 9.11522806 5.18E-08 Up

TNFRSF10A Tumor necrosis factor receptor superfamily member 10A 8.94685039 5.80E-08 Up

MYOCD Myocardin 8.87253755 0.02317118 Up

NPTX1 Neuronal pentraxin 1 8.84367054 4.82E-07 Up

SLCO4A1 Solute carrier organic anion transporter family, member 4A1 8.77762835 2.14E-07 Up

MEDAG Mesenteric estrogen-dependent adipogenesis protein 8.60841757 2.70E-06 Up

IGSF9 Immunoglobulin superfamily, member 9 8.51141356 1.63E-05 Up

SULT1C2 Sulfotransferase family, cytosolic 2C 8.49784929 2.13E-06 Up
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FIGURE 4 | The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses reveal the biological information behind the differences in

mRNA expression levels and m6A methylation modification. (A,B) The top 10 enriched GO terms of upregulated and downregulated DEGs. (C,D) The top 10 enriched

KEGG pathways of upregulated and downregulated DEGs. (E,F) The top 10 enriched GO terms and KEGG pathways of DMGs. DEGs, differentially expressed genes.

DMGs, differentially methylated genes. “Gene ratio,” number of genes annotated to the specific GO term/number of all the genes with the GO database annotations.

“Count,” number of genes annotated to the specific GO term.

mRNA expression data, the protein levels of WTAP, METTL14,
and FTO exhibited similar trends in SUN-treated hiPSC-CMs
(Figure 5C). Collectively, these results indicated that the
downregulated FTO as well as the upregulated METTL14 and
WTAP might account for the increased global m6A level in
SUN-injured hiPSC-CMs.

FTO Downregulation Aggravated
SUN-Induced hiPSC-CM Injury
Next, we employed FB23-2, a potent and selective FTO inhibitor
that directly binds to FTO and selectively inhibits FTOs m6A
demethylase activity to examine the role of FTO in SUN-induced
hiPSC-CM injury. For FB23-2 treatment, 20µM FB23-2 was
added simultaneously with SUN for 24 h. The concentration
of FB23-2 was chosen based on a previous report (20). We
examined the effect of FB23-2 on global m6A level by m6A
dot blot. The results verified a ∼1.7-fold upregulation of global
m6A level. Cell death was evaluated by PI staining after 24 h
of treatment. Interestingly, SUN-induced hiPSC-CM death was
exacerbated in the FB23-2 + SUN group (Figures 6A,B). This
effect was not observed in normal hiPSC-CMs, indicating that
FB23-2 alone would not affect the cell viability of hiPSC-
CMs. Furthermore, SUN-induced hiPSC-CM atrophy was also
aggravated in the FB23-2+ SUN group, as evidenced by a smaller
cell surface area (Figures 6A,C). The colorimetric test kit for
LDH release again validated the findings obtained from the PI

staining (Figure 6D). In addition, we knocked down FTO using
a FTO shRNA lentiviral particles. The silencing efficiency and
inhibited FTO activity as revealed by elevated global m6A level
were confirmed (Supplementary Figures S6A,B). We observed
that FTO shRNA phenocopied the effects of FTO inhibitor
in terms of elevating PI-positive cell death, LDH release, and
reducing cell surface area (Figures 6A–D). Taken together, these
results indicate that FTO plays a protective role in SUN-induced
hiPSC-CM injury.

To further explore the role of FTO in SUN-induced
cardiotoxicity, we employed a lentivirus construct to overexpress
FTO. After verifying the FTO mRNA and global m6A level, we
transfected hiPSC-CMs with the FTO lentivirus construct or
empty vector. The results showed that FTO overexpression by
lentivirus construct successfully induced a ∼2-fold upregulation
of FTO expression and a ∼40% downregulation of global
m6A level (Supplementary Figures S5A,B). Furthermore,
FTO overexpression significantly reduced LDH release
and improved cell viability in SUN-challenged hiPSC-CMs
(Supplementary Figures S5C,D).

To justify that SUN-altered m6A effects are cardiomyocytes
specific or not, we treated CMECs and CFs with 60 nM or
10µM SUN for 18 h, respectively, referring to the concentration
and duration reported in previous studies (23, 24). We then
measured the global m6A level of mRNA and the transcripts
levels of FTOmRNA. Interestingly enough, both the CMECs and
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FIGURE 5 | Changes in m6A methyltransferase and demethylase expression levels in hiPSC-CMs treated with SUN. (A) Reverse transcription PCR (RT-PCR) of

METTL3, ALKBH5, fat mass and obesity-associated protein (FTO), METTL14, and WTAP; the NC group (n = 5) and the SUN group (n = 5). (B) The levels of FTO

expression in the NC and SUN groups as detected by immunofluorescence. Red denotes α-actinin, green denotes FTO, and blue denotes DAPI. (C) The protein

expression levels of methyltransferase and demethylase as detected by Western blot (n = 5). NS, non-significant, “*” indicates p < 0.05 and “**” indicates p < 0.01.

CFs failed to show significant changes in these two parameters
in response to SUN (Supplementary Figures S7A,B,D,E).
Furthermore, cotreatment of FTO inhibitor FB23-2 did
not alter the reduced cell viability in response to SUN as
revealed by CCK-8 assay (Supplementary Figures S7C,F).
These results might indicate that the reported effects are
cardiomyocytes specific.

DISCUSSION

In this study, we performed a genome-wide analysis of m6A
mRNAmethylation byMeRIP-seq and RNA-seq in a human stem
cell-derived cardiomyocytemodel of TKI-induced cardiotoxicity.
Ourmajor findings include the following: (a) the global m6A level
was upregulated in SUN-injured hiPSC-CMs; (b) downregulated
FTO as well as upregulated METTL14 and WTAP might
account for the increased global m6A level in SUN-injured
hiPSC-CMs; (c) m6A modification was associated with the
occurrence and course of TKI-induced cardiotoxicity to some
extent; and (d) protected against SUN-induced hiPSC-CM injury.
Nevertheless, the specific mechanism of m6A methylation in
TKI-induced cardiotoxicity remains to be further studied in
the future.

Recent studies have shown that m6A is involved in
the occurrence and development of cancers and cardiac

dysfunction. RNA methyltransferases, demethylases, and m6A-
binding proteins are frequently altered in human cancer tissues
from various organ sources, influencing cancer transcription
and oncoprotein expression, cancer cell proliferation, survival,
tumor initiation, progression, and metastasis (25, 26). However,
there is no consensus on whether altered m6A is oncogenic or
tumor suppressive. In comparison, studies have reported that
m6Amethylation and FTO have decreased expressions in various
pathologic conditions including heart failure and endotoxemia-
and hypoxia-/reoxygenation-induced cardiac cell injuries (7, 14,
15). In accordance with our present finding, most studies suggest
that elevated m6A level that result from elevated methylases or
reduced demethylases is a deleterious factor for the onset and
progression of various cardiovascular diseases (27).

Recently, m6A methylation was revealed to play important

roles in various cardiovascular diseases, but its role in TKI-

induced cardiotoxicity has rarely been studied. In this study,

we found that the cell viability of hiPCS-CMs treated with
SUN decreased, whereas the release of LDH increased, which
suggested that SUN had a damaging effect on hiPSC-CMs. IF
staining showed that the m6A levels of the SUN group were
elevated and the m6A dot blot also verified this elevation.
Moreover, we also found that the global m6A methylation level
in SUN-treated hiPSC-CMs was positively correlated with LDH
release. Therefore, we employed MeRIP-seq and RNA-seq to
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FIGURE 6 | The FTO inhibitor FB23-2 and knocking down of FTO aggravated SUN-induced hiPSC-CM injury. (A) Multiple immunofluorescences staining of DAPI

(blue), propidium iodide (PI) (red), and α-actinin (green) to detect hiPSC-CM death. (B) The proportions of PI-positive cardiomyocytes (n = 5). (C) The cell surface area

was detected and analyzed by CellProfiler pipeline (n = 5). (D) Measurement of LDH release levels (n = 5). NS, non-significant, “*” indicates p < 0.05, “**” indicates p

< 0.01, and “****” indicates p < 0.0001.

study the transcriptome and methylome in SUN-treated hiPSC-
CMs. Through further joint analysis of MeRIP-seq and RNA-
seq data, we found significant differences between the m6A
methylation and mRNA expression levels of 244 genes. We
surmised that these potential genes, through m6A methylation,
are potentially involved in the occurrence and development of
TKI-induced cardiotoxicity.

We further conducted the GO and the KEGG analyses of
differentially expressed m6A methylated genes. Biological
processes and pathways indicated apoptotic signaling
pathways that were repetitiously enriched by upregulated
DEGs. This enrichment pattern coincides with previous SUN
cardiotoxicity studies. For instance, a previous study in isolated
cardiomyocytes and mice scrutinized the potential mechanisms
of SUN-associated cardiac effects. This study concluded that
mitochondrial injury and cardiomyocyte apoptosis accounted
for SUN-associated cardiotoxicity (28). In a more recent report,
apoptotic cell death resulting from mitochondrial damage with
reactive oxygen species (ROS) accumulation was shown to be the
important contributing mechanism of cardiotoxicity associated
with SUN (29). Conversely, thioester and acetyl-CoA metabolic
pathways were significantly enriched by downregulated DEGs.
Thioesters play a prominent role in metabolism. The central
metabolite acetyl-CoA is a thioester that is produced mainly
by oxidative decarboxylation of pyruvate or by fatty acid
degradation. It is, thus, possible that SUN-induced cardiotoxicity
can be ascribed to interrupted mitochondrial energy production.

Interestingly, SUN was previously reported to induce loss of
mitochondrial membrane potential and energy rundown in
cardiomyocytes (30). Thus, this study further supports the
notion that apoptosis induction and energy reduction are the
crucial mechanisms of SUN-associated cardiotoxicity.

Fat mass and obesity-associated protein is the first
demethylase discovered to be involved in m6A modification.
Recent high-quality studies have confirmed that FTO
plays fundamental roles in many cardiac physiological and
pathological processes. Increased m6A in RNA was associated
with decreased FTO mRNA and protein expression in human
and mouse failing hearts. Moreover, adeno-associated virus
9 (AAV9)-mediated myocardial FTO overexpression restores
cardiac function in mouse models of myocardial infarction,
whereas cardiomyocyte-restricted knockout of FTO mice
deteriorates cardiac function (27). Further mechanistic studies
revealed that FTO overexpression selectively demethylates
cardiac contractile transcripts, thus blocking their degradation
and improving their stability and expression under ischemia,
which eventually contributed to reduced fibrosis and enhanced
angiogenesis (7). Another study found that FTO alleviated
cardiac dysfunction by regulating glucose uptake and glycolysis
in mice with pressure overload-induced heart failure, the effects
of which were associated with demethylation of the glycolysis-
related gene Pgam2 (31). In addition, a similar study reported
that FTO cardiomyocyte-specific knockout worsened cardiac
dysfunction through transcription-independent mechanisms
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of translation regulation (32). All these reports support a
cardioprotective role of FTO in different cardiac pathologies. In
this study, we detected the major methylases and demethylases in
SUN-treated hiPSC-CMs and found that FTO was significantly
downregulated. To verify the role of FTO in SUN-induced
cardiotoxicity, we treated hiPSC-CMs with FB23-2, a potent
and selective FTO inhibitor and demonstrated that FB23-2
can aggravate the cell injury elicited by SUN, cause damage
to the sarcomeres of cardiomyocytes, and deteriorate cell
atrophy. Together with previous findings, this study might add
a conceptual framework for targeting FTO as a therapeutic for
various cardiovascular diseases. Notably, this study also found
that the expression levels of METTL14 and WTAP increased in
SUN-treated hiPSC-CMs and their functional roles remain to be
further clarified.

This study failed to reveal the downstream regulatory
mechanisms by which SUN-stimulated m6A upregulation
regulates the mRNA expression of related genes, which warrants
further investigations. Nonetheless, we have depicted the
m6A modification landscape of SUN-treated hiPSC-CMs with
transcriptome-wide unbiased epitranscriptomics and revealed a
potential role of m6A and m6A eraser FTO in SUN-induced
cardiotoxicity, which would lay a solid foundation for further
detailed mechanistic studies.

CONCLUSION

This study provides the first overview of the m6A methylation
map in SUN-injured hiPSC-CMs to decipher the RNA
post-transcriptional epigenetic mechanisms of TKI-induced
cardiotoxicity. Through MeRIP-seq, we found that the m6A
methylation level in 2,614 mRNAs changed significantly.
Combined analysis of the m6A peak and mRNA expression
showed that 244 mRNAs were significantly changed after SUN
treatment. These genes with varying levels of m6A modification
may play an important role in the process of TKI-induced
cardiotoxicity. In addition, we found that inhibiting FTO can
aggravate the myocardial toxicity caused by SUN, which suggests
a novel therapeutic target for TKI-induced cardiotoxicity.
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Hypertension is the most significant risk factor for heart failure in doxorubicin

(DOX)-treated childhood cancer survivors. We previously developed a two-hit mouse

model of juvenile DOX-induced latent cardiotoxicity that is exacerbated by adult-onset

angiotensin II (ANGII)-induced hypertension. It is still not known how juvenile

DOX-induced latent cardiotoxicity would predispose the heart to pathologic stimuli that

do not cause hypertension. Our main objective is to determine the cardiac effects of

ANGII (a hypertensive pathologic stimulus) and isoproterenol (ISO, a non-hypertensive

pathologic stimulus) in adult mice pre-exposed to DOX as juveniles. Five-week-old male

C57BL/6N mice were administered DOX (4 mg/kg/week) or saline for 3 weeks and then

allowed to recover for 5 weeks. Thereafter, mice were administered either ANGII (1.4

mg/kg/day) or ISO (10 mg/kg/day) for 14 days. Juvenile exposure to DOX abrogated

the hypertrophic response to both ANGII and ISO, while it failed to correct ANGII- and

ISO-induced upregulation in the hypertrophic markers, ANP and BNP. ANGII, but not

ISO, worsened cardiac function and exacerbated cardiac fibrosis in DOX-exposed mice

as measured by echocardiography and histopathology, respectively. The adverse cardiac

remodeling in the DOX/ANGII group was associated with a marked upregulation in

several inflammatory and fibrotic markers and altered expression of Ace, a critical

enzyme in the RAAS. In conclusion, juvenile exposure to DOX causes latent cardiotoxicity

that predisposes the heart to a hypertensive pathologic stimulus (ANGII) more than a

non-hypertensive stimulus (ISO), mirroring the clinical scenario of worse cardiovascular

outcome in hypertensive childhood cancer survivors.

Keywords: anthracycline-induced cardiotoxicity, doxorubicin, angiotensin II, hypertension, isoproterenol
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INTRODUCTION

The survival rate of childhood cancer has increased from
60% to more than 85%, thanks to advanced diagnosis,
treatment, and care models (1). Indeed, there are more
than 500,000 childhood cancer survivors in the United States
and this number is expected to increase. Although the
increased survivorship is a cause for celebration, up to
73% of childhood cancer survivors suffer from long-term
health complications (2). Cardiovascular disease is one of
the most common long-term complications in survivors and
the second leading cause of death in childhood cancer
survivors after secondary malignancy (2). The high burden
of cardiovascular diseases in childhood cancer survivors is
mainly attributed to cardiotoxic cancer treatments such as
anthracyclines and radiation therapy (3). Doxorubicin (DOX)
is an anthracycline chemotherapeutic agent widely used in
the treatment of lymphoma, leukemia, and other pediatric
cancers, despite its known cardiotoxic effects (4). Since the
severe cardiotoxic effects of DOX are dependent on the
cumulative dose, the current treatment protocols usually do
not exceed this threshold. Therefore, the rates of severe
cardiovascular complications have declined in recent years.
However, it has also been shown that low cumulative doses
of DOX cause subclinical cardiotoxicity in childhood cancer
survivors (5–7).

DOX-induced subclinical cardiotoxicity predisposes the
survivors to adult-onset cardiovascular risk factors in a two-
hit manner (8, 9). Given the expected long survivorship life
in childhood cancer survivors, many of them would develop
multiple cardiovascular risk factors later in their adult life,
which can be considered as “second hits.” Since hypertension
is the most significant cardiovascular risk factor for all
adverse cardiac events, including heart failure and cardiac
death, in anthracycline-treated childhood cancer survivors
(10), we have recently developed a two-hit mouse model of
juvenile DOX-induced latent cardiotoxicity that is exacerbated
by adult-onset angiotensin II (ANGII)-induced hypertension
(11). Nevertheless, it is still not known how juvenile DOX-
induced latent cardiotoxicity would predispose the heart to
other cardiovascular pathologic stimuli that do not cause
hypertension. In the current study, we characterize the
detrimental synergy in the DOX/ANGII model in parallel to
a new model wherein juvenile DOX exposure is followed
by adult-onset catecholamine stress by daily injections of
isoproterenol (ISO). ISO is a non-specific beta-adrenoceptor
agonist that is commonly used to induce a dose-dependent
cardiac pathology without elevating blood pressure (12–15).
Characterizing both DOX/ANGII and DOX/ISO models is
critical to understanding why hypertension is themost significant
risk factor for cardiovascular morbidity and mortality in
anthracycline-treated childhood cancer survivors and thereby
devising effective therapeutic strategies against this significant
clinical problem.

Abbreviations: ANGII, Angiotensin II; DOX, Doxorubicin; ISO, Isoproterenol.

MATERIALS AND METHODS

Animals
Animal procedures were approved by the Institutional Animal
Care and Use Committee (IACUC) at the University of
Minnesota (Protocol ID: 1807-36187A). Animal housing and
all animal procedures were performed at the University of
Minnesota according to the approved protocol. Male 4-week
old C57BL/6N mice were purchased from Charles River
Laboratories. All mice were housed in groups of 3-4 mice
per cage, maintained under standard specific pathogen free
(SPF) conditions, and given food and water ad libitum in a
14 h light/10 h dark cycle and at 21 ± 2◦C. After a 1-week
acclimation period, 5-week old mice were administered either
DOX (4 mg/kg/week for 3 weeks, DOX group) or equivalent
volume of sterile normal saline (control group). The mice were
monitored twice per week and were weighed once weekly. Five-
weeks following the last DOX injection at the age of 12 weeks
(the age of young adult mice), control and DOX-treated mice
were assigned to either the ANGII or ISO experiments. In the
ANGII experiment (Figure 1A), control and DOX-exposed mice
were infused with ANGII (1.4 mg/kg/day) or sterile normal
saline for 14 days through subcutaneously implanted ALZET
osmotic mini-pumps (Durect Corp, Cupertino, CA) to induce
hypertension as previously reported (11, 16, 17). Animals were
anesthetized with isoflurane (2-3%) and surgical site was clipped
then cleaned with betadine and alcohol. Anesthetic level was
assessed by toe pinch and respiratory rate. A skin incision
was made with surgical scissors in the mid-scapular area, a
filled pump was inserted into the pocket, and the wound was
closed with skin staples. For analgesia, animals were administered
carprofen (5 mg/kg) just prior to the surgery and daily for 3
days following surgery and monitored for any signs of infection
or suture opening. In the ISO experiment (Figure 1E), 10
mg/kg ISO or an equivalent volume of sterile normal saline
was administered by subcutaneous daily injection for 14 days
as previously reported (12). At the end of the experiment, mice
were humanely euthanized by decapitation under isoflurane
anesthesia and hearts were harvested.

Echocardiography
All heart function and wall thickness data was measured using
echocardiography. Baseline cardiac function was assessed 5
weeks after the last DOX treatment on the day prior to the start of
the 14 day ANGII or ISO challenge. To determine the response to
prolonged ANGII administration, cardiac function was assessed
by echocardiography on the 15th day after implanting the mini-
osmotic pumps containing either saline or ANGII in control
and DOX-treated mice (n = 6-9 per group). To determine the
response to ISO administration, cardiac function was assessed
by echocardiography 24 h following the last dose of ISO or
sterile saline injections in control and DOX-treated mice (n
= 6 per group). Echocardiography was performed using the
Vevo 2100 system (VisualSonics, Inc., Toronto, Ontario, Canada)
equipped with an MS400 transducer. Anesthesia was induced
with 3% isoflurane in oxygen and maintained at 1-2% during the
procedure. Mice were secured in a supine position on a heated
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FIGURE 1 | Experimental design of the two-hit models of latent DOX cardiotoxicity using ANGII (A) or ISO (E) as second hits. Male 5-week old mice were

administered DOX (4 mg/kg/week) or saline for 3 weeks and allowed to recover for 5 weeks prior to exposure to ANGII infusion (1.4 mg/kg/day for 14 days) or ISO

injections (10 mg/kg/day for 14 days). Hypertrophic response to ANGII and ISO is abrogated by juvenile exposure to DOX. (B,F) Heart weight to tibial length ratio

(HW/TL) (n = 6-9 per group). (C,G) Representative heart sections. (D,H) Quantification of cardiomyocyte surface area; bar scale = 50µM. Values are represented as

means ± SEM. Statistical significance of pairwise comparisons was determined by two-way ANOVA with Tukey’s post-hoc analysis (*p < 0.05, **p < 0.01). ANGII,

Angiotensin II; DOX, doxorubicin; ISO, isoproterenol.
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physiologic monitoring stage. Parasternal short axis images of
the left ventricle were obtained in M-Mode at the level of
the papillary muscles. Endocardial and epicardial borders were
manually traced over three cardiac cycles andmeasures of cardiac
function and morphometry were calculated using VisualSonics
cardiac measurement package of the Vevo 2100.

Histopathology
Left ventricular (LV) heart sections were collected, fixed in
10% neutral buffered formalin and embedded in paraffin. Four-
micron sections were stained with hematoxylin and eosin (H&E)
or Masson’s trichrome stain. Histopathologic evaluation was
performed by a board-certified veterinary pathologist who was
blinded to the experimental group. Inflammation and fibrosis
were assessed as follows: 0, absent; 1, minimal inflammation
or fibrosis; 2, mild inflammation or fibrosis; 3, moderate
inflammation or fibrosis; and 4, marked inflammation or fibrosis.
Sections from each heart were also immunohistochemically
stained for expression of MAC-2 (galectin-3). In brief, four-
micron sections were dewaxed and rehydrated prior to antigen
retrieval. Thereafter, sections were incubated with anti-galectin-
3 antibody (clone M3/38, Cedarlane Labs, Burlington, NC)
according to manufacturer’s instruction. The number of MAC-
2 positive cells was manually quantified on the five most
cellular 200X images. To measure cardiomyocyte cross-sectional
surface area from histological sections, we stained dewaxed and
rehydrated sections with Fluorescein isothiocyanate-conjugated
wheat germ agglutinin (5µg/ml, Vector Laboratories FL-
1021) and 4′,6-diamidino-2-phenylindole (DAPI, Invitrogen
D3571). Stained slides were mounted with Vectashield (Vector
Laboratories H-1000). Images were acquired using a Nikon TiE
or a Zeiss Axio Images M1 microscope, both equipped with
a digital black/white camera. Wheat germ agglutinin binds to
glycosylated proteins, which are enriched in the membranes of
cells. Based on the difference in size between cardiomyocytes and
non-cardiomyocytes, we traced the area of cardiomyocytes using
Image J. We selected areas where cardiomyocytes had a round
shape, indicative of a cross-sectioned cardiomyocytes. We traced
at least 100 cardiomyocytes per heart in different areas of a cross-
sectioned heart. Images were quantified by a researcher blinded
to the treatment.

RNA Extraction and Real-Time PCR
Total RNA was extracted from 20mg frozen heart tissue
using 300 µl Trizol reagent (Life Technologies, Carlsbad,
CA) according to manufacturer’s instructions. RNA
concentrations were measured at 260 nm using a NanoDrop 8000
spectrophotometer (Thermo Fisher Scientific, Wilmington, DE)
and first-strand cDNA was synthesized from 1.5 µg total RNA
using the high-capacity cDNA reverse transcription kit (Applied
Biosystems, Foster City, CA) according to manufacturer’s
instructions. Specific mRNA expression was quantified by
real-time PCR using SYBR Green (Applied Biosystems) and
performed on an ABI 7900HT instrument (Applied Biosystems).
Thermocycler conditions were as follows: 95◦C for 10min,
followed by 40 PCR cycles of denaturation at 95◦C for 15 s,
and annealing/extension at 60◦C for 1min. Gene expression

was determined using previously published primers for atrial
natriuretic peptide (ANP), b-type natriuretic peptide (BNP),
Cyclooxygenase-2 (Cox2), Collagen 1a1 (Col1a1), Collagen
3a1 (Col3a1), Galectin-3 (Lgals3), Angiotensin converting
enzyme (Ace), ANGII type 1 receptor-a (Agtr1a), and ANGII
type 1 receptor-b (Agtr1b). Primer sequences are listed in
Supplementary Table 1. The mRNA expression levels were
normalized to beta-actin and are expressed relative to the control
group. Relative gene expression was determined by the 11CT
method. Primer specificity and purity of the final PCR product
were confirmed by melting curve analysis.

Statistical Analysis
Data were analyzed using GraphPad Prism software (version
9.0, La Jolla, CA) and are presented as individual data points
and their means ± standard errors of the mean (SEM).
Comparisons among different treatment groups were performed
by ordinary two-way analysis of variance (ANOVA), followed
by Tukey’s multiple comparison post-hoc analysis. Comparisons
between two groups were performed by unpaired student’s two-
tailed t-test. Statistical analyses for histopathologic grading were
performed using the non-parametric Kruskal-Wallis test. A p-
value of <0.05 was taken to indicate statistical significance.

RESULTS

Juvenile Exposure to DOX Abrogated the
Hypertrophic Response to Both ANGII
and ISO
Juvenile exposure to DOX (4 mg/kg/week for 3 weeks) did
not cause significant morbidity or mortality in mice, similar
to our earlier study (11). In addition, treatments with either
ANGII or ISO were not associated with significant morbidity or
mortality, when administered to control or DOX-treated mice
(Supplementary Figure 1).

Corroborating previous studies (16, 18), 2 weeks of ANGII
infusion or ISO injections caused cardiac hypertrophy in control
mice as demonstrated by an increase in the heart weight to tibia
length (HW/TL) (Figures 1B,F). Remarkably, juvenile exposure
to DOX prevented both ANGII- and ISO-induced cardiac
hypertrophy as evident by a reduction in HW/TL (Figures 1B,F).
To follow on this result, we measured cardiomyocyte surface
area to determine if the reduction of heart weight is due to
cardiomyocyte atrophy (Figures 1C,D,G,H). Mice exposed to
DOX/ANGII had the smallest surface area among the groups
and this group was significantly different from mice treated
with ANGII only (Figures 1C,D). No statistically significant
differences in cardiomyocyte surface area were observed in
mice treated with ISO (Figures 1G,H). Images shown are
representative images for each group, where wheat germ
agglutinin staining is pseudo-colored green (Figures 1C,G).

Measurements of ANP and BNP mRNA expressions were
assessed to determine the cardiotoxicity that was induced on
the heart by the pharmacological interventions. There were
no differences observed in ANP and BNP mRNA expression
between control and ANGII treated mice. The combination
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FIGURE 2 | Juvenile exposure to DOX fails to correct ANGII- and ISO-induced upregulation of hypertrophic markers. Male 5-week old mice were administered DOX (4

mg/kg/week) or saline for 3 weeks and allowed to recover for 5 weeks prior to exposure to (A,B) ANGII (1.4 mg/kg/day for 14 days) or (C,D) ISO (10 mg/kg/day for 14

days). The mRNA expression of ANP (A,C) and BNP (B,D) was determined by real-time PCR (n = 5-6 per group); results were normalized to beta-actin and are

expressed relative to the control group. Values are represented as means ± SEM. Statistical significance of pairwise comparisons was determined by two-way

ANOVA with Tukey’s post-hoc analysis (*p < 0.05, ***p < 0.001). ANGII, Angiotensin II; ANP, atrial natriuretic peptide; BNP, B-type natriuretic peptide; DOX,

doxorubicin; ISO, Isoproterenol.

of DOX/ANGII significantly increased the expression of these
markers compared to DOX alone (Figures 2A,B). On the other
hand, it appears that DOX did not exacerbate the ISO mediated
increases in ANP and BNP since no statistically significant
differences were observed between DOX/ISO and ISO alone
(Figures 2C,D).

ANGII but Not ISO Worsens Cardiac
Function in DOX-Exposed Mice
There were no significant changes in systolic cardiac function
5 weeks after the last DOX treatment, as evidenced by
no significant difference in ejection fraction or fractional
shortening (Table 1). Cardiac output and stroke volume were
significantly lower in DOX-exposed mice than that in saline-
treated mice, which was associated with a reduction in LV
mass and wall thickness (Table 1). Neither DOX nor ANGII
alone was sufficient to significantly reduce the cardiac function
in mice (Figures 3A–D); however, juvenile exposure to DOX
followed by adult-onset ANGII-induced hypertension caused a
significant deterioration in cardiac function parameters as shown
by a decrease in cardiac output (Figure 3B), stroke volume
(Figure 3C), and ejection fraction (Figure 3D). Intriguingly,
when DOX-exposed mice were subjected to ISO as a second
cardiovascular hit, the cardiac function of DOX/ISO-treatedmice

did not significantly differ from the other groups (Figures 3E–H).
Tables 2, 3 show detailed echocardiography measurements after
14 days of ANGII, ISO, or saline treatment in control and
DOX-treated mice.

ANGII but Not ISO Worsens Cardiac
Fibrosis in DOX-Exposed Mice
Histopathology analysis using H&E and Masson’s trichrome
stains revealed marked inflammatory cell infiltration and cardiac
fibrosis in the DOX/ANGII group as compared to the control
(Figures 4A–C). Although a few mice in the DOX and ANGII
groups showed signs of cardiac fibrosis at varying degrees,
neither DOX nor ANGII alone was sufficient to cause a
statistically significant effect on cardiac fibrosis (Figure 4C).
The combination of DOX and ANGII significantly increased
fibrosis suggesting that DOX potentiates the fibrosis inducing
action of ANGII. On the other hand, ISO treatment caused
modest, but statistically significant, cardiac fibrosis which was
not exacerbated by DOX treatment (Figures 4D–F). To ascertain
the molecular determinants of the observed fibrotic changes,
we measured gene expression of several inflammatory and
fibrotic markers. ANGII caused a significant induction of
the inflammatory marker Cox-2 (Figure 5A) and the fibrotic
markers, Col1a1 and Col3a1 (Figures 5B,C). Juvenile exposure
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TABLE 1 | Cardiac function and morphometry measured by trans-thoracic

echocardiography in control and DOX-treated mice 5 weeks following the last

DOX administration.

Parameter Control DOX

mean (SEM) mean (SEM)

CO (ml/min) 18.19 (0.6730) 15.59** (0.4575)

SV (µl) 42.73 (1.608) 37.51** (0.6720)

EF (%) 54.72 (1.792) 55.18 (1.879)

FS (%) 28.33 (1.121) 28.53 (1.162)

LV Mass (mg) 128.0 (4.310) 101.4**** (2.111)

LVESV (µl) 37.95 (2.564) 32.90 (2.742)

LVEDV (µl) 84.02 (3.644) 75.60 (2.650)

LVAW;s (mm) 1.373 (0.02731) 1.280 (0.04129)

LVAW;d (mm) 1.017 (0.02067) 0.9286* (0.02676)

LVPW;s (mm) 1.124 (0.03176) 0.9752*** (0.02614)

LVPW;d (mm) 0.7967 (0.02410) 0.6684**** (0.01267)

HR (bpm) 427 (5) 416 (11)

Values are presented as mean± standard error of the mean (SEM) (N= 22-23). Statistical

significance was determined using an unpaired t-test. *p< 0.05, **p< 0.01, ***p< 0.001,

****p < 0.0001 vs. control. DOX, doxorubicin; CO, cardiac output; SV, stroke volume; EF,

ejection fraction; FS, fractional shortening; LV, left ventricle; LVESV, LV end systolic volume;

LVEDV, LV end diastolic volume; LVAW;s, LV anterior wall systole; LVAW;d, LV anterior

wall diastole; LVPW;s, LV posterior wall systole; LVPW;d, LV posterior wall diastole; HR,

heart rate.

to DOX mildly but not significantly exacerbated ANGII-
induced upregulation of inflammatory and fibrotic markers
(Figures 5A–C). Marked increases in inflammatory and fibrotic
markers were observed in DOX/ANGII treated mice compared
to mice only treated with DOX. On the other hand, DOX/ISO
had no exacerbating effect on Cox-2 or Col3a1 expression
(Figures 5D,F), while there was a significant reduction in Col1a1
expression in the DOX/ISO treated mice compared to ISO alone
(Figure 5E).

Since macrophage infiltration plays an important role in
cardiac fibrosis, we measured the expression the fibrotic
marker galectin-3 by measuring MAC-2 positive cells by
immunohistochemistry as well as the gene expression of
galectin-3 (Lgals-3). As expected, ANGII caused a significant
increase in the number of MAC-2 positive cells (Figures 6A,B)
but not a significant induction of Lgals-3 gene expression
(Figure 6C). In agreement with the exacerbation of cardiac
fibrosis in the DOX/ANGII group, DOX/ANGII-treated mice
had the highest number of MAC-2 positive cells (Figures 6A,B).
Juvenile exposure to DOX significantly aggravated ANGII-
induced upregulation of Lgals-3 gene expression (Figure 6C).
ISO caused a modest but significant increase in the number of
MAC-2 positive cells (Figures 6D,E) and caused a significant
upregulation of Lgal-3 gene expression (Figure 6F). However,
juvenile exposure to DOX did not change the effects of ISO on
these parameters (Figures 6D–F).

Perturbed RAAS Gene Expression in the
DOX/ANGII Model
Since DOX has been shown to alter the renin-angiotensin-
aldosterone-system (RAAS) in different ways (19), we sought to

determine whether DOX-induced alteration in the RAAS may
have played a role in the detrimental synergy between DOX and
ANGII. To this end, we determined the effects of DOX, ANGII,
and DOX/ANGII on expression of the RAAS genes in the heart.
Interestingly, the gene expression of angiotensin converting
enzyme (Ace) was significantly upregulated in the DOX/ANGII
group compared to DOX alone (Figure 7A). Next, measurements
of the Atgr1a and Atgr1b, the gene encoding for the ANGII type
1 receptor (AT1) were measured and no statistically significant
differences were observed among the groups (Figures 7B,C).

DISCUSSION

Childhood cancer survivors have a considerably increased risk
for premature cardiovascular diseases (20), with an estimated 15
times higher risk of heart failure than their siblings who did not
have cancer (2). Nearly 50% of pediatric cancer patients receive
anthracyclines such as doxorubicin (DOX), which are known
to cause cardiotoxicity (21). Although the risk of anthracycline-
induced cardiotoxicity increases with a higher anthracycline
cumulative dose (22), latent (subclinical) cardiotoxicity occurs
in children who receive low doses of anthracyclines (5–7).
Anthracycline-induced subclinical cardiotoxicity is characterized
by reduction in the left ventricular mass, mild cardiac fibrosis,
and modest decline in ejection fraction (5–7). This latent
cardiotoxicity can be unmasked and overt cardiomyopathy
precipitated by other cardiovascular risk factors in adulthood,
in a two-hit manner (10). We designed the current experimental
protocol to mimic the scenario in cancer survivors that undergo
DOX treatment at young age. With this protocol, we are able
to show that latent cardiotoxicity caused by juvenile exposure
to DOX is exacerbated when adult mice undergo a hypertensive
“second-hit” on the heart. We used ANGII and ISO as two
pharmacological agents that both increase the stress on the heart
through distinct mechanisms. In this report, we show that the
combination of DOX and ANGII causes the most changes to
heart size, cardiac function and fibrosis. While the combination
of DOX and ISO shows modest changes in heart size, cardiac
function and fibrosis are not affected (Figure 8).

Most preclinical models of juvenile DOX-induced
cardiotoxicity used high cumulative doses of DOX that
were enough to cause immediate or delayed cardiac dysfunction
(23–26). Although clinically relevant, animal models for juvenile
DOX cardiotoxicity have rarely adopted the two-hit models.
Huang et al. demonstrated that low doses of DOX administered
to very young mice, at postnatal day 5, did not cause immediate
cardiac dysfunction. DOX-exposed mice developed normally
and had no obvious cardiac dysfunction as adults. However,
juvenile exposure to DOX exacerbated cardiac pathology in
response to an adult-onset pathologic stimulus (myocardial
infarction) and even a physiologic stimulus (swimming exercise)
(27). Since hypertension is the most significant cardiovascular
risk factor for all adverse cardiac events, including heart failure
and cardiac death, in anthracycline-treated childhood cancer
survivors (10), we have recently developed another two-hit
mouse model of juvenile DOX-induced latent cardiotoxicity
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FIGURE 3 | ANGII, but not ISO, worsens cardiac function in DOX-exposed mice. Male 5-week old mice were administered DOX (4 mg/kg/week) or saline for 3 weeks

and allowed to recover for 5 weeks prior to exposure to (A–D) ANGII (1.4 mg/kg/day for 14 days) or (E–H) ISO (10 mg/kg/day for 14 days). Cardiac function was

determined by trans-thoracic echocardiography (n = 5-9 per group). (A,E) Representative M-Mode images from parasternal short axis view of the heart. (B,F) Cardiac

output. (C,G) Stroke volume. (D,H) Ejection fraction. Values are represented as means ± SEM. Statistical significance of pairwise comparisons was determined by

two-way ANOVA with Tukey’s post-hoc analysis (*p < 0.05, **p < 0.01). ANGII, Angiotensin II; DOX, doxorubicin; ISO, isoproterenol.
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TABLE 2 | Cardiac function and morphometry measured by trans-thoracic echocardiography in control, ANGII, DOX, DOX/ANGII-treated mice.

Parameter Control

mean (SEM)

ANGII

mean (SEM)

DOX

mean (SEM)

DOX/ANGII

mean (SEM)

ANGII effect DOX effect Interaction effect

Effect size (%) P-value Effect size (%) P-value Effect size (%) P-value

CO (ml/min) 18.998

(1.518)

17.328

(1.434)

17.667

(0.885)

10.695b,c

(1.393)

20.67 0.0059 17.55 0.0104 7.776 0.0770

SV (µl) 45.953

(2.659)

42.330

(3.744)

39.634

(2.012)

26.866b,c

(2.117)

16.02 0.0107 28.29 0.0012 4.986 0.1363

EF (%) 59.651

(1.258)

58.340

(3.707)

60.786

(1.299)

46.235c

(6.151)

15.10 0.0294 7.222 0.1226 10.52 0.0652

FS (%) 31.432

(0.844)

32.044

(0.843)

30.825

(2.498)

23.195

(3.701)

7.473 0.1198 13.57 0.0397 10.31 0.0701

LV mass (mg) 129.918

(6.306)

147.820

(6.334)

110.631

(7.536)

119.872

(9.024)

8.849 0.0733 26.80 0.0033 0.9011 0.5562

LVESV (µl) 31.627

(2.931)

31.681

(5.289)

26.048

(2.645)

34.595

(6.427)

3.360 0.3536 0.3225 0.7720 3.276 0.3595

LVEDV (µl) 77.578

(5.390)

74.009

(7.285)

65.682

(4.635)

61.460

(6.247)

1.323 0.5393 13.03 0.0621 0.009296 0.9588

LVAW;s (mm) 1.475

(0.055)

1.614

(0.083)

1.412

(0.067)

1.340b

(0.029)

0.7565 0.6144 18.94 0.0172 7.446 0.1220

LVAW;d (mm) 1.087

(0.030)

1.166

(0.038)

1.094

(0.053)

1.128

(0.020)

7.913 0.1558 0.5889 0.6929 1.237 0.5677

LVPW;s (mm) 1.125

(0.041)

1.310a

(0.060)

1.035

(0.014)

1.097b

(0.055)

14.74 0.0183* 22.06 0.0049 3.690 0.2184

LVPW;d (mm) 0.792

(0.025)

0.936a

(0.046)

0.701

(0.019)

0.898c

(0.052)

42.00 0.0002 5.985 0.1046 1.026 0.4920

HR (bpm) 411

(16)

413

(13)

446

(8)

390

(26)

8.487 0.1244 0.5206 0.6971 9.698 0.1016

Values are presented as mean ± standard error of the mean (SEM) (N = 6-9). Statistical significance was determined using Two-way ANOVA with Tukey post-hoc test. asignificant

difference (p < 0.05) vs. control, bsignificant difference (p < 0.05) vs. ANGII, csignificant difference (p < 0.05) vs. DOX. DOX, doxorubicin; ANGII, angiotensin II; CO, cardiac output; SV,

stroke volume; EF, ejection fraction; FS, fractional shortening; LV, left ventricle; LVESV, LV end systolic volume; LVEDV, LV end diastolic volume; LVAW;s, LV anterior wall systole; LVAW;d,

LV anterior wall diastole; LVPW;s, LV posterior wall systole; LVPW;d, LV posterior wall diastole; HR, heart rate.

that is exacerbated by adult-onset ANGII-induced hypertension
(11). Similar to Huang et al., we demonstrated that low doses
of DOX (4 mg/kg/week for 3 weeks) did not cause immediate
cardiac dysfunction in juvenile mice, but predisposed to
late-occurring detrimental cardiovascular changes when the
mice were challenged by ANGII-induced hypertension (11).
However, unlike Huang et al., our DOX administration regimen
starts at 5 weeks of age, equivalent to 10 years in human life.
Therefore, these dosage regimens model latent cardiotoxicity
in anthracycline-treated pediatric cancer patients who do not
immediately develop overt cardiac dysfunction but are left with
“weaker” hearts that predispose them to other cardiovascular
insults, corroborating the findings of several clinical studies
(5, 28–31).

Nevertheless, it is still not known how this low-dose DOX
regimen would predispose the heart to other cardiovascular
pathologic stimuli that do not cause hypertension. To answer
this question, we subjected control and DOX-treated mice to a
regimen of ISO injections (10 mg/kg/day for 14 days). ISO is a
non-specific beta-adrenoceptor agonist that is commonly used
to induce a dose-dependent cardiac pathology without elevating
blood pressure (12–15). We have previously demonstrated
that this dosage regimen causes cardiac hypertrophy, mild

cardiac dysfunction, and modest cardiac fibrosis in C57BL/6N
male mice (12). In the current study, we characterize the
DOX/ANGII model in parallel to the DOX/ISO model to better
understand why hypertension is the most significant risk factor
for cardiovascular morbidity and mortality in anthracycline-
treated childhood cancer survivors.

Cardiac atrophy and thinning of the LV ventricular walls
are common late effects of anthracycline therapy in childhood
cancer survivors (32–35). Intriguingly, a study has shown that
reduction in the LV mass is associated with worsening of heart
failure symptomatology independent of LV ejection fraction in
adult cancer survivors (36), demonstrating the predictive value
of LV mass. However, the association between LV mass and heart
failure symptomatology has not been determined in childhood
cancer survivors. We previously demonstrated that juvenile
exposure to DOX prevented the adaptive cardiac hypertrophy in
response to ANGII-induced hypertension (11). However, it is not
known whether juvenile exposure to DOX would also prevent
adaptive cardiac hypertrophy in response to other hypertrophic
stimuli. In the current study, juvenile exposure toDOXprevented
the adaptive cardiac hypertrophy in response to both ANGII
and ISO. Indeed, ANGII and ISO cause cardiac hypertrophy via
different pathways. ANGII induces cardiac hypertrophy directly
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TABLE 3 | Cardiac function and morphometry measured by trans-thoracic echocardiography in control, ISO, DOX, and DOX/ISO-treated mice.

Parameter Control

mean (SEM)

ISO

mean (SEM)

DOX

mean (SEM)

DOX/ISO

mean (SEM)

ISO effect DOX effect Interaction effect

Effect size (%) P-value Effect size (%) P-value Effect size (%) P-value

CO (ml/min) 20.277

(1.611)

18.780

(1.382)

18.099

(0.816)

16.006

(1.281)

7.235 0.1994 13.78 0.0822 0.1995 0.8276

SV (µl) 43.548

(2.741)

44.475

(2.125)

40.238

(1.203)

36.981

(1.920)

1.095 0.5936 23.52 0.0210* 3.530 0.3420

EF (%) 54.733

(3.368)

46.709

(1.998)

54.491

(1.682)

50.739

(3.336)

18.03 0.0489 1.865 0.5067 2.372 0.4547

FS (%) 28.337

(2.205)

23.328

(1.151)

27.932

(1.088)

25.679

(2.004)

17.80 0.0510 1.277 0.5834 2.563 0.4390

LV Mass (mg) 123.532

(4.444)

142.947a

(4.850)

111.599

(5.807)

115.680b

(4.893)

13.08 0.0291 36.40 0.0009 5.570 0.1400

LVESV (µl) 38.702

(4.164)

52.299

(4.359)

34.158

(2.724)

38.550

(4.384)

16.04 0.0404 16.59 0.0375 4.200 0.2744

LVEDV (µl) 80.931

(4.542)

100.300a

(5.185)

81.370

(2.362)

79.407b

(4.553)

11.08 0.0659 15.30 0.0334 16.64 0.0273

LVAW;s (mm) 1.330

(0.087)

1.307

(0.062)

1.313

(0.074)

1.242

(0.062)

2.127 0.5230 1.685 0.5693 0.5551 0.7432

LVAW;d (mm) 1.025

(0.046)

1.076

(0.025)

0.983

(0.047)

1.010

(0.054)

3.619 0.3911 6.931 0.2395 0.3312 0.7935

LVPW;s (mm) 1.114

(0.054)

0.989

(0.026)

0.959

(0.070)

1.047

(0.058)

0.4790 0.7384 3.546 0.3681 16.95 0.0582

LVPW;d (mm) 0.794

(0.042)

0.780

(0.015)

0.690

(0.033)

0.734

(0.028)

0.9204 0.6328 22.68 0.0262 3.506 0.3552

HR (bpm) 463

(10)

421

(14)

449

(11)

430

(18)

19.78 0.0390 0.1030 0.8746 2.785 0.4158

Values are presented as mean ± standard error of the mean (SEM) (N = 5-6). Statistical significance was determined using Two-way ANOVA with Tukey post-hoc test. aSignificant

difference (p < 0.05) vs. control, bsignificant difference (p < 0.05) vs. ISO. DOX, doxorubicin; ISO, isoproterenol; CO, cardiac output; SV, stroke volume; EF, ejection fraction; FS,

fractional shortening; LV, left ventricle; LVESV, LV end systolic volume; LVEDV, LV end diastolic volume; LVAW;s, LV anterior wall systole; LVAW;d, LV anterior wall diastole; LVPW;s, LV

posterior wall systole; LVPW;d, LV posterior wall diastole; HR, heart rate.

through activating the AT1 receptors on cardiomyocytes and
indirectly through elevating the afterload (37). In contrast, ISO
activates the beta-adrenoceptors on cardiomyocytes to elicit a
direct hypertrophic effect (37). ISO-induced tachycardia may
also contribute to its hypertrophic effect indirectly. The ability
of DOX to prevent cardiac hypertrophy in response to both
pathologic stimuli suggest that DOX interferes with common
downstream pathways fundamental to the development of
cardiac hypertrophy.

Although high-dose DOX causes cardiac atrophy due to
apoptotic and necrotic cell death and loss of cardiomyocytes
(38), experimental studies using low/divided-dose DOX have
suggested that DOX-induced cardiomyocyte atrophy is the
main culprit leading to cardiac atrophy and reduction of
LV mass with minimal apoptotic cell death (39, 40). We
demonstrate that mice with juvenile exposure to DOX had the
smallest cardiomyocyte surface area after ANGII exposure. These
experimental observations have recently been supported by a
clinical study reporting that the reduction in LV mass after
anthracycline therapy is due to cardiomyocyte atrophy in breast
cancer patients (41). Another recent preclinical study has shown
that acute DOX administration causes dose-dependent cardiac
atrophy that parallels the decrease in contractile function (39). In

our current study, we demonstrate that chronic administration
of low-dose DOX caused cardiac atrophy without reducing the
contractile function of the heart. The contractile function of
the heart was only affected when the juvenile exposure of DOX
was followed by ANGII-induced hypertension. ANGII cause
pathologic cardiac hypertrophy characterized by the induction
of fetal gene expression such as ANP and BNP, adverse cardiac
remodeling, and reduction in cardiac function parameters.
Therefore, in the current work, we determined the effect of
juvenile DOX exposure on these parameters. Although we
previously showed that juvenile exposure to DOX induced ANP
gene expression 1 week after the last DOX injection (11), there
is no significant change in ANP or BNP in DOX-exposed mice
7 weeks after the last DOX injection. Only the combination of
DOX/ANGII was able to significantly elevate the markers of
pathological hypertrophy. Although juvenile exposure to DOX
prevented the hypertrophic growth of the heart in response
to ANGII, it did not abrogate the molecular determinants of
pathological cardiac hypertrophy induced by these stimuli.

We also determined the effect of juvenile exposure to
DOX on cardiac remodeling in response to both ANGII and
ISO. In our previous study describing the DOX/ANGII model
(11), the effect on cardiac fibrosis had not been determined.
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FIGURE 4 | ANGII, but not ISO, worsens cardiac fibrosis in DOX-exposed mice. Male 5-week old mice were administered DOX (4 mg/kg/week) or saline for 3 weeks

and allowed to recover for 5 weeks prior to exposure to (A–C) ANGII (1.4 mg/kg/day for 14 days) or (D–F) ISO (10 mg/kg/day for 14 days). Representative images

from H&E (A,D) and Masson’s trichrome stained heart sections (B,E). (C,F) Semi-quantification of fibrosis score derived from Masson’s trichrome stain (n = 5-6 per

group). Statistical significance was determined by non-parametric Kruskal-Wallis test (*p < 0.05, **p < 0.01). ANGII, Angiotensin II; DOX, doxorubicin; H&E,

hematoxylin and eosin; ISO, isoproterenol.
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FIGURE 5 | ANGII, but not ISO, exacerbates the upregulation of inflammatory and fibrotic markers in DOX-exposed mice. Male 5-week old mice were administered

DOX (4 mg/kg/week) or saline for 3 weeks and allowed to recover for 5 weeks prior to exposure to (A–C) ANGII (1.4 mg/kg/day for 14 days) or (D–F) ISO (10

mg/kg/day for 14 days). The mRNA expression of (A,D) the inflammatory marker Cox-2, and the fibrotic markers (B,E) Col1a1 and (C,F) Col3a1 was determined by

real-time PCR (n = 5-6 per group). Results were normalized to beta-actin and are expressed relative to the control group. Statistical significance of pairwise

comparisons was determined by two-way ANOVA with Tukey’s post-hoc analysis (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). ANGII, Angiotensin II; DOX,

doxorubicin; ISO, isoproterenol.
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FIGURE 6 | ANGII, but not ISO, exacerbates the upregulation of MAC-2 in DOX-exposed mice. Male 5-week old mice were administered DOX (4 mg/kg/week) or

saline for 3 weeks and allowed to recover for 5 weeks prior to exposure to (A–C) ANGII (1.4 mg/kg/day for 14 days) or (D–F) ISO (10 mg/kg/day for 14 days).

Representative images from (A,D) MAC-2 stained heart sections. (B,E) Semi-quantification of MAC-2 positive cells (n = 5-6 per group). The mRNA expression of

(C,F) Lgals-3 was determined by real-time PCR (n = 5-6 per group). Results were normalized to beta-actin and are expressed relative to the control group. Statistical

significance of pairwise comparisons was determined by two-way ANOVA with Tukey’s post-hoc analysis (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

ANGII, Angiotensin II; DOX, doxorubicin; ISO, isoproterenol; Lgals-3, lectin, galactoside-binding, soluble-3.
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FIGURE 7 | Perturbation of the RAAS pathway in the DOX/ANGII model. Male 5-week old mice were administered DOX (4 mg/kg/week) or saline for 3 weeks and

allowed to recover for 5 weeks prior to exposure to ANGII (1.4 mg/kg/day for 14 days). The mRNA expression of (A) Ace, (B) Agtr1a, and (C) Agtr1b was determined

by real-time PCR (n = 5-6 per group). Results were normalized to beta-actin and are expressed relative to the control group. Statistical significance of pairwise

comparisons was determined by two-way ANOVA with Tukey’s post-hoc analysis (**p < 0.01). Ace, Angiotensin converting enzyme; Agtr1a, Angiotensin II type1

receptor-a; Agtr1b, Angiotensin II type1 receptor-b; ANGII, Angiotensin II; DOX, doxorubicin.
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FIGURE 8 | Divergent cardiac effects of ANGII and ISO in adult mice pre-exposed to DOX as juveniles. Male 5-week old mice were administered DOX (4 mg/kg/week)

or saline for 3 weeks and allowed to recover for 5 weeks prior to exposure to ANGII (1.4 mg/kg/day for 14 days) or ISO (10 mg/kg/day for 14 days). Juvenile exposure

to DOX prevented both ANGII- and ISO-induced cardiac hypertrophy, but failed to correct the upregulation in hypertrophic markers. ANGII, but not ISO, worsened

cardiac function, exacerbated cardiac fibrosis, and upregulated inflammatory and fibrotic markers in DOX-exposed mice. ANGII, Angiotensin II; DOX, doxorubicin;

ISO, isoproterenol.

In the current study, we demonstrate that juvenile exposure
to DOX did not cause significant cardiac fibrosis in naïve
mice, but it exacerbated ANGII-induced cardiac fibrosis. The
exacerbated cardiac fibrosis was associated with a marked
upregulation in several inflammatory and fibrotic markers in
the DOX/ANGII-treated mice. Importantly, MAC-2 positive
cells and the expression of Lgals-3 gene encoding galectin-
3 were much higher in hearts of DOX/ANGII-treated mice
than in hearts of mice receiving either DOX or ANGII alone.
In contrast to cardiac atrophy, which is a consistent feature
of anthracycline-induced cardiotoxicity, the prevalence and
extent of cardiac fibrosis in anthracycline-treated childhood
cancer survivors is controversial. In a cohort of childhood
cancer survivors, the prevalence of left ventricular and right
ventricular fibrosis was 9 and 38%, respectively; however, these
values were not compared to a healthy control group (42).
Some studies report anthracycline-treated childhood cancer
survivors to show modest myocardial fibrosis as evident by
an increased extracellular volume fraction (35). On the other
hand, other studies demonstrate the absence of a statistically
significant increase in myocardial fibrosis in survivors compared
to healthy control subjects (43, 44). Since there is no clinical
data reporting the association between myocardial fibrosis and
cardiovascular risk factors in anthracycline-treated survivors, it
may be possible that the discrepancy in these clinical studies arise
from the confounding effect of other cardiovascular diseases,
particularly hypertension.

In contrast to the DOX/ANGII model, juvenile exposure
to DOX did not exacerbate ISO-induced cardiac fibrosis.
Surprisingly, the gene expression of the fibrotic marker collagen
1a1 was lower in DOX/ISO-treated mice as compared to
mice treated with ISO alone. DOX-induced cardiotoxicity
has been shown to attenuate the acute effects of ISO on
the heart including its positive inotropic effect (45), acute
decrease of myocardial stiffness (46), and stimulation of adenylyl
cyclase (47). Nevertheless, the impact of DOX exposure on
the chronic effects of ISO has not been previously reported.
ANGII-induced increase in afterload coupled with DOX-induced
thinning of the left ventricular walls is expected to markedly
increase ventricular wall stress according to the Law of LaPlace.
Since ISO does not increase the afterload, its effects on
the heart of DOX-exposed mice would be expected to be
much milder.

DOX-induced cardiotoxicity has been shown to be
more severe in hypertensive experimental animals than in
normotensive ones (48–50). An important distinction between
these studies and our model is the fact that these studies
administered DOX to already hypertensive animals, while in our
model DOX is administered to young normotensive mice then
challenged by ANGII-induced hypertension in their adult life, 5
weeks after the last DOX injection. In an attempt to determine
the mechanism of the detrimental synergy between juvenile
exposure to DOX and adult-onset ANGII-induced hypertension,
we determined the effect of these experimental conditions on
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the renin-angiotensin-aldosterone-system (RAAS) genes. In the
current study, juvenile exposure to DOX had no significant effect
on the expression of Ace, Agtr1a, and Agtr1b genes. Nevertheless,
there was a significant upregulation in Ace gene expression in
the DOX/ANGII group. Similarly, juvenile exposure to DOX
prevented ANGII-induced downregulation of Agtr1a, which
encodes the AT1 receptor. ANGII mediates its detrimental
effects via the AT1 receptors, while AT2 receptors mediate
cardioprotective effects. DOX has been previously shown to
alter the RAAS in different ways (19). DOX has been shown to
significantly increase the expression of AT1 receptors and reduce
that of AT2 receptors in a rat model of DOX-induced heart
failure (51). Although there was no significant change in the
mRNA expression of RAAS genes in the hearts of rabbits treated
with a single dose of DOX (52), the plasma and myocardial
levels of ANGII were increased three-fold in a rat model of
DOX-induced heart failure (53). DOX treatment has also been
shown to increase myocardial ACE activity in the cardiac tissues
of hamsters (54). Intriguingly, angiotensin receptor blockers
(ARBs) have been shown to ameliorate anthracycline-induced
cardiotoxicity in animal models (55–57). Importantly, a recent
meta-analysis shows that RAAS antagonists were the most
efficient drugs to prevent anthracycline-induced cardiotoxicity
with 84% risk reduction (58).

The current study has some limitations that warrant
discussion. First, we have not measured the blood pressure in
our experimental groups. We previously reported that juvenile
exposure to DOX caused an increase in blood pressure, which
was further exacerbated by ANGII infusion (11). ISO is a
beta-adrenergic agonist that does not increase blood pressure,
as previously reported by several other investigators (14). We
also did not measure the plasma levels of natriuretic peptides,
ANP and BNP. Although the induction of fetal gene expression
as a hallmark of pathologic hypertrophy is usually assessed
by measuring the gene expression of ANP and BNP (59,
60), measuring plasma levels of these peptides would have
strengthened our conclusions.

In conclusion, this study shows that juvenile exposure to
DOX differentially exacerbates ANGII—but not ISO-induced
adverse cardiac remodeling. There was a marked detrimental
synergy between juvenile exposure to DOX followed by ANGII-
induced hypertension, which resulted in cardiac dysfunction
and adverse cardiac remodeling. This preclinical mouse model
highlights the clinical finding that hypertension is the most
significant risk factor for heart failure in anthracycline-
treated childhood cancer survivors. Since ANGII may cause
cardiac damage through direct mechanism beyond elevating
blood pressure, future studies are planned to delineate the
mechanisms of these deleterious effects by targeting elements of
RAAS system.
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Cardiovascular toxicity in cancer patients receiving chemotherapy remains one of the

most undesirable side effects, limiting the choice of the most efficient therapeutic

regimen, including combinations of different anticancer agents. Anthracyclines

(doxorubicin) and antimetabolites (5-fluorouracil (5-FU), capecitabine) are among the

most known agents used in breast cancer and other neoplasms and are associated

with cardiotoxic effects. Extra-virgin olive oil (EVOO) is rich in polyphenols endowed

with antioxidant cardioprotective activities. Olive mill wastewater (OMWW), a waste

product generated by EVOO processing, has been reported to be enriched in

polyphenols. In this study, we investigated the activities of polyphenol-rich extract

from OMWW, A009, in cooperation with chemotherapy on two breast cancer cell

lines, namely, BT459 and MDA-MB-231, in a cardio-oncology perspective. The effects

of A009 on cardiac cells were also investigated with and without chemotherapeutic

agents. Cell viability was determined on BT459 and MDA-MB-231 (i.e., breast

cancer cells) and H9C2 (i.e., rat cardiomyocytes) cells, using 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A spheroids assay was used as

a 3D in vitro model on BT459 and MDA-MB-231 cells. For in vivo studies, the

murine sponge assay of angiogenesis was used as a model of breast cancer-

associated vascularization. The embryo of Danio rerio (zebrafish) was used to detect

the cardioprotective activities of the OMWW. We found that the A009 extract

exhibited antiangiogenic activities induced by breast cancer cell supernatants and

increased T-cell recruitment in vivo. The combination of the OMWW extracts with

doxorubicin or 5-FU limited BT459 and MDA-MB-231 cell viability and the diameter

of 3D spheroids, while mitigating their toxic effects on the rat H9C2 cardiomyocytes.

Cardioprotective effects were observed by the combination of OMWW extracts with

doxorubicin in zebrafish embryos. Finally, in human cardio myocytes, we observed 5-

FU-induced upregulation of the inflammatory, senescence-associated cytokine IL6 and
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p16 genes, which expression was reduced by OMWW treatment. Our study

demonstrates that the polyphenol-rich purified OMWW extract A009 combined with

cancer chemotherapy could represent a potential candidate for cardiovascular protection

in breast cancer patients, while increasing the effects of breast cancer chemotherapy.

Keywords: chemotherapy, breast cancer, polyphenol, olive, cardiomyocyte

GRAPHICAL ABSTRACT | The cartoon summarized the major approaches and insights of the manuscript: (A) the possibility to recover waste material from

extra-virgin olive oil (EVOO) processing that allows the repurposing of polyphenol-rich extracts characterized by (B) antiangiogenic activities in vivo, antiproliferative

activities in vitro on BC cell lines (C), cardioprotective activities on rat and human cardiomyocytes (HCMs) (D), and in vivo on the zebrafish embryo heart (E).
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INTRODUCTION

Together with cardiovascular diseases, cancer still accounts as
a major cause of death in the world (1, 2). Breast cancer (BC)
is the fifth most prevalent cause of cancer death worldwide
and is the most common malignancy among women (3). BC
is characterized by the presence of several different subtypes,
which are generally classified as hormone receptor (HR)-
positive and human epidermal growth factor receptor 2 (HER2)-
overexpressing BCs or triple negative BC. The presence of the
markers has allowed the development of targeted therapies.
Tumors without the expression of HR or HER2 are classified as
triple-negative BC (TNBC). TNBC has a higher mortality rate
than HR-positive or HER-2-overexpressing BC because of its
high recurrence rate and metastatic potential (4).

Among the current strategies for the treatment of TNBC,
chemotherapy represents the major option (5, 6). Taxanes
(e.g., paclitaxel and docetaxel) and anthracyclines (e.g.,
doxorubicin and epirubicin) are usually the main choice (7), in
combination with platinum (e.g., carboplatin), antimetabolites
[e.g., capecitabine, similar to 5-fluorouracil (5-FU)] and/or
alkylating agent (e.g., cyclophosphamide); however, their
possible toxicity, low aqueous solubility, and rapid in vivo
clearance can represent a limit (7, 8). All these agents are often
used in combination with targeted therapy.

Despite the great medical and pharmaceutical advances, these
limitations remain a big challenge. According to the Food
and Drug Administration (FDA), about 1 million of severe
adverse drug events (ADEs) were reported in only 1 year in
the United States, including death (9). Chemotherapy-induced
cardiotoxicity is one of the most common ADEs and can cause
more or less serious manifestations, such as changes in ECG,
arrhythmia, bradycardia, tachycardia, and heart failure, which
lead to an increase in morbidity and mortality (7, 9). In this
complex contest, prevention still remains the most promising
approach for all types of cancer. Natural products or agents
derived from foods and beverages (or their synthetic analogs)
have been found to exert antitumor and tumor-preventive
activities in diverse preclinical settings, and some are currently
employed in the clinic. Among them, phenolic compounds
have gained the attention of the scientific community, thanks
to their plethora of beneficial effects on health, that include
antibacterial, anti-inflammatory, and anticancer activities. Also,
several preclinical studies, including those published by our
research group, showed that diverse phytocompounds, while
synergizing with chemotherapeutic drugs, have cardioprotective
activity (10, 11).

Southern European countries have lower incidence of cancer
and cardiovascular disease than northern European countries or
the United States. The Mediterranean diet has been proposed
as the main protective factor for this benefit (12). In this
context, angioprevention is an important concept to consider,
since angiogenesis prevention through bioactive compounds
present in the Mediterranean diet components could explain
in part the chemopreventive effect of this diet model in cancer
(13–17). Extra-virgin olive oil (EVOO) is a major component
of the Mediterranean diet, with numerous beneficial effects,

which concern the ability to prevent diseases that can be
linked to oxidative damage, such as neurodegenerative diseases,
cancer, and cardiovascular diseases (18). EVOO protective role
is due to its enriched content in phytochemicals: the main
fraction (95–97%) is the lipophilic one, which is represented
by both monounsaturated and polyunsaturated fatty acids (i.e.,
omega-3 and omega-6) (19). The polar fraction is mainly
represented by polyphenolic compounds like oleuropein, tyrosol,
and hydroxytyrosol, which possess strong anti-inflammatory
and antioxidant properties (20). A major issue within the
industrial processing of EVOO is the generation of large
amount of liquid waste product, including, olive mill wastewater
(OMWW) (21, 22). The high content of pollutants within the
waste requires special disposal and cost-effective procedures
that significantly impact both the health environment and the
industrial management. In contrast, it has been found that
OMWW is rich in polyphenolic compounds, endowed with
antibacterial and antioxidant activities, thus representing a valid
product to be considered in scientific research (23).

We previously reported that the A009 polyphenol-rich
extracts, purified form OMWW, exhibit chemopreventive and
angiopreventive properties, in vitro and in vivo, in different
cancer types (e.g., lung, colon, and prostate cancer cells) and
endothelial cells (11, 24–27).

In this study, we investigated the A009 effect on
tumor growth of BC cells, alone or in combination with
a chemotherapeutic agent. In addition, we examined the
potential A009 cardioprotective activity, against chemotherapy-
induced cardiovascular damages, using both in vitro and
in vivo models (i.e., Danio rerio and Mus musculus). In
this study, we focused on doxorubicin and 5-FU, which are
very prominent, highly active anticancer drugs, however,
endowed with cardiotoxic effects. Work flow is described in the
Graphical Abstract.

MATERIALS AND METHODS

Chemicals
5-Fluorouracil was purchased from Sigma-Aldrich and was
dissolved in dimethyl sulfoxide (DMSO) and used for in
vitro experiments as detailed below. Doxorubicin hydrochloride
(Doxo) was purchased from Abcam and was dissolved in Milli-
Q water. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) was purchased from Sigma-Aldrich. The
synthetic hydroxytyrosol (Hyt), ≥98% in purity, was purchased
from Cayman Chemicals (Ann Arbor, MI, USA). Hyt was
dissolved in ethanol (EtOH). DMSO and EtOH vehicles were
used as controls.

Preparation of A009 Extracts
Olive oil mill wastewaters were kindly provided by Agriturismo
Fattoria La Vialla (Castiglion Fibocchi, Arezzo, Italy) and used
to obtain the phenol-rich purified extract A009 (Patent No.
1420804; No. 1420805). The experiments were performed using
the extract A009. The extraction procedures of A009 obtained
from OMWW and its polyphenol content have been previously
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described (24). The polyphenol content of the A009 extract is
shown in Supplementary Table 1.

Cell Line Culture and Maintenances
The human metastatic BC cells, e.g., MDA-MB-231 (purchased
from ATCC), were maintained in the Dulbecco’s Modified Eagle’s
Medium (Gibco-BRL) supplemented with 10% fetal bovine
serum (FBS) (Euroclone), 2mM L-glutamine (Euroclone), 100
U/ml penicillin, and 100µg/ml streptomycin (Euroclone), at
37◦C, 5% CO2. The human BC cell line BT549 (purchased
from ATCC) was grown in Roswell Park Memorial Institute
(RPMI) 1640 supplemented with 10% FBS, 2mM L-glutamine,
100 U/ml penicillin and 100µg/ml streptomycin, and 0.023 U/ml
insulin at 37◦C, 5% CO2. The human cardiomyocytes (HCMs,
purchased by PromoCell) cells were maintained in the Myocyte
Growth Medium (PromoCell) plus Myocyte supplements mix
(PromoCell), in addition to 10% FBS, 2mM L-glutamine,
100 U/ml penicillin, and 100µg/ml streptomycin, at 37◦C,
5% CO2. The rat cardiomyocytes cell line H9C2 (purchased
by PromoCell) was maintained in DMEM-F12, supplemented
with 10% FBS, 2mM L-glutamine, 100 U/ml penicillin, and
100µg/ml streptomycin. All the cell lines used in the study
were routinely checked for eventual mycoplasma contamination,
before being used.

Generation of Conditioned Media
Conditioned media (CM), for subsequent in vivo studies, was
obtained from the BT459 BC cell line. Briefly, 3 × 106 BT459
were seeded into t100 Petri dishes (Corning) in RPMI 1640
supplemented with 10% FBS, 2mM L-glutamine, 100 U/ml
penicillin and 100µg/ml streptomycin, and 0.023 U/ml insulin
at 37◦C, 5% CO2. When cells reached 80% of confluency, cells
were starved for 48 h in 10ml serum-free RMPI medium. Finally,
CM were collected, residual cells and debris were discarded,
by centrifugation, and concentrated with Concentricon devices
(Millipore, Temecula, CA) with a 5 kDa membrane pore cutoff.

In vivo Angiogenesis Sponge Assay as a
Model of Breast Cancer-Associated
Angiogenesis
To use a rapid model of breast cancer-associated angiogenesis in
vivo (28–30), the ability of A009 (1:250) to inhibit vascularization,
induced by CM of BC cell lines, was investigated using the
UltiMatrix (Biotechne) Matrigel sponge assay in mice. Briefly,
liquid UltiMatrix (10 mg/ml) was mixed with 50 µg of total
protein BT459-concentrated CM, alone or in combination with
the A009 extract (1:250 dilution) and inoculated in cold liquid
form, which polymerizes in vivo. UltiMatrix alone or UltiMatrix
supplemented with a cocktail of proangiogenic factors VEGF,
TNFα and Heparin (VTH) (100 ng/ml vascular endothelial
growth factor (VEGF)-A, 2 ng/ml tumor necrosis factor (TNF)-
α, and 25 U/ml heparin) were used as negative and positive
controls, respectively. Each mixture was brought to a final
volume of 0.6ml and injected subcutaneously into the right
and left flanks of 6–8-week-old C57/BL6 female mice (Charles
River Laboratories, Calco (Lecco), Italy) with a cold syringe.
All animals were housed in a conventional animal facility

with 12 h light/dark cycles and fed ad libitum. Manipulation
of animals was performed in accordance with the Italian and
European Community guidelines (D.L. 2711/92 No.116; 86/
609/EEC Directive), the 3 R’s declaration, and approved by the
institutional ethics committee. All the procedures applied were
approved by the local animal experimentation ethics committee
(ID# #06_16 Noonan) of the University of Insubria and by the
Health Ministry (ID#225/2017-PR).

Groups of 3–7 mice were used for each treatment. At body
temperature, the UltiMatrix polymerizes to a solid gel and
becomes vascularized in response to angiogenic substances. Four
days following injection, the gel plugs were recovered and divided
into two parts. One half was formalin-fixed, paraffin-embedded
to generate paraffin blocks processed for histological analysis; the
other half from gel plugs was minced and diluted in water to
measure the hemoglobin content with a Drabkin’s Reagent Kit
(Sigma-Aldrich), and part was mechanically processed for the
subsequent flow cytometry analysis.

Immunohistochemistry Analysis of
Utimatrix Sponges
All the processing for the immunohistochemistry analysis on the
Utimatrix sponges were performed by the Unit of Pathological
Anatomy, IRCCS MultiMedica, Milan, Italy, by a routine
system on an automated immunostainer (BenchMark ULTRA
IHC/in situ hybridization System, Ventana-Roche Group, Basel,
Switzerland). Hematoxylin and Eosin-stained sections were used
to acquire micrographs, at 40×magnification.

Flow Cytometry Analysis for Cell Infiltrate
in the UltiMatrix Plugs
Part of the recovered UltiMatrix plugs were mechanically
processed by scissors, then placed into 70mm cell strainers
(BD Biosciences), and pressured with a syringe swab. The cell
suspension obtained was used for the flow cytometry analysis to
detect the immune cell infiltrate. Cells were stained for 30min
at 4◦C, at dark, with the following fluorophore-conjugated
antimouse antibodies, all purchased from BD Biosciences: CD45-
BUV395, F4/80-PECF594, CD3e-BB700, and NK1.1-BV650.
For fluorescence-activated cell sorting (FACS) analysis, viable
cells were gated according to physical parameters (FSC/SSC).
Following the gating of CD45+ cells, immune cells were
identified as follows: CD45+:F4/80+ cells (macrophages), CD3+

cells (total T cells), and CD3−NK1.1+ cells (total NK cells).

Assessment of Combination Effect of
Chemotherapy and A009 on Breast Cancer
Cell Lines and Rat Cardiomyocytes by MTT
Assay
To investigate whether the A009 extract could synergize
with chemotherapy, cell viability of the BC cell lines MDA-
MB-231 and BT549 was evaluated by the MTT assay
(Supplementary Table 2). The 2 × 103 cells of BT549 and
MDA-MB-231 BC cell lines were seeded in 96-well plates and,
after adhesion, treated with A009 extract (dilution 1:800) and
Hyt (dilution 1:800) for 24 h. The medium was then substituted
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with the chemotherapy drug 5-FU 100µM or Doxorubicin
1µM, alone or in combination with A009 or Hyt for 48 and 72 h.
At each time point, media were replaced with fresh complete
medium, supplemented with 0.5 mg/ml MTT reagent, and
then incubated for 3 h at 37◦C with 5% CO2. This colorimetric
assay is based on the reduction of a yellow tetrazolium salt (3-
(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide or
MTT) to purple formazan crystals by metabolically active cells.
The viable cells contain NAD(P)H-dependent oxidoreductase
enzymes that reduce the MTT to formazan. MTT was removed,
and formazan crystals were dissolved using 100% DMSO.
The darker the solution, the greater the number of viable,
metabolically active cells. The absorbance was recorded at
570 nm wavelength with the microplate spectrophotometer
SpectraMax M2 (Molecular Devices, Sunnyvale, CA). To
evaluate the effects of the A009 extracts on chemotherapy-
induced cardiotoxicity, the same experiment was repeated on rat
cardiomyocytes H9C2 cells (Supplementary Table 2).

Generation of Tumor Spheroids
We investigated the capability of the A009 extract to synergize
with chemotherapy, in reducing the generation of BC tumor
spheroids. BT459 or MDA-MB-231 cells were cultured in 20 µl
hanging drops at a density of 4 × 103 cells/drop, in complete
RPMI medium, with or without treatment. After spheroids
formation, which typically occurs within 24 h, the spheroids were
transferred to 96-well plates, containing 100 µl/well of fresh
culture medium with or without treatment (one spheroid/well),
previously coated with 2% agar and growth on the bottom of
60mm tissue culture dish, at 37 ◦C and 5% CO2. BT459 and
MDA-MB-231 spheroids were treated with the A009 extract +
5-FU 100 µM combination, or the A009 extract + Doxo 1
µM combination, or A009 extract or 5-FU alone. Growth of
the spheroidal colonies was monitored for the following days,
replacing culture medium and treatments, with fresh ones, each
48 h. Images were acquired at 3, 6, and 12 days, following
spheroid generation and treatments. Untreated and treated
spheroids’ area was measured, for each time point, using the
ImageJ software and normalized for the respective area at day 3.
The diameter was calculated based on the spheroid area, using
the d=

√
(4A/π) formula. Finally, the average area, between

treatment groups, was compared.

In vivo Studies on Zebrafish Embryos
To evaluate the cardioprotective effect of the A009 extract,
we used the embryos of Danio rerio (zebrafish), a robust
animal model for cardiovascular diseases (31–33). Zebrafish
eggs were incubated at a temperature of 26 ± 1◦C, in a
12:12 h light:dark regime. Developmental stages were identified
according to Kimmel et al. (34). Eggs were collected and
washed two times with ISO-water (80mMCaCl2, 20mMMgSO4,
30.8mM NaHCO3, and 3.09mM KCl) according to DIN ISO
150888 (International Organization for Standardization (ISO),
2009). All experiments were performed on zebrafish embryos
exposed to the indicated agents for 24, 48, and 72 h post
fertilization (hpf). Ten fertilized eggs were maintained in 24-
well plates, with a proportion of 1 embryo/2ml of solution.
Embryos received A009 (dilutions 1:1,000 or 1:500), alone or in

combination with the cardiotoxic agent doxorubicin (3 µg/ml)
or left untreated. Embryo development was monitored at 48
and 72 hpf using an inverted stereomicroscope (Leica), by
tracing the development of eyes, heartbeat, blood circulation,
pigmentation, body shape malformations, edemas, detachment
of the tail, and delay in development. The effect on embryo
viability was determined by counting the number of dead
embryos per experimental condition. Several parameters to trace
the treatment induced congenital embryo abnormalities were
monitored as listed in Supplementary Tables 3, 4. Congenital
embryo abnormalities monitored included ischemia in the yolk
sack (IS-YS), malformation of the heart (M.HT), ischemia in
the tail (IS-TA), malformation of the tail (MT), yolk sack
malformation (YS-DE), swim bladder malformation (SWB-DE),
pericardial edema (PE), and ischemia in the brain (IS-BR).

Quantitative Real-Time PCR
Total RNA was extracted from HCM exposed to A009 (dilution
1:800) alone or in combination with 5-FU 100µM for 24 h. The
TRIzol method was used, following separation with chloroform
precipitation of RNA with isopropanol (Sigma-Aldrich). The
RNA pellet was washed twice with 75% ethanol (Sigma-Aldrich)
and resuspended in nuclease-free water. RNA concentration was
determined using the Nanodrop Spectrophotometer ND-1000
(Thermo Fisher Scientific). Reverse transcription was performed
using the SuperScript VILO cDNA synthesis kit (Thermo Fisher
Scientific), starting from 1,000 ng of total RNA. Quantitative
real-time PCR was performed using SYBR GreenMasterMix
(Applied Biosystems) on the QuantStudio 6 Flex RealTime
PCR System Software (Applied Biosystems). All reactions
were performed in duplicate. The relative gene expression was
indicated as relative to nontreated cells, normalized to the
housekeeping gene 18S. IL-6 (Fw-AGACAGCCACTCACCT
CTTCAG, Rv-TTCTGCCAGTGCCTCTTTGCTG), p16 (Fw-
CTCGTGCTGATGCTACTGAGGA, Rv-GGTCGGCGCAGTTGG
GCTCC), and the housekeeping 18S (Fw-CGCAGCTAGGAATA
ATGGAATAGG, Rv CATGGCCTCAGTTCCGAAA) primers, for
qPCR, were designed using the NCBI Primer BLAST tool and
purchased from Integrated DNA Technologies (IDT, Coralville,
IA, USA).

Statistical Analysis
The statistical significance between multiple datasets was
determined using the GraphPad Prism software v9. Flow
cytometry data were analyzed using the FlowJo software, v10.
Data are expressed as means± SEM, one-way ANOVA, followed
by the Tukey’s post-hoc test. The p ≤ 0.05 were considered
statistically significant.

RESULTS

A009 Inhibits Angiogenesis in vivo
To evaluate the effect of the extract A009 (dilution 1:250)
on angiogenesis, a hallmark of cancer, induced by CM of
BC cells in vivo, a Matrigel sponge assay was performed in
C57/BL6 female mice. We found that the A009 extract (1:250)
was able to reduce the angiogenic activities exerted by the
BT549 BC CM, as revealed by the colorimetric analysis of
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the excised UltiMatrix plugs (Figure 1A). The A009 extract
(1:250) was able to reduce the total hemoglobin content in
the treated plugs, as compared with those containing the
BT549 BC CM alone, in a statistically significant dependent
manner (Figure 1A). Proangiogenic recruitment of endothelial
cells was also decreased as demonstrated by histological staining
(Figure 1C). Given the immune-modulatory properties of the
A009 extract, we tested its ability to enhance immune cell number
in the exposed sponge, following excision. We found that the
A009 extract (1:250) was able to increase the infiltration of
T cells in treated plugs, as compared with those containing
the BT549 BC CM alone; in a statistically significant manner
(Figure 1B), macrophages and NK cells are non-significantly
modified (Supplementary Figure 1).

Effect of A009 on Cell Viability of BC Cell
Lines in 2D and 3D Models in vitro
The effect of the A009 extract on tumor cell viability was
investigated using the MTT assay. BT549 and MDA-MB-231
BC cell lines were pretreated with A009 extract (dilution 1:800)
or Hyt (dilution of the major polyphenol present in the A009
extract, 1:800) for 24 h. The medium was then replaced with the
chemotherapeutic drug Doxo 1µM or 5-FU 100µM, alone or
in combination with the A009 extract or Hyt. Cells were treated
for 48 and 72 h. The schedule of treatments and pretreatments
is depicted in Supplementary Figure 2. Cell metabolic activity
assessed by MTT of BT549 and MDA-MB-231 cells, receiving
pretreatment with the extract A009 or Hyt, followed by the co-
administration of these compounds with the chemotherapy drug
5-FU, was reduced compared with that of the cells receiving the
5-FU alone (Figures 2A,B). The same effect occurs on BT549
and MDA-MB-231 (Figure 3B), when treated with the A009
extract in combination with doxorubicin (Figures 3A,B). These
results showed that the addition of chemotherapy to the A009
extract acts in an additive way reducing BC cell viability in vitro.
We translated our results from a 2D to a 3D in vitro model
of BC, by generating tumor spheroids, further treated following
the same schedule applied for the 2D models. We observed
that the combination of the A009 extract (1:800) with the
chemotherapeutic agents 5-FU or Doxo synergized in blocking
the generation of BC spheroids that morphologically appear
less stable and with reduced diameter, within the time frame of
treatments (Figures 4A–D).

Cardioprotective Effect of A009 on Rat
Cardiomyocytes
Based on our previous published article on the cardioprotective
properties of the A009 extracts against chemotherapy-
induced damages in models of prostate cancers (11), we
also tested whether a similar scenario could be observed with
chemotherapeutic agents used in BC treatment, such as 5-FU
and Doxo. We observed that the rat cardiomyocyte cell line
H9C2 exhibited less reduced cell proliferation, when co-treated
with the A009 + 5-FU (Figure 5) or A009 + Doxo (Figure 6),
both at 48 and 72 h, as compared to 5-FU or Doxo alone. 5-FU
and Doxo were toxic, while A009 or Hyt alone did not show

FIGURE 1 | Effects of the A009 extract on angiogenesis and immune cell

infiltration in vivo. The effects of the A009 on angiogenesis, induced by CM of

BC cell lines, and immune cell infiltration in vivo, was evaluated by the

UltiMatrix Matrigel sponge assay. (A) Determination of the hemoglobin content

in the excised pugs, using the Drabkin’s assay and visual inspection of excised

pellets; (B) determination of T-cell infiltration, detected as CD3+ cells, in the

plugs by flow cytometry. Data are shown as mean ± SEM, one-way ANOVA,

*p < 0.05 and **p < 0.01. VTH (vascular endothelial growth factor (VEGF),

tumor necrosis factor (TNF)-α, heparin), CM BTH (CM BT549 + heparin), A009

extract. Hemoglobin is decreased by A009 and T-cell infiltrates are increased.

(C) Histological examination of pellets. Sections of paraffin embedded plugs

were stained with hematoxylin eosin. VTH: VEGF-TNF-α-heparin containing

UltiMatrix show angiogenesis. Pellets with BTH conditioned media show

angiogenesis with many vessels. Pellets with A009 in addition to BTH CM

show reduced angiogenesis with few vessels.

cardiotoxicity. In addition, the co-administration of A009 or Hyt
with the chemotherapy drugs does not increase damage induced
by the drugs, Hyt + 5-FU after 48 and 72 h, and both Hyt +
Doxo and A009+ Doxo after 48 and 72 h.

Cardioprotective Effects of A009 Extract in
Zebrafish Embryos
We extended our in vitro results to the zebrafish (Danio
rerio) animal model. Zebrafish embryos were exposed to
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FIGURE 2 | Effects of the A009 extract in combination with 5-fluorouracil (5-FU) on breast cancer cell lines. BT549 (A) and MDA-MB-231 (B) cells were pretreated

with extract A009 (dilution 1:800) or hydroxytyrosol (Hyt) (same concentration as that present in the 1:800 diluted A009 extract), for 24 h. Later, the medium was

replaced with 5-FU 100µM alone or in combination with A009 or Hyt for 48 and 72 h. Proliferation was detected by the MMT assay at the indicated time points. The

experiments were performed in quadruplicate and repeated two times. Results are expressed as the mean of the absorbance normalized on the T0 ± SEM, one-way

ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. A009 activity was enhanced by addition of chemotherapy towards breast cancer cells.
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FIGURE 3 | Effects of the A009 extract in combination with doxorubicin on breast cancer cell lines. BT549 (A) and MDA-MB-231 (B) cells were pretreated with

extract A009 (dilution 1:800) or Hyt (same concentration as that present in the 1:800 diluted A009 extract), for 24 h. Later, the medium was replaced with doxorubicin

1µM alone or in combination with A009 or Hyt for 48 and 72 h. Proliferation was detected by the MMT assay at the indicated time points. The experiments were

performed in quadruplicate and repeated two times. Results are expressed as the mean of the absorbance normalized on the T0 ± SEM, one-way ANOVA, *p <

0.05, **p < 0.01, and ****p < 0.0001. A009 activity was enhanced by addition of chemotherapy toward breast cancer cells.
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FIGURE 4 | Effects of the combination A009+chemotherapy on breast cancer spheroids. Single spheroids were generated by culturing 4 x 103 BT549 or

MDDA-MB-231 cells in nonadherent conditions. BT459 (A,B) and MDA-MB-231 (C,D) spheroids were treated with the combination of A009 extract + 5-FU or Doxo,

A009 or drugs alone, for 3, 6, and 12 days. During the treatment kinetic, spheroid diameters were detected, and spheroid macrophotographs were captured. The

experiments were performed in quadruplicate and repeated two times. Scale bar = 200µm. Data are shown as mean ± SEM, two-way ANOVA, **p < 0.01, ***p <

0.001, and ****p < 0.0001. A009 combinations with chemotherapy reduced size of breast cancer cell spheroids.
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FIGURE 5 | Effects of the A009 extract in combination with 5-FU on rat cardiomyocytes. H9C2 cells were pretreated with extract A009 (dilution 1:800) or Hyt (same

concentration as that present in the 1:800 diluted A009 extract), for 24 h. Later, the medium was replaced with 5-FU 100µM alone or in combination with A009 or Hyt

for 48 and 72 h. Proliferation was detected by the MMT assay at the indicated time points. The experiments were performed in quadruplicate and repeated two times.

Results are expressed as the mean of the absorbance normalized on the T0 ± SEM, one-way ANOVA, **p < 0.01, ***p < 0.001, and ****p < 0.0001. A009

combinations with chemotherapy were less toxic toward cardiomyocytes than toward breast cancer cells.

Doxo, alone or in combination with the A009 extract
(dilution 1:1,000 or 1:500). We observed that the treatment
of zebrafish embryos with doxorubicin (3 g/ml) significantly
reduced their cardiac area at 48 and 72 h of treatment
(Figures 7A,B). The co-treatment with A009 was able to reverse
the doxorubicin-induced cardiotoxic effect, in terms of cardiac
area, following 48 and 72 h of treatment (Figures 7A,B). The
polyphenolic concentrate alone does not change the viability of
the embryos.

Furthermore, we observed that co-treatment of embryos
with the A009 extract and doxorubicin resulted in decreased

numbers of embryos displaying congenital abnormalities,
when compared with embryos treated with doxorubicin alone
(Supplementary Tables 3, 4).

Effect of A009 on Inflammation and
Induction of Senescence Associated With
Chemotherapy in Human Cardiomyocytes
Chemotherapy is often associated with damages to the heart
that result in exacerbated cardiac inflammation and generation
of senescent phenotype in cardiomyocytes. Il6 is among
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FIGURE 6 | Effects of the A009 extract in combination with doxorubicin on rat cardiomyocytes. H9C2 cells were pretreated with extract A009 (dilution 1:800) or Hyt

(same concentration as that present in the 1:800 diluted A009 extract), for 24 h. Later, the medium was replaced with and without Doxo 1µM alone or in combination

with A009 or Hyt for 48 and 72 h. Proliferation was detected by the MMT assay at the indicated time points. The experiments were performed in quadruplicate and

repeated two times. Results are expressed as the mean of the absorbance normalized on the T0 ± SEM, one-way ANOVA, *p < 0.05 and ****p < 0.0001. A009

combinations with chemotherapy were less toxic toward cardiomyocytes than toward breast cancer cells.

the cytokines involved in the cardiac inflammation and
participating to the induction of the senescent-associated
secretory phenotype (SASP), while p16 is a senescence
marker. We investigated the effect of A009 on IL-6 and
p16 gene expression, both molecules linking inflammation
and senescence, following chemotherapy-induced (i.e., 5-
FU) cardiac damages, on HCM cells. We found that HCM
cells, exposed to the combination of A009 extract (1:800)
and 5-FU 100µM, exhibit decreased transcript levels of
IL-6 (Figure 8A) and p16 (Figure 8B), as compared to
HCM treated with 5-FU alone, in a statistically significant
dependent manner.

DISCUSSION

Chemotherapy, alone or in combination with other therapies
(i.e., targeted, antiangiogenic therapies), along with surgery
and radiotherapy is still a major option in BC treatment.
However, cancer chemotherapy-induced cardiotoxicity remains
a relevant obstacle, thus limiting the therapeutic options (alone
or in combination) for cancer patients (10, 35–37). This largely
impacts on the management of oncologic patients, requiring
more efforts to overcome the generation of side effects, following
cancer chemotherapy that remains the treatment of election
(10, 35–37).With the knowledge of such a relevant unmet clinical
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FIGURE 7 | Cardioprotective effects of A009 extract in zebrafish embryos. The cardioprotective effects of the A009 extract on chemotherapy-induced cardiotoxicity

was investigated in zebrafish embryos. All experiments were performed on zebrafish embryos exposed to doxorubicin (3 µg/ml) alone, A009 (dilution 1:1,000, 1:500),

or the combination of doxorubicin (µg/ml) and A009 (dilution 1:1,000, 1:500) for 48 h (A) and 72 h (B) post fertilization (hpf). Embryo micrographs for all the

experimental conditions are shown. Data for cardiac area are shown as fold% increased over control. Data are shown as mean ± SEM, one-way ANOVA, **p < 0.01

and ***p < 0.001. DOX, doxorubicin; A009 batch extract; NT, not treated. A009 combinations with chemotherapy were protective toward the heart.

need, together with the identification of robust biomarkers able to
predict chemotherapy-induced cardiovascular effects, prevention
remains the most accessible option to manage such an issue (10,
35, 36), and cardio-oncology is a flourishing field of investigation
(38, 39).

Polyphenols account as the major dietary-derived molecules
endowed with beneficial effects on human health, based on

their ability to target tumor cells, while sparing or recovering
damaged normal/healthy cells. In this context, EVOO accounts
as one of the most abundant dietary sources of polyphenols,
within the Mediterranean diet. Interestingly, also the waste
products derived by EVOO processing have been reported
to be rich in polyphenols with beneficial health effects, such
as hydroxytyrosol. We have previously demonstrated that the
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FIGURE 8 | Effects of the A009 extract on interleukin (IL)-6 and p16 expression in human cardiac myocytes by qPCR. The ability of A009 (dilution 1:800) to inhibit (A)

IL-6 and (B) p16 expression in HCM was determined, following 24 h of stimulation, by qPCR. Data are shown as mRNA relative expression, normalized to 18S and

control, mean ± SEM, one-way ANOVA, **p < 0.01, ***p < 0.001, and **** p < 0.0001. A009 combinations with chemotherapy reduced IL6 and p16 expression.

polyphenol-rich OMWW extract, A009, from EVOO is endowed
with antiangiogenic properties and chemopreventive activities in
the context of colon and prostate cancers, both in vitro and in
vivo. Recently, we also showed, in in vitro and in vivo models
of prostate cancer, that the combination of the A009 extract
with chemotherapy resulted in increasing chemopreventive and
antitumor activities, while mitigating the chemotherapy-induced
damages to cardiomyocytes and mice hearts.

Starting from our previous results of antiangiogenic effects of
the A009 extracts, in this study, we tested the ability of A009
to limit angiogenesis, a hallmark of cancer, in vivo, induced by
CM from the BT549 BC cell line in a Matrigel sponge model
that we contributed to develop (27–29). We found that the
A009 extract limits angiogenesis in vivo, induced by factors
present in the BT549 cell CM. We also observed that the
BT459CM sponges from mice treated with the A009 extract
show increased infiltration of CD3+T cells, suggesting a potential
contribution of the OMWW extract in the recruitment of
immune cells.

We then tested the capability of the combination of the
A009 extract with chemotherapeutic agents clinically employed
in BC, to act on BC cell proliferation. We found that both
the BT549 and MDA-MB-231 cells, following exposure to
the A009 + 5-FU or A009 + Doxo combination, exhibited
reduced cell proliferation, as compared with those treated
with A009 alone. We observed additive effects by treating
BT459 and MDA-MB-231 cell spheroids, with the A009 +

drug combination. These results show that the combination of
chemotherapy with the A009 extract further reduces BC cell
viability in vitro.

A peculiar capability of polyphenols resides in their ability
to target transformed malignant cells (40) also cooperating with
chemotherapeutic agents (11, 40, 41), while sparing healthy
cells or recovering healthy cells undergoing stress conditions
and cellular damages (42–44). Based on this evidence and
on our previous published article on the cardioprotective
properties of the A009 extract against chemotherapy-induced
damages, in models of prostate cancers, we tested whether
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a cardio-oncological prevention scenario could be observed,
using chemotherapeutic agents used for BC treatment, such
as doxorubicin and fluoropyrimidines. The combination
of A009 extract to chemotherapy mitigate the effects of
reduced cell proliferation, mediates by 5-FU alone on
rat cardiomyocytes. We found that this cardioprotective
effect of the A009 extract occurs also in vivo: zebrafish
embryos exposed to A009 extract + Doxo combination show
rescue of cardiac area, as compared with those treated with
Doxo alone.

OMWW extracts are not toxic to the animals, and in a cohort
of healthy, individuals were highly tolerated with no toxicity (11).

Inflammation represents a peculiar hallmark of chronic
diseases, such as cancer, metabolic, and cardiovascular
disorders (45–48). Chemotherapy-induced cardiovascular
side effects also include exacerbated inflammation, together
with induction of cell senescence and of an SASP. We
previously demonstrated that cardiovascular toxicities
associated with the anticancer agent 5-FU include the
induction of a senescent phenotype in HCMs and endothelial
cells (49).

IL-6 accounts as a relevant cytokine in the inflammatory
process (50) and is highly represented in the cytokine
milieu characterizing the SASP phenotype (51, 52). In
line with this evidence, we found that HCMs treated
with 5-FU, have increased transcript levels of IL-6
and the senescence marker p16. We observed that the
combination of the A009 extract with 5-FU can reduce
the expression level of IL-6 and p16, induced by the 5-
FU. This suggests the potential capability of the A009
extracts to exert cardioprotective activities also acting on
the inflammation/senescence pathways in cardiomyocytes
exposed to chemotherapeutic agents.

CONCLUSION

Our study suggests that in a cardio-oncological prevention
perspective, a polyphenol-rich purified OMWW extract
A009 combined with cancer chemotherapy, could
represent a potential candidate for cardiovascular
protection in patients with BC, while increasing effects of
BC chemotherapy.
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Bruno, Noonan and Albini. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 16 April 2022 | Volume 9 | Article 867867257

https://doi.org/10.1016/j.jacc.2020.08.079
https://doi.org/10.3389/fphar.2021.710304
https://doi.org/10.1038/cddiscovery.2015.43
https://doi.org/10.1038/s41573-021-00233-1
https://doi.org/10.3389/fphys.2020.00694
https://doi.org/10.3389/fcvm.2021.750186
https://doi.org/10.3389/fimmu.2011.00098
https://doi.org/10.1038/nature07205
https://doi.org/10.1371/journal.pone.0115686
https://doi.org/10.1016/j.cytogfr.2018.04.004
https://doi.org/10.3389/fcell.2021.645593
https://doi.org/10.1073/pnas.2015666118
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-847012 April 11, 2022 Time: 16:47 # 1

REVIEW
published: 15 April 2022

doi: 10.3389/fcvm.2022.847012

Edited by:
Chun Liu,

Stanford University, United States

Reviewed by:
Lichao Liu,

Stanford University, United States
Shane Rui Zhao,

Stanford University, United States

*Correspondence:
Gabriele D’Uva

gabrielematteo.duva2@unibo.it

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cardio-Oncology,
a section of the journal

Frontiers in Cardiovascular Medicine

Received: 31 December 2021
Accepted: 03 March 2022

Published: 15 April 2022

Citation:
Morelli MB, Bongiovanni C,

Da Pra S, Miano C, Sacchi F,
Lauriola M and D’Uva G (2022)

Cardiotoxicity of Anticancer Drugs:
Molecular Mechanisms

and Strategies for Cardioprotection.
Front. Cardiovasc. Med. 9:847012.

doi: 10.3389/fcvm.2022.847012

Cardiotoxicity of Anticancer Drugs:
Molecular Mechanisms and
Strategies for Cardioprotection
Marco Bruno Morelli1†, Chiara Bongiovanni2,3†, Silvia Da Pra2,3†, Carmen Miano2†,
Francesca Sacchi2,3†, Mattia Lauriola3 and Gabriele D’Uva2,3*

1 Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy, 2 National Laboratory of Molecular Biology and Stem
Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy, 3 Department of Experimental,
Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy

Chemotherapy and targeted therapies have significantly improved the prognosis of
oncology patients. However, these antineoplastic treatments may also induce adverse
cardiovascular effects, which may lead to acute or delayed onset of cardiac dysfunction.
These common cardiovascular complications, commonly referred to as cardiotoxicity,
not only may require the modification, suspension, or withdrawal of life-saving
antineoplastic therapies, with the risk of reducing their efficacy, but can also strongly
impact the quality of life and overall survival, regardless of the oncological prognosis.
The onset of cardiotoxicity may depend on the class, dose, route, and duration of
administration of anticancer drugs, as well as on individual risk factors. Importantly,
the cardiotoxic side effects may be reversible, if cardiac function is restored upon
discontinuation of the therapy, or irreversible, characterized by injury and loss of cardiac
muscle cells. Subclinical myocardial dysfunction induced by anticancer therapies may
also subsequently evolve in symptomatic congestive heart failure. Hence, there is
an urgent need for cardioprotective therapies to reduce the clinical and subclinical
cardiotoxicity onset and progression and to limit the acute or chronic manifestation of
cardiac damages. In this review, we summarize the knowledge regarding the cellular
and molecular mechanisms contributing to the onset of cardiotoxicity associated
with common classes of chemotherapy and targeted therapy drugs. Furthermore, we
describe and discuss current and potential strategies to cope with the cardiotoxic side
effects as well as cardioprotective preventive approaches that may be useful to flank
anticancer therapies.

Keywords: cardiotoxicity, cardioncology, cardiomyocyte death, cardiomyocyte dysfunction, cardiomyocyte
survival, chemotherapy, targeted therapy, cardioprotection

INTRODUCTION

The introduction of antineoplastic drugs has been a turning point for prognosis improvement
in oncology patients. However, a large number of chemotherapeutic agents have adverse
cardiovascular effects, leading to acute or delayed onset of cardiac dysfunction, commonly referred
to as cardiotoxicity. Although the definition of cardiotoxicity is not universally accepted, in clinical
practice, cardiotoxicity commonly indicates a decline in patients’ cardiac function measured as
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left ventricle ejection fraction (LVEF). Various organizations
and clinical committees defined cardiotoxicity using different
threshold changes in LVEF [reviewed in (1)]. Treatment with
anthracyclines, namely the chemotherapy class of drugs that
generated the most concerns about cardiotoxicity, is associated
with an incidence of cardiac dysfunction ranging between
2% and 48% [reviewed in (2–7)]. The Cardiac Review and
Evaluation Committee (CREC), a retrospective study aiming
at the evaluation of the cardiotoxicity of the anti-HER2
agent trastuzumab with or without concomitant anthracycline
treatment, defined cardiotoxicity as a reduction in LVEF of at
least 5% to below 55% with concomitant signs or symptoms of
congestive heart failure (CHF), or a decrease in LVEF of at least
10% to below 55% without associated signs or symptoms (8).
Although the assessment of LVEF is a well-established clinical
procedure for the early recognition of cardiotoxic side effects
to prevent irreversible cardiac damage and heart failure (HF), a
reduction in LVEF may not be an effective parameter to detect a
subclinical myocardial dysfunction that subsequently evolves in a
symptomatic CHF (9) [reviewed in (1, 10)].

During the last decades, the cardiotoxic effects of
several classes of chemotherapy drugs (anthracyclines,
fluoropyrimidines, taxanes, and alkylating agents) and
targeted therapies (targeting monoclonal antibodies and
kinase inhibitors) were documented, and the underlying
molecular mechanisms were investigated to suggest and develop
potential strategies to avoid or reduce these effects (Table 1).
Based on retrospective pathophysiological analysis of cancer
patients with HF after chemotherapy, cardiotoxic side effects
can be defined as irreversible (type I) or reversible (type II)
[reviewed in (11, 12)]. Irreversible cardiotoxicity (type I) is
usually observed in anticancer regimes causing injury and loss
of cardiac myocytes. These effects are mainly observed after
administration of anthracyclines and alkylating drugs, and
to a lesser degree with fluoropyrimidines. According to the
class of anticancer agents, the underlying mechanisms may
involve cardiomyocyte-intrinsic and/or indirect mechanisms.
For example, anthracyclines are associated with a high incidence
of HF as consequence of irreversible cardiac damages through
impairment of cardiomyocyte-intrinsic mechanisms leading to
cell death [reviewed in (5, 7, 13–15)]. Despite administration
of alkylating drugs and fluoropyrimidines may also cause
cardiomyocyte death and thus irreversible cardiac damage,
the main mechanism appears to be mediated by a vasculature
dysfunction and/or thromboembolic ischemia. However,
anticancer agents may also impair cardiomyocyte function
without inducing cell death. This type of cardiac dysfunction
is typically reversible and is associated with a lower incidence
of HF (type II cardiotoxicity). Mechanistically, it has been
suggested that reversible cardiotoxicity may be consequent to
the deregulation of cardiomyocyte-intrinsic mechanisms and/or
alteration of other cardiac populations and extracellular factors,
in particular paracrine factors, in turn influencing cardiomyocyte
function [reviewed in (4)]. Targeting monoclonal antibodies or
tyrosine kinase inhibitors (TKIs) are typically associated with
reversible cardiac damages, and their adverse effects derive
by the signaling impairment of cardioprotective factors for

cardiomyocytes, such as Neuregulin-1 (NRG1), or for other
cardiac cell populations, such as vascular endothelial growth
factor (VEGF), and platelet-derived growth factor (PDGF)
[reviewed in (13, 16)].

Importantly, the comprehension of different cellular
and molecular mechanisms by which common classes of
chemotherapy and targeted therapy drugs induce cardiotoxic
effects is critical for developing efficient strategies for prevention,
early detection, and treatment. Several therapeutical approaches
have already been proposed to cope with the cardiotoxic side
effects of anticancer therapies, including iron-chelating drugs,
β-blockers, renin-angiotensin-aldosterone system inhibitors,
sodium-glucose cotransporter-2 (SGLT2) inhibitors, late inward
sodium current (INaL) selective inhibitors, phosphodiesterase-
5 inhibitors, metabolic agents, statins, and growth factors.
As future therapeutic goal, moving toward a protective
chemoprevention approach, we need well-tolerated drugs that
may flank chemotherapy to reduce clinical and subclinical
cardiotoxic side effects, without interfering with the action of the
antineoplastic treatments (17).

CARDIOTOXICITY MECHANISMS
ASSOCIATED WITH COMMON CLASSES
OF CHEMOTHERAPY DRUGS AND
TARGETED THERAPY

Chemotherapy Drugs
Anthracyclines
The anthracyclines, such as doxorubicin, daunorubicin, and
epirubicin, are a class of broad-spectrum anticancer drugs
extracted from Streptomyces bacterium. These compounds are
used to treat different adult and pediatric hematologic cancers,
such as leukemia and lymphomas, as well as many solid tumors,
including breast, stomach, uterine, ovarian, bladder and lung
cancers. However, anthracyclines are associated with a dose-
dependent risk of cardiomyopathy and HF [reviewed in (2–
7)]. Specifically, in the absence of risk factors, doxorubicin
is tolerated up to a cumulative dose of 300 mg/m2, with a
rate of HF of less than 2% (18). Retrospective studies have
shown that an estimated 3–5% of patients, without other risk
factors, would experience doxorubicin-related HF at a cumulative
dose of 400 mg/m2, increasing at 7–26% and 18–48% for a
dose of 550 and 700 mg/m2, respectively (18, 19). Based on
these evident cardiotoxic effects, high-dose treatments with
anthracycline are no longer administrated, but sub-acute and
chronic cardiac effects are still a clinical problem. The use of
second-generation analogs of doxorubicin, namely epirubicin or
idarubicin, exhibits improvements in their therapeutic index,
but the risks of inducing cardiomyopathy are not abated
[reviewed in (6)]. Mitoxantrone, which is an anthracenedione, an
anthracycline analog, can also damage the cardiac muscle cells,
thus resulting in cardiac dysfunction (20) [reviewed in (21, 22)].

Importantly, a large body of evidence indicates that
cardiomyopathy develops at lower doses of anthracyclines in the
presence of risk factors, including hypertension, arrhythmias,
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TABLE 1 | Main features and mechanisms of cardiotoxic side effect of chemotherapies and targeted therapies along with mitigating strategies.

Anti-cancer agent Epidemiology of the cardiotoxicity Cardiotoxic effect Cellular and molecular mechanisms
of cardiotoxicity

Mitigating strategies

Anthracyclines (e.g., doxorubicin,
daunorubicin, epirubicin, idarubicin)
and anthracycline analogs (e.g.,
mitoxantrone)

Patients without risk factors: <2% of
doxorubicin-related heart failure for a
cumulative dose of 300 mg/m2; 3–5%
for a cumulative dose of 400 mg/m2;
7–26% for a dose of 550 mg/m2;
18–48% for a dose of 700 mg/m2 (18,
19). In patients with risk factors
cardiomyopathy may occur at low
doses of anthracyclines [reviewed in
(23, 24)].

Permanent damage due to
cardiomyocyte death [reviewed in (34)].

Mitochondrial dysfunction in
cardiomyocytes induced by formation
of reactive oxygen species (ROS),
iron-catalyzed formation of free radicals,
lipid peroxidation, and cardiolipin
sequestration (44, 45) [reviewed in (6,
14, 34, 38)]. Alteration of mitochondria
structural integrity in cardiomyocytes
(55). DNA double-strand breaks (DSBs)
in cardiomyocytes induced by
topoisomerase 2 (Top2) (45, 56)
[reviewed in (4, 6)].

Iron-chelating drug: dexrazoxane (56, 202, 203,
206) [reviewed in (14, 204, 207)]. β-Blockers
[reviewed in (16, 37)]: metoprolol (216, 217)
carvedilol (220–226) nebivolol (228, 230, 231).
RAAS inhibitors: ACE-Is such as enalapril,
captopril, lisinopril, and ramipril (235–237,
239–241), ARBs such as candesartan and
telmisartan (216, 242–245), aldosterone
antagonists (251). Combination of RAAS
inhibitors and β-blockers (33, 247). SGLT2
selective inhibitors: empagliflozin (256–259).
INaL inhibitor: ranolazine (261, 262, 264).
Phosphodiesterase-5 inhibitors: sildenafil,
tadalafil (267–269). Metabolic agents: butyric acid
(273), β-hydroxybutyrate (276). Statins (279–282).
Growth factors: neuregulins (134, 284, 285, 287),
G-CSF (289), erythropoietin (290). PPARα

activators: fenofibrate (292). Remote ischemic
preconditioning (293).

Maladaptive effects on fibroblasts,
endothelial cells, vascular smooth
muscle cells and immune cells, leading
to pathological left ventricular
remodeling [reviewed in (67)].

Increased transforming growth factor
beta (TGF-β) signaling and
myofibroblasts activation [reviewed in
(67)]. Increased endothelial cell
permeability [reviewed in (67)].
Activation of immune cells [reviewed in
(67)].

Fluoropyrimidines (e.g.,
5-fluorouracil, capecitabine)

1–19% cardiotoxic events [reviewed in
(69, 73, 75)].

Generally reversible coronary artery
spasm, although cardiomyocyte death
and loss may occur as consequence of
coronary artery thrombosis and
myocardial infarction [reviewed in (69,
75, 76)], as well as directly through
cardiomyocyte-intrinsic mechanisms
(77).

Protein kinase C-mediated
vasoconstriction in
vascular smooth muscle cells (78)
[reviewed in (69)]. Reduced oxygen
transport capacity of erythrocytes,
inducing relative ischemia of the
myocardium (79). Increased ROS
production in endothelial cells, leading
to cell senescence and death, in turn
triggering a procoagulant state (77)
[reviewed in (69)]. ROS production and
induction of cardiomyocyte apoptosis
and autophagy (77).

β-Blockers, together with calcium channel
blockers, nitrates, and aspirin [reviewed in (68,
71, 213)].
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TABLE 1 | (Continued)

Anti-cancer agent Epidemiology of the cardiotoxicity Cardiotoxic effect Cellular and molecular mechanisms
of cardiotoxicity

Mitigating strategies

Taxanes (e.g., paclitaxel) 3–20% cardiotoxic events (81, 82)
[reviewed in (84)].

Mild, primarily QT interval prolongation,
followed by bradycardia and atrial
fibrillation (82).

Hypersensitivity reaction with massive
histamine release with consequent
disturbance of the conduction system
and arrhythmia (82). Increased ROS
production by cardiomyocyte
mitochondria, collapse of mitochondrial
membrane potential and opening of
mitochondrial permeability transition
pore (91).

Anti-inflammatory: glucocorticoids [reviewed in
(37, 88, 90)]. Anti-histamine drugs: histamine
receptor blockers [reviewed in (37, 88, 90)].

Exacerbate anthracycline-induced
toxicity (93).

Increment of anthracycline-induced
congestive heart failure (92).

Pharmacokinetic interference of
doxorubicin elimination by paclitaxel
[reviewed in (94)].

Alkylating drugs (e.g., cisplatin,
cyclophosphamide, ifosfamide,
mitomycin)

7–32% of patients (96) [reviewed in
(97)].

Permanent damage due to
thromboembolic events and vascular
damage, in turn inducing
cardiomyocyte degeneration and
necrosis (99) [reviewed in (87)].

Increased platelet reactivity by
activation of arachidonic pathway
[reviewed in (87)]. Oxidative stress and
direct endothelial capillary damage with
resultant extravasation of proteins,
erythrocytes, and toxic metabolites, in
turn causing a damage to the
myocardium [reviewed in (99)].

Amino acids: taurine (102). NADPH oxidase
inhibitors: apocynin (101).

Pro-inflammatory effects leading to
pathological left ventricular remodeling
(101).

Expression of proinflammatory
chemokines and cytokines driven by
increased NFkB activation (101, 102).

ERBB targeting monoclonal
antibodies (e.g., trastuzumab,
pertuzumab) and tyrosine kinase
inhibitors (e.g., lapatinib, tucatinib)

Cardiotoxicity in 2–5% of
trastuzumab-treated patients, leading
to heart failure in 1–4% of the cases
(151–153) [reviewed in (155, 156)].
Limited data regarding the sole
pertuzumab cardiotoxicity [reviewed in
(37, 297)]. The risk of heart failure is
increased by the addition of
pertuzumab to trastuzumab plus
chemotherapy regimes (171). 2–5%
LVEF reduction in patients treated with
lapatinib, and in 1% of patients treated
with tucatinib [reviewed in (173)].
Combination of lapatinib with
trastuzumab does not increase
cardiotoxicity (175).

Generally reversible alteration of
cardiomyocyte contractile function
{trastuzumab [reviewed in (8, 158)] and
pertuzumab [reviewed in (174)].

Inhibition of the signaling activated by
Neuregulin-1 (NRG1), a paracrine
growth factor released by cardiac
endothelial cells [reviewed in
(110–112)].

β-Blockers: bisoprolol (215). RAAS inhibitors:
ACE-Is such as perindopril (215). Combination of
RAAS inhibitors (ACE-Is) and β-blockers (248,
249). INaL inhibitor: ranolazine (265, 266).
Statins (283).
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TABLE 1 | (Continued)

Anti-cancer agent Epidemiology of the cardiotoxicity Cardiotoxic effect Cellular and molecular mechanisms
of cardiotoxicity

Mitigating strategies

May exacerbate anthracycline-induced
toxicity, reaching 28% of heart failure
incidence when trastuzumab is
combined with anthracyclines (165).

Exacerbation of anthracycline-induced
permanent damage through increased
cardiomyocyte death (140).

Increase in anthracycline-induced ROS
accumulation and consequent
cardiomyocyte death (167).

β-Blockers (214): bisoprolol (216), carvedilol (226).
RAAS inhibitors: ACE-Is such as lisinopril (226).
Statins (283).

VEGFR/PDGFR tyrosine kinase
inhibitors (e.g., sunitinib, sorafenib)

Up to 47% of patients receiving
sunitinib treatment experienced
hypertension, up to 28% showed LV
dysfunction, and 8% developed
congestive heart failure [reviewed in
(15)].

Generally reversible [reviewed in (37,
76, 193)].

Sunitinib- or sorafenib-induced VEGFR
inhibition reduces the production of the
vasorelaxant nitric oxide (NO) by
endothelial cells, in turn resulting in
hypertension. In turn, hypertension may
lead to capillary rarefaction, which may
cause LV dysfunction [reviewed in (15,
194)]. Sunitinib- or sorafenib-induced
VEGFR inhibition reduces angiogenesis
resulting in LV dysfunction [reviewed in
(15, 194)]. Sunitinib- or
sorafenib-induced PDGFR inhibition
induces the loss of pericytes, leading to
coronary microvascular dysfunction and
LV dysfunction [reviewed in (15, 194)].

SGLT2 selective inhibitors: empagliflozin (260).

BCL-ABL tyrosine kinase inhibitors
(e.g., imatinib, ponatinib)

Despite initial fears (196), the rate of
cardiotoxicity upon imatinib treatment
was shown to be extremely low, with
less than 1% of the patients developing
heart failure [reviewed in (37, 197)].
More than 20% of patients receiving
ponatinib treatment experienced
adverse cardiovascular event, 5%
developed congestive heart failure
[reviewed in (181, 197)].

Generally reversible (181). Ponatinib-induced cardiotoxic effects
were suggested to be consequent to
thrombotic microangiopathy and
consequent ischemia (199).

Growth factors: neuregulins [proof-of-principle
study in (200), reviewed in (197)].
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coronary disease, combination with other anticancer agents as
well as genetic predisposition to cardiotoxicity [reviewed in (17,
23, 24)]. In this regard, among the genetic factors increasing
the susceptibility to anthracycline-induced cardiotoxic effects,
the role of specific single-nucleotide polymorphisms (SNPs) is
emerging [reviewed in (24, 25)]. Indeed, heritability analysis
on multiple cell lines unveiled SNPs from 30 genes giving a
greater predisposition to daunorubicin-induced cardiotoxicity
(26). Specifically, several SNPs associated with anthracycline
cardiotoxicity affect genes involved in anthracycline metabolism,
transport, or downstream cytotoxic effects. For example, studies
on pediatric cohorts enlightened polymorphisms in CBR1 and
CBR3 genes (encoding for carbonyl reductases) associated
with enhanced cardiotoxicity susceptibility in children with
cancer (27), polymorphisms in ABCC1 and ABCC5 genes
(encoding for ATP-binding cassette transporters) associated
with increased anthracycline-induced cardiac dysfunction in
acute lymphoblastic leukemia patients (28, 29), polymorphisms
in SLC22A gene (encoding for a solute carrier) (30), as well
as polymorphisms in genes playing a role in iron homeostasis
(31), and others [reviewed in (25, 32)]. Oppositely, SNPs
in endothelial nitric oxide synthase (NOS3) gene have been
reported to be cardioprotective in patients upon a high dose of
doxorubicin (29).

Cardiac injury after anthracycline administration occurs with
every dose, as documented by the analysis of cardiac-biopsy
specimens a few hours after a single dose of anthracycline
[reviewed in (7)]. Although the vast majority (98%) of cases
of anthracycline cardiotoxicity being detected within the
first year after completing the treatment (33), anthracycline-
induced cardiotoxicity can also manifest months to years after
completing chemotherapy (33). From a pathophysiological point
of view, anthracyclines were suggested to induce cardiotoxicity
through cardiomyocyte-intrinsic mechanisms as well as other
mechanisms involving other cardiac cell types (Figure 1).
Importantly, anthracycline-induced cardiac damage may
be permanent due to cardiomyocyte death through several
biological processes, including apoptosis, autophagy, necrosis,
necroptosis, pyroptosis, and ferroptosis [reviewed in (34)]. In
this regard, the alteration of mitochondrial function and integrity
emerged as a distinctive feature of anthracycline-induced
cardiomyopathy [reviewed in (7, 34–39)]. Mitochondria network
is well developed in the cardiac muscle, occupying 36–40% of the
cardiomyocyte volume and producing around 90% of the cellular
energy [reviewed in (40–43)]. Among the complex underlying
molecular mechanisms involved in anthracycline-induced
mitochondrial dysfunction is worth to mention the formation
of reactive oxygen species (ROS), iron-catalyzed formation of
free radicals, lipid peroxidation, and cardiolipin sequestering
(44, 45) [reviewed in (6, 14, 34, 38)]. In this regard, in cardiac
mitochondria, anthracyclines can be reduced by NAD(P)H-
oxidoreductases and converted to unstable metabolites, such
as doxorubicin-semiquinone radicals, which can react with
molecular oxygen (O2), producing superoxide anion-free
radicals and hydrogen peroxide (O−2 and H2O2) (46) [reviewed
in (37)]. ROS generated by anthracyclines affect the activity
of many mitochondrial enzyme complexes, such as NOSs,

NAD(P)H oxidases, catalase, and glutathione peroxidase (GPx),
leading to DNA, protein, and lipid damage, and consequently
to cardiomyocyte death [reviewed in (39, 47, 48)]. Moreover,
anthracyclines, such as doxorubicin, have been reported to
impair cardiac iron homeostasis, resulting in its overload in
the cardiac tissue [reviewed in (14, 49, 50)]. Accordingly,
patients with anthracycline-induced cardiac dysfunction exhibit
higher iron levels in cardiac mitochondria, compared to healthy
individuals or patients suffering from anthracycline-independent
cardiac dysfunction (44). Doxorubicin can, in fact, chelate the
free intracellular iron and form iron-doxorubicin complexes,
which, in turn, are able to react with O2, further increasing the
generation of ROS [reviewed in (4, 14, 49, 50)]. In addition,
anthracyclines can directly interfere with the main iron-
transporting/-binding proteins. For example, doxorubicin can
impair cellular iron mobilization, resulting in its accumulation
within ferritin (51), and can reduce the expression of the
mitochondrial iron exporter ABCB8 (44). Recent studies have
also focused on the detrimental role of mitochondrial iron-
doxorubicin complexes triggering cardiomyocyte ferroptosis,
a kind of programmed cell death dependent on iron and
induced by lethal lipid peroxidation (52) [reviewed in (50)].
In this regard, doxorubicin-induced cardiotoxicity in mouse
models was shown to be consequent to a decrease in the
expression levels of glutathione peroxidase 4 (GPx4), which is
a scavenger for lipid peroxides, in turn inducing peroxidation
of unsaturated fatty acids and lipids (52). Anthracyclines are
also linked to mitochondria damage because of their high
affinity to cardiolipin, a mitochondrial membrane phospholipid
that is involved in apoptotic pathways [reviewed in (35, 53)].
Mechanistically, doxorubicin sequesters cardiolipin avoiding
its anchorage to cytochrome C or lipid-protein interfaces,
thus contributing to mitochondrial dysfunction and ROS
formation (54) [reviewed in (35, 53)]. Along with the impaired
cardiac mitochondrial function, anthracyclines have been
demonstrated to alter the structural integrity of mitochondria.
Indeed, it has been reported that doxorubicin stimulates the
receptor-interacting protein 3 (RIPK3)-induced activation
of Ca2+-calmodulin-dependent protein kinase (CaMKII),
thus triggering the opening of mitochondrial permeability
transition pore (MTPT), and ultimately inducing necroptotic
cardiomyocyte death (55).

Several lines of evidence have suggested that nuclear damage
induced by topoisomerase 2 (Top2) is another pivotal event
in anthracyclines’ cardiotoxic effects (45, 56) [reviewed in (4,
6)]. Specifically, doxorubicin intercalates into DNA and interacts
with both Top2-alpha (Top2α) and Top2-beta (Top2β), which
are enzymes responsible for managing DNA tangles and super-
coils. Top2α is highly expressed in proliferating cancerous
cells but not in quiescent tissues; therefore, it is considered
one of the key molecular targets of anthracycline anti-tumoral
effect (56). Cardiomyocyte toxicity stems from the fact that
doxorubicin interacts with cardiac Top2-β, the only isoform
expressed by adult mammalian cardiomyocytes. Consequently,
the Top2β-doxorubicin-DNA complex induces DNA double-
strand breaks (DSBs), ultimately promoting cardiomyocyte death
(45, 56).
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FIGURE 1 | Cellular and molecular mechanisms of the cardiotoxic effects exerted by anthracyclines. Schematic diagram showing the impact of anthracyclines on a
multitude of cardiomyocyte-intrinsic mechanisms leading to mitochondrial dysfunction and structural damage and/or DNA damage by topoisomerase activity, in turn
leading to cardiomyocyte death and heart failure. Additional mechanisms of anthracycline-induced cardiotoxicity include deregulation of fibroblasts, endothelial, and
immune cells, in turn concurring to cardiac remodeling.

Tumor protein P53 (p53) has also been implicated in
anthracyclines’ cardiotoxic response, although its involvement is
currently controversial. Indeed, it has been reported that DNA
breaks, induced by acute doxorubicin administration, lead to
activation of the DNA damage response (DDR) network, in turn
activating p53, which ultimately promotes the apoptotic cascade
(57) [reviewed in (58)]. Moreover, in response to cell stress,
p53 was shown to accumulate in the cytosol and to localize
in mitochondria, triggering a series of death-events related
to mitochondrial dysfunction, such as the permeabilization of
the mitochondrial outer membrane (MOMP), the release of
cytochrome C, the opening of the mitochondrial permeability
transition pore (PTP), the impairment of mitochondria, and
the production of ROS (59–63). Mice depleted for p53 exhibit
a less impaired mitochondrial integrity and reduced cardiac
dysfunction following doxorubicin treatment [reviewed in (5)].
In addition, doxorubicin-activated p53 has been shown to
contribute to metabolic derangement by inhibiting mitophagy
events (45) [reviewed in (4)]. As a result of cytosolic
accumulation, p53 binds Parkin and abrogates its translocation
to damaged mitochondria and their subsequent clearance by
mitophagy (64) [reviewed in (5)]. These results support p53 as
a key player in anthracycline-related cardiomyopathies (61, 62)
[reviewed in (4)]. Nevertheless, other studies unveiled opposite
effects depending on the dosage and timing of doxorubicin-
induced cellular stress. Indeed, upon low doses of doxorubicin,
which more closely recapitulate the clinical settings, it has been
reported a protective role of p53, counteracting the late-onset
cardiomyopathy and without activation of p53-dependent cell
death cascades (65, 66).

In addition to cardiomyocyte-intrinsic mechanisms,
anthracyclines exhibit a wide range of maladaptive effects
on other cardiac populations, including fibroblasts, endothelial
cells, vascular smooth muscle cells, and immune cells [reviewed
in (67)]. In particular, doxorubicin administration was shown

to increase endothelial cellular permeability, in turn causing
edema formation [reviewed in (67)], to induce ROS-dependent
activation of transforming growth factor beta (TGFβ) signaling,
in turn triggering myofibroblast activation and collagen
deposition [reviewed in (67)], and to induce the activation of the
innate immune system and inflammatory response [reviewed in
(67)]. Overall, these events were suggested to lead to pathological
left ventricular remodeling [reviewed in (67)].

Fluoropyrimidines
Fluoropyrimidines exert the second most common cause of
chemotherapy-induced cardiotoxicity [reviewed in (68–74)].
This antimetabolite drug class, which includes 5-fluorouracil (5-
FU) and its prodrug capecitabine, is incorporated into DNA or
RNA, thus acting as cytostatic agent for the clinical treatment
of colorectal, breast, gastric, pancreatic, prostate, and bladder
cancers [reviewed in (74)]. Fluoropyrimidines are generally
well tolerated; nevertheless, 1–18% of the patients receiving
fluoropyrimidines experiences cardiovascular toxicity [reviewed
in (69–71, 73–75)]. Cardiovascular side effects associated with
fluoropyrimidines include a generally reversible coronary artery
spasm and myocardial ischemia, although cardiomyocyte death
and loss may occur as consequence of coronary artery thrombosis
and myocardial infarction [reviewed in (69, 75, 76)], as well
as directly through cardiomyocyte-intrinsic mechanisms (77).
These adverse effects were suggested to be mediated by vascular
smooth muscle cells, erythrocytes, endothelial cells as well
as directly by cardiomyocytes (Figure 2). From a molecular
point of view, 5-FU was reported to induce protein kinase
C-mediated vasoconstriction in vascular smooth muscle cells
(78) [reviewed in (69)]. 5-FU was also shown to reduce the
oxygen transport capacity of erythrocytes, inducing relative
ischemia of the myocardium (79). 5-FU administration was also
suggested to induce increased ROS production in endothelial
cells, leading to cell senescence and death (77), in turn
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triggering a procoagulant state and acute thrombotic events
[reviewed in (69)]. Finally, direct cardiomyocyte toxicity after
fluoropyrimidine administration has also been suggested. Indeed,
5-FU has also been demonstrated to favor ROS production and to
induce cardiomyocyte apoptosis and autophagy (77).

Taxanes
Taxanes, such as paclitaxel, are antimitotic agents that stabilize
microtubules in the mitotic spindle, thus blocking cell cycle
progression. These chemotherapy drugs are widely employed in
cancer treatment, including breast, lung, and ovarian cancers.
However, significant toxicities limit the effectiveness of taxane-
based treatment regimens (80). Taxane administration is reported
to induce cardiotoxic events in 3–20% of the patients (81, 82)
[reviewed in (83–85)]. Taxane-induced cardiotoxic effects include
QT interval prolongation, followed by bradycardia and atrial
fibrillation (82). Because taxane-induced cardiotoxicity appears
to be mild in most cases and reversible upon discontinuation
of the therapy, no specific agents are recommended for their
management [reviewed in (86, 87)].

The underlying cellular and molecular mechanisms of
taxane-induced cardiotoxicity are unclear; however, a few
hypotheses have been proposed (Figure 3). Among them,
hypersensitivity reaction with a massive histamine release
and consequent disturbance of the conduction system and
arrhythmia has been proposed (82). Hence, the administration
of anti-inflammatory (glucocorticoids) and anti-histamine drugs
(histamine receptor blockers), is suggested as prophylactic
therapy for the management of cardiac anaphylaxis induced
by taxanes [reviewed in (37, 88–90)]. Another hypothesis is
cardiomyocyte damage through the drug’s actions on subcellular
organelles (82). In this regard, taxanes were suggested to increase
ROS production by cardiomyocyte mitochondria, the opening of
mitochondrial permeability transition pore and the collapse of
mitochondrial membrane potential (91).

Among taxanes, paclitaxel has been shown to exacerbate
anthracycline-induced toxicity. Indeed, combined treatment with
paclitaxel and doxorubicin augmented HF events (92) and
increased histopathological alterations of cardiac tissue, with
extensive necrosis (93). This effect was suggested to derive from
a pharmacokinetic interference of doxorubicin elimination by
paclitaxel [reviewed in (94)]. No interaction between doxorubicin
and other taxanes (such as docetaxel) has been reported; in line,
docetaxel showed no increase in cardiac toxicity when combined
with doxorubicin [reviewed in (94)].

Alkylating Drugs
Alkylating drugs, such as cisplatin, cyclophosphamide,
ifosfamide, mitomycin, are crosslinking agents inducing
ROS production, DNA damage and apoptosis in cancer cells
[reviewed in (95)]. Cisplatin is mostly used in combination with
other chemotherapy drugs to overcome drug-resistance and
reduce toxicity [reviewed in (95)]. Cisplatin-based chemotherapy
has been reported to cause cardiovascular diseases, particularly
myocardial infarction and angina, in a range of 7–32% of patients
(96) [reviewed in (97)]. In patients treated with cisplatin, a
long-term unfavorable cardiovascular risk profile was observed,

with hypercholesterolemia, hypertriglyceridemia, hypertension
and insulin-resistance evaluated after more than 10 years from
remission (98). The cardiotoxic effects of alkylating agents may
be permanent and a few cellular and molecular mechanisms were
suggested to contribute to these processes (Figure 4). Indeed,
cisplatin administration has been linked with thromboembolic
events associated with platelet aggregation and vascular damage
(99) [reviewed in (87)], in turn resulting in cardiomyocyte
degeneration and necrosis. The increased platelet aggregation
was suggested as a direct consequence of cisplatin on the
activation of the arachidonic pathway in platelets [reviewed in
(87)]. The endothelial capillary damage was suggested to derive
from a cisplatin-dependent increase in oxidative stress (99).
Indeed, cisplatin has also been shown to induce oxidative stress
in myocardial tissue, with decreased activity of glutathione and
antioxidant enzymes (100, 101). The consequence of cisplatin-
induced endothelial injury was suggested to be the extravasation
of proteins, erythrocytes, and toxic metabolites, in turn causing
damage to the myocardium (99). Finally, cisplatin has also
been suggested to activate NF-κB in the cardiac tissue (101), in
turn increasing the expression of proinflammatory chemokines
and cytokines (102). This mechanism was proposed to result
in cardiac remodeling (101), and extensive degeneration and
fragmentation of cardiac muscle fibers (102).

The alkylating agent cyclophosphamide at high doses can
cause hemorrhagic cell necrosis and may lead to HF; however,
with the lower doses currently used, these side effects are
infrequent (103).

Targeted Therapy
ERBB Targeted Therapies
Growth factor receptors of the ERBB family (EGFR/ERBB1,
ERBB2, ERBB3, and ERBB4) play a key role in the development
and progression of a variety of solid cancers [reviewed in
(104–106)]. After the binding of soluble ligands, ERBB kinase
receptors arrange in homo- or heterodimer complexes, which
activate the tyrosine kinase activity and the consequent signaling
events leading to the modulation of cell survival, proliferation,
migration, and differentiation [reviewed in (104–107)]. ERBB2
(also known as HER2) receptor is a proto-oncogene frequently
amplified and overexpressed in many human cancers. Unlike
the other ERBB receptors, ERBB2 is unable to bind ligands
but heterodimerizes with other ERBB receptors, stabilizing
the ligand interaction with the coupled receptors, enhancing
and diversifying the ligand-induced receptor signaling (108)
[reviewed in (107)]. Several strategies have been developed to
target the key role of ERBB2 signaling in tumor development and
progression. Successful approaches are represented by treatment
with humanized ERBB2-targeting antibodies (e.g., trastuzumab
and pertuzumab) and tyrosine kinase multi-HER inhibitors
(e.g., lapatinib, tucatinib, afatinib, neratinib, and dacomitinib),
which effectively showed ERBB2 inhibition and tumor regression,
particularly in the treatment of mammary carcinomas [reviewed
in (109)].

The cardiotoxicity of ERBB2-directed therapeutics is
consequent to the inhibition of the signaling activated by
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FIGURE 2 | Cellular and molecular mechanisms of the cardiotoxic effects exerted by fluoropyrimidines. Schematic diagram showing the impact of fluoropyrimidines
on cardiac dysfunction due to myocardial ischemia induced by deregulation of vascular smooth muscle cells and erythrocytes. Additional mechanisms of
taxane-induced cardiotoxicity include heart failure, consequent to cardiomyocyte death induced by cardiomyocyte-intrinsic mechanisms (increased ROS production)
or myocardial infarction consequent to coronary artery thrombosis caused by endothelial cell senescence and death.

Neuregulin-1 (NRG1), a paracrine growth factor released by
cardiac endothelial cells featuring pivotal functions in the
heart (Figure 5) [reviewed in (110–112)]. NRG1, together
with its tyrosine kinase receptors ERBB4, ERBB3, and ERBB2,
is essential for heart development (113–115) [reviewed in
(110, 116, 117)] and tunes heart regenerative, inflammatory,
fibrotic, and metabolic processes (118, 119) [reviewed in (110,
117, 120–122)]. In cardiomyocytes, the most prominently
expressed NRG1 receptors are ERBB4 and ERBB2 (123) and
NRG1 stimulates fetal/neonatal cardiomyocyte proliferation,
hypertrophy, sarcomerogenesis, and survival (114, 115, 124–
127) [reviewed in (110, 116, 117, 120, 121)]. ERBB2 forms
heterodimers with ERBB4 and is necessary for NRG1-elicited
cardiomyocyte proliferation during embryonic and neonatal
stages (122, 124). However, cardiac ERBB2 expression levels
decline soon after birth in mice, as part of the mechanism leading
to cardiomyocyte terminal differentiation, cell cycle withdrawal
and loss of cardiac regenerative ability (124) [reviewed in (122)].

Despite low levels described in adulthood, ERBB2 appears to
play a role in the prevention of dilated cardiomyopathy. Indeed,
mice with ventricular-restricted deletion of ERBB2 exhibited
multiple independent parameters of dilated cardiomyopathy,
such as chamber dilatation, wall thinning, and decreased
contractility (128). Decreased NRG1 signaling in postnatal life
is associated with adverse cardiac function and susceptibility to
stress [reviewed in (110, 116)]. The expression and activation of
ERBB4 and ERBB2 receptors were found lower in myocardium
from HF patients (129). In mice subjected to pressure overload,
ERBB4 and ERBB2 undergo relevant reduction at mRNA and
protein levels with the progression to HF (130).

Conversely, enhanced activity of NRG1 counteracts cardiac
remodeling and HF progression [reviewed in (110, 116)].
Systemic administration of NRG1 improves cardiac function
following various types of cardiac injuries in adult mice (115, 127,
131, 132) [reviewed in (110, 133)] and HF patients (117, 134–136)
[reviewed in (137)].

Cardiac upregulation of ERBB2 was documented upon
adverse hemodynamic or other stressful or toxic stimuli,
including anthracycline therapies (138, 139). This increase is

required to sustain cardiomyocyte survival and cardiac function
under stress conditions. Indeed, cardiomyocytes isolated from
mice with ventricular-restricted deletion of ERBB2 were more
susceptible to anthracycline toxicity, revealing a role for ERBB2
in cardiomyocyte survival upon chemotherapy administration
(128). Conversely, cardiac-specific overexpression of ERBB2 in
mice has been shown to decrease cardiomyocyte death upon
doxorubicin administration (140).

EGFR (also known as ERBB1) is associated with cancer
progression and its inhibition via monoclonal antibodies (such
as cetuximab and panitumumab) or TKIs (such as erlotinib and
gefitinib) has been the first strategy evaluated among growth
factor receptors targeting therapies (141, 142). Nowadays, EGFR
inhibitors are clinically used for the treatment of several solid
cancers, including lung, head and neck, colorectal, and pancreatic
cancers (142). Although cetuximab-associated cardiotoxicity has
been reported in the clinical literature, the incidence of cardiac
events in patients remains very low (143, 144).

ERBB Targeting Monoclonal Antibodies
Trastuzumab, the first ERBB2-targeting humanized monoclonal
antibody, binds the extracellular domain IV of ERBB2
receptor leading to the inhibition of ligand-independent
heterodimerization between ERBB2 and other ERBB family
members (145, 146) [reviewed in (105, 147)]. From a clinical
perspective, the cardiotoxicity of monoclonal antibodies
targeting ERBB2, such as trastuzumab, is moderate and
reversible [reviewed in (148–150)]. Trastuzumab monotherapy
is associated with cardiotoxicity in 2–5% of patients, leading
to HF in 1–4% of the cases (151–153) [reviewed in (154–
157)]. The mechanism of trastuzumab-induced cardiotoxicity
appears to be the alteration of cardiomyocyte contractile
function without cardiomyocyte death [reviewed in (8, 158)].
Interestingly, Erbb2 gene polymorphisms that alter the ERBB2
protein sequence have been identified, and two of them (Ile
655 Val and Pro 1170 Ala) were associated with an increased
risk of cardiotoxicity from trastuzumab therapy (32, 159–164).
Importantly, with the concomitant association of trastuzumab
and anthracyclines, HF incidence increased to 28% (165, 166).
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FIGURE 3 | Cellular and molecular mechanisms of the cardiotoxic effects exerted by taxanes. Schematic diagram showing the main cardiotoxic effects of taxanes,
namely atrial fibrillation and cardiac dysfunction, as a result of the disturbance of the conduction system or cardiomyocyte dysfunction, respectively.

Thus, trastuzumab-mediated blockade of ERBB2 signaling
increases anthracycline-induced toxicity. The molecular
mechanism underlying this combinatorial phenomenon may be
due to the key role of ERBB2 in the management of oxidative
stress in the heart: interrupting the neuregulin/ERBB2 axis, which
is responsible for the activation of the glutathione reductase
system, facilitates the anthracycline-induced accumulation
of ROS and subsequent calcium influx, finally leading to
caspase activation and cardiomyocyte death (167). Once anti-
ERBB2 agents inhibit the ERBB2 protective mechanisms in
cardiomyocytes, the doxorubicin oxidative damage was reported
to increase (158) [reviewed in (37)].

Pertuzumab, a new generation of ERBB2-targeting therapies,
is an antibody against domain II specifically designed to inhibit
ligand-induced ERBB2 heterodimerization (168, 169). The data
regarding the sole pertuzumab cardiotoxicity effects are still
limited. Currently, combining trastuzumab/pertuzumab and
trastuzumab/lapatinib, in order to induce a dual blockade of
HER2, is part of the standard of care (170). In this regard, a
recent study reporting a systematic review of eight randomized
controlled trials showed that the risk of HF is increased by
the addition of pertuzumab to trastuzumab plus chemotherapy
therapeutic regimens (171).

ERBB Kinase Inhibitors
Tyrosine kinase inhibitors selectively target and inhibit several
oncogenic relevant receptor-tyrosine kinases (RTKs), inducing
survival benefits in therapies for various hematological and
solid cancers [reviewed in (172)]. TKIs include single-targeted
and multi-targeted TKIs. A small group of small TKIs,
including lapatinib (ERBB2 and EGFR inhibitor), tucatinib
(ERBB2 inhibitor), erlotinib (EGFR inhibitor), gefitinib (EGFR
inhibitor), afatinib (EGFR, ERBB2, and ERBB4 inhibitor),
neratinib (EGFR, ERBB2, and ERBB4 inhibitor), and dacomitinib
(EGFR, ERBB2, and ERBB4 inhibitor), has been developed to
target ERBB receptors. However, these ERBB blockers can also
exert cardiac toxicity in treated patients. In particular, about
2–5% of patients treated with lapatinib displayed a reduced
LVEF, and similar effects were reported in 1% of patients
treated with tucatinib [reviewed in (173)]. The decline in
cardiac function is generally reversible [reviewed in (174)].
Regarding combinatorial anti-ERBB strategies, little is known
about the cardiotoxic potential of ERBB2 double blockade with
trastuzumab plus lapatinib. Although stronger inhibition of the
HER2 pathway using two anti-HER2 drugs was initially expected
to result in greater impairment of cardiomyocytes, preclinical
tests suggested a possible cardioprotective mechanism exerted

by lapatinib. Adjuvant Lapatinib and/or Trastuzumab Treatment
Optimisation (ALTTO), a randomized, multi-center, open-label,
phase III study of adjuvant lapatinib plus trastuzumab treatment
in patients with HER2/ERBB2 positive primary breast cancers
(ClinicalTrials.gov, identifier NCT00490139), as well as other
clinical trials with double ERBB2 blockade, support the safety of
lapatinib plus trastuzumab treatment, since a lower, although not
statistically significant, incidence of cardiac events was detected
in patients in the trastuzumab plus lapatinib arm. This evidence
does not imply that lapatinib has a cardioprotective effect, nor
that it should be a preferred option for patients with an increased
risk of cardiotoxicity (175).

Afatinib, an ERBB family blocker, approved for the first-line
treatment of advanced non-small cell lung cancer (NSCLC) with
EGFR mutations, is one of the few TKIs with a low risk of
cardiotoxicity [reviewed in (176)]. Finally, cardiac side effects of
the irreversible pan-ERBB inhibitor neratinib [reviewed in (177)]
were reported neither in phase I clinical studies in solid tumors
(178, 179) nor in a phase II trial in advanced HER2-positive breast
cancer (179).

Multi-Targeted Tyrosine Kinase Inhibitors
In addition to single- or multi-targeted ERBB family inhibitors
(see the previous paragraph), other multi-targeted TKIs were
developed to effectively block multiple pathways of intracellular
signal transduction. The broad kinase-signaling inhibition of
several TKIs, such as sunitinib, sorafenib, imatinib, and nilotinib,
includes the vascular endothelial growth factor receptors
(VEGFRs), platelet-derived growth factor receptors (PDGFRs),
BCR-ABL, and c-KIT. This wide action results in a strong anti-
malignancy effect of this class of drugs, although correlated
with reversible myocardial dysfunctions with a wide range of
severity (180) [reviewed in (37, 181–183)]. Clinical analysis
of TKI anti-tumoral therapies shows that compounds with
broader off-target effects as kinases inhibitors (lower selectivity
in targeting a specific kinase) correlated to higher degree of
cardiotoxicity, particularly in case the inhibited kinase plays
a role in the maintenance of the cardiovascular system (184–
186) [reviewed in (37)]. In this regard, sunitinib, which targets
VEGFR/PDGFR and interferes with more than 30 tyrosine
kinases; sorafenib, which targets VEGFR/PDGFR and inhibits
at least 15 tyrosine kinases, including RAF/MEK/ERK pathway,
and ponatinib, which targets BCR-ABL and several other
RTKs, are responsible for major clinical concerns related to
cardiotoxicity (172) [reviewed in (37, 187, 188)]. Of note, these
three compounds (sunitinib, sorafenib, and sonatinib) target
VEGF, PDGFR, and c-Kit, namely three tyrosine kinase receptors

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 April 2022 | Volume 9 | Article 847012267

https://clinicaltrials.gov
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-847012 April 11, 2022 Time: 16:47 # 11

Morelli et al. Cardiotoxicity Mechanisms

FIGURE 4 | Cellular and molecular mechanisms of the cardiotoxic effects exerted by alkylating drugs. Schematic diagram showing the impact of alkylating agents in
promoting heart failure due to cardiomyocyte death consequent to myocardial infarction. Additional mechanisms of alkylating drug-induced cardiotoxicity include
heart failure consequent to cardiomyocyte death induced by oxidative stress and cardiac remodeling following activation of pro-inflammatory pathways.

involved in multiple key functions in the cardiovascular system,
whose inhibition is likely the cause of the observed cardiotoxic
effects (Figure 6). Particularly, sunitinib, which presents an
effective multi-targeted inhibition of growth-factor receptors able
to reduce the angiogenesis and tumor cell survival/proliferation
(182, 189), is considered more cardiotoxic than other anti-
angiogenic and TKI drugs (182). Based on clinical studies, 47%
of patients receiving sunitinib treatment exhibited hypertension,
up to 28% showed LV dysfunction, and 8% developed CHF
[reviewed in (15)]. Patients with pre-existing cardiovascular
diseases or previous cardio-toxicant exposure show even higher
risks [reviewed in (190–192)]. However, cardiac dysfunctions
induced by sunitinib and other inhibitors of tyrosine kinases
have shown high reversibility; after treatment withdrawal,
hypertension and cardiac dysfunction were alleviated or wholly
restored (193) [reviewed in (37)]. Indeed, the majority of
sunitinib-treated patients were able to carry on with sunitinib
therapy following the resolution of cardiovascular events (193).
Similarly, reversible cardiotoxicity has been reported upon
sorafenib treatment [reviewed in (76)].

The cellular and molecular details of the observed elevated
blood pressure and cardiac dysfunction in patients treated with
anti-VEGF/PDGFR drugs, such as sunitinib and sorafenib, are
not fully understood. Nevertheless, sunitinib- and sorafenib-
induced VEGFR inhibition was suggested to reduce the
production of the vasodilator nitric oxide (NO) by endothelial
cells, in turn resulting in hypertension [reviewed in (15, 194)].
Hypertension is known to lead to capillary rarefaction, which
may be responsible for the cardiac dysfunction observed in
sunitinib and sorafenib-treated patients [reviewed in (15)].
Indeed, given the high energy dependency, the heart is usually
highly vulnerable to any altered blood supply. However,
the capillary rarefaction potentially responsible for cardiac
dysfunction may also be a direct consequence of reduced
angiogenesis following sunitinib- or sorafenib-induced VEGFR
inhibition [reviewed in (15, 194)]. Further, sunitinib- or
sorafenib-induced PDGFR inhibition was suggested to induce
the loss of pericytes, in turn leading to coronary microvascular
dysfunction (195) [reviewed in (15, 194)]. Sunitinib, as an
off-target effect, has also been suggested to inhibit AMPK
activity, in turn inducing energy depletion in cardiomyocytes
(184). However, another study found that sunitinib treatment
in cardiomyocytes does not affect cellular ATP levels and that

myocytes are not protected from sunitinib by pre-treatment with
AMPK-activating drug metformin (189).

Imatinib, a TKI that inhibits BCR-ABL fusion protein, c-KIT,
and PDGFR, is used to treat chronic myeloid leukemia and
gastrointestinal stromal cancers. Despite initial fears (196), the
rate of cardiotoxicity upon imatinib treatment was shown to
be very low, with less than 1% of the patients developing HF
[reviewed in (37, 197)]. Nevertheless, the inhibition of CaMKII in
adult rat cardiac fibroblasts was shown to reduce the production
of mitochondrial superoxide triggered by sunitinib and imatinib
treatments (198).

Interestingly, ponatinib, a BCR-ABL kinase inhibitor
developed to treat patients with imatinib resistance driven by
T315I “gatekeeper” mutation, has been associated with a high
rate of cardiovascular adverse events. Indeed, more than 20%
of patients receiving ponatinib treatment experienced adverse
cardiovascular events, and 5% developed CHF [reviewed in (181,
197)]. Of note, these cardiotoxic effects are often reversible with
interruption of the therapy (181). The mechanisms of ponatinib-
induced cardiotoxic effects are unclear; however, they were
suggested to be consequent to thrombotic microangiopathy and
consequent ischemia (Figure 6) (199), although cardiomyocyte
death was also reported to occur in the zebrafish model (200).

STRATEGIES TO REDUCE ANTICANCER
DRUG-ASSOCIATED CARDIOVASCULAR
TOXICITY

Several therapeutical approaches already known in clinical
usage have been proposed to reduce cardiotoxicities, such as
iron-chelating drugs, β-blockers, renin-angiotensin-aldosterone
system (RAAS) inhibitors, SGLT2 inhibitors, late inward
sodium current (INaL) selective inhibitors, phosphodiesterase-5
inhibitors, metabolic agents, statins as well as growth factors and
hormones [previously reviewed in (201)]. Here we will discuss
these classes of drugs, focusing on their mechanisms of action and
the therapeutic validity and effectiveness.

Iron-Chelating Drugs
The iron-chelating drug dexrazoxane has been identified as
one of the most promising cardioprotective therapies in
these last years and represents the only FDA-approved drug
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FIGURE 5 | Cellular and molecular mechanisms of the cardiotoxic effect exerted by ERBB targeting monoclonal antibodies and tyrosine kinase inhibitors. Schematic
diagram showing the impact of ERBB targeting therapies on cardiomyocyte dysfunction caused by the impairment of Neuregulin-1 signaling. However, in
combination with anthracyclines, anti-HER2 monoclonal antibody trastuzumab may also induce heart failure as a consequence of cardiomyocyte death induced by
ROS accumulation.

FIGURE 6 | Cellular and molecular mechanisms of the cardiotoxic effects exerted by VEGFR/PDGFR and BCR-ABL and tyrosine kinase inhibitors. Schematic
diagram showing the impact of VEGFR/PDGFR and BCR-ABL inhibition, resulting in a reversible cardiac disfunction. Anti-VEFGR activity impairs cardiac function by
inducing capillary rarefaction consequent to reduced angiogenesis or hypertension derived from reduced NO production. Anti-PDGFR activity induces cardiac
dysfunction by promoting the loss of pericytes, which in turn impairs the coronary vasculature. Anti-BCR-ABL inhibition may results in myocardial ischemia and
cardiac dysfunction consequent to thrombotic microangiopathy.

specific for anthracycline-induced cardiotoxicity (202, 203).
Dexrazoxane is a pro-drug that rapidly turns into its active
form after entering in cardiomyocytes, in turn counteracting the
formation of anthracyclines-iron complexes and the subsequent
adverse cardiac effects [reviewed in (204)]. Importantly, the
development of iron-chelating drugs to prevent anthracycline-
induced cardiotoxicity has emerged as an approach of relevant
clinical importance in the context of the genetic predisposition
of patients suffering from iron-related genetic disorders,
such as hereditary hemochromatosis (31, 205). Initially, the
cardioprotective functions of this iron chelator were ascribed
majorly to its ability to affect iron regulatory proteins and
reduce iron accumulation (206) [reviewed in (14, 207)].
However, additional mechanisms have been suggested to drive
the cardioprotective activity exerted by dexrazoxane following
anthracycline administration. Specifically, dexrazoxane has been
shown to modify the topoisomerase 2 (Top2β) configuration
preventing its interface with anthracyclines, thereby avoiding the
Top2-DNA cleavage complexes (56, 208). Close derivatives of
dexrazoxane lacking the interaction with Top2β were found not
to be protective in relevant chronic anthracycline cardiotoxicity
models (206, 209). Thus, cardioprotective effects of dexrazoxane
in chronic anthracycline cardiotoxicity were suggested to derive
from the inhibition of the interaction between anthracyclines and
Top2β, rather than to its metal-chelating action (209) [reviewed
in (210)].

Recently, a study on the cardioprotective effects of
dexrazoxane, based on seven randomized trials and two
retrospective trials for a total of 2177 patients with breast cancer
receiving anthracyclines with or without trastuzumab reported
that dexrazoxane reduces the risk of clinical HF and cardiac
events in these patients without significantly impacting cancer
outcomes (203). Thus, dexrazoxane represents a therapeutical
strategy to limit anthracycline cardiotoxicity.

β-Blockers
β-blockers, also known as beta-adrenergic blocking agents,
are a class of drugs that blocks the effects of the hormone
epinephrine (adrenaline), causing the heart to beat more slowly
and with less force, thus lowering blood pressure. These
drugs are predominantly used to manage the reduction in left
ventricular ejection fraction (LVEF), preventing symptomatic
HF and protecting the heart from a second heart attack
event after the first one (secondary prevention) [reviewed
in (211, 212)]. The choice of β-blockers as a therapy
for cardiac dysfunctions associated with anticancer drugs
is mostly based on the dual cardioprotective role exerted
by antihypertensive or antiarrhythmic drugs, which preserve
cardiovascular function while inhibiting tumor angiogenesis
[reviewed in (212)]. β-blockers, together with calcium channel
blockers, nitrates, and aspirin are recommended for the
management of fluoropyrimidines-induced cardiotoxicity as
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therapies for angina chest pain, albeit the absence of randomized
controlled trials to support their efficacy [reviewed in (68, 71,
213)]. Furthermore, a large number of observations indicate
β-adrenergic receptor signaling alterations as a feature of
anthracycline-induced cardiomyopathy and in other forms of
dilated cardiomyopathies [reviewed in (16, 37)]. A retrospective
survey between 2005 and 2010 on 920 breast cancer patients who
received anthracyclines and trastuzumab showed an association
of continuous β-blocker treatment with a significantly lower
incidence of HF events (214). Bisoprolol, another second-
generation β-blocker, showed stronger efficacy compared to
angiotensin-converting-enzyme inhibitor (ACE-I) perindopril
in attenuating the LVEF decline in patients who received
trastuzumab, even though it was unable to avoid left ventricular
remodeling (215). However, administration of metoprolol,
a second-generation β-blocker, did not affect LVEF decline
determined by adjuvant, anthracycline-containing regimens
with or without trastuzumab and radiation (216) and showed
a non-statistically significant reduction in the incidence of
anthracycline-induced HF events (217).

In in vitro and ex vivo set-up, carvedilol, a non-selective
β- and α1-AR antagonist with strong antioxidant properties,
reduced doxorubicin-induced ROS release and cardiomyocyte
apoptosis (218) as well as mitochondrial respiration dysfunctions
and calcium overloading (219). In rat models of doxorubicin-
induced cardiomyopathy, carvedilol showed a significant
cardioprotective effect, while atenolol, a β-blocker selective
for β1-AR and without antioxidant properties, did not,
thus suggesting that carvedilol cardioprotective efficacy
relies more on its antioxidant properties than on the β-AR
blocking action (220). In clinical trials of patients undergoing
anthracycline chemotherapy, the prophylactic use of carvedilol
decreased the ventricular dysfunction (221–223). In children
receiving anthracyclines for acute lymphocytic leukemia,
pre-treatment with carvedilol reduced troponin, diastolic
dysfunction, and lactate dehydrogenase levels (224, 225).
Furthermore, a randomized trial on 468 breast cancer patients
treated with anthracyclines with/without trastuzumab showed
reduced cardiotoxicity upon carvedilol administration, hence
recommending carvedilol as a strategy to reduce trastuzumab
interruptions (226).

Nebivolol is a cardio-selective β-blocker with mild
vasodilating effects due to its interaction with the arginine/NO
pathway [reviewed in (227)]. In isolated perfused rat hearts
model of anthracycline-induced cardiotoxicity, treatment with
nebivolol increased NO levels and significantly reduced
oxidative stress, and improved cardiac function (228).
Mechanistically, experiments in the rat model suggested that
nebivolol administration reduces alterations in cardiomyocyte
histomorphometry induced by doxorubicin through modulation
of caspase-3, NO synthase (NOS), and TNF-α (229). In
randomized placebo-controlled studies, the prophylactic use of
nebivolol preserved the cardiac diastolic and systolic function
from anthracycline-induced toxicity (230, 231).

To date, the cardioprotective efficacy of β-blockers needs to
be further validated in large clinical trials. In addition, in clinical
practice, the usage of β-blockers is hampered by their adverse

effects in fragile patients, indicating their possible application
only in patients with a high cardiotoxicity risk.

Renin-Angiotensin-Aldosterone System
Inhibitors
Several studies showed that alteration of the RAAS has a
crucial role in modulating anthracycline-induced cardiotoxicity
[reviewed in (232)]. Therefore, the development of RAAS
inhibitors, including ACE-Is, angiotensin receptor type 1
blockers (ARBs), as well as aldosterone antagonists, may be
effective in the prevention and treatment of anthracycline-
induced cardiotoxicity [reviewed in (232, 233)].

Angiotensin-converting-enzyme inhibitors, such as
enalapril, captopril, lisinopril, and ramipril, impair the
conversion of angiotensin I to angiotensin II, with a consequent
decrease of angiotensin II receptor type 1 (AT1R) stimulation
and its downstream signaling. These compounds have been
demonstrated effective in the treatment of hypertension, as
well as in reducing mortality in left ventricular dysfunction
after myocardial infarction and CHF (234). Preclinical studies
in animal models have demonstrated that ACE-Is, such as
enalapril, captopril, and lisinopril, can effectively counteract the
cardiotoxic effects after single high-dose, multiple low-doses or
chronic exposure of anthracyclines (235–238). Mechanistically,
ACE-Is’ therapy has been shown to result in the neutralization
of ROS damage, reduction of interstitial fibrosis, limitation
of intracellular calcium overload, along with improvement
of mitochondrial respiration and cardiomyocyte metabolism
(235, 236) [reviewed in (232)]. In retrospective clinical analysis,
enalapril administration to doxorubicin-induced HF children
increased cardiac hemodynamic parameters; however, these
parameters declined after a few years (239). ACE-I therapy
with ramipril or enalapril was also shown to induce the
recovery of cardiac parameters in patients with doxorubicin-
induced cardiac function decline (240). However, no significant
improvement in exercise ability or contractile state of pediatric
cancer patients receiving anthracyclines was also reported upon
enalapril administration, albeit with reduction of left ventricular
end-systolic wall stress (241). Clinical trials on HER2-positive
breast cancer patients under anthracycline-trastuzumab therapy
enlightened cardioprotective effects upon the administration of
the ACE-I lisinopril (226).

Angiotensin receptor type 1 blockers, such as candesartan
and telmisartan, inhibit angiotensin II binding to AT1R. In
preclinical rat models, candesartan significantly reversed the
daunorubicin-induced myocardial pathological changes and
cardiac dysfunction (242). Candesartan administration was
shown to significantly alleviate the decline in LVEF occurring
during adjuvant, anthracycline-containing regimens with or
without trastuzumab and radiation (216). Furthermore, in a
small prospective study of 49 patients free from cardiovascular
diseases and affected by solid cancers, telmisartan treatment
starting before chemotherapy was able to reduce epirubicin-
induced ROS damage by antagonizing the pro-inflammatory
signals and reversing the early myocardial impairment (243).
Telmisartan administration was also associated with long-lasting
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(up to 18 months) protection from early and acute myocardial
dysfunction in patients treated with epirubicin (244, 245). In
contrast, the administration of candesartan was unable to protect
against the decrease in left ventricular ejection fraction during or
shortly after trastuzumab treatment (246).

Importantly, clinical trials have also shown that a combination
of ACE-Is or ARBs and β-blockers has beneficial effects in
treating cardiotoxicity induced by anthracyclines and/or
anti-HER2 agents. Indeed, the combination of ACE-Is
(enalapril) and β-blockers significantly reduced the incidence
of cardiac dysfunction along with prevention of the onset
of late cardiotoxicity in patients receiving anthracyclines
(33, 247). A small phase I trial conducted on 20 women
suffering from breast cancer assessed the safety of continuing
trastuzumab treatment despite cardiotoxicity onset if patients
received ACE-Is and β-blockers following a staggered protocol
(248). Another study unveiled the combination of ACE-Is,
β-blockers and close cardiac monitoring as an effective strategy
for cardioprotection in patients receiving HER2-targeted
therapies (249).

Further studies focused on the cardioprotective role of
aldosterone antagonists, which inhibit the last step of the
RAAS and are already known for their beneficial effects on
injury-induced cardiac remodeling and fibrosis [reviewed in
(250)]. In a small clinical trial, spironolactone has been reported
to prevent anthracycline-related cardiac dysfunction in breast
cancer patients (251).

Sodium-Glucose Cotransporter-2
Inhibitors
Sodium-glucose cotransporter-2 selective inhibitors
(empagliflozin, canagliflozin, and dapagliflozin) are a group
of compounds that have been shown to have protective effects on
the progression of HF [reviewed in (252)]. Indeed, EMPA-REG
OUTCOME trial demonstrated that empagliflozin reduces
major adverse cardiovascular events, cardiovascular death,
and hospitalization rates for HF (253). Similarly, EMPEROR-
Preserved trials found a reduced risk of HF hospitalization
for 9718 patients with HF treated with empagliflozin (254).
In a new systematic review meta-analysis of seven studies,
for a total of 5,150 HF patients, empagliflozin was effective in
reducing cardiovascular death or hospitalization for worsening
HF condition (255). Therefore, SGLT2 inhibitors represent a
promising treatment for chronic HF patients.

Recently, the potentially protective effects of SGLT2 inhibitors
on the cardiac dysfunction induced by chemotherapies and
targeted therapies were also investigated in preclinical studies in
animal models. In this regard, protective effect by empagliflozin
against anthracycline-induced cardiac impairment, diastolic
dysfunction, and maladaptive cardiac remodeling has been
documented (256–259). Mechanistically, empagliflozin was
suggested to reduce ferroptosis, inflammatory response (NF-κB
signaling), apoptosis, and fibrosis induced by doxorubicin
through the involvement of NLRP3 and MyD88-related
pathway (257, 258). A recent pre-clinical study reported
that empagliflozin can also improve the cardiac dysfunction

induced by anti-VEGFR/PDGFR multi-TKI sunitinib, via
regulation of cardiomyocyte autophagy, in turn mediated by the
AMPK-mTOR signaling pathway (260).

Late Inward Sodium Current Inhibitors
Selective inhibitors of late inward sodium current (INaL), such
as ranolazine, have proven effective in treating experimental
HF in several experimental models of cardiac dysfunction
given its antiarrhythmic, anti-ischemic, and ATP-sparing
features. Experimental evidence suggests that anthracyclines
indirectly induce INaL hyperactivation, resulting in cytosolic
calcium overload (261–263). INaL hyperactivation contributes
to mitochondrial calcium depletion and dysregulation that, in
turn, triggers mitochondrial ROS generation (oxidative stress),
as well as NAD(P)H and ATP depletion (energetic stress); as a
result, these events lead to cardiomyocyte impairment, diastolic
dysfunction, and HF progression (261, 262, 264). Importantly, in
animal models of doxorubicin-induced cardiotoxicity, ranolazine
administration attenuated diastolic cardiac dysfunction and
prevented worsening of systolic function by reducing oxidative
stress and cardiomyocyte functional derangements (261, 262,
264). Moreover, ranolazine limited trastuzumab-induced cardiac
dysfunction in mice by acting as a regulator of cardiac redox
balance (265). In a very small randomized clinical study on
24 low-risk patients with diastolic dysfunction induced by
anthracycline-based or fluoropyrimidine-/platinum-based
therapies, patients were treated for 5 weeks with ranolazine or
standard therapy, observing a complete recovery from diastolic
dysfunction in all subjects in ranolazine group (12 patients)
(266). Thus, the therapeutic use of this drug is promising,
although needs validation in large clinical trials specific for each
type of chemotherapy.

Phosphodiesterase-5 Inhibitors
Phosphodiesterase-5 inhibitors, such as sildenafil and tadalafil,
were demonstrated to induce cardioprotective effects in animal
models affected by doxorubicin cardiac toxicity (267–269).
Sildenafil demonstrated cardioprotective activity against
anthracycline-induced cardiac dysfunction by inducing the
opening of mitochondrial KATP channels, leading to preserving
mitochondrial potential and functions, myofibrillar integrity,
and preventing cardiomyocyte apoptosis (267). The cardiac
effects of sildenafil were also suggested to be dependent on the
NO-signaling pathway since its protective activity was abolished
by both L-NAME (inhibitor of NOS) and 5-hydroxydecanoate
(inhibitor of ATP-sensitive K+ channels) (270). Tadalafil’s
effects on cardiotoxicity reduction, instead, were suggested to be
mainly due to NO-mediated increases of protein kinase G (PKG)
activity and cGMP signaling, which is significantly reduced by
doxorubicin administration (268, 269).

Metabolic Agents
Butyric acid, a short-chain fatty acid produced daily by
the gut microbiota, has proven beneficial in models of
cardiovascular diseases (271) [reviewed in (272)]. A novel
butyric acid derivative, phenylalanine-butyramide (FBA), has
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been shown to protect animal models from doxorubicin-
induced cardiotoxicity by decreasing oxidative stress and
improving mitochondrial function (273). Of note, FBA prevented
doxorubicin-induced cardiomyocyte apoptosis, left ventricular
dilatation, and fibrosis (273).

Another metabolic agent, β-hydroxybutyrate (BHB),
produced by fatty-acid oxidation in the liver under the fasting
state, was shown to play a cardioprotective role in diabetic and
HF with preserved ejection fraction (HFpEF) mouse models,
when administrated as a dietary supplement or directly injected
(274, 275). Interestingly, BHB was also reported to induce
protection against anthracycline-induced cardiac function
decline and partially reverted the maladaptive remodeling,
characterized by increased cardiomyocyte size and decreased
fibrosis (276). In vitro, BHB administration reduces oxidative
stress and ameliorates mitochondrial functions, decreasing
cardiomyocyte cell injury and apoptosis (276).

Statins
Statins reduce cholesterol synthesis by inhibiting the enzyme
HMG CoA reductase. However, statins have emerged as
pleiotropic factors playing a positive role on the cardiovascular
system, including ROS production and oxidative stress, and
the consequent cardiac mitochondrial dysfunction [reviewed in
(277, 278)]. Importantly, the treatment of breast cancer patients
undergoing anthracycline-based therapy with statins has been
reported to be associated with a lower risk for HF and to prevent
the decrease of the left ventricular ejection fraction (279–282).
A similar cardioprotective activity of statins was reported for
trastuzumab-based therapies (283).

Growth Factors
Administration of the growth factor Neuregulin-1 (NRG1β) has
been shown to improve cardiac function following injury in adult
mice (127, 134) [reviewed in (110, 133)] and in HF patients
(135, 136) [reviewed in (137)]. Importantly, administration of
NRG1β has also been shown to protect cardiac myocytes from
anthracycline-induced apoptosis (134, 167, 284, 285) [reviewed
in (286)]. Further, NRG1 administration in the zebrafish model
was reported to reduce cardiomyocyte apoptosis induced by
the multi-TKI ponatinib (200) [reviewed in (197)]. However,
NRG1β is not clinically relevant as a therapy for cardiomyopathy
induced by anticancer drugs because of its well-established
cancer-promoting role. To solve this issue, an engineered
bivalent NRG1 (NN), which preferentially induces ERBB4 homo-
dimer formation in cardiomyocytes, has been developed and
shown to protect against doxorubicin-induced cardiotoxicity,
maintaining the same cardioprotective properties of NRG1
but with reduced pro-neoplastic potential (287). Nevertheless,
although up to now there is no evidence in the literature
about detrimental side effects in response to bivalent NRG1,
NN has not been recruited into a clinical trial yet. Further
studies are therefore recommended to assess if this combinatorial
treatment is sufficient to mitigate the cardiotoxic side effects of
chemotherapeutic agents.

Granulocyte colony-stimulating factor (G-CSF) is a
hematopoietic growth factor that affects proliferation and

differentiation, especially of progenitors of the neutrophil and
granulocyte lineages, therefore it is currently used clinically
in combination with doxorubicin to counteract doxorubicin-
induced myelosuppression (288). Interestingly, a role for G-CSF
has also been suggested in doxorubicin-induced cardiomyopathy.
Indeed, an attenuation of cardiomyocyte atrophic degeneration
and a decrease of myocardial fibrosis have been reported after
G-CSF administration in doxorubicin-treated mice (289).
Intriguingly, G-CSF was suggested to exert an anti-atrophic and
anti-inflammatory activity directly on cardiomyocytes (289).

Among stromal cells, the beneficial role of endothelial
progenitor cells (EPCs) has emerged to counteract the
cardiotoxicity of cancer therapies. For example, erythropoietin
(EPO) has been shown to promote angiogenesis by increasing
the number of EPCs, thereby improving cardiac function after
doxorubicin treatment (290).

Other Strategies
A few other strategies were suggested to reduce the adverse
cardiovascular side effects of common chemotherapies and
targeted therapies. In this regard, the sulfur-containing amino
acid taurine (2-aminoethanesulfonic acid) has been shown
to exert beneficial effects in CHF, ischemic heart disease,
hypertension, atherosclerosis, and diabetic cardiomyopathy
(291). Intriguingly, taurine was also shown to reduce cisplatin-
induced cardiotoxicity by suppressing the generation of ROS, ER
stress, and inflammation (102). Apocynin, a specific NADPH
oxidase inhibitor, has been shown to reduce cisplatin-induced
oxidative stress, inflammation and apoptosis (101).

Preclinical studies demonstrated that fenofibrate, a PPARα

activator, counteracted doxorubicin-induced cardiotoxicity in
mice by increasing circulating EPCs, stimulating cardiac NO
activation and inducing the production of pro-angiogenic factors
such as SDF-1 and VEGF (292).

Besides molecular strategies, remote ischemic
preconditioning (RIPC), which consists of reversible repetitive
interruptions in blood flow, ischemia, and reperfusion, seems a
good approach to reduce anthracycline-induced cardiotoxicity
(293). Indeed, large animals, subjected to RIPC before each
doxorubicin injection, have shown a preserved cardiac
contractility and mitochondrial integrity, concomitantly
with a higher cardiac performance and reduced fibrosis (293).

CONCLUSION AND FUTURE
PERSPECTIVES

Although anticancer therapies greatly improve survival and
quality of life of oncological patients, their negative impact
on cardiac well-being is a very critical issue. In addition to
common risk factors, such as age, hypertension, arrhythmias,
and coronary disease, it has emerged the identification of genetic
variants related to an increased predisposition to cardiotoxicity
of chemotherapies and targeted therapies, in particular for
anthracyclines and anti-HER2 therapies. Thus, the development
of individualized treatments, based on the forecast of the
cardiotoxic side effects, may acquire a considerable clinical
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relevance for the future perspective. Importantly, the cellular and
molecular mechanisms mediating the cardiotoxicity of common
classes of chemotherapy and targeted therapy drugs are emerging,
providing a rationale for the development of novel strategies
for cardioprotection. Recent clinical trials have tested multiple
cardioprotective drugs, highlighting the ability of some of them
in counteracting or limiting the cardiotoxic effects of anticancer
treatments. However, many of these therapeutic strategies still
have certain limits and need some precautions. Among them, the
lack of validation in large clinical trials, the underlying molecular
mechanisms still not fully understood, as well as the risk-benefit
controversies. In this regard, it is extremely important to take into
account the tolerability of the adverse effects that these therapies
may entail, including fatigue and dizziness, in patients already
fatigued by antitumoral therapy.

Despite multiple cellular and molecular mechanisms being
suggested to mediate the cardiotoxic effect of anti-cancer drugs,
cardiomyocyte death has emerged as the major cause of long-
term irreversible cardiac disfunction. These important side effects
have been documented for anthracyclines, fluoropyrimidines,
and alkylating drugs. This is because lost cardiomyocytes cannot
be efficiently regenerated due to the very low ability of the adult
mammalian heart to produce new cardiomyocytes (294, 295)
[reviewed in (296)]. Although the cytotoxic effect of anticancer
treatments resides on a wide range of biological mechanisms,
the development of strategies aiming at increasing cardiomyocyte
survival is thus encouraged to reduce anticancer drug-induced
cardiomyocyte death and the consequent permanent damage. In
the future, the administration of cardiomyocyte survival factors
flanking chemotherapy and targeted therapies should be further
explored. In this regard, a plethora of factors and signaling
pathways has been shown to trigger endogenous cardiomyocyte
proliferation for cardiac regenerative strategies [reviewed in

(296)], thus their modulation may be also explored for cancer
patients with permanent damage by anticancer drugs. Some of
these factors also regulate cardiomyocyte survival, thus their
modulation may be tested as a preventive strategy to reduce
permanent cardiotoxic effect of anticancer drugs. Obviously,
the potential interfering with the action of the antineoplastic
treatments should be carefully evaluated.

In conclusion, cardiovascular adverse effects resulting from
antineoplastic therapies are important concerns for the health
of cancer patients and could question the choice of undertaking
or interrupting treatments. Nowadays, some drugs have been
clinically tested to counteract the cardiotoxicity related to
anticancer care, and we here propose a further evaluation
of factors that up to now are mainly known for their role
in cardiomyocyte proliferation and survival, as promising
strategies for protection and/or regeneration of the cardiac tissue.
Moreover, an increasing synergistic effort would be required
for the oncologic and cardiologic research fields to assure
cancer patients a long-term relapse-free survival and high-quality
cardiovascular health.
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Background: Immune checkpoint inhibitors (ICIs) have achieved acknowledged
progress in cancer therapy. However, ICI-associated cardiotoxicity as one of the most
severe adverse events is potentially life-threatening, with limited real-world studies
reporting its predictive factors and prognosis. This study aimed to investigate the real-
world incidence, risk factors, and prognosis of ICI-related cardiotoxicity in patients with
advanced solid tumors.

Methods: Electronic medical records from patients with advanced solid tumors
receiving ICIs in the First Affiliated Hospital of Xi’an Jiaotong University were
retrospectively reviewed. All patients were divided into the cardiotoxicity group and
control group, with logistic regression analysis being implemented to identify potential
risk factors of ICI-related cardiotoxicity. Furthermore, survival analysis was also
performed to investigate the prognosis of patients with ICI-related cardiotoxicity.

Results: A total of 1,047 participants were enrolled in this retrospective study. The
incidence of ICI-related cardiotoxicity in our hospital is 7.0%, while grade 3 and
above cardiotoxicity was 2.4%. The logistic regression analysis revealed that diabetes
mellitus [odds ratio (OR):1.96, 95% confidence Interval (CI): 1.05–3.65, p = 0.034]
was an independent risk factor, whereas baseline lymphocyte/monocyte ratio (LMR)
(OR: 0.59, 95% CI: 0.36–0.97, p = 0.037) was the protective factor of ICI-related
cardiotoxicity. Survival analysis indicated that severe cardiotoxicity (≥grade 3) was
significantly correlated with bleak overall survival (OS) than mild cardiotoxicity (≤grade
2) (8.3 months vs. not reached, p = 0.001). Patients with ICI-related overlap syndrome
had poorer overall survival than patients with mere cardiotoxicity (9.4 vs. 24.7 months,
p = 0.033). However, the occurrence of ICI-related cardiotoxicity was not significantly
associated with the OS of overall population with solid tumors. Subgroup analysis
showed that lung cancer and PD-L1 usage were significantly correlated with a higher
incidence of severe cases.

Conclusion: Immune checkpoint inhibitor-related cardiotoxicity is more common in the
real-world setting than the previously published studies. Diabetes mellitus and baseline
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LMR are the potential predictive biomarkers of ICI-related cardiotoxicity. Although ICI-
related cardiotoxicity is not correlated with the prognosis of these patients in our
cohort, a systematic and comprehensive baseline examination and evaluation should
be performed to avoid its occurrence.

Keywords: solid tumor, cardiotoxicity, rechallenge, risk factors, immune checkpoint inhibitor (ICI), prognosis

INTRODUCTION

Immune checkpoint inhibitors (ICIs) mainly act on the activation
of T cells to fight against tumor cells. There are currently FDA-
approved drugs that target cytotoxic T-lymphocyte-associated
antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1),
and programmed cell death ligand 1 (PD-L1). Although ICI-
related adverse effects are overall less severe than chemotherapy,
there are potentially lethal adverse effects, such as cardiotoxicity,
neuromuscular toxicity, and pulmonary toxicity.

The first case of fatal ICI-related myocarditis was reported
by Läubli et al. in 2015 (1), in a 73-year-old patient with
metastatic melanoma who developed ICI-associated myocarditis
after receiving pembrolizumab, leading to acute heart failure.
Two cases of fulminant myocarditis were reported in 2016. Both
patients became symptomatic within 2 weeks of administration
and aggravated rapidly, leading to death within a short period
despite the admission of high-dose glucocorticoid and supportive
care. These two cases of severe cardiotoxicity warned clinicians of
the security of ICIs (2).

Cardiotoxicity associated with ICIs is broadly classified
into myocarditis, pericarditis, and arrhythmia. Other clinical
manifestations, such as hypertension, Takotsubo-like syndrome,
myocardial ischemia, and myocardial infarction, are less reported
(3, 4). In addition, some studies have roughly divided them
into inflammatory (including myocarditis, pericarditis, etc.) and
non-inflammatory (arrhythmia, myocardial infarction, etc.).

Early studies showed that the incidence of ICI-related
cardiotoxicity is less than 1% (5). However, as Ganatra
et al. (6) stated, the increasing application of ICIs in real-
world and the diverse presentation of cardiotoxicity suggest
a higher incidence of cardiotoxicity than previously reported.
In addition, subclinical cases and increased awareness of
toxicity may also be the contributing factors. Among these
classifications, myocarditis maintained the highest incidence
and fatality rate, as well as the worst prognosis. However,
the presentations of cardiotoxicity in real-world were not
separated. It is not rare for myocarditis to occur simultaneously
with arrhythmia or pericarditis. Studies have found that
approximately 19% of patients with pathologically defined
cardiotoxicity developed arrhythmias (7). Two patients with
fulminant myocarditis reported in 2016 also developed complete
atrioventricular conduction block (2). The pathophysiological
manifestation suggested the infiltrated T cells and macrophages
in the conduction system. As reported, atrial fibrillation,
ventricular arrhythmias, and conduction disturbances were
detected in 17–30% of patients with ICI-related cardiotoxicity,
of whom 3–13% had mere arrhythmias without myocarditis (8).
Although the mechanism is unclear, the investigators concluded

that there may be underlying undiagnosed myocarditis (8).
There are limited studies on ICI-related pericardial disease.
In addition, the incidence is unclear due to the lack of
cardiovascular monitoring during ICI clinical trials but maybe
more common than previously recognized. In an evaluation
based on VigiBase, Salem et al. included 95 cases of pericardial
disease associated with ICI, of which 60% were severe and
21% were associated with death (7). Unlike myocarditis,
the incidence of pericarditis did not increase significantly
with combination immunotherapy. In addition, the study
found that more than half of the cases with pericardial
diseases were reported in patients with lung cancer (7).
Based on the preclinical and clinical studies, several possible
influencing factors of ICI-related pericardial involvement were
proposed. Given the disproportionately high incidence of
pericardial disease in patients with lung cancer and synergy
between radiotherapy and immunotherapy is considered a
possible driver.

In the previous studies, autoimmune disease, prior heart
disease, and combined ICI therapy can be the probable risk
factors. Results are mostly derived from databases based on
overall irAEs with few real-world studies based on cardiotoxicity.
Therefore, we conducted a real-world retrospective study based
on the whole immunotherapy population to explore the risk
factors for ICI-related cardiotoxicity.

MATERIALS AND METHODS

Patients
Patients diagnosed with advanced solid tumors who were
hospitalized from January 2020 to June 2021 at the departments
of the medical oncology, surgical oncology, and radiation
oncology at the First Affiliated Hospital of Xi’an Jiaotong
University were included. We retrospectively screened patients
into two groups according to whether cardiotoxicity happened
during the administration of ICIs. Suspected cases were assessed
mainly according to Bonaca diagnostic criteria (9). There were
also cases that does not meet the criterion. In addition to that, we
also consider ICI-related myocarditis according to the following
two points:

1. Concurrent multi-organ damage with abnormal cardiac
biomarkers responding to corticosteroids. Infection and
autoimmune diseases were excluded.

2. Dynamical change in cardiac biomarker with ICI
medication responding to corticosteroids. Infection and
autoimmune diseases were excluded.
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Immune checkpoint inhibitor-related pericarditis and
arrhythmia were diagnosed according to Naranjo score:
Suspected patients who suffered from cardiac damage during
ICI therapy with a Naranjo scores ≥ 5 were included in the
cardiotoxicity group.

Patients were categorized as “severe” cardiotoxicity if they
displayed a grade 3–5 toxicity according to criteria adapted from
the Common Terminology Criteria for Adverse Events V.5.0
(Table 1). Patients were categorized as “mild” cardiotoxicity if
they displayed a grade 1–2 toxicity.

Statistical Analysis
Continuous variables are statistically described by
means ± standard deviation (subject to normal distribution)
or interquartile spacing (not subject to normal distribution);
categorical variables are expressed in terms of number and
percentage of cases. The SW test was used for the normality test,
and one-way ANOVA was used for the variance homogeneity
test. If the continuous variable obeys the normal distribution
and the variance is homogeneous, the independent sample t-test
is used, otherwise, the non-parametric rank sum test is used
for statistical analysis. Categorical variables were statistically
analyzed by the chi-square test or Fisher’s exact probability. All
patients were divided into occurrence group and non-occurrence
group based on whether cardiotoxicity occurred during ICI
treatment, with the univariate logistic regression analysis being
exploited to investigate the possible risk factors of cardiotoxicity.
Ultimately, the variables with p < 0.05 in univariate analysis
were included in multivariate logistic regression analysis.
All statistical analyses were performed in SPSS 23.0 and R
4.1.1 for Windows 64.0. Multiple imputations were used to
supplement missing data.

Ethical Approval and Informed Consent
This study was conducted in strict accordance with the
requirements of the Declaration of Helsinki. Our research also
passed the ethics review of the First Affiliated Hospital of Xi’an
Jiaotong University (no: XJTU1AF2020LSK-262).

RESULTS

Characteristics of the Whole Population
From January 2020 to July 2021, a total of 1,492 patients with
advanced solid tumors were hospitalized and treated with ICIs
in the departments of medical oncology, surgical oncology, and
radiation oncology. A total of 391 patients who did not meet
the requirements were excluded, and a total of 1,101 patients
who met the research criteria were screened. There were 127
patients with cardiac damage, of which 54 patients did not
meet the diagnostic criteria. In the end, 974 patients did not
develop cardiotoxicity, and 73 patients developed ICI-related
cardiotoxicity, including 25 patients with severe cardiotoxicity
and 48 patients with mild cardiotoxicity (Table 2).

Among the 1,047 patients treated with ICI, there were
713 male patients (68.1%) and 334 female patients (31.9%).
Most of the patients were younger than 65 years (673 cases,
64.3%), and the physical performance score was mostly 0–1

(866 cases, 82.7%). In terms of cancer types, respiratory tumors
(360 cases, 34.4%) and digestive tumors (496 cases, 47.4%)
accounted for the majority, followed by urethral tumors (83
cases, 7.9%) and malignant melanoma (43 cases, 3.9%). Other
tumor types included skin tumors, mediastinal tumors, head
and neck tumors, genital neoplasm, sarcomas, and other tumor
types. There were 220 (44.4%) gastrointestinal patients involved
in the digestive tumor group, whereas 78 patients (21.7%) with
small-cell lung cancer were involved in the respiratory tumor
groups. Heart disease (74 cases, 7.1%), diabetes (115 cases,
10.9%), and hypertension (241 cases, 23.0%) were the common
comorbidities. There were 379 patients (36.2%) with a history
of smoking and 89 patients (8.5%) with a family history of
tumors. Most patients received ICI combined chemotherapy (975
cases, 93.1%). PD-1 was the most predominantly used ICIs in
our cohort, accounting for 92.0% of cases. In the case of later-
line immunotherapy, prior treatment included chemotherapy,
radiotherapy, targeted therapy, and antiangiogenic therapy.
During the course of immunotherapy, 128 patients developed
ICI-associated pneumonia (12.2%), and 380 patients developed
ICI-associated thyroid dysfunction (36.3%).

Risk Factors of Immune Checkpoint
Inhibitor-Related Cardiotoxicity
Among the enrolled patients, 73 (7.0%) developed cardiotoxicity,
including 48 mild cases (4.6%) and 25 severe cases (2.4%).
Among the 115 patients with combined diabetes, 14 developed
cardiotoxicity (12.2%). Whereas the occurrence rate of ICI-
related cardiotoxicity among patients without diabetes was 6.3%,
difference between these two groups was statistically significant
(p = 0.033). Besides, patients who developed cardiotoxicity
have lower LMR (p = 0.01). Respiratory tumors maintained
the highest incidence of cardiotoxicity among all cancer types
(8.6%), but there was no significant difference in the incidence
of cardiotoxicity among tumor types. Combined cardiac diseases,
ICI agents, history of previous antitumor therapy, and treatment
modes have no correlation with the occurrence of cardiotoxicity.
In terms of baseline laboratory levels, patients who suffered
from cardiotoxicity have a lower lymphocyte ratio than patients
without cardiotoxicity. But the difference was not statistically
significant (p = 0.066). In addition, our research showed that
the occurrence of ICI-related pneumonia (p = 0.005) and
thyroid dysfunction (p < 0.005) during the course of ICI
treatment were significantly associated with the occurrence of
cardiotoxicity. Although most of the other two toxicities appear
before cardiotoxicity, we cannot yet explain the relationship
between ICI-related cardiotoxicity and ICI-related pneumonia or
thyroid dysfunction. But this correlation suggests a link between
adverse effects of different systems, and the presence of one
toxicity may warn of another that may be more serious.

The univariate logistic regression analysis found that
combined diabetes (OR = 2.05, 95% CI: 1.07–3.71, p = 0.023)
may be a risk factor for cardiotoxicity, whereas lower baseline
LMR (OR = 0.58, 95% CI: 0.35–0.93, p = 0.027) may be
a protective factor (Figure 1). Ultimately, the multivariate
regression analysis suggested that diabetes (OR = 1.96, 95%
CI: 1.05–3.65, p = 0.034) was an independent risk factor for
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TABLE 1 | Criteria for myocarditis severity scoring.

Grade Criteria

1a Elevated biomarkers without symptomsb (e.g., dyspnea, chest pain, etc.)

2 Elevated biomarkers without symptoms but not requiring patient hospitalization

3 Elevated biomarkers without symptoms requiring patient hospitalization (not requiring intensive care unit level of care); abnormal cardiovascular
diagnostic studies (echocardiography showing reduction in LV function or wall motion abnormalities; abnormal cardiac MRI)

4 Deterioration of grade 3 clinical status or requirement for ICU level of care for cardiac symptoms with evidence of decreased cardiac output
(cardiogenic shock) or arrhythmia

5 Death of the patient refractory to medical therapy

LV, left ventricular; MRI, magnetic resonance imaging; ICU, intensive care unit.
aCTCAE5.0 released in 2017 does not include grade 1 myocarditis. But this criterion cannot reflect the whole situation of the occurrence of myocarditis. This table is
based on Bonaca and CTCAE4.0.
bBiomarkers for myocarditis are markers of myonecrosis, including cardiac troponin, CK-MB, or total CK.

the occurrence of ICI-related cardiotoxicity. In addition, lower
baseline LMR (OR = 0.59, 95% CI: 0.36–0.97, p = 0.037) was a
protective factor (Figure 1).

Severity of Myocarditis
The population with ICI-related cardiotoxicity included 48 mild
cases and 25 severe cases (Table 3). Among them, 4 patients
(5%) died in hospital. All in-hospital died patients were severe
cardiotoxicity. When cardiotoxicity occurs, echocardiography
was abnormal in 20 cases (26.3%), mainly with abnormal
wall motion. A total of 24 patients (31.6%) had an abnormal
electrocardiogram, including ST-T abnormality, conduction
block, and other changes. In addition, 30 patients (41.1%)
in the subgroup suffered from cardiotoxicity and concurrent
ICI damage of other systems, among which abnormal liver
function, myositis, skin rash, and abnormal thyroid function
were more common.

Cardiotoxicity happened mainly in men (56, 76.7%). In terms
of cancer types, the proportion of severe cases in respiratory
tumors was significantly higher than in other tumors (p = 0.045),
whereas the proportion in digestive tumors was significantly
lower than other tumors (p = 0.014). The ICI agents were mainly
PD-1 (65, 89.0%), of which 19 cases (29.2%) were severe, whereas
8 cases received PD-L1, and 6 cases (75.0%) were severe. The
difference between the two groups was statistically significant
(p = 0.008). We did not find that inflammatory parameters,
such as NLR, PLR, and LMR, were associated with the severity
of cardiotoxicity. Other indicators, including ECOG score,
comorbidities, smoking history, family history, prior antitumor
therapy, and treatment mode, were not significantly associated
with the severity of cardiotoxicity. In addition, unlike the general
population, the occurrence of ICI-related thyroid dysfunction
(p = 0.120) and ICI-related pneumonia (p = 0.327) was not
significantly associated with the severity of cardiotoxicity. There
was no statistically significant difference in the occurrence time
of mild and severe cardiotoxicities (median occurrence time: 105
vs. 134 days, p = 0.345) (Figure 2).

Survival Analysis
Survival analysis was performed in patients with or without
cardiotoxicity. We investigated the difference with overall
survival in these patients. The median follow-up time

was 19.0 months. There was no significant difference with
median overall survival time (mOS) between the two groups
without cardiotoxicity and those with cardiotoxicity (29.1
vs. 24.7 months, p = 0.184) (Figure 3A). The mOS of
severe cardiotoxicity was 8.3 months, while the mOS of
mild cardiotoxicity was not reached (p = 0.001) (Figure 3B).

Survival analysis was performed on the subgroups of patients
with respiratory tumors and digestive tumors due to different
prognoses of different tumor types. There was no statistically
significant difference between the two groups with or without
cardiotoxicity in the respiratory tumors (p = 0.360) (Figure 4A).
The mOS between the two groups without cardiotoxicity in
the digestive system and those with cardiotoxicity was 21.6 and
15.3 months, respectively (Figure 4B). But the difference was
also not statistically significant (p = 0.509). For all patients with
cardiotoxicity, mOS was 17.0 months.

In addition, we also compared the survival difference
between the groups with mere cardiotoxicity and those with
concurrent cardiotoxicity and other toxicities. The mOS with
mere cardiotoxicity was 24.7 months, and the mOS in the
group with overlap syndrome was 9.4 months (Figure 5A).
The difference was statistically significant (p = 0.033). In 2020,
Dolladille et al. (10) analyzed the clinical characteristics of early
and late cardiac adverse reactions through retrospective analysis
of multicenter cases and data from the VigiBase using 90 days
as a cutoff. They found differences in the characteristics of
early and late cardiac cardiotoxicities. We furtherly plotted the
survival curves of the two groups of patients with the occurrence
time before 90 days and after 90 days. However, there was no
significant difference between the two groups (Figure 5B).

Immune Checkpoint Inhibitor
Rechallenge
Current guidelines suggest that restarting ICI is not
recommended for grade 2 and above cardiotoxicity. We
also strictly follow the recommendations in our clinical work.
However, the complexity of real-world research results in patient
diversity. In our study, some patients persisted in restarting ICI
despite being fully informed of the risks. In the follow-up of
patients who developed cardiotoxicity, there were 5 additional
patients with grades 2 and 3 myocarditis who readmitted ICI
after recovery (Figure 6). Only one of the five patients who
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TABLE 2 | Characteristics of the whole population.

Characteristics Groups Number of patients (ratio)a

Without cardiotoxicity
(N = 974)

With cardiotoxicity
(N = 73)

p-value

Weight 62.2 ± 11.2 63.2 ± 9.4 0.447

Age 59.5 ± 11.2 59.8 ± 11.7 0.835

Gender Male 657 (67.5%) 56 (76.7%) 0.132

Female 317 (32.5%) 17 (23.3%)

Cardiac disease No 906 (93.0%) 67 (91.8%) 0.872

Yes 68 (7.0%) 6 (8.2%)

Hypertension No 750 (77.0%) 56 (76.7%) 1.000

Yes 224 (23.0%) 17 (23.3%)

Diabetes No 873 (89.6%) 59 (80.8%) 0.033

Yes 101 (10.4%) 14 (19.2%)

Cigarette No 625 (64.2%) 43 (58.9%) 0.437

Yes 349 (35.8%) 30 (41.1%)

Family history No 894 (91.8%) 64 (87.7%) 0.318

Yes 80 (8.2%) 9 (12.3%)

Respiratory tumors 329 (33.8%) 31 (42.5%) 0.159

Digestive tumors 467 (47.9%) 29 (39.7%) 0.183

Urinary tract tumors 74 (7.6%) 9 (12.3%) 0.173

Malignant melanoma 39 (4.0%) 2 (2.7%) 1.000

Other tumorsb 65 (6.7%) 2 (2.7%) 0.315

Prior chemotherapy No 482 (49.5%) 38 (52.1%) 0.763

Yes 492 (50.5%) 35 (47.9%)

Prior antiangiogenic therapy No 837 (85.9%) 62 (84.9%) 0.950

Yes 137 (14.1%) 11 (15.1%)

Treatment line First-line 486 (49.9%) 39 (53.4%) 0.646

Post-line 488 (50.1%) 34 (46.6%)

Lung metastasis No 750 (77.0%) 60 (82.2%) 0.380

Yes 224 (23.0%) 13 (17.8%)

Liver metastasis No 731 (75.1%) 48 (65.8%) 0.106

Yes 243 (24.9%) 25 (34.2%)

Brain metastasis No 909 (93.3%) 72 (98.6%) 0.121

Yes 65 (6.7%) 1 (1.4%)

Bone metastasis No 764 (78.4%) 60 (82.2%) 0.544

Yes 210 (21.6%) 13 (17.8%)

ECOG 0–1 803 (82.4%) 63 (86.3%) 0.496

2–3 171 (17.6%) 10 (13.7%)

Treatment ICI monotherapy 66 (6.8%) 6 (8.2%) 0.818

ICI combined with chemotherapy 908 (93.2%) 67 (91.8%)

ICI agent PD-1 898 (92.2%) 65 (89.0%) 0.463

PD-L1 76 (7.8%) 8 (11.0%)

LDH (U/L) <250 505 (70.0%) 41 (70.7%) 1.000

≥250 216(30.0%) 17 (29.3%)

CK (U/L) <310 701 (98.9%) 56 (98.2%) 1.000

≥310 8 (1.1%) 1 (1.8%)

CK-MB (U/L) <24 599 (84.5%) 45 (78.9%) 0.362

≥24 110(15.5%) 12 (21.1%)

Hemoglobin (g/L; normal range 115–150) 126.7 ± 19.9 129.2 ± 18.8 0.296

Platelet count (×109/L; normal range 125–350) 234.3 ± 97.0 214.3 ± 98.5 0.091

White-cell count (×109/L; normal range 4.0–10.0) 6.9 ± 3.3 6.9 ± 2.6 0.892

Neutrophil count (×109/L; normal range 1.8–6.3) 4.9 ± 3.6 4.9 ± 2.5 0.937

Lymphocyte count (×109/L; normal range 1.1–3.2) 1.4 ± 0.6 1.4 ± 0.5 0.203

Monocytes (109/L; normal range 0.1–0.6) 0.4 ± 0.2 0.5 ± 0.4 0.166

Eosinophils (109/L; normal range 0.02–0.52) 0.2 ± 0.5 0.2 ± 0.3 0.482

Albumin (g/L; normal range 40–55) 39.2 ± 4.6 38.7 ± 4.6 0.379

Globulin (g/L; normal range 20–40) 29.5 ± 5.2 29.5 ± 5.0 0.958

TC (mmol/L; 3.10–5.69) 4.3 ± 1.0 4.5 ± 1.3 0.428

PLR 197.3 ± 156.9 183.3 ± 116.8 0.341

NLR 4.2 ± 4.6 4.4 ± 4.2 0.653

LMR 3.9 ± 3.4 3.3 ± 1.7 0.010

A/G 1.4 ± 0.3 1.3 ± 0.3 0.442

Neutrophil ratio (normal range 40–75%) 68.8% ± 39.6% 68.7% ± 10.0% 0.923

Lymphocyte ratio (normal range 20–50%) 23.0% ± 10.2% 21.1% ± 8.3% 0.066

ECOG, Eastern Cooperative Oncology Group; ICI, immune checkpoint inhibitor; LDH, lactate dehydrogenase; CK, creatine kinase; TC, total cholesterol; PLR, platelet to
lymphocyte ratio; NLR, neutrophil to lymphocyte ratio; LMR, lymphocyte to monocyte ratio; A/G, albumin to globulin ratio.
aContinuous variables are expressed as mean and standard deviation.
bOthers include skin tumors, mediastinal tumors, head and neck tumors, genital neoplasm, sarcomas, and other tumor types.
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FIGURE 1 | Univariate and multivariate logistic regression forest plot of baseline characteristics and incidence of cardiotoxicity in the whole population.

had grade 3 myocarditis suffered grade 2 myocarditis after the
rechallenge of ICI. No other grade 3 and above ICI toxicity were
found in all patients. Following up for more than 1 year, only one
case died of disease progression. The remaining patients were all

alive. According to our investigation, the ICI rechallenge seems
relatively secure. However, considering the small sample size in
our cohort, more relevant studies are needed in the future to
identify the safety of ICI rechallenge.
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TABLE 3 | Characteristics of patients with cardiotoxicity.

Characteristics Groups ≤Grade 2 (N = 48) ≥Grade3 (N = 25) p-value

Age <65 years old 33 (68.8%) 16 (64%) 0.883

≥65 years old 15 (31.2%) 9 (36%)

Gender Male 38 (79.2%) 18 (72%) 0.692

Female 10 (20.8%) 7 (28%)

ECOG 0–1 43 (89.6%) 20 (80%) 0.440

2–3 5 (10.4%) 5 (20%)

Cardiac disease No 44 (91.7%) 23 (92%) 1.000

Yes 4 (8.3%) 2 (8%)

Diabetes No 38 (79.2%) 21 (84%) 0.854

Yes 10 (20.8%) 4 (16%)

Respiratory tumors 16 (33.3%) 15 (60%) 0.045

Digestive tumors 24 (50%) 5 (20%) 0.014

Urinary tract tumors 6 (12.5%) 3 (12%) 0.476

Malignant melanoma 1 (2.1%) 1 (4%) -

Other tumors 1 (2.1%) 1 (4%) -

Treatmenta ICI monotherapy 4 (8.3%) 2 (8%) 1.000

ICI combined with chemotherapy 44 (91.7%) 23 (92%)

ICI PD-1 46 (95.8%) 19 (76%) 0.029

PD-L1 2 (4.2%) 6 (24%)

Neutrophil count (×109/L; normal range 1.8–6.3) <6.3 38 (79.2%) 21 (84%) 0.854

≥6.3 10 (20.8%) 4 (16%)

Lymphocyte count (×109/L; normal range 1.1–3.2) <1.1 14 (29.2%) 9 (36%) 0.741

≥1.1 34 (70.8%) 16 (64%)

Monocytes (109/L; normal range 0.1–0.6) <0.6 35 (72.9%) 22 (88%) 0.238

≥0.6 13 (27.1%) 3 (12%)

PLR <163.1 28 (58.3%) 13 (52%) 0.788

≥163.1 20 (41.7%) 12 (48%)

NLR <3.1 20 (41.7%) 12 (48%) 0.788

≥3.1 28 (58.3%) 13 (52%)

LMR <3.4 31 (64.6%) 14 (56%) 0.644

≥3.4 17 (35.4%) 11 (44%)

A/G <1.5 36 (75%) 16 (64%) 0.476

≥1.5 12 (25%) 9 (36%)

Neutrophil ratio (normal range 40–75%) <70% 22 (45.8%) 14 (56%) 0.563

≥70% 26 (54.2%) 11 (44%)

Lymphocyte ratio (normal range 20–50%) <20% 22 (45.8%) 11 (44%) 1.000

≥20% 26 (54.2%) 14 (56%)

ECOG, Eastern Cooperative Oncology Group; ICI, immune checkpoint inhibitor; PLR, platelet to lymphocyte ratio; NLR, neutrophil to lymphocyte ratio; LMR, lymphocyte
to monocyte ratio; A/G, albumin to globulin ratio.
aOthers include prostatic cancer, mediastinal tumor, head and neck squamous cell carcinoma, sarcoma.

DISCUSSION

We found that the incidence of cardiotoxicity was 7.0%,
which was higher than the previously reported. By collecting
the cardiovascular risk factors of the enrolled patients, we
found that diabetes was an independent risk factor for the
occurrence of cardiotoxicity. This conclusion can be seen in
the retrospective study of Mahmood et al. (11). Through a
multicenter retrospective study of 35 patients, they found that
myocarditis was more common in patients with diabetes mellitus,
especially in patients receiving a combination of ICI therapy.
Although they ultimately failed to prove it an independent
risk factor, their research suggested a certain direction. In our
analysis, an exact association of diabetes with the development of
cardiotoxicity was found. However, we did not find an association

between other cardiovascular risk factors, such as hypertension
and the occurrence of cardiotoxicity.

The effect of diabetes on the development of ICI-related
cardiotoxicity may be related to the long-term chronic
inflammation in patients with diabetes. Till now, diabetes
has been regarded as a chronic inflammatory disease. The
high-glucose environment of diabetes significantly increases
the cytokines, such as interleukin 4(IL-4), interleukin 5(IL-5),
interleukin 6(IL-6), interleukin 13(IL-13), and tumor necrosis
factorα (TNF-α). These cytokines maintained the balance of
the autoimmune microenvironment. The chronic pathological
state of immune imbalance caused by diabetes can promote
many diseases (12–14). In addition, the oxidative stress produced
by diabetes can also produce many inflammatory cytokines,
such as TNF-α, IL-6, and transforming growth factor β (14).
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FIGURE 2 | Bubble chart of the time since ICI initiation to the occurrence of
mild cardiotoxicity and severe cardiotoxicity.

The cytokine pathway has been confirmed to be closely related
to irAEs in many studies (15). In addition, diabetes affects
the number and activity of T cells, B cells, and NK cells in
peripheral blood, and the result of immune imbalance may
also play an important role (14). Moreover, whether diabetes,
as an autoimmune disease, also plays an important role in
irAEs like other types of autoimmune diseases remains to be
further studied.

We also collected baseline inflammatory indicators, such
as IL-6, C-reactive protein (CRP), and lactic dehydrogenase
(LDH), of all patients and calculated NLR, PLR, and LMR. We
found that lower baseline LMR was an independent risk factor
for the development of cardiotoxicity. In previous studies, the
correlation between peripheral lymphocyte levels and adverse
reactions has already been investigated. In a study of risk factors

for cardiotoxicity based on more than 4,000 immunotherapy
patients (16), the authors identified the association between
low baseline peripheral lymphocyte levels and cardiotoxicity
through a machine learning method. In a retrospective study of
NSCLC, an association of LMR with irAEs was also found (17).
Activated T lymphocytes in patients with tumors after using PD-
1/PD-L1 antibodies can not only attack tumor cells, but also
cause irAEs. According to the autopsy result of patients with
cardiotoxicity as previously reported, lymphocytic infiltration
was widely seen in the diseased tissue (2). Therefore, lymphocytes
may play a key role in the response of irAEs. However, no direct
correlation between peripheral lymphocyte count (or percentage)
and the occurrence of cardiotoxicity was found in our cohort.
Moreover, these indicators are often dynamic during tumor
treatment. Therefore, how does their changing act on adverse
reactions? What role do lymphocytes play in it? They deserve
further discussion.

In terms of gender, ICI was used in more men than women
in our study, possibly due to the higher tumor prevalence
in male patients. In this study, male patients received ICI
proportionally more often than female patients, but no
significant association between gender and the development
of myocarditis was found. One study found higher occurrence
rate of ICI associated cardiovascular with men (18). Several
additional studies had the same finding (7, 11, 19). However,
another research found a different result that women were
at higher risk of ICI-related myocarditis. These studies
suggested the relationship of gender and the occurrence of
ICI-related myocarditis. In addition, we found a higher incidence
of ICI-related cardiotoxicity in patients with respiratory
neoplasms than in other types of neoplasms. Salem et al. (7)
also found a higher rate of ICI-related pericardial disease
among patients with lung cancer. Basic research has found
upregulation of PD-L1 in models of myocardial injury
induced by ischemiareperfusion and hypothermia, which
may be a cytokine-mediated mechanism of cardiac protection.
Besides, radiation therapy in patients with lung cancer may
present with potential exposure to cardiac antigens. Immune
activation thereby conferring them a higher incidence of
cardiotoxicity. As for the correlation between comorbid
autoimmune diseases and cardiotoxicity, there were numerous

FIGURE 3 | Survival curve of the whole population with or without cardiotoxicity (A); patients with mild or severe cardiotoxicity (B).
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FIGURE 4 | Survival curve of the patients suffered respiratory tumor with or without cardiotoxicity (A); patients suffered digestive tumor with or without
cardiotoxicity (B).

FIGURE 5 | Survival curve of the patients with mere cardiotoxicity and patients with concurrent cardiotoxicity and ICI targeted other functional disorder (A);
occurrence time (time since ICI initiation to the occurrence of ICI-related cardiotoxicity) of 90 days before and after 90 days (B).

FIGURE 6 | Follow-up of patients who restart ICI therapy after suffering ICI-related cardiotoxicity.

reports of thymoma patients with ICI-related cardiotoxicity.
Toi et al. (20) retrospectively recruited 137 patients with
positive autoimmune antibody receiving ICI therapy. They

found that positive autoimmune antibody was significantly
associated with a higher occurrence of irAEs and better clinical
benefit in NSCLC. In addition, another study also suggested
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a relationship between autoimmune antibodies and irAEs
(20). Therefore, we are more cautious about ICI initiation in
patients with autoimmune diseases in real-world. Therefore,
patients with active autoimmune disease were excluded from
our study. Because the treatment of active autoimmune
diseases is contrary to tumor treatment, they can affect the
judgment to response of tumor treatment and drug-related
adverse reactions.

In addition to ICI-related cardiotoxicity, we also collected
ICI-related thyroid dysfunction and pneumonia. We found
that both of them have a certain correlation with the
occurrence of cardiotoxicity. Although the onset of ICI-
related pneumonitis or abnormal thyroid function does not
completely precede the onset of cardiotoxicity, we cannot
establish a causal relationship between them. However,
this finding suggests that there may be a link between the
toxicities occurring at different times targeting different
organs. The occurrence of toxicities targeting the lung
or thyroid may then alert clinicians the occurrence of
cardiotoxicity. Besides, myositis, hepatitis, and pneumonia
may be complicated by the occurrence of cardiotoxicity. In
the cardiotoxicity population, a total of 30 (41.1%) patients
had concurrent toxicities targeting other organs. In a study
based on the VigiBase database, serious combined ICI-
related adverse reactions accounted for 42% of adverse
reactions, most of which were ICI-related myocarditis and
myositis (21). In a multicenter study, 32% of myositis was
associated with concurrent myocarditis (22). In addition,
the mortality rate is the highest in patients with combined
myocarditis and myasthenia gravis. Therefore, in patients with
symptoms of ICI-related myositis, they should be alert to the
occurrence of myocarditis.

Previous studies have demonstrated a possible correlation
between irAEs and tumor prognosis. A meta-analysis (23)
explored the relationship between ICI-related adverse drug
reactions and clinical benefits. It was suggested that in
patients receiving ICIs, the development of irAEs was positively
correlated with objective remission rate (ORR), progression-
free survival (PFS), and OS, irrespective of disease site, type
of ICI, and irAE. ORR was better in patients with grade
3 or higher toxicity, but OS was worse. However, in this
study, we only did the analysis in overall survival, and no
significant difference was found between patients with or
without cardiotoxicity.

Till now, the National Comprehensive Cancer Network
(NCCN) guidelines do not recommend rechallenge of ICI after
grade 2 and above myocarditis. Subclinical myocarditis was
recommended continue the use of ICI with close detection. In a
single-center retrospective study in 2019 (24), the investigators
included 93 patients with grade 2 or higher toxicity, including
43 grade 2 events, 36 grade 3 events, and 14 grade 4 events.
Taking the occurrence of the second toxicity as the endpoint,
the final results suggested that the time since ICI use to the
occurrence of the initial irAE was related to the occurrence
of the second irAE. Besides, the severity of the second irAE
was not more severe than the first one. They concluded that
the risk-reward ratio of anti-PD-1 or anti-PD-L1 rechallenge

appears to be acceptable. However, patients with first ICI-
related toxicity involving the heart were not included in this
study. Conversely, there were also some studies restarting
ICI after the occurrence of irAEs, resulting in recurrence
of grade 5 toxicity in patients. Therefore, ICI rechallenge
after irAEs is still controversial. Due to the small number
of cases in our study, we cannot currently explain the safety
of cardiotoxicity after restarting, because once cardiotoxicity
occurs, it may be fatal drug toxicity, which is unacceptable
for clinicians and patients’ families. Moreover, the timing of
ICI restarting among these patients also varied, and some
patients even resumed ICI 1 month after ICI withdrawal. If
there are large clinical studies to confirm the feasibility of
restarting immunotherapy for ICI-related cardiotoxicity, the
timing of restarting ICI will also be a major focus. Furthermore,
there were many patients with grade 1 cardiotoxicity who
continue to use immunotherapy under strict monitoring, and a
small number of patients who suffered mild cardiotoxicity
for not one time, but it does not affect the progress of
tumor treatment.

CONCLUSION

We retrospectively analyzed the risk factors of ICI-related
cardiotoxicity in the whole population receiving ICI therapy. We
found a higher incidence of ICI-related cardiotoxicity, and a high
proportion of severe cases than previous reported in real-world
situation. Patients with diabetes mellitus and low baseline levels
of LMR have an increased incidence of cardiotoxicity, which
should be closely monitored during the use of ICIs. Besides, the
incidence of severe cardiotoxicity was correlated with shorter
overall survival.

SHORTAGE

Despite the advantages and potential insights on this study,
there are some inevitable shortcomings in our study.
First of all, some potential biases are still unavoidable
due to the retrospective design of this study, such as
investigator bias. Second, although the overall immunotherapy
sample size we included is relatively large, the number
of cardiotoxicity cases is relatively small, as well as the
number of patients who rechallenge ICI. Finally, due to
the serious lack of some data during the study period, we
could not analyze the relationship between the baseline
levels of some inflammatory markers (such as LDH, CRP,
and cytokines) and the occurrence of cardiotoxicity. Hence,
well-designed large-scale prospective studies are urgently
needed in the future.
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Background: Clinical characteristics and long-term outcomes of patients with

myocardial infarction with non-obstructive coronary arteries (MINOCA) and cancer are

insufficiently elucidated.

Objectives: We sought to characterize these patients hospitalized in a tertiary cardio-

oncology center and to find the potential determinants affecting their long-term mortality.

Methods: MINOCA was diagnosed in 72 of the 1,011 patients with consecutive

myocardial infarction who underwent coronary angiography. Mortality rates and their

determinants were analyzed within a median follow-up of 69.2 (37.8–79.9) months.

Results: Active cancer was identified in 21 (29.2%) of patients with MINOCA and in

113 (12.0%) patients with myocardial infarction and obstructive coronary artery disease

(MI-CAD) (p < 0.001). MINOCA patients with cancer were characterized by a higher

incidence of anemia (47.6 vs. 21.6%, p= 0.03) andmore frequently Takotsubo syndrome

(19.1 vs. 2.0%, p = 0.01) than in non-cancer MINOCA. The troponin T/hemoglobin ratio

was higher in both cancer MINOCA and MI-CAD groups when compared with their

respective non-cancer patients (both p < 0.05). The age and sex-standardized mortality

rates were significantly higher in cancer MINOCA (26.7%/year) when compared with

non-cancer MINOCA (2.3%/year, p = 0.002) and in cancer MI-CAD (25.0%/year) vs.

non-cancer MI-CAD (3.7%/year, p < 0.001). Active cancer (HR 3.12, 95% CI 2.41–4.04)

was independently associated with higher long-term mortality, while higher hemoglobin

levels (HR 0.93, 95% CI 0.88–0.99, per g/dl) and a MINOCA diagnosis (HR 0.69, 95%

CI 0.47–0.97) improved long-term survival.

Conclusion: Patients with MINOCA were comorbid with cancer more frequently than

MI-CAD. In turn, an active malignancy was associated with an unfavorable long-term

survival both in MI-CAD population and in patients with MINOCA.

Keywords: MINOCA, MI-CAD, cancer, anemia, cardio-oncology
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INTRODUCTION

Myocardial infarction with non-obstructive coronary arteries
(MINOCA) is recognized if it meets the general criteria
of myocardial infarction (MI) together with the absence of
significant lesions in epicardial arteries in angiography (1). As
shown in large MI registries, MINOCA concerns 1–13% of all
patients with MI (2, 3). Recent reports indicate an unexpectedly
unfavorable long-term prognosis in this group of patients. The
SWEDEHEART registry included 9,092 patients with MINOCA,
of whom 24% experienced a major cardiovascular event, and
where 14% died within a mean follow-up period of 4.5 years (4).

The potential mechanisms responsible for MINOCA are
heterogeneous (1, 5). According to the current knowledge,
the underlying pathophysiological causes of MINOCA are
grouped as coronary or non-coronary. Moreover, the latter
are classified as myocardial disorders or as those that are
typically extra-cardiac (6). Both historical (7) as well as current
findings (8) indicate that hypercoagulable states, including the
inherited thrombophilia, occurred in 15–25% of patients with
MINOCA. This includes deficiency of protein C, protein S,
or antithrombin. Additionally, the antiphospholipid syndrome
was detected in 15.5% of patients. Concurrently, patients with
cancer are a group that is at a particularly high prothrombotic
risk, traditionally in the venous system (9). An analysis of
the Surveillance, Epidemiology, and End Results involving
nearly 280,000 patient pairs showed that the rate of arterial
thromboembolic events was 4.7% in cancer patients compared
with the 2.2% in controls (10). That predisposition for arterial
thromboembolism, defined as MI, ischemic stroke, or peripheral
arterial occlusion, has been confirmed recently in a large
Danish population-based cohort study (1.5 vs. 0.8% in the 6-
month observation, hazard ratio [HR]: 2.36, 95% confidence
interval [CI]: 2.28–2.44] (11). Moreover, its occurrence among
patients with cancer was associated with an increased risk of
mortality (HR 3.28, 95% CI: 3.18–3.38) (11). As the arterial
thromboembolic events immediately preceded cancer diagnosis
and were correlated with the stage of cancer (10, 11), they
can be considered paraneoplastic symptoms, which always
require subsequent meticulous diagnostics toward a subclinical
neoplastic process (12).

Recently, a review of the meta-regression analysis of
nine studies including 26,636 patients with MINOCA has
shown that 2.5% of them had a diagnosis of malignancy
at presentation (13). Similar findings have been reported
in the SWEDEHEART registry (14). Despite relatively
low prevalence, both Nordenskjöld et al. (4) (HR: 2.40,
95% CI: 1.58–3.61, p < 0.001) and Pelliccia et al. (13)
(coefficient: 0.001, 95% CI: −0.001 to 0.001, p = 0.01)
have found cancer as an independent predictor of death in
patients with MINOCA. Another meta-analysis including
a higher number of patients with MINOCA, i.e., 36,932,
did not confirm a similar relationship (15). Therefore,
we sought to characterize subjects with MINOCA and
cancer hospitalized in a tertiary cardio-oncology center in
order to investigate the potential mechanisms affecting their
long-term outcomes.

FIGURE 1 | The study flow-chart. MINOCA, myocardial infarction with

non-obstructive coronary artery; MI-CAD, myocardial infarction and

obstructive coronary artery disease.

MATERIALS AND METHODS

As has been stated retrospectively, in a tertiary cardio-oncology
center including closely cooperating departments of cardiology
(168 hospital beds), cardiac surgery (80 beds), pulmonology
and oncology (74 beds), and thoracic surgery (48 beds), 1,011
consecutive patients underwent coronary angiography between
2012 and 2017 due to the diagnosis of MI based on clinical
symptoms, electrocardiographic findings, and the evolution of
myocardial necrotic biomarkers (16). MINOCA was recognized
in 72 (7.1%) subjects (Figure 1) based on the universal criteria
of MI (positive cardiac biomarkers rising and/or falling in
serial measurements, with at least one value above the 99th
percentile as the upper reference limit and at least one clinical
sign of infarction). An additional inclusion criterion was a lack
of obstructive lesions narrowing epicardial coronary segments
by more than 50% in angiography (1, 17). Patients with ST-
segment elevation of at least 1mm in at least two contiguous
leads were classified as ST-segment elevation MI (STEMI),
whereas patients without ST-segment elevation on admission
were diagnosed as non-ST-segment elevation MI (NSTEMI)
(18). In addition, 134 (13.3%) patients were identified with
active cancer, defined as cancer diagnosed within the past 6
months, receiving antimitotic treatment during the last 6months,
recurrent, metastatic, regionally advanced, or inoperable (19)
(Figure 1). In the analyzed period of time, five MI patients with
advanced cancer did not undergo coronary angiography and
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TABLE 1 | Clinical and angiographic characteristics of the study patients.

MINOCA MI-CAD

Cancer N = 21 Non-cancer N = 51 Cancer N = 113 Non-cancer N = 826

Male gender 8 (38.1) 27 (52.9) 88 (77.9) 591 (71.6)

Age, years 75 (71–79) 70 (64–78) 73 (66–79) 68 (60–78)

Body mass index, kg/m2 24.2 (22.1–27.4) 26.7 (23.6–31.5) 26.0 (23.4–29.1) 27.7 (25.0–30.9)

Diabetes mellitus 7 (33.3) 13 (25.5) 40 (35.4) 318 (38.6)

Hypertension 16 (76.2) 47 (92.2) 96 (85.0) 717 (87.1)

Dyslipidemia 12 (57.1) 38 (74.5) 73 (64.6) 695 (84.5)

Pre-ESRD or ESRD 1 (4.8) 2 (3.9) 2 (1.8) 20 (2.4)

Active smoking 0 (0.0) 6 (11.8) 18 (15.9) 203 (24.7)

Anemia 10 (47.6) 11 (21.6) 52 (46.0) 169 (20.5)

Thrombocytopenia 3 (14.3) 2 (3.9) 3 (2.7) 9 (1.1)

Prior myocardial infarction 3 (14.3) 9 (17.7) 39 (34.5) 239 (29.0)

Prior stroke 3 (14.3) 3 (5.9) 9 (8.0) 56 (6.8)

Killip class on admission

I/II 19 (90.5) 47 (92.2) 98 (86.7) 757 (91.8)

III/IV 2 (9.5) 4 (7.8) 15 (13.3) 68 (8.2)

Clinical presentation

NSTEMI 15 (71.4) 45 (88.2) 74 (65.5) 530 (64.2)

STEMI 6 (28.6) 6 (11.8) 39 (34.5) 296 (35.8)

Takotsubo syndrome 4 (19.1) 1 (2.0) 0 (0.0) 8 (1.0)

Perioperative myocardial infarction 1 (4.8) 3 (2.7)

Type of cancer

Genitourinary 8 (38.1) 36 (31.9)

Breast 5 (23.8) 6 (5.3)

Lung 3 (14.3) 27 (23.9)

Gastrointestinal 2 (9.5) 18 (15.9)

Other 3 (14.3) 26 (23.0)

Metastatic disease

Lymph nodes 0 (0.0) 16 (14.1)

Distant 4 (19.1) 24 (21.2)

Prior oncological treatment

Surgery 6 (28.6) 24 (21.2)

Surgery with curative intent 1 (4.8) 3 (2.7)

Radiotherapy 3 (14.3) 13 (11.5)

Chemotherapy 4 (19.1) 28 (24.8)

Platinum compounds 2 (9.5) 9 (8.0)

Taxanes 2 (9.5) 2 (1.8)

Fluoropyrimidines 0 (0.0) 10 (8.8)

Anthracyclines 0 (0.0) 3 (2.7)

Other 0 (0.0) 4 (3.5)

Hormonotherapy 2 (9.5) 17 (15.0)

Newly diagnosed cancer during hospitalization 2 (9.5) 21 (18.6)

Coronary angiography

<30% stenosis 13 (61.9) 34 (66.7)

30–50% stenosis 8 (38.1) 17 (33.3)

≥50% stenosis in one or two coronary arteries 87 (77.0) 687 (83.2)

≥50% stenosis in three coronary arteries 26 (23.0) 139 (16.8)

≥50% stenosis in left main 19 (16.8) 98 (11.9)

Epicardial thrombus 0 (0.0) 1 (2.0) 14 (12.4) 116 (14.0)

Distal embolization 0 (0.0) 3 (5.9) 9 (8.0) 17 (2.1)

(Continued)
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TABLE 1 | Continued

MINOCA MI-CAD

Cancer N = 21 Non-cancer N = 51 Cancer N = 113 Non-cancer N = 826

Treatment strategy

Percutaneous coronary intervention 101 (89.4) 724 (87.7)

Coronary artery bypass graft surgery 3 (2.7) 24 (2.9)

Conservative 9 (8.0) 78 (9.4)

Pharmacotherapy

Aspirin 19 (90.5) 44 (86.3) 108 (95.6) 810 (98.1)

P2Y12 inhibitor 10 (47.6) 27 (52.9) 105 (92.9) 785 (95.0)

Proton pump inhibitor 8 (38.1) 35 (68.6) 84 (74.3) 618 (75.3)

ACEI/ARB 17 (81.0) 44 (86.3) 103 (91.2) 728 (88.1)

β-blocker 16 (76.2) 36 (70.6) 101 (89.4) 743 (90.5)

Statin 14 (66.7) 39 (76.5) 99 (87.6) 774 (94.3)

Data are shown as number (percentage) or median (interquartile range), ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ESRD, end-stage renal

disease; MINOCA, myocardial infarction with non-obstructive coronary artery; MI-CAD, myocardial infarction and obstructive coronary artery disease; NSTEMI, non-ST-segment elevation

myocardial infarction; STEMI, ST-segment elevation myocardial infarction.

were therefore excluded from further analysis. The study protocol
complied with the Declaration of Helsinki and was approved by
the Jagiellonian University Medical College Ethics Committee
(Consent No. 1072.6120.59.2018). All included patients gave
informed consent.

Patients Clinical and Laboratory
Characteristics
Information on demographics, anthropometric parameters,
cardiovascular risk factors, cardiovascular disease history, and
comorbidities of all the study patients was gathered. Anemia was
recognized if the hemoglobin level was <13 g/dl for men and
<12 g/dl for women. The cut-off value for the thrombocytopenia
was 100× 103/µl (20). Pre-end-stage renal disease and end-stage
renal disease was diagnosed when creatinine clearance calculated
using the Cockcroft-Gault formula was lower than 30 ml/min.
Finally, creatine kinase serum activity (IU/L, upper limit of
normal: 170 IU/L), isoenzymeMB of creatine kinase (IU/L, upper
limit of normal: 24 IU/L), and concentration of high-sensitive
cardiac troponin T (ng/ml, upper limit of normal: 0.014 ng/ml)
were measured on admission and at least one time within the first
24 h.

Angiography
All coronary angiograms were analyzed off-line, using two
contralateral projections for each artery at baseline and after
angioplasty if applicable, by a cardiologist unaware of the clinical
data. All coronary segments were carefully evaluated for the
presence of visible thrombus, distal embolization, and degree of
stenosis based on visual inspection (21, 22). In cases of borderline
lesions between 40 and 70%, quantitative coronary angiography
(QCA Quantcor, Siemens, Germany) was applied for precise
assessment. According to the guidelines (1, 5), lesions narrowing
the coronary artery by <50% were defined as insignificant. All
patients with insignificant stenosis were divided into two groups
with either i) normal coronary arteries or minimal intracoronary

irregularities with stenosis of <30% or with ii) mild to moderate
lesions of at least 30 and <50%.

Echocardiography
A two-dimensional transthoracic echocardiography was
performed by a trained physician between the second and fourth
day of hospitalization. It was performed at rest in a left decubitus
position, using a Vivid S5 ultrasound (GE, Solingen, Germany)
equipped with a multi-frequency harmonic transducer, 3Sc-RS
(1.3-4MHz). All measurements were carried out according to the
recommendations of the American Society of Echocardiography
and the European Association of Echocardiography (23).
Standard parameters were collected to describe individual heart
structures and enable their functional assessment. Screening
for Takotsubo syndrome was also routinely conducted, the
diagnosis of which was performed according to the InterTAK
criteria (24), irrespective of the severity of coronary artery
disease (25).

Clinical Follow-Up
The length of hospitalization was collected from hospital
records, whereas long-term all-cause mortality was obtained
from the National Health Registry. The additional data
regarding the cause of death were obtained from the Polish
Office of Statistics. The causes of death were categorized
as cancer, cardiovascular, other (the most common causes
included respiratory system disease or accident/trauma), or
unknown. Major cardiovascular causes of death included
coronary artery disease, cerebrovascular disease, heart failure,
or atherosclerosis.

Statistical Analysis
Statistical analysis was performed with the SPSS Statistics
software (Version 25.0.0.2, IBM, USA). Continuous variables
were expressed as medians (interquartile range) and categorical
variables as numbers (percentage). Continuous variables were
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TABLE 2 | The selected laboratory and echocardiography characteristics.

MINOCA MI-CAD

Cancer

N = 21

Non-cancer

N = 51

Cancer

N = 113

Non-cancer

N = 826

Laboratory tests

Hemoglobin, g/dl 12.9 (10.2–13.9) 14.1 (12.3–14.7) 12.8 (11.2–14.1) 14.0 (12.8–15.1)

Hematocrit, % 38.7 (31.7–41.9) 41.5 (36.6–42.8) 38.3 (34.6–41.3) 41.7 (38.4–44.6)

White blood cells, x103/µl 8.9 (6.1–11.7) 8.6 (6.5–11.5) 10.0 (7.3–13.3) 9.3 (7.5–12.0)

Platelet count, x103/µl 226 (166–284) 223 (163–263) 238 (182–292) 221 (184–271)

Creatinine, µmol/l 91 (76–124) 90 (73–113) 93 (77–112) 88 (76–103)

Glomerular filtration rate, ml/min 57.1 (36.7–71.2) 63.9 (53.0–88.1) 65.6 (52.7–86.0) 71.0 (57.2–86.3)

Glucose, mmol/l 7.5 (5.7–9.3) 6.3 (5.5–7.1) 7.5 (5.7–8.6) 6.9 (5.8–9.1)

Troponin, ng/ml 0.306 (0.102–0.680) 0.076 (0.027–0.265) 0.141 (0.046–1.070) 0.113 (0.033–0.429)

Troponin peak, ng/ml 0.489 (0.102–1.190) 0.145 (0.053–0.344) 0.952 (0.178–7.160) 0.897 (0.249–4.300)

Creatine kinase, IU/l 134 (51–163) 132 (90–266) 151 (82–376) 186 (109–381)

Creatine kinase peak, IU/l 137 (77–246) 150 (99–319) 313 (140–852) 553 (192–1,652)

Creatine kinase MB isoenzyme, IU/l 24 (13–35) 20 (14–29) 23 (15–61) 22 (15–45)

Creatine kinase MB isoenzyme peak, IU/l 27 (19–42) 21 (16–32) 44 (23–145) 61 (26–155)

Echocardiography characteristics

Right ventricular systolic pressure, mmHg 45 (33–63) 32 (26–40) 36 (29–44) 28 (26–37)

TAPSE, mm 24 (20–28) 22 (20–25) 22 (16–24) 21.8 (19–25)

Left atrium, mm 36 (33–43) 42 (36–45) 41 (38–46) 42 (38–46)

E/A ratio 0.6 (0.5–0.8) 0.8 (0.6–1) 0.8 (0.7–1) 0.7 (0.6–1.1)

End-diastolic LV diameter, mm 45 (41–52) 50 (45–53) 51 (46–56) 51 (48–56)

End-systolic LV diameter, mm 25 (23–33) 32 (27–37) 34 (29–42) 32 (28–37)

LV ejection fraction, % 50 (40–59) 55 (45–60) 45 (36–55) 50 (40–55)

Aortic valve peak gradient, mmHg 8.5 (7–13.5) 7 (6–10) 7 (5–9) 7 (5–8)

Ascending aorta diameter, mm 34 (29–36) 36 (33–38) 35 (33–38) 36 (33–38)

Data are shown as median (interquartile range), HDL, high-density lipoprotein; LDL, low-density lipoprotein; LV, left ventricular; MINOCA, myocardial infarction with non-obstructive

coronary artery; MI-CAD, myocardial infarction and obstructive coronary artery disease; TAPSE, tricuspid annular plane systolic excursion.

first checked for normal distribution using the Shapiro–Wilk test.
Afterward, differences in the four groups were compared with
an analysis of variance, followed by a post-hoc Bonferroni test
if the data distribution was normal. Non-normally distributed
data were analyzed via the Kruskal–Wallis test, and differences
between the groups were identified using a test for multiple
comparisons of mean ranks. Categorical variables were analyzed
with the chi-square test or Fisher’s exact test with a post-hoc z-
test for comparison of column proportions with the Bonferroni
method. The mortality rates were expressed as crude or age
and sex-standardized for the European population based on
Eurostat data available online (26). The Kaplan–Meier curves
for overall mortality were constructed in order to estimate
the survival rates, and a log-rank test with a Bonferroni-
corrected threshold was performed to assess the differences
in survival between the study groups. Finally, all independent
variables with the potential to confound both the exposure and
the outcome were included in the Cox proportional hazard
regression model to determine independent predictors of long-
term all-cause mortality. A two-tailed p-value of <0.05 was
considered statistically significant.

RESULTS

Based on detailed angiographic and oncological characteristics,
four groups of patients were created (Figure 1). Within 1,011
MI patients, active cancer and MINOCA were identified in 21
(2.1%) patients, whereasMINOCAwithout cancer was diagnosed
in 51 (5.0%) subjects. Of the 939 remainders with type 1 MI
with obstructive coronary artery disease (MI-CAD), 113 (11.2%)
patients had active cancer and 826 (81.7%) had no evidence
of active cancer. In 111 patients, the malignancy process was
diagnosed before index MI, whereas new cancer was found
during index hospitalization in two patients with MINOCA and
in 21 with MI-CAD (Table 1).

Among the four groups, there were significant differences
in the distribution of gender, anthropometric parameters,
dyslipidemia, active smoking status, and initial clinical

presentation (p < 0.01 for each) (Table 1). The angiographic
analysis also revealed a different proportion of epicardial

thrombus in the compared groups (p = 0.02). Hemoglobin

levels were lower, whereas baseline high-sensitive troponin T
was higher in both cancer groups compared with non-cancer
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FIGURE 2 | The relationships between troponin T and hemoglobin level in the study groups. (A) Cancer MINOCA, (B) Non-cancer MINOCA, (C) Cancer MI-CAD, (D)

Non-cancer MI-CAD, and (E) In both cancer groups, the ratio of troponin T to hemoglobin was higher than in the respective non-cancer groups. MINOCA, myocardial

infarction with non-obstructive coronary artery; MI-CAD, myocardial infarction and obstructive coronary artery disease.

MINOCA subjects (p < 0.05 for all pairwise comparisons) with
the blurring of differences during hospitalization in maximal
peak values (Table 2). After adjustment for renal function,

the highest inverse correlation between hemoglobin level and
baseline troponin T concentration was found in the cancer
MINOCA (r = −0.41, p = 0.05) group (Figures 2A–D). The
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TABLE 3 | The long-term mortality and its causes.

MINOCA MI-CAD P-value

Cancer

N = 21

Non-cancer

N = 51

Cancer

N = 113

Non-Cancer

N = 826

Patients who died

during follow-up

14 (66.7)#,∧ 15 (29.4) 82 (72.6) #,∧ 256 (31.0) <0.001*

Crude mortality rate,

%/year

19.2#,∧ 5.9 31.7#,∧ 7.9 <0.001**

Age- and

sex-standardized

mortality rate, %/year

26.7#,∧ 2.3 25.0#,∧ 3.7 <0.001**

Causes of death, expressed as number (% of patients who died)

Cancer 6 (42.8)#,∧ 3 (20.0) 46 (56.0)#,∧ 45 (17.6) <0.001*

Unknown 0 1 (6.7) 3 (3.7) 8 (3.1)

Other 2 (14.3) 3 (20.0) 9 (11.0) 54 (21.1)

Cardiovascular: 6 (42.8) 8 (53.3) 24 (29.3)#,∧ 149 (58.2)

Coronary artery disease 1 (7.1) 2 (13.3) 8 (9.8) 63 (24.6) NA*

Cerebrovascular disease 1 (7.1) 2 (13.3) 4 (4.9) 22 (8.6)

Heart failure 2 (14.3) 3 (20.0) 6 (7.3) 28 (10.9)

Atherosclerosis 2 (14.3) 1 (6.7) 6 (7.3) 36 (14.1)

Data are shown as number (percentage) unless otherwise indicated, MINOCA, myocardial infarction with non-obstructive coronary artery; MI-CAD, myocardial infarction and obstructive

coronary artery disease; NA, not applicable; p-value for differences in four groups based on a chi-square test with a post-hoc z-test for comparison of column proportions with

the Bonferroni method (*) or a log-rank test for multiple comparisons of survival curves with the Bonferroni-corrected threshold (**), #p < 0.05 non-cancer MINOCA, ∧p < 0.05

non-cancer MI-CAD.

proposed ratio of troponin T to hemoglobin was higher in
cancer patients with MINOCA and MI-CAD when compared
with the respective non-cancer groups (Figure 2E). The time
of hospitalization was insignificantly shorter in non-cancer
MINOCA (4 (3–7) days) as compared with cancer MINOCA (6
(3–12) days), cancer MI-CAD (6 (3–9) days), and non-cancer
MI-CAD (6 (4–8) days) and (p= 0.07).

Active Cancer Diagnosis Among MINOCA
Patients
MINOCA was recognized significantly more often in cancer
patients (21 of 134) compared with the non-cancer (51 of 877)
cohort (15.7 vs. 5.8%, p < 0.001). A higher percentage of
women was found in both cancer and non-cancer MINOCA
groups than in the respective MI-CAD populations (p <

0.05 for both pairwise comparisons). A higher incidence of
anemia was observed in cancer vs. non-cancer MINOCA group
(47.6 vs. 21.6%, p < 0.05), without a significant difference in
thrombocytopenia (14.3 and 3.9%). In both groups, the vast
majority of MIs were classified as NSTEMI (71.4 and 88.2%,
respectively). Similar treatment regimens were found in both
MINOCA subgroups (Table 1). Aspirin was used in 90.5 and
86.3% of patients, respectively, whereas P2Y12 inhibitor was used
in approximately half of the patients in both groups. Only proton
pump inhibitors were used less frequently in cancer than in
non-cancer MINOCA patients (38.1 vs. 68.6%, p < 0.05).

The echocardiographic screening showed more frequent
Takotsubo syndrome in the oncological patients (19.1 vs.
2.0%, p = 0.010), with almost the same distribution of

insignificant lesions in angiography in both groups (Table 1).
Both epicardial thrombi and distal embolization were not found
in cancer MINOCA and were reported only in the single non-
cancer patients with MINOCA. Higher right ventricular systolic
pressures (p = 0.03) and lower left atrium diameters (p =

0.05) (Table 2) were found in cancer vs. non-cancer patients
with MINOCA with no differences in left ventricular ejection
fraction (LVEF).

Active Cancer in Patients With MI With vs.
Without Obstructive Coronary Artery
Disease
Active cancer was found more often in patients with MINOCA
(21 of 72) compared to patients (29.2 vs. 12.0%, p < 0.001) with
MI-CAD (113 of 939) (Table 1). Men were almost two times as
represented in the cancer MI-CAD group compared with the
MINOCA subgroup (77.9 vs. 38.1%, p < 0.05). Almost half of
the patients had anemia in both groups, and both cancer groups
presented with thrombocytopenia less frequently than anemia
(Table 1) in a similar proportion when compared with respective
non-cancer populations. In-hospital use of P2Y12 inhibitors
(47.6 vs. 92.9%, p < 0.001), proton pump inhibitors (38.1 vs.
74.3%, p = 0.001), and statins (66.7 vs. 87.6%, p < 0.05) was less
frequent in cancer MINOCA than in cancer MI-CAD.

In half of the newly diagnosed neoplasms, the first symptom
was bleeding associated with antiplatelet and/or antithrombotic
treatment administered during index MI, including hematuria
(26%), hemoptysis (13%), and bleeds from the gastrointestinal
tract (13%). Genitourinary neoplasms were predominant in
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FIGURE 3 | The effect of cancer and its type and MINOCA on long-term survival. (A) Diagnosis of cancer was associated with significantly reduced long-term survival

(p < 0.001, gray, wide arrow), whereas MINOCA diagnosis improved (p = 0.048, black, narrow arrows) long-term survival. (B) Long-term survival in patients with lung

cancer was lower than that in those with genitourinary cancer (p = 0.001) or breast cancer (p = 0.018). MINOCA, myocardial infarction with non-obstructive coronary

artery; MI-CAD, myocardial infarction and obstructive coronary artery disease.

both patients with MINOCA and MI-CAD (38.1 and 31.9%,
respectively), whereas breast cancer was more frequent in the
MINOCA group (23.8 vs. 5.3%, p= 0.02). There were significant
differences neither in the locoregional and distant advancement
of the neoplastic process nor in the anticancer treatment applied
before the index MI (Table 1). The most commonly used
chemotherapeutic agents in the MINOCA group were platinum
compounds and taxanes. In turn, platinum compounds and
fluoropyrimidines dominated in MI-CAD (Table 1).

Epicardial thrombus (12.4%) as well as distal embolization

(8.0%) were observed numerically in a high percentage of

cancer patients with MI-CAD but were not found in the cancer

MINOCA group (Table 1). In the majority of cancer patients

withMI-CAD, the significant atherosclerotic lesions were limited

to one or two coronary arteries (77%). Most of these patients
were treated with percutaneous coronary intervention (89.4%).
In contrast, Takotsubo syndrome among patients with cancer
was diagnosed only in the MINOCA group (19.1 vs. 0.0%, p <

0.05) (Table 1). There were no significant differences in right
ventricular systolic pressure (p = 0.18) and LVEF (p = 0.28), but
significantly larger end-diastolic (p= 0.02) and end-systolic (p=
0.03) left ventricular (LV) diameters were identified in the cancer

MI-CAD group. Chemotherapy and radiotherapy administered
before index MI did not affect LVEF (p = 0.59), end-diastolic (p
= 0.90), or end-systolic (p= 0.86) LV diameters (Table 2).

Long-Term Mortality, Its Causes, and
Predictors
The median follow-up time in patients with non-cancer
MINOCA, non-cancer MI-CAD, cancer MINOCA, and cancer
MI-CAD was 73.4 [33.7–81.7], 41.9 [28.1–73.5], 35.0 [6.2–77.2],
and 17.3 [4.9–43.9] months, respectively (p < 0.001). Both crude
or age- and sex-standardized mortality rates as well as causes
of death differed among the four groups (Table 3). As expected,
the higher prevalence of cancer deaths was more pronounced
in both oncological groups. In turn, cardiovascular causes of
death were predominant in both non-cancer MINOCA and MI-
CAD groups. Long-term survival was significantly higher in non-
cancer MINOCA when compared with cancer MINOCA (HR
4.07, 95% CI 1.72–9.64, p = 0.002) and in non-cancer MI-
CAD when compared with cancer MI-CAD (HR 7.62, 95% CI
5.13–11.31, p < 0.001). Concurrently, there were no significant
differences in long-term survival between both cancer groups
of MINOCA and MI-CAD (HR 0.76, 95% CI 0.45–1.28, p =
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TABLE 4 | The independent predictors of death in the whole group and in patients with MINOCA.

Univariable model Multivariable model

P-value HR 95% CI for HR P-value HR 95% CI for HR

The whole group

Age, per year 0.009 1.01 1.00–1.02 0.24 1.01 0.99–1.02

Male gender, yes/no <0.001 0.65 0.53–0.80 0.53 0.93 0.74–1.17

Active cancer, yes/no <0.001 3.33 2.64–4.21 <0.001 3.12 2.41–4.04

MINOCA, yes/no 0.18 0.90 0.65–1.15 0.048 0.69 0.47–0.97

Anemia, yes/no <0.001 1.76 1.40–2.20 -

Hemoglobin, per 1 g/dl <0.001 0.88 0.84–0.93 0.018 0.93 0.88–0.99

LVEF, per 5% 0.74 1.00 0.99–1.01 -

Killip 3/4 vs. 0/1 on admission 0.61 1.10 0.77–1.57 0.94 1.01 0.71–1.45

MINOCA patients

Age, per 1 year 0.019 1.05 1.01–1.10 0.044 1.04 1.00–1.08

Female gender, yes/no 0.73 1.14 0.55–2.37 -

Active cancer, yes/no 0.003 3.09 1.49–6.41 0.040 2.24 1.04–4.80

LVEF, per 5% 0.007 0.96 0.94–0.99 0.012 0.95 0.93–0.97

CI, confidence interval; HR, hazard ratio; LVEF, left ventricular ejection fraction; MINOCA, myocardial infarction with non-obstructive coronary artery.

0.31), as well as both non-cancer groups of MINOCA and MI-
CAD (HR 0.80, 95% CI 0.50–1.28, p = 0.35) (Figure 3A). The
median survival time irrespective of the type of MI was 56, 39,
12, and 10 months for breast, genitourinary, gastrointestinal,
and lung cancer, respectively (Figure 3B). A significantly better
survival rate was found in patients with genitourinary cancer
vs. lung cancer (HR 0.34, 95% CI 0.18–0.65, p = 0.001) and
in breast cancer vs. lung cancer (HR 0.39, 95% CI 0.18–0.85,
p= 0.02).

In the MINOCA group, there were no significant
differences in the long-term survival between patients with
vs. without Takotsubo syndrome (Supplementary Figure 1).
There was also a significantly higher long-term mortality
rate in cancer vs. non-cancer patients matched for age,
gender, body mass index, diabetes, hypertension, and
hyperlipidemia (Supplementary Table 1 and Figure 2). A
Cox proportional hazard regression limited to patients matched
for demographic parameters and cardiovascular risk factors
showed that unfavorable prognosis was associated with
active cancer, a lower hemoglobin level, and age of older
patients. Simultaneously, hypertension, hyperlipidemia, and
better LVEF independently improved long-term survival
(Supplementary Table 2).

In the whole group, age, female gender, cancer, anemia,
and lower hemoglobin level were identified as associated with
a higher mortality rate in a univariate model (Table 4).
Using a Cox proportional hazard regression, an active
cancer was independently associated with a higher long-
term mortality rate, while higher hemoglobin levels and
MINOCA diagnosis improved long-term survival (Table 4).
A Cox proportional hazard regression limited to only
patients with MINOCA showed that age, cancer, and LVEF
were independently associated with a long-term mortality
rate (Table 4).

DISCUSSION

To our knowledge, this study is the first and most comprehensive

analysis derived from a tertiary cardio-oncology center
concerning the complex relationship between cancer and
MINOCA, as well as its influence on long-term clinical
outcomes. As shown, neoplasm has been identified more
frequently in patients with MINOCA than in those with
atherosclerosis and/or thrombus-based type 1 MI (defined
as MI-CAD). However, a multivariable analysis showed that
an active malignancy was associated with unfavorable long-
term outcomes. We have also provided clinical features that
characterized cancer patients with MINOCA, which might be
useful in their differential diagnosis. It is important to note
that the diagnosis of cancer in both MINOCA and MI-CAD
groups was associated with an extremely high all-cause mortality
in a 5-year observation. Moreover, a multivariable approach
limited to only the MINOCA group showed that active cancer
irrespective of age and lower left ventricular systolic function
affected a higher mortality rate.

Patients with MI-CAD and cancer distinguished in our study
were characterized by a highly unfavorable prognosis driven
mostly by neoplastic disease. Although treatment of such patients
should be strictly individualized, there are still limited data
sufficiently addressing the optimal management of MI in patients
with cancer (27). Further studies are warranted to establish an
optimal antithrombotic regimen, especially in the acute phase,
due to the proven high risk of stent thrombosis (9, 28). The
results derived from the large Nationwide Inpatient Sample
indicate that cancer in patients receiving percutaneous coronary
intervention is common, but its prognostic impact depends
on detailed oncological characteristics (29). Our results also
indicate that, in both cancer and non-cancer MI-CAD patients,
the rate of revascularization with the percutaneous coronary
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intervention was almost 90% emphasizing current trends in
interventional cardiology. While cancer patients with type 1
MI were historically less likely to receive primary percutaneous
coronary intervention with first-generation drug-eluting stents
mainly due to the need for a shorter course of dual antiplatelet
therapy following bare-metal stents, the new drug-eluting stents
requiring shorter antiplatelet therapy time have become more
effective and as safe as bare-metal stents. According to the
current registries, dual antiplatelet therapy was prescribed in only
half of the patients with MINOCA, mainly in those with sinus
rhythm, prior percutaneous coronary intervention, and active
smokers (30).

In contrast, the prognosis in patients with MINOCA remains
controversial, with the latest studies suggesting comparable (4,
31) or lower (15) long-term mortality rates in patients with
MINOCA vs. MI-CAD. The abovementioned studies indicate
that a history of cancer coexisting with 2–2.5% of patients
with MINOCA (4, 13) is (13) or is not (15) an independent
predictor of their long-term mortality. In our MINOCA and MI-
CAD groups, a diagnosis of active cancer made before index
MI was more common. This overrepresentation of neoplastic
status was independently associated with unfavorable long-term
survival. When compared with the available literature, such a
high proportion of cancer patients is primarily a result of the
structure of our center, as well as that of direct admissions from
oncology and thoracic surgery departments to the cardiology
ward. Interestingly, there is a visible trend toward more frequent
admissions of cardio-oncology patients due to their prolonged
survival time.

The etiology of MI in the oncological population is
multifactorial. In previous studies, the role of cancer-induced
immunological disorders, oxidative stress, prothrombotic state,
and oncological treatment was underlined in MI development
among cancer patients (32). Moreover, oncological patients are
generally high-risk due to the significant prevalence of traditional
cardiovascular risk factors, such as older age, hypertension,
dyslipidemia, diabetes, obesity, or tobacco addiction (28).
This was also corroborated in this current study. Most of
the above-indicated factors contribute to the shifted oxidase-
reductase balance and endothelial injury. This exacerbates
coronary artery disease progression and promotes the rupture
of atherosclerotic plaque associated with type I of MI, identified
as MI-CAD (28, 32, 33) in our study. On the contrary, the
influence of cancer and antitumor treatment is undeniable
among MINOCA survivors. The rupture of non-obstructive
plaque, distal embolization, hypercoagulable state with thrombus
formation, transient artery spasm, microvascular dysfunction
often caused by endothelial impairment, and supply-demand
mismatch, among others, are all mechanisms responsible for
MINOCA (5). It is worth noting that, each of these sequences
of events might be triggered by both tumor and antineoplastic
treatment (13). The classic chemotherapy drugs have been
proven to damage the coronary arteries, mainly in their
endothelium. Therefore, they can lead to acute thrombosis and
coronary spasms (33). Drugs that particularly increase the risk
of MI include fluoropyrimidines (5-fluorouracil, capecitabine,
gemcitabine) and platinum compounds (33), which were also

often used among the analyzed patients. Moreover, combining
chemotherapeutics from different groups, especially those
mentioned above, significantly increases the risk of MI (33).
However, there is a lack of original reports demonstrating
the relationship between chemotherapy and MINOCA. Our
study provides detailed angiographic and echocardiographic
characteristics of cancer patients with MINOCA, shedding light
on their potential relationships. These findings might be helpful
in further research dedicated for personalized treatment in this
demanding group of patients.

A long-term prognosis is associated with myocardial infarct
size. As we have shown, both cancer and non-cancer patients
with MINOCA were characterized by a better preserved
global LV function and lower peak high-sensitive troponin
levels compared with the corresponding MI-CAD groups. This
indirectly indicates a lower myocardial injury rate and most
likely a smaller infarct size in patients with MINOCA. These
findings are in line with previous data showing that, among the
MINOCA population, patients with heart failure with preserved
LV ejection fraction (34, 35) predominated. Post-infarction
myocardial remodeling is also less frequently observed in this
group. There are at least a few potential explanations for
this relationship. First, the smaller myocardial infarct size is a
consequence of a higher prevalence of NSTEMI in MINOCA (8).
Second, cardiac magnetic resonance imaging provides evidence
that, in patients with MINOCA, only small foci of necrosis
are often observed, while myocardial edema is the dominant
abnormality (36).

In this study, hemoglobin levels were lower in both cancer
groups, compared with respective non-cancerMINOCA andMI-
CAD groups. Moreover, as has been shown in our multivariable
models, lower hemoglobin levels worsen long-term prognosis
in the whole group, but not in the population limited to
patients with MINOCA. According to criteria similar to
ours, anemia at baseline was found in approximately 40% of
patients in the European Cancer Anemia Survey (37). This
proportion increased up to 60–70% during either anticancer
treatment or cancer progression, affecting the higher overall
mortality risk (38). In our cancer patients with MINOCA,
lower hemoglobin levels were associated with higher baseline
troponin concentrations, suggesting the possibility of anemia-
induced myocardial injury (16). As has been shown previously,
active cancer should be considered as a secondary cause of
troponinosis that is not associated with acute coronary syndrome
(39, 40). Moreover, troponin elevation was linked with a
higher mortality rate, especially in patients with lung cancer
(41). We have also found that the ratio of troponin T to
hemoglobin was significantly higher in both cancer populations
when compared to the respective non-cancer groups. Our
findings are one more argument for the adoption of a higher
troponin cut-off value for MI in patients with cancer (39, 40).
The relatively high proportion of patients with cancer-induced
anemia, also visible in our cohort, may require blood transfusion
or other available methods of treatment (erythropoietin or iron
supplementation). In a propensity-matched analysis, Salisbury
et al. have demonstrated that blood transfusion was associated
with a lower risk of in-hospital mortality (42). In turn, a meta
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analysis done by Chatterjee et al. indicates that a liberal blood
transfusion strategy is associated with higher all-cause mortality
when compared to a more restricted strategy, which might be
associated with volume overload, increased thrombogenicity,
impaired oxygen delivery, and a risk of infection (43).

Limitations
Our study has several limitations. First, the analyzed cancer
MINOCA group is relatively small. However, it represents
a unique and comprehensively characterized cohort. Second,
despite their obvious heterogeneity and applied various methods
of anticancer treatment, due to the small sample size of patients
with different types of cancer, a multivariable analysis had to be
performed for all patients with cancer. Third, cardiac magnetic
resonance and intracoronary imaging were not performed to
confirm an alternative diagnosis including myocarditis (44,
45). Fourth, apart from death, we did not analyze other
clinical outcomes, such as recurrent MI, ischemic stroke, or
heart failure decompensation. Moreover, the fact of quitting
smoking after the cancer diagnosis undoubtedly contributed
to its underestimated self-reporting. Finally, we also did not
perform specific coagulation tests that would determine the role
of prothrombotic states involved in the etiology of MINOCA
(8, 46, 47).

CONCLUSIONS

Our findings provide evidence that active cancer in the
whole cohort of patients with MI, overrepresented among the
MINOCA population, is associated with extremely high long-
term mortality. A multivariable approach indicates that an active

malignancy was independently associated with unfavorable long-
term survival in the whole MI population as well as in patients
with MINOCA.
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Breast cancer and heart failure share several known clinical cardiovascular risk factors,

including age, obesity, glucose dysregulation, cholesterol dysregulation, hypertension,

atrial fibrillation and inflammation. However, to fully comprehend the complex interplay

between risk of breast cancer and heart failure, factors attributed to both biological

and social determinants of health must be explored in risk-assessment. There

are several social factors that impede implementation of prevention strategies and

treatment for breast cancer and heart failure prevention, including socioeconomic status,

neighborhood disadvantage, food insecurity, access to healthcare, and social isolation.

A comprehensive approach to prevention of both breast cancer and heart failure must

include assessment for both traditional clinical risk factors and social determinants of

health in patients to address root causes of lifestyle and modifiable risk factors. In this

review, we examine clinical and social determinants of health in breast cancer and heart

failure that are necessary to consider in the design and implementation of effective

prevention strategies that altogether reduce the risk of both chronic diseases

Keywords: breast cancer, heart failure, risk factors, social determinants of health, reverse cardio-oncology

INTRODUCTION

Cardiovascular disease (CVD) and cancer are the two leading causes of death in the United States
in 2020 (1). Classically, the field of cardio-oncology has focused on the development of CVD
directly from cardiotoxic effects of cancer biology and/or cancer therapies. But there is growing
appreciation that the two diseases intersect at multiple levels, including shared clinical risk
factors, shared social risk factors, and reverse cardio-oncology where CVD acts to promote cancer
development (2). In this review, we focus specifically on the intersections between breast cancer
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and heart failure (HF). Delving into anti-cancer therapies that
cause cancer therapy-related cardiac dysfunction is beyond the
scope of this review. Breast cancer remains the most common
cancer in women, with one in eight women expected to develop
breast cancer over the course of their lifetime (3). There have been
notable improvements in survival rates for breast cancer due to
earlier detection and advancements in treatment such that the 5-
year relative survival rate from the mid-1970s to the present time
has increased from 75 to 90% (4). Breast cancer survivors with
a prior history of CVD who survive cancer for over 5 years are
more likely to die of CVD, (5) and in breast cancer survivors age
66 years or older, CVD is often the primary cause of death (6).
The lifetime risk of developing HF in women is even higher at
one in five at age 40 and rises rapidly with increasing age (7, 8).
The overall burden of HF continues to increase with the aging
of the general population and with increases in HF risk factors
such as obesity and diabetes. Thus, as women age they are at
increased risk for both breast cancer and HF. Here we examine
the shared pathophysiology and commonalities in clinical and
social risk factors that lead to the high prevalence of both HF and
breast cancer.

Shared Clinical Risk Factors
Traditional clinical risk factors for HF in women are well
established. Modifiable clinical HF risk factors that may
also increase risk for breast cancer include diabetes, obesity,
hypertension, hyperlipidemia, and atrial fibrillation (Table 1) (9).
Inextricably linked with these risk factors are health behaviors
such as tobacco use, alcohol use, physical inactivity, and an
unhealthy diet. Prevention of risk factors (or primary prevention)
and avoidance of poor health behaviors dramatically lower the
risk of incident HF (10, 11). The causal pathways connecting
these risk factors to increased risk of CVD andHF are well known
(12–14). However, their association with increased risk of breast
cancer is only starting to be appreciated (15). In this section, we
summarize epidemiological and mechanistic evidence to better
understand the relationship between some of the traditional
cardiovascular risk factors and breast cancer.

Obesity and Glucose Dysregulation
Of the commonmodifiable risk factors, diabetes and obesity have
the strongest association with HF in women (16, 17). Multiple
studies have also shown an increased risk of breast cancer in
women with diabetes. In a meta-analysis of 39 independent risk
estimates from observational epidemiological studies, women
with diabetes had a 27% higher risk of developing breast cancer
(summary relative risk [SRR] 1.27, 95% confidence interval [CI],
1.16 – 1.39) (18). In prospective studies, the risk of developing
breast cancer remained 23% higher in women with diabetes
(SRR 1.23 [95% CI, 1.12–1.35]). Part of the risk was mediated
through concomitant obesity, but the risk of developing breast
cancer remained 16% higher after adjusting for body mass index
(BMI). Of note, the risk of breast cancer was not elevated in
premenopausal women with diabetes or women with Type 1
diabetes. A more recent review of meta-analyses estimated a 20%
greater risk of developing breast cancer in women with diabetes

TABLE 1 | Impact of modifiable heart failure risk factors that increase risk for

breast cancer and potential underlying mechanisms.

Modifiable heart

failure risk

factors

Risk of

breast

cancer

Mechanisms

Diabetes 20%

Increased

Risk (19)

Hyperinsulinemia.

Adipocyte Dysfunction.

Hypoxia.

Immune Cell Recruitment.

Expression of Aromatase.

Hyperleptinemia

Obesity 25%

Increased

Risk (20)

Hypertension 15%

Increased

Risk (36)

Angiotensin II

Hyperlipidemia 9%

Increased Risk

(41)

27-hydroxycholesterol

Atrial Fibrillation 35%

Increased

Risk (47)

Reactive Oxygen Species

(19). Similarly, the risk of breast cancer is 25% higher in post-
menopausal women with obesity (20). The risk of breast cancer
increases by 10% for every 5 kg/m2 higher BMI above 25 kg/m2

in postmenopausal women (21). This association is strongest in
estrogen receptor positive breast cancer (22). Obesity contributes
to a chronic low-grade inflammation that can promote both
carcinogenesis and atherosclerosis. Changes in the adipose tissue
microenvironment can switch from anti-inflammatory to pro-
inflammatory in obesity (23).

Glucose dysregulation is central to both disease processes
and is integral to understanding the pathophysiology underlying
this association. Both obesity and diabetes lead to adipocyte
dysfunction, insulin resistance, and hyperglycemia (24, 25). The
excess growth of adipose tissue results in hypoxia and expression
of hypoxia-inducible factor 1a (HIF1a) (26). This results in
adipocyte dysfunction, which promotes breast cancer growth
through multiple interconnected pathways. First, adipocyte
hypoxia results in release of chemokines such as monocyte
chemoattractant protein 1 (MCP1), which recruits immune
cells and creates a pro-inflammatory environment (27). Second,
there is increased expression of aromatase, the rate-limiting
enzyme in estrogen synthesis, which leads to higher levels of
circulating estrogen (28). Higher levels of estrogen promote
estrogen-responsive malignancies including breast cancer. Third,
there is dysregulation of adipocyte endocrine function. In
individuals with obesity, the central nervous system develops
resistance to leptin, a hormone that limits appetite in healthy
individuals (29). The subsequent hyperleptinemia promotes
breast cancer initiation, growth, and progression by promoting
cellular growth, inhibiting apoptosis, activating cellular adhesion
and inflammatory immune cells (30). In contrast, in obesity
there is reduced production of protective hormones such as
adiponectin and ghrelin, both of which reduce breast cancer
risk by inhibiting aromatase and other pathways associated with
increased cancer cell proliferation (31, 32).
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In combination with inflammatory cytokines, hypoxia,
elevated estrogen, and altered milieu of adipokines,
hyperinsulinemia and hyperglycemia lead to dysregulation
of multiple metabolic pathways in not only breast cancer cells
but also local stromal and immune cells (33). These triggers
stimulate signaling cascades by activating receptor tyrosine
kinases leading to activation of the phosphoinositide 3-kinase
(PI3K)-AKT pathway and inhibition of the AMP-activated
protein kinase (AMPK); favoring a shift toward aerobic
glycolysis, glucose uptake, and cell proliferation in cancer,
stromal, and immune cells (34, 35). These pathways also lead to
aromatase activation in stromal cells and release of inflammatory
cytokines from immune cells resulting in a positive feedback
cycle and tumor progression (33).

Hypertension
Hypertension is one of themost prevalent risk factors for bothHF
and breast cancer, especially as the population ages. Numerous
observational studies have also evaluated the association of
hypertension with risk of incident breast cancer. A large meta-
analysis of 30 observational studies, including 11,643 cases
of breast cancer, demonstrated a 15% higher risk of breast
cancer in adults with hypertension (RR: 1.15; 95% CI 1.08 –
1.22) (36). In another meta-analysis of 13 prospective studies,
the association between hypertension and breast cancer was
again noted (RR: 1.07; 95% CI 0.84 – 1.35) (37). This was
primarily driven by the association observed in postmenopausal
women. Like diabetes, hypertension was not associated with
increased risk of breast cancer among premenopausal women.
Mechanisms behind hypertension and breast cancer risk are not
well established. Since hypertension is often linked with diabetes
and obesity, there are some shared pathways such as chronic
inflammation as described above. One specific pathway that
links both obesity and hypertension to breast cancer involves
angiotensin II. While the renin-angiotensin system is well-
known for its role in blood pressure and fluid regulation, it
can be activated within dysregulated adipose tissue as well
(38). Angiotensin II increases tumor angiogenesis in receptor-
negative breast cancer and leads to activation of proinflammatory
macrophages promoting tumor growth.

Cholesterol Dysregulation
Dysregulation in cholesterol metabolism is another traditional
cardiovascular risk factor that is associated with breast cancer.
Some studies have demonstrated an association between high-
density lipoprotein cholesterol (HDL-C) and breast cancer risk
(39). In a study of 4,670 women with increased mammographic
density, higher levels of HDL-C were associated with a 23%
increased risk of breast cancer (40). While observational data
have not consistently shown an association between low-density
lipoprotein cholesterol (LDL-C) and breast cancer risk, a large
mendelian randomization of > 400,000 participants found a
significant association between genetic risk factors for lifelong
elevated LDL-C and increased risk of estrogen receptor positive
breast cancer (41). There is also evidence that higher dietary
intake of cholesterol is associated with an increased risk of
breast cancer in a non-linear fashion (42). However, it is

difficult to disentangle the effects of obesity and diabetes from
hypercholesterolemia using observational data.

There is growing mechanistic evidence that links
hypercholesterolemia with breast cancer. 27-hydroxycholesterol
is an endogenous oxysterol that has activity as a selective
estrogen receptor modulator (43). It is generated by the P450
enzyme sterol 27-hydroxylase CYP27A1 and is transported
in conjunction with HDL-C and LDL-C. It has been shown
to stimulate the growth of estrogen receptor positive breast
cancer cells in human xenografts and animal models. Potential
mechanisms include inhibition of tumor suppressor proteins,
activation of growth factors, and immune dysregulation such
as suppression of cytotoxic CD8+ T cells within tumors (44).
More work is needed to better understand this pathway and
how cholesterol lowering therapies such as statins may affect it.
Current data do not show convincing evidence of statin therapy
protecting against breast cancer development but there are
multiple observational studies suggesting a benefit of lipophilic
statins on breast cancer recurrence and mortality (45).

Atrial Fibrillation
There is an association between atrial fibrillation (AF) and cancer,
with inflammation contributing to the development of both in
part through the production of reactive oxygen species. Elevation
in C-reactive protein levels and increased NLRP3 inflammasome
activation have also been reported in AF (46). Whether atrial
fibrillation itself increases the risk of developing cancer requires
further investigation. In a cohort study of 34,691 women followed
for a median of 19 years, new-onset AF was found to be a
significant risk factor for incident breast cancer after age-adjusted
models (hazard ratio [HR], 1.35; 95% CI, 1.01–1.81; p < 0.04).
This risk was highest in the first 3 months after incident AF,
but remained beyond 1 year (47). Atrial fibrillation may also be
a marker for occult cancer. Patients with cancer have a higher
prevalence of AF compared to those in the general population
(48). Women with breast cancer diagnosis have a significantly
higher incidence of AF, with increasing risk for those who present
at a higher breast cancer stage. Incident AF in newly diagnosed
breast cancer also increases 1-year CV mortality (49).

Inflammation
As described above, immune dysregulation and inflammation
are common final pathways that link traditional HF risk
factors to breast cancer development. Obesity can lead to a
chronic low-grade inflammation which leads to accumulation
of pro-inflammatory adipose tissue macrophages, increased
levels of aromatase, estrogen biosynthesis, and increased
risk for estrogen-dependent breast cancer after menopause
(28). Some inflammatory pathways are shared in HF and
cancer pathogenesis. Pro-inflammatory cytokines such as tumor
necrosis factor (TNF), interleukin (IL)-1B, IL-6, and IL-18
have been shown to play a role in left ventricular dysfunction
and adverse remodeling (50, 51). Increased expression of these
cytokines, especially IL-1B, is due to activation of the NLRP3
inflammasome (52). The Canakinumab Anti-Inflammatory
Thrombosis Outcome Study (CANTOS) evaluated the effect
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TABLE 2 | Common social risk factors between heart failure and breast cancer.

Social risk factor Heart failure Breast cancer Potential solutions

Low socioeconomic status ↑ Incidence of disease

↑ Mortality after 90 days of

discharge

↓ Likely to be referred to

subspecialist

↑ Hospitalizations,

readmissions, and mortality

↑ Incidence of disease

↑ Aggressive premenopausal

breast cancer

↑ Stage of breast cancer

diagnosis

↑ Mortality

- Create a robust income safety net

- Increase income benefits

- Increase jobs/employment

- Expand unemployment insurance

Neighborhood disadvantage ↑ Incidence of disease

↓ Ejection fractions

↑ Hospitalizations,

readmissions, and mortality

↑ Stage of breast cancer

diagnosis

↑ Breast cancer mortality

- Create a robust income safety net

- Increase affordable public housing; prioritize

for homeless

- Rental assistance

- Investment in low-income communities

- Investment in schools, early childhood

education, and mentorship programs

- Build affordable transportation

- Partner with social services addressing

homelessness

Food insecurity - Frailty and deconditioning

- Poor access to low-sodium

diet

- Obesity, diabetes,

hypertension more prevalent

- Dietary fat linked to reduced

breast cancer

- Obesity, diabetes,

hypertension more prevalent

- Create a robust income safety net

- Address food deserts

- Expand food benefits

- Expand universal free meals to children

- Partner with local food banks and fridges

Poor access to healthcare - Lack of continuity care

- Lack of subspeciality care

↑ Medication costs

↓ Cancer screening

↑ Delays in diagnosis and

treatment of breast cancer

- Create a robust income safety net

- Affordable healthcare

- Universal healthcare

- Partner with community health centers

- Prioritize access in health services

Social isolation ↓ Physical and mental health

↑ Hospitalizations, readmissions

and mortality

↓ Physical and mental health

↓ Survival

- Access to mental health services

- Increase social workers on healthcare teams

- Patient support groups

- Partner with local programs for the elderly

of canakinumab, a monoclonal antibody targeting interleukin-
1B (IL-1B), on cardiovascular outcomes (53, 54). Canakinumab
significantly reduced not only cardiovascular events and HF
hospitalizations but incident lung cancer and decreased lung
cancer-related death. While the trial did not have enough power
to look at different cancer subtypes, breast cancer tumor cells
have been shown to produce IL-1B, which promotes epithelial-
to-mesenchymal transition, migration, and invasion of breast
cancer cells (55). Animal models have shown reduction in breast
cancer metastasis with IL-1B inhibition (55). Identification of
these shared pathways may allow for targeted therapies for both
breast cancer and HF.

Shared Social Risk Factors
Poverty and inequality form the backbone of underlying social
risk factors that contribute to social determinants of health
(SDOH). These are primary concerns for healthcare providers
who must consider community-level factors that influence
health outcomes. Thriving in a society involves addressing
a complex association between personal, environmental,
economic, and social factors that impact overall health. There
are multiple SDOH assessment tools which have been developed
to comprehensively evaluate these outcomes. SDOH screening
tools must be better integrated into healthcare delivery schema

in cardio-oncology. Several social risk factors derived from these
tools are known to contribute to both cancer and HF, including
socioeconomic status, neighborhood disadvantage, food
insecurity, an inadequate healthcare system (lack of insurance,
cost of medication), and social isolation (56, 57). These social
issues have come to the forefront during the COVID-19
pandemic, where we have witnessed the selective effect of
COVID-19 on disadvantaged communities. The pandemic
has motivated a conversation to address these disparities in
healthcare, which are deeply rooted in the structural inequities
in our society. Potential mitigation strategies must be directed
at multiple levels (Table 2). In this section, we summarize social
risk factors that contribute to both breast cancer and HF.

Socioeconomic Status
There is a known association between socioeconomic
characteristics and risk for both breast cancer and HF.
Across racial and ethnic groups, increasing socioeconomic
status is inversely correlated with breast cancer incidence in
population studies (58). Low socioeconomic status is associated
with increased risk of aggressive premenopausal breast cancer,
later stage of diagnosis, and poorer survival (56). Breast cancer’s
3-year survival is significantly affected by level of education,
district of residence and social class in childhood (59). Mortality
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is significantly higher in non-Hispanic Black breast cancer
patients than non-Hispanic white patients, across all ages
(60). Cardiovascular health is also worse in Black individuals
who have a higher prevalence of HF risk factors such as
obesity, diabetes, and hypertension than non-Hispanic white
individuals (61, 62). Black individuals have higher rates of HF
hospitalization and age-adjusted HF-related CVD death rates
than their White counterparts (63). When compared to White
survivors of breast cancer, Black survivors have an elevated risk
of cardiotoxicity-associated morbidity and mortality (64).

Socioeconomic factors also predict outcomes from HF
admissions. Those patients with adverse social factors in a
Medicare dataset were 3-fold as likely to die within 90 days of
discharge for a HF hospitalization as those without any social risk
factors (65). In a study from Sweden evaluating HF outcomes,
lower socioeconomic status was directly associated with patients
being less likely to have a subspecialist referral (66). This may in
part be due to the financial burden of care for cancer patients
which is even higher when superimposed with atherosclerotic
CVD (a major risk factor for HF), leading to difficulty paying
bills, buying medications, and seeking care (67).

There is a linear relationship between number of
socioeconomic risk factors and higher risk of HF hospitalization,
cardiovascular events, and mortality (66). Prevention focusing
on modifiable clinical risk factors is difficult for patients without
socioeconomic support and resources. A patient with income
instability must prioritize housing, food, utilities, and other
needs over healthy activities such as a moderate-intensity
exercise routine. Lower socioeconomic status is associated with a
significant increase in body mass index, smoking prevalence, and
diabetes (68). Other major risk factors for HF including coronary
artery disease and hypertension also vary widely with levels of
adverse social factors (69). Due to these underlying risk factors,
those patients from lower socio-economic classes have a higher
prevalence of incident HF 5 years earlier than those from more
affluent backgrounds (68).

Neighborhood Disadvantage
Poor infrastructure and inadequate resources in low-income
neighborhoods serve as barriers to healthcare. Housing
insecurity, the role of public transportation, and travel costs
may serve as physical impediments to access healthcare but have
not been well studied. Geographic proximity and travel time to
mammography facilities have not been shown to be associated
with later stage breast cancer diagnosis (70). However, high
census tract poverty (defined by the US census as > 20% below
poverty) and inner-city disadvantage have shown an association
with risk of later stage breast cancer diagnosis (70, 71). In
addition, concern for safety due to neighborhood violence or
crime, lack of public spaces such as parks, and lack of exercise
facilities can lead to a less active and more sedentary lifestyle.
Obesity is highly correlated with neighborhood poverty (71),
having both direct and indirect effects on breast cancer and
HF. Stressors associated with poverty can cause a patient to
turn to risky behaviors such as smoking, drinking, and drug
use as coping mechanisms. High-income neighborhoods have

demonstrated lower stress, anxiety, rates of obesity, and fewer
other comorbidities (72).

Neighborhood deprivation index includes four main
components: wealth and income, education, occupation, and
housing quality (73). Akwo and colleagues demonstrated
that neighborhood deprivation predicts risk of incident HF
beyond individual socioeconomic status and traditional
cardiovascular risk factors in low-income populations (74).
Residents living in deprived neighborhoods have lower ejection
fractions, more severe HF symptoms and higher odds of
hospitalization for HF (75). Thirty-day HF readmission and
mortality rates also increase with neighborhood deprivation (76).
Neighborhood socioeconomic status is also an important factor
in cancer-specific survival disparities in Black and non-Hispanic
Whites (77).

Food Insecurity
Food insecurity is the lack of reliable access to nutritious food for
healthy and active living, resulting in not having enough meals or
cutting back on meals. It is a broad concept of adapting eating
to social circumstances primarily driven by poverty, income
instability, and neighborhood disadvantage. Food deserts are
areas in primarily low-income neighborhoods where access to
grocery stores that provide fresh fruits and vegetables is limited
(78). This may also contribute to difficulty in adhering to a low-
sodium diet for patients with HF when facing food insecurity.
For patients with breast cancer and HF, food insecurity can have
the potential to aggravate both conditions. Food insecurity and
lack of healthy food is associated with HF risk factors and HF, but
whether food insecurity and access to healthy food is associated
with breast cancer requires further study.

One hypothesized mechanism for the association of SDOH
and risk of HF is lack of access to healthy foods, more processed
foods, and therefore higher dietary phosphate intake, which may
increase circulating levels of inorganic phosphate and fibroblast
growth factor 23 (FGF-23). FGF-23 has been correlated with
increased myocardial fibrosis on cardiac MRI and a strong
predictor of mortality and first HF hospitalization, especially in
patients with HF with preserved ejection fraction (79). Further
investigation is needed to understand the relationship between
a high phosphate diet and breast cancer. Ultra-processed foods
in diet have been associated with increased risks of overall
and breast cancer (80). There may also be a possible link
between lipids, higher HDL-C and apolipoprotein A1, and
mammographic density which needs further study (40). A few
studies have noted that dietary fat, n-3 PUFA, has an inverse link
to breast cancer (81, 82).

Frailty and deterioration resulting from undernutrition has
also been shown in patients with HF (83). Interventions such
as the Supplemental Nutrition Assistance Program (SNAP),
community partnerships through food pantries, school meals,
and community fridges are needed to address food insecurity and
health-related comorbidities.

Healthcare System
There are well-documented disparities in breast cancer survival
and HF by socioeconomic status, access to health insurance, and
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preventive care. Lack of adequate health insurance leads to high
out of pocket medical costs, inability to pay for medications,
lack of a primary care physician to perform screening studies,
and provide subspeciality referral. The difficulty in navigating
screening and treatment for HF or cancer is exacerbated by
poverty, lack of insurance, and not having an established
continuity clinic. Other socioeconomic factors such as lower
education, health literacy, and higher stress levels were associated
with lower HF clinic use (84). Patients without health insurance
often seek care at safety-net or federally funded hospitals and
indigent care clinics. When unable to afford healthcare or
medications, patients may need to make trade-offs between basic
needs and treatments.

Prevention is a large component in the management of both
HF and breast cancer. It has been demonstrated that decreased
cancer screening rates are associated with delayed diagnosis
and treatment and poorer health outcomes (56). In a study
by Kurani and colleagues, 78,302 patients eligible for breast
cancer screening living in rural areas were 24% less likely to
obtain breast cancer screening than those living in the city.
Those living in the most deprived census blocks were 49% less
likely to obtain breast cancer screening (85). Interventions such
as providing transportation and childcare assistance, providing
free screening services, or distributing educational resources
through community partnerships have proven to be cost-effective
measures at improving quality and length of life by increasing
cancer screening (86). As previously outlined, socioeconomic
factors effect access to heart failure care and subspeciality clinics
(66). Racial disparities also exist in admission for heart failure,
referral for diagnostic tests, and administration of advanced heart
failure therapies (87, 88).

Social Isolation
Finally, the importance of social networks and connections for
both breast cancer and HF patients has been well-established.
High levels of social support have been shown to be protective
for physical and mental health and quality of life (56, 89).
In addition, several studies have demonstrated worse all-cause
mortality and breast cancer mortality in patients without robust
social support (90–92). These studies quantify social support
based on both the number of people in the social network as well
as the frequency of contact with friends/family following cancer
diagnosis. In a study of 2,835 nurses from the Nurses’ Health
Study, participants that were socially isolated were twice as likely
to die as those who were socially connected (90). Those with
strong social support were also most likely to adhere to treatment
regimens, access healthcare, and treatment options more
effectively (93).

One prospective study of HF patients found that 6% of
patients experienced severe social isolation; even after controlling
for depression, these patients had >3.5 times increased risk
of death 68% increased risk of hospitalization, and 57%
increased risk of emergency department visits compared to
those who did not report social isolation (94). In another
study, loneliness was directly associated with more days
hospitalized andmore readmissions despite equivalent severity of
HF (95).

Mitigation Strategies
To address the underlying factors that promote both HF and
breast cancer, a multi-faceted approach is needed that focuses
on SDOH and in turn clinical risk factors (Table 2). A singular
theme across all domains of SDOH is a need for a robust income
safety net for low-income individuals. Creation of policies that
focus SDOH will have a transformational effect on comorbidities
that affect HF and breast cancer. Health legislation such as the
Patient Protection and Affordable Care Act expanded health
insurance, largely through Medicaid, to low-income individuals
with cancer and at rates similar to those without cancer (96).
This led to increased diagnosis of early-stage breast cancer;
however, there was no evidence of increase in timely initiation of
cancer treatment due to earlier diagnosis (97). Similarly, although
more low-income HF patients were now insured, largely through
Medicaid expansion, this did not improve quality of care or in-
hospital outcomes in low-income patients with HF (98). These
findings underscore a need for an all-encompassing approach,
beyond expansion of health insurance, that addresses affordable
housing, transportation, food insecurity, access to healthcare, and
building social support networks. An intervention such as the
Supplemental Nutrition Assistance Program (SNAP) serves as an
example for mitigating adverse health outcomes in individuals
with food insecurity (99). Working alongside health and social
policy makers, community partners, and patients to develop
comprehensive intervention strategies that address structural
inequities are needed to broaden our view of how to improve
health outcomes for breast cancer and HF.

Reverse Cardio-Oncology
The newer concept whereby HF promotes cancer development
is supported by both epidemiological and mechanistic data. In
an initial case-control study, HF was associated with nearly 70%
higher risk of incident cancer after adjusting for comorbidities
(100). This association was present regardless of left ventricular
ejection fraction. In a large population-based study of a Danish
cohort, individuals with HF had a higher incidence of cancer
across different age groups (101). Specifically, there was a 36%
higher risk of breast cancer. In addition to incident cancer, two
prospective cohort studies in early-stage breast cancer showed
a 60% increased risk of recurrence in women who had an
interim myocardial infarction (MI) (102). Baseline CVD risk
factors, 10-year atherosclerotic CVD risk score, and natriuretic
peptide concentrations are associated with increased risk of
future cancer (103). Results from observational studies, however,
can be biased due to increased surveillance in patients with HF
and differences in treatment. Therefore, it is crucial to identify
biological pathways that may explain this association.

Animal studies have provided important insights into the
association between CVD and cancer. The initial hallmark study
evaluated the effect of HF induced by a large anterior MI in mice
prone to developing precancerous intestinal tumors (104). Mice
with HF had significantly greater tumor growth. Tumor growth
was associated with left ventricular dysfunction and myocardial
scar. In their panel of candidate proteins, SerpinA3 consistently
induced proliferative effects in the tumor via the Akt pathway.
There have also been studies specifically evaluating the effect of
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adverse cardiac remodeling in breast cancer models. In a mouse
model of breast cancer, MI induced by coronary artery ligation
led to 2-fold increase in tumor growth compared with controls
(102). Analysis of the intra-tumoral immune cells showed an
increase in monocytic myeloid-derived suppressor cells. These
suppressor cells restricted infiltration of anti-tumor cytotoxic
T cells, instead promoting pro-tumoral immunosuppressive
T regulatory cells. These changes were in part mediated by
epigenetic modification of monocytes in the bone marrow.

In a separate breast orthotopic cancer mouse model, pressure
overload induced cardiac hypertrophy from transverse aortic
constriction led to greater tumor growth and more metastases
(105). Tumor growth correlated with the level of cardiac
hypertrophy. The authors further identified increased messenger
RNA expression of periostin in hypertrophied hearts and
increased protein levels in serum. Depletion of periostin
from the serum inhibited proliferation of cancer cells while
addition of periostin promoted cancer cell proliferation in vitro.
Periostin is an extracellular matrix protein that affects cancer
cell proliferation, migration, and epithelial to mesenchymal
transition. Interestingly, SerpinA3 was not elevated in this mouse

model. This may represent differences in early and late stages
of cardiac remodeling and HF or mode of cardiac injury. These
studies further support the paradigm of reverse cardio-oncology
but also reinforce the need for additional studies to better
delineate the different pathways that connect CVD to cancer,
specifically HF to breast cancer. Greater understanding of the
mechanisms would not only allow for targeted therapy but
more importantly emphasize the importance of HF and cancer
prevention through aggressive risk factor modification by both
patients and clinicians.

CONCLUSIONS

The interplay between risk factors associated with breast
cancer and HF is very complex. Traditional cardiovascular risk
factors, such as obesity, glucose dysregulation, hypertension,
cholesterol dysregulation, atrial fibrillation and inflammation,
are also closely linked with the development of breast cancer.
HF itself has been shown to increase tumor growth and
cancer development. Overarching social factors that lead

FIGURE 1 | Interconnected social and clinical risk factors, and mechanisms which link the development of breast cancer and heart failure.
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to development of these cardiovascular risk factors, and
in turn to breast cancer and HF, must simultaneously be
addressed in order to comprehensively develop approaches
for prevention of both chronic illnesses (Figure 1). Poverty
and inequality are the root causes of several of these social
risk factors, such as socioeconomic status, neighborhood
disadvantage, food insecurity, an inadequate healthcare system,
and social isolation. Implementation of prevention strategies
must consider these social factors with equal importance

when addressing common risk factors between breast cancer
and HF.
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Aim: This study investigated the factors predicting survival and the recurrence of
pericardial effusion (PE) requiring pericardiocentesis (PCC) in patients with cancer.

Materials and Methods: We analyzed the data of patients who underwent PCC for
large PEs from 2010 to 2020 at The University of Texas MD Anderson Cancer Center.
The time to the first recurrent PE requiring PCC was the interval from the index PCC
with pericardial drain placement to first recurrent PE requiring drainage (either repeated
PCC or a pericardial window). Univariate and multivariate Fine-Gray models accounting
for the competing risk of death were used to identify predictors of recurrent PE requiring
drainage. Cox regression models were used to identify predictors of death.

Results: The study cohort included 418 patients with index PCC and pericardial
drain placement, of whom 65 (16%) had recurrent PEs requiring drainage. The
cumulative incidences of recurrent PE requiring drainage at 12 and 60 months were
15.0% and 15.6%, respectively. Younger age, anti-inflammatory medication use, and
solid tumors were associated with an increased risk of recurrence of PE requiring
drainage, and that echocardiographic evidence of tamponade at presentation and
receipt of immunotherapy were associated with a decreased risk of recurrence. Factors
predicting poor survival included older age, malignant effusion on cytology, non-use of
anti-inflammatory agents, non-lymphoma cancers and primary lung cancer.

Conclusion: Among cancer patients with large PEs requiring drainage, young patients
with solid tumors were more likely to experience recurrence, while elderly patients and
those with lung cancer, malignant PE cytology, and non-use of anti-inflammatory agents
showed worse survival.
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INTRODUCTION

Pericardial effusion (PE) is relatively common in cancer patients
and is primarily caused by tumor invasion or disease treatment
(1). Among cancer patients, malignant PE frequently occurs
in those with advanced disease and is associated with worse
outcomes (2, 3). The spectrum of malignant pericardial disease
ranges from asymptomatic PE to hemodynamic instability in
the setting of cardiac tamponade or constrictive physiology.
Despite aggressive treatment, the prognosis of cancer patients
with PE remains poor and is primarily dictated by the
characteristics of the underlying disease (4). The treatment of
PE attempts to correct hemodynamic instability and minimize
interruptions in cancer therapy with the long-term goal to
prevent effusion recurrence.

It is unknown which method of managing PE with
imminent or recurrent tamponade is the most effective;
however, pericardiocentesis (PCC) and surgical drainage (via
a pericardiotomy or pericardial window) are widely used (5).
The management of patients with PE and tamponade should be
determined by the probability of recurrence of PE and expected
survival time. Little information exists regarding the factors that
may predict development of recurrent PE in these patients.
The duration from the index PCC to first recurrence of PE
requiring another drainage is also not well studied. Furthermore,
the impact that recurrent PE has on the treatment and overall
prognosis of cancer patients with PE is not known. Therefore, the
aim of this study was to identify the factors predicting survival
and recurrent PE requiring PCC in cancer patients.

MATERIALS AND METHODS

We conducted a retrospective analysis of a cohort of cancer
patients who underwent index PCC from 2010 to 2020 at The
University of Texas MD Anderson Cancer Center and were listed
in “MD Anderson’s Pericardiocentesis Cardiac Catheterization
Lab Registry.” The study was approved by MD Anderson’s
Institutional Review Board.

Patient Population
All patient data including imaging data was obtained using
retrospective chart review. We collected patients’ demographic
and clinical data, including age, sex, type of malignancy,
prior cancer therapy (chemotherapy, immunotherapy, stem cell
transplantation, surgery, and radiation), laboratory values, and
cancer stage at the time of the index procedure. We also
documented the clinical symptoms, signs, and echocardiographic
findings of patients presenting with PE. An echo-free space 2 cm
or larger was indicative of a large PE while echocardiographic
evidence of tamponade was defined by presence of chamber
collapse, mitral and tricuspid valve inflow variation on Doppler
images, and inferior vena cava size and respiratory variation
(6). Computed tomography scans and echocardiograms were
reviewed to detect primary or metastatic tumors involving
the heart and described as “cardiac involvement by primary
tumor or metastases. The effusion pathology and microbiology

results obtained at the time of PCC were also reviewed to
determine the percentage of patients with ‘malignant effusion
on cytology.” Cancer groups were divided into solid and
hematological malignancies and then further sub-classified
into 7 major types, including lung; breast; colon and other
gastrointestinal malignancies (such as esophageal, stomach,
hepatic, and pancreatic malignancies); renal and genitourinary
malignancies; other solid tumors; lymphomas; and leukemia
and other hematological malignancies. Patients’ cancers, were
stratified as “advanced” (stage III or IV) or “non-advanced”
(stage I or II). Determinants of recurrent PE requiring drainage
were reviewed. A recurrent PE requiring drainage was defined
as an effusion that caused clinical signs or symptoms as well as
showed echocardiographic evidence of tamponade, and required
drainage (either a pericardial window or repeated PCC). Patients
who underwent a pericardial window for the index PE were
excluded from the study.

Pericardiocentesis Procedure
Patients underwent primary percutaneous PCC, which, for
therapeutic and/or diagnostic purposes, was guided by
echocardiography, computed tomography, fluoroscopy, or
combined echocardiography and fluoroscopy in the cardiac
catheterization laboratory. Percutaneous PCC was performed
using either the subcostal or the lateral/intercostal approach,
whichever provided the shortest distance from the skin to the
pericardial cavity and preferably lateral in the thrombocytopenic
patients (7, 8). A pericardial drain was placed in each patient and
was removed once the amount of drainage was less than 30 cc in
a 24-h period or if the duration of the drain placement exceeded
7 days. Handheld bedside echocardiography was encouraged
immediately prior to drain removal, but the decision to use it
was left up to the treating physician. As a routine practice, formal
echocardiography was performed prior to drain removal as well
as at follow-up in the outpatient cardiology clinic at 4–6 weeks
and at 3–6 months to assess for PE recurrence. Procedure failure
was defined as failure to place the catheter in the pericardial space
or the presence of less than 10 ml drainage during the initial
procedure. Procedure complications were defined as cardiac
death, cardiac perforation, pneumothorax, or bleeding requiring
transfusion during or within a few days after the procedure, after
ruling out other obvious causes of such events.

Data Analysis
Continuous variables were described as means ± standard
deviations (SDs) or as medians with interquartile ranges (IQRs).
Categorical variables were described as counts and percentages.
The time to the first recurrent PE requiring drainage was defined
as the time from the index PCC with pericardial drain placement
to the first recurrent PE requiring drainage with either repeat
PCC or a pericardial window. Patients without recurrent PE
requiring drainage were censored at the time of death or last
follow-up. The event of interest was recurrent PE requiring
drainage with either repeat PCC or a pericardial window. Death
without recurrent PE requiring drainage was considered as a
competing risk event, an event that precludes the occurrence of
the event of interest, recurrent PE (9). When a competing risk of
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death exists, it may not be appropriate to simply censor patients
who died before they had a chance to experience recurrent PE.
Ignoring the competing risk could result in incorrect estimation
of the risk of recurrent PE. Therefore, univariate and multivariate
Fine-Gray models were used to assess the covariates’ effects on
the cumulative incidence of recurrent PE, accounting for death
as a competing risk (10). Overall survival (OS) was defined as the
time from the index PCC to death or last follow-up. Univariate
and multivariate Cox regression models were used to identify risk
factors associated with death. For model selection, the backward
elimination method (for the Fine-Gray models) and stepwise
selection method (for OS) were used. Subdistribution hazard
ratios (sHRs) and 95% confidence intervals (CIs) were provided
for Fine-Gray models and hazard ratios (HRs) and 95% CIs were
provided for Cox regression models, as appropriate. P-values less
than 0.05 were considered statistically significant. SAS version
9.4 (SAS Institute, Inc., Cary, North Carolina) was used for
data analysis. Median follow up was determined using reverse
Kaplan-Meier curve.

RESULTS

Patients’ Baseline Characteristics
The cohort included 418 patients (mean age, 53 ± 16 years)
with an index PCC. The patients’ baseline characteristics are
summarized in Table 1.

Most patients had advanced cancers (stage III or IV).
All patients had large PEs, and most presented with
echocardiographic evidence of tamponade (95%). Eight
percent of patients had imaging evidence of cardiac metastasis.
Two-thirds of the patients had malignant effusion on cytologic
examination. Anti-inflammatory agents were prescribed in
11.8% of patients.

Follow-Up and Outcomes
The median follow-up time was 48 months (95% CI, 43–
51 months), and the median OS duration was 3.9 months
(Figure 1). Majority of patients (92%) reported improvement
in symptoms after draining pericardial effusion. Among all
the patients who had index PCC, the rates of procedure
complications and procedure failure were very low (0.24% each);
the single procedure complication was a cardiac perforation
(Table 2). Recurrent PE requiring drainage occurred in 65
(15.6%) patients; in 63 (15%) of these patients, it occurred within
1 year of the index PCC (Figure 2). Three hundred thirty-
eight (80.9%) patients died by the end of the follow-up period.
Cumulative incidence plots showed a statistically significant
increase in recurrence of pericardial effusion in young patients
and with anti-inflammatory medication use (Figure 3).

Factors Determining Recurrence of
Pericardial Effusion Requiring Drainage
The covariates that affect the incidence of recurrent PE requiring
drainage are shown in Table 3. Univariate Fine-Gray models
with death as a competing risk identified younger age, higher

serum creatinine and hemoglobin levels, cardiac invasion by
the tumor, and chemotherapy and surgery as the factors
that have a significant increasing effect on the cumulative
incidence of recurrent PE. The multivariate Fine-Gray model
identified younger age, anti-inflammatory medication use, and
solid malignancy as the factors with an increasing effect
on the cumulative incidence of recurrent PE, while having
echocardiographic evidence of tamponade at presentation and

TABLE 1 | Baseline characteristics of the patients (N = 418).

Characteristic Count

Age (years), mean ± SD 53 ± 16

Sex, n (%)

Female 193 (46.2)

Male 225 (53.8)

Laboratory values

Hemoglobin (g/dL), mean ± SD 10.11 ± 1.89

Platelets (k/mL), median (IQR) 211.5 (106–321)

International normalized ratio, mean (SD) 1.24 ± 0.25

Creatinine (mg/dL), median (IQR) 0.84 (0.65–1.13)

Malignancy stage, n (%)

Unknown 1

Non-advanced (stage I or II) 9 (2.2)

Advanced (stage III or IV), 408 (97.8)

Approach for PCC, n (%)

Subcostal 256 (61.2)

Intercostal 162 (38.8)

Echocardiographic evidence of tamponade at presentation,
n (%)

398 (95.2)

Malignant effusion on cytology, n (%) 269 (64.4)

Anti-inflammatory medication use (colchicine, steroids, or
NSAIDs),

49 (11.7)

Cardiac involvement by primary tumor or tumor metastases,
n (%)

35 (8.4)

Cancer subgroup, n (%)

Unknown 3

Hematologic 144 (34.7)

Solid 271 (65.3)

Cancer type, n (%)

Unknown 5

Lymphoma 61 (14.7)

Lung 127 (30.6)

Breast 42 (10.1)

Colon and other GI 26 (6.3)

Kidney and GU 43 (10.4)

Leukemia and other hematological 83 (20)

Other solid cancers 33 (8)

Cancer treatment, n (%)

Radiation 165 (39.5)

Chemotherapy 367 (87.8)

Surgery 126 (30.1)

Immunotherapy 91 (21.8)

Stem cell Transplant 63 (15.1)

GI, gastrointestinal; GU, genitourinary; IQR, interquartile range; NSAID, non-
steroidal anti-inflammatory drug; PCC, pericardiocentesis; SD, standard deviation.
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FIGURE 1 | Kaplan-Meier curve for overall survival (OS). Outcome for 1
patient was missing.

TABLE 2 | Outcomes of patients with index pericardiocentesis.

Outcome n (%)

Symptomatic improvement 385 (92)

Recurrent PE requiring drainage 65 (15.6)

Survival at end of follow-up 80 (19.1)

Procedure complications 1 (0.24)

Procedure failure 1 (0.24)

PE: Pericardial Effusion.

receiving immunotherapy were associated with a decreasing
effect on the cumulative incidence of recurrent PE.

Factors Determining Survival
The predictors of death are shown in Table 4. Univariate Cox
regression models identified that older age, malignant effusion
on cytological examination, and primary lung cancer were
associated with an increased risk of death. Stem cell transplant
and primary lymphoma were associated with a decreased risk
of death. The multivariate Cox model identified that malignant
effusion on cytological examination, not using anti-inflammatory
agents, and non-lymphoma malignancies were associated with an
increased risk of death.

DISCUSSION

In this study, we report on a cohort of 418 cancer patients
presenting with PE treated with percutaneous PCC. Our study
had several key findings. First, factors independently associated
with an increasing effect on the cumulative incidence of recurrent
PE requiring drainage included younger age, anti-inflammatory
medication use, and solid tumors, whereas factors associated with
a decreasing effect on the cumulative incidence of recurrent PE
requiring drainage included having echocardiographic evidence
of tamponade at presentation and receiving immunotherapy.
Second, factors independently associated with poor OS included

FIGURE 2 | Cumulative incidence of recurrent pericardial effusion requiring
drainage by Aalen-Johansen estimator. Outcome for 1 patient was missing.

older age, malignant effusion on cytology, non-use of anti-
inflammatory agents, non-lymphoma cancers and primary lung
cancer. Third, PEs can be successfully drained with a very low
rate of complications. Lastly, only 16% of patients presented with
recurrent PEs requiring drainage, and almost all occurred within
the first year after the index PCC.

In our study, the most frequent tumors associated with
PEs requiring drainage were lung cancers (30.4%), followed
by lymphomas (14.6%), leukemias (13.4%), and breast
cancers (10.3%). While some studies have reported a similar
percentage of cancer patients with pericardial effusion having
hematological malignancies (1), others have reported a relatively
less prevalence (4). Since most of these studies have been
single center, this difference in observation can be explained
by different patient population in each center. Most patients
had advanced malignancies. In about two-thirds of our
patients, cytological analysis of the pericardial fluid was
positive for malignant cells; this was an independent predictor
of a poor prognosis. This finding is in line with previous
studies showing that recurrent, malignant PE occurs more
commonly in patients with previously identified cardiac
involvement than in those without it (11–14). In our study,
95% patients had echocardiographic evidence of tamponade
while 5% patient underwent PCC for various reasons including
clinical signs and symptoms related to large pericardial
effusion, to establish the diagnosis of cancer, and for cancer
staging.

In a retrospective analysis of cancer patients whose cumulative
incidence of recurrent PE was 26.1% at 2-year interval from
their index PCC, the use of anti-inflammatory agents was linked
to a lower rate of death and PE recurrence (15). Similarly, we
found that not using anti-inflammatory agents was associated
with poor OS. However, in contrast to that study, we found
that the risk of recurrence was higher with the use of these
agents. This may represent a selection bias for the use of
such therapies in patients who are generally thought to have
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FIGURE 3 | “Cumulative incidence plots” displaying incidence of recurrent effusions for subgroups including (A); anti-inflammatory medications (use versus
non-use), (B); age (young between 18 and 60 years versus elderly > 60 years), and (C); cancer type (solid versus non-solid tumors).

a higher risk of recurrence or may reflect the use of anti-
inflammatory agents to facilitate pericardial drain removal in
patients requiring longer periods of pericardial drainage. This
selection bias can also be due to use of such agents in patients
with progressive primary cancer with increased tendency to
develop recurrent effusions. Also, using anti-inflammatory agents
in patients with hemorrhagic effusion can potentially lead to
increased bleeding in pericardial space and increased recurrence
risk (16, 17). In another study, rate of recurrence of pericardial
effusion requiring pericardiocentesis was reduced from 23 to 11%
with catheter drainage for 3-5 days as compared to not using
an indwelling catheter (1). This alone was sufficient to reduce
the risk of recurrence considerably and our data suggests that
use of anti-inflammatory medications in the immediate peri-
procedure phase (first week) might be hindering the beneficial
effect of extended catheter drainage and mechanically induced
adhesions.

Previous studies have shown conflicting evidence regarding
the association between malignant cells in the pericardial fluid
and poor outcomes in cancer patients (18–20). Our results
indicate an association between malignant cells in the pericardial
fluid and worse OS in cancer patients. Results from our analysis
showed that patients with solid tumors had poor survival if
they had malignant cells in the pericardial fluid; however, the
outcomes did not differ for other cancer types when stratified by
the results of cytological analysis.

In our study, almost all patients who developed recurrent
PE developed it within 1 year after the index PCC. Specifically,
the PE recurrence rate was only 15% in the first year after the
index PCC and increased to only 16% after 5 years. This rate
is lower than that reported previously (13). The low recurrence
rate in our study can be explained by the close monitoring of
the pericardial drain output, the standardized approach used for
drain removal (based on 24-h drain output), and the encouraged
use of echocardiography prior to drain removal. Among the
patients who had recurrent PEs requiring drainage, the OS
and recurrence rates did not differ between the patients who
had had a pericardial window versus those who were treated
percutaneously. This finding establishes the safety and utility
of PCC in high-risk patients with cancer who present with PE
recurrence (21, 22).

No randomized studies have compared the percutaneous
drainage of PEs to the surgical drainage of PEs. Retrospective

studies have shown that surgical drainage can reduce recurrence
but increase the risk of peri-procedure complications (23). The
American Heart Association and American College of Cardiology
offer no guidelines on the management of pericardial disease.
According to the 2015 European Society of Cardiology guidelines
for pericardial disease, the treatment of cardiac tamponade
related to a malignant PE effusion is a class I indication for
PCC. Surgical pericardiotomy is indicated when PCC cannot
be performed (class IIa; level of evidence B), but the surgical
procedure may be associated with a higher rate of complications
than PCC is and may not result in better outcomes (24).
Guidelines for the treatment of PE recurrence do not exist.
The choice between catheter-based and surgical drainage is
usually made by a multidisciplinary team that includes the
patient’s oncologist, cardiologist, and thoracic surgical team, and
it should be individualized to each patient and consider the
patient’s preference. In both percutaneous and PE treatment, the
subcostal and intercostal (apical/lateral) approaches are similarly
efficacious. Whether these approaches are successful depends
primarily on the characteristics and location of the effusion,
the stability of the patient, and various laboratory and clinical
characteristics, including the presence of a chest wall tumor, the
patient’s history of chest wall radiation or abdominal surgery, or
an apical loculation of the pericardial effusion (25–27). Our study
found no difference in survival or PE recurrence between the 2
percutaneous approaches.

The safety of PCC was well demonstrated in our study in
which the rates of procedure failure and complications were
very low (0.24% each). One systematic review showed that
the incidences of recurrent PE after isolated pericardiocentesis,
PCC with extended catheter drainage, pericardial sclerosis, and
percutaneous balloon pericardiotomy were 38.3%, 12.1%, 10.8%,
and 10.3%, respectively (14). Despite being associated with a
relatively high rate of recurrence, PCC continues to be a very
attractive option for high-risk cancer patients. Some prefer to
use surgical pericardial windows rather than PCC as the initial
PE treatment in cancer patients owing to the high rate of cancer
invasion into the pericardium and the high recurrence rate of
PE; however, pericardial windows may be suboptimal for these
patients because such patients tend to be frail and because the
use of pericardial windows may delay their recovery from surgery
and general anesthesia and thus affect their cancer treatment
schedule. The high success rate of PCC and its low complication
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TABLE 3 | Univariate and multivariate predictors of recurrent pericardial effusion requiring drainage.

Univariate model Multivariate model

Covariate sHR (95% CI) P-value sHR (95% CI) P-value

Age (years)1 0.983 (0.968–0.998) 0.026 0.978 (0.960–0.997) 0.023

Sex

Female 1.000

Male 0.825 (0.508–1.339) 0.44

Duration of drain placement1, days 0.818 (0.626–1.067) 0.14

Hemoglobin (g/dL)1 1.178 (1.051–1.322) 0.005

Platelets (k/mL)1 0.999 (0.998–1.000) 0.17

International normalized ratio1 0.883 (0.364–2.144) 0.78

Creatinine (mg/dL)1 1.017 (1.014–1.020) < 0.0001

Malignancy stage

Non-Advanced

Advanced (stage III or IV) 3.168 (0.460–400.356) 0.42

Approach for pericardiocentesis

Subcostal 1.000

Intercostal 0.777 (0.467–1.292) 0.33

Echocardiographic evidence oftamponade at presentation2 0.134 (0.083–0.216) < 0.0001 0.154 (0.095–0.250) < 0.0001

Malignant effusion on cytology2 1.171 (0.698–1.965) 0.55

Anti-inflammatory medication use2(Colchicine, steroids or NSAIDs) 2.015 (1.109–3.662) 0.022 1.897 (1.046–3.441) 0.035

Cardiac involvement by primary tumor or tumor metastases2 2.090 (1.083–4.035) 0.028

Cancer treatment

Radiation therapy2 1.507 (0.930–2.443) 0.10

Chemotherapy2 4.514 (1.076–18.937) 0.039

Surgery2 1.955 (1.204–3.177) 0.007

Immunotherapy2 0.346 (0.148–0.811) 0.015 0.312 (0.135–0.719) 0.006

Stem cell transplant2 0.544 (0.238–1.246) 0.15

Cancer subgroup

Hematologic 1.000 1.000

Solid 1.668 (0.947–2.938) 0.08 2.357 (1.243–4.467) 0.009

Cancer type

Lymphoma 1.000

Lung 1.175 (0.544–2.539) 0.68

Breast 1.268 (0.499–3.222) 0.62

Colon and other GI 1.583 (0.570–4.397) 0.38

Kidney and GU 0.963 (0.341–2.723) 0.94

Leukemia; other hematologic 0.554 (0.205–1.499) 0.25

Other solid cancers 1.505 (0.554–4.089) 0.42

GI, gastrointestinal; GU, genitourinary; NSAID, non-steroidal anti-inflammatory drug; sHR, subdistribution hazard ratio (The sHR represents the ratio obtained from the
Fine-Gray model with a competing risk of death).
1For this variable, the sHR is presented in 1-unit changes.
2For this variable, the sHR is presented considering “No” as a reference group.

and recurrence rates in our large cohort of cancer patients shows
the value of the percutaneous procedure, with continued drainage
over a few days, as a first line therapy for large PEs in these
patients. That PCC is associated with no significant delay in
cancer treatment (surgery, chemotherapy, immunotherapy, or
radiation therapy) further supports its use in this population (28).

As suggested in our study, routine surveillance
echocardiograms done at 3–6 weeks and at 4–6 months after
index PCC can help determine which patients are more likely to
develop recurrent effusions and may warrant closer monitoring
and subsequent surveillance echocardiograms. In the current
study, the median OS duration for cancer patients requiring

PCC was 3.9 months (95% CI, 3–4.9 months). Although this
duration is a little higher than that reported previously (15),
the finding reiterates that PE requiring drainage is a poor
prognostic marker in patients with cancer because it is indicative
of advanced malignancy.

Study Limitations
Because this study was a retrospective chart review, it was
subject to selection bias, as decisions regarding the procedure,
entry site, imaging guidance, drainage duration, and use of anti-
inflammatory agents were individualized to each patient and at
the discretion of the treating physician. The use of standardized
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TABLE 4 | Univariate and multivariate predictors of all-cause mortality.

Univariate model Multivariate model

Covariate HR (95% CI) P-value HR (95% CI) P-value

Age (years)1 1.009 (1.002–1.016) 0.010 1.007 (1.000–1.014) 0.0489

Sex

Female 1.000

Male 1.071 (0.864–1.328) 0.53

Duration of drain placement1, days 0.987 (0.881–1.105) 0.82

Hemoglobin (g/dL)1 0.961 (0.908–1.018) 0.18

Platelets (k/mL)1 1.000 (0.999–1.000) 0.57

International normalized ratio1 1.570 (0.987–2.500) 0.06

Creatinine (mg/dL)1 1.002 (0.993–1.011) 0.65

Malignancy stage

Non-advanced 1.000

Advanced (stage III or IV) 0.924 (0.458–1.864) 0.83

Approach for pericardiocentesis

Subcostal 1.000

Intercostal 1.045 (0.840–1.300) 0.69

Echocardiographic evidence of tamponade at presentation2 1.439 (0.869–2.383) 0.16

Malignant effusion on cytology2 1.495 (1.188–1.881) 0.0006 1.286 (1.006–1.645) 0.04

Anti-inflammatory agents use2(colchicine, steroids, or NSAIDs) 0.571 (0.398–0.819) 0.002 0.624 (0.426–0.916) 0.02

Cardiac involvement by primary2tumor or tumor metastases 1.308 (0.912–1.875) 0.14

Cancer treatment

Radiation therapy2 1.155 (0.929–1.435) 0.19

Chemotherapy2 1.100 (0.781–1.549) 0.59

Immunotherapy2 1.175 (0.934–1.480) 0.17

Surgery2 0.833 (0.638–1.088) 0.18

Stem cell transplant2 0.730 (0.534–0.996) 0.047

Cancer subgroup

Hematologic 1.000

Solid 1.600 (1.266–2.022) < 0.0001

Cancer type

Lymphoma 1.000 1.000

Lung 2.533 (1.725–3.718) < 0.0001 2.387 (1.622–3.513) < 0.0001

Breast 2.338 (1.474–3.709) 0.0003 2.028 (1.273–3.233) 0.0029

Colon and other GI 2.139 (1.262–3.626) 0.005 2.048 (1.208–3.472) 0.0078

Kidney or GU 2.650 (1.647–4.265) < 0.0001 2.692 (1.670–4.338) < 0.0001

Leukemia and other hematologic malignancies 1.927 (1.280–2.902) 0.002 1.902 (1.263–2.866) 0.0021

Other solid cancers 1.784 (1.079–2.951) 0.024 1.745 (1.052–2.894) 0.0310

GI, gastrointestinal; GU, genitourinary; HR, hazard ratio; NSAID, non-steroidal anti-inflammatory drug.
1For this variable, the HR is presented in 1-unit changes.
2For this variable, the HR is presented considering “No” as a reference group.

protocols for PCC at our institution as well as protocols for
surveillance imaging prior to and after drain removal may have
helped counter the bias to some extent. Initial performance status
data were not obtained, and symptomatic improvement and
quality-of-life metrics were not quantified or collected owing to
the urgent/emergent nature of the procedure, though immediate
symptom relief was often recognized. Outcomes of patients with
recurrent pericardial effusion managed with therapies such as
pericardial window or instillation of intra-pericardial sclerosing
agents were not included in our study. Since this study included
patients from ‘Cardiac Catheterization Lab’ database, a direct
comparison cannot be made with patients who had malignancy

but did not meet inclusion criteria for the study and hence did
not undergo PCC.

CONCLUSION

Pericardiocentesis is an attractive option in cancer patients
with large pericardial effusion with acceptable recurrence rate.
Aggressive cancers (younger patients with solid malignancy)
have an increased risk of recurrent PE within the first year
from the initial PCC, while elderly patients with lung cancer
and malignant PE cytology have worse survival. Cancer patients
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requiring treatment with immunotherapy appear less likely to
require additional PCC. Future studies will continue to refine and
align cancer and cardiovascular care to benefit patients facing this
double jeopardy.
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Objective: To compare the clinical outcomes of cancer and non-cancer patients with

severe aortic stenosis (AS) after transcatheter aortic valve implantation (TAVI).

Methods: A computer-based search in PubMed, EMbase, The Cochrane Library, CBM,

CNKI, and Wanfang databases from their date of inception to October 2021, together

with reference screening, was performed to identify eligible clinical trials. Two reviewers

independently screened the articles, extracted data, and evaluated their quality. Review

Manger 5.3 and Stata 12.0 software were used for meta-analysis.

Results: The selected 11 cohort studies contained 182,645 patients, including

36,283 patients with cancer and 146,362 patients without cancer. The results of the

meta-analysis showed that the 30-day mortality [OR = 0.68, 95%CI (0.63,0.74), I2=

0, P < 0.00001] of patients with cancer in the AS group was lower than those in

the non-cancer group; 1-year mortality [OR = 1.49, 95%CI(1.19,1.88), I2= 58%, P =

0.0006] and late mortality [OR = 1.52, 95%CI(1.26,1.84), I2= 55%, P < 0.0001] of

patients with cancer in the AS group was higher than those in the non-cancer group.

The results of the meta-analysis showed that the stroke [OR = 0.77, 95%CI (0.72, 0.82),

I2= 0, P < 0.00001] and the acute kidney injury [OR = 0.78, 95%CI (0.68, 0.90), I2=

77%, P = 0.0005] of patients with cancer in the AS group was lower than those in the

non-cancer group. The results of the meta-analysis showed no statistical difference in

cardiovascular mortality, bleeding events, myocardial infarction, vascular complication,

and device success rate.

Conclusion: It is more effective and safer in patients with cancer with severe AS who

were undergoing TAVI. However, compared with patients with no cancer, this is still high

in terms of long-termmortality, and further study of the role of TAVI in patients with cancer

with AS is necessary.

Systematic Review Registration: Identifier [INPLASY CRD: 202220009].

Keywords: aortic stenosis, oncology, transcatheter aortic valve implantation, meta-analysis, mortality
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INTRODUCTION

With the uptrend of aging in the world, the morbidity of
valvular disease in the elderly is increasing, in which AS has
gradually become the most common valvular heart disease
in the elderly. The main manifestations of AS are angina
pectoris, syncope, dyspnea, and even sudden death. The effect
of conservative treatment is not good, though it can relieve
the clinical symptoms, the aortic valve function cannot recover,
affecting the quality of life of patients. The results of the American
population survey showed that the incidence of severe valvular
disease in the elderly is 2.5%, including 13.3% in people over
75 years old. European surveys showed that the incidence of AS
in the population is 4%, and 2% in the elderly population (1).
In addition, not only the incidence of AS is increasing year by
year, but also the prognosis is very poor. Once the symptoms
or cardiac function decrease, the mortality increases sharply. If
only conservative treatment is performed, the 2-year fatality rate
is 50% to 60%. Therefore, active intervention is needed.

Since transcatheter aortic valve implantation (TAVI) appeared
in 2002, it has become a vital treatment of choice for patients
with severe AS (2, 3). TAVI is sending the artificial valve to
the aortic valve area to replace the aortic valve to perform its
functions. TAVI indications listed in the 2017 European Valve
Management guidelines: symptomatic patients with severe AS
who are not suitable for surgery (I, B); or patients with higher
surgical risk are defined as STS score or Euro SCORE II ≥4%,
or other risk factors, such as weakness, porcelain aorta, and chest
radiotherapy, especially suitable for elderly patients with femoral
artery approach (I, B). The indications for TAVI listed in the
2017 American Valve Management guidelines are symptomatic
in severe patients with AS with surgical taboos or high risk and
expected survival of more than 12 months (I, A); surgical risk
severe AS patients (II, a).

The TAVI has quickly developed all over the world because
of its small trauma and rapid recovery. At present, more than
300,000 cases have been completed in more than 60 countries
(4, 5). Among them, cancer patients with severe AS become a
special group of valvular disease because of tumor recurrence,
metastasis, and other characteristics. However, related research
on the clinical efficacy and safety of TAVI in patients with cancer
with severe AS is limited and the conclusion is still controversial.
Therefore, the purpose of this study is to systematically evaluate
the early and medium-term clinical efficacy of TAVI in patients
with severe AS with cancer.

DATA AND METHODS

Data Sources
The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses Protocols (PRISMA-P) statement was followed.
A comprehensive literature search was performed through
the PubMed, Embase, The Cochrane Library, CBM, CNKI,
and Wanfang databases from their establishment to October
2021 using the following terms: “transcatheter aortic valve
implantation,” “transcatheter aortic valve replacement,” “TAVI,”
“TAVR,” “neoplasm,” “malignancy,” “cancer,” and “tumor” with

no restrictions on language. Reference lists of reviewed articles
were screened to identify further relevant studies. When
outcomes reporting was incomplete, the study authors were
contacted for further information.

Study Selection
Inclusion criteria were as follows: studies performed in patients
with severe AS and cancer; study design comparing patients with
cancer undergoing TAVI to patients without cancer undergoing
TAVI; reporting the 30-day, 1-year, and late mortality. In
the meta-analysis, we included patients with an active history
of cancer.

Eligibility Criteria
All studies were included based on the following inclusion
criteria: (1) the study enrolled patients with AS with cancer;
(2) the study intervention was TAVI with no restrictions on
the valve style (balloon- or self-expandable valve) or delivery
route; (3) the study compared clinical outcomes of patients
with cancer to patients without cancer undergoing TAVI; (4)
the study design was randomized controlled trials (RCT) or
cohort studies.

Studies will be excluded if one of the following conditions
is met: (1) the type of study was case-control studies, case
reports, conference abstracts, reviews, comments, or editorials
were excluded; and (2) a significant amount of research data was
missing or not available.

Study Selection and Data Extraction
The first author (YS) and the second author (YW) independently
screened titles and abstracts of all identified records to
exclude unrelated studies based on inclusion/exclusion criteria.
After that, relevant studies and full articles were reviewed
to further determine their suitability. Disagreements were
resolved by discussions with a third reviewer (ZW) or
by consensus.

Clinical Endpoints
The primary outcome is all-cause mortality in 30-days, 1-year,
and late mortality. The second outcome included myocardial
infarction (MI), stroke, bleeding events, major or minor vascular
complications, new permanent pacemaker implantation, acute
kidney injury (AKI), and device success.

Risk of Bias and Statistical Analysis
The Cochrane Collaboration’s tool for assessing the risk
of bias was utilized to assess the risk of bias in RCTs,
including: (1) sequence generation; (2) allocation concealment;
(3) blinding of participants and personnel; (4) blinding
of outcome assessment; (5) incomplete outcome data; (6)
selective outcome reporting; and (7) other bias. Moreover,
the Newcastle-Ottawa Scale (NOS) (6) was used to assess the
quality of cohort studies consisting of three factors: patient
selection, comparability of the study groups, and the assessment
of outcomes.

Categorical variables were reported as percentages, and
continuous variables were presented as the mean ± SD. We
reported clinical outcomes and their respective effect size in all
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FIGURE 1 | Flow diagram for study selection.

included studies using odds ratios (ORs), with corresponding
95% confidence intervals (CIs).

Heterogeneity assessments were performed using χ2-based
Q statistics and I2 tests. If P > 0.10 and I2 ≤ 50%, there was
no statistical heterogeneity among results; if P < 0.10 and I2 >

50%, there was a considered significant heterogeneity. All the
results were performed using the random effect model. Subgroup
analyses were also performed to find more potential information
based on a different type of event. The likelihood of publication
bias was assessed directly through the funnel plots, evaluated
using an Egger’s test. All analyses were performed using Review
Manger 5.3 and Stata 12.0 software.

RESULTS

Baseline Demographic and Quality
Assessment
A total of 1,140 potentially eligible studies were identified in

our initial search, and 11 clinical studies met the inclusion

criteria (5, 7–16) (Figure 1). A total of 182,645 patients were
enrolled, including 36,283 patients in the cancer group and

146,362 patients in the non-cancer group. The basic information

of these studies is in Table 1. There were significant statistical
differences in the mean Society of Thoracic Surgeons score (STS
score) [WMD = −0.76, 95%CI (−1.14, −0.37), I2= 70%, P =
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TABLE 1 | Characteristics of the studies included in this meta-analysis.

NO Reference Year Type

of
research

Samples

(E /C)

Characteristics(E/C) Medical history(E/C) Inspection report(E/C) NOS

Age(year) Male(%) BMI(Kg/m2) Euro
ScoreII(%)

Hypertension(%) DM(%) MI(%) NYHA
III,IV(%)

PAD(%) STS
score(%)

Valvular
area(cm2)

LVEF(%)

1 Watanabe et al.
(16)

2016 Cohort
studies

47/702 83.0 ± 5.2/85.0
± 4.4

45.0/33.0 23.6 ±

3.8/21.7
± 3.6

3.1 ±

2.4/3.9
± 2.8

75.0/75.6 30.0/25.0 11.0/8.0 40.0/48.0 23.0/15.0 5.4 ±

3.0/7.0 ±

3.6

0.65 ±

0.1/0.62
± 0.2

65.9 ±

9.2/65.0
± 7.8

8

2 Berkovitch et al.
(7)

2018 Cohort
studies

91/386 79.4 ± 8.6/81.8
± 7.0

52.0/52.0 NR 4.5 ±

4.8/5.4
± 5.9

82.0/85.0 34.0/40.0 NR NR NR 4.6 ±

3.0/5.7 ±

3.9

NR NR 7

3 Mangner et al.
(13)

2018 Cohort
studies

350/1471 80.3 ± 5.7/81.0
± 5.2

47.1/42.7 27.1 ±

4.9/27.4
± 5.0

NR 92.6/93.6 40.6/43.6 12.3/12.0 78.3/77.1 10.3/11.7 6.4 ±

4.8/6.7 ±

4.8

0.6 ±

0.2/0.7 ±

0.2

58.4 ±

13.6/58.0
± 14.8

8

4 Landes et al. (5) 2019 Cohort
studies

222/2522 78.8 ± 7.5
/81.3 ± 7.1

62.1/45.0 26.6 ±

4.8/28.0
± 5.0

4.2 ±

3.2/5.4
± 4.4

76.0/92.0 28.0/36.0 13.0/9.0 76.0/83.0 16.0/14.0 4.9 ±

3.4/6.2 ±

4.4

0.72 ±

0.22/0.65
± 0.20

56.0 ±

14.0/56.0
± 8.0

8

5 Tabata et al. (15) 2019 Cohort
studies

240/964 80.5 ± 5.9/81.0
± 6.3

62.5/48.5 26.4 ±

5.1/27.0
± 6.7

6.2 ±

5.7/6.8
± 6.5

84.2/86.5 25.4/28.4 14.2/12.4 90.3/92.3 32.9/34.6 5.1 ±

4.1/5.6 ±

5.2

0.73 ±

0.16/0.72
± 0.17

NR 8

6 Biancari et al. (8) 2020 Cohort
studies

417/1713 80.6 ± 6.6/81.4
± 6.6

48.9/44.0 NR NR NR 22.8/29.8 1.9/2.4 NR NR 4.4 ±

3.2/4.6 ±

3.3

NR NR 7

7 Grant et al. (9) 2020 Cohort

studies

23670/

99400

81.1 ± 7.9/80.1

± 6.7

56.7/52.9 NR NR 81.1/79.6 31.6/36.7 NR NR NR NR NR NR 8

8 Guha et al. (10) 2020 Cohort
studies

10670/
36625

81.1 ± 0.2/80.8
± 0.1

57.2/52.6 NR NR 83.5/83.8 38.0/41.5 14.0/13.4 NR NR NR NR NR 7

9 Lind et al. (12) 2020 Cohort
studies

249/839 81.1 ± 5.9/81.4
± 5.4

50.6/45.5 NR NR 94.0/94.7 33.7/34.6 7.2/6.6 85.1/89.0 17.7/20.2 5.1 ±

1.9/6.0 ±

2.4

NR 50.6 ±

11.3/51.3
± 11.1

8

10 Tabata et al. (14) 2020 Cohort
studies

298/1270 80.8 ± 5.8/81.1
± 6.7

60.7/47.5 26.2 ±

5.0/27.0
± 6.5

6.2 ±

5.7/6.8
± 6.3

NR 25.0/28.7 12.3/11.9 NR NR 5.4 ±

4.2/5.8 ±

5.2

0.73 ±

0.16/0.72
± 0.17

NR 7

11 Karaduman et
al. (11)

2021 Cohort
studies

36/514 74.6 ± 6.5/77.8
± 8.0

30.6/43.0 25.0 ±

3.9/27.9
± 6.2

7.4 ±

4.9/9.1
± 5.8

75.0/82.6 19.4/30.2 NR 58.3/72.4 NR 4.8 ±

3.2/6.1 ±

3.5

NR NR 7

E, Experiment group; C,control group; E/C,%, proportion; BMI, Body Mass Index; Euro score, Logistic European score; DM, Diabetes Mellitus;PAD, Peripheral Artery Disease; MI,Myocardial Infarction; LVEF,Left Ventricular Ejection

Fraction; NOS, Newcastle-Ottawa Quality Assessment Scale.
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FIGURE 2 | The forest plot of all-cause mortality.

0.0001] and logistic European System for Cardiac Operative Risk
Evaluation II (logistic Euro SCORE II) [WMD = −0.95, 95%CI
(−1.25,−0.65), I2= 0, P < 0.00001] between two groups.

Clinical Outcomes
All-Cause Mortality
For all-cause mortality, subgroup analysis of included studies
illustrated that there were significant differences among them.
At 30-day mortality, 11 studies were enrolled (5, 7–16) and
the random effect model showed that the cancer group had a
significantly lower all-cause mortality than the non-cancer group

[OR= 0.68, 95%CI (0.63, 0.74), I2= 0, P < in 0.00001]. However,
cancer group had higher mortality than non-cancer group at
1-year (5, 7, 8, 11, 13–16) [OR=1.49, 95%CI (1.19,1.88), I2=
58%, P = 0.0006] and late (5, 7, 8, 11, 13–16) [OR=1.52, 95%CI
(1.26,1.84), I2= 55%, P < 0.0001] (Figure 2).

Cardiovascular Mortality
There was no significant statistical difference in cardiovascular
mortality [OR=1, 95%CI (0.83, 1.19), I2= 2%, P= 0.96] between
the two groups.
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Stroke
There were 10 studies (5, 7, 9–16) included and the meta-analysis
showed that the patients with cancer were associated with a
significantly lower rate of stroke than the non-cancer group [OR
= 0.77, 95%CI (0.72, 0.82), I2= 0, P < 0.00001] (Figure 3A).

Acute Kidney Injury
There were 7 studies (5, 7, 9, 10, 12, 13, 16) included and
the meta-analysis showed that the patients with cancer were
associated with a significantly lower rate of acute kidney injury
(AKI) than the non-cancer group [OR= 0.78, 95%CI (0.68, 0.90),
I2= 77%, P = 0.0005] (Figure 3B).

New Permanent Pacemaker
There were 8 studies (5, 9–11, 13–16) included and the meta-
analysis showed that the patients with cancer were associated
with a significantly higher success rate of new permanent
pacemakers than the non-cancer group [OR= 1.11, 95%CI (1.03,
1.19), I2= 30%, P = 0.005] (Figure 3C).

Other Clinical Outcomes
There were no differences in any bleeding events [OR = 1.13,
95%CI (0.82, 1.56), I2= 84%, P = 0.45], device success [OR
= 1.14, 95%CI (0.63, 2.08), I2= 56%, P = 0.66], myocardial
infarction [OR = 0.92, 95% CI (0.30, 2.86), I2= 57%, P = 0.88],
major vascular complications [OR = 1.16, 95%CI (0.76, 1.78),
I2= 14%, P = 0.48], and minor vascular complications [OR =

0.72, 95%CI (0.35, 1,48), I2= 76%, P= 0.38] between two groups.

Publication Bias
The funnel plot analysis and the Egger’s test were used to examine
the publication bias of included studies. Funnel plot analysis
of all results did not show significant asymmetry. The Egger’s
test showed no significant publication bias in 30-day all-cause
mortality (P = 0.819), 1-year all-cause mortality (P = 0.668),
late and all-cause mortality (P = 0.806), stroke (P = 0.509), new
permanent pacemaker implantation (P = 0.991), and AKI (P =

0.589) (Figure 4).

DISCUSSION

Patients with severe AS with tumors are a special group of
valvular diseases (2, 3). The choice of intervention for AS
is a matter of concern, because of their operation or drug
intolerance, which will affect the choice of best anti-tumor
therapy (5). The European Society of Cardiology (European
Society of Cardiology, ESC) proposed that we can release the
left heart failure caused by antineoplastic therapy by reducing
the afterload of the left ventricle (17); while for AS, the afterload
can be effectively reduced only through aortic valve intervention.
The main clinical intervention methods for aortic valve include
balloon valvuloplasty, aortic valve replacement (Surgical Aortic
Valve Replacement, SAVR), and TAVI. It has been proved that
balloon valvuloplasty cannot improve the survival rate of patients
with AS, and has many complications (18, 19). Although SAVR
can improve the survival rate of patients with cancer with severe
AS (20), it will have higher perioperative mortality compared to

non-cancer patients with AS because of its intolerance to open
surgery (21). The revolutionary innovation of TAVI provides a
great opportunity for the treatment of severe AS, which may also
be the best treatment for patients with AS with cancer. TAVI
has the advantages of minimal trauma and rapid recovery, which
not only reduces the risk of bleeding and infection after SAVR
but also avoids the interruption of perioperative antineoplastic
therapy (21, 22).

The purpose of this study was to compare the difference in
mortality between cancer and patients without cancer with severe
AS in TAVI. The results of the meta-analysis showed that there
was no significant difference in the cardiovascular mortality,
any bleeding events, vascular complications, and myocardial
infarction between the two groups, indicating that in patients
undergoing TAVI, mortality was mainly affected by non-cardiac
factors (23), such as cancer progression or metastasis. Meta-
analysis showed that I2 was >50% in 1-year and late all-cause
mortality, but much<75%, while Egger test p-values were>0.05,
which concluded that there was no significant heterogeneity. In
the 30-day, the all-cause mortality in the cancer group was lower
than the non-cancer group, while in the 1-year and late all-cause
mortality, the mortality in the cancer group was higher than that.
Maybe in short-term treatment, TAVI relieves patients’ cardiac
symptoms and plays a positive role in anti-tumor treatment (24),
so the short-term survival rate is increased. In addition to this,
the 2017 American Valve Management guidelines state that the
indications for TAVI include a life expectancy of more than 12
months after treatment to correct AS (25). Patients with cancer
who choose to undergo TAVI are generally younger and have
a lower risk than patients without cancer, and they also have a
higher survival rate in the short term. But compared with patients
without cancer, even though the patients in the cancer group
are younger and have lower STS scores, the long-term survival
rate decreases due to the continuous influence of tumor factors
(tumor progression, metastasis, recurrence, etc.).

This study also found that in the complications after TAVI,
there were significant differences in the incidence of stroke, acute
kidney injury, and new permanent pacemaker. Themeta-analysis
showed that in the cancer group, there was a lower rate of stroke
and AKI than in the non-cancer group. Stroke is a common
complication after TAVI and can be classified as perioperative
(within 30 days after TAVI or during hospitalization), early
period (between 30 days and 1 year after TAVI), and late period
(more than 1 year) depending on the time of occurrence (26,
27). A stroke occurs in the perioperative period mainly due
to debris dislodgement generated during TAVI, which includes
aortic wall components, atherosclerotic tissue, and valves, and
it may also be triggered by damage to the aortic wall caused
by the procedure (28, 29); stroke occurs in the early and
late periods mainly due to valve-related turbulence, vessel wall
rupture, metal frame exposure, and other procedure-related
factors (30). On the one hand, patients in the cancer group
had lower STS and Euro II scores than those in the non-
cancer group, we believe that patients in the oncology group
had better vascular conditions than those in the non-oncology
group and were less likely to have a stroke due to debris from
vessel wall damage or poor valve placement. The ESC/EACTS,
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FIGURE 3 | The forest plots of (A) stroke, (B) AKI and (C) new permanent pacemaker.

AHA/ACC, and ESC/EAPCI committees have not reached a
consensus on the choice of anticoagulation regimen after TAVI
(31–33), but they all choose the appropriate anticoagulation

therapy based on clinical experience and the patient’s actual
situation. Although patients in the cancer group are more likely
to have hypercoagulable blood due to their tumors, routine
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FIGURE 4 | The funnel plots of (A) all-cause mortality, (B) stroke, (C) AKI and (D) new permanent pacemaker.

anticoagulation after TAVI can reduce the risk. On the other
hand, the meta-analysis showed that there is no statistically
significant difference between the two groups in any bleeding
events, which also demonstrates the effectiveness of either
anticoagulation regimen in reducing blood hypercoagulability.
While the large number of contrast media needed for an
operation may cause acute renal function damage after the
operation, we can see from the data that the age and STS
scores of patients in the cancer group are lower than those
in the non-cancer group. The lower score indicates that the
patients in this group have fewer risk factors than the non-
cancer group, which leads to a lower incidence of acute kidney
injury after TAVI. The conduction block is also a common
complication after TAVI, so 13% of patients after TAVI need
permanent pacemakers to improve survival. In this study, there
were statistical differences in the new permanent pacemaker
implantation between the two groups. The cancer group had a
higher implantation rate; however, data were collected in this
meta-analysis without access to the preoperative ECG results

of patients, including whether they had preoperative right
bundle branch block (RBBB) or atrioventricular block (34), so
we considered that the higher rate of permanent pacemaker
implantation in the cancer group compared to the non-cancer
group may be due to the possibility that they had a high degree
of atrioventricular block or were unable to remove the temporary
pacemaker after TAVI.

The strength of this meta-analysis is the inclusion of 11
articles including 182,645 patients, adequately comparing the
differences between cancer and non-cancer groups in terms of
various outcome indicators. This study also has the following
limitations: (1) no published randomized controlled trials
were included, meaning the study is only included in the
cohort study for analysis, which may cause certain bias; (2)
the study does not carry out a cost-benefit analysis, such
as hospital stay, hospitalization costs, etc., so we cannot
clarify the related economic burden of TAVI and cancer
treatment; (3) due to the limitations of the follow-up time
included in the study, the study only analyzed the outcome
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indexes in the early and medium-term by Meta, and failed
to explore the longer-term prognosis of TAVI in patients
with severe AS with cancer; and (4) data were collected
in this meta-analysis without access to the preoperative
ECG results.

CONCLUSION

In conclusion, it is effective and safe to apply TAVI
to the treatment of severe AS in patients with
cancer, but compared with patients without cancer,
the long-term mortality rate is still higher. More
large samples and multicenter studies are needed in
the future.
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Background: Immune checkpoint inhibitors (ICIs) are widely used in lung cancer

management. However, myocarditis, which is a rare, yet potentially severe

adverse-related event associated with ICIs, could be under-reported.

Objectives: This study is aimed to prospectively evaluate the cumulative incidence

rate of myocarditis, through systematic screening, among patients receiving ICIs for

lung cancer.

Methods: All patients who received the first administration of ICIs for non-small

cell (NSCLC) and small cell lung cancer (SCLC), between May and November

2020, in the pulmonary department of Bordeaux University Hospital, were included.

Echocardiography (ECG), troponin-I, and natriuretic peptide dosages before ICIs’ first

administration and before each infusion were recorded. ECG and magnetic resonance

imaging (MRI) were done additionally, in case of at least three times increase in

troponin levels, ECG modifications, and the onset of cardiovascular symptoms. Second,

if possible, coronarography than endomyocardial biopsy was assessed. The primary

outcome was defined as ICIs related to myocarditis onset, while secondary outcomes

included other cardiovascular events, disease-free, and overall survival.

Results: During the period of interest, 99 patients received their first infusion of ICIs for

lung cancer (mean age 64 ± 9 years; 52 men, 67% with adenocarcinoma). Three cases

of myocarditis without major adverse cardiac events (MACEs) occurred (two definite

and one possible), and the mean duration between the first ICIs’ administration and

myocarditis onset was 144 ± 3 days. Median disease-free survival and overall survival

were 169 [102; 233] days and 209 [147; 249] days, respectively.

Conclusion: In our study, systematic screening of myocarditis associated with ICIs leads

to a more frequent incidence and a later onset than previously reported. None of them

336

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.878211
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.878211&domain=pdf&date_stamp=2022-06-06
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:maeva.zysman@chu-bordeaux.fr
https://doi.org/10.3389/fcvm.2022.878211
https://www.frontiersin.org/articles/10.3389/fcvm.2022.878211/full


Faubry et al. Myocarditis and Immune Checkpoint Inhibitors

were severe. Additional prospective evidence is needed before we could adopt routine

cardiac screening in unselected patients starting ICIs; however, these data shed new

light on the risk of myocarditis associated with ICIs administration.

Keywords: myocarditis, screening, immune checkpoint inhibitors, lung cancer, early diagnosis

INTRODUCTION

Immune checkpoint inhibitors (ICIs) have substantially
improved clinical outcomes in multiple cancer types, such as
lung cancer (1). In France, there are currently four approved ICIs
in lung cancer, which are as follows: nivolumab, pembrolizumab,
(both anti-programmed death-1, PD-1), atezolizumab, and
durvalumab (both anti-programmed death ligand-1, PD-L1).
The indications for their use in lung cancer treatment continue
to expand and are often considered the first-line therapy (2).
Unfortunately, these agents may induce a wide spectrum of
immune-related adverse events (irAEs) by enhancing immune
responses in non-target organs (3), including the cardiovascular
system. While myocarditis is considered uncommon toxicity of
ICIs with incidence varying from 0.01 to 1% (2). However, it is
likely that myocarditis is under-reported, owing to an absence
of systematic monitoring and coding mechanisms for cardiac
events in immunotherapy trials. Moreover, myocarditis related to
ICIs has been described to have a fulminant course, with a fatality
rate of 30–50% (2). A meta-analysis of the incidence of immune-
related adverse effects in patients treated for advanced non-small
cell lung cancer (NSCLC) identified that myocarditis affects 0.5%
of the whole population (3). Additionally, myocarditis has been
reported to be differentially associated with available ICIs. For
example, a combination of pembrolizumab and ipilimumab has
shown a higher reporting of myocarditis as compared to one ICI
alone or in combination with chemotherapy (4, 5). Although,
myocarditis can also occur with immunotherapy administered
alone (6). IrAEs may occur secondary to the inhibition of
immune checkpoints leading to local and systemic auto-immune
responses (CD4+ and CD8+ T cells recruitment along with
macrophages infiltrate), which attack myocytes and cardiac
conduction tissue that cause myocarditis (7).

Until now, the reported median time of the onset of
myocarditis from the first ICIs’ infusion ranges from 34 [21; 75]
to 65 [2; 454] days (8). Since cardiac monitoring (e.g., ECG or
troponin) is not routinely performed, in most immunotherapy
trials or clinical practice, the true incidence of myocarditis
remains still unknown. The diagnosis of myocarditis can be based
on appropriate investigations as recommended by the European
Society of Cardiology Guidelines (9). Interestingly, the clinical
presentation of myocarditis ranges on a spectrum of mild-to-
severe diseases from an asymptomatic increment in cardiac
biomarkers to severe decompensation with end-organ damage,
as suggested by clinical practice guidelines for the management

Abbreviations: C-MRI, cardiac magnetic resonance imaging; ECG,

electrocardiogram; ICIs, immune checkpoint inhibitors; irAEs, immune-related

adverse event; TTE, trans-thoracic echocardiography; MACEs, major adverse

cardiovascular events.

of irAEs (10). Therefore, the need for increasing awareness to
suspect, diagnose, and treat ICI-related myocarditis is pivotal in
lung cancer patients who receive ICI treatment.

Hence, the aim of this study was to prospectively evaluate (1)
the incidence of myocarditis associated with ICIs administration
and (2) the frequency of other major cardiovascular events, such
as ischemic heart disease or heart failure, in stages IIIB–IV lung
cancer patients.

MATERIALS AND METHODS

Study Design
All adult patients who initiated ICI treatment for stages IIIB–IV
lung cancer between 1 May 2020 and 1 November 2020, in the
pulmonary department of Bordeaux University Hospital, were
included. All participants provided informed written consent.
All patients who did not receive the first administration of ICI
were excluded.

Sample Size
The cumulative incidence rate of myocarditis associated with
ICIs’ administration varies from 0.01 to 1% (2). The hypothesis
is that the event is under-reported. Based on previous work, we
had anticipated a cumulative incidence rate of 2%. For an α-error
of 5% and a β-error of 10%, the number of patients required was
92. In order to take into account missing data or withdrawals of
consent, a total of 98 patients needed to be included.

Ethical Approval and Consent to
Participate
The study protocol was approved by the Ethics Committee
of CHU Bordeaux (France) and registered with the following
number CHUBX2020RE0275. This work complies with the
protection of personal health data and the protection of privacy
with the framework of application provided by article 65-2 of the
amended Data Protection Act and the general data protection
regulations. All subjects provided informed written consent. All
authors provided consent to publication.

Data Collected
The following data were collected: demographic characteristics,
smoking history, pre-existing cardiovascular diseases (coronary
artery disease, arrhythmia, conduction abnormalities, and heart
failure), lung cancer type [NSCLC and small lung cancer
(SCLC)], grading [stages IIIB and IV, according to the 7th
American Joint Comission on Cancer Tumor Node Metastasis
(AJCC TNM) classification], ICI regimens, a combination of ICIs
and chemotherapy, number of lines, pre-existing auto-immune
diseases, and other immune side effects during treatment. We
used The Strengthening the Reporting of Observational studies
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in Epidemiology (STROBE) reporting guidelines in our study
(Supplementary Data 1).

Myocarditis Suspicion
Baseline troponin and natriuretic peptide levels, ECG, and trans-
thoracic echocardiography (TTE) were performed before the first
ICI infusion to evaluate possible changes from baseline, e.g.,
changes in left ventricular ejection fraction (LVEF), diastolic
function, new wall motion abnormalities, or pericardial effusion.
Prior to ICI’s administration, levels of biomarkers (troponin-
I and natriuretic peptide) and ECG measurements were
undertaken. Possible myocarditis was suspected, in case of any
1 of the following adverse events: new cardiovascular symptoms
or at least 3 times increase in the levels of biomarkers beyond the
level prior to ICI’s administration, or any of the following ECG
changes: new prolongation of the PR interval, atrioventricular
block, ventricular arrhythmias, frequent premature ventricular
complexes, ST depression, or diffuse T-wave inversions.

In the presence of an adverse event, additional scans
were performed, which are as follows: TTE, cardiac magnetic
resonance imaging (C-MRI), and coronarography. C-MRI
was assessed with T2-weighted imaging, late gadolinium
enhancement (LGE), extracellular volume fraction, and T1 and
T2 mapping.

For the C-MRI diagnosis of myocarditis, the Lake Louise
Criteria were used in our study, which states that if (2, 11)
both myocardial edema and non-ischemic myocardial injury are
identified on the C-MRI, it is highly suggestive of myocarditis.

Myocarditis Diagnosis
Any one of the following criteria is used to diagnose myocarditis
in a clinical setting, the presence of two major criteria having the
best diagnostic value:

a. Myocardial edema: Indicated by abnormal findings in T2
mapping or T2-weighted images.

b. Non-ischemic myocardial injury: Ascertained by
abnormal findings on T1 mapping, LGE, or extracellular
volume fraction.

Additional supportive criteria (below) can be suggestive of
myocarditis, however, in the absence of the aforementioned
two criteria, they cannot be considered definitively diagnostic
of myocarditis.

a. Pericarditis: Indicated by either pericardial effusion or
abnormal late gadolinium enhancement/T2 or T1 findings in
the pericardium.

b. Left ventricular systolic dysfunction: Indicated by regional or
global wall motion abnormalities.

Coronary angiography was performed to rule out significant
coronary artery disease. Then, endomyocardial biopsies were
performed when possible and guided according to C-MRI
abnormalities. The myocardial tissue was evaluated using
the histological Dallas criteria, which require two main
components: inflammatory infiltrate and myocardial necrosis
(12). If myocarditis was suspected, it was categorized as

definite/probable/possible per consensus-based definition (13).
Finally, treatments for myocarditis were decided according to
international recommendations (2).

Statistical Analysis
Data are provided as mean or n (%), as appropriate. A value of
p≤ 0.05 was considered statistically significant. All analyses were
performed using Graph Pad Prism R© statistical software.

RESULTS

Between 1 May 2020 and 1 November 2020, 99 patients (52%
men, mean age: 64 ± 9 years) received the first administration
of ICIs (Figure 1). In total, 38% of patients had pre-existing
cardiovascular diseases and 15% suffered from pre-existing
systolic or diastolic dysfunction. In addition, 6% of patients had
positive troponin before starting treatment among whom, two
patients had pre-existing stable ischemic heart disease and 1
presented tight aortic stenosis. The majority of the patients (66%)
had adenocarcinoma (Table 1) and 67%were being treated with a
combination of ICIs and chemotherapy, while 61% received first-
line treatment. In total, 72% of patients received Pembrolizumab
(Table 2).

Myocarditis was diagnosed in three patients during the
6-month follow-up (two definite and one possible, Table 3),
indicating a cumulative incidence rate of 3%. All of them were
asymptomatic. Troponin serum increment was seen for all three
patients: 75.0 ng/l in the first case, 20.8 ng/l in the second case,
and 202.0 ng/l in the third case. None of them had elevated
troponin levels prior to ICIs. The mean duration between the
first ICI administration and the onset of myocarditis was 144± 3
days (147 days for the first and the second cases; 141 days for the
third case). Grade 1 skin toxicity (irAE) was seen between the first
and second infusions for one patient with myocarditis (patient
2); however, no pre-existing auto-immune disease was previously
reported (Table 3). No ECG abnormalities were seen, and TTE
revealed preserved LVEF for all patients. We were able to
distinguish myocarditis frommyocardial ischemia or myocardial
infarction with early systematic coronary angiography.

The first patient had an asymptomatic elevation of
cardiac biomarkers. C-MRI showed myocardial edema in
T2 mapping and LGE in a non-coronary distribution (Figure 2).
Endomyocardial biopsies were performed according to C-MRI
abnormalities and found non-specific edema. This patient was
classified as having definite myocarditis because of increased
cardiac biomarkers, positive C-MRI, and negative coronary
angiography (13). The second patient was classified as possible
myocarditis because of asymptomatic elevation of cardiac
biomarkers, with negative C-MRI and angiography for coronary
artery disease (13). In addition, the third case was classified as
having definite myocarditis because of asymptomatic elevation
of cardiac biomarkers, positive C-MRI but negative angiography
for coronary artery disease (Table 3) (13).

All three patients received corticosteroids as recommended
(10, 14, 15), intravenous methylprednisolone, at a dosage of 1
mg/kg/day for the first patient, and oral prednisone, at a dosage
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FIGURE 1 | Flow chart. ICI, immune checkpoint inhibitors; TTE, transthoracic echocardiogram.

of 1 mg/kg/day, with no additional immunosuppressant drugs
for the remaining patients. The treatments administered were
in line with the American Society of Clinical Oncology (ASCO)
clinical practice guidelines for irAEs, and troponin monitoring
was also done (10). All three patients had mild myocarditis
and recovered without complications. No major adverse cardiac
events (MACEs), e.g., cardiovascular death, cardiac arrest,
cardiogenic shock, and hemodynamically significant complete
heart block requiring a pacemaker, were noted.

Considering the non-severe presentation and the absence of
alternative choice, ICIs rechallenge was performed in the first
and second cases, after the normalization of troponin level. In the
first case, nivolumab was administered 124 days after myocarditis
and continued due to the absence of a recurrence. In the
second case, pembrolizumab was re-administrated, 71 days after
myocarditis and recurrence occurred 42 days (three infusions)
after rechallenge. The recurrence was detected by ECG changes
(de novo left ventricular block) and serum troponin increment,

while C-MRI was normal. An endomyocardial biopsy was not
performed because of a negative benefit-risk balance. Diagnosis
of myocarditis was retained in view of ECG normalization
under corticosteroid. No rechallenge was performed for the
third patient.

After a 6-month follow-up, median disease-free survival and
overall survival were 169 [102; 233] and 209 [147; 249] days,
respectively. Mortality did not increase among patients with
myocarditis at the end of follow-up (p= 0.29; not shown).

For one patient, due to the increased serum troponin levels,
coronary angiography was performed and it confirmed an
underlying coronary artery disease, which was treated with
angioplasty. The patient had not previously reported pre-
existing cardiovascular disease; however, several cardiovascular
risk factors (current smoking, age>50 years) were noted. Finally,
systematic TTE before ICIs’ first administration allowed us to
detect eight cases of unknown systolic or diastolic dysfunction,
of which only one had LVEF between 40 and 50%, leading to
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TABLE 1 | Patients’ characteristics at inclusion.

Patients’ characteristics Whole cohort

N = 99 (%)

General

Mean age (years) 64

Male gender 51 (52%)

Risk factor Smoking

No 10 (10%)

Cessation >3years 40 (40%)

Current 49 (49%)

Preexisting cardiovascular diseases

Coronary artery disease 14 (14%)

Other artery disease 11 (11%)

Arrhythmia/Conduction abnormality 13 (13%)

Heart failure

LVEF <40% 1 (1%)

LVEF 40–50% 6(6%)

LVEF >50% 8(8%)

Cardiovascular risk factors

Age (male >50 years; female >60 years) 80 (81%)

Diabetes mellitus 19 (19%)

Dyslipidaemia 32 (32%)

Hypertension 18 (18%)

Primary cancer type Adenocarcinoma 65 (66%)

Squamous cell carcinoma 17 (17%)

Small cell lung cancer 12 (12%)

Others 5 (5%)

Pre-ICI biomarkers Positive serum troponin before ICI 6 (6%)

Troponin (ng/l) 13+/−21µ

BNP (pg/ml) 44+/−41π

NT-pro-BNP (pg/ml) 341+/−448�

CPK (UI/l) 64+/−55†

Pre-ICI ECG PR (ms) 153+/−27‡

QRS (ms) 94+/−21

Pre-ICI TTE LVEG (%) 61%+/−6.5%

Strain (%) −18%+/−3.1%

S’VD (cm/s) 13.6+/−2.66

Missing data : µ = 8 (8%), π = 25 (25%),
†
= 14 (14%), ‡= 11 (11%), =9 (9%), = 2

(2%), = 39 (39%), = 14 (14%)Patients concerned : � = 15 (15%).

ECG, electrocardiogram; ICI, Immune checkpoint inhibitors; TTE, Transthoracic

echocardiogram; LVEG, Left ventricular ejection fraction.

Data were expressed as mean +/- standard deviation, as appropriate.

a specific treatment; while the remaining seven had diastolic
heart failure. Additionally, concerning the five patients with
positive troponin before starting treatment, two patients had
known stable ischemic heart disease and one patient had severe
unknown aortic stenosis without surgical indication. The two last
patients had a spontaneous normalization of troponin levels.

DISCUSSION

In our prospective, hospital-based real-life cohort study, the
screening of myocarditis was systematically assessed in 99

TABLE 2 | Patients’ follow-up.

Whole cohort

N = 99(%)

ICI regimens Pembrolizumab 71 (72%)

Nivolumab 7 (7%)

Atezolizumab 8 (8%)

Durvalumab 11 (11%)

Other 2 (2%)

Single agent or combined Monotherapy 33 (33%)

Combinaison 66 (67%)

Line of treatment 1st line 60 (61%)

2nd line 33 (33%)

≥3rd line 6 (6%)

Myocarditis 3 (3%)

Follow-up Median follow-up (days) 209 [147 ; 249]

Mortality rate 28 (28%)

ICI, Immune checkpoint inhibitors.

patients with lung cancer (stages IIIB–IV), receiving ICIs
treatment. A 3% cumulative incidence rate of myocarditis was
seen during a 6-month follow-up. All cases of myocarditis
were mild and without MACEs. No increase in mortality
was observed among patients with myocarditis. Finally,
myocarditis occurred later than described in previous
studies, i.e., the mean time of the onset between the
first ICIs’ administration and myocarditis was 144 ±

3 days.
No specific clinical characteristics were identified with

myocarditis onset; the three cases were different, in terms
of histological cancer type, ICIs regimens, combination
regimen, and line number. None of the cases had an
underlying auto-immune disease. The first case had a history
of coronary artery disease without heart failure and the
second had a history of valve disease, without associated
heart failure.

In addition, the incidence of myocarditis (3%) was higher
than previously reported, range of 0.06–1.14% (2), which could
perhaps be explained by the rigorous systematic monitoring
and subsequent early detection of myocarditis. Systematic
monitoring to detect myocarditis is not routinely performed
in patients receiving ICI; which might lead to its under-
reporting. While the incidence of myocarditis was high (3%);
however, the cases were mild and did not affect mortality.
This finding was contrary to the previous reporting of a
fatality rate of 30–50%, associated with myocarditis due to
ICIs treatment (2). The lack of myocarditis-related mortality
in our study could perhaps be due to the compliance of
the patients with monotherapy, e.g., a large safety database
suggests that myocarditis occurs more frequently and severely
with the combination of ipilimumab and nivolumab when
compared to monotherapy (5). Another hypothesis could be that
systematic screening leads to earlier detection of myocarditis.
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TABLE 3 | Description of myocarditis cases.

1st patient 2nd patient 3rd patient

Primary cancer type Squamous cell carcinoma Adenocarcinoma Small cell lung cancer

ICI regimens Atezolizumab Pembrolizumab Atezolizumab

Single agent or combined Monotherapy Combinaison Combinaison

Line of treatment 2nd line 1st line 1st line

Pre-existing auto-immune diseases No No No

Other immune side effects during treatment No Dermatitis (grade I) no

Time from first administration to myocarditis (days) 147 147 141

Biomarkers

Serum troponin (ng/l) standard <15,6 (ng/l) 75 20,8 202

BNP (pg/ml) 13 21 45

CPK (UI/l) 38 57 33

ECG

Sinus rythm Yes Yes Yes

PR (ms) 160 178 160

QRS (ms) 100 96 80

TTE

LVEF(%) 53 61 65

Strain(%) −19.5 Not performed Not performed

S’VD (cm/s) 11.5 Not performed Not performed

Cardiac-MRI

Edema by T2 Yes No Yes

Late Gadolinium enhancement Yes No Yes

Coronary angiography negative Negative Negative

Endomyocardial biopsy Non specific edema Not performed Not performed

Final diagnosis Definite myocarditis Possible myocarditis Definite myocarditis

ICI rechallenge

Yes/no yes Yes No

ICI regimen Nivolumab Pembrolizumab -

Time to rechallenge (in days) 124 71 -

Recurrence yes/no No Yes -

ECG, electrocardiogram; ICI, Immune checkpoint inhibitors; TTE, Transthoracic echocardiogram; LVEG, Left ventricular ejection fraction; Cardiac-MRI, Cardiac Magnetic

Resonance Imaging.

FIGURE 2 | Cardiac magnetic resonance imaging (C-MRI) imaging illustration of patient 1. (A) 4 cavity sections with a late enhancement of gadolinium and (B)

transversal section showing infero-latero-medial mesomyocardic contrast (red arrows). (C) T2 mapping showing focal infero-latero-medial myocardial edema (black

arrows).

This in turn allowed a prompt withdrawal of ICIs and
initiation of corticosteroid treatment (intra-venous or oral) to
avoid a fulminant course (16). Moreover, myocarditis had a
later onset than previously observed in other studies (8, 16),

which further underscores the need for prompt and rigorous
systematic detection.

We also noticed a trend of better survival among patients who
had myocarditis, suggesting a strong immune response. These
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results correspond to the findings in the meta-analysis from
Hussaini et al. (17) which state that immunotherapy has better
efficacy in patients who developed irAEs in different cancers, such
as lung cancer.

Besides, after troponin normalization under corticosteroid
therapy and in the absence of therapeutic alternatives, rechallenge
(8, 10) was considered in the first two cases, with a recurrence of
mild myocarditis for the second case, but not for the first one.

Interestingly, all myocarditis presented a normal LVEF in
TTEs. C-MRI was normal for one of the cases, and an
endomyocardial biopsy was performed only once. Normal results
are frequently seen in the early phase of the disease (7), with
normal C-MRI being reported in almost 70% of patients (2).
In conclusion, ICI-related myocarditis is a complex disease
that bears resemblance to many other acute cardiac syndromes.
Its diagnosis is difficult as it is based on a combination of
different non-pathognomonic parameters, such as biomarkers
(troponin, natriuretic, peptides), imaging (ECG, TTE, and C-
MRI), and procedures (endomyocardial biopsy and coronary
angiography). However, given the high incidence (3%) observed
in this study, it is recommended to perform systemic screenings
until more definitive data become available (18). C-MRI and
endomyocardial biopsies are not available in all medical centers
and due to their invasive nature might be unsuitable for
asymptomatic patients. Our study indicates that while TTE does
not help in the early diagnosis of myocarditis, it is relevant for
screening other cardiovascular events. In fact, pre-therapeutic
TTE detected 8 cases of heart failure and 3 cases of valve diseases.
Of note, even if the first manifestations of myocarditis can be
serious cardiac complications, e.g., ventricular arrhythmias and
atrioventricular block, the LVEF is often preserved (5, 8, 16). For
example, in a study by Mahmood et al. (18) 51% of patients with
ICIs associated with myocarditis had a normal LVEF. In addition,
in 38% of myocarditis patients, a normal LVEF was seen despite
the development of MACEs.

Finally, smokers are at risk of lung cancer and atherosclerosis
(19) making them a particularly vulnerable population for
MACEs. In a large study, 66% of patients with cancer (n =

60,676) also presented with an acute coronary syndrome; and the
most prevalent cancers were lymphoma (19%) and lung cancer
(18.3%) (20). Contrastingly, in a more specific study by van-
Herk-Sukel et al. (21) patients with lung cancer (N = 3,717) did
not show a higher risk of developing myocardial infarction when
compared with cancer-free controls. In our study, only 1 patient
with cardiovascular risk factors had an elevation of troponin
level linked to coronary artery disease and died a few months
after diagnosis. However, cardiovascular co-morbidities (heart
failure, myocardial infarction, and cardiac arrhythmias), which
have been seen with low survival, in a study of 95,167 lung cancer
patients, must be detected as earliest as possible (22).

Strengths and Clinical Perspectives
To our knowledge, this is the largest published prospective study
of ICI-associated myocarditis among patients with lung cancer.
While no specific clinical characteristics were identified with
myocarditis onset, our study does outline the advantages of
using an early and sustained systematic screening strategy for

detecting myocarditis, when treating lung cancer patients with
ICIs. The rigorous screening allowed for the early diagnosis and
management of three cases of mild myocarditis and by extension
could lead to a reduction in mortality.

Study Limitations
This study has several important limitations, such as the small
number of patients; therefore, we could not compare overall
survival and progression-free survival depending on myocarditis
occurrence. Our study was also monocentric with a possible
center effect, in particular, for C-MRI and endomyocardial biopsy
access. While the probability of an over-diagnosis should be
considered with any screening test; however, in our study there
was only 1 troponin increment (leading to angioplasty).

CONCLUSION

This study outlines the usefulness of early monitoring for
myocarditis in patients with lung cancer being treated with ICIs.
Early monitoring is especially helpful in cases with non-specific
symptoms and would help in decreasing the risk of fulminant
progression of myocarditis. However, larger patient cohorts will
be needed to estimate the true incidence of clinically meaningful
immune-related cardiac events/myocarditis and importantly
evaluate potential predictors to define higher-risk subgroups and
refine screening and management strategies. Although improved
detection and management of immune-related cardiovascular
events are important, additional prospective evidence is needed
before we can adopt routine cardiac screening in unselected
patients starting ICI therapy.
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Purpose: We aimed to investigate the mortality patterns and quantitatively assess
the risks of cardiovascular death (CVD) in patients with colorectal cancer (CRC). We
also established a competing-risk model to predict the probability of CVD for patients
with CRC.

Patients and Methods: Patients with CRC who diagnosed between 2007 and 2015
in the Surveillance, Epidemiology, and End Results (SEER) database were included in
the present study. The cumulative incidence function (CIF) was used for CVD and other
causes of death, and Gray’s test was used to determine the subgroup difference in
CIF. The Fine-Gray proportional subdistribution hazards model was used for identifying
independent risk factors for CVD. A novel competing-risk model was established
to evaluate the probability of CVD for patients with CRC. The performance of the
nomogram was measured by concordance index (C-index), calibration curve, decision
curve analysis (DCA), and risk stratification.

Results: After a median follow-up of 37.00 months, 79,455 deaths occurred, of whom
56,185 (70.71%) succumbed to CRC and 23,270 (29.29%) patients died due to non-
CRC, among which CVD accounted for 9,702 (41.69%), being the major cause of
non-cancer deaths. The 1-, 3-, and 5-year cumulative rates for CVD were 12.20, 24.25,
and 30.51%, respectively. In multivariate analysis, age, race, marital status, tumor size,
tumor stage, advanced stage, surgery, and chemotherapy were independent risk factors
of CVD among patients with CRC. The nomogram was well calibrated and had good
discriminative ability, with a c-index of 0.719 (95% CI, 0.738–0.742) in the training
cohort and 0.719 (95% CI, 0.622–0.668) in the validation cohort. DCA demonstrated
that nomogram produced more benefit within wide ranges of threshold probabilities for
1-, 3-, and 5-year CVD, respectively.

Conclusion: This study was the first to analyze the CIF and risk factors for CVD among
CRC based on a competing-risk model. We have also built the first 1-, 3-, and 5-year
competing nomogram for predicting CVD. This nomogram had excellent performance
and could help clinicians to provide individualized management in clinical practice.

Keywords: SEER database, cardiovascular death, competing-risk model, nomogram, cause-specific death,
colorectal cancer
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INTRODUCTION

Colorectal cancer (CRC), a common gastrointestinal cancer, is
ranked as one of the three most common cancers worldwide, with
1,147,950 new cases and 53,200 deaths estimated in 2020 (1). The
life expectancy of patients with CRC has considerably improved
due to early diagnosis and treatment (2, 3). Therebefore,
increasing mortality burden is not derived from cancer but from
non-cancer causes. However, the political risk of non-cancer
mortality is an objective existence, but it hasn’t caused plenty of
attention in academia.

In the past decade, cardiovascular death (CVD) has been
regarded as one of the most common late complications
of cancer therapy (4, 5). Indeed, the introduction of novel
chemotherapeutic or immunotherapeutic drugs has brought
considerable survival benefits for patients with advanced
tumors (6). Unfortunately, these agents can cause a series
of adverse events in clinical practice (7–10), mostly due
to the induced overactivation of immunity or even direct
killing of non-target organs, including the heart (11, 12).
Therefore, it is an emerging issue that warrants increased
awareness and investigation by cardiologists, oncologists,
and immunologists.

Despite multiple studies showing how chemotherapeutic and
immunotherapeutic drugs may contribute to the increased risk
of CVD among cancer survivors, studies that focus on the
cardiovascular outcomes in patients with CRC remain scarce.
A prior descriptive analysis of Surveillance, Epidemiology,
and End Results (SEER) data reported that patients with
CRC were associated with an increased risk of CVD within
1 year of diagnosis. Although this analysis highlights the
frequency of CVD among CRC survivors (13), it has mainly
focused on CVD using the standard Cox proportional hazards
regression approach. This conventional method might lead
to unreliable results when competing events are present
(14). Competing risks usually exist in the field of medicine,
which may sway the occurrence of endpoint events. In
addition, they would become particularly critical in terms
of the elderly population or long prognosis (15). Thus,
competing risks is certainly worth taking into consideration
when investigating the CVD of patients with CRC, which
would give a clearer picture of CVD risks that these patients
would confront.

In the present study, we aimed to perform a population-
based analysis of a cohort of patients with CRC between
2007 and 2015 in the SEER database to identify the risk
factors for CVD among patients with CRC, including those
within different subgroups. Since competitive events exist when
analyzing CVD through Cox regression model (16), we used
a competitive risk model when working for this type of
data and objective of study. We comprehensively assessed the
risks of CVD among more than 42,000 patients with CRC.
Based on these results, we built and internally validated a
competing-risk model to evaluate the probabilities of CVD
for patients with CRC. Our findings can help clinicians
adopt accurate risk stratification, weigh the advantages and
disadvantages of therapies, and help with the cure of disease,

TABLE 1 | Demographic and clinicopathological characteristics of the included
CRC patients.

Characteristics Number (%)

Total 197,699

Year of diagnosis

2007–2010 89,006 (45.0)

2011–2015 108,693 (55.0)

Age

<65 98,682 (49.9)

≥65 99,017 (50.1)

Sex

Female 95,030 (48.1)

Male 102,669 (51.9)

Race

Black 23,557 (11.9)

White 156,015 (78.9)

Other 18,127 (9.2)

Marital status

Married 111,210 (56.3)

Unmarried 86,489 (43.7)

Insurance

Any Medicaid 24,892 (12.6)

Insured 165,937 (83.9)

Uninsured 6,870 (3.5)

Tumor site

Left 101,144 (51.2)

Right 93,632 (47.4)

NOS 2,923 (1.5)

Tumor size

≤5 cm 112,065 (56.7)

5–10 cm 52,078 (26.3)

>10 cm 33,556 (17.0)

Grade

Grade I 21,461 (10.9)

Grade II 137,501 (69.6)

Grade III 33,300 (16.8)

Grade IV 5,437 (2.8)

SEER stage

Localized 77,655 (39.3)

Regional 81,662 (41.3)

Distant 38,382 (19.4)

Surgery

No 18,599 (9.4)

Yes 179,100 (90.6)

Radiotherapy

No 168,962 (85.5)

Yes 28,737 (14.5)

Chemotherapy

No 115,753 (58.6)

Yes 81,946 (41.4)

Causes

Alive 118,244 (59.8)

Death form CRC 9,702 (4.9)

Death form CVD 56,185 (28.4)

Death form non-CVD 13,568 (6.9)

Other, American Indian/Alaska Native/Asian/Pacific Islander; NOS, not otherwise
specified; SEER, Surveillance, Epidemiology, and End Results; CRC, colorectal
cancer; CVD, cardiovascular death.
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TABLE 2 | Cumulative incidence of cause-specific death and Gray’s test
in the whole set.

Characteristics CVD (%) P Non-CVD (%) P

1-year 3-year 5-year 1-year 3-year 5-year

Total 12.20 24.25 30.51 1.93 4.13 4.77

Year of diagnosis <0.001 0.01

2007–2010 1.84 3.47 4.99 2.10 4.30 6.60

2011–2015 1.46 2.89 4.49 1.79 3.99 6.45

Age <0.001 <0.001

<65 0.44 0.94 1.39 0.87 1.95 2.99

≥65 2.82 5.34 7.89 2.97 6.26 9.79

Sex 0.210 0.010

Female 1.55 3.03 4.65 1.83 3.95 6.27

Male 1.71 3.28 4.77 2.01 4.31 6.67

Race <0.001 <0.001

Black 1.72 3.23 4.46 1.99 4.27 6.35

White 1.68 3.26 4.91 2.00 4.26 6.70

Others 1.14 2.19 3.20 1.20 2.87 4.65

Marital status <0.001 <0.001

Married 1.23 2.40 3.63 1.46 3.26 5.31

Unmarried 2.15 4.15 6.13 2.53 5.26 8.00

Insurance status <0.001 <0.001

Any Medicaid 1.89 3.65 5.16 2.63 5.33 7.66

Insured 0.70 1.43 2.14 1.29 2.78 3.62

Uninsured 1.63 3.16 4.75 1.85 4.01 6.42

Tumor site <0.001 <0.001

Left 1.34 2.65 3.89 1.55 3.40 5.32

Right 1.94 3.69 5.59 2.30 4.90 7.71

NOS 2.07 3.82 4.97 3.20 5.05 6.79

Tumor size <0.001 <0.001

≤5 cm 1.53 3.14 4.84 1.77 4.16 6.73

5–10 cm 1.79 3.30 4.78 2.07 4.19 6.40

>10 cm 1.72 3.02 4.18 2.22 3.97 5.76

Grade <0.001 <0.001

Grade I 1.22 2.86 4.58 1.64 3.90 6.46

Grade II 1.64 3.20 4.83 1.86 4.17 6.59

Grade III 1.86 3.18 4.34 2.25 4.08 6.06

Grade IV 1.79 3.29 4.50 2.61 4.51 6.19

SEER stage <0.001 <0.001

Localized 1.71 3.72 5.93 1.99 4.81 8.08

Regional 1.72 3.22 4.75 1.98 4.20 6.52

Distant 1.29 1.91 2.17 1.69 2.63 3.15

Surgery <0.001 <0.001

No 2.48 3.55 4.13 3.05 4.55 5.40

Yes 1.55 3.12 4.77 1.81 4.09 6.59

Radiotherapy <0.001 <0.001

No 1.78 3.42 5.08 2.09 4.42 6.90

Yes 0.77 1.66 2.53 0.97 2.47 4.00

Chemotherapy <0.001 <0.001

No 2.36 4.47 6.62 2.74 5.60 8.74

Yes 0.61 1.33 2.02 0.78 2.07 3.29

Other, American Indian/Alaska Native/Asian/Pacific Islander; NOS, not otherwise
specified; SEER, Surveillance, Epidemiology, and End Results.

improve the prognosis, and raise the quality of life for
patients with CRC.

MATERIALS AND METHODS

Data Source and Study Cohort
The present study was a retrospective analysis of a cohort of
patients with CRC that strictly followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
specifications (17). The data used in this study were taken
from 18 SEER registries via the SEER∗Stat software (2017
submission). The 18 SEER registries with additional treatment
fields that were used in this study provided detailed data about
demographic and clinicopathological characteristics, treatment
protocols, and follow-up.

Study Population and Variables
This study included cases from the 18 SEER registries with
CRC, which were proved by pathologic diagnosis. We selected
the patients with CRC using the following topography codes:
C18.0, C18.2, C18.3, C18.4, C18.5, C18.6, C18.7, C18.8, 18.9,
C19.9, and C20.9. The dawn of tyrosine kinase inhibitors, 2007,
was selected as a year of insurance that was accessible in the
SEER database when investigating the role of socioeconomic
factors in CVD (18). The eligible patients were selected using
the following inclusion criteria: (1) diagnosed with CRC as
the primary and only tumor; (2) diagnosed between 2007 and
2015; and (3) had active follow-up information and defined
causes of mortalities. Then, the following information was
obtained for each patient: year of diagnosis, age, sex, race, tumor
stage, histological grade, tumor site, marital status, insurance
status, surgery, radiotherapy, chemotherapy, survival months,
and causes of death. Patients with missing data about any of above
information were excluded.

Outcomes
Cardiovascular death was the primary endpoint and was
measured as the time from the date of diagnosis of CRC to
death due to CVD (19). As recorded in the SEER database, CVD
has six causes of death, namely, disease of heart, hypertension
without heart disease, cerebrovascular disease, atherosclerosis,
aortic aneurysm and dissection, and other diseases of arteries,
arterioles, and capillaries (20). The non-CVD was defined from
other causes and was considered as competing events against
CVD. Patients who survived until the last follow-up or who were
lost to follow-up before the end of the observation period were
regarded as censored observations.

Statistical Analysis
The difference of baseline characteristics between subgroups
were compared with χ2. Cumulative incidence function (CIF)
was calculated to evaluate the probabilities of each event
at 1-, 3-, and 5-year. Subgroup analyses were performed
based on patient’s characteristics, and respective curves for
CIF were produced. The difference in CIF were determined
through Gray’s test (21). Fine and Gray’s subdistribution
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proportional hazards model was performed for identifying
the independent risk factors for CVD among patients with
CRC (22). Moreover, based on Fine-Gray’s model, a novel
competing-risk model was developed to predict the probabilities
of CVD at 1-, 3-, 5-year for patients with CRC. We used
the concordance index (C-index) to measure discriminative
performance of the model, and the consistency was measured
using a calibration curve (18). Decision curve analysis (DCA)
was performed to visually investigate the clinical utilities
and net benefits of this model (23, 24). The packages
cmprsk, survival, mstate, rms, pec, and riskRegression in
the R software (version 3.2.5) were used to establish and
validate the nomogram. p < 0.05 in two-sided tests were
statistically significant.

RESULTS

Patient Selections and Baseline
Characteristics
Our study extracted 197,699 eligible patients diagnosed with
CRC between 2007 and 2015 in the SEER program. The
baseline characteristics of the whole study cohort are presented
in Table 1. A larger proportion of patients were aged
above 65 years (1,776, 65.7%), male (102,669, 51.9%), white
(156,015, 78.9%), married (111,210, 56.3%), and insured
(165,937, 83.9%). Most patients were diagnosed with grade
II (69.6%), followed by grade III (16.8%), grade I (10.9%),
and grade IV (2.8%) CRC. The distribution of SEER stage
was as follows: 77,655 (39.3%) had localized stage, 81,662
(41.3%) had regional stage, and 38,382 (19.4%) had distant
stage. A total of 179,100 (90.6%) patients were treated
with surgery, 81,946 (41.4%) patients were treated with
chemotherapy, and only 28,737 (14.5%) patients were treated
with radiotherapy.

Cumulative Incidence Function Survival
Analysis
The median follow-up of the whole cohort was 37 months
(IQR: 17.00–119.00). In total, 79,455 patients died during the
follow-up, of whom 56,185 (70.71%) succumbed to CRC and
23,270 (29.29%) died due to non-CRC, among which CVD
accounted for 9,702 (41.69%), being the major cause of non-
cancer deaths (Table 1). In consideration of competing risks
(death from other causes), we further performed cumulative
incidence analysis in the whole cohort (Table 2). Overall, the
1-, 3-, and 5-year CIF of death due to CRC were 1.63, 3.16,
and 4.71%, respectively. The 1-, 3-, and 5-year CIF of CVD
were 12.20, 24.25, and 30.51%, respectively, while the 1-, 3-,
and 5-year CIF of non-CVD were 1.93, 4.13, and 4.77%,
respectively (Table 2). Furthermore, the CIF of CVD were
significantly decreased in recent years (Figure 1 and Table 2).

In the subsequent subgroup analyses stratified by patient
characteristics (Table 2), we found that a high CVD primarily
occurred in patients aged ≥65 years (Figure 2A) whose race
was White (Figure 2C); were unmarried (Figure 2D); had any
Medicaid (Figure 2E); who had right tumors (Figure 2F), small
tumor size (Figure 2G), and I-II grade of tumor (Figure 2H);
had localized SEER stage (Figure 2I); and were not treated with
surgery (Figure 2J), radiotherapy (Figure 2K), or chemotherapy
(Figure 2L). In addition, no significant difference in CVD was
found in sex subgroup analyses (Figure 2B).

Risk Factors for Cardiovascular Death
Among Patients With Colorectal Cancer
in the Training Cohort
As shown in Table 3, patients with CRC in the whole cohort
were randomized into the training (n = 138,391) and validation
cohort (n = 59,308) at a ratio of 7:3. The baseline characteristics
between the two cohorts were well balanced. Furthermore, the

FIGURE 1 | Cumulative incidence estimates of cardiovascular death (CVD) among patients with colorectal cancer (CRC) in the whole cohort. Death from CVD was
indicated as 1; death from CRC was indicated as 2; and death from non-CVD was indicated as 3.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 June 2022 | Volume 9 | Article 851833347

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-851833 June 11, 2022 Time: 17:56 # 5

Zhang et al. Cardiovascular Outcomes in Colorectal Cancer

FIGURE 2 | Cumulative incidence estimates of CVD among patients with CRC according to (A) Age; (B) Sex; (C) Race; (D) Marital status; (E) Insurance status;
(F) Tumor site; (G) Tumor size; (H) Grade; (I) SEER stage; (J) Surgery; (K) Radiotherapy; (L) and Chemotherapy. A solid line represents cause-specific death, while a
dotted line represents other causes of death. Death from CVD was indicated as 1; death from CRC was indicated as 2; and death from non-CVD was indicated as 3.
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TABLE 3 | Basic characteristics of patients in the training and validation cohorts.

Characteristics Training
cohort N (%)

Validation
cohort N (%)

P

Total 138,391 (100) 59,308 (100)

Age 0.217

<65 68,952 (49.8) 29,730 (40.1)

≥65 69,439 (50.2) 29,578 (49.9)

Sex 0.442

Female 66,443 (48.0) 28,587 (48.2)

Male 71,948 (52.0) 30,721 (51.8)

Race 0.488

Black 16,569 (12.0) 6,988 (11.8)

White 109,146 (78.9) 46,869 (79.0)

Other 12,676 (9.2) 5,451 (9.2)

Year of diagnosis 0.499

2007–2010 62,374 (45.1) 26,632 (44.9)

2011–2015 76,017 (54.9) 32,676 (55.1)

Marital status 0.305

Married 78,031 (56.4) 33,179 (55.9)

Unmarried 60,360 (43.6) 26,129 (44.1)

Insurance 0.962

Any Medicaid 17,421 (12.6) 7,471 (12.6)

Insured 116,171 (83.9) 49,766 (83.9)

Uninsured 4,799 (3.5) 2,071 (3.5)

Tumor site 0.248

Left 70,638 (51.0) 30,506 (51.4)

Right 65,713 (47.5) 27,919 (47.1)

NOS 2,040 (1.5) 883 (1.5)

Tumor size 0.761

≤5 cm 78,372 (56.6) 33,693 (56.8)

5–10 cm 36,503 (26.4) 15,575 (26.3)

>10 cm 23,516 (17.0) 10,040 (16.9)

Grade 0.238

Grade I 15,014 (10.8) 6,447 (10.9)

Grade II 96,153 (69.5) 41,348 (69.7)

Grade III 23,354 (16.9) 9,946 (16.8)

Grade IV 3,870 (2.8) 1,567 (2.6)

SEER stage 0.204

Localized 54,182 (39.2) 23,473 (39.6)

Regional 57,291 (41.4) 24,371 (41.1)

Distant 26,918 (19.5) 11,464 (19.3)

Surgery 0.711

No 13,042 (9.4) 5,557 (9.4)

Yes 125,349 (90.6) 53,751 (90.6)

Radiotherapy 0.273

No 118,354 (85.5) 50,608 (85.3)

Yes 20,037 (14.5) 8,700 (14.7)

Chemotherapy 0.434

No 80,949 (58.5) 34,804 (58.7)

Yes 57,442 (41.5) 24,504 (41.3)

Death causes 0.267

Alive 82,788 (59.8) 35,456 (59.8)

Death form CRC 39,417 (28.5) 16,768 (28.3)

Death form CVD 6,712 (4.9) 2,990 (5.0)

Death from non-CVD 9,474 (6.8) 4,094 (6.9)

Other, American Indian/Alaska Native/Asian/Pacific Islander; NOS, not otherwise
specified; SEER, Surveillance, Epidemiology, and End Results; CRC, colorectal
cancer; CVD, cardiovascular death.

TABLE 4 | Univariate and multivariable competing risk analyses for cardiovascular
death (CVD) among patients with colorectal cancer (CRC) in the training cohort.

Univariate analysis Multivariate analysis

Variables sdHR (95% CI) P sdHR (95% CI) P

Age

<65 Reference Reference

≥65 5.80 (5.42–6.21) <0.001 4.65 (4.34–4.99) <0.001

Sex

Female Reference

Male 1.04 (0.99–1.10) 0.077

Race

Black Reference Reference

White 1.07 (0.993–1.15) 0.07 0.94 (0.87–1.01) 0.095

Others 0.70 (0.62–0.78) <0.001 0.67 (0.60–0.76) <0.001

Marital status

Married Reference Reference

Unmarried 1.63 (1.55–1.71) <0.001 1.33 (1.26–1.40) <0.001

Insurance

Insured Reference Reference

Any Medicaid 2.81 (2.26–3.51) <0.001 1.25 (1.00–1.56) 0.051

Uninsured 2.65 (2.14–3.27) <0.001 1.01 (0.81–1.25) 0.940

Tumor site

Left Reference Reference

Right 1.10 (0.90–1.33) 0.35 0.96 (0.79–1.17) 0.710

NOS 0.75 (0.62–0.91) 0.003 0.94 (0.77–1.14) 0.520

Tumor size

≤5 cm Reference Reference

5–10 cm 1.01 (0.96–1.07) 0.710 1.07 (1.01–1.14) 0.017

>10 cm 0.85 (0.80–0.91) <0.001 0.99 (0.92–1.07) 0.810

Grade

Grade I Reference

Grade II 1.016 (0.94–1.10) 0.69

Grade III 0.94 (0.86–1.04) 0.22

Grade IV 0.86 (0.72–1.02) 0.08

SEER stage

Localized Reference Reference

Regional 0.786 (0.75–0.83) <0.001 0.99 (0.94–1.05) 0.930

Distant 0.334 (0.31–0.37) <0.001 0.47 (0.43–0.52) <0.001

Surgery

No Reference Reference

Yes 1.24 (1.13–1.36) <0.001 0.81 (0.72–0.90) <0.001

Radiotherapy

No Reference Reference

Yes 0.47 (0.43–0.52) <0.001 1.01 (0.91–1.13) 0.780

Chemotherapy

No Reference Reference

Yes 0.30 (0.28–0.32) <0.001 0.48 (0.45–0.52) <0.001

sdHR, subdistribution hazard ratio; CI, confidence interval; Other, American
Indian/Alaska Native/Asian/Pacific Islander; NOS, not otherwise specified; SEER,
Surveillance, Epidemiology, and End Results; CRC, colorectal cancer; CVD,
cardiovascular death.

CIF of CVD remained comparable between the two cohorts
(p = 0.57). To identify the independent risk factors for CVD in
the training cohort, we conducted the univariate and multivariate
Fine-Gray hazard model analysis. The univariate analysis showed
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that CVD was significantly associated with age, race, marital
status, insurance status, tumor site, tumor size, SEER stage,
surgery, radiotherapy, and chemotherapy (Table 4). However, sex
and grade did not significantly influence cumulative incidences of
CVD. To minimize the risks of producing false positive results,
multivariate analyses based on Fine-Gray hazard model were
conducted to control the significant covariates. Results showed
that age, race, marital status, tumor size, SEER stage, surgery, and
chemotherapy were independent risk factors for CVD (Table 4).

Construction of a Competing-Risk Model
The incidence of CVD in patients with CRC has tended
to increase in the last decades. However, competing-risk
model combining comprehensive factors for patients with CRC
suffering CVD remains scarce. Thus, a nomogram predicting
the probabilities of CVD at 1-, 3-, and 5-year was established
(Figure 3) based on the Fine and Gray’s model we built. With
the help of this useful tool, an individual patient chance of CVD

at different times could be easily obtained by adding the scores of
each incorporated variable.

Validation and Risk Stratification of
Competing-Risk Model
Then, this nomogram was validated using bootstrap and ten-fold
cross-validation methods. The results showed that nomogram
had a great discrimination ability in predicting overall survival
(OS), with a C-index of 0.719 (95% CI, 0.738–0.742), and 0.719
(95% CI, 0.622–0.668) in the training and validation cohort,
respectively. The calibration curves were shown in Figure 4,
with the dots close to a 45◦ diagonal line, reflecting great
consistency between the prediction by the nomogram and the
actual observation of the probability of CVD at 1-, 3-, and 5-year.
Furthermore, DCA was introduced to assess the clinical utility of
the nomograms. As shown in Figures 5A,B, the clinical use of
the nomogram showed high positive net benefits at a wider range

FIGURE 3 | Competing-risk model for predicting the 1-, 3-, and 5-year probabilities of CVD among patients with CRC. The “total points” of a certain patient was
calculated by adding all the scores of the 7 parameters. Based on the total points, the possibilities of CVD at different timepoints and the prognostic group was
obtained.
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FIGURE 4 | The calibration curve for predicting the 1-, 3-, and 5-year probabilities of CVD in the training (A–C) and the validation cohort (D–F), respectively.

of threshold likelihood, which depicted that the nomogram had a
high clinical utility in predicting CVD.

According to the tertile values of the nomogram-based scores
derived from the training cohort, the patients were categorized
into high-risk, medium-risk, and low-risk groups in both cohorts.
The high-risk group had the highest probabilities of CVD,
followed by the medium-risk group and the low-risk group
in both cohorts (Figures 5C,D). Hence, there is an important
value of competing-risk model for clinical risk stratification and
prognosis decision in patients with CRC.

DISCUSSION

In the past few decades, considerable advances in management of
cancer have greatly prolonged the survival of patients suffering
from CRC. On the other hand, we can also expect that non-
cancer mortalities will become more prevalent, dominated by
cardiovascular disease. Based on the SEER database, our current
study provided important insights into the risk of CVD among
patients with CRC diagnosed between 2007 and 2015. In total,
79,455 patients died throughout the follow-up, of whom 56,185
(70.71%) succumbed to CRC and 23,270 (29.29%) died due to
non-CRC, among which CVD accounted for 9,702 (41.69%),
being the major cause of non-cancer deaths. The 1-, 3-, and 5-
year CIF of CVD were 12.20, 24.25, and 30.51%, respectively,
while the 1-, 3-, and 5-year CIF of no-CVD were 1.93, 4.13,
and 4.77%, respectively, indicating that CVD has become a main
reason of death among CRC survivors during the follow-up
period. Through competing risk analyses, we further identified
that age, race, marital status, tumor size, SEER stage, surgery,

and chemotherapy were independent risk factors for CVD. These
results should not be ignored when evaluating the individual risks
of CVD and work as an indication for more precise treatment and
risk factors management, such as monitoring of blood sugar and
hypertension and health education.

Currently, chemotherapy and widely used drugs for CRC,
which involves several agents, such as oxaliplatin, fluorouracil,
leucovorin, and so on (25, 26), are effective. Chemotherapy
usually induces cardiotoxicity and increases CVD risk (27). In
addition, drugs for CRC usually lead to higher CVD risk than the
general population, particularly in the first few years of treatment
(28). However, our analysis indicated that the risks of CVD were
significantly lower among patients with CRC who were treated
with chemotherapy than those were not. This result seemed to
be contrary to the observed cardiotoxic effect of chemotherapy.
However, consistent with the previous studies in other tumors
(29, 30), this contradiction arises from the limited life expectancy
of patients who received chemotherapy and succumbed to CVD
events. Since the detailed information for chemotherapy regimen
were missing in the SEER database, further investigation is
required to clarify the effect of chemotherapy on the risk of CVD
among patients with CRC. In addition, we also demonstrated
that patients without cancer-direct surgery had an increased CVD
compared to patients who received surgery, which was in line
with previous findings (13, 31).

In recent years, the role of socioeconomic factors in
influencing humans, including cultural and social values,
insurance status, education level or employments status, and so
on, are increasingly becoming the focus of medical attention
(32, 33). In this study, we investigated the effects of insurance
and marital status on the risks of CVD. Results showed that

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 June 2022 | Volume 9 | Article 851833351

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-851833 June 11, 2022 Time: 17:56 # 9

Zhang et al. Cardiovascular Outcomes in Colorectal Cancer

FIGURE 5 | Performance and risk stratification of the competing-risk model. (A,B) Decision curves of the nomogram predicting CVD in the training and validation
cohort, respectively. (C,D) Cumulative incidence function (CIF) curves with the p-value of Gray’s test for the training and validation cohort, respectively.

the insured patients had lower risk of CVD compared with
those who were uninsured. For now, battling CRC has been
regarded as a time-consuming, multidisciplinary, and expensive
process. Uninsured patients usually suffer the brunt of shortage
of medical services and supplies. Furthermore, we demonstrated
that, among CRC survivors, marital status was a protection
factor against CVD. Marital status is a potential marker of
mental status, lifestyle, and social and family support, which
have greatly affected the outcomes of patients with cardiovascular
disease (34). Patients who are married display less distress and
anxiety than their unmarried counterparts after a diagnosis of
cancer (35–37), and this could contribute to increased family
support, medication compliance, and survival advantages to a
large extent. In addition, from the perspective of biological

factors, a married status benefited to promote cardiovascular,
endocrine, immune status, and nutrition behavior (34, 38).
Collectively, we strongly recommend the integration of non-
biological factors when assessing the individual risks of CVD
among CRC survivors.

To facilitate patient counseling and clinical decision making,
a prospective risk of potential cardiotoxicity for individual
is imperative. From the clinical perspective, we constructed
a competing-risk model with variables to investigate the
probabilities of CVD at 1-, 3-, and 5-year. To the best of
our knowledge, this is the first study that established and
validated a competing-risk model based on the Fine-Gray
proportional subdistribution hazard analysis to estimate the
individual probabilities of CVD-specific mortality for patients
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with CRC. All the variables included in this nomogram were
easily available in clinical practice. With its aid, clinicians
can more expediently devise clinical managements and, more
importantly, remain vigilant for this complication when treating
patients with CRC with immunotherapy. Our nomograms
showed excellent accuracy and discriminative performance, as
validated by C-index and calibration curves. Furthermore, we
should be aware that high discrimination calibration does not
necessarily imply an excellent clinical utility. Hence, DCA was
employed to determine the clinical utility of this nomogram by
calculating the net benefits at each risk threshold probability (23,
24). Results showed that using the nomogram to predict the
probabilities of CVD provided more benefits. Collectively, these
data demonstrated that this model had strong practicability and
high reliability in the processes of clinical practice.

The major advantages of this study were that it had a large
enough sample size and that it used competing risk analysis to
investigate the risk of CVD among patients with CRC. Generally
speaking, the SEER database, accounting for about a third of
the United States population, provides large enough sample data
to explore risk factors and further develop a nomogram based
on competing risk analysis. More to the point, results from
analyses that use population-level databases tend to be more
generalizable and representative than those from single-center
reports (24). Actually, sufficient incorporated samples are needed
to guarantee the accuracy of nomograms, as demonstrated our
recent publications (5, 18, 24). Notably, no competing-risk model
has been established to evaluate the risk of CVD among patients
with CRC so far. We established the first competing-risk model
for these patients and made possible the individualized prediction
of prognosis. Furthermore, our nomogram showed excellent
discrimination power and clinical usefulness in clinical practice.
In addition, the parameters included in the nomogram could be
easily obtained in clinical practice.

Undoubtedly, this study was subject to several limitations.
First, it had a retrospective design, making potential hidden
biases. In addition, there is no way to know some the relevant
information, such as gene mutations (HER-2 and RAS/RAF),
making it impossible to adjust for these characteristics between
the two groups. Second, the SEER database did not provide
an explanation about comorbidity since it was a significant
factor when physicians deciding treatment strategies. This
lacking would, to certain degree, weaken the objectivity of our
conclusions. In addition, it remains a main limitation that
we established a model without comorbidity status. Third,
data on chemotherapy regimen were not available in the

SEER database, and some of which is closely associated with
cardiotoxicity. Finally, although the competing-risk model
had excellent performance in predicting the probabilities of
CVD, it was validated by an internal patient cohort. Thus,
additional external data is needed to verify the performance of
the model further.

CONCLUSION

The present study was the first to use a competing-risk
model to investigate the cumulative incidence and risk factors
of CVD among patients with CRC. More importantly, we
have successfully developed a nomogram for predicting the
probabilities of CVD for patients with CRC. The internal and
external validation demonstrated the excellent discrimination,
calibration, and clinical usefulness of this model. With the
help of this well-established nomogram, clinicians would make
more individualized treatments, tighter control of modifiable risk
factors, and follow-up schedules.
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Myxomas represent the most common benign primary cardiac tumor, they usually grow
out of the interatrial septum into the left atrium with a pedunculated base. Intracardiac
masses can be found incidentally on imaging studies, but symptomatology may arise
secondary to the mass effect, embolization, and valvular function impairment. We
present the case of a 75-year-old woman who arrived at the emergency department
with atrial fibrillation and NSTEMI segment elevation myocardial infarction (NSTEMI)
secondary to a highly vascularized neoplasm visible by coronary angiography and
angiotomography. Scarce reports show high quality multi-imaging assessment of
significantly vascularized myxomas with such atypical presentation. High-definition
imaging studies played a fundamental role in the surgeon’s management of a mass
with a complex neovascularization.

Keywords: myxoma, tumor, neovascularization, echocardiography, computed tomography angiography

INTRODUCTION

Primary cardiac tumors are a rare entity with benign etiology in approximately 90%. Myxomas
represent the most frequent type with almost 80% and tend to be located in the left atrium (1, 2).
The clinical presentation depends on the location and size of the tumor, and whether it is associated
with valvular insufficiency, obstruction, or embolic events. Such signs and symptoms may differ
among them, such as dyspnea, pulmonary edema, auscultatory findings, and in cases of right-sided
masses, foot edema, hepatomegaly, and even ascites.

Case series have shown a relatively high rate of neovascularization in left atrial myxomas
(LAM), with an increased use of non-invasive imaging modalities such as Coronary Computed
Tomography Angiography (CCTA) in the preoperative evaluation and characterization of highly
vascularized neoplasms (3–5). We present a case in which a multi-imagen assessment was
performed in order to understand the tumor’s enormous blood supply, which influenced the
surgical decisions and resulted in the complete recovery of the patient.
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CASE DESCRIPTION

A 75-year-old female was admitted into the emergency
department due to acute chest pain and dyspnea. There
was no history of cardiovascular risk factors, prior heart
disease, or trauma and the patient was otherwise in good
health. On physical examination, jugular ingurgitation
and bilateral rales in pulmonary fields were identified,
heart sounds were arrhythmic and tachycardic (150 bpm)
without murmurs. Other vital signs showed hypotension
(80/60 mmHg) and tachypnea (26 rpm). Chest x-ray depicted
cardiomegaly, left and right atrial enlargement and signs
of pulmonary congestion. An initial electrocardiogram
demonstrated atrial fibrillation (AF) and ST segment
depression in the anterolateral wall (V1-V5), suggestive of
a non-ST segment elevation myocardial infarction (NSTEMI)
(Table 1). Baseline cardiac enzymes assessment surpassed
the upper limit for CK 2919 U/L, CK-MB 57.5 U/L, and
troponin I 0.058 ng/mL.

Risk stratification scales were calculated, obtaining 189 and
4 points in the GRACE and TIMI scores, respectively. Initial
management included double antiplatelet therapy with aspirin
and clopidogrel, and anticoagulation with enoxaparin. The atrial
fibrillation reverted with the administration of Lanatoside C.

DIAGNOSTIC ASSESSMENT

The patient was initially managed as a NSTEMI, and an
urgent coronary angiography (CA) was performed in order to
discard coronary artery occlusion. The study showed abnormal
and significant neovascularization within the left atrium and a
90% obstruction at the origin of the marginal branch, which

TABLE 1 | Timeline.

Day 0
• A 75-year-old female was admitted into the emergency department due to

acute chest pain and dyspnea.
• Chest x-ray evidenced cardiomegaly, atrial enlargement and pulmonary

congestion.
• Electrocardiogram. Atrial fibrillation, non-ST segment elevation myocardial

infarction.
• Laboratory. CK, CK-MB, and troponin I with increased values.
• Urgent coronary angiography showed abnormal neovascularity inside the left

atrium and coronary artery disease.
Day 1
• Transthoracic and transesophageal echocardiogram evidenced an enormous

and highly vascularized mass in the left atrium.
Day 2
• Coronary computed tomography angiography revealed the complex network

of blood vessels inside the mass, which arised from the right coronary and
circumflex arteries.

Day 4
• Artery ligation and tumor resection.
Day 6
• Histological confirmation of cardiac myxoma.
Month 1
• Follow-up Doppler echocardiography demonstrated adequate recovery, mild

mitral regurgitation, and no tumor recurrence.
• Patient is asymptomatic.

suggested neovascularization of an atrial mass. (Figures 1A,B and
Supplementary Video 1).

Transthoracic echocardiogram (TTE) showed a large
echogenic oval mass in the left atrium attached to the interatrial
septum by a short pedicle measuring 5 × 7 × 6 cm, as well
as moderate to severe mitral regurgitation (MR) by color-
Doppler. The biventricular systolic function was normal
(LVEF-63% and TAPSE-21 mm). Two dimensional-Doppler-
transesophageal echocardiography showed a giant vascularized
heterogeneous mass. 3D-TTE accurately identified the mass
protruding through the mitral valve into the left ventricle
during end-diastole and the 2D-TTE color flow and continuous
wave Doppler in four chamber view showed a diastolic mitral
peak velocity of 2.08 m/s, maximum gradient of 17 mmHg
and mean gradient of 10.33 mmHg (Figures 2A–C and
Supplementary Video 2).

After the echocardiographic findings, the heart team agreed
on performing a CCTA, which showed a non-infiltrative and
very vascularized mass attached to the interatrial septum
(Figures 3A,B). A 3D-CCTA reconstruction additionally showed
the significant vascularity of the tumor, characterized the
anatomy of the coronary arteries and the origin of the
neovascularization (Figure 3C). Double arterial blood supply
was observed, with anomalous vessels arising from the right
coronary artery and the circumflex artery (Figure 3D and
Supplementary Video 3).

The patient was scheduled for surgical resection, which
consisted of median sternotomy, and bicaval bypass with
cardioplegic cardiac arrest. Before the tumor resection, the
surgical team ligated both feeding arteries. An oval mass
presenting multiple hemorrhagic areas within was removed and
the final measurement was 7 × 4 × 5 cm. Pathologic findings
were consistent with a LAM (Figures 4A–C).

One month after surgery, a 2D-TTE demonstrated a diastolic
mitral peak velocity of 0.67 m/s, maximum gradient of
1.79 mmHg, and mean gradient of 1.07 m/s and mild MR
(Figure 4D). Atrial fibrillation and tumor recurrence were not
detected in the following 18 months of follow-up.

DISCUSSION

The clinical presentation of left atrial tumors depends on location
and size, and whether it is associated with valvular insufficiency,
obstruction, or embolic events. The initial assessment of atypical
presentations may be challenging. Regarding the case, the
mechanisms responsible for the origin of the EKG findings and
manifestations could be due to two different situations. Fast
AF and hypotension may have resulted in an oxygen supply
demand imbalance (type 2 NSTEMI), thus the absence of findings
in the CA that could explain the ST segment abnormalities
and the complete recovery after surgical removal. Similarly,
LAM should always be considered as an embolic source in
healthy patients with systemic thromboembolism, including
coronary artery embolization, which is extremely rare (0.06%)
(6). Spontaneous recanalization prior to CA could also explain
the reported findings.
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FIGURE 1 | Coronary angiography. (A) Left coronary artery showing abnormal vascular structures (arrow) suggestive of arteriovenous fistula and a highly
vascularized mass. Marginal branch demonstrates proximal 90% obstruction (Supplementary Video 1). (B) Right coronary artery shows no obstruction, abnormal
vascular structures are also present (arrow).

FIGURE 2 | Echocardiogram. (A) 2D-TTE four-chamber view shows a large echogenic oval mass that occupies practically the entire left atrium, with regular borders,
heterogeneous echogenicity, adhered to the interatrial septum by a short pedicle and moderate to severe mitral regurgitation in the color Doppler.
(B) 2D-Transesophageal echocardiogram and color-Doppler evidenced significant vascularization inside the mass. (C) 3D-TTE shows the mass protruding through
the mitral valve into the left ventricle during end-diastole (Supplementary Video 2). Ao, aorta; RA, right atrium; RV, right ventricle; TTE, transthoracic
echocardiogram; TV, tricuspid valve.
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FIGURE 3 | (A,B) Coronary Computed Tomography Angiography. Hypodense mass located in the left atrium attached to the interatrial septum, with a dense network
of blood vessels within. The intra- atrial mass protrudes through the mitral valve into the left ventricle during diastole, causing impairment of the atrial emptying and
mitral valve closure. (C,D) Coronary Computed Tomography Angiography reconstruction. Complex blood vessel network (arrows) anastomosed to branches of the
circumflex artery and the right coronary artery (Supplementary Video 3). Ao, aorta; Cx, circumflex artery; LA, left atrium; LV, left ventricle; RCA, right coronary artery.

In any case, the cardiac territory supplied by an obstructed
artery is at increased risk of hypoxic cell injury, as seen during
CA in the marginal branch, which showed a concomitant luminal
reduction of 90%, which may have further contributed to the
initial presentation in our patient.

Imaging evaluation of a cardiac mass includes
echocardiography as the initial study to determine its location,
size, and mobility. Other imaging modalities are required to
visualize the characteristics of the coronary arteries and their
relationship to the neovascularization that can be found in
myxomas, however, these techniques may not be routinely
available in some countries and were highly underused a few
years ago, as described by Elbardissi et al. (7), when they
evaluated 278 patients with cardiac masses, which were mainly
diagnosed by echocardiography and only a few underwent CA
(n = 33, 10%) or CCTA (n = 9, 3%). Case series have shown a
relatively high rate of low neovascularization in myxomas, with
an increased and standardized use of new imaging modalities

such as cardiac magnetic resonance imaging (MRI) and CCTA
for evaluating this type of tumors, either as a complementary tool
of CA or by replacing it (3–5). CCTA overcomes the limitations
of echocardiography and CA by displaying detailed images of
the origin and morphology of tortuous and dilated blood vessels;
and, at the same time, reliably ruling out coronary artery disease
(CAD) in patients scheduled for surgical resection (4).

Kim et al. (5) described 2 patients who were initially diagnosed
with LAM by echocardiography and subsequently underwent
preoperative CCTA instead of coronary angiography to rule
out concomitant CAD, which provided more information about
the vasculature of the mass. On the other hand, this technique
avoids the risk of embolization and other complications of CA
and can provide information that modifies the chosen surgical
method, such as ligation of the feeding arteries before surgical
resection (4).

Differential diagnosis of LAM mainly includes cardiac
malignant tumors such as angiosarcoma and thrombi. Large

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 June 2022 | Volume 9 | Article 889406358

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-889406 June 21, 2022 Time: 12:33 # 5

Serrano-Roman et al. Assessment of a Cardiac Mass

FIGURE 4 | Macroscopic and microscopic specimen findings. (A) Oval mass of 80 grams, 7 × 4 × 5 cm of diameter with a smooth surface showing white/yellow
colors with zones of hemorrhagic aspect. Intact capsule that delimits the entire mass, compatible with its benign and non-invasive nature. (B) On the left side, a
pattern of glanduloid/vascular cavities with abundant inflammatory lymphocytic infiltrate. On the right side, homogeneous stroma with clear spaces and isolated
myxoma cells with fusi morphology. H/E10x (C) Myxoma’s stroma shows decreased cellular density and multiple blood vessels (asterisks). Stellate appearance cells
present eosinophilic cytoplasm and round nucleus (white arrow). Syncytial Cells with a string morphology (black arrow). H/E 40x. (D) Follow-up echocardiogram. 2D
and color flow TTE in four-chamber view with 2 jets of mild mitral regurgitation (white arrows) and no cardiac mass in the left atrium. Abbreviations as before.

thrombi may represent a diagnostic challenge by using
echocardiography alone, but characteristic findings include
attachment to the posterior left atrial wall, a broad base and
tend to be immobile, contrary to LAM. Additionally, malignant
tumors tend to be highly vascularized masses which can be
observed by using contrast echocardiography, which provides
specific information for differentiating malignant from benign
neoplasms. If low vascularization is present, slow contrast filling
of the mass would be observed, as usually occurs in benign
tumors, such as cardiac myxomas. In this particular case, due to
the extreme vascularization, a contrast agent would show a rapid
filling and late opacification, simulating a malignant process,
which emphasizes the importance of pathologic findings for the
final diagnosis of a cardiac tumor. Regarding thrombi, which are
usually not vascularized, contrast echocardiography would show
no filling of the contrast agent (8).

As mentioned, the pathological findings represent a
fundamental tool for the final diagnosis of a cardiac mass,
whereas a multi-imaging evaluation helps in the assessment
of the morphology and characteristics of the tumor and its
relationship with the surrounding cardiac and paracardiac
structures, and therefore is particularly useful for the surgeon in
order to precisely plan the surgical intervention.

In our case, CCTA showed that the tumor’s enormous blood
supply came from the right coronary and circumflex arteries,
which helped the heart team understand the complexity of

the myxoma vasculature and ligate both feeding arteries before
the mass resection. Therefore, CCTA may confer a better
alternative than CA in the evaluation of cardiac masses and in
their differential diagnosis, especially in the context of a highly
vascularized myxoma and when the patient is older than 40 years
to rule out concomitant CAD.

On the other hand, cardiac MRI provides images suitable
for the same purpose without exposing the patient to ionizing
radiation, but it relies on patient cooperation, implanted
magnetic devices, and is less useful than CCTA in evaluating
coronary arteries during an acute event, which may be very
important in the context of LAM, specifically in urgent atypical
presentations as the one described in this case.

For the preoperative evaluation of myxomas, an imaging
modality such as MRI, CCTA or CA must be performed
in order to better characterize the mass and evaluate CAD.
Preoperative CCTA represents an accurate method to assess
myxoma morphology, vascularization, and avoids CA risks.
Three-dimensional reconstructions may be even more useful in
the decision making of the surgical team.
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Background: The e�ect of primary site on cardiovascular mortality (CVM)

post-radiotherapy (RT) in patients with limited-stage small cell lung cancer

(LS-SCLC) remains unclear.

Methods: We screened the Surveillance, Epidemiology, and End Results (SEER)

database between 1988 and 2013. We used cumulative incidence function

(CIF) curves to compare CVM incidences, and performed Cox proportional

hazards and Fine-Gray competing risk analyses to identify independent risk

factors of CVM. Propensity score matching (PSM) analysis was conducted.

Results: Among enrolled 4,824 patients (median age 57 years old, 49.2%

were male), CVM accounts for 10.0% of all deaths after 5 years since cancer

diagnosis. Hazard ratios (HRs) for CVMwere 1.97 (95%CI: 1.23–3.16, P= 0.005)

for main bronchus (MB) patients, 1.65 (95% CI: 1.04–2.63, P = 0.034) for lower

lobe (LL) patients and 1.01 (95% CI: 0.40–2.59, P = 0.977) for middle lobe

(ML) patients compared to upper lobe (UL) patients. CIF curves showed that

the cumulative CVM incidence was greater in the re-categorized MB/LL group

compared to UL/ML group both before PSM (P = 0.005) and after PSM (P =

0.012). Multivariate regressionmodels indicated that MB/LL was independently

associated with an increased CVM risk, before PSM (HRCox: 1.79, 95% CI: 1.23–

2.61, P = 0.002; HRFine−Gray: 1.71, 95% CI: 1.18–2.48, P = 0.005) and after

PSM (HRCox: 1.88, 95% CI: 1.20–2.95, P = 0.006; HRFine−Gray: 1.79, 95% CI:

1.15–2.79, P = 0.010).

Conclusions: MB/LL as the primary site is independently associated with an

increased CVM risk post-RT in patients with LS-SCLC.

KEYWORDS

small cell lung cancer, radiotherapy, tumor primary site, cardiovascular mortality,

SEER
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Introduction

Radiotherapy (RT) is frequently used as an essential adjuvant

to chemotherapy or surgery in thoracic malignancies. RT has

been shown to improve cancer-specific survival; however, it

has been implicated in pulmonary and cardiac complications

because of reported acute and chronic radiation-induced

injuries to healthy tissues in the radiation field (1–4). Some

reports have focused on cardiovascular toxicities post-thoracic

RT in long-term cancer survivors, including those with breast

cancer and Hodgkin lymphoma (3, 5–7).

Lung cancer is a major malignancy that accounts for the

highest morbidity and mortality rates worldwide (8). Adverse

effects of RT on the cardiovascular system in patients with lung

cancer have recently attracted wider attention and have gained

increasing interest in the field of cardio-oncology. Previous

studies have shown that RT could increase the incidence of

cardiovascular complications in patients with non-small cell

lung cancer (NSCLC) (9–14). However, investigations on RT-

related cardiovascular sequelae in patients with limited-stage

small cell lung cancer (LS-SCLC) remain scarce. This may be

partially because, historically, LS-SCLC was considered to have

an unfavorable median overall survival (OS) of approximately

1 year before the 1990s (15). Nevertheless, survival rates for

patients with LS-SCLC have gradually improved due to wide-

spread application of early chest CT screening in high-risk

populations, advanced modern RT techniques, more accurate

staging paradigms, and recent promising treatment strategies

(16, 17). Thoracic RT combined with chemotherapy (CTX) is

considered the first-line standard therapy for LS-SCLC (16, 17).

However, more extensive studies are needed to evaluate RT-

related cardiovascular toxicities in patients with LS-SCLC.

The primary site as a conventional clinical characteristic

affecting a lung cancer treatment strategy has currently been

recognized as an important prognostic factor for OS and tumor-

specific prognosis (18–20). With a disparity in the distance

between tumor location and heart/great vessels, potential RT-

induced cardiovascular injury may be further distinctive risk

(21); however, few relevant reports are available.

This study aimed to identify significant prognostic factors

concerning CVM post-RT for patients with LS-SCLC, and to

explore the effect of different primary site-based RTs on CVM in

a large population of patients with LS-SCLC using data from the

Surveillance, Epidemiology, and End Results (SEER) database.

Materials and methods

Patients and data sources

The SEER database [SEER 18 Regs Custom Data (with

additional treatment fields), November 2018 Sub] was queried

using SEER∗Stat software (version 8.3.6). Inclusion criteria

FIGURE 1

The flow chart of inclusion and exclusion criteria for the study

population.

for patients were as follows: patients aged ≥18 and <65

years and diagnosed with LS-SCLC between 1988 and 2013;

patients treated with external beam RT, and; patients with

only one primary tumor, a positive histology, available clinical

information, active follow-up, and complete dates. Older adult

patients with more confounding factors such as coronary heart

disease (CHD), hyperlipidemia, hypertension, and diabetes

mellitus (DM) were not enrolled for the purpose of alleviating,

at least partially, the effects of confounders on CVM in patients

post-RT (1, 2, 14), and because younger patients are reported to

be more vulnerable to radiation-induced cardiovascular injury

(22). The specific time period of 1988–2013 was selected because

American Joint Committee on Cancer (AJCC) staging for SCLC

in the SEER database started in 1988, whereas 2013 was the

final year for analysis in which adequate follow-up to assess

post-treatment CVM was possible. Exclusion criteria included:

unknown race, not the only primary cancer, receipt of surgical

treatment, no/unknown external beam radiation, no/unknown

chemotherapy, bilateral or unknown laterality, overlapping

or unknown primary site or loss of follow-up information.

Inclusion and exclusion criteria for the study population is

outlined in Figure 1.
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TABLE 1 The baseline clinical and prognostic characteristics of total

study population.

Variables Number %

Total 4,824 100.0%

Primary site

Upper lobe 2,890 59.9%

Middle lobe 247 5.1%

Main bronchus 748 15.5%

Lower lobe 939 19.5%

Age, years

≤57 2,487 51.6%

>57 2,337 48.4%

Sex

Male 2,373 49.2%

Female 2,451 50.8%

Race

White 4,071 84.4%

Black 538 11.2%

Other 215 4.5%

Marriage

Unmarried 1,957 40.6%

Married 2,717 56.3%

Unknown 150 3.1%

Year of diagnosis

1988–2003 2,118 43.9%

2004–2013 2,706 56.1%

AJCC stage

I-II 724 15.0%

III 4,100 85.0%

Laterality

Left 1,965 40.7%

Right 2,859 59.3%

Prognosis

CVM 113 2.3%

NCVM 4,212 87.3%

Alive 499 10.3%

AJCC, American Joint Committee on Cancer; CVM, cardiovascular mortality; NCVM,

non-cardiovascular mortality. Percentages might not add up to 100% because

of rounding.

This study was conducted in accordance with the

Declaration of Helsinki (as revised in 2013) and complied

with the requirements of the Institutional Review Board of

Shanghai Chest Hospital, Shanghai Jiao Tong University. The

authors have gotten the access to and approval from the SEER

database (accession and approval number: 13236-November

2019). The need for informed consent has been waived due to

the retrospective nature of the study and because SEER database

is a public anonymized database.

Definition of LS-SCLC

LS-SCLC was defined as AJCC stage I-III malignancies

with primary sites in the lung or bronchus [International

Classification of Diseased for Oncology-3 (ICD-O-3)/WHO

2008: Lung and Bronchus]. Histological types were as follows:

ICD-O-3 codes: 8002, 8041-8045. Primary sites were as follows:

main bronchus (MB) (C34.0), upper lobe (UL) (C34.1), middle

lobe (ML) (C34.2), and lower lobe (LL) (C34.3).

Research variables

Demographics and clinicopathologic data, such as age,

sex, race, marriage, year of diagnosis, AJCC stage, laterality

and primary site were collected. CVM was defined as death

due to cardiovascular diseases using the following ICD-10

codes: I00-I52 and I70-I79, including conditions such as

diseases of the heart, hypertension without heart disease,

atherosclerosis, aortic aneurysm and dissection, and other

diseases of the arteries, arterioles, and capillaries. Non-

cardiovascular mortality (NCVM) was defined as death due to

other causes, excluding CVM.

Statistical analysis

Statistical analysis was performed using either R (version

3.6.0, R Foundation for Statistical Computing, Vienna, Austria)

or Stata (version 15.0, College Station, Texas, USA) software.

All statistical tests were two-sided, and the significance level

was set at 0.05. As the only continuous variable, age was

expressed as median [with inter-quartile range (IQR)] for non-

normally distributed data and compared using a Kruskal-Wallis

test between the groups. Categorical variables were expressed

as numbers (percentages) and then compared using a chi-

square test.

We generated cumulative incidence function (CIF) curves

using univariate Fine-Gray competing risk regression models to

compare the cumulative incidences of CVM or NCVM between

the groups. Univariate and multivariate Cox proportional

hazards regression models were applied to identify factors

associated with CVM or NCVM risk. Based on results obtained

from multivariate Cox proportional hazards regression models,

the UL and the ML as primary sites were re-categorized into

a UL/ML group, and the MB and the LL were combined to

form a MB/LL group. Accounting for mortality from other

causes, univariate and multivariate Fine-Gray competing risk

regression models (23) were used to validate factors associated

with CVM risk and obtain more accurate results. The propensity

score matching (PSM) method (24, 25) was used to balance the

baseline bias between the UL/ML and MB/LL groups. A greedy
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FIGURE 2

CVM post-radiotherapy as a proportion of all deaths within a given time period after LS-SCLC diagnosis. CVM, cardiovascular mortality;

LS-SCLC, limited-stage small cell lung cancer.

matching algorithm was used for PSM and the caliper was set

at 0.02.

Results

Patient demographics and clinical
characteristics

A flowchart indicating inclusion and exclusion for the

study population is outlined in Figure 1. We enrolled 4,824

patients with LS-SCLC {median age, 57 [interquartile range

(IQR), 52–61] years; males, 49.2%}, of whom 2,487 (51.6%) were

≤57 years old, 2,373 (49.2%) were male, and 84.4% were of

White ethnicity. There were 1,957 (40.6%) and 2,717 (56.3%)

unmarried and married patients, respectively. In addition, 2,118

(43.9%) patients had been diagnosed with LS-SCLC in the 1988–

2003 period, and 2,706 (56.1%) patients in the 2004–2013 period.

In terms of AJCC stage, 15.0% and 85.0% of patients were

classified in Stage I-II and Stage III, respectively. In terms of

laterality, 1,965 (40.7%) patients had left-sided tumors and 2,859

(59.3%) had right-sided tumors. In terms of primary site tumor

location, 2,890 (59.9%) patients had primary site tumors in the

UL, 247 (5.1%) patients had primary site tumors in the ML, 748

(15.5%) patients had primary site tumors in the MB, and 939

(19.5%) patients had primary site tumors in the LL.

The overall incidence of CVM and NCVM at the follow-

up endpoint (November 2018) was 2.3 and 87.3%, respectively.

Baseline clinical and prognostic characteristics concerning the

study population are shown in Table 1. The percentage of deaths

due to cardiovascular diseases following diagnosis was tabulated

(Figure 2). Within the first year of diagnosis, 1.9% of all deaths

were CVM-related and this percentage increased from 1.7% in

year two to 2.7% in year three, to 3.4% in year four, to 7.7%

in year five, and to 10.0% after 5 years, showing an increasing

trend for percentage of deaths due to CVM along with patients’

survival time.

Analysis of CVM based on di�erent
variables

Primary sites were initially divided into UL, ML, MB, and

LL groups. CIF curves showed no significant differences in

cumulative incidences of CVMbetween groups according to age,
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FIGURE 3

CIF curves of CVM by di�erent variables in LS-SCLC patients. (A) Age; (B) Sex; (C) Race; (D) Marriage; (E) Year of diagnosis; (F) AJCC stage; (G)

Laterality; (H) Primary site (stratified into UL, ML, MB and LL groups). CIF: cumulative incidence function; CVM: cardiovascular mortality; AJCC,

American Joint Committee on Cancer; LS-SCLC, limited-stage small cell lung cancer.
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TABLE 2 Cox proportional hazards regression models for predictors of CVM.

Variables Group Cox proportional hazards (Univariate) Cox proportional hazards (Multivariate)

HR (95% CI) P-value HR (95% CI) P-value

Primary site Upper lobe Reference Reference

Middle lobe 0.97 (0.39–2.44) 0.957 1.01 (0.40–2.59) 0.977

Main bronchus 1.91 (1.20–3.06) 0.007 1.97 (1.23–3.16) 0.005

Lower lobe 1.65 (1.04–2.63) 0.033 1.65 (1.04–2.63) 0.034

Age, years ≤57 Reference Reference

>57 1.41 (0.97–2.05) 0.071 1.45 (1.00–2.12) 0.052

Sex Male Reference Reference

Female 0.64 (0.44–0.94) 0.021 0.59 (0.40–0.87) 0.007

Race White Reference Reference

Black 1.15 (0.65–2.06) 0.631 1.07 (0.60–1.93) 0.813

Other 0.41 (0.10–1.67) 0.213 0.37 (0.09–1.49) 0.161

Marriage Unmarried Reference Reference

Married 0.75 (0.51–1.11) 0.150 0.70 (0.47–1.04) 0.075

Unknown 1.01 (0.36–2.81) 0.982 1.03 (0.37–2.87) 0.953

Year of diagnosis 1988–2003 Reference Reference

2004–2013 0.63 (0.42–0.92) 0.019 0.64 (0.43–0.95) 0.028

AJCC stage I–II Reference Reference

III 0.94 (0.59–1.50) 0.808 1.03 (0.64–1.64) 0.913

Laterality Left Reference Reference

Right 0.83 (0.57–1.20) 0.316 0.82 (0.56–1.21) 0.327

CVM, cardiovascular mortality; HR, hazard ratio; CI, confidence interval; AJCC, American Joint Committee on Cancer.

sex, ethnicity, marital status, AJCC stage, or laterality (all P >

0.05, Figures 3A–D,F,G). A comparison between time periods for

diagnosis showed a significantly higher cumulative incidence of

CVM in the 1988-2003 period relative to the 2004–2013 period

(P = 0.012, Figure 3E). Additionally, there was a significant

difference between the four groups in terms of the primary sites

(P = 0.034, Figure 3H).

Multivariate Cox proportional hazards regression models

showed independent predictors of CVM risk in patients with LS-

SCLC, including sex [female vs. male: hazard ratio (HR) 0.59,

95% confidence interval (CI) 0.40–0.87; P = 0.007], time period

for diagnosis (2004–2013 vs. 1988–2003, HR 0.64, 95% CI 0.43–

0.95; P = 0.028), and primary site (ML vs. UL, HR 1.01, 95%

CI 0.40–2.59, P = 0.977; MB vs. UL, HR 1.97, 95% CI 1.23–

3.16, P = 0.005, and; LL vs. UL, HR 1.65, 95% CI 1.04–2.63, P

= 0.034). A summary of the results of Cox proportional hazards

regression models used to predict CVM risk are listed in Table 2.

Analysis of CVM based on primary site
stratification across UL/ML and MB/LL
groups before and after PSM

Based on the results obtained from multivariate Cox

proportional hazards regression models, patients with UL and

ML primary site tumors were grouped together into a UL/ML

group, and patients with MB and LL primary site tumors were

combined to form an MB/LL group. The proportion of patients

with left-sided primary site tumors was significantly higher in

the MB/LL group than in the UL/ML group before PSM (45.1

vs. 38.4%, P < 0.001). To prevent baseline bias, 1,687 patients in

the UL/ML group were matched 1:1 with those from the MB/LL

group using the PSM method, which showed a good match

in terms of demographic and clinicopathologic characteristics

(Table 3). We found a higher CVM incidence at the end of the

follow-up (November 2018) in patients in the MB/LL group

compared to those in the UL/ML group. We observed a before

PSM CVM incidence of 3.2% and 1.9% (P = 0.005) in the

MB/LL and UL/ML groups, respectively, and 3.2 and 1.8% (P

= 0.011) after PSM, respectively (Table 3). CIF curves showed

that the cumulative CVM incidence was significantly higher in

the MB/LL group than in the UL/ML group before PSM (P =

0.005, Figure 4A) and after PSM (P = 0.012, Figure 4B).

Regression analyses showed that MB/LL primary site tumors

were independently associated with an increased CVM risk

compared with UL/ML primary site tumors in patients with

LS-SCLC before and after PSM (Tables 4, 5). Specifically,

multivariate Cox models showed an HR of 1.79 (95% CI

1.23–2.61, P = 0.002), whereas multivariate Fine-Gray models

indicated an HR of 1.71 (95% CI 1.18–2.48, P = 0.005) before
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TABLE 3 The baseline clinical and prognostic characteristics of LS-SCLC patients stratified into UL/ML and MB/LL groups by primary site before and

after PSM.

Variables Before PSM After PSM

UL/ML MB/LL P-value UL/ML MB/LL P-value

(n = 3,137) (n = 1,687) (n = 1,687) (n = 1,687)

Age, years 0.915 0.470

≤57, no. (%) 1,615 (51.5%) 872 (51.7%) 850 (50.4%) 872 (51.7%)

>57, no. (%) 1,522 (48.5%) 815 (48.3%) 837 (49.6%) 815 (48.3%)

Sex 0.158 0.148

Male, no. (%) 1,567 (50.0%) 806 (47.8%) 849 (50.3%) 806 (47.8%)

Female, no. (%) 1,570 (50.0%) 881 (52.2%) 838 (49.7%) 881 (52.2%)

Race 0.696 0.704

White, no. (%) 2,652 (84.5%) 1,419 (84.1%) 1,430 (84.8%) 1,419 (84.1%)

Black, no. (%) 351 (11.2%) 187 (11.1%) 186 (11.0%) 187 (11.1%)

Other, no. (%) 134 (4.3%) 81 (4.8%) 71 (4.2%) 81 (4.8%)

Marriage 0.892 0.994

Unmarried, no. (%) 1,275 (40.6%) 682 (40.4%) 683 (40.5%) 682 (40.4%)

Married, no. (%) 1,762 (56.2%) 955 (56.6%) 953 (56.5%) 955 (56.6%)

Unknown, no. (%) 100 (3.2%) 50 (3.0%) 51 (3.0%) 50 (3.0%)

Year of diagnosis 0.401 0.603

1988–2003, no. (%) 1,363 (43.4%) 755 (44.8%) 739 (43.8%) 755 (44.8%)

2004–2013, no. (%) 1,774 (56.6%) 932 (55.2%) 948 (56.2%) 932 (55.2%)

AJCC stage 0.537 0.206

I–II, no. (%) 463 (14.8%) 261 (15.5%) 234 (13.9%) 261 (15.5%)

III, no. (%) 2,674 (85.2%) 1,426 (84.5%) 1,453 (86.1%) 1,426 (84.5%)

Laterality <0.001 1.000

Left, no. (%) 1,205 (38.4%) 760 (45.1%) 760 (45.1%) 760 (45.1%)

Right, no. (%) 1,932 (61.6%) 927 (54.9%) 927 (54.9%) 927 (54.9%)

Prognosis

CVM 59 (1.9%) 54 (3.2%) 0.005 30 (1.8%) 54 (3.2%) 0.011

NCVM 2,752 (87.7%) 1,460 (86.5%) 0.239 1,472 (87.3%) 1,460 (86.5%) 0.540

Alive 326 (10.4%) 173 (10.3%) 0.881 185 (11.0%) 173 (10.3%) 0.273

LS-SCLC, limited-stage small cell lung cancer; UL/ML, upper lobe/middle lobe; MB/LL, main bronchus/lower lobe; PSM, propensity score matching; AJCC, American Joint Committee

on Cancer; CVM, cardiovascular mortality; NCVM, non-cardiovascular mortality. Percentages might not add up to 100% because of rounding.

PSM in patients with LS-SCLC in the MB/LL group compared

with those in the UL/ML group (Table 4). After PSM, an HR

of 1.88 (95% CI 1.20–2.95, P = 0.006) and an HR of 1.79

(95% CI 1.15–2.79, P = 0.010) were recorded for multivariate

Cox proportional hazards regression and Fine-Gray models,

respectively, for patients with LS-SCLC in the MB/LL group

compared with those in the UL/ML group (Table 4).

CIF curves showed that cumulative CVM incidences were

both significantly lower in the 1988–2003 period relative to

the 2004–2013 period for diagnosis before PSM (P = 0.012,

Figure 4C) and after PSM (P = 0.004, Figure 4D). Regression

analyses, based on Cox proportional hazard regression and

Fine-Gray competing risk models, showed that the 2004–2013

period was independently associated with lower CVM risk

relative to the 1988–2003 before and after PSM (all P > 0.05,

Tables 4, 5).

Analysis of NCVM based on di�erent
variables

There were no significant differences in cumulative NCVM

incidences between the UL/ML and the LL/MB groups

before PSM (P = 0.442, Figure 5A) and after PSM (P =

0.324, Figure 5B). The univariate and multivariate Fine-Gray

competing risk regression analyses showed that primary site was

not an independent predictor of NCVMpost-RT in patients with

LS-SCLC (P > 0.05, Supplementary Tables 1, 2).
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FIGURE 4

CIF curves of CVM stratified into UL/ML and MB/LL groups by primary site before (A) and after (B) PSM and stratified into 1988–2003 and

2004–2013 groups by year of diagnosis before (C) and after (D) PSM in LS-SCLC patients. CIF, cumulative incidence function; CVM,

cardiovascular mortality; UL/ML, upper lobe/middle lobe; MB/LL, main bronchus/lower lobe; PSM, propensity score matching; LS-SCLC,

limited-stage small cell lung cancer.

Discussion

Prior works

Studies have shown that RT can increase incidence of

cardiovascular complications in lung cancer patients (9–14, 26,

27). For instance, Lally et al. (9) implicated postoperative RT

with increased cardiac mortality in NSCLC patients. In the

Radiation Therapy Oncology Group (RTOG) 0617 NSCLC trial,

heart V5 (volume of heart receiving 5Gy) and heart V30 were

associated with increased risk of cardiac events (CE) as well as

inferior survival rates (10). Dess et al. (11) presented a long-

term grade 3 CE incidence, exceeding 10%, among a prospective

locally advanced NSCLC (LA-NSCLC) cohort. In an analysis of

prospective dose-escalation LA-NSCLC trial, Wang et al. (12)

demonstrated that the radiation dose delivered to the heart

was an independent predictor of CE. In addition, results of a

SEER database analysis (13) among 52,624 LA-NSCLC patients

receiving thoracic RT, showed that cardiac-specific mortality

(CSM) in left-sided patients was significantly higher than that in

right-sided patients. A recent study suggested that mean heart

dose was a risk factor for major adverse cardiac events and all-

cause mortality in a single-institution retrospective cohort study

of LA-NSCLC patients (14).

In recent years, research focus has been directed toward

long-term RT-related cardiovascular sequelae in patients with

SCLC, due to parallels with NSCLC and the rise in life

expectancy (16, 17). Ferris et al. (26) performed a data analysis

using the SEER database and found that RT was associated

with an approximate 10% absolute increase in CE at 5 years in

patients with LS-SCLC and multivariate analysis has shown an

independent association between RT and CE. A recent SEER

database study showed an increased CSM in left vs. right-sided

patients with LS-SCLC receiving thoracic RT (27). Currently,

no prior study has investigated the effect of primary site on

cardiovascular complications especially concerning CVM in

patients with LS-SCLC post-RT. Our study has contributed an

enhanced understanding to this research field.
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TABLE 4 Univariate Cox proportional hazards and Fine-Gray competing risk regression models for predictors of CVM before and after PSM.

Variables Group Before PSM After PSM

Cox proportional

hazards (Univariate)

Fine-gray competing

risk (Univariate)

Cox proportional

hazards (Univariate)

Fine-gray competing

risk (Univariate)

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Primary site UL/ML Reference Reference Reference Reference

MB/LL 1.78 (1.22–2.58) 0.003 1.71 (1.18–2.49) 0.005 1.86 (1.19–2.91) 0.007 1.78 (1.14–2.78) 0.012

Age, years ≤57 Reference Reference Reference Reference

>57 1.41 (0.97–2.05) 0.071 1.13 (0.78–1.64) 0.516 1.58 (1.02–2.44) 0.039 1.25 (0.81–1.92) 0.310

Sex Male Reference Reference Reference Reference

Female 0.64 (0.44–0.94) 0.021 0.76 (0.52–1.11) 0.156 0.60 (0.39–0.94) 0.024 0.73 (0.48–1.13) 0.161

Race White Reference Reference Reference Reference

Black 1.15 (0.65–2.06) 0.631 1.04 (0.58–1.85) 0.904 1.53 (0.83–2.83) 0.173 1.35 (0.73–2.50) 0.336

Other 0.41 (0.10–1.67) 0.213 0.40 (0.10–1.62) 0.199 0.56 (0.14–2.31) 0.426 0.56 (0.14–2.26) 0.412

Marriage Unmarried Reference Reference Reference Reference

Married 0.75 (0.51–1.11) 0.150 0.88 (0.60–1.28) 0.503 0.73 (0.47–1.13) 0.156 0.87 (0.56–1.35) 0.527

Unknown 1.01 (0.36–2.81) 0.982 1.11 (0.40–3.07) 0.844 1.08 (0.33–3.50) 0.900 1.16 (0.36–3.77) 0.800

Year of diagnosis 1988–2003 Reference Reference Reference Reference

2004–2013 0.63 (0.42–0.92) 0.019 0.62 (0.43–0.90) 0.012 0.53 (0.34–0.84) 0.007 0.52 (0.34–0.81) 0.004

AJCC stage I–II Reference Reference Reference Reference

III 0.94 (0.60–1.50) 0.808 0.68 (0.43–1.07) 0.098 0.83 (0.50–1.39) 0.481 0.58 (0.35–0.97) 0.038

Laterality Left Reference Reference Reference Reference

Right 0.83 (0.57–1.20) 0.316 0.86 (0.59–1.25) 0.439 0.90 (0.58–1.38) 0.616 0.97 (0.63–1.49) 0.873

CVM, cardiovascular mortality; PSM, propensity score matching; HR, hazard ratio; CI, confidence interval; AJCC, American Joint Committee on Cancer; UL/ML, upper lobe/middle lobe;

MB/LL, main bronchus/lower lobe.

Main findings

This study was the first to report the effects of primary

site on CVM post-RT in patients with LS-SCLC. Our results

showed that patients in the MB/LL group had a significantly

higher cumulative CVM incidence than those in the UL/ML

group. MB/LL as the primary site was associated with an

increased risk of CVM, and the primary site was a novel

prognostic factor for CVM post-RT. This study has many

highlights and high reliability of the results. First, we used PSM

to balance demographic and clinicopathologic characteristics.

These characteristics, especially laterality, have been previously

shown to affect occurrence of cardiovascular events in patients

with cancer treated with thoracic RT (9, 13, 27). Previous

SEER-based analyses involving patients with LA-NSCLC (13) or

patients with LS-SCLC (27) receiving thoracic RT showed that

CSM in patients with left-sided tumors was significantly higher

than that in patients with right-sided tumors. In our study, the

percentage of patients with left-sided tumors was significantly

greater in the MB/LL patient group than in the UL/ML patient

group; therefore, PSM was performed to eliminate possible

laterality bias on CVM. Second, rather than using the Kaplan-

Meier method, Fine-Gray competing risk regression models

(23) that can correctly estimate the probability of an event

in the presence of competing events were used in survival

analysis to validate the results of Cox proportional hazards

regression models. Third, we restricted our analysis to patients

aged <65 years. Bias may be present and affect CVM results

when comparing patients among all age groups in terms of an

unbalanced burden of cardiovascular comorbidities. To address

this challenge, we only enrolled patients aged <65 years to

help determine any correlation between thoracic RT and CVM

risk. We envisaged that this would minimize the effect of

underlying cardiovascular risk factors or comorbidities on CVM

occurrence. After taking these matters into account, we consider

that this study provides a more accurate and reliable evaluation

of the effect of thoracic RT on CVM in patients with SCLC.

Risk factors a�ecting CVM and potential
mechanisms

Thoracic RT has been shown to result in injury to the heart

and coronary artery, as well as to other vessels in the radiation

field, including the aorta and pulmonary artery, resulting in

aortic valve disease, porcelain aorta, and pulmonary artery

aneurysm (28–31). The relative anatomical position between

a tumor primary site and heart/great vessels might influence
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TABLE 5 Multivariate Cox proportional hazards and Fine-Gray competing risk regression models for predictors of CVM before and after PSM.

Variables Group Before PSM After PSM

Cox proportional

hazards (Multivariate)

Fine-gray competing

risk (Multivariate)

Cox proportional

hazards (Multivariate)

Fine-gray competing

risk (Multivariate)

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Primary site UL/ML Reference Reference Reference Reference

MB/LL 1.79 (1.23–2.61) 0.002 1.71 (1.18–2.48) 0.005 1.88 (1.20–2.95) 0.006 1.79 (1.15–2.79) 0.010

Age, years ≤57 Reference Reference Reference Reference

>57 1.45 (0.99–2.10) 0.055 1.16 (0.80–1.68) 0.439 1.66 (1.07–2.58) 0.023 1.30 (0.85–2.00) 0.230

Sex Male Reference Reference Reference Reference

Female 0.60 (0.41–0.87) 0.008 0.73 (0.50–1.07) 0.110 0.57 (0.37–0.89) 0.013 0.71 (0.46–1.10) 0.123

Race White Reference Reference Reference Reference

Black 1.08 (0.60–1.94) 0.806 1.00 (0.56–1.79) 0.996 1.42 (0.76–2.66) 0.271 1.30 (0.71–2.40) 0.399

Other 0.37 (0.09–1.49) 0.160 0.37 (0.09–1.49) 0.162 0.49 (0.12–2.00) 0.319 0.50 (0.12–2.06) 0.341

Marriage Unmarried Reference Reference Reference Reference

Married 0.70 (0.47–1.04) 0.074 0.82 (0.56–1.20) 0.310 0.70 (0.44–1.09) 0.116 0.82 (0.53–1.26) 0.360

Unknown 1.02 (0.37–2.83) 0.974 1.04 (0.38–2.86) 0.940 1.09 (0.33–3.53) 0.891 1.06 (0.33–3.37) 0.927

Year of diagnosis 1988–2003 Reference Reference Reference Reference

2004–2013 0.64 (0.43–0.95) 0.025 0.64 (0.44–0.92) 0.016 0.55 (0.34–0.87) 0.010 0.54 (0.35–0.84) 0.006

AJCC stage I–II Reference Reference Reference Reference

III 1.04 (0.65–1.66) 0.860 0.71 (0.46–1.12) 0.143 0.94 (0.56–1.58) 0.812 0.61 (0.37–1.01) 0.057

Laterality Left Reference Reference Reference Reference

Right 0.83 (0.57–1.21) 0.322 0.89 (0.62–1.30) 0.555 0.86 (0.56–1.33) 0.507 0.96 (0.63–1.48) 0.865

CVM, cardiovascular mortality; PSM, propensity score matching; HR, hazard ratio; CI, confidence interval; AJCC, American Joint Committee on Cancer; UL/ML, upper lobe/middle lobe;

MB/LL, main bronchus/lower lobe.

FIGURE 5

CIF curves of NCVM post-radiotherapy stratified into UL/ML and MB/LL groups by primary site before (A) and after (B) PSM in LS-SCLC patients.

CIF, cumulative incidence function; CVM, cardiovascular mortality; UL/ML, upper lobe/middle lobe; MB/LL, main bronchus/lower lobe; PSM,

propensity score matching; LS-SCLC, limited-stage small cell lung cancer.

the amount of radiation doses received by the heart or great

vessels during RT. Anatomically, the LL is closely adjacent to

the heart, and has been found to be associated with larger

volume variability than the UL during radiation procedures

(21). Furthermore, bilateral main bronchi are embedded in

the hilum of the lung and are surrounded with several great

vessels. Specifically, the right MB passes behind the ascending

aorta, the superior vena cava, and the right pulmonary vessels,

whereas the left MB passes behind the left pulmonary vessels,

and extends across the arch formed by the arch of the aorta and

the descending thoracic aorta. This close anatomical relationship

makes it more likely for healthy tissues to receive additional
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radiation exposure, especially heart and great vessel tissues

located adjacent to the tumor in patients whose primary site is

located in the MB and in the LL, consequently making them

more vulnerable to radiation-induced injury. Recent clinical

studies have reported that patients with NSCLC with primary

sites in the left MB and left LL have lower OS rates (18–

21). To date, the specific mechanism to explain this remains

unclear, although it may be attributed, at least in part, to

increased RT-induced severe adverse cardiovascular events in

patients receiving RT with primary sites in the MB and LL

(9–14). This explanation accords with our study findings. Two

studies have shown that in patients with cancer receiving

thoracic RT, left-sided laterality was associated with an increased

incidence of cardiovascular complications, due to a shorter

distance between the left-sided radiation field and the heart

compared with patients with right-sided primary sites (13, 27).

This finding provides support for the potential mechanisms

involved concerning distinct incidences of CVM in different

primary sites in our study.

Limitations

Although this study provides novel and clinically significant

insights into CVM post-RT for patients with non-surgical

LS-SCLC, there remain some limitations inherent to any

retrospective analysis. First, the SEER database contains limited

data concerning pre-existing cardiovascular comorbidities and

risk factors. Next, similar to previous RT studies based on data

from the SEER database (13, 26), we were unable to assess

many important therapeutic parameters, such as total radiation

dose, the dose per fraction, the volume of heart/great vessels

irradiated, and chemotherapy agents. The validity of reporting

RT using SEER data has been questioned. However, one recent

study reported a high sensitivity and positive predictive value

between RT records and the actual implementation of RT (32).

Additionally, given the post-hoc nature of this study, limitations

in terms of retrospective analyses apply. Nonetheless, MB/LL

and UL/ML groups were matched to obviate the potential effect

of unbalanced variables on CVM.

Conclusions

MB/LL as the primary site was found to be associated with

an increased risk of CVM post-RT in patients with LS-SCLC.

This study presented a propensity score-matched competing

risk analysis in a large, population-based, real-world cohort,

with which to analyze RT-linked sequelae and to stratify CVM

risk during clinical decision-making. Our findings suggested

that patients with MB/LL tumors undergoing RT may require

better radioprotection not only for the heart, but also for the

great vessels. More comprehensive cardiovascular management

and closer follow-up are needed for patients with LS-SCLC

undergoing RT.
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Background: Immune checkpoint inhibitors (ICIs) have significantly changed

the oncology clinic in recent years, improving survival expectations in

cancer patients. ICI therapy have a broad spectrum of side e�ects from

endocrinopathies to cardiovascular diseases. In this study, pro-inflammatory

and pro-fibrotic e�ects of short-term ICIs therapy in preclinical models

were analyzed.

Methods: Firstly, in a human in vitro model, human cardiomyocytes co-

cultured with hPBMC were exposed to ICIs (with CTLA-4 or PD-1 blocking

agents, at 200nM) for 72h. After treatment, production of DAMPs and

12 cytokines were analyzed in the supernatant through colorimetric and

enzymatic assays. C57/Bl6 mice were treated with CTLA-4 or PD-1 blocking

agents (15 mg/kg) for 10 days. Before (T0), after three days (T3) and

after treatments (T10), ejection fraction, fractional shortening, radial and

longitudinal strain were calculated by using bidimensional echocardiography

(Vevo 2100, Fujfilm). Fibrosis, necrosis, hypertrophy and vascular NF-

kB expression were analyzed through Immunohistochemistry. Myocardial

expression of DAMPs (S100- Calgranulin, Fibronectin andGalectine-3), MyD88,

NLRP3 and twelve cytokines have been analyzed. Systemic levels of SDF-

1, IL-1β, and IL-6 were analyzed before, during and after ICIs therapy.
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Results: Radial and longitudinal strain were decreased after 10 days of

ICIs therapy. Histological analysis of NF-kB expression shows that short-

term anti-CTLA-4 or anti-PD-1 treatment increased vascular and myocardial

inflammation. No myocardial hypertrophy was seen with the exception of

the pembrolizumab group. Myocardial fibrosis and expression of galectin-3,

pro-collagen 1-α and MMP-9 were increased after treatment with all ICIs.

Both anti-CTLA-4 or anti-PD-1 treatments increased the expression of DAMPs,

NLRP3 inflammasome and MyD88 and induced both in vitro and in vivo the

secretion of IL-1β, TNF-α and IL-6. Systemic levels of SDF-1, IL-1β and IL-6

were increased during and after treatment with ICIs.

Conclusions: Short therapy with PD-1 and CTLA-4 blocking agents

increases vascular expression of NF-kB, systemic SDF-1, IL-1β, IL-6 levels

and myocardial NLRP3, MyD88 and DAMPs expression in preclinical models.

A pro-inflammatory cytokine storm was induced in myocardial tissues and

in cultured cardiac cells after ICIs therapy. The overall picture of the study

suggests new putative biomarkers of ICIs-mediated systemic and myocardial

damages potentially useful in clinical cardioncology.

KEYWORDS

immunotherapy, biomarkers, preclinical study, mechanisms, inflammation,

interleukin

Introduction

Immune checkpoint inhibitors (ICIs) includes monoclonal

antibodies that activate the host immune system for efficient

killing of cancer cells through unspecific activation mechanisms

(1). ICIs are directed against programmed cell death protein

(PD-1), its associated ligand (PD-L1) or CTLA-4 (Cytotoxic T-

Lymphocyte Antigen 4) leading to activation of lymphocytes and

NK cell activity against cancer cells (2, 3). Clinical benefits were

seen in melanoma, non-small cell lung cancer and metastatic

breast cancer patients; association therapies with radiotherapy

or chemotherapy or with other ICIs are still proposed worldwide

(2). ICIs-mediated side effects involves T-lymphocyte-driven

inflammation and direct cytotoxicity in many tissues, such as

skin, intestine, lungs, liver, endocrine organs and cardiovascular

system (4, 5). ICIs mediated cardiotoxicities are rare but can

affect anticancer regimens and quality of life in cancer patients

(6). Cardiovascular complications in cancer patients treated

with ICIs include fatal myocarditis, vasculitis, arrhythmia,

fibrosis and heart failure (7, 8). In different types of cancer,

different ICIs may show different cardiotoxicity spectra (9).

The incidence of ICIs-related cardiovascular events ranged

from 0.15 to 10%. For example, in melanomas, PD-1/PD-L1

inhibitor use was closely related to high blood pressure and

myocarditis (8, 9). Lung cancer patients, commonly experienced

acute coronary syndrome, arrhythmia and heart failure (9).

The most common cardiotoxic events after nivolumab and

pembrolizumab therapy in lung cancer patients are arrhythmia,

cardiac-related chest pain, cardiomyopathy, and myopericardial

diseases. Moreover, renal cell carcinomas patients treated with

nivolumab associated to ipilimumab frequently experienced

hypertension (9); patients with urothelial carcinoma treated

with atezolizumab had frequently hypertension and arrhythmia.

Therefore, a complex interaction between cancer-related and

immune-related factors plays a key role in pathogenesis of

cardiovascular toxicities.

Known mechanisms of ICIs-induced cardiotoxicity

involves immune-infiltration of CD3 +, CD4 + and

CD8 + T lymphocytes in myocardial tissues that can attack

cardiomyocytes or endothelial cells leading to metabolic failure

and reduced cell viability (10, 11). Notably, ICIs can induce a

pro-inflammatory phenotype in cardiac and vascular tissues

therefore the identification of new players of cardiotoxicity

mediated by short-term ICIs therapy still need further attention.

Recent consensus statements highlights on the importance

of new predictive biomarkers of ICIs-mediated cardiotoxicity

(12, 13). Indeed, echocardiographic biomarkers such as changes

in global longitudinal strain (GLS) (12), or myocardial work

(MW) (13) or increases in plasma levels of galectin-3 and

cytokines (14) are of great interest in clinical cardioncology.

Considering that Pembrolizumab and Ipilimumab recognize

both human and mice PD-1 and CTLA-4 epitopes (15, 16), we

have highlighted on the vascular and myocardial inflammation

in female mice through immunohistochemistry and ELISA

methods shedding light on potential pathways involved in ICIs

cardiotoxicity, including NLRP3, MyD88 and DAMPs.
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Materials and methods

Cell cultures

Human cardiac cells (HFC cell line; Innoprot, Derio, Spain)

were cultured following the manufacturer’s instructions (17, 18).

Culture medium was supplemented with Fetal Bovine Serum at

10% v/V (FBS, Sigma Aldrich, St. Louis MO, USA), Penicillin

at 50 U/ml, Streptomycin at50µg/mL and L-Glutammine at

1% v/V.

In vitro cytotoxicity assays and cardiac
cell lysis

Considering that PD-1 and CTLA-4 are expressed in human

cardiomyocytes, as recently analyzed by our group through cell

ELISA assays on human fetal cardiomyocytes with anti-PD-1

and anti-CTLA-4 mAbs (19), Ipilimumab and Pembrolizumab

were added to HFC cells co-cultured with human lymphocytes.

In brief, cells were plated in 96-well flat-bottom plates (at 10,000

cells/well) for 16 h. Human Peripheral BloodMononuclear Cells

(hPBMCs) were added at effector: target ratio 5:1 in the absence

or presence of the mAbs (200 nM), and incubated for 24 h

at 37◦C, as previously described (20). Cells un-incubated or

incubated with aspecific antibodies IgG were defined as control.

After treatment with antibodies, lymphocytes were removed and

adherent cells were washed and counted through trypan blue

method. Lymphocytes can be easily removed by collecting the

supernatant of co-cultures and by washing the tumor adherent

cells as the lymphocytes are non-adherent. Cell survival was

expressed as percent of viable cells tested with drugs compared

to the untreated ones, used as a negative control. Cardiac cell

lysis was determined as described in other recent work (21, 22)

through the quantification of released LDH (LDH detection kit,

Thermo-Fisher Scientific, Meridian Rd., Rockoford, IL USA),

following the manufacturer’s instructions.

ELISA assays on mouse purified proteins
and PBMCs

The Enzyme-linked immunosorbent assay (ELISA) was

performed on mouse PBMCs and purified recombinant target

proteins to test the human-mouse cross-reactivity of the

antibodies. Mouse lymphocytes (4 × 105 cells/well) activated

with anti-CD3/CD28 beads for 3 days were plated on round-

bottom 96-well plates. The purified recombinant human or

mouse CTLA-4/Fc or the Fc portion (used as a negative

control) were coated on flat bottom plates and blocked with

a buffer solution (PBS/milk 5% v/v) for 1 h. The plates were

incubated with increasing concentrations of antibodies in a

buffer solution (PBS/milk 2.5% v/v) for 2 h. After washing, plates

were incubated with HRP-conjugated anti-human IgG (Fab’)2

goat monoclonal antibody in a buffer solution (PBS/BSA 3%

v/v) for 1 h. The following steps were performed as previously

described (23). The Absorbance values at 450 nmwere measured

by an Envision plate reader (Perkin Elmer, 2102, San Diego,

CA, USA).

Animal studies

Twenty four C57Bl/6 mice (female, 6 weeks/age) were

purchased from Harlan, San Pietro al Natisone (Italy). As

standard protocol, firstly mice were housed and maintained

on a 12 h light-12 h dark cycle in a room with a fixed

temperature of 22◦C with the appropriate foods water. The

experimental protocols were approved by the Ministry of

Health with authorization number 1467/17-PR of 13-02-2017,

and institutional ethics committees: Organismo preposto al

benessere degli animali (OPBA) in accordance with EUDirective

2010/63/EU for animal experiments and Italian D.L.vo 26/2014

law. Briefly, animals were randomly divided into three groups (6

mice per group) as followings:

• Control group: mice daily received normal saline injection

(by i.p) every three days for 10 days

• Ipilimumab group: mice received a short therapy with a

CTLA-4 blocking agent (Bristol-Myers Squibb, Princeton,

New Jersey, US) (15 mg/kg/day by i.p) every three days for

10 days;

• Pembrolizumab group: mice received a short therapy with

a PD-1 blocking agent (Merck &amp; Co., Inc., Kenilworth,

NJ, USA) (15 mg/kg/day by i.p) every 3 days for 10 days.

Notably, every drug was used in the clinically available

formulation. The injected dose of 15 mg/kg mean body-weight

was comparable to the uses of ICIs in clinical oncology (16,

17, 24–26); moreover, the dose used is within the range of

doses administered intraperitoneally (1–30mg/kg) in preclinical

models for pharmacokinetic studies and anticancer studies with

ICIs (15, 27, 28).

Echocardiographic evaluation of
ventricular functions

To assess cardiac functions, the transthoracic

echocardiography method was made in mice by using the

Vevo 2100 (40-MHz transducer; Visual Sonics, Toronto, ON,

Canada) which allows the determination of different cardiac

function parameters in anesthetized mice (18, 29, 30). In

brief, before (T0), after three days (T3) and at the end of

treatments (T10) mice were prepared for cardiac function

assessment by previous anesthesia through a solution

composed by tiletamine zolazepam (both at 0,09 mg/g of

weight) and atropine (at 0,04 mL/g of weight). The left
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FIGURE 1

Binding assays of Pembrolizumab and Ipilimumab on mouse PBMCs and on human and mouse purified recombinant target proteins. ELISA

assays were performed by using the indicated antibodies at increasing concentrations on mouse (black bars) CTLA-4/Fc or PD-1/Fc (A,B). The

binding of antibodies was also tested on the Fc portion (empty bars), used as a negative control. Cell ELISA assays were performed by testing

Pembrolizumab (C) (n = 3) or Ipilimumab (D) (n = 3) on mouse PBMCs untreated or activated with anti-CD3/CD28 beads. (E) LDH assay on the

supernatant of co-cultures of HFC and hPBMCs treated as indicated (n = 3). Cell lysis was measured as described in the materials and methods

section. Error bars depict means ± SD.

ventricular echocardiography was performed in parasternal

long-axis views (with a frame rate corresponding to 233Hz).

Firstly, in M-mode assessment, the left ventricular internal

dimensions in diastole and a systole (LVID,d; LVID, s)were

calculated from 3 to 5 beats. Fractional shortening and

ejection fraction percentage (both in percentage) were

determined as described in other recent work (15). Moreover,

radial (RS, corresponding to the change in myocardial wall

thickness) and longitudinal strain (LS, percent change in

length of the ventricle) were calculated on long-axis views

following the guide instructions of the Vevo 2100 software

(15, 29).
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FIGURE 2

(A) DAMPs, including fibronectin, (B) S100 calgranulin, (C) galectin-3, and (D) cytokines and growth factors produced by cardiomyocytes in the

supernatant of co-cultures of cardiomyocytes with hPBMC. The cytokines IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IFN-γ , TNF-α, G-CSF,

GM-CSF (n = 3) were quantified by ELISA assays. Error bars depict means ± SD.

Myocardial inflammation and DAMPs
expression

After treatments, mice were anesthetized as described in

section echocardiographic evaluation of ventricular functions

and sacrificed via cervical dislocation. Hearts were excised,

washed three times in physiological solution (to eliminate

blood residues), weighed and divided into two parts through

a proper longitudinal cut. One half was used for biochemical

studies and the other part to histological analyzes. Firstly,

hearts were lysed under ice in a lysis solution consisting of

Triton × 100 1% V / v spiked with a protease inhibitor.

To promote lysis, tissues were treated with ultrasounds for

5min. After centrifugation at 4◦C at 1,300 rpm for 10min,

the supernatant of the cardiac homogenates were used to

quantitative analysis of six biomarkers of cardiac damages and

inflammation, such as: myeloid differentiation primary response

88 (MYd-88) expression (through mouse MyD88 ELISA Kit

(My Biosource, San Diego, CA, detection range of 78–5,000

pg/ml; sensitivity: 46.9 pg/ml); NOD-, LRR- and pyrin domain-

containing protein 3 (NLRP-3) (through mouse NLRP3 ELISA

Kit (OKEH05486, Aviva Systems Biology); Fibronectin-EDA,

S100/Calgranulin and Galectine-3 [three DAMPs (quantified

in cardiac tissues through selective quantitative assay); twelve

cytokines and growth factors (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-

10, IL-12, IL17-α, IFN-γ, TNF-α, G-CSF, GM-CSF) through a

mouse cytokine Multiplex Assay kit (Qiagen, USA, pg/mg of

heart tissue).
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FIGURE 3

Cardiac function studies. Before (T0), after 3 days (T3) and at the end of treatments (T10) with saline or Ipilimumab or Pembrolizumab (15

mg/kg/die), cardiac functions studies were performed. Ejection fraction (%) (n = 6), fractional shortening (%) (n = 6), radial (n = 6) and

longitudinal strain (%) (n = 6) were analyzed through VEVO 2100 echocardiography. Error bars depict means ± SD.
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Systemic levels of SDF-1 (CXCL-12),
IL-1β, IL-6

For systemic analysis, blood samples were collected in

three points: before (T0), after three days (T3) and at the

end of treatments (T10) in heparinised tubes and immediately

centrifuged at 3,000 rpm for 10min at 4◦C in order to

obtain plasma that was collected, frozen, and kept at −80◦C

until use. Circulating SDF-1 (CXCL-12), IL-1β, IL-6 were

quantified in 0,1mL of plasma through the use of mouse

CXCL12/SDF-1 alpha Quantikine ELISA Kit (MCX120, R&D

Systems, Minneapolis, MN, USA), mouse IL-1β ELISA kit

(BMS6002, Thermo Fisher, Milan, Italy) and mouse IL-6 ELISA

kit (KMC0061, Thermo Fisher, Milan, Italy).

Histology

Blinded histological examination of myocardial tissues were

also performed. All selected samples were fixed in formalin

and embedded in paraffin. Firstly, tissues were deparaffinized in

a solution of xylene and rehydrated through graded alcohols.

Antigen retrieval was performed with slides heated in 0.0.1M

edta buffer (pH 8.0.) for 10min at 110 ◦C. Slides were rinsed with

TBS and treated with a solution at 3 % v/V hydrogen peroxide.

Another washing in BSA 5% v/V in PBS was performed

as blocking step and an incubation for 12h with a primary

antibody (diluted 1:100 in PBS) against mouse NF-kB (Abcam,

Cambridge, UK) was performed. Sections were incubated with

goat anti- anti-rabbit secondary IgG biotinylated secondary

antibody for 0.5 h. Tissue reactivity was determined through

the avidin–biotin–peroxydase method (Novocastra, Newcastle,

UK) as described in other work (30). After, sections were

counterstained with haematoxylin. To determine the structure

of the heart, and to evaluate parameters such as hypertrophy,

necrosis and fibrosis, the tissues of the heart were incubated

with Mayer’s hematoxylin for 30 s and washed properly with

water (30). Antigen expressionwas evaluated by one experienced

pathologist by using light microscopy. For NF-kB nuclear

localization in vascular endothelium of the murine tissues under

examination was considered. Immunostaining values were

reported as percentage of positive cells in 10 non-overlapping

fields by using magnification X400 (31).

Statistics

Data are presented as means ± standard errors (SE). All

data were tested for normality by Shapiro–Wilk. Normally

distributed data in two groups were tested with Student’s t-test,

and non-normally distributed data in two groups by Wilcoxon–

Mann–Whitney. Normally distributed data in multiple groups

were tested by one-way analysis of variance (ANOVA) with

Sidak correction. Non-normally distributed data were tested by

ANOVA with Holm–Sidak post-testing. Paired data were tested

using the paired versions of t-Student.

Results

Pembrolizumab and Ipilimumab
recognize and bind mouse PD-1 and
CTLA-4 and induce cardiotoxic e�ect in
human cardiomyocytes

We first verified the immunoreactivity of Pembrolizumab

and Ipilimumab compared to murine epitopes of PD-1 and

CTLA-4, respectively, through ELISA binding assays. As

specified in Figure 1, and in line with other recent research

(15, 22), Pembrolizumab and Ipilimumab are both able to bind

to the mouse targets even though the affinity is lower than

that observed for their human counterparts. Cardiotoxicity of

Pembrolizumab and Ipilimumab in human in vitro models of

co-cultures of hPBMC and human cardiomyocytes. To confirm

in a human-like environment the results obtained in mouse

models on the cardiotoxic effects of the immunomodulatory

mAbs, we tested their effects in in vitro human models based on

co-cultures of human cardiomyocytes (HFC) and lymphocytes.

As shown in Figure 1, three mAbs induced a significant cardiac

cell lysis (up to 50% for Pembrolizumab), thus indicating that

they can indeed activate immune responses against cardiac cells.

ICI treatment promotes DAMPs and
pro-inflammatory cytokine production in
co-cultures of hPBMCs and human
cardiomyocytes

It was verified if ICIs could affect the production of

DAMPs, pro-inflammatory cytokines, chemokines, and growth

factors in co-cultures of human cardiomyocytes with human

peripheral blood mononuclear cells (hPBMCs) by analyzing

the supernatant by ELISA assays. Firstly, in a similar fashion

to the in vivo findings, all ICIs increased the production

of Fibronectin-EDA (Figure 2A), S199/Calgranulin (Figure 2B)

and Galectine-3 (Figure 2C) compared to untreated cells.

However, the analysis of cytokines secretion indicated that only

IL-1α, IL-1β, IL-6, and TNF-α were significantly increased after

incubation with ICIs (Figure 2D).

Short-term ICI therapy reduces
radial/longitudinal strain and ejection
fraction

We determined the cardiotoxic effects of PD-1 and CTLA-

4 blocking agents in C57Bl/6 mice through the study of FS, EF,
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FIGURE 4

Endothelial NF-kB expression in myocardial tissues of mice

treated with ICIs (A) Quantitative analysis of NF-kB endothelial

expression (%) in mice untreated or treated with ICIs (n = 6).

Vascular expression of NF-kB in mice untreated (B) or treated

with Ipilimumab (C) or Pembrolizumab (D).

RS, and LS by using two-dimensional echocardiography (Vevo

Strain 2100, Fujifilm). Analysis of EF and FS indicated that

short term of ICIs therapies significantly reduces the cardiac

function (Figure 3). No differences were seen between groups.

Instead, more significant reductions were observed for radial

and longitudinal strain in ICIs groups vs. control. Again, no

differences between the ICIs were seen (Figure 3).

Short-term ICI therapy increases vascular
expression of nuclear factor
kappa-light-chain-enhancer of activated
B cells (NF-kB)

Analysis of vascular and myocardial NF-kB expression

shows that short-term anti-CTLA-4 or anti-PD-1 treatment

had differential effects (Figure 4). However, first, both ICIs

increased significantly the vascular inflammation compared to

untreated mice but the higher NF-kB expression was seen in

Pembrolizumab compared to Ipilimumab group (Figure 4A).

Histological characterization of the myocardial tissue phenotype

confirms no detectable vascular NF-kB expression in untreated

mice (Figure 4B) but a strong vascular expression was seen in

ICIs groups (see arrows in Figures 2C,D).

Short-term Pembrolizumab therapy
increases cardiac hypertrophy

Morphological characterization of the myocardial tissue

phenotype in mice after short-term anti-CTLA-4 or anti-PD-

1 treatment clearly indicates no cardiac hypertrophy with the

exception of Pembrolizumab (Figure 5). Compared to control

(sham), ematoxylin-eosin staining of longitudinal sections of

mice treated with Ipilimumab did not show any significant

hypertrophy; cardiomyocytes have a linear and homogeneous

longitudinal aspect, the nucleus is not pycnotic and has a regular

size and shape, and there are no cytoplasmic vacuoles. On the

other hand, the cardiac longitudinal section of mice treated with

Pembrolizumab shows a significant hypertrophy with evident

increases in the cytoplasmic volume and an irregular course of

the cardiomyocytes (Figure 5).

Short-term ICI therapy increases cardiac
fibrosis and myocardial expression of
MMP-9, Galectin-3, and pro-collagen-α1

Histological characterization of the myocardial tissue

phenotype in mice after short-term anti-CTLA-4 or anti-PD-1

treatment showed that ICIs increased cardiac fibrosis compared

to untreated mice (Figures 6A–C). In control group (Figure 6A)

hematoxylin-eosin staining of longitudinal sections evidenced

the absence of fibrosis, whereas treatment with Ipilimumab or

Pembrolizumab (Figures 6B,C) increased drastically the fibrotic

phenotype. Myocardial expression of galectin-3 (Figure 6D),

mouse pro-collagen 1-α (Figure 6E) and MMP-9 (Figure 6F),

biomarkers of fibrosis, corroborates these findings: galectin-3

is almost undetectable in control group while it is drastically

increased after treatment with all ICIs (1.7 ± 1.2 vs. 24.5 ±

4.2 vs. 32.3 ± 4.3 ng/mg of tissue for control, Ipilimumab and

Pembrolizumab, respectively; p < 0.001 for control vs. ICIs).

Similar results were seen for procollagen 1α1 (3.4 ±1.2 vs. 15.3

± 3.1 vs. 16.8 ± 1.2 ng/mg of protein for control, Ipilimumab

and Pembrolizumab, respectively; p < 0.005 for control vs. ICIs)

and MMP-9 (407.8 ± 89.6 vs. 732.5 ± 102.2 vs. 895.5 ± 88.6

pg/mg of protein for control, Ipilimumab and Pembrolizumab,

respectively; p < 0.05 for control vs. ICIs).

ICI therapy promotes DAMPs production,
NLRP3, and MyD88 expression in
myocardial tissues

We investigated on cardiac markers of inflammation and

cell damages (DAMPs). Compared to untreated mice, ICIs

increased significantly Fibronectin-EDA expression (Figure 6G)

in heart lysates (2.3 ± 0.16 for Ipilimumab and 2.1 ±
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FIGURE 5

Hypertrophy analysis in myocardial tissues of mice treated with ICIs. (A) Hematoxylin-eosin staining of longitudinal sections with no hypertrophy

in control untreated mice (x40); (B) hematoxylin-eosin staining of longitudinal sections with no hypertrophy in untreated mice and mice treated

with Ipilimumab (×40); (C) hematoxylin-eosin staining of longitudinal sections highlights the development of marked hypertrophy in mice

treated with Pembrolizumab (×40).

0.25 for Pembrolizumab; p < 0.001 for control vs. ICIs).

Similarly another DAMP, called S100 Calgranulin (Figure 6H)

was significantly enhanced by ICIs treatment (1.86 ± 0.21

for Ipilimumab and 1.96 ± 0.24 ng/mg of protein for

Pembrolizumab; p < 0.001 for control vs. ICIs); no significant

differences between ICIs were seen. Inflammasome and

myddosome complex stimulates DAMPs, therefore, myocardial

expression of NLRP type 3 and MyD type 88 were analyzed. A

drastic increase inMyD-88 expression (Figure 6I) (33.2 pg/mg of

protein ± 15.6 for untreated mice:198.6 ± 18.3 for Ipilimumab;

217.5 ± 17.4 for Pembrolizumab; p < 0.005 for ICIs vs.

control). The same behavior was seen for NLRP3 expression

after treatment with all ICIs (47.3 pg/mg of protein ± 13.5 for

untreated mice: 132.1 ±15.1 for Ipilimumab; 126.6 ± 11.2 for

Pembrolizumab; p < 0.005 for ICIs vs. control) (Figure 6J).

ICI therapy increases pro-inflammatory
cytokine expression in myocardial tissues

Cytokines and chemokines are drivers of anticancer drug-

induced cardiotoxicity, heart failure and myocarditis (32).

Therefore, cytokines and chemokines in heart tissue of

Ipilimumab or Pembrolizumab-treated female C57Bl6 mice

were quantified (Figure 6K). Firstly, the family of IL-1 cytokines

(IL-1α and IL-1β), increased in all ICIs treated group with

respect to untreated mice (p < 0.001). IL-2 levels were also

increased in ICIs group, highlighting immune-related reactions

in myocardial tissue. Anti-inflammatory cytokines levels (IL-4

and IL-10) were reduced in ICIs group vs. untreated mice. Other

pro-inflammatory cytokines (IL-6, IL17-α, IFN-γ, and TNF-α)

were also increased in myocardial tissues of ICIs-treated mice

vs. saline-treated groups. Levels of growth factors involved in

heart failure and hypertrophy (G-CSF and GM-CSF) were also

increased in ICIs groups (Figure 6K).

ICI therapy increases systemic levels of
SDF-1 (CXCL12), inteleukin-1β, and
interleukin-6

High plasma levels of Stromal Cell-Derived Factor 1 (SDF-

1), IL-1β and IL-6 were associated to cardiac inflammation, heart

failure and cardiovascular mortality (33). We analyzed if short

term ICIs therapy could affect SDF-1, IL-1 β and IL-6 levels in

plasma of C57/Bl6 mice (Figure 7). Before (T0), after three days

(T3) and at the end of treatment (T10), systemic levels of all

biomarkers were significantly increased with respect to control

saline-treated mice (p < 0.05). For example, after 10 days of

therapy, SDF-1 levels were 0.96 ng/ml±0.24 for untreated mice;

2.75± 0.34 for Ipilimumab and 3.16 ± 0.29 for Pembrolizumab

(p < 0.005 for ICIs vs. control). The same behavior was seen for
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FIGURE 6

Histological analysis of the hearts of mice untreated or treated with ICIs. (A) Hematoxylin-eosin staining of longitudinal sections in control

untreated mice (x40); (B) hematoxylin-eosin staining of longitudinal sections in mice treated with Ipilimumab (×40); (C) hematoxylin-eosin

staining of longitudinal sections with fibrosis in mice treated with Pembrolizumab (×40). (D) Cardiac expression of galectin-3 (ng/mg of tissue),

(E) mouse pro-collagen 1-α (ng/mg of total proten), (F) MMP-9 (pg/mg of protein), (G) Fibronectin EDA (fold of control), (H) S100 Calgranulin

(ng/mg of protein in myocardial tissue lysate), (I) MyD-88 (pg/mg of protein in myocardial tissue lysate) and (J) NLRP-3 (pg/mg of protein in

myocardial tissue lysate) after short-term treatment with ICIs. In (K), Twelve cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IFN-γ,

TNF-α, G-CSF, GM-CSF) were analyzed in heart lysates and reported as pg of cytokine normalized for mg of tissue. Error bars depict means ±

SD (n = 6).
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FIGURE 7

E�ects of ICI treatment on plasma levels of SDF-1 (CXCL-12), Interleukin 1-β and Interleukin-6. Female C57/Bl6 mice were treated daily with

anti-CTLA-4 or anti-PD-1 antibodies (n = 6) or left untreated (n = 6) for 10 days. Before (T0), after three days (T3) and at the end of treatments

(T10), SDF-1 (n = 6), Interleukin 1-β (n = 6) and Interleukin-6 (n = 6) were quantified in plasma. Levels were reported in ng/ml of plasma.

IL-1 β and IL-6, indicating a systemic inflammation even after 3

days of treatment with ICIs (Figure 7).

Discussion

The current study aimed to evaluate the pro-inflammatory

effects of short-term immune checkpoint inhibitors (ICIs)

treatment in myocardial and vascular tissues in preclinical

models (34, 35) (Figure 8). Notably, the use of ICIs in clinical

oncology found significant clinical benefits in cancer patients,

however, a wide spectrum of side effects are being seen

(called irAEs): rash (maculopapular, lichenoid), diarrhea, colitis,

mucositis, hypo or hyper thyroidism, hepatitis, inflammatory

arthritis, myalgia (36). Endocrinopathies and inflammatory

pathologies induced by PD-1 / PDL-1 or CTLA-4 blocking

agents are frequently reported in both monotherapy and

combinatorial therapies. Clinical studies report both short-

term and long-term side effects in cancer patients and the

mechanisms are not yet well-known (37). There are both

immune-mediated and non-immune-mediated mechanisms

involved in irAEs. A recent meta-analysis reports a high

incidence of myocarditis (about 11 times higher than in other

therapies) which reaches a mortality rate of about 50% in case

of combination therapies (PD1 / PDL-1 associated to CTLA-

4 blocking agents) (38, 39). Furthermore, ICIs have recently

been shown to accelerate the process of atherosclerosis in

both preclinical and clinical study models. Even just a short

treatment with ICIs increases the inflammatory state in the

vascular endothelium by accelerating the atherosclerotic process

(39). Other recent studies show that short ICSi treatments

can cause arrhythmias, Takotsubo syndrome and inflammatory

vascular events (40, 41). Current data regarding ICIs- associated

pericardial involvement are limited, but case-reports include

pericarditis, pericardial effusion (42, 43). Notably, a deep

knowledge of ICIs-induced myocardial injuries is needed.

Immune cells uptake and infiltration in myocardial tissue

were always seen in human histological studies (CD4, CD8T

cells and macrophages). Immune-related side effects involves

several chemokines like CXCR 10, 9 and 3, high levels of

granzyme B especially in myocardial tissue (44). Our data

suggest that NLRP3 and MyD88 pathways could contribute

to the increased vascular and myocardial inflammation of

anti-CTLA-4/anti-PD-1 treatments. NLRP3 drives cytosolic

damages, hypertrophy and inflammation through cytokines and

overproduction of hs-CRP.

As described in Figure 6 and summarized in Figure 8, our

data confirms that ICIs increases DAMPs in cardiomyocytes

and myocardial tissue of mice models. It has been described

that in patients with unstable angina or with AMI, endogenous

DAMPs like Fibronectin-EDA, S100/Calgranulin, Galectine-3

are released from damaged cardiac cells and signal through TLR

receptors. There is also emerging evidence for the involvement

of Toll-like receptors type-9 in heart failure, which can be

activated by endogenous DAMPs, including mitochondrial

DNA, to modulate the progression of the disease (45, 46). The

increases in DAMPs levels after short-term ICIs treatment in

mice indicates myocardial injuries (46). Whether long-term ICI

therapy affects myocardial stress and vascular inflammation is

unknown. Nevertheless, our data suggest that even short-term
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FIGURE 8

Short-term ICI Therapy increases DAMPs, NLRP3 and MyD-88 mediated fibrosis and vascular inflammation. Short-term treatment with immune

checkpoint inhibitors (ICIs) induced significant increases in DAMPs, galectine-3, cytokines and chemokines through NLRP3 and MyD88

pathways inducing myocardial hypertrophy, fibrosis and strong vascular inflammation.

ICIs therapy induces vascular inflammation, fibrosis and levels

of myocardial NLRP3 and MyD88 (Figure 8). Whether ICIs-

induced inflammation persist after cessation of the therapy

and how they affect myocardial work in the long-term is not

currently known (47).

This work has several limitations: firstly, the use of

a tumor-free mice model. As cardiovascular diseases and

cancer share many pathophysiological pathways, including

inflammation, the use of a tumor-bearing model would

have increased the translational potential of our study.

Moreover, there are clinical evidences that combination ICIs-

therapy exerts the most frequent and pro-inflammatory cardiac

and endocrine side effects compared to monotherapies (48)

therefore, further cardiotoxic studies in preclinical models

will be performed after the combination of anti-CTLA4

and anti-PD-1/PD-L1.

Another limitation is based on the short period of treatment

with ICIs without a longer follow up. In real world clinical

experience, cancer patients experienced ICIs-mediated side

effects also many months after therapy cessation (47, 49).

These effects could be also partially related to endocrine

changes due to PD-1/CTLA-4 blocking pathways that exerts

a detrimental cardiotoxic effects in these patients. Therefore,

further preclinical studies on long-term cardiovascular side

effects after ICIs therapy will be performed.

Another methodological limitation of this work is the

absence of a more proper control group in animal studies

based on the administration of IgG control antibody, however,

as reported in cellular experiments (Figure 8), any changes

in pro-inflammatory and cell dead markers were seen after

incubation with control IgG. Moreover, it is plausible that the

intraperitoneal administration of nonspecific IgG as a control
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does not change neither cardiac functions nor cardiac and

systemic inflammatory status in mouse models as confirmed by

recent similar research papers (50, 51).

In conclusion, cardiotoxicity, although rare, is a clinically

relevant problem in cancer patients undergoing ICIs. Long-term

side effects of ICIs are reported, however, some biochemical

changes may occur even a few days after treatment with

ICIs, as specified in this work. The involvement of NLRP3

MyD-88 and some DAMPs in ICIs-associated cardiovascular

disease was seen. Relevant histological effects such as cardiac

endothelial inflammation and overexpression of pro-fibrotic

and pro-inflammatory cytokines is a non-negligible fact that

deserves further investigation. The increase in systemic levels

of SDF-1, IL-1β and il-6 indicates systemic pro-inflammatory

effects induced by ICIs that can directly and indirectly increase

the risk of myocarditis, however more detailed studies on the

mechanisms of systemic and direct cardiac toxicity will have

to be carried out. Of note, considering that PD-1 and CTLA-

4 blocking agents recognize the murine epitope with lower

affinity than the human epitope, the effects observed in this work

could also be underestimated (12) consequently, short and long

term clinical studies during ICIs deserve urgent investigation.

Moreover, the results of this study warrant further preclinical

cardioprotective trials with anti-cytokine (52, 53), anti-NLRP3

(54–56) or anti-MyD88 (57, 58) therapies in primary or

secondary prevention of ICIs-related cardiotoxicity.

This study suggests that short-term ICI therapy affects

myocardial and vascular inflammation through DAMPs and

cytokines through NLRP-3 and MyD-88 related pathways

(Figure 8). It is plausible that ICIs exerts both systemic and

cardiac toxicities through the activation of cytokines cascades

that exacerbate the inflammatory damages in cardiomyocytes.

These results are in line with another recent work (59)

demonstrating pro-atherosclerotic effects of short-ICIs therapy

in mice models. Clinical studies are required to elucidate the

effects of ICIs on myocardial and vascular inflammation and

confirms the role of NLRP3 and Myd88 in progression of ICIs-

mediated cardiovascular diseases.
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The cardiotoxicity of fluoropyrimidines (FP) [5-Fluorouracil and Capecitabine]

is often reported as acute cardiac ischemia with rest typical angina, signs of

ischemia at electrocardiogram (ECG), and ventricular kinetics abnormalities.

However, silent ischemia, effort-related toxicity, and ventricular arrhythmias

(VA) have been also described. The aim of this study is to report a consecutive

series of 115 patients with FP cardiotoxicity observed in a single center both

within clinical prospective studies and during the clinical routine. The clinical

presentation widely varied as regards symptoms, ECG abnormalities, and

clinical outcomes. We report also the strategies used to prevent cardiotoxicity

in a subgroup of 35 patients who continued o rechallenged FP therapy after

cardiotoxicity. In nearly half of the patients, the cardiotoxicity was triggered

by physical effort. Typical angina was rare: the symptoms were absent in

51% of cases and were atypical in half of the other cases. ST-segment

elevation and VA were the most frequent ECG abnormality; however, ST

segment depression or negative T waves were the only abnormalities in 1/3

of the cases. Troponins essays were often within the normal limits, even in

presence of extensive signs of ischemia. The most effective strategy to prevent

cardiotoxicity at rechallenge was reducing FP dosage and avoiding physical

effort. Anti-ischemic therapies were not always effective. Raltitrexed was a

safe alternative to FP. Fluoropyrimidine cardiotoxicity shows a wide variety of

clinical presentations in real life, from silent ischemia to atypical symptoms,

acute coronary syndrome, left ventricular dysfunction (LVD), VA, or complete

atrio-ventricular block. Physical effort is the trigger of cardiotoxicity in nearly

half of the cases. The recognition of cardiotoxicity cannot rely on symptoms

only but requires an active screening with ECG and stress test in selected

cases.

KEYWORDS

cardiotoxicity, cardiotoxicity after chemotherapy, capecitabine, fluorouracil/adverse
effects, fluoropyrimidine chemotherapeutics, fluoropyrimidine cardiotoxicity,
5-fluorouracil, capecitabine cardiotoxicity
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Background

The fluoropyrimidines (FP) 5-fluorouracil (5-FU) and its
prodrug capecitabine represent a mainstay of chemotherapy
(CT) regimens for different types of malignancies, including
head/neck, gastrointestinal, liver, and breast cancer. They
can both induce cardiac toxicity (TOX), mostly in the form
of myocardial ischemia (MI), ventricular arrhythmias (VA),
left ventricular dysfunction (LVD), and sudden death (SD)
(1–7). TOX of FP can be precipitated by effort and it
can be asymptomatic, thus leading to an underdiagnosis in
retrospective studies (8, 9). According to the literature, the most
frequent clinical presentation of FP cardiotoxicity is angina
with ST-segment elevation detected at Electrocardiogram (ECG)
and mimicking vasospastic angina (Table 1). However, some
prospective studies with Holter monitoring have reported
transient asymptomatic ST segment elevation and ECG
abnormalities different from ST-segment elevation have also
been described (mostly ST segment depression and negative T
waves) (10). A recent review analyzing data from 37 papers
including the original data, reported wide variability in clinical
presentation and risk factors, probably attributable to the
different definitions provided for TOX and to the different
modalities of data collection (11).

Aim of the study

To describe the clinical presentation of FP cardiotoxicity in
patients treated with FP in a single Institution: CRO, National
Cancer Institute of Aviano (PN, Italy) from 2001 to 2021, and to
report the possibility of cardioprotection strategies in a group of
patients who underwent a rechallenge therapy with FP after the
first episode of cardiotoxicity.

Materials and methods

We searched the electronic database of the Cardiology Unit
of the CRO from 2001 to 2021 and identified 141 patients
who had been classified as having had FP cardiotoxicity. The
clinical cardiologic and oncologic charts were reviewed by
expert cardio-oncologists, in order to confirm the diagnosis and
to collect data regarding the clinical history (before and after the
diagnosis) whenever available. FP cardiotoxicity was defined as
the presence of clinical, ECG, and/or echocardiographic signs of
ischemia, Lown >2 VA, supraventricular arrhythmias, complete
atrio-ventricular block, or LVD.

Symptoms were classified as follows: “typical chest pain”
included typical angina (retrosternal constrictive or squeezing
chest pain, radiated or not to the left arm or to jaws) and
weight over the sternum; “atypical chest pain” included less
defined chest pain or discomfort, burning sensation; “atypical
symptoms” included jaw pain, throat constriction, malaise,
dizziness, dyspnea.

The diagnosis of TOX had to be confirmed by the
disappearance of clinical and instrumental abnormalities after
withdrawing FP and by the exclusion of other causes of
ischemia or arrhythmias.

After revision, 10 patients were excluded because the
clinical diagnosis of cardiotoxicity was equivocal and another
26 patients (including two patients who died suddenly at
home at the end of the 5-FU infusion) were excluded because
it was not possible to collect detailed information about
the ECG and the cardiovascular risk factors. The remaining
115 pts (74 males and 41 females, aged 19 to 79, mean
59 + 11, median 61) are the object of our study (Figure 1).
The cases had been observed both in daily practice and
in two prospective studies where an effort stress test (EST)
was obtained during FP treatment. We investigated also the
clinical course of the patients in whom FP, after an episode of
cardiotoxicity, was not discontinued or was later re-introduced
in the therapy.

Results

Amongst the 115 patients evaluated in the present study,
79 had at least one CVRF, 15 had a clinical history of ischemic
heart disease and 41 were on medical therapy with one or more
cardiovascular drugs (in particular, 8 with calcium-channel
blockers, 11 with beta-blockers, 22 with angiotensin-converting
enzyme inhibitors, and 9 with nitrates). The FP administered
was 5-FU in 64 patients and capecitabine in the remaining 51
patients (Table 2).

Cardiotoxicity (Table 3) was observed at rest in 63 patients
and during physical effort in 52 patients. Furthermore, effort-
related symptoms during daily life were reported by 10 patients
who had cardiotoxicity confirmed by the EST. The ECG
recorded at the time of cardiotoxicity diagnosis showed ischemic
repolarization changes in 96 patients: ST-segment elevation (1
to 7 mm) in 53 patients, ST segment depression (1 to 7.5 mm)
in 16, both ST-segment elevation and depression in 12 patients;
negative T waves only in 15 patients. The number of ECG leads
showing ST-T changes of ischemia ranged from 2 to 12 (median
5).

Arrhythmias were observed in 34 patients: in particular, 28
patients had ventricular ectopic beats and another 6 patients
experienced other kinds of arrhythmias (supraventricular
tachycardia, severe bradycardia, and atrio-ventricular block).

Typical angina was complained by 32 patients, atypical
precordial pain, chest discomfort, or epigastric pain (suggestive
of angina equivalents) were reported by 21 patients and
other atypical symptoms (dyspnea, sore throat, jaw pain,
palpitation, dizziness, and syncope) were instead experienced
by 11 patients. Noteworthy, 51 patients were completely
asymptomatic, and the diagnosis was made based on ECG
and/or echocardiographic changes. The correlations between
symptoms, ECG signs of ischemia, and arrhythmias are
described in Table 4.
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TABLE 1 Fluoropyrimidine Cardiotoxity reported in the literature.

Author Title Type N cases ECG
ischemia

Angina ARRH AMI Cardiac
arrest/death

Saif et al.
(31)

Fluoropyrimidine-associated
cardiotoxicity: revisited.

Literature
review *1

377 69% 45% 23% 22% 1.4%

Robben
et al. (29)

The syndrome of
5-fluorouracil cardiotoxicity.
An elusive cardiopathy

Review of case
reports *1

135 75% 85% 15% 10% 13%

Dyhl-Polk
et al. (20)

Cardiotoxicity in cancer
patients treated with
5-fluorouracil or
capecitabine: a systematic
review of incidence,
manifestations and
predisposing factors

Review *1 94 6-33% 0-2% 0-2%

Zafar et al.
(26)

The Incidence, Risk Factors,
and Outcomes With
5-Fluorouracil– Associated
Coronary Vasospasm

Retrospective
analysis *1

87 73% 96%

Khan et al.
(24)

A retrospective study of
cardiotoxicities induced by
5-fluouracil (5-FU) and 5-FU
based chemotherapy
regimens in Pakistani adult
cancer patients at Shaukat
Khanum Memorial Cancer
Hospital & Research Center

Retrospective
study *1

60 30% 37%% 81.6% 0% 3.3%

Dyhl-Polk
et al. (27)

Incidence and risk markers of
5-fluorouracil and
capecitabine cardiotoxicity in
patients with colorectal
cancer

Retrospective
study *1

103 33% 43.6% 22.3% 9.7%

de Forni
et al. (22)

Cardiotoxicity of high-dose
continuous infusion
fluorouracil: a prospective
clinical study

Prospective
study *1

28 64% 64% 3.5% 28.5%

Peng et al.
(10)

Cardiotoxicity of
5-fluorouracil and
capecitabine in Chinese
patients: a prospective study

Prospective
study *1

161 65.2% 68.3% 3.7%

Kosmas
et al. (3)

Cardiotoxicity of
fluoropyrimidines in
different schedules of
administration: a prospective
study

Prospective
study *1

26 30% 42.3% 46.1% 30.7% 3.8%

Lestuzzi
et al. (9)

Effort myocardial ischemia
during chemotherapy with
5-fluorouracil: an
underestimated risk

Prospective
study *1

37 (21 at rest, 16
under effort)

95% 42% 50% 8.22%

Dyhl-Polk
et al. (29)

Myocardial Ischemia
Induced by 5-Fluorouracil: A
Prospective
Electrocardiographic and
Cardiac Biomarker Study

Prospective
study *2

108 patients
evaluated

1.85% 18.7% 0.92%

Lestuzzi
et al. (14)

Cardiotoxicity from
Capecitabine Chemotherapy:
Prospective Study of
Incidence at Rest and During
Physical Exercise

Prospective
study *1

32 100% 46.8% 53.1%

*1 Percentages reported in relation to those experiencing a cardiotoxicity event. 2 Percentages reported in the relation to the whole group.
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FIGURE 1

Selection of population reported in the study.

An echocardiogram was performed immediately at the time
of detection of cardiotoxicity in 33 patients: it showed global
or segmental kinetics abnormalities in 14 patients, while it was
normal in the remaining 19 patients. Troponin was dosed in 28
patients and was above the normal limits of the laboratory in
8 cases.

After the diagnosis of FP cardiotoxicity, each patient was
managed on an individual basis, according to the severity of
toxicity, the stage of the neoplastic disease, and the availability
of alternative treatments. The patients with acute coronary
syndrome or severe arrhythmias were admitted to the Intensive
Care Unit (ICU) and treated according to the best clinical
practice. It is important to recall that uridine triacetate, which
has been proven effective for severe FP toxicity, is currently
not available for use in Italy (12, 13). The patients with minor
signs or symptoms were either treated in the oncologic ward
under cardiologic supervision or treated on an ambulatory basis.
Cardiovascular therapy was prescribed according to the type
of toxicity (MI, arrhythmias, LVD) and whether it occurred
at rest or it was effort-related. If severe, even life-threatening
toxicities (severe MI, arrhythmias, or LVD) occurred, or if the
CT was considered avoidable (i.e., adjuvant treatment in patients
with mild risk of relapse) or valid alternative regimens were
available, FP-based CT was interrupted. In patients with minor
toxicity or a strong indication to receive FP, the treatment was
continued; in other patients, instead, it was interrupted but a
rechallenge was attempted months or years later because of a
relapse of the disease.

Overall, FP treatment was continued or re-introduced in 35
patients (Table 5). To prevent the recurrence of a cardiotoxicity
event, several strategies (alone or in combination) were used:
in 7 patients capecitabine was replaced by the 5-FU infusion

TABLE 2 Characteristics of the patients.

Sex Males 74
Females 41

Age 19–79 years (median 61)

Tumor Liver. 3

Stomach, gut: 68

Head, neck: 24

Breast: 12

Others: 8

Cardiovascular risk factors (CVRF) Obesity: 8

Diabetes: 8

Hypertension: 41

Active Smoking: 31

At least 1 CVRF 79

2 or more CVRF 41

Ischemic heart disease 15

On cardiovascular treatment Beta-blockers: 11

Calcium channel antagonists: 8

Angiotensin Converting Enzime
inhibitors: 22

Nitrates: 9

Chemotherapy 5-Fluorouracil: 64

Capecitabine: 51
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TABLE 3 Symptoms, ECG and echocardiographic changes at rest and during stress.

ECG changes N Within group Within all 115
patients

At rest (n = 62) ST segment elevation 37 60% 32%

ST segment depression 4 6% 3%

Both ST elevation and depression 5 8% 4%

Negative T waves 13 21% 11%

Ventricular Ectopic Betas 5 6% 3%

Under/after effort (n = 49) ST segment elevation 15 31% 13%

ST segment depression 13 27% 11%

Both ST elevation and depression 7 14% 6%

Negative T waves 2 4% 2%

Arrhythmias * 27 55% 23%

Symptoms

No : 53 (46%)

Yes: 62 (54%) N Within group Within all 115
patients

Symptoms at rest (n = 30) Typical chest pain 23 77% 20%

Atypical chest pain 2 7% 2%

Dyspnoea, dizziness, other atypical symptoms 5 17% 4%

Symptoms under effort (n = 32) Typical chest pain 16 50% 14%

Atypical chest pain 7 22% 6%

Dyspnoea, dizziness, other atypical symptoms 9 28% 8%

Echocardiogram (n = 35) Global dysfunction 9 26% 8%

Segmental dysfunction 5 14% 4%

No abnormalities 21 60%

* Arrhythmias observed during/after effort were ventricular arrhythmias in 26 patients (3 had also ST segment abnormalities), and complete atrio-ventricular block in one. Typical chest
pain includes typical angina and oppressive chest pain.

lasting ≤72 h; in 9 patients the FP dose was reduced by 25–
50%; in 22 patients anti-ischemic and/or antiarrhythmic drugs
(nitrates, calcium channel blockers, beta-blockers, ranolazine,
and trimetazidine) were added to the therapy. A second
rechallenge with a different approach (increase of FP dose
after a successful attempt of rechallenge, or a different drug)
was attempted in 7 patients. All the patients with effort-
induced cardiotoxicity were screened with physical stress test
during the rechallenge. The characteristics of the patients, the
strategies applied and the results are reported in Table 5.
Within the 35 patients who underwent the first rechallenge, 6
had again a severe cardiotoxicity event and the treatment was
definitively interrupted in 5 of them (one of these patients was
shifted to raltitrexed which, like FP, belongs to the CT class of
anti-metabolites), instead, 4 patients had milder cardiotoxicity
(evident only during stress test) and continued the therapy
avoiding any physical effort and, finally, 25 patients were
able to tolerate the rechallenge. Cardiotoxicity was completely
prevented in 5 of the 7 patients who had an FP dose reduction
only, in 10 of the 13 patients which received FP with dose
reduction and anti-ischemic therapy, and in 4 of those patients
who received a full dose FP and anti-ischemic therapy. Also, 4

patients with mild or no toxicity who received FP at a lower
dose, experienced more severe toxicity when the drug dose was
increased again. The 3 patients who shifted to raltitrexed did not
have any cardiovascular adverse events and tolerated 3, 4, and
28 CT courses, respectively.

Discussion

In our experience, the clinical presentation of FP
cardiotoxicity is extremely variable and often different from the
classical description of “angina and ST-segment elevation at
ECG,” which is typical of vasospastic angina.

More than one-third of our patients were completely
asymptomatic and cardiotoxicity was identified on the basis
of ECG changes. This prevalence of asymptomatic cases is
much higher than the one reported in other retrospective
studies but lower than the prevalence observed in the two
prospective studies conducted in our Institution where all the
patients without rest cardiotoxicity performed a stress test
(14). Actually, this study includes the cases detected in the
two prospective studies conducted in our Institution, in which
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TABLE 4 (A) Correlation between symptoms and ECG changes suggestive of ischemia. (B) Correlation between symptoms and
ventricular arrhytmias.

(A)

Ischemic-like symptoms ECG signs of ischemia

No ST segment elevation ST segment depression Negative T waves

No 8 19 14 7

Dyspnoea 2 2

Atypical chest pain 17 3

Typical angina 6 23 1 1

Atypical symptoms 4 1 2

(B)

Symptoms Ventricular arrhythmias

Rare Frequent Ventricular tachycardia

No 3 9 7

Dyspnoea

Atypical chest pain 1 4 0

Typical angina 2 2 3

Atypical symptoms 9 4

cardiotoxicity was actively searched for with EST, and also
those observed during daily clinical practice. It should be
considered that, after our first observations of effort-induced
cardiotoxicity and of asymptomatic ischemia in 2001 (15), we
started active surveillance of cardiotoxicity even outside the
prospective studies and this raised our chances of detecting the
cardiotoxicity in regular clinical practice. For all patients, we
perform a routine baseline ECG before the beginning of the
treatment, we plan a second one after 2–4 days of CT with 5-
FU or after 7–14 days of CT with capecitabine whenever possible
(i.e., patients receiving in-hospital CT, patients undergoing daily
radiotherapy, patients living near the hospital) and we advise the
patients undergoing FP-based CT to avoid any physical effort
and to promptly refer any new symptom (as chest pain, jaw pain,
dyspnea, and palpitations) occurring during therapy. When
a new ECG abnormality is observed and/or a new symptom
is reported, the patient undergoes a cardiologic evaluation
including an echocardiogram and/or stress test, if necessary, to
define the diagnosis. This approach has been demonstrated to be
effective in detecting several asymptomatic or oligosymptomatic
toxicities, probably missed by most of the retrospective studies
published so far, which included only those patients with clinical
symptoms referred to the caring oncologists (16). At the same
time, by advising to avoid physical efforts, the probability of
eliciting effort-induced cardiotoxicity (which, according to our
prospective studies with EST, accounts for half of the cases of
cardiotoxicity) is reduced.

Concerning the ECG abnormalities, about half of the
patients evaluated in the present study had ST-segment elevation

(either alone or with specular ST segment depression), while
other patients had negative T waves only or arrhythmias
without typical ECG signs of ischemia. This contrasts with
the hypothesis of vasospasm being the main cause of FP-
related cardiotoxicity, which has been proposed for many years,
and it is in support of multifactorial pathophysiology (17–
21). Of note, ST-segment elevation was more frequent in the
patients with rest cardiotoxicity, compared with those with
stress-induced toxicity.

Other studies have reported retrospective or prospective
series of FP-related cardiotoxicity, but it is not always
easy to compare those data with ours, as the criteria for
defining cardiotoxicity, and even the symptoms and the ECG
changes, are equivocal.

In 1992, De Forni et al. prospectively studied 367
patients undergoing 96–120 h of 5-FU continuous infusion.
Cardiotoxicity was observed in 28 patients (7.6%): 18 of
them had angina, 12 presented cardiac collapse or pulmonary
edema, and 8 patients died (5 suddenly and 3 of cardiogenic
shock), ECG signs of ischemia were evident in 18 out of
these 28 patients and global or segmental kinetics reduction
was evident in 9 out of 16 patients who underwent an
echocardiogram (22).

In a prospective study, Yilmaz et al. evaluated the role of
Holter monitoring in 27 patients treated with 5FU: they did
not observe any ST-T change (not even in the 2 patients who
experienced chest pain); however, both a significant decrease
in mean heart rate and an increase in the number of VA were
reported (23).
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TABLE 5 Patients with rechallenge chemotherapy after cardiotoxicity.

PT N Sex, age Drug with
toxicity

Type of
toxicity

Rechallenge:
drug

Dose Anti-
ischemic
drugs

Toxicity N of
cycles

1 F, 43 5FU Angina 5FU 75% Diltiazem,
nitrates

No 8

2 F, 47 5FU Silent ischemia 5FU 75% No 2

3* M, 59 Capecitabine Effort silent
ischemia

5FU 100% Ranolazine Severe 1

4 F, 65 5FU Angina 5FU 100% Nitrates,
Ranolazine, ASA

Severe 1

5* M, 49 Capecitabine Effort silent
ischemia

Capecitabine 50% Mild 1

6 F, 68 Capecitabine Effort silent
ischemia

Capecitabine 75% Betablockers Mild 1

7* F, 51 5FU Angina 5FU 75% No 1

8 M, 49 5FU Angina 5FU 100% Nitrates No 2

9 M, 67 Capecitabine Effort ischemia
and arrhythmias

5FU 75% Betablockers,
amlodipine

Mild 1

10* F, 69 5FU Atypical 5FU 75% Diltiazem Mild 1

11 M, 61 5FU Effort silent
ischemia

5FU 75% No 3

12 M, 69 Capecitabine Silent ischemia Capecitabine 75% Betablockers No 2

13 M, 61 Capecitabine Effort
Arrythmias

5FU 75% No 1

14* F, 73 5FU Effort ischemia
and arrhythmias

5FU 60% No 6

15 F, 61 Capecitabine Effort angina 5FU 100% Diltiazem,
nitrates

Severe 1

16* M, 63 5FU Angina 5FU 75% Nifedipine,
nitrates

No 6

17 F, 42 Capecitabine Effort angina Capecitabine 50% Ranolazine No 7

18 M, 63 5FU Angina 5FU 75% Nifedipine,
nitrates

No 5

19 M, 73 5FU Myocardial
infarction

5FU 75% Betablockers,
nitrates

No 5

20 M, 53 5FU Angina 5FU 75% No 3

21 F, 24 5FU Silent ischemia 5FU 66% Ranolazine No 3

22 M, 58 5FU Silent ischemia Capecitabine 100% Diltiazem,
nitrates

No 6

23 F, 65 Capecitabine Angina Capecitabine 75% Verapamil,
nitrates

No 2

24 F, 43 Capecitabine Silent ischemia,
LVD

Capecitabine 66% Severe 1

25 M, 43 Capecitabine Effort ischemia,
atypical
symptoms

Capecitabine 66% Nitrates, ASA No 1

26 M, 42 5FU Angina 5FU Diltiazem,
nitrates

Severe 1

27 M, 57 Capecitabine Effort
arrhythmias

5FU 100% No 3

28 M, 46 5FU Effort silent
ischemia

5FU 75% No 3

29 M, 68 Capecitabine Effort ischemia,
atypical
symptoms

Capecitabine Betablockers,
nitrates

Severe 1

(Continued)
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TABLE 5 (Continued)

PT N Sex, age Drug with
toxicity

Type of
toxicity

Rechallenge:
drug

Dose Anti-
ischemic
drugs

Toxicity N of
cycles

30 M, 75 Capecitabine Effort
arrhythmias

5FU 100% No 3

31 M, 67 5FU ischemia,
atypical
symptoms

5FU 100% Nitrates No 3

32 F, 55 5FU Takotsubo Raltitrexed 100% No 28

33 M, 55 Capecitabine Effort
arrhythmias

Capecitabine 100% Betablockers No 3

34 M, 47 5FU Effort angina 5FU 100% Nitrates No 1

35* F, 58 Capecitabine Effort angina Capecitabine 75% Trimetazidine,
nitrates

No 1

Second rechallenge

DRUG 1st rechallenge Toxicity Drug Dose

3* 5FU Severe Raltitrexed 100% No 4

5* Capecitabine 50% Mild Capecitabine 75% Severe 1

7* 5FU 75% No 5FU 100% Severe 1

10* 5FU 75%, Diltiazem No 5FU 100% Diltiazem Severe 1

14* 5FU 75% No Capecitabine 75% No 3

16* 5FU 75%, Nifedipine, nitrates No Raltitrexed 100% No 3

35* Capecitabine 75%, Trimetazidine, nitrates No Capecitabine 100% Trimetazidine,
nitrates

Mild 1

5FU, 5 Fluorouracil; ASA, Acetilsalycilc acid; LVD, left ventricular dysfunction; *, patients who had a second rechallenge with different approach.

Khan et al., in a 2012 retrospective study, reported 60 cases
of “symptomatic cardiotoxicity” including 10 patients with not
specified “ischemic ECG changes,” 10 with “chest pain,” 11 with
ventricular tachycardia, 1 cardiac arrest, 36 with bradycardia,
18 with hypotension, 7 with hypertension, and 2 with atrio-
ventricular block. The ECG repolarization abnormalities were
described for 18 cases only: ST-segment elevation was detected
in 5 patients, ST segment depression in 2 patients, and negative
T waves in 11 patients (24).

Peng et al. (10) in 2018, published a multicentric prospective
study evaluating data from 527 patients of which 161
experienced cardiotoxicity related to FP administration. In
particular, 6 patients experienced a MI, 20 had heart failure
(no cases of angina are reported) and 33 had “premature beats”
(if ventricular or supraventricular is not specified). At ECG, a
total of 105 “ischemic changes” were reported, including 70 “ST
changes “ and 47 “T wave changes”.

Instead, in a retrospective study by Zafar et al., only 5-FU-
induced coronary vasospasm was considered and only a very
low rate of cardiotoxicity was reported: although the occurrence
of 5-FU-related cardiotoxicity was likely underestimated, this
actually confirms our observation that typical vasospastic angina
probably accounts for no more than 50% of the cases of FP
cardiotoxicity (25, 26).

In a 2016 retrospective study, Dyhl-Polk et al. reported data
from 452 breast cancer patients treated with capecitabine. In
this study, a total of 22 cases of cardiotoxicity were diagnosed
on the basis of the appearance of cardiac symptoms: chest
pain in 11 patients, MI in 2 patients, arrhythmias in 5 patients
(one had a cardiac arrest), and dyspnea in 3 patients (27).
Two recently published studies (one retrospective and one
prospective) by the same group gave results comparable to
the ones obtained in our study. In the retrospective study,
conducted on patients with colorectal cancer (of which 995
were treated by 5-FU and 1241 with capecitabine), 103 cases
of FP-related cardiotoxicity were reported (5.2% in the 5-FU
group and 4.1% in the capecitabine group). The ECG (not
obtained for all patients) showed ST-segment elevation in 17
cases, ST segment depression or negative T waves in 9 and 8
cases, respectively, and VA in 6 cases. Regarding the symptoms,
45 patients had unstable angina, 23 patients experienced acute
MI (10 cases with ST-segment elevation and 13 cases without
ST-segment elevation), 10 patients had atypical symptoms (chest
pain, dizziness, and dyspnea), 2 patients experienced a syncope
secondary to atrio-ventricular or sino-atrial block and a total
of 10 patients experienced sudden death or cardiac arrest (28).
In the prospective study, instead, the same group of authors
reported MI detected by ECG Holter in 20 patients receiving FP
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(18.7% of the whole group), and 16 of these patients (15% of the
whole group evaluated, 80% of those with signs of ischemia) had
silent ischemia (29). Six patients (5.6% of the whole study group)
developed an acute coronary syndrome (in 3 cases the symptoms
had been preceded by silent ischemia recorded at Holter) and
2 patients had symptomatic VT; 1 patient had a cardiac arrest
after cessation of 5-FU and Holter recording revealed an ST-
segment elevation. These two studies confirm some of our
observations: first of all, in FP-related cardiotoxicity, ST segment
depression or negative T waves are as frequent as ST-segment
elevation. Secondly, that silent ischemia is rather frequent and
can precede significant clinical events, such as acute coronary
syndrome and/or cardiac arrest. Finally, the detection of FP-
related cardiotoxicity is more than doubled in prospective
studies in which planned ECG screening is performed.

It should be considered that, in our study, 24 out of 31
patients complaining of typical angina and 8 out of 9 patients
with chest pain, presented ECG signs of ischemia, mostly
represented by ST-segment elevation (assessed in 18 and 6
patients, respectively). This might explain why, in the studies
identifying cardiotoxicity on the basis of clinical symptoms,
ST-segment elevation is the most frequent ECG abnormality.

Another peculiar observation in our experience is that 55%
of the patients with effort-induced cardiotoxicity had VA, which
may cause syncope or sudden death. This is the main reason
why we are presently giving to all the patients beginning a CT
with capecitabine the advice to avoid any unusual physical effort
when on therapy.

Another peculiar finding in our experience is that 60% of
the echocardiograms performed shortly after detection of the
cardiotoxicity were normal; it should be considered, however,
that both symptoms and ECG abnormalities may vary over
time, ad if the echocardiogram is not obtained during the
acute episode it can be normal. Thus, a normal ECG and a
normal echocardiogram in a patient who had reported angina
symptoms during FP therapy but is presently asymptomatic
cannot rule out the cardiotoxicity.

As regards the possibility that a dihydropyrimidine
dehydrogenase (DPD) deficiency might have played a role
in the cardiotoxicity of our patients, most of the cases had
been observed before the routine use of the test in our
Institution, and all those who were tested showed a wild-type
gene. Thus, also a wild-type phenotype cannot exclude the
possibility of cardiotoxicity. It should also be noted that the
DPD polymorphism is a known risk factor for hematological
and gastrointestinal, but not cardiac toxicity. (30, 31).

The rechallenge with the same drug after FP-induced
cardiotoxicity poses a high risk of severe events and death;
according to the suggestions provided by Saif et al., we limited
the rechallenges to the patients with a strong indication of FP
therapy and performed close monitoring with frequent ECG
(or Holter monitoring), a close cardiologic follow-up and EST
in selected cases (32, 33). The strategies employed to prevent
cardiotoxicity when a rechallenge was considered necessary

were variable and depended upon the available knowledge on
FP toxicity, the anti-ischemic drugs available at different times,
and also to the compliance of the patients. In the first years, we
used mostly nitrates and nifedipine, according to the hypothesis
of vasospasm; diltiazem was the preferred calcium channel
blocker after a report on its utility in a small series of patients
(34); beta-blockers were used in those patients with VA as the
main manifestation of cardiotoxicity, in those with underlying
coronary artery disease and in those with typical angina but
with no signs of vasospasm. However, many patients were
hypotensive and did not tolerate calcium channels blocker or
beta blockers and others did not tolerate nitrates because of the
onset of headaches. In some cases, the therapeutic approach was
modified several times, using a treadmill stress test to assess the
efficacy of the preventive measures, always trying to maintain
the best anti-neoplastic effect, as previously described (33).
Ranolazine, introduced in clinical practice in recent years, was
well tolerated and it was effective in 2 patients, but not in a third.
The number of patients undergoing a rechallenge is too little
to allow an analysis of the efficacy of different cardiovascular
treatments. However, our data suggest that the reduction of FP
dose (associated with an anti-ischemic treatment if tolerated)
and the shift from capecitabine to 5-FU or to a less cardiotoxic
drug as raltitrexed, is probably the best approach, as already
reported by other studies (35–40).

Raltitrexed is a quinazoline inhibitor of the enzyme
thymidylate synthase and it is employed in the treatment of
advanced malignant pleural mesothelioma [in association with
cisplatin it has been demonstrated to improve the overall
survival (41)] and in the treatment of advanced colorectal
cancer. In patients with advanced colorectal cancer, raltitrexed
has failed in demonstrating a superiority, in terms of survival
outcome, when compared to 5-FU, at the cost of a higher
incidence of hematological and gastrointestinal toxicity (42).
However, in patients with cardiotoxicity induced by 5-FU or
capecitabine, raltitrexed can represent a valid alternative, given
the better cardiovascular tolerability profile (40, 42).

S1, an oral fluoropyrimidine composed of tegafur (a 5-FU
prodrug), gimeracil (a dihydropyrimidine dehydrogenase, DPD,
inhibitor), and potassium oxonate, is employed in Asia and in
some European Countries for the treatment of different kinds
of solid tumors, including advanced colorectal cancer. Lower
toxicity of S-1 in the cardiovascular system could be explained
by the fact that gimeracil inhibits DPD, which degrades 5-FU
into its main metabolite alpha-fluoro-beta-alanine (43) (FbAL).
Muneoka et al., in fact, described the case of a patient that
experienced a MI after 5-FU administration and in which high
levels of serum FbAL were detected. This same patient was
later treated with S-1 and did not experience any additional
cardiotoxicity (44).

Uracil/Tegafur (UTF), which is an oral agent composed
of tegafur and uracil, is employed in Asia and also in South
America in patients with advanced colorectal cancer that have
experienced a cardiotoxicity event following the administration
of 5-FU or capecitabine (45).
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However, there is still not enough evidence regarding the
potential cardiotoxicity of both S1 and UTF, thus requiring
particular attention and close monitoring when employed (46).

Conclusion

Fluoropyrimidines (FP) cardiotoxicity is an elusive clinical
condition and its recognition is challenging. At least half of
the patients do not complain of angina or equivalents (and
dizziness should be considered a warning symptom), and the
ECG abnormalities may be absent at rest ECG.

Effort-induced clinical cardiotoxicity is characterized in
about 50% of the cases by VA and by atypical symptoms
(including dizziness). Thus, the patients undergoing FP
therapy should be discouraged from affording any unusual
physical effort.

ECG ischemic changes without angina, either detected at
routine ECG, at Holter or evoked by a physical effort should be
not disregarded as clinically irrelevant, as they may be a sign of
even severe cardiotoxicity.

Active surveillance with ECG during CT and advising the
patients to refer any new symptom may increase the detection
of asymptomatic or oligosymptomatic cardiotoxicity. Also, a
stress test, performed during active oncologic treatment, seems
necessary to rule out the occurrence of cardiotoxicity events.
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Immunosuppressive medications are widely used to treat patients with

neoplasms, autoimmune conditions and solid organ transplants. Key drug

classes, namely calcineurin inhibitors, mammalian target of rapamycin (mTOR)

inhibitors, and purine synthesis inhibitors, have direct e�ects on the structure

and function of the heart and vascular system. In the heart, immunosuppressive

agents modulate cardiac hypertrophy, mitochondrial function, and arrhythmia

risk, while in vasculature, they influence vessel remodeling, circulating lipids,

and blood pressure. The aim of this review is to present the preclinical and

clinical literature examining the cardiovascular e�ects of immunosuppressive

agents, with a specific focus on cyclosporine, tacrolimus, sirolimus, everolimus,

mycophenolate, and azathioprine.

KEYWORDS

immunosuppression, cardiovascular, hypertrophy, hypertension, mitochondria,

fibrosis, toxicity

Introduction

Medications that target and downregulate the immune system are utilized for the

prevention and treatment of a variety of conditions, including neoplasms, autoimmune

diseases, and acute rejection after solid organ transplantation (1). In a recent cohort, 2.8%

of the adult population was treated with long-term immunosuppressive medications,

consistent with prior self-reported estimates (2, 3). In addition to the well described

increased risk of infection and malignancy in chronically immunosuppressed patients,

many of these agents exhibit direct effects on the cardiovascular system including risk

of left ventricular (LV) hypertrophy, myocardial fibrosis, arrhythmia, hypertension,

dyslipidemia, and coronary atherosclerosis (4). Herein, we focus on the cardiovascular

effects and mechanistic underpinnings of calcineurin inhibitors (CNI), mammalian

target of rapamycin (mTOR) inhibitors, and purine synthesis inhibitors (Figure 1).
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Hypertrophy and fibrosis

Cardiac hypertrophy is a feature of adverse cardiac

remodeling that may be driven by genetic or acquired factors.

Hypertrophy is frequently seen in association with diastolic

dysfunction and represents an important marker for adverse

remodeling (5, 6). Much of the focus on immunosuppression-

induced cardiac remodeling has been on the effects on cardiac

hypertrophy in native or transplanted hearts (7–9) (Table 1).

Calcineurin inhibitors

Calcineurin, a calcium and calmodulin-dependent

phosphatase, plays a pivotal role in cardiac hypertrophy by

translocating to the nucleus and dephosphorylating NFAT,

allowing it to transcribe genes to activate hypertrophy in

cardiomyocytes. Cyclosporine (CsA) binds to cyclophilin A,

forming a complex with high affinity for calcineurin, which

in turn inhibits its nuclear translocation. This is hypothesized

to inhibit activation of NFAT-mediated hypertrophy (59).

Tacrolimus binds to FK506-binding protein (FKBP12) to

inhibit calcineurin activity driving reduced NFAT-mediated

transcription of hypertrophic genes.

In early animal experiments, CsA successfully prevented

or attenuated cardiac hypertrophy in mice overexpressing

contractile elements (10, 29), genetic predispositions to

hypertrophy (19), and treatment with exogenous chemical

signals promoting hypertrophy (11, 15, 60). However, these

data were challenged by the failure of CsA to prevent

hypertrophy in several models of hypertension or pressure

overload (16, 35, 61). Tacrolimus has also yielded mixed results.

In murine models of genetic hypertrophic cardiomyopathy,

tacrolimus exacerbated cardiac hypertrophy (37). In animal

models of hypertrophy induced by phenylephrine stimulation,

spontaneously hypertensive rats, or aortic banding, tacrolimus

treatment had variable effects, with exacerbation or amelioration

of the hypertrophic phenotype (16, 38, 61, 62).

Some hypothesized that the mixed results were driven by

variability in hypertrophic signaling from genetic/sarcomeric-

driven hypertrophic signaling vs. adaptive chemical or afterload-

driven hypertrophy (37, 59). This hypothesis is somewhat

weakened by mixed data for transverse aortic constriction

rodent models.

Subsequent investigations suggested that CsA-induced

effects on hypertrophic remodeling may be driven by increased

fibrosis. Multiple studies have shown that CsA treatment

led to increases in MMP2, MMP9, and Collagen I in dose

dependent manner (20–22, 63). Rat hearts treated with CsA

exhibited increased fibrosis/collagen content (64). Similar data

of increased collagen deposition in response to tacrolimus

treatment was observed in human induced pluripotent stem cell-

derived cardiac organoids treated with tacrolimus (65). The in

vitro findings suggest that increased fibrosis is not a result of

calcineurin-induced hypertension.

Notwithstanding some of the conflicting data in animal

models, the data from humans have been fairly consistent

as to the effects of CsA and tacrolimus on human hearts.

Endomyocardial biopsies from heart or liver transplant patients

treated with CsA showed structural distortion, increased

fibrosis, and increased collagen levels (25, 26). Furthermore,

patients treated with CsA and tacrolimus had hypertrophy or

increased LV mass on autopsy or imaging (8, 26, 27, 39, 40).

A clinical trial investigating the effect of CsA in patients with

hypertrophic cardiomyopathy was initiated, but it is unclear

if the study was completed and findings, if any, were not

published (66).

Despite some earlier reports of amelioration of cardiac

hypertrophy by CNI, there is no clear evidence in humans

to corroborate this finding. Supported by in vitro and human

data, a consistent signal of increased hypertrophy and fibrosis

associated with CNI treatment is observed (23, 28). Cellular data

highlight that the increase in LV mass may be driven primarily

by CNI-induced increase in fibrosis and collagen deposition

rather than cardiomyocyte remodeling.

mTOR inhibitors

mTOR inhibitors, such as sirolimus and everolimus, inhibit

mammalian target of rapamycin complex I, thereby inhibiting

downstream pathways driving cell growth, proliferation, and

survival. There are notable differences between sirolimus

and everolimus (67). Everolimus is the 40-O-(2-hydroxyethyl)

derivative of sirolimus, and differs in its subcellular distribution,

pharmacokinetics and binding affinity. Compared to sirolimus,

everolimus has higher bioavailability and shorter half-life. Both

drugs form a complex with FKBP-12, which binds mTOR.

However, everolimus binding to FKBP-12 is ∼3-fold weaker

than that of sirolimus, leading to significant differences in

inhibition of mTORC2 activation and downstream effects (68,

69). Clinically this has translated into differences in side effect

profile and potency of each drug.

This class of drugs has garnered significant interest in

solid organ transplantation owing to salutary effects on renal

function, allograft vasculopathy and malignancy risk (70).

Sirolimus has been shown to reduce cardiac hypertrophy and

fibrosis in animal models of pressure overload, uremia, and

adriamycin induced cardiomyopathy (42, 43, 71). In a rat

model of myocardial infarction, everolimus improved post-

infarct remodeling (72) although in the recently published

CLEVER-ACS trial of patients with myocardial infarction,

there everolimus treatment had no effect on myocardial

remodeling (73). Cellular data suggest that attenuation of

adverse cardiac remodeling by mTOR inhibitors may be related
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FIGURE 1

Left Panel: Cardiac e�ects of immunosuppression. Column A: Calcineurin inhibitors are associated with increased hypertrophy in clinical

studies, with mixed preclinical evidence. mTOR inhibitors are associated with a decrease in cardiac hypertrophy in patients and animal studies.

Purine synthesis inhibitors prevent cardiac remodeling in limited evidence in preclinical studies. Column B: Calcineurin inhibitors, particularly

CsA, prevent mitochondrial dysfunction and mPTP opening. mTOR inhibitors may prevent mitochondrial dysfunction in preclinical studies. The

e�ects of purine synthesis inhibitors on mitochondrial function in the heart are unknown. Column C: Calcineurin inhibitors are associated with

arrhythmia in limited clinical case reports, with mixed e�ects in animal studies. The e�ects of mTOR inhibitors on arrhythmia are unknown.

Purine synthesis inhibitors, particularly azathioprine, are weakly associated with increased atrial arrhythmias in clinical case reports. Right Panel:

Vascular e�ects of immunosuppression. Column A: Hypertension. Calcineurin inhibitors are strongly associated with an increased incidence of

hypertension in preclinical and clinical studies. mTOR inhibitors and purine synthesis inhibitors have a vasodilatory e�ect in animal models and

limited clinical studies. Column B: Vascular remodeling. Calcineurin inhibitors are strongly associated with proliferative vasculopathy and

vascular inflammation. mTOR inhibitors protect against vascular damage in clinical studies and preclinical models. Purine synthesis inhibitors are

associated with improvement in vascular remodeling in preclinical studies and limited clinical reports. Column C: Dyslipidemia. Calcineurin

inhibitors are associated with increased total serum cholesterol and LDL. mTOR inhibitors, particularly sirolimus, are strongly associated with an

increase in serum cholesterol and triglycerides. Purine synthesis inhibitors are weakly associated with improvement in serum lipids.

in part to reduced cardiac fibroblast proliferation and collagen

secretion (65).

The favorable signal for sirolimus has been validated

in human studies, which largely compared outcomes to

subjects treated with CNI. Sirolimus has been associated with

improvement in diastolic dysfunction and filling pressures,

possibly through attenuation of fibrosis (47–49). In patients

with heart transplantation, everolimus treatment was associated

with less myocardial fibrosis than mycophenolate treatment by

biopsy and imaging (50, 51). The data in kidney transplant

patients has been more mixed with some suggesting less LV

hypertrophy with the use of everolimus (74), while a number of

randomized trials showed no difference in LV mass index after

conversion from CsA to everolimus post-kidney transplant (52–

55). The incidence of adverse cardiovascular events from these

studies was mixed with the majority showing no differences in

outcomes (75–77). This discordant signal may be related to the

fact that kidney transplant recipients often have concomitant

hypertension and activation of the renin-angiotensin system

that may have already contributed to significant adverse cardiac

remodeling prior to kidney transplant—making it less likely to

observe differences following kidney transplantation (75, 78).

Additionally, most of the studies may have been underpowered

to detect differences in cardiovascular outcomes.

Purine synthesis inhibitors

Purine synthesis inhibitors block cell proliferation by

preventing the synthesis of DNA and RNA during S phase of the

cell-cycle. Mycophenolate mofetil (MMF) treatment has been

shown to prevent or attenuate ischemic injury and autoimmune

myocarditis in animal models, with reduced secretion of

inflammatory markers such as TLR4, NFκB, BAX expression,

and TNFα (57, 58). There are no human studies suggesting a

link between cardiac hypertrophy or fibrosis in association with

MMF or azathioprine use.

Mitochondrial dysfunction

Mitochondria constitute a third of cardiomyocyte volume,

and the heart, as a metabolically active organ, relies heavily on

mitochondrial ATP production (79). Mitochondrial dysfunction
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TABLE 1 Studies examining e�ects of immunosuppression on cardiac hypertrophy and fibrosis.

Agent Species Condition Hypertrophy/Fibrosis Studies

CsA Rat, mouse TAC Attenuated LVH (10–14)

Mouse TAC No effect (7, 15, 16)

Rat SHR No effect (16–18)

Mouse Gαq Attenuated LVH (19)

Rat Cardiac fibroblasts No effect (20)

Rat Cardiac fibroblasts Induced fibrosis (21–23)

Rat Langendorff Decreased scar (24)

Human Transplant Increased LVH (25–28)

Human LVH, HCM, CAD Attenuated LVH (29)

Human STEMI Decreased scar (30)

Human STEMI No effect (31–34)

Tacrolimus Rat SHR Attenuated LVH (35, 36)

Mouse Genetic HCM Exacerbated LVH (37)

Rat SHR, TAC No effect (16)

Human Transplant Increased LVH (26, 27, 38–40)

Sirolimus Rat Phenylephrine Attenuated LVH (41)

Mouse, Rat TAC Attenuated LVH (42, 43)

Rat Adriamycin Attenuated fibrosis (44)

Mouse Leprdb diabetic Prevented fibrosis (45)

Rat Zucker obese Prevented fibrosis (46)

Zucker lean Increased fibrosis

Human Transplant Regressed LVH (47–49)

Everolimus Human Transplant Attenuated LVH, fibrosis (50, 51)

Human Transplant No effect on LVH (52–55)

Rat Metabolic syndrome Attenuated LVH, fibrosis (56)

MMF Rat Ischemia-reperfusion Prevented apoptosis (57)

Rat Myocarditis Prevented LV dysfunction (58)

TAC, Transverse Aortic Constriction; SHR, Spontaneously hypertensive rat; LVH, Left ventricular hypertrophy; HCM, hypertrophic cardiomyopathy; CAD, coronary artery disease;

STEMI, ST elevation myocardial infarction.

is a feature of multiple types of cardiomyopathy, as it confers

oxidative stress and changes in energetics to drive adverse

cardiac remodeling. Immunosuppressive agents can exert direct

effects on mitochondrial health to modulate cardiac remodeling

and this has been subject of much investigation (Table 2).

Calcineurin inhibitors

Cyclophilin D is a protein in the inner mitochondrial

matrix involved in opening of the mitochondrial permeability

transition pore (mPTP) (94). mPTP opening results in

mitochondrial calcium overload, release of cytochrome C, a

process involved in apoptosis and implicated in myocardial

ischemia-reperfusion (IR) injury (80). CsA interacts with

cyclophilin D thereby preventing mPTP opening and protecting

the mitochondria from calcium overload. Tacrolimus does

not bind cyclophilin D and the effects of tacrolimus on

mitochondrial function and mPTP opening are less defined.

Multiple animal studies have sought to define the effect of both

drugs on mitochondrial function.

CsA prevented mitochondrial-mediated injury and

improved myocardial recovery in models of hypothermia, IR

injury, and inborn errors of mitochondrial DNA polymerase

(81–86, 95). In addition, CsA and/or tacrolimus have been

associated with a favorable mitochondrial phenotype in the face

of adriamycin treatment, hypoxia or endotoxemia (88–90).

Clinical data on the implications of these findings have been

scant. In a single study of patients presenting with ST elevation

myocardial infarction, CsA treatment decreased myocardial

scar burden, which in combination with pre-clinical evidence

provided promise for CsA as a “post-conditioning agent” during

myocardial infarction (24, 30). However, follow-up studies failed

to show any benefit to CsA treatment in regards to LV function,

arrhythmia, or mortality (31–34). The discordance suggests that

CsA protection frommitochondrial injury is largely a short term
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TABLE 2 Studies examining e�ects of immunosuppression on cardiac mitochondrial function.

Agent Species Condition Mito function Studies

CsA Rat Isolated Mito Protected from Ca2+ overload, prevented mPTP opening (80)

Rat Hypothermia Improved ATP levels (81)

Rat IR injury Prevented mito injury (82, 83)

Mouse Mito DNA mutations Prevented mito injury (84)

Pig, Rat Cardioplegic arrest Prevented mito injury (85, 86)

Pig HFpEF Attenuated mito dysfunction (87)

Mouse Adriamycin Prevented loss of mito membrane potential (88)

Feline Endotoxemia Normalized mito respiration (89)

Tacrolimus Mouse Adriamycin Did not prevent loss of mito membrane potential (88)

Feline Endotoxemia Normalized mito respiration (89)

Canine, Mouse IR injury Prevented loss of mito GSH and attenuated mito dysfunction (90, 91)

Sirolimus Mouse Injection Inhibited mito respiration (92)

Mouse IR injury Inhibited apoptosis, opened mito KATP channel (93)

Mito, Mitochondrial; IR, ischemia-reperfusion; HFpEF, Heart failure with preserved ejection fraction.

TABLE 3 Studies examining e�ects of immunosuppression on arrhythmia.

Agent Species Condition Arrhythmia Studies

CsA Rat Injection Sinus tachycardia, QT prolongation (101)

Rat Oxidant stressor Failed to suppress ventricular arrhythmia (102)

Rabbit Atrial myocyte Prevented cardiac alternans, decreased AF (103)

Canine Pacing-induced AF Prevented downregulation of LT Ca2+ channel α-1c expression (104)

Canine Chronic AV block Prevented polymorphic ventricular tachycardia (105)

Mouse Iron overload Prevented arrhythmia (106)

Human STEMI No effect (31–34)

Human Transplant Case reports of increased arrhythmia (107, 108)

Tacrolimus Guinea pig Injection Dose-dependent QT prolongation (109, 110)

Pig, rat Isolated myocytes Increased Ca2+ transients, prolonged action potential (111–114)

Rat IR injury Decreased ventricular arrhythmias (115)

Human Transplant Case reports of arrhythmias (116–118)

Azathioprine Human Transplant More atrial arrhythmias than MMF (119)

Human Ulcerative colitis, psoriasis Case reports of atrial fibrillation (120–123)

STEMI, ST elevation myocardial infarction AF, Atrial fibrillation; IR, Ischemia-reperfusion; AV, atrioventricular.

or acute benefit. No human studies to date have evaluated the

effect of CNI on mitochondrial structure and function in light of

associated cardiac remodeling.

mTOR inhibitors

Sirolimus has been associated with a reduction in

respiration and cellular energetics in cardiomyocytes

(92). This effect has been attributed to the observation

that mTOR may activate AMP-activated protein kinase

to regulate cellular bioenergetics (96). In a mouse model

of cardiac IR injury, sirolimus inhibited apoptosis and

improved cardiac performance via interaction with the

mitochondrial ATP-sensitive potassium channel (93) and

appears to reduce ER stress and cytochrome C release

(97). In brain, sirolimus enhances the distribution of CsA

into mitochondria, accentuating its effects of decreasing

mitochondrial metabolism, whereas everolimus appears to

antagonize the effects of CsA in mitochondria to increase

energy metabolism (67, 98). At therapeutically relevant

concentrations, everolimus, but not sirolimus, distributes into

brain mitochondria (99, 100). As cited above clinical studies

have suggested a favorable effect for mTOR inhibitors on cardiac

remodeling—but data examining mitochondrial function

is lacking.
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TABLE 4 Studies examining e�ects of immunosuppression on hypertension.

Agent Species Condition Hypertension Studies

CsA, Tacrolimus Rat Injection Develop HTN prior to LVH (101)

Rat Isolated arteries Enhanced vasoconstriction, endothelin-1 receptor activation, decrease in eNOS (127–129)

Human Transplant Increase in HTN after transplant, more in CsA than tacrolimus (130–132)

Sirolimus Rat Mineralocorticoid Normalized systolic blood pressure (133)

Bovine Endothelial cells Restored eNOS-mediated vasodilation (134)

Human, mouse PAH Alleviated hypoxia-induced exacerbation of PAH (135)

Everolimus Human Primary aldosteronism Associated with improvement in blood pressure (136)

Human Transplant Lower incidence of HTN compared to CNI (137)

Human PAH Improvement in pulmonary vascular resistance (138)

Human Renal cell carcinoma Increased incidence of HTN when used in conjunction with Lenvatinib (139)

MMF Mouse Systemic lupus erythematous Lowered blood pressure (140, 141)

Rat Lead-induced HTN Attenuated HTN (142)

Rat Mineralocorticoid HTN Prevented hypertension (143, 144)

Human Psoriasis, rheumatoid arthritis Lowered blood pressure (145)

Azathioprine Rat Pregnancy-associated HTN Attenuated hypertension (146)

Human, Rat PAH Improved pulmonary vascular resistance (147)

Human Transplant Less likely to develop hypertension than CsA group (148)

HTN, Hypertension; PAH, pulmonary arterial hypertension; eNOS, endothelial nitric oxide synthase.

Purine synthesis inhibitors

There are no reports of direct effects of MMF and

Azathioprine on mitochondrial function in cardiomyocytes or

heart tissue.

Arrhythmia

With described effects on myocardial structural

remodeling and intracellular ion transporter function,

immunosuppressive therapies may modulate the risk

of arrhythmia. This poses significant short- and long-

term risks, especially in patients with underlying

structural heart disease and heart transplant recipients

(Table 3).

Calcineurin inhibitors

Calcineurin affects intracellular calcium transients

in cardiomyocytes via modulation of the ryanodine

receptor and activation of the NFAT pathway, which

drives transcriptional changes in proteins regulating

intracellular calcium (124). Calcineurin inhibitors

in turn can play a role in mediating changes in

calcium transients impacting the electrical phenotype of

the heart.

Delineating the precise effect of CNI on calcium

regulation in human cardiomyocytes has proven elusive.

In some models CsA appeared to reduce sarcoplasmic

reticulum (SR) calcium release and cytosolic levels of

Ca2+ (106). However, other models showed that both

CsA and tacrolimus result in increased Ca2+ release

events and an increase in QT prolongation. A possible

mechanism of QT prolongation may be an increase in the

duration of Ca2+ transients due to blockade of Na2+/Ca2+

exchanger. It is possible that CsA and tacrolimus exert

different electrical phenotypes owing to their differential

role in mitochondrial Ca2+ regulation and mPTP opening.

Nonetheless the results in animal models of both drugs have

been equally mixed; in some animal models, the cellular

phenotypes of CNI appeared to translate to a reduced

propensity to arrhythmia (103, 105, 106), but not in other

models (101, 102).

Clinically, in case reports, CsA and tacrolimus

induced atrial fibrillation and tacrolimus induced

QT prolongation and atrial arrhythmias (107, 116).

However, neither signal was seen in clinical trials

with either drug suggesting that the arrhythmic risk is

low (125, 126).

mTOR inhibitors

There are no published reports of mTOR inhibitors

modulating risk of arrhythmias. The recently published

CLEVER-ACS trial showed no difference in atrial arrhythmias

in patients treated with everolimus after myocardial

infarction (73).
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TABLE 5 Studies examining e�ects of immunosuppression on vascular remodeling.

Agent Species Condition Vascular remodeling Studies

CsA Mouse Endothelial and vascular

smooth muscle cells

Increased endothelial cell activation, cytokines (152)

Rat Isolated arteries Increased endothelial dysfunction, oxidative

stress, inflammation, smooth muscle proliferation

(128, 159–

162)

Human Transplant Associated with proliferative coronary

vasculopathy

(163–165)

Tacrolimus Human Rat Norepinephrine

Acetylcholine

Increased endothelial toxicity, impaired smooth

muscle relaxation

(166)

Human Transplant Less vasculopathy than CsA (167–169)

Sirolimus Rat Mineralocorticoid,

allografts, shear stress

Inhibited ROS, inflammation, intimal

proliferation

(133, 170,

171)

Pig Rat Human Smooth muscle Inhibited cell migration, proliferation (172–174)

Human Transplant Slowed coronary vasculopathy progression (175, 176)

Human Transplant Lowered PWV, arterial stiffness (177, 178)

Human Coronary stenting Prevented intimal proliferation (179)

Everolimus Rabbit Carotid arteries Improved vascular inflammation, thickening (180)

Mouse LDL-receptor knockout Prevented atherosclerosis (181, 182)

Human PAH Improved pulmonary vascular resistance (138)

Human Transplant Reduced CAV incidence/severity (183, 184)

Human Transplant No effect on pulse wave velocity (75)

MMF Rat Lead-induced HTN Decreased inflammation, intimal thickening (142)

Human Transplant Decrease in atherosclerosis, CAV (119, 185,

186)

Human HUVEC+ CNI Prevented ROS production (187)

AZA Rat Pregnancy-associated

HTN

Attenuated endothelial cell dysfunction (146)

Rat Subarachnoid

hemorrhage

Attenuated vasospasm, reduced endothelin-1 (188)

Mouse Transgenic

atherosclerosis

Inhibited atherosclerosis, decreased endothelial

monocyte adhesion

(189)

Human HUVEC Decreased cell proliferation (190)

ROS, reactive oxygen species; PAH, pulmonary arterial hypertension; HUVEC, human umbilical vein endothelial cells; AZA, azathioprine; PWV, pulse wave velocity.

Purine synthesis inhibitors

Azathioprine use is associated with increased incidence of

atrial arrhythmias. In a 3-year randomized controlled trial of

azathioprine vs. MMF, heart transplant patients treated with

azathioprine had a higher rate of atrial arrhythmias than

those on MMF (119). The mechanism for this phenomenon is

unknown. There are no published reports of MMF modulating

arrhythmia risk.

Hypertension

Hypertension is a well described side effect of

immunosuppressive medication use, particularly CNI, and

is associated with increased risk of coronary artery disease,

cerebrovascular events, renal dysfunction, and adverse

cardiovascular remodeling (Table 4).

Calcineurin inhibitors

CNI are known to cause hypertension, with 50–80% of

patients reported to have hypertension with chronic use.

CsA is associated with a higher incidence compared to

tacrolimus (130). CNI are implicated in afferent arteriole

vasoconstriction and activation of the renin-angiotensin system,

promoting sodium retention and volume expansion (127, 149).

Furthermore, CsA and tacrolimus are associated with promoting

direct vasoconstriction by one or more of the following
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TABLE 6 Studies examining e�ects of immunosuppression on dyslipidemia.

Agent Species Condition Dyslipidemia Studies

CsA Human Transplant Increased total cholesterol, LDL, decreased HDL (202, 203)

Human Transplant Increased cholesteryl ester transfer protein,

lipoprotein lipase activity, decreased lipolysis

(204, 205)

Human Transplant Pro-oxidant effect on LDL (206, 207)

Tacrolimus Mouse High vs low dose High dose developed hypercholesterolemia, low

dose did not

(208)

Human Transplant Less significant increase in LDL, total cholesterol

than CsA

(130, 209–

213)

Human Transplant Less pro-oxidant effect on LDL than CsA (206, 207)

Human Mouse HUVEC, diabetic mice Decreases oxidized LDL uptake to endothelial

cells, smooth muscle cells

(214–216)

Mouse Pcsk9 knockout Increased PCSK9 expression, leading to decreased

LDL receptor expression, increased LDL

(217)

Human Transplant Increase in cholesterol, triglycerides (70, 218)

Human Transplant Increased apolipoprotein C-III, lipoprotein lipase (204, 219)

Everolimus Mouse LDL-receptor knockout Increased VLDL/LDL, inhibited atherosclerosis (181, 182)

Human Transplant No additive increase in total cholesterol and

triglycerides

(220)

Human Transplant Similar dyslipidemia to sirolimus (221)

Human Transplant Decreased oxidized LDL (222)

Human Transplant No change in lipids, increase in PCSK9 (223, 224)

MMF Rabbit High-cholesterol diet No effect on LDL, HDL, or triglyceride levels (225)

Human Transplant Cholesteryl ester transfer protein activity

unchanged with MMF

(131, 204,

226)

Azathioprine Human Transplant Conversion from CsA decreased total cholesterol,

LDL, triglycerides, improved LDL oxidation

(227)

Human Transplant Did not alter serum lipids in comparison to MMF (228)

mechanisms: increased tone of vascular smooth muscle (128,

150, 151), reduced nitric oxide production (129), and activation

of endothelin-1 receptor (129). In cultured murine endothelial

and vascular smoothmuscle cells, both CsA and tacrolimus were

associated with production of proinflammatory cytokines and

endothelial activation, with increased superoxide production

and NF-kB regulated synthesis of proinflammatory factors,

which were prevented by pharmacological inhibition of TLR4.

This raises the possibility that a proinflammatory milieu drives

chronic endothelial dysfunction, contributing to CNI-induced

hypertension (152).

There is some controversy as to whether the clinical

hypertrophic phenotype is related to direct myocardial

effects or is in fact due an increase in the incidence of

hypertension associated with CsA use. Observations that rats

treated with CsA develop hypertension prior to myocardial

hypertrophy (4, 101, 153–155) supported the notion that

perhaps the clinical hypertrophic phenotype is purely related

to CNI-induced hypertension rather than direct myocardial

effects. While hypertension may be a contributor to the

hypertrophic phenotype observed, multiple animal and cellular

models have supported a direct effect of CNI on myocardial

remodeling.

mTOR inhibitors

mTOR inhibitors have been associated with a lower risk

of hypertension compared to calcineurin inhibitors when used

in solid organ transplant recipients (137, 156). The difference

between effects of CNI and mTOR inhibitors is likely driven

by multiple mechanisms with an overall vasodilatory effect of

mTOR inhibitors (157, 158). Sirolimus and everolimus appear

to increase nitric oxide production preventing endothelial

hyperplasia and dysfunction (133, 134). This promising anti-

hypertensive profile has led to the consideration of mTOR

inhibitors as a primary therapy for specialized difficult-to-

treat populations with hypertension including pulmonary

arterial hypertension and primary hyperaldosteronism (138,

139).
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Purine synthesis inhibitors

Purine synthesis inhibitors are not associated with

hypertension and may in fact have an antihypertensive

effect. In comparison to patients treated with CsA after heart

transplantation, those treated with azathioprine were less

likely to develop hypertension (148). Lower blood pressures

have been reported in patients taking MMF for psoriasis

and rheumatoid arthritis (145). Possible mechanisms for the

favorable hypertensive profile include: lower pro-inflammatory

signaling that drives endothelial dysfunction and hyperplasia,

decreased circulating levels of endothelin-1, and reduced

sodium reabsorption and neuro-hormonal activation leading

to hypertension (142–144). Taken together, these data

suggest that purine synthesis inhibitors carry a lower risk of

systemic hypertension, and may in fact contribute to favorable

mechanisms to reduce hypertension in pulmonary hypertension

and renal dysfunction-associated hypertension.

Vascular remodeling

In addition to effects on hypertension, immunosuppressive

agents may directly contribute to abnormal vascular remodeling

to drive cardiovascular adverse events, independent of

hypertension or dyslipidemia. Defining this risk and the

contributing mechanisms for each drug is important in order to

ensure appropriate follow up and identify potential actionable

targets to modify the risk profile (Table 5).

Calcineurin inhibitors

CNI, particularly tacrolimus, have been associated with

increased risk of allograft vasculopathy (167–169, 191). This

notable complication of transplanted hearts represents a major

driver of graft dysfunction and has significant implications for

quality of life and longevity of heart transplant recipients (163–

165). This has been replicated in animal models using both

tacrolimus andCsAwith adverse remodeling features of vascular

stiffness, thickening, inflammation and fibrosis noted in treated

animals (159, 160). Themechanisms for these include: decreased

fibrinolytic activity in vessel walls, increased oxidative stress in

endothelial cells, and possibly increased intracellular calcium in

vascular smooth muscle cells (161, 162, 192).

mTOR inhibitors

Both sirolimus and everolimus have been associated with

a more favorable vascular profile and their clinical efficacy in

reducing the rate of progression of cardiac allograft vasculopathy

has led to widespread use in heart transplant recipients

(175, 176, 183). In addition to reducing signaling associated

with endothelial dysfunction, mTOR inhibitors have been

shown to reduce vascular smooth muscle proliferation, intimal

hyperplasia, and infiltration by inflammatory cells (170–173,

193, 194). Everolimus, in particular, was shown to reduce pro-

inflammatory signaling by decreasing IL-9, VEGF release, and

TNFα induced adhesion of endothelial cells (184). These effects

have led to wide adoption of everolimus- and sirolimus-eluting

stents in the treatment of coronary artery disease (179, 195, 196).

In several trials of kidney transplant patients, a switch

from CsA to mTOR inhibitor was associated with stabilization

or improvement in parameters of arterial stiffness, including

pulse wave velocity (PWV), carotid systolic blood pressure,

pulse pressure, and augmentation index (177, 178). One notable

exception was a secondary analysis of the ELEVATE trial, where

no difference in PWV was found with switch from CsA to

everolimus, which was attributed to significant variation in

baseline PWV in the study population (75).

In addition to reducing allograft vasculopathy, the anti-

vascular proliferation signal conferred by mTOR inhibitors

has made the drug class of substantial interest in oncology

to suppress tumor neovascularization. Nonetheless, while

this anti-proliferation profile offers a substantial benefit, it

carries some drawbacks; Namely, both mTOR inhibitor drugs

are associated with an increased incidence of lymphedema,

which is thought to be driven by inhibition of lymphatic

endothelial cell proliferation (197, 198). The incidence of such

side effects must be considered in oncologic therapy, where

drug dosage is typically higher than that used in transplant

immunosuppression (199).

Purine synthesis inhibitors

Purine synthesis inhibitors appear to confer a beneficial

vascular remodeling profile. MMF has been associated with

reduced atherosclerosis progression and CAV in patients and

animal models (119, 142, 185). Animal models point to a

signal of decreased vascular oxidative stress and inflammation

as the driving mechanism of that benefit (187, 200, 201).

Reduced endothelial and smooth muscle proliferation in

association with MMF have also been proposed as a possible

mechanism, although the evidence is more limited than for

mTOR inhibitors (190).

Dyslipidemia

Immunosuppressive medications are associated with

dyslipidemia. Each drug class is associated with individual

variations in affected lipid particles and more importantly in the

conferred risk of atherosclerosis (Table 6).
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Calcineurin inhibitors

CsA use is associated with a dose-dependent increase in

total cholesterol and low-density lipoprotein (LDL) cholesterol,

a decrease in high-density lipoprotein (HDL) cholesterol, and

an increase in serum triglycerides (202, 203). These changes

are driven by a decrease in lipoprotein lipase and an increase

in activity of cholesteryl ester transfer protein (204, 229).

Additionally, CsA may reduce expression of the LDL receptor,

thereby impairing LDL clearance (230–232). Tacrolimus is

associated with a similar, but milder, dyslipidemia profile

compared to CsA (130, 209–212). CsA appears to be associated

with an increase in oxidized LDL, which confers a higher risk

of atherosclerosis, while the data for tacrolimus effect on LDL

oxidation are mixed (206–208).

mTOR inhibitors

Sirolimus is a stronger inducer of hyperlipidemia than

CNI, associated clinically with an increase in serum LDL and

triglyceride levels (70, 218, 233). The mechanism remains

unclear, although it may be due to a combination of reduced

catabolism, an increase in the free fatty acid pool, increased

hepatic production of triglycerides, and secretion of very low

density lipoprotein (VLDL) (204, 217). In addition, sirolimus is

associated with an increase in serum PCSK9 levels, which acts

as a post-transcriptional regulator of LDL receptor expression

(234). Clinical data on the risk of dyslipidemia associated with

everolimus has been mixed. In clinical studies, everolimus

was not associated with an increased risk of dyslipidemia

compared to CNI (220, 222, 223, 235–237). However, a meta-

analysis comparing mTOR inhibitors to CNI adverse events has

noted no difference between sirolimus and everolimus in the

incidence of dyslipidemia (238). This suggests that everolimus

may contribute to dyslipidemia, but at an intensity that is

between CNI and sirolimus.

Interestingly, despite the increase in serum lipids,

mTOR inhibitors are associated with an overall lower risk

of atherosclerosis (195). Sirolimus reduces oxidized-LDL

adhesion and uptake to endothelial cells, and can promote

its autophagic degradation (214, 215). Additionally, sirolimus

reduces intracellular lipid accumulation in vascular smooth

muscle cells, and increases cholesterol efflux via increased

expression of the ATP binding cassette protein ABCA1 (216).

Similarly everolimus treatment in LDL receptor knockout mice,

everolimus increased VLDL/LDL levels but reduced the rate

of atherosclerosis. Thus, regardless of dyslipidemia profile,

mTOR inhibitors appear to result in a net reduction in the

rate of atherosclerosis, which may explain the overall clinical

benefit observed.

Purine synthesis inhibitors

Both MMF and azathioprine appear to have a neutral effect

on lipids with no significant changes observed in lipid profile in

clinical studies (131, 226–228). In vitro studies suggest thatMMF

increases cholesterol efflux, but another study demonstrated

inhibition of lipoprotein lipase activity—the opposing effects

may explain the net neutral profile conferred by the drug.

Drug exposure and bioavailability

It is important to note that the bioavailability and

exposure levels of the immunosuppression drugs have varied

tremendously across clinic and scientific studies in the field.

This may explain the differences observed between pre-clinical

and clinical studies or even discrepancies between different

clinical studies. Part of this variation is not simply investigator

mediated, but is driven by variability in clinical practice by

geographic area and changes in clinical practice over time. Early

CsA trough concentrations in kidney transplant patients ranged

200–500µg/ml, whereas in Europe, they were typically lower

(100–200µg/ml). Similarly, tacrolimus trough levels ranged 12–

20 ηg/ml in the US, and lower in Europe (8–15 ηg/ml). There

were also variations in sirolimus and everolimus levels when

used in combination with CNI. MMF was previously prescribed

at higher doses than is typically used now (2–3 g twice daily to

1 g twice daily) (12, 55, 107, 131).

Conclusions

Immunosuppressive agents exert significant effects on

the heart and vasculature. Mechanistic studies point toward

immunosuppression drug-specific influences on changes

in cell proliferation, mitochondrial function, inflammatory

cytokines, and altered calcium handling as potential mediators

of these phenotypes. Calcineurin inhibitors promote cardiac

hypertrophy, hypertension, dyslipidemia, and vascular

remodeling, while mTOR inhibitors have an anti-proliferative

effect with attenuation of cardiac hypertrophy and vascular

remodeling despite promoting dyslipidemia. Purine synthesis

inhibitor are less well studied, but may have a neutral to mildly

positive effect on hypertension and vascular remodeling. These

phenotypes are associated with significant morbidity in patients

taking immunosuppressive medications, carrying increased

risks of heart failure, cardiovascular disease, and kidney

dysfunction. While preclinical studies have provided invaluable

insight into mechanisms of cardiovascular remodeling, the

discordance with clinical data, such as in the case of CNI

and hypertrophy, highlights the importance of caution in

generalizing the results of cell-based and animal models.

Further translational research is needed to identify actionable
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targets to treat associated cardiovascular side effects of

immunosuppression drugs.
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Aim: To explore the association of cardiac parameters with di�erent

clinical outcomes in patients with anti-PD-1 immunotherapy-induced

myocardial injury.

Methods and results: We screened 3,848 patients who received anti-PD-1

immunotherapy from June 2018 toOct 2021 at the Second Xiangya Hospital of

Central South University. Among those patients, 134 patients were diagnosed

with anti-PD-1 immunotherapy-induced myocardial injury. Twenty-four

patients with cardiovascular symptoms were divided into the major adverse

cardiac events (MACE) group, and 110 patients without cardiovascular

symptoms were divided into the non-MACE group. We compared creatine

kinase isozyme (CK-MB), high-sensitivity troponin T (hsTNT), N-terminal

pro–B-type natriuretic peptide (NT-ProBNP), electrocardiography (ECG), and

echocardiographic parameters between the two groups of patients. CK-MB,

hsTNT, NT-proBNP [2,600.0 (1,317.00–7,950.00) vs. 472.9 (280.40–788.80),

p ≤ 0.001], left ventricular end-diastolic diameter (LVEDd), left ventricular

ejection fraction (LVEF) and QRS interval were significantly di�erent. The

receiver operating characteristic (ROC) curve was used to compare the

accuracy of various indicators to predict the occurrence of MACE events.

NT-ProBNP (area under the curve [AUC] 97.1) was the best predictor, followed

by CK-MB (AUC = 94.1), LVEF (AUC = 83.4), LVEDd (AUC = 81.5), and other

indicators. In the MACE group, 11/24 patients had experienced cardiogenic

death by the end of follow-up. Therewere significant di�erences in the CK-MB,

hsTNT, NT-proBNP, LVEDd, LVEF, and QRS intervals between the deceased

patients and the survivors. The ROC curve shows that hsTNT is the most

accurate marker for predicting cardiogenic death in the MACE group (AUC

= 91.6).

Conclusion: In patients with myocardial injury after PD-1 inhibitor treatment,

NT-proBNP is the parameter of choice to predict the likelihood of developing

cardiovascular symptoms, whereas, in symptomatic patients, hsTNT is the
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optimal parameter associated with the outcome of death compared with other

cardiac parameters.

KEYWORDS

cardiac parameters, anti-PD-1 immunotherapy, myocardial injury, prognostic

predictor, cardiogenic death

Introduction

Cancer and cardiovascular diseases are the two most

important categories of diseases affecting human health (1).

Immunotherapy has advanced rapidly in the treatment of

tumors in recent decades (2). In particular, immune checkpoint

inhibitors (ICIs) represented by anti-programmed cell death-

1 (PD-1) antibody therapy are one of the most commonly

used immunotherapy methods worldwide (3). According to

the guidelines published by multiple oncology organizations

around the world (4, 5), PD-1 inhibitors have become a standard

treatment for a variety of solid advanced malignancies, and

immunotherapy-induced myocardial injury has increasingly

been recognized with the widespread use of these agents (6).

Some patients have only isolated elevation of serum markers

of myocardial injury without any complaints, such as creatine

kinase isozyme (CK-MB), high-sensitivity troponin T (hsTnT),

and N-terminal pro–B-type natriuretic peptide (NT-proBNP).

However, some patients treated with anti-PD-1 inhibitors also

have severe cardiovascular manifestations, such as heart failure

(HF), malignant arrhythmias, and death, even though a lower

incidence of 0.3–2% has been reported in the literature (7, 8).

The mechanism leading to this completely different clinical

outcome is not yet been fully understood and may be related to

the excessive activation of inflammation. In addition, whether

patients with asymptomatic myocardial injury need treatment

is unclear. Regardless, it is foreseeable that the use of ICIs will

continue to increase as the cost decreases, and therefore, how

to accurately identify the severity of PD-1 inhibitor-induced

myocardial injury at an early stage is of great importance but

remains unclear.

Our objective was to identify the association of cardiac

parameters with different clinical outcomes in patients with

anti-PD-1 immunotherapy-induced myocardial injury and find

a better cardiac parameter to predict these outcomes of

different severities.

Patients and methods

Patients

This is a retrospective cohort study, we screened 3,848

patients who received anti-PD-1 immunotherapy from

June 2018 to Oct 2021 at the Second Xiangya Hospital of

Central South University. Among those patients, 134 patients

were diagnosed with anti-PD-1 immunotherapy-induced

myocardial injury. These patients were from the Department

of Oncology, Department of Respiratory Medicine, Department

of Cardiology, Department of Thoracic Surgery, Department

of Critical Medicine, and Department of Emergency. Medical

records are from the inpatient, outpatient, and emergency

medical systems. Data including demographic characteristics,

comorbidities, main complaint at diagnosis, laboratory testing

results, electrocardiography (ECG), echocardiographic findings,

and treatment were obtained. The study protocol conformed

to the ethical guidelines of the Declaration of Helsinki (9) as

reflected by prior approval from the human research committee

of the Second Xiangya Hospital of Central South University.

Written informed consent was obtained from patients while

the patient was in a clinically stable, non-congested condition

or from their family members who could give informed

consent on behalf of patients after they were informed about

the objectives and procedures of the study. Their rights to

refuse participation any time they wanted were assured.

For this purpose, a one-page consent letter was attached

as a cover page of each questionnaire stating the general

objective of the study and issues of confidentiality that were

discussed by the data collectors before proceeding with the

data collection.

Diagnostic procedures

A total of 3,848 patients who received PD-1 antibody

therapy were evaluated. The inclusion criteria were as follows:

(1) High-sensitivity troponin T was negative in patients

before PD-1 antibody treatment, but the concentration

increased in patients after treatment. The exclusion criteria

were: (1) Acute or suspected renal function injury leading

to false elevation of high-sensitivity troponin T levels;

and (2) Use of other drugs that may cause myocardial

injuries, such as anthracycline chemotherapeutic drugs,

cyclophosphamide, and trastuzumab. Finally, 134 patients

were included in the study (see flowchart in Figure 1

for details).
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FIGURE 1

Flowchart of the present study.

Data collection

Demographic and clinical characteristics were collected

when the diagnosis of PD-1 inhibitor-induced myocardial

injury was confirmed. Blood test parameters, ECG, and cardiac

ultrasound parameters were the first reports obtained after

diagnosis. Patient-reported comorbidities were listed according

to what the patient told our doctor on admission and what

we diagnosed after discharge. The tracking of hsTNT and

NT-proBNP is generally divided into two situations. The first

is that it is detected in our hospital when symptoms appear.

The second is the routine detection of asymptomatic patients on

admission for anti-tumor treatment. High-sensitivity troponin

T (hsTnT) was measured by electrochemiluminescence (Roche,

Germany). The upper limit of the reference value (99th quantile)

in the manual is 14 pg/ml.

Definitions and outcome

The outcome of interest, major adverse cardiac events

(MACE), was a composite of cardiovascular death, cardiac

arrest, HF, and arrhythmias that cause hemodynamic

abnormalities such as tachyarrhythmias/bradyarrhythmias

and acute myocardial infarction (AMI). For cases where cardiac

arrest, HF, arrhythmias, and AMI led to death, the outcome

was counted as cardiac death. Standard definitions were used

for cardiovascular death, cardiac arrest, HF, and AMI (10, 11).

Survival time (days) was measured as the duration between

the first day of hospitalization when the patient received PD-1

antibody therapy to the date of MACE or death from any cause.

Data were obtained from medical records or from telephone

interviews with patients or relatives by 2 trained physicians.

We chose to set the follow-up time to 90 days because previous

clinical studies showed that the vast majority of cardiotoxicity

occurred within 90 days following the use of PD-1 inhibitors

(12). Patients were followed until 16 October 2021. Patients

were censored if they were still alive at the end of the research

period or were lost to follow-up, on which occasion their last

clinic visit or correspondence time was used.

Statistical analysis

Normally distributed parameters are expressed as the mean

± standard deviation (SD), whereas non-normally distributed

parameters are expressed as the median with interquartile

range (IQR). Categorical values are presented as numbers
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(percentages). Categorical data were reported as frequencies and

percentages andwere compared using the chi-squared or Fisher’s

exact test. Comparison of continuous variables between two

independent groups was performed using an unpaired Student’s

t-test (if normally distributed) or the Mann–Whitney U test

(non-normally distributed variables), and in cases where more

than two groups were compared, one-way analysis of variance

(ANOVA) or the Kruskal–Wallis test was used. Univariate

analyses were performed to examine the correlates between

cardiac parameters and different outcomes using the logistic

regression models. The receiver operating characteristic (ROC)

curve was used to reflect the accuracy of different cardiac

parameters in predicting different outcomes by the area under

the curve (AUC). Survival was evaluated with Kaplan–Meier

curves. All tests were two-tailed and a p-value of < 0.05

was considered to indicate statistically significant. Statistical

analysis was performed using SPSS 26.0 (IBM Software Inc),

EmpowerStats 3.0 software, and R (version 3.3.2).

Results

Patient characteristics

In the MACE group, 16 patients had a new onset HF, 3

patients had non-ST segment elevation myocardial infarction

(NSTEMI), 3 patients had new-onset symptomatic arrhythmia,

and 1 patient had a sudden cardiac arrest. In the non-MACE

group (n = 110), no patients presented with clinical symptoms

of the cardiovascular system. Although high-sensitivity troponin

T or NT-proBNP levels were significantly higher than before

PD-1 antibody administration. TheMACE group was older than

the non-MACE group (66.5 ± 8.1 vs. 60.4 ± 9.9 p = 0.01). In

addition, the MACE group had more concurrent side effects,

such as PD-1-mediated pneumonia [7/24 (29.2%) vs. 1/110

(0.9%)], hepatitis [3/24 (12.5%) vs. 3/110 (2.7%)], myositis [4/24

(16.7%) vs. 3/110 (2.7%)], and thyroid dysfunction [5/24 (20.8%)

vs. 16/110 (14.5%)]. Regarding sex, 75% (18/24) of patients in

the MACE group were male, and 78.2% (86/110) in the non-

MACE group were male. There was no significant difference in

the gender distribution between the two groups (Table 1).

Cancer characteristics of interest

The time from the first day of PD-1 inhibitor treatment

to the date when PD-1 inhibitor-induced myocardial injury

diagnosis was confirmed was 37.04 ± 20.26 days for the

MACE group and 32.85 ± 17.97 days for the non-MACE

group. Regarding the tumor proportion scores (TPS) of PD-

1 expression by tumor tissue immunohistochemistry, there

was no difference between the two groups (47.35± 27.51 vs.

44.12± 27.23, p = 0.654). Regarding the anti-tumor regimen,

7 (29.2%) patients in the MACE group and 40 (36.4%) patients

in the non-MACE group received PD-1 inhibitor monotherapy.

The remaining cases were treated with chemotherapy combined

with immunotherapy. More than half of the patients’ primary

tumors were non-small-cell lung cancer (NSCLC), followed by

esophageal cancer, liver cancer, and other tumors (details in

Table 1).

Cardiac parameters among subjects

In the MACE group, CK-MB (108.97 ± 57.09 vs. 31.86

± 43.66, p ≤ 0.001), hsTNT [195.5 (108.75–302.50) vs.

78.00 (47.85–124.00), p ≤ 0.001], and NT-proBNP [2,600.0

(1,317.00–7,950.00) vs. 472.9 (280.40–788.80), p ≤ 0.001] levels

were significantly higher than those in the non-MACE group.

Regarding the parameters of echocardiography, in the MACE

group, patients had a higher left ventricular end-diastolic

diameter (LVEDd) (51.5 ± 6.1 vs. 43.5 ± 6.2, p ≤ 0.001) and

lower left ventricular ejection fraction (LVEF) (46.7 ± 9.1 vs.

57.2 ± 7.5, p ≤ 0.001) than those in the non-MACE group.

There were no significant differences in other cardiac parameters

between the two groups (Table 2). The ECG parameters between

the two groups were also somewhat different. The incidence

of bradyarrhythmia and tachyarrhythmia in the MACE group

was higher than that in the non-MACE. The QRS interval

of the MACE group was significantly wider than that of the

non-MACE group (127.2 ± 33.5 vs. 93.7 ± 16.1, p = 0.001),

but the corrected QT interval of the two groups was no different

(details in Table 2).

Outcome of all cases

Themedian follow-up of all cases was 90 days (12–102 days).

In the MACE group, 13/24 of patients survived after careful

treatment. The number of all-cause deaths in the MACE group

was 12 (50%) as of the end of follow-up, and one of them

was non-cardiogenic death (lung infection). For the non-MACE

group, 16/110 (14.5%) of patients had non-cardiogenic deaths,

and the rest were still alive at the end of follow-up. The K–M

survival curves of the two groups are shown in Figure 2.

Cardiac parameters among survivors and
deceased patients in the MACE group

In the MACE group, 13/24 of patients survived after

treatment, and 11/24 died after treatment. Compared with those

of the survivors, the CK-MB (146.4 ± 56.2 vs. 77.3 ± 35.3, p

≤ 0.001), hsTNT [300.0 (218.5–729.0) vs. 112.0 (84.0–122.0),

p ≤ 0.001], and NT-proBNP [8,400.0 (3,850.0–14,000.0) vs.

1,890.0 (1,200.0–2,400.0), p ≤ 0.001] levels of the deceased
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TABLE 1 Characteristics of 134 patients with programmed cell death (PD-1)-related myocardial injury.

NoMACE

(n = 110)

MACE

(n = 24)

P-value

Age, years 60.4 (9.9) 66.5 (8.1) 0.010

Male, n (%) 86(78.2) 18 (75) 0.735

SBP, mmHg 115.48 (21.13) 119.25 (17.52) 0.233

DBP, mmHg 70.45 (11.57) 70.46 (13.47) 0.738

NYHA, n (%) < 0.001

Class I–II 110(100) 9(37.5)

Class III–IV – 15(62.5)

SpO2 , % 96.45 (2.43) 96.25 (2.72) 0.962

TPS, % 47.35 (27.51) 44.12 (27.23) 0.654

Days from first dose 32.85 (17.97) 37.04 (20.26) 0.257

Primary cancer type, n (%) 0.822

Lung cancer 66 (60) 16 (66.7)

Esophageal cancer 14 (12.7) 2 (8.3)

Liver cancer 10 (9.1) 3 (12.5)

Other tumors 20 (18.2) 3 (12.5)

Comorbidities, n (%) 0.356

COPD 15 (13.6) 5 (20.8)

Hypertension 38 (34.5) 8 (33.3)

Hyperlipidemia 28 (25.5) 6 (25)

CKD 22 (20) 5 (20.8)

T2DM 16 (14.6) 2 (8.4)

Stroke 15 (13.6) 2 (8.3)

CHD 16 (14.5) 6 (25)

Anti-tumor regimen, n (%) 0.188

PD-1 monotherapy 40(36.4) 7 (29.2)

Combined chemotherapy 70 (63.6) 17 (70.8)

Concurrent side effects, n (%) 0.001

Pneumonitis 1 (0.9) 7 (29.2)

Hepatitis 3 (2.7) 3 (12.5)

Thyroid dysfunction 16 (14.5) 5 (20.8)

Myositis 3 (2.7) 4 (16.7)

Baseline cardiac parameters

Cardiac troponin T, pg/mL 8.0 (6.3–10.2) 7.6 (5.3–9.8) 0.285

PR interval, ms 154.9± 17.3 161.2± 36.4 0.214

Corrected QT interval, ms 452.6± 36.2 448.5± 52.2 0.654

QRS duration, ms 95.2± 19.4 87.0± 17.1 0.058

Baseline cardiovascular medications

Aspirin 15 (13.6%) 5 (20.8%) 0.370

ACEI or ARB 10 (9.1%) 4 (16.7%) 0.272

βblockers 11 (10.0%) 4 (16.7%) 0.348

Data are (N) Mean (SD) or (N) n (%), Median (Q3–Q1), where N is the total number of patients with available data. SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure;

SpO2 , Saturation of Peripheral Oxygen; TPS, Tumor Proportion Score; NYHA, New York Heart Association Functional Classification; CHD, Coronary Heart Disease; COPD, Chronic

Obstructive Pulmonary Disease; CKD, Chronic Kidney Disease; T2DM, Type 2 Diabetes Mellitus; PD-1,Programmed Cell Death.

patients were significantly higher. Regarding the parameters of

echocardiography, deceased patients had higher LVEDd (54.7±

4.7 vs. 48.7 ± 5.8, p ≤ 0.009) and lower LVEF (39.7 ± 6.4 vs.

52.6± 6.5, p ≤ 0.001) than those survivors. The QRS interval of

the deceased patient group was significantly longer than that of

the survivor groups (144.0 ± 37.5 vs. 113.1 ± 20.5, p = 0.020).

There were no significant differences in other cardiac parameters

between the two groups (Table 3).
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TABLE 2 Laboratory, echocardiographic, and electrocardiographic characteristics and treatment of 134 patients with PD-1-related myocardial

injury.

NoMACE (n = 110) MACE (n = 24) P-value

Laboratory results

CK-MB, u/L 31.86 (43.66) 108.97 (57.09) <0.001

Cardiac troponin T, pg/mL 78.00 (47.85–124.00) 195.5 (108.75–302.50) <0.001

NT-proBNP, pg/mL 472.9 (280.40–788.80) 2600.0(1317.00–7950.00) <0.001

Echocardiographic findings

LVEDd, mm 43.5 (6.2) 51.5 (6.1) <0.001

RVEDd, mm 33.7 (4.3) 33.0(4.3) 0.380

LAESd, mm 36.5 (5.9) 37.4 (5.0) 0.201

RAESd, mm 34.1 (5.3) 33.5 (5.1) 0.614

LVEF, (%) 57.2 (7.5) 46.7 (9.1) <0.001

ECG findings

Atrial fibrillation, n (%) 11 (10) 1 (4.2) 0.693

Advanced AV block, n (%) 2 (1.8) 8 (33.3) 0.001

Bundle branch block 24 (21.8) 7 (29.2) 0.256

FVP or VT, n (%) 19 (17.3) 11 (45.8) 0.006

PR interval, ms 170.6 (32.2) 168.3 (26.2) 0.929

Corrected QT interval, ms 457.3 (34.1) 470.5 (35.4) 0.173

QRS duration, ms 93.7 (16.1) 127.2 (33.5) <0.001

Therapeutic cardiovascular medications

Aspirin 16 (14.5) 8 (33.3) 0.040

ACEI or ARB 12 (10.9) 10 (41.7) 0.010

βblockers 16 (14.5) 5 (20.8) 0.743

Furosemide 2 (1.8) 17 (70.8) <0.001

Inotropic agents 0 (0) 6 (25) <0.001

Glucocorticoid 1 (0.9) 13 (54.2) <0.001

Data are (N) Mean (SD) or (N) n (%), Median (Q3–Q1), where N is the total number of patients with available data. CK-MB, Creatine Kinase isoenzyme MB; NT-proBNP, N-terminal

pro–B-type Natriuretic Peptide; LAESd, Left Atrium End Systolic diameter; LVEDd, Left Ventricular End Diastolic diameter; RAESd, Right Atrium End Systolic diameter; RVEDd, Right

Ventricular End Diastolic diameter; LVEF, Left Ventricular Ejection Fraction; FVP, Frequent Ventricular Premature; VT, Ventricular Tachycardia.

The association between cardiac
parameters and di�erent outcomes

Univariate logistic regression was used to analyze the

association between cardiac parameters and different outcomes.

Age (OR = 1.08, 95% CI = 1.02–1.14, p = 0.007), CK-MB

(OR = 1.03, 95% CI = 1.01–1.04, p < 0.001), hsTNT

(OR = 1.01, 95% CI = 1–1.01, p = 0.001), NT-proBNP

(OR = 1.0, 95% CI = 1.0–1, p < 0.001), LVEDd (OR = 1.21,

95% CI = 1.12–1.32, p < 0.001), LVEF (OR = 0.87, 95%

CI = 0.82–0.93, p < 0.001), and QRS interval (OR = 1.04, 95%

CI = 1.02–1.06, p < 0.001) were predictive of the development

of cardiovascular symptoms (MACE events) in patients with

PD-1 inhibitor-induced myocardial injury. The ROC curve was

used to compare the accuracy of various indicators to predict

the occurrence of MACE events. NT-ProBNP (AUC = 97.1) was

the best predictor, followed by CK-MB (AUC = 94.1), LVEF

(AUC = 83.4), LVEDd (AUC = 81.5), and other indicators, as

shown in Figure 3A. In the MACE group, CK-MB (OR = 1.04,

95% CI = 1.01–1.07, p < 0.021), NT-proBNP (OR = 1.0, 95%

CI = 1–1, p < 0.042), hsTNT (OR = 1.02, 95% CI = 1–1.04,

p < 0.034), and QRS duration (OR = 1.04, 95% CI = 1–

1.07, p < 0.032) were predictors of death. The ROC curve

revealed that hsTNT was the most accurate predictive marker

(AUC = 91.6; more details in Table 4 and Figure 3B).

Discussion

This is a retrospective case analysis from a large referral

hospital. We are deeply concerned about the increase in high-

sensitivity troponin T levels after PD-1 inhibitor treatment,

and previous studies have reported that the incidence is very

low. In the safety study of more than 2,000 patients with

immunotherapy released by Bristol–Myers Squibb, the rate of

myocarditis in patients treated with ipilimumab or nivolumab
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FIGURE 2

The K–M survival curve compares the 90-day all-cause deaths between the two groups.

was 0.09%. Among patients receiving combination therapy,

the incidence of myocarditis is approximately 0.3%, and its

severity is greater than that of patients receiving monotherapy

(8). A retrospective case study of PD-1 inhibitor treatment

reported that the prevalence of myocarditis was 1.14% with a

median time of onset of 34 days after starting PD-1 inhibitor

treatment (IQR: 21–75 days) (13). Since many patients do

not routinely have ECG and markers of myocardial injury

monitored, some studies suggest or believe that the proportion

of myocarditis caused by PD-1 inhibitors may be higher than 1%

(7). However, in clinical practice, we often encounter patients

who show only elevated levels of cardiac troponin, a marker of

myocardial injury but have no symptoms after treatment with

PD-1 inhibitors. These patients have not been well evaluated.

Our study showed that 3.48% (134/3848) of patients had

increased high-sensitivity troponin T levels after PD-1 inhibitor

monotherapy. This ratio is very high and still underestimated

because some patients without cardiovascular symptoms have

not been monitored for troponin levels. Our study indicated

that 24 patients (0.62%) had cardiovascular symptoms, and 11 of

them suffered cardiogenic death. If these symptomatic patients

are defined as having myocarditis, this is equivalent to the

incidence rate of previous studies.

Our study supports the need for routine monitoring

of cardiac parameters in patients using PD-1 inhibitors.

Oncologists in many countries currently recommend routine

detection of myocardial injury markers, such as CK-MB,

CK, troponin, and BNT-proBNP, during each cycle of PD-1

inhibitors (14, 15). However, the importance of the elevated

levels of each marker is unclear, and cardiovascular physicians

often go to the oncology department for consultation. Our

study indicates that the higher the increase in these cardiac
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TABLE 3 Cardiac parameters among survivors and deceased patients.

Survived

(N = 13)

Deceased

(N = 11)

P-value

Age, years 63.8 (7.7) 69.6 (7.6) 0.124

Male, n (%) 11 (84.6%) 7 (63.6%) 0.357

Cardiovascular manifestations

Dyspnea 8 (61.5%) 9 (81.8%) 0.386

Edema 2 (15.4%) 2 (18.2%) 0.855

Palpitation 3 (23.1%) 0 (0.0%) 0.233

Chest pain 4 (30.8%) 1 (9.1%) 0.327

Days from first dose to onset 36.7 (20.4) 37.5 (21.0) 0.772

Cardiac parameters

SBP, mmHg 124.5 (17.3) 113.1 (16.5) 0.111

DBP, mmHg 74.6 (10.2) 65.5 (15.6) 0.147

CK-MB, u/L 77.3 (35.3) 146.4 (56.2) 0.003

Cardiac troponin T, pg/mL 112.0 (84.0–122.0) 300.0 (218.5–729.0) 0.001

NT-proBNP, pg/mL 1,890.0

(1,200.0–2,400.0)

8,400.0

(3,850.0–14,000.0)

0.002

Echocardiographic findings

LVEDd, mm 48.7 (5.8) 54.7 (4.7) 0.009

RVEDd, mm 32.1 (3.7) 34.2 (5.0) 0.222

LAESd, mm 35.9 (6.1) 39.1 (2.5) 0.130

RAESd, mm 32.9 (5.9) 34.1 (4.2) 0.662

LVEF, (%) 52.6 (6.5) 39.7 (6.4) <0.001

ECG findings

Atrial fibrillation, n (%) 0 (0.0%) 1 (9.1%) 0.458

Advanced AV block, n (%) 3 (23.1%) 5 (45.5%) 0.390

Bundle branch block 2 (15.4%) 5 (45.5%) 0.182

FVP or VT, n (%) 4 (30.8%) 7 (63.6%) 0.107

PR interval, ms 173.9 (28.2) 161.7 (23.0) 0.234

Corrected QT interval, ms 471.2 (40.9) 469.7 (29.7) 0.977

QRS duration, ms 113.1 (20.5) 144.0 (37.5) 0.020

Data are (N) Mean (SD) or (N) n (%), Median (Q3–Q1), where N is the total number of patients with available data. For other abbreviations, see Table 2.

markers levels, the greater the probability of occurrence of

cardiac symptoms. In addition, our study indicates that the

QRS interval on ECG is also a clinical indicator for predicting

whether patients will have symptoms, which suggests that

ECG is also very important in monitoring patients for adverse

drug reactions. This is similar to a previous study by Zlotoff

et al., which showed that the QRS duration is increased in

ICI myocarditis and is associated with increased MACE risk,

especially in patients whose QRS interval is greater than 110ms

(16). We think this is mainly related to the occurrence of

more ventricular arrhythmias in the MACE group. With an

increasing number of ventricular arrhythmias, the probability

of cardiovascular symptoms will obviously increase. Of course,

cardiac ultrasound is a very accurate tool to judge whether

a patient has cardiac dysfunction, especially the LVEF is a

very important indicator. However, using the ROC curve

for comparison, NT-proBNP is the best cardiac parameter

predicting clinical symptoms in patients with PD-1 inhibitor-

mediated myocardial injury. This may be related to the fact

that most patients in the MACE group present with symptoms

of HF.

Our study indicated that the most common occurrence of

cardiovascular system symptoms after PD-1 inhibitor treatment

is HF symptoms, manifested as dyspnea and edema. Then, five

patients presented with chest pain, four patients experienced

palpitations, and one patient died suddenly after elevated

troponin levels were observed. Notably, 62.5% (16/24) of

patients in the MACE group entered the intensive care unit for

treatment. However, 45.8% (11/24) of the patients eventually

experienced cardiogenic death. Such a high mortality rate

is similar to that reported in Western countries (17–19).

Additionally, the proportion of corticosteroid treatment was
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TABLE 4 Logistic regression analysis of the association between cardiac parameters and di�erent outcomes.

Variables MACE among 124 patients p-value

OR (95% CI)

Age 1.08 (1.02∼1.14) 0.007

Male 1.19 (0.43∼3.34) 0.735

CK-MB 1.03 (1.01∼1.04) <0.001

Cardiac troponin T 1.01 (1∼1.01) 0.001

NT-proBNP 1.0 (1.00∼1) <0.001

LVEDd, mm 1.21 (1.12∼1.32) <0.001

RVEDd, mm 0.97 (0.87∼1.07) 0.515

LAESd, mm 1.03 (0.95∼1.11) 0.505

RAESd, mm 0.98 (0.89∼1.06) 0.569

LVEF 0.87 (0.82∼0.93) <0.001

PR interval 1 (0.98∼1.01) 0.75

Corrected QT interval 1.01 (1∼1.02) 0.093

QRS duration 1.04 (1.02∼1.06) <0.001

Cardiac death among 24 patients

Age 1.11(0.99∼1.25) 0.086

Male 3.14 (0.45∼21.96) 0.248

CK-MB 1.04 (1.01∼1.07) 0.021

Cardiac troponin T 1.02 (1∼1.04) 0.034

NT-proBNP 1 (1∼1) 0.042

LVEDd, mm 0.87(0.7∼1.07) 0.184

RVEDd, mm 1.13 (0.92∼1.39) 0.24

LAESd, mm 1.17 (0.95∼1.43) 0.135

RAESd, mm 1.05 (0.89∼1.23) 0.57

LVEF 0.88 (0.75∼1.04) 0.136

PR interval 0.98 (0.95∼1.01) 0.258

Corrected QT interval 1 (0.98∼1.02) 0.916

QRS duration 1.04 (1∼1.07) 0.032

relatively low compared to that in Western countries; 23

patients in the MACE group received treatment, and 13 patients

received glucocorticoids. A recent study (20) showed that

the dose of corticosteroids is negatively correlated with the

mortality of patients with PD-1 inhibitor-mediated myocarditis.

However, these results increase the possibility that myocardial

injury can be mitigated by early and intensive corticosteroid

therapy. Nevertheless, the decision of whether to administer

high-dose corticosteroids during clinical practice still requires

consideration of various other aspects, especially infection.

Certainly, we cannot rule out that this mortality rate is related to

the conservative use of corticosteroid therapy. Despite the high

mortality rate, we still need to risk stratify patients. We also used

a logistic model to evaluate the relationship between various

cardiac parameters and cardiogenic death. CK-MB, hsTNT,

NT-proBNP, and QRS duration were statistically significant in

predicting cardiogenic death in the MACE group. Using ROC

curves for mutual comparison, hsTNT was the best marker for

predicting cardiogenic death in the MACE group patients.

In 2018, the American Society for Clinical Oncology (ASCO)

issued the clinical practice guidelines (21, 22) for cardiotoxicity

related to ICIs. Based on this guideline, cardiotoxicity is

divided into four levels according to severity (23). Patients who

exhibit only increased levels of markers of myocardial injury

without any symptoms are divided into 1 level and do not

need corticosteroid treatment, however, monitoring of cardiac

parameters needs to be continued. The results of this study

may help clinicians identify, early in the course of the disease,

which patients with level 1 will continue to develop symptoms

and which patients with symptoms will continue to progress to

death. In view of the very high mortality rate of PD-1 inhibitor-

related myocarditis, these results may help us to stay aware of

specific patients and provide more appropriate treatments in the

early stages of disease deterioration.

This study also has some limitations. First of all, this

is a single-center retrospective study. Although we want to

clarify the specific probability of myocardial injury after PD-1

inhibitor treatment, a large proportion of the data is incomplete,
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FIGURE 3

(A) Receiver operating characteristic (ROC) was used to compare the accuracy of various indicators to predict the occurrence of major adverse

cardiac events (MACE) (B) ROC curve shows that high-sensitivity troponin T (hsTNT) is the most accurate marker for predicting cardiogenic

death in the MACE group.

and there are many deviations. Laboratory indicators and

ECG indicators are complete, but there are missing data on

cardiac ultrasound. Thus, we used the mean instead. This

led to a shift in the research results. Second, we cannot

completely rule out myocardial damage caused by other drugs,

such as chemotherapy drugs, such as paclitaxel and platinum,

although these drugs are rarely reported to cause myocardial

damage, at the same time, we cannot completely rule out

myocardial infarction, stress cardiomyopathy, and other causes

of myocardial injury in these patients because of the lack of very

complete clinical examination results. Third, the small sample

size and information bias may affect the results of our study.

Further research should be conducted with larger sample size

and minimize the information bias for more reliable results.

Conclusion

In patients with myocardial injury after PD-1 inhibitor

treatment, NT-proBNP is the superior parameter of choice to

predict the likelihood of developing cardiovascular symptoms,

whereas, in symptomatic patients, hsTnT is superior to other

cardiac parameters and is associated with the development

of death.
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Chimeric antigen receptor T-cell (CAR T) therapy is a revolutionary

personalized therapy that has significantly impacted the treatment of patients

with hematologic malignancies refractory to other therapies. Cytokine release

syndrome (CRS) is a major side e�ect of CAR T therapy that can occur in 70–

90% of patients, with roughly 40% of patients at grade 2 or higher. CRS can

cause an intense inflammatory state leading to cardiovascular complications,

including troponin elevation, arrhythmias, hemodynamic instability, and

depressed left ventricular systolic function. There are currently no standardized

guidelines for the management of cardiovascular complications due to CAR

T therapy, but systematic practice patterns are emerging. In this review, we

contextualize the history and indications of CAR T cell therapy, side e�ects

related to this treatment, strategies to optimize the cardiovascular health prior

to CAR T and themanagement of cardiovascular complications related to CRS.

We analyze the existing data and discuss potential future approaches.

KEYWORDS

chimeric antigen receptor (CAR T), cardio-oncology, immunotherapy, cytokine

release syndrome (CRS), cellular therapy, cardiovascular disease

Introduction

The power of the immune system in treating neoplastic diseases has long been

recognized in the medical community. However, starting from adoptive cell transfer,

the precursor of CAR T, various cardiovascular toxic side effects have also been

identified. Herein we review the available data, and propose a strategy for prevention,

surveillance and management of cardiovascular toxicity in patients receiving immune

cellular therapies.
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Adoptive cell transfer

Adoptively acquired immunity is the process through which

active immune tissues are transferred from a donor to a recipient

(1–3). Initial studies performed in the 1950’s demonstrated

in mouse that immune tissue (i.e., spleen or lymph nodes)

but not antigens or peripheral cells from a primary transplant

tolerant host induced sustained resistance to rejection in a

secondary host (1). In a landmark paper published in 1957,

E. Donnall Thomas and colleagues demonstrated a sustained

response after bone marrow infusion in several patients with

bone marrow deficiency following radiation and chemotherapy

(3). This led to the first allogeneic bone marrow transplantations

in the early 1960s, using bone marrow from twin siblings.

With the subsequent development of autologous stem cell

transplantation, adoptive cellular therapies have become a

mainstay in the treatment of hematologic malignancies (4).

Modern development of cellular
therapies

Following the historic success of bone marrow

transplantation, the next phase of adoptive cell transfer

came in the 1980s with the emergence of tumor-infiltrating

lymphocytes (TIL) (5–8). In this therapy, B- and T-cells isolated

from the tumor biopsy are expanded in a laboratory and

subsequently infused back into the original host after a dose of

chemotherapy (5, 6). TIL were combined with interleukin-2, a

key cytokine in the proliferation and differentiation of effector

T cells, to enhance their antitumor effects (5, 6).

With the advent of gene-transfer techniques, the potential

of peripheral blood T cells was further harnessed through

genetic modifications that increase their specificity and augment

their function (9, 10). These “first-generation” genetically

modified T cells were engineered to express a chimeric antigen

Abbreviations: ALL, acute lymphocytic leukemia; CAD, coronary artery

disease; CAR T-cell, chimeric antigen receptor T-cell; CAR NK-cell,

chimeric antigen receptor natural killer cell; CEA, carcinoembryonic

antigen; CHF, congestive heart failure; CMR, cardiacmagnetic resonance;

CRS, cytokine release syndrome; CV, cardiovascular; CVD, cardiovascular

disease; ECG, electrocardiogram; FAP, fibroblast activation protein; FDA,

Food and Drug Administration; GD2, disialoganglioside 2; HER2,

human epidermal growth factor receptor 2; HLH, hemophagocytic

lymphohystiocytosis; ICANS, immune cell-associated neurotoxicity

syndrome; IFN-γ, interferon-gamma; IL, interleukin; L1CAM, L1 cell

adhesion molecule; MCP-1, monocyte chemoattractant protein-1; MI,

myocardial infarction; MIP-1β, macrophage inflammatory protein-1

beta; REMS, risk evaluation and mitigation strategy; TIL, tumor-infiltrating

lymphocytes; TNFα, tumor necrosis factor alpha; TTE, transthoracic

echocardiogram.

receptor (CAR)—composed of an extracellular single-chain

variable fragment (scFv) that serves as the targeting moiety, a

transmembrane spacer, and intracellular signaling/activation

domain(s)—to target surface-exposed tumor-associated

antigens (10–12). Over time, CARs evolved to more complex

“second-” and “third-generation” CARs that have augmented T

cell persistence and proliferation (13–16).

Chimeric antigen receptor T-cell
therapy mechanism and indications

The development of CAR T cell therapy triggered a

paradigm shift in cancer immunotherapy, demonstrating

remarkable success particularly in CD-19 expressing

malignancies, as the first genetically engineered personalized

therapy option. This therapeutic option has become a viable and

commercially available treatment option for several hematologic

malignancies (Table 1). Promising results emerged from the

initial CART trials of tisagenlecleucel (tisa-cel) and axicabtagene

ciloleucel (axi-cel) in 2017 (17). Tisa-cel was the first anti-CD-19

CAR T product approved by the Food and Drug Administration

(FDA), for patients up to 25 years of age with relapsed or

refractory B-cell precursor acute lymphoblastic leukemia (ALL)

in 2017 (17). Axi-cel, an anti-CD-19 targeting CAR T-cell,

approval followed soon after in 2017 for patients with relapsed

or refractory diffuse large B-cell lymphoma (18). Axi-cel was

subsequently also approved for the management of patients

with relapsed or refractory follicular lymphoma after 2 prior

lines of therapy (19). Since then, the FDA has approved 6 total

CAR T therapies for the treatment of hematologic malignancies,

including lisocabtagene maraleucel (liso-cel) for relapsed or

refractory diffuse large B-cell lymphoma, brexucabtagene

autoleucel (brexu-cel) for relapsed or refractory mantle cell

lymphoma and relapsed or refractory ALL, and idecabtagene

vicleucel (ide-cel) and ciltacabtagene autoleucel (cita-cel) for

relapsed and refractory multiple myeloma (18, 20–23) (Table 1).

Responses for all these agents average around 60 to 80% with

complete remissions achieved in approximately 40 to 60% of

the patients (17–19, 21, 22). These results are especially striking

given the failure of conventional chemotherapy, including

high-dose chemotherapy and stem cell transplantation in

this population.

Chimeric antigen receptor T-cell
therapy induction and administration

The administration of CAR T requires the identification

of optimal patients who would generally be considered

healthy and fit to undergo this procedure. While there

is no established consensus on the optimal patient profile

that would be considered suitable, various guidelines suggest
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TABLE 1 Summary of current FDA-approved CAR T generic names,

trade names, and indications.

CAR product

(generic name)

CAR product

(trade name)

Indication(s)

Tisagenlecleucel Kymriah Acute lymphoblastic

leukemia, B-cell lymphoma

(17)

Axicabtagene ciloleucel Yescarta B-cell lymphoma, follicular

lymphoma (18, 19)

Lisocabtagene

maraleucel

Breyanzi B-cell lymphoma (20)

Brexucabtagene

autoleucel

Tecartus Mantle cell lymphoma (21)

Idecabtagene vicleucel Abecma Multiple myeloma (22)

Ciltacabtagene

autoleucel (cita-cel)

Carvykti Multiple myeloma (23)

CAR, chimeric antigen receptor.

utilizing established fitness and morbidity scores to determine

eligibility (24–26). After harvesting the peripheral blood product

through a routine apheresis procedure, the cells typically

require processing and manufacturing which can take up to

4–6 weeks. During this interval, patients frequently require

“bridging therapy” to ensure that they do not have rapid

and symptomatic disease progression. Following successful

manufacturing and receipt of the product, patients undergo

lymphodepleting chemotherapy typically with fludarabine and

cyclophosphamide over 3 days for up to a week prior to

reinfusion of the cells. Patients are subsequently monitored

closely for the development of cytokine release syndrome (CRS)

and neurotoxicity which can manifest for approximately the

first month after reinfusion of cells (24, 25). Because of the

risks noted with CRS, patients must enter a risk evaluation and

mitigation strategy (REMS) program and stay within 2 h of the

CAR T center for the first month and must not drive for 2

months following CAR T.

Immune cell-related adverse events

Robust systemic release of a high level of cytokines following

overwhelming T cell activation as well as specific interactions

between the CAR and its target antigen expressed by non-

malignant cells are two mechanisms thought to mediate

CAR T toxicities (27). One of the most common CAR T

cell-related adverse events is CRS. CRS is a multisystem

inflammatory response mediated by a surge of cytokines

triggered by an infusion of CAR T cells. Among other toxic

phenomena, CRS, in particular, affects 37–93% of patients with

lymphoma (28), and 77–93% of patients with leukemia (28–31).

Clinical manifestations can range from fevers and constitutional

symptoms to hypoxia, hypotension, end-organ damage, and

even sepsis-like syndrome or death in severe cases (29). CRS

is thought to result from widespread simultaneous activation

of T-cells and release of cytokines and chemokines (30, 32).

CRS has been associated with elevation of interleukin (IL)-6,

IL-8, IL-10, IL-15, GM-CSF, interferon (IFN)-g, MCP-1, MIP-

1b, ferritin, CRP, and in severe cases soluble IL-2 receptor

(28, 33). Management includes supportive care and antipyretics

in mild cases, administration of IL-6-receptor antagonists like

tocilizumab in moderate CRS or those not responding to

supportive care, and corticosteroids like dexamethasone in more

severe cases of CRS (34, 35). CRS can occasionally mimic

macrophage activation syndrome (MAS) or hemophagocytic

lymphohistiocytosis (HLH) in severe cases, which is often

treated with anakinra, an IL-1 receptor antagonist, if the

above measures are not effective (36–39). Serum inflammatory

markers (acute phase reactants) including c-reactive protein

(CRP) and ferritin may be followed clinically to help aid in

prediction of impending CRS or to monitor response to therapy,

though cytokine levels are not often readily available in real

time (39).

CRS may contribute to the development of immune

cell-associated neurotoxicity syndrome (ICANS), which

can manifest along a spectrum from mild delirium with

confusion to cerebral edema, seizures, and even death (34, 40).

Cardiovascular manifestations of CRS Although the underlying

mechanism of ICANS is incompletely understood compared

to CRS, studies have also shown a correlation with elevated

levels of inflammatory cytokines like IL-6, IFN-γ and TNFα

(33, 41, 42). These signals are postulated to cause endothelial

damage and activation with disruption of the blood brain

barrier and capillary leak. It requires careful monitoring,

frequent assessments, and promptly initiated therapy. ICANS

has also been associated with sinus bradycardia that is often

self-limited without need for intervention but should be

monitored closely (43). Other constitutional, hematologic,

renal, gastrointestinal, and dermatologic toxicities have also

been observed (28, 41, 44–46).

Cardiovascular complications of
cellular imunotherapies

While there has been a consistent trend of improvement

in the survival following both autologous and allogeneic

hematopoietic cell transplantation bone marrow transplant

therapies decade over decade (47, 48), cardiovascular toxicities

(49) continue to be frequent complications, along with

infections and graft vs. host disease. This has resulted in

evolving practice guidelines targeting preventive evaluations

pretransplant, monitoring peri-transplant, and surveillance

in long term survivors (50, 51). With regard to CAR T

therapy, the current information about cardiovascular side
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effects related to CAR T therapies is limited to a few

retrospective studies (Table 2), but concepts established for

other adoptive cell transfers likely apply. In particular, with the

growing prevalence of cardiovascular disease combined with the

increase in available CAR T cell therapies for the treatment

of hematologic malignancies, attempting to understand the

mechanisms of these complications is essential as this may help

guide interventions.

The impact of CAR T cell therapy on the cardiovascular

system manifests as hemodynamic compromise, myocardial

injury/dysfunction, and/or cardiac arrhythmias (60, 61). There

is also the potential for pericardial complications, such as

in a case report (62) describing a patient with high-grade

lymphoma who developed a pericardial effusion and tamponade

with cardiogenic shock after CAR T therapy. Higher-grade

CRS appears to be linked to adverse cardiovascular events of

all types. This is likely driven by the release of inflammatory

cytokines into the bloodstreamwith CAR T therapy, particularly

the secretion of interleukin-6 (IL-6). This cytokine is a

mediator of systemic inflammation, leading to hemodynamic

compromise and even circulatory collapse in CRS. Of the studies

published so far in patients treated with CAR T cell therapy,

cardiovascular monitoring was performed in 3 pediatric studies

and 5 adult studies (52–59). All studies in adult populations

were retrospective, single-center observational cohort studies.

Across all studies, cardiovascular complications have been

inconsistently monitored. In children, transient and reversible

hypotension in the setting of high-grade CRS was more

commonly noted. In studies that monitored for cardiovascular

complications in adults, the most frequently observed were

cardiac arrhythmias and heart failure, albeit with relatively

low event rates overall. Interestingly, preexisting cardiovascular

disease (including heart failure) has not been shown to be

reliably associated with the development of cardiovascular

complications after CAR T cell therapy in one cohort study (57).

In contrast, in another cohort study (55), troponin elevation

was notably associated with cardiovascular adverse events in

patients undergoing CAR T cell therapy. The patients with

troponin elevation in this study were older and had more

traditional cardiovascular risk factors. In both these cohort

studies cardiovascular complications occurred with increased

frequency at higher grades of CRS (2 or greater). As such,

additional studies in larger cohorts are needed to establish risk

factors, biomarker elevation patterns, imaging findings, event

rates, and outcomes after CAR T cell therapy.

CRS monitoring and grading

Most patients undergoing CAR T can be managed on the

regular cell therapy hospital floor with only a minority requiring

ICU care, but close monitoring and specialty care is. due to rapid

onset of CRS, it is recommended that this therapy is given at a

specialized center with CAR T experience and credentialling.

Grading of CRS is now done per the American Society

of Transplantation and Cellular Therapy (ASTCT) consensus

guidelines (Table 3) (34).

CRS management

Rates of CRS and median time to onset vary depending on

the particular CAR T product and disease burden. For example,

in the KarMMa study of ide-cel for relapsed/refractory multiple

myeloma (22), CRS was seen in 84% of patients, but most cases

were only grade 1 or 2, with only 5% of patients developing

grade 3–5. Median time to onset of CRS in the KarMMa study

was 1 day (range 1–12 days) with a median duration of 5 days

(range 1–63).

Management of CRS required tocilizumab in 52% patients,

but only 15% required glucocorticoids (22, 63). On the other

hand, in the Zuma-1 study of axi-cel for relapsed/refractory large

B-cell lymphomas, CRS was a nearly universal side effect, with

93% of patients experiencing any grade CRS and 11% with grade

3 or higher, and hypotension was seen in 63%, tachycardia in

40%, and hypoxia in 34% (64). The median time to onset of CRS

was 2 days (range 1–12) with a median duration of 8 days (65).

All patients had resolution of their CRS, except for one patient

who died from complications of HLH, and another patient who

died of cardiac arrest with ongoing CRS. Tocilizumab was given

in 43% and corticosteroids were required in 27% of Zuma-

1 patients; however, more recently the FDA has issued a new

label change for axi-cel allowing the prophylactic use of 3 days

of corticosteroids based on a study showing much less severe

CRS and ICANS without impairment of lymphoma response

rates (66). The decision regarding inpatient vs. outpatient care

and aggressive early therapy vs. minimal therapy for CRS is not

only made based on the track record of the particular CAR T

product but also based on risk factors such as age, frailty, and

tumor burden, as higher tumor burden consistently correlates

with increased incidence and severity of CRS (67).

Surveillance for cardiovascular
toxicity

At our institution, cardiovascular (CV) surveillance

for CAR-T therapy begins with CV risk stratification prior

to infusion. Patients with CV comorbidities (especially

heart failure, coronary artery disease, arrhythmias) or

new/worsening CV symptoms (i.e., chest pain, dyspnea

on exertion, lower extremity edema) represent a high CV

risk group. Older age and prior cardiotoxic cancer therapy

(i.e., anthracyclines, chest radiation) may also raise the

risk of CV toxicity after treatment (68). In these high CV
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TABLE 2 Summary of pediatric and adult studies investigated cardiovascular complications and CAR T-cell therapy.

References No. of

subjects

Oncologic diagnosis CAR T* therapy Preexisting cardiovascular

disease–n (%)

Patients

with CRS+ [%,

(grade)]

Adverse cardiovascular

events – n (%)

Fitzgerald et al. (52)a 39 Acute lymphoblastic leukemia CD19-directed T-cells Not captured 92% (any grade);

46% (3,4)

Vasoplegic shock−13 (36)

Cardiomyopathy−1 (2)c

Burstein et al. (53)a 98 Leukemia/lymphoma CD19-directed T-cells Cardiomyopathy−10 (10)

Structural disease−6 (6)

24% (≥2) Shock−24 (24)

Cardiac dysfunction−10 (10)d

Shalabi et al. (54)a 52 Leukemia/lymphoma CD19-directed T-cells Not captured 12% (any grade) Cardiomyopathy−6 (11)e

Sinus tachycardia−36 (69)

Alvi et al. (55)b 137 Lymphoma, multiple myeloma axi-cel, tisa-cel Coronary artery disease−10 (7)

Heart failure−5 (4)

Atrial fibrillation−18 (13)

59% (any grade);

39% (≥2)

Cardiovascular mortality−6 (4)f

Heart failure−6 (4)e

Arrhythmia−5 (4)g

Ganatra et al. (56)b 187 Leukemia/lymphoma axi-cel, tisa-cel Coronary artery disease−20 (11) 83% (any grade);

46% (≥2)

Cardiomyopathy−12 (6)e

Arrhythmia−13 (7)

Lefebvre et al. (57)b 145 Leukemia/lymphoma axi-cel, tisa-cel Coronary artery disease−14 (10)

Heart failure−12 (8)

Atrial fibrillation−4 (3)

72% (any grade) Heart failure−21 (15)h

Atrial fibrillation−11 (7)

Brammer et al. (58)b 90 Lymphoma Axi-cel, tisa-cel, brexu-cel Coronary artery disease−7 (8)

Heart failure−8 (9)

Atrial fibrillation−10 (11)

49% (≥2) Arrhythmia−11 (12)i

Myocarditis−2 (2)

Heart failure−1 (1)h

Steiner et al. (59)b 165 Lymphoma axi-cel, tisa-cel Coronary artery disease−15 (9)

Heart failure−14 (8)

14% (≥3) Arrhythmia−15 (9)j

Heart failure−3 (2)h

Myocardial infarction−3 (2)k

*CAR T, chimeric antigen receptor T-cell + CRS, cytokine release syndrome.

Study specific parameters: a Pediatric population; b Adult population; c Cardiomyopathy, defined as decreased left ventricular systolic function requiring milrinone; d Cardiac dysfunction, defined as either an echocardiographic decrease of ≥10% in

ejection fraction or ≥5% in shortening fraction from normal baseline ejection fraction > 55% or shortening fraction > 28%; e Cardiac dysfunction, defined as either a >10% absolute decrease in LVEF compared with baseline or new-onset LV systolic

dysfunction (LVEF <50%); f Cardiovascular mortality, defined as a combination of death due to heart failure, cardiogenic shock, cardiac arrest, or an arrhythmia; g Arrhythmia, defined as new-onset supraventricular tachycardia, atrial fibrillation, or

atrial flutter requiring intervention; h Heart failure, defined as clinical signs of heart failure on physical examination, laboratory or imaging or radiographic findings of heart failure (B-type natriuretic peptide or N-terminal pro–B-type natriuretic peptide,

Kerley B-lines or pulmonary edema, pleural effusion, decreased left ventricular ejection fraction, and initiation of new treatment for heart failure (pharmacological therapies such as diuretic agents and/or mechanical support); iArrhythmia, defined

as atrial fibrillation, ventricular tachycardia; j Arrhythmia, defined as non-sustained ventricular tachycardia, atrial fibrillation; k Myocardial infarction, defined as angina or anginal equivalent symptoms with cardiac enzyme elevation, with or without

EKG/echocardiographic changes.

PubMed search performed using the following terms: Chimeric antigen receptor; cardiovascular; cytokine release syndrome.
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TABLE 3 American Society of Blood and Marrow Transplantation (ASBMT) consensus grading of cytokine release syndrome (CRS) severity (34).

Cytokine release

syndrome

parameter

Grade 1 Grade 2 Grade 3 Grade 4

Fever Temperature ≥38◦C Temperature ≥38◦C Temperature ≥38◦C Temperature ≥38◦C

With

Hypotension None Not requiring vasopressors Requiring one vasopressor with or

without vasopressin

Requiring multiple vasopressors

(excluding vasopressin)

And/or*

Hypoxia None Requiring low-flow nasal

cannula or blow-by

Requiring high-flow nasal cannula,

facemask, nonrebreather mask, or

Venturi mask

Requiring positive pressure (e.g.,

CPAP, BiPAP, intubation, and

mechanical ventilation)

CPAP, Continuous Positive Airway Pressure; BiPAP, Bilevel Positive Airway Pressure.

*CRS grade is determined by the more severe event: hypotension or hypoxia not attributable to any other cause.

Fever is defined as temperature≥38◦C not attributable to any other cause. In patients who have CRS then receive antipyretic or anti-cytokine therapy such as tocilizumab or steroids, fever

is no longer required to grade subsequent CRS severity.

Low-flow nasal cannula is defined as oxygen delivered at ≤6 L/min. Lowflow also includes blow-by oxygen delivery, sometimes used in pediatrics. High-flow nasal cannula is defined as

oxygen delivered at>6 L/min.

FIGURE 1

Proposed pre- and post-CAR T cardiac screening. CAR, chimeric antigen receptor; ECG, electrocardiography; NT-proBNP, N-terminal

pro–B-type natriuretic peptide. *arrhythmias, coronary artery disease, heart failure.

risk patients, standard baseline testing should include a

12-lead electrocardiogram, cardiac biomarkers (troponin,

NT-proBNP), and transthoracic echocardiography. In some

cases, cardiac MRI may clarify features of cardiac structure

and/or function that would guide optimization of CV therapy.

Cardioprotective therapies such as beta-blockers and renin-

angiotensin-aldosterone system blockers, diuretics, and/or

antiarrhythmics should be utilized as clinically indicated.

In addition, any patient with the above cardiovascular

comorbidities, and whose baseline electrocardiogram

or transthoracic echocardiogram is abnormal, should

be considered for cardio-oncology referral pre-CAR T

therapy.

Inpatient monitoring after CAR-T infusion is strongly

recommended for patients with increased baseline CV risk.

Figure 1 shows our institutional algorithm for surveillance

and monitoring in this population. Standard monitoring

protocols after CAR-T infusion include daily blood counts

and metabolic profiling, physical examination, and screening

for CRS (69). Patients at high baseline CV risk should

additionally be monitored on telemetry with close monitoring

of oral and intravenous fluid input, urine output, and daily
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body weight measurement. Given the observed association

between CRS and CV events after CAR-T (55, 57), all patients

with grade 3 or 4 CRS should also be placed on these CV

monitoring protocols.

The utility of routine cardiac biomarker testing for

detection of CV toxicity after CAR-T is uncertain. Where

there is clinical suspicion for a CV event after CAR-

T infusion based on symptoms or monitoring, initial

evaluation should include cardiac biomarkers (troponin, NT-

proBNP), 12-lead electrocardiogram (ECG), and transthoracic

echocardiography (TTE). Cardio-oncology consultation should

be obtained, if available, to direct further diagnostic evaluation

and management.

Data are limited regarding the optimal surveillance and

testing protocol for patients undergoing CAR T cell therapy.

Current standards of practice have been previously published by

Hayden et al. (26), Ghosh et al. (60), and Totzeck et al. (70), with

similar approaches to our institution and each other with regard

to screening and surveillance while on CAR T therapy. Ghosh

et al. propose that all patients undergo baseline cardiac magnetic

resonance imaging (CMR) with follow-up CMR in patients with

abnormal biomarkers, ECG, and/or TTE. We generally agree

with these publications on the initial evaluation of patients after

a cardiovascular event with CAR-T infusion, including cardiac

blood biomarkers (troponin, NT-proBNP), ECG, and TTE, with

judicious use of CMR in appropriate cases. By contrast, there is

some variability in the post-CAR T surveillance and monitoring

approaches proposed by the other consensus approaches. For

example, Ghosh et al. recommend for all patients to follow-

up with cardio-oncology 3 months after CAR T cell therapy,

whereas the other two consensus recommendations propose a

7-day follow-up visit. We propose a patient-specific approach

depending on the type of cardiovascular event that patient

experienced. The utility of monitoring for late effects (i.e., at 3

months post CAR-T and beyond) and the potential for long-

term CV consequences of CAR-T itself stand out as areas for

future study.

Future directions

Current targets of CAR T are malignant immune cells,

but new targets continue to develop. There has been an

expanding focus on targeting solid tumors, and overall,

nearly 600 clinical trials are underway (71–73). Multiple

new endeavors are focusing on solid tumor surface antigens

such as carcinoembryonic antigen (CEA), ganglioside GD2

subtype, mesothelin, interleukin-13 receptor α (IL-13Rα),

human epidermal growth factor receptor 2 (HER2), fibroblast

activation protein (FAP), and L1 cell adhesion molecule

(L1CAM) (16, 74–79).

Multiple trials are currently ongoing evaluating various CAR

T products in different disease entities including allogeneic

products utilizing various T-cell and NK-cell engineering and

manufacturing procedures. Moreover, the well-documented

side effects of CAR T–most notably, CRS–have spurred the

recent discussion surrounding CAR NK-cell therapy, a potential

avenue to mitigatehe systemic immune effects (73). CAR T

has been shown to effectively target and remove activated

cardiac fibroblasts in mice, suggesting potential applications

to address myocardial scar and fibrosis (80, 81). At the same

time, early signals have raised concerns about the unique

dangers of systemic immune effects in patients with preceding

cardiovascular diseases or cardiovascular risks, with limited

information about cardiotoxicity available from the initial

CAR T trials. Clinical practice guidelines are emerging to

address immune cell-related adverse events (82). Next steps

also include validated risk prediction tools for cardiovascular

complications after CAR-T, elucidate mechanisms of these

immune-mediated complications, development of preventative

therapies by integrating timelines of cardiac blood biomarkers

and immunophenotyping in this population.

Conclusions

The rapid development of immunocellular personalized

therapeutic modalities is creating unprecedented opportunities

for treatment of cancers. To optimize the cardiovascular

outcomes in patients treated with CAR T several lessons

learned from other anticancer therapies and from early

CAR T studies may be beneficial. While early studies have

established the specific indications for these therapies,

cardiovascular risk profiles will need to be defined further

during their real-life application. The awareness of interactions

between the cardiovascular risks, underlying cardiovascular

problems and the cytokine release syndrome is prompting

the definition of systematic assessments before and during

CAR T therapy. Yet unknown potential latent effects, such as

vascular inflammation seen after other immunotherapeutic

interventions (i.e., immune checkpoint inhibitor therapies) will

need to be taken in consideration for long-term cardiovascular

surveillance. Inclusion of cardiovascular endpoints in trials, as

well as broad collaborative, prospective clinical registries

have the potential to provide new information about

these risks. And not the least, the further investigation

of such observations in targeted research studies has

the potential to refine this technology and expand its

safe applicability.
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Percutaneous coronary
intervention in patients with
cancer using bare metal stents
compared to drug-eluting stents

Talha Ahmed1,2†, Homam Moussa Pacha1,2†,

Antoine Addoumieh1,2, Efstratios Koutroumpakis2,

Juhee Song3, Konstantinos Charitakis1,

Konstantinos Dean Boudoulas4, Mehmet Cilingiroglu2,

Konstantinos Marmagkiolis2,5, Cindy Grines6 and

Cezar A. Iliescu2*

1Division of Cardiovascular Medicine, University of Texas Health Science Center at Houston,

Houston, TX, United States, 2Division of Cardiovascular Medicine, MD Anderson Cancer Center,

University of Texas, Houston, TX, United States, 3Department of Biostatistics, MD Anderson Cancer

Center, University of Texas, Houston, TX, United States, 4Division of Cardiovascular Medicine, The

Ohio State University, Columbus, OH, United States, 5University of South Florida, Tampa, FL,

United States, 6Division of Cardiovascular Medicine, Northside Hospital Cardiovascular Institute,

Atlanta, GA, United States

Background: Management of coronary artery disease (CAD) is unique and

challenging in cancer patients. However, little is known about the outcomes

of using BMS or DES in these patients. This study aimed to compare the

outcomes of percutaneous coronary intervention (PCI) in cancer patients who

were treated with bare metal stents (BMS) vs. drug-eluting stents (DES).

Methods: We identified cancer patients who underwent PCI using BMS or

DES between 2013 and 2020. Outcomes of interest were overall survival (OS)

and the number of revascularizations. The Kaplan–Meier method was used

to estimate the survival probability. Multivariate Cox regression models were

utilized to compare OS between BMS and DES.

Results: We included 346 cancer patients who underwent PCI with a median

follow-up of 34.1 months (95% CI, 28.4–38.7). Among these, 42 patients were

treated with BMS (12.1%) and 304 with DES (87.9%). Age and gender were

similar between the BMS and DES groups (p = 0.09 and 0.93, respectively).

DES use was more frequent in the white race, while black patients had more

BMS (p = 0.03). The use of DES was more common in patients with NSTEMI

(p = 0.03). The median survival was 46 months (95% CI, 34–66). There was

no significant di�erence in the number of revascularizations between the

BMS and DES groups (p = 0.43). There was no significant di�erence in OS

between the BMS andDES groups inmultivariate analysis (p= 0.26). In addition,

independent predictors for worse survival included age > 65 years, BMI ≤ 25

g/m2, hemoglobin level ≤ 12 g/dL, and initial presentation with NSTEMI.

Conclusions: In our study, several revascularizations and survival were similar

between cancer patients with CAD treated with BMS and DES. This finding
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suggests that DES use is not associated with an increased risk for stent

thrombosis, and as cancer survival improves, there may be a more significant

role for DES.

KEYWORDS

percutaneous coronary intervention, bare metal stents, drug-eluting stents, cardio-

oncology, revascularization

Introduction

Cardiovascular disease and cancer frequently coexist

in an increasingly aging population and share the same

risk factors (1). They are also the leading causes of

death in developed countries, accounting for two-thirds

of disease-related mortality (1). Despite the increased

prevalence of thrombocytopenia and bleeding tendencies,

cancer is often associated with a hypercoagulable state

with increased platelet activation and aggregation. In

addition, many chemotherapeutic agents are associated

with angina, myocardial infarction (MI), and acceleration

of pre-existing coronary artery disease (CAD), while

radiotherapy is associated with CAD through direct

endothelial injury (2–4). All the aforementioned factors

make the management of cancer patients’ CAD unique as well

as challenging.

A history of cancer is independently associated with

an increased risk of major adverse cardiovascular events

(MACE) (5–7). The current generation of drug-eluting stents

(DES) has been proven to reduce the risk of restenosis

and stent thrombosis compared to bare-metal stents (BMS).

However, data suggesting the preference of DES over BMS

in the cancer population are lacking. The perceived need

for a shorter course of dual antiplatelet treatment (DAPT)

used to make the use of BMS an attractive alternative,

particularly in patients with increased bleeding risk and an

expectant need for cancer-directed surgery and/or procedures

(8, 9).

There are limited data on the outcomes of cancer

patients requiring PCI when directly comparing BMS

with DES. Additionally, most randomized controlled

trials making such comparisons exclude patients with

active malignancy and treatment. With a growing number

of patients with cancer, it is essential to study the

outcomes of different types of stents and the duration

of antiplatelet agents (10). The current study examines

clinical and procedural characteristics and clinical

outcomes in cancer patients with CAD treated with BMS

vs. DES.

Materials and methods

Patient population

This was a single-center, retrospective, observational study

approved by the MD Anderson Cancer Center Institutional

Review Board. The requirement to obtain informed consent

was waived, and the data were deidentified. All cancer patients

who underwent PCI between January 2013 and December

2020 were included. Patients were further divided into two

groups based on the type of intervention performed using

either BMS or DES. Patients treated with balloon angioplasty

alone were excluded. The decision to treat a patient with either

of these strategies was based on the clinical characteristics

of the individual patient. It was left to the discretion of the

treating physicians.

Patient characteristics were collected using electronic

medical records, including age, sex, race, body mass index,

indication for primary PCI, comorbidities (history of diabetes

mellitus, hypertension, hyperlipidemia, end-stage renal

disease, peripheral vascular disease, stroke, or transient

ischemic attack, previous coronary artery bypass graft, and

PCI, etc.), as well as laboratory variables (hemoglobin,

platelet count, creatinine, lipid panel, troponin, and B type

natriuretic peptide/BNP, etc.), type of malignancy (solid vs.

hematological), and intracoronary imaging used (intravascular

ultrasound/IVUS and optical coherence tomography/OCT),

as MD Anderson Catheterization laboratory is not an ST-

elevation myocardial infarction (STEMI) receiving center,

so these patients were not included. All other indications

of revascularizations include “cardiomyopathy,” “positive

stress test,” “unstable angina,” “non STEMI,” and “angina

with prior history of CAD.” Propensity score matching was

conducted to select patients treated with BMS and comparable

patients treated with DES. Furthermore, information related

to primary outcomes was collected. The term “number

of revascularizations” was defined by the total number of

revascularizations needed for either the target vessel stented

with either BMS or DES during the index procedure or for

other arteries.
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TABLE 1 Descriptive statistics by the intervention (BMS vs. DES).

Variable BMS (n = 42) DES (n = 304) P-valuea

Age (years)b 70.04± 9.79 67.16± 10.27 0.0870c

Number of

revascularizationsd

0 (0–0) 0 (0–0) 0.4263

Platelet count (103/uL)d 178 (158–246) 188 (138–253) 0.7883

Absolute Neutrophil Count

(103/uL)d

3.9 (2.7–5.9) 4.44 (3–6) 0.5012

INRd 1.1 (1.02–1.27) 1.1 (1.01–1.2) 0.4705

Creatinine (mg/dL)d 1.08 (0.8–1.3) 1.03 (0.84–1.24) 0.7664

Hemoglobin (g/dL)b 11.89± 2.32 11.65± 2.13 0.4985c

Triglyceride (mg/dL)d 131 (80–224) 127 (88–170) 0.9536

Cholesterol (mg/dL)d 163 (145–224) 143 (114–171) 0.0243

HDL (mg/dL)c 45.00± 15.03 40.98± 13.93 0.2678c

LDL (mg/dL)d 91.5 (65.5–146) 73 (48–99) 0.0462

VLD (mg/dL)d 31 (16–45) 23.5 (17–34) 0.6332

BNP (pg/mL)d 347.5 (100–785.5) 422 (165–644) 0.6398

Troponin (ng/mL)d 0.66 (0.03–5.1) 0.4 (0.03–2.4) 0.5883

BMI (kg/m2)b 28.82± 6.06 28.91± 6.09 0.9329c

Gender

Male 33 (78.6%) 237 (78%) 0.9286e

Female 9 (21.4%) 67 (22%)

Race

White 20 (47.6%) 206 (68.4%) 0.0282e

Black 5 (11.9%) 23 (7.6%)

Other 17 (40.5%) 72 (23.9%)

Number of revascularization

0 39 (92.9%) 271 (89.1%) 0.8719f

1 3 (7.1%) 20 (6.6%)

2 0 (0.0%) 10 (3.3%)

3 0 (0.0%) 3 (1%)

Intracoronary imaging

None 16 (38.1%) 118 (38.8%) 0.5256e

IVUS 24 (57.1%) 156 (51.3%)

OCT 2 (4.8%) 30 (9.9%)

Cancer type

Solid 34 (81%) 198 (71.2%) 0.1881e

Hematological 8 (19%) 80 (28.8%)

Smoker ≥1 years 24 (58.5%) 182 (69.3%) 0.5087e

Hypertension 38 (92.7%) 264 (91.7%) 1.0000f

Dyslipidemia 31 (77.5%) 232 (82%) 0.4954e

Family History Premature

CAD

13 (34.2%) 34 (11.8%) 0.0002e

Prior MI 8 (21.1%) 103 (37.7%) 0.0444e

Prior Heart Failure 8 (20.5%) 65 (25.4%) 0.5108e

Peripheral Artery Disease 3 (7.9%) 42 (16.6%) 0.1663e

Chronic Lung Disease 3 (7.9%) 44 (17.4%) 0.1380e

Diabetes 11 (28.9%) 128 (48.7%) 0.0226e

Prior PCI 2 (11.1%) 66 (35.1%) 0.0386e

(Continued)

TABLE 1 (Continued)

Variable BMS (n = 42) DES (n = 304) P-valuea

Prior CABG 0 (0.0%) 24 (13.4%) 0.1361f

Indication for Revascularization

Cardiomyopathy 6 (14.3%) 43 (14.1%) 0.9804e

Abnormal Stress test 16 (38.1%) 73 (24%) 0.0503e

Stable CAD 16 (38.1%) 130 (42.8%) 0.5659e

Unstable Angina 7 (16.7%) 71 (23.4%) 0.3309e

NSTEMI 5 (11.9%) 82 (27%) 0.0323e

BMI, Body mass index; IVUS, Intravascular ultrasound; OCT, optical coherence

tomography; MI, myocardial Infarction; CAD, coronary artery disease; PCI,

Percutaneous coronary intervention; CABG, coronary artery bypass grafting; NSTEMI,

non-ST elevation MI.
aWilcoxon rank-sum test was used unless specified, bMean ± SD are presented, c Two

sample t-test was used, dMedian (IQR) are presented, eChi-square test was used, and
fFisher’s exact test was used. P value < 0.05 suggesting statistical significance.

Outcomes

The primary endpoints included all-cause mortality and the

number of revascularizations at the end of the follow-up period,

while the secondary outcome was cardiovascular death.

Statistical analysis

Continuous variables were described as means ± standard

deviations (SDs) or medians with interquartile ranges (IQRs).

As appropriate, categorical variables were described as counts

and percentages. Patient characteristics were compared between

BMS and DES by a two-sample t-test or Wilcoxon rank-sum

test for continuous variables and a Chi-square test or Fisher’s

exact test for categorical variables. Overall, survival time was

defined as the interval between index PCI intervention and

death. It was determined at the last follow-up if the patient

was alive during the follow-up. The Kaplan–Meier method

was used to estimate the survival probability. Univariate and

multivariate Cox regression models were used to compare

BMS and DES overall survival. The multivariate logistic

regression model initially included covariates with a significant

or marginally significant p-value based on univariate logistic

regression analysis. The stepwise selection method was then

utilized to include significant variables in the multivariate

model. The propensity score, the predicted probability of

receiving BMS, was calculated using a multivariate logistic

regression model including significant factors. 1:1 propensity

score matching and a 1:2 propensity score matching were

conducted to select patients treated with BMS and comparable

patients treated with DES using a one-to-many match macro

using a greedy algorithm. A univariate Cox regression model

was utilized to compare overall survival between BMS and

DES in propensity score-matched cohorts. A p < 0.05 indicates
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FIGURE 1

The Kaplan–Meier (KM) survival curve. (A) The KM curve of the entire group showing Median survival: 46 months (95% CI, 34–66); median

follow-up of 34 months (95% CI, 28–39). (B) KM Survival curve by intervention showing no di�erence in survival over the follow-up period

between bare metal stent (BMS) vs. drug-eluting stent (DES). (C) a 1:1 propensity score-matched cohorts of BMS vs. DES showing no di�erence

in survival. (D) a 1:2 propensity score-matched cohorts of BMS vs. DES showing no di�erence in survival.

FIGURE 2

The Kaplan–Meier (KM) curve on time to revascularization shows no significant di�erence in time to revascularization between the BMS and DES

groups.

statistical significance. For data analysis, SAS version 9.4 (SAS

Institute, Inc., Cary, North Carolina) was used.

Results

Baseline characteristics

The study included 346 CAD cancer patients treated

with BMS (n = 42) or DES (n = 304), while patients

treated with POBA (n = 9) were excluded (Table 1). The

median follow-up time, estimated by the reverse of the

Kaplan–Meier method, was 34.1 months (95% CI, 28.4–38.7).

The median survival time was 46.2 months (95% CI, 34.0–

66.0) (Figures 1, 2). Patient characteristics of the intervention

(BMS vs. DES) are summarized in Table 1. Some variables

showed significant differences between the BMS and DES

groups: BMS was more prevalent in blacks, while DES was

more commonly seen in whites. Lipid panels, including

Frontiers inCardiovascularMedicine 04 frontiersin.org

440

https://doi.org/10.3389/fcvm.2022.901431
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Ahmed et al. 10.3389/fcvm.2022.901431

TABLE 2 Univariate Cox model (on overall survival time); with 346

who performed BMS or DES (147 deaths).

Variable HR (95% CI) P-value

Age (years)a 1.031 (1.013–1.049) 0.0006

Platelet count (103/uL)a 0.999 (0.997–1.001) 0.3660

Absolute Neutrophil Count (103/uL)a 1.029 (0.992–1.068) 0.1273

INR 0.984 (0.940–1.031) 0.5088

Creatinine (mg/dL)a 1.002 (0.981–1.022) 0.8784

Hemoglobin (g/dL) a 0.800 (0.737–0.869) <0.0001

Triglyceride (mg/dL)a 0.999 (0.996–1.002) 0.4313

Cholesterol (mg/dL)a 0.998 (0.994–1.003) 0.4079

HDL (mg/dL)a 0.990 (0.974–1.006) 0.2084

LDL (mg/dL)a 0.999 (0.994–1.004) 0.7545

VLD (mg/dL)a 1.000 (0.982–1.018) 0.9775

BNP (pg/mL)a 1.000 (1.000–1.000) 0.9188

Troponin (ng/mL)a 0.984 (0.953–1.017) 0.3335

BMI (kg/m2)a 0.943 (0.915–0.972) 0.0002

Gender

Male 1.000

Female 1.071 (0.720–1.592) 0.7344

Race

White 1.000

Black 1.442 (0.836–2.488) 0.1880

Other 0.824 (0.553–1.229) 0.3424

Intervention group

BMS 1.000

DES 0.873 (0.554–1.375) 0.5585

Intracoronary imaging

IVUS 1.000

None 1.130 (0.802–1.592) 0.4838

OCT 1.036 (0.575–1.865) 0.9072

Cancer type

Solid 1.000

Hematological 0.824 (0.572–1.187) 0.2990

Smoker≥1 yearb 1.181 (0.838–1.665) 0.3408

Hypertensionb 0.594 (0.358–0.987) 0.0443

Dyslipidemiab 1.095 (0.710–1.689) 0.6816

Family History Premature CADb 1.439 (0.932–2.223) 0.1008

Prior MIb 0.760 (0.523–1.103) 0.1486

Prior Heart Failureb 1.350 (0.918–1.986) 0.1270

Peripheral Artery Diseaseb 1.215 (0.767–1.923) 0.4063

Chronic Lung Diseaseb 1.493 (0.974–2.289) 0.0661

Diabetesb 0.942 (0.661–1.341) 0.7383

Prior PCIb 1.063 (0.666–1.697) 0.7969

Prior CABGb 0.975 (0.484–1.962) 0.9430

Indication for Revascularization

Cardiomyopathyb 1.092 (0.699–1.705) 0.6989

Abnormal Stress testb 0.707 (0.482–1.038) 0.0766

Stable CADb 1.072 (0.775–1.484) 0.6739

(Continued)

TABLE 2 (Continued)

Variable HR (95% CI) P-value

Unstable Anginab 0.718 (0.473–1.091) 0.1203

NSTEMIb 1.961 (1.386–2.774) 0.0001

The number of revascularization is not included in this analysis as this variable is not

a baseline characteristic. (i.e., patients with revascularization are likely to have longer

survival as the survival time is calculated from initial vascularization and patients need to

be survived to be revascularized).

BMI, Body mass index; IVUS, Intravascular ultrasound; OCT, Optical coherence

tomography; MI, Myocardial Infarction; CAD, Coronary artery disease; PCI,

Percutaneous coronary intervention; CABG, Coronary artery bypass grafting; NSTEMI,

Non ST-elevation MI.
aHR in 1 unit change is presented along with 95% CI.
bHR considering no group as a reference, is presented along with 95% CI. P value < 0.05

suggesting statistical significance.

TABLE 3 Multivariate Cox model (on overall survival time).

Variable Level HR (95% CI) P-value

Age group ≤65 years 1.000

>65 years 1.592 (1.087–2.334) 0.0170

Hemoglobin group ≤12 g/dL 1.000

>12 g/dL 0.481 (0.328–0.706) 0.0002

Intervention group BMS 1.000

DES 0.763 (0.479–1.216) 0.2561

BMI group ≤25 g/m2 1.000

25–30 g/m2 0.811 (0.541–1.216) 0.3102

>30 g/m2 0.585 (0.378–0.906) 0.0163

Indication: NSTEMI No 1.000

Yes 1.629 (1.110–2.391) 0.0127

Including 323 patients with either BMS or DES considering age, hemoglobin (12 g/dL as

a cutoff value), intervention, BMI, and an indication of NSTEMI.

cholesterol and mean LDL, were higher in the BMS group.

The BMS group had a higher prevalence of family history

of premature CAD, while those treated with DES had a

significantly increased number of prior MI and PCI. DES use

was more common in patients with non-ST segment elevation

MI (NSTEMI).

Univariate Cox analysis results

Univariate analysis results are presented in Table 2. Age,

higher INR, lower hemoglobin, lower body mass index (BMI),

absence of hypertension, and primary PCI indication of

NSTEMI were significantly associated with an increased risk

of death.

Multivariate Cox analysis results

A multivariate Cox model initially considered the age

at intervention, INR group, hemoglobin group, family
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TABLE 4 Propensity score matching.

Univariate Cox model Multivariate Cox model

Variable Level HR (95% CI) P-value HR (95% CI) P-value

(a) 1:1 matching for BMS to DES (38 BMS vs. 38 DES were chosen)

Intervention group BMS 1.000 1.000

DES 0.724 (0.360–1.457) 0.3657 0.739 (0.367–1.489) 0.3974

Hemoglobin group ≤12 g/dL 1.000

>12 g/dL 0.516 (0.257–1.036) 0.0629

Univariate Cox model Multivariate Cox model

Variable Level HR (95% CI) P-value HR (95% CI) P-value

(b) 1:2 matching for BMS to DES (33 BMS vs. 66 DES were chosen)

Intervention group BMS 1.000 1.000

DES 0.971 (0.508–1.856) 0.9287 0.941 (0.489–1.809) 0.8545

Hemoglobin group ≤12 g/dL 1.000

>12 g/dL 0.517 (0.271–0.988) 0.0460

TABLE 5 Analysis of the number of revascularizations between BMS vs. DES group, including 1:1 and 1:2 propensity-matched analysis.

Covariate Levels BMS (n = 42) DES (n = 304) P-value

(a) Including all patients with BMS or DES

Number of revascularization Median (Q1-Q3) 0 (0–0) 0 (0–0) 0.4263

Mean± SD 0.07± 0.26 0.16± 0.51 0.0745

Number of revascularization 0 39 (92.9%) 271 (89.1%) 0.8719

1 3 (7.1%) 20 (6.6%)

2 0 (0%) 10 (3.3%)

3 0 (0%) 3 (1%)

Covariate Levels BMS (n = 38) DES (n = 38) P-value

(b) 1:1 Propensity score matched cohorts

Number of revascularization Median (Q1-Q3) 0 (0–0) 0 (0–0) 0.6560

Mean (SD) 0.08± 0.27 0.16± 0.49 0.3927

Number of revascularization 0 35 (92.1%) 34 (89.5%) 0.6745

1 3 (7.9%) 2 (5.3%)

2 0 (0%) 2 (5.3%)

Covariate Levels BMS (n = 33) DES (n = 66) P-value

(c) 1:2 propensity score matched cohorts

Number of revascularization Median (Q1-Q3) 0 (0–0) 0 (0–0) 0.6144

Mean (SD) 0.09± 0.29 0.17± 0.48 0.3353

Number of revascularization 0 30 (90.9%) 58 (87.9%) 0.7447

1 3 (9.1%) 5 (7.6%)

2 0 (0%) 3 (4.5%)
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TABLE 6 Cardiovascular specific survival: Univariate Fine-Gray

models, considering cardiovascular specific death as an event of

interest and death as a competing risk event.

Variable HR (95% CI) P-value

Age (years) 1.034 (0.970–1.104) 0.3064

Platelet count (103/uL) 1.000 (0.997–1.003) 0.9275

Absolute Neutrophil Count (103/uL) 1.056 (1.019–1.095) 0.0030

INR 1.002 (0.976–1.028) 0.8864

Creatinine (mg/dL) 0.995 (0.977–1.012) 0.5368

Hemoglobin (g/dL) 0.874 (0.716–1.066) 0.1848

Triglyceride (mg/dL) 1.003 (0.998–1.007) 0.2097

Cholesterol (mg/dL) 0.989 (0.978–0.999) 0.0354

HDL (mg/dL) 0.982 (0.942–1.024) 0.3983

LDL (mg/dL) 0.978 (0.963–0.994) 0.0071

VLD (mg/dL) 1.025 (0.998–1.054) 0.0682

BNP (pg/mL) 1.000 (0.999–1.000) 0.5436

Troponin (ng/mL) 0.866 (0.730–1.028) 0.0995

BMI (kg/m2) 0.955 (0.907–1.005) 0.0765

Gender

Female 1.000

Male 1.443 (0.498–4.181) 0.4996

Race

White 1.000

Black 1.572 (0.462–5.344) 0.4687

Other 0.600 (0.201–1.787) 0.3588

Intervention group

BMS 1.000

DES 3.394 (0.464–24.830) 0.2288

Intracoronary imaging

IVUS 1.000

None 1.455 (0.633–3.341) 0.3770

OCT 1.040 (0.240–4.506) 0.9582

Cancer type

Solid 1.000

Hematological 0.839 (0.347–2.026) 0.6960

Indication for Revascularization

Cardiomyopathy 1.618 (0.610–4.290) 0.3336

Abnormal Stress test 0.243 (0.059–1.008) 0.0512

Stable CAD 0.947 (0.422–2.125) 0.8957

Unstable Angina 1.144 (0.457–2.861) 0.7743

NSTEMI 2.232 (0.995–5.005) 0.0515

history of premature CAD, chronic lung disease, BMI group,

and an indication of primary PCI (abnormal stress test or

NSTEMI). Age, hemoglobin, BMI, and indication of NSTEMI

remained significant in multivariate analysis. Therefore,

multivariate models, including age group, hemoglobin

group (using 12 g/dl as a cutoff value), BMI group, and

an indication of NSTEMI, are presented in Table 3. After

adjusting for age, hemoglobin, BMI, and indication of NSTEMI,

BMS and DES did not show a significant difference in

overall survival.

TABLE 7 Number of patients with BMS vs. DES per year (2013–2020).

Frequency BMS

n (%)

DES

n (%)

2013 0 (0) 38 (100)

2014 4 (9.5) 38 (90.5)

2015 18 (39) 28 (61)

2016 12 (21.4) 44 (78.6)

2017 5 (11.6) 38 (88.4)

2018 2 (4.1) 47 (95.9)

2019 0 (0) 49 (100)

2020 1 (4.3) 22 (95.7)

Propensity score matching

Some patients were treated with BMS, while others with

DES, and these interventions were not randomly allocated.

To make a fair comparison between BMS and DES in

outcomes, we calculated the propensity score using a logistic

regression model to predict being treated with BMS. The

logistic regression model initially considered significant or

marginally significant variables in univariate logistic regression

models (age at intervention, family history of premature CAD,

race, prior MI, and diabetes). The stepwise selection method

selected family history of premature CAD, race, and diabetes

in the final multivariate logistic regression model. Using this

model, we calculated the propensity score as the predicted

probability of receiving BMS for given covariates. Using these

propensity scores, we selected a 1:1 propensity score-matched

cohorts (38 BMS vs. 38 DES) and a 1:2 propensity score-

matched cohorts (33 BMS vs. 66 DES). In these cohorts,

BMS and DES did not show significant differences in overall

survival (Tables 4a,b).

The “number of revascularizations” was compared

between the two groups: BMS vs. DES (Table 5a). Propensity

score matching was also performed for the “number of

revascularizations” (Tables 5b,c).

Secondary outcomes and other statistical
analysis

Univariate Fine-Gray models, considering cardiovascular-

specific death as an event of interest and death as a

competing risk event, revealed no significant difference in

cardiovascular outcomes between BMS vs. DES (Table 6).

Detailed cancer characteristics for patients in the BMS and

DES groups are provided in Table 7. The number of patients
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TABLE 8 Cancer characteristics by intervention.

Covariate Levels BMS DES P-value

Cancer type Solid 34 (81%) 198 (71.2%) 0.1881

Hematologic 8 (19%) 80 (28.8%)

Primary Cancer Type 1 Leukemia 7 (16.7%) 32 (11.6%) 0.0075

2 Myeloma 1 (2.4%) 21 (7.6%)

3 Lymphoma 0 (0%) 26 (9.4%)

4 Lung 1 (2.4%) 41 (14.8%)

5 Colon/rectal 4 (9.5%) 15 (5.4%)

6 Breast 2 (4.8%) 11 (4%)

7 Pancreatic 3 (7.1%) 6 (2.2%)

8 Uterine 0 (0%) 2 (0.7%)

9 Ovarian/Endometrial 0 (0%) 3 (1.1%)

11 Prostate 1 (2.4%) 19 (6.9%)

12 Skin 2 (4.8%) 5 (1.8%)

13 Melanoma 4 (9.5%) 8 (2.9%)

14 Stomach/Esophageal 1 (2.4%) 12 (4.3%)

15 Renal/bladder 3 (7.1%) 31 (11.2%)

16 Other 3 (7.1%) 9 (3.2%)

17 Thyroid 1 (2.4%) 8 (2.9%)

18 ENT 4 (9.5%) 15 (5.4%)

19 Neurological 1 (2.4%) 2 (0.7%)

20 Liver 4 (9.5%) 8 (2.9%)

21 Endocrine 0 (0%) 3 (1.1%)

Primary cancer group 1 Leukemia 7 (16.7%) 32 (11.6%) 0.0049

2 Myeloma 1 (2.4%) 21 (7.6%)

3 Lymphoma 0 (0%) 26 (9.4%)

4 Lung 1 (2.4%) 41 (14.8%)

5 GI 12 (28.6%) 40 (14.4%)

6 Breast 2 (4.8%) 10 (3.6%)

7 Gynecological 0 (0%) 5 (1.8%)

8 Prostate/Testicular 1 (2.4%) 22 (7.9%)

9 Skin 6 (14.3%) 13 (4.7%)

10 Renal/bladder 3 (7.1%) 28 (10.1%)

11 Other 4 (9.5%) 12 (4.3%)

12 Endocrine 1 (2.4%) 9 (3.2%)

13 ENT 4 (9.5%) 18 (6.5%)

Prior Chemotherapy 0 8 (33.3%) 61 (31.1%) 0.8256

1 16 (66.7%) 135 (68.9%)

Prior radiation 0 15 (62.5%) 118 (59.9%) 0.8058

1 9 (37.5%) 79 (40.1%)

Active Chemotherapy 0 14 (58.3%) 116 (58.3%) 0.9969

1 10 (41.7%) 83 (41.7%)

who underwent BMS and DES each year during the study

duration (2013–2020) is provided in Table 8. A descriptive

patient flowchart for inclusion in the study is provided

in Figure 3.

Discussion

Our study showed that 1) the number of revascularizations

(including target and other vessels) in cancer patients with

CAD treated with BMS vs. DES was similar during the follow-

up period, and 2) the all-cause mortality between BMS and

DES did not differ significantly. These are important findings

since cancer and cardiovascular disease are the most prevalent

diseases worldwide. Data on outcomes after percutaneous

intervention in these patients are scant, and the evidence-based

treatment regimen for CAD in this group of patients is not well

established (11–13).

Several comorbid conditions affect patients with cancer,

which influence their treatment in the setting of PCI. While

cancer and its treatment can predispose patients to bleeding

tendencies and thrombocytopenia, neoplasia by itself is a

pro-coagulant state (14). This poses a unique challenge and

highlights the need to evaluate thrombosis and bleeding

risks carefully. In the setting of PCI, this information has a

tremendous impact on the options for stenting and antiplatelet

therapy (14). Several clinical studies have proven the superiority

of DES over BMS in reducing the risk of restenosis and stent

thrombosis compared with bare-metal stents (BMS) in non-

cancer high-risk patients (9). In-stent restenosis, although of

concern, may not be significant due to shorter-term survivorship

from cancer. As cancer survival rates keep improving, the role of

DES in improved restenosis becomes more important. A study

usingOCT to evaluate stent healing after DES placement showed

adequate stent healing in cancer patients despite a shorter course

of DAPT (<6 months) in 61% of them. Findings were matched

with stent healing value for DES in non-cancer patients (15).

Another concern for DES use in cancer patients is stent

thrombosis, given the need for a shorter course of antiplatelet

therapy in selected cases (16). In our study, the number

of revascularizations was similar between the DES and BMS

groups. Hence, DES is likely not associated with increased

thrombotic risk in the cancer patient population. The idea of

abbreviated DAPT after BMS appeals to the high-risk group of

cancer patients (17). With recent advancements, the current-

generation DES now possesses a reduced stent strut thickness

and a unique drug fast-release profile that results in less powerful

inhibition of intimal hyperplasia and rapid reendothelialization

of stent struts. Given these qualities, a shorter duration of DAPT

seems more feasible (18).

Recently published trials showed that 1 month of DAPT

after PCI followed by aspirin monotherapy was non-inferior

to 6 or 12 months of full antiplatelet therapy (18, 19).

Interestingly, there was no difference in the occurrence of major

bleeding and stent thrombosis between both groups. Similar

studies are needed in a cancer population. Currently, the latest

American College of Cardiology/American Heart Association
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FIGURE 3

Patient flow chart showing inclusion criteria for the patients. STEMI, ST-elevation myocardial infarction; POBA, plain old balloon angioplasty;

BMS, bare metal stents; DES, drug-eluting stents.

(ACC/AHA) guidelines and European Society of Cardiology

(ESC) guidelines still emphasize a class I recommendation for

at least 6 months of DAPT in non-ACS for DES and 1 month

for BMS, and 12 months of DAPT in ACS settings for both

DES and BMS (20, 21). According to the ACC/AHA guidelines,

discontinuation of aspirin may be considered 1–3 months after

DES implantation with continued P2Y12 monotherapy in both

stable ischemic heart disease (SIHD) and ACS patients (class

2a recommendation) (20). We believe future guidelines will

continue to implement shorter courses of DAPT as more data

supporting this becomes available, especially with advanced

technology in stent development. This will favor DES use in such

a high-risk cancer population.

Another important consideration is the increased

requirement for anticoagulation in cancer patients due to

their higher propensity for thrombosis and atrial fibrillation.

The management of triple therapy in these patients poses its

own challenges due to the high risk of bleeding and a decision

regarding the timing of re-initiation of chemotherapy (22, 23).

A recent large study on a national database suggested superior

outcomes in patients with cancer with a DES placed compared

with those with a bare-metal stent (BMS) placed (8). However,

this was driven by higher in-hospital mortality and increased

bleeding events in the BMS group, signifying a selection bias

to use BMS for sicker patients requiring early discontinuation

of DAPT for various reasons, including initiation of cancer

therapy due to advanced disease (24, 25). Although the choice

of a stent in our study was at the treating physician’s discretion

after shared decision-making with the patient, a key difference

in baseline characteristics between the two groups was an

increased number of patients with NSTEMI in the DES group.

A significant interplay exists between cancer and CAD.

Given a high bleeding risk in patients with cancer, shorter-

duration DAPT and BMS were historically preferred

in the setting of percutaneous coronary intervention.

However, factors such as chronic inflammation and
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chemotherapy/radiation-induced cardiotoxicity increase

the risk of stent thrombosis and in-stent restenosis. Another

important observation from this study is that in cancer patients,

despite the increased inflammatory and prothrombotic state,

the use of DES was not associated with a need for more

revascularizations as compared to BMS. In a recent Italian

registry, the use of BMS was extremely low, at 0.3 %, with the

main reasons for BMS use being advanced age, ST-elevation

myocardial infarction (STEMI), and physicians’ perception of a

high risk of bleeding (25).

Moreover, recent evidence from multiple studies suggests

that shorter-duration DAPT is feasible with newer-generation

DES and that percutaneous coronary intervention outcomes

with the current generation of DES are better than with BMS

(26, 27). Although the utilization of these stents in cancer

patients is yet to be tested, in light of the current evidence, there

is no reason for using BMS in any situation except for some

cost-effectiveness. Moreover, the revolution of BMS vs. DES in

our study indicates a stronger preference for using DES in the

later years, with improvement in the design and generations of

these stents.

Recent data suggest that routine use of intracoronary

imaging leads to superior outcomes, which is paramount when

shorter durations of DAPT are required (28–30). In our study,

> 50% of the patients in either arm had IVUS as a part

of their intervention, while almost 5% in BMS and 10% in

DES underwent OCT. This highlights the role of optimizing

PCI in this patient population, particularly given the increased

likelihood that a shorter duration of DAPT may be required.

This approach can avoid stent under-sizing and malapposition

and residual untreated complications such as edge dissections,

all of which may lead to worse outcomes, especially with a

shorter duration of DAPT (13). When possible, bifurcation and

overlapping stents should be avoided to reduce the risk of stent

thrombosis (13).

Study limitations

Our study included a large cohort of patients with cancer

patients undergoing PCI with DES vs. BMS reported to date.

However, it was a single-center retrospective observational

study with known limitations, including relatively small sample

size. Also, mortality data may be underestimated because

we rely on our electronic medical records. Furthermore, the

successful continuation of DAPT therapy in both arms could

not be accurately confirmed due to the study’s retrospective

nature. Moreover, our study did not use the newest generations

of stents, including zatarolimus-coated stents, polymer-

free stents, nano-coated stents, etc., requiring shorter-term

DAPT therapy. Some data regarding index procedure details,

including the number of stents used and the type of target

vessel for revascularization, which can potentially affect

the future need for revascularization, were not obtained

and hence can affect the outcomes of the study. This calls

for more detailed data collection for cancer patients in

large-scale PCI registries to further validate the findings of

our study.

Conclusion

In conclusion, cancer patients with CAD treated with BMS

had similar overall survival and need for revascularizations

compared to patients treated with DES. Our study revealed no

increased risk of stent thrombosis or restenosis as well as all-

cause mortality in cancer patients when comparing BMS vs.

DES. As cancer therapy continues to evolve, the survival of these

patients is expected to increase. Hence, greater use of DES may

benefit these patients over a longer follow-up period. As such,

the choice of stents in these patients should factor in the stage of

cancer, expectant survival, and overall prognosis.
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Cardiovascular adverse events in
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patients treated with nilotinib or
imatinib: A systematic review,
meta-analysis and integrative
bioinformatics analysis
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Objective: The aim of this article is to assess the risk and potential

mechanisms of cardiovascular adverse events in patients treated with nilotinib

or imatinib by conducting a systematic review, meta-analysis and integrative

bioinformatics analysis.

Materials and methods: Three databases were systematically searched for

studies published from inception to May 29, 2022. Differential expression

analysis and weighted gene coexpression network analysis (WGCNA)

were performed to search for modules of genes most associated with

cardiotoxicity. Protein-protein interaction (PPI) network analysis was then

performed to identify hub genes for the cardiotoxicity of nilotinib. Molecular

docking was used to analyze the effects of rosuvastatin and aspirin

on these targets.

Results: Patients treated with nilotinib as first-line treatment were associated

with a higher risk of CAE (OR = 3.43 [95% CI 2.77–4.25]), CAD (OR = 5.30 [95%

CI 3.85–7.29]), ACS (OR 2.7 [95% CI 1.60–4.54]), CVA (OR 5.76 [95% CI 2.84–

11.28]), PAOD (OR 5.57 [95% CI 3.26–9.50]) and arrhythmia (OR 2.34 [1.17,4.67])

than those treated with imatinib, while no significant difference was found in

the risk of HF (OR 1.40 [95% CI 0.42–4.69]) between the two groups. Patients

who were treated with more than 600 mg daily dosage of nilotinib or followed

up for more than 5 years had a higher risk of ACS and CVA. IL6, CXCL8,

CCL2, SOD2, NFKBIA, and BIRC3 were identified as the top 6 hub genes

in the magenta module (human cardiomyocyte samples) and were mainly

enriched in the NOD-like receptor signaling pathway, IL-17 signaling pathway,

TNF signaling pathway, lipid and atherosclerosis signaling pathway. TYROBP

and CSF1R were identified as hub genes in the turquoise module (liver samples

from Mus musculus). GSEA results showed that type II diabetes mellitus, B-cell

receptor, apoptosis, insulin, natural killer cell mediated cytotoxicity,
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GRAPHICAL ABSTRACT

Study design for the bioinformatics analysis.

mTOR, chemokine, and T-cell receptor signaling pathways were related

to the higher risk of atherosclerosis caused by nilotinib. Rosuvastatin can

effectively bind to most of the hub targets and proteins enriched in the

inflammatory pathways above.

Conclusion: CML patients who start with nilotinib have a higher risk of

CAE than those with imatinib. Atherosclerosis caused by the inflammatory

response and glycolipid metabolism disorder is the key mechanism of

nilotinib cardiotoxicity. Rosuvastatin may be an effective treatment for the

cardiotoxicity of nilotinib.

KEYWORDS

chronic myeloid leukemia, nilotinib, imatinib, cardiovascular adverse events,
atherosclerosis

Introduction

Chronic myeloid leukemia (CML) is a malignant
hematopoietic system disease that severely endangers the life of
patients. CML patients possess the Philadelphia chromosome,
which contains the Bcr-Abl that encodes the oncoprotein
BCR-ABL. As the first TKI approved by the FDA, imatinib
can improve the outcomes of CML patients and prolong their
overall survival to a point that is similar to their age-matched
healthy individuals (1). However, inevitable drug resistance to
imatinib and the majority of relapses upon withdrawal have

occurred frequently due to several mutations in the BCR-ABL
kinase. Effective against most BCR-ABL1 mutations (T315I
excluded), nilotinib has been approved as a first-line treatment
and second-line treatment for CML patients with intolerance
or resistance to imatinib (2), with a 10- to 50-fold higher
BCR/ABL kinase inhibition activity than imatinib (3). The
clinical efficacy of nilotinib (300 mg BID, 400 mg BID) in
newly diagnosed chronic phase CML was demonstrated in the
randomized phase III ENESTnd trial (4). As reported in the
phase II study GIMEMA CML 0307, the 10-year overall survival
and progression-free survival in patients treated with nilotinib
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were 94.5% (5). The rates of major (MMR) and deep (MR4)
molecular responses were 96% and 83%, respectively (5).

Apart from hematological, musculoskeletal, gastrointestinal
and subcutaneous toxicity, nilotinib can also lead to adverse
effects different from those of imatinib, such as cardiovascular
adverse events (1, 6). A total of 23.3% of patients have
at least one arterial obstructive event, which suggests that
cardiovascular toxicity remains a concern. Nilotinib (NILO)
can cause accelerated atherosclerosis and arterial thrombotic
events (myocardial ischemia, stroke, and peripheral artery
obstructive disease), hyperglycemia and hyperlipidemia (7, 8).
The risk increases with the nilotinib administration duration
(9). TKIs have become the current standard of care for CML,
so their cardiotoxicity should be given enough attention in
this population. The mechanisms underlying the cardiovascular
adverse events induced by nilotinib or imatinib remain unclear.

Nowadays, statins have been recommended for optimal
atherosclerotic cardiovascular disease (ASCVD) risk reduction
by American College of Cardiology/American Heart
Association (ACC/AHA) Guideline (10) and European Society
of Cardiology/European Atherosclerosis Society (ESC/EAS)
Guideline (11). As inhibitors of 3-hydroxy 3-methylglutaryl
coenzyme A reductase, statins can reduce circulating low-
density lipoprotein (LDL) and cholesterol levels by 25 to
50%. Moreover, statins bring about cardiovascular benefits via
anti-inflammation and atherosclerotic plaque stabilization (12).
As was reported in the Network Meta-Analyses conducted by
Xiaodan Zhang et al. (13), rosuvastatin ranked first in lowering
low-density lipoprotein cholesterol (LDL-C), apolipoprotein
B (ApoB) and increasing apolipoprotein A1 (ApoA1) efficacy.
Rosuvastatin, at moderate and high intensity doses, was the
most effective in reducing levels of non-high density lipoprotein
cholesterol in patients with diabetes (14). Therefore, we
assess the therapeutic potential of rosuvastatin and aspirin,

Abbreviations: ACS, Acute coronary syndrome; BIRC3, Baculoviral IAP
Repeat Containing 3; BP, biological process; CAE, Cardiovascular
Adverse events; CCL2, C-C Motif Chemokine Ligand 2; CCL20, C-C Motif
Chemokine Ligand 20; CC, cellular component; CVA, cerebrovascular
accident; CNKI, China National Knowledge Internet; CML, chronic
myeloid leukemia; ceRNA, competing endogenous RNA; CAD, coronary
artery disease; CXCL2, C-X-C Motif Chemokine Ligand 2; CXCL8, C-X-
C Motif Chemokine Ligand 8; DM, diabetes mellitus; DEGs, differentially
expressed genes; ES, enrichment score; FDR, false discovery rate; FC,
fold change; GEO, Gene Expression Omnibus database; GO, Gene
Ontology; GSEA, Gene Set Enrichment Analysis; HF, heart failure;
hs-CRP, high-sensitivity C-reactive protein; HTN, hypertension; IGM,
impaired glucose metabolism; IL10, interleukin 10; IL6, Interleukin 6;
IHD, ischemic heart disease; KEGG, Kyoto Encyclopedia of Gene and
Genomes; ME, module eigengene; MM, module membership; MF,
molecular function; NFKBIA, NFKB Inhibitor Alpha; NILO, Nilotinib; NES,
normalized enrichment score; PAOD, peripheral artery occlusive disease;
PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-
Analyses; PDB, Protein Data Bank; PPI, protein-protein interaction;
PH, pulmonary hypertension; RCT, randomized controlled trial; SOD2,
Superoxide Dismutase 2; TIA, transient ischemic attack; TNFα, Tumor
Necrosis Factor-α; TKIs, tyrosine kinase inhibitors; VSMCs, vascular
smooth muscle cells; WGCNA, weighted gene coexpression network
analysis.

an important drug in prevention of ASCVD, so as to provide
reference for researches on cardiotoxicity of nilotinib.

Method

Meta-analysis

Literature data sources and search strategy
This systematic review and meta-analysis were registered on

the PROSPERO platform (CRD42022334398) and performed in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines (15). The
Embase, PubMed, and Cochrane Library databases were
searched for articles. Moreover, we searched https://www.isrctn.
com, https://www.clinicaltrials.gov, and http://www.chictr.org.
cn/index.aspx for registered trials. The retrieval time was from
inception to May 29, 2022. The detailed search strategy is
described in Supplementary Tables 1–3.

Inclusion and exclusion criteria
Inclusion criteria

(1) Chronic myeloid leukemia patients who started with
nilotinib or imatinib as first-line treatment. (2) Sufficient data
and full text available for meta-analysis. (3) Study types were
randomized controlled trials (RCTs) or observational studies.
(4) Articles published in English.

Exclusion criteria

(1) Patients treated with a TKI except for imatinib or
nilotinib. (2) Rotation of imatinib and nilotinib during follow-
up. (3) Study types were case reports, single-cell sequencing
studies, animal experiments, conference presentations, study
protocols, meta-analyses or network meta-analyses.

Definition of the outcome
Cardiovascular adverse events (CAE), which were defined

as the combination of any of the following events (1) coronary
artery disease (CAD), which included but not was limited to
stable angina, or acute coronary syndrome(ACS) (including
unstable angina, ST or non-ST segment elevation myocardial
infarction) (2) cerebrovascular accident (CVA), including stroke
or transient ischemic attack (TIA) (3) peripheral artery
occlusive disease(PAOD) (4) heart failure(HF) (5) pulmonary
hypertension (PH) (6) arrhythmia.

Study selection and data extraction
Two review authors (Sicong Li and Jinshan He)

independently reviewed the titles and abstracts of studies
with potential eligibility. After that, we downloaded the full
texts of studies eligible for inclusion. Two authors (Xinyi Zhang
and Yuchun Cai) independently extracted the following data:
(1) basic information, including first author, publication year,
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sample size, follow-up time and study design; (2) characteristics
of patients, including sex, age and country; (3) details about the
TKI treatment: dosage and duration of nilotinib or imatinib
treatment; and (4) information on quality assessment. Any
disagreement concerning data extraction was settled through
consensus among authors.

Strategy for meta-analysis
This meta-analysis was performed by using R (version

4.0.3). The chi-square test and I2 value were used to measure
statistical heterogeneity. I2 < 50% and P > 0.05 indicated no
significant heterogeneity, and a fixed-effects model was used
to pool the value of OR/HR and 95% confidence interval;
otherwise, a random-effects model was used. Subgroup analysis
was conducted to analyze sources of heterogeneity. Sensitivity
analysis was conducted by excluding one study each time. Begg’s
and Egger’s tests were used to assess publication bias. Statistical
significance was set as α = 0.05 in this study.

Quality assessment
XZ and YC assessed the quality of eligible studies

independently by using the Newcastle–Ottawa Quality
Assessment Scale (NOS) (16). The NOS assessed the quality
of studies from the aspects of selection, comparability, and
exposure, with a total score ranging from 0 to 9 points. More
than 6 points was defined as a high-quality study. The results
are presented in Supplementary Table 5.

Bioinformatics analysis

Data acquisition and quality control
By using “Tyrosine kinase inhibitor,” “cardiotoxicity”

and “atherosclerosis” as keywords, the Gene Expression
Omnibus (GEO) repository1 was searched for datasets about
the cardiotoxicity of nilotinib or imatinib. GSE146095 and
GSE146096 with expression profiling of cardiomyocytes from
Homo sapiens and GSE103908 with expression profiling of liver
tissues from Mus musculus were obtained for further analysis
(17). No vascular endothelial cell samples treated with TKI were
found on the GEO website. We first used the inSilicoMerging
package of R software to merge the two datasets (GSE146095
and GSE146096) (18). Then, we used the method illustrated by
Johnson we et al. (19) to remove the batch effect and finally
obtained the transcriptomic profile matrix of human heart-
derived primary cardiomyocyte-like cell lines from 16 nilotinib
samples and 20 imatinib samples.

The liver plays a central role in cholesterol metabolism and
lipoprotein distribution. Moreover, the liver is the main organ
for the degradation of insulin, which inhibits gluconeogenesis

1 https://www.ncbi.nlm.nih.gov/gds/

and promotes glycogen decomposition and the synthesis and
metabolism of long-chain fatty acids and triglycerides.

In the study of GSE103908, histopathological analysis of
atherosclerosis and transcriptome analysis of the liver were
performed on female APOE∗3Leiden CETP transgenic mice.
Sixteen of them were treated with imatinib (150 mg/kg BID),
and eight of them were treated with nilotinib (10 or 30 mg/kg
QD). Baseline was defined as the time point after 3 weeks on
a Western-type diet containing saturated fat from 15% (w/w)
cacao butter and 0.15% cholesterol. Nilotinib decreased collagen
content by 32% (p = 0.003 < 0.05) and the lesion stability index
by 43% (p = 0.003 < 0.05). Increased expression of macrophage-
derived chemokine monocyte chemoattractant protein-1 (MCP-
1) was observed in the nilotinib group. Imatinib reduced average
cholesterol and triglyceride levels by 69% (p < 0.001) and 36%
(p = 0.019), respectively, which was related to inhibiting VLDL
production and intestinal absorption of cholesterol (20).

Analysis of differentially expressed genes
First, the probe names were converted into gene symbol

names. Second, DEGs were identified by using the “limma”
package (adjusted p < 0.05 and | log2FoldChange | > 1). All of
the DEGs were shown in a volcano plot, and the top 10 DEGs
are shown in a heatmap.

Weighted gene co-expression analysis
The WGCNA package in R software was used to find clusters

of highly correlated genes (with hierarchical clustering) and
to summarize these clusters as module eigengenes (MEs) by
liaising with cardiotoxicity and assigning module membership
(MM) to genes. After obtaining the expression profile of
differentially expressed genes, we removed the genes with a
standard deviation of 0 in each sample, removed the outlier
genes and samples by using the goodSamplesGenes method in
the WGCNA package, and further constructed the scale-free
coexpression network. Specifically, first, Pearson’s correlation
matrices and the average linkage method were both performed
for all pairwise genes. Then, a weighted adjacency matrix was
constructed using the power function A_mn = | C_mn| ˆβ
(C_mn = Pearson’s correlation between Gene_m and Gene_n;
A_mn = adjacency between Gene m and Gene n). β was
a soft-thresholding parameter that could emphasize strong
correlations between genes and penalize weak correlations. After
choosing the power of 20, the adjacency was transformed into
a topological overlap matrix (TOM), which could measure
the network connectivity of a gene defined as the sum of its
adjacency with all other genes for network Gene ratio, and
the corresponding dissimilarity (1-TOM) was calculated. To
classify genes with similar expression profiles into gene modules,
average linkage hierarchical clustering was conducted according
to the TOM-based dissimilarity measure with a minimum size
(gene group) of 30 for the gene dendrogram. Sensitivity was
set as 2. To further analyze the module, we calculated the
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dissimilarity of module genes, chose a cut line for the module
dendrogram and merged some modules. In addition, we also
combined modules with a distance less than 0.25 and finally
obtained four coexpression modules. Genes in the module most
related to the cardiotoxicity of nilotinib were obtained for
further analysis.

Gene ontology and kyoto encyclopedia of
gene and genomes enrichment analysis

We used the DAVID website2 to perform GO function
and KEGG pathway enrichment analyses for genes in the most
relevant module (21). Each term was calculated with a P value
by using Fisher’s exact test. P < 0.05 was considered statistically
significant. All of the results were visualized by using the
bioinformatic website.3

Construction and analysis of the
protein-protein interaction network

The PPI network was constructed by using the STRING
database4 with a confidence score > 0.4 (4). The downloaded
results were imported into Cytoscape 3.8.2 (22) software for
further analysis. The top 10 hub genes in the PPI network
were screened out by using the cytoHubba plugin. UpsetR
was used to take the intersection of the top 10 hub genes
according to 5 criteria.

Construction of the competing endogenous
RNA network

miRNA–mRNA and miRNA–lncRNA interactions were
obtained by searching lncACTdb (23).5 In this database, we
searched for ceRNA interactions supported by low- and high-
throughput experiments. Finally, the ceRNA network was
visualized in a Sankey plot by the R package “ggalluvial.”

Gene set enrichment analysis
We obtained GSEA software (version 3.0) from the GSEA

website6 (24). We downloaded the c2.cp.kegg.v7.4.symbols.gmt
subset from the Molecular Signatures Database7 (19) to evaluate
the relevant pathways and molecular mechanisms based on
gene expression profiles and phenotypic grouping. The default
weighted enrichment method was used for the enrichment
analysis. The random combination was set for 1000 times (25).
| NES| > 1, FDR < 0.25, NOM p < 0.05 were considered
significant enrichment.

2 https://david.ncifcrf.gov/

3 http://www.bioinformatics.com.cn/

4 https://www.string-db.org

5 http://www.biobigdata.ta.net/LncACTdb/

6 http://software.broadinstitute.org/gsea/index.jsp

7 http://www.gsea-msigdb.org/gsea/downloads.jsp

FIGURE 1

Flow chart of the study selection.

Molecular docking
Molecular docking was performed to predict the

binding of rosuvastatin and aspirin to the hub proteins
and the targets enriched in the atherosclerosis signaling
pathway. The three-dimensional structures of rosuvastatin
and aspirin were obtained from the PubChem database,8

and the three-dimensional structures of hub proteins were
obtained from the RCSB Protein Data Bank (PDB) database.9

Molecular docking simulations between rosuvastatin, aspirin
and the target proteins were performed by using the
AutoDock Tool (version 1.5.6) and AutoDock Vina 1.1.2
(Molecular Graphics Laboratory, Scripps Institute, 2011).
A minimum binding energy less than 5 indicated a good
binding ability. The results were finally visualized by using
the PyMOL molecular graphics system (v.2.4.0, Schrödinger,
LLC) (26).

Results

Results of meta-analysis

Literature search
In total, 14 studies involving 9699 patients with CML

were found to meet the inclusion criteria. Wang et al. (27)
and Kantarjian et al. (28) reported open labeled randomized
controlled studies, Anna Sicuranza et al. reported prospective
cohort studies (29), while others reported retrospective cohort
studies (30–40). The flow chart of the study selection process is
presented in Figure 1.

8 https://pubchem.ncbi.nlm.nih.gov/

9 http://www.rcsb.org/
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TABLE 1 Basic characteristics of the included studies.

Author Country Sample
size

Age
(year-old)

Sex
male(%)

CAE outcomes
reported

Duration of
nilotinib

Duration of
imatinib

Nilotinib
dose

Imatinib
dose

Follow-up
time

Subramanian
et al. (24)

Japan 369 53.0 (range 18–89) 224 (60.70%) CAD, CVA,PAOD 464 person-years 1336 person-years 150 mg
QD,300 mg QD,

400 mg QD,
300 mg BID,

400 mg QD 71.8 (range 1–196)
months

Zhao et al.
(25)

Sweden 1601 imatinib 60 (range
46–70), nilotinib 60

(range 45–69)

715 (64%) ACS,CAD,PAOD 2.8 (range0.8–5.6)
years

3.2 (range1.1–7.8)
years

NA NA 6 (range 3–10)
years

Trott and Olson
(26)

Slovakia 82 55.82 ± 13 48 (58.54%) CAD, CVA,PAOD 51.6
(range3.0–123.6)

months

126.25 (range3.33–
198.00)
months

300 mg
BID,400 mg BID

400 mg QD median
61.3 months

Kantarjian et al.
(27)

Sweden 896 58.2 ± 17.0 485 (54.1%) ACS, CVA, POAD 167 person-years 2350 person-years NA NA 4.2 (range1.9–7.1)
years

Wang et al. (28) China 1,111 Nilotinib
48.3 ± 14.4; Imatinib

49.0 ± 16.4

NA CAD,CVA,POAD 91.2 ± 277.6 days 35.8 ± 130.9 days NA NA 5 years

Sicuranza et al.
(29)

USA 531 49 ± 15 321 (60%) CAD, PAOD, HF,
CVA,PH,
Arrhythmia

77 (range 3–134)
months

imatinib 400 mg
cohort 144 (range,

2–195)months,
imatinib 800 mg

cohort 136
(2-186)months

400 mg BID 400 mg
QD,400 mg BID

94 (range 2-196)
months

Fujioka et al.
(30)

Japan 506 56(range 18-92) 329(65%) PAOD, ACS, HF,
arrhythmia, CVA

65.3
(range2.0–89.2)

months

77.9 (range
1.7–97.8)
months

300 mg QD,
300 mg BID

300 mg QD 5 years

Dahlén et al.
(31)

Ireland 1857 nilotinib median
47;imatinib median

49

1089(58.64%) CAE 36 (range,0–47)
months

45 (range 0–67)
months

300 mg BID, 400
mg BID

400 mg QD, 400
mg BID

6 (IQR, 3-10) years

Petrikova et al.
(32)

China 1207 46.38 ± 14.96 728 (60.31) CAD, CVA, PAOD median 2.40 years median 3.74 years NA NA NA

Szklarczyk et al.
(4)

USA 846 NA NA CAD,CVA,PAOD median
82.8 months in the

300-mg BID
group,

87.5 months in the
400-mg BID group

median
64.0 months

300-mg BID,
400-mg BID

400 mg QD 10 years

(Continued)
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The included studies were published between 2013 and
2022 and were conducted in Italy, China, Sweden, Slovakia, the
USA, Germany, Japan, and Ireland. The average follow-up time
ranged from 4.2 years to 10 years. Six studies did not report the
dosage of nilotinib and imatinib. The relevant characteristics
of the included studies are detailed in Table 1. Pulmonary
hypertension was not included in this analysis because only one
study reported it.

Results for cardiovascular adverse events
In logistic regression and survival analysis, patients treated

with nilotinib as first-line treatment suffered from a higher risk
of CAE (OR 3.43 [95% CI 2.77–4.25], HR = 3.75 [95% CI
1.90, 7.40]) than those treated with imatinib (see Figure 2).
No individual study was found to significantly influence the
pooled HR and 95% CI in the sensitivity analysis. No significant
publication bias was found by Begg’s and Egger’s tests. Torsten
Dahlén (33) contributed the most to the overall heterogeneity
and the overall results. In the subgroup analysis, different
definitions of CAE might be the main source of heterogeneity.
In terms of survival analysis, we did not construct funnel plots
or perform Begg’s test and Egger’s test to assess publication bias
due to the less than recommended arbitrary minimum number
of studies.

Results for other outcomes
Patients treated with nilotinib as first-line treatment had

a higher risk of CAD (OR 5.30 [95% CI 3.85–7.29]), ACS
(OR 2.7 [95% CI 1.60–4.54]), CVA (OR 5.76 [95% CI 2.84–
11.28]), POAD (OR 5.57 [95% CI 3.26–9.50]) and arrhythmia
(OR 2.34 [1.17,4.67]) than those treated with imatinib, while no
significant difference was found in the risk of HF (OR 1.40 [95%
CI 0.42–4.69]) between the two groups (Figure 3). The results of
the publication bias assessment, sensitivity analysis and baujat
plots for heterogeneity analysis are presented in Supplementary
Figures 7–10.

Regarding the outcomes of HF and arrhythmia, we did not
construct funnel plots or perform Begg’s test and Egger’s test
to assess publication bias due to the less than recommended
arbitrary minimum number of studies.

In subgroup analysis, sample size may be the source of
heterogeneity in the comparison of ACS, CVA and CAD.
Nilotinib treatment in studies with sample sizes greater than
1000 tended to show a higher risk of ACS, CVA and CAD
than imatinib treatment. The median follow-up time, dosage
and duration of nilotinib may be the source of heterogeneity in
the comparison of ACS, which indicated that patients treated
with more than 600 mg daily dosage or longer than 5 years
of nilotinib treatment or who were followed up for more than
5 years suffered from a higher risk of ACS. In the comparison
of CVA, patients treated with nilotinib tended to have a higher
risk of CVA than those treated with imatinib. In studies where
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FIGURE 2

Forest plots for cardiovascular adverse events (A). The results for logistic regression (B). The results for survival analysis.

patients took more than 600 mg daily dosage of nilotinib
or more than 400 mg daily dosage of imatinib, the duration
of imatinib or total follow-up time was more than 5 years
(Supplementary Figures 1–6).

Results of bioinformatics analysis

Results of differentially expressed genes
In terms of human cardiomyocytes treated with nilotinib,

55 upregulated and 759 downregulated DEGs were identified
through fold change (FC) and P value filtering (| log2FC| > 1
and P < 0.05) (see Figure 4). Interleukin 6 (IL6), C-X-C
motif chemokine ligand 8 (CXCL8), C-C motif chemokine
ligand 2 (CCL2), superoxide dismutase 2 (SOD2), NFKB
inhibitor alpha (NFKBIA), baculoviral IAP repeat containing 3
(BIRC3), C-C motif chemokine ligand 20 (CCL20), and C-X-
C motif chemokine ligand 2 (CXCL2) were upregulated in the
nilotinib group, while insulin receptor substrate 1 (IRS1) was
downregulated.

In liver samples of Mus musculus treated with nilotinib,
CCL2, CXCL2, BIRC3, Transmembrane Immune Signaling
Adaptor (TYROBP), and Colony Stimulating Factor 1 Receptor
(CSF1R) were upregulated, while Low Density Lipoprotein
Receptor (LDLR), very Low Density Lipoprotein Receptor
(VLDLR), and Insulin Receptor Substrate 1 (IRS1) were
downregulated compared with those treated with imatinib.
TYROBP and CSF1R are important functional regulators
of macrophages, which are the main inflammatory cells in
vulnerable plaques and are closely related to the occurrence,
development and rupture of vulnerable plaques. Decreased
expression of LDLR and VLDLR in the liver can lead to
hypercholesterolemia, while decreased expression of IRS1 can
lead to insulin resistance (IR).

Weighted gene coexpression network analysis
In terms of human cardiomyocyte samples, WGCNA was

performed on the 814 DEGs (see Figure 5). The soft threshold
for network construction was selected as 20. Meanwhile, the
fitting degree of the scale-free topological model was 0.85. This
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FIGURE 3

Forest plots for other outcomes. (A) Coronary artery disease (CAD). (B) Acute coronary syndrome (ACS). (C) Cerebrovascular accident (CVA). (D)
Peripheral artery occlusive disease (POAD). (E) Heart failure (HF). (F) Arrhythmia.

network conformed to the power-law distribution and was
closer to the real biological network state (41). Four modules
were identified based on average linkage hierarchical clustering
and soft-thresholding power. Among them, the magenta
module showed the highest correlation with the cardiotoxicity of
nilotinib (correlation index: 0.56, P = 3.4e−4 < 0.05). Thirty-five
genes in the magenta module were selected for further analysis.

In terms of liver samples from Mus musculus, the
soft threshold for network construction was selected as 6.
Finally, 36 modules were identified based on average linkage
hierarchical clustering and soft-thresholding power. Among
them, the turquoise module showed the highest correlation
with atherosclerosis related to nilotinib (correlation index: 0.77,
P = 9.7e−6 < 0.05). A total of 182 genes in the turquoise module
were selected for further analysis.

Gene ontology and kyoto encyclopedia of
gene and genomes enrichment analysis

In terms of human cardiomyocyte samples, 35 genes in the
magenta module were analyzed by using the DAVID database.
Thirty-two biological processes (BPs), 5 cellular components
(CCs), and 8 molecular functions (MFs) were found. The top 5
results in terms of count with a significant difference (P < 0.05)
and KEGG results with a count larger than 2 are presented in the
bar graph according to the P value (Figures 6A,B). The smaller
the P value is, the greater the color of the bar tends to be red. The

greater the number of enriched genes, the longer the area of the
bar was. The 35 genes were mainly associated with the NOD-
like receptor signaling pathway, IL-17 signaling pathway, TNF
signaling pathway, lipid and atherosclerosis, cytokine-cytokine
receptor interaction and AGE-RAGE signaling pathway in
diabetic complications.

In terms of liver samples from Mus musculus, genes
in the turquoise module were enriched in 232 biological
processes (BPs), 77-cellular components (CCs), and 8
molecular functions (MFs). In terms of KEGG analysis,
genes in the turquoise module were mainly enriched in the
regulation of actin cytoskeleton, chemokine signaling pathway,
leukocyte transendothelial migration, PI3K-Akt, focal adhesion,
Fc gamma R-mediated phagocytosis, platelet activation,
natural killer cell mediated cytotoxicity, Rap1, and lipid and
atherosclerosis signaling pathways (see Figures 6C,D). The
results above indicated that the inflammatory response and
abnormal glycolipid metabolism are the essential mechanisms
in atherosclerosis related to nilotinib.

Protein-protein interaction network analysis
The PPI network was constructed by Cytoscape based on

the STRING database. In terms of human samples, the PPI
network consists of 26 nodes and 54 edges (Figure 7A). The
top 10 hub genes according to 5 kinds of criteria were identified
by using the cytoHubba plugin (Supplementary Figure 11
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FIGURE 4

Visualized plots for differentially expressed genes (DEGs). (A) Volcano plots (human cardiomyocytes samples). (B) Heatmap (human
cardiomyocytes samples). (C) Heatmap (liver samples from Mus musculus). (D) Volcanoplots (liver samples from Mus musculus).

and Supplementary Table 6). We took their intersection by
using UpsetR (Supplementary Figure 11), and 6 hub genes
were finally identified (Table 2). GO term enrichment analysis
showed that the top 6 genes were enriched in the inflammatory
response and signal transduction in biological processes. Cell
component analysis found that they were significantly enriched
in the extracellular space and extracellular region. For the
molecular function analysis, they were principally involved
in chemokine activity and cytokine activity. KEGG analysis
suggested that they were mainly involved in the NOD-like
receptor signaling pathway, IL-17, lipid and atherosclerosis
pathway.

In terms of samples from Mus musculus, the PPI network
consists of 171 nodes and 1403 edges (Figure 7B). after
taking the intersection of the top 10 hub genes according
to 5 kinds of criteria, TYROBP and CSF1R were found

to be hub genes, which were enriched in the osteoclast
differentiation signaling pathway (Supplementary Figure 12
and Supplementary Table 7). Osteoclasts are involved in
calcification formation in atherosclerotic plaques.

Construction of the competing endogenous
RNA regulatory network for the hub genes

As shown in Figure 8, a ceRNA coexpression network
consisting of 11 lncRNAs, 14 miRNAs, and 6 mRNAs was
visualized by a Sankey plot after merging these predicted results.
We did not find experimentally validated ceRNAs related to
TYROBP in the lncACTdb database.

Results of gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed to

analyze the signaling pathway enrichment in the two groups.
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FIGURE 5

Visualization of weighted gene coexpression network analysis (WGCNA) results. (A) The scale-free fit index for soft-thresholding powers
(human cardiomyocytes samples). (B) Mean connectivity (human cardiomyocytes samples). (C) Dendrogram of the DEGs clustered (human
cardiomyocytes samples). (D) Heatmap showing the correlation between TKI and cardiotoxicity (human cardiomyocytes samples). (E) The
scale-free fit index for soft-thresholding powers (liver samples from Mus musculus). (F) Mean connectivitys (liver samples from Mus musculus).
(G) Dendrogram of the DEGs clustered (liver samples from Mus musculus). (H) Heatmap showing the correlation between TKI and
atherosclerosis (liver samples from Mus musculus).

FIGURE 6

Enrichment analysis results. (A) GO analysis (human cardiomyocytes samples). (B) KEGG analysis (human cardiomyocytes samples). (C) GO
analysis (liver samples from Mus musculus). (D) KEGG analysis (liver samples from Mus musculus).
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FIGURE 7

Results of the Cytoscape analysis. (A) PPI network (human cardiomyocytes samples). (B) PPI network (liver samples from Mus musculus).

TABLE 2 Results of the cytoHubba analysis.

node_name MCC Degree EPC EcCentricity Betweenness

IL6 432 10 11.80 0.27 31.47

CXCL8 432 10 11.77 0.27 31.47

CCL2 384 8 11.55 0.20 3.63

NFKBIA 288 8 11.65 0.27 14.57

SOD2 168 7 11.43 0.27 12.67

BIRC3 49 6 11.37 0.40 120.50

TYROBP 25563 27 31.03 0.19 1026.7662

CSF1R 24447 19 28.642 0.19 372.18325

FIGURE 8

Sankey plot for ceRNAs.
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FIGURE 9

Visualized plot for the GSEA for liver samples from Mus musculus (top 10 according to NES). (A) Top 1–5 GSEA results and (B) Top 6–10 GSEA
results.

TABLE 3 The results of GSEA.

Term ES NES pvalue FDR

FC_EPSILON_RI_SIGNALING_PATHWAY 0.6471 2.0861 0.002 0.0118

TYPE_II_DIABETES_MELLITUS 0.7333 2.0697 0.0068 0.012

B_CELL_RECEPTOR_SIGNALING_PATHWAY 0.6517 2.0245 0.0086 0.018

APOPTOSIS 0.5231 2.0187 0.0077 0.021

INSULIN_SIGNALING_PATHWAY 0.4691 1.9977 0.0078 0.025

NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 0.6578 1.9845 0.0079 0.03

FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 0.5508 1.9416 0.0089 0.041

MTOR_SIGNALING_PATHWAY 0.5287 1.9275 0.0021 0.0086

CHEMOKINE_SIGNALING_PATHWAY 0.6229 1.9009 0.0113 0.063

T_CELL_RECEPTOR_SIGNALING_PATHWAY 0.5899 1.8878 0.0119 0.072

The enrichment score (ES) and normalized enrichment score
(NES) were used to indicate the analysis results across gene sets.
The false discovery rate (FDR) was used to judge whether a set
was significantly enriched. In human cardiomyocyte samples, no
pathway was found to be significantly associated with risk scores
in the nilotinib group according to the criteria (| NES| > 1,
FDR < 0.25, NOM p < 0.05).

In terms of liver samples from Mus musculus, 10 pathways
were found to be significantly associated with risk scores in
the nilotinib group, including FC epsilon RI, type II diabetes
mellitus, B-cell receptor, apoptosis, insulin, natural killer cell
mediated cytotoxicity, FC gamma R mediated phagocytosis,
mTOR, chemokine, and T-cell receptor signaling pathways
(Figure 9 and Table 3). The results indicated that nilotinib
caused atherosclerosis by triggering inflammatory response and
abnormal glycolipid metabolism.

Molecular docking simulation
Rosuvastatin effectively bound to the proteins encoded by

CCL20, CXCL2, NFKB1A, SOD2, BIRC3, TYROBP, and CSF1R,
which were mainly enriched in the TNF and cytokine-cytokine
receptor interaction signaling pathways. Aspirin could only bind

to the proteins encoded by CCL20, CXCL2, and NFKB1A,
which were also enriched in the TNF signaling pathway. The
molecular docking scores are presented in Table 4, while the
molecular docking is visualized in Figures 10, 11. The results
indicated that rosuvastatin might be effective in the treatment of
atherosclerosis caused by nilotinib.

TABLE 4 Molecular docking results in terms of the minimum binding
energy (kcal/mol).

Targets Rosuvastatin Aspirin

CCL2 −6.7 −5.3

IL6 −4.8 −4.6

CXCL8 −4.2 −2.7

CXCL2 −5.6 −5.4

NFKB1A −6.5 −5.8

SOD2 −5.2 −0.9

BIRC3 −5.6 −4.6

TYROBP −5.7 −4.3

CSF1R −6.1 −4.7
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FIGURE 10

Diagram of structural interactions between rosuvastatin and hub targets. (A) CXCL8 (B) IL6 (C) CXCL2 (D) CCL20 (E) CCL2 (F) SOD2 (G) NFKBIA
(H) BIRC3 (I) TYROBP (J) CSF1R.

Discussion

In this meta-analysis, we conclude that patients who
start with nilotinib as first-line treatment have a higher
risk of CAE, CAD, ACS, CVA, POAD and arrhythmia than
those with imatinib. The evidence suggests that nilotinib is
not recommended for patients with advanced age, previous
cardiovascular disease or high-risk factors for CAEs. It is

essential to screen for vascular risk factors, such as hypertension,
hypercholesterolemia, diabetes mellitus (DM), or dyslipidemia,
prior to starting nilotinib and to maintain follow-up during
treatment. CML patients can be stratified according to the new
Systematic Coronary Risk Evaluation (SCORE) scoring system.
Patients with high and very high SCORE risk suffered from
higher risk of arterial occlusive events (HR = 3.5; 95% CI = 1.4–
8.7 and HR = 4.4; 95% CI = 2–9.8, respectively) (42).
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FIGURE 11

Diagram of structural interactions between aspirin and hub targets. (A) CXCL8 (B) IL6 (C) CXCL2 (D) CCL20 (E) CCL2 (F) SOD2 (G) NFKBIA (H)
BIRC3 (I) TYROBP (J) CSF1R.

Frontiers in Cardiovascular Medicine 15 frontiersin.org

463

https://doi.org/10.3389/fcvm.2022.966182
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-966182 November 2, 2022 Time: 13:23 # 16

Li et al. 10.3389/fcvm.2022.966182

Atherosclerosis has been considered the leading cause of
CAD, ACS, CVA and POAD. Sudden rupture of vulnerable
atherosclerotic plaques that are characterized by large
necrotic cores, thin fibrous caps, calcification, and intraplaque
hemorrhage can lead to acute cardiovascular adverse events
(43). In this article, atherosclerosis caused by the inflammatory
response and glycolipid metabolism disorder were considered
the key mechanisms for the cardiotoxicity of nilotinib.

Nilotinib can upregulate the expression of cytokines and
chemokines, such as CCL2, IL6, CXCL8, CXCL2, CXCL20,
TYROBP and CSF1R, leading to a complex cascade that results
in the formation and disruption of atherosclerotic plaques.
Moreover, nilotinib downregulated the expression of LDLR,
VLDLR and IRS1. LDLR is mainly involved in the catabolism of
low-density lipoprotein (LDL), while VLDL is mainly involved
in endogenous triglyceride transportation. Nilotinib can inhibit
the ability of adipose tissue to store lipids, which results in
the ectopic accumulation of fat and the development of insulin
resistance (44, 45). Type 2 diabetes was also frequently observed
in patients treated with nilotinib (8). As insulin receptors,
downregulation of IRS1 can lead to insulin resistance, which can
accelerate the decomposition of adipose tissue and increase the
flow of free fatty acids (FFAs) into the liver (46), leading to the
accumulation of diacylglycerol (DAG), activating protein kinase
C (PKC), inhibiting the expression of IRS-1, and aggravating IR
in the liver (47, 48). In the IR state, a high concentration of FFA
can promote the activation of M1-type macrophages in the liver
and promote the secretion of chemokines, such as CCL2 (MCP-
1), TNF-α, CXCL8, CXCL2, and IL-6, which contribute to the
development of atherosclerosis by regulating the activation of
leukocytes, the development of foam cells and thrombosis, the
proliferation of smooth muscle cells, cell egress from lesions,
angiogenesis (49, 50), damage to endothelial cells and vessels
(51) and the recruitment of an increasing number of monocytes
and macrophages (52, 53). As a transmembrane receptor
in neutrophils and monocytes/macrophages (54), TYROBP
is involved in macrophage activation, lipid deposition and
plaque inflammation. In the bioinformatics analysis reported
by Liu et al. (55), Liu et al. (56), Zhang et al. (57), Hao
and Wang (58), TYROBP was found to be one of the key
Genes Involved in Advanced Atherosclerosis. CSF1R plays an
important role in the survival, proliferation and differentiation
of macrophages and monocytes.

However, imatinib has a positive impact on glycolipid
metabolism. Imatinib can enhance the insulin-mediated
vasoreactivity of resistance arteries (59), increase insulin
secretion, protect against human beta-cell death (60),
and reduce non-alcoholic fatty liver disease by targeting
inflammatory and lipogenic pathways. Noa Markovits reported
a retrospective cohort study in which long-term use of imatinib
significantly reduced HbA1c (0.53%, IQR[0.09,1.19]) and
FPG (10.2 mg/dL, IQR[−3.5,32.2]) in patients with diabetes,
independent of demographics and glucose-lowering drug

utilization, which suggested durable metabolic benefits of
imatinib (61).

As the mainstream lipid-lowering drugs, statins can
block cholesterol biosynthesis in liver cells enhance the
intake and clearance of LDL cholesterol (LDL-C) in blood.
Moreover, statins confer cardiovascular benefits through anti-
inflammatory effects (62). Rosuvastatin treatment can reduce
hs-CRP and IL-6 levels in patients with coronary artery
ectasia (63) and inhibit the TLR4/MyD88/NF-KB signaling
pathway (64). In this article, rosuvastatin was found to
bind to most of the hub genes and genes enriched in the
lipid and atherosclerosis signaling pathways, which indicates
that rosuvastatin may be effective in the treatment of CAE
caused by nilotinib.

Our study had several limitations. First, the dosage was
an important factor when discussing adverse drug reactions.
Six studies did not report the dosage of nilotinib or
imatinib, which might lead to some degree of heterogeneity.
Second, some studies did not introduce the risk factors or
previous history of cardiovascular events of patients included,
which might lead to some degree of bias. Third, vascular
endothelial cells or cardiomyocytes from CML patients treated
with nilotinib or imatinib may provide more information
about atherosclerosis related to nilotinib, but no dataset
in this respect was found in the GEO database. Fourth,
bioinformatics analysis and molecular docking can only suggest
the potential mechanism and potential therapeutic drugs,
which lacks experimental validation. We will conduct relevant
experiments in the future.

Conclusion

This meta-analysis suggests that patients who start
with nilotinib as first-line treatment have a higher risk of
cardiovascular adverse events than those with imatinib.
Atherosclerosis caused by the inflammatory response and
glycolipid metabolism disorders are the key mechanisms of
nilotinib cardiotoxicity. Rosuvastatin may be beneficial in the
treatment of CAE caused by nilitinib.
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Impact of genetically predicted
atrial fibrillation on cancer risks:
A large cardio-oncology
Mendelian randomization study
using UK biobank

Wenjie Li1†, Mingkai Huang2†, Rong Wang1 and Wei Wang1*

1Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou,

China, 2Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of

Science and Technology, Wuhan, China

Background: Increasing incidences of both atrial fibrillation (AF) and cancer

have been observed in recent years. However, the casual association of both

serious conditions has been scarcely evaluated and is considered to be a blank

slate in cardio-oncology. Thus, we introduced Mendelian randomization (MR)

methods to estimate the e�ects of AF on cancer risks.

Methods: We performed univariable and multivariable two-sample MR

analyses to evaluate the e�ects of AF on the risk of 19 site-specific types

of cancer. This MR study was conducted based on 111 independent

AF-associated genetic instruments from genome-wide association studies

and summarized-level data from corresponding cancer consortia. Multiple

sensitivity analyses, including the leave-one-out analysis, MR-Egger

regression, and MR-PRESSO tests, were further performed to examine

the potential directional pleiotropic e�ects. Functional annotation was

performed for common di�erentially expressed genes of AF and prostate

cancer (PCA).

Results: A total of 6,777,155 European-descent people, including 533,725

cases and 6,243,430 controls, were included in the present MR analysis.

Univariable MR analyses demonstrated a causal e�ect of AF on the incidence

of PCA [odds ratio (OR): 0.96; 95% confidence interval (CI) 0.92–0.99,

p = 0.01], and the causal e�ect remained significant (OR: 0.65; 95% CI

0.47–0.90, p = 0.01) after adjusting for potential confounders through the

multivariable MR approach. However, no casual associations between AF and

the other 18 site-specific cancer risks were observed (all p-values were >

0.05). The consistency of outcomes across complementary sensitivity MR

methods further supported the causality. The functional analysis emphasized

the essential role of antioxidant and xenobiotic catabolic processes in AF

and PCA.

Conclusion: Contrary to the findings of several previous observational studies,

our comprehensive MR analyses did not corroborate a causal role for AF in

increasing the risk of various types of cancer. They did, however, demonstrate

that AF may decrease the risk of PCA. Studies from larger sample sizes and

Frontiers inCardiovascularMedicine 01 frontiersin.org

468

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.974402
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.974402&domain=pdf&date_stamp=2023-01-05
mailto:wangwei9500@hotmail.com
mailto:wwei9500@smu.edu.cn
https://doi.org/10.3389/fcvm.2022.974402
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.974402/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Li et al. 10.3389/fcvm.2022.974402

individuals with di�erent ethnic backgrounds are required to further support

our conclusions.

KEYWORDS

cancer, Mendelian randomization, single-nucleotide polymorphism, atrial fibrillation,

prevention

1. Introduction

Atrial fibrillation (AF) is the most common cardiac

arrhythmia (1) that imposes a substantial risk of death from

many cardiovascular diseases and huge societal healthcare

burdens. It is presumed that 6–12 million people will develop

AF in the USA by 2050 and 17.9 million citizens in Europe by

2060 (2). Interestingly, a recent prospective cohort study has

reported that cancer is the leading causes of death in high-

income countries, accounting for two times as many deaths as

cardiovascular diseases (3). Moreover, abundant evidence based

on large populations shows that patients with cancer are related

to an increased incidence of AF (4). However, the effect of AF

on cancer risks is an uncharted field in cardio-oncology (5).

Given the unacceptably high prevalence and treatment costs of

both serious conditions, cardio-oncology should not be only

concerned with the cardiac side effects of antineoplastic drugs

in this case (6). Thus, a specific study is urgently required to find

the potential associations between AF and cancer risks, which

may provide new insights into the possible mechanisms and

therapeutic targets.

Several observational studies have described the ambiguous

effects of AF on types of cancer (7–12) due to shared risk

factors and predisposing biological processes (13, 14). Prior

evidence shows that patients with new-onset AF would have a

noticeably increased risk of a malignant diagnosis (7), which

was consistent with those of population-based cohort studies

that showed that AF was related to a higher malignant incidence

(8, 9, 11). However, several intrinsic methodological limitations

in prior study designs may impact the observed results, thus

resulting in contradictory conclusions. It is difficult, for example,

for observational studies to rule out several important lifestyle

differences or residual confounders (e.g., smoking, alcohol

consumption, diabetes, or hypertension) in both AF and types

of cancer (14). Moreover, observational results suggest that

Abbreviations: AF, atrial fibrillation; ANP, atrial natriuretic peptide; CIs,

confidence intervals; DEG, di�erentially expressed gene; GWAS, genome-

wide association study; GO, Gene Ontology; HF, heart failure; IVW,

inverse-variance weighted; KEGG, Kyoto Encyclopedia of Genes and

Genomes; LD, linkage disequilibrium; MR, Mendelian randomization; OR,

odds ratio; PCA, prostate cancer; MR-PRESSO, MR Pleiotropy Residual

Sum and Outlier; SNP, single-nucleotide polymorphism.

an observed association might be attributable to instances

associated with a cancer diagnosis and detection bias instead of a

causal relationship (9). Consequently, there is an urgent need for

a reliable study design that will assess the exact causal association

between AF and cancer risks.

Mendelian randomization (MR) analysis has recently

become a promising and novel epidemiological approach to

assess the causal relationship between exposures and outcomes,

using genetic variants as instrumental variables (IVs). Adopting

genetic variants as the IVs in the MR analysis can make it less

susceptible to reverse causality and hypothetical confounders.

A two-sample MR analysis can be performed with robust

statistical power using summary-level data from large genome-

wide association studies (GWAS) (15). Hence, to solve the

aforementioned issue regarding AF and types of cancer, we

aimed to evaluate the causal relationship between AF and

the risks of 19 site-specific types of cancer with univariable

and multivariable two-sample MR methods. Given the tight

association between AF and heart failure (HF) (16), we also

evaluated the causality between HF and cancer risks.

2. Method

2.1. Mendelian randomization
assumptions

To enable a valuable interpretation, all analyses in our MR

study were based on the following three core hypotheses or

study designs (17): (i) the IVs were convincingly correlated with

exposures, (ii) the IVs influenced tumors only through their

effects on exposures, and (iii) the IVs were independent of any

confounders from the AF/HF cancer association (Figure 1A).

2.2. Selection of genetic instruments for
exposures

The flowchart of this study is shown in Figure 1B. Exposures

considered in this analysis included AF and HF. Variant AF/HF

relationships were derived and manually extracted from the

available summary-level GWAS. Nielsen et al. (18) carried out a

GWAS with 60,620 AF cases and 970,216 controls to distinguish

genetic variations. This study was mainly derived from six
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FIGURE 1

(A) Directed acyclic graph portraying the design of Mendelian randomization and potential pleiotropy. Genetic variants (Z) served as genetic

instruments to evaluate whether exposures (X) were causally related to outcomes (Y). Numbers 1–3 represent assumptions 1–3. (B) The

flowchart of this study.

databases [deCODE, the Michigan Genomics Initiative (MGI),

the Nord-Trøndelag Health Study (HUNT), UK Biobank,

DiscovEHR, and the AFGen Consortium]. All enrolled patients

were of European descent and generally elder people (the

median age at first AF diagnosis: MGI: 65; deCODE: 74; HUNT:

76). The genetic variation of HF was derived from a GWAS

meta-analysis of HF comprising 47,309 European-descent

cases and 930,014 controls from the Heart Failure Molecular

Epidemiology for Therapeutic Targets Consortium (19).

Given that the violation of three MR assumptions may

lead to unreliable conclusions, the following steps would help

choose the best IVs. First, we extracted accessible summary-

level data from Nielsen et al. (18) and Sonia et al. (19)

and set up a significance threshold of p < 5 × 10−8.

Detailed information about AF/HF-related single-nucleotide

polymorphisms (SNPs) is shown in Supplementary Table 1. To

measure genetic correlation, we further conducted a linkage

disequilibrium (LD) clumping test at an R2 < 0.001 and
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10,000 kb window to preserve the SNPs that were most robustly

associated with the AF/HF for downstream analysis. To exclude

bias from weak instruments, the F-statistic value was assessed

on the bias of the formula F =
R2(N−k−1)
k(1−R2)

, where R2 is the

proportion of variance explained by the IVs, k and N are the

number of SNPs and enrolled patients, respectively. F-statistic

values > 10 were robust enough to avoid weak instrument bias.

Eventually, several SNPs were excluded to eradicate the genetic

bias created by palindromes with intermediate allele frequencies

(20), and we created a total of 111 and 12 SNPs as the original

AF- and HF-IVs, respectively.

2.3. Study participants of various types of
cancer

To obtain genetic data for 19 site-specific tumors, we

analyzed the following European cancer consortia: Breast

Cancer Association Consortium (BCAC) (21) (breast cancer:

122,977 patients and 105,974 controls; ER-positive breast

cancer: 69,501 patients and 105,974 controls; and ER-negative

breast cancer: 21,468 patients and 105,974 controls), Prostate

Cancer Association Group to Investigate Cancer Associated

Alterations in the Genome (PRACTICAL) (22) [prostate cancer

(PCA): 79,148 patients and 61,106 controls], International

Lung Cancer Consortium (ILCCO) (23) (lung cancer: 11,348

patients and 15,861 controls, lung adenocarcinoma: 3,442

patients and 14,895 controls; and squamous cell cancer:

3,275 patients and 15,038 controls), PanScan1 (24) (pancreatic

cancer: 1,896 patients, 1,939 controls), GliomaScan (25)

(glioma: 6,811 patients, 1,856 controls), the Medical Research

Council-Integrative Epidemiology Unit (MRC-IEU) consortium

(kidney cancer: 1,114 patients, 461,896 controls; pancreatic

cancer: 1,114 patients, 461,896 controls; rectum cancer: 1,470

patients, 461,540 controls), Neale lab (colon cancer: 2,437

patients, 358,757 controls; lymphoma: 1,752 patients, 359,442

controls; melanoma: 3,598 patients, 459,335 controls), and

other databases (malignant neoplasm of bone and articular

cartilage: 119 patients, 174,006 controls; thyroid cancer: 989

patients, 174,006 controls; bladder cancer: 1,279 patients,

372,016 controls; mesothelioma: 133 patients, 174,006 controls;

meningiomas: 455 patients, 86,713 controls) (Table 1).

2.4. Statistical analysis of MR estimates

All MR analyses were performed in R 4.0.5 using the package

TwoSampleMR (version 0.5.0).

2.4.1. Two-sample MR method

We performed the inverse-variance weighted (IVW) test,

which can provide a coherent estimation of the causality

between genetically determined exposures and outcomes. It is

made up of a meta-analysis of a single SNP’s Wald ratio between

the exposures and outcomes using a random-effects inverse-

variance method, which can weigh every single Wald ratio

according to its standard error to judge potential measurable

heterogeneity (20). The causal effects were calculated and

presented in the form of odds ratios (ORs) with 95% confidence

intervals (CIs) for 14 site-specific types of cancer. Two-sided

p-values < 0.05 were considered to be statistically significant.

Of note, the results of IVW tests might be biased given the

horizontal pleiotropy in invalid instrumental variables. Hence,

the MR-Egger regression and the weighted-median estimate

were conducted to predominantly assess the MR outcomes

(20, 26). The MR-Egger regression can amend the IVW test by

allowing a nonzero intercept that can provide an exploration

of pleiotropy and an evaluation of the causality adjusted for

pleiotropy (20). The weighted-median analysis is used to pool

the median effects of all SNPs and can return an unbiased

estimate once 50% of the SNPs are valid instruments (20).

Finally, the MR Pleiotropy Residual Sum and Outlier (MR-

PRESSO) test was conducted using the “MRPRESSO” R package

to distinguish outlying SNPs that may result in horizontal

pleiotropy and causal effects.

2.4.2. Multivariable MR analysis

To support the univariate MR results and the third

assumption, multivariable MR analyses adjusted for

confounders, including smoking (trait ID: ukb-a-225),

alcohol consumption (trait ID: ukb-d-20117_2), type 2 diabetes

(trait ID: ebi-a-GCST006867), and hypertension (trait ID:

ukb-b-14057) were introduced. Multivariable MR showed that

the SNPs used in univariate MR analyses were also related

to these confounders. Then, multivariable MR estimated the

effects of each exposure on a single outcome. That is, this can

simultaneously assess the effects of all risk factors that share a

set of overlapping SNPs and make sure that the direct effects

of each exposure on outcomes will not be mediated by other

factors (27). As we included MR analyses of 19 site-specific

types of cancer, a Bonferroni-adjusted p-value less than the

threshold (i.e., 0.05/19 = 0.0026) was deemed as a significant

causality to adjust for multiple-comparison tests. A potential

relationship was considered significant if a p-value is between

0.05 and 0.0026.

2.5. Pleiotropy and sensitivity analysis

We conducted the leave-one-out analyses to assess whether

the results of the IVW tests would be biased by single-sensitive

SNPs (26). The aforementioned Egger intercept analysis was

then performed to estimate the horizontal pleiotropy. The

MR-heterogeneity analysis was ultimately performed to single

Frontiers inCardiovascularMedicine 04 frontiersin.org

471

https://doi.org/10.3389/fcvm.2022.974402
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


L
i
e
t
a
l.

1
0
.3
3
8
9
/fc

v
m
.2
0
2
2
.9
7
4
4
0
2

TABLE 1 Details of studies in the present Mendelian randomization analyses.

Phenotype Consortium Sample size Number of
patients

Number of
controls

Number of
variants

GWAS Trait ID Ethnicity F-statistic

Exposure

Atrial fibrillation NA 103,0836 60,620 970,216 33,519,037 ebi-a-GCST006414 European NA

Heart failure NA 977,323 47,309 930,014 77,73,021 ebi-a-GCST009541 European NA

Outcome

Overall cancer UK Biobank 4,42239 70,223 3,72,016 12,321,875 ieu-b-4966 European 277.9

Breast cancer BCAC 228,951 122,977 105,974 10,680,257 ieu-a-1126 European 281

ER+ breast cancer BCAC 175,475 69,501 105,974 10,680,257 ieu-a-1127 European 281

ER– breast cancer BCAC 127,442 21,468 105,974 10,680,257 ieu-a-1135 European 281

Lung cancer ILCCO 85,716 29,266 56,450 89,45,893 ieu-a-966 European 281.4

Lung adenocarcinoma ILCCO 66,756 11,273 55,483 88,81,354 ieu-a-965 European 281.4

Squamous cell lung cancer ILCCO 63,053 7,426 55,627 88,93,750 ieu-a-967 European 281.4

Prostate cancer PRACTICAL 140,254 79,148 61,106 19,733,911 ebi-a-GCST006085 European 273.8

Glioma GliomaScan 6,811 1,856 4,955 309,636 ieu-a-1013 European 326

Kidney cancer MRC-IEU 463,010 1,114 461,896 98,51,867 ukb-b-1316 European 275.6

Pancreatic cancer MRC-IEU 46,3010 233 462,777 521,863 ieu-a-822 European 369.1

Rectum cancer MRC-IEU 463010 1470 461540 9851867 ukb-b-1251 European 261.2

Lymphoma Neale Lab 361,194 1,752 359,442 361,194 ukb-d-C_LYMPHOMA European 273.8

Melanoma Neale Lab 337,159 2,677 334,482 10,855,955 ukb-d-C3_MELANOMA_SKIN European 273.8

Colon cancer Neale Lab 36,1194 2,437 358,757 10,788,369 ukb-d-C3_COLON European 349.6

Mesothelioma NA 17,4139 133 174,006 16,380,303 finn-b-

C3_MESOTHELIOMA_EXALLC

European 293.8

Meningiomas NA 87,168 455 86,713 16,152,119 finn-a-

CD2_BENIGN_MENINGES_EXALLC

European NA

Thyroid cancer NA 17,4995 989 174,006 16,380,316 finn-b-

C3_THYROID_GLAND_EXALLC

European 293

Bladder cancer NA 373,295 1,279 372,016 99,049,26 ieu-b-4874 European 290

Malignant neoplasm of

bone and articular cartilage

NA 174,125 119 174,006 16,380,303 finn-b-

C3_BONE_CARTILAGE_EXALLC

European 293.8

MR, Mendelian Randomization; GWAS, Genome Wide Association Study; BCAC, Breast Cancer Association Consortium; ILCCO, International Lung Cancer Consortium; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer

Associated Alterations in the Genome; MRC-IEU, Medical Research Council-Integrative Epidemiology Unit; NA, not available.
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out SNPs that were responsible for heterogeneity in casual

estimation by means of Cochran’s Q-test (28).

2.6. Identification and enrichment
analyses of DEGs

Two PCA-related microarray datasets [GSE46602 (29) and

GSE70768 (30)] and one AF-related dataset [GSE41177 (31)]

were downloaded from the GEO (http://www.ncbi.nlm.nih.gov/

geo) database to select differentially expressed genes (DEGs).

Herein, genes with an adjusted p-value of < 0.05 and |logFC|

≥ 1 were considered DEGs. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway were

performed to explore the potential biological functions of DEGs.

3. Results

In general, this MR study included a total of 6,334,916

European-descent people, with 463,502 cases and 5,871,414

controls (Table 1). Considering the variation in sample sizes

of different cancers, F-statistics values in this study ranged

from 273.8 to 369.1. The instruments (F > 100) used in our

MR analyses were very strong to avoid bias (Table 1). All the

MR evaluations for multi-polymorphism scores are shown in

Tables 2, 3. Our results indicated that the genetically predicted

AF was associated with a decreased risk of cancers of PCA and

found no detrimental effects of AF/HF on the other 18 site-

specific cancer risks (Tables 2, 3). The estimated effect sizes of the

SNPs on both exposure (AF) and outcomes (PCA, breast cancer,

lung cancer, and kidney cancer) are displayed in scatterplots

(Figure 2).

3.1. Association of genetic liability to
exposures with cancer risks

3.1.1. Univariable MR results

The results of the IVW test revealed a suggestive association

of genetic liability to AF and PCA (OR = 0.96; 95% CI 0.92–

0.99, p = 0.01) (Table 2). However, no relationships of genetic

liability to AF with lower odds of breast cancer (OR = 1.003;

95% CI 0.97–1.035, p = 0.87), ER-negative breast cancer

(OR = 1.009; 95% CI 0.96–1.06, p = 0.7), ER-positive breast

cancer (OR = 0.99; 95% CI 0.96–1.03, p = 0.76), lung cancer

(OR = 1.00; 95% CI 0.94–1.06, p = 0.97), lung adenocarcinoma

(AF: OR = 1.01; 95% CI 0.93–1.10, p = 0.76), and squamous

cell lung cancer (OR = 1.004; 95% CI 0.92–1.10, p = 0.93)

were observed. Regarding other 12 site-specific types of cancer,

limited evidence validated a causal association of genetic liability

to AF with the risk of kidney cancer (OR = 1.0001; 95% CI

0.9996–1.0006, p = 0.71), melanoma (OR = 1.0003; 95% CI

0.9999–1.0011, p = 0.93), lymphoma (OR = 1.00016; 95% CI

0.995–1.00049, p = 0.95), glioma (OR = 1.15; 95% CI 0.97–

1.36, p = 0.12), colon cancer (OR = 0.9998; 95% CI 0.9992–

1.0004, p= 0.44), rectum cancer (OR= 1.0002; 95% CI 0.9997–

1.00068, p = 0.27), meningiomas (OR = 0.95; 95% CI 0.76–

1.18, p = 0.65), thyroid cancer (OR = 0.95; 95% CI 0.84–

1.09, p = 0.48), and bladder cancer (OR = 0.9999; 95% CI

0.9996–1.00038, p = 0.9); malignant neoplasm of bone and

articular cartilage (OR = 0.78; 95% CI 0.54–1.13, p = 0.2);

and mesothelioma (OR = 1.24; 95% CI 0.85–1.81, p = 0.27)

(Table 2). Some outliers were observed with the MR-PRESSO

analysis, and the results remained in line with the original

ones after removing these outliers (Supplementary Table 2).

Additionally, we also found no associations between HF and 19

site-specific cancer risks (Table 3).

3.1.2. Multivariable MR analysis

As illustrated in Figure 3 and Supplementary Table 3, after

adjusting for potential pleiotropic or mediating effects,

multivariable MR still expounded strong independent

associations between genetic predisposition to AF and

PCA (OR = 0.94; 95% CI 0.90–0.98, p = 0.0048) and yielded

similar results that AF was not associated with the increased risk

of other site-specific cancer types.

3.2. Assessment of MR assumptions

The first assumption was met because our included SNPs

were selected at the genome-wide significance threshold of

p < 5 × 10−8 and F-statistics values ranged from 273.8

to 369.1 (F > 100). Leave-one-out analysis suggested that

individual SNPs had no impact on the overall effect of AF

on cancer risks. Moreover, the MR-Egger regression analysis

suggested that the impact of pleiotropy was negligible because

intercepts were not statistically significant (all p-values>0.05)

(Supplementary Table 4). Sensitive analyses demonstrated that

the second MR assumption was not violated. Although the

Cochrane Q-tests showed certain horizontal pleiotropy, little

influence affected the overall results because no pleiotropy

biased the results of the MR-Egger and MR-PRESSO tests (32).

With regard to the third MR assumption, multivariable MR

and MR-PRESSO analyses eliminated pleiotropic effects, which

abided by the third MR assumption.

3.3. Analysis of the functional
characteristics of common DEGs

In total, 51 common DEGs between AF-related and

PCA-related datasets were identified (Figure 4A). Results of

the KEGG pathway demonstrated that several significant
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TABLE 2 Mendelian randomization estimates of the casual relationships between atrial fibrillation and cancer risks.

Exposure nSNPs IVW method Weighted median method MR–Egger

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Overall cancer 107 1.0025 (0.9999–1.0052) 0.06 1.0017 (0.9974–1.0060) 0.4 1.0051 (0.9999–1.01) 0.06

Breast cancer 99 1.0026 (0.97–1.035) 0.87 1.00 (0.97–1.028) 0.87 1.026 (0.96–1.090) 0.41

ER+ breast cancer 99 0.99 (0.96–1.030) 0.76 0.98 (0.94–1.025) 0.42 1.014 (0.95–1.084) 0.69

ER– breast cancer 99 1.0089 (0.96–1.060) 0.73 0.99 (0.92–1.06) 0.7 1.07 (0.97–1.18) 0.16

Lung cancer 104 1.00 (0.94–1.060) 0.97 1.049 (0.96–1.14) 0.3 1.019 (0.91–1.14) 0.75

Lung adenocarcinoma 104 1.01 (0.93–1.10) 0.76 1.06 (0.92–1.20) 0.42 1.05 (0.90–1.24) 0.52

Squamous cell lung cancer 104 1.004 (0.92–1.10) 0.93 1.02 (0.88–1.18) 0.78 0.98 (0.83–1.17) 0.85

Prostate cancer 108 0.96 (0.92–0.99) 0.01 0.96 (0.92–1.0080) 0.11 0.94 (0.88–1.0040) 0.07

Glioma 50 1.15 (0.97–1.36) 0.12 1.22 (0.93–1.59) 0.14 1.24 (0.92–1.66) 0.16

Kidney cancer 44 1.000096 (0.9996–1.00060) 0.71 1.0003 (0.9996–1.001) 0.42 0.9997 (0.9984–1.0010) 0.67

Pancreatic cancer 52 0.87 (0.72–1.06) 0.16 0.83 (0.62–1.10) 0.19 0.78 (0.57–1.09) 0.15

Lymphoma 108 1.00016 (0.995–1.00049) 0.95 0.9995 (0.9987–1.00036) 0.27 0.9997 (0.9988–1.00063) 0.52

Melanoma 108 1.00036 (1.00–1.0010) 0.27 1.0010 (1.00–1.0020) 0.045 1.0011 (1.00–1.0020) 0.07

Colon cancer 108 0.9998 (0.9992–1.0004) 0.44 0.9990 (0.9980–1.00) 0.041 0.9995 (0.9983–1.0006) 0.39

Malignant neoplasm of bone and articular cartilage 106 0.78 (0.54–1.13) 0.2 0.71 (0.37–1.37) 0.31 0.75 (0.37–1.53) 0.43

Mesothelioma 106 1.24 (0.85–1.81) 0.27 1.25 (0.64–2.43) 0.51 1.02 (0.49–2.12) 0.96

Rectum cancer 61 1.002 (0.9997–1.00068) 0.5 1.009 (0.9994–1.00094) 0.61 1.000065

(0.9986–1.0015)

0.93

Meningiomas 83 0.95 (0.76–1.18) 0.65 0.90 (0.61–1.31) 0.57 0.87 (0.58–1.31) 0.50

Thyroid cancer 106 0.95 (0.84–1.09) 0.48 1.02 (0.8–1.3) 0.88 0.90 (0.70–1.15) 0.4

Bladder cancer 107 0.9999 (0.9996–1.00038) 0.9 0.9999 (0.9991–1.00065) 0.76 0.9993 (0.9986–1.00014) 0.11

The bold values are statistically significant (p < 0.05).
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TABLE 3 Mendelian randomization estimates of the associations between heart failure and cancer risks.

Exposure nSNPs IVW method Weighted median method MR–Egger

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Overall cancer 9 0.99 (0.98–1.01) 0.56 1.0053 (0.99–1.02) 0.45 1.03 (0.99–1.07) 0.19

Breast cancer 9 0.93 (0.65–1.31) 0.66 1.065 (0.93–1.23) 0.38 1.35 (0.47–3.86) 0.59

ER+ breast cancer 9 0.95 (0.67–1.32) 0.75 1.00 (0.85–1.17) 0.96 1.31 (0.47–3.38) 0.62

ER– breast cancer 9 0.90 (0.61–1.34) 0.61 0.94 (0.69–1.28) 0.71 1.07 (0.31–3.66) 0.91

Lung cancer 9 1.0081 (0.75–1.35) 0.96 1.03 (0.75–1.41) 0.85 0.64 (0.28–1.44) 0.32

Lung adenocarcinoma 9 1.042 (0.64–1.70) 0.87 1.12 (0.67–1.86) 0.67 0.62 (0.15–0.59) 0.53

Squamous cell lung cancer 9 1.10 (0.77–1.56) 0.60 1.32 (0.83–2.11) 0.24 0.53 (0.20–1.44) 0.25

Prostate cancer 9 1.11 (0.92–1.35) 0.25 1.09 (0.94–1.28) 0.25 1.58 (0.94–2.66) 0.13

Glioma 6 0.78 (0.30–2.01) 0.61 1.33 (0.52–3.39) 0.55 3.88 (0.14–111.11) 0.47

Kidney cancer 2 0.9979 (0.9922–1.0036) 0.48 NA NA NA NA

Pancreatic cancer 6 2.11 (0.41–10.87) 0.37 0.99 (0.37–2.64) 0.99 0.14 (0.00051–40.12) 0.54

Lymphoma NA NA NA NA NA NA NA

Melanoma 9 1.00054 (0.9978–1.0034) 0.71 0.9996 (0.9959–1.0033) 0.82 1.0065 (0.9989–1.014) 0.14

Colon cancer 9 0.9984 (0.9959–1.00092) 0.21 0.9986 (0.9955–1.0018) 0.4 1.00054 (0.9933–1.0078) 0.89

Malignant neoplasm of bone and articular cartilage 9 0.33 (0.06–1.83) 0.21 0.25 (0.026–2.45) 0.23 0.08 (0.00047–12.14) 0.35

Mesothelioma 9 0.61 (0.12–3.09) 0.55 0.73 (0.09–5.67) 0.76 2.19 (0.017–279.04) 0.76

Rectum cancer 2 0.9975 (0.9940–1.0011) 0.18 NA NA NA NA

Meningiomas 8 0.93 (0.33–2.58) 0.88 0.65 (0.19–2.21) 0.49 0.71 (0.028–18.015) 0.84

Thyroid cancer 9 1.18 (0.64–2.16) 0.59 1.28 (0.57–2.88) 0.55 1.02 (0.17–6.18) 0.99

Bladder cancer 9 1.00022 (0.9980–1.0025) 0.84 1.00023 (0.9978–1.0026) 0.85 0.9984 (0.9917–1.0052) 0.66
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FIGURE 2

Scatterplots for MR analyses of the causal e�ect of atrial fibrillation on cancer risks: (A) prostate cancer; (B) breast cancer; (C) lung cancer; and

(D) kidney cancer. The x-axis represents the previously published β-estimate for the association of each SNP with atrial fibrillation. The y-axis

outlines the β-estimate for the relationship of each SNP with cancer risks by means of the multivariate logistic regression model. Lines represent

causal estimates from the di�erent methods. The slope of each line indicates the estimated MR e�ect per method. Circles correspond to

marginal genetic associations with atrial fibrillation and risk of outcome for each variant. Error bars indicate 95% confidence intervals. SD,

standard error; MR, Mendelian randomization.

enrichment pathways were noted, such as glutathione

metabolism and metabolism of xenobiotics by cytochrome

P450 (all p-values were <0.05) (Figure 4B). Regarding

GO analysis, these DEGs were mainly enriched in cellular

detoxification, xenobiotic metabolic process, glutathione

derivative metabolic process, cellular response to xenobiotic

stimulus, glutathione binding, and antioxidant activity (all

p-values were <0.05) (Figures 4C, D). These outcomes firmly

revealed that the antioxidant activity, xenobiotic catabolic

process, and cytochrome P450 metabolism were involved in the

development of AF and PCA.

4. Discussion

4.1. Principal findings

In this study, we performedMR analyses to evaluate whether

genetic evidence supported a causal association between AF and
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FIGURE 3

Multivariable Mendelian randomization analyses adjusted for smoking, alcohol consumption, diabetes, and hypertension. *Means statistically

significance.

the risk of 19 site-specific types of cancer. To the best of our

knowledge, this is the first cardio-oncology MR study involving

6,334,916 people to explicate that AF may casually reduce the

risk of PCA. Moreover, little evidence demonstrated that AF

and closely related HF were casually related to the increased

risks of lung cancer, breast cancer, PCA, kidney cancer, glioma,

pancreatic cancer, colon cancer, rectum cancer, meningiomas,

thyroid cancer, bladder cancer, lymphoma, or melanoma,

with less susceptibility to potential confounders and inverse

causation. Based on our findings, cancer screening beyond

standard routine healthcare may not be currently merited with a

new diagnosis of AF. Nonetheless, a tight collaboration between

cardiologists and oncologists is still essential to improve the

management of patients, which may provide crucial mechanistic

and therapeutic insights with regard to both serious conditions.

4.2. Previous research

The present MR findings do not support previous

observational studies, suggesting that the manifestation of AF

was a marker of occult cancer. Several sporadic epidemiological

trials have described the underlying effect of AF on site-specific

malignancies, but their findings were very controversial. An

observational cohort study by Conen et al. (12) included 34,691

women and revealed that women with new-onset AF may have

an elevated cancer risk beyond 1 year of AF diagnosis. This

questionnaire-derived study also indicated that new-onset AF

was statistically significant for the risk of colon cancer, whereas

significant multivariable-adjusted relationships for breast cancer

were not observed (12). These findings were consistent with a

Danish population-based cohort study enrolling 26,222 men

and 28,879 women free of AF (8). In this cohort trial, AF was

not related to breast cancer or PCA (8), but the risk of colorectal

cancer and lung cancer was paradoxically remarkably high

within the initial 90 days following the diagnosis of AF (8). A

retrospective cohort of 5,130 patients, however, demonstrated

that the standard incidence ratio of lung and colon cancer

was significantly high in patients with AF, although there was

no significant increase in the risks of liver or breast cancer

(11). Interestingly, evidence from a prospective cohort study

even reached a contrasting conclusion that AF was related

to decreased odds of the new diagnosis of breast cancer and

colorectal cancer, indicating that an association noted in a

previous study may be caused by potential detection bias instead

of a causal relationship (9).

Atrial fibrillation and HF are often presented together

with each other (16), and a similar scenario also holds for

the relationship between HF and cancer risks. Retrospective

research has suggested that the prevalence of malignancy in
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FIGURE 4

(A) Venn diagram showed an overlap of 51 DEGs. (B) The enrichment analysis results of KEGG Pathway. (C, D) The enrichment analysis results of

GO terms.

established HF ranges from 18.9 to 33.7 per 1,000 person-years

(33–35). Conversely, a study with larger cohorts and longer

follow-up durations explicated that HF was neither associated

with an increased risk of cancer nor cancer-specific deaths

(36). Overall, according to previous studies, an association

between AF and malignant tumors has been reported but is

largely controversial.

4.3. The interpretation of the observed
results

The potential limitations in previous epidemiological studies

may bias the observed outcomes. The conflicting outcomes

regarding cancer risks and AF in prior studies may be mediated

by lots of possibilities, and some of the potential relationships

are complex.

First, it was not surprising to see elevated cancer risks in

patients with AF because related treatments render clinically

overt cancer that could be otherwise asymptomatic. Several

cardiovascular drugs, including spironolactone (37) and aspirin

(38), have been shown to lower the carcinogenesis of certain

types of cancer. In addition to the effect of related treatments,

inherent drawbacks in observational study design, such as

shorter follow-up duration, possible selection/surveillance bias

(8, 12), and a lack of comprehensive data on shared risk

factors (14, 39), could explain the perplexing results. The

median time from AF/HF to malignancy diagnosis in some
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prior investigations was <3 years (33, 35), which might be

too short of a period to expound a causal association. With

regard to selection or surveillance bias, some questionnaire-

based studies may be unable to accurately determine whether

patients underwent the examination before or after AF diagnosis

(12). Besides, patients with screen-detected AF are more

possible to have cancer screenings at an early stage, which is

usually missed in the general population. For instance, if silent

malignancies stay undetected, AF-related antithrombotic (40)

or anticoagulant agents (8, 12) could increase the positivity

rate of intestinal hemorrhage or hematuria, thus followed by

several cancer detections (41). Third, AF and cancer are complex

conditions and share many common risk factors, including

alcohol consumption, smoking, hypertension, and diabetes (42).

The risk of malignancy in patients with AF will naturally

increase with the presence of the number of these risk factors.

Hence, minimizing the effects of confounders and limitations of

study designs is necessary for the evaluation of causality.

4.4. Possible mechanisms

In the present MR analysis, we found that AF may

lower the risk of PCA using univariable and multivariable

MR methods. The observed findings may be first attributed

to an atrial natriuretic peptide (ANP), which may provide

meaningful information about the underlying mechanism.

AF is an independent determinant of ANP that exerts an

important role in restraining tumor growth (43, 44). The

inhibition of malignant cell proliferation by ANP is mediated

by both intracellular acidity and Wnt/β-catenin signaling (45).

ANP might also hinder the adhesion of malignant cells to

microvascular endothelial cells by suppressing the E-selectin

expression, which is regulated by inflammation (46). Second,

AF-related hypercoagulability would alter cancer cell adhesion

and tumor progression by decreasing matrix metalloproteinases

(MMPs) in tissue and increasing circulating levels of inhibitors

of matrix metalloproteinases (TIMPs) (5). TIMPs could control

MMP that could lead to the degradation of the extracellular

matrix and, consequently, organize the path for malignant cells

to progress and spread to distant secondary areas (47). Third,

certain immune-related genes identified in AF have recently

been linked to the prognosis and immune infiltration in several

tumor types (48). Herein, present KEGG and GO enrichment

analyses of 51 common DEGs also revealed that these genes

were significantly enriched in antioxidant activity, xenobiotic

catabolic processes, and cytochrome P450metabolism pathways.

It has been expounded that the cause of PCA occurrence

might be the outcome of an imbalance of antioxidants (49).

Antioxidant defenses might be notably attenuated in patients

with PCA (50). Moreover, environmental xenobiotics are

largely involved in PCA development and are metabolized by

cytochrome P450 in the human organism (51).

4.5. Strengths and limitations

The present MR study has several notable strengths. First,

this is the first MR study conducted to evaluate the causal

association between AF and cancer risks. MR analysis is deemed

a reliable epidemiological method to evaluate the causality

between exposures and outcomes. Residual confounding from

unmeasured variations of baseline information may not

ascertain cause–effect associations in previous studies (7, 8,

11, 12). The MR analysis, however, may better diminish the

interference of confounders and inverse causation. Moreover,

we were more likely to portray a relatively independent causal

inference from AF to cancer risks with the multivariable MR

approach adjusted for confounders. Second, the included AF-

associated SNPs as IVs were gained from all documented

GWASs, which may better explicate the variation of AF. Third,

the present genetic summary data of certain types of cancer were

obtained from large-scale consortia (namely, ILCCO, BCAC,

and PRACTICAL), including millions of cases, which were far

more than some previous studies (7, 11, 12). Compared with the

low-occurrence rates of certain tumors in the previous studies

(7, 11, 12), the present results from a relatively large sample size

and strongly related IVs could present sufficient statistical power

and a precise assessment of causal effects.

Some drawbacks should be taken into account to better

elucidate the present findings. The participants in our study

were of European descent. Thus, the results of our analysis were

less likely to be biased by population stratification, but whether

our assertion could be generalizable to other populations for

different genetic backgrounds needs to be verified. Besides, the

sample size of several site-specific cancer types in our analysis

was small. For example, the consortium of malignant plasma

cell neoplasms consisted of only 180 patients compared with

its vast number of 87,061 controls. The statistical power may

not estimate their causality accurately. Finally, the association

between AF and PCA was not maintained in the results of

MR weighted-median and MR-Egger analyses. However, the

direction of MR estimates was consistent among IVW, weighted

median, and MR–Egger methods in this study. Moreover,

MR-PRESSO and multivariable MR tests were conducted to

distinguish possible horizontal pleiotropy and supported the

original IVW results.

5. Conclusion

This large cardio-oncology study revealed that AF

may reduce the risk of PCA. Despite the lack of a causal

relationship between AF and increased cancer risks, we

should not ignore the two diseases’ shared risk factors

and pathophysiological mechanisms. Numerous studies

still investigate the complicated interrelations between

AF and cancer stay and, with an aging population, it
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represents a valuable field for future investigation. A

multidisciplinary approach is still needed to better understand

the underlying mechanisms regarding the links between AF and

cancer risks.
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Background: Breakpoint cluster region-Abelson gene (BCR-ABL) tyrosine kinase

inhibitors (TKIs) have revolutionized the treatment of patients with chronic myeloid

leukemia (CML). However, concern has arisen about the cardiac safety profile of

these drugs.

Objectives: This study aims to compare long-term risks of adverse cardiovascular

and cerebrovascular events (ACE), heart failure or left ventricular ejection fraction

(LVEF) < 50%, and venous thromboembolic events (VTE) in patients with CML treated

with BCR-ABL TKIs, using data from a large multinational network.

Methods: Patients aged ≥ 18 years with CML treated with imatinib, dasatinib, or

nilotinib without prior cardiovascular or cerebrovascular disease were included. We

used propensity score matching to balance the cohorts. The 5-year cumulative

incidences and hazard ratios were calculated.

Results: We identified 3,722 patients with CML under treatment with imatinib

(n = 1,906), dasatinib (n = 1,269), and nilotinib (n = 547). Patients with imatinib

compared to dasatinib showed a higher hazard ratio (HR) for ACE (HR 2,13, 95%

CI 1.15–3.94, p = 0.016). Patients with imatinib presented a lower HR than nilotinib

for ACE (HR 0.50, 95% CI 0.30–0.83, p = 0.0074). In relation to heart failure or

LVEF < 50%, patients with imatinib had a higher HR than dasatinib (HR 9.41, 95%

CI 1.22–72.17, p = 0.03), but no significant difference was observed between imatinib

and nilotinib (HR 0.48, 95% CI 0.215–1.01, p = 0.064).

Frontiers in Cardiovascular Medicine 01 frontiersin.org482

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2023.888366
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2023.888366&domain=pdf&date_stamp=2023-02-07
https://doi.org/10.3389/fcvm.2023.888366
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2023.888366/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-10-888366 February 1, 2023 Time: 15:19 # 2

Nunes et al. 10.3389/fcvm.2023.888366

Conclusion: In this retrospective study with a large number of patients with CML,

those treated with nilotinib had a higher 5-year ratio of ACE, while patients with

dasatinib showed a lower ratio than patients with imatinib. The ratio of heart failure

was higher in patients with imatinib than in patients with dasatinib, but not when

compared to nilotinib.

KEYWORDS

cardiovascular safety, chronic myeloid leukemia, tyrosine kinase inhibitor (TKI), breakpoint
cluster region-abelson (BCR-ABL), cardio-onco-hematology

Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative
disorder caused by a balanced chromosomal translocation involving
a fusion of the Abelson gene (ABL1) from chromosome 9q34 with
the breakpoint cluster region (BCR) gene on chromosome 22q11,
known as the Philadelphia chromosome, which encodes the BCR-
ABL protein with protein tyrosine kinase activity (1). The advent of
BCR-ABL tyrosine kinase inhibitors (TKI) was a big breakthrough
in the treatment of patients with CML, improving their outcomes
and quality of life. In 2001, imatinib was the first BCR-ABL TKI
approved for the treatment of patients with CML (2). Posteriorly,
other BCR-ABL TKIs such as dasatinib and nilotinib were also
approved for this purpose.

Despite their well-known benefits for CML treatment,
concerns have been raised about short- and long-term cardiac
and pulmonary safety profiles of BCR-ABL TKIs. Cardiac toxicities
associated with TKIs are heterogeneous and may include QT
prolongation, arrhythmias, decreased left ventricular ejection
fraction (LVEF), congestive heart failure, acute coronary syndrome,
arterial thrombosis, pulmonary, and systemic hypertension (3–
10). TKI-induced cardiotoxicity mechanisms are miscellaneous
and may be drug-specific, even to same-class drugs. Proposed
mechanisms may include disruption of mitochondrial function
within the cardiomyocyte, off-target inhibition of other kinases,
disturbing cardiomyocyte cellular oxidative phosphorylation, and
caspase-mediated mitochondrial apoptosis (11).

Despite data from clinical trials and cohort studies, there is
still a need for more robust information about the long-term
cardiac safety profile of BCR-ABL TKIs, especially real-world
data. Trials evaluating BCR-ABL TKIs in patients with CML
have enrolled participants with a history of cardiovascular disease
but, when cardiac endpoints were reported, these patients were
not analyzed as a separate group (12). Also, the definition of
cardiovascular outcomes in TKI studies was heterogeneous and
generally, they were not the same as those of cardiologic trials as
well as they were not specifically designed to determine cardiac
safety.

Based on the previous literature data, we hypothesized that
cardiovascular outcomes may differ according to the treatment with
specific BCR-ABL TKIs. In this study, we aimed to evaluate the 5-
year incidence and compare the ratios of significant cardiovascular
outcomes in patients with CML without a past history of heart
or cerebrovascular diseases treated with Bcr-ABL TKIs imatinib,
dasatinib, or nilotinib, using data from a large multinational network
based on electronic medical records.

Materials and methods

Data source

We used global-based data from the network TriNetX (TriNetX,
Inc., Cambridge, MA, United States), a multinational collaborative
clinical research platform, that collects real-time medical records,
including demographics, diagnoses, procedures, medications,
laboratory values, and vital statuses. This network included 70
healthcare organizations at the time of analysis, including data from
around 69.8 million patients. The TriNetX platform uses aggregated
counts and statistical summaries of de-identified information so that
no protected health information or personal data are made available
to users of the platform. Data were extracted and analyzed from the
Global Collaborative Network on the TriNetX platform between 27
August and 30 August 2021.

Study population

We queried the databank to select patients of both sexes and with
age ≥ 18 years with CML, BCR-ABL positive, based on International
Classification of Diseases, Tenth Revision (ICD-10) diagnosis codes
(ICD-10 code C92.1) during the past 10 years before the analysis.
The patients needed to be under treatment with a BCR-ABL TKI
(imatinib, dasatinib, or nilotinib), and they must not be prescribed
another TKI anytime. The index date was determined by the earliest
date of identification of the use of a BCR-ABL TKI. Patients with
past ischemic heart disease, other forms of heart disease (including
patients with LVEF < 50% identified in the TriNetX databank),
cerebrovascular disease, and pulmonary hypertension (ICD-10 codes
I20-I25, I27, I30-I52, and I60-I69) before the index date were
excluded from the analysis.

Study design

In this population-based retrospective cohort study, we aimed
to analyze the 5-year incidence of cardiovascular outcomes [adverse
cardiovascular and cerebrovascular events (ACE), heart failure or
LVEF < 50%, and venous thromboembolic events (VTE)] and
their comparative hazard ratios (HR) in patients with CML BCR-
ABL positive under treatment with imatinib, dasatinib, or nilotinib.
The time window for the outcome was the treatment starting with
a BCR-ABL TKI up to 5 years after. To avoid interactions in
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cardiovascular outcomes from patients with CML that were changed
from one TKI to another, patients with switch therapy were excluded
from the analysis.

Outcomes

The three analyzed cardiovascular outcomes are as follows:

Adverse cardiovascular and cerebrovascular events (ACE):
the composite of ischemic heart disease (ICD-10 codes I20–I25)
or cerebrovascular disease (ICD-10 codes I60–69) or myocardial
revascularization (coronary angioplasty code or coronary artery
bypass graft surgery, ICD-10 codes Z95.1, Z95.5, and Z98.61).

Heart failure or left ventricular ejection fraction
(LVEF) < 50%: ICD-10 code I50 or TriNetX code
2003. LVEF < 50% was chosen as a surrogate for
ventricular dysfunction.

Venous thromboembolism (VTE): ICD-10 I82 or I26.

Statistical analysis

The baseline characteristics for each group were compared with
the chi-square test for categorical variables and the Student t-test
for continuous variables. Propensity score matching was used to
balance cohorts with baseline characteristics. In relation to outcome
comparisons, we used the imatinib group as the reference, comparing
it with the two other groups (dasatinib and nilotinib). Kaplan–Meier
analysis was performed to estimate the probability of outcomes after
the index date from 1 day up to 5 years. Comparisons between cohorts
were made using a log-rank test. We calculate the HRs and their
associated 95% confidence intervals (CI), together with the test for
proportionality based on the scaled Schoenfeld residual, using R’s
Survival package v3.2-3.

Statistical analyses were done within TriNetX (13). Statistical
significance was set at a two-sided p-value of < 0.05.

Propensity score matching and covariates

The propensity score matching was calculated using logistic
regression implemented by the function logistic regression of
the scikit-learn package in Python version 3.7. “Greedy nearest
neighbor matching” was used with a caliper of 0.1 pooled standard
deviations (13). 1:1 matching was adjusted for covariates that could
be confounders for the predefined cardiovascular outcomes as
follows: demographic variables such as age, sex, and race (defined
as white, black or African American, Asian, or unknown); health
conditions related to cardiovascular risk and recorded identified
from ICD-10-CM codes in electronic medical records: overweight or
obesity, hypertension, chronic kidney disease, dyslipidemia, diabetes
mellitus, and nicotine dependence; and use of cardiovascular and
antimetabolite medications: hydroxyurea, diuretics, ACE inhibitors
or angiotensin II receptor blockers, beta-blockers, lipid-lowering
drugs, and antiarrhythmics, before starting BCR-ABL TKIs.

Ethics

TriNetX-derived studies with de-identified information
were approved by the Institutional Review Board of Hospital
Alemão Oswaldo Cruz.

Results

Characteristics of the study population

Using the electronic medical records from the platform TriNetX,
we identified 24,921 patients with CML BCR/ABL positive (ICD-10
C92.1). From this cohort, we selected, using inclusion and exclusion
criteria, 3,722 patients with CML and without past heart disease
treated with imatinib (n = 1,906), dasatinib (n = 1,269), and nilotinib
(n = 547). The exposure time for each analyzed TKI was as follows:
imatinib (median 1,198 days, range 1–1,826 days), dasatinib (median
647 days, range 1–1,826 days), and nilotinib (median 790 days,
range 1–1,826 days).

Compared to imatinib, patients with dasatinib were younger
during the start of treatment with a TKI (age 55 vs. 47.7 years old,
p< 0.0001), had a lower rate of hypertension (21 vs. 16%, p< 0.0001),
and had diabetes mellitus (10 vs. 7%, p = 0.002). The patients with
dasatinib had a higher rate of previous treatment with hydroxyurea
(p < 0.0001) and antiarrhythmics (p < 0.0001) than patients in
the imatinib group.

Compared to the imatinib group, patients from the nilotinib
group were younger (55 vs. 53 years old, p = 0.008), had a higher
proportion of female patients (46 vs. 52%, p = 0.007), and had
a higher proportion of black or African American patients (11
vs. 15%, p = 0.02). Patients with nilotinib had a lower rate of
use of antiarrhythmics than patients with imatinib. The baseline
characteristics before propensity score matching of the three study
groups are detailed in Table 1.

Outcome incidences during 5-year
follow-up before the propensity score
matching

The number and cumulative incidence of patients with ACE in
the Imatinib group were 99 (5.23%), in the dasatinib group were 15
(1.19%), and in the nilotinib group were 44 (8.1%). For the composite
outcome heart failure or LVEF < 50%, the number and cumulative
incidence in the imatinib group were 35 (1.83%), in the dasatinib
group were 10 (0.78%), and in the nilotinib group were 17 (3.1%).
The composite outcome VTE or pulmonary embolism occurred in
45 (2.4%) patients in the imatinib group, 25 (2%) patients in the
dasatinib group, and 10 (1.8%) patients in the nilotinib group.

5-year outcomes in imatinib, dasatinib,
and nilotinib groups after propensity score
matching

After the propensity score matching, the imatinib group
(n = 1,153) compared to the dasatinib group (n = 1,153) showed a
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TABLE 1 Baseline characteristics of the cohort for the imatinib, dasatinib, and nilotinib groups.

Imatinib Dasatinib P-value* Nilotinib P-value**

Cohort size, n 1906 1269 547

Demographics

Mean age (SD), years 55 (16) 47.7 (15) <0.0001 53 (15) 0.0086

Sex

Male, n (%) 1029 (54) 700 (55) NS 261 (48) 0.0092

Female, n (%) 877 (46) 569 (45) NS 285 (52) 0.0073

Race

White, n (%) 1323 (69) 820 (65) 0.0281 362 (66) NS

Black or African American, n (%) 215 (11) 185 (15) 0.0026 81 (15) 0.0230

Asian, n (%) 35 (2) 30 (2) NS 10 (2) NS

Unknown, n (%) 323 (17) 223 (18) NS 97 (18) NS

Comorbidities

Overweight or obesity, n (%) 133 (7) 75 (6) NS 30 (5) NS

Nicotine dependence, n (%) 113 (6) 79 (6) NS 29 (5) NS

Disorders of lipid metabolism, n (%) 228 (12) 117 (9) NS 61 (11) NS

Diabetes mellitus, n (%) 187 (10) 85 (7) 0.0002 57 (10) NS

Hypertension, n (%) 401 (21) 202 (16) <0.0001 96 (18) NS

Chronic kidney disease, n (%) 79 (4) 28 (2) <0.0001 13 (2) NS

Medications

Hydroxyurea, n (%) 252 (13) 328 (26) <0.0001 66 (12) NS

Antilipemic agentes, n (%) 311 (16) 164 (13) 0.002 92 (17) NS

Beta blockers, n (%) 269 (14) 124 (10) <0.0001 87 (16) NS

ACE inhibitors, n (%) 200 (10) 174 (14) 0.0002 57 (10) NS

Angiotensin II inhibitors, n (%) 127 (7) 62 (5) 0.003 34 (6) NS

Antiarrhthymics 362 (19) 317 (25) 0.0002 56 (10) 0.0001

Diuretics, n (%) 323 (17) 165 (13) <0.0001 70 (13) 0.018

SD, standard deviation; ACE, angiotensin-converting enzyme; NS, non-significant. *imatinib vs. dasatinib; **imatinib vs. nilotinib.

higher HR for ACE (HR 2.13, 95% CI 1.15–3.94, p = 0.016). When
compared with the nilotinib group (n = 533), the matched imatinib
group (n = 533) presented a lower HR for ACE (HR 0.50, 95% CI
0.30–0.83, p = 0.0074). In relation to heart failure or LVEF < 50%,
patients with imatinib had a higher ratio than patients with dasatinib
(HR 9.41, 95% CI 1.22–72.17, p = 0.03), but no significant difference
was observed between imatinib and nilotinib groups (HR 0.48, 95%
CI 0.215–1.01, p = 0.064). There were no significant differences
between the three groups in relation to VTE or pulmonary embolism.
Five-year Kaplan–Meier curves for ACE, heart failure, and venous
thromboembolism between dasatinib vs. imatinib and nilotinib vs.
imatinib are depicted in Figure 1.

Discussion

We used a large electronic medical record network to create
propensity score-matched cohorts of patients with CML without a
past history of heart or cerebrovascular diseases according to the
treatment with three commonly used BCR-ABL TKIs for comparing
ratios of cardiovascular outcomes (ACE, heart failure or LVEF < 50%,
and VTE or pulmonary embolism) during a 5-year period. As

patients of the imatinib group were older than patients of the other
groups and had more cardiovascular risk factors than patients of the
dasatinib group, we opted for matching the cohorts as a reasonable
approach to compare the groups with similar baseline characteristics
for reducing bias. Using this approach, we found that when compared
with patients from the imatinib group, patients with dasatinib had
a significantly lower ratio of ACE, while patients from the nilotinib
group had a significantly higher rate of ACE.

Cardiovascular events, including ischemic heart disease,
cerebrovascular disease, and peripheral artery disease, are major
concerns in patients with CML, particularly in those under treatment
with second- and third-generation Bcr-ABL TKIs nilotinib and
ponatinib, respectively (14). In this population, cardiovascular
disease may be responsible for up to 16.5 and 5% of potential years of
life lost in men and women, respectively (15). In the 3-year follow-up
of the ENESTnd trial, which included a total of 846 patients with
newly diagnosed Ph + CML-CP, the incidence of ischemic heart
disease was higher with nilotinib than with imatinib: nine patients
(3.2%) in the nilotinib 300 mg twice-daily arm, 11 patients (4.0%)
in the nilotinib 400 mg twice-daily arm, and three patients (1.1%)
in imatinib arm (9). These results were more evident with a 5-year
update of the ENESTnd trial, in which 28 of 279 (10%) patients
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FIGURE 1

5-year Kaplan–Meier curves for adverse cardiovascular or cerebrovascular events, heart failure or LVEF < 50%, and VTE or pulmonary embolism in
patients treated with imatinib vs. dasatinib (left column) and imatinib vs. nilotinib (right column). LVEF, left ventricular ejection fraction; HR, hazard ratio;
CI, confidence interval; VTE, venous thromboembolism.

treated with nilotinib at 300 mg twice per day, 44 of 277 patients
(15.9%) treated with nilotinib at 400 mg twice per day, and 7
(2.5%) of 280 patients treated with imatinib 400 once per day had
ischemic events (16). Interestingly, a retrospective study using data
from 1,390 patients with CML from IRIS, TOPS, and ENESTnd
trials showed a lower risk of peripheral arterial disease in patients
treated with imatinib vs. nilotinib or patients with CML treated
without TKIs, suggesting a possible protective role of imatinib in
atherosclerotic vascular diseases (10). The supposed mechanisms
related to nilotinib cardiovascular toxicities are complex and may
involve different pathways. Nilotinib may lead to overexpression of
cell adhesion proteins on human endothelium, including ICAM1,
VCAM1, and E-selectin, which may enroll inflammatory cells and
platelets and increase the risk of cardiovascular events (14). Nilotinib
also represses endothelial cell proliferation and migration and may
inhibit other kinases related to angiogenesis (17). In our study,
in line with previous data, we have also observed a higher risk of
cardiovascular disease, including cerebrovascular and ischemic heart
disease or myocardial revascularization, in patients with nilotinib
when compared with imatinib, even excluding patients with a
past history of heart and cerebrovascular disease and adjusting the
analysis for baseline cardiovascular risk factors.

The risk of cardiovascular ischemic events induced by dasatinib
is not well-established. Despite the higher incidence of cardiovascular
events in patients treated with dasatinib in relation to imatinib (4 vs.
2%) at the 5-year follow-up of the DASISION trial (8), a post hoc

analysis that included patients from the DASISION trial showed that
the cardiovascular events occurred mainly in patients with a history
of cardiovascular disease (18). In a retrospective study that analyzed
data from 105 patients with CML in Polish tertiary health centers,
patients treated with dasatinib had lower rates of vascular events (4%)
than patients with nilotinib (11%) (19). We showed in our analysis
a lower HR of cardiovascular and cerebrovascular events in patients
with dasatinib compared to imatinib, differing from other analyses
by being a real-world cohort and excluding patients with overt
cardiovascular and cerebrovascular diseases before the start of a TKI.
It is also essential to keep in mind the TKIs used for CML treatment
differ in their potency and activity against BCR-ABL1 and other
kinases, which also exert relevant functions on the cardiovascular
system. This can in part explains the observed discrepancy in the
cardiovascular risk between the different TKIs.

A warning signal for the risk of heart failure in patients with
CML treated with BCR-ABL TKIs was suggested in 2006 by Kerkelä
and colleagues when reporting a case series of 10 patients treated
with imatinib that had developed heart failure with reduced LVEF.
Myocardial biopsies in two patients and three imatinib-treated mice
showed mitochondrial abnormalities and accumulation of membrane
whorls in both vacuoles and sarcoplasmic reticulum, suggesting toxic
myopathy possibly associated with ABL inhibition (20). However,
a further follow-up study of patients treated with imatinib did not
demonstrate a higher risk of heart failure or cardiomyopathy (21).
In our cohort, the unmatched incidences of the composite outcome
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heart failure or LVEF < 50% were higher in the imatinib group
(1.83%) and the nilotinib group (3.1%) than in the dasatinib group
(0.78%). After matching for baseline risk factors, patients treated
with imatinib showed a greater ratio for heart failure or a reduced
LVEF than patients with dasatinib but not in relation to patients with
nilotinib, suggesting that in a long term, dasatinib may exert less
toxicity on ventricular function than imatinib or nilotinib. However,
we should take into account that heart failure incidence was low in
the three treatment groups.

In our study, patients with CML who were switched from one TKI
to another were excluded from the analysis. One might question that
patients on dasatinib who stopped medication for pleural effusion,
which is a common adverse event with this medication, might have a
higher incidence of heart failure and lead to a selection bias. However,
the physiopathology of pleural effusion in patients treated with
dasatinib is not related to heart failure, given that dasatinib-induced
pleural effusions are generally lymphocyte-predominant exudates
(22). In addition, data indicate dasatinib-induced pleural effusion
could be related to strong inhibition of the platelet-derived growth
factor receptor β, leading to a decreased interstitial fluid pressure and
higher vascular permeability (23).

Venous thromboembolic events have not been described as a
significant adverse effect of BCR-ABL TKIs. An exception was a phase
2 study that included patients with CML for ponatinib treatment,
which showed moderate rates of VTE, mostly deep vein thrombosis
and pulmonary embolism, that occurred in 5% of patients (24). In
our study, the overall incidence of VTE or pulmonary embolism was
low in the three TKI groups, and we have not observed a difference in
risk between them.

The strengths of this study are the sample size, considering the
low incidence of CML in many healthcare organizations, the capacity
of adjusting the outcomes for baseline cardiovascular characteristics,
and the real-world essence of the data. We must recognize several
limitations of this study. First, it involved analyses of a retrospective
observational cohort, which led to baseline differences among the
treatment arms, such as older individuals with more cardiovascular
risks in the imatinib group. This fact led us to use propensity score
matching, which may have some problems like trying to mimic a
randomized experiment, without the same precision and control
against confounding. Also, propensity score matching may create a
“propensity score paradox,” in which unit pruning causes increased
imbalance after a point (25).

Due to its observational retrospective nature, the study may
be inherently subject to bias. Therefore, we should carefully avoid
making cause–effect relationships and, instead, consider the results
as a hypothesis generator. Second, despite the matching, we cannot
exclude the influence of residual confounding, which was not
captured, such as TKIs and cardiovascular medications dosage,
administration timing since the beginning of the follow-up, and
lifestyle habits such as physical activity and diet. Particularly TKI
dosage may be an important factor for cardiotoxicity as showed
in the ENESTnd trial, in which a higher dosage of nilotinib was
associated with a higher incidence of arterial events in relation
to a lower dosage or with imatinib (15). We were also unable
to analyze the treatment discontinuation rates for the three BCR-
ABL TKI groups, which could influence the timing of exposition
to the TKI and their cardiovascular effect. Third, the outcomes and
baseline characteristics were based on 10 ICD codes, which are not
accurate when compared with adjudicated outcomes in randomized
clinical trials.

In conclusion, we found in a large sample of patients with CML
treated with BCR-ABL TKIs that when compared with imatinib
treatment, patients treated with nilotinib had a higher ratio of
ACE, while patients treated with dasatinib showed a lower ratio
of cardiovascular and cerebrovascular events. The ratio of heart
failure was greater in patients with imatinib when compared to
dasatinib but not compared to nilotinib. These results raise the
hypothesis that, when comparing three commonly used BCR-ABL
TKIs, nilotinib presents a higher probability of cardiovascular toxicity
and dasatinib presents a better cardiovascular safety profile. These
findings may be particularly relevant in patients with CML and
underlying cardiovascular risk factors, in which a BCR-ABL TKI is
being considered for treatment.
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