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Lung cancer (LC) is one of the most frequently diagnosed cancers and the leading cause
of cancer death worldwide, and most LCs are non-small cell lung cancer (NSCLC).
Radiotherapy is one of the most effective treatments for patients with lung cancer,
either alone or in combination with other treatment methods. However, radiotherapy
responses vary considerably among NSCLC patients. The efficacy of radiotherapy is
influenced by several factors, among which autophagy is of importance. Autophagy is
induced by radiotherapy and also influences cell responses to radiation. We explored
the clinical significance of autophagy-related genes (ARGs) and gene sets (ARGSs)
and the underlying mechanism in NSCLC patients treated with radiotherapy. First,
differentially expressed ARGs (SNCA, SESN3, DAPL1, and ELAPOR1) and miRNAs
(miR-205-5p, miR-26a-1-3p, miR-6510-3p, miR-194-3p, miR-215-5p, and miR-375-
3p) were identified between radiotherapy-resistant and radiotherapy-sensitive groups.
An autophagy-related radiosensitivity risk signature (ARRS) by nine ARmRNAs/miRNAs
and an autophagy-related overall survival risk signature (AROS) by three ARmRNAs
were then constructed with estimated AUCs of 0.8854 (95% CI: 0.8131–0.9576)
and 0.7901 (95% CI: 0.7168–0.8685), respectively. The correlations between ARGSs
or prognostic signatures and clinicopathological factors, short-term radiotherapy
responses (radiotherapy sensitivity), long-term radiotherapy responses (overall survival),
and immune characteristics were analyzed. Both ARGSs and prognostic signatures
were related to immune checkpoint inhibitors (ICIs), infiltration of tumor-infiltrating
immune cells (TIICs), and the activity of the cancer immune cycle. Finally, after target
prediction and correlation analysis, circRNA (hsa_circ_0019709, hsa_circ_0081983,
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hsa_circ_0112354, hsa_circ_0040569, hsa_circ_0135500, and hsa_circ_0098966)-
regulated miRNA/ARmRNA axes (miR-194-3p/SESN3, miR-205-5p/ELAPOR1, and
miR-26a-1-3p/SNCA) were considered potential modulatory mechanisms by influencing
the regulation of autophagy, macroautophagy, and chaperone-mediated autophagy.

Keywords: non-small cell lung cancer, autophagy, radiotherapy sensitivity, tumor immune microenvironment,
competing endogenous RNA

INTRODUCTION

With an estimated 2.2 million new cases and 1.8 million deaths,
lung cancer (LC) is one of the most frequently occurring cancer
and the leading cause of cancer death according to the most
recent global cancer statistics (Sung et al., 2021). In most
countries, the 5-year survival rate of patients with LC is only
10 to 20% during 2010 through 2014 (Allemani et al., 2018).
To increase the survival rate of patients, improving therapeutic
effectiveness is as important as early screening. Radiotherapy is
one of the most effective treatments for patients with LC, either
alone or in combination with other treatment methods. However,
because of individual heterogeneity, radiotherapy responses vary
among patients, especially in those with non-small cell lung
cancer (NSCLC) (Baker et al., 2016), which accounts for 80%
of LC. An important focus of radiation oncology research is to
predict radiotherapy responses by using molecular analysis.

Autophagy, a major type of programmed cell death,
has been generally regarded as a survival or cytoprotective
response under stressful conditions, for example, exposure
to radiation and chemicals (Murrow and Debnath, 2013).
A growing body of evidence indicates that tumor resistance to
anticancer therapies, such as radiotherapy, was often associated
with the regulation of autophagy (Sharma et al., 2014; Tam
et al., 2017). Although no consensus has been reached about
the antitumor or protumor action of autophagy induction,
autophagy inhibitors or promoters are potential drug-drug or
drug-radiation combinations to promote therapeutic efficacy.
Thus, understanding the functional relevance of autophagy
within radiotherapy is critical to evade resistance and enhance
the effects for NSCLC patients. In addition, few studies
have discussed the selective types of autophagy, which are
highlighted in our study.

Non-coding RNAs (ncRNAs), accounting for 98% of the
human genome, mediate protumorigenic/antitumorigenic
responses to different cancer therapies (Zhang X. et al., 2020).
MicroRNAs (miRNAs) are a family of small ncRNAs of
approximately 22 nucleotides that play an important role in
biological pathways by silencing mRNAs and regulating the
expression of genes posttranscriptionally (Ambros, 2004).
Circular RNAs (circRNAs), another type of ncRNA that can act
as gene regulators or even be encoded into proteins, also play
vital tumor-regulated roles in numerous cancers (Chen, 2020).
Many cases have shown that circRNAs can interact with miRNAs
and then form a network to regulate cellular physiological and
pathological activities (Hansen et al., 2013). Moreover, due to
their relatively stable structure, miRNAs and circRNAs can also
be used as biomarkers of cancer therapeutic effects.

In the present study, we made full use of publicly available
large-scale cancer omics data, mainly The Cancer Genome
Atlas (TCGA), to investigate the clinical significance and
underlying mechanisms of autophagy-related genes and gene
sets in radiotherapy responses of NSCLC patients. First, patients
receiving radiotherapy with complete prognostic information
were retrieved, and autophagy-related genes (ARGs) and gene
sets (ARGSs) were identified. Then, radiotherapy sensitivity-
and overall survival (OS)-related risk signatures were generated
following the differential analysis of ARGs and miRNAs.
Risk signatures were then subjected to correlation analysis
of clinicopathologic factors, predictive value of prognosis,
and characteristic analysis of the immune microenvironment.
Finally, after targeting prediction and correlation analysis of
expression levels, a circRNA-miRNA-ARmRNA-ARGS network
was constructed to explain the potential regulatory mechanism.

MATERIALS AND METHODS

Schematic Diagram of the Study Design
As shown in Figure 1, we first mined the public data for our
datasets of interest. NSCLC patient information from The Cancer
Genome Atlas (TCGA) project was obtained from UCSC Xena1.
The targeted screening was performed according to the following
criteria: (1) patients treated with radiotherapy without additional
locoregional surgical procedure; (2) patient primary therapy
outcome success and overall survival information was recorded;
and (3) patient tumor samples received RNA sequencing (RNA-
seq) and/or miRNA sequencing (miRNA-seq). The following
four levels of primary therapy outcome were assessed: complete
remission/response (CR), partial remission/response (PR), stable
disease (SD), and progressive disease (PD). Patients with CR and
PR were classified into the radiotherapy-sensitive group, while
patients with SD and PD were classified into the radiotherapy-
resistant group. Eighty-seven NSCLC patients with RNA-seq
and 83 NSCLC patients with miRNA-seq met the requirements
(Table 1). Moreover, autophagy-related genes (ARGs) and
gene sets (ARGSs) were acquired from the Gene Ontology
(GO) resource2. The study was then extended to thoroughly
investigate the clinical significance and regulatory mechanism
of autophagy in the radiotherapy response of NSCLC patients.
Differential expression of RNAs and miRNAs was analyzed,
and the score of ARGSs was calculated. Clinical correlation
and immune microenvironment analysis were then performed

1https://xena.ucsc.edu/
2http://geneontology.org/
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FIGURE 1 | Flowchart of the study design. CR: complete remission/response, PR: partial remission/response, SD: stable disease, PD: progressive disease, DE:
differential expressed, ARmRNA: autophagy-related mRNA, NSCLC: non-small cell lung cancer.

at both the gene and gene set levels. Moreover, radiotherapy
sensitivity- and overall survival (OS)-related risk signatures
were constructed for prognostic prediction. A circRNA-miRNA-
ARmRNA-ARGS network was constructed following target
prediction and correlation analysis.

Identification and Extraction of
Autophagy-Related Genes and Gene
Sets
A total of 537 unduplicated autophagy-related genes (ARGs)
were extracted from GO:0006914, and 9 autophagy-related
gene sets (ARGSs) were identified (Supplementary Figure 1
and Supplementary Table 1). The genes were related to
the following types of autophagy: 78 genes were related to
autophagy of mitochondrion (GO:0000422); 8 genes were related
to autophagy of peroxisome (GO:0030242); 18 genes were related
to chaperone-mediated autophagy (GO:0061684); 5 genes were
related to late endosomal microautophagy (GO:0061738); 308
genes were related to macroautophagy (GO:0016236); 17 genes
were related to autophagy of nucleus (GO:0044804); 7 genes
were related to lysosomal microautophagy (GO:0016237); 336
genes were related to regulation of autophagy (GO:0010506);

and 9 genes were related to modulation by symbiont of host
autophagy (GO:0075071).

Evaluation of the Immune
Characteristics of Tumor
Microenvironment (TME)
The immune characteristics of TME included the expression level
of immune checkpoint inhibitors (ICIs), infiltration of tumor-
infiltrating immune cells (TIICs), and activity of the cancer
immune cycle. Overall, 20 ICIs (HAVCR2, CD274, CD86, LAG3,
LAIR1, PVR, IDO1, CD80, CTLA4, SNCA, TIGIT, CD200R1,
CEACAM1, CD276, CD200, KIR3DL1, BTLA, ADORA2A,
LGALS3, and VTCN1) with therapeutic potential (Noam et al.,
2018) were identified in our study. The infiltration levels of 28
tumor-infiltrating immune cells (activated B cells, activated CD4
T cells, activated CD8 T cells, activated dendritic cells, CD56
bright NK cells, CD56 dim NK cells, central memory CD4 T
cells, central memory CD8 T cells, effector memory CD4 T cells,
effector memory CD8 T cells, eosinophil cells, gamma delta T
cells, immature B cells, immature dendritic cells, macrophages,
mast cells, MDSCs, memory B cells, monocytes, NK cells, NK
T cells, neutrophils, plasmacytoid dendritic cells, regulatory T
cells, T follicular helper cells, TH1 cells, TH17 cells, and TH2
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TABLE 1 | Patients’ characteristics.

Patients with RNA-seq data
(N=87)

Patients with miRNA-seq data
(N=83)

Variables No. (% or range) Variables No. (% or range)

Age Age

≤ 60 35 (0.40) ≤ 60 33 (0.40)

> 60 52 (0.60) > 60 50 (0.60)

Gender Gender

Female 38 (43.7) Female 36 (0.43)

Male 49 (56.3) Male 47 (0.57)

Race Race

Asian 3 (0.03) Asian 3 (0.04)

White 66 (0.08) White 64 (0.77)

Black 7 (0.13) Black 7 (0.08)

Not reported 11 (0.76) Not reported 9 (0.11)

Year of diagnosis Year of diagnosis

Before 2004 18 (0.21) Before 2004 18 (0.22)

2005∼2008 24 (0.28) 2005∼2008 21 (0.25)

2009∼2013 45 (0.52) 2009∼2013 44 (0.53)

Histology Histology

AD1 49 (0.56) AD 48 (0.58)

SCC2 38 (0.44) SCC 35 (0.42)

Primary site Primary site

Lower lobe 27 (0.31) Lower lobe 25 (0.30)

Upper lobe 54 (0.62) Upper lobe 52 (0.63)

Not reported 6 (0.07) Not reported 6 (0.07)

TNM edition number TNM edition number

Before 5th 9 (0.10) Before 5th 9 (0.11)

6th 41 (0.47) 6th 38 (0.46)

7th 31 (0.36) 7th 31 (0.37)

Not reported 6 (0.07) Not reported 5 (0.06)

T stage T stage

T1 18 (0.21) T1 15 (0.18)

T2 48 (0.55) T2 47 (0.57)

T3 16 (0.18) T3 16 (0.19)

T4 4 (0.05) T4 4 (0.05)

Tx 1 (0.01) Tx 1 (0.01)

N stage N stage

N0 34 (0.39) N0 32 (0.39)

N1 20 (0.23) N1 19 (0.23)

N2 27 (0.31) N2 27 (0.33)

N3 3 (0.03) N3 2 (0.02)

Nx 3 (0.03) Nx 3 (0.04)

M stage M stage

M0 65 (0.75) M0 62 (0.75)

M1 6 (0.07) M1 5 (0.06)

Mx 16 (0.18) Mx 16 (0.19)

Stage Stage

Stage I 21 (0.24) Stage I 20 (0.24)

Stage II 23 (0.26) Stage II 22 (0.27)

Stage III 37 (0.43) Stage III 36 (0.43)

Stage IV 6 (0.07) Stage IV 5 (0.06)

Radiotherapy
sensitivity

Radiotherapy
sensitivity

Sensitivity 48 (0.55) Sensitivity 45 (0.46)

Resistance 39 (0.45) Resistance 38 (0.54)

1AD: adenocarcinoma; 2SCC: squamous cell carcinoma.

cells) (Charoentong et al., 2017) were considered. The cancer
immune cycle mainly comprises the following seven steps: release
of cancer cell antigens (Step 1); cancer antigen presentation
(Step 2); priming and activation (Step 3); trafficking of immune
cells to tumors (Step 4); infiltration of immune cells into tumors
(Step 5); recognition of cancer cells by T cells (Step 6); and
killing of cancer cells (Step 7) (Chen and Mellman, 2013). The
activity of TIICs and the cancer immune cycle were evaluated by
calculating marker gene set scores based on the gene expression
of individual samples.

Screening of Differentially Expressed
Genes
Available RNA sequencing (RNA-seq) and miRNA sequencing
(miRNA-seq) data were downloaded. We transformed miRNA-
seq names into human mature miRNA names using the
miRBase version 22.0 database. We then applied DESeq2,
edgeR, and limma/voom to identify differentially expressed
mRNAs (DEmRNAs) and miRNAs (DEmiRNAs). The criteria
for determining differential DEmRNAs and DEmiRNAs were set
with an adjusted p-value < 0.05 and | log fold change (FC)|
> mean ± standard deviation (sd). We determined the common
DEmRNAs and DEmiRNAs by utilizing the VennDiagram R
package (Chen and Boutros, 2011). Volcano plots visually
displaying the distribution of DEmRNAs and DEmiRNAs were
generated using ggpubr R packages, and heatmaps describing the
expression of differentially expressed autophagy-related mRNAs
(DEARmRNAs) and miRNAs (DEmiRNAs) were generated
utilizing the pheatmap R package.

Establishment of Specific Risk
Signatures
We extracted the DEmRNAs and DEmiRNAs expression profiles
collected from NSCLC patients receiving radiotherapy with
prognostic information. Differential analysis by Student’s t-test
was conducted to compare the radiotherapy-resistant and
radiotherapy-sensitive groups, while the overall survival (OS)
difference was calculated by the log-rank test and described by the
K-M curve. The significant variables were included in a logistic
or Cox regression model. Finally, we generated an autophagy-
related radiosensitivity risk signature (ARRS) and an autophagy-
related OS risk signature (AROS) for each sample using the
following equation: ARRS or AROS =

∑
i Cofficient(RNAi)×

Expression(RNAi). The receiver operating characteristic (ROC)
curves with risk score against radiosensitivity and survival
status were generated using ROCit and survivalROC/timeROC
R packages (Blanche, 2015), respectively. Based on the mean
as a cutoff point, patients were divided into high- and low-
risk groups. Student’s t-test and log-rank test were used in
univariate differential analysis, while multivariate logistic and
Cox regression were used in independent predictor tests.

Construction of the
circRNA-miRNA-mRNA-ARGS Network
DEARmRNAs were the key module in the ceRNA
network. MiRNAs targeting DEARmRNAs were predicted
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by miRWalk 3.03 (Dweep et al., 2011). These miRNAs
were intersected with DEmiRNAs to obtain the miRNA
module. The circRNA sponges of the miRNA modules
were obtained by circBank4 (Liu et al., 2019). CircRNAs
sponging more than one candidate miRNAs were included
in the circRNA module. Correlation analysis was then
performed between the ARmRNA module and miRNA
module in the total population of the TCGA NSCLC
project to obtain the negatively correlated ARmRNAs and
miRNAs. The targeted ARGSs of ARmRNAs and circRNA
sponges of miRNAs were added to construct the final
regulatory network. The R package ggalluvial and Cytoscape
(Shannon et al., 2003) were used to visualize the ceRNA and
circRNA-miRNA-ARmRNA-ARGS network.

Additional Bioinformatics and Statistical
Analyses
R software 4.0.45, GraphPad Prism 9.0 (GraphPad Software
Inc., San Diego, CA, United States), and Cytoscape 3.8.26

were used to analyze and visualize the data. The scores
of gene sets (ARGSs, immune characteristics of the tumor
microenvironment) in each sample were quantified via both
single-sample gene set enrichment analysis (ssGSEA) and the
gene set variation analysis (GSVA) algorithm based on the
bulk RNA-seq data using the GSVA R package (Hnzelmann
et al., 2013; Supplementary Table 2). We used the chi-
square test for correlation analysis between categorical variables,
and Pearson correlation coefficients for correlation analysis
between continuous variables. A p value < 0.05 was considered
statistically significant.

RESULTS

Clinical Significance of
Autophagy-Related Gene Sets in NSCLC
Patients Treated With Radiotherapy
We plotted heatmaps to describe the distribution of ARGS
scores by ssGSEA or GSVA (Figure 2A) and performed
differential analysis between the radiotherapy-resistant and
radiotherapy-sensitive groups. Late endosomal microautophagy
(GO:0061738) was identified as significant by both methods
(Figure 2B). The correlation between clinicopathological
factors and ARGS was evaluated (Figure 2C). The consistent
results of ssGSEA and GSVA score showed that autophagy
of mitochondrion (GO:0000422) and macroautophagy
(GO:0016236) were discriminatory for different histological
types, while autophagy of peroxisome (GO:0030242), autophagy
of nucleus (GO:0044804), late endosomal microautophagy
(GO:0061738), and symbiont of host autophagy (GO:0075071)
were discriminatory for patient gender and histological

3http://mirwalk.umm.uni-heidelberg.de/
4http://www.circbank.cn/
5http://www.r-project.org
6https://cytoscape.org/

type. Multivariate logistic regression analysis demonstrated
that lysosomal microautophagy (GO:0016237) and late
endosomal microautophagy (GO:0061738) were independent
risk factors for radiotherapy sensitivity (Figure 2D), while no
ARGSs were associated with OS (Supplementary Figure 2).
These findings demonstrated the clinical significance of
autophagy or selective types of autophagy in NSCLC patients
receiving radiotherapy.

Correlation Analysis of ARGSs and
Immune Microenvironment
Characteristics in NSCLC Patients
Receiving Radiotherapy
With regard to immune microenvironment characteristics
(Supplementary Figure 3A and Supplementary Table 3),
autophagy (GO:0006914), regulation of autophagy
(GO:0010506), macroautophagy (GO:0016236), and autophagy
of peroxisome (GO:0030242) were related to infiltration
of central memory CD8 T cells and gamma delta T cells
(Supplementary Figure 3B). In addition, macroautophagy
(GO:0016236) was related to infiltration of CD56 bright
NK cells, and symbiont of host autophagy (GO:0075071)
was related to central memory CD4 T cells. Regarding the
immune cycle, only autophagy of peroxisome (GO:0030242)
correlated with the trafficking of monocytes to tumors (Step 4)
(Supplementary Figure 3C). Finally, and most importantly, we
evaluated the association with ICIs (Supplementary Figure 3D).
Autophagy (GO:0006914) was associated with expression levels
of ADORA2A, CD200R1, CD274, CD80, CD86, HAVCR2,
LAIR1, LGALS3, and TIGIT; autophagy of mitochondrion
(GO:0000422) was correlated with CD276 and SNCA;
regulation of autophagy (GO:0010506) was correlated with
ADORA2A, CD200R1, CD274, CD80, CD86, HAVCR2, LAIR1,
and TIGIT; macroautophagy (GO:0016236) was correlated
with CD80, CD86, HAVCR2, LAG3, and LAIR1; autophagy
of peroxisome (GO:0030242) was correlated with CD276
and SNCA; chaperone-mediated autophagy (GO:0061684)
was correlated with CD200R1, CD80, CD86, HAVCR2,
LAG3, and LAIR1; and late endosomal microautophagy
(GO:0061738) and symbiont of host autophagy (GO:0075071)
were correlated with SNCA.

Identification of Differentially Expressed
Autophagy-Related mRNAs
(DEARmRNAs) and miRNAs (DEmiRNAs)
Associated With Radiotherapy Sensitivity
in NSCLC Patients
In addition to the levels of gene sets, we explored the
clinical significance of autophagy at the gene level.
The DEmRNAs were identified from the radiotherapy-
sensitive group compared to the radiotherapy-resistant
group by DESeq2, edgeR, and limma/voom seperately
(Figure 3A). In total, 461 DEmRNAs (235 upregulated
and 226 downregulated) were found by intersection of
these three methods (Figure 3B). Then, DEARmRNAs
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FIGURE 2 | Clinical correlation of autophagy-related gene sets (ARGSs) score by ssGSEA and GSVA methods. (A) The distribution of ARGSs score in radiotherapy
resistant and sensitive groups. (B) The differential analysis of ARGSs score between radiotherapy resistant and sensitive groups. The left is radiotherapy resistant
group while the right is radiotherapy sensitive group. (C) The correlation analysis of ARGSs and clinicopathologic factors. (D) Multivariate logistic regression analysis
of ARGSs with radiotherapy responses.

were recognized from DEmRNAs (Figure 3C) and one
downregulated gene (ELAPOR1), three upregulated genes
(SNCA, SESN3, and DAPL1) were the consistent results.

The same methods were used in DEmiRNA screening
(Figure 3D), which identified 3 upregulated (hsa-miR-
205-5p, hsa-miR-26a-1-3p, and hsa-miR-6510-3p) and 3
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FIGURE 3 | Differentially expressed (DE) analysis of mRNAs and miRNAs between rediotherapy resistant and sensitive groups. (A) Volcano plots of DEmRNAs by
DESeq2, edgeR, and limma/voom. (B) Venn diagram of common DEmRNAs. (C) Heatmaps of DEARmRNAs. (D) Volcano plots of DEmiRNAs by DESeq2, edgeR,
and limma/voom. (E) Venn diagram of common DEmiRNAs. (F) Heatmaps of DEmiRNAs. Red represents upregulated genes and blue indicates downregulated
genes.

downregulated (hsa-miR-194-3p, hsa-miR-215-5p, and hsa-
miR-375-3p) DEmiRNAs by intersection of DESeq2, edgeR, and
limma/voom (Figures 3E,F).

Validation of the Prognostic Value of
DEARmRNAs and DEmiRNAs in NSCLC
Patients Receiving Radiotherapy
To establish crucial miRNAs and ARmRNAs with prognostic
value in NSCLC patients receiving radiotherapy, we first verified

the differential expression of mRNAs and miRNAs between
radiotherapy-sensitive and radiotherapy-resistant groups.
Our results showed that hsa-miR-194-3p, hsa-miR-215-5p,
hsa-miR-375-3p, and ELAPOR1 were upregulated in the
radiotherapy-resistant group, while hsa-miR-205-5p, hsa-miR-
26a-1-3p, SESN3, SNCA, and DAPL1 were upregulated in the
radiotherapy-sensitive group (Figure 4). To determine whether
these DERNAs are associated with the long-term prognosis
of NSCLC patients treated with radiotherapy, we generated
Kaplan-Meier curves to analyze differences in OS. We found that
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SNCA, SESN3, and DAPL1 were related to the OS of NSCLC
patients (Figure 5).

Establishment of the ARmRNA/miRNA
Signature to Predict Prognosis in NSCLC
Patients Receiving Radiotherapy
Based on the above results, we first established a 9
ARmRNA/miRNA signature by multivariate logistic
regression to predict the radiosensitivity of NSCLC
patients, and the score for each patient was calculated
as follows: ARRS = 1.543103 −0.002191∗hsa-miR-205-5p

−0.500703∗hsa-miR-215-5p +0.776517∗hsa-miR-26a-1-3p
−0.300282∗hsa-miR-194-3p −0.041439∗hsa-miR-375-3p
−0.394497∗ELAPOR1 −0.053145∗SNCA +0.331343∗SESN3
+0.181778∗DAPL1. The ROC curve was generated, and the
estimated AUC was 0.885 with a 95% CI of 0.813–0.958
(Figure 6A). The ARRS discriminated the radiotherapy-sensitive
group from the radiotherapy-resistant group (p < 0.001) by
higher ARRS score (Figure 6C) and related to histology and
stage (Figure 6E). Besides, ARRS could serve as an independent
radiotherapy sensitivity predictor for NSCLC and high ARRS
score patients are more likely to get better radiotherapy sensitivity
(OR:3.13[95%CI:1.66–4.96], p < 0.001) (Figure 6G).

FIGURE 4 | The distribution of differentially expressed miRNAs and mRNAs between rediotherapy resistant and sensitive groups. Blue represents radiotherapy
resistant group and pink indicates radiotherapy sensitive group.

FIGURE 5 | Overall survival analysis of differentially expressed miRNAs and mRNAs. The high- and low-expression values of four autophagy-related mRNAs
(ARmRNAs) and six miRNAs were compared by Kaplan-Meier survival curve for NSCLC patients. The median survival time were indicated by dashed line.
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FIGURE 6 | Construction and clinical correlation analysis of autophagy-related prognostic risk signature. (A) The receive operator curve (ROC) analysis for
autophagy-related radiosensitivity risk signature (ARRS). AUC: Area Under Curve, FPR: false positive rate, TPR: true positive rate. (B) The ROC analysis for
autophagy-related overall survival risk signature (AROS). (C) The distribution of ARRS between rediotherapy resistant and sensitive groups. Blue represents
radiotherapy resistant group and pink indicates radiotherapy sensitive groups. (D) The Kaplan-Meier survival curve grouping by high- and low- AROS. The median
survival time were indicated by dashed line. (E) The correlation analysis of ARRSs and clinicopathologic factors. (F) The correlation analysis of AROSs and
clinicopathologic factors. (G) Multivariate logistic regression analysis of ARRSs with radiotherapy sensitivity. (H) Multivariate Cox regression analysis of AROSs with
overall survival.

Frontiers in Genetics | www.frontiersin.org 9 September 2021 | Volume 12 | Article 73000313

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-730003 September 2, 2021 Time: 12:46 # 10

Fan et al. ceRNA Associated With NSCLC Radiosensitivity

Moreover, a 3 ARmRNA signature was generated by
multivariate Cox regression to predict the OS of NSCLC
patients, and the score for each patient was calculated as
follows: AROS = −0.19011∗hsa-miR-6510-3p −0.18664∗SNCA
−0.14049∗SESN3 +0.06797∗DAPL1. The ROC curve was
generated, and the estimated AUC was 0.790, with a 95% CI of
0.717–0.869 (Figure 6B). The K-M curves were different between
the high- and low-AROS groups (p < 0.001) (Figure 6D),
and multivariate Cox regression revealed that AROS served
as an independent predictor of OS for NSCLC patients who
scored higher AROS with shorter OS (HR:3.40[95%CI:1.44–
7.99], p = 0.005) (Figure 6H). The AROS was also related to
histology and stage (Figure 6F).

Landscape of Immune Microenvironment
Characteristics Associated With the
ARmRNA/miRNA Signature
The two prognosis-related signatures (ARRS and AROS) were
then estimated for immune microenvironment characteristics.
ARRS positively correlated with the infiltration of CD56
bright NK cells and central memory CD8 T cells but
negatively correlated with eosinophils and type 17 T helper
cells (Figure 7A), while AROS negatively correlated with the
infiltration of CD56 bright NK cells in both methods (Figure 7C).
In terms of the immune cycle, ARRS was positively correlated
with the trafficking of eosinophil cells to tumors (Step 4)
(Figure 7B), while AROS was positively correlated with the
trafficking of TH1 cells to tumors (Step 4) (Figure 7D) in both
methods. Finally, we also investigated the relationship between
ARRS or AROS and the expression levels of immune checkpoint
molecules. Low ARRS indicated low expression of SNCA,
CD200R1, CD276, LGALS3, and VTCN1 but high expression
of CEACAM1 (Figure 7E), while low AROS represented high
expression of SNCA, CD200R1, CD276, and VTCN1 (Figure 7F).

Construction of the
circRNA-miRNA-ARmRNA-ARGS
Network to Regulate the Radiation
Sensitivity of NSCLC
The targeted miRNAs of DEARmRNAs were predicted by
miRWalk (Supplementary Table 4) and intersected with
DEmiRNAs. We obtained three candidate ARmRNAs
(ELAPOR1, SESN3, and SNCA) and 5 miRNAs (hsa-miR-
26a-1-3p, hsa-miR-6510-3p, hsa-miR-205-5p, hsa-miR-375-3p,
and hsa-miR-194-3p) for network construction (Figure 8A).
Considering the conventionally negative correlation between
mRNAs and miRNAs in regulatory relationships, we used
the total population of TCGA NSCLC project for correlation
analysis between these three ARmRNAs and their targeted
miRNAs. After secondary screening, three miRNA/ARmRNA
axes were recognized, namely, miR-205-5p/ELAPOR1, miR-
26a-1-3p/SNCA, and miR-194-3p/SESN3 (Figures 8B–D).
We then used circBank to identify the circRNAs targeting
these three miRNAs (Supplementary Table 4). To enhance
the affinity between circRNAs and the ceRNA network, we
sought candidate circRNAs targeting two or more miRNAs.

Finally, six circRNAs (hsa_circ_0019709, hsa_circ_0081983,
hsa_circ_0112354, hsa_circ_0040569, hsa_circ_0135500, and
hsa_circ_0098966) were identified. Finally, ARmRNA-associated
ARGSs were added to form a complete regulatory network
(Figure 9). All three ARGs (ELAPOR1, SNCA, and SESN3)
participate in the regulation of autophagy. ELAPOR1 and SESN3
are involved in macroautophagy, and SNCA participates in
chaperone-mediated autophagy.

DISCUSSION

Although autophagy can be non-specific, there are many
selective types of autophagy (Klionsky et al., 2016). For a more
detailed exploration of the role of autophagy in radiotherapy
responses, we referred to the GO source to identify 9 ARGSs
in the present study. The differential analysis of ARGS scores
revealed that late endosomal microautophagy was distinct
between the radiotherapy-sensitive and radiotherapy-resistant
groups. Endosomal microautophagy requires endosomal-sorting
complex systems for lysosome or endosome delivery and
selectively degrades KFERQ-containing proteins recognized by
HSC70 (Zheng et al., 2019). Microautophagy is the least
studied form of autophagy with a largely unclear cargo delivery
process (Zheng et al., 2019). The significance of endosomal
microautophagy in the radiotherapy sensitivity of NSCLC
patients was first proposed in our study; the intrinsic mechanism
is worth pursuing in the future.

Competing endogenous RNAs (ceRNAs) are transcripts that
competitively bind to shared miRNAs and act as miRNA sponges
to modulate each other at the posttranscriptional level (Qi et al.,
2015). With the development of high-throughput sequencing
technology, abundant circRNAs have been identified and have
become the focus in the ceRNA family due to the abundance
of conserved miRNA response elements (MREs) (Zhong et al.,
2018). Previous research has demonstrated that one of the most
important mechanisms of circRNAs is their action on ceRNAs.
For example, circRNA hsa_circ_100395 has been demonstrated
to inhibit lung cancer progression by regulating the miR-
1228/TCG21 pathway (Chen et al., 2018), while circRNA_101237
promotes NSCLC progression by regulating the miR-490-
3p/MAPK1 axis (Zhang Z. Y. et al., 2020). Moreover, Jin
et al. (2020) revealed potential prognostic biomarkers for
radiotherapies with X-rays and carbon ions in NSCLC by
integrating analysis of the circRNA-miRNA-mRNA network.
Overall, the role of the circRNA-miRNA-mRNA network in the
radiotherapy sensitivity of NSCLC still needs further research.
In our study, after generating three miRNA-ARmRNA axes
(miR-194-3p/SESN3, miR-205-5p/ELAPOR1, and miR-26a-
1-3p/SNCA), we obtained six circRNAs (hsa_circ_0019709,
hsa_circ_0040569, hsa_circ_0081983, hsa_circ_0098996,
hsa_circ_0112354, hsa_circ_0135500) that intersected these three
axes and constructed a circRNA-miRNA-ARmRNA network. It
is worth noting that these ARmRNAs were contained in three
ARGSs, namely, regulation of autophagy, macroautophagy,
and chaperone-mediated autophagy. Macroautophagy refers
to the process of autophagosomes formation and fusion
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FIGURE 7 | Role of autophagy-related prognostic risk signature in predicting immune phenotypes. (A) Correlations between ARRS and infiltration levels of
tumor-associated immune cells. (B) Correlations between ARRS and immune cycle. (C) Correlations between AROS and infiltration levels of tumor-associated
immune cells. (D) Correlations between AROS and immune cycle. (E) Correlations between ARRS and immune checkpoint inhibitors. (F) Correlations between
AROS and immune checkpoint inhibitors.

with late endosomes or lysosomes to form amphisomes or
autolysosomes, which are the canonical and well-known
participants in the autophagy process (Zheng et al., 2019).
Chaperone-mediated autophagy (CMA) is another vital type

of selective autophagy which selectively degrades cytosolic
proteins recognized by a specific chaperone in lysosomes (Zheng
et al., 2019). CMA does not rely on vesicles or membrane
invagination to deliver targeted substrates and degrades 30%
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FIGURE 8 | Construction and correlation analysis of the ceRNA network. (A) The alluvial diagram of regulatory network of ceRNA. (B) Correlation analysis between
has-miR-205-5p and ELAPOR1. (C) Correlation analysis between has-miR-26-1-3p and SNCA. (D) Correlation analysis between has-miR-194-3p and SESN3.

of cytosolic proteins. SESN3 encodes a member of the sestrin
family of stress-induced proteins, which may contribute to the
positive regulation of macroautophagy (Pascale et al., 2011).
ELAPOR1 is an endosome-lysosome-associated apoptosis and
autophagy regulator, and it may protect cells from cell death by
upregulating the autophagy pathway (Deng et al., 2010). SNCA is
a member of the synuclein family and negatively regulates CMA
(Alvarez-Erviti et al., 2010). In summary, our study utilized
circRNA-miRNA-ARmRNA network analysis to investigate the
subtypes of autophagy.

With the general success of immune checkpoint inhibitor
antibodies and cell-based treatments, the age of immunotherapy
has arrived, which raises the question of how autophagy interacts
with the immune microenvironment and contributes to cancer
treatments (Li et al., 2017; Jiang et al., 2019). It remains unclear
whether autophagy inhibition impairs systematic immunity.
Some evidence has shown that autophagy maintains the survival
of memory T cells (Puleston et al., 2014) and promotes self-
renewal of B1 cells (Clarke et al., 2018), while other evidence
has shown that autophagy inhibition does not impair T cell
function in preclinical models of melanoma and breast cancer,
including chemotherapy-treated cells (Starobinets et al., 2016).
Although a greater understanding of the role of autophagy in
tumor immunity is emerging, the distinction between canonical

autophagy and types of selective autophagy needs to be
considered. Correlation analysis of ARGSs and ICI expression
levels, immune cell infiltration, and the immune cycle was
conducted in our work. We found that autophagy was related to
the expression levels of many ICIs and the infiltration of central
memory CD8 T cells and gamma delta T cells, while peroxisome
autophagy correlated with the trafficking of monocytes to tumors.
Though more extensive experiments are needed to confirm this
model, these results support that autophagy levels are in tune
with the immune microenvironment and have the potential
to contribute to monitoring and improving immunotherapy
in NSCLC patients.

Despite the tremendous development of radiation technology,
tumor control and survival in NSCLC patients have not
substantially improved. Individual heterogeneity partly explains
this. Some patients may benefit from specific treatments while
others require more aggressive treatments. To improve clinical
outcomes and avoid excessive medical treatment, patients
should be classified into cohorts according to differences in
disease susceptibility, prognosis, and likely treatment response
rates (Meehan et al., 2020). Additionally, the incorporation
of molecular analysis and other patient information into the
prevention, investigation, and treatment of diseases is an
important aspect of precision medicine (Penet et al., 2014). Some
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FIGURE 9 | Diagram of the schematics of the circRNA-miRNA-ARmRNA-ARGS network. Red circles represent high-risk genes; orange circles represent their,
respectively, identified regulatory miRNAs; yellow circles represent sponge circRNAs; green, blue, and purple ellipse represent corresponding ARGSs.

efforts have been made to identify biomarkers that could be
applied to tailor radiotherapy sensitivity to individual molecular
characteristics of patient tissue. Salem et al. (2017) reported a
blood biomarker panel containing interleukin (IL)-1b, neutrophil
count, and cytokeratin-19 antigen to predict lung cancer
radiotherapy response. Saito et al. (2014) constructed a three-
microRNA signature to predict responses to platinum-based
doublet chemotherapy in patients with lung adenocarcinoma.
Liu et al. (2019) identified a miRNA signature by an in vitro
system to assess radiosensitivity for head and neck squamous cell
carcinomas and validated this signature using the TCGA database
(Ning et al., 2015). These studies indicate that radiotherapy
sensitivity should be considered before designing the treatment
plan. Furthermore, short-term radiotherapy response does
not always equate to long-term treatment outcomes. Hence,
we also established an OS-related signature (AROS) beyond
a radiotherapy sensitivity predictive signature (ARRS). The
differential expression analysis and autophagy-related gene
selection provided strong background support.

With the advent of immunotherapy, the interaction of
radiotherapy and the immune system has gained widespread
interest, and this interaction has been increasingly reported
in NSCLC (Herter-Sprie et al., 2016). Radiotherapy has
been demonstrated to promote tumor cell death and

enhance antitumor immune responses by converting poorly
immunogenic tumors into more highly immunogenic ones, not
only through immunogenic cell death (ICD) but also through the
modification of the characteristics of key immune cells within
the tumor microenvironment (Keam et al., 2020). However,
radiotherapy may be a double-edged sword; it induces activation
and infiltration of T cells to the tumor bed, but it also triggers
migration of immunosuppressive cells and upregulates inhibitory
ligands and receptors (Keam et al., 2020). To improve the
beneficial effects and reduce the risks, the biological responses
and toxicities of radiation and drugs should be accurately
modeled. However, the combination and the optimal timing,
dose, or schedules of radiotherapy and immunotherapy are still
controversial (Aliru et al., 2018). In addition to investigating
the molecular features of patients’ responses to radiotherapy,
we also described their tumor microenvironment by the bulk
RNA-seq results in the present study. Autophagy-related risk
scores predict not only radiotherapy sensitivity and OS but also
the landscape of ICIs, immune cell infiltration, and immune
cycle activation. These signature models may aid treatment
decision making with consideration of concurrent radiotherapy
and immunotherapy.

There were several limitations to this study. First, due
to the incompleteness of primary therapy outcome success
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data in TCGA, fewer than 90 patients met our inclusion
requirements. In addition, the lack of an index may render
an inaccurate interpretation. Second, the prognostic signature
was not validated because of the rarity of data sets recording
radiotherapy responses in NSCLC patients. Third, although
a potential regulatory mechanism has been constructed, no
experimental support was provided. To ameliorate the limitations
described above, single institution or multicenter clinical
retrospective or prospective study should be conducted to verify
the predictive value of prognostic signatures, and experiments
should be rigorously designed to demonstrate the regulatory
network of NSCLC.

In conclusion, we examined the role of autophagy-
related genes (ARGs) and gene sets (ARGSs) in the
radiotherapy response of NSCLC patients by mining
public data. First, we verified the clinical significance
of autophagy in the radiotherapy response of NSCLC
patients by analyzing the correlation between ARGs or
ARGSs and clinicopathologic factors, prognosis, and the
immune microenvironment. In addition, the circRNA-miRNA-
ARmRNA-ARGS network was constructed to predict the
regulatory mechanisms underlying the radiation response of
NSCLC. In summary, our work provided useful information
to introduce potential molecular classifications and regulatory
mechanisms into radiotherapy short- and long-term responses of
NSCLC patients.
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Background: Colon cancer (CC) remains one of the most common malignancies with a
poor prognosis. Pyroptosis, referred to as cellular inflammatory necrosis, is thought to
influence tumor development. However, the potential effects of pyroptosis-related
regulators (PRRs) on the CC immune microenvironment remain unknown.

Methods: In this study, 27 PRRs reported in the previous study were used to cluster the
1,334 CC samples into three pyroptosis-related molecular patterns. Through subtype
pattern differential analysis and structure network mining using Weighted Gene Co-
expression Network Analysis (WGCNA), 854 signature genes associated with the
PRRs were discovered. Further LASSO-penalized Cox regression of these genes
established an eight-gene assessment model for predicting prognosis.

Results: The CC patients were subtyped based on three distinct pyroptosis-related
molecular patterns. These pyroptosis-related patterns were correlated with different
clinical outcomes and immune cell infiltration characteristics in the tumor
microenvironment. The pyroptosis-related eight-signature model was established and
used to assess the prognosis of CC patients with medium-to-high accuracy by employing
the risk scores, which was named “PRM-scores.”Greater inflammatory cell infiltration was
observed in tumors with low PRM-scores, indicating a potential benefit of immunotherapy
in these patients.

Conclusions: This study suggests that PRRs have a significant effect on the tumor
immune microenvironment and tumor development. Evaluating the pyroptosis-related
patterns and related models will promote our understanding of immune cell infiltration
characteristics in the tumor microenvironment and provide a theoretical basis for future
research targeting pyroptosis in cancer.
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INTRODUCTION

Colon cancer (CC) is one of the most common malignancies of
the digestive system, and it still has a high mortality (Sanoff et al.,
2007). Worryingly, the recurrence and mortality rates of CC are
in fact increasing (Bray et al., 2018). In spite of recent
developments in treatment, the 5-years survival rate has not
been significantly improved. Consequently, it is urgent to find
gene signatures or biomarkers to identify the inherent genetic and
epigenetic heterogeneity of CC and establish prognostic models
for guiding therapy.

Numerous studies have shown that cancer cells can undergo
cell death through pyroptosis, but the function of pyroptosis in
tumor development and the tumor immune microenvironment
are still controversial (Miao et al., 2011; Broz et al., 2020; Petley
et al., 2021). Pyroptosis refers to a distinct form of programmed
cell death, which is characterized by cells swelling with large
ballooning bubbles emerging from the plasma membrane and
releasing inflammatory cellular contents (Zhang et al., 2018;
Frank and Vince, 2019). Unlike apoptosis, pyroptosis
contributes to the activation of a variety of cytokines and
danger-associated signaling molecules, which is accompanied
with immune cell infiltration and inflammatory responses
(Frank and Vince, 2019). During the process of pyroptosis,
mature caspase-1 promotes the production of pro-
inflammatory cytokines of the classical pathway, such as IL-
1β7 and IL-18, which can recruit inflammatory cells and
influence the tumor microenvironment (TME) (Dupaul-
Chicoine et al., 2010; Kolb et al., 2014). Additionally, caspase-
3 can be activated by antitumor drugs and promote the cleavage
of gasdermin E (GSDME) into GSDME-N to switch the cell death
mode from apoptosis to pyroptosis (Kayagaki et al., 2015; Tang
et al., 2020). Pyroptosis can promote a tumor-suppressive
environment by recruiting inflammatory cells and causing
local inflammation, but it can also inhibit antitumor immunity
and promote tumor development in many cancer types
(Martinon et al., 2002; He et al., 2015; Van Gorp and
Lamkanfi, 2019). For instance, it was reported that pyroptosis
in a small fraction of cancer cells in the central hypoxic region of
the tumor induces chronic tumor necrosis, which in turn inhibits
antitumor immunity (Kayagaki et al., 2011). Accordingly, the role
of pyroptosis in the development of CC still requires
further study.

Recent studies have suggested that pyroptosis-related (PR)
regulators would play a significant role in regulating pyroptosis
(Knodler et al., 2014; Viganò et al., 2015; Yang et al., 2018).
Gasdermin D (GSDMD) has been proved to be a direct substrate
of inflammatory caspases and plays the role of the major executor
of pyroptosis in macrophages (Wang et al., 2020). Studies have
also proposed that GSDMDmay be positively correlated with the
migration and invasion of lung cancer (Zanoni et al., 2016).
However, downregulation of GSDMD expression was found to
promote S/G2 cell cycle transition, which indicated that GSDMD
may serve as a tumor suppressor in gastrointestinal cancers
(Zanoni et al., 2016). Furthermore, GSDMA/B/C was proved
to be the substrate of caspases or granzymes, and the
oligomerization of its N-terminal in the membrane was found

to increase pyroptosis (Lee et al., 2018). In most previous studies,
the function of these PR regulators was identified individually
through classical approaches. However, the composition of the
TME is complex, and many tumor regulators can interact in a
highly coordinated manner. Therefore, comprehensively
estimating the immune cell infiltration characteristics of the
TME with multiple PR regulators would increase our
understanding of tumor immunity and the antitumor
inflammatory response.

In the current study, we established a molecular subtype
classification pattern by integrating the genomic information
of 1,023 CC samples based on 27 PR regulators. The CC
samples were classified into three distinct PR patterns, which
were associated with the tumor immune microenvironment and
prognosis. Additionally, we developed a risk assessment tool
related to PR regulators and defined the PR risk assessment
model (PRM) scores using LASSO regression analysis and
machine learning, which could be used to assess the prognosis,
immune infiltration, and potential treatment targets of CC.

MATERIALS AND METHODS

Colon Cancer Dataset Source
The workflow chart is shown in the Supplementary Data
(Supplementary Figure S1). The public gene-expression data
for transcriptome profiling and the corresponding clinical
annotation were obtained from Gene Expression Omnibus
(GEO) and The Cancer Genome Atlas (TCGA) database on
May 1, 2021. There were four eligible CC cohorts of gene-
expression data (GSE39582, GSE33113, and TCGA–Colon
Adenocarcinoma [TCGA-COAD) (discovery data) and
GSE17538 (independent validation data)]. We downloaded the
raw microarray data form the Affymetrix Human Genome U133
Plus 2.0 Array of GEO database and the RNA sequencing data
(fragments per kilobase of transcript million mapped reads
(FPKM) value) of TCGA. We employed the “ComBat”
algorithm in “SVA” package to adjust the batch effects from
nonbiological technical biases among different CC RNA-seq
data. And all of the RNA-seq data were adjusted for
background adjustment and quantile normalization with robust
multiarray averaging method in “affy” and “simpleaffy” packages.
And theDNA sequencing of annotated somatic mutation of single-
nucleotide polymorphisms (SNPs) and copy number variation
(CNV) data for CC were also downloaded from TCGA. All CC
samples were coded according to the third Edition of International
Classification of Diseases for Oncology (ICD-O-3). And the
exclusion criteria included patients with incomplete survival
information and missing data on neoplasm histologic type.

Identification of Pyroptosis-Related
Regulators
From previous research, we identified a total of 27 PR genes
presented in the Supplementary Data (Supplementary Table S1).
All of PR genes were gathered from previous study and MSigDB
database (Latz et al., 2013; Shi et al., 2015; Orning et al., 2018;
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Karki and Kanneganti, 2019; Li et al., 2021). For example, the
previous study suggested that the caspase (CASP) family (CASP1,
CASP3, CASP4, CASP5, CASP6, CASP8, and CASP9) was related
to GSDMD, GSDMB, GSDMA, and GSDMC, which were
significant for cancer cell pyroptosis (Shi et al., 2015; Li et al.,
2021). And study showed that CASP3 and Granzyme B (GZMB)
could help to convert cell apoptosis into pyroptosis (Orning et al.,
2018). A protein–protein interaction (PPI) network for the
differentially expressed genes (DEGs) was constructed with
Search Tool for the Retrieval of Interacting Genes (STRING),
version 11.0 (https://string-db.org/).

Unsupervised Clustering for Colon Cancer
Molecular Subtypes
We built a novel PRmolecular subtype based on the level of 27 PR
genes identified from three CC cohorts. The unsupervised
clustering analysis clustering algorithm was performed to
estimate the patterns of pyroptosis regulation and classify the
CC samples for further analysis. The stability and patterns of
molecular clusters were adjusted by the consensus clustering
algorithm (Wong, 1979). The “ConsensuClusterPlus” package
was employed to cluster, and the process was performed
1,000 times (Wilkerson and Hayes, 2010).

Identification of Differentially Expressed
Genes Among Subtypes
To identify PR regulators genes, we need to estimate the
expression level of different genes for studying the molecular
feature among PR subtypes. We identified the DEGs with the
empirical Bayesian approach in “limma” package, and we set the
|log2-fold change| > 1 and false discovery rate (FDR) < 0.05 as
the significance criteria.

Gene Set Variation Analysis and Gene Set
Enrichment Analysis
To investigate the molecular feature among PR subtypes, we
established gene set variation analysis (GSVA) enrichment
analysis with “GSVA” R packages (Hänzelmann et al., 2013).
The gene set of “c2. cp.kegg.v6.2. symbols” and “c5. all.v6.2.
symbols.gmt” were gathered from the MSigDB database to be
used in GSVA. H: Hallmark gene sets; C2: curated gene sets
[including Kyoto Encyclopedia of Genes and Genomes (KEGG)]
were downloaded from the MSigDB database to be used in gene
set enrichment analysis (GSEA) with the software gsea 3.0. And
we set the adjusted p < 0.05, nominal (NOM) p < 0.05, and FDR q
< 0.05 as the statistically significance to identify the difference on
biological process.

Estimation of Infiltrating Immune Cells and
Immune Microenvironment Characteristics
The Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data (ESTIMATE) was used to
calculate the stromal score, immune-score, tumor-purity, and

ESTIMATE-score for CC (Song et al., 2017). The enrichment
levels of the 29 immune signatures were established based on the
genes set fromMSigDB database (Supplementary Table S1) with
the single-sample GSEA (ssGSEA) (Ritchie et al., 2015; Bu et al.,
2021). And the infection of 22 human immune cells in TME was
established with cell-type identification by estimating relative
subsets of RNA transcripts (CIBERSORT) web portal (https://
cibersortx.stanford.edu/) and 1,000 permutations (Chai et al.,
2019). The deconvolution algorithm output had a p-value <0.05
was set as successful and accurate deconvolution, which would be
normalized to make their direct interpretation as cell fractions for
comparison across different groups.

Weighted Gene Co-Expression Network
Analysis
The Weighted Gene Co-expression Network Analysis
(“WGCNA”) R package was employed to build the co-
expression network of DEGs (van Houwelingen et al., 2006).
The co-expression similarity matrix, Pearson’s correlation
matrices, and average linkage method were involved in
evaluating the correlations among the included genes. The
Amn � |Cmn|β (Amn is theadjacency between gene m and
gene n; Cmn, Pearson’s correlation between gene-m and gene-
n; and β, soft thresholding parameter) could show that the
strength of correlations contributes to the weighted adjacency
matrix with a scale-free co-expression network. The topological
overlap matrix (TOM) was used to identify the connectivity and
dissimilarity of the co-expression network established with an
appropriate β value.

Statistical Analysis
The log-rank test and the Kaplan–Meier survival analysis were
used to evaluate the difference in overall survival (OS) among
different groups. We used the package “caret” to allocate all the
CC patients in inner-training and inner-testing groups randomly
through the 8:2 ratio, which contributed to enhance the
generalization ability of model. The LASSO-penalized Cox
regression model was used to evaluate the role of genes to
identify signatures significantly associated with the patients’
OS. And the 10-fold cross validation was employed to prevent
overfitting with the penalty parameter lambda.1se (Heagerty
et al., 2000). The univariable and multivariate Cox regression
analyses were used to identify the independent prognostic factors
and to establish eight PR signatures and nomogram based on the
forward and backward elimination methods. The area under the
curve (AUC) and the time-dependent receiver operating
characteristic (ROC) curve were used to evaluate the
prognostic accuracy of the eight PR signatures model in inner-
training and inner-testing groups with the package “survival
ROC” (Pei et al., 2020). The PRM-scores were established
based on the eight PR signatures model, and the median of
PRM-scores was set as the cutoff value to the separate patients
into high- and low-PRM-score groups. Bootstrap method was
performed to validate the Cox model internally and externally.
Bootstrap-corrected OS rates were calculated by averaging the
Kaplan–Meier estimates based on 2,000 bootstrap samples.
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FIGURE 1 | Landscape of genetic and expression variation of pyroptosis-related regulators in colon cancer. (A, B) The mutation frequency and classification of
27 pyroptosis-related regulators in colon cancer based on The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-COAD). (C) The expression of 27 pyroptosis-
related regulators in colon cancer and normal tissues: tumor, blue; and normal, red. The upper and lower ends of the boxes represent the interquartile range of values.
The lines in the boxes represent median value, and black dots show the outliers. The asterisks represent the statistical p-value. Mann–Whitney U test. *p < 0.05;
**p < 0.01; ***p < 0.001; p ≥ 0.05, not significant. (D) Heatmap showing the correlation of genetic variation and expression variations of pyroptosis-related regulators.
Left: genetic variation; right: expression variations. p < 0.05. (E) The correlation network of the pyroptosis-related genes (red line, positive correlation; blue line, negative
correlation; the depth of the colors reflects the strength of the relevance).
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RESULTS

TheGenetic and ExpressionCharacteristics
of Pyroptosis-Related Regulators in Colon
Cancer
A total of 27 PR regulators were identified in CC in this study with
three eligible CC cohorts. We dissect the incidence of somatic
mutations and molecular signatures of PR regulators in CC from
TCGA-COAD (Figure 1A). The result showed that 109 of 590 CC
samples experienced mutations of PR regulators, with frequency of
23.33%. It was found that themissensemutation exhibited the highest
frequency variant classification. Both C>T ranked and SNPs were the
most frequent alternatives in single-nucleotide variant (SNV) class
and variant type. The NLRP7 exhibited the highest alteration
frequency followed by SCAF11, while the PRKACA, CASP6,
PYCARD, and TNF showed extremely low alteration frequency in
CC samples (Figure 1B). To ascertain whether the above genetic
variations influenced the expression of PR regulators in CC patients,
we investigated the mRNA expression levels of regulators between
normal and CC samples (Mann–Whitney U test; *p < 0.05; **p <
0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 1C). The
expression of CASP4, GASP8, GPX4, GSDMC, GZMB, IL1B,
NOD1, NOD2, and PLCG1 was increased; while the expression of
AIM2, CASP1, CASP3, CASP5, CASP6, CASP9, GSDMB, GZMB,
IL18, NLRP1, and NLRP7 was decreased in CC samples compared
with normal tissues. Correlation analysis was performed with genetic
variation and expression variations of PR regulators in CC to further
investigate the relationship among these regulators (left: genetic
variation; right: expression variations) (Figure 1D). The
correlation network containing all PR genes is presented in
Figure 1E (red: positive correlations; blue: negative correlations).

Construction of a Molecular Subtype
Classification Pattern for Colon Cancer
Mediated by 27 Pyroptosis-Related
Regulators
To explore the potential biological molecular of PR regulators, we
established a PRmolecular subtype using consensus clustering analysis
for CCpatients. ThreeCCdatasets with available clinical and follow-up
information (GSE39582, GSE33113, and TCGA-COAD) were

FIGURE 2 | Subgroups of colon cancer related by pyroptosis-related
regulators. (A) The consensus score matrix of all colon cancer patients when k �
3 in three cohorts based on the three eligible colon cancer (CC) cohorts of gene-
expression data (GSE39582, GSE33113, and The Cancer Genome
Atlas—Colon Adenocarcinoma (TCGA-COAD)). Two samples were more likely
to be grouped into the same cluster when there was a higher consensus score

(Continued )

FIGURE 2 | between them in different iterations. (B) OS curves for the three
pyroptosis-related (PR) clusters based on colon cancer patients from three
cohorts (log-rank test, p < 0.01). OS, overall survival. (C) The expression of
27 pyroptosis-related regulators in three PR clusters: PR-A, red; PR-B, green;
and PR-C, blue. The upper and lower ends of the boxes represent the
interquartile range of values. The lines in the boxes represent median value,
and black dots show outliers. The asterisks represent the statistical p-value.
ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant. (D)
These heatmaps were employed to visualize Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyzed by gene set variation
analysis (GSVA), which presented the enrichment biological pathways in
distinct three PR clusters (Bayes moderation, pp < 0.05; ppp < 0.01; pppp <
0.001).
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incorporated into one meta-cohort and clustered into three molecular
subtypes (PR-A, PR-B, and PR-C) based on the expression of 27 PR
regulators (Figure 2A). There are high intragroup correlations and low
intergroup correlations in this classification pattern. There was also a
significant difference in the survival among three subtypes (Figure 2B).
The results of survival analysis proved that theOS of the PR-B and PR-
Cgroupswas significantly lower than that of thePR-Agroup according
to the Kaplan–Meier curves of the CC cohorts (log-rank test, p < 0.01,
Figure 2B). The expression of 27 PR regulators was different in three
subtypes (ANOVA test, *p< 0.05; **p< 0.01; ***p< 0.001; p≥ 0.05, not
significant) (Figure 2C). In order to further portray the biological
characteristics of these distinct molecular subtypes, we established

GSVA enrichment analysis, including the KEGG and Gene
Ontology (GO). The PR-A showed enrichment in terms of
pathways associated with immune activation, including IL-17
production, T cell-mediated cytotoxicity, T cell-mediated, T-cell
chemotaxis, and T-cell migration and differentiation. PR-B
presented enrichment pathways including the proximal tubule
bicarbonate reclamation, nitrogen metabolism, and tyrosine
phosphorylation of STAT5 protein. While the enrichment pathways
in PR-C were associated with immune suppression, including
downregulation in natural killer (NK) cell activation involved in
immune response, B-cell proliferation, and T-cell activation
involved in immune response.

FIGURE 3 | Distinct three pyroptosis-related (PR) clusters showed diverse tumor microenvironment (TME) cell infiltration. (A) The level of stromalScores,
immuneScores, ESTIMATEScores, and tumorPurity calculated with ESTIMATE in three PR clusters based on the three eligible colon cancer (CC) cohorts of gene-
expression data (GSE39582, GSE33113, and The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-COAD)). (B) Heatmap showing the correlation of TME cell
infiltration calculated with CIBERSORT. (C) The level of TME cell infiltration in three PR clusters: PR-A, red; PR-B, green; and PR-C, blue. The upper and lower ends
of the boxes represent the interquartile range of values. The lines in the boxes represent median value, and black dots show outliers. The asterisks represent the statistical
p-value. ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant.
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Different Characteristics of Tumor
Microenvironment Cell Infiltration Among
Three Pyroptosis-Related Subtypes
In addition, we tend to estimate the immune microenvironment
among the PR molecular subtypes. The TME cell infiltration
characteristics were calculated with ESTIMATE, including the
tumor purity and immune-scores (ANOVA test, *p < 0.05;
**p < 0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 3A).
The result showed that the immune-scores and ESTIMATE were
the highest in PR-A among three subtypes, which suggested that
the PR-A presented a high level of immune fully activation. The
highest stromal-scores and tumor purity were in PR-C, and the
lowest immune-scores were in PR-C, which suggested that the PR-
C may characterized by the suppression of immunity. To
investigate the proportions and differences of tumor infiltrating
immune cell subsets among PR regulators subtypes, we employed a
deconvolution algorithm with the CIBERSORT method
(Figure 3B, Supplementary Figures 1A,B). The results noted
that there were significant differences on the compositions of
TME cell types among the three PR subtypes, which suggested
that PR regulators may influence the types of TME infiltrating cell
in CC. We found that the infiltration of activated immune cell in
TMEwas abundant in PR-A, including the presence of CD8T cells,
activated NK cells, and B cells (ANOVA test, *p < 0.05; **p < 0.01;
***p < 0.001; p ≥ 0.05, not significant) (Figure 3C), which were
same with the immune-scores from ESTIMATE. The high level of
immunity may be related to the significant survival advantage (Bai
et al., 2020). The PR-B was enriched with M1 macrophages,
dendritic cells, plasma cells, and CD8 T cells. And the PR-C
was enriched with M2 macrophages, naive B cell, CD4 T-cell
memory resting, and T-cell regulatory cells (Tregs). The PR-C was
reached with M2 macrophages, resting dendritic cells, and Tregs.
And we quantify the enrichment levels of immunity related
pathways and immune cells in CC via ssGSEA with a total of
29 immune-associated gene sets (Supplementary Figure S2).
There was a significant difference in level of HLA genes among
three subtypes. The checkpoint, CD8 T cells, HLA,MHC, and TILs
were the highest in PR-A, which suggested the potentially ability
for immune-inflamed. Based on the characterization of TME cell
infiltration and biological molecular, PR-A was classified as
immune-activated phenotype, with abundant immune cell
infiltration and survival advantage; PR-B was classified as
intermediate phenotype; and PR-C was classified as immune-
excluded phenotype, characterized by the low immune response
and high tumor purity. But the type of TME immune cells was the
same among different subtypes, which showed that the PR
regulators may regulate the level of immune cell infiltration and
that they could not influence the types of cells in TME.

Development and Validation of Risk
Assessment Tool-Constructions Related to
Pyroptosis-Related Regulators for Colon
Cancer Patients
To further reveal the role of PR subtypes for prognosis and
treatment of CC and apply the clusters to guide subsequent

treatment, we established risk assessment tool-constructions
based on the PR subtypes. All the genes were analyzed for co-
expression network analysis using the WGCNA package
(Figure 4A, Supplementary Figure S3). The association was
built among the expression of gene and the PR clusters and
clinical information based on the three eligible CC cohorts of
gene-expression data (GSE39582, GSE33113, and TCGA-
COAD). A total of 18 modules were identified; and the ME in
the brown, yellow, red, and pink modules showed significantly
higher association with PR regulators clusters than other modules
in CC. From these modules, we identified 854 signature genes
associated with the PR regulators (p < 0.05), which were selected
for further analysis. Next, we estimated the independent
prognostic signature of these genes using univariate Cox
regression analysis, and the p-value <0.05 was considered to
be the cutoff criteria. Patients from TCGA-COAD, GSE33113,
and GSE39582 were randomly divided into inner-training and
inner-testing groups through the 8:2 ratio. And we set GSE17538
as the independent validation cohort. Next, we established the
LASSO-Cox regression model and cross validation to calculate
the mean-squared error of genes with independent prognostic
factors (Figure 4B). Eight genes, cytotoxic T-lymphocyte-
associated protein 4 (CTLA4), chemokine (C-C motif) ligand
11 (CCL11), ninein (NIN), transmembrane protein 154
(TMEM154), kinesin family member 7 (KIF7), KIAA1671,
ribonuclease P/MRP 14-kDa subunit (RPP14), and cadherin
19 (CDH19), were identified with the LASSO-Cox regression
model and multivariate Cox regression analysis, which were used
to establish the PRM (Figure 4B). All of these genes had
significant independent prognostic factors in multivariate Cox
regression analysis (Figure 4C). Besides these, eight genes
expression were different in three PR subtypes (ANOVA test,
*p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant)
(Figure 4D). And CTLA4, CCL11, NIN, TMEM154, KIAA1671,
RPP14, and CDH19 expressions were associated with immune-
scores (Figure 4E). The prognostic index formula for CC was as
follows: PRM-scores � [Status of CTLA4 * (−0.27274) + Status of
CCL11 * (−0.05312) + Status of NIN * (0.30814) + Status of
TMEM154 * (−0.21183) + Status of KIF7 * (0.55555) + Status of
KIAA1671 * (−0.15928) + Status of RPP14 * (−0.34418) + Status
of CDH19 * (0.45252)]. We divided colon patients into high- and
low-PRM-score groups based on the median value, which was set
as the cutoff value to divide the patient into high or low group in
the validation cohorts.

The survival analysis suggested that the OS of the high-PRM-
score group was significantly lower than that of the low-PRM-
score group in inner-training cohort (log-rank test, p < 0.001,
Figure 5A), as well as the Kaplan–Meier curves of the inner-
testing cohort (log-rank test, p < 0.001, Figure 5E). The PRM-
score distribution and the expression of eight PR significant genes
in the inner-training and inner-testing cohorts are presented in
Figures 5B,C,F–G. Then, ROC curves were used to estimate the
validity of the eight PR risk assessment tool-constructions in CC
cohorts. The AUCs were equal to 0.738 at 3 years and 0.782at
5 years in the inner-training group (Figure 5D, Supplementary
Figures 4A, B). Similarly, the AUCs were equal to 0.708 at 3 years
and 0.753 at 5 years in the inner-testing group (Figure 5H,
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Supplementary Figure 4C), which showed that the model could
achieve satisfactory predictive accuracy in both the inner-training
and inner-testing cohorts. We established the survival analysis
and ROC curves in the independent validation cohort
(GSE17538), which showed the significant difference in OS
between high- and low-PRM-score groups (log-rank test, p <

0.001, Supplementary Figure 5A). The AUCs were equal to 0.644
at 3 years and 0.684 at 5 years in the independent validation
group (Supplementary Figures 5B, C). And we established the
model to predict the prognosis based on PR genes with “random
Survival Forest” (Supplementary Figures 6A–C). And the 10-
fold cross validation was employed to prevent overfitting.

FIGURE 4 | Generation of risk assessment tool-constructions to predict patient survival related to pyroptosis-related regulators for colon cancer patients. (A)
Identification of a co-expression module in colon cancer. Each piece of the leaves on the cluster dendrogram corresponded to a gene, and those genes with similar
expression patterns compose a branch. Correlation between gene modules and clinical features or three pyroptosis-related (PR) clusters. The upper row in each cell
indicates the correlation coefficient ranging from −1 to 1 of the correlation between a certain genemodule and clinical features or three PR clusters. The lower row in
each cell indicates the p-value. (B) In the LASSO-Cox model of inner-training cohort from GSE39582, GSE33113, and The Cancer Genome Atlas—Colon
Adenocarcinoma (TCGA-COAD) data, the minimum standard was adopted to obtain the value of the super parameter l by 10-fold cross validation. (C) Hazard ratio and
p-value of the constituents involved in multivariate Cox regression analyses of eight signatures in inner-training cohorts. (D) The expression of eight signatures in three PR
clusters: PR-A, red; PR-B, green; and PR-C, blue. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent
median value, and black dots show outliers. The asterisks represent the statistical p-value. ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant. (E)
The association between the immuneScores calculated with ESTIMATE and the expression of eight signatures related to three PR clusters.
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FIGURE 5 | Construction and validation of the PRM-scores in colon cancer cohorts. (A) Kaplan–Meier curves for the overall survival (OS) of colon patients in inner-
training cohort between the high- and low-PRM-scores groups based on GSE39582, GSE33113, and The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-
COAD) data (log-rank test, p < 0.01). (B, C) Distribution of PRM-scores and the expression of eight signatures related to three pyroptosis-related (PR) clusters in inner-
training cohort. (D) receiver operating characteristic (ROC) curves demonstrated the predictive efficiency of the PRM-scores in inner-training cohort. (E)
Kaplan–Meier curves for the OS of colon patients in validation cohort between the high- and low-PRM-scores groups (log-rank test, p < 0.01). (F, G)Distribution of PRM-
scores and the expression of eight signatures related to three PR clusters in validation cohort. (H) ROC curves demonstrated the predictive efficiency of the PRM-scores
in validation cohort.
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Differences of Immune Function and
Biological Characteristic Between Risk
Assessment Model-Scores Groups
We estimated the immune microenvironment between the eight
genes related high- and low-PRM-score groups. Only the
immune-scores were significant different between two groups,
and the level of tumor-purity was the same in the two groups
(Mann–Whitney U test, *p < 0.05; **p < 0.01; ***p < 0.001; p ≥
0.05, not significant) (Figure 6A). We found that the infiltration
of activated immune cell in TME was abundant in low-PRM-
score groups, including the M1 macrophages, NK cells, CD4
T cells (Mann–Whitney U test, *p < 0.05; **p < 0.01; ***p < 0.001;
p ≥ 0.05, not significant) (Figure 6B). To further evaluate the
association between the expression of the tumor immune
microenvironment and these eight genes, we analyzed the
corrections between the 22 types of immune cell infiltration

profiles and these eight genes (Supplementary Figure S7).
GSEA was used to analyze potential biological characteristics
of the PRM-score groups in CC patients. As shown in Figures
6C,D, according to the Hallmark and KEGG collection defined by
MSigDB, the genes in the high-PRM-score group were mainly
enriched in angiogenesis, KRAS signaling, and epithelial
mesenchymal transition. And the genes in the low-PRM-score
groups were mainly enriched in cell cycle, P53 signaling pathway,
T-cell receptor signaling pathway, and PI3K/AKT/MTOR
signaling.

Establishment and Validation of the
Nomogram
The univariate and multivariable Cox regression models were
applied to the inner-training cohort to evaluate the predictors of
OS. Univariate analyses indicated that age, stage-N, stage-M,

FIGURE 6 | Characteristics of the PRM-scores scoring model for colon cancer patients. (A) The level of stromalScores, immuneScores, ESTIMATEScores, and
tumorPurity calculated with ESTIMATE in high- and low-PRM-scores groups. (B) The level of tumor microenvironment (TME) cell infiltration in high- and low-PRM-scores
groups: high PRM-scores, red; and low PRM-scores, blue. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes
represent median value, and black dots show outliers. The asterisks represent the statistical p-value. Mann–Whitney U test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥
0.05, not significant. (C) The enriched gene sets in Kyoto Encyclopedia of Genes and Genomes (KEGG) by samples with high-risk sample. And only several leading gene
sets are displayed in the plot. (D) Enriched gene sets in Hallmark collection by samples of high-risk sample. Only several leading gene sets are shown in the plot. Each line
represents one particular gene set with unique color, and upregulated genes are located in the left approaching the origin of the coordinates; by contrast, the
downregulated genes are on the right of the x-axis. Only gene sets with nominal (NOM) p < 0.05 and false discovery rate (FDR) q < 0.05 were considered significant. And
only several leading gene sets are displayed in the plot.
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PRM-scores, and PR subtypes were associated with OS in CC
patients (p < 0.05 in all cases, Table 1). Next, the multivariate Cox
analyses found that age, stage-N, stage-M, PRM-scores, and PR
subtypes were independent risk factors for OS based on forward
and backward elimination methods (Table 1).

Because stage-N, age, stage-M, PRM-scores, and PR subtypes
were predictive for OS in multivariate analysis, these variables
were further included in the nomogram, which was for predicting
the 1, 3, and 5-years OS for CC patients (Figure 7A). The
weighted total score, calculated from these factors, was applied
to predict the 1, 3, and 5-years OS of CC patients.

Besides, the model showed good accuracy for predicting the
OS, and internal validation was performed using the inner-
training cohort with a C-index of 0.739. Furthermore, the
decision curve analysis (DCA) results of the nomograms also
confirmed their clinical applicability for predicting the OS, with
superior performance compared with PRM-scores and PR
subtypes (Figure 7B). Calibration curves for the probability of
OS at 3 and 5 years indicated satisfactory consistency between
actual observation and nomogram-predicted OS probabilities in
CC cohort (Figure 7C, Supplementary Figure 4B).

DISCUSSION

Pyroptosis is a newly discovered type of programmed cell death
induced by inflammasomes, leading to membrane rupture and

the release of cell contents that trigger the inflammatory response.
It has a dual function in tumor development, inhibiting tumor
growth in liver cancer and having an ambiguous effect in breast
cancer (Tan et al., 2021). Gasdermin family proteins are the
executors of pyroptosis, which is regulated by multiple signaling
factors and stromal cells in the TME. A comprehensive
bioinformatics analysis of PR regulators is needed to evaluate
the involved molecular signatures and signaling pathways,
promising better results than those obtained when judging the
prognosis using individual gasdermin proteins. Therefore, we
evaluated the factors and molecular signatures related to
pyroptosis to establish a classification and prognostic model,
which provides potential signatures for CC therapy targeting
pyroptosis.

In this study, we revealed three distinct pyroptotic tumor
subtypes based on the expression of 27 PR regulators. These three
subtypes had a significantly distinct prognosis, immune cell
infiltration, and molecular characteristics. The PR-A subtype
was characterized by a survival advantage, high immune-
scores, and abundant immune cell infiltration, corresponding
to an immunologically activated phenotype. The PR-B subtype
corresponded to an intermediate phenotype. Finally, the PR-C
type was characterized by a low immune response and high
tumor purity, corresponding to an immune-excluded phenotype.
According to the functional enrichment analysis, PR-C tumors
exhibited low immune-scores and IL-17 production, T cell-
mediated cytotoxicity, T-cell chemotaxis, and T-cell migration

TABLE 1 | Univariable and multivariable Cox regression analyses of OS in CC patients.

Characteristic (OS) Univariable analysis Multivariable analysis

HR (95% CI) p-Value HR (95% CI) p-Value

Age (years) — — — —

<60 1 — 1 —

≥60 1.24 (1.93–1.67) 0.031 1.44 (1.07–1.94) 0.016
Gender — — — —

Female 1 — — —

male 1.28 (0.99–1.65) 0.056 — —

T stage — — — —

T1/2 1 — 1 —

T3/4 1.73 (1.06–2.85) 0.029 1.24 (1.15–2.05) 0.043
Unknown 3.74 (1.71–5.18) <0.001 0.98 (0.26–3.71) 0.981
N stage — — — —

N0 1 — 1 —

N1/2 1.78 (1.38–2.32) <0.001 0.20 (0.90–1.64) 0.181
Unknown 2.59 (1.50–4.48) <0.001 1.73 (1.25–4.33) 0.021
M stage — — — —

M0 1 — 1 —

M1 4.58 (3.36–6.24) <0.001 3.55 (2.51–3.70) <0.001
Unknown 2.69 (1.74–4.19) <0.001 2.09 (1.17–3.74) 0.002
PRM-scores — — — —

Low 1 — 1 —

High 3.76 (2.82–5.01) <0.001 3.17 (2.36–4.26) <0.001
Pyroptosis-related molecular subtype — — — —

PR-A 1 — 1 —

PR-B 1.69 (1.25–2.31) <0.001 1.31 (1.09–1.81) 0.013
PR-C 1.78 (1.28–2.49) <0.001 1.27 (1.09–1.82) 0.034

Note. Multivariate Cox regression analysis is used to calculate the HRs and 95% CIs for OS in CC patients. Covariables that are significant in univariable competing risk regression analysis
(p < 0.05) are included in the multivariable analysis.
HR, hazard ratio; CI, confidence interval; CC, colon cancer; OS, overall survival.
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and differentiation, which were related to immune suppression,
including the downregulation of NK cells, reduced B-cell
proliferation, and subdued T-cell activation.

In order to provide a theoretical basis for the clinical treatment
of CC, we established a reliable risk assessment tool based on three
PR subtypes. The PS-score takes into account the heterogeneity of
patients and links pyroptosis with the clinical prognosis. The PRM-
scores were estimated based on the fractions of eight genes from the
PR key module, and it featured both tumor promoter and
suppressors, which were weighted differently. CTLA4, a
member of the immunoglobulin superfamily, has been proved
to act as an immunosuppressor that can convey the inhibitory

signal to T cells in most tumors (Liu et al., 2021a; Sena et al., 2021).
The treatment with immune checkpoint inhibitors (ICIs) against
CTLA4 could reinvigorate the exhausted antitumor immunity
(Wang et al., 2021a; Imazeki et al., 2021). Our results showed
that CTLA4 expression is related to the tumor infiltration
characteristics of multiple immune cell types. CCL11, a
neutrophil-related chemokine, exerts a chemotactic effect on
eosinophils by interacting with CXCR3 and CCR5 (Wang et al.,
2021b), which was found to be a potential prognostic signature for
TNM stage II CC patients (Liu et al., 2021b). NIN is essential for
the construction of the centrosome and helps regulate cell
migration and polarity (Goldspink et al., 2017). SNPs of NIN

FIGURE 7 | The clinical application value of the PRM-scores scoring model and pyroptosis-related (PR) clusters. (A) A nomogram was established for predicting 1, 3,
and 5-years overall survival (OS) in colon cancer. To calculate probability of OS, first, determine the value for each factor by drawing a vertical line from that factor to the points
scale. “Points” is a scoring scale for each factor, and “total points” is a scale for total score. Then sum up all of the individual values and draw a vertical line from the total points
scale to the 1, 3, and 5-years OS probability lines to obtain OS estimates. (B) The decision curve analysis (DCA) of nomogram in inner-training set for 5 years OS. (C)
Calibration curves for the probability of OS at 5 years. The nomogram cohort was divided into three equal groups for validation. The gray line represents the perfect match
between the actual (y-axis) and nomogram-predicted (x-axis) survival probabilities. Black circles represent nomogram-predicted probabilities for each group, and X’s
represent the bootstrap-corrected estimates. Error bars represent the 95% CIs of these estimates. A closer distance between two curves suggests higher accuracy.
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were found to be related with the morbidity of CRC (Grosch et al.,
2013). The research on KIAA1671, CDH19, and TMEM154
mainly focused on their prognostic implications (Blons et al.,
2002; Fernández-Madrid et al., 2004; Zhang et al., 2020). It was
reported that CDH19 was related to the inflammatory response
(Oparina et al., 2015). KIF7 is a member of the kinesin family that
plays a significant role in cancer proliferation (Yao et al., 2019).
TME cell infiltration data demonstrated that the PS-score holds an
important value for immunotherapy. More activated immune cell
infiltration in patients with a low PS-score predicted a better
response to immunotherapy. Furthermore, we established an
efficient and accurate nomogram to guide subsequent treatment
for CC patients.

Finally, there are also some limitations that should be kept in
mind when considering this research. Although we used multi-
database searches to perform the verification from multiple
angles, all of the database searches were retrospective and
lacked complete clinical information. It is necessary to conduct
prospective studies and perform subgroup validation.
Furthermore, there is little current research on the role of
pyroptosis in CC, and our research can only provide
preliminary theoretical support for future experimental
verification. The risk model developed in this study did not
exhibit a better predictive value for the OS of CC patients, and
the random survival forest algorithm exhibited overfitting and
high variance. We plan to implement a more suitable machine
learning method to improve the predictive ability.

In conclusion, we conducted a comprehensive and systematic
bioinformatics analysis for PR regulators and demonstrated their
relationship with the development of CC. This study also suggests
the extensive effect of PR regulators on the tumor immune
microenvironment based on the established PR CC subtypes.
Moreover, we identified eight PR independent risk signatures,
and we built the PRM-score for assessing the prognosis of CC
patients. Our comprehensive evaluation of PR regulators
improves our understanding of the TME and provides an

important theoretical basis for prognosis and selection of
therapeutic strategies.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

ETHICS STATEMENT

This study was approved by the Institutional Review Board of
Chinese Academy of Medical Sciences (CHCAMS, Beijing,
China)/National Cancer Center (NCC, Beijing, China).

AUTHOR CONTRIBUTIONS

XW and ZJ had full access to all of the data in the study and take
responsibility for the integrity of the data and the accuracy of the
data analysis. Conception and design: RW, ZJ, and XW. Collection
and assembly of data: RW, SL, GY, XG, ZJ, and XW. Providing
clinical specimens for whole-exome sequencing: XW and ZJ. Data
analysis and interpretation: ZJ and RW. Manuscript writing: all
authors. Final approval of manuscript: all authors. Accountable for
all aspects of the work: all authors.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.755384/
full#supplementary-material

REFERENCES

Bai, K. H., He, S. Y., Shu, L. L., Wang, W. D., Lin, S. Y., Zhang, Q. Y., et al. (2020).
Identification of Cancer Stem Cell Characteristics in Liver Hepatocellular
Carcinoma by WGCNA Analysis of Transcriptome Stemness index. Cancer
Med. 9, 4290–4298. doi:10.1002/cam4.3047

Blons, H., Laccourreye, O., Houllier, A.-M., Carnot, F., Brasnu, D., Beaune, P., et al.
(2002). Delineation and Candidate Gene Mutation Screening of the 18q22
Minimal Region of Deletion in Head and Neck Squamous Cell Carcinoma.
Oncogene 21, 5016–5023. doi:10.1038/sj.onc.1205626

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer
J. Clinicians 68, 394–424. doi:10.3322/caac.21492

Broz, P., Pelegrín, P., and Shao, F. (2020). The Gasdermins, a Protein Family
Executing Cell Death and Inflammation. Nat. Rev. Immunol. 20, 143–157.
doi:10.1038/s41577-019-0228-2

Bu, D., Xia, Y., Zhang, J., Cao,W., Huo, P.,Wang, Z., et al. (2021). FangNet: Mining
Herb Hidden Knowledge from TCM Clinical Effective Formulas Using
Structure Network Algorithm. Comput. Struct. Biotechnol. J. 19, 62–71.
doi:10.1016/j.csbj.2020.11.036

Chai, R.-C., Wu, F., Wang, Q.-X., Zhang, S., Zhang, K.-N., Liu, Y.-Q., et al. (2019).
m6A RNA Methylation Regulators Contribute to Malignant Progression and
Have Clinical Prognostic Impact in Gliomas. Aging 11, 1204–1225.
doi:10.18632/aging.101829

Dupaul-Chicoine, J., Yeretssian, G., Doiron, K., Bergstrom, K. S. B., McIntire, C. R.,
LeBlanc, P. M., et al. (2010). Control of Intestinal Homeostasis, Colitis, and
Colitis-Associated Colorectal Cancer by the Inflammatory Caspases. Immunity
32, 367–378. doi:10.1016/j.immuni.2010.02.012

Fernández-Madrid, F., Tang,N., Alansari, H., Granda, J. L., Tait, L., Amirikia, K. C., et al.
(2004). Autoantibodies to Annexin XI-A and Other Autoantigens in the Diagnosis
of Breast Cancer. Cancer Res. 64, 5089–5096. doi:10.1158/0008-5472.can-03-0932

Frank, D., and Vince, J. E. (2019). Pyroptosis versus Necroptosis: Similarities,
Differences, and Crosstalk. Cell Death Differ 26, 99–114. doi:10.1038/s41418-
018-0212-6

Goldspink, D. A., Rookyard, C., Tyrrell, B. J., Gadsby, J., Perkins, J., Lund, E. K.,
et al. (2017). Ninein Is Essential for Apico-Basal Microtubule Formation and
CLIP-170 Facilitates its Redeployment to Non-centrosomal Microtubule
Organizing Centres. Open Biol. 7, 160274. doi:10.1098/rsob.160274

Grosch, M., Grüner, B., Spranger, S., Stütz, A. M., Rausch, T., Korbel, J. O., et al.
(2013). Identification of a Ninein (NIN) Mutation in a Family with
Spondyloepimetaphyseal Dysplasia with Joint Laxity (Leptodactylic Type)-
like Phenotype. Matrix Biol. 32, 387–392. doi:10.1016/j.matbio.2013.05.001

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 75538413

Wei et al. The Pyroptosis in Colon Cancer

32

https://www.frontiersin.org/articles/10.3389/fgene.2021.755384/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.755384/full#supplementary-material
https://doi.org/10.1002/cam4.3047
https://doi.org/10.1038/sj.onc.1205626
https://doi.org/10.3322/caac.21492
https://doi.org/10.1038/s41577-019-0228-2
https://doi.org/10.1016/j.csbj.2020.11.036
https://doi.org/10.18632/aging.101829
https://doi.org/10.1016/j.immuni.2010.02.012
https://doi.org/10.1158/0008-5472.can-03-0932
https://doi.org/10.1038/s41418-018-0212-6
https://doi.org/10.1038/s41418-018-0212-6
https://doi.org/10.1098/rsob.160274
https://doi.org/10.1016/j.matbio.2013.05.001
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hänzelmann, S., Castelo, R., andGuinney, J. (2013). GSVA:Gene SetVariationAnalysis for
Microarray andRNA-SeqData.BMCBioinformatics14, 7. doi:10.1186/1471-2105-14-7

He, W.-t., Wan, H., Hu, L., Chen, P., Wang, X., Huang, Z., et al. (2015). Gasdermin
D Is an Executor of Pyroptosis and Required for Interleukin-1β Secretion. Cell
Res 25, 1285–1298. doi:10.1038/cr.2015.139

Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). Time-dependent ROC Curves
for Censored Survival Data and a Diagnostic Marker. Biometrics 56, 337–344.
doi:10.1111/j.0006-341x.2000.00337.x

Imazeki, H., Ogiwara, Y., Kawamura, M., Boku, N., and Kudo-Saito, C. (2021).
CD11b+CTLA4+Myeloid Cells Are a Key Driver of Tumor Evasion in Colorectal
Cancer. J. Immunother. Cancer 9, e002841. doi:10.1136/jitc-2021-002841

Karki, R., andKanneganti, T.-D. (2019).Diverging InflammasomeSignals inTumorigenesis
and Potential Targeting. Nat. Rev. Cancer 19, 197–214. doi:10.1038/s41568-019-0123-y

Kayagaki, N., Stowe, I. B., Lee, B. L., O’Rourke, K., Anderson, K., Warming, S., et al.
(2015). Caspase-11 Cleaves Gasdermin D for Non-canonical Inflammasome
Signalling. Nature 526, 666–671. doi:10.1038/nature15541

Kayagaki, N., Warming, S., Lamkanfi, M., Walle, L. V., Louie, S., Dong, J., et al.
(2011). Non-canonical Inflammasome Activation Targets Caspase-11. Nature
479, 117–121. doi:10.1038/nature10558

Knodler, L. A., Crowley, S. M., Sham, H. P., Yang, H., Wrande, M., Ma, C., et al.
(2014). Noncanonical Inflammasome Activation of Caspase-4/caspase-11
Mediates Epithelial Defenses against Enteric Bacterial Pathogens. Cell Host
& Microbe 16, 249–256. doi:10.1016/j.chom.2014.07.002

Kolb, R., Liu, G.-H., Janowski, A. M., Sutterwala, F. S., and Zhang, W. (2014).
Inflammasomes in Cancer: a Double-Edged Sword. Protein Cell 5, 12–20.
doi:10.1007/s13238-013-0001-4

Latz, E., Xiao, T. S., and Stutz, A. (2013). Activation and Regulation of the
Inflammasomes. Nat. Rev. Immunol. 13, 397–411. doi:10.1038/nri3452

Lee, B. L., Stowe, I. B., Gupta, A., Kornfeld, O. S., Roose-Girma, M., Anderson, K., et al.
(2018). Caspase-11 Auto-Proteolysis Is Crucial for Noncanonical Inflammasome
Activation. J. Exp. Med. 215, 2279–2288. doi:10.1084/jem.20180589

Li, L., Gao, Z., Zhao, L., Ren, P., and Shen,H. (2021). LongNon-codingRNALINC00607
Silencing Exerts Antioncogenic Effects on Thyroid Cancer through the CASP9
Promoter Methylation. J. Cel Mol Med 25, 7608–7620. doi:10.1111/jcmm.16265

Liu, H., Sun, S., Wang, G., Lu, M., Zhang, X., Wei, X., et al. (2021). Tyrosine Kinase
Inhibitor Cabozantinib Inhibits Murine Renal Cancer by Activating Innate and
Adaptive Immunity. Front. Oncol. 11, 663517. doi:10.3389/fonc.2021.663517

Liu, Q., Qi, Y., Zhai, J., Kong, X., Wang, X., Wang, Z., et al. (2021). Molecular and
Clinical Characterization of LAG3 in Breast Cancer through 2994 Samples.
Front. Immunol. 12, 599207. doi:10.3389/fimmu.2021.599207

Martinon, F., Burns, K., and Tschopp, J. (2002). The Inflammasome. Mol. Cel 10,
417–426. doi:10.1016/s1097-2765(02)00599-3

Miao, E. A., Rajan, J. V., and Aderem, A. (2011). Caspase-1-induced Pyroptotic Cell
Death. Immunol. Rev. 243, 206–214. doi:10.1111/j.1600-065X.2011.01044.x

Oparina, N. Y., Delgado-Vega, A.M.,Martinez-Bueno,M.,Magro-Checa, C., Fernández,
C., Castro, R. O., et al. (2015). PXKlocus in Systemic Lupus Erythematosus: fine
Mapping and Functional Analysis Reveals Novel Susceptibility geneABHD6. Ann.
Rheum. Dis. 74, e14. doi:10.1136/annrheumdis-2013-204909

Orning, P.,Weng, D., Starheim, K., Ratner, D., Best, Z., Lee, B., et al. (2018). Pathogen
Blockade of TAK1 Triggers Caspase-8-dependent Cleavage of Gasdermin D and
Cell Death. Science 362, 1064–1069. doi:10.1126/science.aau2818

Pei, J., Wang, Y., and Li, Y. (2020). Identification of Key Genes Controlling Breast
Cancer Stem Cell Characteristics via Stemness Indices Analysis. J. Transl Med.
18, 74. doi:10.1186/s12967-020-02260-9

Petley, E. V., Koay, H.-F., Henderson, M. A., Sek, K., Todd, K. L., Keam, S. P., et al.
(2021). MAIT Cells Regulate NK Cell-Mediated Tumor Immunity. Nat.
Commun. 12, 4746. doi:10.1038/s41467-021-25009-4

Ritchie, M. E., Phipson, B.,Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015). Limma
powers Differential Expression Analyses for RNA-Sequencing and Microarray
Studies. Nucleic Acids Res. 43, e47. doi:10.1093/nar/gkv007

Sanoff, H. K., Bleiberg, H., and Goldberg, R. M. (2007). Managing Older Patients
with Colorectal Cancer. Jco 25, 1891–1897. doi:10.1200/jco.2006.10.1220

Sena, L. A., Denmeade, S. R., and Antonarakis, E. S. (2021). Targeting the Spectrum
of Immune Checkpoints in Prostate Cancer. Expert Rev. Clin. Pharmacol. 14,
1253–1266. doi:10.1080/17512433.2021.1949287

Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., et al. (2015). Cleavage of
GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature
526, 660–665. doi:10.1038/nature15514

Song, K., Li, L., and Zhang, G. (2017). Bias and Correction in RNA-Seq Data for
Marine Species. Mar. Biotechnol. 19, 541–550. doi:10.1007/s10126-017-9773-5

Tan, Y., Sun, R., Liu, L., Yang, D., Xiang, Q., Li, L., et al. (2021). Tumor Suppressor
DRD2 Facilitates M1 Macrophages and Restricts NF-Κb Signaling to Trigger
Pyroptosis in Breast Cancer. Theranostics 11, 5214–5231. doi:10.7150/thno.58322

Tang, R., Xu, J., Zhang, B., Liu, J., Liang, C., Hua, J., et al. (2020). Ferroptosis,
Necroptosis, and Pyroptosis in Anticancer Immunity. J. Hematol. Oncol. 13,
110. doi:10.1186/s13045-020-00946-7

Van Gorp, H., and Lamkanfi, M. (2019). The Emerging Roles of Inflammasome-
dependent Cytokines in Cancer Development. EMBO Rep. 20, e47575.
doi:10.15252/embr.201847575

van Houwelingen, H. C., Bruinsma, T., Hart, A. A. M., Van’t Veer, L. J., and
Wessels, L. F. A. (2006). Cross-validated Cox Regression on Microarray Gene
Expression Data. Statist. Med. 25, 3201–3216. doi:10.1002/sim.2353

Viganò, E., Diamond, C. E., Spreafico, R., Balachander, A., Sobota, R. M., and
Mortellaro, A. (2015). Human Caspase-4 and Caspase-5 Regulate the One-step
Non-canonical Inflammasome Activation in Monocytes. Nat. Commun. 6,
8761. doi:10.1038/ncomms9761

Wang, C., Zou, Y., Pan, C., Shao, L., Ding, Z., Zhang, Y., et al. (2021). Prognostic
Significance of Chemokines CCL11 and CCL5 Modulated by Low-Density
Lipoprotein Cholesterol in colon Cancer Patients with normal Body Mass
index. Ann. Transl Med. 9, 202. doi:10.21037/atm-20-1604

Wang, K., Feng, X., Zheng, L., Chai, Z., Yu, J., You, X., et al. (2021). TRPV4 Is a
Prognostic Biomarker that Correlates with the Immunosuppressive
Microenvironment and Chemoresistance of Anti-cancer Drugs. Front. Mol.
Biosci. 8, 690500. doi:10.3389/fmolb.2021.690500

Wang, K., Sun, Q., Zhong, X., Zeng, M., Zeng, H., Shi, X., et al. (2020). Structural
Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis.
Cell 180, 941–955. doi:10.1016/j.cell.2020.02.002

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: a Class
Discovery Tool with Confidence Assessments and Item Tracking.
Bioinformatics 26, 1572–1573. doi:10.1093/bioinformatics/btq170

Wong, J. A. H. A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm.
J. R. Stat. Soc. 28, 100–108.

Yang, J., Liu, Z., Wang, C., Yang, R., Rathkey, J. K., Pinkard, O. W., et al. (2018).
Mechanism of Gasdermin D Recognition by Inflammatory Caspases and Their
Inhibition by a Gasdermin D-Derived Peptide Inhibitor. Proc. Natl. Acad. Sci.
USA 115, 6792–6797. doi:10.1073/pnas.1800562115

Yao, Y., Liu, L., He, W., Lin, X., Zhang, X., Lin, Z., et al. (2019). Low Expression of
KIF7 Indicates Poor Prognosis in Epithelial Ovarian Cancer. Cbm 26, 481–489.
doi:10.3233/cbm-190328

Zanoni, I., Tan, Y., Di Gioia, M., Broggi, A., Ruan, J., Shi, J., et al. (2016). An
Endogenous Caspase-11 Ligand Elicits Interleukin-1 Release from Living
Dendritic Cells. Science 352, 1232–1236. doi:10.1126/science.aaf3036

Zhang, Y., Chen, X., Gueydan, C., and Han, J. (2018). Plasma Membrane Changes
during Programmed Cell Deaths. Cel Res 28, 9–21. doi:10.1038/cr.2017.133

Zhang, Z., Li, J., He, T., and Ding, J. (2020). Bioinformatics Identified 17 Immune
Genes as Prognostic Biomarkers for Breast Cancer: Application Study Based on
Artificial Intelligence Algorithms. Front. Oncol. 10, 330. doi:10.3389/
fonc.2020.00330

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Wei, Li, Yu, Guan, Liu, Quan, Jiang and Wang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 75538414

Wei et al. The Pyroptosis in Colon Cancer

33

https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/cr.2015.139
https://doi.org/10.1111/j.0006-341x.2000.00337.x
https://doi.org/10.1136/jitc-2021-002841
https://doi.org/10.1038/s41568-019-0123-y
https://doi.org/10.1038/nature15541
https://doi.org/10.1038/nature10558
https://doi.org/10.1016/j.chom.2014.07.002
https://doi.org/10.1007/s13238-013-0001-4
https://doi.org/10.1038/nri3452
https://doi.org/10.1084/jem.20180589
https://doi.org/10.1111/jcmm.16265
https://doi.org/10.3389/fonc.2021.663517
https://doi.org/10.3389/fimmu.2021.599207
https://doi.org/10.1016/s1097-2765(02)00599-3
https://doi.org/10.1111/j.1600-065X.2011.01044.x
https://doi.org/10.1136/annrheumdis-2013-204909
https://doi.org/10.1126/science.aau2818
https://doi.org/10.1186/s12967-020-02260-9
https://doi.org/10.1038/s41467-021-25009-4
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1200/jco.2006.10.1220
https://doi.org/10.1080/17512433.2021.1949287
https://doi.org/10.1038/nature15514
https://doi.org/10.1007/s10126-017-9773-5
https://doi.org/10.7150/thno.58322
https://doi.org/10.1186/s13045-020-00946-7
https://doi.org/10.15252/embr.201847575
https://doi.org/10.1002/sim.2353
https://doi.org/10.1038/ncomms9761
https://doi.org/10.21037/atm-20-1604
https://doi.org/10.3389/fmolb.2021.690500
https://doi.org/10.1016/j.cell.2020.02.002
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1073/pnas.1800562115
https://doi.org/10.3233/cbm-190328
https://doi.org/10.1126/science.aaf3036
https://doi.org/10.1038/cr.2017.133
https://doi.org/10.3389/fonc.2020.00330
https://doi.org/10.3389/fonc.2020.00330
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Identification of Six Prognostic Genes
in EGFR–Mutant Lung
Adenocarcinoma Using Structure
Network Algorithms
Haomin Zhang1†, Di Lu2,3†, Qinglun Li4†, Fengfeng Lu5†, Jundong Zhang1,3, Zining Wang1,3,
Xuechun Lu1* and Jinliang Wang2*

1Department of Hematology, The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for
Geriatric Disease, Beijing, China, 2Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing,
China, 3Medical School of Chinese PLA, Beijing, China, 4College of Science, University of Shanghai for Science and Technology,
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This study aims to determine hub genes related to the incidence and prognosis of EGFR-
mutant (MT) lung adenocarcinoma (LUAD) with weighted gene coexpression network
analysis (WGCNA). From The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases, we used 253 EGFR-MT LUAD samples and 38 normal
lung tissue samples. At the same time, GSE19188 was additionally included to verify
the accuracy of the predicted gene. To discover differentially expressed genes (DEGs), the
R package “limma” was used. The R packages “WGCNA” and “survival” were used to
perform WGCNA and survival analyses, respectively. The functional analysis was carried
out with the R package “clusterProfiler.” In total, 1450 EGFR-MT–specific DEGs were
found, and 7 tumor-related modules were marked with WGCNA. We found 6 hub genes in
DEGs that overlapped with the tumor-related modules, and the overexpression level of
B3GNT3 was significantly associated with the worse OS (overall survival) of the EGFR-MT
LUAD patients (p < 0.05). Functional analysis of the hub genes showed the metabolism
and protein synthesis–related terms added value. In conclusion, we used WGCNA to
identify hub genes in the development of EGFR-MT LUAD. The established prognostic
factors could be used as clinical biomarkers. To confirm the mechanism of those genes in
EGFR-MT LUAD, further molecular research is required.

Keywords: EGFR–mutant lung adenocarcinoma, prognosis, WGCNA, TCGA, GEO

INTRODUCTION

Lung cancer is the most prominent cancer-related cause of death worldwide. Non–small-cell lung
carcinoma (NSCLC) accounts for 75–80 percent of all lung cancers and is often detected at an early
stage, resulting in a poor prognosis (Liu et al., 2017). Lung adenocarcinoma is the most prevalent
form of NSCLC (LUAD) (Yang et al., 2020a).

Significant advances in the understanding of lung cancer, especially LUAD, have been made in
recent years. The epidermal growth factor receptor (EGFR) has been identified as an oncoming
engine. Especially in Asian lung adenocarcinoma patients, the frequency of EGFR mutations is
higher (Devanagari et al., 2015). Treatments for managing EGFR-mutant (EGFR-MT) LUAD
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included the following: radiation therapy, surgery,
chemotherapy, and EGFR tyrosine kinase inhibitors (TKIs)
(Hsu et al., 2018). Based on the diagnosis, suitable variations
of the three treatment modalities are chosen. Although the
overall survival (OS) of EGFR-MT LUAD patients has been
significantly improved due to the emergence of TKIs, there are
still some critical patients or TKI-resistant patients with limited
survival advantages (Yang et al., 2020b).

In the past few decades, high-throughput technologies such as
gene chips and gene sequencing have been widely used to identify
driver genes and detect important somatic nucleotide
polymorphisms, and gene fusions during tumorigenesis,
recurrence, and metastasis (Luo et al., 2018; Nahum et al.,
2018; O’Farrell et al., 2019). Understanding these genetic
alterations may assist in interpreting the molecular mechanism
of EGFR-MT LUAD, but the genetic and cytogenetic
complexities intrinsic to EGFR-MT LUAD are difficult to
uncover because cancer biology is regulated by several factors,
including ferroptosis, hypoxia, and tumor microenvironment
(Hanahan and Coussens, 2012; Qiu et al., 2017; Gao et al.,
2019). It is important to establish a realistic and accurate
diagnostic test that can predict the likelihood of EGFR-MT
LUAD metastasis or progression.

Structure network algorithms were widely used to identify
important nodes in a network by measuring the leadership role of
a node based on all of its links (Zeng et al., 2016; Bu et al., 2020).
One of the most remarkable methods is weighted correlation
network analysis (WGCNA), a scientific tool for explaining the
pattern of gene interaction between different samples (Langfelder
and Horvath, 2008). It can be used to locate and scan co-
expressed gene modules and essential biomarkers. This
method has not been used in EGFR-MT LUAD to our
knowledge. The aim of our study was to identify novel gene

network co-expression modules associated with EGFR-MT
LUAD by WGCNA to determine the key signal pathways and
genes involved in EGFR-MT LUAD pathogenesis and
prognostics.

MATERIALS AND METHODS

Figure 1 shows the workflow of the analytical key gene extraction
pipeline. In the following subsections, we elaborate on each step.
In this study, the data of GSE31210 and TCGA were set as the
training set for screening key prognostic genes, and the data of
GSE19188 were set as the test set to verify the results.

Data Sources and Data Preprocessing
GSE31210 (Okinawa et al., 2012; Yamauchi et al., 2012) and
GSE19188 (Hou et al., 2010) were downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo). The “impute” and “limma” packages were used to
supplement the missing data and standardize the two
expression profiles. The two data corresponding to clinical
information were extracted and integrated for subsequent use.

EGFR-MT LUAD RNA-seq data and corresponding clinical
information were downloaded from TCGA (The Cancer Genome
Atlas) database (https://portal.gdc.cancer.gov/). 126 EGFR-MT
LUAD and 18 normal samples of tissues have been presented.
The data were annotated in a human hg38 gene standard track
reference transcript. After the count per million (CPM) < 1 gene
was filtered using the function space in the “edgeR” package,
calculated with gene counts divided according to the gene length,
our next analysis was made with 15,213 genes with RPKM values.
The detailed information of all the data used in this research is
given in Table 1.

FIGURE 1 | Study design and workflow.
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Identification of Tumor-Related Modules
With WGCNA
The TCGA-LUAD and GSE31210 gene expression data were
built using a “WGCNA” package in the form of genetic co-
expression modules in R (Zeng et al., 2016). Soft power β � 1
was chosen in both data to create a scale-free network. Next,
the adjacency matrix was generated using the following
formula: Aid � |Sij|β (aid: adjacency matrix between gene I
and gene j, Sij: similarity matrix rendered by Pearson’s
association of both gene pairs, β: soft power value) and
converted into a topological overlap matrix (TOM) as well
as corresponding dissimilarity (1-TOM). A hierarchical
clustering dendrogram was formed for the 1-TOM matrix
in the subsequent grouping, with a minimum of 50 genes
for dendrogram for the same gene expressions, into separate
gene co-expression modules. The link between the modules
and the details of the clinical characteristics was calculated for
tumor-related modules.

Screen DEGs and Hub Genes Shared With
Tumor-Related Modules
We used the limma package to screen DEGs of TCGA-EGFR-MT
LUAD and GSE31210 (Ritchie et al., 2015). The |log2 (fold
change) |>2 and adjust p value < 0.05 were set to screen
DEGs. The volcano plot of DEGs was visualized by the R
package “ggplot2” (Wickham, 2009). Subsequently, genes
overlapping in modules linked to tumors harvested as hub
gene candidates for later detection were presented as a
diagram of Venn using the package “VennDiagram” (Chen
and Boutros, 2011).

Functional Enrichment for Hub Genes
Functional enrichment analysis for hub genes included Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG: http://www.kegg.jp/kegg/) pathway enrichment analysis,
which were performed for genes by “clusterProfiler” package in R
(Yu et al., 2012). An adjusted p-value <0.05 was considered
significant.

The Validation of Hub Gene Expression
Patterns and Prognostic Values
The expression patterns of the hub gene in various pathological
EGFR-MT LA and normal tissue have been tested to validate the
reliability of the hub genes. The levels of expression of each hub
gene were seen as a box plot graph between EGFR-MT LA and

normal tissue. The “survival” package was used to conduct a
Kaplan–Meier survival analysis based on the data from TCGA
database to explore the correlation between overall survival
(OS) and hub genes in patients. For the survival study, only
patients who had finished their follow-up period were chosen,
and they were split into two classes depending on the median
expression value of hub genes. The survival-related hub genes
with a log-rank p value < 0.05 were regarded as statistically
significant. In order to explore the functions and pathways of
hub genes which were statistically significant, gene set
enrichment analysis (GSEA) was performed in the high-
expression and the low-expression groups; gene sets with |
NES|>1, NOM p < 0.05, were considered to be enrichment
significant.

Microarray Data and the HPA Database
Were Used to Verify Protein Expressions of
Survival-Related Hub Genes
To verify the expression level and survival significance of the 6
hub genes, we introduced another microarray data of LUAD
(GSE19188) for external data verification. Based on the clinical
information of GSE19188, the prognostic significance of the 6
hub genes was verified.

At the same time, we used immunohistochemistry (IHC)
from the Human Protein Atlas (HPA) database (https://www.
proteinatlas.org/) to further verify the protein expression of
survival-related genes (Thul and Lindskog, 2018). Also, the
protein expression pattern based on IHC is the most
commonly used method for detecting the relative position
and abundance of proteins in immunotherapy (Maity et al.,
2013).

RESULTS

Identification of Co-Expression Gene
Modules With WGCNA
A total of 7 modules in the TCGA–EGFR-MT LUAD
(Supplementary Figure S1A) and 9 modules in the
GSE31210 (Supplementary Figure S2A) were identified via
average linkage clustering (excluding gray modules that were
not assigned to any cluster). The results of the module–trait
relationships revealed that 3 modules in the TCGA–EGFR-MT
LUAD and 4 modules in the GSE6631 were found to have an
association with tumor tissues (Supplementary Figures
S1B, S2B).

TABLE 1 | Research usage data information.

Data source Data number Sample size Sample type References Analytical method

TCGA None 126 EGFR–mut LUAD None DEGs; WGCNA; survival analysis
18 normal

GEO GSE31210 127 EGFR–mut LUAD 13,14 DEGs; WGCNA; survival analysis
20 Normal

GSE19188 45 LUAD 15 Verification of expression level and survival significance
65 Normal
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Screen DEGs and Identification of Hub
Genes
1,149 DEGs in the TCGA dataset (Figure 2A) and 301 DEGs in
the GSE31210 dataset (Figure 2B) were defined as deregulated in
tumor tissues using a cutoff criterion (log2 (fold change)≥ 2.0 and
adj. p < 0.05). Subsequently, the extracted 6 genes in DEGs that
overlapped with the tumor-related modules including beta-1,3-
N-acetylglucosaminyltransferase 3 (B3GNT3), adhering 3
(CDH3), cysteine SN (CST1), zinc finger and BTB domain
containing 16 (ZBTB16), keratin 15 (KRT15), and cloth beta
(KLB) were selected as the hub genes for subsequent analysis
(Figure 2C).

Functional Enrichment Analysis for Hub
Genes
After the screening of GO enrichment analysis, the top 5 enriched
gene sets are shown inFigure 3A. The biological process (BP) of 6 hub
genes is mainly enriched in keratinization and the poly-N-
acetyllactosamine biosynthetic process. The cellular component
(CC) showed that these genes were mainly involved in the catering
complex. Moreover, in the molecular function (MF) analysis,
fibroblast growth factor binding and fibroblast growth factor
receptor binding were suggested to be related to the 6 genes. As
shown inFigure 3B, 6 hub genes were enriched in theKEGGpathway
of glycosphingolipid biosynthesis—lacto and neglect series.

FIGURE 2 | DEGs were observed in TCGA and GSE31210 datasets using |logFC|≥2.0 and adj. p < 0.05 as cutoff parameters. (A) Volcano plot of DEGs in TCGA
dataset. (B) Volcano plot of DEGs in the GSE31210 dataset. (C) Genes contained in DEGs and tumor-related modules in a Venn diagram. At the intersection of DEGs
and modules, there are a total of 6 overlapping genes.
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Analysis and Verification of the Hub Gene
Expression Level and Survival Significance
In EGFR-MT LUAD tissues (RNA-seq data from TCGA), all of
the 6 hub genes were found to be substantially downregulated or
unchecked, as shown in Figure 4. Furthermore, Kaplan–Meier
survival studies of the 6 hub genes showed that B3GNT3
overexpression was substantially correlated with poorer overall
survival of EGFR-MT LUAD patients (p < 0.05) (Figure 5).

GSE19188 was used to verify the expression level and
survival significance of the 6 hub genes. It was found that

compared with normal lung tissues, the 6 hub genes were
significantly inhibited or overexpressed, and the results of
B3GNT3 were consistent with the results of RNA-seq data
analysis from TCGA (Figure 6). The GSEA enrichment term
exhibited that high expression of B3GNT3 was mainly
associated with ether lipid metabolism, lysosome, steroid
biosynthesis, glycan biosynthesis, and so on (Table 2).
According to the HPA database, the protein levels of the
B3GNT3 gene were substantially higher in tumor tissues
than in normal tissues (Figure 7).

FIGURE 3 | Six hub genes were analyzed for enrichment. The size of the spots represents the gene number, and the color represents the adjusted p-values (BH).
(A) Result of GO enrichment analysis. (B) Result of KEGG enrichment analysis.
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FIGURE 4 | TCGA database was used to verify the expression levels of 6 hub genes in EGFR-MT LUAD and normal tissues. (A)Gene expression values of B3GNT3
among samples of TCGA. (B) Gene expression values CDH3 among samples of TCGA. (C) Gene expression values of CST1 among samples of TCGA. (D) Gene
expression values of KLB among samples of TCGA. (E) Gene expression values of KRT15 among samples of TCGA. (F) Gene expression values of ZBTB16 among
samples of TCGA.

FIGURE 5 | TCGA database was used to look at the overall survival (OS) of 6 hub genes in EGFR-MT LUAD patients. (A) Survival analysis for B3GNT3. (B) Survival
analysis for CDH3. (C) Survival analysis for CST1. (D) Survival analysis for KLB. (E) Survival analysis for KRT15. (F) Survival analysis for ZBTB16. The patients were
stratified into the high-level group (red) and low-level group (blue) according to the median expression of the gene. Log-rank p < 0.05 was considered to be a statistically
significant difference.
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DISCUSSION

The WGCNA is a valuable method for finding highly correlated
gene modules. The main module’s intramuscular center could be
used for disease detection and prognostication, such as cancer.
We use specific DEGs caused by EGFR mutations to perform
WGCNA on EGFR-MT LUAD and normal lung samples. We
found B3GNT3 correlated with the prognosis of EGFR-MT
LUAD patients. Moreover, the functional analysis found these
6 hub genes mainly enriched in keratinization terms and
glycosphingolipid biosynthesis—lacto and neglect series pathway.

B3GNT3, also known as acetylglucosaminyltransferase, is a
member of the beta-1,3-N-acetylglucosaminyltransferase family
(Ho et al., 2013). It plays a dominant role in L-selectin ligand
biosynthesis, lymphocyte homing, and lymphocyte trafficking.
(Maity et al., 2013). Besides, in early cervical cancer, pancreatic
cancer, and neuroblastoma, the level of B3GNT3mRNA is higher
than that of adjacent control tissues (Ho et al., 2013; Zhang et al.,
2015; Barkley et al., 2018; Li et al., 2018). B3GNT3 was shown to
be upregulated in tumor tissues as opposed to normal tissues in
our sample, with a strong link to EGFR-MT LUAD. Higher levels
of B3GNT3 have been related to a weak prognosis in patients with
NSCLC in previous trials, but it is uncertain which subtype of
NSCLC is involved (Gao et al., 2018). That was in line with our
survival review results, and our research contributes to the
growing body of evidence that B3GNT3 can be used as a
diagnostic and prognostic marker for EGFR-MT LUAD.

Although the other 5 hub genes in our study did not suggest
significance for the OS of EGFR-MT LUAD patients, studies have
confirmed that they are closely related to EGFR-MT LUAD
metastasis, recurrence, and drug resistance. Ting et al. found
that high CDH3 expression is related to EGFR-TKI resistance
(Hsiao et al., 2020a); Cao et al. found that high CST1 expression
can be used as a marker for recurrence and metastasis in patients

with NSCLC (Cao et al., 2015); Wang et al. found that low
expression of ZBTB16 can promote the survival of NSCLC tumor
cells and enhance their invasiveness (Wang et al., 2013; Xiao et al.,
2015). Our study revealed that these genes are heavily enriched in
metabolism-related biological processes such as the poly-N-
acetyllactosamine biosynthetic process, glycosphingolipid
biosynthesis—lacto and neglect series process. This suggests
that they may have an important role in tumor metabolism, to
be explored in further studies.

CDH3, a cell adhesion molecule, is associated with the
function of cells to bind with other cells and the
extracellular matrix (ECM). CDH3 is overexpressed in
many malignancies (Kaupmann et al., 1992). In our study,
it was also found to be overexpressed in EGFR-MT LUAD.
Hsiao et al. (2020b) found that CDH3 overexpression is related
to the patients’ EGFR-TKI resistance, and reducing the
expression level of CDH3 can increase the sensitivity of
EGFR-TKI in patients. Moreover, sCDH3 was positively
associated with the tumor stage in non–small-cell lung
cancer, although it has not been found to have a significant
effect on the prognosis in our study. But these genes’
significance on the metastasis and invasion of EGFR-MT
LUAD still needs to be further studied.

CST1 belongs to the type 2 cystatin superfamily, which
restricts the proteolytic activities of cysteine proteases. It has
been found correlated with multiple tumor metastasis and
invasion (Cui et al., 2019). Dai et al. (2017) found that the OS
in the low CST1 expression subgroup was significantly superior to
the high CST1 expression subgroup. In our study, we found that it
is highly expressed in patients with EGFR-MT LUAD, but its
effect on the prognosis of patients needs further research to
confirm ZBTB16, a member of the Kruppel C2H2-type zinc
finger protein family and encodes a zinc finger transcription
factor that contains nine Kruppel-type zinc finger domains at the

FIGURE 6 | GSE19188 was used to verify the expression levels of 6 hub genes. (A) Gene expression values of B3GNT3. The GSE19188 was used to verify the
overall survival (OS) of 6 hub genes. (B) Survival analysis for B3GNT3. The patients were stratified into the high-level group (red) and low-level group (blue) according to
the median expression of the gene. Log-rank p < 0.05 was considered to be a statistically significant difference.
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FIGURE 7 | Immunohistochemistry of the B3GNT3 gene in LUAD and normal tissues from the Human Protein Atlas (HPA) database. (A) Protein levels of B3GNT3 in
LUAD tissues. (B) Protein levels of B3GNT3 in normal lung tissues.
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carboxyl terminus. This protein is located in the nucleus, is
involved in cell cycle progression, and interacts with a histone
deacetylase (Furukawa et al., 2003). Some studies have found that
it can be used as a prognostic evaluation marker and potential
therapeutic target in reproductive system tumors and Ewing’s
sarcoma (Xiao et al., 2016; Xiao et al., 2019), but its role in lung
cancer needs further study.

KRT15 is an encoding protein which belongs to the keratin
gene family. It has been found to be highly expressed in colon
cancer, breast cancer, gastric cancer, and other tumors and has
prognostic value (Zhang et al., 2019; Rao et al., 2020; Xu et al.,
2020). Ooi et al. (2010) found that this gene is positively expressed
in smoking patients with non–small-cell lung cancer and has
prognostic value. Its abnormal expression can lead to abnormal
airway epithelial damage and repair function, thereby promoting
the development of lung cancer.

KLB is a protein-coding gene and mediates binding of
fibroblast growth factor (FGF) 21 to the FGF receptor
(FGFR). FGF21-KLB-FGFR signaling regulates multiple
metabolic systems in the liver (Ji et al., 2019). Andrew et al.
(Thompson et al., 2020) found that it is closely related to the
increase in the incidence of lung cancer caused by heavy
drinking. At the same time, Zhou et al. (2021) found that
serum KLB concentration can be used to predict the clinical
outcome of NSCLC patients, although in our study, it was
found to have an effect on the prognosis of patients. However,
more patient omics data are expected to reveal its clinical
significance.

As with all research, our work has several limitations.
Although we provide a comprehensive bioinformatics
analysis to determine the potential diagnostic genes between
cancer and normal tissues, it may not be very accurate in
evaluating EGFR-MT LUAD patients at every stage. Also, the
molecular mechanism of survival-related genes involved in
affecting the prognosis of patients with EGFR-MT LUAD
needs to be further verified through a series of experiments.
In conclusion, our work discovered the important survival-
related gene B3GNT3 that can forecast prognosis in EGFR-
MT LUAD by combining WGCNA with differential gene
expression analysis.
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SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.755245/
full#supplementary-material

Supplementary Figure S1 | In the TCGA dataset, modules correlated with the
clinical trait were identified. (A) Co-expression network module cluster dendrogram.
Each module was given its color scheme. (B) Relationships between modules and
traits. Each row represents a color module, and each column represents a clinical
characteristic (tumor and normal).

Supplementary Figure S2 | Identification ofmodules in theGSE31210 that are related
to the clinical trait. (A) Co-expression network module cluster dendrogram. Different
colors were applied to eachmodule. (B)Relationships betweenmodules and traits. Each
row represents a color module, and each column represents a clinical characteristic
(tumor and normal).

Tab 2 | GSEA enrichment results for high expression of B3GNT gene.

KEGG pathway
name

Size Enrichment score Normalized ES p-val q-val

Ether lipid metabolism 25 0.578 1.852 0.002 0.479
Lysosome 116 0.605 1.795 0.0191 0.432
Steroid biosynthesis 16 0.711 1.787 0.0113 0.304
Glycan biosynthesis 28 0.563 1.752 0.0116 0.303
Peroxisome 77 0.476 1.721 0.0192 0.313
Amino sugar and nucleotide sugar metabolism 40 0.516 1.623 0.0240 0.552
Vibrio cholerae infection 51 0.469 1.612 0.0260 0.506
Pathogenic Escherichia coli infection 51 0.487 1.570 0.0456 0.586
Glycerophospholipid metabolism 66 0.385 1.501 0.0260 0.704
Ppar signaling pathway 66 0.399 1.471 0.0403 0.634

Size: The KEGG pathway contains the number of genes in the expression dataset.
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A Mutation-Related Long Noncoding
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Predicts Immune Infiltration and
Hepatocellular Carcinoma Prognosis
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Background: Long noncodingRNAs (lncRNAs) have been discovered to play a regulatory role
in genomic instability (GI), which participates in the carcinogenesis of various cancers, including
hepatocellular carcinoma (HCC). We endeavored to establish a GI-derived lncRNA signature
(GILncSig) as a potential biomarker and explore its impact on immune infiltration and prognostic
significance.

Methods: Combining expression and somatic mutation profiles from The Cancer Genome
Atlas database, we identified GI-related lncRNAs and conducted functional analyses on co-
expressed genes. Based on Cox regression analysis, a GILncSig was established in the training
cohort (n � 187), and an independent testing patient cohort (n � 183) was used to validate its
predictive ability. Kaplan-Meier method and receiver operating characteristic curves were
adopted to evaluate the performance. The correlation between GI and immune infiltration
status was investigated based on the CIBERSORT algorithm and single sample gene set
enrichment analysis. In addition, a comprehensive nomogram integrating the GILncSig and
clinicopathological variables was constructed to efficiently assess HCC patient prognosis in
clinical applications.

Results: A total of 88 GI-related lncRNAs were screened out and the functional analyses
indicated diversified effects on HCC progression. The GILncSig was established using four
independent lncRNAs (AC116351.1, ZFPM2-AS1, AC145343.1, and MIR210HG) with
significant prognostic value (p < 0.05). Following evaluation with the GILncSig, low-risk
patients had significantly better clinical outcomes than high-risk patients in the training
cohort (p < 0.001), which was subsequently validated in the independent testing cohort.
High-risk group exhibited more immunocyte infiltration including B cells memory, macrophages
M0 and neutrophils and higher expression of HLA gene set and immune checkpoint genes.
Compared to existing HCC signatures, the GILncSig showed better prognosis predictive
performance [area under the curve (AUC) � 0.709]. Furthermore, an integrated nomogram
was constructed and validated to efficiently and reliably evaluateHCCpatient prognosis (3-years
survival AUC � 0.710 and 5-years survival AUC � 0.707).
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Conclusion: The GILncSig measuring GI and impacting immune infiltration serves as a
potential biomarker and independent predictor of HCC patient prognosis. Our results
highlight further investigation of GI and HCC molecular mechanisms.

Keywords: genomic instability, long non-coding RNAs, hepatocellular carcinoma, prognosis, immune infiltration

INTRODUCTION

Hepatocellular carcinoma (HCC), or malignant hepatoma, has
become the most common primary liver malignant tumor,
accounting for 7% of all cancers globally (Budny et al., 2017).
Despite advances in medical, locoregional, and surgical therapies,
the clinical prognosis of HCC is not satisfactory, and its mortality
rate remains high (Hartke et al., 2017). The key factors
contributing to the development of HCC include viral
hepatitis B and C, cirrhosis, fatty liver disease, diabetes,
alcohol, aflatoxin, and aristolochic acid (Yang et al., 2019). It
is widely acknowledged that the pathogenesis of HCC involves
genetic and epigenetic changes, but the molecular mechanisms
remain unclear (Ogunwobi et al., 2019). Thus far, scholars have
focused on prognostic biomarkers and molecular risk models to
better predict HCC patient prognosis and elucidate HCC
carcinogenesis (Wang et al., 2019a; Zhang et al., 2020).
However, there are several limitations to these studies,
including small sample size and lack of functional or
mechanical analyses. Thus, there is an urgent need to utilize
comprehensive methods to identify potential biomarkers and
predict HCC prognosis in clinical management.

Genomic instability (GI) has been recognized as a leading factor
in carcinogenesis and a hallmark of cancer (Negrini et al., 2010).
Accumulation of GI can be lethal to cells and is correlated with
poor prognosis (Andor et al., 2017). Although the cellular
mechanisms of GI are not fully understood, replication damage
and transcriptional regulation have been recognized to play critical
roles (Ferguson et al., 2015; Tubbs and Nussenzweig, 2017).
Therefore, scholars have utilized relevant molecular signatures
to quantify GI in cancers. For example, Vacher et al. studied
103 bladder cancer cases and identified a palindromic non-coding
mutation signature of somatic GI (Vacher et al., 2020). A GI-
derived three-microRNA (miRNA) signature in breast cancer
constructed by Bao et al. was found to be significantly
associated with unfavorable prognosis (Bao et al., 2021).

Long noncoding RNAs (lncRNAs) are a group of non-coding
RNAs with more than 200 nucleotides that can regulate the
products of gene expression in various cell activities and
biological processes and are involved in different types of
cancers (Paraskevopoulou and Hatzigeorgiou, 2016; Bhan
et al., 2017). Increasing evidence has revealed the significant
role of lncRNAs in the maintenance of gene stability via
multiple pathways (Oliva-Rico and Herrera, 2017; Thapar,
2018). Kristen et al. identified a novel lncRNA MANCR that
was functionally associated with genomic stability, the depletion
of which led to DNA damage and cell cycle dysregulation (Tracy
et al., 2018). Another subsequent study by Mahmoud et al.
stressed the contributions of lncRNA NORAD and the
NORAD-PUMILIO axis in the genome maintenance of

mammalian cells (Elguindy et al., 2019). However, additional
GI-related lncRNAs remain unidentified, and their clinical
significance as potential biomarkers and treatment targets for
HCC patients requires further investigation.

Hence, in this study, we aimed to identify GI-related lncRNAs
by combining somatic mutation and expression profiles based on
The Cancer Genome Atlas (TCGA) database and develop a GI-
derived lncRNA signature (GILncSig) to quantify GI in HCC and
help to predict HCC patient prognosis. Besides, we analyzed the
immunocytes infiltration, immune-related pathways and
expression profiles to explore the association between the
GILncSig and immune status. In addition, a comprehensive
nomogram was established by integrating clinical variables and
the GILncSig to assess clinical outcomes and more efficiently
guide patient management.

METHODS

Data Collection
The expression profile data and clinical information of HCC
patients were extracted from TCGA (https://portal.gdc.cancer.
gov/). A total of 371 expression cases in 424 files and 377 clinical
cases of HCC were obtained, including 50 normal and 374 tumor
tissues withmRNA and lncRNA profiles. In addition, 375 somatic
mutation data were downloaded from TCGA. A flow chart
showed all procedures in this study in Supplementary Figure S1.

Identification of GI-Related lncRNAs
Based on mutation profiles, the cumulative somatic mutations in
HCC samples were first calculated, and the samples were ranked
in descending order. The top 25% of mutation numbers were
defined as the genomically unstable (GU)-like samples (n � 93),
and the bottom 25% were defined as genomically stable (GS)-like
samples (n � 90). The differentially expressed lncRNAs between
the GS and GU groups were defined as GI-related lncRNAs.

Hierarchical cluster analyses were conducted for all samples,
and we explored the association between mutation conditions and
clusters with different gene stabilities. In addition, according to the
Pearson correlation coefficients, the top 10 mRNAs that varied
with the GI-related lncRNAs were selected, and a co-expression
network was constructed. Furthermore, to comprehend their
potential functions in GI development, we conducted functional
enrichment analyses, including Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways and Gene Ontology (GO) terms.

Establishment of the GILncSig
First, all HCC cases with expression profiles and clinical
information were randomly divided into two equal groups, a
training group (n � 187) and a testing group (n � 183), for the
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construction and validation of the GILncSig. The chi-square test
was used to demonstrate that there were no significant differences
between the two groups. In the training group, univariate Cox
analysis was performed to explore the GI-related lncRNAs
associated with overall survival, and multivariate Cox analysis
identified lncRNAs with independent prognostic value.
Combining the results of the Cox regression analysis and the
expression profiles of GI-related lncRNAs, a GILncSig with linear
risk score formula was established, which applies to all HCC
samples and can be calculated as follows:

GILncSig � ∑(expression of ln cRNAn × βn)

where n represents the number of independent prognostic
lncRNAs, and β represents the regression coefficients from the
Cox regression analyses, weighing the value of each lncRNA in
the formula.

Then, all HCC samples in the training and testing groups were
assigned risk scores and classified into high-risk and low-risk
groups by the cutoff of the group median risk score. Log-rank
tests and the Kaplan-Meier method were then adopted to verify
the predictive ability of the GILncSig, and the performance was
further evaluated using receiver operating characteristic (ROC)
curves.

Immune Infiltration Analysis
Immunocytes and related pathways were analyzed by Single
Sample Gene Set Enrichment Analysis (ssGSEA) with the
“GSVA” package and the infiltration levels of all HCC samples
were evaluated with the “estimate” package by R software.
Furthermore, we speculated the quantity of 22 immunocyte
subtypes in each HCC sample by the corresponding
expression signatures of the 22 immunocytes with the
CIBERSORT algorithm (Newman et al., 2015). To explore the
relationship between GI and immune infiltration, the differential
immune fractions between high-risk and low-risk groups were
compared by the Wilcoxon test and exhibited with the “vioplot”
package. In addition, we compared other immunity profiles
between the two groups, including the expression of immune
checkpoint genes and human leukocyte antigen (HLA) genes.

Construction and Evaluation of the
Nomogram
A comprehensive nomogram for predicting the survival
probability of HCC patients was built by integrating the
GILncSig and clinicopathologic variables, such as age, grade,
and stage. Based on the Cox regression analyses, the
nomogram weighing all predictive variables computed the
total points of HCC patients, which could predict their 3- and
5-years survival probability. The higher the score, the worse the
prognosis. In addition, Harrell’s C-index and 3- and 5-years
calibration curves were generated to assess the predictive
performance. Furthermore, based on the nomogram scores of
all HCC samples, 3- and 5-years ROC curves and survival
analyses were performed to evaluate the reliability and
feasibility of the nomogram in clinical applications.

Statistical Analysis
R (v.4.0.2; The R Foundation, Vienna, Austria) and Excel
(Microsoft Corporation, Redmond, WA United States)
software were used to conduct all statistical analyses with
flexible statistical methods. p < 0.05 was set as statistically
significant in most parts of our study.

RESULTS

Identification of GI-Related lncRNAs in HCC
Based on cumulative somatic mutations, all HCC samples from
TCGA were classified into the GU-like group of the top 25% of
mutation numbers and the GS-like group of the bottom 25% of
mutation numbers. Differential expression analysis showed that
a total of 88 lncRNAs were significantly differentially expressed
between the two groups with a false discovery rate-adjusted
p-value < 0.05. Compared to the GS-like group, 56 lncRNAs
were upregulated and 32 lncRNAs were downregulated in the
GU-like group. The top 20 most differentially expressed
lncRNAs were selected using fold change and are shown in a
heatmap (Figure 1A).

Based on the 88 GI-related lncRNAs, unsupervised
hierarchical clustering classified all 374 HCC samples into two
groups: GS-like (n � 221) and GU-like (n � 153; Figure 1B).
There were significantly higher somatic mutation counts in the
GU-like group than in the GS-like group (median value: 131.5 vs.
102; p < 0.001; Figure 1C). Meanwhile, the expression of H2AX,
an identified driver gene associated with gene instability and
cancer onset, was compared between the two groups. The
expression of H2AX was significantly higher in the GU-like
group than in the GS-like group (p < 0.01; Figure 1D).

Then, the top 10 mRNAs relevant to each GI-related lncRNA
were selected, and anmRNA-lncRNA co-expression network was
established (Figure 2A). Furthermore, functional analyses were
performed on these mRNAs to explore the potential functions of
the 88 lncRNAs in GI occurrence. KEGG analysis revealed that
most genes relevant to the lncRNAs were significantly enriched in
22 pathways, including pyrimidine metabolism, purine
metabolism, and folate biosynthesis, which participate in the
synthesis of nucleotides and may affect genomic stability
(Figure 2B). As for the GO analysis shown in Figure 2C, the
GI-related mRNAs were significantly linked to biological
processes involved in the metabolism of genetic material,
including purine-containing compound metabolic processes
and small molecule catabolic processes. The other significant
enrichment terms revealed in the cellular component and
molecular function analyses indicated the probable
mechanisms in the formation and development of GI.

Establishment of the GILncSig for
Prognosis Prediction
All HCC cases were randomly and equally divided into a
training group (n � 187) and a testing group (n � 183), and a
chi-square test showed that there were no significant
differences in clinicopathological features between the two
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groups (Table 1). To determine the prognostic value of GI-
related lncRNAs, univariate Cox regression analysis was
conducted among the training group, and 10 lncRNAs
were found to be significantly associated with overall
survival (p < 0.05; Figure 3A). Multivariate Cox analysis
identified four lncRNAs with independent values:
AC116351.1, ZFPM2-AS1, AC145343.1, and MIR210HG.
Based on the Cox analysis and expression profiles of HCC
patients, a GILncSig was established with a linear risk score
formula combining the four independent GI-related lncRNAs
weighted by coefficients from the multivariate analysis.
Hence, the risk scores of all HCC patients can be
calculated as follows: GILncSig score � (0.1594 ×
expression level of AC116351.1) + (0.1189 × expression
level of ZFPM2-AS1) + (0.2247 × expression level of
AC145343.1) + (0.1092 × expression level of MIR210HG).
All coefficients of the four lncRNAs were positive, implying
that they were risk factors for HCC prognosis.

Then, using the GILncSig, all HCC patients were assigned
risk scores in the training set and were subsequently divided
into two groups based on the median risk score: a high-risk

group with higher scores and a low-risk group with lower
scores. Log-rank tests and Kaplan–Meier curves showed that
the high-risk group had significantly poorer prognosis than
the low-risk group (p < 0.001; Figure 3B). An ROC curve was
then generated to assess the reliability of the GILncSig, and
the area under the curve (AUC) was 0.724 (Figure 3C),
indicating good predictive ability. Furthermore, we
explored the changes in GILncSig expression, somatic
mutation count, and UBQLN4 expression in all HCC
patients along with their increasing risk scores in the
training group (Figures 3D–F). In the high-risk group, the
expression levels of the four lncRNAs were all increased,
somatic mutations became more frequent, and the expression
level of UBQLN4, a GI-driver gene, was also upregulated
compared to the low-risk group. Additionally, two boxplots
were drawn to demonstrate the UBQLN4 expression and
somatic mutation number trends in patients along with
their increasing risk scores (Figures 3G,H). There was a
visible increase in the two plots, but it was not statistically
significant, which was further verified in the following
section. The expression of H2AX was significantly higher

FIGURE 1 | Identification of the GI-related lncRNAs in HCC. (A) The top 20most differentially expressed lncRNAs between the GS andGU group. (B)Unsupervised
clustering of 374 HCC samples based on the 88 GI-related lncRNAs. The red cluster is the GU-like group and the blue cluster is the GS-like group. (C) Boxplots of
somatic mutations between the GU-like group and GS-like group. (D) Boxplots of H2AX expression level between the GU-like group and GS-like group.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7795544

Wu et al. Mutation-Related Signature Predicts Prognosis

48

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


in the high-risk group than in the low-risk group, which was
consistent with the previous result (p < 0.05; Figure 3I).

Independent Validation of the GILncSig in
HCC Datasets
To validate the feasibility and reliability of the GILncSig
established in the training set, we applied the signature to
all HCC patients in the testing set (n � 183) and obtained their
risk scores for prognosis. The patients were then classified
into two groups with different prognosis risks according to
the median score, and Kaplan-Meier analysis showed that the
high-risk group had significantly poorer clinical outcomes
than the low-risk group (p < 0.05; Figure 4A). An ROC curve
of the GILncSig with an AUC of 0.708 was produced,

representing good sensitivity and specificity (Figure 4B).
Furthermore, we displayed the patients with risk scores in
increasing order and analyzed the tendencies of GILncSig
expression, somatic mutation count, and UBQLN4
expression in all HCC patients (Figures 4C–E). Similar to
the training group, they were all positively associated with
risk score, which is further illustrated in Figure 4F and
Figure 4G. Somatic mutation count and UBQLN4
expression were both significantly increased in the high-
risk group (p < 0.01). In addition, H2AX expression was
significantly upregulated (p < 0.001; Figure 4H).

Next, we utilized all HCC cases from TCGA to examine the
performance of the GILncSig and obtained similar but more
significant results. After all patients were assigned risk scores and
divided into high- and low-risk groups, log-rank tests and

FIGURE 2 | Functional analysis of the GI-related lncRNAs in HCC. (A) Co-expression network of GI-related lncRNAs and top 10 relevant mRNAs. (B) KEGG
enrichment analysis for the co-expressed genes. (C) GO functional analysis for the co-expressed genes.

TABLE 1 | Clinical information of three HCC patients sets in this study.

Covariates Training
set (n = 187)

Testing
set (n = 183)

TCGA set (n = 370) p Value

Age(%) ≤65 115(61.5) 117(63.93) 232(62.7) 0.706
>65 72(38.5) 66(36.07) 138(37.3)

Gender(%) FEMALE 62(33.16) 59(32.24) 121(32.7) 0.939
MALE 125(66.84) 124(67.76) 249(67.3)

Grade(%) G1-2 117(62.57) 115(62.84) 232(62.7) 0.985
G3-4 68(36.36) 65(35.52) 133(35.95)
unknow 2(1.07) 3(1.64) 5(1.35)

Stage(%) I-II 130(69.52) 126(68.85) 256(69.19) 0.999
III-IV 46(24.6) 44(24.04) 90(24.32)
unknow 11(5.88) 13(7.1) 24(6.49)
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FIGURE 3 | Establishment of GILncSig for prognosis prediction in the training group. (A) Univariate Cox regression analysis of the GI-related lncRNAs associated
with overall survival in the training group. (B) Kaplan–Meier survival analysis of high-risk and low-risk groups predicted by the GILncSig. (C) ROC curve to evaluate the
performance of the GILncSig. (D) The expression pattern of the GILncSig in the training group. (E) Distribution of somatic mutations with increasing risk score. (F)
UBQLN4 expression with increasing risk score. The boxplots of the distribution of somatic mutations, (G) UBQLN4 expression (H) and H2AX expression (I)
between the high-risk and low-risk groups in the training group.

FIGURE 4 | Independent validation of the GILncSig in the testing group. (A) Kaplan–Meier survival analysis of high-risk and low-risk groups. (B) ROC curve to
evaluate the performance of the GILncSig. (C) The expression pattern of the GILncSig in the testing group. (D) Distribution of somatic mutations with increasing risk
score. (E) UBQLN4 expression with increasing risk score. The boxplots of the distribution of somatic mutations (F), UBQLN4 expression (G) and H2AX expression (H)
between the high-risk and low-risk groups in the testing group.
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Kaplan–Meier curves showed significant survival differences
between the two groups (p < 0.001; Figure 5A). ROC curve
analysis showed the reliability of the signature with an AUC of
0.709 (Figure 5B). As shown in Figures 5C–E, the distributions
of GILncSig expression, somatic mutation count, and UBQLN4
expression in all HCC patients along with their increasing scores
became more evident. The three boxplots verified the trends of
increasing mutation counts and expression levels of UBQLN4
and H2AX with statistical significance (p < 0.001, Figure 5F;
p < 0.001, Figure 5G; and p < 0.001, Figure 5H, respectively).

Comparison of Predictive Ability of lncRNA
Signatures
Subsequently, we compared the GILncSig in this study and 4
other lncRNA signatures of HCC prognosis from previous
studies: the 6-lncRNA signature from Gu’s study (mentioned
as GuLncSig) (Gu et al., 2019), the 2-lncRNA signature from
Kong’s study (mentioned as KongLncSig) (Kong et al., 2020), the
5-lncRNA signature from Sun’s study (mentioned as SunLncSig)
(Sun et al., 2019) and the 11-lncRNA signature from Li’s study
(mentioned as LiLncSig) (Li et al., 2020). Based on the same
cohort from TCGA, we applied these lncRNA signatures to all
HCC patients to evaluate their prognosis, and the performances
of the signatures were compared by ROC curve analysis. As
shown in Figure 5B, the AUC of GILncSig was 0.709, which was
higher than that of all four other signatures: GuLncSig (AUC �
0.595), KongLncSig (AUC � 0.692), SunLncSig (AUC � 0.528),
and LiLncSig (AUC � 0.700). In addition, the GILncSig consists
of 4 fewer lncRNAs than the GuLncSig (6 lncRNAs), SunLncSig

(5 lncRNAs), and LiLncSig (11 lncRNAs). These comparisons
provided evidence of better performance of the GILncSig in
predicting HCC patient prognosis.

Independent GILncSig Prediction From
Other Clinical Factors
Based on the distribution of risk scores, HCC patients had
significantly higher risks in clinical subgroups of >65
(p � 0.015), grade 3–grade 4 (p � 0.0017), stage III−IV (p �
0.011) and T3-4 stage (p � 0.024, Figure 6). As clinical
characteristics are commonly used in clinical prognosis
evaluation, it is necessary to explore the independency and
compare the prediction efficiency among the GILncSig risk
score and clinical factors. Firstly Kaplan–Meier survival
analyses examined the prognostic ability of traditional clinical
variables and patients in higher stage or higher T stage showed
worse clinical outcome (Figure 7). Within all HCC samples in the
training set, we first performed univariate Cox regression analysis
to select potential predictors related to overall survival
(Figure 8A). Next, using multivariate Cox regression analysis,
stage [hazard ratio (HR) � 1.708, 95% confidence interval (CI):
1.231–2.370; p < 0.01] and risk score (HR � 1.284, 95% CI:
1.173–1.406; p < 0.001) were identified to be independent factors
(Figure 8B). In the testing set, the two factors presented similarly
good prediction abilities, but only stage showed significant
meaning. Furthermore, the Cox analyses among all HCC cases
in the database validated the results, as stage (HR � 1.702, 95%CI:
1.384–2.093; p < 0.001) and risk score (HR � 1.125, 95% CI:
1.058–1.196; p < 0.001) showed significantly independent

FIGURE 5 | Evaluation of the GILncSig in the TCGA set. (A) Kaplan–Meier survival analysis of high-risk and low-risk groups. (B) ROC analysis to evaluate the
performance of the GILncSig, GuLncSig, KongLncSig, SunLncSig and LiLncSig. (C) The expression pattern of the GILncSig in the TCGA set. (D) Distribution of somatic
mutations with increasing risk score. (E) UBQLN4 expression with increasing risk score. The boxplots of the distribution of somatic mutations (F), UBQLN4 expression
(G) and H2AX expression (H) between the high-risk and low-risk groups in the testing group.
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prognostic values for HCC prognosis (Figures 8C,D). The results
of all Cox analyses are shown in Table 2.

In addition, a stratified analysis was conducted to examine the
GILncSig among subgroups with different clinical characteristics.
Patients were first divided into two or three groups based on
different clinical terms and then classified into high- and low-risk

teams within these initial groupings for further survival analysis.
As shown in Figures 8E–L, patients with lower risks survived
significantly longer than those with higher risks in most clinical
subgroups, including >65 (p � 0.01), ≤65 (p < 0.001), male
(p < 0.001), grade 1–grade 2 (p � 0.006), grade 3–grade 4 (p <
0.001), and stage I–II (p < 0.001). However, the results in the

FIGURE 6 | Risk score distribution in different clinical subgroups. (A) Age. (B) Gender. (C) Grade. (D) Stage. (E) T stage. (F) N stage. (G) M stage.

FIGURE 7 | Kaplan–Meier survival analyses of patients with different clinical characteristics. (A) Age. (B) Gender. (C) Grade. (D) Stage. (E) T stage.
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female and stage III−IV subgroups were not satisfactory, which
may be due to the small sample size; the p value was only
marginally significant in stage III−IV (p � 0.057). Overall, the
GILncSig was an independent predictor and performed well in
the classification of patient prognosis within different clinical
subgroups.

Immune Infiltration Analysis of HCC
Samples
Based on the result of ssGSEA, all HCC samples were classified
into high- and low-immunity clusters and the distribution of 29
immunocyte subtypes and immune related pathways of each
HCC sample was shown in a heatmap (Figure 9A). Besides,
the immune infiltration level was estimated by immune score,
stromal score, ESTIMATE score and tumor purity. The

ESTIMATE score was the sum of the former two scores and
represented the immune status of the microenvironment.
Similarly, the immune fraction distribution and immunity
scores of each sample in high- and low-risk groups was shown
in Figure 9B. Classified by immunity cluster or scores, HCC
patients with higher risks possessed lower survival rate than those
with lower risks (Supplementary Figure S2). Then we speculated
22 immunocytes percentage in HCC samples between the two
risk groups (Figure 9C). The proportion of B cells memory,
macrophages M0 and neutrophils were significantly higher in the
high-risk group while B cells naïve were significantly lower
(p < 0.01), which indicated a higher immune infiltration in the
high-risk group.

Furthermore, the immune related expression profiles were
compared between the two risk groups. The high-risk group
showed a higher expression of HLA gene set than the low-risk

FIGURE 8 | Comparison of the prognostic value of the GILncSig and other clinical variables. Training set (A, B), TCGA set (C–L). (A–C) Univariate Cox regression
analyses of the OS-related parameters. (B–D) Multivariate Cox regression analysis of the OS-related parameters. Stratification analysis and Kaplan–Meier survival
analysis in high-risk and low-risk groups for old patients (E), young patients (F), early-grade patients (G), late-grade patients (H), male (I), female (J), early-stage patients
(K) and late-stage patients (L).
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group (Figure 9D). In addition, we examined 16 immune
checkpoint genes and the expression of five genes were
significantly upregulated in the high-risk group, including
CD276, CTLA4, HAVCR2, TNFRSF4 and TNFRSF18 (Figures
9E–I), which provided potential immunotherapy targets and
indicated a better response to the immune inhibiting reagents
in the high-risk group.

Comprehensive Nomogram to Predict HCC
Patient Prognosis
To develop an efficient prediction tool in clinical practice, a
comprehensive nomogram was constructed by integrating the
GILncSig and clinicopathological features, including age, grade,
and stage (Figure 10A). The nomogram could then assess the 3-
and 5-years survival rates of HCC patients based on the total
points of the prognostic factors weighed by coefficients. The
higher the points, the worse the prognosis. To evaluate the
nomogram performance, calibration plots in which the
nomogram-predicted survival rate was close to the actual
survival of both 3- and 5-years conditions were drawn
(Figures 10B,C). Harrell’s concordance index for survival
prediction was 0.673 (95% CI: 0.622–0.724). In addition, time-
dependent ROC curve analysis of the 3-years (AUC � 0.710) and
5-years (AUC � 0.707) survival predictions was conducted, and
the results showed good reliability of the nomogram
(Figure 10D). Furthermore, we classified all HCC patients
into high-risk and low-risk groups based on the median points
produced by the nomogram and performed Kaplan–Meier
survival analysis. As shown in Figure 10E, patients with lower

risk levels had significantly better clinical outcomes (p < 0.001).
Therefore, the integrated nomogram was validated as an efficient
and reliable tool for evaluating HCC patient prognosis.

DISCUSSION

In recent decades, considerable efforts have been made to explore
the initiation mechanisms and potential treatment methods of
HCC (Dimri and Satyanarayana, 2020). Traditional
clinicopathological features are still used as predictive tools for
HCC prognosis in clinical practice, but molecular risk factors may
offer more precise predictions, which could facilitate
individualized treatment of HCC patients and help with the
allocation of medical resources (Fujiwara et al., 2018; Yin
et al., 2019).

Recent studies have discovered that GI plays a vital role in
cancer evolution and is related to poor prognosis (Andor et al.,
2017; Tubbs and Nussenzweig, 2017). Investigation of colorectal
cancer has revealed the contribution of GI in carcinogenesis as
early as the premalignant phase through complex mechanisms,
including DNA damage and transcriptional mistakes (Grady and
Carethers, 2008). Therefore, detectable GI-related molecules have
been utilized for the quantification of GI and for further
prediction of cancer patient prognosis. Emerging studies have
focused on the prognostic value and potential mechanisms of GI-
related miRNAs, genes, and relevant signatures in multiple
cancers (Vincent et al., 2014; Zhang et al., 2019a), but the role
of lncRNAs has been largely neglected thus far. Some recent
findings revealed the functions of GI-related lncRNAs, including
participation in the DNA damage response, DNA replication, and
mitotic and mitochondrial genome maintenance (Lee et al., 2016;
Du Mee et al., 2018; Burger et al., 2019). However, the
identification and application of GI-related lncRNAs as a
means of measuring GI in cancers are new, and the
construction of an lncRNA signature to predict HCC patient
prognosis requires further exploration.

In this study, we combined somatic mutations with expression
profiles and screened 88 GI-related lncRNAs in the TCGA
database of HCC patients. KEGG analysis showed that the
genes co-expressed with GI-related lncRNAs were enriched in
22 pathways, including pyrimidine metabolism, purine
metabolism, Fanconi anemia (FA), and folate biosynthesis, all
of which may affect genomic stability. Excessive pyrimidine
synthesis over purine results in DNA transversion mutations
and genomic signatures (Lee et al., 2018). In addition, studies
have shown that the FA pathway guards genomic stability via the
signaling network of DNA damage repair, and the knockdown of
FA genes could impair break end resection and homologous
recombination repair (Palovcak et al., 2017; Cai et al., 2020). In
addition, GO analysis suggested that the GI-related genes were
enriched in various terms, including purine-containing
compound metabolic processes and small molecule catabolic
processes related to genomic stability.

Furthermore, we selected GI-related lncRNAs with
independent prognostic values and established an lncRNA
signature (GILncSig) using AC116351.1, ZFPM2-AS1,

TABLE 2 | Cox regression analyses of clinical variables and GILncSig risk score
associated with overall survival in HCC.

Cox analysis HR 95% CI p Value

TCGA set Univariate
(n � 370) Age 1.010 0.996–1.025 0.174

Gender 0.776 0.531–1.132 0.188
Grade 1.133 0.881–1.457 0.330
Stage 1.680 1.369–2.062 <0.001
Risk score 1.107 1.046–1.171 <0.001
multivariate
Stage 1.702 1.384–2.093 <0.001
Risk score 1.125 1.058–1.196 <0.001

Training set univariate
(n � 187) Age 1.014 0.992–1.036 0.212

Gender 0.857 0.485–1.515 0.596
Grade 1.129 0.764–1.667 0.543
Stage 1.699 1.225–2.356 0.001
Risk score 1.262 1.160–1.373 <0.001
multivariate
Stage 1.708 1.231–2.370 0.001
Risk score 1.284 1.173–1.406 <0.001

Testing set univariate
(n � 183) Age 1.009 0.989–1.030 0.363

Gender 0.715 0.430–1.190 0.197
Grade 1.132 0.814–1.573 0.461
Stage 1.679 1.295–2.176 <0.001
Risk score 1.040 0.943–1.147 0.435
multivariate
Stage 1.679 1.295–2.176 <0.001
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AC145343.1, and MIR210HG. In a recent study, AC116351.1
showed significant associations with DNA repair and prognostic
value in HCC (Zeng et al., 2021). Overexpression of lncRNA
ZFPM2-AS1 in HCC tissue was correlated with poorer overall
survival, and through in vitro functional analysis, ZFPM2-AS1
was found to act as miRNA sponge for promoting HCC cell
proliferation, apoptosis, migration, and invasion viamultiple axes
(He et al., 2020; Liu et al., 2020; Zhang et al., 2021). Similarly,
MIR210HG is an oncogenic lncRNA that is upregulated in HCC,
and its silencing suppresses proliferation, migration, and invasion
(Wang et al., 2019b). Little is known about AC145343.1, but the
replaced version AC145343.2 was identified as a prognostic factor
for glioma mesenchymal transition (Liang et al., 2020).
Collectively, these four lncRNAs play vital functions in cancer
onset and have shown prognostic value; however, their roles in GI
and the combined predictive ability of the established GILncSig
remain unknown in previous studies.

Following evaluation with the GILncSig, patients with lower
predicted risk levels survived longer than those with higher risk
levels in the training set, and the independent internal testing set
further validated this result. In contrast to traditional clinical
factors, the GILncSig showed comparable or better predictive
performance and presented good classification ability within
clinical subgroups. In addition, GILncSig expression was
significantly associated with somatic mutation counts and
expression levels of UBQLN4 and H2AX in all HCC cohorts.
UBQLN4, an identified GI driver in multiple cancers, has been
found to be overexpressed in aggressive tumors and related to

poor outcomes (Jachimowicz et al., 2019; Yu et al., 2020).
Similarly, H2AX is involved in GI through DNA damage
repair, and its phosphorylated form marks the double-strand
break (Seo et al., 2012; Subbiahanadar Chelladurai et al., 2020).
Overall, the GILncSig appears to act as a good indicator of both
overall survival and GI characteristics of HCC patients. From a
therapeutic perspective, the GILncSig provides potential targets
for individualized treatment of HCC and further informs
medicine resource management concerning personal predicted
prognosis.

Besides, the GILncSig associated with somatic mutation would
likely to cause a more active immune reaction. We explored the
immunocytes and immune related pathways by ssGSEA and
estimate the immune microenvironment between the high-
and low-risk groups scored by GILncSig. The infiltration of 22
immunocyte subtypes was investigated with the CIBERSORT
algorithm and B cells memory, macrophages M0 and neutrophils
were more enriched in the high-risk group, consistent with the
result of a recent study on immune-related prognostic index in
HCC (Hu et al., 2020). High density of IgM+ and CD27− isotype-
switched memory B cells was correlated with better survival,
which may offer novel therapeutic targets (Zhang et al., 2019b).
Macrophages M0 could aggravate HCC development stimulated
by the CCAT1/let-7b/HMGA2 pathway (Deng et al., 2020).
Similarly, tumor-associated neutrophils promoted HCC
progression and could be identified as potential targets for
HCC treatment (Zhou et al., 2016; Peng et al., 2020).
Furthermore, we compared the expression profiles of immune

FIGURE 9 | Immune infiltration and profile analysis in HCC. By ssGSEA, immunocyte subtypes and pathways enrichment (A) in high- and low-immunity clusters
and (B) in high- and low-risk groups. The immune score, stromal score, ESTIMATE score and tumor purity were shown in the heatmaps. (C) Violin plots of infiltrated
immunocyte subtypes between high-risk (red) and low-risk (green) groups. (D) Differential expression level of HLA related genes between high-risk (red) and low-risk
(green) groups (ns � not significant, *p < 0.05, **p < 0.01, ***p < 0.001). The expression level of immune checkpoint genes between high-risk (red) and low-risk (blue)
groups, including CD276 (E), CTLA4 (F), HAVCR2 (G), TNFRSF4 (H) and TNFRSF18. (I) **p < 0.01, ***p < 0.001).
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related genes between the two risk groups and notably, five
immune checkpoint genes were upregulated in the high-risk
group, including CTLA4, indicating the potential application
of the inhibiting agents.

Although this study elucidates the molecular mechanisms of
GI in HCC and provides potential biomarkers and efficient
evaluation tools for GI and patient prognosis, there are some

limitations that require further investigation. Despite the
internal validation in the TCGA database, additional large,
independent, and complete data sources are needed to verify
our findings. We explored the Gene Expression Omnibus
database, but the expression and clinical data were
inadequate for a complete validation process. In addition, as
the identification and function of the GILncSig were analyzed

FIGURE 10 |Construction of nomogram to predict the prognosis of HCC patients. (A)Comprehensive nomogram integrating the GILncSig and clinicopathological
features. Calibration plot of the nomogram model to predict (B) 3-years survival and (C) 5-years survival. (D) ROC curves of the model prediction of 3 and 5-years
survival. (E) Kaplan–Meier survival analysis of the high-risk and low-risk groups classified by the nomogram.
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based on bioinformatics methods, experiments involving
laboratory measurements and animal models are required in
future demonstrations of the GILncSig regulatory mechanisms
in HCC development.

In conclusion, we identified a GI-derived lncRNA signature of
HCC that may serve as a potential biomarker and independent
predictor of HCC prognosis. Furthermore, the comprehensive
nomogram integrating the GILncSig and clinical characteristics
appeared to efficiently evaluate the overall survival of HCC
patients in clinical practice. Our results will likely help to
guide further investigations of GI and the molecular
mechanisms of HCC.
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Abstract Background: Both hypoxia and long non-coding RNAs (lncRNAs) contribute to
the tumor progression in hepatocellular carcinoma (HCC). We sought to establish a
hypoxia-related lncRNA signature and explore its correlation with immunotherapy
response in HCC.

Materials and Methods: Hypoxia-related differentially expressed lncRNAs (HRDELs)
were identified by conducting the differential gene expression analyses in GSE155505 and
The Cancer Genome Atlas (TCGA)- liver hepatocellular carcinoma (LIHC) datasets. The
HRDELs landscape in patients with HCC in TCGA-LIHC was dissected by an
unsupervised clustering method. Patients in the TCGA-LIHC cohort were stochastically
split into the training and testing dataset. The prognostic signature was developed using
LASSO (least absolute shrinkage and selection operator) penalty Cox and multivariable
Cox analyses. The tumor immune microenvironment was delineated by the single-sample
gene set enrichment analysis (ssGSEA) algorithm. The Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm was applied to evaluate the predictive value of the constructed
signature in immunotherapeutic responsiveness.

Results: A total of 55 HRDELs were identified through integrated bioinformatical analyses
in GSE155505 and TCGA-LIHC. Patients in the TCGA-LIHC cohort were categorized into
three HRDELs-specific clusters associated with different clinical outcomes. The prognostic
signature involving five hypoxia-related lncRNAs (LINC00869, CAHM, RHPN1-AS1,
MKLN1-AS, and DUXAP8) was constructed in the training dataset and then validated
in the testing dataset and entire TCGA-LIHC cohort. The 5-years AUC of the constructed
signature for prognostic prediction reaches 0.705 and is superior to that of age, AJCC
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stage, and histopathological grade. Patients with high-risk scores consistently had poorer
overall survival outcomes than those with low-risk scores irrespective of other clinical
parameters status. The low-risk group had more abundance in activated CD8+ T cell and
activated B cell and were predicted to bemore responsive to immunotherapy and targeted
therapy than the high-risk group.

Conclusion: We established a reliable hypoxia-related lncRNAs signature that could
accurately predict the clinical outcomes of HCC patients and correlate with
immunotherapy response and targeted drug sensitivity, providing new insights for
immunotherapy and targeted therapy in HCC.

Keywords: hypoxia, lncRNA (long non-coding RNA), hepatocellular carcinoma, prognostic signature, tumor immune
microenvironment, immunotherapy response

INTRODUCTION

Liver malignancy is the sixth frequent malignant disease with a
growth of 905,677 new cases in 2020 and becomes the third
leading cause of tumor-associated death worldwide (Sung, et al.,
2021). Hepatocellular carcinoma (HCC) occupies nearly 90% of
patients with primary liver cancer (Forner, et al., 2018). Owing to
lacking apparent symptoms in the initial stage, many cases were
diagnosed in the advanced stage in HCC and lost the curative
surgeon opportunity. Targeted therapy such as sorafenib
represents the first-line strategy for advanced-stage cases.
However, the overall clinical outcomes are still far from
satisfactory owing to the emerged resistance of sorafenib (Zhu,
et al., 2017). In recent years, immunotherapy based on immune
checkpoint inhibitors has brought favorable treatment benefits in
several solid tumors (Darvin, et al., 2018), including
hepatocellular carcinoma (El-Khoueiry, et al., 2017).
Nevertheless, only a subgroup of HCC patients responded to
immunotherapy and most of them died of tumor recurrence and
metastasis. It is of paramount importance to explore new
prognostic biomarkers and potential predictors of
immunotherapeutic response for HCC.

Hypoxia is a specific feature in solid tumors (Pouysségur, et al.,
2006). Owing to the fast expansion of tumor cells and abnormal
vascularization, the tumor microenvironment suffers from
insufficient oxygen and nutrition. The hypoxia-inducible
factor-1 alpha (HIF-1α) signaling plays a momentous role in
the regulation of tumor development, metastasis, recurrence, and
drug resistance in the hypoxic tumor microenvironment (LaGory
and Giaccia, 2016; Rankin and Giaccia, 2016). HIF-1α can
enhance the stemness of HCC cell lines in hypoxia exposure,
and the knockdown of HIF1α in HCC cells can effectively
downturn the extracellular acidification rate under hypoxic
conditions (Ling, et al., 2020).

Evidence has suggested that lncRNAs are involved in the
dysregulation of gene expression and signaling pathways
closely linked to tumor initiation, progression, and distant
metastasis (Slack and Chinnaiyan, 2019). Recently, many
studies have revealed that lncRNAs also participate in the
hypoxia-response process of cancer cells (Choudhry, et al.,
2016; Huan, et al., 2020), and the interplay between hypoxia

and lncRNAs is connected with tumor aggression and metastasis
(Wang, et al., 2021). In HCC, hypoxia exposure promotes
epithelial-to-mesenchymal transition (EMT) and distant
metastasis of HCC cells with overexpression of lncRNA
AGAP2-AS1, while the knockdown of AGAP2-AS1 can
reverse the aggressive phenotype (Liu, et al., 2019). Thus, we
speculate that hypoxia-related lncRNAs tightly affect the
progression of HCC and have a substantial influence on the
clinical outcomes of HCC patients. Moreover, the hypoxic tumor
microenvironment can drive cancer cells to an immune resistance
phenotype and contribute to the resistance to immunotherapy
(Abou Khouzam, et al., 2020). To our knowledge, there is still a
lack of hypoxia-related lncRNAs signature that can accurately
predict the prognosis and immunotherapeutic responsiveness
in HCC.

In the current study, we sought to microdissect the hypoxia-
related lncRNAs landscape in HCC and establish a hypoxia-
related lncRNAs prognostic signature in HCC patients in the
TCGA-LIHC cohort. We also in-depth investigated the
association of the prognostic signature with tumor immune
infiltration pattern, targeted-drug sensitivity, and
immunotherapy response. Our findings may improve the
prognostic prediction and personalized treatment management
of immunotherapy in HCC.

MATERIALS AND METHODS

Data Preparation
The FPKM profiles of the transcriptome sequencing data of HCC
patients in the TCGA -LIHC cohort were publicly obtained from
TCGA database. We then transformed the FPKM values into the
log2-transformed TPM (Transcripts Per Million) values for
further analysis. The microarray dataset GSE155505 consisting
of human HCC cells treated with hypoxia or normoxia was
publicly obtained from Geo Expression Ombimus (GEO)
database.

The TCGA-LIHC project comprises 374 primary HCC tumor
samples and 50 normal specimens, and their clinical data were
publicly obtained from the cBioPortal database (Cerami, et al.,
2012). Patients were included in the present study based on the
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following criteria: 1) patients had the complete overall survival
(OS) time and status; 2) patients with OS time <30 days were
excluded for the reason that these patients probably died of other
coexisting diseases; 3) patients had detailed histopathological
grade information. In the end, 337 patients in the TCGA-
LIHC cohort match the above criteria, with a detailed list
shown in Supplementary Tables S1, S2. Particularly, Mx
denotes the uncertain status of the pathological metastasis and
it ranges from M0 to M1, and Nx represents the uncertain status
of the pathological nodes and it ranges fromN0 to N1. A previous
study (Hong, et al., 2021) merged the pathological M1 and Mx
(defined as M1+Mx) and established a nomogram to predict the
clinical outcomes of patients with HCC in TCGA-LIHC.
Analogously, we merged patients with pathological N1 and NX

(defined as pathological N+), and also merged patients with
pathological M1 and MX (defined as pathological M+),
respectively. All the 50 normal tissues were included to
conduct further differential gene expression analyses. The total
design of the current study was shown in Supplementary
Figure S1.

Identifying Hypoxia-Related Differential
Expressed lncRNAs
We utilized the “SeqMap” software (Jiang and Wong, 2008) to
re-annotate the lncRNA expression matrix in GSE155505
with the annotation file “gencode.v30. transcripts.fa”
(FASTA format, 03-April-2019), publicly obtained from
the “GENECODE” database (https://www.gencodegenes.
org/). The analyses of differentially expressed lncRNAs
(DELs) in GSE155505 and TCGA- LIHC datasets were
conducted by the R “limma” package (Ritchie, et al., 2015),
respectively. The criteria of DELs were set at |fold change| >1.
5 and corrected p-value < 0.05. HRDELs were identified as the
intersection of DELs in the GSE155505 and TCGA- LIHC
datasets.

Identification of HRDELs-Related HCC
Clusters With Different Clinical
Characteristics
All the 337 cases in the TCGA-LIHC project were
unsupervisedly clustered into different groups according to
the expression levels of HRDELs, using the “K-means”
method in the “ConsensusClusterPlus” package. The
“survival” package was employed to perform the survival
analysis among different HCC clusters. Kaplan-Meier
curves were plotted and the log-rank test was conducted to
determine the survival difference. We further analyzed the
correlation between the HRDELs-specific clusters and the
corresponding clinical characteristics of each patient with
HCC, including overall survival status, age, sex, Alpha-
fetoprotein (AFP) level, pathological T, pathological N,
pathological M, American Joint Committee on Cancer
(AJCC) stage, tumor histopathological grade, and
“Progressed (Yes/No)”.

Development of the HRDELs-Derived
Prognostic Signature
The prognostic signature was identified as the following steps:1)
337 cases in the entire TCGA-LIHC dataset were randomly
divided into a training dataset (236 cases) and another
independent testing dataset (101 cases) at the ratio of 7:3 via
the R package “caret”, and particularly the testing dataset was
only applied to verify the prognostic model; 2) Univariable Cox
analysis was employed to select for the prognostic lncRNAs in the
training dataset (p-value < 0.05); 3) The LASSO penalty Cox
regression was employed to remove the less contributive variables
via the “glmnet” package; 4) Stepwise multivariable Cox analysis
was utilized to develop an optimal signature according to the
minimal AIC (Akaike information criterion). The final risk score
formula is defined as follows: risk score � ∑n

i�1 expipcoefi,
where the expi represents the expression of the specific
prognostic lncRNA and the coefi represents its corresponding
multivariate Cox regression coefficient.

Evaluating and Validating the Prognostic
Signature
The risk scores of HCC patients in the training dataset (236
cases), independent testing dataset (101 patients), and the entire
TCGA-LIHC cohort (337 patients) were computed by the
constructed formula. We split HCC patients into different
hypoxia-related risk groups according to the optimal threshold
value estimated by the “survminer” package in R. Survival
analyses were carried out through the “survival” package, with
the survival difference determined by the log-rank test. The time-
dependent ROC (receiver operating characteristic) curve and the
AUCs (areas under the curve) methods were employed to judge
the prognostic value of the signature via the “timeROC” package.

Relationship Between the HRDELs-Derived
Signature and Clinical Characteristics
To further test the predictive ability of the HRDELs-derived
signature, the overall survival difference analysis between the
high-risk and low-risk group in the entire TCGA-LIHC cohort
was performed using the Kaplan-Meier curve and log-rank test,
according to different clinical subgroups including age (≥65 or
<65 years), sex (male or female), AFP level (high ≥400 ng/ ml or
low <400 ng/ ml), T (T1-2 or T3-4), M (M0 or M+), N (N0 or
N+), AJCC stage (stage Ⅰ-Ⅱ or stage Ⅲ-Ⅳ), tumor
histopathological grade (G1-2 or G3-4). In addition,
comparisons of the distribution differences of the hypoxia-
related risk groups among the different clinical characteristics
were also carried out.

Estimating the Independent Prognostic
Value of the HRDELs-Derived Signature
Univariable Cox analysis and multivariable Cox analysis were
carried out to identify whether the HRDELs-derived signature
served as an independent prognostic factor when adjusting for
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other clinical parameters. We further incorporated these
independent prognostic factors to construct a clinical
nomogram via the “rms” package. Calibration curves and
decision curve analysis (DCA) (Vickers and Elkin, 2006) were
utilized to evaluate the calibration and clinical net benefits of the
predictive model.

GOandKEGG function enrichment analysis.
Pearson correlation was applied to explore the coexpression genes
of the five key lncRNAs (LINC00869, CAHM, RHPN1-AS1,
MKLN1-AS, and DUXAP8), according to the threshold
standard of |r| > 0.3 and p < 0.05. Subsequently, GO and
KEGG function enrichment analyses of the above coexpression
genes were conducted to unravel the fundamental mechanism of
the five HRDELs via the R “clusterProfiler” package (Yu, et al.,
2012).

Somatic Variant Analysis
Somatic variants profiles calculated by the “Mutect2” software in
the TCGA-LIHC cohort were downloaded from the TCGA
database, and the “maftools” package (Mayakonda, et al.,
2018) was employed to analyze and visualize the somatic
variant landscape.

GSEA
We conducted differential gene expression analyses between
the hypoxia-related high- and low-risk groups in the TCGA-
LIHC cohort by the “limma” package (Ritchie, et al., 2015).
All genes were ranked as a gene list according to their log2
fold change (log2FC) value. GSEA (gene set enrichment
analysis) (Subramanian, et al., 2005), which calculates the
enrichment score and the corresponding adjusted p-value of a
predefined gene set according to the pre-ranked gene list
based on transcriptomic expression profiles, was employed to
determine the differently enriched pathways in hallmark gene
sets (“h.all.v7.4. entrez.txt”) and KEGG pathways gene sets
(“c2. cp.kegg.v7.4. entrez.txt”) publicly downloaded from the
MsigDB database (Liberzon, et al., 2015) (http://www.gsea-
msigdb.org/gsea/msigdb) via the R “clusterProfiler” package
(Yu, et al., 2012). A set value of adjusted p-value <0.05
represents a statistical significance.

Analyzing the Landscape of Tumor Immune
Microenvironment
The single-sample gene set enrichment analysis (ssGSEA)
(Yi, et al., 2020), which can estimate the relative score of a
specific type of immune cell at the level of a single sample, was
utilized to evaluate the relative abundance of 28 immune cells
according to the specific gene signatures curated from the
previously published literature (Charoentong, et al., 2017) via
the R package “GSVA”. The ssGSEA is a popular
bioinformatics algorithm, which was extensively utilized in
cancer-related studies (Liu, et al., 2021a; Liu, et al., 2021b;
Liu, et al., 2021c; Liu, et al., 2021d; Liu, et al., 2021e; Liu, et al.,
2021f; Liu, et al., 2021g).

Correlation Between HRDELs-Derived Risk
score and Stemness, HIF-1A mRNA Level,
and Immune Checkpoint Expression.
RNAss (RNA-based stemness scores) and DNAss (DNA
methylation-based stemness scores) of HCC patients in the
TCGA-LIHC cohort were publicly downloaded from the
UCSC Xena database (https://pancanatlas.xenahubs.net),
curated by the previously published literature (Malta, et al.,
2018). Correlations between HRDELs-derived risk score and
stemness, HIF-1A mRNA expression (representing the HIF-1α
mRNA level), and immune checkpoint expression for each HCC
patient were examined by Pearson correlation analysis,
respectively.

Prediction of Immunotherapy
Responsiveness and Targeted Drug
Sensitivity
Prediction of immunotherapy response in HCC patients was
conducted using the TIDE (Tumor Immune Dysfunction and
Exclusion) method (http://tide.dfci.harvard.edu/) (Jiang, et al.,
2018). Drug sensitivities for HCC patients were estimated via the
Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang,
et al., 2013). Drug sensitivity was assessed according to the IC50

(half-maximal inhibitory concentration) values of HCC patients
estimated by the “pRRophetic” package (Geeleher, et al., 2014).

Statistical Analysis
R software was employed to conduct the statistical analyses.
Continual variable differences between the two groups were
determined by the Wilcoxon test. Comparisons among more
than two groups were performed by the Kruskal-Wallis test. The
frequency differences in category variables were examined via the
chi-square test or Fisher’s exact test. Survival differences were
determined by the log-rank test. A threshold of two-sided p-value
< 0.05 was set to indicate statistical significance. For multiple
testing, the Benjamini–Hochberg method was employed to
correct the p-value.

RESULTS

Identification of the HRDELs in HCC
A previous study has established a hypoxia-related gene signature
from public datasets consisting of hypoxia and normoxia HCC
cells to predict the diagnosis and prognosis of HCC patients
(Zhang, et al., 2020). Analogously, by conducting differential gene
expression analyses between the hypoxia and normoxia HCC
cells in GSE155505, we acquired 2312 DELs (|fold change| > 1.5
and adjusted p-value < 0.05) and defined them as HCC-specific
hypoxia-related lncRNAs (Supplementary Table S3), including
1249 up-regulated and 1063 down-regulated lncRNAs
(Figure 1A). With the same threshold criteria in the TCGA-
LIHC cohort, we obtained 926 DELs (829 up-regulated and
97 down-regulated lncRNAs) in HCC tumor tissues compared
with normal samples (Figure 1B; Supplementary Table S4). To
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further select the most contributive hypoxia-related lncRNAs in
the carcinogenesis of HCC, we obtained a total number of 55
HRDELs by intersecting the HCC-specific hypoxia-related
lncRNAs in GSE155505 with the DELs in TCGA-LIHC
(Figure 1C; Supplementary Table S5). Of note, the majority
of those HRDELs possessed elevated expression levels not only in
hypoxia-treated HCC cells in GSE155505 (Supplementary
Figure S2) but also in the HCC tumor tissues in TCGA-LIHC
(Figure 1D), indicating that the above 55 HRDELs substantially
contribute to the tumorigenesis of HCC.

Microdissection of the HRDELs-Related
Clusters in HCC
The HRDELs landscape in patients with HCC in the TCGA-
LIHC cohort was microdissected by unsupervised clustering
according to the expression levels of the 55 aforementioned
HRDELs, via the “K-means” algorithm in the
“ConsensusClusterPlus” package. We selected 3 as the optimal
k value because that the k value of 3 could simultaneously possess

a high cumulative distribution function (CDF) value and a clear
separation of the consensus matrix (as shown in Figure 2A;
Supplementary Figures S3A–D). Therefore, all cases were
assigned into three groups according to the unsupervised
clustering results (Figure 2A). In brief, cluster 1, cluster 2, and
cluster 3 include 83, 181, and 73 cases, respectively
(Supplementary Table S6). Cluster2 showed the lowest
mRNA expression level of HIF1A compared with cluster 1
(Figure 2B, p � 2.7e−09) and cluster 3 (p � 0.0043). Notably,
there were significant OS differences among the three clusters
(Figure 2C, global p � 3.76e−07). Cluster 2 possessed a longer
median OS time than cluster 1 (p � 2.107e−08) and cluster 3 (p �
0.011), while there was no significant OS difference between
cluster 1 and cluster 3 (p � 0.051). Survival analysis also showed
that cluster 2 exhibited better disease-free survival (DFS)
outcomes (Figure 2D, global p � 0.001) than cluster 1 (p �
4.41e-04) and cluster 3 (p � 0.015), whereas no statistical
significance was shown between cluster 1 and cluster 3 (p �
0.493). These results indicate that cluster 2 with the lowest HIF1A
mRNA expression level represents the least hypoxic exposure in

FIGURE 1 | Identification of HRDELs in HCC. Volcano plots for DELs in GSE155505 (A) and TCGA-LIHC cohort (B). (C) Venn diagram of hypoxia-related lncRNAs
from GSE155505 and TCGA-LIHC cohort. (D)Heatmap of the expression levels of 55 HRDELs between HCC tumor and adjacent normal tissues in TCGA-LIHC cohort.
HRDELs: hypoxia-related differentially expressed lncRNAs. DELs: differentially expressed lncRNAs. HCC: hepatocellular carcinoma. TCGA: The Cancer Genome Atlas.
LIHC: liver hepatocellular carcinoma.
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HCC and has the best survival outcomes. Thus, we conclude that
the hypoxia-related lncRNA landscape indeed correlates with the
clinical outcomes of HCC patients.

Clinical Correlation Analysis of
HRDELs-Related Clusters
We further comprehensively analyzed the association of the
HRDELs-related clusters and clinical characteristics in the
TCGA-LIHC cohort. Results showed that there were
significant distributive differences in overall survival status,
pathological T, AJCC stage, and “Progressed (Ye/No)” among
HRDELs-related clusters (Figure 3A). Cluster 2 has a lower death
rate of patients with HCC (25%) compared to cluster1 (53%), and

cluster3 (40%), as shown in Figure 3B (p � 5.1e−05). Cluster 2
had a higher proportion of patients with pathological T1 (65%),
stage Ⅰ (65%), and “Progressed (No) (49%)” than cluster 1 (42, 45,
and 31%, respectively) and cluster 3 (21, 20, and 37%,
respectively), as shown in Figures 3C–E. The above evidence
suggests that HRDELs-related clusters are closely associated with
tumor progression in HCC.

Construction of the HRDELs-Derived
Prognostic Signature
All 337 patients in the TCGA-LIHC cohort were randomly
assigned into the training dataset (236 cases) and the testing
dataset (101 cases). The prognostic signature was developed in

FIGURE 2 | Microdissection of the hypoxia-related lncRNA landscape in TCGA-LIHC cohort. (A) the Consensus matrix plot of HCC patients by unsupervised
clustering (K-means method) according to the expression levels of 55 HRDELs, when k � 3 representing the optimal cluster number. (B) Comparison of HIF1A mRNA
expression among the HRDEL-specific clusters. (C)Overall survival difference and (D) DFS difference among hypoxia-specific clusters. HCC: hepatocellular carcinoma.
HRDELs: hypoxia-related differentially expressed lncRNAs. DFS: disease-free survival.
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the training dataset. We utilized the univariable Cox regression to
yield 21 significant prognostic hypoxia-related lncRNAs
(Figure 4A). Subsequently, 10 prognostic lncRNAs were
retained after filtering the variables by LASSO penalty Cox
analysis according to the “lambda. min” standard (Figures
4B,C; Supplementary Table S7). Furthermore, the stepwise
multivariable Cox regression model was employed to establish
the optimal signature (Figure 4D; Supplementary Table S8).
Ultimately, five hypoxia-related lncRNAs were selected and
incorporated into the final model: risk score �
0.26120*LINC00869 expression+0.37141*CAHM
expression+0.28394*RHPN1-AS1 expression +0.48183*
MKLN1-AS expression +0.49900*DUXAP8 expression.

Evaluating and Validating the Performance
of the Prognostic Signature
Applying the above formula, we computed the hypoxia-related
risk score for each patient in the training dataset (Supplementary

Table S9). All these cases were assigned into a high-risk (71
patients) or low-risk group (165 patients) based on the optimal
threshold value (2.3033). The high-risk group showed an adverse
prognosis compared with those in the low-risk counterpart (p <
0.001, Figure 5A). The AUCs of the risk scores for the 1-, 3-, and
5-years survival predictions were 0.746, 0.702, and 0.726
(Figure 5D), respectively, indicating a good predictive value.
We further tested the prognostic model in the testing dataset
(Supplementary Table S10) and the entire TCGA-LIHC dataset.
With the same threshold, cases in the testing dataset and the
entire TCGA-LIHC dataset were assigned into different hypoxia-
related risk groups, respectively. Analogously, the high-risk group
consistently showed a poorer clinical outcome than the low-risk
group, with p � 0.002 in the testing dataset (Figure 5B) and p <
0.001 in the entire TCGA-LIHC dataset (Figure 5C), respectively.
The AUCs for the 1-, 3-, and 5-years prognostic prediction in the
testing dataset were 0.755, 0.684, and 0.686, respectively
(Figure 5E), and the AUCs of the entire TCGA-LIHC cohort
were 0.746, 0.697, and 0.712 for 1-, 3-, and 5- year survival

FIGURE 3 | Clinical correlation analysis of HRDELs-specific clusters in TCGA-LIHC cohort. (A) Distribution landscape of HRDELs-specific clusters among clinical
characteristics. Comparison of distribution difference of overall survival status (B), pathological T (C), AJCC stage (D), and “Progressed (Yes/No)” (E) among HRDELs
-specific clusters. HRDELs: hypoxia-related differentially expressed lncRNAs. AJCC: American Joint Committee on Cancer. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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prediction, respectively (Figure 5F). These results demonstrate
the robustness and reliability of the prognostic signature.

We further sought to search for an external validation dataset
in the International Cancer Genome Consortium (ICGC)

database or GEO database, but unfortunately, there was no
other public dataset of HCC patients with matched lncRNA
expression profiles and complete survival information. Finally,
we chose the HCC dataset GSE14520-GPL3921 as the external

FIGURE 4 | Construction of hypoxia-related lncRNA signature in the training dataset. (A) Forest plot of 21 significant prognostic lncRNAs determined by the
univariate Cox regression. (B) LASSO penalty coefficients of the above 21 prognostic lncRNAs. (C)Cross-validation of the LASSOCox regression model, the left vertical
dashed line represents the “lambda. min” standard. (D) Forest plot of the optimal model determined by the stepwise multivariate Cox analysis according to the minimal
AIC value (783.95). LASSO: least absolute shrinkage and selection operator. AIC: Akaike information criterion. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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FIGURE 5 | Identification and validation of the hypoxia-related lncRNAs signature. Kaplan-Meier curves and log-rank test p-value of the training dataset (A), testing
dataset (B), and entire TCGA-LIHC cohort (C), respectively. The AUCs of the time-dependent ROC curves for the training dataset (D), testing dataset (E), and entire
TCGA-LIHC cohort (F), respectively.
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FIGURE 6 | Identifying the hypoxia-related lncRNA signature as an independent prognostic factor. Forest plot of the corresponding p-values of the univariate Cox
regression analysis (A) and multivariate Cox regression analysis (B). Comparisons of the expression levels of CAHM (C), DUXAP8 (D), LINC00869 (E), MKLN1-AS (F),
and RHPN1-AS1 (G) between HCC tumor and adjacent normal tissues in TCGA-LIHC cohort. TCGA: The Cancer Genome Atlas. LIHC: liver hepatocellular carcinoma.
***, p < 0.001; **, p < 0.01; *, p < 0.05.
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FIGURE 7 | (A) Distribution landscape of the hypoxia-related risk groups among clinical parameters and the heatmap of the expression levels of the five key
lncRNAs in HCC patients in the TCGA-LIHC cohort. The color blue denotes a low expression level and red represents a high expression level. (B) AUCs of the time-
dependent ROC curves for risk score, HIF1A mRNA expression, age, stage, and tumor grade in HCC patients. (C) AUCs for the 5-years prognostic prediction of risk
score, HIF1A mRNA expression, age, stage, and tumor grade in HCC patients. AUC: area under the curve. ROC: receiver operating characteristic curve. HCC:
hepatocellular carcinoma. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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validation dataset and re-annotated all the probe sequences using
the “SeqMap” software to obtain the lncRNA expression profiles.
However, only three lncRNAs (LINC00869, RHPN1-AS1, and
MKLN1-AS) in the hypoxia-related lncRNA signature were re-
annotated in GSE14520-GPL3921 and thus we had to calculate
the risk score through the following formula: risk score �
0.26120*LINC00869 expression+0.28394*RHPN1-AS1
expression + 0.48183* MKLN1-AS expression. GSE14520-
GPL3921 comprises 225 HCC tissues and 220 non-tumor
specimens, and 221 tumor samples with detailed survival data
were enrolled as the validation dataset. We calculated the risk
score for each HCC patient (Supplementary Table S11) and
categorized patients into different risk groups based on the
optimal threshold (9.753). In the same manner, Kaplan-Meier
curves demonstrated that patients in the high-risk group had
poorer clinical outcomes than those in the low-risk counterpart
(Supplementary Figure S4A, p � 0.032). ROC analyses showed
that The AUCs for the 1-, 3-, and 5-years prognosis prediction
were 0.510, 0.570, and 0.534, respectively (Supplementary Figure
S4B). The unsatisfactory AUC values in GSE14520-GPL3921
might be caused by the lack of expression profiles of CAHM
and DUXAP8, and further complete external validation will still
be needed in the future. Collectively, the external validation
results further confirmed that the hypoxia-related lncRNA
signature was closely associated with adverse clinical outcomes
in HCC.

Subgroup Survival Analysis of the
HRDELs-Derived Signature
We further stratified the entire TCGA-LIHC cohort into different
subgroups according to the clinical characteristics including age
(≥65 or <65 years), sex (male or female), AJCC stage (stage Ⅰ-Ⅱ or
stage Ⅲ-Ⅳ), pathological T (T1-2 or T3-4), pathological M (M0
or M + ), pathological N (N0 or N+), tumor histopathological
grade (G1-2 or G3-4), AFP level (high ≥400 ng/ml or low
<400 ng/ ml). Strikingly, patients with high-risk scores
consistently had poorer clinical outcomes than those with low-
risk scores, no matter which subgroups they are in
(Supplementary Figures S5–S7). This further confirms the
reliable prognostic value of the hypoxia-related lncRNA
signature in predicting the clinical outcomes of patients
with HCC.

Identifying the Independent Prognostic
Value of Hypoxia-Related lncRNA Signature
Univariable and multivariable Cox analyses consistently
demonstrated that hypoxia-related risk scores and the AJCC
stage were independent prognostic indicators in HCC (Figures
6A,B). Moreover, the risk score was tightly associated with
pathological T, AJCC stage, and “Progressed (Yes/No)”
(Figure 7A). The high-risk group has a higher proportion of
patients with T3-4, stage Ⅲ-Ⅳ, and “Progressed (Yes)” than the
low-risk counterpart (Supplementary Figures S8A–C). Time-
dependent ROC illustrates that the 5-years AUC of hypoxia-
related risk scores for the prognostic prediction reaches 0.705 and

is superior to that of age, AJCC stage, pathological grade, and
HIF1A mRNA expression (Figures 7B,C), indicating the good
performance of the hypoxia-related lncRNA signature.
Furthermore, The five lncRNAs in the prognostic signature
(CAHM, DUXAP8, LINC00869, MKLN1-AS, and RHPN1-AS1),
all had a significantly higher expression level in HCC tumor
samples than normal samples in the TCGA-LIHC cohort
(Figures 6C–G), implying that they probably act as oncogenic
lncRNAs in the tumorigenesis of HCC.

Construction of a Clinical Nomogram to
Improve Prognostic Prediction
To test the clinical practicability of the hypoxia-related lncRNA
signature, the two independent prognostic indicators yielded by
the multivariable Cox analyses, hypoxia-related risk score and
AJCC stage, were incorporated to develop a hybrid nomogram to
facilitate the prognostic prediction. Patients were given a total risk
score based on each factor level in the nomogram (Figure 8A).
Statistical analysis showed that the concordance index (C-index)
of the nomogram reached 0.718 (95% confidence interval:
0.666–0.770). Calibration curves showed that the nomogram-
predicted OS probability was consistent with the observed OS
probability (Figure 8B). DCA curves further suggested that the 5-
years clinical net benefit of the combined nomogramwas superior
to that of other individual models (Figure 8C).

Functional Annotation of Five Key
Prognostic lncRNAs in HRDELs-Derived
Signature
To investigate the underlying mechanism of the signature, we
used the Pearson correlation analysis to select potential targeted
genes of the five key lncRNAs. We finally obtained 1678, 3427, 79,
6720, and 3359 coexpression genes for CAHM, DUXAP8,
LINC00869, MKLN1-AS, and RHPN1-AS1, respectively (|r| >
0.3 and p < 0.05). These corresponding coexpression genes for
each key lncRNA were subjected to GO and KEGG function
enrichment analysis. With the GO biological process (BP) term
enrichment, four of the five key lncRNAs except for LINC00869
were consistently enriched in the tumor proliferation process
including DNA replication, RNA splicing, nuclear division,
mitotic nuclear division, and nuclear transport (Figure 9A).
We also noticed that LINC00869 had a significant enrichment
in “mitochondrial gene expression,” and “mitochondrial
respiratory chain complex assembly” (Figure 9A), suggesting
that LINC00869 was closely related to mitochondrial energy
metabolism. For the KEGG pathway, CAHM, DUXAP8,
MKLN1-AS, and RHPN1-AS1 were all enriched in these
tumor proliferation-related pathways such as Spliceosome, Cell
cycle, DNA replication, and RNA transport (Figure 9B),
suggesting their important role in the tumorigenesis. However,
there was no significantly enriched KEGG pathway associated
with LINC00869. Owing to the fewer coexpression genes for
LINC00869 in HCC tissues, we further compared the expression
level of LINC00869 between the HCC tumor samples and non-
tumor samples in GSE14520-GPL3921. Notably, LINC00869 also
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FIGURE 8 | Construction of a clinical predictive nomogram to improve the prognostic prediction in HCC. (A) The hybrid nomogram combining the hypoxia-related
risk score with the AJCC stage. Patients were given a total risk score based on each factor level in the nomogram. (B) Calibration curves show the consistency between
the nomogram-predicted OS probability and the observed OS probability. (C)DCA curves illustrate the 5-years clinical net benefit of the combined nomogram compared
with other individual models. HCC: hepatocellular carcinoma. OS: overall survival. DCA: decision curve analysis.
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FIGURE 9 | Functional annotation of CAHM, DUXAP8, LINC00869, MKLN1-AS, and RHPN1-AS1. Significantly enriched terms in the GO biological process terms
(A) and KEGG pathway (B), according to the corresponding coexpression genes of the above five key lncRNAs. GO: Gene Ontology. KEGG: Kyoto Encyclopedia of
Genes and Genomes.
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FIGURE 10 | Somatic variants analysis of patients in TCGA-LIHC cohort. (A) Somatic variants landscape of the top 20 frequently mutational genes in the two risk
groups. (B)Comparison of mutational frequency differences of TP53 between hypoxia-related high-risk and low-risk groups. (C) Survival analyses of the different clinical
subgroups stratified by TP53 status and hypoxia-related risk score. TP53-MUT: TP53-mutant. TP53-WT: TP53-wild type. H-risk score: high-risk score. L-risk score:
low-risk score.
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possessed a significantly higher expression level in tumor tissues
in comparison with non-tumor tissues (Supplementary Figure
S8D, p � 4.964e−20), confirming the critical role of LINC00869 in
the carcinogenesis of HCC. We speculate that the reason for the
fewer coexpression genes may be due to the unique expression
pattern and molecular mechanism of LINC00869, and this
phenomenon is worth further study.

Distinct Molecular Patterns Among the
Hypoxia-Related Risk Groups
On account of the significant survival difference between the two
groups, GSEA was performed to elucidate the underlying
molecular mechanism. With the hallmark gene sets, the high-
risk group possessed significantly enriched scores in the “G2M_
CHECKPOINT,” “MITOTIC_SPINDLE,” “PI3K_AKT_MTOR_
SIGNALING,” “WNT_BETA_CATENIN_SIGNALING,” and
“EPITHELIAL_MESENCHYMAL_TRANSITION” pathways
which were strongly associated with tumor cell proliferation
and aggression (Supplementary Figure S9A). In particular,
the “HALLMARK_HYPOXIA” pathway was also significantly
enriched in the high-risk cohort, confirming a strong correlation
between the hypoxia-related lncRNA signature and hypoxic
exposure in HCC. In the case of the KEGG pathway gene sets,
the high-risk cohort displayed significantly enriched scores in the
“CELL_CYCLE,” “SPLICEOSOME,” “PATHWAYS_IN_
CANCER,” and “ADHERENS_JUNCTION” pathways
(Supplementary Figure S9B). Furthermore, the high-risk
cohort showed a higher level of the RNAss (RNA-based
stemness scores), DNAss (DNA methylation-based stemness
scores), and HIF1A expression level compared with the low-
risk counterpart (Supplementary Figures S10A–C). The
hypoxia-related risk score also had a significant positive
correlation with RNAss, DNAss, and the HIF1A mRNA
expression level (Supplementary Figures S10D–F), supporting
the pivotal role of hypoxia in promoting the stemness in HCC.
Collectively, the hypoxia-related lncRNA signature indeed
reflects the hypoxic exposure in HCC, and hypoxia-related
lncRNAs also contribute to the stemness and tumor
progression of HCC.

Somatic Variants Analysis
In total, we obtained the somatic variants profiles of 324 HCC
patients enrolled in our study by matching the patient identity
number. The distributive landscape of the top 20 frequently
mutated genes between the two groups was depicted in
Figure 10A, and TP53, CTNNB1, and TTN ranked as the top
three mutative genes. Studies have reported that mutant TP53 can
cooperate with hypoxia to promote tumor progression (Amelio,
et al., 2018; Zhang, et al., 2021). Thus, we focus on the relationship
between the TP53 mutational status and the hypoxia-related
lncRNA signature. The Chi-square test showed that TP53 had
a significantly higher mutative ratio in the high-risk group than in
the low-risk counterpart (54 versus 20%, p � 8.55e−09,
Figure 10B). With respect to the comparisons of the mutative
ratio of CTNNB1 and TTN, there was no significant difference
between the two groups (Supplementary Figures S11A–B).

Subgroup survival analysis further indicated that patients with
low-risk scores consistently had better OS survival outcomes than
those with high-risk scores irrespective of the TP53 status
(Figure 10C, global p-value < 0.001). Moreover, patients with
a wild type of TP53 in the high-risk or low-risk group showed
better clinical outcomes than patients with a mutant type of TP53
in the corresponding group. In the case of CTNNB1 and TTN,
subgroup survival analyses showed the same results as TP53
(Supplementary Figures S11C–D). These results support that
hypoxia contributes to genome instability and the crosstalk
between these frequently mutated genes (TP53, CTNNB1, and
TTN) and hypoxia has a substantial impact on the prognosis of
patients with HCC.

Correlation Between the Hypoxia-Related
lncRNA Signature and Tumor Immune
Microenvironment
A previously published study has already classified more than
10,000 tumor samples across 33 cancer types in TCGA into six
classical immune subtypes (immune C1, C2, C3, C4, C5, and C6)
and found that patients in the immune type C3 (inflammatory
type) have the best survival outcomes (Thorsson, et al., 2018).
Thus, we further investigated the association of the hypoxia-
related lncRNA signature and the classical immune subtypes. In
total, 330 out of the 337 HCC patients in our study matched the
immune subtype information (17, 39, 125, 148, and 1 patient for
immune C1, C2, C3, C4, and C6, respectively). We excluded the
immune C6 with only one patient from further analysis to avoid
potential bias. Fisher’s exact test revealed that the low-risk group
had a significantly higher proportion of immune C3 than the
high-risk group (45 versus 21%, p � 2.7 e−06, Figure 11A).
Furthermore, the immune C3 showed the lowest risk scores
compared with other immune subtypes (Figure 11B). The
alluvial plot showed that the immune C3 was mainly derived
from HRDELs-specific cluster 2 and the majority of immune C3
was attributed to the low-risk group which had a favorable
prognosis in HCC (Figure 11C). These results indicated that
the hypoxia-related low-risk group had a different tumor
immune infiltration pattern from the high-risk group.

We then calculated the relative scores of 28 immune cells for
each patient with HCC using the ssGSEA algorithm
(Supplementary Table S12, detailed method is described in
the “Materials and methods” part). Notably, The low-risk
group possessed a higher abundance in activated CD8+ T cell,
activated B cell, monocyte, neutrophil, while the high-risk group
had a higher fraction in activated CD4+ T cell and immature
dendritic cell, and activated dendritic cell (Figure 12A). We
further explored the correlation between the abundance of 28
immune cells and the expression levels of the five key lncRNAs in
the hypoxia-related lncRNA signature by Pearson correlation
analysis (Supplementary Figure S12). Interestingly, MKLN1−AS
was significantly positively correlated with several types of
immune cells such as Activated CD4 T cell, Immature
dendritic cell, Effector memory CD4 T cell, Plasmacytoid
dendritic cell, and Type 2 T helper cell. CAHM, DUXAP8,
and RHPN1−AS1 were positively correlated with Activated
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CD4 T cells. These results indicated that the hypoxia-related
lncRNA signature might be mainly expressed in the above
immune cells.

Hypoxia has been reported to up-regulate the expression level
of immune checkpoints such as PDL1 to induce immune escape
(Lequeux, et al., 2019). Hence, we also investigated the correlation

between the hypoxia-related risk score and the expression levels
of several critical immune checkpoints. Results showed that the
mRNA expression levels of PD1 (PDCD1), PDL1 (CD274),
CTLA4, LAG3, and TIGIT were consistently elevated in the
hypoxia-related high-risk group in comparison with the low-
risk counterpart (Supplementary Figures S13A–E). Meanwhile,

FIGURE 11 | Correlation between the hypoxia-related lncRNA signature and classical immune subtypes. (A) Comparison of the distributive difference of the
immune subtypes between the two risk groups. (B)Comparisons of the hypoxia-related risk scores among different immune subtypes. (C) The alluvial plot illustrating the
relationship between the HRDELs-specific clusters, classical immune subtypes, hypoxia-related risk groups, and overall survival status. HRDELs: hypoxia-related
differentially expressed lncRNAs.
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FIGURE 12 | Correlation between the hypoxia-related lncRNA signature and tumor immune microenvironment. (A) Comparisons of the abundance of 28 immune
cells between the high- and low-risk group using ssGSEA. (B) Chord diagram of the correlation between hypoxia-related risk score and the expression levels of
PD1(PDCD1), PDL1(CD274), CTLA4, LAG3, and TIGIT. The color red denotes the positive correlation and blue represents the negative correlation. ssGSEA: single-
sample gene set enrichment analysis. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns: no significance.
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the risk score was significantly positively correlated with the
mRNA expression of PD1(PDCD1), PDL1(CD274), CTLA4,
LAG3, and TIGIT (Figure 12B). the above evidence
demonstrates that hypoxia indeed contributes to the tumor
immune dysfunction and immune exclusion in HCC.

Prediction of Immunotherapy
Responsiveness and Targeted Drug
Sensitivity
Accumulative evidence suggests that hypoxia can drive cancer
cells to an immune resistance phenotype and is associated with

resistance to immunotherapy (Abou Khouzam, et al., 2020).
Hypoxia is also involved in the acquired chemoresistance
during cancer chemotherapy (Akman, et al., 2021).
Therefore, we investigated the association of the hypoxia-
related lncRNA signature with immunotherapy response and
targeted drug sensitivity in HCC. The low-risk group was
predicted to hold a higher proportion of immunotherapeutic
responders compared with the high-risk counterpart (56
versus 29%, chi-square test p � 9.3 e−07, Figure 13A;
Supplementary Table S13). Patients with low-risk scores
had lower TIDE scores, which means more responsive to
the immunotherapy, compared with those with high-risk

FIGURE 13 | Prediction of immunotherapy response and targeted-drug sensitivity. (A) Comparison of predicted immunotherapeutic responder proportion and (B)
TIDE score between the high- and low-risk groups. (C) Correlation between hypoxia-related risk score and TIDE score in TCGA-LIHC cohort. Comparisons of the IC50

values between the high- and low-risk groups for Axitinib (D), Dasatinib (E), Erlotinib (F), Gefitinib (G), Lapatinib (H), and Sorafenib (I), respectively. TIDE: Tumor Immune
Dysfunction and Exclusion. IC50: half-maximal inhibitory concentration.
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scores (p � 1.3 e−07, Figure 13B). Moreover, the hypoxia-
related risk score has a significant positive correlation (r � 0.3
and p � 3.3 e−08) with the TIDE score (Figure 13C). These
results demonstrated that the hypoxia-related lncRNA
signature could distinguish the immunotherapeutic
responders in HCC and had the potential to serve as a
predictor of the immunotherapy response in patients with
HCC. The drug sensitivity analyses revealed that patients in
the low-risk group exhibited a significantly lower IC50 value
of the several drugs including axitinib, dasatinib, erlotinib,
gefitinib, and lapatinib (except for sorafenib) in contrast with
the high-risk group (Figures 13D–I), suggesting a potential
treatment sensitivity of these patients towards above drugs.
According to these results, we conclude that the HRDELs-
derived signature has the potential predictive ability of
immunotherapy response and targeted drug sensitivity.

DISCUSSION

HCC accounts for approximately 90% of liver malignancies
and possesses high mortality (Forner, et al., 2018). It is urgent
to explore new prognostic biomarkers and potential
therapeutic predictors of immunotherapeutic response for
HCC. Studies have demonstrated that the hypoxic tumor
microenvironment promotes tumor progression,
metastasis, recurrence, and drug resistance (LaGory and
Giaccia, 2016; Rankin and Giaccia, 2016). Another study
(Zhang, et al., 2020) established a hypoxia-related gene
signature connected with unfavorable prognosis and
elevated recurrence rate in HCC. However, there is still a
lack of hypoxia-related lncRNAs prognostic signature in
HCC. lncRNAs play a crucial role in the hypoxia-response
process of cancer cells (Choudhry, et al., 2016; Huan, et al.,
2020), and the interplay between hypoxia and lncRNAs
associates with tumor growth and metastasis (Wang, et al.,
2021). Thus, we for the first time microdissected the hypoxia-
related lncRNA landscape in HCC and identified three
hypoxia-specific clusters which are strongly related to OS
and DFS outcomes. We further established a robust and
reliable hypoxia-related lncRNA signature associated with
a poor prognosis in HCC. Time-dependent ROC curves
illustrate that the constructed model is superior to age,
AJCC stage, tumor pathological grade, and HIF-1A mRNA
expression in the prognostic prediction of HCC. More
importantly, we constructed a clinical nomogram including
the HRDELs-derived signature and AJCC stage, and the
nomogram model showed good discrimination, calibration,
and clinical net benefit. These results demonstrated that the
hypoxia-related lncRNA signature can improve the prognosis
prediction in HCC and has good clinical practicability.

The prognostic signature comprises five hypoxia-related
lncRNAs, which are all associated with poor clinical
outcomes in HCC and their expression levels are elevated
in HCC tumor tissues. DUXAP8 promotes the growth and
proliferation of HCC cell lines by suppressing Krüppel-like
factor 2 (KLF2) expression (Jiang, et al., 2019). (Gao, et al.,

2020) revealed that MKLN1-AS promoted HCC progression
by acting on miR-654-3p, and down-regulation of MKLN1-
AS inhibits the aggressive phenotype of HCC cells. RHPN1-
AS1 enhances the proliferation and invasion process of HCC
cells by targeting miR-7-5p (Song, et al., 2020). The above
evidence is consistent with our results and confirms that
DUXAP8, MKLN1-AS, and RHPN1-AS1 are crucial
oncogenic lncRNAs in HCC. Notably, CAHM and
LINC00869 have not been reported in HCC yet and their
role in HCC is worth further study to explore novel treatment
targets.

Subsequently, we analyzed the underlying molecular
mechanism related to the hypoxia-related lncRNAs.
Unsurprisingly, the high-risk group exhibited increased HIF-
1A mRNA expression compared to the low counterpart. HIF-
1α plays a key role in the regulation of tumor progression,
metastasis, and recurrence under hypoxic conditions (LaGory
and Giaccia, 2016; Rankin and Giaccia, 2016). Hence, the
constructed signature indeed reflects the hypoxia exposure
level of HCC tissues. The risk score is also positively
correlated with both the RNAss and DNAss, indicating the
crucial role of hypoxia in contributing to the enhanced tumor
stemness in HCC (Cui, et al., 2017). In addition, GSEA displays
that the high-risk cohort exhibits more enriched scores in the
“WNT_BETA_CATENIN_SIGNALING”,
“PI3K_AKT_MTOR_SIGNALING”, and
“EPITHELIAL_MESENCHYMAL_TRANSITION” pathways
than the low-risk cohort. Hypoxia has been reported to
promote EMT in HCC to induce immunosuppression and
facilitate tumor metastasis (Ye, et al., 2016). Thus, we
speculate that hypoxia-related lncRNAs may exert their action
through the above oncogenic pathways to regulate the
progression of HCC.

Tumor immune infiltration pattern contributes greatly to the
progression of HCC. The CD8+ T cell is critical for anti-tumor
immunity in HCC and can directly induce the death of tumor
cells (Wei, et al., 2016). More abundance of CD8+ T cells is
correlated with less recurrence and a longer recurrence-free
survival time in HCC (Gabrielson, et al., 2016). Tumor-
infiltrating B cells can positively mediate the antigen
presentation process to induce tumor killing (Wouters and
Nelson, 2018). In our study, the low-risk group with a better
prognosis displays more abundance in CD8+ T cells and activated
B cells than the high-risk group, and thus possesses elevated anti-
tumor immunity. In contrast, the high-risk group exhibits a high
fraction of immature dendritic cells and activated dendritic cells,
which may be due to the phenomenon that the chronic hypoxic
microenvironment exerts a stimulatory action on the
immunoregulatory functions of immature dendritic cells
(Pierobon, et al., 2013). Therefore, we conclude that the
hypoxia-related lncRNA signature is tightly connected with
the tumor immune microenvironment in HCC. The hypoxic
tumor microenvironment supports tumor stemness, metastasis,
and tumor immune escape (Chouaib, et al., 2017; Samanta and
Semenza, 2018), and also up-regulates critical immune
checkpoints expression such as PD1/PDL1 (Lequeux, et al.,
2019). We also uncovered that the high-risk cluster exhibited

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 78518520

Tang et al. Hypoxia-Related lncRNA Signature in HCC

78

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


elevated expression levels of PD1, PDL1, CTLA4, LAG3, and
TIGIT compared to the low-risk counterpart, supporting the
contribution of hypoxia to the tumor immune escape in HCC.

Hypoxia has been considered to drive cancer cells to an
immune resistance phenotype and is associated with
resistance to immunotherapy (Abou Khouzam, et al., 2020;
Wu, et al., 2019). We also investigated the association of our
constructed signature with immunotherapy response using
the TIDE algorithm, which can effectively predict the
treatment responsiveness of immune checkpoint blockade
(Jiang, et al., 2018). A higher TIDE score means more
T cell dysfunction or more exclusion of T cell infiltration
and thus less response to immunotherapy. Notably, the low-
risk group possesses more potential immunotherapeutic
responders compared to the high-risk counterpart. We
speculate that the low-risk group represents less hypoxic
exposure and therefore is more responsive to
immunotherapy. Additionally, the low-risk group exhibits
a lower inhibitory concentration (IC50) value of Axitinib,
Dasatinib, Erlotinib, Gefitinib, and Lapatinib, suggesting a
higher sensitivity to these drugs than the high-risk group.
Hypoxia aberrantly activates the HIF-1α pathway and several
specific oncogenic pathways, inducing chemoresistance in
cancer chemotherapy (Akman, et al., 2021; Kim and Lee,
2017). In line with these studies, the high-risk group retains
more enriched scores in the
“WNT_BETA_CATENIN_SIGNALING” and
“PI3K_AKT_MTOR_SIGNALING” pathways,
demonstrating the potential chemoresistance mechanism
under the hypoxia condition in HCC. However, the IC50

value of sorafenib shows no statistical difference between
the two groups. This phenomenon may be due to the intricate
mechanism of sorafenib resistance including epigenetic
modification, autophagy, ferroptosis, hypoxia, immune
microenvironment (Tang, et al., 2020), and tumor genetic
heterogeneity with HCC (Cabral, et al., 2020). Collectively,
the hypoxia-related lncRNA signature has the potential to
predict immunotherapy response and targeted drug
sensitivity.

However, our present study has some limitations. Due to
the absence of another public dataset of HCC patients with
matched lncRNA expression profiles and complete survival
data, the prognostic model was validated in an internal split
testing dataset and lacked complete external validation. Thus,
additional studies will be needed to further verify its reliable

prognostic value. Meanwhile, the signature has been proved
to possess the potential predictive capability of
immunotherapy response by bioinformatical analysis, but
well-designed clinical trials are required to further examine
its performance. Additionally, CAHM and LINC00869 are
reported in HCC for the first time, their mechanism is worth
further exploration by molecular function experiment.

In conclusion, the hypoxia-related lncRNA landscape
correlates with clinical outcomes in patients with HCC. We
established a reliable hypoxia-related lncRNAs signature that
could accurately predict the clinical outcomes of HCC patients
and correlate with immunotherapy response and targeted drug
sensitivity, providing new insights for immunotherapy and
targeted therapy in HCC.
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Background: Non–small cell lung cancer (NSCLC) is among the major health problems
around the world. Reliable biomarkers for NSCLC are still needed in clinical practice. We
aimed to develop a novel ferroptosis- and immune-based index for NSCLC.

Methods: The training and testing datasets were obtained from TCGA and GEO
databases, respectively. Immune- and ferroptosis-related genes were identified and
used to establish a prognostic model. Then, the prognostic and therapeutic potential
of the established index was evaluated.

Results: Intimate interaction of immune genes with ferroptosis genes was observed. A
total of 32 prognosis-related signatures were selected to develop a predictive model for
NSCLC using LASSO Cox regression. Patients were classified into the high- and low-risk
group based on the risk score. Patients in the low-risk group have better OS in contrast
with that in the high-risk group in independent verification datasets. Besides, patients with
a high risk score have shorter OS in all subgroups (T, N, and M0 subgroups) and
pathological stages (stage I, II, and III). The risk score was positively associated with
Immune Score, Stromal Score, and Ferroptosis Score in TCGA and GEO cohorts. A
differential immune cell infiltration between the high-risk and the low-risk groups was also
observed. Finally, we explored the significance of our model in tumor-related pathways,
and different enrichment levels in the therapeutic pathway were observed between the
high- and low-risk groups.

Conclusion: The present study developed an immune and ferroptosis-combined index
for the prognosis of NSCLC.

Keywords: NSCLC, biomarkers, bioinformatics analysis, microenvironment non–small cell lung cancer, immune,
prognosis

INTRODUCTION

According to cancer statistics 2020, lung cancer accounts for almost one-fourth of all cancer fatalities
(Siegel et al., 2020). Non–small cell lung cancer (NSCLC) is the most frequent type of lung cancers
with high morbidity along with mortality, which remains a major public health problem. Despite the
current progression of NSCLC treatment, the diagnosis and treatment for NSCLC is still limited.
Therefore, a better understanding of the NSCLC and identifying novel biomarkers are still needed.
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The immune microenvironment constitutes an important
element of cancer. For example, hepatocellular carcinoma
(HCC) patients with a high immune status were associated
with poorly differentiated HCC. The immune status has
histological and molecular classification potential for HCC
(Kurebayashi et al., 2018). The microenvironment is also
considered an important integral component of NSCLC (Chae
et al., 2018). Our previous study identified some immune-related
genes that possessed prognostic potential for NSCLC and
identified an immune gene–based risk model to predict overall
survival (OS) of individuals with NSCLC (Mi et al., 2020).

Ferroptosis is a kind of iron-dependent cell death caused by
unrestricted lipid peroxidation (Dixon et al., 2012). Plenty of studies
have been conducted to reveal its prognostic and therapeutic
potential for cancer. Ribonucleotide reductase regulatory subunit
M2 (RRM2) is elevated in liver cancer tissues and cells, which could
protect against ferroptosis of liver cancer cells (Yang et al., 2020). The
expression of a major target of ferroptosis Xc-complex was elevated
in gemcitabine-resistant pancreatic cancer cells (Tang et al., 2020),
and the regulators of ferroptosis play an indispensable role in
estimating the survival of individuals with pancreatic cancer
(Tang et al., 2020). Increased sensitivity to ferroptosis was
identified to be correlated with higher scores of CD8+ T cells and
immune checkpoints (Tang et al., 2020). Siramesine (lysosome-
disrupting agent) and lapatinib (tyrosine kinase inhibitor)
synergistically induced the ferroptosis of breast cancer cells. This
process was inhibited by ferrastatin-1, a potent inhibitor of
ferroptosis (Ma et al., 2016). Acetaminophen and erastin exert a
synergistic effect in inducing ferroptosis in NSCLC (Gai et al., 2020).

The interaction between ferroptosis and immunity has aroused the
attention of researchers. The enhanced function of CD8+ T cells in the
cancer microenvironment is a dominant mechanism of cancer
immunotherapy. Wang et al. found that immunotherapy could
activate CD8+ T cells and subsequently induce ferroptosis of cancer
cells (WangW. et al., 2019). On the contrary, ferroptosis-induced lipid
metabolite release by cancer cells could modulate the function of
immune cells and induce immune response (Luo et al., 2021).
Therefore, the combined therapy with the ferroptosis enhancer and
checkpoint blockade would be a potential cancer therapeutic approach.

However, little is known about the comprehensive status of
ferroptosis and the immune response in NSCLC. Herein, we aim
to analysis the association between ferroptosis and immune
response in NSCLC.

METHODS AND MATERIALS

Gene Expression Datasets of Lung Cancer
In this study, we incorporated NSCLC data from two publicly
available databases. For the TCGA, the gene expression data along
with the matching clinical data of lung adenocarcinoma (LUAD), as
well as lung squamous cell carcinoma (LUSC)were obtained from the
Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/). We
combined LUAD samples and LUSC samples as training cohorts,
which were called “TCGA” cohort, including 1129 samples.

The gene expression microarray of NSCLC (GSE37745 and
GSE50081) with matching clinical data was abstracted from Gene

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo).
We integrated GSE37745 and GSE50081 samples as validation
cohort, which were called “GEO” cohort, including 377 samples.
Gene expression data of both the datasets were normalized using the
Robust Multichip Average (RMA) approach from R package “affy”.

Immune and Ferroptosis Gene Set
A total of 1793 immune-related genes were abstracted from
immunology databases, as well as Analysis Portal (ImmPort)
data resource (https://www.immport.org/home). A total of
103 ferroptosis-related genes were abstracted from the study
by Luo H et al (Luo and Ma, 2021).

The protein–protein interaction (PPI) network of immune-
related genes and ferroptosis-related genes was constructed and
visualized using Cytoscape (https://cytoscape.org/). PPI data were
obtained from the STRING (https://string-db.org/) database.

Determination of Prognosis-Linked
Signatures and Establishment of the
Prognostic Model
A univariate Cox proportional regression model was adopted to
select OS-linked genes from both immune and ferroptosis gene
sets in TCGA training data set. Overall, 42 prognosis-linked
signatures were screened with p < 0.05, including 38 immune
genes and five ferroptosis-related genes, among which NEDD4
was both the immune- and ferroptosis-related gene.

Next, the least absolute shrinkage and selection operator
(LASSO) regression model was constructed to identify
significant prognostic genes. A risk score was computed via
considering the expression of optimized 32 signatures and
correlation: Risk score � (exp gene1 * coef gene1) + (exp
gene2 * coef gene2) + . . . + (exp gene32 * coef gene32).
Patients with lung cancer were stratified into the high-risk
group or low-risk group by the median of the risk score.

Evaluation of Predictive Efficacy of
Prognostic Model
Principal component analysis (PCA) was used according to the
expression profile of 32 prognosis-related signatures of the
prognostic model in the training (TCGA cohort) and validation
sets (GEO cohort). The log-rank test was adopted to assess the
difference of the survival time between high-risk patients and low-
risk patients. Kaplan–Meier plots were used to present the results.

Clinical Features Relationship Analysis for
Risk Score
A one-sided Wilcoxon rank sum test was adopted to explore the
difference in the risk score between patients with various clinical
characteristics, including sex, patient status, lymph node, tumor
recurrence, and clinical pathological stage (TNM categorization of
malignant tumors) in TCGA or GEO cohorts.

A chi-square test was implemented to evaluate the relationship
of the clinical pathological stage group with the risk score group
in TCGA dataset (Table 1).
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A multivariable Cox proportional regression model was
performed based on the risk score and clinical characteristics.
Adjusted p < 0.05 signified statistical significance (Table 2).

Correlation Analysis of the Risk Score With
Immune Infiltration and
Ferroptosis-Related Score
We explored tumor immune invasion of TCGA and GEO cohorts
using the ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data) approach by R
software with the package “estimate” (Yoshihara et al., 2013). The
ESTIMATE method assesses the number of stromal cells along

with the invasion level of immune cells in samples. Single-sample
GSEA (ssGSEA) in R package gsva was used to calculate the
ferroptosis-related enrichment score which we called Ferroptosis
Score for each sample based on ferroptosis-related gene sets.

The fraction of 22 tumor-invading immune cells was
calculated based on CIBERSORT (https://cibersort.stanford.
edu/index.php) (Newman et al., 2015) for TCGA and GEO
cohorts. The one-sided Wilcoxon rank sum test was adopted
to analyze the differences of infiltrative degree for immune cells,
and p < 0.05 denoted statistical significance.

After that, we conducted expression assessment of five immune
checkpoint–linked genes consisting of PDCD1 (code PD-1), BTLA
and, CD274 (code PD-L1), along withCTLA-4 andCD47. The one-
sided Wilcoxon rank sum test was carried out for exploring the
differences of the expression of five immune checkpoint–related
genes in the high-risk group and low-risk group in TCGA and
GEO cohorts, and p < 0.05 denoted statistical significance.

Correlation Analysis of the Risk Score and
Cancer Therapeutic Signatures
A total of 23 cancer therapeutic-predicted signature sets that
we used were obtained from several studies, including
“Basal_differentiation”, “EMT_differentiation”,
“Immune_differentiation”, “Mismatch_repair”,
“Nucleotide_excision_repair”, “p53_signaling_cascade”,
“Oocyte_meiosis”, “Proteasome”, “Spliceosome”,
“Pyrimidine_metabolism”, “DNA_replication”
“Systemic_lupus_erythematosus”, “EGFR_ligands”,
“Viral_carcinogenesis”, “FGFR3-coexpressed_genes”,
“PPARG_network”, “IDH1”, “KDM6B”, “WNT-
β-catenin_network”, “VEGFA”, “Hypoxia”, “Cell_cycle”,
and “Progesterone-mediated_oocyte_maturation” (Motz
et al., 2014; Peng et al., 2015; Sweis et al., 2016;
Mariathasan et al., 2018; Spranger and Gajewski, 2018;
Seiler et al., 2019; Kamoun et al., 2020; Necchi et al.,
2020). ssGSEA was adopted to calculate the enrichment
score of the abovementioned therapeutic signature gene
sets. The one-sided Wilcoxon rank sum test was adopted

TABLE 1 | Baseline features of patients in TCGA cohort.

Characteristics Whole cohort Low risk High risk p

TCGA cohort (n � 1,057) (n � 528) (n � 529) —

Gender — — — <0.001
Male 624 (59.04%) 284 (53.79%) 340 (64.27%) —

Female 433 (40.97%) 244 (46.21%) 189 (35.72%) —

Age — — — 0.687
<65 years 416 (39.36%) 211 (39.96%) 205 (38.75%) —

≥65 years 641 (60.64%) 317 (60.04%) 324 (61.25%) —

T-stage — — — 0.001
T1 302 (28.57%) 177 (33.52%) 125 (23.63%) —

T2 593 (56.10%) 283 (53.60%) 310 (58.60%) —

T3 117 (11.07%) 46 (8.71%) 71 (13.42%) —

T4 42 (3.97%) 20 (3.79%) 22 (4.16%) —

N-stage — — — 0.107
N0 673 (63.67%) 346 (65.53%) 327 (61.81%) —

N1 234 (22.14%) 110 (20.83%) 124 (23.44%) —

N2 122 (11.54%) 55 (10.42%) 67 (12.67%) —

N3 7 (0.66%) 6 (1.14%) 1 (0.19%) —

M-stage — — — 0.981
M0 781 (73.89%) 377 (71.40%) 404 (76.37%)
M1 33 (3.12%) 16 (3.03%) 17 (3.21%)

Stage — — — 0.096
I 543 (51.37%) 292 (55.30%) 251 (47.45%) —

II 291 (27.53%) 133 (25.19%) 158 (29.87%) —

III 176 (16.65%) 81 (15.34%) 95 (17.96%) —

IV 34 (3.22%) 17 (3.22%) 17 (3.21%) —

TABLE 2 | Multivariate Cox regression analyses of risk factors for OS.

Adjusted hazard ratio 95% confidence interval Adjusted p

Risk group (High vs low) 3.79 2.98–4.81 <0.001
T-stage

T1 vs T2 1.29 1.01–1.64 0.044
T1 vs T3 2.00 1.43–2.80 <0.001
T1 vs T4 2.04 1.31–3.20 0.002

N-stage
N0 vs N1 1.41 1.12–1.77 0.003
N0 vs N2 1.85 1.41–2.44 <0.001
N0 vs N3 1.85 0.46–7.47 0.385

M-stage
M0 vs M1 2.46 1.59–3.81 <0.001

Stage
I vs II 1.48 1.17–1.87 0.001
I vs III 2.03 1.57-2.61 <0.001
I vs IV 3.15 2.03-4.88 <0.001
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to explore the differences of the enrichment score between
high- and low-risk groups.

Prediction of Immunotherapy Response
IMvigor210 was used to predict immunotherapy response
(http://research-pub.gene.com/IMvigor210CoreBiologies). It

is a study to investigate the anti–PD-L1 antibody
atezolizumab in patients with metastatic urothelial cancer
(mUCC) (Mariathasan et al., 2018). We evaluated the
difference of the risk score between responsive groups [PD
(progressive disease), SD (stable disease), PR (partial
response), and CR (complete response)].

FIGURE 1 | Interactions between immune genes and ferroptosis-related genes. (A,B) Circos plots illustrating the annotation and cross-talk of immune genes and
ferroptosis-linked genes, respectively, in the genome of TCGA dataset. Outer circle illustrates individual genes’ positions on chromosomes. Scatter plots in the second
circle designate the genes. Third circle demonstrates the relative levels of expressions of the genes in TCGA cohort. Central lines designate the possible cross-talks
between genes forecasted by the STRING data resource. (C) PPI network of immune genes and ferroptosis-linked genes predicted by the STRING database.
Purple nodes designate ferroptosis-linked genes, blue nodes indicate immune genes, and brown nodes are both ferroptosis-related and immune-related genes. (D)
Venn diagram indicating ferroptosis-related and immune-related genes identified in TCGA cohort.
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RESULTS

Intimate Interaction Between Immune
Genes and Ferroptosis-Linked Genes
The transcriptome data in TCGA cohort were used to create a
comprehensive indicator from immune- and ferroptosis-related
profiling (Figures 1A,B). We constructed PPI networks of
immune genes and ferroptosis-related genes. Most immune
genes directly interacted with the ferroptosis-related genes
according to the STRING database (Figure 1C). After data

processing, 1294 immune genes and 94 ferroptosis-related
genes were used for subsequent model construction (Figure 1D).

Identification of Prognosis-Linked
Signatures and Constructing the Prognostic
Model
A univariate Cox proportional regression model was used to
explore the prognostic value of both immune- and ferroptosis-
linked genes. Screened with p < 0.05, 42 prognosis-related genes

FIGURE 2 | Establishment of the prognostic model. (A) According to univariate Cox proportional regression, 40 prognosis-related immune and ferroptosis-related
genes were identified based on TCGA cohort. (B) Profiles of LASSO coefficients of 40 immune- and ferroptosis-linked genes. (C)Cross-confirmation for tuning selection
of parameters in the LASSO model.
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were obtained (Figure 2A), including 38 immune-related genes
and five ferroptosis-related genes, among which, NEDD4 was both
an immune- and ferroptosis-related gene (Figure 2A). NEDD4 is
an oncogene, which encodes E3 ubiquitin ligase. Next, a LASSO
analysis was used to construct a prognostic model with 32
signatures: ACSL3, ACTG1, ANGPTL4, APOD, CD1E, CRHR2,
CTF1, DEFB103B, DKK1, EREG, FGA, FGF4, HLA-DOB, IL2,
INSL4, ITGA6, LCN1, NEDD4, PDGFB, PF4V1, PTX3, RFXAP,
SEMA3C, SEMA7A, SHC1, SLC11A2, STC2, TNFRSF6B,
UMODL1, VDAC1, VEGFC, and XCR1 (Figures 2B,C). Then,
based on the expression of the optimized 32 signatures and
correlation in TCGA cohort, we established a predictive model.

Verification of the Prognostic Model
Every patient’ risk score in TCGA and GEO data sets was
computed. For analyzing the accuracy of the signatures used
for constructing the module, we visualized the expression of 32
genes and found that a majority of 32 genes were differentially
expressed between the high-risk and low-risk groups (Figure 3A).

Then, PCA was performed to investigate whether lung cancer
patients could be distinguished according to the expression of the
32 signatures in TCGA and GEO data sets (Figures 3B,C).

Next, patients were categorized into the high- and low-risk
group using the median risk score as the cutoff value. In TCGA
data set, patients in the high-risk group had a remarkably worse
OS (Figure 3D; p < 0.0001; log-rank test), and the number of alive
patients in the low-risk group were more relative to those in the
high-risk group (Figures 3E–G). In the independent validation
set (GEO dataset), patients in the high-risk group also exhibited a
remarkably worse OS (Figure 3H; p � 0.00042 log-rank test), and
the alive patients in low-risk group were more than those in the
high-risk group (Figures 3I–K).

Risk Score Connected With Clinical
Pathological Characteristics
We next explored the capacity of the prognostic model in clinical
pathological characteristics. We first investigated the difference of

FIGURE 3 | Dividing power of prognostic models. (A) Heatmap showed the expression of 32 signatures we used for constructing the model. (B,C) Principal
component analysis for TCGA andGEO cohorts based on the expression of the 32 signatures. (D)Kaplan–Meier plot was adopted to show the difference in OS between
high- and low-risk groups in TCGA dataset. (E)–(G) Survival time and risk score distributions on the basis of the prognostic model in TCGA dataset. (H) Difference in OS
between high- and low-risk groups in the independent validation set (GEO cohort). (I–K) Survival time, as well as risk score distributions in the GEO cohort. p < 0.05
denoted statistical significance.
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clinical characteristics between the high-risk and low-risk groups
(Table 1). Then, we evaluated the differences of the risk score
between patients with different clinical characteristics (dead vs.
alive), sex groups (female vs. male), tumor size groups (T1 vs.
T2 vs. T3 vs. T4), lymph node (N0 vs. N1-N3), and pathological

stage (Stage I vs. Stage II-Stage IV) in TCGA cohort. The risk
score in dead patients was remarkably higher in contrast with
alive patients (Figure 4A; p < 2.22e-16), and male patients were
remarkably higher than female patients (Figure 4B; p � 0.00015).
The risk score in stage T2, T3, and T4 was remarkably higher

FIGURE 4 |Risk score discrepancy between the subgroup of clinical characteristics. (A–E)One-sidedWilcoxon rank sum test was used to evaluate the differences
in the risk score between patient status groups, sex groups, tumor size groups, lymph node groups, and pathological stage groups in TCGA cohort. (F–I) One-sided
Wilcoxon rank sum test was used to evaluate the differences in the risk score between patient status groups, sex groups, pathological stage groups, and recurrence
groups in the GEO cohort. p < 0.05 denoted statistical significance.
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FIGURE 5 | Performance of our prognostic model in patients with different clinical characteristics. (A–J) Difference in OS between the high-risk and low-risk
samples of T subgroups (T1, T2, and T3), N subgroups (N0, N1, and N2), M0 subgroups, and pathological stage (stage I, stage II, and stage III) of TCGA cohort. (K,L)
Difference in OS between high-risk and low-risk samples in pathological stage (stage I and stage II) of the GEO cohort. p < 0.05 was regarded remarkable.
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relative to stage T1, and the risk score in stage T3 was remarkably
higher than stage T2 (Figure 4C; p < 0.05). Besides, the risk score
in stage N1–N3 was remarkably higher in contrast with stage N0
(Figure 4D; p � 0.003), and stage II–stage IV was remarkably

higher than stage I (Figure 4E; p � 2.7e-06). Moreover, the risk
score of dead patients was remarkably higher relative to alive
patients (Figure 4F; p � 0.00094), and male patients were
remarkably higher than female patients (Figure 4G;

FIGURE 6 | Associations of the risk score with immune invasion and ferroptosis. (A,B)Distribution of Immune Score, Stromal Score, and Ferroptosis Score with the
increase of risk score in both TCGA and GEO datasets. (C,H) Pearson’s correlation analysis was proceeded to discern the relation of Immune Score, Stromal Score, and
Ferroptosis Score with the risk score in both TCGA and GEO cohorts. p < 0.05 was regarded remarkable.
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p � 0.012). Stage II–Stage IV was remarkably higher than stage I
(Figure 4H; p � 0.022), and recurrent patients were remarkably
higher than non-recurrence patients (Figure 4I; p � 0.022) in the
GEO cohort.

Further assessment was conducted to explore whether the risk
score reveals prognosis in diverse subgroups of clinical features.
In the T subgroups (T1, T2, and T3), N subgroups (N0, N1, and
N2), M0 subgroup, and pathological stage (stage I, stage II, and
stage III) of TCGA cohort, patients in the high-risk group
exhibited a poor OS (Figures 5A–J; p < 0.05; log-rank test). In
the pathological stage (stage I and stage II) of the GEO cohort,
remarkably poorer OS was found in patients in the high-risk
group (Figures 5K,L; p < 0.05; log-rank test).

A multivariable Cox proportional regression model was built
in TCGA cohort using the risk score and clinical pathological

stage groups to verify the prognostic potential and independence
of the prognostic model from other clinico-pathologic
characteristics. The result suggested that our prognostic model
has a potential in clinical application (Table 2).

The discrepancy of immune infiltration and ferroptosis
between different risk groups.

To investigate the relationship between the risk score and
immune infiltration as well as ferroptosis, we analyzed the
distribution of the ESTIMATE score (consists of Immune
Score and Stromal Score) and Ferroptosis Score (enrichment
score of ferroptosis-related genes) in each sample. Immune Score,
Stromal Score, and Ferroptosis Score tended to increase with the
escalation of the risk score in both TCGA and GEO cohorts
(Figures 6A,B). To further confirm this trend, Pearson’s
correlation analysis was calculated between the risk score and

FIGURE 7 | Associations of the risk score with the tumor immune microenvironment and cancer therapeutic score. (A,B) Differences in the expressions of five
immune checkpoint–linked genes between high- and low-risk groups in TCGA and GEO cohorts. (C,D) Differences in 22 immune cell infiltration between high- and low-
risk groups in TCGA and GEO datasets. (E,F) Differences in the cancer therapeutic enrichment score in high- and low-risk groups in TCGA and GEO datasets. p < 0.05
was regarded statistically significant.
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Immune Score, Stromal Score, and Ferroptosis Score,
respectively. The results showed that they were positively
related with the risk score in both TCGA and GEO cohorts
(Figures 6C–H; p < 0.05; Pearson’s correlation analysis).

Next, we investigated the difference in the expression of five
immune checkpoint–linked genes between high- and low-risk
groups. The expression of PD-L1 in the high-risk group was
remarkably greater than that in the low-risk group in TCGA and
GEO cohorts (Figures 7A,B; p � 0.021, p � 0.0064). Besides,
CTLA-4 and PD-1 expressions in the high-risk group were
greater than those in the low-risk group in the GEO cohort
(Figure 7B; p � 0.0198, p � 0.0297).

To explore immune cell infiltration of tumor samples, we
calculated 22 immune cell abundances among TCGA and GEO
cohorts by CIBERSORT. Next, we explored the difference of 22
immune cell invasion between high- and low-risk groups. The
invasion of M0 Macrophages in the high-risk group was
remarkably greater in contrast with that in the low-risk group
in TCGA cohort (Figure 7C; p < 0.0001). The infiltration of
resting NK cells in the high-risk group was remarkably higher
than that in the low risk group in TCGA and GEO cohorts
(Figures 7C,D; p < 0.01). Also, significantly greater infiltration of
CD8 T cells was observed in the high-risk group relative to that in
the low-risk group in TCGA and GEO data sets (Figures 7C,D;
p < 0.01).

We next investigated the potential role of the prognostic
model in the prediction of response to immunotherapy using
the IMvigor210 cohort. We found that the risk score in non-
responsive patients [stable disease (SD) and progressive
disease (PD)] was significantly higher than responsive
patients [complete response (CR) and partial response
(PR)] (Supplementary Figure S1A; p < 0.05; one-sided
Wilcoxon rank sum test). The number of non-responsive
patients in the high-risk group was more than that in the low-
risk group (Supplementary Figure S1B). The distribution of
CR, PR, SD, and PD patients between the high-risk and low-
risk groups was significant (Supplementary Figure S1C; p <
0.05; chi-square test). Besides, patients in the high-risk group
had significantly poorer OS (Supplementary Figure S1D;
p < 0.01).

Correlation of Risk Score and Cancer
Therapeutic Potential
For investigating the guiding role of the risk score in cancer
treatment, we calculated the enrichment score for each sample
according to 23 cancer therapeutic–predicted signature sets by
ssGSEA. Next, we analyzed the differences of these scores in the
high-risk and low-risk groups in TCGA andGEO cohorts. In TCGA
cohort, the enrichment score of the high-risk group was higher
relative to the low-risk group in 73.91% (17/23) of cancer therapeutic
prediction signature sets, including “Basal_differentiation”,
“Cell_cycle”, “DNA_replication”, “EGFR_ligands”,
“EMT_differentiation”, “Hypoxia”, “Immune_differentiation”,
“Mismatch_repair”, “Nucleotide_excision_repair”,
“Oocyte_meiosis”, “p53_signaling_casacde”, “Progesterone-
mediated_oocyte_maturation”, “Proteasome”, “Spliceosome”,

“Pyrimidine_metabolism”, “Systemic_lupus_erythematosus”, and
“Viral_carcinogenesis” (Figure 7E; p < 0.05). In the GEO cohort,
the elevated score of “Basal_differentiation”, “EGFR_ligands”,
“EMT_differentiation”, “Hypoxia”, “Immune_differentiation”, and
“Proteasome” was observed in the high-risk group in contrast with
those in the low-risk group (Figure 7F; p < 0.05).

DISCUSSION

Immune status and ferroptosis are both important in NSCLC.
Tumor immune microenvironment–related signature could
estimate the prognosis of NSCLC patients, which may also be
indicators for immunotherapy (Ojlert et al., 2019; Li et al., 2020).
Recently, a ferroptosis-linked gene-based prognostic model was
constructed by Han et al. They found that the ferroptosis-related
risk score was linked to immune status (Han et al., 2021).
Although clinical indicators regarding immune response and
ferroptosis have been established, few investigations focused
on their combined effect and their clinical application capacity
have been performed. Herein, we explored the potential role of a
combined immune and ferroptosis model for NSCLC.

Gene expression data were obtained from TCGA and GEO
databases, which served as training and testing datasets,
respectively. Immune- and ferroptosis-related genes were
identified through databases and publications. After data
processing, we collected 1294 immune genes and
94 ferroptosis-related genes (Figure 1).

A univariate Cox proportional regression model was used to
identify immune- and ferroptosis-linked genes that have
prognostic potential of NSCLC in the TCGA dataset. Overall,
genes were analyzed, including 1294 immune-related genes and
94 ferroptosis-related genes, and 12 of these genes are related to
both immune response and ferroptosis. Screened with p < 0.05,
42 prognosis-related genes were obtained, including
38 immune-related genes and 5 ferroptosis-related genes,
among which, NEDD4 was both an immune- and ferroptosis-
related gene (Figure 2). NEDD4 is an oncogene, which encodes
E3 ubiquitin ligase. NEDD4 is remarkably correlated with the
migration of NSCLC cells (Shao et al., 2018). Knockdown of
NEDD4 could inhibit the migration of NSCLC cells (Shao et al.,
2018). NEDD4 is also related to drug resistance of NSCLC cells.
The downregulation of NEDD4 could elevate the effect of
afatinib in afatinib-resistant H1975 clones (Booth et al.,
2018). NEDD4 was also associated with the erlotinib
resistance of NSCLC by inhibiting PTEN expression (Sun
et al., 2017). Moreover, NEDD4 could be the therapeutic
target for NSCLC. The anticancerous effect of nitidine
chloride was evaluated through the inhibition of NEDD4 in
NSCLC H1299 cells, which was abrogated by the overexpression
of NEDD4 (Zhang et al., 2020).

Of these 42 genes, 32 of themwere selected to compute the risk
of NSCLC. On the basis of the LASSO Cox regression model, the
samples were stratified into high-risk and low-risk groups. Then,
we analyzed the OS in TCGA and GEO cohorts. Patients in the
low-risk group have better OS in contrast with those in the high-
risk group in both the cohorts (Figure 3).
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We then evaluated the differences of the risk score among the
clinical pathological subgroups. The higher risk score was
observed in dead samples, larger tumor size, higher cancer
stage, and recurrence cohorts, respectively (Figure 4).
Especially, we found that the risk score was lower in early
stages than in later stages, but there was no difference in each
stage (Figure 4;Table 1). The prognosis potential of the risk score
was investigated in different subgroups and pathological stages of
NSCLC. The results showed that patients exhibiting a high risk
score have shorter OS in all subgroups (T, N, and M0 subgroups)
and pathological stages (stage I, II, and III) (Figure 5).

Subsequently, we assessed the relationship of the risk score
and immune invasion with ferroptosis. Our developed risk score
was found to be positively correlated with Immune Score, Stromal
Score, and Ferroptosis Score in TCGA and GEO cohorts
(Figure 6). This result was in accordance with the previous
findings that Immune Score, Stromal Score, and Ferroptosis
Score were all prognosis indicators for cancer (Shen et al.,
2019; Wang H. et al., 2019; Liang et al., 2020). The
relationship of the risk score with the immune
checkpoint–linked genes (BTLA, PD-L1, CD47, CTLA-4, and
PD-1) was evaluated. PD-L1 expression was elevated in the high-
risk score group relative to that in the low-risk score group in both
cohorts (Figures 7A,B). It is widely accepted that
immunotherapies are effective for NSCLC patients with high
PD-L1 expression. Regardless of histologic type, atezolizumab
treatment remarkably prolonged the OS of NSCLC with high PD-
L1 expression than platinum-based chemotherapy (Herbst et al.,
2020). NSCLC harboring EGFRmutations exhibited an immune-
inert phenotype, which was characterized by low expression of
PD-L1, low tumor mutational burden, low cytotoxic T-cell
number, and low T-cell receptor clonality. This kind of
NSCLC lacks clinical response to immune checkpoint blockade
therapy (Le et al., 2021).

Next, the immune cell infiltration between the high-risk and
the low-risk groups was analyzed. The infiltration of CD8+ T cells
was lower in the high-risk group in contrast with the low-risk
group in TCGA along with GEO cohorts (Figures 7C,D). CD8+

T-cell infiltration is considered an independent predictive factor
for NSCLC (Donnem et al., 2015). Hurkmans et al. suggested that
the combination of PD-L1 expression, TML, CD8+ T-cell
infiltration, and HLA class-I functions could be used to
predict the efficiency of immunotherapy in NSCLC patients
(Hurkmans et al., 2020). Combined with the results of Figures
7A,B, in which PD-L1 expression was higher in the high-risk
score group than in the low-risk score group, we concluded that
our prognostic model integrating ferroptosis and immune
infiltration could be used as a potentially predictive biomarker
for response to immunotherapy. Furthermore, we investigated
the potential role of the prognostic model in the prediction of
response to immunotherapy using the IMvigor210 cohort. We
found that the risk score in non-responsive patients was
significantly higher than in responsive patients
(Supplementary Figure S1A) and the patients in the high-risk
group had significantly poorer OS (Supplementary Figure S1D),
suggesting the potential use of the prognostic model in
immunotherapy.

Finally, the guiding role of the risk score in cancer treatment
was evaluated. “EGFR_ligands”, “EMT_differentiation”
“Hypoxia”, “Immune_differentiation”, and “Proteasome”
were positively associated with the risk score in TCGA and
GEO cohorts. These factors are all important prognosis
biomarkers and therapeutic targets for NSCLC. For
example, hypoxia is linked to poor prognosis and could
induce resistance of NSCLC (Salem et al., 2018; Shi et al.,
2019; Hua et al., 2020; Lu et al., 2020). EGFR and proteasomes
play a pivotal role in NSCLC development, and their inhibitors
could be used in NSCLC treatment (Li et al., 2009; Liu et al.,
2014; Floc’h et al., 2018; Tanimoto et al., 2021). Whereas,
“PPARG_network” was inversely related with the risk score in
TCGA and GEO datasets. It is reported that PPARG
c.1347C>T polymorphism was correlated with the risk of
NSCLC (Ding et al., 2017). PPARG was downregulated in
NSCLC samples, and the enhanced expression of PPARG may
inhibit the development and progression of NSCLC (Shi et al.,
2020).

CONCLUSION

In conclusion, by analyzing a total of 1376 immune- and/or
ferroptosis-related genes, we developed a ferroptosis and
immune-combined index with 32 genes for NSCLC
prognosis. The integrated predictor may help distinguish the
heterogeneity of NSCLC and effectively improve the prognostic
value. However, the study cohorts we used only included LUAD
and LUSC. This limitation will be greatly alleviated by the
development of cancer big-data. Also, sufficient experimental
verification is needed to explore the potential mechanisms of
ferroptosis in NSCLC.
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SUPPLEMENTARY FIGURE 1 | Predictive value of the risk score in
immunotherapy response. (A) Distribution of the risk score between responsive
patients [complete response (CR) and partial response (PR)] and non-responsive
patients [stable disease (SD) and progressive disease (PD)] in the IMvigor210 cohort.
P value was provided by the one-sided Wilcoxon rank sum test. (B) Distribution of

responsive and non-responsive patients between the high-risk and low-risk groups.
P-value was provided by the chi-square test. (C) Distribution of CR, PR, SD, and PD
patients between the high-risk and low-risk groups. P-value was calculated based
on the chi-square test. (D) Kaplan–Meier curves of high-risk and low-risk groups in
the IMvigor210 cohort. P-value was provided based on the log-rank test.
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Human bladder cancer (BCa) is the most common urogenital systemmalignancy. Patients
with BCa have limited treatment efficacy in clinical practice. Novel biomarkers could
provide more crucial information conferring to cancer diagnosis, treatment, and prognosis.
Here, we aimed to explore and identify novel biomarkers associated with cancer-specific
survival of patients with BCa to build a prognostic signature. Based on univariate Cox
regression, Lasso regression, and multivariate Cox regression analysis, we conducted an
integrated analysis in the training set (GSE32894) and established a six-gene signature to
predict the cancer-specific survival for human BCa. The six genes were Cyclin Dependent
Kinase 4 (CDK4), E2F Transcription Factor 7 (E2F7), Collagen Type XI Alpha 1 Chain
(COL11A1), Bradykinin Receptor B2 (BDKRB2), Yip1 Interacting Factor Homolog B
(YIF1B), and Zinc Finger Protein 415 (ZNF415). Then, we validated the prognostic
value of the model by using two other datasets (GSE13507 and TCGA). Also, we
conducted univariate and multivariate Cox regression analyses, and results indicated
that the six-gene signature was an independent prognostic factor of cancer-specific
survival of patients with BCa. Functional analysis was performed based on the differentially
expressed genes of low- and high-risk patients, and we found that they were enriched in
lipid metabolic and cell division-related biological processes. Meanwhile, the gene set
enrichment analysis (GSEA) revealed that high-risk samples were enriched in cell cycle and
cancer-related pathways [G2/M checkpoint, E2F targets, mitotic spindle, mTOR signaling,
spermatogenesis, epithelial–mesenchymal transition (EMT), DNA repair, PI3K/AKT/mTOR
signaling, unfolded protein response (UPR), and MYC targets V2]. Lastly, we detected the
relative expression of each signature in BCa cell lines by quantitative real-time PCR (qRT-
PCR). As far as we know, currently, the present study is the first research that developed
and validated a cancer-specific survival prognostic index based on three independent
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cohorts. The results revealed that this six-gene signature has a predictive ability for cancer-
specific prognosis. Moreover, we also verified the relative expression of these six
signatures between the bladder cell line and four BCa cell lines by qRT-PCR.
Nevertheless, experiments to further explore the function of six genes are lacking.

Keywords: bladder cancer, biomarkers, cancer-specific survival, six-gene prognostic signature, bioinformatics
analysis

1 INTRODUCTION

Human bladder cancer (BCa) is the most common urogenital
system malignancy, and among the cancers related to males, it
ranks fourth (Siegel et al., 2013). In China, BCa is also one of the
most common urologic malignancies, and in the past few years,
the incidence and mortality rates have increased gradually (Chen
et al., 2015). The major risk factors for human BCa are still
smoking and occupational exposures, whereas chronic infection
with Schistosoma hematobium is relatively rare (Pang et al., 2016).
BCa is divided into two types: non-muscle-invasive bladder
cancer (NMIBC) and muscle-invasive bladder cancer (MIBC).
Most BCa patients are diagnosed with NMIBC, which is featured
as high recurrence (Prout et al., 1992). Nowadays, the common
treatment for superficial BCa is transurethral resection and
intravesical perfusion chemotherapy. Bacillus Calmette Guerin
installation remains the gold standard of NMIBC, while
appropriately 40% of patients are not sensitive to it, even 15%
of patients may progress into MIBC after treating it (Seidl, 2020).
What is more, the 5-year overall survival rate of patients remains
at a level of 15%–20% (Cao et al., 2019). Furthermore, BCa is easy
to recur and progress into MIBC. Most MIBCs were treated with
radical cystectomy (Chen et al., 2015; Pang et al., 2016). As a
result, the expenditure for treating BCa is huge (Sloan et al.,
2020). Besides, the risks of radical cystectomy contain infection,
incontinence, stones in the urethrostomy, obstruction of urine
flow, damage to nearby organs, and so on (Seidl, 2020). Plenty of
patients undergoing radical cystectomy generally have a poor
quality of life. Therefore, it is essential to understand the critical
biomarkers and key pathways governing tumor behavior for
better treatment strategies and prediction of prognosis.

Due to microarray and high-throughput sequencing technology
development, we could identify thousands of cancer-related genes
and generate innovative insights into understanding the potential
molecular mechanism of them, therefore applying them to the
biomedical research field to benefit patients (Cui et al., 2015).
Additionally, it is increasingly being used to search for potential
biomarkers related to cancer diagnosis, treatment, and prognosis
(Cancer Genome Atlas Research, 2014). In clinical practice, we
found that the optional treatment strategies for patients with BCa
were limited and the efficacy was not satisfactory. Hence, it is
urgent to explore original target to explore new targets to provide
new treatment strategies for patients with BCa. Therefore, we
developed a prognostic model for BCa to predict the
progression of BCa, hoping that it can provide a basis for
clinical setting for BCa patients in the future.

Our study obtained mRNA expression microarray data of
GSE32894 from the GEO database as the training set and another

two independent test datasets, GSE13507 microarray data and
The Cancer Genome Atlas (TCGA) mRNA sequencing data of
BLCA. By executing univariate Cox, Least Absolute Shrinkage
and Selection Operator (LASSO), and multivariate hazard Cox
regression analysis, six genes related to cancer-specific survival
were identified and thus constructed a six-gene prognostic index
based on these genes. Another two independent test sets
performed the validation of the prognostic value of the six-
gene signature. Finally, we performed qRT-PCR to further
verify these six genes in the bladder cell line (SV-HUV-1) and
four BCa cell lines (5637, T24, UM-UC3, and J82). Our study
proved that the six-gene signature could function as the
independent biomarkers for the cancer-specific prognosis of
human BCa and their potential roles in tumor progression.

2 MATERIALS AND METHODS

2.1 Data Collection
Expressing mRNA profiles and related clinical data of human
BCa were downloaded from the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) (Barrett
et al., 2013). Dataset GSE32894 performed on Illumina
Human HT-12 V3.0 expression bead chip was used as the
training set (Sjödahl et al., 2012). Dataset GSE13507
performed on Illumina human-6 v2.0 expression bead chip
(Kim et al., 2010; Lee et al., 2010) and mRNA expression
profiles of BLCA patients were obtained from the TCGA data
portal (https://gdc-portal.nci.nih.gov/) (Ye et al., 2019) and were
used as another test set. Prognostic data for all TCGA survival
analyses were obtained from published papers (Liu et al., 2018).

2.2 Data Preprocessing
We used RMA background correction for the raw expression data
for the microarray analyses at first, and log2 transformation and
normalization were employed for processed signals. Then, we
used the “affy” R package to summarize the median-polish probe
sets. The Affymetrix annotation files annotated probes. For
TCGA BLCA data, the gene expression data were based on
the RNA-sequencing technology of IlluminaHiseq.

2.3 Signature Development and Validation
Firstly, we excluded samples without exact survival data. By
applying the univariate hazard Cox regression analysis with
survival as a dependent characteristic, the correlation between
each gene expression profile and cancer-specific survival in
patients was evaluated based on the training dataset
(GSE32894). Here, we identified genes with p < 1E-6 of
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cancer-specific survival as prognostic gene signatures and then
performed LASSO regression analysis. Genes selected from
LASSO regression analysis were taken as the candidate factors,
and then were subjected to perform multivariate hazard Cox
regression analysis in the training dataset with cancer-specific
survival as the dependent prognostic influence factor. The risk
score was developed based on a linear combination of the mRNA
expression level weighted by the estimated regression coefficient
generated from the multivariate hazard Cox regression analysis.
The formula of risk score for each patient was calculated as
follows: Risk score � βgene1 × exprgene1 + βgene2 × exprgene2+
··· + βgeneN × exprgeneN, in which N is the number of prognostic
gene signatures, expr represents the expression profiles of gene
signatures, and β means the estimated regression coefficient of
gene signatures derived from the multivariate hazard Cox
regression analysis. Then, the gene signatures could calculate a
risk score for each patient, and we could divide the patients into
two (high- and low-risk) groups according to the median risk
score. The Kaplan–Meier analysis was used to evaluate the
cancer-specific survival distributions by the R “survival”
package. Then, another two independent datasets were used to
perform the test of the prognostic signature. GSE13507 was used
to test the cancer-specific survival and TCGA BLCA data were
used to test the disease-specific survival distribution. Moreover,
we performed univariate Cox regression and multivariate Cox
regression analysis to further verify the prognostic model’s
accuracy and precision by integrating clinical features
(including gender, age, tumor stage, tumor grade, and
progression).

2.4 DEGs Analysis for High- and Low-Risk
Groups
The “limma” R package was utilized to screen the distinguishingly
expressed genes between high-risk and low-risk patients. The
SAM (significance analysis of microarrays) with FDR (false
discovery rate) < 0.05 and |log2 fold change (FC)| > 1 were set
as the cutoff, and the DEGs were applied to further analysis.

2.5 Functional Analysis for DEGs
Gene ontology (GO) analysis (here, we chose the biological
process) was accomplished using the R package cluster Profiler
to observe the potential functions of DEGs. p < 0.05 was set as the
cutoff criterion.

2.6 Gene Set Enrichment Analysis
To further analyze the potential function, the training set was
performed into two groups according to the median risk score.
For use with GSEA software (https://www.gsea-msigdb.org/gsea/
index.jsp) (Subramanian et al., 2005), the collection of annotated
gene sets of h.all.v6.1.symbol.gmat [Hallmarks] in Molecular
Signatures Database (MSigDB, http://software.broadinstitute.
org/gsea/msigdb/index.jsp) was chosen as the reference gene
sets (Subramanian et al., 2005; Croken et al., 2014). We
selected the gene sets enriched in high-risk groups or high
expression level groups, and p < 0.05 was chosen as the cutoff
criteria.

2.7 Gene Expression Level Evaluation
To further evaluate the gene expression level between normal
bladder and BCa tissues, we used an online database GEPIA2
(http://gepia2.cancer-pku.cn/) (Tang et al., 2019). Moreover, the
test set GSE13507 was used to compare the differences between
normal bladder mucosae, bladder mucosae surrounding cancer,
primary non-muscle invasive BCa, primary muscle invasive BCa,
and recurrent non-muscle invasive tumor.

2.8 RNA Extraction, Reverse Transcription,
and qRT-PCR
Total RNA was extracted from the nontumorous immortalized
bladder cell line (SV-HUV-1) and four BCa cell lines (5637, T24,
UM-UC3, and J82) using HiPure Total RNA Mini Kit (Cat.
#R4111-03, Magen, China) according to the manufacturer’s
instruction. The reverse transcription process was carried out
with the ReverTra Ace qPCR RT Kit (Toyobo, China). The
expressions of six genes were normalized to GAPDH
expression. The primer sequences are listed as Supplementary
Table S1.

2.9 Statistical Analysis
Univariate hazard Cox regression, LASSO regression, and
multivariate hazard Cox regression analyses were performed to
identify the prognostic factors and to establish a prognostic
model. The survival curve was drawn by the Kaplan–Meier
method and compared by log-rank test. ROC curve was used
to evaluate the predictive power of the prognostic index.
Univariate Cox regression analysis and multivariate Cox
regression analysis were performed to further verify the
independent prognostic value of the prognostic signature. The
statistical significance of differences in qRT-PCR was compared
using the Student’s t-test as appropriate. Bioinformatic analysis
was done in the R language (version 3.6.2) and p < 0.05 was
considered as statistically significant at two sides.

FIGURE 1 | Flow chart representing the process used to select target
genes included in the analysis.
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3 RESULTS

3.1 Recognition of Prognostic Genes
Related to Patients’ Cancer-Specific
Survival From the Training Dataset
The flow chart of recognition and validation of the six-gene
signature is shown as Figure 1. Originally, we employed the
univariate hazard Cox regression analysis to assess the connection
between all gene expressions and patients’ cancer-specific survival
in the training dataset (GSE32894) (Figure 1). Moreover, the
result revealed that there were 60 genes significantly associated
with prognosis (p < 1E-6), which were defined as prognostic
genes. Then, the candidate genes were performed by LASSO
regression (Figures 2A,B), and CDK4, GUCY1A2, NMMT, E2F7,
ZNF415, HTR2A, NUAK1, COL11A1, THOP1, TNFRSF6B,
BCAT1, CBX2, CTRC, DHRS2, BDKRB2, YIF1B, and
SLC22A16 were screened. Among these prognostic genes, only
three genes (ZNF415, HTR2A, and DHRS2) with higher

expression were correlated with more prolonged survival
[whose z (coefficient) < 0], whereas other genes (CDK4,
GUCY1A2, NMMT, E2F7, NUAK1, COL11A1, THOP1,
TNFRSF6B, BCAT1, CBX2, CTRC, BDKRB2, YIF1B, and
SLC22A16) with higher expression were lined with shorter
survival [whose z (coefficient) > 0].

3.2 Establishment and Validation of a
Six-Gene Signature for Predicting Patients’
Cancer-Specific Survival in the Training
Dataset
Multivariate hazard Cox regression analysis was further used to
analyze those 17 prognostic genes and then selected genes
independently related to cancer-specific survival. Eventually,
we screened six genes (CDK4, E2F7, COL11A1, BDKRB2,
YIF1B, and ZNF415) as the independent factor and established
a prognostic model (Figure 2C). Via integrating the expression of
those six genes and the estimated regression coefficient, we then

FIGURE 2 | Independent prognostic-related genes selection utilizing LASSO and Multivariate cox regression. Plots of the 10-fold cross-validation error rates (A).
LASSO coefficient profiles of 17 prognostic-related signatures (B). The multivariate hazard Cox regression analysis results show six independent prognostic-related
signatures (C).
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obtained the following calculation model: Risk score �
(1.43215589574675 × expression of CDK4) +
(0.921330280956022 × expression of E2F7) +
(−1.04548254381182 × expression of ZNF415) +

(0.814780461026126 × expression of COL11A1) +
(0.973314699914422 × expression value of BDKRB2) +
(0.964685342668668 × expression value of YIF1B). With the
six-gene signature, the risk score for each patient with BCa in

FIGURE 3 | The six-gene signature in the prognosis of cancer-specific survival of bladder cancer patients in the training set and test sets (GSE13507 and TCGA).
The Kaplan–Meier curves of survival between high-risk and low-risk patients in the training set and test sets (A–C). The ROC curve for survival prediction by the six-gene
signature within 3 and 5 years as the defining point in the training set and test sets (D–F). The six-gene risk score distribution, survival of patients, and heatmap of the six-
gene expression profiles in the training set and test sets (G–I).

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7586125

Xu et al. Prognostic Signature for Bladder Cancer

100

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


the training dataset could be calculated and ranked from the
largest to the smallest. Based on the median risk score (0.630561),
224 BCa patients in the training dataset were divided into a high-
risk group (n � 112) and a low-risk group (n � 112). There was an
obvious difference (p � 6.6956E-08) in patients’ cancer-specific
survival between the high-risk and the low-risk groups
(Figure 3A). Moreover, we could observe that those ranked
into the high-risk group had remarkably shorter survival
(median 28.84 months) than those in the low-risk group
(median 44.28 months). The time-dependent ROC curve was
carried out for 3- and 5-year cancer-specific survival to
evaluate the efficacy of the six-gene signature for predicting
the cancer-specific survival. The AUCs for the six-gene
signature at the cancer-specific survival of 3 and 5 years were
0.96 and 0.967, respectively (Figure 3D). The distribution of the
risk score, cancer-specific survival time, and six genes’ expression
profiles in the training dataset are shown in Figure 3G, ranked
with the increasing risk score. We could find that high-risk
patients lived shorter than low-risk patients, and meanwhile,
the expression level of patients had a similar trend in five genes
(CDK4, E2F7, COL11A1, BDKRB2, and YIF1B), elevating with the
increasing risk score, while ZNF415 demonstrated the
opposite trend.

3.3 Validation of the Six-Gene Signature in
the Test Sets
Cancer-specific survival of GSE13507 was utilized to test and
verify the prognostic efficacy of the six-gene signature for cancer-
specific survival prediction; 165 patients of the test set
(GSE13507) were classified into the high-risk group (n � 83)
and low-risk group (n � 82) according to the same formula
generating from GSE32894. The result showed a significant
difference (p � 0.0080; median 29.37 vs. 46.835 months) in
cancer-specific survival between high-risk and low-risk groups
(Figure 3B). The AUC for the six-gene signature was 0.744 and
0.748 at the cancer-specific survival of 3 and 5 years, respectively,
in the test set (GSE13507) (Figure 3E). The distribution of the
risk score, cancer-specific survival time, and six genes’ expression
profiles in the test set of GSE13507 are shown in Figure 3H,
ranked with the increasing risk score. In addition, the disease-
specific survival of TCGA was used to verify the accuracy of the
six-gene signature. As shown in Figure 3C, patients in high risk
had a lower survival rate than those in low risk (p � 0.0041). The
AUC for the six-gene signature was 0.576 and 0.606 at the
disease-specific survival of 3 and 5 years, respectively
(Figure 3F). The distribution of the risk score, disease-specific
survival time, and six genes’ expression profiles in TCGA are
shown in Figure 3I. Above all, the results indicated the good
reliability and reproducibility of the six-gene prognostic model
for forecasting cancer-specific survival for patients with BCa.

3.4 Independent Prognostic Analysis of
Prognostic Signature
In order to explore whether the prognostic index is an
independent prognostic factor, we conducted univariate Cox

regression analysis and multivariate Cox regression analysis by
integrating several clinicopathological characteristics, including
gender, age, tumor stage, tumor grade, and progression. The
results indicated that prognostic signature was significantly
associated with the cancer-specific survival of BLCA not only
in univariate Cox regression analysis (p < 0.001) (Figure 4A), but
also in multivariate Cox regression analysis (p < 0.001)
(Figure 4B). In summary, the six-gene prognostic model can
be seen as an independent prognostic indicator of BLCA.

3.5 Clinicopathological Correlation Analysis
of Prognostic Signature
Subsequently, the correlation of the six-gene signature with
clinicopathological features and its prognostic significance
were analyzed in the training set and two test sets. We
observed that the signature was significantly correlated with
BCa divided by T-stage in GSE32894 and GSE13507 (Figures
5A,D) grade in all sets (Figures 5B,E,H). In addition, we found
that it was also associated with molecular subtype in GSE32894
(Figure 5C), pathological stage in TCGA (Figure 5G) and
progression in test sets GSE13507 (Figure 5F) and TCGA
(Figure 5I).

3.6 Stratified Analyses of the Six-Gene
Signature for Cancer-Specific Survival
Prediction of Other Clinical Characteristics
Furthermore, to assess the prognostic value of the six-gene index,
the stratified analyses were performed by using clinical
information including age, gender, tumor grade, tumor stage,
node status, and tumor progression. All 224 BCa patients were
firstly stratified by age into the younger dataset (<65 years old, n �
70) and the elder dataset (≥65 years old, n � 154), by gender into a
female dataset (n � 61) and male dataset (n � 163), and by tumor
grade into grade 1–2 (n � 129) and grade 3 (n � 93). The
prognostic power of the six-gene signature was significant in
the younger dataset, the elder dataset, the female dataset, the male
dataset, the grade 1–2 dataset, and the grade 3 dataset (Figures
6A–F). Based on the tumor stage, patients were categorized into
low stage (Ta and T1, n � 173) and high stage (T2–T4, n � 51).
Meanwhile, patients were also stratified by node status into N0
(n � 26) and N+ (n � 20) and by tumor progression status into
non-tumor progression dataset (n � 211) and tumor progression
dataset (n � 13). Interestingly, a similar significant prognostic
value could be observed in the high-stage dataset and patients
without progression dataset (Figures 6H,I). Otherwise, the
prognosis of the low-stage dataset, and N0 and N+ and tumor
progression datasets had no significance (data not shown), which
may be due to the limited patients.

3.7 DEGs for High- and Low-Risk Patients
To investigate the potential function of the six prognostic genes,
samples in the training set GSE32894 were divided into two
groups according to the risk score. Under the threshold of FDR <
0.05 and |log2 FC| > 1, a total of 82 DEGs were screened (54
downregulated and 28 upregulated). The volcano plot presented

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7586126

Xu et al. Prognostic Signature for Bladder Cancer

101

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


the differential expressed signatures between high- and low-risk
groups (Figure 7A).

3.8 Functional Annotation of the DEGs
The biological process of down- and upregulated genes between
high- and low-risk groups is visualized in Figures 6B,C,
respectively. In the low-risk group, the biological process was
enriched in lipid catabolic process, lipid transport, lipid
localization, steroid metabolic process, regulation of
macrophage-derived foam cell differentiation, triglyceride
catabolic process, macrophage-derived foam cell
differentiation, foam cell differentiation, neutral lipid catabolic
process, and acylglycerol catabolic process. In the high-risk
group, the biological processes were significantly enriched in
the nuclear division, organelle fission, mitotic nuclear division,
chromosome segregation, sister chromatid segregation, nuclear
chromosome segregation, mitotic sister chromatid segregation,
regulation of mitotic nuclear division, regulation of nuclear
division, and regulation of chromosome segregation.
Moreover, GSEA analysis was performed, and it revealed that
high-risk samples were enriched in G2/M checkpoint, E2F
targets, mitotic spindle, mTOR signaling, spermatogenesis,
EMT, DNA repair, PI3K/AKT/mTOR signaling, UPR, and
MYC targets V2 (Figure 7D).

3.9 Relative Expression of Six Genes in
Bladder Cell Line and for BCa Cell Lines
The results of qRT-PCR and expression profiles between the
normal bladder and BCa tissues of six signatures are shown in
Figure 7. Compared with normal bladder epithelial cell line (SV-
HUV-1), the level of CDK4, E2F7, COL11A1, BDKRB2, and
YIF1B was upregulated in most BCa cell lines (Figures
8A,C,E,G,I). On the contrary, the level of ZNF415
(Figure 7K) was downregulated, compared with SV-HUV-1,
which were in line with our above contents. In GEPIA2, the
expression of CDK4, E2F7, COL11A1, and YIF1Bwas upregulated
in BCa tissues compared with normal bladder tissues (Figures
8B,D,F,J), while the level of BDKRB2 and ZNF415 showed an
opposite outcome (Figures 7H,L). FDR < 0.05 and |log2 FC| > 1

were used as thresholds for judging the significance of gene
expression differences in GEPIA2. The results of qRT-PCR
were roughly in line with the consequences of GEPIA2 and
our above contents that higher expression was related with
shorter survival, such as CDK4 and E2F7, and that higher
expression was connected with longer survival, for instance,
ZNF415.

4 DISCUSSION

With the development of molecular biomarkers, like tumoral
suppressors or oncogenes, which are less expensive and less
invasive, we could detect human BCa or predict patients’
outcomes more easily. Additionally, together with the
currently used cystoscopy, patients could be provided a better
chance for appropriate therapies.

We identified six genes (CDK4, E2F7, COL11A1, BDKRB2,
YIF1B, and ZNF415) that were significantly associated with BCa
prognosis and developed a six-gene signature. Based on the six-
gene signature, we observed that patients in the high-risk group
had shorter cancer-specific survival than the low-risk group.
Furthermore, the high-risk group also showed worse cancer-
specific survival than the low-risk group in patients with other
clinical features (age, gender, tumor grade, tumor stage and node
status, and tumor progression). In addition, the results of
univariate Cox regression and multivariate Cox regression
analysis showed that the six-gene prognostic signature was an
independent prognostic factor of BLCA.

All of the six genes have vital functions. CDK4, a Ser/Thr
protein kinase family member and its partner CDK6, is a key
player in cell cycle progression (Sheppard and McArthur, 2013).
It is reported that CDKs could induce genomic and chromosomal
instability and unscheduled proliferation, which attach great
importance to oncogenesis (Malumbres and Barbacid, 2009).
E2F7, a member of the E2F family, plays an essential role in
regulating the cell cycle (Chen et al., 2009). It is also reported that
E2F7 is a unique repressor of a subset of E2F target genes whose
products are required for cell cycle progression (Di Stefano et al.,
2003). Mitxelena et al. reported that E2F7 controlled a new

FIGURE 4 | Univariate Cox and multivariate Cox regression of the prognostic signature integrating with clinical parameters, including gender, age, tumor stage,
tumor grade, and progression. Univariate Cox regression analysis for signature and clinical variants (A). Multivariate Cox regression analysis for signature and clinical
features (B).
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regulatory network involving transcriptional and post-
transcriptional mechanisms to restrain cell cycle progression
through repression of proliferation-promoting miRNAs
(Mitxelena et al., 2016). Chu et al. demonstrated that
upregulated E2F7 restrains the level of miR-15a/16 and
therefore promotes Cyclin E1 and Bcl-2, thereby bringing out
tamoxifen resistance. COL11A1 is a part of type XI collagen,
which acts as a vital role in skeletal development. Other studies
have shown that high expression of COL11A1 is related to poor
clinical prognosis in diverse cancers. Overexpression of COL11A1

could accelerate cancer cell proliferation, invasion, migration, and
metastasis, and resist chemotherapy sensitivity (Cheon et al.,
2014; Wu et al., 2014; Wu et al., 2019; Wang et al., 2020;
Nallanthighal et al., 2021). BDKRB2, an angiogenesis-related
gene, demonstrated as a direct IRX1 target gene and was
reported to be involved in gastric cancer progression (Jiang
et al., 2011). A previous study revealed that bradykinin could
upregulate the levels of TRPM7 and MMP2 to promote the
invasion and migration of hepatocellular carcinoma cells
(Chen et al., 2016). YIF1B is a gene related to nervous

FIGURE 5 | Clinicopathological significance of the prognostic signature of bladder cancer in the training set (GSE32894) and test sets (GSE13507 and TCGA). p
values were statistically significant at T-stage (A, D), grade (B, E, H), molecular subtype (C), pathological stage (G), and progression (F, I).

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7586128

Xu et al. Prognostic Signature for Bladder Cancer

103

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 6 | Survival analyses of bladder cancer patients stratified by age, gender, grade, T stage, and tumor progression with the six-gene signature in
GSE32894. The Kaplan–Meier curves for the young (age <65) and old (age ≥65) groups (A,B), for the female and male patients (C,D), for the grade 1–2 and
grade 3 groups (E,F), for the low stage (Ta and T1) and high stage (T2–T4) groups (G,H), and for the non-progression (without progression to higher stage or
grade) group (I).
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development, whose mutation could lead to neurodevelopmental
syndrome (Diaz et al., 2020). With the development of
bioinformatics, YIF1B was gradually exploited to predict
clinical prognosis for cancer patients (Liu et al., 2020; Jia
et al., 2021). ZNF415, a member of zinc finger proteins, was
reported to play an essential role in AP-1 and p53-mediated
transcriptional activity regulation (Cheng et al., 2006). In
addition, Omura et al. observed that ZNF415, as a methylated
promoter, is involved in pancreatic adenocarcinoma (Omura
et al., 2008).

In the test set, we could observe that five (CDK4, E2F7,
BDKRB2, YIF1B, and ZNF415) of these six signatures were

differentially expressed between BCa tissues and normal
bladder tissues. Moreover, CDK4 and YIF1B were discovered
as the biomarkers to distinguish the recurrent BCa and BCa.

To further study the potential function, GO analysis and GSEA
were performed. GO biological process enrichment analysis for
differentially expressed genes between high- and low-risk groups
indicated that the lipid metabolic process and associated terms were
enriched in the low-risk group, whereas cell division and interrelated
terms were enriched in the high-risk group. Cell division is essential
for tumor development and progression. Many times, cell divisions
were asymmetric, containing protein content, cell size, or
developmental potential, leading to cancer incidence and other

FIGURE 7 | Functional annotation of DEGs. The volcano plot based on the differentially expressed genes (A). Biological process analysis of the remarkable
association of down- and upregulated genes (B,C). The top 10 enriched pathways in the high-risk group were analyzed by gene set enrichment analysis (D).
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diseases (Chia et al., 2008; Neumuller and Knoblich, 2009). Because
DNA is the only cellular component that can accumulate and
transmit changes throughout life (from zygote to death), it was
soon accepted that carcinogenesis of cancer requires a multi-step
accumulation of DNA (López-Lázaro, 2018). Conferring to the
GSEA analysis, we found that the G2/M checkpoint, E2F targets,
and mitotic spindle, which regulated the cell cycle, were enriched.
Meanwhile, other functional pathways were enriched either. mTOR
signaling activated protein synthesis by phosphorylating 4E-BP1 and
S6K1 (Holz, 2012); regulated metabolic pathways on transcriptional,

translational, and posttranslational levels (Peng et al., 2002);
promoted lipid and cholesterol synthesis (Porstmann et al., 2008);
and was involved in autophagy (Codogno and Meijer, 2005), which
was essential for the cancer progression. EMT signaling pathway was
closely related to the progress of cancer, which promoted the
mobility, invasion, and resistance to apoptotic stimuli to
accelerate the metastasis of cancer cells (Mittal, 2018; Lu and
Kang, 2019). DNA repair was crucial to maintain the survival
and growth of cells. Lack of DNA repair pathway led to the
change of genome, which favored cancer cell proliferation

FIGURE 8 | Relative expression of six signatures in the bladder cell line and four BCa cell lines. Expression of CDK4, E2F7, COL11A1, BDKRB2, YIF1B, and
ZNF415 in the bladder cell line (SV-HUV-1 (SV in short)) and four BCa cell lines (5637, T24, UM-UC3 (UC3 in short), and J82) (A, C, E, G, I, K). Relative expression of
CDK4, E2F7, COL11A1, BDKRB2, YIF1B, and ZNF415 in normal bladder and BCa cancer tissues in GEPIA2 (B, D, F, H, J, L).
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(Klinakis et al., 2020). The PI3K/AKT/mTOR signaling pathway was
implicated in a wide spectrum of cancers, neurological diseases, and
proliferative disorders (Alayev and Holz, 2013). The PI3K/AKT/
mTOR pathway regulated cell proliferation, growth, cell size,
metabolism, and motility (Alzahrani, 2019). UPR was the
potential driver for cancer and other chronic metabolic diseases.
UPR delivered the information of protein folding status to the
nucleus and cytosol to induce cell apoptosis when the body is in
a state of chronic injury and consumption (Hetz et al., 2020). MYC
was demonstrated to promote cell proliferation. High targets V2 was
able to act as an indicator to predict the clinical prognosis (Schulze
et al., 2020).

The six-gene prognostic model can effectively predict the
prognosis of patients with BCa and may provide a clinical setting
for individualized treatment of BCa in the future. Moreover, we
verified the relative expression of these six signatures between the
bladder cell line and four BCa cell lines by qRT-PCR. However, we
have to admit that our research is insufficient. First of all, we only
have TCGA and one GEO dataset to validate the prognostic index,
andwe have not further validated ourmodel through other databases
such as ICGC and Oncomine. In addition, the cell function
experiments of the six genes in BCa have not been explored in depth.

5 CONCLUSION

In conclusion, those six genes are able to distinguish human BCa
tissues and normal tissues, and their expression signature
combination could also possess a predictive ability for the
cancer-specific prognosis.
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Aberrant activation of calmodulin 1 (CALM1) has been reported in human cancers.
However, comprehensive understanding of the role of CALM1 in most cancer types
has remained unclear. We systematically analyzed the expression landscape, DNA
methylation, gene alteration, immune infiltration, clinical relevance, and molecular
pathway of CALM1 in multiple cancers using various online tools, including The
Cancer Genome Atlas, cBioPortal and the Human Protein Atlas databases.
Kaplan–Meier and receiver operating characteristic (ROC) curves were plotted to
explore the prognostic and diagnostic potential of CALM1 expression. Multivariate
analyses were used to evaluate whether the CALM1 expression could be an
independent risk factor. A nomogram predicting the overall survival (OS) of patients
was developed, evaluated, and compared with the traditional Tumor-Node-Metastasis
(TNM) model using decision curve analysis. R language was employed as the main tool for
analysis and visualization. Results revealed CALM1 to be highly expressed in most
cancers, its expression being regulated by DNA methylation in multiple cancers.
CALM1 had a low mutation frequency (within 3%) and was associated with immune
infiltration. We observed a substantial positive correlation betweenCALM1 expression and
macrophage and neutrophil infiltration levels in multiple cancers. Different mutational forms
of CALM1 hampered immune cell infiltration. Additionally, CALM1 expression had high
diagnostic and prognostic potential. Multivariate analyses revealed CALM1 expression to
be an independent risk factor for OS. Therefore, our newly developed nomogram had a
higher clinical value than the TNM model. The concordance index, calibration curve, and
time-dependent ROC curves of the nomogram exhibited excellent performance in terms of
predicting the survival rate of patients. Moreover, elevated CALM1 expression contributes
to the activation of cancer-related pathways, such as the WNT and MAPK pathways.
Overall, our findings improved our understanding of the function of CALM1 in human
cancers.

Keywords: multi-omics, calmodulin, prognosis analysis, immune infiltration, cancer biomarker
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INTRODUCTION

As one of the most common diseases worldwide, cancer threatens
human life and public health. The pathogenesis of cancer is very
complex and involves several cancer-critical genes, which control
fundamental cell division and growth processes (Rezatabar et al.,
2019; Lacroix et al., 2020). Therefore, it is important to perform
multi-omics analysis for any cancer-critical gene, followed by
further assessment of their molecular function in tumorigenesis
and correlation of the same with clinical prognosis.

Calmodulin (CALM), the best-studied Ca2+-binding protein, is
composed of 148 amino acids, and contains two globular domains
linked by a highly flexible central linker domain (Ikura and Ames,
2006). A previous study had shown CALM to be a valuable
peripheral biomarker for Alzheimer’s disease, discriminating the
latter from other disorders related to dementia (Esteras et al., 2013).
Another study showed that CALM expression significantly increases
in cerebrospinal fluid of patients with Creutzfeldt Jakob disease
(CJD) and might be used as a diagnostic biomarker for CJD (Chen
et al., 2021). Moreover, the abnormally high expression of CALM
can indicate liver fibrosis (Ji et al., 2019) and recurrence of
nasopharyngeal carcinoma (Meng et al., 2017). In mammals,
three genes encode CALM, namely CALM1, CALM2, and
CALM3 (Zhang et al., 2012). Although these genes only differ in
their non-coding regions, they have distinct cellular functions, based
on subcellular distribution and epigenetics (Toutenhoofd and
Strehler, 2000). In this study, we specifically focused on CALM1.
CALM1 can regulate cell motility, differentiation, and proliferation
(Chin and Means, 2000); increased CALM1 expression had
previously been detected in nasopharyngeal carcinoma
(Zamanian Azodi et al., 2018), prostate cancer (Adeola et al.,
2016), and bladder cancer (Zhang et al., 2018) and has been
reported to play an oncogenic role in esophageal squamous cell
carcinoma (Liu et al., 2021). However, our knowledge regarding the
expression pattern, gene mutation, molecular function, and clinical
value of CALM1 and relationship of CALM1 expression with DNA
methylation and immune infiltration in most cancers is still lacking.

Here, we aimed to conduct comprehensive and systematic
analyses of CALM1 in human cancers. This study had five
analysis modules, namely gene expression, DNA methylation and
gene alterations, immune infiltration, prognostic and diagnostic
potential, and relevant cellular pathways. We found that CALM1
expression was upregulated in most cancer types and was closely
related to immune infiltration and cancer-related cellular pathways.
DNA methylation affected CALM1 expression in multiple cancers.
Additionally,CALM1 expression had high diagnostic and prognostic
potential. Taken together, our findings revealed that CALM1 could
be a promising prognostic and diagnostic biomarker for determining
patient survival in human cancers.

MATERIALS AND METHODS

Data Acquisition and Processing
We downloaded gene expression RNA-seq data of 33 The Cancer
Genome Atlas (TCGA) cancer types and corresponding normal
tissues from the Genotype-Tissue Expression database (GTEx;

http://www.gtexportal.org/) and TCGA database (https://
cancergenome.nih.gov/). These data were detected from 798
TCGA normal tissues, 9,807 TCGA cancer tissues, and 7,498
GTEx normal tissues, and were further processed using the Toil
method (Vivian et al., 2017) and log2 transformed. Relevant
clinical information (survival time, TNM stage, pathologic stage,
etc.) of each patient and DNA methylation data (HM450) were
also extracted from TCGA. Alteration frequency, mutation type
and mutated site of CALM1 in 33 TCGA cancer types were
obtained from the cBioPortal database (https://www.cbioportal.
org/). GSE41613 was downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/), including 97 HNSC
samples with complete follow-up information (survival time
and status). Additionally, we calculated the enrichment rate of
immune cells in each cancer sample by the ssGSEA algorithm that
used the specific markers (Bindea et al., 2013) of immune cell as a
gene set to calculate the enrichment score of immune cells in each
sample.

Gene Expression Analysis
We compared the CALM1 mRNA distribution between cancer
tissues and adjacent non-cancer tissues in 33 TCGA cancer types.
Owing to the abnormal distribution of CALM1 expression values,
we used the Mann–Whitney U test to compare CALM1
expression between normal and cancer tissues. Subsequently,
we investigated the correlation between CALM1 expression
and clinical features in different cancers using the
Kruskal–Wallis test. Protein-wide omics data from the Human
Protein Atlas (HPA; https://www.proteinatlas.org/) was used to
verify the expression of CALM1 between normal and cancer
tissues. Analysis and visualization of data were based on the R
language and a p-value of <0.05 indicated significance.

DNA Methylation and Gene Alteration
Analysis
We performed DNA methylation analysis using the
transcriptome data of CALM1 and DNA methylation data
(HM450) from TCGA. Beta values were used to estimate the
methylation levels of CALM1 DNA. Differences in CALM1
methylation between cancer tissues and adjacent non-cancer
tissues were compared using the Mann–Whitney U test. The
Pearson correlation method was used to measure the relationship
between CALM1 expression and methylation. A p-value of <0.05
and correlation coefficient of < −0.1 were regarded as the cut-off
points. Subsequently, we conducted gene alteration analysis based
on the cBioPortal database (Cerami et al., 2012). Genetic
alterations of CALM1 were obtained from the “Quick select”
module. Results of alteration frequency and the mutation type of
CALM1 in human cancers were obtained using the “Cancer Type
Summary” module. The 3D structure of the mutated site of
CALM1 was further observed with the “Mutations” module.

Immune Infiltration Analysis
Using the ssGSEA algorithm in the R package GSVA (Sonja et al.,
2013) and the transcriptome data of CALM1 from TCGA, we
investigated the correlation between CALM1 expression and
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immune infiltration in human cancers. The Spearman correlation
method was used to calculate the correlation coefficient. A total of
four immune cells were included in this analysis, namely
macrophages, B-cells, CD8+ T-cells, and neutrophils.
Subsequently, we used the Tumor IMmune Estimation
Resource 2 (TIMER2; http://timer.cistrome.org/) database (Li
et al., 2020) to verify the correlation via the “Gene” module.
Additionally, we investigated the correlation between immune
infiltration abundance and Somatic Copy Number Alteration
(SCNA) of CALM1 using the “SCNA” module of the TIMER
database (https://cistrome.shinyapps.io/timer/; (Li et al., 2017).

Prognostic and Diagnostic Potential
Analysis
We performed Kaplan–Meier (KM) analysis to assess the effect of
CALM family genes expression on patient survival. Patients were
divided into low- and high-expression groups according to the
median expression of the CALM family genes. Differences in
survival rates between the two groups were compared by Cox
regression. Moreover, we used the GSE41613 dataset to verify the
prognostic potential of CALM1 expression in head and neck
squamous cell carcinoma (HNSC). The University of Alabama
Cancer database (UALCAN; http://ualcan.path.uab.edu/;
Chandrashekar et al., 2017) was used to verify the prognostic
potential of CALM1 expression in liver hepatocellular carcinoma
(LIHC). Subsequently, the diagnostic ROC curve (Do and Le,
2020; Do et al., 2021) was plotted, and the area under the curve
(AUC) was calculated to define the diagnostic value of CALM
family genes mRNA levels in cancers. The Cox proportional
hazards regression model was used to evaluate whether CALM1
expression could be a risk factor for overall survival (OS) in
TCGA cancers. Using TCGA-HNSC data, we established a
nomogram integrating CALM1 expression, N stage, smoker,
and radiation therapy for predicting patient survival rate at 1,
3, and 5 years. Performance of this nomogram was evaluated via
concordance index (C-index), calibration curve, and time-
dependent receiver operating characteristic (ROC) curves and
compared with that of the traditional TNM nomogram via
decision curve analysis (DCA).

To further assess the general applicability of the established
model, we selected the TCGA-LIHC cohort as the validation set.
Similarly, a nomogram integrating CALM1 expression, TNM
stage, pathologic stage and tumor status was developed, and
its efficacy in predicting patient survival rate was evaluated
using the C-index, calibration curve, ROC curves and DCA.
Gene expression and clinicopathological information were
extracted from TCGA. Analysis and visualization of data were
accomplished using R language, and a p-value of <0.05 indicated
significance.

Insights Into CALM1 Function
The Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING; https://string-db.org/) is commonly used to predict
protein-protein interactions (Szklarczyk et al., 2019). According
to this database, we screened 50 experimentally determined
CALM1-binding proteins. Subsequently, we obtained

100 CALM1-correlated genes using the “Similar Gene
Detection” module of the Gene Expression Profiling
Interactive Analysis 2 (GEPIA2; http://gepia2.cancer-pku.cn/)
database (Tang et al., 2019). Four genes with the strongest
correlation with CALM1 were screened for further expression
analysis by the TIMER2 database. Finally, to elucidate functional
differences for CALM1-high expression group versus CALM1-
low expression group in HNSC and LIHC, we performed Gene
Set Enrichment Analysis (GSEA) using the R package
“clusterProfiler” (Yu et al., 2012). An adjusted p-value of <0.05
and FDR of <0.25 indicated significance.

RESULTS

Gene Expression Analysis Data
We assessed CALM1 mRNA expression profiles in human
cancers using data from the TCGA and GTEx databases. The
results showed that CALM1 mRNA expression is increased in 13
cancers, including the lymphoid neoplasm diffuse large B-cell
lymphoma (DLBC; P � 0.002), LIHC (P < 0.001), cervical
squamous cell carcinoma and endocervical adenocarcinoma
(CESC; P < 0.001), HNSC (P < 0.001), acute myeloid
leukemia (LAML; P < 0.001), ovarian serous
cystadenocarcinoma (OV; P < 0.001), pancreatic
adenocarcinoma (PAAD; P < 0.001), pheochromocytoma and
paraganglioma (PCPG; P � 0.003), testicular germ cell tumor
(TGCT; P < 0.001), stomach adenocarcinoma (STAD; P < 0.001),
skin cutaneous melanoma (SKCM; P < 0.001), thymoma (THYM;
P � 0.001), and uterine corpus endometrioid carcinoma (UCEC;
P < 0.001), compared with that in normal tissues. However,
CALM1mRNA expression is decreased in colon adenocarcinoma
(COAD; P < 0.001), kidney chromophobe (KICH; P � 0.001),
lower grade glioma (LGG; P < 0.001), lung adenocarcinoma
(LUAD; P < 0.001), prostate adenocarcinoma (PRAD; P <
0.001), and rectum adenocarcinoma (READ; P < 0.001)
(Figure 1A). The abbreviations and full names of TCGA
cancers are listed in Supplementary Table S1. For paired
normal and cancer tissues, the same difference in CALM1
mRNA expression was verified in kidney renal papillary cell
carcinoma (KIRC; P < 0.001), HNSC (P < 0.001), COAD (P <
0.001), KICH (P < 0.001), kidney clear cell carcinoma (KIRC; P <
0.001), LUAD (P < 0.001), PRAD (P < 0.001), READ (P � 0.031),
STAD (P � 0.004), and thyroid carcinoma (THCA; P < 0.05)
(Figure 1B). Overall, compared with non-cancer tissues, most
cancer types had higher CALM1 expression. We also observed a
significant association between CALM1 expression and clinical
features (e.g., TNM stage, pathologic stage, and histologic grade)
in human cancers (Figure 1C).

Additionally, we used immunohistochemistry staining to
verify CALM1 expression in human cancers (Figure 2). The
results showed that CALM1 staining was increased in breast
cancer, liver cancer, and pancreatic cancer but decreased in
colorectal cancer, prostate cancer, and lung cancer, compared
with that in normal tissues. These results demonstrated that the
protein expression of CALM1 increases in breast cancer, liver
cancer, and pancreatic cancer, but decreases in colorectal cancer,
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prostate cancer, and lung cancer, compared with that in normal
tissues, which is consistent with the mRNA levels of CALM1.

DNA Methylation and Alteration Analysis
Data
Based on the data from TCGA, we analyzed CALM1
methylation levels between normal and cancer specimens.

The results showed CALM1 methylation to be significantly
increased in cervical and endocervical cancer (CESC) and
COAD compared with that in normal tissues, but
significantly decreased in LIHC and PCPG (Figure 3A),
showing an inverse trend compared with that of the
expression pattern. Subsequently, we explored the
relationship between CALM1 mRNA expression and DNA
methylation. Our results showed a negative association

FIGURE 1 | Expression levels of CALM1 gene in human cancers and relevant clinical features. (A, B) Expression levels of CALM1 mRNA in cancer and adjacent/
paired normal tissues. *P < 0.05; **P < 0.01; ***P < 0.001; ns, no significance. (C) Relationship between CALM1 mRNA expression and clinical features in human
cancers. *P < 0.05; **P < 0.01; ***P < 0.001.
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between DNA methylation and CALM1 expression in four
selected cancers (Figure 3B), which further demonstrates the
regulatory ability of DNA methylation on CALM1 expression.
Additionally, DNA alteration analysis indicated that CALM1
has a relatively low alteration rate, with the maximum not
exceeding 3%. These alterations included missense mutations,
amplification, and deep deletion; the adrenocortical carcinoma
(ACC), PCPG, sarcoma (SARC), and LGG cases only carried
amplification alteration of CALM1 (Figure 3C). The alteration
case numbers, types, and sites of CALM1 are shown in
Figure 3D. We found that the primary genetic alteration of
CALM1 was a missense mutation. R107 was observed in the 3D
structure as the most frequent alteration site of CALM1
(Figure 3E) that could induce translation from R (Arginine)

to H (Histidine) or C (Cysteine). However, genetic alterations
in CALM1 barely influenced the OS of cancer patients.

Immune Infiltration Analysis Data
Previous studies have shown that immune cells in the tumor
microenvironment can affect patient prognosis. Therefore, it is
meaningful to explore the association between CALM1
expression and immune infiltration. The results from TCGA
indicated a positive relationship between CALM1 expression
and macrophages, B-cells, and neutrophils in COAD, LUAD,
PRAD, and SKCM. The number of CD8+T-cells was negatively
correlated with CALM1 expression in LUAD and PRAD, but
positively correlated with that in COAD and SKCM (Figure 4).
The results from TIMER2 verified CALM1 expression to be

FIGURE 2 | Validation the expression of CALM1 on translational level using immunohistochemistry from the Human Protein Atlas database. (A) Colon and
colorectal cancer. (B) Breast and breast cancer. (C) Prostate and Prostate cancer. (D) Lung and lung cancer. (E) Liver and liver cancer. (F) Pancreatic and pancreatic
cancer. Staining: low, medium, and high. Antibody: CAB018558 and HPA044999.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7935085

Yao et al. Functional Significance of Calmodulin 1

113

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


positively correlated with levels of neutrophils and
macrophages in four selected cancers (Supplementary
Figure S1A). Additionally, we found that different mutant
forms of CALM1 (e.g., arm-level gain, arm-level deletion, and
deep deletion) to hamper the infiltration of immune cells
(Supplementary Figure S1B).

Prognostic and Diagnostic Potential Data
To evaluate the prognostic and diagnostic potentials of the
CALM family genes, we performed KM and diagnostic ROC
curve analyses using the data from TCGA. KM survival
analysis showed that patients with elevated CALM1

expression had a favorable OS in KIRC, SARC, glioblastoma
multiforme and brain lower-grade glioma (GBMLGG), and
COAD, but poorer OS in uveal melanoma (UVM), acute
myeloid leukemia (LAML) and BLCA (Figure 5A). The
ROC curve demonstrated that CALM1 expression had a
high diagnostic value in COAD, KICH, LUAD, READ, and
PAAD (AUC >0.9; Figure 5B). Similarly, CALM2 and CALM3
also had high prognostic and diagnostic potentials in human
cancers (Supplementary Figure S2, S3). Taken together, the
results showed that the CALM family genes could be a
promising prognostic and diagnostic biomarker in human
cancers.

FIGURE 3 | Analysis of DNA methylation and alteration of CALM1 in human cancers. (A)Methylation level of CALM1 in normal and cancer specimens. *P < 0.05;
**P < 0.01; ***P < 0.001; ns, no significance. (B) Relationship between CALM1 mRNA levels and DNA methylation in cervical and endocervical cancer (CESE), colon
adenocarcinoma (COAD), liver hepatocellular carcinoma (LIHC), and pheochromocytoma and paraganglioma (PCPG). (C) Alteration frequency and mutation type of
CALM1 is displayed. (D) The types, sites, and case numbers ofCALM1 genetic alteration are presented. (E) The mutation site numbered 107 is displayed in the 3D
structure of CALM1 protein.
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Specifically, in HNSC, patients with decreased CALM1
expression showed a favorable OS (P � 0.007; Figure 6A).
KM analysis using data from the GSE41613 dataset confirmed
that the low mRNA level of CALM1 was associated with a
favorable OS (P � 0.034; Figure 6B). The Cox regression
models demonstrated CALM1 to be an independent risk
factors for OS (Figure 6C). Furthermore, we developed a
nomogram integrating CALM1 expression, N stage, smoker,
and radiation therapy for predicting the survival probability of
HNSC patients (Figure 6D). The calibration curve showed
excellent agreement between predicted and actual probabilities
at 1, 3, and 5 years with a C-index of 0.625 (range, 0.602–0.649)
(Supplementary Figure S4A). The accuracies calculated by
AUC in predicting 1, 3 and 5 years OS were 0.662, 0.649, and
0.658, respectively (Supplementary Figure S4B). DCA
revealed our nomogram to have a higher net benefit in
predicting OS, compared with the traditional TNM model
(Supplementary Figure S4C).

To further assess the prognostic predictive value of CALM1
expression, we selected TCGA-LIHC as the validation set. KM
survival analysis confirmed patients with decreased CALM1
expression had a favorable OS (P � 0.003; Figure 6E), which is
consistent with the results of UALCAN (P � 0.01; Figure 6F).
Subsequently, we developed a new nomogram integrating CALM1
expression, TNM stage, pathologic stage, and tumor status
(Figure 6G). The calibration curve showed excellent agreement
between predicted and actual probabilities at 1, 3, and 5 years
with a C-index of 0.665 (range, 0.630–0.700; Supplementary
Figure S4D). The accuracies calculated by AUC in predicting 1,
3 and 5 years OS were 0.688, 0.760, and 0.761, respectively
(Supplementary Figure S4E). However, DCA revealed that the
traditional TNM model has a higher net benefit in predicting OS,
comparedwith our nomogram (Supplementary Figure S4F). Taken
together, CALM1 mRNA levels had good applicability and can not
only predict the prognosis of HNSC but also serve as a prognostic
predictive biomarker for LIHC.

FIGURE 4 | Immune infiltration analysis ofCALM1 expression. Correlation between CALM1mRNA levels and immune infiltration in colon adenocarcinoma (COAD)
(A), lung adenocarcinoma (LUAD) (B), prostate adenocarcinoma (PRAD) (C), and skin cutaneous melanoma (SKCM) (D).
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Insights Into CALM1 Function
To understand the mechanism underlying the role of CALM1
in tumorigenesis, we conducted KEGG and GO enrichment
analyses using 50 CALM1-binding proteins and 100 CALM1
expression-correlated genes. In total, 50 CALM1-binding
proteins were identified using the STRING database, which
was further verified experimentally. The interaction network
of these proteins is presented in Figure 7A. A total of
100 CALM1 expression-correlated genes were identified
using the GEPIA2 database. Among them, SLC9A6, KLC1,
ARPP19, and IDS were significantly related to CALM1
overexpression, according to the data from the TIMER2

database (Figure 7B). The intersection analysis integrating
50 CALM1-binding proteins and 100 CALM1 expression-
correlated genes showed two common members, namely
CAMK2G and SCN2A (Figure 7C). Finally, we conducted
GSEA to explore the roles of CALM1 in cancers. We found
that WNT and MAPK signaling pathways associated gene sets
were significantly enriched in the CALM1 high expression
group in both HNSC (Figure 7D) and LIHC (Figure 7E).
Other cancer-related gene sets, such as the PI3K-Akt and
Hippo signaling pathways, were found to be affected by
different CALM1 expression levels (Supplementary
Figure S5).

FIGURE 5 | Analysis of prognostic and diagnostic potentials of CALM1 expression in human cancers. (A) Kaplan–Meier survival analysis was conducted to
investigate the prognostic value of CALM1 expression. (B) ROC analysis was performed for investigating the diagnostic value of CALM1 expression. HR, hazard ratio;
AUC, area under curve; CI, confidence interval; ROC, receiver operating characteristic.
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DISCUSSION

As the major Ca2+ sensor, CALM, encoded by the CALM1 gene in
mammals, is highly conserved in eukaryotic cells. Previous
studies had found CALM1 to be upregulated in
nasopharyngeal carcinoma, prostate cancer, and bladder
cancer, and had reported its oncogenic role in esophageal
squamous cell carcinoma. However, little is known regarding
the global function and expression landscape of CALM1 in other
cancers. In this report, we comprehensively assessed the CALM1
expression pattern based on TCGA data. The results
demonstrated that CALM1 levels are increased in CESC,
DLBC, HNSC, LAML, LIHC, OV, PAAD, PCPG, SKCM,
STAD, TGCT, UCEC, and THYM, but decreased in COAD,
KICH, LGG, LUAD, PRAD, and READ, compared with that in

normal tissues. Further validation using the HPA databases
revealed that the protein expression of CALM1 increases in
breast cancer, liver cancer, and pancreatic cancer, but
decreases in colorectal cancer, prostate cancer, and lung
cancer, compared with that in normal tissues. The differential
expression profiles might reflect the distinct molecular functions
of CALM1 in human cancers.

Since cancer progression involves a series of abnormal
regulations affected by gene alterations (Liu et al., 2021) or
DNA methylation (Liu et al., 2021), we aimed to investigate
the potential correlation across gene alterations, DNA
methylation, and patient survival. We observed several genetic
alterations of CALM1, including deep deletion, amplification, and
missense mutation; although these alterations might affect cancer
progression, according to the data from the cBioPortal database,

FIGURE 6 | Evaluation prognostic potential of CALM1 expression and establishment of nomograms in HNSC and LIHC. (A) Survival curves show that overall
survival was different for patients with low or high expression of CALM1 in HNSC. (B) The GSE41613 dataset was used to verify the prognostic potential of CALM1
expression in HNSC. (C) Forest plot for the prognostic analysis of CALM1 expression in human cancers. (D) Construction of the nomogram model integrating CALM1
expression, N stage, smoker, and radiation therapy in HNSC. (E) Survival analysis show patients with decreasedCALM1 expression had a favorable overall survival
in LIHC. (F) The UALCAN database was used to verify the prognostic potential ofCALM1 expression in LIHC. (G)Construction of a nomogrammodel integratingCALM1
expression, TNM stages, pathologic stages, and tumor status in LIHC. HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma.
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they did not affect prognostic outcomes. Additionally, we found
CALM1 methylation to be significantly increased in CESC and
COAD compared with normal tissues and significantly decreased
in LIHC and PCPG, showing an inverse trend compared with that
of the expression pattern. This finding implies that CALM1
expression is regulated by DNA methylation in human
cancers. Subsequently, we found a negative association
between DNA methylation and CALM1 expression in CESC,
COAD, LIHC, and PCPG, which further demonstrates the

regulatory ability of DNA methylation on CALM1 expression.
The results collectively suggested that CALM1 methylation plays
a significant and complicated role in human cancers; however,
more in-depth research is needed to verify this conclusion.

Previous studies had found immune cell infiltration to
significantly affect cancer progression and prognosis (Liu
et al., 2017). M1 macrophages are known to inhibit cancer
progression, CD4+T-cells can recognize cancer antigens (Lin
et al., 2019), CD8+T-cells can inhibit cancer metastasis

FIGURE 7 | Insights into CALM1 function. (A)We obtained the protein-protein interaction network ofCALM1 using the STRING website. (B)We analyzed the pan-
cancer correlation between CALM1 expression and SLC9A6, ARPP19, KLC1, and IDS using the TIMER2 website. (C) We conducted an intersection analysis for the
CALM1-binding and CALM1-correlated genes. Finally, we performed GSEA to elucidate functional differences for CALM1-high expression group versus CALM1-low
expression group in HNSC (D) and LIHC (E). SLC9A6, solute carrier family 9-member a6; ARPP19, CAMP regulated phosphoprotein; KLC1, kinesin light chain 1;
IDS, iduronate 2-sulfatase;CAMK2G, calcium/calmodulin dependent protein kinase II gamma; SCN2A, sodium voltage-gated channel alpha subunit 2; GSEA, Gene Set
Enrichment Analysis; TCGA, The Cancer Genome Atlas; HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma.
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(Joseph et al., 2021), and immune infiltration of T-cells can
significantly influence the efficacy of immunotherapy (Borst
et al., 2018). This study found a statistically significant positive
correlation between immune infiltration and CALM1 expression
in human cancers. The different CALM1 mutational forms
hampered immune infiltration. The results collectively imply
that CALM1 plays an essential role in the regulation and
recruitment of immune cell infiltration, which might
eventually affect patient prognostic outcomes.

Another key finding of this study is that CALM1 expression
can indicate different prognostic outcomes in human cancers.
Kaplan–Meier survival analysis showed that patients with
elevated CALM1 expression had a favorable OS in KIRC,
SARC, GBMLGG, and COAD, but poorer OS in UVM,
LAML, LIHC, and BLCA. The multivariate Cox model
further confirmed CALM1 expression as an independent
risk factor for OS in human cancers. Additionally, we
constructed a nomogram integrating clinical variables and
CALM1 expression for predicting survival rate in HNSC
patients, and it performed better than the traditional TNM
model. The ROC curve demonstrated that CALM1 expression
had a high diagnostic value in COAD, KICH, LUAD, READ,
and PAAD (AUC >0.9). Overall, the results suggest that
CALM1 could be a valuable prognostic and diagnostic
biomarker in human cancers.

We performed GSEA to predict the potential molecular
function of CALM1 in cancers. A previous study analyzing the
hyperglycemia of obese diabetic mice had revealed that elevated
CALM1 expression can directly activate the PI3K-Akt pathway to
repress gluconeogenic gene expression in hepatocytes (Chen
et al., 2017). Consistent with this report, our functional
enrichment analysis showed that increased CALM1 expression
could activate the PI3K-Akt signaling pathway. This pathway
involves cell apoptosis, oxidative stress, and inflammation, and
plays a vital regulatory role in various malignant tumors. Our
results show that increased CALM1 expression could also activate
other cancer-related pathways, such as the Hippo, Wnt, and
MAPK signaling pathways. Previous studies had revealed that
the activated Hippo pathway increases ovarian cancer stemness
and tumor resistance (Muñoz-Galván et al., 2020). The activated
Wnt pathway promotes cell growth and migration in squamous
cell lung carcinoma (Wu et al., 2021). Similarly, the activated
MAPK pathway regulates various cellular functions, such as
apoptosis, survival, differentiation, and proliferation (Liu et al.,
2018). The results overall suggest that CALM1 is closely
associated with cancer progression.

This study has some limitations. First, no experimental
validation was performed. Second, the correlation between
mRNA levels and protein expression of CALM1 would need
further verification. Third, since CALM1 plays a very complex

role in cancer prognosis, we could not define the exact role of
CALM1 as either oncogenic or protective.

CONCLUSION

Our study was the first to elucidate the expression landscape,
DNA methylation, gene alteration, immune infiltration, clinical
relevance, and molecular pathways of CALM1 in multiple cancers
using in-silico multi-omics analysis. CALM1 was found to be
differentially expressed in human cancers and adjacent normal
tissues, with a low mutation frequency. DNA methylation of
CALM1 regulated its expression in multiple cancers. CALM1
expression was closely related to immune infiltration and cancer-
related cellular pathways. Additionally, CALM1 expression had a
high diagnostic and prognostic potential in human cancers. These
findings collectively offer a relatively comprehensive
understanding of the functional significance of CALM1 in
human cancers.
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Identification and Quantification of
Necroptosis Landscape on Therapy
and Prognosis in Kidney Renal Clear
Cell Carcinoma
Sheng Xin, JiaquanMao, Chen Duan, JiaxinWang, Yuchao Lu, Jun Yang, Jia Hu, Xiaming Liu,
Wei Guan, Tao Wang, Shaogang Wang, Jihong Liu, Wen Song* and Xiaodong Song*

Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Kidney renal clear cell carcinoma (KIRC) has high morbidity and gradually increased in
recent years, and the rate of progression once relapsed is high. At present, owing to
lack of effective prognosis predicted markers and post-recurrence drug selection
guidelines, the prognosis of KIRC patients is greatly affected. Necroptosis is a
regulated form of cell necrosis in a way that is independent of caspase. Induced
necroptosis is considered an effective strategy in chemotherapy and targeted drugs,
and it can also be used to improve the efficacy of immunotherapy. Herein, we quantified
the necroptosis landscape of KIRC patients from The Cancer Genome Atlas (TCGA)
database and divided them into two distinct necroptosis-related patterns (C1 and C2)
through the non-negative matrix factorization (NMF) algorithm. Multi-analysis revealed
the differences in clinicopathological characteristics and tumor immune
microenvironment (TIME). Then, we constructed the NRG prognosis signature
(NRGscore), which contained 10 NRGs (PLK1, APP, TNFRSF21, CXCL8, MYCN,
TNFRSF1A, TRAF2, HSP90AA1, STUB1, and FLT3). We confirmed that NRGscore
could be used as an independent prognostic marker for KIRC patients and performed
excellent stability and accuracy. A nomogram model was also established to provide a
more beneficial prognostic indicator for the clinic. We found that NRGscore was
significantly correlated with clinicopathological characteristics, TIME, and tumor
mutation burden (TMB) of KIRC patients. Moreover, NRGscore had effective
guiding significance for immunotherapy, chemotherapy, and targeted drugs.

Keywords: kidney renal clear cell carcinoma, necroptosis, tumor immune microenvironment, prognostic signature,
nomogram, bioinformatics

INTRODUCTION

Kidney cancer is the third largest malignant tumor in the genitourinary system, with growing
morbidity and mortality in recent years. It is estimated that in 2018, >400,000 new cases were
diagnosed and >175,000 people died of this disease (Bray et al., 2018). About 90% of kidney
cancer was renal cell carcinoma (RCC), 70% of which was kidney renal clear cell carcinoma
(KIRC) (Atkins and Tannir, 2018). About 30% of patients have metastasis by the time they are
diagnosed. With advances in RCC pathologic staging, the 5-year disease-specific survival (DSS)
rate has been reduced by about 10%; however, the median overall survival (OS) for advanced
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RCC is just 10–15 months (Cairns, 2011). Medication
(immunotherapy, chemotherapy, and targeted drugs) is the
preferred treatment approach for patients with end-stage or
recurrent KIRC. However, due to secondary effects of drugs,
individual differences in drug sensitivity, and lack of reliable
prognostic biomarkers, there is usually little improvement in
the median OS probability after the first round of therapy
(Cairns, 2011; Luo et al., 2019). The tumor microenvironment
(TME) is closely related to tumor progression and efficacy of
immunotherapy and chemotherapy (Wu and Dai, 2017;
Hinshaw and Shevde, 2019; Newton et al., 2019). Altering
the TME has been a potential strategy for improving the
efficacy of anticancer treatments and clinical outcomes.

Necroptosis is a regulated form of cell necrosis in a way that
is independent of caspase (Gong et al., 2019). RIPK1 and
RIPK3 are upstream molecules of necroptosis, which form
oligomeric complexes of necrotic bodies and cause rapid
membrane permeability of necrotic cells through MLKL
(Galluzzi et al., 2012; Cai et al., 2014). Therefore,
necroptosis shows morphological characteristics of cell
membrane rupture, gradually translucent cytoplasm, and
organelle swelling (Vandenabeele et al., 2010; Chan, 2012).
In addition, the release of cell contents leads to exposure of
damage-associated molecular patterns (DAMPs) and a strong
inflammatory response (Pasparakis and Vandenabeele, 2015).
In apoptosis, DAMPs are mostly solidified, so necroptosis is
significantly diverse from apoptosis not only in morphology
but also in immunology (Kaczmarek et al., 2013). In multiple
tumors, the key molecular expression of the necroptosis
signaling pathway was reduced, which was related to poor
prognosis and enhanced tumor progression and metastasis
(Park et al., 2009; Ke et al., 2013; Wang et al., 2013; Feng et al.,
2015; Ertao et al., 2016; Stoll et al., 2017). Inducing necroptosis
is considered an effective strategy to solve the problem of
apoptosis resistance in the process of chemotherapy, and a
variety of anticancer drugs have been developed to induce
necroptosis (Gong et al., 2019). Furthermore, necroptosis
induces NF-κB–derived signals, activates dendritic cells
(DCs), increases antigen presentation, and enhances CD8 +
T cell–mediated tumor clearance (Snyder et al., 2019).
Bioinformatics analysis suggests that RIPK1, RIPK3, and
MLKL are associated with T cell dysfunction, and their
overexpression predicts prolonged survival in many clinical
studies of immune checkpoint inhibitors (ICIs) (Tang et al.,
2020). Several animal experiments have explored the synergy
of necroptosis in ICIs to produce novel immunotherapy
strategies (Kang et al., 2018; Van Hoecke et al., 2018;
Snyder et al., 2019). These suggest that necroptosis has
great potential in providing effective drug therapy for
advanced KIRC patients.

To address the abovementioned point, we clustered 526
KIRC patients from The Cancer Genome Atlas (TCGA)
database on the basis of the expression patterns of
necroptosis-related genes (NRGs). The differences between
necroptosis-related patterns were analyzed in multi-omics
analysis, including survival analysis, clinical relevance,
tumor immune microenvironment (TIME), and so on. A

prognostic signature (NRGscore) that could be used to
predict the OS of KIRC patients was then constructed,
confirming that it was an independent prognostic indicator.
Moreover, a nomogram model was constructed with
NRGscore and several clinicopathological characteristics to
provide accurate prognosis predictions for clinical patients.
Eventually, we have verified that NRGscore was significantly
correlated with TIME, somatic mutation, and
immunotherapeutic and chemotherapeutic efficacy in KIRC
patients.

MATERIALS AND METHODS

Retrieval of Necroptosis-Related Genes
We first obtained eight NRGs from the
GOBP_NECROPTOTIC_SIGNALING_PATHWAY gene set
in the Molecular Signatures database (MSigDB) (http://www.
gsea-msigdb.org/gsea/msigdb/index.jsp). After screening a large
number of previous research literature on necroptosis, a
necroptosis gene set containing 74 NRGs was finally retrieved
(Supplementary Table S1).

Acquisition and Process of Original Data
Transcription RNA sequencing, clinical information, and
somatic mutation of TCGA-KIRC cohort were publicly
available in TCGA database (https://portal.gdc.cancer.gov/).
Transcription RNA sequencing consisted of 539 KIRC tumor
tissues and 72 surrounding normal tissues. It was downloaded
as fragments per kilobase of transcript per million mapped
reads (FPKM), and gene expression was annotated in an
average when an individual gene symbol contained more
than one Ensembl ID. After removing the samples without
complete OS information, 526 patients were incorporated into
the training set. 328 TCGA samples included in the study had
somatic mutation information. The E-MATB-1980 dataset
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-
1980/) provided the RNA-seq data and clinical information of
101 KIRC samples to be an external test set. All sequencing
data were processed with log2 transformation and eliminated
batch effects between cohorts before establishing and verifying
the prognostic signature through the “sva” package in R.

Non-Negative Matrix Factorization
Clustering
We integrated the RNA-seq data and overall survival (OS)
information of TCGA-KIRC and gained the prognosis-related
NRGs through univariate COX regression analysis (p < 0.05).
Non-negative matrix factorization (NMF) was applied to
determine distinct necroptosis-related patterns with the help
of the “NMF” R package. The NMF algorithm divided the
original matrix into two non-negative matrices to identify the
potential features in the gene expression profile (Brunet et al.,
2004). The deposition was repeated and the results were
aggregated to obtain consistent clustering. According to the
cophenetic coefficient, contour, and sample size, k = 2 was
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determined as the best cluster number. All the prognosis-
related NRGs were selected to construct a principal
component analysis (PCA) scoring system with the
“prcomp” function in R.

Gene Set Enrichment Analysis
GSEA is a nonparametric and unsupervised algorithm that
transforms an isolate gene expression matrix to an expression
matrix of particular gene sets as features. The algorithm is
implemented based on the “clusterProfiler,” “enrichplot,” and
“DOSE” R packages. We downloaded the gene sets of “c2.
cp.kegg.v7.4. symbols,” “h.all.v7.4. symbols,” “c2.
cp.reactome.v7.4. symbols,” “c2. cp.biocarta.v7.4. symbols,” and
“c2. cp.pid.v7.4. symbols” from the MSigDB database for GSEA.
The statistical differences of the expression matrix after
transformation were analyzed by the “limma” package.

Evaluation of the Tumor Immune
Microenvironment
Single-sample gene set enrichment analysis (ssGSEA),
ESTIMATE, and CIBERSORT were used in R to assess the
TIME status of each KIRC sample. ssGSEA investigated
congenital and adaptive immune cells as well as a variety of
immune-related functions. The normalized enrichment score
(NES) was to embody the relative amount of each TIME
infiltration unit in patients. ESTIMATE predicted the level of
infiltrating matrix and immune cells by calculating stromal and
immune scores and comprehensively obtained the ESTIMATE
score for evaluating the TIME. We also assessed the relative
fraction of 22 tumor-infiltrating immune cells (TIICs) in each
cancer sample with the CIBERSORT algorithm. P < 0.05 was the
threshold of a credible sample for estimating the proportion of
immune cells.

Functional Enrichment Analysis of
Differentially Expressed Genes Between
Necroptosis-Related Patterns
After NMF clustering, to identify DEGs between two different
necroptosis phenotypes, we used the “limma” package in R to
evaluate gene expression differences through T statistics and p
values (p < 0.001) calculated by empirical Bayesian estimation in
the linear model (Ritchie et al., 2015). Then, we used Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of DEGs
between necroptosis-related patterns through the
“clusterProfiler,” “enrichplot,” and “DOSE” R packages. The
GO terms were in the biological process (BP), cellular
component (CC), and molecular function categories (MF). The
results were visualized with the “ggplot2” R package.

Establishment and Validation of the NRG
Prognostic Signature
Based on the prognosis-related NRGs in the univariate Cox
regression model, the “glmnet” R package performed the least

absolute shrinkage and selection operator (LASSO) and selected
the minimum criteria to identify important prognostic genes,
which contained 16 NRGs (Supplementary Table S2).
Eventually, the multivariate Cox regression made the NRG
signature more optimized and practical, with 10 NRGs
remaining. In addition, the NRGscore formula was obtained as
follows:

NRGscore � Σ(exp Genei × coefficient Genei ) .

After calculating the optimal cutoff of NRGscore by the
“surv_cutpoint” function in R, we divided TCGA-KIRC cohort
into high- and low-risk groups. With the help of Kaplan–Meier
analysis (“survival” package) and receiver operating
characteristic (ROC) curve (“timeROC” package), the
predictive ability of the prognostic model was assessed. The
ROC curve was quantified with the area under the curve
(AUC). The same NRGscore calculation formula, cutoff
value, and analysis methods were applied in the E-MTAB-
1980 cohort to validate the signature.

Establishment of the Nomogram Model
A nomogram is an intuitive clinical prognosis prediction model
integrating a variety of prognosis-related variables. We
established a nomogram model to provide a more accurate
prediction of prognosis for clinical patients based on
NRGscore and clinicopathological characteristics. First,
univariate Cox regression analysis was utilized to evaluate
predicted values of variables. Then, the coefficient was further
determined viamultivariate Cox regression analysis. The “rms” R
package then established a nomogram for predicting the
operating system. In addition, we used the “DynNom” R
package to construct a dynamic nomogram to visualize the
model. Concordance index (C-index) and calibration analysis
were applied to estimate the accuracy and consistency. Finally,
the clinical application value of the nomogram was evaluated
using decision curve analysis (DCA).

Evaluation of the Efficacy of Chemotherapy
and Targeted Drugs
The chemotherapeutic response of KIRC patients was evaluated
by Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.
cancerRxgene.org). Eight chemotherapeutic and targeted drugs in
KIRC treatment were chosen, including axitinib, bortezomib,
cisplatin, gefitinib, sorafenib, sunitinib, temsirolimus, and
vinblastine. The ridge regression algorithm was used to
calculate the half-maximal inhibitory concentration (IC50), and
satisfactory prediction accuracy was obtained through 10-fold
cross-validation (Geeleher et al., 2014). The process was
calculated by the “pRRophetic” R package.

Statistical Analysis
All statistical analyses were completed with R software (version
4.0.4) in this study. The Wilcoxon rank-sum test or paired-
samples t-test was used to verify the statistical difference in
two groups. When comparing the difference among more than
two groups, the Kruskal–Wallis test was selected. Spearman’s
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correlation analysis calculated the correlation coefficients
between TMB, immune checkpoint gene expression, and
NRGscore. The “maftools” package was used to build waterfall
plots to show the frequency of gene mutations. P-value <0.05 was
set as a statistically significant standard.

RESULT

To describe our research intuitively and systematically, we show
the research process in Figure 1.

NMF Clustering of Necroptosis-Related
Patterns in KIRC
We performed NMF clustering on TCGA-KIRC cohort based on
33 prognosis-related NRGs in the univariate COX regression
model (Table 1). According to cophenetic coefficients, k = 2 was
the best clustering result (Figures 2A,B). Eventually, we identified
two distinct necroptosis-related patterns termed necroptosis. C1
(n = 126) and necroptosis. C2 (n = 400). Figure 2C showed a
transcription profile heatmap of 33 prognosis-related NRGs in C1
and C2. Afterward, we performed PCA to further complement
the distinction between C1 and C2 at NRG transcription levels
(Figure 2D). Kaplan–Meier analysis indicated that C2 had
significantly longer OS than C1 (Figure 2E, p < 0.001).

Ultimately, the chi-square test was used to reveal the
distinction in clinicopathological characteristics between C1
and C2 (Figure 2F). As shown in the figure, the distribution
of TNM stages, pathologic stage, histologic grade, OS, DSS, and
PFI events was significantly distinct in C1 and C2. In addition, the
advanced pathological characteristics and bad prognosis results
had a tendency to concentrate on C1.

Tumor Immune Microenvironment of
Necroptosis-Related Patterns
Through GSEA analysis, we confirmed the concentration level of
TCGA-KIRC samples in DNA damage repair, immune
activation, stromal score, and carcinogenic-related pathways
(Figure 3A). We believed that C1 had a higher expression in
DNA damage repair and immune activation–related pathways,
while C2 had significantly higher concentration in carcinogenic-
related pathways, including regulation of autophagy. According
to previous studies, the process of necroptosis shows a strong
inflammatory response. To distinguish the difference between C1
and C2 in immune-related characteristics, we first quantified the
tumor microenvironment composition using ESTIMATE
(Figure 3B). The stromal score (p < 0.001), immune score
(p < 0.001), and ESTIMATE score (p < 0.001) of C1 were all
significantly higher than those in C2. Then, we compared the
distinctions between TIICs and immune-related functions

FIGURE 1 | Flow chart of our study.
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between necroptosis-related patterns through ssGSEA.Moreover,
the expression of multiple immune checkpoints, including
PDCD1, PDCD1LG2, LAG3, TIGIT, and CTLA4, was
significantly higher in C1 (Figure 3C). ssGSEA analysis
revealed that B cells, T cells, DCs, macrophages, and
neutrophils in C1 infiltrated significantly higher than those in
C2 (Figure 3D). Consistently, almost all immune functions in C1
were expressed higher (Figure 3E).

In addition, functional enrichment analyses of DEGs between
necroptosis-related patterns were applied to explore differences at
the molecule. GO analysis indicated that DEGs were mainly
involved in the regulation of the immune effector process,
phagocytosis, positive regulation of leukocyte activation, and
multiple immune-related biological processes (Figure 4A).
Transcription proteins were mostly located in mitochondrial
matrix, cell leading edge, and cell−substrate junction
(Figure 4B). Molecular functions were mostly concentrated in
molecular adapter activity, ubiquitin−like protein ligase binding,
and protein−macromolecule adapter activity (Figure 4C). In
addition, the DEGs were related to several immune-related
pathways, such as the chemokine signaling pathway, mTOR
signaling pathway, and TGF-β signaling pathway (Figure 4D).

Establishment of the NRG Signature in
TCGA-KIRC Cohort
We established a NRG prognostic signature to obtain an
indicator that could accurately and effectively predict the
clinical survival rate of KIRC patients. In previous studies,
we have obtained a univariate COX regression analysis model
with 33 NRGs. Then, the univariate Cox regression model was
processed to obtain the coefficient through LASSO Cox
regression analysis, and the minimum standard was selected
to further screen 16 genes (Figures 5A,B). The model was
eventually optimized using multivariate Cox regression
analysis, with a total of 10 genes remaining, including
PLK1, APP, TNFRSF21, CXCL8, MYCN, TNFRSF1A,
TRAF2, HSP90AA1, STUB1, and FLT3. We also obtained a
quantitative indicator: NRGscore = (0.39839 × PLK1
expression)—(0.21626 × APP expression)—(0.13856 ×
TNFRSF21 expression) + (0.08438 × CXCL8
expression)—(0.31476 × MYCN expression) + (0.40884 ×
TNFRSF1A expression) + (0.39387 × TRAF2
expression)—(0.26223 × HSP90AA1 expression)—(0.48853
× STUB1 expression)—(0.25716 × FLT3 expression). Then,
we calculated NRGscore for each patient based on the
abovementioned formula. In Kaplan–Meier analysis, we
divided patients into the high-risk group (n = 165) and
low-risk group (n = 361) based on the optimal cutoff value
(cut point = 1.276099) for NRGscore. In addition, the result
revealed that the OS of patients in the high-risk group was
significantly worse than that in the low-risk group [Figure 5C,
hazard ratio (HR) = 3.95 (2.91–5.37), p < 0.001]. Additionally,
we used ROC curves to assess the veracity of NRGscore to
predict the OS survival rate of KIRC patients. The AUCs for
the 1-, 3-, and 5-year OS survival rates were 0.770, 0.731, and
0.763, respectively (Figure 5D). Figures 5E–G showed that the
proportion of deaths in the high-risk group was elevated and
increased with NRGscore. The expression of PLK1, CXCL8,
TNFRSF1A, and TRAF2 was increased with the risk processes,
whereas APP, TNFRSF21, MYCN, HSP90AA1, STUB1, and
FLT3 were negatively correlated with NRGscore.

Validation of the NRG Signature in the
E-MTAB-1980 Cohort
To further verify the stability and accuracy of NRGscore in KIRC
patients, we used 101 KIRC patients in E-MTAB-1980 as the test
set. We quantified samples in the test set using the same
NRGscore calculation formula and grouped them with the
same cutoff value (cut point = 1.276099) as the training set
[high-risk group (n = 31) and low-risk group (n = 70)].
Kaplan–Meier analysis showed that a high NRGscore indicated
significantly poor OS [Figure 6A, hazard ratio (HR) = 6.70
(2.74–16.36), p < 0.001]. ROC curves showed favorable results
that the AUCs were 0.793 at a 1-year OS survival rate, 0.780 at a 3-
year OS survival rate, and 0.789 at a 5-year OS survival rate
(Figure 6B). The risk score distribution, survival status, and
expression profile heatmaps showed a trend similar to that of
the training set (Figures 6C–E).

TABLE 1 | Prognosis-related NRGs selected by univariate COX regression
analysis.

Gene HR z p-value

PLK1 1.979299 9.051351 1.41E-19
BCL2 0.621209 −6.31464 2.71E-10
KLF9 0.593631 −6.20142 5.60E-10
APP 0.568731 −5.56018 2.69E-08
ZBP1 1.579254 4.719934 2.36E-06
CDKN2A 1.562045 4.677732 2.90E-06
TNFRSF21 0.714626 −4.55388 5.27E-06
CXCL8 1.236663 4.489611 7.14E-06
MYCN 0.546308 −4.3527 1.34E-05
SIRT1 0.537114 −4.34934 1.37E-05
TLR3 0.744846 −4.30921 1.64E-05
TNFRSF1A 2.102905 3.896019 9.78E-05
MAPK8 0.459532 −3.75792 0.000171
MPG 1.778068 3.732143 0.00019
TRIM11 2.37506 3.701839 0.000214
BNIP3 0.734319 −3.62944 0.000284
TLR4 0.706861 −3.61795 0.000297
ATRX 0.542251 −3.53318 0.000411
BRAF 0.551977 −3.46673 0.000527
TRAF2 1.765383 3.347284 0.000816
LEF1 1.224713 3.28036 0.001037
DDX58 0.780107 −2.89537 0.003787
USP22 0.677291 −2.68993 0.007147
SIRT3 0.558047 −2.62101 0.008767
AXL 1.290534 2.593384 0.009504
HAT1 0.602383 −2.49452 0.012613
HSP90AA1 0.705533 −2.46741 0.013609
STUB1 0.720338 −2.31529 0.020597
FLT3 0.751125 −2.27881 0.022679
TERT 1.31171 2.251203 0.024373
FASLG 1.171632 2.107158 0.035104
EGFR 0.854597 −2.09633 0.036053
RIPK3 1.371085 1.980909 0.047601

HR, hazard ratio.
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To illustrate the superiority of the NRG signature, we
compared the other two immune-autophagy–related gene
signature (Zhang et al., 2021) and pyroptosis-related gene
signature (Sun et al., 2021) recently published. After obtaining
the genes constituting the prognosis signature from literature, the
Kaplan–Meier curves and ROC curves were constructed by
TCGA-KIRC cohort (Supplementary Figure S1). According
to the results, the NRG signature had better prediction
accuracy for the OS of KIRC patients.

Clinical Relevance of the NRG Signature
We calculated the correlation between NRGscore and
clinicopathological characteristics for further analysis of the
clinical benefits of the NRG signature. It can be seen that
NRGscore increased significantly with the progress of TNM
stages, pathologic stage, and histologic grade (Figures 7A–E).
Male patients also scored higher than female patients
(Figure 7F). There was no statistical difference between the
age group (Figure 7G). In addition, the high NRGscore
indicated a higher incidence of bad OS, DSS, and PFI
events (Figures 7H–J).

Next, we applied univariate and multivariate Cox regression
analyses to investigate whether NRGscore was an independent
prognostic indicator of KIRC patients. Univariate Cox regression
analysis pointed out that pathologic stage, histologic grade, age,
and NRGscore were hazard factors (Figure 7K). Then,
multivariate Cox regression analysis verified that NRGscore
could be utilized as a robust independent prognostic indicator
for KIRC patients [hazard ratio (HR) = 1.180 (1.127–1.235), p <
0.001, Figure 7L].

Construction of a Nomogram Model Based
on the NRG Signature
Next, according to the results of Cox regression analyses, we
integrated NRGscore with several clinicopathological
characteristics, including pathologic stage, histologic grade,
and age, to construct a nomogram model that can more
accurately and steadily evaluate the OS survival probability of
patients in TCGA-KIRC cohort (Figure 8A). A total of 515 KIRC
patients with complete clinicopathologic information were
included in the model analysis. Then, C-index and calibration

FIGURE 2 | Non-negative matrix factorization clustering of necroptosis-related patterns in TCGA-KIRC cohort. (A) Cophenetic coefficients. (B) Consensus matrix
heatmap when k = 2. (C) Expression profile of prognosis-related NRGs. PCA analysis (D) and Kaplan–Meier analysis (E) of necroptosis-related patterns. (F) Clinical
relevance of necroptosis-related patterns. *p < 0.05; **p < 0.01; ***p < 0.001.
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curves were utilized to assess the precision of the nomogram
model. The C-index reached 0.771 (95% CI: 0.736–0.807, p <
0.0001). The calibration curves also confirmed that the
nomogram model possessed excellent accuracy (Figures
8B–E). In addition, we used DCA curves to prove that
NRGscore has a better clinical application value for patient OS
prediction than the pathologic stage and histologic grade (Figures
8F–I). Finally, we defined patients in TCGA-KIRC cohort as high
or low risk according to the optimal cutoff nomogram score (cut
point = 0.7666527). Kaplan–Meier analysis suggested that high-
risk patients showed poorer OS than low-risk patients [Figure 8J,
hazard ratio (HR) = 6.55 (4.83–8.89), p < 0.001]. AUCs were
0.873 at the 1-year OS survival rate, 0.813 at the 3-year OS
survival rate, and 0.775 at the 5-year OS survival rate
(Figure 8K). We also validated the nomogram model using
the E-MTAB-1980 cohort. The test set used the same model
and cutoff value. Kaplan–Meier analysis showed the same result
as the training set [Figure 8L, hazard ratio (HR) = 8.26
(3.53–19.35), p < 0.001]. In addition, the 1-, 3-, and 5-year
AUCs were 0.925, 0.913, and 0.860, respectively (Figure 8M).

Coexpression Relevance and GSEA
We used GeneMANIA to predict and visualize the interaction
networks of the 10 NRGs that comprise NRGscore and potential
interactive molecules (Figure 9A) (Warde-Farley et al., 2010).
GeneMANIA automatically identifies genes that contained
several hub genes for necroptosis, including RIPK1, TNF,
BIRC2, and CDC37. Figure 9B showed the coexpressed
correlation of 10 NRGs in KIRC. TRAF2 had the highest
number of NRGs with significant coexpression
correlation (n = 8).

Then, GSEA was used to explore potential biological processes
and signal pathways in the high-risk group of TCGA-KIRC

cohort. GSEA based on the KEGG gene set suggested that
carcinogenic and immune-related pathways were highly
concentrated, including complement and coagulation cascades,
cytokine–cytokine receptor interaction, NOD-like receptor
(NLR) signaling pathway, and P53 signaling pathway
(Figure 9C). The NLR signaling pathway plays a regulatory
role in inflammation-related cancer and can be used as a
therapeutic target (Liu et al., 2019). The transcription factor
p53 is an important tumor suppressor. A p53 activating
compound has been proven to be significantly cytotoxic to
breast cancer and colon cancer cells (Mirgayazova et al., 2019).
In addition, Hallmark gene sets of cell cycles and
epithelial–mesenchymal transition were also highly expressed
(Figure 9D). In addition, Figures 9E–G indicated that the
high-risk group was related to immune-related reactions,
classic pathways, and coagulation pathways.

Correlation Between theNRGSignature and
Tumor Immune Microenvironment
As a result of the strong inflammatory response of necroptosis
reported in previous studies and the distinction in
immunophenotype between necroptosis-related patterns, we
further analyzed the correlation between the NRG signature
and TIME. First, we evaluated the distinction in TME scores
between NRG-defined groups with the ESTIMATE algorithm
(Figure 10A). The Wilcoxon rank-sum test suggested that
immune score (p < 0.001) and ESTIMATE score (p < 0.001)
in the high-risk group were significantly higher than those in the
low-risk group. Figure 10B indicated that the expression of
costimulatory molecules, except CD40, was significantly
elevated in the high-risk group. As for adhesion molecules,
ICAM1 and ICAM2 were highly expressed in high- and low-

FIGURE 3 | Correlation between necroptosis-related patterns and the tumor immune microenvironment. (A) Heatmap of GSEA analysis results. (B) Differential
analysis of stromal, immune, and ESTIMATE scores. (C) Differential analysis of the expression of immune checkpoints. (D) Infiltration of 23 TIICs in necroptosis-related
patterns. (E) Enrichment scores of immune-related functions in necroptosis-related patterns. *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
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risk groups, respectively. Moreover, the expression levels of most
major histocompatibility complex (MHC) molecules had no
statistical difference in NRGscore-defined groups. ssGSEA
showed that most immune-related functions were highly
concentrated in the high-risk group (Figure 10C).
Consistently, there was no significant distinction in antigen
presentation between NRGscore-defined groups.

Then, we calculated the fraction of 22 TIICs in each TCGA-
KIRC sample on the basis of the CIBERSORT algorithm. The
results of a total of 415 samples were statistically significant.

Figure 11A showed the distribution of TIICs in KIRC in the form
of a grouping histogram. T cells and macrophages could be seen
to account for the largest components. Next, we found that the
fractions of plasma cells, CD8 T cells, activated CD4 memory
T cells, follicular helper T cells, regulatory T cells (Tregs), M0
macrophages, and activated DCs were significantly higher in the
high-risk group (Figure 11B), while resting CD4 memory T cells,
resting natural killer (NK) cells, monocytes, M2 macrophages,
resting DCs, and resting mast cells had lower fractions in the
high-risk group (Figure 11B). Among these differentially

FIGURE 4 | Functional enrichment analyses of DEGs between necroptosis-related patterns. (A) Biological process, (B) cellular component, (C)molecular function,
and (D) KEGG pathways.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8320468

Xin et al. Necroptosis Signature for KIRC

128

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


distributed TIICs, higher fractions of plasma cells, activated CD4
memory T cells, follicular helper T cells, Tregs, and M0
macrophages and lower fractions of resting CD4 memory
T cells, monocytes, M2 macrophages, resting DCs, and resting
mast cells were significantly associated with poor OS survival
probability in KIRC patients (Figures 11C−L). The
abovementioned results suggested that necroptosis might affect
the prognosis of KIRC patients through potential regulation of
these TIICs.

Correlation Between theNRGSignature and
Somatic Mutation
Tumorigenesis frequently occurs after accumulation of gene
mutations (Martincorena and Campbell, 2015). Hence, we
explored the distinction in somatic mutations between
NRGscore-risk groups. The mutation spectrum and TMB of
each sample in TCGA-KIRC were calculated on the basis of
the single-nucleotide variation information. Waterfall plots
showed that the 20 genes with the highest mutation rate in
KIRC were VHL, PBRM1, TTN, SETD2, BAP1, MTOR,
KDM5C, MUC16, DNAH9, HMCN1, ATM, LRP2, SPEN,
ANK3, FBN2, CSMD2, ARID1A, MUC4, FLG, and MACF1
(Figures 12A,B). We applied the optimal TMB cutoff value to
divide patients into low- and high-TMB groups. KIRC patients
with higher TMB were associated with poorer OS survival
probability (Figure 12C). As shown in Figure 12D, the
proportion of high-TMB patients was higher in the high-risk
group. In addition, we revealed a significant positive relevance
between NRGscore and TMB in KIRC patients (Figure 12E, R =
0.2, p = 0.00025).

Correlation Between theNRGSignature and
Drug Sensitivity
Recently, ICIs have gradually shown clinical benefits for
advanced KIRC. However, because most patients showed no
response to immunotherapy, it was important to find effective
predictive markers. We calculated the correlation between
NRGscore and gene expression of several immune
checkpoints (Figure 13A). It was found that NRGscore was
significantly positively correlated with the expression of
PDCD1, CD274, PDCD1LG2, LAG3, TIGIT, and CTLA4,
which indicated that patients in the high-risk group were
more likely to benefit from immunotherapy.

The responsive predictive values of NRGscore for
chemotherapy and targeted drugs were also calculated by IC50

values (Figures 13B–I). Compared with the low-risk group, the
IC50 value of bortezomib, cisplatin, gefitinib, sunitinib,
temsirolimus, and vinblastine was significantly lower in the
high-risk group, which means patients with higher NRGscore
were more sensitive to these drugs.

DISCUSSION

Necrosis was originally thought to be an uncontrolled form of
accidental cell death, but a growing body of research has
confirmed that necrosis can be induced and carried out in
the form of apoptosis (Christofferson and Yuan, 2010;
Linkermann and Green, 2014). This form of programmed
cell death was called necroptosis. These activation factors
include TNF-receptor superfamily, Toll-like-receptor
superfamily, and interferon receptor (Khoury et al., 2020).

FIGURE 5 | Establishment of the NRG signature based on the training set. (A, B) LASSO COX regression analysis. (C) Kaplan–Meier analysis between NRGscore-
defined groups. (D) Time-dependent ROC curve of NRGscore. (E) NRGscore distribution. (F) Survival status heatmap. (G) NRG expression profile heatmap.
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But, unlike apoptosis cells, which maintain cell membrane
integrity, necrosis-experiencing cells show damage to the cell
membrane, leading to the release of immunogenic DAMPs,
which in turn shows extreme immunogenicity (Häcker, 2000;
Rosenbaum et al., 2009; Kaczmarek et al., 2013; Svensson et al.,
2017). DAMPs can mediate the interaction between cancer
cells and immune cells to trigger an anticancer-related
immune response, such as the activation of cytotoxic CD8+

T lymphocytes, prompting DC to release proinflammatory
cytokines and reduce Treg tumor immersion (Biswas and
Mantovani, 2010; Werthmöller et al., 2015; Yatim et al.,
2015; Sprooten et al., 2020). However, the immune
landscape caused by necroptosis rarely is a one-way
antitumor effect. For instance, IL-1α produced by necrotic
tumor cells can directly stimulate the proliferation of
neighboring cells and promote tumor progression
(Grivennikov et al., 2010). The release of active nitrogen
intermediates (RNI) and/or ROS associated with necrosis
apoptosis may facilitate tumor development (Grivennikov
et al., 2010). Therefore, further experimental research is
needed to balance this complex immune landscape, through
the necroptosis inducer in the in vivo tumor environment to

achieve a “pure” protective effect, to achieve the purpose of
precision immunotherapy. In addition, the detailed effects of
necroptosis on KIRC are yet to be fully studied.

In this study, we identified two necroptosis-related patterns
by NMF algorithm clustering. Necroptosis C1 showed a
significantly poor OS survival probability. The proportion
of patients in the advanced clinicopathological stages in
high-risk necroptosis C1 was also significantly elevated.
Furthermore, these two necroptosis-related patterns showed
distinct biological pathway enrichment and TME immune cell
infiltration. In TCGA-KIRC cohort, C1 was characterized by
high levels of adaptive immunity activation and TME immune
cell immersion. In addition, we found that several immune
checkpoints (PD-1, PD-L2, LAG3, TIGIT, and CTLA4) were
highly expressed in C1. Properly located and migrated T cells
are the basis of tumor immune monitoring, but there was no
matching survival advantage in C2. We speculated that the
immunosuppressive microenvironment induced by high-level
expression of immune checkpoint genes eliminated the
antitumor effect based on activating the immune pathway
and high infiltration level T cells (Dunn et al., 2002). The
abovementioned evidence proved that necroptosis was of

FIGURE 6 | Validation of the NRG signature based on the test set. (A) Kaplan–Meier analysis between NRGscore-defined groups. (B) Time-dependent ROC curve
of NRGscore. (C) NRGscore distribution. (D) Survival status heatmap. (E) NRG expression profile heatmap.
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great significance in regulating the immune landscape
of KIRC.

Then, we established a prognostic signature for predicting OS
including 10 NRGs (PLK1, APP, TNFRSF21, CXCL8, MYCN,
TNFRSF1A, TRAF2, HSP90AA1, STUB1, and FLT3) in TCGA-
KIRC cohort to evaluate and quantify the necroptosis pattern of

KIRC individuals (NRGscore). A series of analyses were carried
out by NRGscore-defined groups. Survival analysis suggested that
the OS of patients in the high-risk group should be significantly
reduced. It was consistently and significantly confirmed in a
separate external E-MTAB-1980 cohort. High NRGscore also
indicated tumor progression or poor prognosis event. Univariate

FIGURE 7 | Clinical relevance of the NRG signature. (A–J) NRGscore differences between subgroups of clinicopathological parameters, including T stage (A), N
stage (B), M stage (C), pathologic stage (D), histologic grade (E), gender (F), age (G), OS event (H), DSS event (I), and PFI event (J). Univariate (K) and multivariate (L)
Cox regression analysis of NRGscore and clinicopathological parameters. *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
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and multivariate Cox analyses proved that NRGscore could be
utilized as an independent prognostic marker. Among the 10
NRGs included in the prognostic signature, PLK1 could promote

proliferation and inhibit apoptosis in KIRC cells, and had been
proven to be upregulated and inhibit necroptosis in hormone-
resistant prostate cancer (Deeraksa et al., 2013; Gao et al., 2020).

FIGURE 8 |Construction of the nomogrammodel. (A)Nomogram for predicting the OS probability over 1, 3, and 5 years (B–E)Calibration curves for evaluating the
fitness of the nomogram model in 1, 3, 5, and 7 years. (F–I) DCA curves of 1, 3, 5, and 7 years. Kaplan–Meier analysis (J) and time-dependent ROC curves (K) of the
nomogram model in TCGA-KIRC cohort. Validation of the nomogram model in the E-MTAB-1980 cohort with the Kaplan–Meier analysis (L) and time-dependent ROC
curves (M).
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The compound of APP and death receptor 6 (DR6/TNFRSF21)
inhibited the activation of necroptosis of vascular endothelial
cells, resulting in significant reduction in transdermal migration
of tumor cells, thus controlling tumor metastasis (Wang et al.,
2021). IL-8/CXCL8 was found to be regulated by JNK/MAPK8 in
colon cancer and became a downstream signal pathway of tumor
regrouping induced by necroptosis (Wang et al., 2019). High-risk
neuroblastoma (NB) often showed MYCN amplification and

decreased susceptibility to the death of programmed cells
induced by chemotherapy drugs (Nicolai et al., 2015).
Watanabe S. further confirmed that polyphyllin D induced
necroptosis in MYCN-amplified NB cells and apoptosis in
NB cells without MYCN amplification (Watanabe et al., 2017).
TNFR1/TNFRSF1A was a typical necroptosis inducer in
pancreatic catheter adenocarcinoma (Seifert et al., 2016).
TRAF2 could mediate cross-talk between TNFR1 and TNFR2,

FIGURE 9 | Coexpression relevance and GSEA of the NRG signature. (A) Regulatory network of 10 signature-related NRGs and conceivable interaction proteins
built by GeneMANIA. (B)Coexpressed correlation of 10model-related NRGs in KIRC. (C–G)GSEA analyses based on KEGG (C), Hallmark (D), Reactome (E), BioCarta
(F), and PID (G) gene sets in the high-risk group. *p < 0.05; **p < 0.01; ***p < 0.001.
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affecting signal conduction results of TNF stimulation, including
necroptosis (Borghi et al., 2016). HSP90 regulated the stability of
MLKL and RIPK3 and was necessary for TNF-stimulated
necrosis assembly (Zhao et al., 2016). CHIP/STUB1 regulated
necroptosis through ubiquitination and lysosomal-dependent
degradation of RIPK1 and RIPK3 (Tang et al., 2018). In
addition, RIPK1 in the myeloid progenitor with FLT3
mutations had a strongly increasing tendency (Hillert et al.,
2019). Furthermore, we established a nomogram model for
predicting the OS of KIRC patients in combination with
NRGscore and several clinicopathological characteristics. It
showed excellent stability and clinical benefit and was
validated in the E-MTAB-1980 cohort.

Due to the strong inflammatory nature of necroptosis, we
investigated the correlation between the NRGscore and
TIME. Our results indicated that the TME of NRGscore-
defined groups was quite distinct. The expression of HLA-
related genes had no significant fluctuation, and

costimulatory molecules and adhesion molecules were
upregulated in the high-risk group. The infiltration level of
CD8+ T cells that play an antitumor protection role was
significantly elevated in the high-risk group. However,
patients in the high-risk group had significantly lower OS.
In our study, the high-risk group had a significantly elevated
immune score and ESTIMATE score, which indicated that
the tumor purity of the high-risk group was lower. D Zeng
also found that a high immune score was associated with poor
prognosis in patients with gastric cancer (Zeng et al., 2018).
Similar studies reported that lower tumor purity was related
to adverse prognosis and immune escape phenotype (Gong
et al., 2020). In addition, as an immunogenic tumor, KIRC
could cause immune dysfunction by inducing
immunosuppressive cell immersion (Díaz-Montero et al.,
2020). We found that Tregs and DCs were highly
infiltrated into the TME in patients of the high-risk group.
Numerous studies have confirmed that Tregs could form an

FIGURE 10 | Correlation between the NRG signature and tumor immune microenvironment. (A) Differential analysis of stromal, immune, and ESTIMATE scores
between NRGscore-defined groups. (B) Differential analysis in the expression of MHC molecules, costimulatory molecules, and adhesion molecules between
NRGscore-defined groups. (C) Enrichment scores of immune-related functions in NRGscore-defined groups. *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
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immunosuppressive microenvironment to promote tumor
metastasis and progression (Ohue et al., 2019). In
addition, DCs regulated the immune system and induce
immune tolerance in a stable state (Audiger et al., 2017).
The accumulation of M2 macrophages in the TME was
generally associated with poor prognosis (Lan et al., 2019).
However, we found that the discovery of M2 macrophages
with low components of the TME in KIRC indicated better
OS. This contradiction needs further study to be explained.

Somatic mutation is not only the driving factor of
tumorigenesis but also TMB can be used as a guiding basis
for diagnosis and treatment. As shown in Kaplan–Meier
analysis, KIRC patients with high TMB possessed poorer
OS survival probability. We also found a significant positive
correlation between NRGscore and TMB in KIRC. Some
studies have reported that cancer patients with high TMB
were more likely to get effective and long-term responses from
immunotherapy (Chan et al., 2019; Sholl et al., 2020).
Furthermore, we found that NRGscore was significantly
positively correlated with the expression of multiple
immune checkpoint genes. This means that the
immunosuppressive microenvironment played a key role in

high-risk patients, who were more likely to benefit from ICIs.
We also evaluated the ability of the NRG signature to predict
the sensitivity of chemotherapy and targeted drugs in KIRC
patients. The results revealed that bortezomib, cisplatin,
gefitinib, sunitinib, temsirolimus, and vinblastine had more
significant benefits in high-risk patients. We, therefore, believe
that NRGscore is helpful for identifying better treatment
strategies for individual advanced KIRC patients.

Our research still has limitations. First, this study is a
retrospective study in which patient clinical information is
prone to bias and requires large, multicenter, prospective
studies to further confirm our results. Second, the ability of
NRGscore to predict drug efficacy needs to be confirmed by
clinical studies with sufficient samples. Finally, the NRGs we
included in the study were based on non-KIRC cancer types, and
their specific molecular mechanisms for necroptosis in KIRC still
need to be further explored.

To sum up, NRGscore can individualize and quantify the
necroptosis phenotype of patients and make comprehensive
assessments of the clinical, cellular, and molecular
characteristics of KIRC patients, including prognosis, clinical
characteristics, pathologic stage, histologic grade, TIME, and

FIGURE 11 |Correlation between the fraction of 22 TIICs and the NRG signature on the basis of the CIBERSORT algorithm. (A) Proportion of 22 TIICs in KIRC. (B)
Differential analysis of 22 TIIC fractions between NRGscore-defined groups. (C–L) Association between the infiltration level of TIICs [plasma cells (C), activated CD4
memory T cells (D), resting CD4 memory T cells (E), follicular helper T cells (F), Tregs (G), monocytes (H), M0 macrophages (I), M2 macrophages (J), resting DCs (K),
and resting mast cells (L)] and OS of KIRC patients. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 12 | Correlation between the NRG signature and somatic mutation. (A, B)Waterfall plots of 20 genes with the highest mutation rate in the high-risk group
(A) and low-risk group (B). (C) Kaplan–Meier analysis of TMB in KIRC patients. (D) Distribution of the TMB level in NRGscore-defined groups (E) Correlation between
NRGscore and TMB.

FIGURE 13 | Therapeutic benefit of the NRGscore (A) Correlation between NRGscore and gene expression of seven immune checkpoints. (B–I) Correlation
between the NRG signature and IC50 values of chemotherapy and targeted drugs, including axitinib (B), bortezomib (C), cisplatin (D), gefitinib (E), sorafenib (F), sunitinib
(G), temsirolimus (H), and vinblastine (I). *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
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tumor mutation. NRGscore is an independent prognostic marker
for KIRC patients and can be utilized as a guiding indicator in the
formulation of treatment strategies for immunotherapy,
chemotherapy, and targeted drugs.
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Background: Breast cancer (BC) is a major leading cause of woman deaths worldwide.
Increasing evidence has revealed that stemness features are related to the prognosis and
progression of tumors. Nevertheless, the roles of stemness-index-related long noncoding
RNAs (lncRNAs) in BC remain unclear.

Methods: Differentially expressed stemness-index-related lncRNAs between BC and
normal samples in The Cancer Genome Atlas database were screened based on weighted
gene co-expression network analysis and differential analysis. Univariate Cox and least
absolute shrinkage and selection operator regression analyses were performed to identify
prognostic lncRNAs and construct a stemness-index-related lncRNA signature. Time-
dependent receiver operating characteristic curves were plotted to evaluate the predictive
capability of the stemness-index-related lncRNA signature. Moreover, correlation analysis
and functional enrichment analyses were conducted to investigate the stemness-index-
related lncRNA signature-related biological function. Finally, a quantitative real-time
polymerase chain reaction was used to detect the expression levels of lncRNAs.

Results: A total of 73 differentially expressed stemness-index-related lncRNAs were
identified. Next, FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-
1100L3.8, and RP11-696F12.1 were used to construct a stemness-index-related
lncRNA signature, and receiver operating characteristic curves indicated that
stemness-index-related lncRNA signature could predict the prognosis of BC well.
Moreover, functional enrichment analysis suggested that differentially expressed genes
between the high-risk group and low-risk group were mainly involved in immune-related
biological processes and pathways. Furthermore, functional enrichment analysis of
lncRNA-related protein-coding genes revealed that FAM83H-AS1, HID1-AS1, HOXB-
AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 were associated with
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neuroactive ligand–receptor interaction, AMPK signaling pathway, PPAR signaling
pathway, and cGMP-PKG signaling pathway. Finally, quantitative real-time polymerase
chain reaction revealed that FAM83H-AS1, HID1-AS1, RP11-1100L3.8, and RP11-
696F12.1 might be used as the potential diagnostic biomarkers of BC.

Conclusion: The stemness-index-related lncRNA signature based on FAM83H-AS1,
HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 could
be used as an independent predictor for the survival of BC, and FAM83H-AS1, HID1-AS1,
RP11-1100L3.8, and RP11-696F12.1 might be used as the diagnostic markers of BC.

Keywords: breast cancer, cancer stem cells, stemness-index-related lncRNAs, WGCNA, prognosis

INTRODUCTION

Breast cancer (BC) is the most common malignancy among
women, accounting for one-fourth of female cancer cases
(Siegel et al., 2020). In 2018, there were 2.08 million new cases
and 630,000 deaths worldwide (Bray et al., 2018). It is a
heterogeneous disease, which can be divided into group A
(luminal A type), B (luminal B type), C (HER2+ type), D
(basal-like type), and E (normal-like) (Perou et al., 2000).
Patients with similar clinicopathological features may have
different clinical prognoses due to different gene expression
patterns (Walker et al., 1997). Although the prognosis of BC
has improved significantly in the past few decades due to the
progress of early diagnosis and treatment, the high incidence
and high mortality rate of BC still pose a major threat to
human health (Early Breast Cancer Trialists’ Collaborative
Group et al., 2011). Therefore, accurate prediction for the
prognosis of BC is very important to improve the prognosis
and provide appropriate treatment for patients.

Cancer stem cells (CSCs), which have the ability of long-
term self-renewal and abnormal differentiation, have been
assumed to be responsible for tumorigenesis (Wang et al.,
2021). It has been reported that all solid tumors contain
CSCs, including BC (Al-Hajj et al., 2003), pancreatic cancer
(Li et al., 2007), colorectal cancer (Dalerba et al., 2007), and
ovarian cancer (Zhang et al., 2008). In addition, CSCs play an
important role in tumor survival, proliferation, metastasis,
and recurrence. For example, the “Driver Network”
regulatory molecules FoxM1 and mybl2, which are
involved in cell proliferation, can be used as potential
biomarkers and therapeutic targets for non-small cell lung
cancer (Ahmed, 2019). Increasing evidence has revealed that
transcriptomic and epigenomic features are related to cancer
stemness (Young, 2011; Bradner et al., 2017). Malta et al.
developed two independent stemness indices, including DNA
methylation-based stemness index and messenger RNA
expression-based stemness index (mRNAsi), based on
molecular profiles from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/) using an
innovative one-class logistic regression machine-learning
algorithm (Sokolov et al., 2016). DNA methylation-based
stemness index and mRNAsi were derived using a one-
class logistic regression machine-learning algorithm

trained on stem cell, embryonic stem cell, induced
pluripotent stem cell classes, and their differentiated ecto-,
meso-, and endoderm progenitors and ranges from low (zero)
to high (one) stemness. (Sokolov et al., 2016). Moreover,
epigenetic regulation-based stemness index (EREG-mRNAsi)
is a stemness index generated using a set of stemness-related
genes that were regulated by DNA methylation (Malta et al.,
2018). An increasing number of studies have suggested that
mRNAsi and EREG-mRNAsi are important indexes to
evaluate the overall stemness of CSCs (Wang et al., 2021).
Moreover, recent studies have suggested a correlation
between stemness-index-related genes and the survival and
prognosis of cancer patients in all TCGA tumors (Malta et al.,
2018). For instance, Zhang et al. (2020) found that the
stemness-index-associated signature, including seven
stemness-index-related genes, can predict the prognosis of
primary lower-grade glioma. In addition, Chen X. et al.
(2020) identified 17 key stemness-index-related genes and
constructed a nine-gene risk mode to predict the disease
outcome of gastric cancer patients.

Long noncoding RNA (lncRNA) is a kind of noncoding
RNA with a length of 200-bp–100 KB. It is mainly produced
by destroying the structure of protein-coding genes (Fedor
et al., 2013). It exists in the cytoplasm and interacts with other
molecules in the cell to regulate the physiological and
biochemical processes in organisms (Fan and Hu, 2016).
The role of lncRNA in BC has been gradually revealed.
LncRNA-encoded polypeptide ASRPS inhibits triple-
negative BC angiogenesis (Wang et al., 2020). LncRNA
TINCR promotes chemoresistance and
epithelial–mesenchymal transition in BC through targeting
microRNA-125b (Dong et al., 2019). More importantly,
previous studies have suggested that lncRNA has potential
implications in facilitating the tumorigenesis and stemness of
cancer. For example, lncRNA LOXL1-AS1 can facilitate the
tumorigenesis and stemness of gastric carcinoma via the
regulation of the miR-708-5p/USF1 pathway (Sun et al.,
2019). LncRNA TUG1 facilitates proliferation, invasion,
and stemness of ovarian cancer cells (Zhan et al., 2020).
However, the prognostic and diagnostic value of stemness-
index-related lncRNAs in BC has been few reported.

The present study aims to screen stemness-index-related
lncRNAs in BC based on weighted gene co-expression
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FIGURE 1 | Identification of stemness-index-related module and lncRNAs based on WGCNA. Samples clustering analysis to remove outliers (A), determination of
soft threshold and inspection of scale-free network (B), 11 modules were identified and presented in different colors by setting MEDissThres as 0.2 and minModuleSize
as 30 (C), 11 modules were grouped into four clusters by correlation analyses (D), purple module has lowest correlation with other modules (E), and magenta module
was most significantly negatively correlated with mRNAsi (p < .05 and correlation coefficient = −0.62) (F).
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network analysis (WGCNA) and construct a stemness-index-
related lncRNA signature to predict the prognosis of BC
patients. Moreover, we also explored the diagnostic values
and biological functions of lncRNAs in stemness-index-
related lncRNA signature. It is of great significance in
improving not only the clinical diagnosis level of BC but
also the prognosis of BC patients and providing the basis for
the treatment of BC.

MATERIALS AND METHODS

Data Sources
The expression profiles of lncRNAs and mRNAs from 1,072 BC
patients and 99 adjacent normal tissues and the clinical information of
BC patients were downloaded from TCGA database. The mRNAsi
and EREG-mRNAsi data of each BC patient were obtained from
previous literature (Sokolov et al., 2016). After eliminating BC patients
missing overall survival (OS) and the stemness index information, a
total of 1,050 BC patients were retained for further analyses.
Moreover, the microarray expression profile of the GSE20685
(including 327 BC patients with OS) dataset was acquired from
the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.
gov/geo/) as a validation set.

Identification of Stemness-Index-Related
Module and Long Noncoding RNAs Based
on Weighted Gene Correlation Network
Analysis
To identify stemness-index-related lncRNAs, WGCNA was
carried out via the “WGCNA” package in R based on the
expression profile of lncRNAs of 1,050 BC patients from
TCGA database (Langfelder and Horvath, 2008). Firstly,
samples’ cluster analysis was conducted with the hclust
function to remove the outlier samples. Next, the softPower =
sft$powerEstimate command was used to select an optimal soft
threshold to ensure that interactions among lncRNAs conform to
the scale-free distribution to the maximum extent (Kenny, 2019).
In addition, we calculated the adjacency among lncRNAs, and the
adjacency matrix was used to construct a co-expression network
by calculating topological overlap matrix (TO), which was then
hierarchically clustered with (1-TO) as a distance measure.
Furthermore, modules were identified by a dynamic shear tree
algorithm, with the parameters MEDissThres set to 0.2 and
minModuleSize set to 30 (Zhan et al., 2020). Finally, the key
module was selected for further analyses based on the correlation
coefficients between modules and the traits, and the lncRNAs in
the key module were defined as stemness-index-related lncRNAs.

FIGURE 2 |Construction and validation of a stemness-index-related lncRNA signature associated with survival of BC patients. Results of univariate Cox regression
analysis (A) and LASSO Cox regression analysis (B), Kaplan–Meier survival analysis between high-risk and low-risk groups in TCGA database (C) and GSE20585
dataset (D), ROC curve evaluated efficiency of stemness-index-related lncRNA signature for predicting 1-, 3-, and 5-year OS in TCGA database (E) and GSE20585
dataset (F), and lncRNAs expression profiles, risk scores distribution, and patients’ survival status in TCGA database (G) and GSE20585 dataset (H).
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Identification of Differentially Expressed
Stemness-Index-Related Long Noncoding
RNAs
Firstly, we extracted the expression matrix of stemness-index-
related lncRNAs from the BC and normal samples in TCGA
database. Next, the “limma” package in R was selected to perform
the differential expression analysis (Ritchie et al., 2015), and
lncRNAs with adj < 0.05 and fold change > 1.5 were selected as
differentially expressed stemness-index-related lncRNAs.

Construction and Validation of a
Stemness-Index-Related Long Noncoding
RNA Signature AssociatedWith the Survival
of Breast Cancer Patients
To construct a signature based on stemness-index-related
lncRNAs, univariate Cox regression analysis was used to
screen the prognosis-related lncRNAs from the differentially
expressed stemness-index-related lncRNAs by “survival”
package in R in TCGA database. The results of univariate

Cox regression analysis were shown by the forestplot plotted
using the “forestplot” package in R. Next, lncRNAs with p < .1
were used to perform the least absolute shrinkage and
selection operator (LASSO) regression analysis through the
“glmnet” package in R for constructing the optimal stemness-
index-related lncRNA signature in TCGA database
(Friedman et al., 2010). Subsequently, a stemness-index-
related lncRNA signature was established based on the
expression values of lncRNAs and corresponding
coefficients obtained by LASSO regression analysis. Thus,
the stemness-index-related lncRNA signature was
established according to the expression values of these six
lncRNAs and the corresponding coefficient derived from the
LASSO Cox regression analysis. Namely, the risk score of
each patient, which was calculated as follows: risk score =
(expression of lncRNA 1 × coefficient of lncRNA 1) +
(expression of lncRNA 2 × coefficient of lncRNA 2) + . . .
+ (expression of lncRNA n × coefficient of lncRNA n), was
the sum of the products of the expression values of these six
lncRNAs and their respective LASSO coefficients. Therefore,
BC patients in TCGA database and GSE20585 dataset were,

FIGURE 2 | (Continued)
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respectively, stratified into the high-risk and low-risk groups
based on the median value of the risk scores in all BC patients.
Finally, Kaplan–Meier (K-M) survival analyses using the
“survminer” package in R and the log-rank test were
performed to compare the OS of patients in the high-risk
and low-risk groups. Time-dependent receiver operating
characteristic (ROC) curves were plotted to investigate the
prediction accuracy for prognosis prediction of the stemness-
index-related lncRNA signature, and the area under the curve
for 1-, 3-, and 5-year OS was calculated through the
“survivalROC” package in R (Heagerty and Zheng, 2005).

Stratified Survival Analysis
To further investigate whether the stemness-index-related
lncRNA signature could apply in different clinicopathological
characteristics, we also investigated the OS between the high-risk
and low-risk groups based on the median value of the risk scores
in different clinical features using the “survminer” package in R.

Independent Prognostic Analysis
To investigate whether the stemness-index-related lncRNA
signature could act as an independent prognostic prediction
factor, the stemness-index-related lncRNA signature and other

clinical features were merged to screen independently prognostic
prediction factor via univariate and multivariate Cox regression
analyses in TCGA database. Similarly, the results of univariate
and multivariate Cox regression analyses were shown by the
forestplots plotted using the “forestplot” package in R.

Identification of Stemness-Index-Related
Long Noncoding RNA Signature Related to
Biological Function
Firstly, we identified the differentially expressed genes (DEGs)
between the high-risk and low-risk groups using the “limma”
package in R, with the cutoff values of adj.P.Val < 0.05 and Fold
Change > 1.5 (Ritchie et al., 2015). Next, Gene Ontology (GO)
annotation (including biological process, molecular function, and
cellular component) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were performed to
explore the biological function of DEGs using the “clusterProfiler”
package in R (Yu et al., 2012), and adj.P.Val < 0.05 was considered
significant enrichment. Finally, the “ggplot2” package in Rwas used to
plot bubble diagrams to show the results of enrichment analyses.
Moreover, single-sample gene set enrichment analysis, which
computed an enrichment score representing the degree to which

FIGURE 3 | Kaplan–Meier survival stratifcation analyses in TCGA database based on stemness-index-related lncRNA signature. Age > = 60 years (A), age <
60 years (B), female (C), M0 (D), N0 (E), N1–N3 (F), stages i–ii (G), stages iii-iv (H), T1–T2 (I), T3–T4 (J).
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genes in a particular gene set were coordinately up- or downregulated
within a single sample, was used to investigate the immune cell
infiltration between the high-risk and low-risk groups using GSVA R
package-based immune cell-related gene sets (Barbie et al., 2009).

Identification of Long Noncoding
RNA-Related Protein-Coding Gene and
Function Enrichment Analysis
To investigate the potential regulatory mechanisms of
lncRNAs in the stemness-index-related lncRNA signature,
Pearson’s correlation analysis was performed to identify
protein-coding genes related to lncRNAs in the stemness-
index-related lncRNA signature in BC patients from TCGA
database using psych v.2.0.12 package in R, with the
parameters set as |R| > 0.5 and p < 0.01. Moreover, the
“VennDiagram” package in R was used to recognize the
overlapping genes among each lncRNA-related gene.
Furthermore, the correlation network and mechanism were
visualized using Cytoscape version 3.8.0 and “Ggalluvial”
package in R. Finally, KEGG pathway analysis of protein-
coding genes related to each lncRNA in the stemness-index-
related lncRNA signature was conducted using

“clusterProfiler package” in R, and p < .05 was considered
significant enrichment.

Investigation of the Diagnostic Value of
Long Noncoding RNAs in the
Stemness-Index-Related Long Noncoding
RNA Signature
Firstly, we examined the expression levels of lncRNAs in the
stemness-index-related lncRNA signature in TCGA database.
Next, ROC curves were plotted to show the performance of
lncRNAs for distinguishing BC and normal samples (Heagerty
and Zheng, 2005).

Validation of the Expression of Long
Noncoding RNAs in the
Stemness-Index-Related Long Noncoding
RNA Signature by Quantitative Real-Time
Polymerase Chain Reaction
The normal breast epithelial cell line MCF-10A and human BC
cell lines MCF-7, T47D, ZR-75-1, MDA-MB-231, and MDA-
MB-468 were purchased from the American Tissue Culture

FIGURE 3 | (Continued)
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Collection (Rockville, MD, USA) and were maintained in our lab.
TheMCF-10A cells were cultured inMEBmedium (Lonza Group
Ltd., Basel, Switzerland) with 100 U/ml penicillin (Sigma, St.
Louis, MO, USA), 100 U/ml streptomycin (Sigma), 20 ng/ml
human epidermal growth factor (Lonza Group Ltd.), 0.5 μg/ml
hydrocortisone (Lonza Group Ltd.), 100 ng/ml cholera toxin
(Lonza Group Ltd.), 10 μg/ml human insulin (Lonza Group
Ltd.), and 5% horse serum (Sigma). The MCF-7 cells were
maintained in DME medium (Gibco, Invitrogen Corporation,
NY, USA) with 100 U/ml penicillin, 100 μg/ml streptomycin,
10 μg/ml human insulin (Sigma), 10% fetal bovine serum
(Hyclone, Logan, UT, USA). The T47D cells were maintained
in RPMI-1640medium (Gibco, Invitrogen Corporation) with 100
U/ml penicillin, 100 μg/ml streptomycin, 0.2 U/ml bovine insulin
(Sigma), and 10% fetal bovine serum. The ZR-75-1 cells were
maintained in RPMI-1640 medium with 100 U/ml penicillin,
100 μg/ml streptomycin, and 10% fetal bovine serum. The MDA-
MB-231 and MDA-MB-468 cells were cultured in Leibovitz’s L-
15 medium (Gibco, Invitrogen Corporation) with 100 U/ml
penicillin, 100 μg/ml streptomycin, and 10% fetal bovine serum.

The TRIzol reagent (Thermo, MA, USA) was used to
extract the total RNA of cells according to the
manufacturer’s instructions. Next, total RNA was reverse
transcribed into complementary DNA using the iScript
cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) based
on the manufacturer’s procedure. Moreover, quantitative

real-time polymerase chain reaction (PCR) was performed
using SYBR Green Premix Ex Taq (Takara, Japan) and the
Applied Biosystems 7,500 Real-time PCR System (Applied
Biosystems, Inc., Carlsbad, CA, USA). Finally, the relative
expression level of each lncRNA was calculated using the 2-
ΔΔCt method, ΔΔCt = (CtRNA—Ctβ-actin) BC
cells—(CtRNA—Ctβ-actin) normal cells, and fold change = 2−ΔΔCt.
Primer sequences and annealing temperatures of quantitative real-time
PCR could be found in Table 1

Statistical Analysis
Statistical analyses in the present study were performed through
R software. The t-test and log-rank test compared the differences
between different groups. The expression levels of each lncRNA
between normal cells and BC cells were compared with one-way
ANOVA and Tukey’s test. p < .05 is considered statistically
significant unless otherwise noted.

RESULTS

Identification of Stemness-Index-Related
Module and Long Noncoding RNAs Based
on Weighted Gene Co-Expression Network
Analysis
After sample cluster analysis, genes in 1,050 BC samples were
selected to construct a weighted gene co-expression network
(Figure 1A). Subsequently, soft threshold selection analysis
suggested that β = 6 (scale-free R2 = 0.85) was optimal soft
thresholds (Figure 1B). Moreover, by setting MEDissThres as 0.2
and minModuleSize as 30, a total of 11 modules were identified
and presented in different colors (Figure 1C). Correlation
analyses between any two-module revealed that 11 modules
were grouped into four clusters (Figure 1D). Moreover, the
correlation heatmap of modules also suggested that the purple
module has the lowest correlation with other modules
(Figure 1E). Finally, correlation analysis suggested that the
magenta module was the most significantly negatively
correlated with mRNAsi (Figure 1F, p < .05 and correlation
coefficient = -0.62). Thus, the magenta module was defined as a
stemness-index-related module, and 299 lncRNAs in this module
were defined as stemness-index-related lncRNAs.

Identification of Differentially Expressed
Stemness-Index-Related Long Noncoding
RNAs
To screen differentially expressed stemness-index-related
lncRNAs, we extracted the expression matrix of 299 stemness-
index-related lncRNAs from the BC and normal samples in
TCGA database. Under the cutoff value of adj.P.Val < 0.05
and fold change > 1.5, a total of 73 lncRNAs, including seven
upregulated lncRNAs and 66 downregulated lncRNAs in BC
samples compared with normal samples, were identified as
differentially expressed stemness-index-related lncRNAs
(Supplementary Figure S1, Supplementary Material S1).

FIGURE 4 | Stemness-index-related lncRNA signature was an
independent prognostic factor in BC. Univariate Cox regression analysis (A)
and multivariate Cox regression analysis (B) to identify independent
prognostic factors from stemness-index-related lncRNAs and other
clinicopathological characteristics in TCGA database.
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Construction and Validation of a
Stemness-Index-Related Long Noncoding
RNA Signature AssociatedWith the Survival
of Breast Cancer Patients
To establish a stemness-index-related lncRNA signature,
univariate Cox regression analysis was carried out to
identify the prognostic lncRNAs in BC patients from the
differentially expressed stemness-index-related lncRNAs in

TCGA database. As shown in Figure 2A, univariate Cox
regression analysis revealed that RP11-1070N10.3, RP11-
696F12.1, RP11-1100L3.8, FAM83H-AS1, RP1-28O10.1,
HID1-AS1, and HOXB-AS1 were related to the prognosis
of BC patients at the cutoff value of p < .1. Next, LASSO Cox
regression analysis suggested that FAM83H-AS1, HID1-AS1,
HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-
696F12.1 were retained to construct a stemness-index-
related lncRNA signature based on the optimal lambda

FIGURE 5 | Functional annotation of stemness-index-related lncRNA signature. GO-Biological processes (A), GO-Cellular component (B), GO-Molecular function
(C), and KEGG pathway enrichment analysis (D). Immune cell infiltration between high- and low-risk groups (E). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes.
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FIGURE 5 | (Continued)

FIGURE 6 | Potential regulatory mechanisms of lncRNAs in stemness-index-related lncRNA signature. Venn diagram of protein-coding gene associated with all of
six lncRNAs (A), interaction network of five most relevant protein-coding genes and each lncRNA (B), and Sankey diagram showed five most relevant protein-coding
genes of each lncRNA (C). KEGG pathway enrichment analysis of each lncRNA-related protein-coding gene. FAM83H-AS1 (D), HID1-AS1 (E), HOXB-AS1 (F), RP11-
1070N10.3 (G), RP11-1100L3.8 (H), and RP11-696F12.1 (I). KEGG, Kyoto Encyclopedia of Genes and Genomes.
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value (Figure 2B). Thus, the risk score of each patient was
calculated as follows: Risk score = expression value of
FAM83H-AS1 × 0.0791 + expression value of HID1-AS1 ×
1.1969 + expression value of HOXB-AS1 × (−0.1696) +
expression value of RP11-1070N10.3 × (-0.7021) +
expression value of RP11-1100L3.8 × (-0.2640) +
expression value of RP11-696F12.1 × (−0.8372). At the
same time, the coefficient also suggested that FAM83H-
AS1 and HID1-AS1 were risk factors (hazard ratio > 1),
but the other four lncRNAs were protective factors (hazard
ratio < 1), which was consistent with the results of the K-M
survival analysis (Supplementary Figure S2). Therefore, BC
patients in TCGA database were divided into the high-risk
and low-risk groups based on the median value of risk scores.
In addition, K-M survival analysis suggested that patients in
the high-risk group showed significantly lower OS than those
in the low-risk group (Figure 2C). As illustrated in Figure 2E,
the area under the curve values for predicting the 1-, 3-, and
5-year survival were 0.664 at 1 year, 0.723 at 3 years, and
0.636 at 5 years, suggesting that stemness-index-related
lncRNA signature could predict the 1-, 3-, and 5-year

survival of BC patients well. Consistently, the high-risk
group included more dead samples than the low-risk group
(Figure 2G). Furthermore, the analyses of the expression
levels for these six lncRNAs between the high-risk and low-
risk groups also suggested that FAM83H-AS1 and HID1-AS1
were risk factors, but other lncRNAs were protective factors
(Figure 2G), which was consistent with the results of the
LASSO Cox regression analysis. On the other hand, K-M
survival, ROC analysis, these six lncRNA expression profiles,
the risk scores distribution, and patients’ survival status
analyses in the GSE20585 dataset also showed the same
results as TCGA database (Figures 2D,F,H). Furthermore,
the stratified survival analysis in TCGA database also
suggested that the stemness-index-related lncRNA
signature also could predict the OS in different clinical
features, including age, pathological stage, and luminal
subtype (Figure 3). To sum up, these results indicated that
the stemness-index-related lncRNA signature based on
FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3,
RP11-1100L3.8, and RP11-696F12.1 could predict the
survival of BC patients well.

FIGURE 6 | (Continued)

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 76051411

Qian et al. BC Stemness-Index-Related lncRNAs

150

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Stemness-Index-Related Long Noncoding
RNA Signature Was an Independently
Prognostic Factor in Breast Cancer
To verify whether the stemness-index-related lncRNA signature
could be used as an independent prognostic factor in BC patients,
univariate and multivariate Cox regression analyses were
performed to identify independent prognostic factors from the
clinicopathological characteristics and the stemness-index-
related lncRNA signature. Surprisingly, univariate Cox
regression analysis demonstrated that the stemness-index-
related lncRNA signature, age, pathological M stage,
pathological N stage, pathological T stage, and pathological
tumor stage were associated with the OS in BC patients (p <
.05, Figure 4A). Moreover, multivariate Cox regression analysis
confirmed that the stemness-index-related lncRNA signature,
age, and pathological M stage could act as independent

prognostic factors for predicting the prognosis of BC patients
(p < .05, Figure 4B). Thus, the stemness-index-related lncRNA
signature was an independent prognostic factor in BC.

Functional Annotation of the
Stemness-Index-Related Long Noncoding
RNA Signature
To investigate the GO functions and KEGG pathways related to
the stemness-index-related lncRNA signature, GO annotation
and KEGG pathway enrichment analysis were performed to
explore the biological function of DEGs between the high-risk
and low-risk groups. Firstly, 236 DEGs, including 24 upregulated
and 212 downregulated, were identified (Supplementary Figure
S3, Supplementary Material S2). Moreover, for biological
processes, DEGs were mainly involved in T-cell activation,
regulation of lymphocyte activation, and leukocyte migration

FIGURE 7 | Investigation of diagnostic value of lncRNAs in stemness-index-related lncRNA signature. Expression levels of these lncRNAs in stemness-index-
related lncRNA signature in TCGA database (A), and ROC curves to evaluate their capability in distinguishing BC and normal samples in TCGA database (B). Validation of
expression of lncRNAs in stemness-index-related lncRNA signature by quantitative real-time polymerase chain reaction (C). Results were shown as mean ± SD. *p < .05
**p < .01 vs. MCF-10A.
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(Figure 5A). For cellular components, DEGs were mainly related
to the external of the plasma membrane, endocytic vesicle, and
endocytic vesicle membrane (Figure 5B). For molecular function,
DEGs were mainly associated with peptide binding, cytokine
activity, and glycosaminoglycan binding (Figure 5C).
Furthermore, KEGG pathway enrichment analysis suggested
that DEGs were mainly related to human T-cell leukemia
virus one infection, Staphylococcus aureus infection,
hematopoietic lineage, viral protein interaction with cytokine
and cytokine receptor, and Th1 and Th2 cell differentiation
(Figure 5D). Finally, we also found that the infiltrations of a
majority of the immune cell were significantly different in the
high- and low-risk groups (Figure 5E). Therefore, these six
lncRNAs in the stemness-index-related lncRNA signature
might affect the CSC by regulating the composition of
immune cells in the tumor microenvironment (TME) of BC.

Identification of Long Noncoding
RNA-Related Protein-Coding Genes and
Functions Enrichment
To further explore the correlation between lncRNAs in the stemness-
index-related lncRNA signature, we carried out the correlation
analysis between these six lncRNAs and the protein-coding genes
based on the expressionmatrix of six lncRNAs and the protein-coding
genes from the BC patients in TCGA database. The results of the
correlation analysis revealed that 132 protein-coding genes were
related to FAM83H-AS1, 493 protein-coding genes were related to
HID1-AS1, 13 protein-coding genes were related to HOXB-AS1,
340 protein-coding genes were related to RP11-1070N10.3,
37 protein-coding genes were related to RP11-1100L3.8, and
408 protein-coding genes were related to RP11-696F12.1
(Supplementary Material S3). Interestingly, none of the protein-
coding genes was associatedwith all of these six lncRNAs (Figure 6A),
indicating these six lncRNAs might independently influence the CSC
of BC. Moreover, we also constructed a lncRNA protein-coding gene
network based on the five most relevant protein-coding genes of each
lncRNA. As shown in Figure 6B, FAM83H-AS1 was associated with
FAM83H, GRHL2, ESRP1, ARHGAP39, and ZNF623, HID1-AS1

was associated with PDE2A, EBF1, BTNL9, LDB2, and CD300LG,
HOXB-AS1 was associated with HOXB2, RAPGEF3, HOXB3, TNS2,
and ELMOD3, RP11-1070N10.3 was associated with CCDC69,
ABCD2, SYNE3, GPBAR1, and HSD11B1, RP11-1100L3.8 was
associated with FOSB, FOS, EGR1, ZFP36, and NR4A1, and
RP11-696F12.1 was associated with RDH5, KCNIP2, C14orf180,
GLAYT, and AQP7. The Sankey diagram showed that the five
most relevant protein-coding genes of each lncRNA may be
related to one or more lncRNAs (Figure 6C). Finally, the KEGG
pathway enrichment analysis of each lncRNA-related genes suggested
that FAM83H-AS1-related genes were involved in cell cycle, oocyte
meiosis, progesterone-mediated oocyte maturation, and viral
carcinogenesis (Figure 6D); HID1-AS1-related genes were involved
in PI3K-Akt signaling pathway neuroactive ligand–receptor
interaction, cAMP signaling pathway, AMPK signaling pathway,
Rap1 signaling pathway, and PPAR signaling pathway (Figure 6E);
HOXB-AS1-related genes were involved in regulation of lipolysis in
adipocytes, cAMP signaling pathway, apelin signaling pathway, and
PPAR signaling pathway (Figure 6F); RP11-1070N10.3-related genes
were involved in neuroactive ligand–receptor interaction, AMPK
signaling pathway, PPAR signaling pathway, and adipocytokine
signaling pathway (Figure 6G); RP11-1100L3.8-related genes were
involved in human T-cell leukemia virus one infection, TNF signaling
pathway, IL-17 signaling pathway, C-type lectin receptor signaling
pathway, and GnRH signaling pathway (Figure 6H); and RP11-
696F12.1-related genes were involved in neuroactive ligand–receptor
interaction, cAMP signaling pathway, AMPK signaling pathway,
PPAR signaling pathway, cGMP-PKG signaling pathway, apelin
signaling pathway, and adipocytokine signaling pathway
(Figure 6I). Therefore, it was speculated that FAM83H-AS1,
HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and
RP11-696F12.1 might play key roles in BC by regulating the
AMPK signaling pathway, PPAR signaling pathway, and cGMP-
PKG signaling pathway.

Investigation of the Diagnostic Value of
Long Noncoding RNAs in the
Stemness-Index-Related Long Noncoding
RNA Signature
To further explore whether these six lncRNAs in the
stemness-index-related lncRNA signature can distinguish
BC samples and normal samples, we firstly investigated the
expression levels of these lncRNAs in the stemness-index-
related lncRNA signature in TCGA database. As shown in
Figure 7A, FAM83H-AS1 was upregulated in BC samples
compared with normal samples, but HID1-AS1, HOXB-AS1,
RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 were
downregulated in BC samples compared with normal
samples. Furthermore, ROC curves suggested that all of
FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3,
RP11-1100L3.8, and RP11-696F12.1 could distinguish
recurrent BC and normal samples in TCGA database
(Figure 7B). Thus, FAM83H-AS1, HID1-AS1, HOXB-AS1,
RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 might
be used as the diagnostic markers of BC.

TABLE 1 | Primers used in quantitative polymerase chain reaction.

Primers Sequence (5’→39)

FAM83H-AS1 Forward 5′-TAGGAAACGAGCGAGCCC-3′
Reverse 5′-GCTTTGGGTCTCCCCTTCTT-3′

HID1-AS1 Forward 5′-GAGCCATTTCTGTGGCTTGC-3′
Reverse 5′-TGAGTGGTAGAAGAGCCCCT-3′

HOXB-AS1 Forward 5′-GGGGACTCCAGCGAAAT-3′
Reverse 5′-ACCCGAAGCCCAACCAC-3′

RP11-1070N10.3 Forward 5′-ATGAGCGCTACTAATGAAGG-3′
Reverse 5′-TAACCCCGCATCTGTAAAAT-3′

RP11-1100L3.8 Forward 5′-CTCTGCTGGCACTTCACAAA-3′
Reverse 5′-CTCGGGTTCTCACTTGGAGT-3′

RP11-696F12.1 Forward 5′-CTGTTACCAACGTCCTAGAG-3′
Reverse 5′-TGACAATCACACACTTGGAA-3′

GAPDH Forward 5′-GGTCTCCTCTGACTTCAACA-3′
Reverse 5′-GTGAGGGTCTCTCTCTTCCT-3′
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Cell Culture, RNA Isolation and Quantitative
Real-Time Polymerase Chain Reaction
To further validate the expression level of FAM83H-AS1, HID1-
AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-
696F12.1, we performed quantitative real-time PCR to detect
their expression levels of them. Consistent with TCGA results, we
found that FAM83H-AS1 were significantly upregulated in BC
cells compared with normal cells, and HID1-AS1, RP11-
1100L3.8, and RP11-696F12.1 were significantly downregulated
in BC cells compared with normal cells (Figure 7C). However,
the expression of HOXB-AS1, RP11-1070N10.3 were upregulated
in BC cells compared with normal cells, which were in contrast to
TCGA results. Therefore, FAM83H-AS1, HID1-AS1, RP11-
1100L3.8, and RP11-696F12.1 could be used as the diagnostic
biomarkers of BC.

DISCUSSION

BC is characterized as a highly heterogeneous disease, and it can
be manifested by their classification into a number of distinct
subtypes, each with a characteristic transcriptome and molecular
expression signature (Visvader, 2009). Multiple evidence suggested
that BC is organized and driven by a small number of tumor cells that
display the characteristics of stem cells (Wicha et al., 2006). Once these
cells are stimulated in some cases, they will get the ability to switch
between a quiescent state and a proliferative state (Wicha et al., 2006;
Charafe-Jauffret et al., 2008; Liu and Wicha, 2010). The presence of
these stem cells is also associated with tumor survival, metastasis, and
treatment resistance (Nassar and Blanpain, 2016). Although the
studies on BC stem cells have been deepened worldwide, the role
of stemness-index-related lncRNAs in the pathogenesis and
progression of BRCA is unclear.

Our research aims to identify lncRNAs related to BC stemness
index (mRNAsi and EREG-mRNAsi) by performing WGCNA.
Through univariate and LASSO Cox regression analysis, we
obtained six prognosis lncRNAs (FAM83H-AS1, HID1-AS1,
HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-
696F12.1). Subsequently, we constructed a stemness-index-related
lncRNA signature to predict the OS of BC patients based on the
expression levels and corresponding coefficients derived from the
LASSO Cox regression analysis. Moreover, we found that the
stemness-index-related lncRNA signature could effectively predict
the prognosis of BC patients and can be used as an independent
prognostic factor in BC. Furthermore, we further explored the
correlation between FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-
1070N10.3, RP11-1100L3.8, RP11-696F12.1, and protein-coding
genes in BC, separately. Interestingly, we found that FAM83H-
AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8,
and RP11-696F12.1 may be involved in neuroactive
ligand–receptor interaction, AMPK signaling pathway, PPAR
signaling pathway, and cGMP-PKG signaling pathway. Finally,
quantitative real-time PCR revealed that FAM83H-AS1, HID1-
AS1, RP11-1100L3.8, and RP11-696F12.1 might be used as the
potential diagnostic biomarkers of BC.

FAM83H-AS1, also known as onco-lncRNA-3, is located on
chromosome 8 (8q24.3) and consists of 2,743 base pairs (Table 1).
FAM83H-AS1 has been reported to act as an oncogene in several
kinds of human cancers, such as cervical cancer (Barr et al., 2019),
ovarian cancer (Dou et al., 2019), bladder cancer (Shan et al.,
2019), glioma (Bi et al., 2018), rectal cancer (Lu et al., 2018), and
lung cancer (Zhang et al., 2017). Consistent with our results,
another research revealed that the expression of FAM83H-AS1 is
increased and correlates with poor OS in patients with early-stage
BC (Deva Magendhra Rao et al., 2019). Moreover, Han et al.
(2020) also found that FAM83H-AS1 is associated with triple-
negative BC progression by regulating miR-136-5p and MTDH
expression. LncRNA HOXB-AS1 can promote the proliferation,
migration, and invasion of glioblastoma cells (Bi et al., 2021),
multiple myeloma (Chen R. et al., 2020), and endometrial
carcinoma (Liu et al., 2020). However, it is less studied in BC.
The only research is that lncRNA HOXB-AS1 may be related to
N6-methyladenosine-(m6A)-mediated regulation in BC (Wu
et al., 2021). As for other stemness-index-related lncRNAs,
there are few studies related to tumorigenesis and progression,
and more studies are needed.

The TME plays an important role in maintaining tumor
stemness (Ye et al., 2014; Plaks et al., 2015). Notably, we
found that the DEGs between the high-risk and low-risk
groups were mainly involved in the immune-related biological
processes and signaling pathways (Figure 6). It has been
demonstrated that the interaction between tumor stem cells
and their niche is closely related to the characteristics of
tumor stem cells. Through this interaction, tumor stem cells
can maintain tumor heterogeneity, which is the basis of
important malignant biological behaviors such as invasion,
metastasis, and therapeutic resistance (Dean et al., 2005; Beck
and Blanpain, 2013). The components of TME are complex,
and there are various types of cells in its niche, including
endothelial cells, immune cells, tumor-related fibroblasts,
and so on. In addition, various growth factors and
cytokines in TME and hypoxia and pH changes are also
important characteristics (Hjelmeland et al., 2011; Balkwill
et al., 2012; Campos-Sánchez and Cobaleda, 2015).
Therefore, we speculated that the stemness-index-related
lncRNA signature might affect the CSC by regulating the
composition of immune cells in the TME of BC.

In conclusion, our research identified and developed a novel
stemness-index-related lncRNA signature for predicting the
prognosis of BC patients based on six stemness-index-related
lncRNAs (FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-
1070N10.3, RP11-1100L3.8, and RP11-696F12.1). Moreover,
we also found that stemness-index-related lncRNA signature is
an independent prognostic factor and is related to the immune
response. Finally, we also confirmed that FAM83H-AS1, HID1-
AS1, RP11-1100L3.8, and RP11-696F12.1 might be used as the
potential diagnostic biomarkers of BC. Thus, our results might
provide a theoretical basis and reference value for improving the
prognosis and diagnosis of BC, which may contribute to the clinic
treatment of BC.
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Construction of the Six-lncRNA
Prognosis Signature as a Novel
Biomarker in Esophageal Squamous
Cell Carcinoma
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Esophageal squamous cell carcinoma (ESCC) is a common malignant gastrointestinal
tumor threatening global human health. For patients diagnosed with ESCC, determining
the prognosis is a huge challenge. Due to their important role in tumor progression, long
non-coding RNAs (lncRNAs) may be putative molecular candidates in the survival
prediction of ESCC patients. Here, we obtained three datasets of ESCC lncRNA
expression profiles (GSE53624, GSE53622, and GSE53625) from the Gene
Expression Omnibus (GEO) database. The method of statistics and machine learning
including survival analysis and LASSO regression analysis were applied. We identified a
six-lncRNA signature composed of AL445524.1, AC109439.2, LINC01273, AC015922.3,
LINC00547, and PSPC1-AS2. Kaplan–Meier and Cox analyses were conducted, and the
prognostic ability and predictive independence of the lncRNA signature were found in three
ESCC datasets. In the entire set, time-dependent ROC curve analysis showed that the
prediction accuracy of the lncRNA signature was remarkably greater than that of TNM
stage. ROC and stratified analysis indicated that the combination of six-lncRNA signature
with the TNM stage has the highest accuracy in subgrouping ESCC patients. Furthermore,
experiments subsequently confirmed that one of the lncRNAs LINC01273 may play an
oncogenic role in ESCC. This study suggested the six-lncRNA signature could be a
valuable survival predictor for patients with ESCC and have potential to be an auxiliary
biomarker of TNM stage to subdivide ESCC patients more accurately, which has important
clinical significance.
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INTRODUCTION

Esophageal squamous cell carcinoma (ESCC) has always been
a malignant gastrointestinal cancer tumor threatening human
health worldwide, with high incidence and death rates (Torre
et al., 2015; Chen et al., 2016). Despite the continuous
development of therapeutic strategies including surgery,
chemotherapy, and radiotherapy, the five-year survival rate
of ESCC patients is still limited by 30–40% (Ferlay et al., 2015).
A large amount of evidence indicated that tumor heterogeneity
is one of the reasons for the poor clinical outcome of ESCC
patients (Lin and Lin, 2019); therefore, patients exhibit distinct
molecular profiles. Therefore, identification of molecular
biomarkers is pivotal to predict the ESCC patients’ survival.

In recent decades, with the rapid development of computing
platform of human transcriptome, microarray, and high-
throughput sequencing technology, a large amount of omics
data has been generated and stored in GEO and other large
public databases, which will help us further reveal the
molecular mechanism of tumorigenesis and explore tumor
markers from the RNA level. Long non-coding RNA
(lncRNA) is a type of RNA whose transcription length is
>200 nucleotides and lacks the ability to encode proteins
(Huarte, 2015). Accumulating evidence supports that
lncRNAs can regulate both normal development and disease
progression in various species (Mercer et al., 2009; Ulitsky and
Bartel, 2013; Peng et al., 2017; Guo et al., 2019). Among them, a
large number of lncRNAs have been regarded as critical
molecules in promoting tumor growth and metastasis (Bhan
et al., 2017), such as H19 (Ghafouri-Fard et al., 2020),
MALAT1 (Hirata et al., 2015), PCAT-1 (Prensner et al.,
2011), PCGEM1 (Srikantan et al., 2000; Shuo Chen et al.,
2018), and HOTAIR (Gupta et al., 2010). In ESCC, lncRNAs,
such as ZFAS1 (Li et al., 2019), CASC9 (Liang et al., 2018),
GHET1 (Liu et al., 2017), TUSC7 (Chang et al., 2018), and
FAM201A (Mingqiu Chen et al., 2018), have been suggested to
involve in regulating ESCC epithelial–mesenchymal transition
(EMT), metastasis, chemosensitivity, and radiosensitivity.
Moreover, due to their high tissue- and cell-specific
expression pattern, and their stability and detectability in
body fluids, plasma, and urine, lncRNAs open up a new
field for their applications as non-invasively diagnostic or
prognostic biomarkers and therapeutic targets. A study by
Feng et al. (2019) summarizes the observed lncRNAs that
could be used as prognostic biomarkers of ESCC, such as
SEMA3B-AS1, SNHG6, BANCR, UCA1 and MALAT1,
FOXD2-AS1.

Gene expression profiling identifies many gene expression
signatures from a variety of tumors, thereby enhancing our
understanding of molecular alterations in the carcinogenic
process and providing biomarkers for diagnosis or prognosis
(Yang et al., 2020). In this research, we aim to find a prognostic
biomarker for ESCC patients from the perspective of the
lncRNA expression signature. Firstly, we downloaded both
the lncRNA expression profiles and the matching clinical
follow-up features from the GEO database. Then,
Kaplan–Meier (KM) and Cox analyses were used to screen

out the lncRNAs correlated with ESCC survival. Integrated
bioinformatics methods were performed to establish a
prognostic lncRNA signature and validate its prediction
performance in multiple datasets. Finally, we confirmed that
one of the lncRNAs LINC01273 may serve as an oncogene
in ESCC.

MATERIALS AND METHODS

Collection of ESCCRNAExpression Profiles
The ESCC RNA expression profiles and corresponding clinical
information were obtained from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) database including
GSE53624 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE53624), GSE53622 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE53622), and GSE53625 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE53625) datasets. Samples
with complete survival information are retained, while those
patients without survival information are eliminated. To
develop prognostic prediction lncRNA models, ESCC samples
from GSE53624 were treated as a training set. GSE53622 and
GSE53625 sets were test and validation datasets. The
aforementioned datasets were generated with Agilent-038314
(GPL18109). Through re-annotating microarray probes (see
details in the Supplementary Material) (Harrow et al., 2012;
White et al., 2014; Guo et al., 2018), we gained the expression
values of lncRNAs from ESCC cohorts (Supplementary Table
S1). Probes with missing expression values in more than 20% of
patients were discarded.

Construction of theMulti-lncRNA Predictive
Models Related to Overall Survival
To single out those lncRNAs which were significantly
associated with the prognosis of ESCC patients, both
univariable Cox regression and KM survival analysis (the
median lncRNA expression value as the cutoff value) were
used in the training dataset. Those with Cox p < 0.05 and log
rank p < 0.05 were considered OS-associated candidates. The
LASSO regression method was then applied to obtain the
strongest survival-related lncRNAs in the training set.
Subsequently, the selected prognostic lncRNAs by KM, Cox,
and LASSO regression were performed to develop
combination models for estimating the ESCC prognosis risk
as follows: risk score (RS) = ∑Ni = 1 (Exp * coefficient), where
N is the number of selected lncRNAs, Exp is the corresponding
lncRNAs’ expression level, and the coefficient is calculated by
the univariable Cox analysis. Based on the above formula, the
RS of each combination model for each ESCC patient was
calculated and ROC curve analysis was applied to make
comparison of the survival prediction ability among those
constructed multi-lncRNA signatures in the training set.

Cell Culture and Cell Transfection
Human ESCC cell lines KYSE410 and TE5 were cultured in RPMI
1640 (Gibco) mediumwith 10% fetal bovine serum (TransSerum)
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and 1% streptomycin–penicillin solution (Gibco). All cells were
cultured in a 5% CO2 constant temperature incubator. Small
interfering RNAs (siRNAs) targeting LINC01273 (siLINC01273-
1: 5′-GACACAGAAGGACAAUGUUTT-3′; siLINC01273-2:
5′-GACACAAAGUGACAGAAUGTT-3′) were synthesized
by GenePharma Co. (Suzhou, China). Following the
instructions, siLINC01273 was transfected at a concentration
of 40 nM using Lipofectamine RNAiMAX Transfection Reagent
(Invitrogen) with Opti-MEM (Gibco). After transfection for
48 h, the RNAs were harvested.

RNA Extraction and RT-qPCR
Total RNA was reverse transcribed into cDNA by HiScript Q RT
SuperMix for qPCR (Vazyme) after extracting by RNA-easy
Isolation Reagent (Vazyme). The real-time RT-qPCR assay
was conducted with an ABI 7500 system (Corbett Life
Science) using ChamQ SYBR Color qPCR Master Mix
(Vazyme) with the guide of its manufacturer’s instructions.
The primers for RT-qPCR of LINC01273 were 5′-TGTTGC
GGTGTTCAGGGGTTT-3′ (forward) and 5′-GTCTGGCTT
CTTTCACTGAGC-3′ (reverse). The primers for beta-actin
were 5′-CAACTGGGACGACATGGAGAAA-3′ (forward) and
5′-GATAGCAACGTACATGGCTGGG-3′ (reverse). The
relative mRNA expression was normalized to beta-actin as
reference.

Cell Proliferation Assays
For the MTS assay, after transfection for 36 h, 5,000 cells/well
were seeded into 96-well plates. After adding MTS solution
(Promega) and incubating for 2 h, the absorbance was
recorded at 490 nm using an ELISA plate reader. For the
colony formation assay, 500 cells/well were planted in 12-well
plates and continuously grown for 2 weeks until a single colony
was formed. After fixing with methanol, these colonies were
stained with 0.1% crystal violet.

Transwell
ESCC cells were transfected with siRNAs for 36 h, and then
serum starvation was performed for 12 h. For invasion assays,
upper transwell chambers (Falcon) should be pre-coated with
Matrigel (BD Biosciences) and then left in the incubator for 1 h.
5×104 cells in 200 μL serum-free cell suspensions were added in
the upper transwell chambers, while 500 μL medium containing
10% FBS was added in the bottom chamber. 36 h later, pictures
were taken with a microscope magnifying ×200 after fixing and
then staining the migrated or invasive cells from upper chambers.

Statistical and Bioinformatics Analysis
The 50th percentile of the risk score is defined as the threshold to
classify the high-risk group and the low-risk group. KM analysis
was applied to evaluate and validate the survival prediction
performance of the lncRNA signature in different ESCC
cohorts. The time-dependent ROC curve was used to compare
the prediction ability of the lncRNA signature with that of other
clinical features at different survival times. And univariable and
multivariable Cox regression and stratification analysis were used
to test whether the multi-lncRNA risk score model was

independent of other clinical characters. The R program
(3.5.1) including R packages named survival, survminer,
glmnet, pROC, and timeROC was used to perform the above
analyses.

To explore the potential biological functions of lncRNAs, the
Pearson correlation test was used to construct co-expressed
networks of lncRNAs and the protein-coding genes (PCGs) in
the GSE53625 dataset, and the PCGs that were highly correlated
with lncRNAs (correlation coefficient >0.60/< -0.6, p < 0.001)
were selected for GO and KEGG pathway enrichment analysis by
the Cluego plugin in Cytoscape (Guo et al., 2018).
SubpathwayMiner was also used to identify related pathways
of the co-expressed PCGs in the KEGG database including entire
pathways and sub-pathways.

All experiments were repeated for at least three times. The
values are shown as mean ± SD. Prism 8 software was used to
perform statistical analyses. Student’s t-test was employed for
comparisons between two groups, and one-way ANOVA was
performed for multiple-group comparisons. The differences with
*p < 0.05, **p < 0.01, ***p < 0.001 were considered statistically
significant.

RESULTS

ESCC Clinical Characteristics and
Expression Profiles
There were a total of 179 ESCC samples used in this study,
including 119 from GSE53624 and 60 from GSE53622,

TABLE 1 | Clinical features of the ESCC patients from GEO.

Features GSE53624 GSE53622 GSE53625

Age (years)
≤60 61 29 90
>60 58 31 89

Sex
Female 21 12 33
Male 98 48 146

Tumor grade
G1 23 9 32
G2 64 34 98
G3 32 17 49

T stage
1 8 4 12
2 20 7 27
3 62 48 110
4 29 1 30

N stage
0 54 29 83
1 42 20 62
2 13 9 22
3 10 2 12

TNM stage
1 6 4 10
2 47 30 77
3 66 26 92

Survival status 0
Alive 46 30 76
Dead 73 30 103
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respectively. GSE53625 is the union of GSE53624 and GSE53622.
The median survival age was 60 years. There were more male
patients with ESCC than females (146 vs. 33), and most of the
patients were dead (survival time, 3 days to 60 months). Other
clinical characters are shown in Table 1. In addition, through re-
annotating microarray probes, a total of 6,253 expressed lncRNAs
and 17,434 expressed PCGs were obtained from GSE53624 and
GSE53622.

Identification of the Prognostic lncRNAs in
the Training Set
ESCC samples from GSE53624 (n = 119) were treated as the
training dataset to evaluate the relationship between ESCC OS
and lncRNAs. After univariate Cox and KM analysis of
lncRNAs’ expression level with clinical survival information,
we identified a total of 209 lncRNAs (Figure 1A) related to
ESCC patients’ OS significantly (Cox p < 0.05 and log rank
p < 0.05), which could be used as prognostic candidates. Then,
the LASSO regression algorithm via regression coefficient
shrinkage based on a penalty that is proportional to size was
utilized to screen out lncRNAs which were mostly correlated
with ESCC survival among the 209-lncRNA set. As shown
in Figure 1B, we found that the value of independent
coefficients tended to zero with the increase of lambda
value. Finally, we used threefold cross-validation and
selected seven lncRNA candidates to construct the multi-
lncRNA classifiers (Figure 1C).

Construction of the Six-lncRNA Prognostic
Signature
To select a better predictive multi-lncRNA model with fewer
lncRNAs, ROC curve analysis was performed to compare the
prognostic prediction performance of the 27-1 = 127 risk score
combinations in the training dataset (Supplementary Table S2).
All risk scores for each ESCC based on the corresponding
lncRNA signature were calculated as the method described.
Then, the six-lncRNA combination with the largest AUC
value composed by AL445524.1, AC109439.2, LINC01273,
AC015922.3, LINC00547, and PSPC1-AS2 was obtained
(Figure 1D; Table 2). The RS of the six-lncRNA signature is
as follows: RS = (-0.5460037×AL445524.1) + (-0.2473264×
AC109439.2) + (0.4223392× LINC01273) + (-0.81843
×AC015922.3) + (0.7987309× LINC00547) +
(0.8210199× PSPC1-AS2). The AUC of the six-lncRNA
signature was 0.863 (95% CI: 0.798–0.928), higher than that of
the seven-lncRNA model (0.855, 95% CI: 0.787–0.924, Figures
1E,F) and other lncRNA combinations. Therefore, we chose the
six-lncRNA signature with fewer nodes and better survival
prediction ability as the candidate classifier.

Evaluation and Validation of the Prognostic
lncRNA Model in ESCC
In the GSE53624 set, on the basis of the median risk score
calculated by the six-lncRNA signature, patients were
distinguished into two groups with different OS.

FIGURE 1 | Derivation and selection of the lncRNA signature in the training dataset. (A) Univariate Cox regression and KM analysis identified 209 prognosis-related
lncRNAs in the training dataset. (B) LASSO coefficient profiles for the 209-lncRNA set in the training dataset. (C) Cross-validation error rates for selecting the tuning
parameters. (D) Hazard ratio of the selected lncRNAs by LASSO. (E) The AUC values of 127 multi-lncRNA signatures were calculated by ROC curve analysis. (F) ROC
curve analysis for the 127 combinations and selected six-lncRNA signature in the training dataset.
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Unfortunately, patients with ESCC from the high-risk group
suffered a worst survival outcome than those from the low-
risk group (log rank p < 0.001, Figure 2A). The five-year

survival rate of patients in the low-risk group was 63.3%,
which was significantly more than 15.25% of patients in the
high-risk group.

TABLE 2 | Prognostic significance of the six lncRNAs in the signature.

Ensembl ID Gene name HR 95% CI of HR p Chromosome location

Lower Upper

ENSG00000233461 AL445524.1 0.579 0.432 0.778 <0.001 1:231520729-231528618: 1
ENSG00000250284 AC109439.2 0.781 0.664 0.918 0.003 5:136734830-136763409:1
ENSG00000231742 LINC01273 1.526 1.148 2.026 0.004 20:50171809-50176676:1
ENSG00000276855 AC015922.3 2.209 1.403 3.477 0.001 17:15789016-15789705:1
ENSG00000275226 LINC00547 2.223 1.523 3.243 <0.001 13:37534940-37551536:1
ENSG00000226352 PSPC1-AS2 2.273 1.587 3.256 <0.001 13:19674624-19675884:1

FIGURE 2 | Kaplan–Meier analysis of the six-lncRNA signature in the GSE53624 (A), GSE53622 (B), and GSE53625(C) datasets.

FIGURE 3 | Expression heatmap of the six lncRNAs, plot of six-lncRNA risk scores, and ESCC patient’s survival status in the GSE53624 (A), GSE53622 (B), and
GSE53625 (C) datasets.
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For verifying the survival classification power of the lncRNA
model, each patient from the validation GSE53622 set obtained
their risk score values. Figure 2B shows the KM curves for
patients with ESCC from the low/high-risk group in the
GSE53622 dataset. We found that the median survival time in
the high-risk group was 39.17 months less than 50.6 months in
the low-risk group (five-year survival rate: 30% vs. 60%, log rank
test p = 0.021). As for the entire dataset (GSE53625), patients with
high risk scores suffered more undesirable outcomes than those
with low risk scores (median survival time: 23.13 months vs. 51.3
months; log rank test p < 0.001, Figure 2C).

Moreover, Figure 3 shows the lncRNAs’ expression pattern of
ESCC patients, the distribution of survival status, and their risk
scores. For ESCC patients with high risk scores from the training
set, the expression values of four lncRNAs (LINC01273,
AC015922.3, LINC00547, PSPC1-AS2) were high, while the
expression values of protective lncRNAs (AL445524.1,
AC109439.2) were low. In contrast, the expression of
prognostic lncRNAs showed the opposite pattern in patients
with low risk scores in the training set (Figure 3A).
Subsequently, we confirmed the similar survival distribution
and risky or protective lncRNAs’ expression pattern in
GSE53622 and GSE53625 sets (Figures 3B,C).

Evaluation of Survival Prediction
Independence
To evaluate the independence of the signature in survival
prediction with other clinical characters including age, gender,
and TNM stage, Cox regression analysis in GSE53624, GSE53622,
and GSE53625 datasets was performed, and the multivariate Cox
results of the multiple ESCC datasets showed that the six-lncRNA
signature in OS prediction was independent of age and gender
(high vs. low risk, HR = 4.97, p < 0.001, n = 119; HR = 2.26, p =
0.025, n = 60; HR = 2.11, p < 0.001, n = 179, Table 3). In addition,
TNM stage affected the OS of patients with ESCC in GSE53624,
GSE53622, and GSE53625 datasets (III vs. I + II: HR = 1.8, p <

0.001, n = 119; HR = 2.37, p = 0.009, n = 60; HR = 1.95, p < 0.001,
n = 179, Table 3).

Comparison of the Six-lncRNA Signature
With Clinical Features in Survival Prediction
Ability
Time-dependent ROC curve analysis from 1 year to 5 years was
applied to compare the survival prediction ability of the
lncRNA signature with that of tumor grade, TNM stage, T
stage, and N stage in the entire ESCC group (GSE53625, n =
179). The AUC values showed the predictive ability of the
lncRNA signature (AUC from 1 year to 5 years: 0.698–0.909)
was better than that of TNM stage (AUC from 1 year to 5 years:
0.486–0.67) and other features, especially at 5 years
(Figure 4A). And the AUC of the combined model was the
largest one compared to that of TNM stage or signature alone
(AUC = 0.712, 95% CI = 0.645–0.779, Figure 4B), which
further suggested the signature has potential to become a
novel prognostic biomarker.

Stratification Analysis of the Six-lncRNA
Signature
To evaluate whether the signature can further subgroup ESCC
patients at high (III)/low (I, II) TNM stage, we performed
stratification analysis in the entire dataset (GSE53625, n =
179). According to the TNM stage information of all the 179
patients, we found 87 patients at TNM low stage and 92 at TNM
high stage. For patients at low TNM stage, the six-lncRNA
signature could separate them into low- and high-risk groups
with significantly different survival (five-year survival rate 59.1%
vs. 18.6%, log rank test p < 0.001, Figure 4C). The signature can
further classify patients at the high TNM stage into two groups
with different prognostic outcomes (median survival:
28.7 months vs. 58.2 months; log rank test p < 0.001,
Figure 4D). This result showed the potential ability of the six-

TABLE 3 | Cox regression analysis of the signature with ESCC survival.

Univariable analysis Multivariable analysis

Variables HR 95% CI of HR p HR 95% CI of HR p

Lower Upper Lower Upper

GSE53624
Age >60 vs. ≤60 1.42 0.90 2.25 0.14 1.66 1.02 2.72 0.04
Sex Male vs. female 0.83 0.47 1.46 0.51 1.29 0.70 2.38 0.42
TNM stage III vs. II, I 1.90 1.23 2.95 <0.001 1.80 1.15 2.83 0.01
Signature High risk vs. low risk 4.50 2.71 7.46 <0.001 4.97 2.94 8.42 <0.001

GSE53622
Age >60 vs. ≤60 2.07 1.02 4.21 0.05 1.79 0.87 3.71 0.12
Sex Male vs. female 0.71 0.31 1.64 0.42 0.54 0.22 1.34 0.18
TNM stage III vs. II, I 2.12 1.15 3.91 0.02 2.37 1.24 4.53 0.01
Signature High risk vs. low risk 2.26 1.11 4.61 0.02 2.26 1.11 4.60 0.03

GSE53625
Age >60 vs. ≤60 1.59 1.08 2.34 0.02 1.49 1.01 2.22 0.05
Sex Male vs. female 0.78 0.49 1.25 0.31 0.80 0.49 1.30 0.37
TNM stage III vs. II, I 1.99 1.40 2.85 <0.001 1.95 1.35 2.80 <0.001
Signature High risk vs. low risk 2.12 1.43 3.14 <0.001 2.11 1.42 3.13 <0.001
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lncRNA signature as a clinical auxiliary marker for TNM stage to
subgroup patients with ESCC more accurately.

Functional Prediction of lncRNAs From the
Six-lncRNA Signature
The Pearson test observed that the expression of 491 PCGs was
significantly related to at least one of the six prognostic lncRNAs
(coefficient >0.60/< −0.6, p < 0.001). GO and KEGG function
analysis was then performed by Cluego and SubpathwayMiner.
The results showed the 491 PCGs correlated with lncRNAs were
significantly enriched in 37 GO terms and 36 KEGG pathways
(p < 0.05, Supplementary Table S3). All these vital GO terms
were organized into an interaction network based on similar
functions in Cytoscape, and several clusters of functionally
related GO terms were found such as ncRNA metabolic
process, RNA process via interacting with those PCGs that
affect cell cycle, regulation of actin cytoskeleton, MAPK
signaling pathway, cell cycle, and TGF−beta signaling pathway
(Supplementary Figure S1B).

Oncogenic Effect of LINC01273 in ESCC
Cells
We next investigated the biological roles of LINC01273 in
maintaining the malignant phenotypes of ESCC cells. LINC01273

expression was examined in ESCC cell lines which our lab owned
using qRT-PCR, and the results showed that LINC01273 was highly
expressed in KYSE410 and TE5 cells (Figure 5A). Therefore,
KYSE410 and TE5 cell lines were selected for further
experiments. Firstly, we, respectively, transfected two individual
siRNAs and confirmed LINC01273 was successfully knocked
down by qRT-PCR (Figure 5B). We found that, by using the
MTT assay and cell colony formation assay, silencing LINC01273
remarkably attenuated both the proliferation and colony formation
capability of ESCC cells (Figures 5C,D). Transwell assays showed a
significant suppression of the migration and invasive abilities of the
two ESCC cell lines due to LINC01273 downregulation (Figures
5E,F). These results suggested that LINC01273 might enhance the
ability of proliferation, migration, and invasion of KYSE410 and TE5
cells, demonstrating that LINC01273 may play oncogenic roles
in ESCC.

DISCUSSION

Esophageal cancer ranks eighth in the global incidence of malignant
tumors and sixth in tumor-related mortality. ESCC, the most
common subtype of esophageal cancer, is so extremely aggressive
that recent medical developments have not improved the prognosis
of patients. TNM stage is still the main tool for predicting the
survival of ESCC (Kang et al., 2020). However, ESCC patients with

FIGURE 4 | Comparison of TNM stage and the six-lncRNA signature and stratification analysis. (A) Time-dependent ROC curve analysis of the six-lncRNA
signature and other clinical characters in the GSE53625 group. (B) Comparison of survival prediction performance of TNM stage and the six-lncRNA signature. The
signature could further classify ESCC patients from TNM high (C)/low (D) stage into two groups according to markedly different survival.
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FIGURE 5 | Oncogenic effect of LINC01273 on ESCC cells. (A) RT-qPCR analysis of LINC01273 expression in ESCC cell lines. (B) siRNA-mediated silencing of
LINC01273 was evaluated by using RT-qPCR. (C,D) Results of the MTS assay (C) and colony formation assay (D) demonstrated that cell proliferation was inhibited after
depletion of LINC01273 in KYSE410 and TE5 cells. (E,F) Transwell assays suggested that migration (E) and invasion (F) abilities were reduced after LINC01273
knockdown. All data are expressed as mean ± SD (*p < 0.05, **p < 0.01, ***p < 0.001).
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the same pathological characteristics at diagnosis often have
completely different survival outcomes (Matsueda and Ishihara,
2020). For ESCC patients, the application of molecular
characteristics to prognostic prediction may help resolve tumor
heterogeneity and achieve precise treatment and evaluation.
Accumulating evidence shows that lncRNAs are functional
regulatory molecules in a variety of tumors. In ESCC, it is
reported that lncRNAs regulate tumor progression through
multiple mechanisms and multiple molecular interactions (Feng
et al., 2019) and have the prognostic value because they are too
closely related to survival (Deng et al., 2016). Therefore, exploring a
prognostic lncRNA signature from ESCC patients would be
meaningful and urgently necessary.

In this study, we achieved and re-mined the publicly available
lncRNA profiles of ESCC (Li et al., 2014) and identified a total of
209 survival-related lncRNAs by KM and Cox survival analysis.
Then, we developed a six-lncRNA model including AL445524.1,
AC109439.2, LINC01273, AC015922.3, LINC00547, and PSPC1-
AS2, which was significantly correlated with the prognosis of ESCC.
Different from most of the existing prognostic model construction
process (Zeng et al., 2018; Bao et al., 2019; Liu et al., 2019; Wang
et al., 2019), following LASSO regression analysis which reduced the
number of prognostic lncRNAs directly from 209 to 7, we added a
key step, permutation and combination of the LASSO-selected
lncRNAs, which further diminished the node number in the
signature and greatly improved the clinical utility of the
signature. Consistent with the risk model construction and
prognostic signature screening methods reported in other
literature (Guo et al., 2016), we further performed ROC curve
analysis on RS models and screened the signature with the
strongest predictive ability from multiple signatures composed of
seven lncRNAs. In addition, because the AUC value of our six-
lncRNA signature is greater than that of other signatures discovered
by some researchers (Zhang et al., 2020), our signature performs
better in prognostic prediction.

Moreover, we accessed the independence of the six-lncRNA
signature from other ESCC clinical characters including age, sex,
andTNMstage byCox regression analysis inmultiple ESCCdatasets
and showed it was an independent prognostic factor. ROC curve
analysis results suggested the lncRNA signature had better accuracy
in survival prediction than TNM stage, and the combination of
TNM stage and lncRNA signature can evaluate the prognosis of
patients more accurately. Stratified analysis indicated the ESCC
patients at high/low TNM stages could be further separated into
two different groups with significantly different survival. Taken
together, the six-lncRNA signature could be a valuable classifier
for ESCC prognosis and have potential to become an auxiliary
biomarker for TNM stage to subdivide patients effectively.

As for the prognostic correlation of six prognostic lncRNAs,
the high expression of four risk lncRNAs, LINC01273,
AC015922.3, LINC00547, and PSPC1-AS2, was related to poor
survival (Cox coefficient >0, p < 0.01), and the remaining
protective lncRNAs (AL445524.1 and AC109439.2) were
associated with longer survival time (Cox coefficient <0, p <
0.01). The biological functions of these six lncRNAs in cancer have
not been reported until now. However, we have demonstrated that
one of the lncRNAs of the six-lncRNA signature, LINC01273, may

act as an oncogenic lncRNA to improve the abilities of proliferation,
migration, and invasion in ESCC, which suggested the importance of
LINC01273 in the six-lncRNA signature and other five lncRNAs
may play key roles in ESCC as well. Moreover, our functional
enrichment analysis results revealed that they may participate in
tumorigenesis by cell cycles, MAPK signaling pathway, and TGF-
beta signaling pathway. Accumulating studies suggested that the
TGF-beta signaling pathway plays an important role in many kinds
of cancers due to its importance in migration and EMT which is
closely related to chemotherapy resistance (Colak and Ten Dijke,
2017).

So far, we have only demonstrated that LINC01273may function
as an oncogenic lncRNA. Although the potential function of these
lncRNAs has been predicted by bioinformatics methods principally,
the roles of these lncRNAs in ESCC are still unclear and need more
experimental studies to further elucidate in the future. Another
drawback of this study is that the model has not been tested and
verified in clinical trials. Despite these shortcomings, the significant
and consistent correlation between the lncRNA signature and OS in
multiple ESCC datasets indicated that the six-lncRNA signature is a
powerful prognostic marker of ESCC. Furthermore, our current
experiment has confirmed the carcinogenic effect of LINC01273
on ESCC.

In conclusion, the six-lncRNA signature constructed in this
study could predict the survival of ESCC patients more accurately
and have the potential to be an auxiliary molecular biomarker of
TNM stage in prognosis.
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Rectal cancer is a malignant tumor with poor prognosis. Identification of prognostic
biomarkers is needed to improve overall survival of rectal cancer patients. Here, we firstly
identified miR-20a-5p significantly classifying high-risk group and low-risk group of rectal
cancer patients. We also found that several known miRNAs miR-142-5p, miR-486-5p,
miR-490-3p and miR-133a-3p played important roles in rectal cancer. Secondly, we
constructed and analyzed a rectal cancer-related miRNA-mRNA network. A rectal cancer-
related functional module was identified from the miRNA-mRNA network. Survival analysis
demonstrated great prognosis capacity of the module to distinguish rectal cancer patients.
Thirdly, a rectal cancer-related miRNA-lncRNA network was constructed, which followed
power law distribution. HubmiRNAs and lncRNAs of the network were suggested to show
significant prognosis ability and be enriched in cancer-related pathways. Fourthly, we
constructed a rectal cancer-related ceRNA network and detected several typical lncRNA-
miRNA-mRNA crosstalk, such as HAND2-AS1, HAND2 and miR-20a-5p crosstalk and
MBNL1-AS1, miR-429 and LONRF2 crosstalk, which were validated to function in
improving overall survival of rectal cancer patients. Finally, we identified the regulatory
feedback that was constituted by transcriptional factors and lncRNAs, including MEIS1,
MEIS2 andmultiple lncRNAs. We also demonstrated that these lncRNAs were high related
to immune cell infiltration. All these results can help us to uncover themolecular mechanism
and provide new light on miRNA-mediated gene crosstalks in rectal cancer.

Keywords: rectal cancer, prognosis markers, miRNAs, lncRNA, network

INTRODUCTION

Rectal cancer is a kind of malignant tumor that happens on rectum, the risk factors of which are very
widespread. The etiology of rectal cancer is not clear at present, may be related to environmental
factors, dietary habits and genetic factors (Gaertner et al., 2015). The improved surgical techniques
and the addition of neoadjuvant radiation therapy have been performed for patients of rectal cancer
(Ludmir et al., 2017). But if the treatment of rectal cancer is not timely, local recurrence or distant
metastasis may occur after the operation, causing serious complications. Eventually, cachexia leads to
multiple organ dysfunction or failure and death (Li et al., 2016). The 5-years survival rate of patients
with early rectal cancer is more than 90%, while that of patients with late rectal cancer is less than
50% (Dossa et al., 2018). It remains low in spite of the progress of diagnostic and therapeutic tools.
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Therefore, there is a critical need of biomarkers predicting
pathological characteristics and subsequently improving
patients’ prognosis.

The microRNAs (miRNAs), about 19-25 nt in length, are a
class of endogenous, single-stranded, non-coding, small
molecular RNAs (Lagos-Quintana et al., 2001; Lee et al.,
2003). MiRNAs can control gene expression mainly by
inhibiting translation or causing degradation of target
RNAs (Hausser and Zavolan 2014). Because of the highly
conserved roles of gene expression regulation, miRNAs may
be of great interest as possible biomarkers for physiological
processes (Vegter et al., 2016). Actually, miRNAs have been
involved in various biological processes such as cell
differentiation, cellular proliferation, metabolism, and
apoptosis (Bartel 2004). The impact of specific miRNAs has
been shown for almost every cancer. Long non-coding RNAs
(lncRNAs) are a type of RNA transcripts that were once
considered as transcriptional “noise” without protein-
coding capacity, which are more than 200 nucleotides
(Jathar et al., 2017). LncRNAs were reported to be closely
involved in human diseases. For example, HOTAIR, HULC,
and linc00152 were reported to function in the occurrence and
development of cancers, the high expression levels of which
predicted a poor prognosis (Li et al., 2015; Xu et al., 2016).
Zhang et al. suggested the lncRNAs DBET, LINC00909,
FLJ33534, and HSD52 were associated with neoadjuvant
chemoradiotherapy (NCRT) response and prognosis in the
rectal cancer (Zhang et al., 2021). For a given cell, the
transcripts such as lncRNAs or mRNAs containing similar
miRNA response elements (MREs) can regulate each other by
competitively binding to common miRNAs, and thus act as
miRNA sponge. This phenomenon is called competitive
endogenous RNA (ceRNA) theory (Salmena et al., 2011).
This competition plays crucial roles in tumorigenesis by
affecting the expression levels of different kinds of RNAs.
For example, linc01133 regulated the expression of APC by
sponging miR-106a-3p and further inhibited the progression
of gastric cancer (Yang et al., 2018). Overexpression of
lncRNA HOXD-AS1 competitively bound to miR-130a-3p
and prevented the degradation of SOX4, thus promoted the
metastasis of hepatocellular carcinoma (Wang et al., 2017).
Therefore, understanding this novel RNA crosstalk will have
implications in human disease development. Meanwhile,
transcriptional factors (TFs) interact with lncRNAs/
miRNAs to regulate of cell cycle. LncRNA HAND2-AS1
was found significantly low in the rectal cancer tissues,
which could interact with miR-1275 by target KLF14 to
inhibit tumour (Cai et al., 2021).

All these genes including miRNAs, lncRNAs or mRNAs may
play important roles in rectal cancer progression. However, genes
usually do not function in isolation, they can interact with each
other and be grouped into molecular networks. Thus, in the
present study, we extracted rectal cancer-related miRNA/
lncRNA/mRNA expression profile and constructed miRNA-
mRNA network, miRNA-lncRNA network and miRNA-
lncRNA-mRNA ceRNA network, respectively. In the context
of these biomolecular networks, survival analysis was used for

identifying novel biomarkers and functional modules associated
with the diagnosis and prognosis of rectal cancer
(Supplementary Figure S1).

MATERIALS AND METHODS

Data Sets
We downloaded The Cancer Genome Atlas (TCGA) gene
expression profile including transcript-level data of the same
89 tumor samples and three adjacent non-tumor samples from
UCSC XENA browser (https://xenabrowser.net/datapages/).
According to gene ID conversion from GENCODE (https://
www.gencodegenes.org/human/), we converted transcripts with
Ensembl IDs to lncRNAs and mRNAs with Gene Symbols.
Similarly, we also converted transcripts to miRNAs based on
ID conversion that supported by miRBase (https://www.mirbase.
org/). In the process of ID conversion, if multiple transcripts
corresponded to one miRNA/lncRNA/mRNA, mean expression
value of multiple transcripts was computed as the expression
value of the miRNA/lncRNA/mRNA. We performed log2
transformation for standardizing raw expression values and
finally obtained miRNA expression profile, lncRNA expression
profile and mRNA expression profile of rectal cancer with the
same samples, respectively.

Differential Expression Analysis
The edgeR test was used to calculate rectal cancer-related
differentially expressed (DE) miRNAs, lncRNAs and mRNAs
under the threshold of 2-fold change (FC) and p-value <0.05.

Construction of Rectal Cancer-Related
miRNA-mRNA Network
Firstly, the curated 423,975 miRNA-mRNA interactions between
386miRNAs and 13,861mRNAs were downloaded from starBase
(Li et al., 2014). starBase is a comprehensive database which
provided interaction networks of lncRNAs, miRNAs, ceRNAs
and mRNAs from extensive CLIP-Seq (HITS-CLIP, PAR-CLIP,
iCLIP, CLASH) data. Secondly, DE miRNAs and DE mRNAs
were mapped into these interactions for extracting DE miRNA-
DE mRNA interactions. Then, Pearson correlation coefficients
(PCCs) between these DE miRNAs and DE mRNAs were
computed based on miRNA expression profile and mRNA
expression profile with the same samples. We only retained
negatively expression-correlated DE miRNA-DE mRNA
interaction pairs and constructed a rectal cancer-related
miRNA-mRNA network.

Construction of Rectal Cancer-Related
miRNA-lncRNA Network
With the sequences of DE miRNA and DE lncRNA as input data,
DE miRNA-DE lncRNA interactions were obtained using the
miRanda tools (Enright et al., 2003) with default parameters.
PCCs were calculated for these interaction pairs based on miRNA
expression profile and lncRNA expression profile with the same
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samples. The DE miRNA-DE lncRNA pairs that expressed
negatively correlated were extracted for constructing a rectal
cancer-related miRNA-lncRNA network.

Construction of Rectal Cancer-Related
ceRNA Network
According to the above miRNA-mRNA network and miRNA-
lncRNA network, we extracted lncRNA-mRNA pairs that
shared at least one common miRNA. PCCs between these
lncRNA-mRNA pairs were calculated based on lncRNA
expression profile and mRNA expression profile of rectal
cancer with the same samples. The lncRNA-mRNA pairs
with PCC >0.9 were retained for constructing a rectal
cancer-related ceRNA network.

Construction of Rectal Cancer-Related
TF-lncRNA Network
We obtained TFs list from AnimalTFDB (http://bioinfo.life.hust.
edu.cn/AnimalTFDB/#!/) were mapped into the rectal cancer-
related miRNA-mRNA network for screening TF-miRNA pairs.
Previous research found that lncRNA could interacted with
miRNA to regulate TF expression. Hypergeometric test was
used for extracting TF-lncRNA pairs based on the number of
common miRNAs between these TF-miRNA pairs and the above
rectal cancer-related miRNA-lncRNA network. The heat map
displayed the significant TF-lncRNA pairs with a threshold of
p-value <0.05, containing 12 TFs and 17 lncRNAs (Figure 5A).
To further identify the binding potential of TFs to lncRNAs, we
defined the promoter region of a lncRNA as a basal domain of
-2 kb to +2 kb around the transcriptional start site (TSS). We also
downloaded enhancer regions from FANTOM5 project (Noguchi
et al., 2017). A lncRNA was considered as the target of an
enhancer if the enhancer located in more than ± 2 kb of the
TSS of the lncRNA. Then, Find Individual Motif Occurrences
(FIMO) (Izzat and Yim 1997) was used for performing motif
occurrence (Grant et al., 2011). Results demonstrated that the
motifs of TF MEIS1 and MEIS2 could bind to the promoters and
enhancers of multiple lncRNAs with a threshold of FIMO p-value
<1e–4, respectively (Figures 5B,C). These binding pairs also
showed strong correlation.

Analysis of Topological Features
Using the R package “igraph”, topological features such as
network degree, cluster coefficient and average path length
were calculated and analyzed for the network. Degree is the
number of direct neighbors of nodes in the network. Cluster
coefficient is the aggregation extent of nodes in the network
graph. And average path length is the average value of the shortest
paths between every two nodes of the network. To measure the
statistical significance, we randomly produced 1,000 random
networks with remaining the degree of nodes unchanged. The
cluster coefficient and average path length were all calculated for
the 1,000 random networks. The empirical p-values were
respectively computed by the proportion of cluster coefficient
in random network larger than that in the real network and the

proportion of average path length in random network shorter
than that in the real network.

Identification of Functional Modules
MCODE can automatic prediction of protein complexes from
qualitative protein-protein interaction data, so it can predict the
function of unknown proteins and help understand the
functional connections of molecular complexes in cells (Bader
and Hogue 2003). Based on the miRNA-mRNA network,
miRNA-lncRNA network and lncRNA-miRNA-mRNA ceRNA
network, we used the Molecular Complex Detection (MCODE)
plug-in in Cytoscape software to identify various rectal cancer-
related functional modules (Shannon et al., 2003). The criteria of
MCODE we used were as follows: MCODE scores >5, degree cut-
off = 2, node score cut-off = 0.2, max depth = 100, and k-score = 2.

Survival Analysis
For performing survival analysis, we downloaded clinical
information of our rectal cancer samples from UCSC XENA.
A risk model was constructed by calculating linear combination
of the miRNA/lncRNA/mRNA expression values weighted by the
regression coefficient of univariate Cox regression analysis. The
following formula was used to calculate risk score:

RiskScore � ∑
n

i�1
βiExp(i)

where, βi is the Cox regression coefficient of the ith miRNA/
lncRNA/mRNA from an independent gene set; Exp(i) is the
expression value of the ith miRNA/lncRNA/mRNA in a
corresponding patient; and n is the number of miRNAs/
lncRNAs/mRNAs in gene set.

The mean risk score was used as a cut-off to classify rectal
cancer patients into high-risk group and low-risk group. A
Kaplan-Meier survival curve was performed for different
groups of rectal cancer patients. The statistical significance was
assessed by log-rank test under the threshold of p < 0.05.

Immune Cell Infiltration of lncRNAs in
Patients
Cell infiltration information of rectal cancer patients were
downloaded from TIMER2. The potential role of lncRNAs in
cell infiltration was estimated by calculating the correlation
between lncRNA expression and infiltration estimation scores.

RESULTS

miR-20a-5p May be a Potential Prognosis
Biomarker of Rectal Cancer
From TCGA, we obtained rectal cancer-related miRNA
expression profile containing 89 tumor samples and three
adjacent non-tumor samples. The edgeR test with |FC| >2 and
p-value <0.05 was used to identify rectal cancer-related DE
miRNAs and totally 319 DE miRNAs were identified. Among
the most upregulated 10miRNAs and the most downregulated 10
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FIGURE 1 | Identification of the potential prognosis biomarker of rectal cancer. (A) The heat map of the most upregulated 10 miRNAs and the most downregulated
10 miRNAs. (B) Pathway enrichment results of the 20 most DE miRNAs. (C) The log-rank p-values of the 20 most DE miRNAs.miR-20a-5p was statistically significant
with p < 0.05. (D) A Kaplan-Meier survival curve ofmiR-20a-5p (p = 0.041). (E)ROC curve analysis result of the 20most DEmiRNAs. (F) A Kaplan-Meier survival curve of
the 20 most DE miRNAs (p = 0.034).
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miRNAs (Figure 1A), several miRNAs have been reported to
function in rectal cancer. For example, miR-215 was involved in
response of rectal cancer to the chemoradiotherapy (Svoboda
et al., 2012). ROC curve analysis showed that miR-21 and miR-
328 could provide valuable information for individualizing
treatment in rectal cancer patients (Campayo et al., 2018). 3D
cell culture-based global miRNA expression analysis revealed
increased levels of miR-142-5p in rectal tumor tissue samples
after neoadjuvant long course treatment, which may be a
theranostic biomarker of rectal cancer (Kunigenas et al., 2020).
Low plasma level of exosomal miR-486-5p was associated with
organ-invasive primary tumor, which attributed to adverse
prognosis of rectal cancer (Bjornetro et al., 2019). The high
diagnostic values of miR-490-3p and miR-133a-3p were shown
in rectal cancer, which may provide a new way for treatment and
prognosis improvement of digestive tract cancers (Lai et al.,
2019). Pathway enrichment analysis was performed to the 20
most DE miRNAs that contained the most upregulated 10
miRNAs and the most downregulated 10 miRNAs. Results
showed that they were enriched in some cancer-related
pathways, such as “Pathways in cancer”, “ErbB signaling
pathway”, “Wnt signaling pathway”, “MAPK signaling
pathway” and “Focal adhesion” (Figure 1B). We further
calculated risk score and the corresponding log-rank p-value
for each of the 20 most DE miRNAs and found that miR-20a-
5p was statistically significant (p < 0.05, Figure 1C). A Kaplan-
Meier survival curve showed that miR-20a-5p significantly
classified high-risk group and low-risk group of rectal cancer
patients with different clinical outcomes (Figure 1D). It
suggested that miR-20a-5p may be a potential prognosis
biomarker of rectal cancer.

More interestingly, ROC curve analysis showed that the
combination of the 20 most DE miRNAs had excellent
capacity to distinguish rectal cancer patients with high-risk
group from low-risk group (Figure 1E). And the Kaplan-
Meier survival curve showed that the combination of the 20
most DE miRNAs significantly classified different risk groups of
rectal cancer patients with different clinical outcomes
(Figure 1F). These results demonstrated that the integrative
analysis of miRNAs had significant prognosis capability, which
deserved further research.

MiRNA-mRNA Network and its Functional
Module Show Prognosis Potential
The rectal cancer-related DE miRNAs and DE mRNAs were
mapped into the miRNA-mRNA interactions from starBase for
extracting DE miRNA-DE mRNA interactions. As we all know,
miRNAs negatively regulate the expression of target genes at the
post-transcriptional level. Thus, we computed the correlations
between these DE miRNAs and DE mRNAs by PCCs. The result
of heat map showed that some DE miRNAs and DE mRNAs
expressed negatively correlated (Figure 2A). We firstly extracted
the most negatively expression-correlated 10 DE miRNA-DE
mRNA interaction pairs and found that miR-21-5p was a hub
node with the large degree (Figure 2B). Risk score was calculated
for miR-21-5p and its six direct neighbors by linear combination

of their expression values weighted by the regression coefficient of
univariate Cox regression analysis. A Kaplan-Meier survival
curve showed that they could significantly classify high-risk
group and low-risk group of rectal cancer patients with log-
rank p < 0.05 (Figure 2C). Secondly, we further detected the
power of the combination of miRNAs and their target genes
under the background of a larger network. Specifically, all the
negatively expression-correlated DE miRNA-DE mRNA
interaction pairs were used for constructing a rectal cancer-
related miRNA-mRNA network, containing 702 interactions
between 30 miRNAs and 114 mRNAs (Figure 2D). We
calculated the degrees of all the nodes in the network. And the
result of network degree distribution showed power law
distribution (R2 = 0.82, Figure 2E). We also computed cluster
coefficients of the rectal cancer-related miRNA-mRNA network
and 1,000 random networks generated by remaining the degree of
nodes unchanged. Result showed that the average cluster
coefficient of the real network was significantly larger than
that of the random networks (p < 0.01, Figure 2F). Previous
study suggested that the network with larger average cluster
coefficient usually had modular structures. Therefore, we then
identified a rectal cancer-related functional module from the
miRNA-mRNA network by MCODE. The module was
consisted of 3 DE miRNAs and 7 DE mRNAs (Figure 2G).
Surprisingly, the three miRNAs of the module, includingmiR-21-
5p, miR-429 and miR-192-5p were the hub nodes of the rectal
cancer-related miRNA-mRNA network. The result of survival
analysis demonstrated their great capacity to distinguish rectal
cancer patients with high-risk group from low-risk group
(Figure 2H). These results suggested both the network and
functional module that were consisted of DE miRNAs and
their target DE mRNAs showed prognosis potential and
played crucial roles in rectal cancer.

MiRNA-lncRNA Network and Its Hub Nodes
can Improve Overall Survival
By inputting the sequences of DE miRNAs and DE lncRNAs, DE
miRNA-DE lncRNA interactions were obtained via the miRanda
tools. The correlations between these DE miRNAs and DE
lncRNAs were calculated by PCCs. The result of heat map
showed that some DE miRNAs and DE lncRNAs expressed
negatively correlated (Figure 3A). We extracted the most
negatively expression-correlated 10 DE miRNA-DE lncRNA
interaction pairs, referring to six miRNAs and five lncRNAs
(Figure 3B). These miRNAs and lncRNAs were used for
survival analysis. Risk score was calculated by linear
combination of their expression values weighted by the
regression coefficient of univariate Cox regression analysis. A
Kaplan-Meier survival curve displayed their prognosis ability by
distinguishing different risk groups of rectal cancer patients
(Figure 3C). The result revealed that the combination of DE
miRNAs and their target lncRNAs may contribute to the overall
survival of rectal cancer patients. Therefore, we further conducted
our analysis from the perspective of miRNA-lncRNA network. A
rectal cancer-related miRNA-lncRNA network was constructed
by integrating all the negatively expression-correlated DE
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FIGURE 2 | Analysis of miRNA-mRNA network and its functional module. (A) The heat map of correlations between DE miRNAs and DE mRNAs. (B) The most
negatively expression-correlated 10 DEmiRNA-DE mRNA interaction pairs.miR-21-5pwas a hub node with the large degree. (C) A Kaplan-Meier survival curve ofmiR-
21-5p and its six direct neighbors (p = 0.045). (D) The rectal cancer-related miRNA-mRNA network. Yellow triangle represents miRNA and purple circular represents
mRNA. Node size represents degree of node. (E) Degree distribution of the network. All nodes follow a power-law distribution. (F) Average cluster coefficient of the
real network was significantly larger than that of 1,000 random networks. (G) A functional module identified from the miRNA-mRNA network by MCODE. (H) A Kaplan-
Meier survival curve of the three miRNAs of the module, miR-21-5p, miR-429 and miR-192-5p (p = 0.031).
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FIGURE 3 | Analysis of miRNA-lncRNA network and its nodes. (A) The heat map of correlations between DE miRNAs and DE lncRNAs. (B) The most negatively
expression-correlated 10 DE miRNA-DE lncRNA interaction pairs. (C) A Kaplan-Meier survival curve of the six miRNAs and five lncRNAs that express negatively
correlated (p = 0.005). (D) The rectal cancer-related miRNA-lncRNA network. Yellow triangle represents miRNA and blue diamond represents lncRNA. Node size
represents degree of node. (E) The top 20% miRNA and lncRNA hub nodes with the largest degrees in the miRNA-lncRNA network. (F) A Kaplan-Meier survival
curve of these hub miRNAs and lncRNAs (p = 0.01). (G) Pathway enrichment analysis of these hub miRNAs. (H) GO Term enrichment analysis of these hub miRNAs.
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FIGURE 4 | Analysis of lncRNA-mRNA network and lncRNA-miRNA-mRNA crosstalk. (A) The heat map of correlations between lncRNAs and mRNAs that shared
at least one common miRNA. (B) The rectal cancer-related lncRNA-mRNA ceRNA network. Blue diamond represents lncRNA and purple circular represents mRNA.
Node size represents degree of node. (C) Pathway enrichment analysis of the mRNAs in the network. (D) The heat map of HAND2-AS1, HAND2 andmiR-20a-5p and
the Kaplan-Meier survival curve of the lncRNA-miRNA-mRNA crosstalk (p = 0.027). (E) The heat map ofMBNL1-AS1,miR-429 and LONRF2 and the Kaplan-Meier
survival curve of the lncRNA-miRNA-mRNA crosstalk (p = 0.02).
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miRNA-DE lncRNA interaction pairs, containing 155
interactions between 27 miRNAs and 17 lncRNAs
(Figure 3D). The network followed power law distribution
that most nodes had small degrees but a few nodes had very
large degrees. We selected the top 20% miRNA and lncRNA hub
nodes with the largest degrees from the miRNA-lncRNA
network, which was consisted of six miRNAs, eight lncRNAs
and their 47 interactions (Figure 3E). All the expression values of
these miRNAs and lncRNAs were used for calculating risk score
and their corresponding log-rank p-value. Kaplan-Meier survival
curve revealed the significant prognosis ability of these hub
miRNAs and lncRNAs (Figure 3F). Finally, pathway
enrichment analysis was performed to these hub miRNAs.
They were demonstrated to be enriched in multiple pathways
associated with biological processes and molecular functions of
cancers, including “MAPK signaling pathway”, “Pathways in
cancer”, “Autophagy”, “Endocytosis”, “TGF-beta signaling
pathway”, and “TNF signaling pathway” (Figure 3G).

RNA Crosstalk has Implications in the
Survival of Rectal Cancer Patients
We computed correlations of lncRNAs and mRNAs that
shared at least one common miRNA in the above miRNA-
mRNA network and miRNA-lncRNA network by PCCs
(Figure 4A). The lncRNA-mRNA pairs with PCC >0.9
were retained for constructing a rectal cancer-related
ceRNA network, which referred to nine lncRNAs and 22
mRNAs (Figure 4B). The mRNAs of the network were
used for pathway enrichment and were found to be related
to multiple known cancer pathways, such as “Focal adhesion”,
“Long-term potentiation” and “MAPK signaling pathway”
(Figure 4C). In addition, in the rectal cancer-related
ceRNA network, several lncRNAs were shown to have large
degrees. In general, nodes with larger degrees are more
important, which play vital roles in maintaining network
integrity. Thus, we chose two lncRNAs HAND2-AS1 and
MBNL1-AS1 with the largest degrees for in-depth analysis.
According to lncRNA HAND2-AS1 and its related mRNA
HAND2, the miRNA miR-20a-5p that regulated them could
also be extracted for detecting lncRNA-miRNA-mRNA
crosstalk. Excitingly, miR-20a-5p was suggested to be a
potential prognosis biomarker of rectal cancer in our
previous analysis. We further performed survival analysis
by computing linear combination of the expression values
of HAND2-AS1, HAND2 and miR-20a-5p weighted by the
regression coefficient of univariate Cox regression analysis. A
Kaplan-Meier survival curve represented prognosis ability of
the lncRNA-miRNA-mRNA crosstalk (Figure 4D). Similarly,
we identified another lncRNA-miRNA-mRNA crosstalk
between MBNL1-AS1, miR-429 and LONRF2 and found
that they could significantly distinguish high-risk group
and low-risk group of rectal cancer patients (Figure 4E).
These results suggested that the crosstalks between
lncRNA, miRNA and mRNA may have implications in the
survival of rectal cancer patients.

TFMEIS1 andMEIS2Coordinately Regulate
Multiple lncRNAs
Recently, studies have shown that TFs were involved in cancer
pathology by regulating lncRNAs (Ji et al., 2020). We focused on
the 2 TFs as well as the corresponding lncRNAs that had motif
binding relationships and constructed a small TF-lncRNA crosstalk
network (Figure 5D).We found thatMEIS1 andMEIS2 coordinately
regulated multiple lncRNAs by binding to their promoter or
enhancer regions. For example, TF MEIS1 and MEIS2
simultaneously bound to the promoters and enhancers of lncRNA
MBNL1-AS1 and further coordinately regulated lncRNA MBNL1-
AS1. Interestingly, lncRNA MBNL1-AS1 has been demonstrated to
be a hub node of the rectal cancer-related miRNA-lncRNA network.
Finally, survival analysis was performed to MEIS2 and the
combination of MEIS2 and MBNL1-AS1, respectively. The
Kaplan-Meier survival curves displayed their prognosis ability by
significantly distinguishing high-risk group and low-risk group of
rectal cancer patients (Figure 5E).

Furthermore, we also calculated the relationships between
these lncRNAs and immune cell levels via integrating
expression data and TIMER2 data. Results showed that
myeloid dendritic cells were high related to these lncRNAs
(Figure 6A). Especially, four lncRNAs were high related to
immune cells than other transcripts, including RP11-131H24,
AP001627, RP11-532F6 and CTB-133G6 (Figure 6B). These
results also implied that lncRNAs might participate in cancer
regulation by controlling immune cell levels in READ.

DISCUSSION

Rectal cancer is one of the most common cancers worldwide.
More and more people suffer from rectal cancer due to the poor
living and eating habits. The preoperative chemoradiotherapy
and postoperative chemoradiotherapy have all been validated as
effective treatments for patients of rectal cancer (Sauer et al.,
2004). However, for patients with undifferentiated cancer,
obvious regional lymph node metastasis or distant metastasis
through the serous layer and surrounding infiltration, recurrence
and metastasis are likely to occur 1–3 years after surgery and
postoperative chemoradiotherapy, finally leading to death (Bosset
et al., 2006). In this respect, potential prognostic biomarkers may
play an increasing role in the study of rectal cancer. However, this
is a lack of global lncRNA-associated crosstalks in rectal cancer.
Thus, in our study, we aimed at finding predictive biomarkers
that not only improve local control and reduce toxicity but also
ameliorate overall survival of rectal cancer patients.

MiRNAs negatively regulate the expression of target genes at
the post-transcriptional level. Evidence has suggested that
miRNAs can represent almost all cellular and molecular
functions, because about 60% of human mRNAs are regulated
by miRNAs (Azizian et al., 2016). Thus, it is not unexpected that
miRNAs are involved in diverse cellular processes, such as cell
differentiation, proliferation and apoptosis (Bartel 2009). In
addition, abnormal expression of the miRNAs can lead to cell
dysfunction and then result in the occurrence and development of
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FIGURE 5 | Identification of TF-lncRNA crosstalk based on motif analysis. (A) The heat map of TF-lncRNA pairs with a threshold of hypergeometric test p-value
<0.05. (B) TF motif searching of promoter regions of lncRNAs. Node color represents the correlation score of PCC. Node size represents the number of TFs that bind to
the promoter regions of lncRNAs. (C) TF motif searching of enhancer regions of lncRNAs. Node color represents the correlation score of PCC. Node size represents the
number of TFs that bind to the enhancer regions of lncRNAs. (D) Visualization of a TF-lncRNA crosstalk network. Blue diamond nodes represent lncRNAs and
purple circular nodes represent TFs. Green lines represent TFs binding to the promoter regions of lncRNAs. Red lines represent TFs binding to the enhancer regions of
lncRNAs. (E) Kaplan-Meier survival curves of MEIS2 and the combination of MEIS2 and MBNL1-AS1.
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FIGURE 6 | Immune cell infiltration of lncRNAs in READ patients. (A) The visualization of correlations between lncRNA expression and TIMER2 immune cell
estimation score. Two highest correlation pairs were showed in heatmaps with Cor = 0.52 and 0.49. (B) Scatter plots of correlations between lncRNA expression and
TIMER2 immune cell estimation score.
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various diseases, even cancer (Mestdagh et al., 2009; Slaby et al.,
2009). Therefore, we focused on miRNAs’ function in rectal
cancer and explored their potential to serve as possible
prognosis biomarkers and novel therapeutic targets. In recent
years, there have been some DE miRNAs identified in the
progression of rectal cancer, though limited data on miRNAs
in rectal cancer are available (Zhang et al., 2018; Zhou et al.,
2018). In this study, a network-based computational analysis was
performed to investigate the key lncRNAs and TFs in rectal
cancer. We constructed rectal-related global lncRNA-TF network
by integrating information of differentially expressed lncRNAs/
TFs and then identified functional modules. We identified several
known miRNAs that functioned in rectal cancer, such as miR-
142-5p, miR-486-5p, miR-490-3p and miR-133a-3p. Meanwhile,
we also found miR-20a-5p significantly classifying high-risk
group and low-risk group of rectal cancer patients, suggesting
thatmiR-20a-5pmay be a potential prognosis biomarker of rectal
cancer. These results demonstrated good topological features and
integrative power of miRNAs and their target mRNAs/lncRNAs.
The closely connected modules were shown to function in
survival state of rectal cancer patients and have potential
prognosis ability.

Among the abundant knowledge about miRNAs’ function and
mechanism, ceRNA theory has been reported to play a vital
regulatory role in almost every cancer. Most ceRNAs have
potential MREs, share common miRNAs and compete for
binding common RNAs. In this study, we constructed a rectal
cancer-related ceRNA network and detected several typical
lncRNA-miRNA-mRNA crosstalk, such as HAND2-AS1,
HAND2 and miR-20a-5p crosstalk and MBNL1-AS1, miR-429
and LONRF2 crosstalk, which were validated to play important
roles in improving overall survival of rectal cancer patients.
Importantly, we also identified a TF-lncRNA feedback loops
based on ceRNA mechanism and motif analysis. Previous
studies have proved that TF-lncRNA feedback could help us
to uncover the molecular mechanism (Hong et al., 2020) (Swarr
et al., 2019). We found that some TFs, such asMEIS1 andMEIS2
might function as the key regulators of lncRNAs in READ. TF-
lncRNA pairs could also be used as prognosis markers.
Furthermore, we found the TF-regulated lncRNAs were high
related to immune cell levels.

Though novel biomarkers and functional modules
associated with the diagnosis and prognosis of rectal cancer
have been achieved in this study, there were still some
limitations in our study. Firstly, limited data on miRNAs
and lncRNAs in rectal cancer are available. We only used
TCGA data in the study. If a large number of miRNA and
lncRNA expression profile data are released, we may discover
more valuable information. Secondly, the questions about
survival, recurrence and metastasis of rectal cancer are
extremely complicated. Survival analysis is just one way to
measure the prognosis of rectal cancer from bioinformatics. If
combined with the experimental research, we will understand
the pathogenesis and molecular mechanism in depth.
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Molecular subtyping of cancer is recognized as a critical and challenging step towards
individualized therapy. Most existing computational methods solve this problem via multi-
classification of gene-expressions of cancer samples. Although these methods, especially
deep learning, perform well in data classification, they usually require large amounts of data
for model training and have limitations in interpretability. Besides, as cancer is a complex
systemic disease, the phenotypic difference between cancer samples can hardly be fully
understood by only analyzing single molecules, and differential expression-based
molecular subtyping methods are reportedly not conserved. To address the above
issues, we present here a new framework for molecular subtyping of cancer through
identifying a robust specific co-expression module for each subtype of cancer, generating
network features for each sample by perturbing correlation levels of specific edges, and
then training a deep neural network for multi-class classification. When applied to breast
cancer (BRCA) and stomach adenocarcinoma (STAD) molecular subtyping, it has superior
classification performance over existing methods. In addition to improving classification
performance, we consider the specific co-expressedmodules selected for subtyping to be
biologically meaningful, which potentially offers new insight for diagnostic biomarker
design, mechanistic studies of cancer, and individualized treatment plan selection.

Keywords: molecular subtyping of cancer, specific co-expression module, network perturbation, multi-
classification, machine learning

1 INTRODUCTION

Precision cancer medicine aims to characterize the distinct biology of an individual or a group of
cancer patients sharing certain commonalities and treat them by targeting the specific oncogenic
event shared by such a group (Lipinski et al., 2016; Russnes et al., 2017; Ozturk et al., 2018; Zhang
et al., 2019). Using breast cancer as an example, the majority of such cancers fall into one of the three
subtypes: estrogen receptor positive (ER+), human epidermal growth factor receptor 2 positive
(HER2+), and triple-negative (Vuong et al., 2014). Distinct treatment plans have been developed to
effectively treat these three subtypes of breast cancer. Patients with ER+ tumors receive endocrine
therapy, supplemented with chemotherapy for some; patients of HER2+ tumors receive targeted
drug therapy or small-molecule inhibitor therapy combined with chemotherapy; and patients of
triple-negative breast cancer are treated using chemotherapy only (Waks andWiner, 2019; Yin et al.,
2020). Clearly, the effectiveness of such a treatment plan depends on our ability to accurately subtype
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cancer tissues with shared biology, particularly common
druggable targets among subgroups of a specific cancer type
(Chaisaingmongkol et al., 2017). This is the focus of the
current study, specifically to identify distinguishing features,
measured using transcriptomic data, only shared by samples of
each specified subtype of cancer (Valle et al., 2020).

Cancer subtyping through applications of machine learning
techniques has been done by numerous authors on multiple
cancer types. Cascianelli et al. developed a classification
method for breast cancer subtyping that employs several
machine learning classifiers to solve the multi-classification
task for breast cancer subtyping (Cascianelli et al., 2020).
Markus et al. modeled and solved the breast cancer subtyping
problem based on integrated analyses of gene expression and
DNA methylation data using a random forest algorithm (List
et al., 2014). Deep-learning algorithms have recently been applied
to tackle the cancer subtyping problem through an end-to-end
approach. Guo, et al. have reported a deep-learning framework to
learn the representation of high-dimensional features derived
from gene expression data and alternative splicing profiles and
solve the subtyping problem of breast cancer (Yang et al., 2018).

While these methods, such as deep learning, have powerful
capabilities in data classification, most of these methods have
limitations in interpretability and tend to require large amounts
of data for model training (Chen et al., 2019), which has clearly
limited the applications of omic-data based subtyping. In
addition, these methods generally rely on gene expression data
for classification and have largely ignored the interaction
information among the expressed genes in cancer, which
generally carries more information than the expression levels
of individual genes (Segura-Lepe et al., 2019; Lee et al., 2020). This
is particularly important for modeling genes in cancer tissues,
knowing that considerable metabolic reprogramming has taken
place in cancer tissue cells, as we have previously demonstrated
(Sun et al., 2020), which could be captured by co-expression
information. Hence, it is worth the effort to develop co-
expression-based classifiers to capture the distinct
reprogrammed metabolisms and hence the corresponding
phenotypes of individual subtypes of cancer.

A few papers have been published on cancer subtyping based
on co-expression information, which classify cancer samples
based on the general characteristics of the relevant co-
expression networks (Liu et al., 2016; Yu et al., 2020). Jiang
et al. developed a multi-classification method for cancer samples
based on differential co-expression analyses (Jiang et al., 2019),
and predicted a sample’s label through calculating its
perturbation on the most specific edges of each subclass-
representing network module. Although this method performs
well in cancer subtyping, there is a lack of interpretability as the
identified edges tend to be unconnected, hence the lack of
functional information.

In this paper, we present a new cancer molecular subtype
classification framework based on a specific co-expression
module and a deep neural network (DNN) named SCM-
DNN, which can identify a robust, distinct co-expression
module for each subtype of a cancer. A co-expression
module is a set of genes whose expressions highly correlate

with each other (Wolf et al., 2014), and a distinguishing co-
expression module is a co-expression module that is associated
with a specific subtype but not other subtypes of a cancer.
Intuitively, a distinguishing co-expression module should reflect
certain unique characteristics of a cancer subtype. Specifically, we
use the TCGA transcriptomics data to construct a co-expression
network over samples of each subtype and then apply weighted
correlation network analysis (WGCNA) (Zhang and Horvath,
2005; Langfelder and Horvath, 2008; Sipko et al., 2018) to
partition the network into co-expression modules. Then we
assess the discerning power of each co-expression module for
cancer subtyping by (1) identifying the most discerning modules
and their most specific edges between samples of the current
subtype and samples of other subtypes; 2) perturbing the
correlation levels of such edges to generate new samples with
co-expression network features for each sample; and 3) then
training the classifier based on such new samples. When
applying this classifier to breast cancer (BRCA) and stomach
adenocarcinoma (STAD), we found it has superior
performance under both macro-average recall (Macro-R) and
macro-average f1-score (Macro-F1) metrics over existing
methods. We consider that this co-expression module-based
subtyping not only provides an improved method for cancer
subtyping but also provides meaningful information about the
unique biology of cancer samples of each subtype, hence
potentially offering new information about the underlying
mechanism of the cancer subtype and suggesting new
individualized treatment targets.

2 MATERIALS AND METHODS

We present a new computational framework, SCM-DNN, shown
in Figure 1 and Figure 2, for subtyping cancer samples.

2.1 Data Processing
RNA-seq data and clinical information of breast cancer and
stomach cancer tissue and normal samples are downloaded
from the TCGA database (Weinstein et al., 2013). These
cancer samples are pre-labeled with their subtype information.
Overall, 113, 437, 37 and 115 samples are labeled as control, ER+,
HER2+, and triple-negative BRCA tissues respectively; and 33,
107, 23, 47, and 50 samples are marked as control, CIN, EBV,
MSI, and GS STAD tissues, respectively. The FPKM value (with
log2 transformation) is used to measure the expression levels in
our analysis. For each cancer type, genes whose average
expression levels are less than 10 over all the samples are
removed, and the median absolute deviation (mad) is used to
estimate the variance of a gene’s expression. In a dataset with
sample size N, the ‘mad’ value of gene X is calculated as follows:

mad � median Xi −median X( )| |( ) i � 1, 2, . . . , N( ). (1)
X = (X1, X2, . . . , Xi, . . . , XN), Xi is the expression value of gene

X of the ith sample. Clearly, the more similar the expression levels
of a gene are across all samples, the closer its “mad” value is to
zero. For our analyses, we only keep the top 90% genes with the
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largest “mad” values. Overall, 14,439 and 7,761 genes are kept for
BRCA and STAD, respectively.

2.2 Construction of Co-Expression
Networks and Generation of the
Co-Expression Modules
For each cancer type, we first construct gene co-expression
networks for each subtype; that is, for a cancer type with T
molecular subtypes, T co-expression networks need to be
constructed. The Spearman correlation coefficient is used to
construct the co-expression networks. According to (Anglani
et al., 2014), although spearman correlation is an efficient way
to construct co-expression networks, its coefficient and statistical
significance depend on the sample size to some extent. Since the
issue of imbalanced sample size always exists, directly
constructing co-expression networks for each category will
lead to incomparability among different categories. To solve
this problem, we perform sampling to construct the co-
expression network for each cancer type.

Given the sample sizes of each subtype {s1, s2, ...sT}, we have
performed F-fold sampling to calculate the correlations for each
subset, with each fold having Ns samples. Ns should be smaller
than min {s1, s2, ...sT}, and F should be large enough to ensure
that all samples are selected at least one time. For the fth fold in lth
subset, corlf represents the correlation values matrix for the co-
expression network, and pl

f represents the corresponding
p-values. The final correlation values and p-values of lth subset
are defined as Formula (2) and (3):

corl � 1
F
∑
F

f�1
corlf. (2)

FIGURE 1 | (A) The workflow from data processing to specific edges identification. Take four-subclass classification as an example. Each subtype is represented
as a gene expressionmatrix with n genes after data processing.WGCNA is used to divide whole gene set into different co-expressionmodules. The specific edges of one
subtype are extracted from the specific module of their subtype. The perturbation of these specific edges (gene pairs) is used to generate network features data. (B)
Detailed process of generating one piece of network feature data. The perturbation values of a sample are the difference of specific edges between expanded
network and the reference network.

FIGURE 2 | Sufficient network feature data generation for model training
and prediction. One reference sample set consists of T groups of samples that
from T subtype (T: total number of subclass). Network feature data
corresponding to training samples are used for model training.
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Pl � ∏
F

f�1
pl
f

⎛⎝ ⎞⎠
1/F

. (3)

Furthermore, we have removed gene pairs in the network
whose associations are not significant (i.e., p-value >0.01) and
genes that do not connect with any other genes in the network. In
the end, we have obtained T co-expression networks {MeanNet1,
MeanNet2, ...MeanNetT} for each subtype. For each MeanNet, we
apply WGCNA to divide it into several co-expression modules.
We set the soft thresholds according to the scale free topology
fitting index R2 coefficient for each subtype. It reweights the
MeanNet by adjusting the coefficient of each co-expression pair
to make the network satisfy the scale-free property. All the genes
are then hierarchically clustered into different groups based on
the weighted network, and the genes that can’t cluster together
with other genes are stored in Module0.

2.3 Identification of the Specific
Co-Expression Modules
A specific co-expression module is defined if the genes of a
subtype are highly correlated in a subtype but weakly
correlated within other subtypes. It is worth noting that we
don’t consider Module0 of each subtype. We identify the
specific co-expression module of each subtype by integrating
the following two scores:

Score 1: Specific aggregation score. If genes of one subset are
concentrated in a module of one subtype but they are scattered in
many different modules for all the other subtypes, it indicates that
these genes have a specific co-expression pattern in this subtype.
According to this idea, we perform a cross calculation among all
the modules of different subtypes to evaluate the specificity of
each module. For moduleMs

i(i � 1, 2, ..., Sn), we first get the gene
intersections of Ms

i and Mt
j. (s: source subtype, Ms

i : the ith
module of subtype s, Sn: number of modules in the source
subtype, Mt

j: the jth module of subtype t, t: target subtype, t ∈
{1, 2, ..T}\s, T is the total number of subtypes). In order to avoid
the bias caused by the number of genes in each module, we will
calculate the overlap ratio between Ms

i and Mt
j as:

Overlapratio s,t,i,j( ) �
|Ms

i ∩ Mt
j|

|Ms
i |

. (4)

If for any t and j, the Overlapratio(s,t,i,j) values ofMs
i are small,

it indicates that the genes in scarcely cluster together in other
subtypes. So, for a module Ms

i , we define Maxoverlapratiosi to
represent the maximal overlap between Ms

i and all the other
modules of other subtypes. Then, we sort all modules’ Max
overlapratio of this subtype in ascending order and the
ranking of Ms

i is equal to its score 1. The lower ranking of
Max overlapratiosi , the more likely Ms

i will be identified as a
specific co-expression module.

Score 2: Correlation significance score. If co-expression
coefficients of the edges in this module are overall significantly
stronger than their coefficients in other module subtypes, then
this module is more likely to be a specific one.

For a certain module Ms
i , the mean co-expression value of its

edges is defined as edgemeansMs
i
. Meanwhile, the mean co-

expression value of these edges on other subtypes’ co-
expression networks is calculated and denoted as edgemeantMs

i

(t: target subtype, t ∈ {1, 2, ..T}\s). If some edges in Ms
i do not

appear in co-expression network of subtype t, their values in
subtype t are recorded as 0. Then the difference between
edgemeansMs

i
and is edgemeantMs

i
is defined as:

△edgemeans,tMs
i
� edgemeansMs

i
− edgemeantMs

i
. (5)

△min meanMs
i
represents the smallest △edgemeans,tMs

i
of Ms

i .
Next we sorted △min meanMs

i
(i � 1, 2, . . . Sn) in a descending

order, their ranking is defined as score 2. Similarly, the lower rank
△min meanMs

i
is, the more likely Ms

i is to be a specific co-
expression module. Taking the sum of score 1 and score 2 as final
score for each module Ms

i(i � 1, 2, . . . Sn), we rearrange all
modules of subtypes in an ascending order, and select the
module with lowest rank as the specific co-expression module
of subtype s.

2.4 Identification of Specific Edges in
Specific Modules
As the sizes of specific modules are different and there are many
edges in each specific module, it is necessary for us to select the
most specific edges that are highly co-expressed only in one
subtype to represent the character of each specific module. In
addition, selecting same number of edges for each subclass can
improve the comparability. If we want to select E specific edges
for each specific module, following steps can be taken. For a gene
pairs (i, j) in the specific co-expression module, their correlation
values on all subtypes are denoted as (cor1(i,j), cor2(i,j), . . . , corT(i,j))
(T is the number of subtypes), and max corx(i,j) is the max value of
corx(i,j)(x � 1, 2, . . . , T)\s. Then, the difference between cors(i,j)
and max corx(i,j) is defined as:

△cors
i,j( ) � cors

i,j( ) −max corx
i,j( ). (6)

The △cors(i,j) of all gene pairs are sorted in descending order,
and the top E gene pairs are specific edges.

2.5 Generation of Network Feature for Each
Cancer Sample
Although specific co-expression modules could capture the
prominent characteristics of each subtype, it is not easy to
transfer these characteristics directly to a single sample. Hence,
our method proposes learning the sample’s network feature by
calculating its perturbation effect when adding it to each specific
module. Intuitively, when a sample is added to the specific co-
expression module of its same subtype, its disturbance to this
module is not significant. Otherwise, when adding this sample to
specific modules of other subtypes, their disturbance is
relatively large.

For each subtype, we randomly select 90% of the samples as
the training set and the remaining 10% as the test set. In order to
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avoid the classification bias due to imbalanced sample sizes of
different subtypes, we generate and amplify new samples by
adding one sample to multiple reference network sets and
ensuring the sample sizes of each subtype are similar for training.

First, we generate a series of reference network sets covering
the specific co-expression edges of each subtype. Reference
network of one subtype is generated by genes in its specific
module, naturally, specific co-expression edges are covered. The
size of samples used for constructing reference networks is
uniformly assigned as P (P is smaller than the sample size of
any subtype). For each subsampling, a reference network set is
generated, including T reference networks corresponding to T
subtypes, and we randomly select P samples from each subtype
several times and generate several reference network sets, shown
in Figure 2.

Then, one cancer sample is added to a reference set, which is T
reference networks, to construct T new co-expression networks,
called expanded networks. The perturbation value of a specific
edge is obtained by calculating the difference between an
expanded network and a reference network.

△corxi � |corx′i − corxi |. (7)
Here, i is the ith specific edge of subtype x, corx′i and corxi are

the correlation value of ith specific edge of subtype x in the
expanded network and reference network, respectively. △corxi
when a sample is added to the reference network, is perturbation
value to ith specific edge. Then, for one cancer sample, it’s T *E
perturbation values are merged into a vector, where E is the
number of specific edges selected for each subtype, generating a
piece of network feature data.

One piece of network feature data shows the characteristics
of a sample at the co-expression network level. In order to
augment the sample size, we add each training sample to
several reference network sets. Hence, we can obtain
enough network feature data for model training even
though there are few cancer samples, which guarantees the
classifiers are able to learn sufficient information for each
subtype. For each test sample, it is also randomly added to
the reference network sets to generate its corresponding new
sample(s). It is worth noting that all the reference networks are
constructed from samples of training sets.

2.6 Construction of Cancer Subtype
Multi-Classifier
We build a fully connected feed forward neural network classifier
with cross-entropy loss function.

L � − 1
N

∑
i

∑
T

c�1
yic log pic( ). (8)

Here, the value of y depends on the true label of data i. Let h be
a neural network, in which the activation function of hidden
layers and output layer are ReLu and softmax, respectively. pic is
the probability of the data i belonging to subtype c. N is the size of
the data. The optimization algorithm is stochastic gradient
descent. We apply an early stop strategy to avoid over-fitting

in the training process and take 10-fold cross validation to verify
the performance of the classification method. In prediction, when
adding each testing sample into different reference networks, it
generates several new samples and then gets multiple prediction
labels, voting strategy are used to obtain final prediction label of
this sample.

2.7 Baseline Methods
We compared our method, SCM-DNN with three traditional
filter feature selection methods (Chi-square test, Analysis of
Variance, and Mutual Information), and one state-of-the-art
wrapper feature selection method, (HSIC-Lasso) following
with DNN. In addition, we also compared our method with
one of the few co-expression-based cancer subtyping
methods. Moreover, we compared our method with one of
the few co-expression-based cancer subtyping methods (SCP),
which predicted a sample’s label through calculating its
perturbation on the most specific edges of each subclass-
representing network. In addition, we also compared our
method with DeepCC, which is a deep learning-based
framework integrating functional spectra quantifying
activities of biological pathways for molecular subtyping of
cancer (Gao et al., 2019).

3 RESULTS

3.1 Statistic of Distinguishing
Co-Expression Modules of Each Cancer
Subtype
14439 and 7761 genes were used for the construction of co-
expression networks for BRCA and STAD, respectively. We
decompose the co-expression network into several modules for
each cancer subtype. The number of co-expression modules for
each cancer subtype, and the number of genes and edges in each
specific co-expression module are shown in Table 1.

3.2 Evaluation of the Discerning Power of
the Co-Expression Module for Each
Subtype
To evaluate the discerning power and stability of each co-
expression module between each subtype and the samples of
the other subtypes of a cancer, we have used accuracy, macro-
average recall and macro-average F1-score to avoid possible
issues created by imbalanced sample sizes among the subtypes,
defined as follow.

Accuracy � ∑T
i�1TPi

∑T
i�1#i

. (9)

Macro − P � 1
T
∑
T

i�1

TPi

TPi + FPi
. (10)

Macro − R � 1
T
∑
T

i�1

TPi

TPi + FNi
. (11)
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Macro − F1 � 2*Macro − p*Macro − R

Macro − p +Macro − R
. (12)

Here, #i is the sample size of ith group; TP is for true positives,
FP for false positives, FN for false negatives, and TN for true
negatives.

For BRCA subtyping, we have conducted two experiments by
selecting the top 100 and top 200 distinguishing co-expressed
edges from each co-expression module to evaluate their
discerning power. Considering the relatively small sample size
and the number of features, a neural network with two-hidden
layers is employed to train a classifier, which has 50 and 10 nodes
on the first and the second layer, respectively. We have compared

the performance of our approach with six other published
classifiers (see Methods), each employing the same number of
features as our approach.

The subtyping performance of our method on BRCA samples
along with the performance by other five methods are shown in
Figure 3A. Our method clearly performs better across all the
metrics, especially in terms of macro-avg recall and macro-avg
f1-score. Imbalanced sample sizes tend to create problems for
classification methods, which tend to give higher weights to
subtypes with higher numbers of samples. In BRCA, the
numbers of samples for the four subtypes are 113, 437, 37,
and 115, with HER2+ having the smallest sample size. We
note that the recall values for HER2+ samples are 0.891,

TABLE 1 | Statistics of co-expression modules of each cancer subtype.

Subtypes #Edges of #Modules #Genes in #Edges inCancer
Co-expression Specific SpecificTypes

Network Co-expression Co-expression
Module Module

BRCA ER+ 18002953 37 123 7161
BRCA HER2+ 26774509 20 1834 810674
BRCA Triple 17261163 32 1334 322232

Negative
BRCA Control 54354208 65 698 241789
STAD CIN 5155648 43 124 4483
STAD EBV 12952861 52 75 2328
STAD GS 11937803 29 789 262884
STAD MSI 8714653 18 190 9780
STAD Control 17645626 50 105 5330

FIGURE 3 | Cancer subtyping performance by seven methods: our method SCM-DNN,HSIC-LASSO, ANOVA, Chi-square mutual information, SCP and DeepCC
(A) BRCA subtyping and (B) STAD subtyping with using top100 and 200 distinguishing co-expressed gene pairs.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8660056

Sun et al. Co-Expression Modules-Based Cancer Subtyping

185

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


0.675, 0.575, 0.475, 0.650, and 0.622 by SCM-DNN, HSIC-lasso,
ANOVA, Chi-square, mutual information and DeepCC,
respectively.

For STAD subtyping, we set the same experimental
parameters, including the organization of the neural
networks as for BRCA breast cancer molecular subtyping
task. The performance by our method vs. the other six
methods is comparable to that on BRCA, with our method
performing the best as detailed in Figure 3B. It is worth
noting that the DeepCC classified cancer samples according
to a large number of genes which are not suitable for feature
selection, so we use all its features and compared it with our
method when selecting 100 features and 200 features,
respectively.

Overall, the results reveal that our method gives the best and
stable subtyping performance, particularly for the subtyping
problems with highly imbalanced sample sizes. We found that

our method always performs best specially in recall and F1-
score, the reason is: we generate sufficient network feature data
for neural network model training, and it avoids the situation
that the classifier only learns sufficient information for the
category with largest scale, instead of categories with small
scale. Hence, our method is superior to other methods when
predict the subtype with smallest scale. In addition, network
feature data can reflect the characteristics of each individual
subtypes. It also proves that specific modules with
differentiation and robustness are conducive to improving
classification performance. We display network feature data
in the form of heat map and find that the samples of the same
subtype naturally gather into one block. Details are shown in
the Supplementary Material.

TABLE 2 | Themost significantly enriched pathways by the genes belonging to top
200 specific edges of each molecular subtype in BRCA.

Pathway p-Value

Controls

GO:cell-cell adhesion 1.59E-05
KEGG:Regulation of actin cytoskeleton 9.65E-05
GO:leukotriene biosynthetic process 5.71E-04
GO:ephrin receptor signaling pathway 7.36E-04
KEGG:Cyanoamino acid metabolism 1.63E-03
KEGG:T cell receptor signaling pathway 1.97E-03

ER+

GO:Wnt signaling pathway 5.94E-03
GO:negative regulation of Wnt signaling pathway 1.73E-02
GO:lens fiber cell development 2.68E-02
GO:positive regulation of DNA-templated 2.68E-02
transcription, initiation
GO:epithelial cell-cell adhesion 3.43E-02
KEGG:HTLV-I infection 4.56E-02
GO:muscle organ development 4.66E-02
GO:eyelid development in camera-type eye 4.92E-02

HER2+

GO:nitrobenzene metabolic process 1.15E-03
GO:substrate adhesion-dependent cell spreading 1.90E-03
GO:negative regulation of extrinsicapoptotic signaling pathway 1.90E-03
GO:skeletal system development 3.18E-03
GO:glutathione derivative biosynthetic process 3.42E-03
GO:outflow tract septum morphogenesis 3.90E-03
GO:xenobiotic catabolic process 3.91E-03
GO:positive regulation of cell migration 4.44E-03

Triple-negative

GO:signal transduction 8.57E-07
GO:neuron migration 1.06E-04
GO:nervous system development 1.94E-04
GO:positive regulation of signal transduction 3.60E-03
KEGG:Thyroid hormone signaling pathway 4.16E-03
GO:positive regulation of phosphatidylinositol 4.52E-03
3-kinase signaling
GO:cellular amino acid metabolic process 8.03E-03

TABLE 3 | Themost significantly enriched pathways by the genes belonging to top
200 specific edges of each molecular subtype in STAD.

Pathway p-Value

Controls

GO:protein phosphorylation 8.83E-05
KEGG:Oxytocin signaling pathway 2.67E-04
GO:apoptotic cell clearance 1.64E-03
GO:peptidyl-serine phosphorylation 1.65E-03
KEGG:Endocrine and other factor-regulated 2.51E-03
calcium reabsorption
GO:vesicle-mediated transport 3.35E-03

CIN

GO:apoptotic process 8.53E-03
GO:steroid metabolic process 1.35E-02
GO:intracellular protein transport 1.61E-02
GO:catecholamine metabolic process 3.64E-02
GO:sulfation 4.43E-02
GO:response to toxic substance 4.78E-02

EBV

KEGG:Metabolic pathways 5.84E-03
GO:response to ionizing radiation 1.16E-02
KEGG:Valine, leucine and isoleucine degradation 1.54E-02
GO:methylation 2.47E-02
GO:activation of cysteine-type endopeptidase activity 3.13E-02
involved in apoptotic process
GO:mRNA splicing, via spliceosome 3.79E-02

MSI

GO:immune response 3.05E-04
GO:response to interferon-gamma 4.37E-04
GO:type I interferon signaling pathway 6.88E-04
GO:interferon-gamma-mediated signaling pathway 1.02E-03
GO:inflammatory response 2.60E-03

GS

GO:cell division 3.48E-08
KEGG:Cell cycle 9.42E-08
GO:mitotic nuclear division 2.59E-07
GO:mitotic nuclear envelope disassembly 7.55E-07
GO:sister chromatid cohesion 3.55E-06
GO:G2/M transition of mitotic cell cycle 5.18E-06
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3.3 Functional Analyses of the Genes in
Each Specific Module
To elucidate the possibly unique biology for each cancer subtype,
a pathway enrichment analysis is conducted over edges of the
identified co-expression module for each subtype. It is worth
noting that the number of genes in specific modules of each
molecular subtype is different. Specifically, there are 171, 86, 281
and 205 genes in the specific modules of control, ER+, HER2+
and triple negative BRCA samples, respectively, with detailed
gene lists given in Supplementary Table S1. And their co-
expressed gene pairs are selected for function analyses. The
most significantly enriched biological processes and pathways
enriched by each of the four gene sets are shown in Table 2.

The most enriched pathways in each distinct set of samples
shown in Table 2 are quite informative. For example, pathways
enriched by the control samples revealed key features of control
vs. BRCA cancer samples in terms of their functionalities, namely
cell-cell adhesion (which is altered in all cancer samples),
interactions with immune cells (which is clearly altered in all
cancer samples vs. controls). Similar can be said about neural
functions (ephrin receptor signaling), cell polarity (which is
considerably altered in cancer, actin cytoskeleton) and
inflammation signaling (leukotriene biosynthesis). Similarly,
the most enriched pathways for ER+ samples are growth
related (Wnt signaling), muscle development (also including
eyelid development and fiber cell development), and a specific
type of immune response (HTLV-I infection). And the most
enriched pathways for HER2+ are related to xenobiotic
metabolism (including dealing with nitrobenzene), oxidative
stress (glutathione biosynthesis), and cell morphogenesis
changes. The pathways uniquely enriched by triple negative
samples involve neural systems, a general indicator for the
level of malignancy of a cancer type, and phosphatidylinositol
3-kinase signaling (a key regulator of cell polarity), also strongly
indicating the level of malignancy of the cancer subtype.

For STAD, 72, 81,67,119, and 217 genes and their co-
expressed gene pairs are selected as distinguishing features for

the control, CIN, EBV, MSI, and GS STAD samples, respectively.
The enrichment results by each gene set are shown in Table 3.

The distinct biology of each of the four subtypes of STAD
samples, as indicated by their enriched pathways, is striking. For
CIN subtype, we see strong indication of toxicity and
detoxification in their cells, e.g., by response to toxic
substance, sulfation, intracellular protein transport and steroid
metabolic process. In EBV samples, the distinct characteristics are
dealing with oxidative stress as shown by response to ionizing
radiation, valine, leucine, and isoleucine degradation, activation
of cysteine-type endopeptidase activity, and upregulation of
spliceosome. In MSI, we see that all signals are related to
inflammation and immune response in immune response,
response to interferon-gamma, type I interferon signaling
pathway, and inflammatory response. In GS, the key
distinguishing characteristic is rapid cell division, as indicated
by cell division, cell cycle, nuclear division, chromatid cohesion
and G2/M transition.

3.4 Comparison of Selected Features
Between Gene Expression Based and
Co-Expression Based Methods
We have compared the consistency and differences among the
top 100 selected features obtained by each of the five methods,
including ours, with results summarized in Figure 4. We note
that genes selected based on gene-expression levels are quite
different from the genes identified based on co-expression levels
for both BRCA and STAD. And there is considerable overlap
among the features selected by different gene-expression level-
based methods. For example, genes selected by ANOVA and the
mutual information method have a 60% overlap in both cancer
types. It should be noted that the top 100 network features
obtained by SCM-DNN are 100 gene-pairs, hence the number
of genes for SCM-DNN is larger than 100.

Through further performing differential gene expression
analyses on the genes obtained by SCM-DNN, we find their
expression have little changes among different subtypes of the

FIGURE 4 | Venn diagram for overlaps among top 100 (network) features obtained by SCM-DNN, HSIC-LASSO, ANOVA, Chi-square andmutual information in (A)
BRCA and (B) STAD.
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same cancer type. This result reveals that differential gene
expression-based methods have clear limitations in
characterizing changes in biological systems. Hence co-
expression-based analyses for cancer subtyping and possibly
many other cancer omic data analysis problems could prove to
be the way to go.

We have also analyzed the connectivity of the selected genes in
the co-expression modules. In our subtyping prediction, we used
only the top 100 and 200 co-expressed gene pairs. An interesting
observation is that all the selected genes could be connected using
at most two additional genes in the relevant module, suggesting
that the selected feature genes are strongly functionally
associated. However, regarding the genes selected by
traditional gene expression based feature selection methods,
they are generally highly dispersed across a co-expression
module.

Additionally, due to the transmissibility of information in a
network, it’s not hard to control the whole module by
managing a few nodes. Moreover, since these modules are
specific to each molecular subtype, in other words, they are
probably the most striking features of this disease. Hence, they
are expected to be the most effective drug targets for
individualized therapy.

4 DISCUSSION

In this paper, we proposed a computational classification
method for cancer molecular subtyping based on co-
expression network features of each cancer sample. It has
been recognized that the phenotypic difference in cancer
samples can hardly be fully understood by only analyzing
single molecules, and it is the relevant system or specific
network that is ultimately responsible for such a
phenomenon (Liu et al., 2016). Moreover, network-based
biomarkers, e.g. subnetwork markers (Ideker and Krogan,
2012), network biomarkers (Liu et al., 2014), and edge
biomarkers (Zhang et al., 2015), are demonstrated superior
to traditional single molecule biomarkers for accurately
characterizing disease states. However, it is generally
challenging to construct specific network and obtain
individual network feature for each sample (Liu et al.,
2016). Here, we generate a sample’s network feature by
calculating its perturbation effect on each background class-
specific module after adding it to them. Intuitively, the quality
of constructed class-specific networks will direct influence the
generation of network feature and then further guide the final
classification results. Hence, to ensure the robustness of each
subtype specific network, we construct multiple co-expression
networks for each molecular subtype by sampling and then
integrate them. Our previous study had proved that sampling-
based co-expression network construction could avoid the bias
caused by both data noise and imbalanced sample size among
different subtypes (Jiang et al., 2020). Class-specific modules
are identified by a top-down approach (i.e. decomposing the
whole co-expression network of each subtype and making
comprehensive comparison across different subtypes),

which is different from some existing specific modules
identification method based on collecting specific co-
expression gene pairs. In comparison, co-expression
modules give a relatively complete path of signal
transmission or transcriptional regulation, and provide
much more information for us to understand biological
mechanism of each subtype, and then could help
researchers to identify both actionable targets for drug
design as well as biomarkers for response prediction.

The classification performance of our method is superior to
conventional molecule biomarker-based methods, when applied
to breast and stomach cancer molecular subtyping, under several
evaluation indexes. It is a universal framework and is expected to
perform well in molecular subtyping task for other cancer types.
Besides, it is also easy to transfer to other subtyping tasks, such as
cancer sample staging and grading classification. Similarly,
through constructing co-expression networks and extracting
specific co-expression modules for each cancer stage or grade,
a sample could be accurately classified according to its network
features generated by calculating the perturbation effect of this
sample on each background class-specific module. We assume
that specific module of each cancer stage (or grade) can capture
the essential distinguishing property of its samples. And adding a
sample of a different class to the specific module will induce large
disturbance, while adding a sample of its same class will not disturb
too much. One of the advantages of this study is that it doesn’t need
toomany training samples. Prior knowledge in the basis of satisfying
the statistical significance indicates that the sample number of each
subtype reaching 15 is enough to construct co-expression networks
for each subtype. Then, a large number of new samples with a
network feature can be generated.

Omics data have enabled the unbiased characterization of the
molecular features of multiple human diseases, particularly in
cancer. Multi-omics may provide molecular insights beyond the
sum of individual omics, and it is becoming increasingly common
to characterize multiple omics layers to gain biological insights
spanning multiple types of cellular processes (Vitrinel et al.,
2019). Hence, in our further work, besides transcriptomics
data, we will introduce other omics data to construct
heterogeneous correlated networks and extract heterogeneous
specific modules for each subtype. Moreover, this study provides
a general framework with extensible and replaceable executive
function modules. Other machine learning methods could be
applied for the final multi-class classification according to specific
task and data distribution.

5 CONCLUSION

We present here a new framework, SCM-DNN, to identify each
molecular subtype’s robust, specific co-expression modules that
could efficiently and steadily predict patients’molecular subtypes
of breast and stomach cancer. Compared with traditional gene
expression based feature selection methods for multi-
classification, SCM-DNN performs better under all the metrics
even the sample size of each class is extremely imbalanced.
Additionally, these specific genes identified by SCM-DNN
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could probably represent the striking characteristics of individual
subtypes; meanwhile, they are concentrated in the co-expression
network. Hence, they are promised to assist us to better
understand the underlying mechanism of molecular subtyping
and potentially guide individualized medicine.

Multi-omics data and their integration are recognized as an
effective way to explore the biological mechanism. In future
studies, we will make full use of those data to develop a more
comprehensive and robust classification method by integrating
multi-omics data to construct subtype-specific correlation
networks for molecular subtyping of cancers, expecting a
deeper mechanism to be discovered.
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Background: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous
disease that can have profound differences in survival outcomes. A variety of powerful
prognostic factors andmodels have been constructed; however, the development of more
accurate prognosis prediction and targeted treatment for DLBCL still faces challenges. An
explosion of research on super-enhancer (SE)–associated genes provide the possibility to
use in prognostication for cancer patients. Here, we aimed to establish a novel effective
prognostic model using SE-associated genes from DLBCL.

Methods: A total of 1,105 DLBCL patients from the Gene Expression Omnibus database
were included in this study and were divided into a training set and a validation set. A total
of 11 SE-associated genes (BCL2, SPAG16, PXK, BTG1, LRRC37A2, EXT1, TGFBR2,
ANKRD12, MYCBP2, PAX5, and MYC) were initially screened and identified by the least
absolute shrinkage and selection operator (Lasso) penalized Cox regression, univariate
and multivariate Cox regression analysis. Finally, a risk score model based on these 11
genes was constructed.

Results: Kaplan–Meier (K–M) curves showed that the low-risk group appeared to have
better clinical survival outcomes. The excellent performance of the model was determined
via time-dependent receiver operating characteristic (ROC) curves. A nomogram based on
the polygenic risk score was further established to promote reliable prognostic prediction.
This study proposed that the SE-associated-gene risk signature can effectively predict the
response to chemotherapy in DLBCL patients.

Conclusion: A novel and reliable SE-associated-gene signature that can effectively
classify DLBCL patients into high-risk and low-risk groups in terms of overall survival
was developed, which may assist clinicians in the treatment of DLBCL.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most common
type of non-Hodgkin’s lymphoma (NHL), accounting for
30%–40% of all newly diagnosed NHL cases (Armitage et al.,
2017; Siegel et al., 2017). DLBCL is an aggressive, severe, and
complex disease with broad genetic, phenotypic, and clinical
heterogeneities (Abramson and Shipp, 2005). The
heterogeneity of the disease results in different survival
outcomes in DLBCL patients receiving standard therapy
(rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisone (R-CHOP)) (Younes, 2015). About 30–40% of
patients do not respond well to standard treatment, with the
highest mortality rate in the first 2 years after diagnosis(Yin et al.,
2019).

In the era of rituximab, the International Prognostic Index
(IPI) is one of the most important tools for prognostic risk
stratification. The subsequent revisions have appeared to
improve the prognostic evaluation system in DLBCL patients.
Disappointingly, these prognostic indicators do not address the
underlying biological heterogeneity of DLBCL. Therefore, it is
urgent to explore novel and effective molecular markers for a
more accurate prediction of the prognosis of patients with
DLBCL.

Super-enhancers (SEs) have been described as a class of
regulatory domains with unusually strong transcription-
assisted activator binding capacity (Parker et al., 2013; Whyte
et al., 2013). SE is a cluster of enhancers that has a stronger ability
to promote transcription compared to the typical enhancers
(TEs). Compared with normal cells, tumor cells construct SEs
on oncogenes during tumorigenesis and recruit enhancer-
binding proteins to drive gene expression (Lovén et al., 2013).
SEs are generally occupied with abundant signals of H3K4me1,
H3K27ac, p300, Mediator, RNA polymerase II, BRD4, CDK7,
and other master transcription factors (Wang et al., 2019); among
them, H3K27ac is the preferred marker for the identification of
super-enhancers (Hnisz et al., 2013). The loss or gain of SEs has
been reported in various tumors (He et al., 2019); similarly, SEs
play a key role in the progression of DLBCL by activating the
expression of downstream oncogenes (Chapuy et al., 2013). In
addition, SE inhibitors (JQ1) used to treat DLBCL suppress the
expression of these genes (Li et al., 2021). Therefore, the
exploitation and identification of SEs-driven hub oncogenes
will provide novel insights into the diagnosis, prognosis, and
treatment of DLBCL.

The least absolute shrinkage and selection operator (Lasso)
penalized Cox regression is a variable selection and contraction
method in Cox’s proportional risk model proposed by Tibshirani
(1997). Lasso can reduce the number of variables compared to
traditional stepwise regression because less influential variables
will be regularized by shrinking their coefficients to zero (Zhang
et al., 2018). Currently, Lasso is widely used to build survival
prediction models based on complex, high-throughput genomic
data. Wu et al. (2021) identified ten important immune-related
genes most associated with the overall survival of DLBCL patients
among the 26 immune-related genes by using Lasso regression
analysis. Similarly, using group Lasso, an 11-SE-related-gene

signature effectively predicted overall survival in DLBCL.
Thus, we applied the Lasso regression method to construct a
prognostic model of DLBCL.

In this study, Lasso penalized Cox regression analysis was
performed using 521 SE-associated genes. A gene cluster
containing 11 SE-related genes (BCL2, SPAG16, PXK, BTG1,
LRRC37A2, EXT1, TGFBR2, ANKRD12, MYCBP2, PAX5, and
MYC) was screened. Subsequently, a risk score model based on
these 11 genes was constructed, which was helpful for risk
stratification and prognosis. Finally, based on the model, an
interactive nomogram containing 11 gene risk groups and
clinical characteristics was established, which provides a tool
to predict the overall survival (OS) of DLBCL patients
clinically. The workflow of our study is shown in Figure 1.

MATERIALS AND METHODS

Data Source
The microarray data and corresponding clinical information
from GSE31312 as the training data and the two other
independent datasets, GSE10846 and GSE80371, as the
external validation datasets were obtained from Gene
Expression Omnibus (GEO) database. 470 DLBCL samples
were enrolled in GSE31312, 414 in GSE10856, and 221 in
GSE80371.

Identification of
Super-Enhancer–Associated Genes
The 521 SE-associated genes identified from the DLBCL cell line
OCY-LY1 were obtained from the website http://dbcorc.cam-su.
org. H3K27ac chromatin immunoprecipitation sequencing
(ChIP-seq) signal was used to screen SE-associated genes in
the OCY-LY1 cell line. The biological function of these genes
was revealed by Gene Ontology (GO) enrichment and Kyoto

FIGURE 1 | The procedure workflow used to establish and certify the
SE-associated gene-based prognostic model for patients with diffuse large
B-cell lymphoma.
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Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis. To get the final expression matrix, we
retained the genes that overlapped between GSE31312 datasets
and the SE-associated genes in OCY-LY1.

Lasso Penalized Cox Regression Analysis
To screen the important and potential prognostic genes, Lasso
penalized Cox regression analysis was performed to establish a
predicting model using the R package “glmnet”. We identified the
optimal lambda (λ) value based on ten-fold cross-validation. Two
best-fit values (λmin and λlse) were chosen by minimizing the
mean cross-validated error to construct the Lasso models.
Subsequently, we performed the Wilcoxon test and ROC curve
analysis to compare the two parameters.

Development of the Prognostic Signature
To construct an optimal prognostic prediction model, we
integrated the candidate genes’ expression levels weighted by
their regression coefficients and calculated the risk score for each
patient, according to the forum RiskScore = ∑βi * Xi. Here, Xi is
the gene expression level, and βi is the regression coefficient.
Regarding the value obtained from the maximally standardized
long-rank statistics as a cutoff point, DLBCL patients were
separated into high- and low-risk groups.

Cox Proportional Hazard Regression
Analyses
The univariate and multivariate Cox proportional hazard
regression models were utilized to identify the correlation
between the gene expression level of the candidate genes and
OS, which was accomplished by R packages “survival” and
“survimer”. The results were shown on the forest plot. The
analyses were also applied to verify the independence of the
constructed prognostic model with other clinical features. The
parameters included the prognostic risk score and some
important clinicopathological factors, such as age, gender,
clinical stage, the situation of extranodal invasion, Eastern
Cooperative Oncology Group (ECOG) score, lactate
dehydrogenase (LDH), and IPI score. The p-value, hazard
ratio (HR), and 95% confidence interval (CI) of each factor
were calculated.

Kaplan–Meier Analysis and
Time-dependent Receiver Operator
Characteristic Curve Analysis
The Kaplan–Meier analysis method was used to compare the
differences in OS and progression-free survival (PFS) between
low- and high-risk groups, and the log-rank tests were
performed to measure the statistical significance (p-value of
less than 0.05). The R packages “survival” and “survimer”
were used to execute the analysis. Moreover, we depicted the
time-dependent ROC curve to assess the predictive capability
for different factors by figuring out the area under the ROC
(AUC) (p < 0.05).

Predictive Nomogram
In total, seven prognostic predictors (six clinical features and the
11-genes risk score) were enrolled to build the predictive
nomogram, which was used to forecast the 1-year, 3-year, and
5-year OS of the patients via R package “rms”. We calculated the
concordance index (C-index) by package “Hmisc” to evaluate the
discrimination of the nomogram. Furthermore, calibration
curves were plotted for intuitionistic comparison of the
predicted against the actual survival probabilities. Data of one
randomly selected patient from GSE31312 were used to validate
the probability of 1–5-year OS, based on the predictors in the
nomogram. Total points were calculated using the R package
“nomogramEx”. Finally, the interactive nomogram was
developed and visually displayed by the R package “regplot”.

Chemotherapy Response With
Super-Enhancer-Associated Genes
Signature
In order to predict the chemotherapy response in the low- and
high-risk groups, the R package “pRRophetic” was applied for
profiling. We straightforwardly compared the estimated half-
maximal inhibitory concentration (IC50) between low- and
high-risk groups among the different chemotherapeutics,
which exactly proved the hypothesis that the low-risk group
was likely more sensitive to the chemotherapy.

Protein–Chemical Interactions Analysis and
Chromatin Immunoprecipitation
Sequencing Profile for H3K27ac Signal
Tracks
We established an interactive network of the hub genes and
chemicals to probe into the chemicals correlated to these genes by
“NetworkAnalyst 3.0”, based on the data from the Comparative
Toxicogenomics Database (CTD). In the end, we used H3K27ac
as SE biomarkers based on the ChIP–seq profiles data from
Cistrome to visualize the location of the SEs regions and their
target genes.

RESULT

Establishment of the Lasso Penalized Cox
Regression Model
A 20,174-gene expression matrix of GSE31312 and the
corresponding clinical information of 470 DLBCL patients
were downloaded from the GEO database under the accession
number GSE31312, as described in Supplementary Table S1. In
total, 521 SE-associated genes identified from the DLBCL cell line
OCY-LY1 were obtained from the website http://dbcorc.cam-su.
org. Pathway enrichment analysis indicated that these SE-
associated genes were closely related to lymphocyte activation
and small GTPase mediated signal transduction (Supplementary
Figures S2A and C). We extracted 417 genes that
overlapped between GSE31312 datasets and the SE-associated
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genes in OCY-LY1 to construct the expression matrix. The lasso
penalized Cox regression analysis was applied to screen some
potential and vital prognostic genes. We calculated the coefficient
values at different levels of penalty (Figure 2A). First, we
identified the optimal lambda (λ) value based on ten-fold
cross-validation. Two best-fit values (lambda.min and lambda.
1se) were chosen by minimizing the mean-square error to
construct the Lasso models, and we selected two groups of
genes (48-gene group of λmin and 16-gene group of λ1se;
Figure 2B). As shown in Figure 2C, the lasso models were
reconstructed according to the λmin and λlse, and both models
performed well to separate the survival and death events
(Wilcoxon test, p < 2.2e-16). The result of the ROC curves
analysis for the two predictive models showed the AUCs were
0.808 (λ1se) and 0.886 (λmin), suggesting that both models had a
promising performance in predicting the probability of overall

survival (Figure 2D). Considering that there was no significant
difference in the predictive performance of the two models
according to AUC and Wilcoxon tests, we further studied the
16-gene model.

Association Between Candidate Genes and
Prognosis
We utilized multivariate Cox regression analyses to explore
whether each of the candidate genes is associated with the
overall survival. As the outcome of the multivariate Cox
regression analysis shown in Figure 3A, the global p-value of
the predictive model was 1.8483e-30, with the Akaike
information criterion (AIC) of 1768.55 and C-index of 0.77.
Multivariate Cox regression showed that BCL2, SPAG16, PXK,
BTG1, LRRC37A2, EXT1, TGFBR2, ANKRD12, MYCBP2,

FIGURE 2 | Lasso penalized Cox regression analysis of SE-associated 512 genes. (A) Lasso coefficient profiles of the 512 SE-associated genes. (B) The
identification of the best Lambda value. The left solid vertical line is the logarithm of lambda.min (48-gene group), and the right solid vertical line is the logarithm of
lambda.1se (16-gene group). (C) The scatter plot of survival status of patients with diffuse large B-Cell lymphoma based on the 48-gene model (left, lambda.min, p <
2.2e−16) or the 16-gene model (right, lambda.1se, p < 2.2e−16) by the Wilcoxon test. (D) ROC curves are used to compare the predictive performance for prob-
min and prob-1se to predict patient survival.
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FIGURE 3 | The 11-gene risk score model for the GSE31312 dataset. (A) Multivariate Cox regression analysis of the 13 genes (*p < 0.05, **p < 0.01, and ***p <
0.001). Hazard ratio and 95% CI are shown in the figure. Global log-rank p, C-index, and AIC were also calculated and shown. (B) The identification of the cutoff value
(cutpoint=0.55) of the risk score. (C) DLBCL patients were divided into the high-risk group and low-risk group based on the cutoff value (upper). The survival status and
time in high-risk and low-risk groups (lower). (D) Kaplan–Meier survival curves showing the difference in OS (upper) and PFS (lower) between high- and low-risk
patients (log-rank test, p < 0.0001). (E) Time-dependent ROC curves for the 11-gene model to predict patient survival.
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PAX5, and MYC were significantly associated with the overall
survival of DLBCL patients. Among these genes, BCL2, SPAG16,
LRRC37A2, TGFBR2, ANKRD12, and MYC may appear to be
the risky factors (HR > 1), while PXK, BTG1, EXT1, MYCBP2,
and PAX5 seemed to act as the protective factors (HR < 1). To
optimize the predictive model, we selected these 11 SE-associated
genes to forecast the OS of DLBCL patients.

Establishment and Validation of the
11-Gene Risk Score Model
The risk scores predicted by the coefficient of these 11 candidate
genes from the multivariate Cox regression analysis (the equation
for risk scores is shown in Materials and Method) stratify the
patients into the low-risk (n = 345) and high-risk (n = 125)
groups, with the cutoff point of 0.55 (Figure 3B). As the outcome
shown, the number of alive events is significantly more in the low-
risk group, while the death events are obviously more frequent in
the high-risk group (Figure 3C). Subsequently, we conducted a
K–M analysis to compare the differences in OS and PFS between
low- and high-risk groups. The K–M survival curve of OS
demonstrated an inferior outcome in the high-risk group
(long-rank test, p < 0.0001), consistent with the analysis of
PFS (Figure 3D). Furthermore, the time-dependent ROC

analysis also showed a favorable outcome, where the AUC was
0.797 at 1-year, 0.801 at 3-year, and 0.804 at 5-year (Figure 3E),
indicating that the risk score model has a good performance to
predict the prognostic outcomes.

Independence of 11-Gene Risk ScoreModel
in Survival Prediction
Considering the effects of other important clinical indicators,
such as age, gender, clinical stage, the situation of extranodal
invasion, ECOG score, LDH level, and IPI score, we validated the
independence of the polygenic prognostic predictive model via
the univariate and multivariate Cox regression analyses. In the
univariate Cox regression analysis, the risk score correlated with
OS of the DLBCL patients (HR at 2.718, p < 0.001), similar to
other important clinicopathological factors (Figure 4A). As for
the multivariate Cox regression analysis, risk score appeared to be
an independent and harmful factor for prediction (HR at 2.640,
p < 0.001), while only Age and ECOG score among all clinical
features showed statistical significance (p < 0.001 and p = 0.009,
respectively) (Figure 4A; Table 1). The ROC curve analysis was a
complement for verifying the predictive capacity of these
indicators, which showed that the AUC of the risk score was
0.795, greater than other clinical indicators (Figure 4B). All these

FIGURE 4 |Univariate andmultivariate analysis shows the prognostic value of 11-SE-associated-gene signature. Univariate (A) andmultivariate (B)Cox regression
analyses of the association between clinicopathological factors and OS of DLBCL patients. (C) The receiver operator characteristic (ROC) curves to predict the sensitivity
and specificity of clinicopathological factors and 11-SE-associated-gene signature-derived risk scores in DLBCL patients.
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results sufficiently confirmed that our 11-gene risk score model
was an independent and robust predictor, which has promising
application prospects in comparison with other well-establish
indicators.

Stratification Analysis
A stratification analysis was carried out to assess the predictive
abilities of the risk score model within different clinical feature
subgroups. Patients from the entire cohort were factitiously
classified by age (>60 vs. <=60), gender (Male vs. Female),
disease clinical stage (stage I–II vs. III–IV), the situation of
extranodal invasion (extranodal sites >=2 vs. < 2), IPI score
(>2 vs. <=2), and disease classification based on
immunohistochemical (IHC) [activated B cell (ABC), germinal
center B cell (GCB), and unclassified (UC)] as different
subgroups. The risk score divided the patients in the same
stratum into the low- and high-risk groups. We observed that
the K–M curves could be distinguished by the risk score model
irrespective of the subgroup, where all the high-risk groups had
inferior survival outcomes (Supplementary Figure S1).

Development of Predictive Nomogram for
Prognosis Prediction
There were seven prognostic predictors enrolled for building the
predictive nomogram to forecast the 1-year, 3-year, and 5-year
OS for the patients. The predictors of the nomogram involved the
11-genes risk score and the other six clinical indicators: age,
clinical stage, ECOG, IPI, LDH, and extranodal sites (Figure 5A).
Calibration curves were plotted for intuitionistic comparisons of
the predicted against actual survival probabilities. The calibration
curves of 1- to 5-year all appeared very close to the grey lines,

suggesting a powerful predictive ability of this nomogram
(Figure 5B). In order to evaluate the predictive effect of the
11-genes risk score based on the nomogram, we randomly
selected one specific patient from the entire cohort. We added
up all the points from these clinical indicators and the 11-gene
risk group; the total point was 551, compared with the total point
of 382 when only considering the clinical variables. The
probability of 1-, 3-, and 5-year OS were 0.335, 0.618, and
0.716, respectively, while taking both the clinical indicators
and risk group into account. In reality, the patient died at
910 days, while the predictive probability of death at that day
was 0.67. Meanwhile, when we only utilized the six clinical
indicators, the probability of 1-, 3-, and 5-year OS were 0.194,
0.372, and 0.445, respectively. The predictive probability of death
at 910 days was 0.408, obviously lower than the probability
forecasted in consideration of the 11-genes risk score, as
mentioned above (Figure 5C).

Validation of the 11-Genes Prognostic
Signature in the External Datasets
To further validate the effect of the prognostic predictive model,
we analyzed two independent external datasets, GSE10846 and
GSE87371, with a similar working procedure asmentioned above.
The detail of the clinical characteristics is also described in
Supplementary Table S1. The risk scores of each cohort were
calculated, which divided the patients into low- and high-risk
groups. As the consistent result of the two datasets shown in
Figure 6A, the overall survival was distinguished from different
groups in K–M analysis (long-rank test, p < 0.0001). In addition,
the time-dependent ROC curve analyses also performed favorable
outcomes, in which the AUC of 1-year at 0.719, 3-year at 0.708, 5-

TABLE 1 | Univariate and multivariate Cox regression analyses of the gene signature and overall survival of DLBCL patients in 3 independent datasets.

Variables Patients(N) Univariate analysis Multivariate analysis

HR (95%CI) p Value HR (95%CI) p Value

GSE31312
Age >60/<=60 270/200 1.027 (1.015–1.038) <0.001 1.025 (1.010–1.039) <0.001
Clinical stage III-IV/I-II 229/220 1.521 (1.324–1.747) <0.001 1.208 (0.990–1.474) 0.063
Extranodal sites >=2/<2 104/366 1.408 (1.234–1.605) <0.001 1.178 (0.987–1.407) 0.07
ECOG >=2/<2 96/374 1.506 (1.311–1.730) <0.001 1.257 (1.058–1.494) 0.009
LDH Evaluated/normal 278/148 2.129 (1.453–3.121) <0.001 1.387 (0.874–2.202) 0.165
IPI score >2/<=2 150/274 1.689 (1.487–1.920) <0.001 1.172 (0.923–1.487) 0.193
Risk score High/Low 125/345 2.718 (2.338–3.160) <0.001 2.640 (2.228–3.128) <0.001

GSE10846
Age >60/<=60 226/188 1.030 (1.018–1.041) <0.001 1.030 (1.016–1.045) <0.001
Clinical stage III-IV/I-II 218/188 1.508 (1.293–1.758) <0.001 1.313 (1.091–1.580) 0.004
Extranodal sites >=2/<2 30/353 1.206 (1.001–1.452) 0.049 0.956 (0.755–1.210) 0.707
ECOG >=2/<2 93/296 1.820 (1.551–2.136) <0.001 1.534 (1.273–1.847) <0.001
LDH Evaluated/normal 178/173 1.137 (1.095–1.181) <0.001 1.116 (1.059–1.177) <0.001
Risk score High/Low 126/288 2.718 (2.128–3.472) <0.001 2.039 (1.542–2.697) <0.001

GSE87371
Age >60/<=60 106/115 1.049 (1.025–1.072) <0.001 1.010 (0.984–1.036) 0.454
Gender Male/Female 116/105 1.499 (0.863–2.604) 0.151 1.336 (0.761–2.347) 0.313
Clinical stage III-IV/I-II 150/71 1.802 (1.297–2.503) <0.001 0.724 (0.441–1.186) 0.200
IPI score >2/<=2 102/119 2.029 (1.622–2.538) <0.001 1.666 (0.921–3.015) 0.092
Risk score High/Low 79/142 2.718 (1.991–3.711) <0.001 2.289 (1.690–3.099) <0.001

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8278407

Xu et al. Super-Enhancer Related Gene Signature

197

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 5 |Nomogram predicting the probability of 1-, 3-, and 5-year OS in patients with DLBCL. (A)Nomogram adding up the points identified on the points scale
(the upward line) for each variable. The total points projected on the bottom scales indicate the probability of 1-, 3-, and 5-year OS. (B) Calibration plot for predicting the
1-, 3-, and 5-year OS. The dotted line represents the ideal condition. (C) Nomogram predicting the probability of 1-, 3-, and 5-year OS for the specific patient
GSM776084 based on the model containing or not containing the risk group in the GSE31312 dataset.
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FIGURE 6 | The 11-gene risk scoremodel for the validation datasets (GSE10846 andGSE87371). (A)Kaplan–Meier plots of overall survival in high-risk and low-risk
subgroups in the validation datasets derived via Log-rank testing. (B) The time-dependent ROC curve and AUC in the validation datasets. (C) The survival status and time
in high-risk and low-risk groups for the validation datasets. (D) The ROC curves to predict the sensitivity and specificity of clinicopathological factors and 11-gene
signature-derived risk scores in DLBCL patients for the validation datasets.
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year at 0.668 in GSE10846, and the AUC of 1-year at 0.709, 3-year
at 0.746, 5-year at 0.705 in GSE87371 (Figure 6B). When the
cutoff points were 0.32 and 0.27 in GSE10846 and GSE87371,
respectively, the patients were separated into low- and high-risk
groups subsequently. There were more death events in the high-
risk group from both datasets (Figure 6C). Moreover, we also
conducted the ROC curve analyses to evaluate the predictive
performance of the 11-genes risk score model and some other
clinical variables. The AUCs of the risk score were 0.724 in
GSE10846 and 0.710 in GSE87371, significantly greater than that
of any other clinical parameters (Figure 6D). The univariate and
multivariate Cox regression analyses were also used for the two
datasets, as shown in Table 1, and the outcome is consistent with
the training dataset.

Chemotherapy Response With
Super-Enhancer-Associated Genes
Signature
In addition, we conducted a prediction analysis to evaluate the
chemotherapy response in the low- and high-risk groups. Widely,
all high-risk groups possessed higher estimated IC50 for the
different chemotherapeutics, which exactly proved the
hypothesis that the high-risk group was not sensitive to the
chemotherapy as the low-risk group (Figure 7). We took 12
chemotherapy drugs into account: bleomycin, vinorelbine,
doxorubicin, gemcitabine, docetaxel, epothilone B, etoposide,
cisplatin, bortezomib, vinblastine, vorinostat, and bexarotene.

In order to better improve the tricky problem, we additionally
established an interactive network among these hub genes and
chemicals to probe into the chemicals correlated to these genes by
“NetworkAnalyst 3.0”. In total, six genes of these 11 hub genes
interacted with JQ-1, a well-recognized SE inhibitor, which
verified the regulating effect of SEs on these genes to some
degree (Supplementary Figure S2B). In the end, we profiled
the ChIP signal of H3K27ac-seq for these 11 genes (Figure 8).
The predicted regions of SE were plotted as the red bar upon the
signal tracks, and each of the predicted SEs located close to these
11 genes, suggesting that the SEs may play an influential role in
the expression of the 11 genes. In addition, the SE inhibitor JQ1
may regulate the expression pattern in OCI-LY1 cells.

DISCUSSION

DLBCL is the most common lymphoma with high heterogeneity
and invasiveness. It accounts for approximately one-third of the
non-Hodgkin lymphoma, and plenty of patients suffer from
insensitive to the typical treatment regimens (Lavacchi et al.,
2021). Researchers aspired to identify optimal biomarkers and
then establish various risk prediction models for predicting the
survival rate, which can be used to improve the prognosis of
DLBCL and contribute to personalized therapeutic decisions
(Merdan et al., 2021). Enhancer is an important epigenetic
regulatory element for DLBCL, which can determine the gene
expression. Super-enhancers (SEs) are a large cluster of active
enhancers critical for maintaining cell identity and driving the

FIGURE 7 | The IC50s of 12 common chemotherapeutic agents with 11-SE-associated-gene signature.
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expression of some oncogenes (Kai et al., 2021; Zhou et al., 2021).
However, the previous studies had rarely constructed a risk
prediction model based on SE-associated hub genes (Li, Duan
and Hao, 2021). In this study, we succeeded in building a superior
polygenic prognostic model by analyzing the data of the DLBCL
patients from the GEO database, taking some clinical indicators
into account as well, which was also rare in previous studies.

In the current study, Lasso penalized Cox regression was
conducted to identify the candidate SE-associated genes, as the
method has recently been prevalent in much research according
to its ability to minimize overfitting (Zhu et al., 2019). In addition,
we utilized univariate and multivariate Cox regression analyses to
narrow the range of the selected genes. Then, we successfully
constructed the gene risk score model for survival prediction.
Moreover, we integrated the risk score and some other clinical
indicators into developing the predictive nomogram and Cox
proportion hazards model, which validated the predictive efficacy
of the prognostic model. In our study, a total of 417 genes were
filtered out by the Lasso penalized Cox regression. Subsequently,
two best-fit values (lambda.min and lambda.1se) were chosen,
and then the 48-gene group of λmin and 16-gene group of λ1se
were initially screened out, respectively. Compared with the result
of the AUC and Wilcoxon test, both models performed well.
Furthermore, 11 genes were selected when statistically significant
both in univariate and multivariate Cox regression analyses. To
explore the influence of the 11 candidate genes on the OS and PFS
of DLBCL patients, the patients were classified into two groups
based on the 11-gene risk score model. The high-risk group had
prominent inferior outcomes both in the K-M survival curve and

AUC. Combined with some clinical indicators, the univariate and
multivariate Cox regression analyses and AUCwere conducted to
verify the independence of the risk score. Overall, the constructed
11-genes prognostic model demonstrated good predictive
performance in the training dataset GSE31312 and the other
two external validation sets, GSE10846 and GSE87371. In the
training set, BCL2, SPAG16, LRRC37A2, TGFBR2, ANKRD12,
and MYC appeared to be the risky factors, apparently
upregulated, while PXK, BTG1, EXT1, MYCBP2, and PAX5
were downregulated in high-risk DLBCL patients.

BCL2 is considered an apoptosis suppressor gene. BCL2 is a
cell survival protein that inhibits apoptosis by interacting with
Bax, Bak, and other pro-apoptotic sensitizer proteins (Nabar
et al., 2018) and also contributes to tumorigenesis by its
promotion for survival, which already has a long and in-depth
research history (Oltersdorf et al., 1998). Currently, many studies
have shown a tight correlation between BCL2 expression levels in
hematopoietic malignancies and drug resistance during therapy
(Stewart et al., 2021). Previous studies have shown that DLBCL
patients overexpressing the BCL2 protein may be strongly related
to inferior survival and resistance to the standard therapy (de
Jong et al., 2019). BCL2 is an important independent prognostic
factor for DLBCL, consistent with our finding that the expression
of BCL2 was significantly upregulated in the high-risk groups.

SPAG16 is a gene encoding sperm-associated antigen 16 that
plays a role in sperm flagella function and motile ciliogenesis
(Zhang et al., 2017; Alciaturi et al., 2019), correlated with the gene
expression machinery of germ cells (Nagarkatti-Gude et al.,
2011). Siliņa et al. (2011) have proposed that SPAG16 can be

FIGURE 8 | Signal tracks for H3K27ac ChIP–seq profiles of the 11-SE-associated hub genes visualized using IGV. The regions of SE are shown in a red bar upon
the signal tracks. ChIP–seq, chromatin immunoprecipitation–sequencing; SE, super-enhancer; IGV, Integrative Genomics Viewer.
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a novel autoantibody target and serologic biomarker for cancers.
Our study suggested that SPAG16 appears to be an independent
predictor, but the specific mechanism to mediate tumorigenesis
and its vulnerability to being an immunotherapeutic target
remain unknown.

LRRC37A2 is a member of the LRRC37 gene family which is
involved in the regulation of protein–ligand interactions and
mapped to chromosome 17q21.31-q21.32 (Giannuzzi et al.,
2013). Several studies suggested that LRRC37A2 is implicated
in epilepsy, epileptic encephalopathy, and Parkinson’s disease,
while the effect on DLBCL has never been reported (Yao et al.,
2021). In this study, high expression of LRRC37A2 corresponds
with an inferior survival outcome that merits further exploitation.

TGFBR2 encodes a protein named transforming growth
factor-beta (TGF-β) receptor type 2. This receptor can
transduce signals into the intracellular environment, triggering
various responses such as cell proliferation, differentiation,
motility, and apoptosis (Biswas et al., 2008). Previous studies
have shown that acquisition of TGFBR2 somatic mutation may
increase the risk of various tumorigenesis and different diseases
(Li et al., 2020). This is in line with our result that high-risk
patients have upregulated expression of TGFBR2 compared with
the low-risk group.

ANKRD12 encodes a 224 kDa nuclear protein ankyrin repeat
domain 12, also called ANCO-2. It has been reported that ANCO
proteins can inhibit the transcriptional activity of nuclear
receptors involved in carcinogenesis (Bai et al., 2013). As per
our result, ANKRD12 can predict survival outcomes for DLBCL
patients independently, but further investigation is needed to
validate.

MYC, well-known as a key transcriptional effector that
modulates cellular proliferative and metabolism in stem cells
(MacDonald et al., 2010), is also involved in the diverse cellular
processes such as adhesion, apoptosis, and DNA damage
response, playing a role in the oncogenic effect (Finley et al.,
2015). There has been an explosion of molecular, cellular, and
animal experiments to illuminate the effect of MYC in the initial
development of neoplasms. As for DLBCL patients, MYC
rearrangement (MYC-R) may forebode poor prognostic.
Rosenwald A et al. have evaluated a large cohort suggesting
the adverse prognostic impact of MYC-R and the significant
therapeutic potential in DLBCL (Rosenwald et al., 2019). This
statement is corroborated again by our study.

As for the protective prognostic factors in our study, PXK
encoding protein is involved in ligand-induced internalization,
synaptic transmits, and degradation of epidermal growth factor
receptors associated with some autoimmunity diseases (Takeuchi
et al., 2010). B-cell translocation gene 1 (BTG1) belongs to an
anti-proliferative gene family, which regulates autophagy and the
cell cycle and is also implicated in DNA repair and mRNA
stability (Xue et al., 2021). BTG1 is a well-characterized tumor
suppressor for both solid tumors and hematopoiesis and recently
has been reported to have a novel role in genotoxic and integrated
stress responses. It is evident that the expression level of BTG1 is
regarded as a prognostic biomarker for diverse cancers (Yuniati
et al., 2019). EXT1 gene produces the protein exostosin-1, which
is found in the Golgi apparatus. This protein can modify newly

produced enzymes and some proteins, which are critical for
metastasis of cancer cells (Francannet et al., 2001). MYCBP2
encodes a ubiquitin (Ub) E3 ligase, which is essential for
neurodevelopment (Mabbitt et al., 2020). The antitumor effect
of this gene has been identified in various cancers. PAX5 is a
member of the paired-box family of transcriptional factors,
exclusively expressed in the B-cell lineage (Berek et al., 2008).
This gene correlates with a heterogeneous subset of B cell non-
Hodgkin lymphoma (B-NHL). The expression level and bio
function of Pax5 play a role in normal B lymphopoiesis and
prevent tumorigenesis (Medvedovic et al., 2011). The antitumor
effect of the above genes is consistent with this study; every gene
act as an independent protective prognostic factor, upregulated in
the low-risk group. However, the concrete bio function and
corresponding molecular machinery of each gene remain a
ripe area for further investigation.

Since BCL2, SPAG16, LRRC37A2, TGFBR2, ANKRD12,
MYC, PXK, BTG1, EXT1, MYCBP2, and PAX5 are SE-
associated genes, the roles of the genes SPAG16, LRRC37A2,
ANKRD12, PXK, and BTG1 have not been illuminated in
DLBCL, which merits further in-depth analysis in the wet
laboratory. In addition, to further assess the efficacy of the 11-
gene risk model, large-scale prospective cohorts are still needed.

CONCLUSION

In summary, we succeeded in constructing a novel and reliable SE-
associated-gene signature that can effectively classify DLBCL patients
into high-risk and low-risk groups and performwell in predicting the
overall survival. The prediction model can be used as a biomarker of
prognosis for DLBCL, which may be a potential therapeutic target
and can assist clinicians in the treatment of DLBCL.
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GLOSSARY

ABC activated B cell

AIC Akaike information criterion

AUC area under the ROC

B-NHL B cell non-Hodgkin lymphoma

ChIP-seq chromatin immunoprecipitation sequencing

CI confidence interval

C-index concordance index

CTD Comparative Toxicogenomics Database

DLBCL diffuse large B-cell lymphoma

ECOG Eastern Cooperative Oncology Group

GCB germinal center B cell

GEO Gene Expression Omnibus

GO Gene Ontology

HR hazard ratio

IC50 half-maximal inhibitory concentration

IGV Integrative Genomics Viewer

IHC immunohistochemical

IPI International Prognostic Index

KEGG Kyoto Encyclopedia of Genes and Genomes

K–M Kaplan–Meier

Lasso least absolute shrinkage and selection operator

LDH lactate dehydrogenase

MYC-R MYC rearrangement

NHL non-Hodgkin’s lymphoma

OS overall survival

PFS progression-free survival

R-CHOP rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisone

ROC receiver operating characteristic

SE super-enhancer

TE typical-enhancer

Ub ubiquitin

UC unclassified
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Cross Analysis of Genomic-Pathologic
Features on Multiple Primary
Hepatocellular Carcinoma
Fei Ren1, DepinWang1, Xueyuan Zhang1,2, Na Zhao2, XiaowenWang2, Yu Zhang3* and Li Li 4*

1High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing,
China, 2Zhijian Life Co. Ltd., Beijing, China, 3Department of Medical Oncology and Radiation Sickness, Peking University Third
Hospital, Beijing, China, 4Department of Oncology, Peking University International Hospital, Beijing, China

Hepatocellular carcinoma (HCC) is a prevalent malignancy cancer worldwide with a poor
prognosis. Hepatic resection is indicated as a potentially curative option for HCCpatients in the
early stage. However, due to multiple nodules, it leads to clinical challenges for surgical
management. Approximately 41%–75%of HCC cases aremultifocal at initial diagnosis, which
may arise frommulticentric occurrence (MO-HCC) or intrahepaticmetastasis (IM-HCC) pattern
with significantly different clinical outcomes. Effectively differentiating the two mechanisms is
crucial to prioritize the allocation of surgery for multifocal HCC. In this study, we collected a
multifocal hepatocellular carcinoma cohort of 17 patients with a total of 34 samples. We
performed whole-exome sequencing and staining of pathological HE sections for each lesion.
Reconstruction of the clonal evolutionary pattern using genome mutations showed that the
intrahepatic metastogenesis pattern had a poorer survival performance than independent
origins, with variants in the TP53, ARID1A, and higher CNV variants occurring more
significantly in the metastatic pattern. Cross-modality analysis with pathology showed that
molecular classification results were consistent with pathology results in 70.6% of patients,
and we found that pathology results could further complement the classification for undefined
patterns of occurrence. Based on these results, we propose a model to differentiate the
pattern of multifocal hepatocellular carcinoma based on the pathological results and genome
mutations information, which can provide guidelines for diagnosing and treating multifocal
hepatocellular carcinoma.

Keywords: hepatocellular carcinoma, whole exome sequencing, whole slide images, molecular profiling and
subtyping, hepatitis B virus

INTRODUCTION

Liver cancer is ranked as the sixth most commonmalignancy cancer, and its incidence is rising (Sung
et al., 2021). Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting
for approximately 90% of liver cancer cases (Llovet et al., 2021). Roughly 41%–75% of patients with
HCC present with multiple intrahepatic tumors (Miao et al., 2014; Vogel et al., 2018). Despite there
existing standardized guidelines for multifocal HCC and indications for surgical resection, surgical
suggestions for individual patients remain complicated owing to the difficulty of accurately
predicting future tumor progression. These uncertainties for the recurrence of primary lesions
or metastatic possibility provide challenges to the prognosis after surgery for individual patients
(Viganò et al., 2019).
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Multifocal HCC may arise synchronously or metachronously
as a separate primary tumor (multicentric occurrence) or develop
due to intrahepatic metastases from the same primary cancer
(Baffy, 2015). Since the prognosis of hepatocellular carcinoma
patients under these two types varies greatly, it is crucial to
construct the correct diagnostic approach for these patients.
Several assessment methods, including pathological
examination, integration of hepatitis B virus (HBV) DNA by
PCR and DNA blot analysis, and heterozygosity analysis of DNA
microsatellite loci, have been recently developed to distinguish
between these two types of multifocal HCC (Study, 2012).
However, the combination of molecular and pathological
profiling with analytical methods systematically used to
distinguish between these two patterns are still lacking.

The advantage and rapid progress of next-generation
sequencing, such as whole-exome sequencing (WES), has
made it possible to comprehensively characterize the disease
mechanisms and altered genes in multiple cancers (Ally et al.,
2017; Yan et al., 2018; Nanki et al., 2020). This approach allows
the identification of novel molecular markers and the definition
of underlying biological mechanisms, thus facilitating the
stratification and characterization of cancers (Cortés-Ciriano
et al., 2022). In this study, we selected representative patients
of HBV-associated multifocal HCC who underwent tumor
resection and exhibited a variable postoperative course.

These HCC samples were conducted whole-exome sequencing
(WES) to obtain a complete genetic alteration profiling for each
patient. We then performed a systematic analysis of integrated
genomics and further correlated these with clinic pathological
data. We sought to comprehensively unravel the molecular
differences between the two multifocal HCC models as well as
differences in pathological features and identify molecular
markers for diagnostic, prognostic, and potential therapeutic
targets to guide the clinical diagnosis and treatment of
multifocal hepatocellular carcinoma.

METHODS

Mutation Analysis
First, we aligned the exome sequencing clean reads against the
human reference genome hg19 download from UCSC (http://
www.genome.ucsc.edu/) using BWA (Li and Durbin, 2009) with
the default parameters. To reduce systematic (non-random)
technical error, we applied base quality recalibration with the
Genome Analysis Toolkit (GATK) 4.0 (McKenna et al., 2010).
The duplicated reads was removed from the alignment files using
the Picard tools. Somatic variants, including single nucleotide
variants (SNVs) and small insertions and deletions changes
(Indels), were detected by Mutect2 of GATK 4.0 on the paired
tumor and normal samples. High confidence variants were
screened using the criteria of TLOD >10, and then they were
annotated by the vcf2maf tool (https://github.com/mskcc/
vcf2maf) to obtain nine types of mutations, including
“Missense Mutation”, “Nonsense Mutation”, “Nonstop
Mutation”, “Splice Site”, “Splice Region”, “In Frame Ins”, “In
Frame Del”, “Frame Shift Ins” and “Frame Shift Del” mutations.

Copy Number Analysis
The bioinformatics tool facet-suite (R package) (Shen and Seshan,
2016) was utilized to detect CNVs on paired sequencing reads of
tumor and normal samples from the same patient. We first
assessed the copy number of different segments and then
filtered those segments with a total copy number greater than
twice the DNA ploidy level as the amplification (AMP), and
segments with a total copy number equal to zero as deletions
(DEL). These AMP or DEL segments were the annotated with
genes located in the genome context to obtain gene-level copy
number alteration. To summarize total copy number variation at
the level of the whole exome, we calculated a CNV score, which is
similar to the TMB, simply by multiplying the length of CNV
segments by their relative average altered weight.

Tumor Mutational Burden Analysis
As the predictive biomarker in solid tumors (Wu et al., 2019), the
tumor mutational burden (TMB), was calculated for all tumor
samples by counting the non-synonymous mutation rate per
megabases. We screened nine types of non-silent mutations from
the analysis of the vcf2maf annotation tool. Those nine types of
variants include “Splice Site”, “Splice Region”, “Missense
Mutation”, “Nonstop Mutation”, “Nonsense Mutation”,
“Frame Shift Ins” and “Frame Shift Del”, “In Frame Ins”, “In
Frame Del”. Then these variants were all counted for TMB
calculation, and the values were normalized by the total length
of the CDS regions (36 Megabases) covered by the Agient V6
whole exome (Wang et al., 2020).

Microsatellite Instability and Mutational
Signature Analysis
We evaluated the MSI status of the tumor samples with the
bioinformatics tool Msisensor (Niu et al., 2014), and screened
MSI-H samples with the criteria of an MSIsensor score greater
than 20 (Shimozaki et al., 2021). We determined the frequency of
96 mutated triplets per tumor sample based on the distribution of
the six substitution patterns (C > A, C >G, C > T, T > A, T > C, T
> G) and the neighbor 5′ base and 3′ base (Alexandrov et al.,
2013). Together with their frequency, these triplets were
summarized to construct a 96 × N mutation type frequency
matrix, where N is the number of variants. We took the matrix as
the input to determine the 1–30 mutational signatures
(Alexandrov et al., 2020) from the Cosmic database (Tate
et al., 2019) and to assess the proportion of specific mutational
signatures in the samples using the bioinformatics tool
DeConstructSig (Rosenthal et al., 2016). 30 mutational
signatures were then reduced and classified to mutational
signature 1, mutational signature 3, mutational signature 6,
mutational signature 10 and others according to their different
frequencies in the HCC samples (others represent the less
frequently mutated mutational signatures in the HCC samples).

Phylogenetic Analysis
Phylogenetic analyses were performed to elucidate genes essential
for promoting tumor recurrence. We compared mutant variants
in samples from different cancer samples, counted unique and
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shared mutations, and used the common and unique mutations
in two cancer samples to construct a phylogenetic tree. The
phylograms were inferred using the R Bioconductor package
phangorn (Schliep, 2011). Through phylogenetic tree analysis,
we were able to identify early driver mutations and de novo
mutations at different stages, thus providing a comprehensive
interpretation of the relationships between different tumors.

Pathology Image Analysis
Feature extraction of cell nucleus from pathology images mainly
includes cancer region labeling, patch segmentation, color
normalization, nucleus segmentation, nucleus-level and
image-level feature extraction (Cheng et al., 2020): 1) The
whole slide images (WSIs) were labeled the cancer region
manually. 2) Non-overlapping image tiles with a size of
2048*2048 pixels with a resolution of 0.5 μm per pixel were
extracted from Whole Slide Images (WSIs). To remove the bias
of different staining procedures, all tiles were normalized based
on one reference image using the Macenko normalization
method. 3) Use a hierarchical multilevel thresholding
approach to segment the nucleus for each tile. 4) Calculate
10 features of each nucleus in each image patch. 5) For the nuclei

of all patches in oneWSI, each type of nucleus-level features was
dissected into 15 image-level features by combining a 10-bin
histogram and 5 distribution statistics (mean, std, skewness,
kurtosis, and entropy). In total, we calculated 100 image-level
features for each whole-slide image.

Statistical Analysis
We use the student t test to compare the difference between two
continuous variables. Kaplan-Meier survival analysis was used to
obtain survival curves reflecting the differences in prognosis
among tumor subtypes. Log-rank test was couducted to assess
the correlation. Mann-Whitney U test was utilized to analyze the
relationship between the two classification variables.

RESULTS

Collection of Multifocal HCC Samples
The clinical outcome of patients with HCC undergoing radical
surgery are closely related to the number of intrahepatic tumors.
The main purpose of this study was to explore genomic and
pathological characteristics among the different intrahepatic

FIGURE 1 | (A) Landscapes of frequently mutated genes in liver cancer. (B) Mutation signature of liver cancer. (C) Characterization statistics of TMB, CNV, MSI,
and Ploidy. (D) Copy number alterations in liver cancer.
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tumors and discover multiple modality indicators, thus we
specified the intrahepatic tumor numbers to be 2. Multifocal
HCC samples are collected from Peking University International
Hospital and Peking University Third Hospital, and the inclusion
criteria is as follows. The tumor satisfies the criteria for surgical
indications defined by the Chinese CSCO Guidelines for primary
HCC. Postoperative pathology confirmed that the tumor was
hepatocellular carcinoma. Tumors were radically resected (R0),
and the number of tumors was two. A total of 17 cases of patients
met the criteria, and 34 tumor samples were performed whole-
exome sequencing.

Molecular Profiling of Liver Cancer
A total of 17 patients with multifocal liver cancer were recruited
for our study, with two cancer foci collected per patient. Sixteen of
them were male, one was female, and the cohort’s median age was
45 years (distribution 43–67 years). The median follow-up time
was 42 months. WES was performed on 34 tumor samples and
paired samples of FFPE specimens, with a average 200× coverage
depth for both the tumor and normal samples. The detailed
clinical and pathological information of all patients used in this
research is given in Supplementary Table S1.

To disentangle somatic mutations andmolecular characteristics
of multifocal hepatocellular carcinoma, mutation analysis of 34
tumor samples identified 7,752 individual mutations, including
6,378 single nucleotide variants (SNVs) and 1,374 small insertions
and deletions changes (Indels) (Supplementary Table S2). The
mean number of non-synonymous mutations per sample was 77
(range: 10–176), corresponding to 3.5 non-synonymous mutations
per Megabyte (Mb), comparable to the TMB in the TCGA cohort.
To explore potential driver mutations in patients, we summarized
multiple genes with the highest mutation frequency (Figure 1A).
Themost commonlymutated genes in these patients were OBSCN,
MUC5B, TTN, ZNF469, MUC16, TP53, with VAF greater than
25%. The frequency of TP53 variants is comparable to that
observed in the TCGA cohort. Deletions were not widespread
in genes with high mutation rates, while BTN2A1, BTN3A1,
BTN3A3, BTN3A2, and FLG-AS1 were amplified in several
samples.

Mutation signature analysis showedmutation signature 1, 3, 6,
and 22 to be more prevalent in patients (Figure 1B). According to
published reports (Koh et al., 2021), Signature 6 is associated with
DNA mismatch repair defects and MSI tumors. Signature 1 is
associated with age at cancer diagnosis and has been detected in

FIGURE 2 | (A) Molecular typing strategy of two cancer subtypes. (B) Associations between cancer types and OS. (C) Comparison of the prevalence of altered
genes between two cancer subtypes. (D) Comparison of TMB, CNV, MSI, and Ploidy between two cancer subtypes.
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most types of cancer samples. Signature 3 is associated with
homologous repair and correlates with BRCA gene function.
Signature 22 has been found in urothelial (renal pelvis)
carcinoma and liver cancers.

We characterize molecular features of TMB, CNV, MSI, and
Ploidy. It is shown that the median TMB was around 5.15
(Figure 1C), and the median CNV was assessed at 214.9
(Figure 1C). The MSI analysis showed that most liver cancer
samples had low MSISensor scores, all less than 10 (Figure 1C).
Most of the samples had a ploidy around 2 (Figure 1C). The copy
number of chromosomes has more amplification events on
chromosomes 1 and 8 (Figure 1D).

Identification of Hepatocarcinogenesis
Pattern by Genomic Signature
We calculated the Jaccard similarity coefficient (Jaccard Index)
(Bu et al., 2021b) of two tumors in the sample patient based on the
analysis of shared mutations. An index of 0.01 was taken as the
screening threshold, and 17 patients were divided into two groups
in total. Among them, we defined those with index <0.01 as

separate primary hepatocellular carcinoma, 10 cases in total, and
those with index >0.01 as metastatic, 7 cases in total (Figure 2A).
The index of the metastatic group ranged from 0.08 to 0.7. The
analysis of PFS showed that patients with metastatic pattern
showed worse survival (p-value = 0.1142) (Figure 2B). Analysis
of differences inmutations between the two subgroups showed that
TP53 was more inclined to be present in the subgroup with the
metastatic pattern, with a p-value of 0.0212 (8/14 vs. 1/20).
ARID1A had a slight elevation in metastasis, with p-value =
0.2022 (4/14 vs. 2/20) (Figure 2C). The analysis of the
difference among TMB, CNV, MSI, and Ploidy showed a slight
increase in TMB (p-value = 0.1199, average = 6.35 vs. 5.44) and a
significant increase in CNV (p-value = 0.0327, average = 358.13 vs.
225.68) in the metastatic group. At the same time, there was no
significant difference between MSI and Ploidy (Figure 2D).

Phylogenetic Analysis of
Hepatocarcinogenesis
According to Jaccard’s similarity coefficient, seventeen
individuals were divided into two groups, of which seven were

FIGURE 3 | (A) Phylogenetic tree of patient Pt13. (B) Phylogenetic tree of patient Pt03.
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branching evolutionary (metastatic) patterns, and ten were
independent occurrence patterns (Supplementary Figure S1).
We further used phylogenetic tree analysis to show the
evolutionary patterns of different cancer lesions and discover
essential driver genes. The results shown by the phylogenetic tree
were consistent with the Jaccard similarity coefficient.

For example, in the case of Pt13, the two tumors are highly
similar according to the Jaccard similarity coefficient. Moreover,
according to the results of the phylogenetic tree, a total of 107
mutations occurred in the two lesions, of which 82 mutations
were shared in both samples (76.6%), i.e., located in the branching
part of the shared phylogenetic tree (Figure 3A). Among them,
ARID1A, TSC2, JAK3, CIC, CINNB1, and SETD2 were mutated
at the early stage of carcinogenesis, which played an essential role
in advancing early cancer development and progression.

In contrast, case of Pt03 had low level of similarity between
the two tumors. As shown by the phylogenetic tree, 345
mutations occurred in either of tumor, while only TNIP2
was a shared early mutation (Figure 3B). And TNIP2 is less
reported in cancer and is more like passenger mutation, so the
mutation sharing here may be due to technical bias of
sequencing or some accumulated alterations due to HBV
infection. The phylogenetic trees of remaining cases are
available at Supplementary Figures S1–S5.

Pathological Cross-Analysis
The results of molecular testing can provide precise results for
accurate diagnostic typing. However, more accessible in the clinic,
pathology testing require simpler processing and short time
consuming than molecular testing. Therefore, we attempted to

FIGURE 4 | (A) Pathological section of patient Pt17. (B) Pathological section of patient Pt10. (C) Associations between cancer types by pathologists and OS.
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compare pathology results from different individuals to
determine what percentage of molecular typing could be
consistently distinguished by pathology typing. In simple
words, assuming molecular typing results as the standard, we
wanted to see how much of a typing indication the pathology
could achieve. From there, we can determine the scenario in
which pathology and molecules are used in combination with
each other.

We had a mid-level pathologist interpret the pathological images
of these 17 patients and then compared the results of pathological
typing with those of molecular testing. The analysis of the results of
the 17 cases showed that 70.6% (12 cases) of the molecular typing
results could be distinguished by pathological indicators, using the
typical indicators of the nuclei of the pathological sections as
important measures. Case Pt17 was classified as metastatic by
pathological typing because the cell morphology of the two
tumors was very similar (Figure 4A). This result is consistent
with the results of molecular typing. In contrast, case Pt10 was
classified as the seperate primary HCC because the cell morphology
of the two tumors was quite different, such as the cellular atypia and
sinusoids (Figure 4B). In addition, the survival analysis results of
pathological typing showed that pathological interpretation could
slightly distinguish between the two cancer subtypes (Figure 4C).

Meanwhile, we used a machine learning approach (Cheng
et al., 2020) to extract 100 features of the pathological images,
represented by matrix vectors, to discriminate between two
subtypes by comparing the pathological features of two foci
slides. First, all features were combined to calculate the
correlation between the two foci of the same patient
(Figure 5C), and the results showed that the subtypes could
be distinguished by correlation (p < 0.001) (Figure 5A). Second,
all 100 pathological features were compared between two groups,
and we found that the features of rmean_bin4, rmean_bin5,
bmean_bin5, bmean_bin6, disMax_bin1,disMax_bin4 and
distMean_bin4 are significantly different between the two
groups (Figure 5B).

DISCUSSION

Hepatocellular carcinoma is a cancer with a high degree of
malignancy (Chidambaranathan-Reghupaty et al., 2021). In
this study, we collected a cohort of 17 patients with multifocal
hepatocellular carcinoma. Then we utilized the bioinformatics
approach to analyze the whole-exome molecular data and image
data of H&E stained histology slides. By calculating the Jaccard

FIGURE 5 | (A) Barplot of correlation from all pathological image feature. (B) Boxplot of correlation from 15 types of pathological image feature.
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Index between two tumor and reconstructing the tumor clonal
evolution, we revealed that intrahepatic metastasis and separate
primary patterns reflected from the unique gene mutations and
copy number alterations. We also utilized a machine learning
approach to extract 100 features of the pathological images, to
discriminate between two subtypes by comparing the
pathological features of two focal H&E slides.

As two standard approaches for accurate diagnosis in the clinic, we
explored the consistency between molecular testing and pathological
testing. We confirmed that the pathology results could have 70.5%
agreement with those of molecular testing. Based on these results, we
propose amulti-modality way to differentiate the pattern ofmultifocal
hepatocellular carcinoma using molecular or pathology testing in
different clinical scenarios to provide guidelines for diagnosing and
treating multifocal hepatocellular carcinoma.

Due to the scarcity of samples for multifocal hepatocellular
carcinoma, only 34 samples were collected in this study, which
may limit our construction of a more effective mathematical
model for molecular subtyping. We may not achieve a significant
outcome if the sample size is not large enough. Therefore, in this study,
we mainly took a differential comparison to discover possible
molecular biomarkers, and analyzed molecular and clinical features
to explore how well the molecules testing is consistent with the
pathology testing. Following this work, we are conducting a clinical
study of multifocal HCC, yielding a more extensive data collection in
the future. We will use advanced computational techniques such as
artificial intelligence to optimize further the mathematical model of
molecular typing (Tanaka et al., 2021), and some biological intelligent
interpreters (Bu et al., 2021a) to generate multiple biomedical
knowledge. Moreover, decision tools with multimodal
combinations (Patel et al., 2021) could also be developed to
optimize the diagnosis of multifocal HCC and thus guide the
clinical treatment of liver cancer.
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A Pyroptosis-Related Signature
Predicts Overall Survival and
Immunotherapy Responses in Lung
Adenocarcinoma
Kaibin Zhu1, An Yan2, Fucheng Zhou1, Su Zhao1, Jinfeng Ning1, Lei Yao1, Desi Shang3 and
Lantao Chen1*

1Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China, 2Department of Thoracic Oncology,
Harbin Medical University Cancer Hospital, Harbin, China, 3College of Bioinformatics Science and Technology, Harbin Medical
University, Harbin, China

Background: Lung adenocarcinoma (LUAD) is a highly malignant cancer with a bleak
prognosis. Pyroptosis is crucial in LUAD. The present study investigated the prognostic
value of a pyroptosis-related signature in LUAD.

Methods: LUAD’s genomic data were downloaded from TCGA and GEO databases.
K-means clustering was used to classify the data based on pyroptosis-related genes
(PRGs). The features of tumor microenvironment were compared between the two
subtypes. Differentially expressed genes (DEGs) were identified between the two
subtypes, and functional enrichment and module analysis were carried out. LASSO
Cox regression was used to build a prognostic model. Its prognostic value was assessed.

Results: In LUAD, genetic and transcriptional changes in PRGs were found. A total of 30
PRGs were found to be differentially expressed in LUAD tissues. Based on PRGs, LUAD
patients were divided into two subgroups. Subtype 1 has a higher overall survival rate than
subtype 2. The tumor microenvironment characteristics of the two subtypes differed
significantly. Compared to subtype 1, subtype 2 had strong immunological infiltration.
Between the two groups, 719 DEGs were discovered. WGCNA used these DEGs to build
a co-expression network. The networkmodules were analyzed. A prognostic model based
on seven genes was developed, including FOSL1, KRT6A, GPR133, TMPRSS2,
PRDM16, SFTPB, and SFTA3. The developed model was linked to overall survival and
response to immunotherapy in patients with LUAD.

Conclusion: In LUAD, a pyroptosis-related signature was developed to predict overall
survival and treatment responses to immunotherapy.
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INTRODUCTION

Lung cancer is a worldwide public health problem (Bray et al.,
2018). The most common subtype of lung cancer is lung
adenocarcinoma (LUAD) (Cheng et al., 2016). Despite
advancements in lung cancer treatment, patients have a 5-year
survival rate of less than 20% (Dixon et al., 2014). The clinical
application of immunotherapies enhanced lung cancer therapy
(Memmott et al., 2021). However, some lung cancer patients do
not respond to immunotherapies (Peters et al., 2019). As a result,
it is critical to investigate markers for predicting the lung cancer
prognosis.

Pyroptosis is a type of programmed cell death that results in
the release of pro-inflammatory cytokines (Liu et al., 2021).
Pyroptosis is primarily triggered by the cleavage of gasdermin
D (GSDMD) and the activation of NLRP3/caspase-1 (Schneider
et al., 2017;Wei et al., 2020). Pyroptosis has been linked to various
cancers, including liver cancer, cervical cancer, and breast cancer.
(A et al., 2014; Chu et al., 2016; Chen et al., 2021). Ye et al. (2021)
found that PRGs play a significant role in tumor immunity. The
defined pyroptosis-related signature might be utilized to predict
the prognosis of ovarian cancer. In lung cancer patients’ alveolar
macrophages, NLRP3/caspase-1 inflammasome is suppressed
(Lasithiotaki et al., 2018).

Furthermore, the activation of pyroptosis has an inhibitive
effect on lung cancer. Polyphyllin VI has an anticancer action
associated with pyroptosis activation (Teng et al., 2020).
Resibufogenin may suppress lung cancer development and
metastasis by triggering pyroptosis (Yin et al., 2021). GSDMD
downregulation may limit lung cancer cell growth via the EGFR/
Akt signaling pathway. Patients with LUAD who had less
GSDMD expression had a better prognosis (Gao et al., 2018).
As a result, PRGs may have prognostic and therapeutic potential
in LUAD management.

We investigated the role of pyroptosis in the prognosis of
LUAD, utilizing a pyroptosis-related signature in this study. The
established prognostic model might predict LUAD patients’
overall survival (OS) and responses to treatment. This study
would promote the rationale use of immunotherapy in LUAD.

MATERIALS AND METHODS

Data Sources
The Cancer Genome Atlas (TCGA) genomic data for LUAD
samples were obtained from the Genomic Data Commons. Gene
Expression Omnibus (GEO) was used to download gene
expression microarrays of LUAD samples (GSE31210) and
non-small cell lung cancer (NSCLC) samples (GSE37745 and
GSE50081) and lung cancer (GSE30219). The Robust Multichip
Average (RMA) method and R package “affy” normalized
GSE37745 gene expression data. Detailed information of the
cohorts is presented in Supplementary Tables S1, S2.

IMvigor210 was a single-arm phase Ⅱ study that looked into an
anti-PD-L1 agent (atezolizumab) in patients with metastatic
urothelial carcinoma (mUCC) (NCT02108652 and
NCT02951767) (Mariathasan et al., 2018). The R package

“IMvigor210CoreBiologies” obtained all the expression and
clinical data from the IMvigor210 trials. GEO provided RNA-
seq data for a total of 27 advanced NSCLC patients who were
treated with anti-PD-1/PD-L1 (GSE135222).

Variation and Interactions of
Pyroptosis-Related Genes
A total of 47 PRGs were obtained from the study of Song et al.
(2021). The R package “maftools” was used to demonstrate PRG
mutation. The R package “ggpubr” was used to visualize the copy
number variation (CNV) information of PRGs. The R package
“limma” was used to examine the differential expression of PRGs
in tumor samples.

The Pathway Commons database was used to find PRG
protein–protein interactions. Pearson correlation was used to
examine the co-expression status of PRGs (Supplementary Table
S3). Cytoscape software was utilized to visualize the correlation
network.

Identification of Pyroptosis-Related
Subtypes
Based on the pyroptosis genes and R package “pheatmap,”
K-means clustering was used to determine the pyroptosis-
related subtypes (subtypes 1 and 2). The Kaplan–Meier
survival analysis was performed to analyze patient differences
between the two subtypes in conjunction with the log-rank test.
The difference between two subtypes based on the PRG
expression was investigated using principal component
analysis (PCA).

Distinction of Cancer Therapeutic
Signatures Between Subtypes
We obtained 25 cancer treatment-predicted signature sets from
various publications (Sweis et al., 2016; Ayers et al., 2017;
Mariathasan et al., 2018; Kamoun et al., 2020). The R package
“GSVA” was used to calculate the therapeutic signature gene set
enrichment score using gene set variation analysis (GSVA).
Detailed information of 25 cancer treatment-predicted
signature sets is listed in Supplementary Table S4. The one-
sidedWilcoxon rank-sum test was used to analyze the differences
in the therapeutic enrichment scores between subtypes.

Characteristics of the Tumor
Microenvironment
The range of infiltration of 22 immune cells in TCGA LUAD
samples was inferred by the CIBERSORT (Cell-type
Identification by Estimating Relative Subsets of RNA
Transcripts) method (Newman et al., 2015). CIBERSORT can
compute the abundances of specific cell types in a mixed sample
based on the bulk expression. In addition, the ESTIMATE
(Estimation of STromal and Immune Cells in MAlignant
Tumor Tissues Using Expression Data) method was used to
calculate the abundances of immune cells by the R package
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“estimate.”We focused on the mRNA expression of five immune
checkpoints: PD-1, PD-L1, CTLA4, CD47, and BTLA. The one-
sided Wilcoxon rank-sum test was utilized to analyze the
differences between subtypes.

Functional Analysis for Subtypes
The R package “limma” discovered 719 differentially expressed
genes (DEGs) between two subtypes with |log2FC| > 0.5 and p <
0.001. A web-based program, Metascape, was used to perform the
enrichment analysis on 719 DEGs using ontology sources such as
KEGG Pathway, GO, Reactome, and other canonical pathways
(Supplementary Table S5). Then, a selection of enriched terms
with a similarity greater than 0.3 was chosen and shown as a
network plot.

Identification of a Key Module
WGCNA (weighted gene co-expression network analysis) is a
data reduction method and an unsupervised classification
method (Langfelder and Horvath, 2008; Langfelder and
Horvath, 2012). The co-expression network was built using
the Sangerbox 3.0 tool and DEG expression profile.
Module–trait association analysis was used to determine which
co-expression module was the most relevant to the clinical
features. The genes were clustered, and a heatmap was created
to illustrate the relationship between modules and phenotype.

Construction of a Pyroptosis
Subtype-Related Prognostic Model
The least absolute shrinkage and selection operator (LASSO)
approach and Cox regression model were employed to screen the
prognostic genes in the key module. One standard error (SE) over
the minimum threshold was chosen. The R package “glmnet”
managed the entire process. Finally, a seven-gene risk score
formula was developed, and multivariate Cox regression
coefficients were computed using the R package “survival”:
Pyroptosis subtype-related risk score (PSR_score) = (exp
Gene1 * coef Gene1) + (exp Gene2 * coef Gene2) + . . . +(exp
Gene7* coef Gene7).

Survival Analysis
Patients were classified based on the median of their PSR_score.
The R package “survival” used the log-rank test to compare the
survival times of patients with high PSR_score and patients with
low PSR_score. Furthermore, stratified analysis was performed to
determine the protective effect of PSR_score based on the T stage,
N stage, M stage, and tumor stage. Chi-square tests were used to
examine the connections between the PRG score and clinical
factors such as age, gender, T stage, N stage, andM stage. The data
were presented using Kaplan–Meier graphs (Supplementary
Table S1, S2).

Statistical Analysis
The one-sidedWilcoxon rank-sum test was used to determine the
difference between the two subtypes or high- and low-PSR_score
groups. R version 4.1.2 was used for all statistical studies. p < 0.05
was considered statistically significant.

RESULTS

Genetic and Transcriptional Alterations of
Pyroptosis Genes in Lung Adenocarcinoma
Supplementary Figure S1 depicts the analytical process used in
this study. We first explored the landscape of variation in PRGs in
the genome and transcriptome. A relatively high mutation
frequency of PRGs was observed in LUAD (Figure 1A). TP53
exhibited the highest mutation frequency (55%), followed by
NLRP3, NLRP7, and NLRP2. Then, we looked at the link
between TP53 mutation and PRG expression. CHMP7, IRF2,
CASP4, ELANE, BAX, and TIRAP were all downregulated in
TP53 mutation samples (Supplementary Figure S2, p < 0.1).
Following that, we investigated the CNV landscape of PRGs in
LUAD (Figure 1B). Copy number amplification was common in
HMGB1, BAX, CASP3, IRF2, IL18, and GPX4, whereas copy
number deletion was common in GSDMC, GSDMD, AIM2, and
CHMP6.

Furthermore, we investigated the difference in PRG expression
levels between tumor and normal tissues (Figure 1C). A total of
30 (63.83%) PRGs showed differential expression (p < 0.05), with
23 genes showing substantial upregulation and seven showing
significant downregulation in tumor samples.

Identification of Pyroptosis-Related
Subtypes
We built an interaction network to investigate the relationship
between PRGs (Figure 2A). The color of the edges indicated the
five types of protein–protein interactions, and the thickness of the
edges indicated the level of co-expression between PRGs, as
determined by Pearson correlation (Supplementary Table S3).
The network showed a strong relationship between PRGs.

To investigate the heterogeneous features of LUAD further, a
K-means clustering algorithm was used to categorize patients
based on PRG expression profiles. Patients with LUAD were
classified into two subtypes (Figure 2B). Survival analysis
revealed that subtype 1 had a considerably greater overall
survival than subtype 2 (Figure 2C, p = 0.039, log-rank test).
According to principal component analysis (PCA), LUAD
patients had unique PRG expression patterns between two
subtypes (Figure 2D).

Characteristics of the Tumor
Microenvironment and Therapeutic
Evaluation in Distinct Subtypes
The therapeutic differentiation between the subtypes was
investigated, and the GSVA approach was utilized to
determine the score of 25 therapeutic signature sets in TCGA
LUAD data (Figure 3A). A total of 23 (92%) therapeutic
signatures differed significantly between the two subtypes, with
20 therapeutic signature scores in subtype 2 significantly higher
than those in subtype 1 and three therapeutic signature ratings
significantly lower (Figure 3B, p < 0.05). Patients in subtype 2
were found to be more amenable to treatment.
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FIGURE 1 | Genetic and transcriptional alterations of pyroptosis-related genes in LUAD. (A)Mutation frequencies of pyroptosis-related genes in LUAD patients of
TCGA cohort. (B) Frequencies of CNV gain and loss of pyroptosis-related genes in LUAD patients. (C) Expression distributions of pyroptosis-related genes between
tumor and normal samples.
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FIGURE 2 | Identification of pyroptosis-related subtypes by clustering. (A) Interactions and co-expression among pyroptosis-related genes in LUAD. The colored
edges represent protein–protein interactions, with the line thickness indicating the strength of the correlation between pyroptosis-related genes. (B) Two heterogeneous
subtypes (subtype 1 and subtype 2) were identified according to unsupervised K-means clustering. (C) Kaplan–Meier curves of OS between subtype 1 and subtype 2.
(D) PCA analysis demonstrating a remarkable difference in expression of pyroptosis-related genes between the two subtypes.
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FIGURE 3 | Distinction of therapeutic signature and TME between the subtypes. (A) Heatmap showed the GSVA score of 25 therapeutic signature gene sets in
TCGA LUAD samples. The therapeutic signature gene sets belong to six categories. (B) Distribution of therapeutic signature score between two subtypes. (C–D)
Abundance of infiltrating immune cell types in two subtypes. (E) Distribution of the ESTIMATE score in two subtypes. (F) Expression levels of five checkpoints in two
subtypes.
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FIGURE 4 | Functional analysis and identification of the co-expression module. (A) Pathway and process enrichment analysis has been conducted for DEGs that
are identified between the subtypes. The graphical representation showed top 20 enrichments with p < 0.01. (B) Enrichment terms with a similarity > 0.3 are connected
by edges. (C–D) Analysis of the scale-free fit index for various soft-thresholding powers and the mean connectivity for various soft-thresholding powers. (E) Clustering
relationships among WGCNA modules. (F) Correlation between modules and clinical features. Blue represents a positive correlation, and white represents a
negative correlation.
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The differentiation of TME between two subtypes is then
evaluated. According to the CIBERSORT algorithm, infiltration
of “B cells naive,” “dendritic cells activated,” “mast cells resting,”
“monocytes,” and “neutrophil plasma cells” were higher in
subtype 1 than in subtype 2 (Figure 3C, p < 0.05). “B cells
memory,” “macrophages M1,” “NK cells resting,”, “T cells CD4
memory activated,” and “T cells CD8” showed significantly lower
infiltration in subtype 1 than in subtype 2 (Figure 3D, p < 0.05).
Furthermore, we investigated the tumor purity differentiation
across the subtypes, finding that the ESTIMATE score, stromal
score, and immune score in subtype 1 were considerably lower
than those in subtype 2 (Figure 3E, p < 0.05). Furthermore, we
investigated the distinction between the subtypes in the ability to
recognize tumor cells and execute immune responses. We looked
at the differential expression of five immunological checkpoints
and discovered that the expression of all the five immunological
checkpoints was considerably greater in subtype 2 than that in
subtype 1 (Figure 3F, p < 0.05). The result indicated that samples
in subtype 2 had a higher level of immune infiltration.

Analysis of Functional Differences Between
Subtypes Based on Differentially Expressed
Genes
To investigate the potential biological activity of the subtypes, we
detected DEGs between the two subtypes, and Metascape
performed enrichment analysis on 719 DEGs (Figures 4A,B).
The DEGs were found to be significantly enriched in a variety of
immune-related pathways and processes, including “leukocyte
activation,” “inflammatory response,” “innate immune
response,” and “positive regulation of immune response”
(Supplementary Table S5).

Then, WGCNA was used to build co-expressed networks
based on the expression of 719 DEGs and identify important
modules linked with clinical traits. The power value for modules
was screened to ensure an average connection and high
independence. The power value in this study was set at 5 as
the soft-thresholding parameter to ensure a scale-free network
(Figures 4C,D). In total, four modules have been identified
(Figure 4E). The module–trait association analysis was used to
discover co-expression modules that were highly relevant to
clinical traits. Figure 4F depicts the relationship between
modules and phenotype. Correlation analysis revealed that the
blue module, which comprises 91 genes, was identified as a
correlation between the prognosis and tumor stage. The top
five highly enriched phrases for blue module genes were
“secretion,” “cellular-modified amino acid metabolic process,”
“epidermis development,” “NABA MATRISOME
ASSOCIATED,” and “malignant pleural mesothelioma”
(Supplementary Figure S3; Supplementary Table S5).

Construction and Validation of the
Prognostic PSR_score
A model was built with seven pyroptosis subtype-related co-
expression prognostic genes, FOSL1, KRT6A, GPR133,
TMPRSS2, PRDM16, SFTPB, and SFTA3, to investigate the

prognostic value of the selected subtype-related co-expression
blue module genes (Figures 5A,B). Then, using the expression of
seven genes, we established a predictive model according to the
multivariate Cox proportional hazard model: PSR_score =
(0.1072 * FOSL1 exp) + (0.09327 * KRT6A exp) + (−0.1144 *
GPR133 exp) + (0.04062 * TMPRSS2 exp) + (−0.1238 * PRDM16
exp) + (−0.02503 * SFTPB exp) + (−0.04079 * SFTA3 exp).

The PSR_score of each patient in TCGA was calculated using
the seven-gene-involved formula. The patients were divided into
two groups using the median as the cutoff value: those with a high
PSR_score and those with a low PSR_score. Patients with a high
PSR_score had a substantially shorter life expectancy (Figure 5C,
p = 6. 8e-10, log-rank test). The area under the curve (AUC) of the
receiver operating characteristic (ROC) curve revealed that
PSR_score correctly predicted mortality (Figure 5D, AUC =
0.679). We then investigated PSR_score’s ability to predict
patient prognosis within clinicopathological subgroups. In
most cancer stages, high PSR_score patients had a
substantially worse OS than low PSR_score patients
(Supplementary Figure S4, p < 0.05, log-rank test).

Following that, we validated the prognosis power of PSR_score
in independent datasets. Survival analysis was carried out in four
GEO lung cancer cohorts (GSE30219, GSE31210, GSE37745, and
GSE50081), and the results revealed that a high PSR_score
indicated a poor prognosis in all GEO datasets
(Supplementary Figure S5, p < 0.1, log-rank test). We
combined four GEO lung cancer cohorts into a big dataset to
confirm the robustness of PSR_score. Similarly, patients with a
high PSR_score had a significantly poor OS (Figure 5E, p = 1.1e-
16, log-rank test), with an AUC of 0.682 (Figure 5F).

Correlation of PSR_score and
Immunotherapy
Pearson correlation analysis was performed to assess the
relationship between PRG_score and the number of immune
cells to study the link between PRG_score and immunological
infiltration. Infiltration of “macrophages M1,” “T cells CD4
memory activated,” “macrophages M0,” “NK cells resting,”
“NK cells activated,” “T cells CD8,” and “dendritic cells
activated” was significantly positively connected with
PRG_score (Figure 6A-G, p < 0.05, Pearson correlation
analysis). Furthermore, ESTIMATE score of high PRG_score
samples was higher than that of low PRG_score samples
(Figure 6H). We also investigated the relationship between the
expression of seven genes in the model and immune cells. We
discovered that the quantity of most immune cells was associated
with the expression of these genes (Figure 6I). In TCGA LUAD
cohorts, the expression of PD-1 and PD-L1 was significantly
higher in high PRG_score samples than in low PRG_score
samples (Figures 6J,K, p < 0.05).

To further explore if the risk score can predict patients’
responses to immunotherapy, we compared OS of patients
with a high PRG_score versus low PRG_score who were
receiving immunotherapy. In IMvigor210 and GSE135222
cohorts, patients with a high PRG_score had a significantly
worse prognosis (Figures 7A,B, p < 0.05, log-rank test). In
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addition, we looked at the differences in immune checkpoint gene
expression between high and low PRG_score groups. PD-L1 and
CD47 in the high PRG_score group of the IMvigor210 cohort
were significantly greater than those in the low PRG_score group
(Figures 7C,D; p < 0.05).

DISCUSSION

Increasing research has proven the role of pyroptosis in cancer
progression (Xia et al., 2019; Fang et al., 2020; Tan et al., 2021).

However, the prognostic potential of pyroptosis in LUAD is still
unknown. The genetic and transcriptional mutations of PRGs in
LUAD were detected in this study. TP53 had the highest
mutation frequency among the mutated genes (Figure 1).
TP53 mutation was linked to the downregulation of PRGs
such as CHMP7, IRF2, CASP4, ELANE, BAX, and TIRAP
(Supplementary Figure S1). By elevating the pyroptotic
level, the transcription factor p53 may be able to suppress
lung cancer cell proliferation (Braden et al., 2014; Zhang
et al., 2019). In LUAD samples, 30 PRGs were differentially
expressed (Figure 1). Based on the 30 DEGs, the patients were

FIGURE 5 | Construction and validation of the prognostic PSR_score by LASSO and COX regression analysis. (A) LASSO coefficient profiles of 91 blue co-
expression module genes. (B) Cross-validation for tuning parameter selection in the LASSO model. (C–D) Log-rank test was employed to assess the difference in OS
between high and low PSR_score samples in TCGA cohorts and ROC curve of the prognostic model. (E–F) Log-rank test was utilized to assess the difference in OS
between high and low PSR_score samples in the integrated lung cancer cohorts and ROC curve of the prognostic model.
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FIGURE 6 | Correlation of PSR_score and immune cell infiltration. (A–G) Positive correlation between PRG_score and immune cells. (H) Distribution of the
ESTIMATE score in high and low PRG_score groups. (I) Correlations between the abundance of immune cells and seven genes in the proposed model. (J–K)
Expression of PD-1 and PD-L1 in high and low PRG_score groups.
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divided into two groups. The OS of subtype 1 is higher than that
of subtype 2 (Figure 2).

The score of 25 therapeutic signature sets was calculated to
investigate the therapeutic differentiation between the two
subtypes. There were 23 therapeutic signatures that differed
between the two subtypes. Patients with subtype 2 responded
well to the treatment (Figures 3A,B). The difference in TME
between the two subtypes was then examined. Compared to
subtype 1, subtype 2 had high immunological infiltration of M1
macrophages, NK cells, CD4+, and CD8+ T cells. Patients with
LUAD have lower numbers of NK cells, CD4+, and CD8+ T cells
(Cui et al., 2021). CD4+ and CD8+ T cells are critical in mediating
antitumor responses. Patients with higher numbers of CD4+ T cells
respond better to PD-1 blockade therapy (Kagamu et al., 2020).
The samples showed greater levels of immune infiltration in
subtype 2. As a result, the variation in immune statuses may
cause a differential prognosis between the two subtypes.

Following that, DEGs between subtypes 1 and 2 were
identified. A total of 719 DEGs were found to be enriched in

immune-related pathways and processes, such as “leukocyte
activation.” A co-expression network was constructed by
WGCNA using these DEGs, and four modules were identified.
The blue module was associated with the prognosis and tumor
stage (Figure 4).

A seven-gene-involved prognosis model was created using
LASSO Cox regression to investigate the prognostic value of
genes in the blue module, comprising FOSL1, KRT6A,
GPR133, TMPRSS2, PRDM16, SFTPB, and SFTA3. The
patients were divided into two groups based on the
prognostic model: those with a high PSR_score and those
with a low PSR_score. Patients in the low PSR_score group
have a better OS than those in the high PSR_score group in
TCGA cohort. The GEO cohorts yielded comparable results
(Figure 5). FOSL1 and GPR133 were investigated for their
roles in LUAD. FOSL1 expression, for example, was found to
be inversely associated with the OS of lung cancer patients,
particularly those with LUAD. FOSL1 induction might
enhance LUAD initiation, whereas FOSL1 deficiency

FIGURE 7 | Prognosis power of PSR_score in patients with immunotherapy. (A–B) Log-rank test was used to assess the difference in OS between high and low
PSR_score samples in IMvigor210 and GSE135222 cohorts. (C–D) Expression of PD-L1 and CD47 in high and low PRG_score groups in the IMvigor210 cohort.
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inhibits LUAD cell proliferation and promotes apoptosis
(Elangovan et al., 2018). The GPR133 levels were found to
be lower in LUAD samples. Higher GPR133 expression was
associated with a better prognosis in LUAD patients. Increased
GPR133 expression in LUAD patients may limit cell
proliferation and tumor progression (Wu et al., 2021).

Then, the correlation between PSR_score and cancer immune
features was evaluated. M1 and M0 macrophages, CD4+ and
CD8+ T cells, and NK cells were all found to be positively linked
with the PRG scores. Higher levels of immunological infection
were associated with higher PRG scores and ESTIMATE scores.
The infection levels of B cells, CD4+ T cells, and neutrophils have
prognostic values for LUAD (Kadara et al., 2017; Ma et al., 2020;
Zhang and Ma, 2021). Furthermore, in the TCGA LUAD cohort,
patients in the high PRG_score group have higher expression
levels of PD-1 and PD-L1 than those in the low PRG_score group
(Figure 6). According to the findings, an increased PD-1 and PD-
L1 expression was associated with a poor prognosis in LUAD
patients (Teglasi et al., 2017; Xia et al., 2017).

Finally, we investigated the predictive value of PSR_score for
immunotherapy response. Patients with a low PRG_score have a
greater OS rate than those with a high PRG_score. Furthermore,
in the IMvigor210 cohort, PD-L1 and CD47 were strongly
expressed in the high PSR_score group (Figure 7). LUAD
TME was a good predictor of response to immune checkpoint
blockade treatment (Wang et al., 2020; Yi et al., 2021). These
findings suggested that LUAD patients with a high PSR_score
had a poor prognosis due to TME. As a result, the pyroptosis-
associated model developed shows predictive potential for
responsiveness to immune checkpoint blockade in LUAD. Our
results investigated the role of pyroptosis in TME remodeling.
Using PRGs, we found a subtype with a poor prognosis, which
provides new insights into locating possible immunotherapy
manufacturers.

CONCLUSION

The current study established a pyroptosis-related signature for
predicting OS and immunotherapy responses in LUAD, which
may lead to new insights into the individualized LUAD therapy.
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Background: Renal cell carcinoma (RCC) is the predominant type of malignant tumor in
kidney cancer. Finding effective biomarkers, particularly those based on the tumor immune
microenvironments (TIME), is critical for the prognosis and diagnosis of RCC. Increasing
evidence has revealed that long non-coding RNAs (lncRNAs) play a crucial role in cancer
immunity. However, the comprehensive landscape of immune infiltration-associated
lncRNAs and their potential roles in the prognosis and diagnosis of RCC remain largely
unexplored.

Methods: Based on transcriptomic data of 261 RCC samples, novel lncRNAs were
identified using a custom pipeline. RCC patients were classified into different immune
groups using unsupervised clustering algorithms. Immune-related lncRNAs were obtained
according to the immune status of RCC. Competing endogenous RNAs (ceRNA)
regulation network was constructed to reveal their functions. Expression patterns and
several tools such as miRanda, RNAhybrid, miRWalk were used to define lncRNAs-
miRNAs-mRNAs interactions. Univariate Cox, LASSO, and multivariate Cox regression
analyses were performed on the training set to construct a tumorigenesis-immune-
infiltration-related (TIR)-lncRNA signature for predicting the prognosis of RCC.
Independent datasets involving 531 RCC samples were used to validate the TIR-
lncRNA signature.

Results: Tens of thousands of novel lncRNAs were identified in RCC samples. Comparing
tumors with controls, 1,400 tumorigenesis-related (TR)-lncRNAs, 1269 TR-mRNAs, and
192 TR-miRNAs were obtained. Based on the infiltration of immune cells, RCC patients
were classified into three immune clusters. By comparing immune-high with immune-low
groups, 241 TIR-lncRNAs were identified, many of which were detected in urinary
samples. Based on lncRNA-miRNA-mRNA interactions, we constructed a ceRNA
network, which included 25 TR-miRNAs, 28 TIR-lncRNAs, and 66 TIR-mRNAs. Three
TIR lncRNAs were identified as a prognostic signature for RCC. RCC patients in the high-
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risk group exhibited worse OS than those in the low-risk group in the training and testing
sets (p < 0.01). The AUC was 0.9 in the training set. Univariate and multivariate Cox
analyses confirmed that the TIR-lncRNA signature was an independent prognostic factor
in the training and testing sets.

Conclusion: Based on the constructed immune-related lncRNA landscape, 241 TIR-
lncRNAs were functionally characterized, three of which were identified as a novel TIR-
lncRNA signature for predicting the prognosis of RCC.

Keywords: renal cell carcinoma, long non-coding RNAs, prognostic signature, cancer immunity, immune infiltration

INTRODUCTION

Kidney cancer is among the most common malignant tumors
worldwide, with an estimated nearly 0.4 million new cases (2.2%),
and the leading cause of cancer-related deaths (was nearly 0.2
million; 1.8% of the total cancer-related deaths) according to the
latest GLOBOCAN 2020 data (Sung et al., 2021). Renal cell
carcinoma (RCC) is the predominant type of malignant tumor
affecting the kidney, accounting for over 90% of malignant
tumors in this organ (Moch et al., 2016). Compared to early
or localized RCC, advanced disease has a poor prognosis, with a
5-years survival rate of less than 12% (Atkins and Tannir, 2018;
Rao et al., 2018). Recent studies have reported several prognostic
models for RCC. However, the Area Under Curve (AUC) values
were all less than 0.83 (Qi-Dong et al., 2020; Ma et al., 2021; Sun
et al., 2021; Yu et al., 2021). Therefore, a more efficient model is
urgently needed for predicting the prognosis of RCC.

Long non-coding RNAs (lncRNAs) are longer than
200 nucleotides and can not encode proteins. Recent studies
reported that lncRNAs are involved in multiple biological and
cancer-related processes, including tumorigenesis, progression,
and metastasis (Moran et al., 2012; Bhan et al., 2017; Peng et al.,
2017; Yao et al., 2019; Bao et al., 2020). Increasing evidence have
revealed that lncRNAs play crucial roles in cancer immunity
(Denaro et al., 2019; Wu et al., 2020). However, the
comprehensive landscape of immune infiltration-associated
lncRNAs and their potential roles in the prognosis and
diagnosis of RCC remain largely unexplored.

Based on raw transcriptomic data from RCC patients, we aim
to construct a comprehensive lncRNA landscape for RCC,
characterize the regulation in tumor immune
microenvironments (TIME), and construct a prognostic
signature for RCC.

MATERIALS AND METHODS

Data Sources and Expression Analysis
In our study, a total of 303 data from RCC patients were
downloaded from the Gene Expression Omnibus database
(GEO, http://www.ncbi.nlm.nih.gov/geo), including tissue and
urinary raw transcriptomics data, tissue miRNA data, and
clinical information. 261 tissue raw transcriptomics data were
used to identify novel lncRNAs. Tissue transcriptomics data and
miRNAs data were used to calculate tumorigenesis-related (TR-)

lncRNAs, TR-mRNAs, and TR-miRNAs by comparing tumors
with controls. All tumor samples were used to investigate the
immune infiltration, classify immune groupings, identify
tumorigenesis-immune-infiltration-related (TIR)-lncRNAs and
TIR-mRNAs. Raw transcriptomics data from urinary samples
were used to assess the release of tumor TIR-lncRNAs into the
urine in RCC. Tumor transcriptomics data with survival
information was regarded as the training set to construct the
prognostic model based on TIR-lncRNAs. The detailed
information of GEO datasets in our study were shown in Table1.

Besides, we also collected 531 data from kidney renal clear cell
carcinoma patients which were downloaded from The Cancer
Genome Atlas (TCGA) database, including tumor
transcriptomics data and clinical information. These data were
independent of the training set, which was regarded as the testing
set to validate the prognostic model. TPM (transcripts per
million) was used to normalize the gene expression level, and
log2 transformed (log2 (TPM+1)).

Raw transcriptome data were analyzed by FastQC v0.11.3 with
default parameters (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and removed the adapters and low-quality
sequences by TrimGalore-0.6.0 with default parameters
(https://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/). Clean reads were mapped by using STAR v.2.7.8a
(Dobin et al., 2013; Dobin and Gingeras, 2015) (set the
twopassMode as Basic), de novo assembled by using StringTie
v2.1.6, and merged by using the cuffmerge function of Cufflinks
v2.2.1 (Trapnell et al., 2010). The human reference genome
version hg38/GRCh38 was utilized. Reads counts and TPM
values were calculated by Kallisto v.0.46.2 (Bray et al., 2016)
with default parameters.

Identification of Novel lncRNAs in RCC
Based on assembled transcripts, we compared it with GENCODE
v38 (Frankish et al., 2019) and RefLncRNA (Jiang et al., 2019)
genes annotation by using the cuffcompare function of Cufflinks
(Trapnell et al., 2010), respectively. The assembled transcripts
were classified into four categories according to the “class code”
information, including “complete match” (=), “partial match” (j),
“contained” (c), and “not match”. Not matched transcripts (class
code included “i, x, u”) were further used to identify the reliable
novel lncRNAs by the following steps (Luo et al., 2021): ⅰ)
transcript length>=200; ⅱ) have more than one exon; ⅲ)
recurrence in at least two samples; ⅳ) identified as novel
lncRNAs in both CPC2(Coding Potential Calculator) (Kang
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et al., 2017) and CNCI (Coding Noncoding Index) (Sun et al.,
2013). The final lncRNAs catalog was obtained by combining the
RefLncRNA and novel lncRNAs directly.

Identification of TR-lncRNAs, TR-mRNAs,
and TR-miRNAs in RCC
To obtain TR-lncRNAs, TR-mRNAs, and TR-miRNAs, the
“DESeq2” package in R was used to analyze the transcripts
data and miRNAs data by comparing tumors with controls
with the cutoff criteria (adjusted p-value < 0.05 and | log2 fold
change | >1). Genes with low expression levels (i.e., which were
expressed only in one sample and the sum of expression levels of
all samples less than 10) were removed from the data.

Identification of Immune Groups,
IR-lncRNAs and TIR-lncRNAs in RCC
Single sample gene set enrichment analysis (ssGSEA) was
performed by “GSVA” packages in R to calculate the
enrichment scores of 28 types of immune cells in the tumor
microenvironment (Hänzelmann et al., 2013; Charoentong et al.,
2017). Tumors were further classified into different immune
groups by using the unsupervised clustering algorithm
(“ConsensusClusterPlus” packages in R). And then
ESTIMATE algorithms (“estimate” packages in R) were used
to confirm these immune groupings by calculating the immune
score, stromal score, and estimate score. By comparing the
immune-high group with the immune-low group, IR-lncRNAs
were calculated by “DESeq2” with the cutoff criteria (adjusted
p-value < 0.001 and | log2 fold change | >3). IR-mRNAs were
calculated by “DESeq2” with the cutoff criteria (adjusted p-value
< 0.05 and | log2 fold change | >1). Through the intersection
analysis, TIR-lncRNAs and TIR-mRNAs were obtained.

Construction of ceRNA Network
miRanda (John et al., 2004) (http://www.miRNA.org/) and
RNAhybrid (Krüger and Rehmsmeier, 2006) (http://bibiserv.
techfak.uni-bielefeld.de/rnahybrid/) was used to predict TIR-
lncRNAs and TR-miRNA interactions. ‘-sc’ set as 160 in
miRanda and set “-b 1 -e -25 -f 8,12 -u 1 -v 1 -s 3utr_human”
in RNAhybrid. The TIR-mRNAs and TR-miRNAs interactions
were predicted by miRWalk (Dweep et al., 2011; Dweep and
Gretz, 2015) (http://mirwalk.umm.uni-heidelberg.de/).
TargetScan (Agarwal et al., 2015) and miRDB (Liu and Wang,
2019; Chen andWang, 2020) databases were used to confirm this

prediction. The “psych” package in R was used to calculate the
correlation between lncRNAs and mRNAs. The positive
correlated pairs between lncRNA and mRNA were selected
with the cutoff criteria (adjusted p-value < 0.05 and
correlation coefficient >0.65). Based on the miRNA-mRNA,
miRNA-lncRNA, and mRNA-lncRNA pairs, the
lncRNA–miRNA–mRNA ceRNA network was constructed and
visualized by Cytoscape v3.8.2 software (Shannon et al., 2003).

Investigation of the Releasing of Tumor
TIR-lncRNAs Into the Urine
Raw urinary transcriptome data from RCC patients were quality
controlled, mapped, de novo assembled, and merged using the
same methods as tissue transcriptome data. The primary
assembled transcripts were used to compare with the TIR-
lncRNAs catalog, GENCODE v38 (Frankish et al., 2019), and
RefLncRNA (Jiang et al., 2019) genes annotation by using the
cuffcompare function of the Cufflinks package, respectively.

Construction and Validation of the
TIR-lncRNA Signature
In the training set, univariate Cox regression, LASSO regression,
and multivariate Cox regression analyses were performed by
“survival”, “survminer”, and “glmnet” packages in R to screen
prognosis-related TIR-lncRNAs and to construct a TIR-lncRNA
signature for predicting the prognosis of RCC. p < 0.05 was
considered to be related to the prognosis. The risk score for each
patient was calculated by the following formula. Log2-
transformed TPM was used.

Risk score � ∑
n

n�1
(Coefi × log2 transformed TPMlncRNA i)

RCC patients in the training set were divided into high-risk
and low-risk groups according to the median value of risk score.
Kaplan-Meier (K-M) survival analysis (“survival” and
“survminer” packages in R) was performed to compare the
survival rate between the high-risk and low-risk groups.
Receiver-operating characteristic (ROC) analysis (“pROC”
packages in R) was performed to evaluate the sensitivity and
specificity of the TIR-lncRNA signature.

In the testing set, the risk score was calculated for each patient
by the same formula as the training set. RCC patients in the
testing set were divided into high-risk and low-risk groups

TABLE 1 | Detailed information of GEO datasets.

GEO Source Data Tumors Controls

GSE167573 Tissue Raw transcriptome data with survival information 62 14
GSE126964 Tissue Raw transcriptome data 55 11
GSE151419 Tissue Raw transcriptome data 58 17
GSE143630 Tissue Raw transcriptome data 44 -
GSE151423 Tissue miRNA 26 6
GSE125442 Urine Raw transcriptome data 10 -
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according to the same cutoff as the training set. The K-M survival
analysis was performed to compare the survival rate between the
high-risk and low-risk groups.

Univariate and multivariate Cox regression analyses were used
to assess whether TIR-lncRNA signature was an independent
predictor for RCC patients among other clinical information,
including age, gender, tumor size, and cancer stage.

In addition, a nomogram score system was constructed using
the “rms” and “survival” packages in R, based on the TIR-lncRNA
signature, age, gender, tumor size, and pathological stage in the
training set, to predict the survival of RCC patients. Each variable
was allocated a point in the nomogram score system, adding up to
a total point for each sample that predicts 1-, 3-, and 5-years
survival (Iasonos et al., 2008).

Gene Functional Enrichment Analysis
To explore the functions of TR-lncRNAs and TIR-lncRNAs,
functional enrichment analyses were conducted using the
online databases KOBAS 3.0 (http://kobas.cbi.pku.edu.cn) and
“Metascape” (Zhou et al., 2019) (http://metascape.org).

Statistical Analysis
All statistical analyses were conducted using the R software
version 4.1.1. Forest-plot was plotted by “forestplot” packages
in R. Upset plot was plotted by “ComplexHeatmap” packages in

R. All comparisons for continuous variables were performed
using the two-tailed Wilcoxon test for two groups. For
categorical variables, Pearson’s Chi-squared test was used. The
FDR method in R was used to adjust the p-value outputted in
multiple comparisons. p-value or adjusted p-values < 0.05 were
considered as the significance level.

RESULTS

Construction of a Comprehensive lncRNA
Catalog for RCC Patients
In order to systematically investigate lncRNAs and their roles in
RCC immunity, raw transcriptome data from RCC tissues were
used to identify novel lncRNAs. The workflow was shown in
Figure 1. After quality control, reads alignment, de novo
transcriptome assembly, and merging, 157,119 primary genes
were obtained (Figure 2A). To assess the accuracy of the
assembly results, comparative analysis was performed using
reference protein-coding genes and RefLncRNA genes
annotation. More than 86% of the protein-coding genes were
verified, and over 50% were completely matched (Figure 2B). In
comparison, only 22.94% of the reference lncRNAs were verified
(Figure 2C). Based on the primary assembled transcripts that did
not match the reference genes, a custom pipeline was used to

FIGURE 1 | The overall workflow and study design showed the process of identifying novel lncRNAs, identifying TIR-lncRNAs, TIR-mRNAs, and TR-miRNAs,
constructing ceRNA network, assessing tumor lncRNAs shedding into the urine, constructing and validating the 3-TIR-lncRNAs classifiers to predict the prognosis of
RCC. RCC, renal cell carcinoma; lncRNAs, long noncoding RNAs; ROC, receiver-operating characteristic.
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identify reliable lncRNAs (see Methods 2.4). Finally, 44,507 novel
lncRNA genes were identified (Figure 2A).

To further characterize the novel lncRNAs, we analyzed their
transcript lengths, exon numbers, and expression profiles. The
mean transcript length was 1.4 k nucleotides and exon numbers
mainly ranged from 2-5, which were close to reference lncRNAs
(Figures 2D,E). These findings are consistent with those of
previous studies (Bo et al., 2021; Wang et al., 2021). The genes
expression levels of novel lncRNAs were significantly lower than
protein-coding genes in both tumors and controls (p < 0.001,
Figure 2F). There was no significant difference in genes
expression levels between the novel and reference lncRNAs
(p > 0.05, Figure 2F).

Identification of TR-lncRNAs
Based on the integrated lncRNA expression matrix, we calculated
the TR-lncRNAs between RCC tumors and controls. In total,
1,400 TR-lncRNAs (730 upregulated and 670 downregulated)
were identified, including 520 novel lncRNAs (Figures 3A–C,
Supplementary Table S1). Similarly, 1,269 TR-mRNAs (715
upregulated and 554 downregulated) were identified

(Supplementary Figures S1A–C, Supplementary Table S2).
To investigate the functions of the TR-lncRNAs, functional
enrichment analysis of the TR-mRNAs was performed.
Upregulated genes were mainly enriched in cytokine,
chemokine, and immune-associated pathways, including
cytokine-cytokine receptor interaction, chemokine signaling
pathway, and primary immunodeficiency (Figure 3D). In
comparison, the downregulated genes were mainly enriched in
metabolism-associated pathways, including glycine, serine and
threonine metabolism, and fatty acid metabolism (Figure 3E).

Immune Infiltration Analysis and
Identification of TIR-lncRNAs
To further explore immune infiltration-related lncRNAs and
their roles in the tumor microenvironment, we first calculated
the enrichment scores of 28 immune-cell types in each patient by
ssGSEA. Based on immune infiltration, an unsupervised
clustering algorithm was utilized to classify the RCC patients
into three clusters (Figures 4A–C). When k = 3, the classification
was more reliable than others (Figures 4A,B). The heatmap

FIGURE 2 | Identification and characterization of novel lncRNA. (A) The identification process of novel lncRNAs. (B) The statistics of assembled transcripts
matched to GENCODE v38 genes annotation. (C) The statistics of assembled transcripts matched to RefLncRNA genes annotation. (D) Density diagrams showed the
transcript length in protein-coding genes, reference lncRNAs, and novel lncRNAs (E) Bar plot showed exon numbers in protein-coding genes, reference lncRNAs, and
novel lncRNAs. (F) Boxplot showed transcript expression levels of protein-coding genes, reference lncRNAs, and novel lncRNAs in tumors and controls.
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showed normalized enrichment scores for the infiltration of
28 immune-cell types in each patient (Figure 4C). Compared
with the immune-low group, the immune-high group showed an
overall significantly higher degree of infiltration of immune cells,
including activated CD8 T cells, T-helper cells type 1 (Th1),
regulatory T cells, macrophages, and gamma delta T cells
(Figure 4D, Supplementary Figure S2). Similarly, the
immune-middle group exhibited a significantly higher degree
of infiltration of immune cells than those in the immune-low
group (Figure 4D). Interestingly, unlike other immune-cell types,
T-helper cell type 2 (Th2) showed a higher degree of infiltration
in the immune-middle group than that in the immune-high and
immune-low groups (Figure 4D). Eosinophils exhibited a lower
degree of infiltration in the immune-high group than that in the
immune-middle and immune-low groups (Figure 4D). These
findings may be related to the function of eosinophils recruited by
Th2 in pathways associated with allergic reactions and
inflammatory responses (Maggi, 1998). Immune grouping was
confirmed by comparing their immune, stromal, and estimate
scores. The scores of the immune-high and immune-middle
groups were significantly higher than those of the immune-
low group (Figure 4E). The immune-high group had a
significantly higher immune score than the immune-middle
group (Figure 4E). These findings suggested that immune
grouping could be used for subsequent analyses.

Integrative analysis of genes related to immune groups and
tumorigenesis revealed 241 TIR-lncRNAs and 752 TIR-mRNAs
(Figure 4F, Supplementary Tables S3, S4). TIR-lncRNAs were
primarily located on autosomal chromosomes and less frequently
on X chromosomes (Supplementary Figure S3). Interestingly, no
TIR-lncRNAs were present on the Y chromosome
(Supplementary Figure S3). As expected, the predominately
enriched pathways of TIR-lncRNAs were involved in immune
response- and tumorigenesis-associated pathways according to
GO enrichment analysis (Figure 4G, Supplementary Table S5).

Immune-Related ceRNA Network
Construction
To unveil the potential regulatory roles of the 241 TIR-lncRNAs, we
constructed a lncRNA/miRNA/mRNA ceRNA network. First, 192
miRNAs, including 88 upregulated and 104 downregulated
miRNAs, were identified by comparing RCC tumors with
controls, (Supplementary Figure S4, Supplementary Table S6).
The RNAhybrid and miRanda databases were used to predict the
interactions between the 192 TR-miRNAs and 241 TIR-lncRNAs,
revealing 180 miRNA-lncRNA pairs (Figure 5A), including 77
miRNAs and 68 lncRNAs. The miRwalk database was used to
predict the interactions between 192 TR-miRNAs and 752 TIR-
mRNAs, and the TargetScan and miRDB databases were used to

FIGURE 3 | Identification of TR-lncRNAs by comparing tumors with controls in RCC. (A) Histogram of TR-lncRNAs number in three GEO datasets. (B) Upset plots
of the distribution of upregulated lncRNAs in each dataset. (C) Upset plots of the distribution of downregulated lncRNAs in each dataset. (D) Bar plot showed GO
enrichment pathways of upregulated genes. (E) Bar plots showed GO enrichment pathways of downregulated genes.
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FIGURE 4 | Identification of TIR-lncRNAs and functional enrichment. (A) Sample clustering heatmap for k = 2 to 6, respectively. (B) The cumulative distribution
function (CDF) plots for k = 2 to 6. (C)Heatmap of normalized enrichment scores for infiltration of 28 immune-cell types. (D)Comparisons among the immune-high group,
the immune-middle group, and the immune-low group for seven immune-cell types. (E) Comparisons among the immune-high group, the immune-middle group, and
the immune-low group for immune score, stromal score, and estimate score. (F) Identification of TIR-lncRNAs and TIR-mRNAs. (G) Bar plots showed the main GO
enrichment pathways of TIR-lncRNAs.
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confirm these interactions. In total, 211 miRNA-mRNA pairs were
identified (Figure 5B), including 57 miRNAs and 93 mRNAs.
Subsequently, the miRNA-lncRNA and miRNA-mRNA pairs
were used to construct the lncRNAs-miRNA-mRNA ceRNA
network, which included 25 miRNAs (16 upregulated and 9
downregulated), 28 lncRNAs (9 upregulated and 19
downregulated), and 66 mRNAs (26 upregulated and 40
downregulated) (Figure 5C). Next, these screened lncRNAs were
used to survey relevantmRNAs based on their correlations. Based on
the correlation between lncRNAs and mRNAs, 6 lncRNAs, 7
miRNAs, and 7 mRNAs were identified as candidate relevant

RNAs (Figure 5D). GO enrichment analysis showed that the
ceRNA network was involved in pathways associated with kidney
morphogenesis and the regulation of ion transport.

A Large Part of Tumor TIR-lncRNAs Can Be
Released Into the Urine in RCC
Raw transcript data from RCC urinary samples were analyzed to
assess whether TIR-lncRNAs are released into urine. All TIR-
lncRNAs were detected in urine, although a large proportion
showed low expression levels (Figure 6A). TIR-lncRNAs showed

FIGURE 5 | Construction of immune-associated ceRNA network. (A) Venn diagram showed the overlapped miRNA-lncRNAs pairs predicted by miRanda and
RNAhybrid. (B) Venn diagram showed the overlappedmiRNA-mRNAs pairs predicted bymiRWalk, Targetscan, andmiRDB database. (C) The ceRNA network consists
of 28 TIR-lncRNAs, 25 TR-miRNAs, and 66 mRNAs. LncRNAs, miRNAs, and mRNAs are respectively represented by rectangles, triangles, and ellipses. The red color
represented upregulated genes, and the blue color represented downregulated genes in the tumor tissues relative to control tissues. (D) The candidate relevant
RNAs were further screened based on the correlation between lncRNAs and mRNAs.
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a positive correlation between urinary and tissue samples (r2 = 0.192,
p = 9.987e-13. Figure 6B). To further evaluate the transcript features
in the urine, we performed de novo assembly analysis. A total of
1,554,672 genes were primary assembled in urine, which were
compared with reference genes annotation and catalog of
241 TIR-lncRNAs. Over 82% of the protein-coding genes and
15% of the reference lncRNAs were verified (Figures 6C,D).
Moreover, more than 55% of the TIR-lncRNAs were verified,
5.39% were completely matched, 10.37% were partially matched,
and 39.83% were contained (Figure 6E).

Efficient TIR-lncRNA Signature for
Predicting the Prognosis of RCC
To further explore the relationship between TIR-lncRNAs and
the prognosis of RCC patients, we constructed a prognostic
model for RCC. Univariate Cox regression was performed to

screen prognosis-related TIR-lncRNAs and 62 prognosis-related
TIR-lncRNAs with p < 0.05. The forest plot showed the p-value,
hazard ratio (HR), and 95% confidence interval (CI) of prognosis-
related TIR-lncRNAs (Figure 7A, two lncRNAs were not shown
in Figure 7A because they had large 95%CI values,
Supplementary Table S7). Subsequently, LASSO regression
analysis was performed to prevent the overfitting of the
prognostic signature. Twelve prognosis-related TIR-lncRNAs
were identified when the log-transformed lambda equal to
-3.31 (Figures 7B,C). Finally, using stepwise multiple Cox
regression analysis, three TIR-lncRNAs were identified and
used for modeling. The coefficient, p-value, HR, and 95% CI
values of the TIR-lncRNAs involved in the risk model are shown
in Figure 7D. The risk score for each patient was calculated based
on the coefficient and log2-transformed TPM of TIR-lncRNAs.

In the training set, RCC patients were divided into high-risk
and low-risk groups according to the median risk score

FIGURE 6 | Assessment of tumor TIR-lncRNAs releasing into the urine in RCC. (A)Bar plots showed the expression level (log2 transformed TPM) of TIR-lncRNAs in
tissue samples and urine samples. (B) Scatter plots showed the correlation of TIR-lncRNAs between tissue samples and urine samples. (C) The statistics of assembled
urinary transcripts matched to GENCODE v38 genes annotation. (D) The statistics of assembled urinary transcripts matched to RefLncRNA genes annotation. (E) The
statistics of assembled urinary transcripts matched to 241 TIR-lncRNAs annotation.
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(Figure 8A). Patients in the high-risk group showed higher
mortality rates than those in the low-risk group (p = 0.003,
Figure 8B). The heatmap of the expression levels of the three
TIR-lncRNAs revealed different expression levels between the
high-risk and low-risk groups (Figure 8C). ENSG00000204044.6
and ENSG00000224959.1 were highly expressed in the high-risk
group (Figure 8C), whereas ENSG00000226403.1 was highly

expressed in the low-risk group (Figure 8C). K-M analysis
revealed that RCC patients in the high-risk group exhibited
worse overall survival (OS) than those in the low-risk group
(p < 0.001, Figure 8D). The AUC of the risk score was 0.9 of OS
(Figure 8E).

An independent dataset involving 531 samples was used to
validate the TIR-related lncRNA signature. K-M analysis

FIGURE 7 | Construction of TIR-lncRNA signature in RCC. (A) The Forest plot showed the p-value, HR, and 95%CI of prognosis-related TIR-lncRNAs
calculated by univariate Cox regression analysis. (B) The distribution plot of the LASSO coefficient. Twelve variables were retained when log-transformed
lambda equal to -3.31. (C) Twelve variables were retained when the partial likelihood deviation reached the minimum (Log Lambda = -3.31). (D) The Forest plot
showed the coefficient, p-value, HR, and 95%CI of 3 prognosis-related TIR-lncRNAs calculated by multivariate Cox regression analysis.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 89064110

Liu et al. Immune-Related lncRNA Signature in RCC

237

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


revealed that RCC patients in the high-risk group also
exhibited worse OS than those in the low-risk group (p <
0.001, Figure 8F). These findings suggested that the TIR-
lncRNA signature is efficient for predicting the prognosis
of RCC.

TIR-lncRNA Signature Was an Independent
Prognostic Factor
To explore whether the TIR-lncRNA signature was an
independent prognostic factor for RCC, univariate and
multivariate Cox regression analyses were performed to assess

the independence of TIR-lncRNAs from other clinical factors,
including age, gender, tumor size, and pathological stage in the
training and testing sets, respectively. In the training set, the HR
of the risk score and 95%CI were 2.7 and 1.6–4.6 in univariate
Cox regression analysis (p < 0.001, Figure 9A), and 2.709 and
1.381–5.314 in multivariate Cox regression analysis (p = 0.004,
Figure 9B), respectively. In the testing set, the HR of the risk score
and 95%CI were 1.6 and 1.3–1.9 in univariate Cox regression
analysis (p < 0.001, Figure 9C), and 1.645 and 1.256–2.155 in
multivariate Cox regression analysis (p < 0.001, Figure 9D),
respectively. These results suggested that the TIR-lncRNA
signature was an independent prognostic factor for RCC.

FIGURE 8 | Evaluation and validation of TIR-lncRNA signature in RCC. (A) The risk curve of each sample was reordered by risk score. The red and blue dots
represent high-risk and low-risk, respectively (B) Patients in the high-risk group showed higher mortality than those in the low-risk group. The red and blue dots represent
death and survival, respectively. (C)Heatmap showed scaled expression levels of prognosis-related TIR-lncRNAs in the low-risk and high-risk groups. (D) Patients in the
high-risk group (red) exhibited worse OS than those in the low-risk group (blue) in the training set. (E) The AUC values for forecasting OS status using the risk score
in the training set. (F) Patients in the high-risk group (red) exhibited worse OS than those in the low-risk group (blue) in the testing set.
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Construction of a Nomogram for Survival
Prediction of RCC
To improve the model’s clinical practicability, a nomogram score
system was constructed in the training set using the TIR-lncRNA
signature, age, gender, tumor size, and pathological stage to
predict 1-, 3-, and 5-years overall survival of RCC
(Supplementary Figure S5). The nomogram’s concordance
index (C-index) was 0.951, which increased the predictive
power of OS compared with the TIR-lncRNA signature
(C-index = 0.929).

DISCUSSION

In this study, immune-related lncRNA landscape was constructed,
and 241 TIR-lncRNAs were functionally characterized, three of which
were identified as a novel TIR-lncRNA signature for predicting the
prognosis of RCC. First, raw transcriptomic data from the GEO
database were used to identify novel lncRNAs. Subsequently, by
comparing tumors with controls, we calculated TR-lncRNAs, TR-
mRNAs, and TR-miRNAs. Then, an unsupervised clustering
algorithm was utilized to classify RCC patients into different
immune groups based on the infiltration level of immune cells.
TIR-lncRNAs and TIR-mRNAs were identified by comparing the
immune-high group with the immune-low group. A lncRNA/
miRNA/mRNA ceRNA network based on miRNA-lncRNA and
miRNA-mRNA pairs was constructed. In addition, a large part of
TIR-lncRNAs were detected in urinary samples from RCC patients.
Finally, three prognosis-associated TIR-lncRNAs were identified. To
evaluate and validate the predictive ability of the prognostic signature,
RCC patients were classified into high-risk and low-risk groups;
patients in the high-risk group had worse OS than those in the
low-risk group, with an AUC value of 0.9.

Patients were classified into three clusters based on the
infiltration score of immune cells in each patient. However, to

obtain immune-related lncRNAs, we only compared the
immune-high group with the immune-low group. The
immune-middle group was not used to calculate immune-
related lncRNAs. Compared with the immune-low group, the
immune-high group showed a significantly higher degree of
infiltration of immune-cell types (Figure 4D, Supplementary
Figure S2). However, the immune-middle group showed
fluctuations in some immune cells (Supplementary Figure
S2). For example, compared with the immune-high group, the
immune-middle group exhibited a significantly larger number of
immature dendritic cells, natural killer cells, effector memory
CD4 T cells, immature B cells, activated CD4 T cells, memory
B cells, and T-helper cell type 17. These results suggested that the
immune-middle group was not suitable to identify immune-
related lncRNAs.

Recent studies have focused on N6-methyladenosine (m6A)-,
glycolysis-redox-, or immune-related lncRNA signature for
predicting the prognosis of RCC. Yu et al. identified an m6A-
related lncRNA signature for predicting the prognosis of RCC,
with an AUC value of 0.80 (Yu et al., 2021). Ma et al. identified a
glycolysis-related lncRNA prognostic signature for RCC and the
AUC value was 0.82 (Ma et al., 2021). Dong et al. identified a
redox-related lncRNA signature of RCC and the AUC value was
0.82 (Qi-Dong et al., 2020). Sun et al. constructed an immune-
related lncRNA pair signature of RCC and the AUC value was
0.76 (Sun et al., 2021). In our prognostic model, we constructed a
tumorigenesis-related and immune infiltration-related lncRNA
signature for predicting the prognosis of RCC, with an AUC value
of 0.9. This value is higher than those of previous prognosis
models, supporting that our model is more efficient in predicting
the prognosis of RCC.

Our study had some limitations. On the one hand,
molecular-levels analyses are needed to further validate
novel lncRNAs. On the other hand, the mechanism of TIR-
lncRNAs in regulating protein-coding genes involved in RCC
immunity are need to be further explored.

FIGURE 9 | TIR-lncRNA signature was an independent prognostic factor for RCC. (A,B) The Forest plot showed the results of univariate Cox and multivariate Cox
regression analyses in the training set. (C,D) The Forest plot showed the results of univariate Cox and multivariate Cox regression analyses in the testing set.
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A Glycosyltransferase-Related
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Background: Here, we establish a prognostic signature based on glycosyltransferase-
related genes (GTRGs) for head and neck squamous cell carcinoma (HNSCC) patients.

Methods: The prognostic signature of GTRGs was constructed via univariate and
multivariate Cox analyses after obtaining the expression patterns of GTRGs from the
TCGA. A nomogram based on the signature and clinical parameters was established to
predict the survival of each HNSCC patient. Potential mechanisms were explored through
gene set enrichment analysis (GSEA) and immune cell infiltration, immune checkpoints,
immunotherapy, and tumor mutational burden (TMB) analyses. The expression differences
and prognostic efficacy of the signature were verified through the gene expression
omnibus (GEO) and several online databases.

Results: The prognostic signature was constructed based on five glycosyltransferases
(PYGL, ALG3, EXT2, FUT2, and KDELC1) and validated in the GSE65858 dataset. The
pathways enriched in the high- and low-risk groups were significantly different. The high-
risk group had higher tumor purity; lower infiltration of immune cells, such as CD8+ T cells
and Tregs; higher cancer-associated fibroblast (CAF) infiltration; lower immune function;
and lower checkpoint expression. The signature can also be applied to distinguish whether
patients benefit from immunotherapy. In addition, the high-risk group had a higher TMB
and more gene mutations, including those in TP53, CSMD1, CDKN2A, and MUC17.

Conclusion: We propose a prognostic signature based on glycosyltransferases for
HNSCC patients that may provide potential targets and biomarkers for the precise
treatment of HNSCC.

Keywords: glycosyltransferase, prognostic signature, head and neck squamous cell carcinoma, immune cell
infiltration, tumor mutational burden
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth
most common neoplastic disease in humans, accounting for 90%
of head and neck cancers (Wang et al., 2021). Every year, more
than 830,000 people worldwide are diagnosed with head and neck
cancers, most of which are advanced type, and 430,000 patients
die from the disease. The 5-year survival rate of HNSCC patients
is approximately 43% (Epstein et al., 2012; Chi et al., 2015).
Approximately 40–60% of patients relapse even after a
combination of surgery, radiation, and chemotherapy
(Tolstonog and Simon, 2017). Therefore, it is important to
evaluate the prognosis of HNSCC patients. The current
evaluation for prognosis is mainly based on the TNM staging
system, which includes assessing the primary tumor, lymph node
metastasis, and distant metastasis and has limited accuracy (Chen
et al., 2021). Therefore, it is necessary to construct a stable model
to evaluate patient prognosis.

Glycosylation is a common posttranslational modification of
proteins (Fournet et al., 2018). Several glycosidic linkages,
including N-, O-, and C-linked glycosylation and
glycophosphatidylinositol (GPI)-anchored attachment, are the
main features of glycosylation (Rasheduzzaman et al., 2020).
Glycosylation can modify the biological function of proteins,
mainly affecting cell adhesion, migration, interactions with the
cell matrix, cellular metabolism, cell signaling, and immune
surveillance. Aberrant O-glycosylation was shown to be
associated with tumor cell infiltration. For example, α-N-
acetylgalactosamine (α-GalNAc) and α-2,6-sialyltransferase I
(ST6GalNAc-I) overexpression could cause sialyl Tn (STn)
expression disorder and C1GalT1-specific chaperone 1
(C1GALT1C1) mutation (Pinho and Reis, 2015).

The majority of current protein-based cancer biomarkers,
such as PSA for prostate cancer or CA-125 for ovarian cancer,
are glycoproteins (Almeida and Kolarich, 2016). Glycosylation
was recognized to occur widely in tumor cells, resulting in the
secretion of associated polysaccharides or glycoproteins, which
serve as vital biomarkers, into the bloodstream (Silsirivanit,
2019). Glycosylation increases the heterogeneity and functional
variability of tumor cells (Pinho and Reis, 2015), thus allowing
tumor cells to have different glycan profiles at different stages of
tumor growth and metastasis (Schjoldager et al., 2020).

At present, there are few studies on the construction of
prognostic signatures based on glycosyltransferases. Therefore,
we focused on glycosyltransferase to construct a signature in
HNSCC patients using public databases to better distinguish their
survival status. Furthermore, we explored pathway enrichment,
immune cell infiltration, benefits of immunotherapy, and gene
mutation status according to the signature.

MATERIALS AND METHODS

Data Source
Transcriptome data, genomic mutation data, and corresponding
clinical information from HNSCC patients, which contained
44 normal and 495 primary tumor tissues, were downloaded

from The Cancer Genome Atlas (TCGA). GSE65858, containing
270 tumor samples with survival data, was obtained from the
Gene Expression Omnibus (GEO) database to verify the
prognostic signature. GSE30784 and GSE37991 were used to
differentiate the expression levels of the genes in the signature
between normal and HNSCC tissues. Moreover, we downloaded
the expression data of one normal cell line (HaCaT) and six
HNSCC cell lines (93VU147T, SCC61, SCC047, SCC090, SCC25,
and SQ20B) from GSE62027. A total of 169 glycosyltransferase-
related genes (GTRGs) were derived from a previous study
(Mohamed Abd-El-Halim et al., 2021).

Identification of Differentially Expressed
GTRGs (DE-GTRGs) in HNSCC
A volcano plot and heatmap were used to visualize the DE-
GTRGs, which were defined as those with p < 0.05 and |log2
(foldchange)| > 1. Then, a protein–protein interaction (PPI)
network of DE-GTRGs was constructed by the GeneMANIA
database to identify the interactions of glycosyltransferases.
Moreover, the correlation between the expression of various
DE-GTRGs was also analyzed.

Construction of the Prognostic Signature
Univariate and multivariate Cox regression analyses were used to
screen GTRGs to construct the prognostic signature. The signature
reflects both the expression levels of the selected genes and their
relative regression coefficient weights calculated from the
multivariate Cox analysis. Patients in the training set were
classified into high-risk and low-risk groups based on the
median risk score. The Kaplan–Meier (KM) method was used
to describe the differences in overall survival (OS) between the two
groups. Receiver operating characteristic (ROC) curve analysis was
further used to demonstrate the specificity and sensitivity of the
signature. Principal component analysis (PCA) and T-distributed
stochastic neighbor embedding (tSNE) methods were used to
conduct dimension reduction analysis for all patients to evaluate
the effect of the signature on the ability to distinguish between
them. Finally, we incorporated the risk score and clinical
parameters into the univariate and multivariate Cox regression
analyses to prove that the risk score was an independent risk factor
for prognosis.

Correlation of Clinical Parameters and Risk
Score
Clinical parameters including age, sex, tumor grade, tumor stage,
T stage, and lymph node metastasis were used to perform a
stratified analysis of OS. In addition, we analyzed differences in
the risk score between subgroups based on the aforementioned
clinical parameters.

Nomogram and Calibration Curve
Construction
A nomogram was established based on clinical parameters and
the risk score. The calibration curves were drawn to assess the
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FIGURE 1 | Identification of DE-GTRGs between 44 normal and 495 HNSCC tissues. (A) Brief flow chart of this study. (B) Volcano plot of 29 DE-GTRGs in TCGA-
HNSCC. Red means upregulated and blue means downregulated genes. (C) Heatmap of DE-GTRGs between normal and HNSCC tissues. (D) PPI network based on
the DE-GTRGs using the GeneMANIA database. (E) Correlation of the expression of DE-GTRGs in HNSCC tissues. DE-GTRGs, differentially-expressed
glycosyltransferase-related genes; HNSCC, head and neck squamous cell carcinoma; TCGA, The Cancer Genome Atlas; PPI, protein–protein interaction.
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consistency between the actual and predicted probabilities of 1-
year, 2-year, and 3-year survival. Furthermore, nomograms and
calibration curves were also constructed according to the
GSE65858 dataset.

Gene Set Enrichment Analysis
GSEA was performed to identify the pathways enriched in the
high-risk group or in the low-risk group according to the
reference gene set Hallmark and KEGG analysis. An |NSE| >

FIGURE 2 | Construction of the prognostic signature based on five GTRGs. (A) Univariate Cox regression analysis identified five GTRGs associated with the
prognosis. Red means risk genes and blue means protective genes. (B) Coefficients of the selected five genes in the signature through multivariate Cox analysis. (C)
High-risk group had a worse prognosis than the low-risk group through the KM curve and log-rank test. (D) Risk score, survival time, survival status, and the relative
expression of five genes between the high- and low-risk groups. (E) ROC curve analysis of the signature at 1-year, 2-year, and 3-year survival in the training cohort.
(F) ROC curve analysis of the signature and the other clinical parameters in the training cohort. (G) PCA in the training cohort. (H) tSNE analysis in the training cohort. (I)
Univariate Cox analysis of the signature and the other clinical parameters. (J) Identification of risk score as an independent risk factor for HNSCC patients through
multivariate Cox analysis in the training cohort. KM, Kaplan–Meier; ROC, receiver operating characteristic; PCA, principal component analysis; tSNE, t-distributed
stochastic neighbor embedding.
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1, a p value <0.05 and a false discovery rate (FDR) < 0.25 were set
as the cut-off values.

Immune Cell Infiltration, Checkpoints, and
Immunotherapy Analyses Based on the
Signature
The R package “ESTIMATE” was used to analyze the immune,
stromal, and estimate scores and tumor purity between the high-
and low-risk groups. TIMER, CIBERSORT, QUANTISEQ,
MCPCOUNTER, and EPIC were used to compare the

differences in immune cells between the two groups using the
Wilcoxon test. Moreover, we analyzed the differences in immune
cells and immune function between the two groups by using the
ssGSEA method. Immune checkpoints, obtained from the
TISIDB, were used to evaluate the differences between the two
groups. Finally, to assess the value of the signature in patients
receiving immunotherapy, multiple datasets were obtained to
evaluate whether the signature could be used in immunotherapy
patient cohorts. The cohorts included Van Allen’s cohort (CTLA-
4 blockade in 40 metastatic melanoma patients) (Van Allen et al.,
2015), Braun DA’s cohort (PD1 blockade in 311 advanced clear

FIGURE 3 | Validation of the prognostic signature in the GSE65858 validation cohort. (A) KM curve showed that the high-risk group had a shorter survival time than
the low-risk group. (B) Distribution of the risk score, survival time, and survival status as well as the heatmap between the two groups in the validation cohort. (C) ROC
analysis of the signature at 1-year, 2-year, and 3-year survival in the validation cohort. (D) ROC analysis of the signature and the other clinical parameters in the validation
cohort. (E) PCA in the external validation cohort. (F) tSNE analysis in the external validation cohort. Univariate (G) and multivariate (H) Cox analyses of the signature
and the clinical parameters in the validation cohort.
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cell renal cell carcinoma patients) (Braun et al., 2020), Riaz N’s
cohort (nivolumab in 50 advanced melanoma patients) (Riaz
et al., 2017) and David Liu’s cohort (PD1 blockade in
121 metastatic melanoma patients) (Liu et al., 2019a).

Tumor Mutational Burden and Gene
Mutation Analysis
TMBwas compared between the high- and low-risk groups and was
used to analyze its prognostic value in HNSCC patients through KM
analysis. In addition, survival analysis was performed according to
TMB and the risk score. Gene mutation frequency was also analyzed
between the two groups based on themutation data from the TCGA,
and the top 30 mutated genes are shown on a waterfall plot. We also
obtained genes with significant mutation differences between the
two groups.

Identification of the Expression Levels and
Prognostic Value of the Selected Genes
Immunohistochemistry images of PYGL, ALG3, FUT2, and
KDELC1 were obtained from the HPA database. UALCAN was
utilized to compare the protein levels of PYGL, EXT2, FUT2, and
KDELC1 between normal and tumor tissues. Finally, a KM plotter
was used to analyze the prognostic value of the five genes in HNSCC
patients.

RESULTS

Screening and Analysis of DE-GTRGs
A flow chart of the current study is shown in Figure 1A. We first
obtained the expression values of 169 glycosyltransferase genes in
normal and tumor tissues from the TCGA, and differential
analysis was performed according to the abovementioned
criteria. Twenty-nine DE-GTRGs were identified, among
which 10 were downregulated and 19 were upregulated
(Figures 1B,C). Based on the DE-GTRGs, a PPI network was
constructed through the GeneMANIA database, and significant
interactions were observed among these glycosyltransferases
(Figure 1D). In addition, a generally positive or negative
correlation was found among these DE-GTRGs (Figure 1E).

Construction of a Prognostic Signature
Univariate and multivariate Cox regression analyses were used to
screen genes associated with patient prognoses and construct a
prognostic signature. The results of the univariate analysis
showed that five DE-GTRGs were associated with the
prognosis of HNSCC patients, of which PYGL, ALG3,
KDELC1, and EXT2 were risk factors and FUT2 was a
protective factor (Figure 2A). Then, a prognostic signature
based on five GTRGs was constructed utilizing multivariate
Cox analysis, and the coefficients of the five genes are shown

FIGURE 4 | KM curves showed that the low-risk group had a better prognosis than the high-risk group stratified by the clinical features. (A) Age<=65 years and
age>65 years. (B) Female and male. (C) Grades 1–2 and grades 3–4. (D) Stages I–II and stages III–IV. (E) T1-2 and T3-4. (F) N0 and N1-3.
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in Figure 2B. Risk score = (0.043622*KDELC1) +
(0.009262*ALG3) + (0.00617*PYGL) + (0.003267*EXT2) -
(0.00738*FUT2). The median risk score was applied to divide
the HNSCC patients into a high-risk group and a low-risk
group. Patients in the low-risk group had a better prognosis
than those in the high-risk group (Figure 2C). As the risk score
increased, there were more deaths and shorter survival times

(Figure 2D). The areas under the curve (AUCs) of the signature
at 1, 2, and 3 years were 0.619, 0.656, and 0.675, respectively
(Figure 2E). The AUC of the risk score was 0.630, which was
higher than that of the other six clinical parameters (Figure 2F).
PCA and tSNE analyses were used to reduce dimensionality in all
patients, and we found that patients with different risk scores
could be distinguished significantly (Figures 2G,H). To analyze

FIGURE 5 | Analysis of the signature and clinical parameters. (A) Distribution of the clinical parameters and the expression of the five genes between the two
groups. (B) Difference analysis of the risk score grouped by the clinical parameters. Construction of the nomogram combined with the risk score and the clinical
parameters in the training cohort (C) and GSE65858 validation cohort (D). Calibration curve of the nomogram at 1-year, 2-year and 3-year survival in the training cohort
(E) and GSE65858 validation cohort (F). Pathways enriched in the high-risk group (G) and low-risk group (H) through GSEA. GSEA, gene set enrichment analysis.
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the prognostic value of the signature, univariate and multivariate
analyses were used, and the results showed that the risk score was
an independent risk factor for prognosis (Figures 2I,J).

Validation of the Signature in an External
Dataset
To validate the signature constructed through the TCGA, we
obtained the expression profile and clinical parameters of the
GSE65858 dataset. Similar to the training model, KM analysis
showed poor prognosis in the high-risk group (Figure 3A). An
increasing number of deaths were observed as the risk score
increased (Figure 3B). ROC curve analysis revealed that the
signature was of great value for patient prognosis. The AUCs
of the signature at 1, 2, and 3 years were high, and the AUC of the

risk score was 0.625, similar to the trainingmodel and higher than
the other clinical parameters (Figures 3C,D). The results of PCA
and tSNE analyses suggested that the prognostic signature can
effectively distinguish high- and low-risk patients (Figures 3E,F).
Again, the signature was an independent risk factor for patients in
the external dataset (Figures 3G,H).

Application of the Prognostic Signature in
Clinical Subgroups
To determine the value of the signature in different clinical
subgroups, we performed a stratified analysis. We divided the
patients into age ≤ 65 years, age >65 years, female, male, grades
1–2, grades 3–4, stages I–II, stages III–IV, T1–2, T3–4, N0, and
N1–3 groups based on various clinical parameters (age, sex,

FIGURE 6 | Immune landscape between the high- and low-risk groups based on multiple algorithms. (A) Comparison of the immune score, stromal score,
ESTIMATE score, and tumor purity between the high- and low-risk groups based on the ESTIMATE algorithm. (B) Heatmap of the immune cell infiltration calculated by
five algorithms, including TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, and EPIC between the two groups. (C) Boxplot of the immune cell infiltration calculated
by the abovementioned algorithms between the two groups. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant).
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tumor grade, tumor stage, T stage, and lymph node metastasis).
The signature showed good efficacy in differentiating patient
outcomes across all subgroups (Figure 4), indicating that the
signature can be applied to all patients regardless of there being
multiple clinical variables.

Correlation With the Clinical Parameters
and Construction of the Nomogram
Due to the important value of the signature in different clinical
subgroups, we then analyzed its correlation with clinical
parameters. We found that the signature correlated
significantly with tumor stage and tumor size; that is, in
advanced tumors (stages III–IV) or when the tumor size was
large (T3-4), the risk score was higher (Figures 5A,B). We also
integrated the signature and clinical features to construct a
nomogram. The nomogram was constructed to predict the 1-
year, 2-year, and 3-year survival probabilities in the TCGA cohort
(Figure 5C) and in the GSE65858 cohort (Figure 5D). The
calibration curve showed good agreement between the
predicted and actual 1-year, 2-year, and 3-year survival rates
in both the training and validation cohorts (Figures 5E,F). GSEA
showed that the high-risk group was associated with a variety of
pathways related to tumor development, such as angiogenesis,

epithelial–mesenchymal transition (EMT), glycolysis, hypoxia,
and the TGF beta signaling pathway (Figure 5G), while the low-
risk group was mainly enriched in IL2-STAT5 signaling, KRAS
signaling, metabolism-related pathways, and others (Figure 5H).

Differences in Immune Cell Infiltration and
Immune Checkpoints
We first evaluated the immune score, stromal score, ESTIMATE
score, and tumor purity. The immune and ESTIMATE scores
were significantly lower in the high-risk group, while tumor
purity was higher in the high-risk group (Figure 6A). We also
compared the differences in immune cell infiltration between the
two groups according to various algorithms. Based on the
TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, and
EPIC, we found that B cells, CD8+T cells, dendritic cells, and
Tregs were lower in the high-risk group and that cancer-
associated fibroblasts (CAFs) were higher in the high-risk
group (Figures 6B,C). In addition, we estimated the difference
in immune cells and immune function between the two groups by
using the ssGSEA algorithm. The results showed that immune cell
infiltration was similar to that of the previous algorithm
(Figure 7A), while multiple immune function scores were
lower in the high-risk group, including checkpoints

FIGURE 6 | (Continued).
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(Figure 7B). We, therefore, analyzed the differences between
immune checkpoints in the two groups. Most checkpoints were
significantly different between the two groups, and the expression
levels of immune checkpoints were lower in the high-risk group, a
pattern similar to that using the ssGSEA algorithm (Figure 7C).

Immunotherapy Analysis According to the
Signature
Immunotherapy has been considered to play an important role in
a variety of malignant tumors and can markedly improve the
prognosis. Therefore, it is necessary to identify people who may
benefit from immunotherapy. We evaluated the value of the
prognostic signature in immunotherapy for malignant tumors
using four cohorts. Patients in the high-risk group had a shorter
survival time (OS and progression-free survival) than those in the
low-risk group in the four cohorts (Figures 7D–I).

Relationship Between TMB and the
Signature
TMB was calculated based on the somatic mutation obtained
from the TCGA and was compared between the two groups. TMB
in the high-risk group was higher than that in the low-risk group
(Figure 8A), and the higher TMB group was associated with
shorter survival time (Figure 8B). In addition, a stratified analysis
based on TMB and the risk score showed significantly worse
outcomes in the high-TMB + high-risk group than in the low-
TMB + low-risk group (Figure 8C). Gene mutations visualized as
a waterfall plot showed that the five most frequent somatic
mutations in the high-risk group were those in TP53, TTN,
FAT1, CDKN2A, and MUC16 (Figure 8D), while the five
most frequent somatic mutations in the low-risk group were
those in TP53, TTN, FAT1, NOTCH1, and PIK3CA (Figure 8E).
Differential analysis between the two groups showed that the
mutation frequencies of TP53, CSMD1, NPAP1, AJUBA,

FIGURE 7 | Immune function, immune checkpoints, and immunotherapy analysis based on the signature. Comparison of immune cells (A) and immune function
(B) between the high- and low-risk groups through the ssGSEA algorithm. (C) Differences in the expression of 23 immune checkpoints between the high- and low-risk
groups. (D)KM curve of OS in Van Allen’s cohort grouped by the signature. KM curves of OS (E) and PFS (F) in Braun DA’s cohort. (G) KMcurve of OS in Riaz N’s cohort.
KM curves of OS (H) and PFS (I) in David Liu’s cohort. OS, overall survival; PFS, progression-free survival. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant).
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FIGURE 7 | (Continued).

FIGURE 8 |Relationship between the risk score and TMB. (A)Comparison of TMB between the high- and low-risk groups. (B) KM curve of the low-TMB and high-
TMB groups. (C) KM curve of the HNSCC patients stratified by TMB groups and risk groups. Oncoplots displaying the top 30 somatic mutated genes in the high-risk
group (D) and the low-risk group (E). (F) Differences of the mutation frequency of the genes between the two groups. TMB, tumor mutational burden. (*p < 0.05).
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CDKN2A, MUC17, and PRDM9 were higher in the high-risk
group (Figure 8F).

Validation of the Selected Genes in Various
Databases
ThemRNA expression levels of the five genes in GSE30784 revealed
that PYGL, ALG3, EXT2, and KDELC1 were upregulated while
FUT2 was downregulated in HNSCC (Figure 9A). The differential
expression analysis of the genes in the 40 paired normal and tumor
tissues in GSE37991 showed similar results (Figure 9B).
Furthermore, the expression level detected in one normal and
six tumor cell lines was essentially consistent with that in tissues
(Figure 9C). The immunohistochemistry images of PYGL, ALG3,
FUT2, and KDELC1 in normal oral mucosa andHNSCC tissues are
shown in Figure 9D. Meanwhile, the protein levels in the UALCAN
database suggested that PYGL, EXT2, and KDELC1 were higher
while FUT2 was lower in HNSCC tissues (Figure 9E). Finally, we
performed survival analysis using KM curves in the KM plotter
database. The results showed that the prognosis of patients with
high expression of PYGL, ALG3, EXT2, and KDELC1 was worse,
while high expression of FUT2 indicated longer survival time
(Figure 9F).

DISCUSSION

Recently, due to advances in precision therapy in tumors, a
variety of researchers have constructed prognostic models or
identified molecular subtypes based on the associated gene sets of
various malignant phenotypes. Qiu et al. constructed a prognostic
model based on ferroptosis-related genes in pancreatic cancer and
found possible correlations with different immune cells and
classic immune checkpoints (Qiu et al., 2021). However, few
researchers have constructed a prognostic model or identified
subtypes based on GTRGs in different tumors. A previous study
identified a series of glycosyltransferases and proposed a
signature based on GTRGs to better classify pancreatic cancer
patients with different prognoses and found the specific
mechanisms of glycosylation in tumors and the
microenvironment during tumor development (Mohamed
Abd-El-Halim et al., 2021). Therefore, we aimed to identify
the role of glycosyltransferases in HNSCC and construct a
prognostic signature.

In this study, we identified a prognostic signature based on the
five GTRGs (PYGL, ALG3, EXT2, FUT2, and KDELC1) through
univariate and multivariate Cox regression analyses. The
signature was proven to be an independent risk factor for

FIGURE 9 | Expression and prognosis validation of the five glycosyltransferases. (A) Difference in the mRNA level of the five genes between 45 normal and
167 tumor tissues in the GSE30784 dataset. (B) Difference in mRNA level of the five genes between 40matched normal and tumor tissues in the GSE37991 dataset. (C)
mRNA level of the five genes in one normal cell line (HaCaT) and six HNSC cell lines (93VU147T, SCC61, SCC047, SCC090, SCC25, and SQ20B) in the
GSE62027 dataset. (D) Immunohistochemistry images of the four glycosyltransferases in oral mucosa and HNSCC tissues from the HPA database. (E) Protein
level of the four proteins between normal and tumor tissues in the UALCAN dataset. (F) KM curves of the five genes in HNSCC patients through the KM-plotter database.
(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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HNSCC. In addition, the GSE65858 dataset was used to verify the
prognostic performance of the signature, and we found that it can
well-distinguish the prognoses of patients at high and low risk.
We also found that the signature was closely related to immune
cell infiltration and immune function. Patients in the high-risk
group often had lower expression of immune checkpoints.
Analyses of several immunotherapy cohorts also demonstrated
that the signature can well-differentiate whether patients benefit
from immunotherapy.

PYGL is a key phosphorylase that catalyzes the release of
glucose molecules from glycogen (Han et al., 2018). A previous
study indicated that an increased PYGL expression level was
associated with increased tumor size in breast cancer, suggesting
that PYGL may participate in tumor progression. In vitro and in
vivo, hypoxia can induce the upregulation of glycogen
metabolism and accumulation of glycogen in the early stage.
The depletion of PYGL and decrease in glycogen accumulation
decreased nucleotide synthesis and increased reactive oxygen
species (ROS) levels, resulting in a decrease in breast cancer

growth (Favaro et al., 2012). Several studies found that PYGL
expression was upregulated in several cancers, including
seminoma, brain cancer, and papillary renal cell carcinoma.
KCNMB2-AS1 promotes esophageal cancer development by
binding to miR-3194-3p and further upregulating PYGL
expression (Xu et al., 2021). Numerous results have shown
that PYGL is a vital target for anticancer therapy.

ALG3 is located on chromosomal region 3q27.1 and is a
member of the mannosyltransferase family. Aberrant
expression of several high-mannose type N-glycans during
cancer progression has been increasingly identified (Munkley
et al., 2016). Upregulation of ALG3 promoted the progression of
cervical cancer (Choi et al., 2007) and non–small-cell lung cancer
(Ke et al., 2020) and was proven to be associated with lymph node
metastasis in esophageal squamous cell carcinoma (Shi et al.,
2014). High ALG3 expression, negatively regulated by miR-98-
5p, exerted a pro-carcinogenic effect by promoting EMT, thus
leading to poor prognosis in non–small-cell lung cancer (Ke et al.,
2020). In a 30-sample breast cancer cohort (including

FIGURE 9 | (Continued).
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15 radioresistant and 15 radiosensitive tumors), ALG3 was the
most highly expressed of the ALG family in the radiation-
resistant tissue. In addition, high ALG3 expression was
associated with poor clinical parameters, short OS, and short
relapse-free survival (Sun et al., 2021). A cancer stem cell–like
(CSC) shape is thought to be the main cause of radioresistance
(Knezevic et al., 2015). ALG3 can increase the radioresistance and
tumor stemness of breast cancer cells and can upregulate several
key CSC-like markers (Nanog, OCT4, and SOX2) by promoting
the glycosylation of TGF-beta receptor II (Sun et al., 2021).

EXT2 is a member of the exotoxin glycosyltransferase family
and is involved in the elongation of heparan sulfate (Ahn et al.,
1995; Busse and Kusche-Gullberg, 2003). A large number of
studies have found that mutations in EXT1 and EXT2 lead to
loss of the protein domain, which is closely related to multiple
osteochondromas (Guo et al., 2021; Tong et al., 2021). EXT2 was
downregulated in breast cancer cells (Sembajwe et al., 2018) but
upregulated in squamous cell lung carcinoma (Wu et al., 2021).
Moreover, Huang et al. found that EXT2 was an independent risk
factor for hepatocellular carcinoma (Huang et al., 2019).

Inactivating polymorphisms in FUT2, which encodes alpha
1,2-fucosyltransferase, were found to be associated with the
increasing incidence of HNSCC (Campi et al., 2012; Su et al.,
2016). FUT2 was decreased in HNSCC cells, and downregulation
of FUT2 was related to a short survival time. EGFR was proven to
be one of the potential alpha 1,2-fucosylated adhesion molecules
(Montesino et al., 2021). In addition, FUT2 was upregulated and
promoted cell migration and invasion in lung adenocarcinoma. A
potential mechanism suggests that FUT2 may be involved in the
TGF-beta/SMAD signaling pathway (Deng et al., 2018). The
effect of FUT2 on tumor development and progression was
also observed in breast cancer. Specifically, FUT2 can promote
the proliferation, migration, and invasion of cells and is related to
cell morphology changes, that is, from cuboidal to small and
round cells (Lai et al., 2019). The expression of FUT2 was also
downregulated by miR-15b and can facilitate the proliferation in
hepatocellular carcinoma (Wu et al., 2014).

POGLUT2, formerly known as KDELC1 and homologous to
POGLUT1, is a newly discovered protein O-glucosyltransferase
that modifies sites different from POGLUT1 and can affect the
Notch signaling pathway (Takeuchi et al., 2018). POGLUT2 was
an independent prognostic factor and was used to construct a
prognostic signature in clear cell renal cell carcinoma (Li et al.,
2021), but few studies have examined the tumor mechanism.

Using multiple immune cell infiltration assessment
algorithms, we found that the numbers of CD8+ T cells and
Tregs were lower in the high-risk group, while the number of
CAFs was higher. A previous study found that an increase in
CD8+ T cells was an important prognostic indicator for OS in
patients with relapsed HNSCC (So et al., 2020). Tregs play an
important role in suppressing spontaneous tumor-associated
antigen-specific immune responses (Oweida et al., 2019). Tregs
were shown to be highly enriched in in situ HNSCC models and
were associated with chemotherapy resistance (Oweida et al.,
2018). Compared to healthy donors, HNSCC patients had

increased tumor and blood Treg levels and lower CD8/Treg
ratios. Indeed, high Treg and low CD8+ T-cell levels were
considered poor prognostic factors for various tumors,
including melanoma, ovarian cancer, colorectal cancer, and
HNSCC. (Overacre-Delgoffe et al., 2017; Dolina et al., 2021),
consistent with our results. CAFs are considered to be one of the
most abundant mesenchymal cells and are observed in almost all
types of solid tumors (Liu et al., 2019b; Chen and Song, 2019).
Studies have shown that CAFs are associated with multiple
biological oncogenic behaviors such as migration, invasion,
self-renewal of tumor stem cells, chemotherapy resistance, and
immune cell evasion (Zhang et al., 2013; Costa et al., 2018; Su
et al., 2018). In oral squamous carcinoma, a higher density of
CAFs suggests a more advanced tumor stage, a greater likelihood
of lymph node metastasis, a greater incidence of local recurrence
and distant metastasis, and a shorter survival time (Luksic et al.,
2015). In addition, CAFs have been shown to play an important
role in promoting HNSCC progression (Wheeler et al., 2014),
mainly by secreting growth factors such as IL-6 and IL-8 (New
et al., 2017), remodeling the extracellular matrix and enhancing
therapeutic resistance (Bergers and Hanahan, 2008).

However, some deficiencies can also be found in our study.
First, our data were based entirely on the public databases, such as
the TCGA and GEO, and lacked experimental validation for the
expression differences and prognostic model efficacy. Second, the
pro- or antitumor phenotypes or mechanisms of the five genes
have not been confirmed by in vivo or in vitro experiments. Third,
the effect of the signature with respect to immunotherapy should
be further examined using real-world data in future research.

CONCLUSION

We proposed a prognostic signature for HNSCC patients
constructed by incorporating five GTRGs from public
databases. The high-risk group had lower immune CD8+

T cell and Treg infiltration but higher CAF infiltration.
Furthermore, the signature can help judge prognostic
differences in HNSCC patients and screen patients who may
benefit from immunotherapy.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

HW and XZ performed data analysis and wrote the manuscript.
TZ, DR, YW, and DL were responsible for proofreading. DW
designed the experiment. All authors have read and agreed to the
version of the manuscript.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 85667114

Wu et al. Glycosyltransferase-Related Signature in HNSCC

255

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Ahn, J., Lüdecke, H.-J., Lindow, S., Horton, W. A., Lee, B., Wagner, M. J., et al.
(1995). Cloning of the Putative Tumour Suppressor Gene for Hereditary
Multiple Exostoses (EXT1). Nat. Genet. 11, 137–143. doi:10.1038/ng1095-137

Almeida, A., and Kolarich, D. (2016). The Promise of Protein Glycosylation for
Personalised Medicine. Biochimica Biophysica Acta (BBA) - General Subj. 1860,
1583–1595. doi:10.1016/j.bbagen.2016.03.012

Bergers, G., and Hanahan, D. (2008). Modes of Resistance to Anti-angiogenic
Therapy. Nat. Rev. Cancer 8, 592–603. doi:10.1038/nrc2442

Braun, D. A., Hou, Y., Bakouny, Z., Ficial, M., Sant’ Angelo, M., Forman, J., et al.
(2020). Interplay of Somatic Alterations and Immune Infiltration Modulates
Response to PD-1 Blockade in Advanced Clear Cell Renal Cell Carcinoma. Nat.
Med. 26, 909–918. doi:10.1038/s41591-020-0839-y

Busse, M., and Kusche-Gullberg, M. (2003). In Vitro polymerization of Heparan
Sulfate Backbone by the EXT Proteins. J. Biol. Chem. 278, 41333–41337. doi:10.
1074/jbc.m308314200

Campi, C., Escovich, L., Moreno, A., Racca, L., Racca, A., Cotorruelo, C., et al.
(2012). Expression of the Gene Encoding Secretor Type Galactoside 2 α
Fucosyltransferase (FUT2) and ABH Antigens in Patients with Oral Lesions.
Med. Oral 17, e63–e68. doi:10.4317/medoral.17239

Chen, X., and Song, E. (2019). Turning Foes to Friends: Targeting Cancer-
Associated Fibroblasts. Nat. Rev. Drug Discov. 18, 99–115. doi:10.1038/
s41573-018-0004-1

Chen, Y., Nie, J., Li, X., Fan, T., Deng, X., Liang, D., et al. (2021). Identification of
Immune-Related Prognostic Biomarkers Associated with HPV-Positive Head
and Neck Squamous Cell Carcinoma. J. Immunol. Res. 2021, 6661625. doi:10.
1155/2021/6661625

Chi, A. C., Day, T. A., and Neville, B. W. (2015). Oral Cavity and Oropharyngeal
Squamous Cell Carcinoma-An Update. CA A Cancer J. Clin. 65, 401–421.
doi:10.3322/caac.21293

Choi, Y.-W., Bae, S. M., Kim, Y.-W., Lee, H. N., Kim, Y. W., Park, T. C., et al.
(2007). Gene Expression Profiles in Squamous Cell Cervical Carcinoma Using
Array-Based Comparative Genomic Hybridization Analysis. Int. J. Gynecol.
Cancer 17, 687–696. doi:10.1111/j.1525-1438.2007.00834.x

Costa, A., Kieffer, Y., Scholer-Dahirel, A., Pelon, F., Bourachot, B., Cardon, M.,
et al. (2018). Fibroblast Heterogeneity and Immunosuppressive Environment in
Human Breast Cancer. Cancer Cell 33, 463–479. doi:10.1016/j.ccell.2018.01.011

Deng, G., Chen, L., Zhang, Y., Fan, S., Li, W., Lu, J., et al. (2018). Fucosyltransferase
2 Induced Epithelial-Mesenchymal Transition via TGF-β/Smad Signaling
Pathway in Lung Adenocarcinaoma. Exp. Cell Res. 370, 613–622. doi:10.
1016/j.yexcr.2018.07.026

Dolina, J. S., Van Braeckel-Budimir, N., Thomas, G. D., and Salek-Ardakani, S.
(2021). CD8+ T Cell Exhaustion in Cancer. Front. Immunol. 12, 715234. doi:10.
3389/fimmu.2021.715234

Epstein, J. B., Thariat, J., Bensadoun, R.-J., Barasch, A., Murphy, B. A., Kolnick, L.,
et al. (2012). Oral Complications of Cancer and Cancer Therapy. CA A Cancer
J. Clin. 62, 400–422. doi:10.3322/caac.21157

Favaro, E., Bensaad, K., Chong, M. G., Tennant, D. A., Ferguson, D. J. P., Snell, C.,
et al. (2012). Glucose Utilization via Glycogen Phosphorylase Sustains
Proliferation and Prevents Premature Senescence in Cancer Cells. Cell
Metab. 16, 751–764. doi:10.1016/j.cmet.2012.10.017

Fournet, M., Bonté, F., and Desmoulière, A. (2018). Glycation Damage: A Possible
Hub for Major Pathophysiological Disorders and Aging. Aging Dis. 9, 880–900.
doi:10.14336/ad.2017.1121

Guo, X., Chen, S., Lin, M., Pan, Y., Liu, N., and Shi, T. (2021). A Novel Intronic
Splicing Mutation in the EXT2 Gene of a Chinese Family with Multiple
Osteochondroma. Genet. Test. Mol. Biomarkers 25, 478–485. doi:10.1089/
gtmb.2021.0030

Han, Q., Ma, Y., Wang, H., Dai, Y., Chen, C., Liu, Y., et al. (2018). Resibufogenin
Suppresses Colorectal Cancer Growth and Metastasis through RIP3-Mediated
Necroptosis. J. Transl. Med. 16, 201. doi:10.1186/s12967-018-1580-x

Huang, X.-T., Chen, L.-H., Huang, C.-S., Li, J.-H., Cai, J.-P., Chen, W., et al. (2019).
Establishment of a Nomogram by Integrating Molecular Markers and Tumor-
Node-Metastasis Staging System for Predicting the Prognosis of Hepatocellular
Carcinoma. Dig. Surg. 36, 426–432. doi:10.1159/000494219

Ke, S.-b., Qiu, H., Chen, J.-m., Shi, W., Han, C., Gong, Y., et al. (2020).
ALG3 Contributes to the Malignancy of Non-small Cell Lung Cancer and Is
Negatively Regulated by MiR-98-5p. Pathology - Res. Pract. 216, 152761. doi:10.
1016/j.prp.2019.152761

Knezevic, J., Pfefferle, A. D., Petrovic, I., Greene, S. B., Perou, C. M., and
Rosen, J. M. (2015). Expression of miR-200c in Claudin-Low Breast
Cancer Alters Stem Cell Functionality, Enhances Chemosensitivity and
Reduces Metastatic Potential. Oncogene 34, 5997–6006. doi:10.1038/onc.
2015.48

Lai, T.-Y., Chen, I.-J., Lin, R.-J., Liao, G.-S., Yeo, H.-L., Ho, C.-L., et al. (2019).
Fucosyltransferase 1 and 2 Play Pivotal Roles in Breast Cancer Cells. Cell Death
Discov. 5, 74. doi:10.1038/s41420-019-0145-y

Li, C., Yao, Y., Long, D., and Lin, X. (2021). KDELC1 and TRMT1 Serve as
Prognosis-Related SARS-CoV-2 Proteins Binding Human mRNAs and
Promising Biomarkers in Clear Cell Renal Cell Carcinoma. Ijgm Vol. 14,
2475–2490. doi:10.2147/ijgm.s312416

Liu, D., Schilling, B., Liu, D., Sucker, A., Livingstone, E., Jerby-Arnon, L., et al.
(2019). Integrative Molecular and Clinical Modeling of Clinical Outcomes to
PD1 Blockade in Patients with Metastatic Melanoma. Nat. Med. 25, 1916–1927.
doi:10.1038/s41591-019-0654-5

Liu, T., Han, C., Wang, S., Fang, P., Ma, Z., Xu, L., et al. (2019). Cancer-associated
Fibroblasts: an Emerging Target of Anti-cancer Immunotherapy. J. Hematol.
Oncol. 12, 86. doi:10.1186/s13045-019-0770-1

Luksic, I., Suton, P., Manojlovic, S., Virag, M., Petrovecki, M., and Macan, D.
(2015). Significance of Myofibroblast Appearance in Squamous Cell Carcinoma
of the Oral Cavity on the Occurrence of Occult Regional Metastases, Distant
Metastases, and Survival. Int. J. Oral Maxillofac. Surg. 44, 1075–1080. doi:10.
1016/j.ijom.2015.05.009

Mohamed Abd-El-Halim, Y., El Kaoutari, A., Silvy, F., Rubis, M., Bigonnet, M.,
Roques, J., et al. (2021). A Glycosyltransferase Gene Signature to Detect
Pancreatic Ductal Adenocarcinoma Patients with Poor Prognosis.
EBioMedicine 71, 103541. doi:10.1016/j.ebiom.2021.103541

Montesino, B., Steenackers, A., Lozano, J. M., Young, G. D., Hu, N., Sackstein, R.,
et al. (2021). Identification of Alpha1,2-Fucosylated Signaling and Adhesion
Molecules in Head and Neck Squamous Cell Carcinoma. Glycobiology 32,
441–455. doi:10.1093/glycob/cwab131

Munkley, J., Mills, I. G., and Elliott, D. J. (2016). The Role of Glycans in the
Development and Progression of Prostate Cancer. Nat. Rev. Urol. 13, 324–333.
doi:10.1038/nrurol.2016.65

New, J., Arnold, L., Ananth, M., Alvi, S., Thornton, M., Werner, L., et al. (2017).
Secretory Autophagy in Cancer-Associated Fibroblasts Promotes Head and
Neck Cancer Progression and Offers a Novel Therapeutic Target. Cancer Res.
77, 6679–6691. doi:10.1158/0008-5472.can-17-1077

Overacre-Delgoffe, A. E., Chikina, M., Dadey, R. E., Yano, H., Brunazzi, E. A.,
Shayan, G., et al. (2017). Interferon-γ Drives T Reg Fragility to Promote Anti-
tumor Immunity. Cell 169, 1130–1141. doi:10.1016/j.cell.2017.05.005

Oweida, A., Hararah, M. K., Phan, A., Binder, D., Bhatia, S., Lennon, S., et al.
(2018). Resistance to Radiotherapy and PD-L1 Blockade Is Mediated by TIM-3
Upregulation and Regulatory T-Cell Infiltration. Clin. Cancer Res. 24,
5368–5380. doi:10.1158/1078-0432.ccr-18-1038

Oweida, A. J., Darragh, L., Phan, A., Binder, D., Bhatia, S., Mueller, A., et al. (2019).
STAT3 Modulation of Regulatory T Cells in Response to Radiation Therapy in
Head and Neck Cancer. J. Natl. Cancer Inst. 111, 1339–1349. doi:10.1093/jnci/
djz036

Pinho, S. S., and Reis, C. A. (2015). Glycosylation in Cancer: Mechanisms and
Clinical Implications. Nat. Rev. Cancer 15, 540–555. doi:10.1038/nrc3982

Qiu, C.-j., Wang, X.-b., Zheng, Z.-r., Yang, C.-z., Lin, K., Zhang, K., et al. (2021).
Development and Validation of a Ferroptosis-Related Prognostic Model in
Pancreatic Cancer. Invest. New Drugs 39, 1507–1522. doi:10.1007/s10637-021-
01114-5

Rasheduzzaman, M., Kulasinghe, A., Dolcetti, R., Kenny, L., Johnson, N. W.,
Kolarich, D., et al. (2020). Protein Glycosylation in Head and Neck Cancers:
From Diagnosis to Treatment. Biochimica Biophysica Acta (BBA) - Rev. Cancer
1874, 188422. doi:10.1016/j.bbcan.2020.188422

Riaz, N., Havel, J. J., Makarov, V., Desrichard, A., Urba, W. J., Sims, J. S., et al.
(2017). Tumor and Microenvironment Evolution during Immunotherapy with
Nivolumab. Cell 171, 934–949. e16. doi:10.1016/j.cell.2017.09.028

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 85667115

Wu et al. Glycosyltransferase-Related Signature in HNSCC

256

https://doi.org/10.1038/ng1095-137
https://doi.org/10.1016/j.bbagen.2016.03.012
https://doi.org/10.1038/nrc2442
https://doi.org/10.1038/s41591-020-0839-y
https://doi.org/10.1074/jbc.m308314200
https://doi.org/10.1074/jbc.m308314200
https://doi.org/10.4317/medoral.17239
https://doi.org/10.1038/s41573-018-0004-1
https://doi.org/10.1038/s41573-018-0004-1
https://doi.org/10.1155/2021/6661625
https://doi.org/10.1155/2021/6661625
https://doi.org/10.3322/caac.21293
https://doi.org/10.1111/j.1525-1438.2007.00834.x
https://doi.org/10.1016/j.ccell.2018.01.011
https://doi.org/10.1016/j.yexcr.2018.07.026
https://doi.org/10.1016/j.yexcr.2018.07.026
https://doi.org/10.3389/fimmu.2021.715234
https://doi.org/10.3389/fimmu.2021.715234
https://doi.org/10.3322/caac.21157
https://doi.org/10.1016/j.cmet.2012.10.017
https://doi.org/10.14336/ad.2017.1121
https://doi.org/10.1089/gtmb.2021.0030
https://doi.org/10.1089/gtmb.2021.0030
https://doi.org/10.1186/s12967-018-1580-x
https://doi.org/10.1159/000494219
https://doi.org/10.1016/j.prp.2019.152761
https://doi.org/10.1016/j.prp.2019.152761
https://doi.org/10.1038/onc.2015.48
https://doi.org/10.1038/onc.2015.48
https://doi.org/10.1038/s41420-019-0145-y
https://doi.org/10.2147/ijgm.s312416
https://doi.org/10.1038/s41591-019-0654-5
https://doi.org/10.1186/s13045-019-0770-1
https://doi.org/10.1016/j.ijom.2015.05.009
https://doi.org/10.1016/j.ijom.2015.05.009
https://doi.org/10.1016/j.ebiom.2021.103541
https://doi.org/10.1093/glycob/cwab131
https://doi.org/10.1038/nrurol.2016.65
https://doi.org/10.1158/0008-5472.can-17-1077
https://doi.org/10.1016/j.cell.2017.05.005
https://doi.org/10.1158/1078-0432.ccr-18-1038
https://doi.org/10.1093/jnci/djz036
https://doi.org/10.1093/jnci/djz036
https://doi.org/10.1038/nrc3982
https://doi.org/10.1007/s10637-021-01114-5
https://doi.org/10.1007/s10637-021-01114-5
https://doi.org/10.1016/j.bbcan.2020.188422
https://doi.org/10.1016/j.cell.2017.09.028
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Schjoldager, K. T., Narimatsu, Y., Joshi, H. J., and Clausen, H. (2020). Global View
of Human Protein Glycosylation Pathways and Functions. Nat. Rev. Mol. Cell
Biol. 21, 729–749. doi:10.1038/s41580-020-00294-x

Sembajwe, L. F., Katta, K., Grønning, M., and Kusche-Gullberg, M. (2018). The
Exostosin Family of Glycosyltransferases: mRNA Expression Profiles and
Heparan Sulphate Structure in Human Breast Carcinoma Cell Lines. Biosci.
Rep. 38, BSR20180770. doi:10.1042/BSR20180770

Shi, Z.-Z., Jiang, Y.-Y., Hao, J.-J., Zhang, Y., Zhang, T.-T., Shang, L., et al. (2014).
Identification of Putative Target Genes for Amplification within 11q13.2 and
3q27.1 in Esophageal Squamous Cell Carcinoma. Clin. Transl. Oncol. 16,
606–615. doi:10.1007/s12094-013-1124-z

Silsirivanit, A. (2019). Glycosylation Markers in Cancer. Adv. Clin. Chem. 89,
189–213. doi:10.1016/bs.acc.2018.12.005

So, Y. K., Byeon, S.-J., Ku, B. M., Ko, Y. H., Ahn, M.-J., Son, Y.-I., et al. (2020). An
Increase of CD8+ T Cell Infiltration Following Recurrence Is a Good
Prognosticator in HNSCC. Sci. Rep. 10, 20059. doi:10.1038/s41598-020-
77036-8

Su, K.-J., Ho, C.-C., Lin, C.-W., Chen, M.-K., Su, S.-C., Yu, Y.-L., et al. (2016).
Combinations of FUT2 Gene Polymorphisms and Environmental Factors Are
Associated with Oral Cancer Risk. Tumor Biol. 37, 6647–6652. doi:10.1007/
s13277-015-4367-1

Su, S., Chen, J., Yao, H., Liu, J., Yu, S., Lao, L., et al. (2018). CD10+GPR77+ Cancer-
Associated Fibroblasts Promote Cancer Formation and Chemoresistance by
Sustaining Cancer Stemness. Cell 172, 841–856. e16. doi:10.1016/j.cell.2018.
01.009

Sun, X., He, Z., Guo, L., Wang, C., Lin, C., Ye, L., et al. (2021). ALG3 Contributes to
Stemness and Radioresistance through Regulating Glycosylation of TGF-β
Receptor II in Breast Cancer. J. Exp. Clin. Cancer Res. 40, 149. doi:10.1186/
s13046-021-01932-8

Takeuchi, H., Schneider, M., Williamson, D. B., Ito, A., Takeuchi, M., Handford, P.
A., et al. (2018). Two Novel Protein O-Glucosyltransferases that Modify Sites
Distinct from POGLUT1 and Affect Notch Trafficking and Signaling. Proc.
Natl. Acad. Sci. U. S. A. 115, E8395–E8402. doi:10.1073/pnas.1804005115

Tolstonog, G., and Simon, C. (2017). Trends in Surgical Research in Head and
Neck Cancer. Curr. Treat. Options Oncol. 18, 38. doi:10.1007/s11864-017-
0475-z

Tong, Y., Luo, J., Zhang, Y., Hong, Z., Cao, L., Chen, X., et al. (2021). Novel
Mutations in Chinese Patients with Multiple Osteochondromas Identified
Using Whole Exome Sequencing. Genet. Test. Mol. Biomarkers 25, 361–367.
doi:10.1089/gtmb.2020.0317

Van Allen, E. M., Miao, D., Schilling, B., Shukla, S. A., Blank, C., Zimmer, L., et al.
(2015). Genomic Correlates of Response to CTLA-4 Blockade in Metastatic
Melanoma. Science 350, 207–211. doi:10.1126/science.aad0095

Wang, X., Guo, J., Yu, P., Guo, L., Mao, X., Wang, J., et al. (2021). The Roles of
Extracellular Vesicles in the Development, Microenvironment, Anticancer
Drug Resistance, and Therapy of Head and Neck Squamous Cell
Carcinoma. J. Exp. Clin. Cancer Res. 40, 35. doi:10.1186/s13046-021-
01840-x

Wheeler, S. E., Shi, H., Lin, F., Dasari, S., Bednash, J., Thorne, S., et al. (2014).
Enhancement of Head and Neck Squamous Cell Carcinoma Proliferation,
Invasion, and Metastasis by Tumor-Associated Fibroblasts in Preclinical
Models. Head. Neck 36, 385–392. doi:10.1002/hed.23312

Wu, C.-S., Yen, C.-J., Chou, R.-H., Chen, J.-N., Huang, W.-C., Wu, C.-Y., et al.
(2014). Downregulation of microRNA-15b by Hepatitis B Virus X
Enhances Hepatocellular Carcinoma Proliferationviafucosyltransferase
2-induced Globo H Expression. Int. J. Cancer 134, 1638–1647. doi:10.
1002/ijc.28501

Wu, D., Huo, C., Jiang, S., Huang, Y., Fang, X., Liu, J., et al. (2021). Exostosin1 as a
Novel Prognostic and Predictive Biomarker for Squamous Cell Lung
Carcinoma: A Study Based on Bioinformatics Analysis. Cancer Med. 10,
2787–2801. doi:10.1002/cam4.3643

Xu, J., Liu, X., Liu, X., and Zhi, Y. (2021). Long Noncoding RNA KCNMB2-AS1
Promotes the Development of Esophageal Cancer by Modulating the miR-
3194-3p/PYGL axis. Bioengineered 12, 6687–6702. doi:10.1080/21655979.2021.
1973775

Zhang, X. H.-F., Jin, X., Malladi, S., Zou, Y., Wen, Y. H., Brogi, E., et al. (2013).
Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary
Tumor Stroma. Cell 154, 1060–1073. doi:10.1016/j.cell.2013.07.036

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Wu, Zhao, Zhu, Rong, Wang, Leng and Wu. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 85667116

Wu et al. Glycosyltransferase-Related Signature in HNSCC

257

https://doi.org/10.1038/s41580-020-00294-x
https://doi.org/10.1042/BSR20180770
https://doi.org/10.1007/s12094-013-1124-z
https://doi.org/10.1016/bs.acc.2018.12.005
https://doi.org/10.1038/s41598-020-77036-8
https://doi.org/10.1038/s41598-020-77036-8
https://doi.org/10.1007/s13277-015-4367-1
https://doi.org/10.1007/s13277-015-4367-1
https://doi.org/10.1016/j.cell.2018.01.009
https://doi.org/10.1016/j.cell.2018.01.009
https://doi.org/10.1186/s13046-021-01932-8
https://doi.org/10.1186/s13046-021-01932-8
https://doi.org/10.1073/pnas.1804005115
https://doi.org/10.1007/s11864-017-0475-z
https://doi.org/10.1007/s11864-017-0475-z
https://doi.org/10.1089/gtmb.2020.0317
https://doi.org/10.1126/science.aad0095
https://doi.org/10.1186/s13046-021-01840-x
https://doi.org/10.1186/s13046-021-01840-x
https://doi.org/10.1002/hed.23312
https://doi.org/10.1002/ijc.28501
https://doi.org/10.1002/ijc.28501
https://doi.org/10.1002/cam4.3643
https://doi.org/10.1080/21655979.2021.1973775
https://doi.org/10.1080/21655979.2021.1973775
https://doi.org/10.1016/j.cell.2013.07.036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Genomic profiling and
network-level understanding
uncover the potential genes and
the pathways in hepatocellular
carcinoma

Sherif A. El-Kafrawy1,2, Mai M. El-Daly1,2, Leena H. Bajrai1,3,
Thamir A. Alandijany1,2, Arwa A. Faizo1,2,
Mohammad Mobashir4,5*, Sunbul S. Ahmed5, Sarfraz Ahmed6,
Shoaib Alam7, Raja Jeet8, Mohammad Amjad Kamal9,10,11,12,13,
Syed Tauqeer Anwer5, Bushra Khan5, Manal Tashkandi14,
Moshahid A. Rizvi5 and Esam Ibraheem Azhar1,2*
1Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University,
Jeddah, Saudi Arabia, 2Department of Medical Laboratory Sciences, Faculty of Applied Medical
Sciences, King Abdulaziz University, Jeddah, Saudi Arabia, 3Biochemistry Department, Faculty of
Sciences, King Abdulaziz University, Jeddah, Saudi Arabia, 4Department of Microbiology, Tumor and
Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden, 5Genome Biology Lab, Department of
Biosciences, Jamia Millia Islamia, New Delhi, India, 6Department of Biosciences, Jamia Millia Islamia,
New Delhi, India, 7Department of Biotechnology, Jamia Millia Islamia, New Delhi, India, 8Botany
Department, Ganesh Dutt College, Begusarai, Bihar, India, 9Institutes for Systems Genetics, Frontiers
Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University,
Chengdu, China, 10King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi
Arabia, 11Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University,
Dhaka, Bangladesh, 12Enzymoics, Hebersham, NSW, Australia, 13Novel Global Community Educational
Foundation, Hebersham, NSW, Australia, 14Department of Biochemistry, College of Science, University
of Jeddah, Jeddah, Saudi Arabia

Data integration with phenotypes such as gene expression, pathways or

function, and protein-protein interactions data has proven to be a highly

promising technique for improving human complex diseases, particularly

cancer patient outcome prediction. Hepatocellular carcinoma is one of the

most prevalent cancers, and the most common cause is chronic HBV and HCV

infection, which is linked to the majority of cases, and HBV and HCV play a role

in multistep carcinogenesis progression. We examined the list of known

hepatocellular carcinoma biomarkers with the publicly available expression

profile dataset of hepatocellular carcinoma infected with HCV from day 1 to

day 10 in this study. The study covers an overexpression pattern for the selected

biomarkers in clinical hepatocellular carcinoma patients, a combined

investigation of these biomarkers with the gathered temporal dataset,

temporal expression profiling changes, and temporal pathway enrichment

following HCV infection. Following a temporal analysis, it was discovered

that the early stages of HCV infection tend to be more harmful in terms of

expression shifting patterns, and that there is no significant change after that,

followed by a set of genes that are consistently altered. PI3K, cAMP, TGF, TNF,

Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways

regulating pluripotency of stem cells, Cytokine-cytokine receptor
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interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo

signaling pathways are just a few of the most commonly enriched pathways.

The majority of these pathways are well-known for their roles in the immune

system, infection and inflammation, and human illnesses like cancer. We also

find that ADCY8, MYC, PTK2, CTNNB1, TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2,

CYP3A4, UGT1A6, GCK, and FGFR2/3 appear to be among the prominent genes

based on the networks of genes and pathways based on the copy number

alterations, mutations, and structural variants study.

KEYWORDS

HCV and HCC, biomarkers, gene expression/mutational profiling, co-expression,
network-level understanding

Introduction

Acquired genomic aberrations of various sorts and sizes,

ranging from single nucleotide variants to structural

abnormalities, are a common feature of cancer. Cancer

genomes have a wide range of genomic abnormalities of

various sorts and sizes. Single nucleotide variants (SNVs) to

bigger structural variants (SVs) all have an impact on genome

organization (Bruin et al., 2013; Dienstmann et al., 2014; Prandi

et al., 2014). Different types of mutations are seen in cancer cells,

and they are linked to the cell’s ability to reproduce

uncontrollably. Certain modifications to the genetic code only

affect one or a few letters (Futreal et al., 2004; Zarrei et al., 2015;

Yizhak et al., 2019). Others, referred to as copy number changes

(CNA), involve bigger segments of the genome that can be

deleted (deletions) or duplicated (duplications)

(amplifications) (Pelham et al., 2006; Grubor et al., 2009;

Agell et al., 2012; Li and Li, 2014). Various patients’ tumors

have different quantities of these deletions or amplifications,

which are collectively known as the CNAs burden. Scientists can

now scan the genomes of cancers and assess the types of

mutations present in each patient thanks to new technologies.

The outcomes can assist in determining the best course of action.

Patients with a high CNAs burden in their tumors, for example,

have a higher chance of relapse after treatment. However, it is

unclear whether these persons have shorter survival rates as well,

or whether CNAs levels might predict the prognosis of other

cancers. Over a hundred samples from prostate cancer patients

who were not treated with surgery or radiation were analyzed by

Hieronymus et al. The findings revealed that a higher CNA

burden in tumors is linked to more disease-related mortality

(Rigaill et al., 2012; Beerenwinkel et al., 2014; Li and Li, 2014;

Cooper et al., 2015). The findings in prostate cancer were also

true in other cancer types. When Hieronymus et al. looked at

genomic data from individuals with various tumors using a

different DNA sequencing assay that is authorized for clinical

use, they came to the same conclusions. This suggests that CNA

load could be a valuable clinical measure for assessing risk in

cancer patients. Structural variation, in which rearrangements

remove, increase, or reorganize genomic regions ranging in size

from kilobases (kb) to whole chromosomes, is a crucial

mutational mechanism in cancer. Somatically acquired big

structural variations (SVs) are a type of abnormality that can

cause cancer by deactivating tumor suppressor genes and

upregulating oncogenes, among other things. Detecting and

characterizing these variations could lead to better cancer

medicines and diagnostics (Lim and van Oudenaarden, 2007;

Barbosa-Morais et al., 2010; Biesecker and Spinner, 2013;

Gerstberger et al., 2014; Moncunill et al., 2014; Zarrei et al.,

2015).

Cancer is caused by beginning cells that undergo a lot of

evolutionary selection as the disease progresses and can change

dramatically throughout treatment. Tumor cell evolution may

result in subclonal divergence, leading in genetic and molecular

heterogeneity. Computational approaches for creating maps of

cancer evolution could help clinical risk classification and

therapy techniques. There is still a gap in the study of slightly

aberrant or extremely varied malignancies, despite the

development of tools for assessing tumor DNA purity and

cancer cell ploidy (Bardwell et al., 2001; Thomas et al., 2004;

Cui et al., 2007; Carja and Feldman, 2012; Klinke, 2013;

Murugaesu et al., 2013; Paguirigan et al., 2015).

Themost common type of cancer in the world, hepatocellular

carcinoma (HCC), is the leading cause of cancer-related fatalities

(Ieta et al., 2007; Consortium et al., 2010; El-Serag, 2011; Repana

and Ross, 2015; HASS et al., 2016). A high number of HCC

patients show signs of vascular invasion with intrahepatic

metastases, which tend to invade portal vein branches and

create portal vein tumor thrombus (PVTT), which can

obstruct the portal vein and cause portal hypertension

(ROBINSON, 1994; Jhunjhunwala et al., 2014; Llovet et al.,

2015). HCC advancement can be linked to a variety of causes,

the most common of which being HBV and HCV. Aflatoxin B1,

alcohol consumption, cigarette smoking, hepatotoxic chemical

agents, and host co-factors such as elevated serum androgen

levels, genetic polymorphisms, and DNA repair enzymes may all

be linked to the progressive accumulation of a number of

genomic aberrations within the hepatocytes, with TP53 and

CTNNB1 being two well-known cancer drivers (Fujikawa

et al., 2001; Ichikawa et al., 2008; Attari et al., 2019).
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HCV is a single-stranded RNA virus with four structural

proteins: capsid protein C, envelope glycoproteins E1 and E2,

and protein P7, as well as six non-structural proteins: NS2, NS3,

NS4A, NS4B, NS5A, and NS5B. Chronic inflammation, immune-

mediated hepatocyte death and disorder, fibrosis, and multilayer

diseases (cellular pathways such as proliferation, apoptosis, and

DNA repair) are all possible outcomes of HCV infection (core

and structural proteins) (Ahmad et al., 2012; Jost and Altfeld,

FIGURE 1
Differential gene expression profiling and pathway enrichment analysis. (A)Co-occurrence network. (B) Temporal evolution of gene expression
aberrations and its functional consequences. (C) Venn diagram to represent the shared and specific genes and pathways which are potentially altered
as a result of CRC. (D) Enriched pathways followed by their respective p-values. (E) Temporal gene expression profiling of HCC in result to HCV
infection. The number of DEGs from day 1 to day 10 and number of common DEGs in different combinations (such day 1 with day 2, day 2 with
day 3, day 3 with day 4, day 4 with day 5, and so on). (F) HCC biomarkers profiling for the temporal dataset.
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2013; Roberts and Gordenin, 2014; Schwarzenbach et al., 2014;

Sacerdote and Ricceri, 2018; Lupberger et al., 2019b).

As previously noted, HCV infection appears to be a potential

cause of liver disorders such as liver cancer, steatosis, and fibrosis,

and the mechanisms behind infection, liver disease development,

and carcinogenesis are not fully or well understood. There are

also a number of factors associated with HCC. So, in order to

learn more about the leading cause of liver cancer/hepatocellular

carcinoma, we used a method in which we gathered and studied

previously identified biomarkers, a publicly available dataset for

hepatocellular carcinoma (temporal data) with and without HCV

infection, a combined study, clinical relevance, and functional

impact. We examined changes in gene expression patterns,

mutation mutations, CNAs, and SVs using publically available

information from Gene Expression Omnibus (GEO) and TCGA,

followed by cBioPortal. Furthermore, we investigated the

enriched pathways for their overall functional implications

and used network-level understanding to determine the

impact of changed genes on other genes.

Results

As noted in the preceding section, we compiled a list of

known HCC biomarkers before working with the GEO and

TCGA datasets. The GEO dataset contains HCV-infected data

that spans 10 days. So, in the first section of the results, we

focused on data related to HCC biomarkers, followed by

temporal gene expression profiling and functional significance,

and finally, CNAs, mutations, and SVs analyses.

HCC biomarkers and its clinical
relevance

Using cBioPortal in HCC, we were able to map out the

proportion of over-expression (both individually and overall) and

co-occurrence for the selected genes (biomarkers picked from

previously published work) inside the TCGA database. We

provided the co-occurrence in Figure 1A, and for co-occurrence,

we also presented the network with the relevant connectivity in

terms of co-occurrence. CCNB2, CLK2, CDK4, CDC7, E2F3,

PCNA, MCM3, MCM4, USP1, KIF20A, MCM2, and MCM7 are

shown to be dominantly controlling a large number of genes, or to

put it another way, most of the genes are interdependent. The

majority of the genes here are involved in the cell cycle, however

there are a few that are specifically involved in infection and

inflammatory processes (E2F5, MAPK13, IGF2BP3, IGF2). We

investigated the temporal gene expression profiling for HCV

infection acquired from GEO after assessing the biomarkers

association. First, as shown in Figure 1B, we projected DEGs for

each day of infection by combining the genes into four groups

(0–2 days, 3–5 days, 6–8 days, and 9–10 days). Figure 1B shows that

increased infection duration causes significant changes in gene

expression patterns until a certain time point, after which there

are few changes in gene expression patterns and a slight decrease in

the number of DEGs between 9 and 10 days, as well as enriched

pathways or biological functions affected by changes in gene

expression patterns. Figure 1B shows an exponential growth in

the number of DEGs up to day eight, after which there is volatility,

leading to the conclusion that there is a greater level of distribution in

gene expression pattern during early HCV infection in HCC.

PI3K, cAMP, TGF, TNF, Rap1, NF--kB, Apoptosis, Longevity

regulating pathway, signaling pathways regulating pluripotency of

stem cells, Cytokine-cytokine receptor interaction, p53 signaling,

Wnt signaling, Toll-like receptor signaling, and Hippo signaling

pathways are just a few of the most commonly enriched pathways.

The majority of these pathways are well-known for their roles in

the immune system, infection and inflammation, and human

illnesses like cancer.

In addition, we conducted a comparison analysis of HCC

gene expression datasets that were not infected with HCV. We

observed that there are a large number of DEGs, so we prepared

lists of DEGs for these three different fold changes, 2.0, 5.0, and

7.0, and analyzed the enriched pathways for all three datasets,

finding that 145 DEGs and 15 enriched pathways were shared

across all the three fold changes (2.0, 5.0, and 7.0), 111 DEGs

and 19 enriched pathways shared between fold changes 2.0 and

5.0, and 1448 DEGs and 96 enriched pathways were unique to

fold change 2.0. We compared this dataset to another dataset for

the same after evaluating it at different fold changes. 180 DEGs

and 22 enriched pathways were shared between the two

datasets, and GSE63863 had its own set of DEGs and

enriched pathways. The majority of these 22 pathways are

well-known and acknowledged as the most important

pathways linked to various malignancies, including HCC

(Figures 1C,D; Supplementary Data S1). Furthermore, we

have also presented the HCV-infected HCC temporal data in

Figure 1E which contains temporal gene expression profiling of

HCC in result to HCV infection. The number of DEGs from day

1 to day 10 and number of common DEGs in different

combinations (such day 1 with day 2, day 2 with day 3, day

3 with day 4, day 4 with day 5, and so on).

Moreover, we have also performed the mapping of known

HCC biomarkers with temporal gene expression dataset and

observe that day 0 and day 2 have no HCC biomarkers as DEGs

while day 5 contains the maximum number (11) of HCC

biomarkers in the predicted DEGs list (Figure 1E).

Analysis of CNAs, mutations, and SVs
from TCGA database

After examining gene expression profiling from the GEO

database, we went on to look at global genomic aberrations

using TCGA and cBioPortal, as well as all of the HCC
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datasets to look at overall CNAs, mutations, and SVs in the

case of HCC. Figure 2A shows the MANTIS Score

distributions for mutation count, fraction genome altered,

diagnostic age, and microsatellite instability (MSI) (which

predicts the MSI status of tumors). For this study, all of the

HCC samples from TCGA were chosen. In terms of mutation

count, we can see that 10 samples have the most (>150),
while 40–70 samples have a similar number of mutations

(>120 and 150), and the fraction of genome altered has

similar histogram patterns. The majority of the diagnosed

patients were between the ages of 50 and 75, with an MSI

MANTIS score of 0.4 for almost 400 patients and an MSI

MANTIS score of unknown for over 1000 samples. Figure 2B

shows the top 50 genes after giving the fundamental data of

mutations, CNAs, and SVs. Most of the top 50 genes are

specific, although AGN2 (which plays a vital function in

RNA interference) was found in both CNAs and SVs lists,

and CTNNB1 (a putative component of the adherens

junction) was found in both mutations and SVs lists.

After mapping the top 50 genes, we applied a threshold

level to all three scenarios (CNAs (10.0), mutations (3.0),

and SVs (0.5)) and used a venn diagram to compare these

gene lists to the enriched pathways lists (Figure 2C). We can

see that none of these three lists have a gene in common.

There were four genes shared by CNAs and the mutations

list, thirteen genes shared by mutations and SVs, and one

gene shared by SVs and the CNAs list. In terms of gene set

comparison, one pathway (PI3K-AKT) was shared by all

three lists, three pathways (MAPK, calcium, and focal

adhesion signaling) were shared by mutations and SVs,

and two routes (Ras and Rap1 signaling) were shared by

SVs and CNAs (Figure 2C) (Table 1).

FIGURE 2
Genomic-level alterations in HCCdatasets of TCGA database. (A)Histograms to present themutation count, fraction genome altered, diagnosis
age, andMSImantis score. (B) Percentage of patients with different types of alterations (CNA,Mutations, and SV) in case of HCC. (C)Venn diagrams to
display the shared and specific significant genes and pathways.
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Network-level understanding
potential HCC genes

Finally, we used the FunCoup network database of CNAs,

mutations, and SVs genes list to map out the networks, which we

then processed in cytoscape using network analyzer (Figures

3A–C). The statistics, degree distribution, and topological

coefficients of the networks were shown in Figure 3. The

degree distribution, topological coefficients, and statistical

features all show that the SVs network is densely connected,

followed by the CNAs network and mutations network (thinly

connected). PRPF3, EEF1D, EXOSC4, EIF3E, SF3B4, BOP1,

RAD21, MYC, RPL8, HSF1, HIF3E, FLAD1, PPP1R16A,

TOP1MT, MAF1, KRTCAP2, CYC1, and GRINA were shown

to be substantially related in the CNAs genes network. MYH15,

MYCBP2, HSPG2, USH2A, FN1, FBN1, CTNNB1, ARID1A, and

TABLE 1 Temporal enriched pathways.

Enriched pathways (CNA genes)

KEGG_04151_PI3K-Akt_signaling_pathway_-_Homo_sapiens_(human) 1.984127e-04

KEGG_04015_Rap1_signaling_pathway_-_Homo_sapiens_(human) 8.333333e-03

KEGG_04014_Ras_signaling_pathway_-_Homo_sapiens_(human) 4.166667e-02

KEGG_04360_Axon_guidance 4.166667e-02

Enriched pathways (Mutated genes)

KEGG_04151_PI3K-Akt_signaling_pathway_-_Homo_sapiens_(human) 2.480159e-05

KEGG_04510_Focal_adhesion 1.984127e-04

KEGG_04512_ECM-receptor_interaction 1.984127e-04

KEGG_04020_Calcium_signaling_pathway 8.333333e-03

KEGG_04010_MAPK_signaling_pathway 4.166667e-02

KEGG_04110_Cell_cycle 4.166667e-02

KEGG_04120_Ubiquitin_mediated_proteolysis 4.166667e-02

KEGG_04918_Thyroid_hormone_synthesis 4.166667e-02

Enriched pathways (SV genes)

KEGG_04010_MAPK_signaling_pathway 2.755732e-06

KEGG_04610_Complement_and_coagulation_cascades 2.480159e-05

KEGG_04151_PI3K-Akt_signaling_pathway_-_Homo_sapiens_(human) 1.984127e-04

KEGG_04310_Wnt_signaling_pathway 1.984127e-04

KEGG_04510_Focal_adhesion 1.984127e-04

KEGG_00980_Metabolism_of_xenobiotics_by_cytochrome_P450 1.388889e-03

KEGG_04014_Ras_signaling_pathway_-_Homo_sapiens_(human) 1.388889e-03

KEGG_04611_Platelet_activation 1.388889e-03

KEGG_04810_Regulation_of_actin_cytoskeleton 1.388889e-03

KEGG_04919_Thyroid_hormone_signaling_pathway 1.388889e-03

KEGG_00830_Retinol_metabolism 8.333333e-03

KEGG_00982_Drug_metabolism_-_cytochrome_P450 8.333333e-03

KEGG_04020_Calcium_signaling_pathway 8.333333e-03

KEGG_04371_Apelin_signaling_pathway_-_Homo_sapiens_(human) 8.333333e-03

KEGG_04921_Oxytocin_signaling_pathway 8.333333e-03

KEGG_00020_Citrate_cycle_(TCA_cycle) 4.166667e-02

KEGG_04015_Rap1_signaling_pathway_-_Homo_sapiens_(human) 4.166667e-02

KEGG_04022_cGMP-PKG_signaling_pathway_-_Homo_sapiens_(human) 4.166667e-02

KEGG_04141_Protein_processing_in_endoplasmic_reticulum 4.166667e-02

KEGG_04144_Endocytosis 4.166667e-02

KEGG_04261_Adrenergic_signaling_in_cardiomyocytes 4.166667e-02

KEGG_04392_Hippo_Signaling_Pathway 4.166667e-02

KEGG_04550_Signaling_pathways_regulating_pluripotency_of_stem_cells 4.166667e-02

KEGG_04723_Retrograde_endocannabinoid_signaling 4.166667e-02

KEGG_04916_Melanogenesis 4.166667e-02
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TTN were shown to be substantially related in the mutant genes

network. The strongly related genes in the SVs genes network were

ALDOB, SERPINC1, UGT1A6, NPLOC4, FGA, KRCC5, FGB,

PLRG1, CCNA2, CYP2C18, CALR, PPP2R5E, SFPQ, PRKACA,

PBRM1, PRKCA, EIF3L, RAB6A, and STK38. Based on the

general network notion, it might be concluded that genes that

appear to be heavily connected within the network are more

significant than genes that appear to be less connected.

Similarly, the more coupled genes have the potential to change

more genes, and as a result, more biological activities.

Furthermore, we plotted the gene networks and associated

pathways for CNAs genes, mutant genes, and SVs genes

(Figures 4A–C), where ADCY8, MYC, and PTK2 appear to be

part of a large number of essential signaling pathways in the case of

the CNAs genes network. CTNNB1, TP53, and RB1 have all been

linked to cancer or cancer-related signaling pathways, primarily in

HCC. PRKCA, TP53, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6,

CTNNB1, GCK, and FGFR2/3 are among the genes in the SVs

genes network that connect a vast number of signaling pathways.

We conclude that the top-ranked CNAs, mutant, and SVs genes

have the ability to change at a higher-scale at the functional level

based on these three genes and pathways association networks.

Discussion

Using GEO and TCGA datasets, we adopted an

interdisciplinary strategy to investigate gene expression profiles,

somatic mutations, CNAs, and SVs analyses. The gene

expression datasets were divided into two categories: temporal

datasets infected with HCV and non-temporal datasets clear of

HCV infection. This study took into account all of the HCC datasets

in the TCGA database. Furthermore, we used a network biology

technique (Barabasi and Oltvai, 2004; Emmert-Streib and Glazko,

FIGURE 3
Network-level understanding top-ranked genes. (A) CNA genes network, (B) Mutated genes, and (C) SV genes network followed by their
respective analysis (degree distribution and topological coefficients).
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2010; Hu et al., 2016) to better understand the relationship between

top-ranked genes in terms of linkage while they were altered. The

SVs genes network appears to be the most densely connected,

followed by the CNAs and mutant gene networks. Moreover, we

have also used those data where the infection is associated withHBV

to evaluate the broad spectrum of the impact of infection in addition

to HCC at gene expression and functional levels.

The assessment of the clonality of each somatic aberration

enables the deconvolution of the sequence of oncogenic events that

occur during tumor initiation or progression. Assuming that clonal

alterations originated prior to subclonal alterations within the

same tumor, we examined pairs of genes that are aberrant in

the same sample and across multiple tumors to determine the

directionality of the clonal-subclonal hierarchy (Cibulskis et al.,

2012; Klijn et al., 2013; Li and Li, 2014; Swanton, 2014). HCC

subtypes are classified by gene clustering of tumor specific genes

which resolve the HCC pathogenesis according to their etiological

factor, clinical stage, recurrence rate, and prognosis. The

expression in genes regulating cell proliferation and anti-

apoptotic pathways such as PNCA and cell cycle regulators

CDK4, CCNB1, CCNA2, and CKS2 and ubiquitination

mechanisms were studied previously. In addition to that several

molecular markers of tumor progression like HSP70, CAP2,

GPC3, and GS were also expressed in expression profiling. The

expression profiling by time course analysis has identified several

genes as a progression marker in HCC such as GPC3, CXCL12,

SPINK1, GLUL, UBD, TM4SF5, DPT, SCD, MAL2, TRIM55, and

COL4A2. Meanwhile the specific alteration of HCC signals

transduction pathways and protein expression have given the

opportunities for new therapies targeting new molecular factors.

High-throughput data (genomic and proteomic) are frequently

generated with the goal to understand the genotype-phenotype

relationship in the complex diseases (Emilsson et al., 2008;

Gonzalez-Perez et al., 2013; van’t Veer et al., 2002).

Among the most common enriched pathways are PI3K, cAMP,

TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway,

FIGURE 4
Network-level understanding top-ranked genes and the associated pathways. (A)CNAgenes network, (B)Mutated genes, (C) SV genes network
followed by their respective analysis, and (D) mRNA and protein expression in liver and gallbladder tissues (source protein atlas).
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signaling pathways regulating pluripotency of stem cells, Cytokine-

cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like

receptor signaling, and Hippo signaling pathways. Majority of these

pathways well characterized for immune controlling system, infection

and inflammation, and human diseases such as cancer. PRPF3,

EEF1D, EXOSC4, EIF3E, SF3B4, BOP1, RAD21, MYC, RPL8,

HSF1, HIF3E, FLAD1, PPP1R16A, TOP1MT, MAF1, KRTCAP2,

CYC1, and GRINA were highly connected in case of CNAs network,

inmutated genes network,MYH15,MYCBP2,HSPG2,USH2A, FN1,

FBN1, CTNNB1, ARID1A, and TTN were highly connected, and

ALDOB, SERPINC1, UGT1A6, NPLOC4, FGA, KRCC5, FGB,

PLRG1, CCNA2, CYP2C18, CALR, PPP2R5E, SFPQ, PRKACA,

PBRM1, PRKCA, EIF3L, RAB6A, and STK38 were among the

highly connected genes in SVs genes network. CTNNB1, TP53,

RB1, ADCY8, MYC, PTK2, PRKCA, TP53, TCF7L2, PAK1,

ITPR2, CYP3A4, UGT1A6, CTNNB1, GCK, and FGFR2/3 were

among the genes whose alterations could possibly alter a large number

of critical biological functions including those which directly infer the

cancer mainly the HCC pathways. Moreover, we have also presented

the expression (mRNA and protein) (Figure 4D) of some of the

potential genes in case of human liver and gallbladder tissues by using

the Protein Atlas database (Uhlén et al., 2005, 2017, 2019; Cancer

Genome Atlas Research Network, 2008). This study could be an

example to apply the integrative approach for a number of complex

diseases such cancers, type-2 diabetes, cardiovascular diseases, and

neurological disorders (Varambally et al., 2005; Taylor et al., 2010;Van

Herle et al., 2012; Zhang et al., 2015; Huwait and Mobashir, 2022).

Conclusions

According to our findings, only a few genes, such as CLK2,

E2F5, CDK5, E2F3, MCM3, PCNA, and CDK4, are highly

overexpressed among HCC patients, and the overall

expression of all the selected biomarkers appears in more than

60% of the patients, and in terms of co-occurrence, CCNB2,

CLK2, CDK4, CDC7, E2F3, PCNA, and MCM3 appear to be the

dominantly c Following a temporal analysis, it was discovered

that the early stages of HCV infection tend to be more harmful in

terms of expression shifting patterns, and that there is no

significant change after that, followed by a set of genes that

are consistently altered. In contrast to our expression data profile,

following 4 days of HCV infection, a group of pathways is always

affected. PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis,

Longevity regulating pathway, signaling pathways regulating

pluripotency of stem cells, Cytokine-cytokine receptor

interaction, p53 signaling, Wnt signaling, Toll-like receptor

signaling, and Hippo signaling pathways are all highly altered

pathways in HCC infected with HCV, according to our findings.

The majority of these pathways are well-known for their roles in

the immune system, infection and inflammation, and human

illnesses like cancer. PI3K, cAMP, TGF, TNF, Rap1, NF-kB,

Apoptosis, Longevity regulating pathway, signaling pathways

regulating pluripotency of stem cells, Cytokine-cytokine

receptor interaction, p53 signaling, Wnt signaling, Toll-like

receptor signaling, and Hippo signaling pathways are just a

few of the most commonly enriched pathways. Most of these

pathways are well-known for their functions in the immune

system, infection and inflammation, and human diseases such as

cancer. According to the networks of genes and pathways based

on CNAs, mutations, and SVs, ADCY8, MYC, PTK2, CTNNB1,

TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6,

GCK, and FGFR2/3 appear to be among the prominent genes.

Methods

We have selected genome-wide expression and mutational data

forHCCwithHCV infection andwithoutHCV infection samples. By

applying computational approach and integrating experimental data,

we have unraveled the critical genes and the pathways which appear

to be associatedwith humanHCC.Wehave selected different datasets

and the dataset details are as follows: In GSE63863 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE63863), using theMassArray

EpiTyper, they have looked at a TERT methylation assay that

included the UTSS region in 125 matched HCC samples and then

analyzed a validation set of 12 matched HCC samples and obtained

the TERT gene’s FPKM value to determine the association between

TERT promoter methylation status and TERT expression level. In

case of GSE14520 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=gse14520), tumors and the associated non-tumor tissues were

analyzed independently using a single channel array technology for

gene expression profiling. On Affymetrix GeneChip HG-U133A 2.

0 arrays, tumor and paired non-tumor samples from 22 patients in

cohort 1 and the normal liver pool were analyzed according to the

manufacturer’s methodology. An Affymetrix GeneChip Scanner

3000 was used to measure fluorescence intensities, which was

controlled by GCOS Affymetrix software. The 96 HT HG-U133A

microarray platformwas used to process all samples from cohort 2 as

well as 42 tumor and non-tumor samples. An Affymetrix GeneChip

HT Array Plate Scanner was used to determine the fluorescence

intensities, which was controlled by GCOS Affymetrix software. We

have also used HCV specific dataset GSE126831 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE126831) where integrated

genomic analysis was used to investigate time-resolved HCV

infection of hepatocyte-like cells and they discovered pathways

relevant for liver disease pathogenesis that have verified in the

livers of 216 cirrhotic patients with HCV using differential

expression, gene set enrichment analysis, and protein-protein

interaction mapping.

In this study, from on previous study, we have collected the

genes as biomarkers in case of HCC and studied their clinical

relevance and have also studied the publicly available dataset

(GSE126831 (Lupberger et al., 2019a)) related to gene expression

profiling. In comparison from the previous work, we have applied

different approach where we have started our work by mapping the
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known association (publicly available network database) FunCoup

(Alexeyenko and Sonnhammer, 2009), investigated the clinical

significance of the overexpression of HCC biomarkers, and

finally studied DEGs and the enriched pathways from the gene

expression data (obtained from Gene Expression Omnibus).

Further, we have utilized the HCC datasets from TCGA database

and by using cBioPortal explored all possible mutations, CNAs, and

SVs (Koboldt et al., 2012; Werner et al., 2014).

Initially, we have selected the dataset (raw expression dataset)

GSE126831 (Lupberger et al., 2019a) for HCC and processed it for

normalization and log2 values of all the mapped genes.

GSE126831 comprises 63 samples ranging from day 0–10

(temporal samples infected with HCV and mocked samples),

with three mocked RNA samples for day 0 and three mocked

and three RNA infected with HCV samples for days 1–10. We

compared faked samples toHCV infected samples at the respective

day of infection for differential gene expression profiling. mRNA

profiles of sham orHCV-infectedHuh7.5.1dif cells, obtained every

day between days 0 and 10 after infection in triplicate. At 7 days

after infection, the HCV infection had reached a halt (pi).

Unspecific effects cannot be ruled out after day 7 pi.

The paired-end reads from all 63 samples were aligned to the

human hg19 UCSC reference using TopHat software for

transcriptome profiling at Illumina NextSeq 500 (Homo sapiens)

RNA sequencing (v2.0.14). The Cufflinks package’s cuffquant and

cuffnormwere used to calculate gene expression levels (FPKMvalues)

(v2.2.1). By creating analytical groups, proteins and transcripts were

mapped. Supplementary Files format and content: hg19 Genome

build: hg19 The RPKM values for each sample and the results of a

differential expression analysis ofmapped transcripts are stored in tab-

delimited text files. Now, we proceed for our major goal which is to

understand the gene expression patterns (Lapointe et al., 2004;

Subramanian et al., 2005) and its inferred functions (Subramanian

et al., 2005; Mi et al., 2016) and also the impact of HCC biomarker

genes. We used MATLAB tools (e.g., mattest) for differential gene

expression prediction and statistical analysis, and for pathway analysis,

we used theKEGGdatabase (Kanehisa et al., 2007, 2009) and in-house

code created for pathway and network research (Bajrai L. et al., 2021;

Kamal et al., 2020; Khouja et al., 2022a; Kumar et al., 2020;Warsi et al.,

2020). Furthermore, we took all of the HCC samples from the TCGA

database and used cBioPortal to look for mutations, CAN, and SV, as

well as prepare a list of genes using a threshold cutoff. The CNA

threshold was set at 10.0, the mutation threshold at 3.0, and the SV

threshold was set at 0.5. As previously stated, this collection of genes

has been processed for pathway enrichment analysis. For the GEO

datasets, GEO2R was applied for the calculation of p-values and fold

changes. GEO2R is a web-based tool that allows users to compare two

or more groups of Samples in a GEO Series to find genes that are

differentially expressed under different experimental settings. The

results are supplied as a table of genes ordered by significance, as

well as a set of graphic graphs to help visualise differentially expressed

genes and assess data set quality (Bajrai L. et al., 2021; Bajrai et al.,

2021 L. H.; Eldakhakhny et al., 2021; Khouja et al., 2022b). FunCoup

(Reynolds et al., 2010) was used to generate DEGs networks for all of

the networks in this study, and cytoscape was utilized to visualize the

networks. Protein complexes, protein-protein physical interactions,

metabolic, and signaling pathways are among the four types of

functional coupling or linkages predicted by FunCoup. MATLAB

has been used for themajority of our code and calculations. Cytoscape

(Shannon et al., 2003; Skov et al., 2012), network database (PPI),

ProgeneV2, and other fundamental tools are among the extra

applications and resources used (Krishnamoorthy et al., 2020;

Bajrai L. et al., 2021; Bajrai et al., 2021 L. H.; Eldakhakhny et al.,

2021; Ahmed et al., 2022; Anwer et al., 2022).
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