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Editorial on the Research Topic
Cardio-oncology: mechanisms and therapeutics

Cancer and cardiovascular disease share similar risk factors and are both prevalent among
aging populations. Individuals with a history of cancer are exposed to a 2-3 times higher
chance of getting acute coronary syndrome (ACS), which can persist for up to 10 years
after a cancer diagnosis (1). Cancer patients with cardiovascular comorbidity have worse
survival rates than cancer patients alone (2, 3). Reciprocally, myocardial infarction also
hastens the spread of cancer and worsens the prognosis of cancer patients (4, 5). In this
regard, understanding the interaction between cancer and cardiovascular disease may help
avoid tackling diseases in a siloed approach and improve the outcome of these patients
with comorbidity.

In addition, novel cancer therapies have tremendously improved the survival of cancer
patients but also increased treatment-related side effects (6, 7). Cardiovascular toxicities
are the most common adverse effects, threatening survival and impairing life quality of
the cancer survivors (8). Cancer survivors’ early morbidity and death are largely affected
by these side effects (9). Understanding the mechanisms underlying anticancer treatment-
induced cardiotoxicity can help develop novel therapeutics to avoid or lessen it.

The purpose of this research topic is to bring together a collection of works that provide
novel insights into interactions between cancer and cardiovascular disease as well as
mechanisms and therapeutics of anticancer treatment-induced cardiotoxicity. All
contributions to this research topic concentrate on one or more of the above-mentioned
study topics and several studies referenced below are representative.

N6-Methyladenosine in cyclophosphamide-induced
cardiotoxicity

The RNA epitranscriptomics represented by N°-Methyladenosine (m°A) are increasingly
recognized to play important roles in physiology and disease (10). Cyclophosphamide is
frequently prescribed to treat various types of cancers and autoimmune conditions.
Accumulated doses of this drug may result in fatal hemorrhagic myocarditis (11). Zhu et al.
demonstrated that the pathogenesis of cyclophosphamide-induced cardiotoxicity involves
the downregulation of Junctophilin 2 (JPH2) levels. The proper structure and function of
junctophilin-2 (JPH2) are recognized to be indispensable for proper excitation-contraction
coupling in cardiomyocytes (12). The increased m®A level of JPH2 mRNA induced by N°-
Methyladenosine writer METTL3 decreased its expression levels, and consequently
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dysregulated calcium signaling in cardiomyocytes. These results
identified a novel epitranscriptomic mechanism regulating JPH2
expression and offers novel approaches to the management of
cyclophosphamide-induced cardiotoxicity.

miR-194-5p contributes to
doxorubicin-induced cardiotoxicity

Doxorubicin is a popular anticancer agent but is well-known
for its cardiotoxicity in many patients. The mechanisms
underlying doxorubicin (DOX)-induced cardiotoxicity remain
not fully understood. miRNAs are widely involved in the
progression of various cardiovascular diseases (13). Fa et al.
revealed the important role of miR-194-5p in the pathogenesis of
DOX-induced cardiotoxicity. MiR-194-5p

doxorubicin (DOX)-induced cardiotoxicity in vitro and in vivo

silencing reduced

by upregulating PAK2 and XBPIls. Overexpression of PAK2 or
XBP1ls reduced miR-194-5p- cardiomyocyte
apoptosis. This work was the first to identify a novel pathogenic
miR-194-5p/PAK2/XBP1s axis in DOX-induced cardiotoxicity,
hence proposing a potential target for the prevention and
treatment of DOX-induced cardiotoxicity.

exacerbated

NT-proBNP can predict cardiovascular
symptoms caused by Pd-1 inhibitor
therapy

In recent years, immunotherapy has achieved great success in
cancer treatment. Unfortunately, cardiotoxicity appears to have
emerged as an unneglectable issue recently (14). The work by
Peng et al. suggested that NT-proBNP could predict cardiovascular
symptoms in individuals with myocardial damage following PD-1
inhibitor therapy, while highly sensitive troponin T (hsTnT) is the
best cardiac biomarker for mortality prediction in symptomatic
patients. This study may help medics to perform risk stratification
for patients at an earlier time and to implement effective
interventions at the early stage of PD-1 inhibitor-related myocarditis.

A large-scale observation in cancer
patients suffering from infective
endocarditis

Infective endocarditis (IE) occurs more frequently in cancer
patients as compared with the general population (15). IE was
predominantly community-acquired (74.8%) in cancer patients,
according to Cosyns et al. The most common complications were
(21.7%), and
congestive heart failure (18.1%). This is a sizable observational

acute renal failure (25.9%), embolic events
cohort of IE patients with cancer. It sheds light on current IE
cancer patient profiles, treatment, and outcomes. Considering the
lack of randomized and large-scale observational data on IE
cancer patients, this registry provides a unique viewpoint on IE
management in cancer patients.

Frontiers in Cardiovascular Medicine
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D-Dimer is a predictive factor for
cancer therapeutics-related cardiac
dysfunction

Improved early detection methods have allowed a larger
number of cancer patients with cancer therapeutics-related
cardiac dysfunction (CTRCD) to live longer (16). Oikawa et al.
consecutively enrolled 169 patients who planned to receive
cardiotoxic chemotherapy for 12 months of follow-up and found
that the incidence of CTRCD was greater in the high D-dimer
group than in the low D-dimer group (16.2 vs. 4.5%, p =0.0146).
High D-dimer levels at baseline were an independent predictor of
the development of CTRCD, according to multivariable logistic
regression analysis [odds ratio 3.93, 95% CI (1.00-15.82), p=0.
047]. It is suggested that D-dimer may be a potential predictor of
CTRCD and has clinical practical value.

Low LVEF after chemotherapy was
associated with blood RNA viruses

It has been hypothesized that immunosuppression after
(17).
Varkoly et al. performed high-throughput sequencing analysis of

chemotherapy increases opportunistic viral infections
RNA obtained from blood samples of 28 patients with
hematological malignancies who had undergone chemotherapy.
The result suggested that patients with low LVEF had influenza
orthomyxovirus, avian paramyxovirus, and retrovirus sequences
present. This is the first study to use high-throughput, blinded,
unbiased sequencing to test for RNA viruses in circulating blood
and associate those findings with abnormalities in heart function
in patients who have recently finished chemotherapy. This study
raises attention to RNA virus infections in individuals with
chemotherapy-related cardiomyopathy.

Cardiovascular outcomes in patients
with colorectal cancer

Colorectal cancer (CRC) patients are potentially at high
cardiovascular risk (18). Hang et al. followed up 197, 699
colorectal cancer patients for 37 months and examined the risks
of cardiovascular death (CVD) in patients with CRC. They
revealed that CVD ranked first and accounted for 41.69% of the
major cause of non-cancer deaths. In addition, the nomogram
for CVD prediction created. This
nomogram performed quite well and might assist physicians in

in CRC patients was

providing customized care in clinical settings.

Perspectives
With the generous support from all editors, publishers,

reviewers, and authors involved in this research topic, we have
successfully finalized this wonderful collection focusing on

frontiersin.org
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mechanisms and therapeutic in Cardio-Oncology. Future studies
on the mechanism and management of cardio-oncology are
expected to continually improve the survival and life quality of
cancer survivors. The enormous issues posed by tumor-
cardiovascular comorbidity, however, deserve more attention
given its rising incidence and the continuously aging population.
There is substantial opportunity for the collaboration between
oncologists and cardiologists to work together to improve the
outcome of cancer patients with cardiovascular comorbidity.
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Background: Doxorubicin (Dox) is one of the most effective chemotherapy agents
used in the treatment of solid tumors and hematological malignancies. However, it
causes dose-related cardiotoxicity that may lead to heart failure in patients. Luteolin
(Lut) is @ common flavonoid that exists in many types of plants. It has been studied
for treating various diseases such as hypertension, inflammatory disorders, and cancer.
In this study, we evaluated the cardioprotective and anticancer effects of Lut on Dox-
induced cardiomyopathy in vitro and in vivo to explore related mechanisms in alleviating
dynamin-related protein (Drp1)-mediated mitochondrial apoptosis.

Methods: MTT and LDH assay were used to determine the viability and toxicity of
cardiomyocytes treated with Dox and Lut. Flow cytometry was used to examine ROS
levels, and electron and confocal microscopy was employed to assess the mitochondrial
morphology. The level of apoptosis was examined by Hoechst 33258 staining. The
protein levels of myocardial fission protein and apoptosis-related protein were examined
using Western blot. Transcriptome analysis of the protective effect of Lut against Dox-
induced cardiac toxicity in myocardial cells was performed using RNA sequencing
technology. The protective effects of Lut against cardiotoxicity mediated by Dox in
zebrafish were quantified. The effect of Lut increase the antitumor activity of Dox in breast
cancer both in vitro and in vivo were further employed.

Results: Lut ameliorated Dox-induced toxicity in H9c2 and AC16 cells. The level
of oxidative stress was downregulated by Lut after Dox treatment of myocardial
cells. Lut effectively reduced the increased mitochondrial fission post Dox stimulation
in cardiomyocytes. Apoptosis, fission protein Drp1, and Ser616 phosphorylation
were also increased post Dox and reduced by Lut. In the zebrafish model, Lut
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significantly preserved the ventricular function of zebrafish after Dox treatment. Moreover,
in the mouse model, Lut prevented Dox-induced cardiotoxicity and enhanced the
cytotoxicity in triple-negative breast cancer by inhibiting proliferation and metastasis and

inducing apoptosis.

Keywords: luteolin, cardiac dysfunction, doxorubicin, breast cancer, mitochondrial dysfunction

INTRODUCTION

Doxorubicin (Dox), an anthracycline chemotherapeutic agent,
has been widely used to treat a variety of tumors including
breast cancer, ovarian cancer, and hematological malignancies
(1-4). However, the clinical utility of Dox in chemotherapy is
limited by its adverse dose-dependent cardiotoxicity, which often
results in left ventricular dysfunction, cardiomyopathy, and
even heart failure (5, 6). Over the decades, novel insights into
Dox-induced oxidative stress in cardiomyocytes emerged since
current interventions to lessen the incidence of cardiotoxicity
after prolonged Dox treatments are unsatisfactory (7-9).
Increasing evidence proved that Dox facilitates cardiomyocyte
apoptosis and programmed death by damaging mitochondrial
structure and its biologic function, which is ascribed to the
disorder of mitochondrial oxidation-reduction homeostasis
and mitochondrial dynamics (10). Nevertheless, effective
interventions for Dox-induced cardiotoxicity still need to be
explored and developed.

Dexrazoxane is the only drug currently approved by the FDA
that provides protection against Dox-induced cardiotoxicity.
However, dexrazoxane not only causes side effects, such
as hematological toxicity and myelosuppression, but also
decreases the antitumor efficacy of Dox (11, 12). For instance,
the activation of hypoxia-inducible transcription factor, an
oncogene, may contribute to the protective effect of dexrazoxane
against anthracycline cardiotoxicity in dexrazoxane-treated
H9c2 cardiomyocytes (13). Interestingly, numerous studies
have demonstrated that different herbal products and
bioactive phytochemicals could counterbalance Dox-induced
cardiotoxicity as add-on therapies (14, 15). Therefore, developing
a drug that confers cardioprotection during Dox treatment and
improves the chemotherapeutic efficacy of Dox in cancer cells
is important.

Luteolin (Lut), 3/,4’,5,7'-tetrahydroxyflavone, a naturally
occurring flavone, which are widely enriched in plants. Lut has
shown beneficial effects in several biological processes including
anti-tumorigenesis, anti-inflammation, antiapoptotic activities,
and antioxidative stress (Figure 1A) (16, 17). Plants rich in
Lut have been used as traditional Chinese medicine (TCM) for
hypertension, inflammatory diseases, and cancers (14, 18). In
China, traditional herbal medicine has been commonly used
for the treatment of breast cancer and its complications (19).
Among them, Platycodon grandiflorum is widely used, alone or in
combination with other herbal medicines, to treat patients with
early breast cancer receiving anthracycline-based chemotherapy.
Our previous clinical study found that Platycodon grandiflorum
has cardioprotective effects for early breast cancer patients who
received Dox-based chemotherapy (20). Basic experiment studies

revealed that Platycodon grandiflorum prevents Dox-induced
cardiotoxicity in a mouse model of breast cancer (21). However,
the potential mechanisms behind the cardioprotective effects
remain unknown.

Lut is one of the major metabolites upon oral administration
of luteolin-7-O-glucoside and is generally absorbed by intestinal
mucosa into the systemic circulation after oral administration
with an oral bioavailability at ~26% (22). Importantly, the
flavonoid Lut is recognized as an important regulator of
myocardial function providing myocardial protection during
times of stress and can largely protect the myocardium against
IR injury, partly through the downregulation of antioxidant
and apoptosis properties (23, 24). Importantly, as the main
component of Platycodon grandiflorum, Lut exerts multiple
cellular effects in vitro, including antiproliferative effects in
cancer cells and anti-inflammatory and antioxidative effects in
various cell types. However, the molecular mechanisms by which
Lut exerts these effects remain unclear.

Previous studies shown that Dox may activate apoptotic
signaling  through  multiple = mechanisms,  including
mitochondria-related apoptotic signaling (25). Dox-induced
mitochondrial fission is a dynamin-related protein 1 (Drpl)
signaling-dependent process, Drpl might be a potential
target against Dox-induced cardiotoxicity (26, 27). Given that
hepatotoxicity and heart failure due to different medicines
and toxins can be attenuated by Lut, we hypothesized that Lut
may have protective effects on cardiotoxicity due to Dox via
regulating mitochondrial damage. Therefore, the aim of this
work was to investigate the protective effect of Lut against Dox-
induced cardiotoxicity. The results showed that this protection
was mediated through Drpl-regulated mitochondria-related
apoptosis both in vitro and in vivo. In addition, Lut enhanced the
chemotherapeutic efficacy of Dox in breast cancer.

MATERIALS AND METHODS

Cell Cultures

H9c2 (rat cardiomyocytes), AC16 (human cardiomyocytes), 4T1
(mouse breast cancer cell), and MDA-MB-231 (human breast
cancer cell) cell lines were purchased from the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China). H9¢2, AC16,
and MDA-MB-231 cells were maintained in DMEM medium
supplemented with 10% (v/v) FBS, 100 U/mL penicillin, and 100
mg/L streptomycin. The 4T1 cells were maintained in RPMI 1640
medium supplemented with 10% (v/v) FBS, 100 U/mL penicillin,
and 100 mg/L streptomycin. The cells were incubated at 37°C in
a 5% CO; incubator with saturated humidity.
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FIGURE 1 | Effect of Lut in attenuating Dox-induced cardiotoxicity in H9c2 and AC16 cells. (A) Chemical structure of Lut. (B,C) Effects of different concentrations of
Lut on cell viability and toxicity in H9c2 and AC16 cells. (D) Effects of different concentrations of Dox on cell toxicity in H9c2 and AC16 cells. (E) Effects of Lut in
attenuating Dox-induced cardiotoxicity in H9c2 and AC16 cells. Mean + SD, n = 3 independent experiment. *P < 0.05; **P < 0.01 compared with control group. #P
< 0.05; ##P < 0.01 compared with Dox group.

Cell Viability and Cytotoxicity Assays DCFH-DA in medium for 30 min at 37°C. After incubation,
The cell viability and cytotoxicity of H9c2 and AC16 cells  the ROS levels were measured using a flow cytometer. For SOD
were detected by MTT assay and LDH assays. Briefly, the cells  analysis, cell supernatants were collected by centrifugation after
were plated in 96-well plates at a density of 5,000 cells/well,  treatment. The solution was measured by the WST-8 method
incubated overnight, and then exposed to 1 wM Dox with or  according to the manufacturer’s instructions. The SOD activity
without various concentrations of Lut for another 24 h. Cellswere ~ was presented as percent inhibition of the reduction of the
supplemented with 20 WL MTT and incubated for 4h at 37°C.  chromogenic substrate.

The formazan crystals that formed were subsequently dissolved

in 150 pL. DMSO, and the OD490 values were measured witha  Cell Microfilament Cytoskeleton Staining
BioTek instrument (Winooski, Vermont, USA). For cytotoxicity  H9c2 and AC16 cells were seeded into 6-well plates. After 24h
assay, the release of LDH into the medium was determined using  of Dox (1 wM) treatment with or without Lut (20 uM), cells
a Cytotoxicity Detection Kit (Beyotime, Shanghai, China). The  were fixed with 4% paraformaldehyde in PBS for 15 min. Suitable

absorbance was measured with a microplate reader at 490 nm. media were washed twice with wash buffer and permeabilized
with 0.1% Triton X-100 in PBS for 5min at room temperature.
Oxidative Stress Analysis Following two washes with wash buffer, cells in suitable media

After 24h of Dox (1uM) treatment with or without Lut  were covered with dilute FITC-conjugated phalloidin in PBS
(20 M), HO9c2 and AC16 cells were loaded with 10pwM  immediately prior to use and incubated for 30 min to stain

Frontiers in Cardiovascular Medicine | www.frontiersin.org 13 October 2021 | Volume 8 | Article 750186


https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles

Shi et al.

Luteolin in Doxorubicin-Treated Breast Cancer

the actin. Nuclei counterstaining was performed by incubating
cells with 0.1 pg/mL DAPI for 15 min. Fluorescence images were
captured with a laser scanning confocal microscope.

Cell Apoptosis Analysis

H9c2 and AC16 cells were seeded in 6-well flat-bottom microtiter
plates at an initial cell density of 10° cells/well and cultured
overnight. After 24h of Dox (1 wM) treatment with or without
Lut (20 wM), cells were incubated with fresh medium containing
0.1 mmol/L Hoechst 33258 (Beyotime, Shanghai, China) in the
dark for 10 min. The cells were washed three times with PBS,
and the apoptotic cells were observed under a fluorescence
microscope (Olympus, Tokyo, Japan).

Western Blot

Western blot was used to evaluate the apoptosis-related
protein in cells. Primary rabbit antibodies, such as Bax (#2772,
1:1,000), Bcl-2 (#3498, 1:1,000), Bcl-XL (#2764, 1:1,000),
Caspase-3 (#9662, 1:1,000), Cleaved Caspase-3 (#9664, 1:1,000),
B-actin (#3700, 1:1,000), GAPDH (#5174, 1:1,000), Drpl
(#8570, 1:1,000), phospho-Drpl (Ser616) (#3455, 1:1,000),
and horseradish peroxidase (HRP)-conjugated secondary
antibody (#7074s, 1:5,000) were purchased from Cell Signaling
Technology, Inc. (Beverly, MA, USA). Cells were washed with
PBS for three times and lysed with lysis buffer. After incubation
on ice for 30 min, the lysates were centrifuged at 12,000¢g for
15min at 4°C. Protein sample was denatured at 100°C for
10 min, separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis, and then transferred to PVDF membrane
(Millipore). The membrane was incubated with the primary
antibodies overnight. Then, the membrane was washed and
incubated with secondary HRP-conjugated goat anti-rabbit or
anti-mouse antibodies. Finally, the blots were developed with
Enhanced ECL System (Beyotime, Shanghai, China), and the
signal was quantified by Quantity One software (Bio-Rad).

Confocal Microscopy and Electron

Assessment on Mitochondrial Morphology

Mitochondrial morphology was assessed by confocal microscopy.
After 24 h of Dox (1 wM) treatment with or without Lut (20 wM),
the media were removed from the dish, and staining solution
containing MitoTracker probe (Yeasen Biotech, Shanghai,
China) was added. The lyophilized MitoTracker was dissolved
in anhydrous dimethyl sulfoxide to a final concentration of
100 nmol/L and incubated for 30 min. Images were captured
with a laser scanning confocal microscope (Olympus, Tokyo,
Japan). Following Dox treatment with or without Lut, the H9c2
and AC16 cells were washed with PBS, collected, and fixed
in 2.5% glutaraldehyde for over 2h at 4°C. The specimens
were subsequently rinsed with PBS, fixed in 1% osmium
tetroxide for 1-2h, and then dehydrated sequentially in graded
concentrations of 50, 70, 80, 90, and 100% ethanol for 15 min.
The specimens were then processed for Epon™ embedding and
observed under a transmission electron microscope (CM100,
Philips, Netherlands).

Molecular Docking

Molecular docking was used to interpret the binding area of
small molecule ligands and macromolecular receptors through
computer simulation and then calculate the physical and
chemical parameters for predicting the affinity between the
two. The mol2 format of the active ingredient was downloaded
from the PubChem database. Its energy was minimized through
Chem3D and converted into pdb format. Small molecule
compounds were imported into AutoDock Tools-1.5.6 software.
Water molecules were deleted, atomic charges were added, and
atom type was allocated. All flexible keys can be rotated by default
and finally saved as a pdbqt file. The PDB format file of the
crystal structure of the target was downloaded from the PDB
database (Protein Data Bank). Pymol 2.3 software was used to
delete irrelevant small molecules in the protein molecule. Then,
we imported the protein molecule into the AutoDock Tools-1.5.6
software to delete water molecules and add hydrogen atom, and
finally saved it as a pdbqt file. The processed active ingredient
is a small molecule ligand, and the protein target is used as a
receptor. The center position and length, width, and height of the
Grid Box were determined according to the interaction site of the
small molecule and the target. Finally, batch docking was carried
out through AutoDock vina and python script. In analyzing the
molecular docking results, we visualized the binding effect of
compounds and proteins using Pymol 2.3 software.

RNA Sequencing

H9c2 and ACI16 cells were harvested after drug treatment
(three samples per group). The total RNA of each sample was
extracted using TRIzol (Thermo Fisher). The quality of the
RNA was measured by the Agilent 2100 Bioanalyzer with the
RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA). The
RNA concentration, RIN value and fragment length distribution
were analyzed. Construction of the sequencing library and RNA
sequencing were performed by Sangon (Shanghai, China) using
the Illumina NovaSeq Platform.

Identification of Differentially Expressed
Genes (DEGs) and Functional Enrichment
Analysis

Limma package (version 3.40.2) of R software was used to
screen out the DEGs in the Dox-Lut group compared with Lut-
treated group and Dox-treated group compared with control
group in H9¢2 and ACI16 cells. “Adjusted P < 0.05 and
Log (Fold Change| >1)” were defined as the cutoff for the
identification of differentially expressed mRNAs. To further
confirm the underlying function of potential targets, the data
were analyzed by functional enrichment. Gene Ontology (GO)
is a widely used tool for annotating genes with functions,
especially molecular function (MF), biological pathways (BP),
and cellular components (CC). Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis is a practical database
for analytical study of functional annotations and associated
high-level genome-wide pathways. The results of functional
enrichment are displayed in bubble charts.
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Zebrafish Maintenance and Drug

Treatment

Tg (cmlc2: GFP) zebrafish with GFP specifically expressed
in myocardial cells were used in this study. Zebrafish were
maintained as described in the Zebrafish Handbook (28). All
animal experiments were approved by the Animal Research
Ethics Committee of Shanghai University of Traditional Chinese
Medicine. Pair-wise mating (6-12 months old) was used to
generate the zebrafish embryos, which were maintained in
embryo medium at 28.5°C. All embryos were then raised in
the embryo medium containing 1-phenyl-2-thiourea (200 mM)
after 48 hpf. Zebrafish (2 dpf) at the same developmental stage
were distributed into a 24-well microplate (5 fish per well). After
co-treatment with Dox (10 wM) and different concentrations of
Lut (5, 10, 20 wuM) for 24 h, ventricular functions of zebrafish
were examined by assessing various parameters and morphology.
The morphology and functions of zebrafish heart were measured
by an imaging system comprising a microscope (Olympus).
Zebrafish were placed into 1% low-melting-point agarose (Gibco)
to restrict their movement, and videos of zebrafish heartbeat
were recorded for 10 s at room temperature. The parameters and
morphology of ventricular function of zebrafish were measured.

Wound Healing Assay

Cells were seeded in 6-well plates at a density of 1 x 10° cells
per well, and when cellular confluence reached about 90%, a
200 pL pipette tip was used to create wounds in confluent
cells. After removing the floating cells by washing the scraped
surface with PBS, wounded monolayers were photographed with
a microscope. Cells were then incubated containing Dox (2 uM)
with or without Lut (40 M) for 24h. The images of cells
migrating into the wound surface and the average distance of
migrating cells were determined under a microscope 24 h later.

Colony Formation Assay

To further determine the inhibitory effect of Lut on the
tumorigenicity of triple-negative breast cancer (TNBC) cells,
colony formation assays were performed. Five hundred 4T1 or
MDA-MB-231 cells were seeded into 6-well plates to incubate
overnight. The cells were then incubated with Dox (2 wM) with
or without Lut (40 uM) for 7-10 days. After fixing with 4%
paraformaldehyde and staining with a crystal violet solution,
colonies containing more than 30 individual cells were counted
under a stereomicroscope.

Cell Invasion Assay

The invasive ability of 4T1 and MDA-MB-231 cells were
measured using 24-well Transwell with polycarbonate filters
(pore size, 8 um) coated on the upper side with Matrigel (BD,
Bedford, MA, USA). 1 x 103 cells in 100 mL medium were seeded
in the top chamber. The bottom chamber contained 10% fetal calf
serum medium. After 24h incubation, non-invasive cells were
removed with a cotton swab. Cells that migrated to the bottom
surface of the membrane were fixed in formaldehyde, stained
with crystal violet solution, and counted under a microscope.

Xenograft Mouse Experiments

Seven-week-old female BALB/c mice (18-20g) were obtained
from the Shanghai SLAC Laboratory Animal Technology Co.,
Ltd. (Shanghai, China). The animals were housed under
standardized conditions in animal facilities at 20 + 2°C
temperature, 40% =+ 5% relative humidity, and a 12-h
light/dark cycle with dawn/dusk effect. The protocol was
approved by the Animal Research Ethics Committee of Shanghai
University of Traditional Chinese Medicine (Permit Number:
PZSHUTCM18122103). 4T1 cells (2 x 10°) were resuspended in
10mL PBS, and 100 pL of cell suspension was subcutaneously
injected into the second pair of breast fat pads on the left
side of each mouse. The tumors formed approximately 14
days after the inoculation. Then, all mice were randomly
divided into three groups (n = 5): control group (ip, saline),
Dox group (ip, 2.5 mg/kg Dox), and Dox combined with
Lut group (ip 2.5 mg/kg Dox + ip 30 mg/kg Lut). The
mice were administered with Dox or Dox combined with Lut
solution once per 2 days continuously for 2 weeks. At the
experimental endpoint, all animals were euthanized. Then, the
size and weight of tumors were measured. Lungs and tumors
were excised and then fixed in 4% paraformaldehyde overnight
until further analysis. For echocardiographic studies, the mice
were anesthetized with 2.5% isoflurane in 95% oxygen and 5%
carbon dioxide and then situated in the supine position on a
warming platform to maintain the core temperature at 37°C.
Cardiac function was evaluated via echocardiography by using
a High-Resolution Small Animal Imaging System (Vevo2100,
Visual Sonics Inc., Toronto, Canada). Two-dimensional and
M-mode echocardiographic images of the long and short axis
were recorded. Left ventricular ejection fraction (LVEF) and
left ventricular fractional shortening (LVFS) were measured and
calculated using the Vevo Strain Software Work Station.

Statistical Analysis

All results are presented as mean =+ standard deviation (SD).
Two-tailed analysis of variance followed by Dunnett’s post hoc test
and Fisher’s test was used to determine the statistical significance.
P < 0.05 was considered significant for all tests.

RESULTS

Lut Attenuates Dox-Induced Cardiotoxicity

in H9¢c2 and AC16 Cells

The H9c2 (rat) and AC16 (human) cardiomyocytes were treated
with elevated concentration (0, 2.5, 5, 10, 20, and 40 uwM)
of Lut for 24h. As shown in Figure 1B, cell viability was
markedly increased with Lut (P < 0.05). As detected by LDH
assay, the increased Lut concentration was not significantly
correlated with LDH release until the Lut concentration was
increased to 40 uM (P < 0.05; Figure 1C). Dox (0, 0.25, 0.5,
1, 2, 4, and 8 uM) treatment for 24 h markedly decreased cell
viability (P < 0.01; Figure 1D). Co-treatment with Lut and Dox
significantly increased cell viability compared with Dox alone
(P < 0.05; Figure 1E). Lut could significantly attenuate Dox-
induced cardiotoxicity in H9c2 and AC16 cells.
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Lut Attenuates Dox-Induced Oxidative
Stress and Cytoskeletal Damages in H9¢c2
and AC16 Cells

We then detected changes of oxidative stress in H9c¢2 and
AC16 cells after 24h drug treatments using flow cytometry.
The results showed that Lut treatment did not significantly
change the ROS level, but it could significantly reduce the
elevated ROS level induced by Dox (P < 0.05; Figures 2A,B).
Similarly, the decreased SOD activity induced by Dox could
be significantly increased by Lut treatment, which could even
reach a level higher than that in the Lut-alone group (P <
0.05; Figures 2C,D). The integrity of the myocardial cytoskeleton
plays an important role in the physiological function of the
heart. Interestingly, cytoskeleton staining suggested that the
cytoskeleton of the Dox treatment group was damaged with
disappearance of microfilaments and microtubules in the cell
membrane and loss of cell fiber tension. However, this damage
could be markedly recovered by Lut in the combined treatment
group (white arrows, Figures 2E,F). In conclusion, Lut could
significantly attenuate Dox-induced oxidative stress and restore
cytoskeletal alterations in H9¢2 and AC16 cells.

Lut Inhibits Dox-Induced Cardiomyocyte
Apoptosis in H9c2 and AC16 Cells

TUNEL assay was performed to assess apoptosis
following Lut and Dox treatment in H9c2 and ACI6 cells
(Supplementary Figures 1A,B). Compared with the control
group, Dox challenge for 24h significantly increased cell
apoptosis as evidenced by the elevated number of TUNEL-
positive cardiomyocytes (P < 0.05), while the effect was
significantly inhibited by Lut treatment (P < 0.05; Figures 3A,B).
Meanwhile, Western blot indicated that Dox treatment
upregulated the levels of Bax and Cleaved Caspase-3 and
downregulated Bcl-2 and Bcl-XL levels in H9¢2 and AC16 cells.
Importantly, the regulation induced by Dox was conversely
regulated by Lut treatment (P < 0.05; Figures 3C,D). Taken
together, Lut treatment could significantly inhibit Dox-induced
cardiomyocyte apoptosis through the Bax/Bcl-2/Caspase-3
pathway in H9¢2 and ACI6 cells.

Lut Attenuates Dox-Induced Excessive
Mitochondrial Division of H9¢c2 and AC16
Cells

Next, we explored the effect of Lut on the mitochondrial
morphological change of cardiomyocytes induced by Dox. As
shown in Figure4A, fluorescence microscopy showed that
the mitochondria of normal cardiomyocytes were reticulated.
After being stimulated with Dox (1 wM) for 24h, compared
with the normal group, cell mitochondria were divided, and
the morphology of cell mitochondria changed significantly,
transforming from a reticulate to a punctate phenotype. In
addition, compared with the Dox-treated group, Lut (20 pM)
markedly inhibited the excessive division of mitochondria and
restored the mitochondrial morphology of H9c2 and ACI16
cells. Using transmission electron microscopy, we observed the
ultrastructure of cells. After 24h of Dox treatment, vacuoles

appeared in cardiomyocytes, and a “hair ball” structure appeared
in the mitochondria (red arrow, Figure 4B). After Lut treatment,
the morphology of cell mitochondria was restored, and the
morphology of cell nucleus and chromatin returned to normal.

Lut Attenuates Dox-Induced Drp-1
Phosphorylation in H9¢2 and AC16 Cells

We tried to explore the mechanism of Lut to restore Dox-
induced mitochondrial morphological alterations and used a
molecular docking algorithm to predict the binding mode and
affinity between the receptor and the drug molecule in Figure 5A.
The results suggested a high affinity for docking between Drp-
1 and Lut (affinity = —8.31 kcal/mol). Western blot revealed
a significantly elevated p-Drp-1/Drp-1 ratio in the Dox-treated
group, while the phosphorylation level of Drp-1 significantly
decreased with additional Lut treatment in a dose-dependent
manner compared with the Dox-treated group (P < 0.05;
Figures 5B,C). Overall, Lut could significantly attenuate Dox-
induced mitochondrial morphological changes via regulating
Drp-1 phosphorylation in H9¢2 and AC16 cells.

Lut Reduces Heart Damage Induced by

Dox in vivo

The protective effects of Lut against cardiotoxicity mediated by
Dox in zebrafish were quantified. As shown in Figure 6A, we
constructed a zebrafish heart injury model using 10 pM Dox.
After co-administration of Dox and different concentrations of
Lut for 24h, the zebrafish pericardium of the model group
showed obvious edema compared with the negative control
group. Moreover, we found a significantly decreased zebrafish
heart rate, increased SV-BA distance, and decreased stroke
volume in the Dox-induced group (P < 0.05; Figures 6B-D),
indicating severe heart damage. Compared with the doxorubicin-
induction group, we found significantly increased heart rate,
shortened SV-BA distance, and markedly improved stroke
volume of zebrafish after 24 h of intervention with medium and
high doses of Lut (P < 0.05; Figures 6B-D).

Lut Interferes With Dox-Induced
Transcriptome Sequencing of

Cardiomyocytes in AC16 and H9c2 Cells

Subsequently, to identify DEGs and hallmarks related to
the process of Lut in attenuating the toxicity of Dox
to cardiomyocytes, we used RNA sequencing and selected
upregulated DEGs in the Dox group compared with control
group and downregulated DEGs in the Dox-Lut group compared
with Dox group. We screened out a total of 137 overlapped hub
genes in AC16 cells and 123 overlapped hub genes in H9¢2 cells
(Figures 7A,B). Similarly, we identified downregulated DEGs in
the Dox group compared with the control group and upregulated
DEGs in the Dox-Lut group compared with the Dox group.
Then, we screened out a total of 32 overlapped hub genes in AC16
cells and 814 overlapped hub genes in H9¢2 cells (Figures 7A,B).
Next, we explored the functional annotations of different genes
in cardiomyocytes using GO and KEGG algorithm. The DEGs
were significantly involved in biological process (GO: BP),
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AC16 cells after Dox and Lut treatment. (E,F) Cytoskeleton staining in H9c2 and AC16 cells after Dox and Lut treatment (630x). White arrows show microfilaments
and microtubules. Mean + SD, n = 3 independent experiment. *P < 0.05 compared with control group. #P < 0.05 compared with Dox group.

including actin filament bundle organization, Golgi vesicle  and microtubule cytoskeleton organization involved in mitosis;
transport, Ras protein signal transduction, organelle transport  cellular function (GO: CC), including chromosomal region,
along microtubule, microtubule organizing center organization,  mitotic spindle, P-body, Golgi-associated vesicle membrane, and
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cleavage furrow; and molecular function (GO: MF), including
kinase regulator activity, GTPase activator activity, tubulin
binding, cytoskeletal protein binding, and microtubule binding
(Figures 7C-E). Additionally, DEGs of AC16 and H9c2 cells
significantly participated in cellular senescence, AMPK signaling
pathway, viral carcinogenesis, and human T-cell leukemia

virus 1 papillomavirus infection, suggesting that drug-induced
cellular senescence may increase the virus susceptibility and
carcinogenicity of cardiomyocytes (Figure 7F). We found that
the DEGs not only markedly participated in Hippo/Wnt,
AMPK/MAPK, and TGF-p signaling pathways and animal
mitophagy process, but were also involved in transcriptional

Frontiers in Cardiovascular Medicine | www.frontiersin.org

October 2021 | Volume 8 | Article 750186


https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles

Shi et al. Luteolin in Doxorubicin-Treated Breast Cancer

Ctrl Dox (10 pM) Dox+Lut (5 pM) Dox+Lut (10 pM) Dox+Lut (20 pM)

2501
2004

2004

150 E:
150

=y
S
1

1004

Heart rate (bpm)
SV-BA (pm)

7]
S
1
7]
S
I

stroke volume(1 0'4mn3)

o
T

FIGURE 6 | Lut protected the loss of ventricular function in zebrafish. (A) Representative images of zebrafish heart after treatment with Dox in the presence or
absence of Lut. A: atrium, V: ventricle. Zebrafish were co-treated with Dox and Lut. The changes in (B) heart rate and (C) SA-BA (D) stroke volume were measured.
Mean + SD, n = 3 independent experiment. *P < 0.05 compared with control group. #P < 0.05 compared with Dox group.

misregulation and pathways in cancers, such as hepatocellular,  the single-drug treatment group (P < 0.05; Figures 8C,D). In
breast, gastric, and thyroid cancer. addition, Lut significantly enhanced the antitumor efficacy of
Dox by decreasing the colony formation and invasion ability of

. breast cancer cells (P < 0.05; Figures 8E-H). In general, Lut
Lut Promotes the Antitumor Effect of Dox could not only significantly inhibit the malignant behavior of

in 4T1 and MDA-MB-231 Cells tumor cells, but also enhance the antitumor efficacy of Dox in
To further explore the effect of Lut on the antitumor efficacy =~ 4T1 and MDA-MB-231 cells.
of Dox, we explored the malignant biological behavior of

different treatments in invasive TNBC 4T1 and MDA-MB-231 .
cell lines. As shown in Figures 8A,B, the cell viability was Lut Promotes Dox-Induced Cell Apoptosis

markedly decreased in the Lut-added group compared with V1@ the Bax/Bcl-2/Caspase-3 Pathway in

the Dox-induced group in 4T1 and MDA-MB-231 cells (P < 4T1 and MDA-MB-231 Cells

0.05). Wound healing test showed significantly reduced wound  Next, we explored the effect of Lut on the apoptosis of triple-
width after 24h of induction of Lut or Dox compared with  negative breast cancer cells induced by Dox. Western blot
the negative control group, while the combination of Lut and  indicated upregulated levels of Bax and Cleaved Caspase-3 in
Dox remarkably decreased wound healing width compared with ~ conjunction with downregulated Bcl-2 levels in Dox-treated
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AC16 Hoc2

or Lut-treated 4T1 and MDA-MB-231 cells. Importantly, the
regulation of cell apoptosis induced by Dox was significantly
enhanced by additional Lut treatment (P < 0.05; Figures 9A,B).

Taken together, Lut treatment could significantly enhance Dox-
induced tumor cell apoptosis through the Bax/Bcl-2/Caspase-3
pathway in 4T1 and MDA-MB-231 cells.
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Lut Prevents the Cardiotoxicity and
Promotes the Antitumor Effect Induced by

Dox in vivo

A xenograft of 4T1 cells in 7-week-old BALB/c mice
was established for in vivo exploration (Figure 10A).
Echocardiographic examination showed that the Dox-treated
group had an ~20% decrease in LVEF and LVFS compared
with the control group. Lut treatment significantly attenuated
cardiac dysfunction in the Dox-treated mice, as indicated by the
increased LVEF and LVES (P < 0.05; Figure 10B). Additionally,
Dox did not alter the cardiac structure, including the diastolic left
ventricular internal dimension (LVIDd), diastolic left ventricular
posterior wall (LVPWd), and diastolic interventricular septum
(IVSd) (Supplementary Figure 2). As shown in Figure 10C,
the tumor volume and weight were significantly decreased in
the Dox-induced group compared with the control group and
was even further reduced in the Dox-Lut group (P < 0.05;
Figure 10C). Notably, Lut also significantly enhanced the Dox-
induced reduction of the number of lung metastatic nodules in
xenograft models (P < 0.05; Figure 10D). Taken together, Lut
could significantly promote the antitumor efficiency induced by
Dox in a xenograft of highly aggressive 4T1 cells.

DISCUSSION

Breast cancer is one of the most prevalent malignancies and
associated with significant morbidity among females worldwide
(29). Among the treatments of primary breast cancer, an
anthracycline-based regimen is the standard of care (29, 30).
According to the latest National Comprehensive Cancer Network
guidelines, 5-fluorouracil, epirubicin, and cyclophosphamide
adjuvant chemotherapy regimen followed by paclitaxel or
paclitaxel combined with anti-human epidermal growth factor-
2 trastuzumab is the recommended regimen for breast cancer
(31). Anthracyclines represented by Dox are the first-line
chemotherapy for breast cancer, and they play an irreplaceable
role in current clinical treatment of breast cancer. Unfortunately,
the adverse effects of Dox, such as immunosuppression,
hepatotoxicity, and especially dose-dependent cardiotoxicity,
limit its efficacy and application because treatment-related
cardiotoxic adverse events have become one of the common
causes of breast cancer mortality (32, 33). Current prevention
and treatment cannot effectively solve the problem of Dox-
induced cardiotoxicity (34, 35). Therefore, improved approaches
to reduce Dox side effects and enhance Dox efficiency need to
be developed.
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TCM becoming increasingly important in cancer treatment
and modern cardiotoxicity protective pharmacology. The
identification of cardiotoxic protective drugs with unique
pharmacological effects from TCM has become a new direction
(36). For example, Zheng et al. found that the TCM Bu-Shen-
Jian-Pi-Fang could inhibit tumor proliferation by enhancing
GLUT-1 related glycolysis and may alter the immune-rejection
microenvironment in renal cell carcinoma patients (37).
Ginsenoside Re functions as an antioxidant, protecting
cardiomyocytes from oxidant injury induced by exogenous
and endogenous oxidants, and protects against apoptotic cell
death (38, 39). Notably, previous attempts to explore the cancer
prevention and therapeutic potential of Lut have systematically
indicated its potential as an anticancer agent for various
cancers (40). Lut can attenuate antitumor activity and drug
resistance via reducing Bcl-2 expression in cancer cells (41).
Interestingly, a previous study demonstrated the protective
features of Lut against Dox-induced cardiotoxicity, possibly
related to its ability of improving Drpl-regulated mitochondrial
morphology alteration (42). However, it emphasized on TFEB-
mediated mitochondrial regulation and the association between
Drp-1 and mTOR, thus ignoring the positive effect of Lut in
inhibiting Dox-induced cardiotoxicity in cardiomyocytes and
tumor cells.

This study showed that Lut, the core component of
Platycodon grandiflorum, markedly reduced the level of
apoptosis and inhibited the activation of the Bax/Bcl-2/Caspase-
3 signaling pathway of cardiomyocytes induced by Dox.
Moreover, cytoskeleton damage ruptures cardiomyocytes in
Dox-induced cardiotoxicity (43). In this work, Lut protected
the cardiomyocyte cytoskeleton damage caused by Dox and
maintained the integrity of the cardiomyocyte cytoskeleton.
Therefore, cardioprotection from the perspective of protecting
the cytoskeleton may be an effective target of Lut for the
treatment of Dox-induced cardiotoxicity.

Cardiac autophagic processes lead to ROS overproduction
and A{ym dissociation, contributing to mitochondria-mediated
apoptosis and death (44, 45). Our present work confirmed that
Lut effectively reduced the level of cardiomyocyte oxidative
stress and mitochondrial autophagy and inhibited mitochondrial
division and the recruitment of Drp-1 phosphorylation.
Subsequently, we performed transcriptome analysis to further
explore the protective role of Lut in Dox-induced cardiotoxicity.
Consistent with previous research (46), our findings indicated the
role of Lut in the regulation of mitochondrial morphology, such
as Ras protein signal transduction, microtubule cytoskeleton
organization, cytoskeletal protein binding, and microtubule
binding of molecular function, in GO enrichment analysis.
Moreover, we found that the DEGs not only markedly
participated in the Hippo/Wnt, AMPK/MAPK, and TGF-f
signaling pathways and animal mitophagy process, but were
also involved in apoptosis, transcriptional misregulation,
and pathways in cancers, such as hepatocellular, breast,
gastric, and thyroid cancer. In light of the findings, we
carried out follow-up studies on breast cancer cells (4T1

and MDA-MB-231). Notably, Lut exerted a protective effect
on Dox-induced cardiotoxicity, improved cardiac function
parameters, and enhanced the anticancer therapeutic effects
of Dox in vivo. Interestingly, combined treatment of Lut and
Dox alleviated cardiomyocyte apoptosis but enhanced the
apoptosis of breast cancer cells, which were in accordance
with previous pharmacokinetics studies highlighting that
Platycodon grandiflorum combined with Dox can increase the
concentration of Dox in the lung and tumor and decrease
the concentration of Dox in the heart of breast cancer mice
(21). Doubtlessly, the comprehensive findings of Lut and Dox
combination in cardiomyocytes and breast cancer cells facilitate
its clinical application.

The innovation of this research lies in the mutual
verification of in vivo and in vitro experiments. For the
first time, we studied the protective effect of Lut on Dox
cardiotoxicity on the basis of a transgenic zebrafish animal
model. Second, this study first explored the effect of Lut,
the active ingredient of Platycodon grandiflorum, on the
mitochondrial fusion-division process of cardiomyocytes
and the role in the Drpl-Caspase apoptosis signaling
pathway. Third, on the basis of transcriptomic sequencing,
the mechanism of Lut inhibition of Dox cardiotoxicity
was validated in cardiomyocytes and breast cancer cells,
which shed light on increasing clinical significance to novel
treatment strategies.

Despite the strengths of this study, a number of
experimental limitations existed in this study. First and
foremost, our study was a cell lines-based study lacking
the Dox-induced neonatal rat left ventricle myocyte
cardiotoxicity model. Lut retards Dox cardiotoxicity
in-depth work is needed in neonatal rat left ventricle
myocyte. In addition, the regulation of Lut on Drp-
1 phosphorylation and potential binding site remains
to be elucidated. Meanwhile, the molecular mechanism
of Drpl-dependent mitochondrial autophagy remains
unclear. Moreover, the opposite mechanism of Lut-induced
apoptosis has not been fully elucidated in cardiomyocytes
and tumor cells, more in-depth work is needed for the
precise mechanism.

CONCLUSION

The protective effect of Lut against Dox-induced cardiac
dysfunction is associated with alleviating Drpl-mediated
mitochondrial dysfunction. This study first revealed that Lut
could potentiate the anticancer effects of Dox in breast tumor
cells via the Bax/Bcl-2/Caspase-3 pathway.
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Cyclophosphamide (CYP)-induced cardiotoxicity is a common side effect of cancer
treatment. Although it has received significant attention, the related mechanisms of CYP-
induced cardiotoxicity remain largely unknown. In this study, we used cell and animal
models to investigate the effect of CYP on cardiomyocytes. Our data demonstrated
that CYP-induced a prolonged cardiac QT interval and electromechanical coupling time
courses accompanied by JPH2 downregulation. Moreover, N6-methyladenosine (m6A)
methylation sequencing and RNA sequencing suggested that CYP induced cardiotoxicity
by dysregulating calcium signaling. Importantly, our results demonstrated that CYP
induced an increase in the mBA level of JPH2 mRNA by upregulating methyltransferases
METTLS, leading to the reduction of JPH2 expression levels, as well as increased field
potential duration and action potential duration in cardiomyocytes. Our results revealed
a novel mechanism for m6A methylation-dependent regulation of JPH2, which provides
new strategies for the treatment and prevention of CYP-induced cardiotoxicity.

Keywords: cyclophosphamide, cardiotoxicity, JPH2, m6A methylation, METTL3, cardiomyocyte

INTRODUCTION

Although improved treatments have been effective in increasing the survival of patients with
tumors, an increase in the number of side effects of cancer treatment have led to mortality
(1, 2). Tumor therapy-induced cardiotoxicity as a common side effect has received increasing
attention. Many countries and regions have issued relevant practice guidelines for cardiovascular
toxicity induced by cancer treatments (3). Both conventional chemotherapies and targeted drug
therapies reportedly induce cardiovascular toxicity events. One traditional antineoplastic agent,
cyclophosphamide (CYP), is employed in the treatment of various cancers, including breast,
lymphoid, and hematologic malignancies (4). Up to 28% of patients who received a high dose of
CYP suffered from cardiac arrhythmias (3) and even heart failure (5). Further, CYP is widely used
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in the treatment of other diseases, such as refractory
neuromyelitis optica spectrum disorder (200 mg/kg) (6)
and rapidly progressive systemic sclerosis (300 mg/kg) (7), all
of reportedly cause severe cardiotoxicity. Even in the clinic, oral
administration of a low dose (50 or 100 mg/day) for systemic
sclerosis or lupus erythematosus for 1 week has caused cardiac
electrical alteration (prolonged QT interval) in some patients.
However, little is known about the mechanism underlying
CYP-related cardiovascular toxicity. In particular, CYP has often
been used in combination with other antineoplastic agents,
including anthracyclines, docetaxel, and trastuzumab. This has
led to difficulty in assessing the contribution of CYP in multidrug
schemes (8).

CYP and other alkylating agents are the most common types
of DNA damaging agents used in the treatment of various
cancers. Alkylating agents exhibit pharmacological toxicity by
adding methyl and other hydrocarbon groups to the DNA bases,
resulting in base mutations, pair mismatches, and eventually
fatal DNA cytotoxicity (9). The pharmacological mechanism is
fatal to rapidly proliferating tumor cells. However, the cardiac
cytotoxicity induced by alkylating agents is rarely discussed
for non-proliferating cardiomyocytes. Because alkylating agents
adduct DNA bases (A, T, G, and C) to induce DNA methylation
(9), alkylating agents might affect RNA methylation. N6-
adenosine methylation (m6A) of RNA transcripts is the most
prevalent RNA modification (10). This modification regulates
RNA stability (11), gene expression (12), mRNA alternative
splicing (13), embryonic and stem cell differentiation (13-
15), and various diseases including cancer (16) and cardiac
dysfunctions (11, 17). Hence, we hypothesized that CYP induces
cardiotoxicity through RNA m6A modification.

We treated rat neonatal cardiomyocytes (NRCMs), human
embryonic stem cell-derived cardiomyocytes (hESCs-CMs), and
a rat model with CYP to explore solutions for this problem.
This was followed by combining action and field potential
detections, RNA sequencing, and RNA m6A methylation analysis
to explore the toxicity mechanism underlying CYP-induced
cardiac electrical and mechanical alterations. Our results may
provide drug targets and preventive measures for treating CYP-
induced cardiotoxicity.

MATERIALS AND METHODS

Animals

All Sprague-Dawley (SD) rats in this study were purchased
from Beijing Vital River Laboratory Animal Technology
Company (Beijing, China). Twelve 8-week-old male SD
rats with a mean weight of 273.7 + 3.2g were randomized
into two groups: six rats were subjected to saline (Double
Crane Pharmaceutical Co. Ltd, Wuhan, China) peritoneal
injection (vehicle group), whereas six rats were intraperitoneally
injected with CYP (Jiangsu Hengrui Medicine Co., Ltd.
Lianyungang, China) at a dose of 100 mg/kg (CYP treatment
group). Echocardiography (echo) and electrocardiography
(ECG) were performed at different time points (0, 1, and
3 days).

In vivo ECG Recording

Continuous recordings of heart rate were obtained with a
surface ECG. Rats were anesthetized with 3% isoflurane and
were subsequently fixed on a wooden board. ECG recording
was performed using the limb lead. Three electrodes on an
ECG monitor were inserted into the subcutaneous tissues of the
rats’ left and right shoulders and the right hind leg. The signal
was amplified and recorded on a personal computer using an
ECG Processor (EP-2B, Softron Beijing Incorporated, China) and
stored on a data acquisition program (SP2006, Softron Beijing
Incorporated, China).

ECG and Electromechanical Coupling Time

Measurement

ECG measurement was performed as described previously (18).
ECG was performed using a Vevo 2,100 system (FUJIFILM
VisualSonics, Canada), and the cardiac dimensions and
functional parameters were measured. The tissue Doppler
imaging (TDI) echo combined with ECG was used to measure
the electromechanical coupling time at the lateral wall of the left
ventricle as described previously (19).

Neonatal Rat Cardiac Myocytes Culture
NRCMs were isolated from newborn SD rats aged 1-2 days as
described previously (20). These isolated NRCMs were grown
in Dulbecco’s modified Eagle’s medium supplemented with 10%
fetal bovine serum and 100 U/ml penicillin/streptomycin, and
maintained at 37°C in 5% CO,.

Cardiac Differentiation of Human
Embryonic Stem Cells (hRESC)

H9 human embryonic stem cells were purchased from the Beijing
Cellapy Biological Technology Company (Cellapy, China). H9
cells were cultured and differentiated into cardiomyocytes
following previously described procedures (21). In brief, H9
cells were cultured on 35-mm dishes (Corning, USA) with
PSCeasy hESC culture medium (Cellapy, Beijing, China). Cells
were cultured to reach ~90% confluency and differentiated into
ESC-CMs using a chemical method as described previously (22).
Immunofluorescent staining with primary antibodies against
TNNT2 (Santa Cruz, USA) and a-actinin (Abcam, UK) validated
the purity of human cardiomyocytes.

Immunofluorescence

Cells were cultured on glass slides, washed with PBS three times,
fixed in 4% paraformaldehyde for 5 min, and then permeabilized
with PBS containing 0.5% Triton X-100 (Sigma, USA) for
10 min. After 1h of blocking with 5% BSA (Amresco, USA),
the slides were incubated with primary antibodies followed by
incubation with secondary antibodies. After the slides were
washed, they were studied with a confocal fluorescence imaging
microscope (DMI 4000B, Leica, Germany). The primary and
secondary antibodies and their appropriate dilutions are listed in
Supplementary Table 1.
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Microelectrode Array (MEA) Analysis

MEA recording in cardiomyocytes was performed as described
previously (23). In brief, 2 x 10* cells were plated on
CytoView MEA plates (Axion Biosystems, USA) pre-coated
with 5% matrigel, followed by treatment with CYP at different
concentrations (0 and 500 pmoL/L). The experimental data
were acquired using a Maestro EDGE (Axion Biosystems, USA)
according to the MEA operation manual.

RNA Extraction and Quantitative

Real-Time PCR

Total RNA was extracted from NRCMs using the TRIzol reagent
(Invitrogen) and subjected to reverse transcription (RT) and real-
time PCR. The primers used are listed in Supplementary Table 2.
RT was performed using a 2,720 Thermal Cycler (Applied
Biosystems, USA). Real-time PCR was performed using a
QuantStudio 3 apparatus (Applied Biosystems, USA).

Western Blot Analysis

Proteins were extracted from cells in RIPA lysis buffer
(Solarbio, China) containing 1 mmol/L PMSF (Solarbio, China)
and protease inhibitor cocktail (Bimake, China) for western
blot analysis. In total, 50 ug of protein were subjected to
SDS-PAGE, transferred to a PVDF membrane (Millipore,
USA), and incubated with the primary antibodies. These
primary antibodies and their appropriate dilutions are listed
in Supplementary Table 1. The membrane was then incubated
with HRP-conjugated goat anti-mouse IgG (1: 2000, ZSGB-
BIO) or HRP-conjugated goat anti-rabbit IgG (1: 2000, ZSGB-
BIO). GAPDH was used as a control. Protein levels were
determined using the Immobilon® Western Chemiluminescent
HRP substrate (Millipore, UK).

Cell Treatments

In the CYP treatment assays, 250, 500, and 750 pmol/L of CYP
(Selleck, USA) were added to the cell complete culture medium
for 2 or 4 days for NRCMs and for 2 or 5 days for hESCs-
CMs. To impede the expression of METTL3 in cardiomyocytes,
adenoviruses harboring the specific small interference RNA
(siRNA) sequences of METTL3 were used individually to infect
cardiomyocytes at an optimized MOI for 24h, followed by
treatment with 500 wmol/L CYP for an additional 24 h as the
MEA assay. The siRNA and negative control (NC) sequences
used are listed in Supplementary Table 2.

RNA m6A Dot Blot Assay

An RNA m6A dot blot assay was performed as previously
described (24). In brief, 1.5 pg of total RNA was spotted onto
a positively charged nylon-based membrane (GE Healthcare),
blocked with 5% milk at room temperature for 2 h, and incubated
with anti-m6A antibodies (1: 2000, Abcam) at 4 °C overnight
and secondary antibodies (1: 3000, Abcam) at room temperature
for 2h. The same RNAs were spotted on the positively charged
nylon-based membrane and stained with 0.02% methylene
blue in 0.3M sodium acetate (pH 5.2), which ensured loading
consistency among different samples.

Methylated RNA Immune Precipitation

(MeRIP) Sequencing

High throughput m6A sequencing was performed with the
support of Kangchen Biotech (Shanghai, China). Briefly, total
RNA was extracted from NRCMs treated with 500 pwmol/L
CYP or DMSO (solvent control) for 48h, followed by
random fragmentation to 100-150 nucleotides using RNA
fragmentation reagents. Fragmented RNA was subjected to m6A
antibody immunoprecipitation following the Magna MeRIP
m6A kit protocol (17-10499, Merk Millipore, USA) as described
previously (25). An RNA library from immunoprecipitated RNA
and input RNA was created on an Illumina HiSeq platform.
Differential m6A peaks (fold change >1.5 and P < 0.05) between
CYP and solvent controls were used for gene ontology (GO)
enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGQG) analysis.

Ca?t Imaging

Ca’*t imaging in cardiomyocytes was performed as described
previously (21). In brief, hESCs-CMs inoculate with the
green fluorescent calcium-modulated protein (GCaMP) calcium
sensor (H9-GCaMP-CMs) were seeded onto confocal dishes.
Confocal microscope (Leica, TCS5 SP5, Germany) was used for
intracellular calcium imaging. Spontaneous Ca®" transients were
recorded at 37°C and 5% CO, according to the standard line-
scan methods (26, 27). A total of 8,192 line scans were acquired
for a duration of 8.192 s. The imaging results were analyzed using
the Image J and Igor pro software.

Statistical Analysis

All statistical analyses were conducted using the SPSS 20.0
software (IBM Corp., USA) and Graphpad Prism software
(version 8.0, GraphPad Software Inc., USA). The data are
expressed as the mean =+ standard error (SE). A Student’s ¢-test
detected the differences between groups. P values of < 0.05 were
considered as statistically significant.

RESULTS

CYP Increased the Field Potential Duration
and Decreased the Contractile Amplitudes

of Cardiomyocytes

To clarify the cellular significance of CYP in cardiomyocytes,
we first performed the CCK-8 assay to examine the effects of
CYP on the viability of cardiomyocytes. The result confirmed
that CYP had no significant effect on NRCMs viability
(Supplementary Figure 1A). However, we observed that the
levels of atrial natriuretic factor (ANP) and brain natriuretic
peptide (BNP) had increased after NRCMs were treated with
500 wmoL/L CYP for 48 h (Supplementary Figures 1B,C). These
results suggested that CYP induced slight cardiotoxicity, but did
not affect cell viability. CYP was closely associated with cardiac
arrhythmias related to QT prolongation and the acute and
chronic toxicity of chemotherapy (3). A prolonged QT interval is
an important monitoring indicator for myocyte toxicity caused
by anticancer agents according to the guidelines issued by
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the International Conference on Harmonization of Technical
Requirements for Registration of Pharmaceuticals for Human
Use (28). Therefore, we seeded cardiomyocytes on multielectrode
array (MEA) probes to evaluate the effect of CYP on myocardial
electrophysiological properties. The time between depolarization
and repolarization is the FPD (Figure 1A), which corresponds
to the QT interval in an ECG. Compared with solvent control
(CON), the FPD of NRCMs treated with CYP increased at
12, 24, and 48h (Figure 1B). Meanwhile, the impedance of
the CON cells showed no significant changes (Figure 1C). We
observed that the impedance of NRCMs treated with CYP
decreased with time (Figure 1D). These observations indicated
that CYP negatively regulated the rhythm and contractility
of cardiomyocytes.

Furthermore, we used human embryonic stem cell-derived
cardiomyocytes  (hESCs-CMs)  (Supplementary Figure 1D)
to evaluate the effect of CYP on cellular viability. Consistent
with this finding in NRCMs, CYP had no significant effect
on the viability of hESCs-CMs (Supplementary Figure 1E)
but increased the RNA levels of ANP and BNP
(Supplementary Figures 1E,G). Intriguingly, exposing hESCs-
CMs to CYP (500 wmol/L) for 9 days resulted in a significant
increase in FPD (Figure 1E) and reduction of contractile
amplitudes (Figure 1F). These results supported QT interval
prolongation and cardiac contractile dysfunction in rats.

CYP-Induced Cardiac Electrical and
Mechanical Alterations and Decreased

Cardiac Contractile Function in Rats

To further investigate the effect of CYP on cardiac functions,
we used intraperitoneally injected CYP to treat the rats with
CYP at a dose of 100 mg/kg, which was converted from the
clinical dose for treatment of cancer. In vivo ECG recording
data (Figure 2A) showed QT interval prolongation in rats
after CYP-treatment for 1 day compared with that in rats
administered saline (82.17 £+ 1.70 vs. 65.17 & 3.02ms, P <
0.001; Figure 2B). Corrected QT interval (QTc) prolongation
also showed the same variation as QT prolongation (199.83 +
4.03 vs. 167.67 = 6.83ms, P < 0.01; Figure 2C). Further, the
prolonged QT and QTc would restore to preadministration levels
after CYP-treatment for 3 days (Supplementary Figures 2A,B).
These results were consistent with the clinical side effects
of CYP.

Electromechanical coupling disturbances were closely
related to the long QT syndrome (29, 30). Hence, we
further explored the effect of CYP on cardiac electrical and
mechanical alterations. Four electromechanical coupling time
courses (Qsb, Qst, Rsb, and Rst) were measured with TDI
echo combined with ECG (Figure2D). The measurement
results showed that four electromechanical coupling time
courses in CYP-treated rats were longer than those in saline
controls (Figures 2E-H), particularly in terms of Qst and
Rst courses (P < 0.05, Figures 2E,G). Moreover, ultrasound
echocardiography (Figure 2I) showed that the fractional
shortening percentage (FS%; Figure 2]J) and left ventricular

ejection fraction (LVEF; Figure2K) were significantly

lower in rats after CYP-treatment for 1 day. These results
suggested that CYP induces cardiac electrical and mechanical
alterations and decreases the excitation-contraction (E-C)
coupling efficiency, leading to cardiac contractile dysfunction.
Consistent with the results of QT and QTc, the prolonged
electromechanical coupling time courses would restore after
CYP treatment for 3 days (Supplementary Figures2C-F)
and the decreased FS and LVEF induced by CYP also
showed a regression in CYP-treated rats after 3 days
(Supplementary Figures 2G,H).

CYP-Induced the Decrease of JPH2

Expression in Cardiomyocytes

Previous studies demonstrated that junctophilin-2 (JPH2)
that anchor the sarcoplasmic reticulum to T-tubules is the
key regulator of Ca’* influx between L-type Ca** channels
(LCCs) and ryanodine receptors (RyRs) and E-C coupling in
cardiomyocytes (31, 32), is reportedly associated with atrial
fibrillation (33) and arrhythmias (34). Based on the phenomena
observed in the above cell and animal experiments, we
further investigated the effect of CYP on JPH2 expression in
NRCMs and hESCs-CMs at different treatment time points.
Notably, a dose-dependent reduction in JPH2 RNA and protein
levels occurred in NRCMs treated with CYP for 2 or 4
days (Figures 3A,B). Similarly, different concentrations of CYP
treatments decreased JPH2 both in RNA and protein levels
at day 2 or 5 in hESCs-CMs (Figures 3C,D). Similarly, JPH2
downregulation occurred in heart tissues of rats treated with
CYP (Supplementary Figure 3). These results suggested that
CYP induced cardiac electrical and mechanical alterations and
cardiac contractile dysfunction by decreasing the expression
of JPH2.

To explore the wunderlying mechanisms involved in
the suppression effects of CYP on JPH2 expression in
cardiomyocytes, we further investigated the effect of CYP
on miR-24 and miR-331 expressions, which were shown
to inhibit the expression of JPH2 in our previous studies
(31, 35). The real-time PCR analysis revealed that the
expression of miR-24 and miR-331 did not significantly
change NRCMs after CYP treatment for 2 days
(Supplementary Figures 4A,B). Therefore, it suggested that
CYP decreased JPH2 expression through other transcriptional
regulatory mechanisms.

in

CYP-Induced Substantial m6A Changes in

Cardiomyocytes

N6-methyladenosine (m6A) is the most prevalent modification
that widely exists in mRNAs, which is associated with post-
transcriptional gene expression regulation (12), and mRNA
stabiltity (36). We next investigated whether CYP plays an
important role in m6A RNA methylation in NRCMs, considering
that CYP can induce nucleic acid methylation. The m6A dot
blot testing showed that total m6A levels significantly increased
in NRCMs treated with CYP for 2 days (Figures 4A,B). Next,
methylated RNA immune precipitation sequencing (MeRIP-
seq) was performed to compare the global profiling of m6A
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FIGURE 1 | CYP increased the field potential duration (FPD) and decreased contractile amplitudes of cardiomyocytes. (A) Schematic of FPD of cardiomyocytes. (B)
The FPD analysis of NRCMs with 500 pmol/L of CYP at 0, 6, 12, 24, and 48 h. (C) Representative images of the relative cell amplitude of NRCMs treated with solvent
control (CON) or CYP. The data were shown as the mean of triplicate experimental wells. (D) The cell amplitude analysis of NRCMs treated with 500 wmol/L CYP at O,
6, 12, 24, and 48h. The FPD (E) and cell amplitude (F) analysis of hESCs-CMs treated with 500 wmol/L CYP at 1, 2, 3, 4,7,8, and 9 days. The data are shown as the
mean+SE, n = 3. *P < 0.05, *P < 0.01, **P < 0.001 vs. CON.

target genes between solvent controls and CYP-treated NRCMs.  the significantly altered m6A peaks. Our results showed that
As shown in Figure 4C, the sequence motif “GGAC” was  upregulated m6A peaks in the CYP-treated NRCMs were
highly enriched in m6A immunoprecipitated RNAs, consistent  significantly related to the cAMP signaling pathway, adrenergic
with the findings of previous studies (37, 38). We found 585  signaling in cardiomyocytes, calcium signaling pathway, GnRH
significantly increased m6A peaks distributed in 259 genes, signaling pathway and other dysregulation pathways in cancer
whereas 277 genes had 548 statistically decreased m6A peaks  (Figure 4F).

in CYP-treated NRCMs relative to controls. Notably, we Furthermore, RNA sequencing was also performed on
observed that reduced m6A peaks were mainly localized in ~NRCMs treated with solvent control (CON) or CYP.
the 5" untranslated region (5" UTR), whereas increased m6A  Compared with CON, 369 genes were significantly
peaks were distributed in the coding sequence (CDS) and 3'  downregulated, and 74 genes were upregulated in the
untranslated region (3" UTR; Figure 4D). The pie charts showed =~ CYP-treated group (Supplementary Figure 5A). The GO
that these statistically differentially distributed m6A peaks were  enrichment and KEGG analysis of the total DEGs showed
mainly noted in the CDS and 3’ UTR of genes in CYP-  that these DEGs were enriched in the NF-kB, TNE and
treated NRCMs regarding CON cells (Figure 4E). To explore the  calcium signaling pathways (Supplementary Figures 5B,C).
physiological and pathological significance of m6A modification ~ Remarkably, with the combined MeRIP-seq and RNA-seq
after CYP treatment, we analyzed the KEGG pathway on  results, we found upregulated m6A methylation sites in
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FIGURE 2 | The effect of CYP on QT intervals, cardiac electromechanical coupling and cardiac function. Electrocardiogram recording (A) showing QT intervals (B)
and QTc (C) prolongation in rats treated with CYP for 1 day. (D) Schematic of four time courses of cardiac electromechanical coupling in the lateral wall of the left
ventricle of rats. Qsb time course is the duration from the onset of Q wave on ECG to the beginning of S wave. Qst time course is the duration from the onset of Q
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FIGURE 2 | the top of R wave on ECG to top of S wave. The TDI echo combined with ECG measurement revealed an increase in Qsb (E), Qst (F), Rsb (G), and Rst
(H) in CYP-treated rats compared with that in vehicle-treated rats. (I) Representative M-mode echocardiography in rats treated with vehicle and CYP for 1 day.
Echocardiography revealed that fractional shortening (FS) (J) and left ventricular ejection fraction (LVEF) (K) decreased in CYP-treated rats as compared with that in
vehicle-treated rats. The data are represented as mean + SE, n = 6. “p < 0.05, **P < 0.01, **P < 0.001 vs. vehicle.
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the 5UTR and CDS of JPH2 mRNA, accompanied with
the downregulation of JHP2 expression on the RNA level.
These results suggested that CYP induces calcium signaling
changes through JPH2 downregulation caused by increasing
m6A modification.

CYP-Induced Calcium Handling
Abnormalities in hESCs-CMs

Calcium is a fundamental regulator of E-C coupling and
electrophysiological signaling in cardiac myocytes (39).
The above MeRIP-seq and RNA-seq results showed that

the calcium signaling pathway played an important role in
CYP-induced cardiotoxicity. We next verified and analyzed
the Ca’" handling properties of hESCs-CMs with CYP
treatment by using H9-GCaMP derived cardiomyocytes
(H9-GCaMP-CMs) (21). Compared with CON, hESCs-
CMs treated with different concentrations of CYP (250,
500, and 750 pmoL/L) demonstrated significant Ca’*
transient irregularities, which were virtually absent in CON
cells. As shown in Figure5A, H9-GCaMP-CMs treated
with 250 pmoL/L CYP showed no significant changes
in the rhythm of Ca’" transient release and reabsorption
regarding CON on day 2. As the treatment time prolonged, the
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Effect of m6A on Cardiotoxicity

cardiomyocytes exhibited longer Ca?* transient durations
on day 4 and slower beating rate, lower Ca’" release
amplitude, and longer transient durations on days 6 and
8 (Figures 5B-D). We noted a similar pattern of changes
in H9-GCaMP-CMs treated with 500 or 750 pmoL/L

CYP at different time points. On days 2 and 4, compared
with CON, CYP-treated H9-GCaMP-CMs exhibited lower
Ca’t release amplitude (Figure5B) and longer transient
durations (Figure 5D). Interestingly, in addition to lower
Ca’t release amplitude, slower Ca?* transient durations
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were observed to occur in H9-GCaMP-CMs treated with  low, medium and high concentrations of CYP exhibited
CYP at dose of 500 or 750 pmoL/L(Figures5A,D). On lower Ca’" release amplitude, and longer time to peak and
day 8, compared with CON, H9-GCaMP-CMs treated with  transient durations (Figures 5A-D). These observations
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indicated that CYP could induce abnormal electrophysiological

and contractile alterations in cardiomyocytes,

consistent

with  the

clinical data.

findings

of the RNA sequencing and
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CYP Inhibited JPH2 Expression by

Modulating the m6A Writer METTL3

To understand whether m6A RNA methylation plays an
important role in the suppression effects of CYP on JPH2
expression in NRCMs, we further investigated the effect of
CYP on m6A writers (METTL3, METTL14, and WTAP) and
erasers (FTO, and ALKBH5) in CYP-treated cardiomyocytes.
Intriguingly, exposing NRCMs to different doses of CYP (250,
500, and 750 umoL/L) for 2 or 4 days resulted in a significant
increase in the expression of METTL3 (Figures 6A,B), whereas
the expression of METTL14, WTAP, FTO, and ALKBH5 was
not significantly altered (Figures 6A,C-F). Similar results were
observed in rats treated with CYP. The RNA level of METTL3
increased in hearts (Supplementary Figure 6). These results
suggested that CYP induces the m6A methylation of JPH2
mRNA through increasing METTL3 expression, leading to
downregulation of JPH2 expression.

To investigate the biological effect of METTL3 on the
reduction of JPH2 expression, we designed small interfering
RNAs to silence METTL3 in NRCMs. Intriguingly, silencing
METTL3 (Figure 6G) resulted in an increase in JPH2 expression
(Figure 6H). Additionally, CYP induced JPH2 downregulation
in NRCMs transfected with NC sequences. However, there was
no reduction effect of CYP on JPH2 expression in si-METTL3
cardiomyocytes (Figure 6H). These data indicated that CYP
decreased JPH2 expression by upregulating METTL3.

Disruption of METTLS3 Eliminated
CYP-Induced Electrical Alterations of

Cardiomyocytes

To determine whether the disruption of METTL3 affects cardiac
electrical and mechanical alterations in cardiomyocytes, we
performed MEA in si-METTL3 and NC cardiomyocytes treated
with CYP. Compared with NRCMs treated with NC, the FPD
increased in NRCMs treated with CYP for 1 day (Figure 7A),
whereas knock out of METTL3 significantly eliminated the
increased FPD induced by CYP (Figure7A). Similarly, the
MEA results showed that the action potential duration (APD)
(Figure 7B) was prolonged in NRCM:s treated with NC after CYP
treatment for 1 day (Figures 7C,D). However, the prolonged
APD did not occur in si-METTL3 cardiomyocytes treated
with CYP compared with the NRCMs treated with solvent
control (Figures 7C,D). The above results demonstrated that the
disruption of METTL3 eliminated the electrical alterations of
cardiomyocytes induced by CYP.

DISCUSSION

CYP is strongly correlated with cardiac electrical and contractile
alterations (3, 40, 41). This study found that CYP was
associated with QT prolongation, a decrease in E-C coupling
efficiency, and cardiac contractile dysfunction. Specifically, our
findings demonstrated that CYP induced RNA m6A modification
by upregulating METTL3 expression and suppressing JPH2
expression (Figure 8). These results suggested novel therapeutic
and preventive targets for CYP-induced cardiotoxicity.

CYP is widely used an antineoplastic and immunosuppressive
agent. The cytotoxic effect of CYP is induced by its biologically
active metabolites (4, 42). CYP decomposes into acrolein
and phoramide mustard (43), which further produces an
unstable cation that may attack guanine bases (4), resulting in
methylated bases. These DNA methylations lead to mutations
and pair mismatches linked with its therapeutic effects on tumor
cells. In fact, alkylating agents cause various DNA alkylation
lesions including base methylation (9), which also induce RNA
methylation. In our study, total m6A levels significantly increased
in NRCMs after CYP treatment. Our experimental results
showed that the m6A writer METTLS3 significantly increased in
cardiomyocytes treated with CYP, leading to an increase in m6A
methylation of JPH2 mRNA. Promotion of the upregulation of
METTL3 expression by CYP needs further exploration, however,
the results suggested that RNA methylation played an important
role in CYP-induced cardiotoxicity.

Previous study highlighted that CYP induced cardiac
apoptosis when administered at a high dose (44), because the
metabolite of CYP acrolein could promote the formation of
reactive oxygen species (ROS) (45, 46). Hence, some studies
have aimed to inhibit reactive oxygen-generators and regenerate
other antioxidants that could prevent or treat CYP-induced acute
cardiotoxicity (47). In this study, no myocardial death occurred
in rats after treatment with CYP. We also observed no significant
effect on the viability of cardiomyocytes in NRCMs treated
with CYP at high concentrations. However, ANP and BNP
both increased in cardiomyocytes treated with CYP, consistent
with the findings of a previous study that showed CYP could
induce cardiac hypertrophy (44). In this study, there was no
obvious ventricular wall thickening in the ultrasound results
owing to the short duration of CYP treatment in rats and
administration being performed only once. However, increased
ANP and BNP levels suggest that the molecular pathological
changes may precede structural changes and the prolonged CYP
treatment is required for organic changes to occur. Meanwhile,
we found cardiac electrical alterations and decreased E-C
coupling efficiency in rats after CYP administration. Although
FS and LVEF did not decrease to heart failure in rats treated
with CYP, these results were a 1-time consequence of CYP
treatment with normal doses. Although prolonged QT and QTc
interval, as well as E-C coupling time courses would recover
after 3 days of administration, our results have implications for
some patients with potential risk of ECG abnormalities during
therapy for cancer and immune diseases. Interestingly, our data
showed that CYP induced cardiac prolonged QT intervals and
electromechanical coupling time courses accompanied by the
downregulation of JPH2 expression. Calpain hydrolyzes JPH2
at the protein level (48), but CYP-induced decrease in JPH2
expression initiated from the RNA level in this study. To verify
whether CYP-induced downregulation of JPH2 expression is
mediated by miR-24 (31) and miR-331 (35), we further explored
the effect of CYP on the biogenesis of the two miRNAs. There
were no increases in the effect of CYP on miR-24 and miR-331,
suggesting other regulatory mechanisms for JPH2. Interestingly,
our subsequent results showed that m6A RNA methylation was
associated with decreased expression of JPH2. These results
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suggested that the increase in m6A of JPH2 mRNA is a novel ~ which corresponded to a recent study that CYP actively
mechanism in CYP-induced cardiotoxicity. recruited macrophages into the bone marrow and eliminated

To investigate the mechanisms underlying of CYP-induced  drug-resistant malignant tumor cells (49). However, whether
cell toxicity, we performed RNA sequencing to explore the the positive regulation of immunity induces cardiac injury
potential targets and pathways. Our results showed that these  requires further study. These DEGs enriched in molecular
DEGs were enriched in the biological process categories function categories of phosphatidylinositol bisphosphate,
of leukocyte, lymphocyte and T cell-mediated immunity, phosphatidylinositol-4,5-bisphophate binding, ATPase activity,
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and metal ion transmembrane transporter activity were could bind and interact with caveolin-3 (59), which is a
associated with reduced ATP production and failure of Ca?™  critical mediator for fixing LCCs on caveolar membrane in
transient in cardiomyocytes. According to this finding, the the plasma membrane and associated with long QT syndrome
KEGG analysis showed that these DEGs were involved in the  (60). Caveolin-3 is an important member of muscle-specific
inflammation and calcium signaling pathways. Interestingly, structural proteins of caveolae, which are also localized in
we observed that cAMP signaling and the GnRH pathway  T-tubules (61). These studies suggested that JPH2 interacts with
were closely associated with the calcium signal and cardiac  caveolin-3 to mediate the junctional membrane complexes
contraction (50, 51). The calcium signaling pathway was and Ca?*-induced Ca?"T release in the cardiomyocytes
enriched in upregulated DEGs from MeRIP sequencing. In  (59). Although abnormal JPH2 expression decreases the
subsequent exploration of the effect of CYP on calcium signal,  fixation with caveolin-3, leading to disruption of the normal
we found that CYP induces lower calcium release amplitude, and ~ junctional membrane complexes and efficient Ca?t transient,
longer time to peak and transient durations. CYP-treated H9- it may positively affect the QT interval. In this study, CYP
GCaMP-CMs even exhibited lower calcium transient durations.  induced the downregulation of JPH2 expression, resulting in
These results are consistent with the adverse cardiac phenotype  increased FPD and APD in cardiomyocytes, which would be
caused by CYP, suggesting that the calcium signaling pathway  eliminated by silencing METTL3. Our results suggested that
plays an important role in CYP-induced cardiotoxicity. Notably, =~ JPH2 aberration is closely related to the long QT syndrome.
the expression of JPH2, a key regulator for the Ca?" influxand E-  However, clinical data is warranted to determine whether
C coupling in cardiomyocytes (31, 52), significantly reduced after ~ the absence of JPH2 leads to the prolonged QT interval in
CYP treatment. Because decreased JPH2 is reportedly associated ~ future studies.
with atrial fibrillation (33) and arrhythmias (34), consistent Despite these encouraging results, it is necessary to point
with CYP-induced cardiotoxicity events, CYP-induced cardiac  out the limitations of this study. Silencing METTL3 increases
electrical and mechanical alterations may be closely related to  the JPH2 expression, and JPH2 is not further downregulated
the downregulation of JPH2 in this study. However, we cannot  in si-METTL3 NRCMs after CYP treatment. It is significant
exclude other potential genes that play roles in regulating the  to use METTL3 knockout transgenic mice to verify whether
process, such as paralemmin 2 (Palm-2), which upregulated m6A  CYP induced cardiac electrical and mechanical alterations by
peaks and downregulated gene expression, was associated with  increasing m6A levels. Additionally, there are m6A methylation
cAMP-PKA signaling pathway, which has a strong influence  sites in both the 5UTR and CDS of JPH2 mRNA, and
on intracellular cation concentrations in the heart tissue or  the m6A methylation modification sites that regulate the
cardiomyocytes (53). expression of JPH2 need to be further clarified. Furthermore,
Previous epidemiological studies have suggested that the m6A levels and JPH2 expression abnormalities in CYP-
prolonged QT intervals are closely associated with abnormal  induced cardiotoxicity should be confirmed in the clinic in
sodium, and potassium channels (54). However, the relationships ~ future studies.
between calcium ion binding protein imbalance and the In summary, our results indicated that CYP-induced cardiac
pathological mechanism of QT prolongation are unknown. electrical and mechanical alterations and Ca?>* dyshomeostasis
Recent studies have shown that Ca?" binding proteins such  are associated with m6A methylation modifications and
as calmodulin (55, 56), and triadin (57), are associated with  decreased JPH2. Our study found that CYP increased RNA
the long QT syndrome. These studies suggested that calcium  m6A levels by altering METTL3 expression. Furthermore,
plays an important role in the pathogenesis of cardiomyocyte  decreased JPH2 expression plays an important role in
repolarization and QT interval prolongation (58). JPH2 is  CYP-induced cardiac electrical and mechanical alterations
the key regulatory protein that maintains a normal distance by blocking Ca?" influx between transverse tubules and
between LCCs and RyRs, which are important structures for  sarcoplasmic reticulum. Our findings demonstrated that RNA
Ca** release and recovery in cardiomyocytes. Moreover, a ~ m6A methylation is a potential therapeutic intervention for
recent study demonstrated that the N-terminal part of JPH2  CYP-induced cardiotoxicity.
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Background: The interplay between cancer and |E has become of increasing interest.
This study sought to assess the prevalence, baseline characteristics, management, and
outcomes of IE cancer patients in the ESC EORP EURO-ENDO registry.

Methods: Three thousand and eighty-five patients with IE were identified based on
the ESC 2015 criteria. Three hundred and fifty-nine (11.6%) IE cancer patients were
compared to 2,726 (88.4%) cancer-free |E patients.

Results: In cancer patients, IE was mostly community-acquired (74.8%). The most
frequently identified microorganisms were S. aureus (25.4%) and Enterococci (23.8%).
The most frequent complications were acute renal failure (25.9%), embolic events
(21.7%) and congestive heart failure (18.1%). Theoretical indication for cardiac surgery
was not significantly different between groups (65.5 vs. 69.8%, P = 0.091), but was
effectively less performed when indicated in IE patients with cancer (65.5 vs. 75.0%,
P = 0.002). Compared to cancer-free |IE patients, in-hospital and 1-year mortality
occurred in 23.4 vs. 16.1%, P = 0.006, and 18.0 vs. 10.2%; P < 0.001, respectively.
In IE cancer patients, predictors of mortality by multivariate analysis were creatinine > 2
mg/dL, congestive heart failure and unperformed cardiac surgery (when indicated).
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Cosyns et al. Cancer and Infective Endocarditis
Conclusions: Cancer in IE patients is common and associated with a worse outcome.
This large, observational cohort provides new insights concerning the contemporary
profile, management, and clinical outcomes of IE cancer patients across a wide range
of countries.
Keywords: cancer, cardiac surgery, infective endocarditis, registry, valve disease

INTRODUCTION the approvals of national or regional ethics committees or

Infective endocarditis (IE) is a severe disease, associated with
important morbidity and mortality (1-4). Some IE patients have
active, previously diagnosed cancer. In other patients, IE might
be a marker of a new, unsuspected neoplasia (5, 6). The interplay
between cancer and IE has become of increasing interest (5, 7).
Cancer patients may be at higher risk for IE, because of reduced
immunity (e.g., due to antineoplastic therapy), central venous
lines or portal catheters (8). Moreover, the clinical presentation
of IE patients with cancer could be less specific. Additionally,
therapeutic options might be limited, due to frailty and a
potentially higher mortality risk in case of surgery.

The ESC EORP European Endocarditis (EURO-ENDO)
registry is a multicentre, prospective, observational cohort study
of IE patients at hospitals in Europe and ESC-affiliated/non-
affiliated countries. The aim of EURO-ENDO is to investigate
the care and outcomes of IE (9). This sub-analysis sought to
assess the prevalence of cancer in IE patients and to determine
baseline characteristics, management, and outcomes compared
to IE patients that are free of cancer.

MATERIALS AND METHODS

Study Design and Data Collection

The detailed methodology of the ESC EORP EURO-ENDO
registry has been previously reported (9). Briefly, from 1
January 2016 to 31 March 2018, patients older than 18 years
who presented with IE were included. Inclusion criteria were
a diagnosis of definite IE (or possible IE, but considered and
treated as IE) based on the ESC 2015 IE criteria (10). IE
patients with previously diagnosed cancer were identified.
Cancer was defined as a previous or active, solid tumor, or
hematologic malignancy. Data were collected at inclusion and
during hospitalization, including demographics, patient history,
Charlson index, age, and comorbidities (11). Moreover, data
were collected concerning clinical, biological, microbiological,
and echocardiographic findings, use of other imaging techniques
[computed tomography (CT) scan, 18F-FDG PET/CT, leucocyte
scintigraphy], medical therapy, complications, theoretical
indications for surgery and in-hospital mortality (9). This
study complies with the Declaration of Helsinki. National
coordinators, in conjunction with local centers managed

Abbreviations: CHF, Congestive heart failure; COPD, Chronic obstructive
pulmonary disease; CT, Computed tomography; IE, Infective endocarditis;
MI, Myocardial infarction; MRI, Magnetic resonance imaging; TIA, Transient
ischemic attack; TOE, Transoesophageal echocardiography; TTE, Transthoracic
echocardiography.

Institutional Review Boards, according to local regulations.
Informed consent has been obtained from all subjects (or their
legally authorized representative).

Data Management and Statistical Analysis
Data were collected by the collecting officers at the participating
sites and entered in an online electronic case report form (CRF).
Data quality was monitored by the ESC EORP Registry Project
and Data management teams. Data quality control followed a
data validation plan defined by the Registry Executive Committee
team in collaboration with the EORP team. The first author
had full access to all the study data and takes responsibility
for its integrity and the data analysis. Continuous variables
are expressed as mean =+ standard deviation or as median
and interquartile range. Comparisons among groups have been
performed using Kruskall Wallis test for non-parametric data.
Categorical variables are expressed as frequency and percentages.
Among-group 2 X 2 comparisons were made using Pearson’s
Chi-squared x2-test or Fisher’s exact test if any expected cell
count was < 5. In other cases, the Monte-Carlo estimate of
the exact P-value was used. Univariable analysis was applied to
both continuous and categorical variables. Pairwise correlations
between all candidate variables (variables with P < 0.10 in
univariable) within the model were tested before proceeding to
the multivariable model. In case of correlation, some criteria were
not taken into account. Plots of the Kaplan-Meier curves have
been used to assess survival and event-free survival. A backward
multivariable Cox regression analysis has been performed to
evaluate possible predictors of outcomes in cancer patients. A
significance level of 0.05 was required to allow a variable to
stay within the model. Some measures of model of fit have
been considered: concordance and the Goodness of fit test
proposed by May and Hosmer. In addition, the proportional
hazard ratios assumptions were graphically verified with the
Schoenfeld residuals test. All analyses were performed using
SAS statistical software version 9.4 (SAS Institute, Inc., Cary,
NC, USA).

RESULTS

Three thousand and eighty-five IE patients were included (12).
Three hundred and fifty-nine (11.6%) IE patients with cancer
were identified and compared to 2,726 (88.4%) IE patients
without cancer. IE was definite in 304/359 (84.7%) and possible
in 55/359 (15.3%) cancer patients. The age of and most frequent
types of cancer can be found in Supplementary Table 1.
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Patient Demographics and Characteristics
The main demographic and characteristics of IE cancer patients
are displayed in Table 1. IE was community-acquired in 74.8%
and healthcare associated in 25.2% (nosocomial in 18.6%, non-
nosocomial in 6.6%), native in 209 (60.4%), prosthetic in 97
(28.0%), device-related in 30 (8.7%), and repaired valve IE in
23 (2.9%) cancer patients. There were no significant differences
with the cancer-free group. Valvular IE location was aortic in
52.7%, mitral in 47.0%, tricuspid in 5.7%, pulmonary in 0.9%
of IE cancer patients. IE affected two or more valvular locations
in 17.9%.

Clinical and Biological Features

Clinical features are displayed in Supplementary Table 2. For
IE cancer patients, significantly less time passed between first
symptoms and first hospitalization (23.7 £ 46.4 vs. 30.1 & 70.6
days; P = 0.009), as well as between first hospitalization and
suspected IE (9.1 = 20.1 vs. 9.2 £ 42.5 days; P < 0.001) compared
to IE patients without cancer. Platelets were significantly lower
in the IE cancer group (194.5 vs. 214 K/mm?, P < 0.001), but
otherwise there was no significant difference in biochemistry
between groups (data not shown). Blood cultures were positive
in 303/359 (84.4%) IE cancer patients (vs. 78.4%, P = 0.009).
The most frequently identified microorganisms were S. aureus in
77/303 (25.4 vs. 31.8%, P = 0.024), Enterococci in 72/303 (23.8
vs. 14.8%, P < 0.001), and Streptococcus gallolyticus in 33/303
(10.9 vs. 5.9%, P = 0.001) IE cancer patients.

Imaging
Transthoracic echocardiography (TTE) was performed in 93.9%
and transoesophageal echocardiography (TOE) in 82.2% IE
cancer patients. There were significantly more mitral valve
vegetations (39.9 vs. 34.8%, P = 0.020), but less tricuspid valve
vegetations (5.3 vs. 10.5%, P = 0.008) in IE cancer patients. No
significant difference in vegetation length was found between IE
cancer and cancer-free groups (data not shown).

18F-FDG  positron  emission  tomography/computed
tomography was performed in 74 (20.6%) and positive in
55 IE cancer patients. There was 69.1% extra-cardiac uptake, vs.
54.3% in cancer-free IE patients (P = 0.042). On multislice CT,
there was significantly more perivalvular abscess formation in
IE cancer compared to cancer-free IE patients (78.6 vs. 50.5%,
P = 0.049).

In-hospital and One-Year Follow-Up Under

Treatment
The main in-hospital
Supplementary Table 3.

Acute renal failure was the most frequent in hospital
complication in IE cancer patients, followed by embolic events
and congestive heart failure (CHF).

After 1 vyear, there was no significant difference in
IE recurrence rate (P 0.243) or other complications
between groups.

Cancer IE patients were significantly more treated with
amoxicillin (35.8 vs. 26.3%; P < 0.001), ceftriaxone (36.3 vs.
31.1%; P = 0.047) and daptomycin (15.2 vs. 10.6%; P = 0.010),

complications are shown in

but less frequently treated with vancomycin (34.6 vs. 44.9%,
P < 0.001) compared to cancer-free IE patients.

Following ESC guidelines, theoretical indication for cardiac
surgery was not significantly different between both groups (65.5
vs. 69.8%, P = 0.091), but was effectively less performed when
indicated in IE cancer patients during hospitalization (65.5 vs.
75.0%, P = 0.002). The most frequent surgical indication in both
groups was infectious (57.4 vs. 64.9%, P = 0.018). Reasons for not
performing surgery in IE cancer patients were most frequently
the surgical risk (80.2 vs. 54.0%, P < 0.001), death before surgery
(17.3 vs. 22.9%, P = 0.260) and patient refusal (16.0 vs. 19.3%,
P = 0.486), among others.

Death occurred in hospital in 84 (23.4 vs. 16.1%, P < 0.001)
and at 1l-year follow-up in 43 additional IE cancer patients
(18.0 vs. 10.2%; P < 0.001). Causes of all-cause in-hospital
and 1-year mortality are reported in Tables 2, 3, respectively.
Predictors of in hospital and 1-year mortality by univariate Cox
regression analysis can be found in Supplementary Tables 4, 5,
respectively. Predictors of in hospital and 1-year mortality by
multivariable analysis in IE cancer patients are shown in Table 4
and Supplementary Table 6, respectively.

Kaplan-Meier survival curves for in hospital and 1-year all-
cause mortality according to cancer and adjusted for surgery are
shown in Figures 1, 2.

DISCUSSION

The following key findings arise from the EURO-ENDO analysis
regarding cancer in IE patients: 1. Cancer is common in IE
patients with a prevalence of 11.6%. 2. IE cancer patients are
significantly older, receive more long-term immune-suppressive
treatment and have more IV catheters. 3. The most frequently
identified microorganisms are S. aureus and Enterococci. The
source of infection is mainly community-acquired and preceded
by non-dental procedures. 4. In hospital and long-term mortality
is significantly increased and often related to the neoplasia. 5.
Theoretical indication for cardiac surgery is not significantly
different, but surgery is significantly less performed when
indicated in IE cancer patients compared to IE patients
without cancer.

Demographics, Clinical and
Microbiological Characteristics of IE

Cancer Patients
Cancer is common in IE patients, with a prevalence of 11.6%.
Preceding studies have shown a similar prevalence ranging from
5.6 to 17.6% (6, 8). Prostate- and intestinal neoplasms were found
most frequently, which is consistent with previous reports (6, 7).
The older age of IE cancer patients has been consistently reported
in other series (6, 8, 12). IE cancer patients were more often males,
as in the cancer-free group. One study found a slightly significant
male predominance in IE cancer patients (6), while another was
in agreement with this cohort (8). No gender-based differences
were found.

IE cancer patients more often had a history of arterial
hypertension, ischemic disease, aortic valve stenosis, atrial
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TABLE 1 | Demographics and clinical characteristics of infective endocarditis patients.

Total IE + cancer IE - cancer P-value

Demography
N 3,085 359 2,726
Age (years)

Mean + SD 59.21 + 18.06 70.33 £ 11.47 57.74 + 18.26 <0.001
Median (IQR) 63.0 (46.0-73.0) 72.0 (64.0-79.0) 61.0 (43.0-72.0) <0.001

< 65 years old 1,655/3,085 (53.6%) 90/359 (25.1%) 1,5665/2,726 (57.4%) <0.001
65-80 years old 1,060/3,085 (34.4%) 191/359 (563.2%) 869/2,726 (31.9%)

>80 years old 370/3,085 (12.0%) 78/359 (21.7%) 292/2,726 (10.7%)

Females (%) 961/3,085 (31.2%) 110/359 (30.6%) 851/2,726 (31.2%) 0.824
History of cardiovascular diseases

Heart failure 652/2,809 (23.2%) 75/307 (24.4%) 577/2,502 (23.1%) 0.592
Congenital heart disease 362/3,083 (11.7%) 11/359 (3.1%) 351/2,724 (12.9%) <0.001
Ischemic heart disease 613/2,866 (21.4%) 89/318 (28.0%) 524/2,548 (20.6%) 0.002
Atrial fibrillation 756/2,887 (26.2%) 113/3283 (35.0%) 643/2,564 (25.1%) <0.001
Hypertrophic cardiomyopathy 63/2,809 (2.2%) 4/307 (1.3%) 59/2,502 (2.4%) 0.239
Known valve murmur 955/2,809 (34.0%) 97/307 (31.6%) 858/2,502 (34.3%) 0.347
Previous endocarditis (%) 271/3,085 (8.8%) 33/359 (9.2%) 238/2,726 (8.7%) 0.772
Device therapy 532/3,085 (17.2%) 80/359 (22.3%) 452/2,726 (16.6%) 0.007
History of valve disease
Aortic valve stenosis 375/2,608 (14.4%) 52/277 (18.8%) 323/2,331 (13.9%) 0.028
Aortic valve surgery 793/3,085 (25.7%) 101/359 (28.1%) 692/2,726 (25.4%) 0.263
Mitral valve surgery 376/3,085 (12.2%) 40/359 (11.1%) 336/2,726 (12.3%) 0.519
Risk factors
Previous stroke/TIA 337/2,832 (11.9%) 51/312 (16.3%) 286/2,520 (11.3%) 0.010
Previous pulmonary embolism 64/2,802 (2.3%) 14/307 (4.6%) 50/2,495 (2.0%) 0.005
Arterial hypertension 1,483/3,081 (48.1%) 217/358 (60.6%) 1,266/2,723 (46.5%) <0.001
Previous hemorrhagic events 128/2,802 (4.6%) 23/305 (7.5%) 105/2,497 (4.2%) 0.008
COPD/asthma 315/3,081 (10.2%) 48/358 (13.4%) 267/2,723 (9.8%) 0.034
Chronic renal failure 544/3,083 (17.6%) 79/359 (22.0%) 465/2,724 (17.1%) 0.021
Dialysis 160/544 (29.4%) 15/79 (19.0%) 145/465 (31.2%) 0.028
HIV 31/3,011 (1.0%) 2/349 (0.6%) 29/2,662 (1.1%) 0.572
Hypo/hyperthyroidism 224/2,792 (8.0%) 33/306 (10.8%) 191/2,486 (7.7%) 0.060
Chronic autoimmune disease 106/3,075 (3.4%) 15/357 (4.2%) 91/2,718 (3.3%) 0.406
Current pregnancy 8/3,062 (0.3%) 1/358 (0.3%) 7/2,704 (0.3%) >0.999
Smoking 750/2,911 (25.8%) 73/330 (22.1%) 677/2,581 (26.2%) 0.108
Intravenous drug dependency 212/3,038 (7.0%) 3/354 (0.8%) 209/2,684 (7.8%) <0.001
Alcohol abuse 223/2,974 (7.5%) 23/349 (6.6%) 200/2,625 (7.6%) 0.493
Immunosuppressive treatment 104/2,809 (3.7%) 36/307 (11.7%) 68/2,502 (2.7%) <0.001
Long corticotherapy 126/2,809 (4.5%) 28/307 (9.1%) 98/2,502 (3.9%) <0.001
Intravenous catheter 248/3,074 (8.1%) 53/358 (14.8%) 195/2,716 (7.2%) <0.001
Charlson index mean + SD 3.48 £2.92 6.16 £ 3.35 3.13 £2.67 <0.001
Antithrombotic treatment on admission 1,686/2,977 (56.6%) 217/340 (63.8%) 1,469/2,637 (55.7%) 0.005
Other non-cardiac intervention
Colonoscopy 90/2,710 (3.3%) 24/295 (8.1%) 66/2,415 (2.7%) <0.001
Gastrointestinal intervention 102/3,025 (3.4%) 26/351 (7.4%) 76/2,674 (2.8%) <0.001
Urogenital intervention 87/3,026 (2.9%) 28/352 (8.0%) 59/2,674 (2.2%) <0.001
Dental procedure 224/2,849 (7.9%) 16/329 (4.9%) 208/2,520 (8.3%) 0.032

COPD, Chronic obstructive pulmonary disease; HIV, Human Immunodeficiency Virus; IE, Infective endocarditis; TIA, Transient ischemic attack.
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TABLE 2 | In-hospital mortality in infective endocarditis patients.

Total IE + cancer IE - cancer P-value
(n = 3,085) (n =359) (n =2,726)

Death 524/3,085 (17.0%) 84/359 (23.4%) 440/2,726 (16.1%) <0.001
Cause of death
Cardiovascular 149/5283 (28.5%) 15/84 (17.9%) 134/439 (30.5%) 0.067
Non-cardiovascular 155/5283 (29.6%) 25/84 (29.8%) 130/439 (29.6%)
Cardiovascular + Non-cardiovascular 190/523 (36.3%) 39/84 (46.4%) 151/439 (34.4%)
Unknown 29/523 (5.5%) 5/84 (6.0%) 24/439 (5.5%)
If cardiovascular:
Heart failure 239/339 (70.5%) 40/54 (74.1%) 199/285 (69.8%) 0.530
Arrhythmia 41/339 (12.1%) 3/54 (5.6%) 38/285 (13.3%) 0.108
Cardiac perforation/tamponade 11/339 (3.2%) 4/54 (7.4%) 7/285 (2.5%) 0.080
Acute Ml 7/339 (2.1%) 2/54 (3.7%) 5/285 (1.8%) 0.309
Cerebral embolism 41/339 (12.1%) 4/54 (7.4%) 37/285 (13.0%) 0.249
Pulmonary embolism 13/339 (3.8%) 0/54 (0.0%) 13/285 (4.6%) 0.236
Peripheral embolism 3/339 (0.9%) 0/54 (0.0%) 3/285 (1.1%) >0.999
If non-cardiovascular:
Neoplasia 12/345 (3.5%) 11/64 (17.2%) 1/281 (0.4%) <0.001
Sepsis 265/345 (76.8%) 38/64 (59.4%) 227/281 (80.8%) <0.001
M, Myocardial infarction.
TABLE 3 | One-year mortality in infective endocarditis patients.

Total IE + cancer IE - cancer P-value

(n = 3,085) (n =359) (n =2,726)

Death 233/2,108 (11.1%) 43/239 (18.0%) 190/1,869 (10.2%) <0.001
Cause of death
Cardiovascular 57/233 (24.5% 6/43 (14.0%) 51/190 (26.8%) 0.240

Non-cardiovascular
Cardiovascular + Non-cardiovascular
Unknown

If cardiovascular:

Heart failure

Arrhythmia

Cardiac perforation/tamponade
Acute Ml

Cerebral embolism

Pulmonary embolism
Peripheral embolism

Other cardiovascular

If non-cardiovascular:
Neoplasia

Sepsis

Other

( )
65/233 (27.9%)
49/233 (21.0%)
62/233 (26.6%)

74/106 (69.8%)
9/106 (8.5%)
1/106 (0.9%)
7/106 (6.6%)
7/106 (6.6%)
5/106 (4.7%)

1/106 (0.9%)

27/106 (25.5%)

22/114 (19.3%)
60/114 (52.6%)
41/114 (36.0%)

16/43 (37.2%)
9/43 (20.9%)
12/43 (27.9%)

( )
49/190 (25.8%)
40/190 (21.1%)
50/190 (26.3%)

9/15 (60.0%) 65/91 (71.4%)
3/15 (20.0%) 6/91 (6.6%)
0/15 (0.0%) 1/91 (1.1%)
1/15 (6.7%) 6/91 (6.6%)
2/15 (13.3%) 5/91 (5.5%)
1/15 (6.7%) 4/91 (4.4%)
0/15 (0.0%) 1/91 (1.1%)
1/15 (6.7%) 26/91 (28.6%)
15/25 (60.0%) 7/89 (7.9%)
7/25 (28.0%) 53/89 (59.6%)
6/25 (24.0%) 35/89 (39.3%)

M, Myocardial infarction.

fibrillation and previous stroke, probably due to older age.
There exists an overlap between cancer and cardiovascular
disease, with shared biological mechanisms, risk factors and
genetic predisposition (13). Cancer patients had a less typical
clinical presentation with significantly less fever and new heart

murmur compared to cancer-free IE patients. Nevertheless,
cancer patients were hospitalized and diagnosed significantly
faster, probably due to close follow-up care. There was no
significant difference in embolic events at admission between
groups, despite significant more antithrombotics use in IE cancer
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patients. This was probably compensated by the older age and
prothrombogenic status in the cancer group.

IE could be a consequence of cancer management, as
immunosuppressive therapy, intravenous access and portal

TABLE 4 | Multivariate Cox regression analysis for in hospital all-cause mortality
(1-month period) in IE can