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Image Analysis for Rapid Assessment
and Quality-Based Sorting of Corn
Stover
Ling Ding1*, Amber N. Hoover1, Rachel M. Emerson1, Kuan-Ting Lin1, Josephine N. Gruber2,
Bryon S. Donohoe2, Jordan L. Klinger1, Rachel D. Colby1, Brad J. Thomas1, William A. Smith1

and Allison E. Ray3*

1Energy and Environmental Science and Technology, Idaho National Laboratory, Idaho Falls, ID, United States, 2Biosciences
Center, National Renewable Energy Laboratory, Golden, CO, United States, 3Science and Technology, Idaho National
Laboratory, Idaho Falls, ID, United States

Imaging in the visible spectrum is a low-cost tool that can be readily deployed for in-field or
over-belt monitoring of biomass quality for bio-refining operations. Rapid image analysis
coupled with innovative preprocessing may reduce the impacts of feedstock variability
through identification of contaminants or other material attributes to guide selective sorting
and quality management. Image analysis was employed to evaluate the quality of corn
stover in red-green-blue (RGB) chromatic space. This study used controlled, bench-scale
imaging as a proof-of-concept for rapid quality assessment of corn stover based on
variations in material attributes, including chemical and physical attributes, that relate to
biological degradation and soil contamination. Logistic regression-based classification
algorithms were used to develop a method for biomass screening as a function of
biological degradation or soil contamination. This study demonstrated the use of image
analysis to extract features from RGB color space to investigate variations in critical
material attributes from chemical composition of corn stover. Fourier transform infrared
(FT-IR) suggested a correlation between red band intensity and biological degradation,
while detailed surface texture analysis was found to distinguish among variations in ash.
These insights offer promise for development of a rapid screening tool that could be
deployed by farmers for in-field assessment of biomass quality or biorefinery operators for
in-line sorting and process optimization.

Keywords: image analysis, rapid detection, corn stover, biological degradation, chemical composition, feedstock
variability, FT-IR

INTRODUCTION

The 2016 Billioin Tons Report (BT16) estimates that by 2040, more than 1 billion tons of biomass
will be available to achieve a vision of a sustainable bioeconomy (US DOE, 2016). Lignocellulosic
biomass has been considered a promising feedstock for biofuels production; therefore, tremendous
research efforts have been made to enhance different aspects of the related processes (Cheah et al.,
2020). Increases in fuel prices have challenged all countries around the world to develop their own
biofuels from renewable resources such as lignocellulosic crops (Qureshi et al., 2010). Zea mays is a
significant agricultural crop with potential as a biofuel feedstock due to its high carbohydrate content,
low production cost, and high availability in the US corn belt (Li et al., 2020). Biomass variability
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originating from production and field conditions propagates with
the feedstock through the value chain, posing a challenge to the
emerging biorefinery industry (Ray et al., 2020). Variations in
lignocellulosic biomass material and quality attributes are often
overlooked when assessing feedstock value and pathways for
conversion to fuels, chemicals, and products (Ray et al., 2020).
Variations in cell wall composition, extractives, moisture content,
inorganic species, and soil contaminants have been identified as
critical factors affecting biomass quality, process uptime, and
product yields (Ray et al., 2020; Sievers et al., 2020; Ding et al.,
2021a). Hoover et al. (2019) developed several multiple regression
models where five chemical characteristics could be used to
estimate biochemical conversion performance. Using these
models, an approach for a grading system was demonstrated
that could be used to inform markets on the impacts of biomass
variability. Hartley et al. (2020) used discrete event simulation
that investigated feedstock quality on plant uptime and overall
impact to biofuel cost through feedstock delivery cost. These
works show how fundamental biomass information might enable
real-time decision making on plant profitability and operability.
Storage is an essential component of the biomass logistics supply
chain, which can have significant impacts to the overall feedstock
supply cost and operational reliability (Rentizelas, 2016). Many
studies have established that the combination of living cell
respiration, biological degradation, and thermo-chemical
oxidative reactions bring about significant changes to critical
biomass feedstock attributes and process efficiency during storage
(Bose et al., 2020; Groenewold et al., 2020; Li et al., 2020).
Changes that may occur in stored biomass feedstock include
dry mass loss (up to 5.5% per month) (Thornqvist, 1985;
Eisenbies et al., 2016), drying, decomposition, and energy
content loss (Krigstin and Wetzel, 2016). In addition to capital
and operational costs, it is imperative to consider the impact of
storage method and format on chemical properties of biomass
and overall process efficiency.

Image analysis techniques have been widely applied to
measure lignocellulosic biomass features. Image analysis
techniques for assessing crops and plant material involve
extracting information from digital images of the
lignocellulosic biomass (Yan et al., 2020). Unique features of
the materials, such as shape, color, and surface texture, can be
recognized. Recent research found that crop biomass is highly
correlated with different crop parameters, such as leaf area index,
crop height, and canopy volume (Lati et al., 2013; Bendig et al.,
2014; Tilly et al., 2014), and is also correlated with different
vegetation indices based on hyperspectral and red, green, blue
(RGB) images (Gupta et al., 2000; Gitelson et al., 2003; Swain
et al., 2010; Gitelson et al., 2014; Jannoura et al., 2015). Crop
biomass yield has been estimated from spectral information from
an unmanned aerial vehicle using standard RGB and
multispectral or hyperspectral cameras (Jiang et al., 2019).
Image analysis has also been used to estimate the distribution
of plants in fields of a clover-grass mixture by using convolutional
neural networks trained to predict semantic segmentation maps
of clover, grass, and weeds in RGB images containing clover-grass
mixtures (Skovsen et al., 2017). Further, Wang et al. found a
strong positive correlation between the grayscale values of

biochar and its methylene blue and iodine adsorption capacity,
and the Pearson’s correlation coefficient range was 0.685–0.977
(Wang et al., 2015). In addition, surface texture can be measured
directly from images taken with a laser profilometer (Chinga
et al., 2007; Wagner and Horn, 2017), stereomicroscope (Mitra
et al., 2014; Piselli et al., 2017), photographic scanner (Aguirre
et al., 2018), or scanning electron microscope (Yan et al., 2020).
The image analysis can also provide information on the surface
roughness based on grayscale values of the image or height map
(Chinga et al., 2007).

There are limited publications on visible, red-green-blue
(RGB) analysis of biomass variability relevant to biorefineries
and lack of such a study limits the ability to develop rapid
screening tools for in-field assessment of biomass quality
based on physical and chemical attributes. The novelty of this
paper was to design and use controlled, bench-scale imaging,
employing an off-the-shelf digital camera, as a proof-of-concept
for rapid, quality-based assessment of corn stover in visible, red-
green-blue (RGB) space based on variability derived from soil
contamination and biological degradation. Logistic regression
classification algorithms were used to develop an image
screening of biomass as a function of soil contamination and
biological degradation. In addition, FTIR was used with a more
detailed surface analysis to investigate variation in critical
material attributes that arise from chemical composition.
Finally, surface texture analysis of the same images
distinguished among variable ash levels and degradation. The
qualitative results presented in this study show promise for
developing rapid screening tools to deploy in-field or in-line
for rapid assessment of feedstock quality.

MATERIALS AND METHODS

Corn Stover Bale Collection and Sample
Preparation
Two sets of corn stover samples were imaged and analyzed in this
study. The first was a set of 216 core samples from 24 bales
obtained from four fields in different central Iowa counties:
Hamilton (4 bales), Hardin (6 bales), Story (6 bales), and
Poweshiek (8 bales) described in Ray et al. (2020). Baling
occurred between October 12 and 27, 2017, using an AGCO
2270XD large square baler, except for Poweshiek County, where a
Heston 2270XD square baler was used. Preliminary screening for
moisture and ash content was performed by taking three cores per
bale to select the 24 bales used in this study. Selected bales were
more thoroughly sampled by collecting nine cores per bale,
illustrated in a previous study (Ray et al., 2020). Corn stover
samples were dried at 40°C and milled with a 2 mm screen in a
Thomas Model 4 Wiley Mill (Thomas Scientific, Swedesboro, NJ)
for chemical composition analysis. Additional milling using a
Retsch ZM200 (Haan, Germany) with a 0.2 mm screen was done
to analyze inorganics. For surface analysis, the bales were size
reduced through a Vermeer BG480 bale processor with a 75-mm
screen, then a Bliss Hammermill with a 25-mm screen, and
samples were collected and milled to pass a 2-mm screen for
evaluation of surface properties.
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The second set of 12 corn stover samples was selected to
evaluate material attributes influenced by aging and degradation
in storage operations. Bales were from Hardin County, IA (2

bales) and Story County, IA (3 bales) with harvest and baling
information described for each county previously. Bale sections
exhibiting visual evidence of biological degradation were selected

FIGURE 1 | (A) Image workflow sample template with internal color standards and biomass samples; (B) Examples of the region of interest selection to measure
and output RGB channel data.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8376983

Ding et al. Image Analysis of Corn Stover

7

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


for sampling as described in previous studies (Li et al., 2020;
Groenewold et al., 2020; Bose et al., 2020). Samples were collected
from bale flakes displaying variable extents of biological
degradation—moderate biological degradation (medium brown
coloration), severe biological degradation (dark brown to almost
black), and mild-or negligible biological degradation (light
brown). The two bales from Hardin County were size reduced
using a Vermeer BG480 bale processer with a 75-mm screen,
samples were collected following size reduction, and one sample
per bale was visually identified as severely biologically degraded
or mild/negligible biologically degraded. The three bales from
Story County were manually deconstructed and dissected to
collect samples from flakes of the bale that were observed to
have mild/negligible biological degradation or moderate/severe
biological degradation (Groenewold et al., 2020). For subsequent
characterization, samples were milled to pass through a 2 mm
and a 0.2 mm screen as described above.

Image Processing and Analysis
An imaging workflow was developed that uses a Panasonic Lumix
G camera with a 88.9-cm square light shed and Metz Mecablitz
52 AF-1 digital flashes. Camera location and settings, as well as
flash position, were kept consistent for all images. Each 2-mm
sample was imaged using a standardized sample template with
internal color standards in each sample photo and a consistent set
of biomass samples in each photo (Figure 1A). The image
processing workflow included post-processing in SilkyPix
Developer Studio 8 SE and data extraction with ImageJ
(https://imagej.nih.gov/ij/). Each photo’s exposure and gray
balance were set individually using the X-Rite ColorChecker
Passport Photo 2 with color reference targets included in each
image. Regions of interest were defined in each image, as
displayed in Figure 1B. The digital photos were decomposed
into red, green, and blue channel values ranging from 0 to 255 in
relative intensity. The mean, median, standard deviation,
minimum, and maximum for the red, green, and blue values
range from the regions of interest for all samples were included in
the data sets available in the Bioenergy Feedstock Library (Ding
et al., 2021b). The image results were aligned with sample
metadata, total inorganics, inorganic speciation, and chemical
composition (NIRS predicted composition or wet chemical
composition) (Ding et al., 2021b). In addition to analytical
characterization, three independent observers inspected each
sample to assist with positive classification of samples into
qualitative sample categories: 1) clean and not degraded, 2)
soil contaminated, or 3) degraded (Ding et al., 2021b). This is
further discussed below.

Chemical Analysis
Inorganic speciation for Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti, and S
oxides were measured according to ASTM standards D3174,
D3682, D6349 by a Huffman Hazen Laboratories in Golden,
CO and represented on a % dry biomass basis. The chemical
composition, including total inorganics, glucan, xylan, lignin, and
total extractives, was measured using near-infrared spectroscopy
(NIRS) predicted composition or wet chemical composition. For
NIRS, predicted composition samples at 2 mm particle size were

dried in a desiccator for a minimum of 72 h prior to NIRS
analysis. Previous publications have described spectral analysis
and NIRS calibrationmodels in detail (Payne andWolfrum, 2015;
Ray et al., 2020). Wet chemical composition was performed in
duplicate following the National Renewable Energy Laboratory’s
laboratory analytical procedures for standard biomass analysis
(Sluiter et al., 2010), as described in a previous study (Hoover
et al., 2019). The NIRS chemical composition predictive models
were built on these same wet chemical procedures.

Observational Dataset
Three independent researchers performed an observational
assessment of each sample and categorized sample quality on
the basis of soil contamination and degradation due to biological
heating. The surveyed researchers were highly experienced in
biomass sampling, preparation, and analytical characterization
for assessment of biomass quality, as well as identification of
degraded samples that have undergone biological heating or
biomass materials with soil contamination. Observational
assessment consisted of a -visual (color and clear decay, soil
contamination), tactile (texture from grit, soil, silt and/or sand
entrapment, and fiber integrity), and odor (presence of astringent
odors common to biological degradation) material inspection of
each sample and recorded whether it was 1) not soil
contaminated and not biologically degraded 2) soil
contaminated, or 3) biologically degraded. Samples were
assessed with a scale of 0–3 for soil contamination, and
biological degradation with 0 = not observed, 1 = low, 2 =
moderate, and 3 = high. The observational values were
summed for each category for a minimum value of 0
(i.e., each observer selected 0) and a maximum of 9 (i.e., each
observer selected 3) [(Ray et al., 2020) Supplementary Material].
Observational data are aggregated in the dataset (Ding et al.,
2021b).

Statistical Analysis
JMP® Pro 16.0.0 was used to analyze the combined information
from the image analysis, chemical analysis, and observational
dataset as described above. Hierarchical cluster analysis using the
Ward method was used to group the 222 samples with chemical
composition data into four organic chemically distinct groups
using glucan, xylan, lignin, and extractives contents (Ding et al.,
2021b) along with four inorganic chemically distinct groups for
the 191 samples in the dataset with inorganic speciation contents
for 191 samples (Ding et al., 2021b). Principal component
analysis (PCA) was also used for each organic and inorganic
dataset to visualize and interpret the hierarchically defined
clusters. Four linear regression models using least squares were
generated relating 1) organic chemical components—glucan,
xylan, lignin, a 2-way interaction between glucan and xylan,
and a 3-way interaction between glucan, xylan, and lignin
along with total inorganics—to the median red channel values
(Ding et al., 2021b) as described in the image processing and
analysis section, 2) the same organic chemical components along
with SiO2 and SO3 inorganic constituents to the median red
channel values 3) organic chemical components to the observed
biological degradation dataset as described in the Observational
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dataset section and 4) the observed biological degradation levels
to median red channel value. For the development of these
models, factors were retained if they significantly contributed
to the response variable (p ≤ 0.05) and were not highly correlated
to other factors in the model except for cases when single factors
were retained regardless of their significance if they were included
in any interaction terms. Multicollinearity between model
explanatory factors was determined based on the Variance
Inflation Scores (VIF). A VIF score >10 was considered high
multicollinearity between model factors. Nominal logistic fit
regression models were used to develop predictive models for
biological degradation and soil contamination levels, using the
established hierarchical cluster groups as response variables and
median values from the red, green, blue channels and 2-way
interactions between these values. The dataset used for these
models included the 222 samples for predicting the levels of
biological degradation with organic chemical data available
and 176 samples for predicting levels of soil contamination
using samples with both organic chemical and inorganic
speciation data available. Factors for each model were
removed based on p-values greater than 0.05. The datasets
were randomly split into 80% training and 20% validation for
these predictive models.

Fourier-Transform Infrared Spectroscopy
Characterization
Corn stover samples for Sample Set 1 were milled using a Retsch
ZM200 (Haan, Germany) to 0.2 mm, extractives were retained in
the samples. Corn stover samples were extracted with 95:5
acetone/water on a Soxhlet apparatus (~70°C) to remove
extractives for Sample Set 2. Corn stover samples for Sample
Set 2 were milled in Retsch PM 100 mill fitted with one or two
50 ml ZrO2 grinding jars and 10*10 mm ball bearings 10 h to
less or equal to 45 µm (5 min mill with 10 min interval test).
FTIR spectra of all corn stover samples were collected using a
Bruker Vertex 70 FTIR spectrometer, equipped with a
diamond ATR accessory (Bruker Corporation). Spectra were
collected in the spectral range 4000-600 cm−1, using 64 scans
and 1 cm−1 resolution. Spectra were baseline corrected at
1840 cm−1 and advanced diamond ATR fixed with the angle
at 450.

Surface Texture Analysis
Textural features of cropped images were quantified using the
plugins SurfChar J 1q (Chinga et al., 2007), GLCM Texture Too
(Haralick, 1979; Lan and Liu, 2018), and FracLac (Smith et al.,
1996; Karperien et al., 2013). Before textural analysis, the original
color corrected images were cropped to isolate a 900x900-pixel
region-of-interest (ROI) centered on the sample cup. Then, the
color information was discarded in the image of all subsequent
texture analyses and used either 32-bit (SurfCharJ) or 8-bit
(GLCM and FracLac) greyscale images. The SurfCharJ 1q
package calculated an estimate for the root mean square
deviation (Rq), arithmetical mean deviation (Ra), skewness
(Rsk), Kurtosis (Rku), lowest valley (Rv), the highest peak
(Rp), total profile height (Rt), the mean height of surface

profile (Rc), mean polar facet orientation (FPO), variation of
the polar facet orientation (MFOV), the direction of azimuthal
facets (FAD), mean resultant vector (MRV), and surface area
(SA) from the image. The GLCM Texture Too plugin calculated
angular second moment (ASM), inverse difference moment
(IDM), contrast, entropy, homogeneity, variance, shade,
prominence, inertia, and correlation. The FracLac plugin
analyzed the fractal dimensions of the images. Local connected
fractal dimension analysis was used, and the Dm output was
collected. In total, 27 different surface texture parameters were
calculated.

RESULTS AND DISCUSSION

Biological Degradation
Figure 2 shows the results and distribution of chemical
compositions and inorganic speciation variability of all
samples used for image analysis (detailed dataset in (Ding
et al., 2021b). Total inorganics, SiO2, and Al2O3, revealed
substantial variation on a % dry matter basis. Both Si and Al-
based inorganic species are potential contributions from levels of
soil contamination.

Image Analysis Biological Degradation
Hierarchical cluster analysis based on chemical components was
used to glean key insights about sources of variability
(i.e., degradation and soil contamination) that affect quality,
with samples grouping into four distinct clusters observed
through principal component analysis (PCA) (Figure 3).
These chemical composition constituents vary by level of
biological degradation (Andrews et al., 1999; Brand et al.,
2011; Krigstin and Wetzel, 2016; Groenewold et al., 2020). The
loading plot in Figure 3B shows how each of these chemical
components is driving the observed cluster in the PCA score plot
demonstrated in Figure 3A.

Figure 4A shows a linear relationship between the median red
channel and the chemical properties of the samples and was used
throughout the analyses. The red channel had the largest range of
variability when compared to blue and green, high correlation to
other factors used in regression analyses and was correlated to
green and blue channels (Supplementary Figure S1, supporting
information). Linear relationship factors were identified from
chemical data using a stepwise technique as a function of their
contributions toward explaining variability in the median red
channel output, while minimizing multicollinearity between
explanatory factors. For example, extractives and the
interaction factor of (glucan x xylan) are highly correlated
(Supplementary Figure S1, supporting information).
Therefore, both were not necessary to explain the variability in
the median red channel. The relationship between these chemical
properties and the median red channel exceeds an R2 value of 0.7.
Interaction terms between glucan, xylan, and lignin content were
included in this analysis. Table 1 displays the standardized
coefficients and relative significance level for each chemical
material attribute from linear relationships in Figure 4A.
These coefficients suggest that xylan was the highest
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contributor to explaining the variability seen in the red channel.
At the same time, changes in glucan contribute the least in
comparison to the other factors. This is consistent with prior
work that demonstrated selective degradation of hemicellulose in
response to biological heating during storage with cellulosic
components involved to a lesser extent (Groenewold et al.,
2020). Both factors indicate that as glucan and xylan contents
decrease, the red channel signal decreases.

It should be noted that extractives were not used in the model
due to the high correlation with glucan and xylan; however, as
extractive content increases in the data set, the red channel
decreases. Previous studies have demonstrated that extractives
content increases with the extent of biological degradation
(Groenewold et al., 2020; Li et al., 2020; Ray et al., 2020),
consistent with reductions in hemicellulose and to a lesser
extent, cellulosic components, as a function of biological

FIGURE 2 | Boxplots for (A) chemical composition; n = 222, and (B) inorganic speciation; n = 191. SiO2 is broken out for a clearer view of the variable ranges of the
other inorganic species.

FIGURE 3 | Principal component analysis of biological degradation (A) score plot and (B) loading plot for chemical composition. n = 222.
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degradation. The interaction terms between glucan and xylan
suggest that with increases in both, the impact of xylan on the red
channel output decreases. During degradation, xylan content,
representing the hemicellulose fraction, is more reduced than
glucan content (Qing and Wyman, 2011). This interaction term
reflects the changing ratio between cellulose and hemicellulose.
The same conclusion can be drawn from the interaction
between glucan, xylan, and lignin, representing the changing
ratios between these chemical attributes in response to
degradation. Total inorganics also significantly contributed
to changes in the median red channel response. This
relationship is further discussed in the following section on
soil contamination.

Linear regression analysis was used to relate organic
components of glucan, xylan, and lignin to the severity of
biological degradation. Figure 4B shows the resulting linear
relationship, and the coefficients are shown in Table 1. The R2

was 0.77 for this regression, similar to the regression formed
between chemical properties and the red band in Figure 4A.
This relationship also indicates that xylan is the highest
contributor, suggesting that lower concentrations of xylan
content correspond to higher biological degradation levels.
The only organic-based significant factor not shared between

the two regressions (Figures 4A,B) was the interaction
between glucan, xylan, and lignin (Table 1). This factor did
not significantly contribute to explaining the biological
degradation observations. Researcher observations of
biological degradation less resolved (scale from 0-9 with
each researcher selecting between 0-3) compared to the red
channel range (88-161measured); therefore, observational
data may not be able to capture the changes in glucan-
xylan-lignin property relationships, suggesting the basis for
differing explanatory factors in Figures 4A,B. The similarities
between the linear regressions formed between the red channel
and chemical properties and observed levels of biological
degradation and chemical properties suggest that the red
channel from the image analysis identifies biological
degradation in the samples. Figure 4C further corroborates
this by showing the strong linear relationship between the red
channel outputs and the biological degradation observations
(R2 = 0.79).

The relationships observed between the chemical changes,
image analysis of the red channel, and biological degradation
observations generally align with the overarching
hierarchical cluster grouping. Cluster 1 and 2 (Figure 3A)
correspond with no or mild biological degradation, group 3 as
moderate, and group 4 as the severely biological degradation
samples.

Structural Properties of Biologically
Degraded Corn Stover Biomass
To gain a more comprehensive understanding of the impacts of
biological degradation on the structural properties of biomass,
FT-IR was applied to characterize corn stover with different
extents of degradation. Corn stover biomass was selected
based on the degree of degradation classified as mild,
moderate, and severe or scaled from 1 to 9. The detailed
information for the red band values and chemical composition
is listed in Table 2. The more severely biologically degraded
biomass resulted in a lower red band value. Figure 5 shows the
FT-IR spectrum of selected corn stover biomass (Bales 5, 1, and

FIGURE 4 | Least squares regression analysis of (A) red band intensity as a function of chemical composition, (B) biological degradation/self-heating observation
as a function of chemical composition, and (C) red band intensity as a function of biological degradation/self-heating observation. Legend gives results of cluster analysis
from chemical composition in Figures 3A,B.

TABLE 1 | Chemical properties are used to form linear regressions for explaining
the red-band and biological degradation/self-heating observation variability.

Chemical property Red band coefficienta Self-heating
observation coefficienta

Glucan 0.10* −0.26**
Xylan 0.44** −0.49**
Lignin 0.25** −0.18**
Glucan x Xylan −0.26** 0.34**
Glucan x Xylan x Lignin −0.15** not significant
Total Inorganics −0.35** N/A

aStandardized coefficients.
*Indicates significance 0.01 < p≤ 0.05.
**Indicates highly significant p < 0.01.
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6) (See image analysis dataset bale ID (Ding et al., 2021b)) and
focuses on the region from 1800-800 cm−1 reflecting the critical
structural properties of biomass (Ma et al., 2018). Remarkable
differences were observed in Bale 5. The C-O-C ether stretching
at 1030 cm−1 and 1242 cm−1 decreased after biological
degradation indicating the carbohydrates were hydrolyzed
during biological degradation, which corresponded to the
decrease of xylan. The absorbance of aromatic C-H
stretching of lignin in 1510-1300 cm−1 also decreased after
degradation, suggesting that lignin condensation reactions
happened during the biological degradation process. It was
hypothesized that the biological oxidation reactions that
occur during the degradation result in chromophore
formation, such as conjugated carbonyl and quinone, leading
to the darkened color of the biomass. In Figure 5A, the

absorbance of unconjugated (1710 cm−1) and conjugated
(1651 cm−1) carbonyl (C=O) increased and shifted with the
reducing value of the red band, implying that lignin was
oxidized during the biological degradation process supporting
this hypothesis. Figures 5B,C show the FT-IR spectrum of the
Sample Set 1 corn stover samples. Unlike the degraded samples,
the extractives and soils were not removed, and the particle size
was 0.2 mm, which is much larger than that used for the Sample
Set 2 samples. The FT-IR spectra of the samples show similar
results with the degraded samples. However, some samples,
such as Bale 6 Cores1 and 8, have weaker absorbance caused by
the particle size or soil contaminants. Also, the overall
absorbance of Sample Set 1 is lower than the degraded
samples (Sample Set 2). Therefore, the particle size of
biomass and soil removal is essential for FT-IR ATR

TABLE 2 | Biological degradation properties, red band value, and chemical composition of corn stover for samples characterized using FT-IR.

Sample Degree of
biological degradation

Red band Glucan (%) Xylan (%) Lignin (%) Total Inorganics
(%)

Sample set 2, biologically degraded corn stovera

Bale 5b Mild 148 33.39 18.19 14.70 12.24
Bale 5b Moderate 110 32.23 13.08 18.69 8.81
Bale 5b Severe 106 30.23 10.51 20.41 10.43

Sample set 1, corn stoverc

Bale 1 core 3d 1 141 36.0 19.0 16.2 8.3
Bale 1 core 7d 4 130 31.8 18.7 16.2 9.6
Bale 1 core 6d 7 116 NP NP NP NP
Bale 1 core 4d 8 104 NP NP NP NP
Bale 6 core 1d 1 149 41.2 19.5 17.2 9.5
Bale 6 core 3d 3 138 32.1 19.2 15.8 9.1
Bale 6 core 8d 6 123 NP 18.5 15.0 10.4
Bale 6 core 7d 8 108 31.9 10.1 23.8 12.9
Bale 6 core 6d 9 92 NP NP NP NP

aObtained by wet chemistry.
bExtractives free for FT-IR, measurement, <45 µm.
cObtained by NIR.
dExtractives retained for FT-IR, measurement, <0.2 mm.
NP, no prediction, samples fell outside of the NIRS prediction calibration.

FIGURE 5 | FT-IR from samples from across a range of degradation states (A) Bale 5, (B) Bale 1, and (C) Bale 6.
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characterization. The FT-IR results demonstrated a potential
correlation between the hydrolyzed carbohydrates and the
condensed and oxidized lignin in biologically degraded corn
stover. These results provide further insights into biopolymer
degradation and modification mechanisms during storage,
which could correlate to the red band intensity detected
through image analysis.

Image Analysis of Soil Contamination
As shown in Table 1 and Figure 4A, the total inorganics content
significantly contributes to changes observed in the red channel,
suggesting that image analysis could provide a valuable tool for

identifying levels of soil contamination. Hierarchical cluster
analysis was used similarly on ash speciation data to identify
distinct clusters based on inorganic features. Cluster 1 represents
limited or no soil contamination, and cluster 4 represents high
soil contamination. The PCA score plot (Figure 6A) displays
these clusters. The variability in the 1st principal component
suggests a relationship to inorganic species derived from soil
contamination, including silicon and aluminum (Lacey et al.,
2018). The second principal component relates to inorganic
components that serve structural and physiological functions
within the plant (i.e., biogenic ash), including sulfur, nitrogen,
potassium, calcium, magnesium, and phosphorus (Thy et al.,

FIGURE 6 | Principal component analysis of soil contamination (A) score plot and (B) loading plot for ash speciation represented on a % dry biomass basis.

FIGURE 7 | Linear regression of measured versus predicted red channel value explained by chemical composition and select inorganic species (SO3 and SiO2)
visualizing (A) ash clusters and (B) chemical clusters.
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2013; Li et al., 2020). The inorganic clusters 1 and 2 vary primarily
based on intrinsic inorganic species inherent to plant biomass,
and clusters 3 and 4 show relationships to soil contaminant
inorganic species (i.e., silicon and aluminum).

Figure 7A shows the resulting regression with the ash
speciation clusters labeled, and Figure 7B shows the same
regression with the chemical clusters, that were based on
glucan, xylan, lignin, and extractives contents. Regression
analyses highlight that for this dataset, the red channel
relationships are being driven by the biological degradation
severity, even with the highest ash sample in the data
representing close to 62% total inorganics. The regression
shown in Figure 7A includes SO3 and SiO2 content instead of
total inorganics, as was included in the regression represented in
Figure 4A, to represent the relationship of these intrinsic and
extrinsic ash species to the image red channel intensity.
Phosphorus and potassium oxides were not selected for the
linear regression as representatives of intrinsic ash, as
suggested by the principal component 2 in the principal
component loadings plot (Figure 6B) as they did not
significantly contribute to explaining the red variability. It
should be noted that fewer samples in the dataset contained
ash speciation compared to the organic composition data
available (191 samples compared to 222 samples). Therefore,
the coefficient changes cannot be directly compared to the model
in Figure 4A; however, the general trends remain consistent.
Both SO3 (representative of intrinsic ash) and SiO2 content
(representative of soil contamination) significantly explain
variability in the red channel (Table 3).

In summary, regression analyses associated with both
biological degradation and soil contamination identified
relationships among chemical components in corn stover,
namely xylan, glucan, lignin, total inorganics, Si, and S,
strongly correlated to the red band intensity detected
through image analysis. The variations in organic chemical
attributes xylan, glucan, and lignin were attributed to
biological degradation. In contrast, variations in inorganic
attributes, Si and S, corresponded to the extent of soil
contamination and intrinsic inorganic content in the
sample. Although a mechanistic understanding of the
biological degradation (Groenewold et al., 2020; Ding et al.,
2021a) and thermo-chemical oxidative reactions that alter

biomass quality attributes during storage (Krigstin and
Wetzel, 2016) is required to sort out confounding signals
from the degradation and accumulation of inorganic
species, qualitative results presented here show promise for
developing rapid screening tools to deploy in-field or in-line
for rapid assessment of quality (Ray et al., 2020).

Screening Prediction Development
The purpose of the regression analyses and relationships, as
previously discussed, was to demonstrate that aspects of the
images, the median red channel intensity specifically, could be
quantitatively related to the chemical changes known to be
impacted by biological degradation and soil contamination.
Here the red channel along with the blue and green channels
from the images was used to demonstrate potential screening
methods for corn stover samples to predict the presence of
biological degradation and soil contamination. For this
demonstration, logistic regression was used to predict the
hierarchical groups of chemical clusters representing
biological degradation and inorganics clusters representing
soil contamination considering the median red, blue and,
green channel outputs and interactions between these color
channels as predictors. For the organic chemical cluster
logistic regression, the receiver operator characteristics
(ROC) curve (Figures 8A,B) demonstrates the diagnostic
ability of image analysis properties to correctly identify the
organic chemical cluster, representing levels of biological
degradation, that each sample belongs to by comparing the
sensitivity, true identification rate, versus the specificity, false-
positive identification rate. These plots, along with the
confusion matrix, give the actual number of samples
predicted to be in each group versus their actual group
(Table 4) for both the training and validation sets. The
confusion matrix indicates that this model correctly
identified the severely biologically degraded samples (cluster
4) 100% of the time with no false identifications. However, the
identification accuracy was lower for cluster group 3, moderate
levels of biological degradation, and reduced further for
clusters 1 and 2, representing no and mild biological
degradation. The validation sample results from this logistic
regression follow the same trend. Samples with severe
biological degradation (cluster 4) are accurately predicted
100% with no false positives and show progressive decreases
in the sensitivity and specificity for clusters 3, 2, and 1. This
preliminary model indicates that this approach could be
employed to identify biomass samples exhibiting moderate
to severe biological degradation, but requires expanded
datasets and further refinement to distinguish between
samples with mild or limited biological degradation and
samples without degradation.

Linear regression analysis indicated that biological
degradation was the primary factor driving variaitions in
the red-channel intensity, with soil contamination
contributing secondarily. Based on this knowledge, the
proposed process for screening feedstock for soil
contamination is to the first screen for evidence of
moderate and severe biological degradation and then use

TABLE 3 |Chemical properties, including select ash species (SO3 and SiO2), were
used to form linear regressions to explain the red-band variability.

Chemical property Red band coefficienta

Glucan 0.06
Xylan 0.33**
Lignin 0.22**
Glucan x Xylan −0.36**
Glucan x Xylan x Lignin −0.17**
SiO2 −0.17**
SO3 −0.30**

aStandardized coefficients.
(*) indicates significance 0.01 < p< 0.05.
**indicates highly significant p < 0.01.
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FIGURE 8 | Receiver operator characteristic (ROC) curves for the logistics regression training sets using image analysis data red, green, blue channels to predict
the chemical cluster (associated with levels of biological degradation) (A) training set and (B) validation set and ash cluster (associated with levels of soil contamination)
(C) training set and (D) validation set.

TABLE 4 | Confusion matrix for chemical cluster logistics regression using red,
green, and blue channels image analysis data.

Actual Predicted

Training 1 2 3 4

1 31 (50%) 30 1 0
2 20 62 (72%) 4 0
3 3 6 16 (65%) 0
4 0 0 0 5 (100%)

Validation

1 4 (25%) 12 0 0
2 5 15 (71%) 1 0
3 1 1 4 (67%) 0
4 0 0 0 1 (100%)

This table shows the actual number of samples predicted to be in each group versus their
actual group and the true positive percentages for accurate prediction.

TABLE 5 | Confusion matrix for ash cluster logistics regressions using image
analysis data red, green, and blue channels, and chemical cluster input.

Actual Predicted

Training 1 2 3 4

1 47 (75%) 11 5 0
2 14 39 (72%) 1 0
3 7 4 12 (52%) 0
4 0 0 0 1 (100%)

Validation

1 13 (81%) 2 0 1
2 3 7 (58%) 0 2
3 1 2 4 (57%) 0
4 0 0 0 0 (.)

This table shows the actual number of samples predicted to be in each group versus their
actual group, along with the true positive percentages for accurately predicted.
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the outputs of the biological degradation prediction levels to
screen for the additional presence of soil contamination. The
resulting ROC curve and confusion matrices from this soil
contamination logistics regression are shown in Figures 8C,D
and Table 5. These results indicate enhanced diagnostic ability
to predict higher levels of soil contamination (cluster group 4),
representing a sample with 38% total ash and 28% SiO2

content. As only one sample was available at this level, no
validation samples were used for this cluster group. Cluster 1
samples representing the lowest ash samples with on average
10% ash content and 6% SiO2 content was accurately 75 and
81% for the training and validation sets, respectively. The
model had relatively equal power for identifying the lower
levels of soil contamination representing average total ash 18
and 11% and SiO2 contents of 11 and 6% for clusters 3 and 2,
respectively. These results show the potential for the image

analysis to be used as a screening tool for soil contamination
after considering color changes due to biological degradation;
however, a larger dataset with known validation samples are
necessary to improve modelaccuracy.

Surface Texture Analysis
The image analysis based on color variability was used to identify
biological degradation and soil contamination levels. In this
research, image analysis of surface properties was also
investigated to identify soil contamination, biological
degradation, and additional properties impacting particle flow.
For the samples with variable ash content, samples were selected
with ash content of 5–10% (low ash) and 10–20% (high ash)
(Sievers et al., 2020), surface roughness calculated as Rq
(Figure 9A), and the GLCM parameter Shade (Figure 9C)
appear to distinguish between high and low ash samples. The

FIGURE 9 | A subset of textural feature image analysis results from bale core samples taken corn stover bales with variable ash content. (A) Rq is the root mean
square deviation. (B) FracLac is the local connected fractal dimension. (C,D) Shade and angular second moment (ASM) are grey-level co-occurrence matrix analysis
parameters.
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pattern, however, was different between Rq and Shade, with the
high ash sample measuring low Rq and higher Shade values. Rq is
a measure of surface roughness that is positively correlated with
inter-particle friction and could impede flowability. However,
surface roughness is also correlated with hydrophobicity.
Therefore, particles that trap less water should have better
flowability. Shade characterizes the tendency of clustering of
pixels as a measure of asymmetry. In our previous work using
images of hammer-milled biomass, the asymmetric clustering
that shade describes was positively related to poor conveyance
(Gudavalli et al., 2020). The fractal analysis (Figure 9B) or the
GLCM parameter ASM (Figure 9D) differed among the ash
variable samples (Sample Set 1).

Mild, moderately, and severely degraded samples (Sample
Set 2) were partly distinguished by three of the four texture
parameters shown in Figure 10. The surface roughness (Rq,
Figure 10A) reveals the most separation. Shade and ASM
(Figures 10C,D) showed differences between mild and severe
samples. These differences can be generated by how the

samples fracture during milling, causing subtle differences
in particle size and shape distributions—these differences in
particles present as differences in the texture of biomass piles.
For example, surface texture analysis could distinguish
among variable ash levels or levels of degradation.

CONCLUSION

This study used image analysis in visible, red-green-blue (RGB)
chromatic space to evaluate the quality of corn stover across four
Iowa counties representing a realistic supply shed in the US corn
belt. Linear regression relationships with R2>0.7 were found
between the red channel values from images of corn stover
and changes in chemical properties resulting from biological
degradation (xylan, glucan, and lignin) and soil contamination
(Si and S). The FT-IR results demonstrated a potential correlation
between the hydrolyzed carbohydrates and the condensed and
oxidized lignin in biologically degraded corn stover, which could

FIGURE 10 | A subset of textural feature image analysis results from bale core samples taken corn stover bales with variable biological degradation. (A) Rq is the
root mean square deviation. (B) FracLac is the local connected fractal dimension. (C,D) Shade and angular second moment (ASM) are grey-level co-occurrence matrix
analysis parameters.
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correlate to the red band intensity detected through image
analysis. In addition, surface texture analysis of for these same
images was found to distinguish among variable levels of ash and
degradation.

Further, logistic regression classification algorithms were used
to develop an image analysis method for screening and classifying
levels of biological degradation and soil contamination in corn
stover. This prototype supports research and development that
uses image analysis and other rapid characterization tools to
further understand and describe corn stover and bioenergy
feedstock quality during in-field or over-belt applications to
support industrial operations for sorting biomass based on
quality or presence of contaminants.
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Investigation of Cutter–Woodchip
Contact Pressure in a New Biomass
Comminution System
Lianshan Lin1*, David Lanning2, James R. Keiser1 and Jun Qu1*

1Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States, 2Forest Concepts,
Auburn, WA, United States

A Crumbler
®

rotary shear system was recently developed to process fuel-grade
woodchips into feedstocks having more uniform particle sizes for improved flowability
and higher thermochemical output yield than a traditional hammer mill. It represents a
significant innovation in the state of the art of biomass comminution equipment. However,
the milling unit has experienced significant abrasive wear of the feeding teeth and cutters
when processing hard and dusty feedstocks, such as logging residue and corn stover.
Here, we present initial simulation results from a finite-element stress analysis of the rotary
shear, which is used to investigate the dynamics of interaction between the cutters and
woodchips. This is the first step for optimizing the cutter design to improve the system
lifetime and processing efficiency, thus reducing downtime and improving overall
productivity.

Keywords: biomass comminution, finite element simulation, tool wear, woodchip, contact pressure

INTRODUCTION

Variability in the size and shape of fuel-grade woodchips is a major source of inconsistent feed rate,
flow plug, and poor flow into bioconversion reactors. Biomass flowability is one of the major barriers
for efficient supply of feedstock (Mani et al., 2006; Shaw, 2008; Felix and Tilley, 2009; Miao et al.,
2011; Rezaei et al., 2016). In addition to flow issues, particle length and thickness variability makes it
difficult to achieve optimal yields of condensable vapors or non-condensable gases in
thermochemical reactors (Schell and Harwood, 1994; Bitra et al., 2009; Oyedeji et al., 2016;
Oyedeji et al., 2020). The particle size and shape of biomass particles after grinding are
important for downstream processing (Mani et al., 2004; Lam et al., 2008; Guo et al., 2012;
Ämmälä et al., 2018). The International Organization for Standardization (ISO) Solid Biofuel
Standard 17,225-9 “Graded hog fuel and woodchips for industrial use” allows a percentage of chips
up to 150 mm length in each liter of the sample (International Organizatio, 2020). Although
allowable, such chips trigger bridging and jams in feed-handling systems. The solution is to replace
the traditional hammer or knife mills with rotary shear mills, which can reduce the size and shape
variability such that yields of desired chemicals are maximized and feeding issues are minimized.

Wide particle size distribution and a high aspect ratio are characteristic features of hammer-
milled lignocellulosic biomass (Oyedeji et al., 2020). The undesired flatter particle size distributions
and undesired shardy particle shapes exacerbate flowability issues. Hammermills consume more
energy than desired due to high frictional losses within the grinding chamber. Hammermills are also
operationally unworkable at a chip moisture content of about over 20 wt%.

Forest Concepts (FC), LLC has developed comminution and screening equipment, commercially
known as the Crumbler® rotary shear system, which can process fuel-grade woodchips into much
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more uniform feedstocks with improved flowability and
improved thermochemical output yields (Oyedeji et al., 2020).
The Crumbler® rotary shear system (see Figure 1A) is more
efficient than the traditional hammermills in comminuting high
moisture biomass and producing very narrow particle size
distributions to maximize reactor yields, low aspect ratios to
improve flowability, and minimal fines that are not useful in the
reactor. All of these factors represent significant innovations in
biomass comminution equipment.

However, the rotary shear unit experiences significant abrasive
wear, especially when processing hard and dirty biomass, such as
dirty logging residue and recycled railroad ties. Figure 2 shows an
example of worn cutters, and more detailed worn component
characterization can be found in our earlier report (Lee et al.,
2021). The desired cutter life is in excess of 1,200 operating hours.
However, in as few as 300 h, cutter worn out had been observed in
Forest Concepts (FC), LLC’s field experience in processing dirty
southern hardwood. The current cutters and teeth are made of
through-hardened A2 tool steel heat treated to a hardness of HRC
60. The specified HRC 60 hardness was selected as a trade-off

between brittleness and abrasion resistance for this tool steel.
Several cutter materials have been tested in search of optimized
wear-resistance components, but it has not been possible to
identify the controlling wear mechanisms or to identify
“economically maximum-life” cutters and other wear parts
because of lack of resources and expertise.

The objective of this article is to present initial FEA
simulation results to investigate the contact pressures at the
cutter–biomass interface. Based on the rotary shear system’s
CADmodel, loading data, and material properties of woodchips
(Glass, Zelinka; David), finite element models of a
representative rotary tribosystem were built to establish the
baseline design of the feeding teeth and cutters and to determine
the ranges of contact pressure at the cutter–biomass interfaces.
The dynamic simulations provide the means for revealing
various ways that cutters break woodchips into smaller
pieces, which provides useful information for identifying and
implementing advanced materials and/or surface treatments for
improved cutter life. Details and results are reported in the
following sections.

FIGURE 1 | Crumbler
®
rotary shear biomass comminution system.

FIGURE 2 | New and worn A2 tool steel cutter tooth.
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GEOMETRY

Three rotatory cutters (Figure 3) were exported from full CAD
geometry to build representative components of the
tribosystem. Cutter diameter, thickness, and tooth shape are
tailored to the processed material and target output particle size.
In the first analysis, 1.6- and 6.35-mm thick cutters with square
corner teeth evenly distributed around the circumference were
selected to investigate their dynamic behavior. These cutters
with different thicknesses have the same outer diameter of
approximately 54 mm and inner diameter of approximately
35 mm. Different shapes (sheet, plate, cubic, and bar) and
dimensions of woodchips were investigated. Figure 4 shows
a plate-shaped woodchip particle with a representative
dimension of 27.5 × 17.5 × 3 mm. In addition, woodchip

particles of dimensions 27.5 × 17.5 × 1, 27.5 × 16 × 6, and
27.5 × 14.5 × 10 mm were used in this investigation in order to
cover the statistical range of thicknesses. In addition, bar-like
6 × 3 × 3 mm and cubic-shaped (6 × 6 × 6 mm) woodchips were
considered with the thin cutter (1/16″ or 1.6 mm) system and
parallelepiped-shaped 15 × 6 × 6 mm and plate-like 50 × 20 ×
10 mm woodchip particles were considered with the thick cutter
(1/4″ or 6.35 mm) system. Consideration of these additional
woodchip geometries (shown in Figure 5) addresses the real
woodchips flowing in a two-stage rotary cutter system in a real
working scenario: larger woodchips (thickness of 6–10 mm)
from the upper stream go through the first-stage cutter
(thick cutter, ¼”); smaller woodchips (thickness of 3–6 mm)
sheared by first-stage cutters then go through the second stage
cutters (thin cutter, 1/16”), which are broken into even smaller
particles (e.g., thickness <3 mm). The size of new particles
generated by the cutters should be closer to the cutters’
thickness since the gap between every pair of cutters is
almost equal to the thickness of the cutter. A two-stage
cutter system might put the 6.35-mm cutters on the
upstream and the 1.6-mm cutters on the downstream, which
can break large woodchips more efficiently while avoiding jams
in the woodchip stream.

Initial simulations were focused on the contact pressure
between the steel cutters and woodchip. As shown in
Figure 6, the possible contact interfaces between a single
woodchip and three 6.35-mm thick cutters are identified as
regions 1, 2, 3, and 4. The rotation direction and speed
(315 rpm) are also illustrated in Figure 6, which drive the
woodchip into contact with the cutters’ teeth and edges. The
1.6-mm thick cutters have the same rotation direction, speed, and
contact regions.

FIGURE 3 | Tribosystem model for a 3-mm thick woodchip (red) sitting
on three 6.35-mm thick cutters (yellow), assembled with a clearing plate
(green) and a spacer (blue).

FIGURE 4 | Representative dimensions of a plate-shaped woodchip. Unit in mm.
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FE MODEL

Based on the geometry illustrated in Figure 3, the tribosystem is
meshed into a finite elementmodel to investigate the contact pressure
between the steel cutter and woodchip. Figure 7 shows the meshes of
three cutters and a woodchip in this finite element model. Since a
hexahedral mesh with reduced integration points is preferred for
dynamic simulation (ABAQUS Interactions, 2017), ABAQUS’s
C3D8R elements have been used to mesh both the cutter and
woodchip. A total of 30,500 elements and 39,444 nodes were used
to model the three 6.35-mm thick cutters, while 1,725 elements and
2,304 nodes were used to model the 27.5 × 17.5 × 3mm woodchip.
Mesh size sensitivity and convergence were not the major
concern of this work, but the contact area on the cutter blade
edges were refined with smaller size elements than most of the
other locations to capture the contact pressure distribution.
The woodchip had homogenous size of elements, and the size

was also fine enough to capture the large deformation and
stress distribution. Due to the shaped edges, the mesh kept
away from using superfine elements at the contact regions to
avoid any stress singularity. More importantly, the mesh size
was kept consistent for all the cases in the simulation, therefore
making the results comparable.

The rotation speed of three cutters was applied on their
centers, which are shown in Figure 7 as the local coordinate
origin for each cutter. Through kinematic coupling between each
rotating center and corresponding cutter, the entire cutter body
rotates along with its geometry center in the working speed of
315 rpm. The explicit dynamics analysis of this rotary cutters and
woodchip system follows the govern equation of motion

_u
(i+1

2) � _u
(i+1

2) + Δt(i+1) + Δt(i)

2
€u(i); (1)

FIGURE 5 | Woodchips in parallelepiped and cubic shapes (cutters in green, blue, and gray, and woodchips in red).

FIGURE 6 | Contact regions between a woodchip and three cutters.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 7548114

Lin et al. FE Analysis of the Biomass Cutter

23

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


u(i+1) � u(i) + Δt(i+1) _u
(i+1

2)
, (2)

where u is displacement, _u is velocity, and €u is acceleration. The
superscript (i) refers to the increment number and i − 1

2 and i +
1
2refer to midincrement values, and t denotes time and Δt is the
time increment. The key to the computational efficiency of the
explicit procedure is the use of diagonal element mass matrices
because the inversion of the mass matrix that is used in the
computation for the accelerations at the beginning of the
increment is triaxial:

€u(i) � M−1Δ(F(i) − I(i)), (3)
whereM is the diagonal lumpedmass matrix, F is the applied load
vector, and I is the internal force vector. More details of these
equations can be found in reference to Explicit dynamics, (2017).

To set up the four contact regions between woodchip and three
cutters, three contact pairs were created in this FE model. Figure 8
illustrates these contact pairs, with red square dots for the first/
master surface and pink area for the second/slave surface in one
pair. The contact regions➀ and➁ are included in Figure 8A, while
Figures 8B,C have contact regions➂ and➃, respectively. All these
contact pairs used the kinematic contact method and finite sliding
setting, along with the tangential friction coefficient of 0.5 and
normal behavior in “hard” contact for pressure overclosure.

General Technical Report FPL–GTR–190 Chapter 4 (Glass,
Zelinka) states that coefficients of kinetic friction for smooth, dry
wood against hard, smooth surfaces commonly range from 0.3 to
0.5; at intermediate moisture content, 0.5 to 0.7; and near fiber
saturation, 0.7 to 0.9. Considering the woodchip’s moisture level
in this analysis, which is neither the dry case nor the near fiber
saturation case, an intermediate value of 0.5 was assumed to be a
reasonable start point for the calculations.

The “hard” contact pressure–overclosure relationship in
ABAQUS implies that (ABAQUS Interactions, 2017) 1) the
surfaces transmit no contact pressure unless the nodes of the
slave (second) surface contact the master (first) surface; 2) no
penetration is allowed at each constraint location (depending on
the constraint enforcement method used, this condition will
either be strictly satisfied or approximated); and 3) there is no
limit to the magnitude of contact pressure that can be transmitted
when the surfaces are in contact. This “hard” contact mode agrees
with the assumed behavior on the normal interface between
woodchip and cutters; therefore, we adopt it for all the
dynamic simulations in this project.

The current cutters and teeth are made of through-hardened
A2 tool steel, which was heat treated to RC 60. The basic material
properties of the A2 tool steel are listed in Table 1, according to
the Granta’s CES Selector database (GRANTA, 2014). As for the
strength of A2 tool steel, its yield strength (YS) is 1.97 GPa, and
ultimate tensile strength (UTS) is 2.36 GPa. Unlike isotropic
elastic behavior of the tool steel, the mechanical properties of
woodchips are anisotropic and thus are presented by multiple
parameters. Five woodchips ranking by their hardness, i.e., 12%
moisture yellow birch, 12%moisture red oak, 12%moisture coast
Douglas-fir, green coast Douglas-fir, and green northern white
cedar were selected as representatives of the very strong, strong,
medium strong, medium soft, and very soft wood species,
respectively (David). Geometry of the woodchip is determined
by the particle size distribution in Figure 4. The parallelepiped
and cubic shapes of the woodchip model (shown in Figure 5)
cannot include all the features shown in a real woodchip but still
be very close. The fiber direction of the woodchip is aligned with
the rotary axis of cutter blades, which will produce the strongest
resistance when the woodchip is stuck into two or three cutter
edges. The woodchip material properties are extracted from
references ((Glass, Zelinka) and (David)). Basically, the
references provide big tables to cover all the wood species and
available moisture conditions, and their mechanical properties
are decided by the specific species and moisture level by looking

FIGURE 7 | Finite element model of the tribosystem (6.35-mm thick
cutters).

FIGURE 8 | Contacts between a woodchip and cutters in the sFE model.
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for data in the tables. Their mechanical properties are listed in
Table 1 (Glass, Zelinka; David).

A total of nine independent constants are needed to describe
the elastic behavior of wood: three moduli of elasticity E, three
moduli of rigidity G, and six Poisson’s ratios μ (David). The
subscripts L, R, and T in Table 1 represent the three principal
axes (Longitudinal, Radial, and Tangential as shown in
Figure 4) of the woodchip with respect to its grain direction
and growth rings. The longitudinal direction is parallel to the
fiber grain direction or axis X in the FE model, which has the
highest elastic modulus. The radial direction is perpendicular to
the circle rings, while the tangential direction is the one
perpendicular to radial direction in the wood’s cross-section
surface. The moduli of wood in R and T directions are generally
much lower than the strongest EL. The Poisson’s ratios are
denoted by μLR, μLT, and μRT. The first letter of the subscript
refers to the direction of applied stress and the second letter to
the direction of lateral deformation. For example, μLR is the
Poisson’s ratio for deformation along the radial axis caused by
stress along the longitudinal axis. Similar combinations of
subscripts are used in wood’s shear moduli such as GLR, GLT,
and GRT. Erupture in Table 1 stands for the rupture modulus on
the woodchip’s strongest direction, the fiber direction. In the
finite element model, the direction of the wood fiber,
i.e., direction of EL in Table 1, was aligned with the X-axis in
Figure 7. The other two directions, T and R, were locally lined
up with the width and thickness directions of the woodchip
model. A local coordinate system for the woodchip was used for
these direction assignments.

The finite element model simulates the dynamic behavior of
this tribosystem for 0.0002 s. All the simulations were performed
using the 2019 Golden (base) version of FEA software ABAQUS/
Explicit (© Dassault Systèmes, 2018). The results shown later
suggest that at about 0.14 ms the maximum contact pressure in
the linear elastic regime (Figure 10, tension stress reached the
rupture strength of 114 MPa) was recorded for the
cutter–woodchip reaction from the initial contact. Based on
the practice, a fine time interval of 4–5 µs is set to collect the
stress change throughout the simulation.

SIMULATION RESULTS

The stress results of the woodchip and cutter interaction were
collected to verify the contact pressures at the interface during the
simulation time span of 0.2 ms. Figures 9A–F show the stress
along the fiber direction at different times. Without cutters
displayed in these figures, contact regions 2 and 3 are pointed
out in Figure 9A to indicate the woodchip’s location in this
system. The contact regions illustrated in Figure 6 with the
corresponding regions in Figure 9 show that the woodchip
was first contacted by a cutter tooth in region 2, and then
sheared in region 3. Figure 10 plots the history of the
maximum tensile stress of the woodchip along the fiber
direction (S11 in ABAQUS). Considering the 12% moisture
yellow birch’s modulus of rupture 114 MPa, we believe that at
0.140 ms the tensile stress on the woodchip reached its elastic
limit. Through the time span between 0 and 0.140 ms, a small-
time interval (Δt) of 5 μs was set to trace the contact pressure
between the cutter and woodchip interface. The maximum
contact pressure due to shear was observed at 0.12 ms in
contact region 3, which was 187.7 MPa as shown in Figure 11.

By repeating the workflow, we identified the components’
elastic regime of 26 cases and collected the maximum contact
pressures while the cutter and woodchip contacted through either
cutter’s tooth or edge. Figure 12 shows another example of the
maximum contact pressure on the thin cutters (1.6 mm
thickness) while shearing a 3-mm thick green northern white
cedar woodchip, which is 215.9 MPa at the moment of 16 µs.
Table 2 summarizes the maximum contact pressure for these two
different thickness cutter designs in cutting woodchips of various
thicknesses.

DISCUSSION

In summary, sliding velocity has been calculated, and dynamic
analysis has been conducted for the Crumbler® rotary shear
system to understand the contact pressure at the
cutter–biomass interface. A finite element model based on the

TABLE 1 | Mechanical properties of the cutter and wood materials used in the FE model (Glass, Zelinka; David).

Material Density
(kg/m3)

Elastic modulus (moduli) (GPa) Poisson’s ratio Erupture

(MPa)

A2 tool steel 7,870 214 0.29

EL ET ER GLR GLT GRT µLR µLT µRT

Birch, yellow, 12% moisture 762 13.9 0.695 1.084 1.029 0.945 0.236
0.426

0.451 0.697 114

Oak, red, 12% moisture 661 10.3 0.845 1.586 0.917 0.834 0.216
0.350

0.448 0.560 75

Douglas-fir, coast, 12%
moisture

582 13.4 0.670 0.911 0.858 1.050 0.094
0.292

0.449 0.390 85

Douglas-fir, coast, green 612 10.8 0.540 0.734 0.691 0.842 0.076
0.292

0.449 0.390 53

Cedar, northern white, green 432 4.4 0.356 0.805 0.924 0.823 0.066
0.337

0.340 0.458 29
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FC’s cutter design, loading data, and materials’ mechanical
properties was established. The relative sliding velocity
between the cutter and woodchip was calculated to be 1.78 m/
s at the cutting edge and 1.86 m/s at the tooth tip, for a 4″
diameter cutter and specified rotation speed of 315 rpm. The
dynamic simulation results showed different contact pressures for
4″ diameter and 1/16” (1.6 mm) thickness cutters processing
different species of woodchips, for e.g., up to 1284 MPa for 12%
moisture yellow birch in case 3, and low to 23 MPa for green
northern white cedar in case 12. For thicker cutters (1/4″ or
6.35 mm), the maximum contact pressure went up to 1284MPa
as well in case 19 with 10-mm thick 12% moisture yellow birch
and down to 55 MPa in case 5 with 1-m thick 12% moisture

yellow birch. In general, a thicker woodchip will result in a higher
contact pressure given the same wood species and similar shape.
The only exceptions are cases 3 and 4, where the thicker
woodchip (10 mm) in case 4 had a lower maximum contact
pressure (831 MPa) than the thinner woodchip (6 mm) in case 3
(1284 MPa). The reversed tendency between woodchip thickness
and maximum contact pressure could be explained by the
location of maximum contact pressure (highlighted as red
spots in Figure 13). Due to the thickness difference, the cutter
contact was on the tooth edge with the 10-mm woodchip’s rim in
case 4, while in case 3 the contact pressure was more focused on
the cutter’s tooth corner.

All these simulation cases revealed another correlation
between the wood species and the maximum contact pressures
in the linear elastic stage. The ranking of the five types of
woodchips, from the hardest to softest is the 12% moisture
yellow birch, 12% moisture red oak, 12% moisture coast
Douglas-fir, green coast Douglas-fir, and green northern white
cedar. Harder woodchips seemed to induce a higher maximum
contact pressure against the cutters. This correlation is illustrated
in Figure 14 by using one series of thin cutters and one series of
thick cutters. Given the same dimension of woodchips (50 × 20 ×
10 mm) and the same 6.35-mm thick cutters, the strongest 12%
moisture yellow birch had the highest maximum contact
pressure, while the softest green white cedar had the lowest
value. A similar trend was observed for the 6 × 6 × 6 mm
cubic woodchips being processed by 1.6-mm thick cutters.
Case 15 (green white cedar, 6 × 6 × 6 mm woodchip, 1.6-mm
cutter) appears to be an exception that had a higher maximum
contact pressure than the equivalent green coast Douglas-fir one
(case 23). This could be caused by the different locations of the

FIGURE 9 | Woodchip stress in the fiber direction. Stress unit in MPa.

FIGURE 10 | Maximum tensile stress on woodchip’s fiber direction, Δt
= 5 µs
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maximum contact pressure in cases 15 and 23. Initial
investigation also indicated that the relative position between
the woodchip and cutters would lead to woodchip’s local failure
initiated at different contact regions, such as the cutter’s tooth
corner (case 2), tooth edge (case 6 in Figure 11 and case 3 and
case 4 in Figure 13), or circumferential edge.

As shown in Figure 14, the contact pressure is higher than the
strength of the wood but still below that of the steel material. The
major reason of such high contact pressure here is that we
consider both woodchip and steel materials as elastic
materials, so the stress increases linearly with strain. We
understand the drawback of such an assumption. First, the
actual contact pressures would be different from current
simulation results because of the linear elastic assumption on
all material directions for the anisotropic wood materials.
Furthermore, due to the linear elastic material assumption, the
calculated normal stress for the woodchip at the contact region is
above its compressive strength. Specifically, the calculated high
contact pressures in radial and tangential directions are not
realistic. The actual contact pressure should be significantly
lower since the woodchip will rupture on the normal contact

direction much earlier than reaching the elastic limit in the fiber
direction. The dash line in Figure 14 shows that the rupture stress
for each wood species is much lower than the maximum contact
pressure recorded in simulation. Based on the linear elastic
material assumption, what we really focused on was the tensile
stress applied on the woodchip’s fiber direction due to the shear
or bending effect from nearby cutter blades, which provided the
strongest resistance to the rotary cutters. The tensile stress on the
woodchip’s fiber direction has been carefully tracked against time
to record the maximum contact pressure before the moment
when fiber’s tensile stress is larger than its tensile strength.

High contact pressure at these contact locations brings up
continuum damage to the cutters and gradually downgrades their
functionality. The wear mechanisms could include several types,
such as abrasive wear, surface fatigue, erosive wear, and corrosion
wear, as detailed in Lee et al., (2021). However, a high contact
pressure on the cutter surface is expected to result in high
tangential friction on the cutter surface and accumulate more
heat under continuous working conditions. Therefore, the
contact pressure, particularly the maximum value that cutter
can experience in each rotation is a good metric to evaluate the

FIGURE 11 |Maximum contact pressure 187.7 MPa on 6.35-mm cutters. The woodchip used is 12% moisture yellow birch and time = 0.12e-3 s, left, woodchip
displayed; right, woodchip hidden.

FIGURE 12 |Maximum contact pressure 215.9 MPa on 1.6-mm cutters. The woodchip used is green northern white cedar and time = 0.016e-3 s, left, woodchip
displayed; right, woodchip hidden.
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cutter’s loading level. The identified high contact pressure
locations on the cutter teeth and edges also indicate the most
needed regions for material enhancement for cutters to improve
the useful life. In terms of fatigue wear, the maximum contact
pressure can be used as a peak value to predict the fatigue life at
those local regions since the cutter’s cycling speed is known.
Dynamic simulations provide a way to correlate the maximum
contact pressure from simulation results with experimental
observations in future work. Once the numerical method is
validated, the well-configured FE model will help understand
the wear mechanisms more rapidly.

Experimental validation of the cutter–woodchip contact
pressure on an actual rotary cutting machine is difficult due to

the following reasons: 1) it is too difficult, if not impossible, to
install a sensor on either the cutter blade or woodchip to measure
the pressure/force; 2) the woodchip breaks into pieces after
touching the blades in a very short time, making it rather
challenging to capture the real contact response in the elastic
stage. Still, this finite element analysis made it possible to compare
the contact pressures for different wood species and/or woodchip
shapes, thereafter to provide useful information for the cutter
blade design. For example, such an analysis suggested that the
current square cutter tooth (DZ design) can break woodchips
more efficiently than the previous sharp curvy tooth design in our
earlier report (Lee et al., 2021). The improved performance of the
DZ design has been validated on actual rotary shear systems at

TABLE 2 | Maximum contact pressure between the woodchip and cutters in the elastic regime.

Case Cutter thickness
(mm)

Woodchip dimension
LxWxT (mm)

Wood species Woodchip stress
in failure

direction (MPa)

Maximum contact
pressure (MPa)

Location of
max pressure

1 1.6 27.5 × 17.5 × 1 Yellow birch, 12% 119 123 Cutter edge
2 1.6 27.5 × 17.5 × 3 Yellow birch, 12% 122 337 Tooth corner
3 1.6 27.5 × 16 × 6 Yellow birch, 12% 127 1284 Tooth edge
4 1.6 27.5 × 14.5 × 10 Yellow birch, 12% 118 831 Tooth edge
5 6.35 27.5 × 17.5 × 1 Yellow birch, 12% 132 55 Tooth edge
6 6.35 27.5 × 17.5 × 3 Yellow birch, 12% 122 188 Tooth edge
7 6.35 27.5 × 16 × 6 Yellow birch, 12% 127 527 Tooth corner
8 6.35 27.5 × 14.5 × 10 Yellow birch, 12% 118 452 Tooth root
9 1.6 27.5 × 17.5 × 3 White cedar, green 33 216 Tooth corner
10 1.6 6 × 3 × 3 Yellow birch, 12% 129 299 Tooth root
11 1.6 6 × 3 × 3 Red oak, 12% 78 191 Tooth root
12 1.6 6 × 3 × 3 White cedar, green 32 23 Cutter edge
13 1.6 6 × 6 × 6 Yellow birch, 12% 119 1038 Tooth corner
14 1.6 6 × 6 × 6 Red oak, 12% 81 627 Tooth corner
15 1.6 6 × 6 × 6 White cedar, green 29 486 Tooth corner
16 6.35 15 × 6 × 6 Yellow birch, 12% 126 276 Tooth edge
17 6.35 15 × 6 × 6 Red oak, 12% 77 263 Tooth edge
18 6.35 15 × 6 × 6 White cedar, green 35 66 Tooth edge
19 6.35 50 × 20 × 10 Yellow birch, 12% 118 1284 Tooth corner
20 6.35 50 × 20 × 10 Red oak, 12% 82 1209 Tooth corner
21 6.35 50 × 20 × 10 White cedar, green 30 384 Tooth edge
22 1.6 6 × 6 × 6 Douglas-fir, 12% 91 528 Tooth corner
23 1.6 6 × 6 × 6 Douglas-fir, green 60 356 Tooth corner
24 6.35 50 × 20 × 10 Douglas-fir, 12% 83 996 Tooth edge
25 6.35 50 × 20 × 10 Douglas-fir, green 59 444 Tooth corner

FIGURE 13 | Contact pressure difference between case 3 (A) and case 4 (B).
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Forest Concepts, and the new version of Crumbler® now is
equipped with DZ design cutters.

Utilizing this finite element simulation method, initial effort
has been carried out for optimizing the DZ tooth design. As
shown in Figure 15, four different tooth height adjustments are
proposed: from reduction by 0.5 mm to increases by 1, 2, and
3 mm. Calculated contact pressures against Douglas-fir with 12%
moisture are listed in Table 3 for both the thick (6.35 mm) and
thin (1.6 mm) cutters. For the thick cutter processing the large
woodchip (10 × 20 × 50 mm3), the current DZ tooth height
(0 mm) results in the highest contact pressure (996 MPa), and
either increasing or decreasing the tooth height is expected to
substantially reduce the contact pressure (450–550 MPa). For
the thin cutter processing small woodchip (6 × 6 × 15 mm3), a
lower tooth would increase the contact pressure, but a taller
tooth would reduce the contact pressure with a significant drop
for a 3 mm height increase. Since a taller tooth is also expected
to provide better grip for feeding the woodchip based, the DZ

tooth height is proposed to increase by 1–3mm for the thick cutter
and by 3mm for the thin cutter (3 mm is maximum restricted by
the clearance between two adjacent set of cutters in the assembly).
Further simulations with different types of woodchips are underway
to confirm the tooth height optimization, and corresponding
prototype cutters will be fabricated for experimental validation.
Such a simulation–optimization–validation approach will be
applied for optimizing other key components, for e.g., clearing
plate of the rotary shear system as well.

Current simulation of the rotary shear tribosystem includes
only three cutters and one model woodchip. While significantly
simplified, the simulation sets a foundation for further analysis
for finding potential geometrical changes or loading conditions
that could reduce the cutter wear. The simulation model can be
used to optimize the cutter design, such as the shape of the tooth,
to reduce the contact pressure. Simulations of various cutter
designs shearing the same model woodchip will provide a clear
comparison for extending cutter working life, improving cutter

FIGURE 14 | Correlation between woodchip species and maximum contact pressure, dash line for wood species’ rupture stress.

FIGURE 15 | Proposed design idea for cutters: adjusting cutter tooth height.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 75481110

Lin et al. FE Analysis of the Biomass Cutter

29

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


efficiency, and reducing costs, etc. Investigation on woodchip
behavior under contact, such as the time needed to reach its
elastic rupture limit, the possible deformation, and failure modes
from this FE model can also be utilized to optimize the woodchip
breaking.

Though various sizes of the woodchip were used in the current
simulations, they are still “ideal” cases that cannot match with the
actual woodchips with irregular shapes. The metric of maximum
contact pressures assumes that the strongest resistance comes from
tension in the woodchip’s fiber direction.More experimental work is
needed to validate this assumption. The simulation considers
woodchip’s anisotropic behavior in the elastic stage only in this
material model, which differs from real woodchip’s intrinsic
behavior. Woodchips might delaminate earlier along the weaker
direction before reaching such a maximum contact pressure;
however, the local failure has not been taken into consideration
yet. The complex woodchip material behavior beyond the elastic
stage could also bring variance in the maximum contact pressure. In
all these simulations, only onewoodchipwas employed in themodel.
In actual operation, there are always multiple groups of cutters
working against bunches of randomly orientated woodchips (see
Figure 1). Examination of the used cutters also indicated that
extrinsic inorganic particles included in the woodchips could
bring severe abrasive wear or polishing wear on the cutters’ edge
and surfaces. All these limitations in current FE models point to the
direction of our future work. Further studies in cutter wear tests,
surface coating design, structural optimization design, and numerical
simulations will be combined to reveal the wear mechanisms and
improve the lifetime of this rotary shear system.

CONCLUSION

A FEA model was built for the Crumbler® rotary shear system.
Taking the assumption of woodchip’s elastic orthotropic behavior
before reaching its rupture stress in the strongest fiber direction,
dynamic analysis has been conducted for this rotary shear system
to understand the contact pressure between the interface of the
woodchip and cutter. Simulation cases showed ranges and trends
of maximum contact pressures for different cutter designs and
different species of woodchips.

From dynamic simulation, it can be concluded that the highest
contact pressure was observed in the case with the hardest

woodchip, the 12% moisture yellow birch, for the same cutters
and the same size of woodchips. Similarly, the softest case, green
northern white cedar, had the lowest contact pressure in the elastic
stage. The woodchip’s thickness also played an important role in the
contact pressure. In general, a thicker woodchip introduces more
resistance to tension, compression, bending, and shear, leading to a
higher contact pressure. In addition, the woodchip’s shape and
relative location to the cutters also had some effects on the
amplitude and position of the contact pressure on the cutters.

In conclusion, such a finite element analysis is an effective,
quantitative approach to evaluate the interaction between the tool
and feedstock in absence of direct contact measurement to guide
tool design optimization.
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TABLE 3 | Max contact pressures for cutters with various tooth height adjustments.

Cutter/tooth thickness (mm) Woodchip size (mm) Wood
species and moisture

Cutter tooth height
adjustment (mm)

DZ tooth design maximum
contact pressure (MPa)

6.35 10 × 20 × 50 Douglas-fir, 12% −0.5 469.2 (corner)
0 995.9 (corner)
1 550.5 (corner)
2 542.7 (corner)
3 451.1 (near root)

1.6 6 × 6 × 15 Douglas-fir, 12% −0.5 1180 (corner)
0 1025 (corner)
1 980.8 (corner)
2 914.0 (corner)
3 434.2 (corner)
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Near-Infrared Spectroscopy can
Predict Anatomical Abundance in
Corn Stover
Dylan S. Cousins1, William G. Otto1, Asif Hasan Rony2, Kristian P. Pedersen1, John E. Aston2

and David B. Hodge1,3*

1Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States, 2Idaho National
Laboratory, Idaho Falls, ID, United States, 3Division of Sustainable Process Engineering, Luleå University of Technology, Luleå,
Sweden

Feedstock heterogeneity is a key challenge impacting the deconstruction and conversion
of herbaceous lignocellulosic biomass to biobased fuels, chemicals, and materials.
Upstream processing to homogenize biomass feedstock streams into their anatomical
components via air classification allows for a more tailored approach to subsequent
mechanical and chemical processing. Here, we show that differing corn stover anatomical
tissues respond differently to pretreatment and enzymatic hydrolysis and therefore, a one-
size-fits-all approach to chemical processing biomass is inappropriate. To inform on-line
downstream processing, a robust and high-throughput analytical technique is needed to
quantitatively characterize the separated biomass. Predictive correlation of near-infrared
spectra to biomass chemical composition is such a technique. Here, we demonstrate the
capability of models developed using an “off-the-shelf,” industrially relevant spectrometer
with limited spectral range to make strong predictions of both cell wall chemical
composition and the relative abundance of anatomical components of the corn stover,
the latter for the first time ever. Gaussian process regression (GPR) yields stronger
correlations (average R2

v = 88% for chemical composition and 95% for anatomical
relative abundance) than the more commonly used partial least squares (PLS)
regression (average R2

v = 84% for chemical composition and 92% for anatomical
relative abundance). In nearly all cases, both GPR and PLS outperform models
generated using neural networks. These results highlight the potential for coupling
NIRS with predictive models based on GPR due to the potential to yield more robust
correlations.

Keywords: near-infrared spectrocopy, corn stover, bioenergy, biomass pre-processing, biomass characterization

INTRODUCTION

Lignocellulosic biomass offers enormous potential as a renewable feedstock for biorefining processes
that can yield sustainable fuels, chemicals, and materials (Sharma et al., 2020). A wide range of
technological approaches are available for biorefining of lignocellulose that include thermochemical,
catalytic, chemical, and biological processes for deconstruction and conversion of the cell wall
biopolymers contained within lignocellulose to these bio-based fuels and products (Brown and
Brown, 2013; Qureshi et al., 2014). One approach for biorefining of lignocellulosic biomass involves a
chemical pretreatment to facilitate the subsequent depolymerization of plant cell wall
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polysaccharides using cellulolytic enzymes to yield
monosaccharides that can be further processed to biofuels or
biobased chemicals (Kumar et al., 2016). Additional pre-
processing operations on the biomass may be necessary to
facilitate optimal storage, transport, and processing of
heterogeneous, geographically dispersed biomass feedstocks.
These feedstock pre-processing operations can include
comminution, cleaning, physical or chemical fractionation,
drying, pretreatment, and densification (Carolan et al., 2007;
Lamers et al., 2015).

Corn stover is a high-volume co-product of corn production
that has been identified as having significant potential for
sustainable biofuel production in the U.S. (Langholtz et al.,
2016). Importantly, corn stover, like other gramineous
feedstocks for biorefining processes, exhibits significant within-
plant heterogeneity as a consequence of the differences in the cell
wall composition and higher order structures between different
cell types, tissues, or anatomical fractions (e.g., cob, leaf, husk,
stem). In addition to this heterogeneity, variability within a single
feedstock can arise from differences in feedstock biological origin,
agronomic practices, local environment during growth, harvest
time and approach, and biomass storage time and conditions
(Morrison et al., 1998).

Feedstock variability resulting from differences in chemical
composition and physical properties can significantly impact
process performance during both pre-processing and
downstream biorefining operations. Moreover, differences in
the physical properties of individual corn stover particles are
largely derived from anatomical differences in the tissues. Such
differences can impact the mechanical handling of biomass, have
been shown to contribute to process upsets and can be
detrimental to overall process throughput (Sievers et al., 2020).
Since different anatomical tissues respond differently to both pre-
processing (e.g., comminution) and deconstruction (e.g.,
chemical pretreatment and enzymatic hydrolysis), on-line
knowledge of the tissue type, composition, and moisture
content could prove to be a fundamental requirement for
commercial-scale biorefineries (Garlock et al., 2009; Crowe
et al., 2017; Li et al., 2018). To this end, a high-throughput
analytical technique that is potentially deployable as an on-line
measurement, would be needed to inform not only the feedstock
chemical composition, but also anatomical relative abundance for
a given sample of corn stover.

A suite of laboratory analysis procedures developed by the
National Renewable Energy Laboratory (NREL) have become the
de facto analysis techniques to determine the composition of both
feedstocks and pretreated biomass slurries (Sluiter and Sluiter,
2011a; b). However, the wet laboratory procedures for these
techniques are time consuming and expensive (Lupoi et al.,
2014; Sykes et al., 2015). Therefore, near-infrared (NIR)
spectroscopy (NIRS) has become widely used to characterize
the composition of biomass (Xu et al., 2013). Predictions of
cell wall composition via NIRS have been developed for corn
stover (Hames et al., 2003; Templeton et al., 2009), pretreated
corn stover (Wolfrum and Sluiter, 2009; Sluiter and Wolfrum,
2013), sorghum (Wolfrum et al., 2013; Li et al., 2017a),
switchgrass (Vogel et al., 2011; Park et al., 2012), poplar

(Robinson and Mansfield, 2009; Nkansah et al., 2010) and
cereal grains (Bruno-Soares et al., 1998; Caporaso et al., 2018).
However, cell wall composition alone cannot predict other
physical properties of the feedstock, yet this information
would benefit biomass processing. Therefore, a principal
objective of the present work is to demonstrate the predictive
capability of NIRS for not only cell wall composition in corn
stover, but also feedstock anatomical origin (e.g., husk, cob, or
stalk rind) that greatly impacts both response to mechanical
operations (e.g., comminution and feeding) and subsequent
biorefining operations.

NIRS gained widespread use in the food industry in the
1980s due to advancement in chemometric techniques to
correlate convoluted absorbance peaks to the chemical
composition of the analytes using various mathematical
tools like principal component analysis (PCA) and partial
least squares (PLS) regression (Scotter, 1990). NIR is a
commonly used technology for quality control in grain
processing facilities (Gradenecker, 2003) as well as crude
protein content in livestock forage and feeds (Vincent and
Dardenne, 2021). Early work on analysis of biomass energy
feedstocks showed the viability of NIRS with PLS to accurately
predict corn stover cell wall composition (glucan, xylan, lignin,
acetate, and ash) (Sanderson et al., 1996; Gao et al., 2018).
Quantification of cell wall composition by NIRS demonstrated
varying polysaccharide levels of anatomical fractions of corn
stover (Ye et al., 2008) and differences between feedstock corn
stover and that pretreated with dilute sulfuric acid (Wolfrum
and Sluiter, 2009). Further work at NREL demonstrated a large
variation in the cell wall composition of corn stover from
various harvests as predicted by NIRS (Templeton et al., 2009).
Lately, the same group has demonstrated that potentially low-
cost and portable spectrometers with limited spectral range
provide predictions that are nearly as accurate as those of well-
developed laboratory instruments (Wolfrum et al., 2020).
Here, we demonstrate that a comparable “off the shelf”
instrument is adequate to predict not only composition, but
further extend the predictive capability to anatomical
tissue type.

Various chemometric tools have been implemented to make
predictions of chemical composition from NIR spectra with
PLS being the most common technique. Neural networks
(NNs) (Li X. et al., 2015; Jin et al., 2017; Ahmed et al.,
2019), support vector machines (SVMs) (Balabin and
Lomakina, 2011) and Gaussian process regression (GPR)
have also been applied to NIR spectra to predict the
moisture content of biomass. GPR is commonly used to
predict biomass properties in remote sensing but lacks any
significant use in NIRS predictions of biomass properties
(Hultquist et al., 2014). In this work, we investigate the
efficacy of PLS, GRP, and NN for prediction of chemical
composition and anatomical abundance in corn stover.

Air classification is a preprocessing technique of great interest
that separates corn stover based on differences in density and
surface area (Bilanski and Lai, 1965; Stessel Richard and Peirce,
1983; Lacey et al., 2015). These physical characteristics differ
within the anatomical tissue types of corn stover. Additionally,
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since chemical composition varies with anatomy, we aim to
demonstrate that models developed from NIRS can predict
not only chemical composition of fractionated biomass, but
also the relative abundance of tissue type. The utility of this
technique is two-fold: 1) from an experimental perspective, NIRS
is a high-throughput tool to validate air classification during
process development and 2) in an applied setting, NIRS can
inform downstream processes about the relative abundance of
incoming corn stover (i.e., “stringy” with many husks vs. more
“chip-like” with many stalk rinds and cobs). In the present work,
we compare the predictive capabilities of NIRS by traditional PLS
methods then explore the use of GPR and NNs to expand the
state-of-the-art. Further, we demonstrate that NIRS can provide
reliable predictions for not only composition, but also a further
level of abstraction to anatomical tissue type.

EXPERIMENTAL

Materials
A diverse range of corn stover samples were used in the present
study. Corn stover diversity panel samples were the same as those
described in previous work (Li et al., 2017b). Briefly, the maize
was grown at a different density and plants were harvested at
grain maturity using a single pass, Case IH® 2144 axial-flow,
combine for better separation of corn stover and grain. The
samples for NIR scanning were taken from a commercial
hybrid corn stover bale harvested on 28 October 2017 from
Story, Iowa using an AGCO 2270 XD Large Square Baler
(Duluth, Georgia) set to a 4-inch cut. The bales were sent to
Iowa State University for storage under dry, stable conditions
until 24 October 2019, when they were delivered to Idaho
National Laboratory (INL). At INL, they continued to be
stored under dry (moisture content 8.7 to 9.7 wt%), stable
conditions until use.

Methods
Sample Preparation
To generate manually sorted anatomical fractions, 50 kg of flakes
from the end sections of unprocessed, square corn stover bales
was set aside. As detailed in Figure 1, the plant fractions of corn
stover isolated consisted of leaf, sheath, stalk, pith, husk, shank,
and cob. However, shank was not investigated in this study due to
lower occurrence and similarity with the stalk fraction. The leaf
fraction (Figure 1E) is often pulverized during the baling process
and will usually be found in smaller pieces and fines. They are
darker than most other tissues with a thick mid-rib. Husks
(Figure 1G) are broad, thin tissues, lighter in color than the
leaves, and do not fracture during the baling process. The sheath
(Figure 1D) is usually found attached to the stalk. This is a thick,
waxy, rigid tissue that must be broken off the stalk to collect. The
stalk (Figure 1C) is long and usually cylindrical and consists of a
rigid outer layer (rind), and spongy inner tissue (pith). The shank
(Figure 1H) is a branch-like structure that grows out from a leaf
node and it is from this shank that an ear of corn will grow. Cobs
(Figure 1B) are usually found in larger pieces and have a “fuzzy”
outer layer (beeswing/chaff) and contain pith inside a rigid ring of
tissue (woody ring).

To further separate and isolate 25 g for subsequent testing of
each anatomical fraction, 50 kg of the whole stover was slowly
removed and manually sorted to provide a near-pure baseline of
the different anatomical fractions. The larger plant fractions were
isolated to control mass loss and minimize variance in overall
anatomical composition of the unprocessed bale. To isolate 25 g
of pith (Figure 1F), the tissue was scraped off the rind portion
and reviewed for purity of anatomy. The cobs were mostly
unattached to the husk and stalk from harvest operations and
are the densest of the fractions, making manual separation
quickly identifiable. The husks identified in Figure 1G tend to
segregate from the other plant fractions and were hand-picked off
the remaining unprocessed material. The shanks were pulled

FIGURE 1 | Images of the harvested corn stover and respective plant fractions of interest for further isolation. These include (A) the corn stover rectangular bale as
harvested, (B) cob, (C) stalk, (D) sheath, (E) leaf fractions pulverized during harvesting operations, (F) pith isolated from stalk fractions, (G) is the husk with attached
shank, and (H) isolated shank found attached to the stalk and husk plant fractions.
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from the broad husk portion of the plant and separated as seen in
Figure 1H. To ensure purity and integrity of the leaf isolation, the
darker and scattered pieces were gently brushed from the
collapsed section of the bale. Any contaminates such as twine,
plastic, and metal objects were identified and removed.

Composition analysis was conducted on both alkaline
pretreated (see Section 2.2.2) and raw milled (#20 standard
mesh, 0.85 mm) pure anatomical fractions (sheath, leaf, pith,
husk, rind, and cob) of corn stover to determine structural
polysaccharides, lignin, extractive, and ash content according
to NREL/TP-510-42618 and 510-48087 with modifications as
reported in our prior work (Sluiter et al., 2008; Sluiter and Sluiter,
2011a; Templeton et al., 2016; Singh et al., 2019). For composition
analysis of pure tissues, several dozen pieces of a given tissue were
milled and placed into a sealed bag. These were mixed by shaking
and subsequently, aliquots of the mixture were taken for
composition analysis which was done in triplicate.
Supplementary Table S2 provides summary data for samples
used for prediction of chemical composition and Supplementary
Table S5 gives complete composition information for all samples
used for NIR modeling.

To generate anatomical tissues with varying moisture content
to enhance predictive models, samples of unmilled anatomical
fractions were hydrated at varying relative humidity. To achieve
different relative humidity, samples were equilibrated in five
separate sealed containers containing saturated aqueous
solutions of various ionic compounds in the bottom of the
container. These compounds govern the water activity, and
therefore, relative humidity. By varying the species of the ionic
compound, the relative humidity can be altered to cover a wide
range. Samples were allowed to equilibrate for at least 72 h and
until the mass change due to moisture uptake no longer increased
(maximum 96 h). Supplementary Table S1 provides the salts and
associated relative humidity used for moisture sorption
experiments (Greenspan, 1977). Supplementary Table S3
provides the associated moisture content of anatomical tissues
that were equilibrated at varying relative humidity.

Alkaline Pretreatment
Anatomical tissues milled to #20 standard mesh using a
benchtop Wiley mill were separately treated in an aqueous
alkaline solution at 10% solids (w/v) with 10% sodium
hydroxide (w/w) on a 3 g dry biomass basis in a 100 ml
AMAR reactor. The vessel was continuously stirred at
200 rpm and temperature was ramped to 90°C over the
course of 20 min where it was then held for an additional
60 min and then cooled to room temperature over the course
of 10 min. The biomass was then vacuum filtered and washed
with DI water until the effluent was of neutral pH. Prior to
enzymatic hydrolysis, the pH was adjusted to 5 by adding the
biomass to 300 ml of water and titrating with sulfuric acid.
Pretreated samples were then vacuum filtered and stored in
this moist state in a sealable polyethylene bag at 4°C until
further use. Supplementary Table S4 presents the moisture
content during storage of these materials.

Enzymatic Hydrolysis
Enzymatic hydrolysis was performed on both raw and pretreated
samples according to the procedure described by Yuan et al (Yuan
et al., 2019). Briefly, pure anatomical tissues of corn stover
(sheath, leaf, stalk pith, husk, stalk rind, and cob) were milled
to pass a 20-mesh screen using a Wiley mini-mill (Thomas
Scientific, Swedesboro, NJ). Hydrolysis was carried out in 15-
ml centrifuge tubes at 10% (w/v) solids loading with 15 mg CTec3
enzyme per g of glucan buffered using a 50 mM sodium citrate
buffer (pH 5) in a rotating incubator (198° of rotation) at 60 rpm
for 72 h at 50°C. Glucose yields were determined by diluting the
hydrolysis liquor ten-fold and measuring the concentration on an
Agilent 1260 series HPLC equipped with an Aminex HPX-87H
column (Bio-Rad, Hercules, CA) using 5 mM aqueous H2SO4 as
the mobile phase coupled with RI detection. Hydrolysis yields are
given in terms of percent of maximum theoretical glucose
produced. Enzymatic hydrolysis was conducted on both raw
and alkaline pretreated samples. Pretreated samples were used
for enzymatic hydrolysis no more than 5 days after pretreatment
to limit microbial growth.

Spectra Acquisition
NIR spectra were collected on a Foss InfraXact 7,500 non-contact
spectrometer over wavelengths from 570 to 1850 nm in
reflectance with the empty cup (air) serving as a baseline. This
is a reduced wavelength range compared to many studies using
NIR for chemical composition prediction (typically covering the
full NIR range from 800 to 2500 nm), but recent work has
confirmed little reduction in model predictive capability when
using reduced spectral range (Wolfrum et al., 2020). For
correlation of chemical composition (i.e. glucan, xylan, etc.)
specimens from the corn stover diversity panel were used in
addition to pure fractions that were isolated from the bale
described above. In total, there were 62 specimens available
for correlation of chemical composition (only 36 for
extractives and moisture content). It should be noted that
some of these specimens were milled (those from corn stover
diversity and ambient humidity anatomical fractions) to #20
standard mesh, while some were not (those tissues that were
hydrated at varying relative humidity as previously described).

Milled specimens were added to a cup with a transparent
bottom (approximately 2 inches in diameter) to a depth of no less
than 1 cm. Specimens were measured over three replicates except
for hydrated tissues, for which spectra were collected in duplicate
to minimize water loss due to drying. These hydrated tissues were
not milled prior to scanning, but all other samples were milled to
pass a #20 standard mesh. Specimens were stirred between
replicate measurements. Hydrated, unmilled tissues were
removed from their sealed containers and duplicate scans were
performed quickly to limit moisture desorption from the
material, though the samples were briefly mixed between
scans. The duration of each scan is approximately 30 s,
therefore relatively little time was available for desorption of
water during the measurement. Nevertheless, inconsistency due
to effects of moisture desorption means that these results should
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be interpreted for their trends rather than as tabulations of well-
defined thermodynamic hydration states.

In general, the anatomical relative abundance of a given
sample of corn stover is not explicitly known, therefore, to
generate a dataset for calibration of the models, mixtures of
pure anatomical fractions which had been previously manually
sorted and subsequently milled to pass a #20 standard mesh
screen were prepared by “remixing” to obtain samples with
known anatomical quantities. These mixtures were at least 3 g
in quantity and were thoroughly agitated in sealed plastic bags
prior to scanning. Thus, 60 total specimens were combined and
scanned to generate the data set for determining anatomical
relative abundance.

Modeling
Several techniques were used to process spectra prior to training
models for prediction. Standard normal variate (SNV)
pretreatment was applied to the absorbance spectra by
subtracting the mean of absorbances over all wavelengths for a
given observation and normalizing by the standard deviation. In
this way, the mean values of all spectra were normalized to zero
with a standard deviation of one. The second derivative of the
absorbance spectra with respect to wavelength was calculated
numerically over the sampling increment of the instrument
(2 nm). Another common preprocessing technique is
multiplicative scatter correction (MSC) to reduce the effects of
scattering and differing path length between measurements
(Rinnan et al., 2009). MSC regresses each spectrum to the
mean spectrum of the dataset by ordinary least squares, then
corrects each spectrum by the regressed linear parameters. The
second derivative (2D) of the absorbance spectra is used to
achieve higher correlations between the actual and predicted
composition values. For all regressed spectra and correlations
compared here, SNV, MSC, and the second derivative were
applied.

Preliminary model screening was conducted using the
Regression Learner Application in MATLAB (release R2021b;
MathWorks, Natick, MA), which can quickly screen linear
regression, decision trees, known nearest neighbor, SVMs, and
GPR. Of these methods, GPR yielded the lowest mean squared
error in preliminary screening when predicting both chemical
and anatomical composition of corn stover. Therefore, in this
work, GPR is compared to more commonly used PLS regression
and NNs using MATLAB’s fitrgp, plsregress, and fitrnet functions,
respectively. For model testing in each training case, the data were
partitioned into training and test data with a 70/30 split for
holdout cross-validation. Root-mean-squared-error of validation
(RMSEV) and R2

v (coefficient of determination of validation) were
used to assess model performance on the holdout sets. In the case
of the cell wall composition, the RMSE was normalized by the
range of the predicted values. For each algorithm, the model was
trained 100 times each with a new training/test split. R2

v and
RMSEV are those for the average of the 100 model runs.

Gaussian processes leverage the expectation that samples with
similar predictors will have similar targets. In this case the
predictors are the absorbance values at varying wavelengths
and the targets are the chemical or anatomical composition.

Briefly, the process fits a distribution of functions to the
predictors in order to predict a target (e.g., chemical or
anatomical composition). The variance of the assumed
distribution of functions (prior) is designated by a kernel,
which can take various forms. We screened common kernels
and found that the rational quadratic form outperformed the
Matern 5/2 and 3/2, squared exponential, and exponential kernels
as screened by the Regression Learner Application in MATLAB.
Therefore, in the fitrgpMATLAB function, the rational quadratic
kernel was used to describe the covariance between predictors. All
other hyperparameters were held at default settings.

plsregress implements the SIMPLS algorithm developed by de
Jong (de Jong, 1993). All default parameters were used for
plsregress and the number of components was varied from 1
to 20. The R2

v and RMSEV values tabulated for PLS are the
maxima and minima over this range of components, respectively.
Standard deviations over the 100 model runs were calculated at
the number of components that maximized the R2

v value or
minimized the RMSEV.

NNs trained using fitrnet used Bayesian optimization, with the
default NN structure for the function: two fully connected layers
with the first having 10 nodes and the second having a single
output. The first fully connected layer has a rectified linear unit
activation function while the second layer corresponds to the
output target. The training iteration limit was set to 1,000 and
both the gradient tolerance and the tolerance for the function loss
were set to 10−6. Principal component analysis was conducted
using the pca function in MATLAB. Default parameters for the
function were used (data are centered and singular value
decomposition is the algorithm).

RESULTS AND DISCUSSION

Composition, Enzymatic Hydrolysis, and
Moisture of Corn Stover Anatomical Tissues
While NIRS has been used in a number of studies and
applications in the past to predict the composition of corn
stover, the three objectives of the present study differentiate
this work from the prior literature. The first objective is to
identify differences in composition and responses to
pretreatment and enzymatic hydrolysis between manually
fractionated corn stover anatomical fractions. The second
objective is to employ these corn stover samples to develop
models for prediction of differences in chemical composition,
relative abundance of anatomical fractions, and response to
pretreatment and enzymatic hydrolysis using an industrially
relevant NIR system with limited spectral range. The final
objective is to compare both the utility and performance of
three chemometric/machine learning algorithms (PLS, NN,
GPR) to make these predictions from the NIR data sets. For
correlative models to be useful, the dataset must cover the desired
prediction range. To achieve this, we use anatomically pure
samples to bound the design space for all samples of corn
stover. That is, no mixture of corn stover will have chemical
composition (e.g., glucan content) that is greater or lesser than the
pure anatomical fractions that have the maximum or minimum
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chemical content. Corn stover from our previous work was also
used to develop correlations of chemical composition (Li et al.,
2017b). Table 1 shows the summary composition data for the
corn stover samples used in this study and Figure 2A shows the
composition for manually sorted anatomical tissues on a dry
basis. The range of compositions found here are comparable to
other studies (Hames et al., 2003; Templeton et al., 2009).

Several key differences in composition between the
anatomical fractions can be observed within this data
(Figure 2A). First, it can be observed that the stalk rind
fraction had the highest glucan content (42.3% by mass),
which is consistent with other prior work for the stems of
graminaceous feedstocks such as corn stover (Li et al., 2012)
and Miscanthus × giganteus (Williams et al., 2015). Another
key observation is that the cob fraction exhibits the highest
xylan content. It is well-established that cobs are more highly
enriched in xylan (Takada et al., 2018) and the lower
recalcitrance and potential for collection/recovery have
made cobs a target feedstock for biorefining (Brown and
Brown, 2013). The leaf fraction exhibits the highest ash
content and is consistent with prior studies that have
found the most abundant ash content in leaf fractions of
corn stover (Li et al., 2012) and wheat straw (Atik and Ates,
2012), presumably due to the abundance of structural
inorganics such as silicates. A final observation is the low
lignin contents observed in stalk pith (9.5%), sheath (11.0%),
and husk (7.0%). Low lignin contents for pith has been

observed in corn stover (Li et al., 2012) and have been
linked to high enzymatic hydrolysis yields in sorghums (Li
et al., 2018). Results for the response to enzymatic hydrolysis
show significant differences between the six anatomical
fractions for both untreated and following pretreatment
(Figure 2B). From these results it can be observed that the
stalk pith has the highest yield (59.7%) of the untreated
anatomical fractions. It has been well-documented that
untreated pith from diverse grasses are known to be more
susceptible to digestion by rumen microbiota or cellulolytic
enzymes due to their lower lignin content (Akin, 2008).
Following pretreatment, the leaf, pith, husk, and cob
fractions exhibit glucose yields greater than 80%. Leaf,
husk, and cob show the most improvement in glucose
yields between untreated and pretreated samples, while the
sheath is particularly recalcitrant. Since this recalcitrance is
fundamentally rooted in cell wall structure and chemical
composition, we investigate later whether yields can be
correlated to NIR spectra. Because different tissues of corn
stover have different responses to pretreatment and
hydrolysis, a preprocessing technique that can enrich the
process streams in various anatomies would be highly
advantageous.

In addition to chemical composition and enzymatic
hydrolysis yields, moisture content is a critical parameter
affecting both mechanical processes (e.g., comminution,
conveying) and (bio)chemical processes (e.g., pretreatment,

TABLE 1 | Summary of composition data for the specimens analyzed in this work. Maximum, minimum, range and average for chemicals are given as wt% on a dry basis. N
refers to the number of NIR spectra available for correlation with a given parameter.

Glucan Xylan Klason
Lignin

Acetate Ash Water
extractives

Ethanol
extractives

Moisture

Max 42.3 41.1 20.4 5.0 12.4 26.7 6.5 38.0
Min 28.7 16.4 7.0 2.7 0.4 5.1 1.8 2.6
Range 13.6 24.7 13.4 2.3 12.0 21.6 4.7 35.4
Average 34.1 23.1 15.0 3.6 2.7 13.7 3.5 11.3
N 234 234 234 234 234 78 78 78

FIGURE 2 | (A) Composition of manually sorted anatomical tissues of corn stover on a dry basis and (B) glucose hydrolysis following enzymatic hydrolysis (as % of
theoretical maximum) for anatomical tissues of untreated corn stover and those pretreated under alkaline conditions.
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enzymatic hydrolysis) (Laureano-Perez et al., 2005;
Liebmann et al., 2010; Ozaki, 2012; Sievers et al., 2020).
Indeed, many processes utilizing materials of biological
origin have utilized NIRS for decades to monitor moisture
content. Therefore, it is a sensible candidate for prediction;
strong correlations for moisture content are expected so it
acts as a baseline check for model development. To obtain a
range of moisture content across anatomical tissues, unmilled
corn stover tissues were equilibrated at varying relative
humidity as presented in Supplementary Figure S1.
Generally, the moisture content increases rapidly at the

end of the moisture sorption curves and the stalk
components (rind and pith) demonstrating the greatest
hygroscopicity.

Correlation of Spectra to Chemical and
Anatomical Composition
The principal focus of this work is to demonstrate that an “off the
shelf” NIR spectrometer with limited spectral range
(570–1850 nm) can be used to generate predictive models on a
relatively small sample set of corn stover. Chemical functional

FIGURE 3 | Pearson correlation coefficients between NIR absorption from 570 to 1850 nm and corn stover compositional components, relative abundance of
anatomical components, and response to pretreatment and enzymatic hydrolysis.

FIGURE 4 | Second derivative of NIR absorbance spectra for anatomically pure fractions of corn stover in the region from (A) 850–1,050 nm, (B)
1,075 nm–1,125 nm, and (C) 1,500 nm–1775 nm.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8366907

Cousins et al. NIR Corn Stover Anatomy Prediction

38

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


groups govern absorbance of NIR spectra and these groups
appear in different quantities in the cell wall biopolymers that
make up anatomical tissues. Therefore, chemical composition
predictions can be made from the spectral signatures. Predictions
of anatomical relative abundance are also rooted in the fact that
the varying chemicals absorb IR radiation differently and
different tissues have varying quantities of these chemicals. A
correlation map was developed (Figure 3) to first identify NIR
spectral correlations to the cell wall composition, relative
abundance of anatomical fractions, and responses to
pretreatment and enzymatic hydrolysis. This plot shows the
strength of the Pearson correlation coefficient between these
quantities and the second derivative of wavelength absorbance.
Red areas indicate negative correlations while green areas indicate
positive correlations. The magnitude of the second derivative
gives an indication of the degree of concavity in the raw spectra. A
larger magnitude of the second derivative in the negative
direction corresponds to a more defined absorbance peak in
the raw spectra. Positive peaks in the second derivative spectra
are often coupled with negative peaks. These coupled peaks are
often correlated to chemical composition or anatomical tissues
(Figure 3) as transitions from positive to negative correlation (or
vice versa). Such transitions are observed at 970 nm, 1,100 nm,
and 1,238 nm, among others, and are important for model
prediction. Chemical structures (polysaccharides, lignin, etc.)
and anatomical tissues that share similar correlation patters
are likely to be correlated (e.g., xylan and cob).

Several key differences within the NIR spectra contributing
these correlations can be highlighted (Figure 4). First, starting at
the lower end of the spectra, the first peak of interest occurs at
970 nm (Figure 3), where matching correlations between glucan,
xylan, acetate, stalk rind, and cob can be observed. This peak is
associated with amorphous hydroxyl content (Ahmed et al.,
2019) and stronger peak signals are observed for rind and cob
compared to other tissues (Figure 4A). These specimens are dried
to approximately 5% moisture content so the signal increased
hydroxyl absorbance may be due to higher relative abundance of
these groups present on polysaccharides. Though weaker than the
correlations previously described, lignin and water extractives
show similar positive correlations to sheath, leaf, and husk.
Because the second derivative of the spectra is negative for
wavelengths greater than 970 nm (up to about 1,015 nm), a
positive correlation between the absorbance and the chemical
composition implies that the relative chemical quantity is
decreasing with an increasing absorbance peak.

The peak that appears at 1,100 nm (Figure 4B) shows unique
properties in that related tissues display similar behavior as the
peaks transition from negative to positive. For example, sheath,
leaf, and husk group together and have matching correlation
patterns to lignin at 1,100 nm (Figure 3). Similarly, stalk rind,
stalk pith, and cob group together and have matching correlation
patterns to polysaccharides at 1,100 nm (Figure 3). Other reports
have also shown positive correlation between absorbance and
reference compositions of hemicellulose and cellulose at
1,096 nm and 1,100 nm, respectively, and negative correlation
at 1,098 nm for lignin (Jin et al., 2017). The peak at 1,100 nm is
one of the only significant peaks observed in this spectrum that

shows a segregation of anatomical tissues into positive and
negative second derivatives of absorbance.

Prediction of chemical composition is one key component of
feedstock quality and can be used to inform pre-processing or
downstream pretreatment. Peaks in NIR spectra associated with
crystalline cellulose can be observed at 1,592 nm (Figure 4C) for
which stalk rind is observed to have the sharpest absorbance
(Tsuchikawa et al., 2003). Higher up the spectrum, the
segregation of the data into positive and negative peaks at
1,668 nm distinguishes anatomical tissues in a similar way to
the peak at 1,100 nm. These two areas appear to be the only two
significant wavelengths at which this phenomenon occurs. In
previous work, our group has shown guaiacyl lignin to be
correlated to a negative peak at 1726 nm (Li et al., 2017b).
Previous authors have attributed this peak to pentose sugars
(furanose or pyranose) from the presence of hemicellulose
(Tsuchikawa et al., 2003). That the xylan-rich cob shows the
largest peak is therefore likely attributable to the polysaccharides
rather than the guaiacyl lignin in the present case.

Besides the spectra of specific anatomical fractions, it is
informative to investigate the spectra for a single anatomical
tissue that has been equilibrated at varying relative humidity. Our
results show (Figure 5) the effect of moisture sorption on the
amorphous hydroxyl band that is associated with wavelengths
from 1,350 to 1,450 nm (Henri et al., 2002) for stalk pith that has
been equilibrated at varying relative humidity. The band between
1,400 and 1,420 nm is related to the O-H first bending overtone
(Gergely and Salgó, 2005). Increased moisture content is observed
to lower the wavelength at which radiation is absorbed. In the raw
spectra (Supplementary Figure S2), the magnitude of
absorbance in this region is also observed to increase with
increasing moisture content. At low moisture content, the
water molecules can strongly associate with biopolymers
through hydrogen bonding but as the moisture content
increases, available sites for such interactions are decreased
and the spectra becomes more dominated by unbound or
amorphous water molecules. The contributions to the
absorbance from hydroxyl groups present on the biopolymers
are also diminished as the moisture content increases. These
subtle shifts in absorbance enable predictive models to be
developed from these spectra later in this work.

Of principal interest for the present study is identification of
corn stover samples which may be more amenable to subsequent
processing. For example, stalk pith requires no pretreatment to
achieve the same glucose yields during enzymatic hydrolysis
compared to pretreated stalk rind (Figure 2A). Therefore,
samples enriched in pith can be targeted in upstream
processing and the anatomical composition could be verified
by NIR predictive models. Though correlation of chemical
components to NIR spectra has been previously shown using
PLS, here we also investigate GPR and NN to test whether these
can provide more accurate predictions. The chemical
components of interest are glucan, xylan, Klason lignin,
acetate, ash, water extractives, ethanol extractives, and
moisture content.

Use of high throughput screening for determination of
biomass composition could be used in various applications
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within a biorefinery process. Variability of lignocellulosic biomass
poses a challenge for scale-up; but on-line NIRS could be used to
predict composition, such as glucan, to inform downstream
process parameters, such as enzyme loading for hydrolysis.

The average R2
v value and range-normalized RMSEV

(RNRMSEV) between the actual and predicted responses for
cell wall composition for models that could inform such
predictions are presented in Figure 6 (full data set in

FIGURE 5 | Second derivative of NIR absorbance spectra for stalk pith in the range of the amorphous -OH groups at 970 nm (A) and 1,424 nm (B) equilibrated at
varying % moisture content (MC).

FIGURE 6 | R2
v (A) and RNRMSEV (B) for chemical composition and response to pretreatment and enzymatic hydrolysis of corn stover predicted from NIR spectra

using partial least squares (PLS), Gaussian process regression (GPR) and neural networks (NN). Bars represent standard deviations over 100 model runs. Tabular data
are provided in the Supplementary Material.
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Supplementary Tables S8, S9, S14). For PLS, the reported R2
v

values are those that are the averages of the maximum R2
v for any

loop over varying number of components in the model (up to 20
components). Supplementary Figure S3 demonstrates how the
number of components affects the correlation between the actual
and predicted values. Generally, R2

v for the correlation plateaus at
its maximum value by 10 PLS components.

Of the chemical composition parameters, it is observed that
moisture content is themost easily predicted parameter. Indeed, NIR
has been used extensively for moisture content prediction
(Cozzolino et al., 2013). Well-defined peak shifts associated with
increasing moisture content (Figure 5) at 970 and 1,420 nm likely
contribute to these strong correlations. Polysaccharides (glucan and
xylan) as well as extractives (both ethanol- and water-extractable)
show relatively strong correlations between predicted and actual
values (R2v > 0.80). In all model cases, xylan is the best-predicted
chemical component besides moisture content. Minor components
(lignin, acetate and ash) have weaker correlation coefficients. The
correlation between actual and predicted values for minor
components (lignin, acetate, and ash) are about 10–15% higher
for GPR compared to PLS. That these minor components can be
well-predicted by GPR is an advancement of the state of the art. Ash
can be difficult to correlate due to the fact that the mineral
components that make up ash do not directly absorb NIR
radiation and only affect the absorbance of proximal functional
groups (Gao et al., 2018). This trend can be observed in Figure 3
where ash has comparatively weak correlations when compared to
major components like glucan, xylan, and lignin. Nevertheless, even
subtle correlations prove useful for predictive modeling as ash
content still has a relatively high R2

v value (0.87 for GPR).
The first three component loadings from PLS regression show

strong positive and negative correlations for both anatomical and
compositional components at 1,100 nm (Supplementary Figure
S4), which correspond to the behavior of the positive and negative
spectral derivatives at that wavelength (Figure 4B). Only a few
wavelengths appear to have high or low loadings in the first three
PLS components for chemical composition. Interestingly,
loadings are extreme in the visible spectra (from 570 nm to
about 720 nm). The first PLS component for composition
regression also shows a strong loading around 1,394 nm. This
pattern is observed for the moisture content present in the
biomass samples. Importantly, this transition is slightly lower
than those observed for polysaccharides (approximately
1,404 nm) so this may provide an important wavelength to
distinguish the difference between hydroxyl content associated
with water vs. those associated with polysaccharides that are not
well-distinguished at 970 nm. Range-normalized PLS regression
coefficients do not have similar patterning between observations
(anatomical or chemical composition) (Supplementary Figures
S5, S6A,B) unlike the Pearson correlation coefficients of those
values.

GPR is able to achieve an R2
v of 0.85 for the raw yield from

enzymatic hydrolysis and PLS is able to achieve an R2
v of 0.83 for

the pretreated enzymatic hydrolysis yield. This ability to predict
hydrolysis yields of corn stover by spectral analysis of incoming
feedstock could be of great utility in an industrial setting. Prior
work has employed PLS coupled to NIR to predict in vitro

digestibility in corn stover fractionated by anatomy (Hansey
et al., 2010) and our previous work for predicted enzymatic
hydrolysis yields in corn stover both before and after alkaline
pretreatment (Li et al., 2017b). Notably, our previous work was
not able to obtain robust prediction models for enzymatic
hydrolysis yields following pretreatment.

While composition is useful to inform downstream
chemical processing, knowledge of the anatomical tissue
type can also inform process operations. Particularly, work
from the Integrated Biorefinery Research Facility at NREL
showed that certain anatomical types can be problematic for
conveyance machinery (Sievers et al., 2020). That work found
husk material from corn stover tends to form “bird nests” that
can overload rotating equipment and cause large spikes in
machinery energy requirements. Foreknowledge of the tissue
type and quantity would be advantageous so that material flow
or equipment specifications could be altered to prevent process
bottlenecks or equipment damage. Moreover, corn stover
feedstock quality can be improved via air classification,
which separates different anatomical tissues based on
surface area and density (Lacey et al., 2016; Thompson
et al., 2016). To that end, Figure 7 presents the goodness-
of-fit (full data set in Supplementary Tables S11, S12, S13,
S15) and RMSEV between actual and predicted model values
for the relative abundance of differing anatomical fractions,
which has hitherto not been described in the literature, despite
instances of anatomical separation used to introduce variation
in the cell wall composition to the sample dataset (Pordesimo
et al., 2005; Liu et al., 2010; Gao et al., 2018). Prior work found
that the first three principal components of NIR spectra of
remixed anatomical fractions of Miscanthus × giganteus were
able to predict the structural carbohydrate, lignin, and ash
content (Williams et al., 2015). However, that work stopped
short of making predictions of the anatomical relative
abundance of the remixed anatomical samples. Because the
dataset for anatomical composition covers the complete range
(mass fraction from 0 to 1), the RMSEV does not require
normalization. The anatomical relative abundance is well-
predicted by all methods with average R2

v values of 0.92,
0.95, and 0.89 for PLS, GPR, and NN, respectively.

Because the chemical composition of biomass can be
discerned by the principal components of NIR spectra, we
applied principal component analysis to the spectra for pure
anatomical fractions of corn stover (Figure 8). In this analysis,
the first three principal components explained 92.9% of the
variance in the NIR spectra. The anatomical fractions are
shown to segregate into distinct bundles besides cob and
husk which tend to group together. That husk and cob have
distinct overlap of their principal component grouping is
counterintuitive because their correlations with NIR
absorbance are generally opposite (Figure 3).

Interestingly, the average correlation coefficient is higher for the
anatomical relative abundance predictions than for the composition.
Since the anatomical relative abundance can be thought of as another
level of abstraction from composition, which governs NIR
absorbance, one might expect these parameters to correlate less
strongly. Composition analysis of corn stover for this study was
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conducted at Michigan State University in 2014 for corn stover
diversity panel specimens (Li M. et al., 2015) and in 2021 for
anatomical fractions at Montana State University. Measurements
of chemical composition of biomass can vary by up to 20% between
laboratories (Templeton et al., 2016), though other studies found
much less error (Templeton et al., 2010). However, the quantity of
corn stover anatomical tissues can be accurately and precisely
controlled when preparing mixtures. Therefore, the higher
correlation coefficient and lower RMSEV for the anatomical
relative abundance compared to composition may be due in part
to interlaboratory data variance in the composition. Nonetheless,
these models still demonstrate utility to predict the chemical and
anatomical constituents of corn stover over a relatively small data set.
Here, we show that GPR as modeling approach may yield better
predictions for both chemical composition and anatomical relative
abundance in corn stover, but many different algorithmic
approaches and other hyperparameter tuning options exist for

each of the three models presented here. It is beyond the scope
of this study to investigate these parameters; we aim to demonstrate
that GPR is a viable and presently under-investigated modeling
technique that should be given more attention in the NIRS
community.

CONCLUSION

In this work, we show for the first time that anatomical relative
abundance can be predicted by NIRS models. This has important
implications for the biomass processing by adding additional
information about the feedstock beyond chemical composition. We
demonstrate the stalk pith has the highest glucose hydrolysis yield
(60% and 95% of theoretical for untreated and alkaline pretreated,
respectively) among anatomical fractions of corn stover. If coupled
with a physical fractionation strategy to recover fractions enriched or

FIGURE 7 | R2
v (A) and RMSEV (B) for anatomical relative abundance of corn stover predicted by various modeling algorithms. Bars represent standard deviations

over 100 model runs. Tabular data are provided in the Supplementary Material.

FIGURE 8 | First three principal components of the NIR spectra for pure components of corn stover. Circles represent the position in the 3-dimensional space,
squares represent the position in the PC1-PC2 plane and diamonds represent the position in the PC2-PC3 plane.
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depleted in select features such as the relative abundance of a target
anatomical fraction, those streams can be treated differently to
improve overall conversion. Despite the limited spectral range of
the spectrometer used in this work, strong correlativemodels were still
developed with a relatively small data set. We show that predictive
models from GPR give the strongest correlations for these data; this
regression technique should certainly garner more attention in future
investigations. Futureworkwill demonstrate the utility of thesemodels
on predicting composition, anatomical relative abundance, response
to pretreatment, and hydrolysis yields for air-classified fractions of
biomass.
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In this work, we have tested individual and combination of applications of ozonolysis and
liquid hot water (LHW) to pretreat sugarcane bagasse (SCB) for the removal of enzyme
and/or microbial inhibitors and generation of potential value-added chemicals. A solid
content with 80% cellulose and a liquid phase (liquor) rich in phenolic derived compounds
(3 g.L−1) from lignin, sugars (>20 g.L−1), and other compounds, such as furfural and
hydroxymethylfurfural (HMF), were generated. Maximal (59%) glucan conversion
occurred in the presence of double-pretreated bagasse, which had 32–50% more
glucan available than the samples that were individually LHW or ozone-pretreated,
resulting in maximal ethanol production (92% after 42 h) from double-pretreated SCB
enzyme hydrolyzate. In summary, this work showed that ozone reacts effectively with lignin
without the use of any other chemical reagent, and LHW pretreatment, followed by a
washing step, was effective in solubilizing and cleaning up the fiber enzyme and microbial
inhibitory compounds with ozone being effective against phenolics. Moreover, the
generated cellulose-rich substrate is readily fermentable. The acidic liquor fraction
removed by sequential washings and containing mainly sugars and phenolic
compounds may be evaluated for use in green chemistry bioconversions processes.

Keywords: ozone, liquid hot water, pretreatment, enzyme hydrolysis, ethanol fermentation, value-added chemicals,
inhibitors

INTRODUCTION

The high resistance of cellulose to degradation is the main biological barrier to lignocellulosic
processing on a large scale (Ximenes et al., 2021). To overcome that, the application of mild and eco-
friendly pretreatment techniques have been preferred instead of traditional acid or alkali
pretreatments that have been previously proposed for lignocelluloses. Compared to the latter
two pretreatments, hydrothermal pretreatment can be performed in a large scale under more
gentle conditions (Pedersen and Meyer, 2010; Ruiz et al., 2020).

Liquid hot water (LHW) and to a lesser extent ozonolysis have been tested for the pretreatment of
different lignocellulosic materials with LHW pretreatment being one of the leading pretreatments
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since it improves cellulose digestibility at lower cost, and is carried
out once without chemicals (Kim et al., 2009; Kim et al., 2011;
Kim et al., 2013; Ximenes et al., 2017; Ruiz et al., 2020; 2021).
When choosing operational conditions of pretreatment, it is
important to consider the type of biomass as well as the
formed lignocellulosic degradation products that are inhibitory
to downstream biochemical reactions (Ko et al., 2015a,b,c;
Jonsson and Martin, 2016, Ximenes et al., 2017; Ruiz et al.,
2021). In this sense, LHW pretreatment of a variety of
lignocellulosic materials has included a wide range of
operational conditions, including temperature, resident time,
particle size, and water-to-solid biomass ratio, among others,
and aims to avoid the formation of enzyme and/or microbial
inhibitors. Hydrothermal pretreatment is generally performed
under conditions of 150–230°C for 10–50 min and pressures
corresponding to about 4.9–20 bars (Kim et al., 2009;
Rasmussen et al., 2014; Ximenes et al., 2017; Aguilar et al.,
2018; Pino et al., 2018; Ruiz et al., 2021). Hydronium ions act
as catalysts to hydrolyze and solubilize hemicellulose at an
elevated temperature, while acetic acid and other organic acids
generated from hemicellulose also facilitate this process (Weil
et al., 1998; Kim I. J. et al., 2014; Kim Y. et al., 2014; Ximenes et al.,
2017; Ruiz et al., 2020).

Ozonolysis is a less studied pretreatment than LHW and
represents another promising approach for lignocellulosic
treatment since it has a high specificity of reaction with ozone
gas being readily obtained at atmospheric pressure and room
temperature. Other benefits are moderate cost of production and
no wastewater generation (Barros et al., 2013; Gitifar et al., 2013;
Panneerselvam et al., 2013; Travaini et al., 2013; Perrone et al.,
2016).

Combined pretreatments of lignocellulosic substrates have
recently been proposed for different types of biomass aiming
at a more effective result when individual features of the two
pretreatments are combined. A more effective recovery of lignin
and hemicellulose is possible with the potential of maximizing
their application in a biorefinery concept (Sun et al., 2016). The
estimated global production of bio-based chemicals and polymers
is about 50 million metric tonnes per year (mtpy), but most
chemicals and polymers are still produced from
petroleum sources (Jong et al., 2012; Rosales-Calderon and
Arantes, 2019).

Lignocellulosic materials consist of ~30% lignin by weight and
40% by energy (Perlack et al., 2005; Beauchet et al., 2012). In this
sense, lignin is a valuable resource that merits further study to
increase the commercial viability of a biorefinery (Agrawal et al.,
2014), although technologies aiming to convert lignin to
macromolecules and aromatic chemicals are still under
development (Rosales-Calderon and Arantes, 2019). Potential
uses of lignin-derived products already include production of
activated carbon, binders, carbon fibers, motor fuel, plastic
materials, and sorbents (Demuner et al., 2019). The
combination of ozonolysis and LHW pretreatments tested here
to enhance enzymatic hydrolysis, and alleviate inhibition during
saccharification and fermentation of sugarcane bagasse (SCB) is
also attractive for generating valued compounds from phenolic
compounds derived from lignin.

MATERIAL AND METHODS

Material
SCB from 2013/2014 period of harvesting was supplied by Alta
Mogiana sugarcane mill (São Joaquim da Barra, Brazil). The
experimental work was developed between 2015 and 2017. The
biomass was washed six times with deionized (DI) water, dried in
an oven at 45°C to 10% or lower humidity, and milled to a particle
size of about 1.0 mm before use. Enzymatic cocktails CellicTM

CTec2® and HTec2® were provided by Novozymes Latin
America (Araucária, Brazil). All other reagents and chemicals,
unless otherwise noted, were purchased from Sigma-Aldrich (St.
Louis, MO, United States). The fermentative industrial strain
(Saccharomyces cerevisiae JP1) was provided by AEB Latin
America (Sao José dos Pinhais, Brazil).

Pretreatments of Biomass
Two types of pretreatments were evaluated individually and/or in
a combined sequence. Ozonolysis was performed using O3 gas to
chemically oxidize biomass components, and LHW was
employed as a physical process using water as the reagent.
Combined ozonolysis was performed first to degrade lignin,
and then followed by LHW. Operational conditions of each
one are described.

Ozonolysis
Ozonolysis was performed at room temperature and
atmospheric pressure, according to Travaini et al. (2013),
with few modifications. In total, 25.0 g of dry SCB were
humidified at 50% (w/v) with DI water, filled in a fixed bed
glass column (2.7 × 50.0 cm), and kept under saturated gas O3

(flux of 32.0 mg min−1) for 60 min. Ozone was produced from
atmospheric air by the corona process (Radast 10C, Ozoxi-
Ozonio). Ozone flux was monitored according to the Standard
Methods for the Examination of Water and Wastewater
(APHA, 1998). After pretreatment, SCB was air-dried at
room temperature prior to cold water washing, performed
by a five-step sequential procedure. Each step was carried out
mixing 5.0% (w/v) of pretreated SCB with DI water under
30 min of agitation at room temperature, followed by
filtration to separate washed solids, which were dried at
45°C for 24 h before enzymatic hydrolysis. The
supernatants of each washing were stored at 4°C protected
from light until analysis of total phenolics.

Liquid Hot Water
LHW pretreatment was conducted as described previously (Kim
et al., 2009; Ko et al., 2015a) with few modifications. Each batch
was performed by mixing 3.5 g of dry SCB (untreated or ozonized
SCB) with DI water for a final concentration of 10% solids (w/v).
The resulting material was placed in a metal column (2.2 ×
13.5 cm) for heating in a sand bath at 190°C for 15 min. It was
heated for 5 min. The tube was quenched in water for 20 s and
then placed in an ice bucket for 25 min to stop the reaction. The
pretreated material was then vacuum filtered using Whatman®
no 1 filter paper to separate the solids from liquor (suspension).
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Same five washing steps at room temperature described before
were performed in the LHW-pretreated solids. The liquor from
pretreatment and supernatants of each washing were stored at
4°C protected from light until analysis of total phenolics.

Enzymatic Hydrolysis
Hydrolysis experiments were conducted using 10% (w/v) of
pretreated SCB as a substrate. SCB was suspended in 0.05M
sodium citrate buffer at pH 5.0. The reaction was conducted in an
incubator at 50°C and 150 rpm, using a 4:1 mixture of Cellic
CTec2 and HTec2 (180 FPUmL−1 FPase activity; 13,213 UI mL−1

xylanase activity; 7,240 UI mL−1 β-glucosidase activity) diluted
into two enzyme loadings. Loadings were calculated based on the
chemical characterization of samples, that is, 9.1 and 17.5 mg
protein g−1of glucan. At 96 h of hydrolysis, aliquots from
supernatant were taken every 24 h in duplicate and analyzed
for soluble carbohydrates, reported here as an average with an
indicated standard deviation. The final volume of hydrolyzate
from each replicate unit was recovered after the separation from
solid residues by centrifugation (12,096 × g, 10 min), combined in
a single unit, corresponding to individual pretreatments, and kept
frozen until the fermentative step.

Alcoholic Fermentation
The fermentability of selected hydrolyzate obtained after the
hydrolysis of double-pretreated SCB was tested using two
Saccharomyces cerevisiae strains. The first (JP1) is an industrial
strain selected by its roughness and adaptability to perform
alcoholic fermentation under adverse conditions in the first-
generation production of ethanol, which is also already in use
in Brazilian mills. The second yeast, Y150, is a strain obtained by
the adaptative laboratory evolution method following similar
protocol described by Vasconcellos et al. (2019). Yeast
reactivation was made by pre-cultivation of freeze-stored cells
in the YEPD medium (10 g L−1 yeast extract; 10 g L−1 peptone;
20 g.L−1 glucose) in an incubator at 28°C, 200 rpm, and 24 h
prior use.

Three hydrolyzates were obtained from each pretreated
material (ozonolysis; LHW; and combined ozonolysis + LHW,
respectively) as substrates for alcoholic fermentations.
Substrates were sterilized by vacuum filtering through a
0.22-µm membrane, and 0.5 g fresh cells was added per
liter as inoculum. The inoculum standardization was
carried out through measuring the cell density of
precultured suspension in a colorimeter, followed by two
steps of centrifugation (12,096 × g, 10 min), washing and
resuspension in sterilized DI water. The washed cells were
inoculated in 40 ml of each hydrolyzate substrate. The
fermentation experiments were carried out in an incubator
at 32°C and 150 rpm in duplicate at a semi-anaerobic
condition. The concentration of cells, ethanol production,
and glucose consumption were systematically monitored by
sampling at 6, 12, 20, 24, 30, and 40 h of fermentation,
respectively. Glucose to ethanol conversion yields (%) were
calculated at the endpoint of each fermentation experiment by
assuming: [(g.L−1 of ethanol produced)/(g.L−1 of initial glucose
* 0.511)] * 100.

Analytical Methods
The chemical composition of SCB was determined according to
LAP-010—determination of extractives in biomass (Sluiter et al.,
2012) and the LAP for the determination of structural
carbohydrates and lignin in biomass (Sluiter et al., 2012).
Glucose and ethanol concentrations were measured by HPLC
analysis as described previously (Cao et al., 2013) using an
Aminex HPX-87H ion exchange column (300 × 7.8 mm, Bio-
Rad Laboratories Inc., Hercules, CA). The column was connected
with a Milton Roy mini pump (Milton Roy Co., Ivyland, PA), a
WatersTM 717 plus autosampler, and a WatersTM 2,414 refractive
index detector (Waters Corp., Milford, MA). The procedure for
total phenolic analyses was adapted from the study by Singleton
et al. (1999) to a micro-scale analysis using Folin–Ciocalteau
reagent.

The results were expressed in milligrams per liter (mg L−1) of
gallic acid equivalent (GAE). The protein content of commercial
enzymes used in hydrolysis assays was determined using the
Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford, IL).
Filter paper activity was measured according to Mandels et al.
(1976). Cell concentration was estimated by optical density in a
spectrophotometer at 630 nm, using 1:10 dilution with sterile DI
water, in comparison to the dry weight curve of cellular growth,
previously determined to JP1 strain.

Infrared spectroscopy data (FTIR-ATR) were collected using a
Perkin Elmer FTIR Spectrum Two. Both FTIR-ATR and powder
X-ray diffraction (XRD) patterns of SCB were obtained on a
Model 300miniFlex Rigaku® diffractometer according to Perrone
et al. (2016). The crystallinity index was calculated by the method
proposed by Segal et al. (1959).

Scanning electron microscopy (SEM) was carried out using a
FEI Quanta 200 scanning electron microscope (FEI Company,
Eindhoven, Netherlands) with an accelerating voltage of 12.5 kV.
Sample preparation comprised 1) mixing bagasse in 2.5% (v/v)
glutaraldehyde in 0.1 M phosphate buffer (pH 7.3) for 48 h at
room temperature; and 2) washing the sample in distilled water
and after fixing it in 1% (v/v) osmium tetroxide diluted in distilled
water for 30 min at room temperature. Bagasse was dehydrated
by a series of ethanol washes and then critical point-dried with
CO2, and sputter-coated with gold (Bal-Tec SCD 050) (Perrone
et al., 2016).

RESULTS AND DISCUSSION

Chemical Characterization of Pretreated
Sugarcane Bagasse
Three different samples of pretreated SCB were obtained from
individual ozonolysis and LHW pretreatments or a combination.
Chemical characterization shows that ozonolysis and LHW have
distinct effects on SCB, as summarized in Table 1. Ozone acted
mostly on delignification, causing about 37% reduction of acid
insoluble lignin (AIL) and partially decreasing the hemicellulose
portion (components determined as xylose, arabinose, and acetyl
groups) as a secondary effect (20% solubilization). Delignification
by ozonolysis was relevant to overcome the recalcitrant character
of lignin through its separation and the breakdown of lignin
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(Santos et al., 2019; Ázar et al., 2019). It also generated a rich
fraction of phenolics and other compounds with potential use in
green chemistry bioconversions, while also removing their
enzyme and the microbial potential inhibitory effect in
subsequent steps of enzyme hydrolysis and microbial
fermentation (Kim et al., 2011, 2016; Ximenes et al., 2011;
Michelin et al., 2016). Although the individual LHW
pretreatment reduced the hemicellulose content (22% of
solubilization), it had little effect on lignin (about 5%
reduction of AIL).

The double-pretreated SCB (ozonolysis and LHW combined)
generated the highest cellulose (80.5%) and the lowest
hemicellulose (4.1%) contents among all samples, indicating
an intensive solubilization (up to 80%) of hemicellulose into

liquor and reaching a maximal delignification rate (45%
reduction of AIL). In that sense, even taking into
consideration all the pretreatments increased the glucan
availability, its availability in the ozone + LHW-pretreated
biomass was 75, 50, and 32% higher than that of the initial
content (comparing only untreated LHW and ozone-pretreated
SCB), respectively. The action on the lignin barrier observed in
double-pretreated SCB helps to reduce enzyme adsorption on
lignin and increase the accessibility of cellulose to enzyme
(Zanchetta et al., 2018), which can also lead to a reduction of
enzyme loading and cost.

We observed an increase of the crystallinity index (CrI)
according to the intensity of pretreatments in the following
order: untreated < ozonolysis < LHW < Oz + LHW
(Figure 1). We observed the highest CrI (73.1%) in the most
intensive pretreatment (combined ozonolysis + LHW), possibly
associated with lignin and hemicellulose degradation. In
agreement with that reported in the literature (Gabhane et al.,

TABLE 1 | Compositional analysis of sugarcane bagasse generated by different pretreatment approaches and the untreated sample. Solid composition is presented as dry
weight on a free extractive basis (%).

Component Composition of sugarcane bagasse (%)

Untreated Liquid
hot water pretreated

Ozonolysis pretreated Ozonolysis + liquid
hot water pretreated

Cellulose 45.9 ± 0.10 53.6 ± 0.49 61.2 ± 1.64 80.5 ± 1.44
Hemicellulose 24.5 19.1 19.5 4.1
Xylan 20.2 ± 0.59 17.5 ± 0.17 18.6 ± 0.53 4.1 ± 0.11
Arabinose 2.6 ± 0.11 1.5 ± 0.07 1.0 ± 0.05 0.0
Acetyl group 1.7 ± 0.15 0.0 0.0 0.0
Lignin 26.9 25.1 18.0 14.1
Acid-insoluble lignin 22.9 ± 0.36 21.8 ± 0.04 14.3 ± 0.30 12.5 ± 0.27
Acid-soluble lignin 4.0 ± 0.29 3.3 ± 0.01 3.7 ± 0.08 1.7 ± 0.03
Ashes 0.5 ± 0.12 0.9 ± 0.06 1.1 ± 0.32 1.3 ± 0.27
Total 97.8 98.7 99.8 100.1

FIGURE 1 | XRD patterns and the corresponding results of crystallinity
index (Icr) for in nature sugarcane bagasse, ozonolysis, LHW, andozonolysis + LHW
pretreatments.

FIGURE 2 | FTIR-ATR spectra in natural and ozonolysis + LHW
sugarcane bagasse samples.
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2015; Pereira et al., 2016; Perrone et al., 2016), it seems that the
increase in CrI observed here is more a function of removal of
non-crystalline components from the biomass.

FTIR Analysis
Infrared spectrometry (FTIR-ATR) was used to analyze changes
in functional groups that compose the fibers of SCB after

FIGURE 3 | Scanning electron microscopy of untreated bagasse (A,B), ozone-treated bagasse (C,D), LHW-treated bagasse (E,F), and combined pretreatment
ozone + LHW (G,H).
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pretreatment, indicating possible targets of reaction in the
material (Figure 2). A pronounced reduction in the intensity
of infrared absorption bands found at 1,732 cm−1 and 1,237 cm−1

in the pretreated sample confirmed the strong removal of
hemicellulose (Liu et al., 2007), which is also detected by
compositional characterization analysis (Table 1). The increase
of the cellulose content is also shown by FTIR-ATR, especially by
the increase of infrared absorption bands at 1,427 cm−1 and
1,370 cm−1 (assigned to the crystalline cellulose structure), and
amorphous cellulose at 898 cm−1 (Pereira et al., 2016).

A decrease in the lignin content in the double-pretreated
sample was observed based on the presence of bands related
to functional groups or specific lignin linkages, such as aromatic
rings at 1,600 cm−1 and 1,510 cm−1 (Pereira et al., 2016), and
carbonyl groups conjugated with aromatic rings at 1,633 cm−1

(Zhou et al., 2016). Also, the band at 833 cm−1 is associated to [C-
H] vibrations out of a plane in p-hydroxyphenyl units (Hoareau
et al., 2004). The presence of these bands indicates a clear decrease
of the intensities in the spectra corresponding to the combined
pretreatments, which is again in agreement with the large extent
of lignin removal (compositional characterization, Table 1).

Ultrastructural Changes in Pretreated
Sugarcane Bagasse
Scanning electron microscopy (SEM) was performed to analyze
possible tissue damage and ultrastructural changes on the bagasse
surface after each pretreatment (ozone, LHW, and ozone + LHW)
in comparison to the untreated sample (Figures 3A,B). The
initial smooth and intact structure of fibers was strongly
affected by both ozone and hot water pretreatments (Figures
3C–F). Cell walls were ruptured by the ozone gas, generating
opened cells with increased porosity and surface area (Figures
3C,D). Similar effects were observed with hot water. A cracked
surface characterized by holes formed in the cell wall is noted; the
holes may be caused by the high pressure experienced during
LHW processing (Figures 3E,F).

A disorganized structure with greater exposure of fibers was
also present in SCB pretreated with SO2 and CO2 steam (Corrales
et al., 2012). The presence of globular structures on the surface of
samples exposed to high temperature is probably related to the
formation and accumulation of globular lignin at 190°C. It is
known that lignin softens and agglomerates at a relatively low
temperature (<200°C) (Hamdan et al., 2000; Zhang et al., 2015).
All these observations also apply to the double-pretreated sample,
which showed a random breaking along the fibers, and a total
collapse of the cellular structure due to the combined process
(Figures 3G,H). These morphological changes of SCB obtained
after combined pretreatment enhance the accessibility of
cellulose-degrading enzymes and facilitate the hydrolysis of
cellulose.

Effect of Pretreatments on Phenolic
Compound Releasing
When LHW pretreatment alone was performed, 1,462 mg L−1

of phenolics were solubilized through liquor, and 857 mg L−1

remained on solids, reaching a total of 2,320 mg L−1 of
released phenolics. The lowest concentration was observed
when ozonolysis was performed as a single pretreatment.
Here, 936 mg L−1 of total phenolic compounds were
released. Although delignification is stronger in ozonolysis
than in LHW pretreatment, as previously demonstrated by
biomass compositional and FTIR-ART analysis, the lower
release of phenols may be explained by the conversion of
acid-insoluble lignin (AIL) preferentially into acids with low
molecular weight, such as formic, acetic, oxalic, and
carboxylic acids (Travaini et al., 2016). This hypothesis is
further supported by the intense acidification of the ozonized
solids, which regularly had a pH near to 2.0 after ozonolysis.
The highest concentration of total phenolics released was
almost 3,000 mg.L−1 when combining ozonolysis and LHW
pretreatments, with 2,300 mg.L−1 solubilized in the liquor and
681 mg.L−1 remaining in solids. Thus, the use of this
combined pretreatment approach resulted in a maximal
release of phenolic compounds.

Effect of Phenolic Compound Removal on
96-h Enzymatic Hydrolysis
The low molecular weight phenolic compounds derived from
lignin depolymerization had a negative impact on enzyme
performance, possibly due to both non-productive adsorption
and inhibitory effects during saccharification and microbial
fermentation (Ximenes et al., 2010; Nakagame et al., 2011;
Ximenes et al., 2011; Jönsson and Martín, 2016). Therefore,
phenolic compounds must be removed from pretreated solids
prior to enzymatic hydrolysis to enhance the yields of both the
saccharification and the fermentation steps (Kim et al., 2013;
Xiros and Olsson, 2014).

Sequential washing of the material at room temperature (see
Material and Methods section 2.2.1, section 2.2.2) significantly
reduced phenolics embedded in the pretreated fibers (Figure 3).
A maximum of 33 g.L−1 of glucose was reached in 24 h during
hydrolysis of washed ozone-pretreated SCB (Figure 4A), which
represented a conversion of about 75% of cellulose into glucose
vs. 44% for the enzymatic hydrolysis of the non-washed
pretreated sample. Similarly, high cellulose conversion was
observed for washed LHW-pretreated SCB samples
(Figure 4B), although lower yields were obtained than washed
ozone-pretreated samples (compare Figures 4A,B). This suggests
better accessibility of substrate to enzyme hydrolysis in the ozone-
pretreated sample and the presence of more enzyme inhibitors,
including remaining phenolic compounds in the LHW-
pretreated samples, or both.

Kinetics of Enzymatic Hydrolysis of
Pretreated Sugarcane Bagasse
A kinetic study was performed using reduced enzyme loading
(9 mg of total protein per gram of glucan) for hydrolysis of
untreated and pretreated SCB under different conditions for 96 h.
The double pretreated SCB was also tested under non- and
washed conditions.
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The kinetics of hydrolysis of different SCB samples showed
that the yield increase was consistent with the increase of the
cellulose content after pretreatment and washes, relative to the
decline of hemicellulose removal (in LWH-pretreated bagasse),

or lignin reduction (in ozone-pretreated bagasse), or associated to
both effects (in combined pretreatments). For the combined
pretreatments, 43.0 g L−1 of glucose was generated after
enzymatic hydrolysis of double-pretreated SCB, corresponding

FIGURE 4 | Concentration of phenolic compounds (bars) and cellulose conversion yield (lines) in enzymatic hydrolysis (17.5 mg protein × g−1 glucan; 10% total
solids loading, 96 h) related to sequential room temperature washes. (A) ozone-pretreated sugarcane bagasse; (B) LHW-pretreated sugarcane bagasse.

FIGURE 5 | Kinetics of yeasts JP1 and Y150 in alcoholic fermentation of sugarcane bagasse hydrolysate pretreated by individual and combined Ozonolysis and
LHW approaches.
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to 59% of conversion from initial glucan vs. 20, 47, 37, and 10%
for untreated, ozone, LHW, and double pretreated samples,
respectively. The hydrolyzate from double pretreated samples
was tested by fermentation experiments that are reported and
discussed in the next section. A strong inhibitory effect of
pretreatment by-products was observed over cellulolytic and
hemicellulolytic enzymes when the hydrolysis was performed
in the presence of liquor derived from combined pretreatment,
reducing cellulose conversion to about 10%, probably due to
potential enzyme inhibitors mentioned before (Ximenes et al.,
2010, 2011; Kim et al., 2011; Gabhane et al., 2015).

Alcoholic Fermentation of Hydrolyzate
JP1 and Y150 yeast strains were able to ferment the selected
hydrolyzate without nutrient supplementation, with all glucose
available exhausted after 42 h (Figure 5), while xylose
concentration remained constant. This latter result was
expected since these yeast strains cannot ferment xylose to
ethanol. The final yield of glucose to ethanol was similar for
both strains, 87% for JP1 vs. 92% for Y150 (Figure 5). However,
Y150 strain was faster on the fermentation (conversion yield of
67% for Y150 after 24 h vs. 43% for JP1), indicating some possible
adaptation advantage to the microbial inhibitory compounds still
present in the hydrolyzate, including phenolics (Larsson et al.,
2000; Palmqvist and Hahn-Hägerdal, 2000a, 2000b). Since the
cellular density in all replicates of fermentations was similar, Y150
cells were found to be more efficient on ethanol production.

CONCLUSIONS

The effects of ozonolysis and LHW sugarcane bagasse
pretreatment were observed in individual and combined
pretreatment processes that resulted in a new approach for
achieving a high amount of cellulose for hydrolysis purposes
while generating an acid liquor fraction rich in sugars and
phenolic compounds. The double pretreatment removed
enzyme and microbial inhibitors, and generated water-soluble
products that can be explored in green chemistry bioconversions
processes. The combined ozonolysis and LHW pretreatment also
generated, after enzyme hydrolysis, a hydrolyzate rapidly
fermented by S. cerevisiae without the need for detoxification
steps or nutrient supplementation. The maximal conversion yield
by strain Y150 in fermenting glucose to ethanol was 92% in 42 h.
This approach and results obtained are in agreement with a
proposed model of the lignocellulosic biorefinery (Silva et al.,

2018), in which sugars from cellulose and hemicellulose are used
to generate biofuels and bioproducts, while lignin components
are utilized in the synthesis of other bioproducts and act as an
alternative heat and energy source.
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Decontamination of Mixed Paper and
Plastic Municipal Solid Waste
Increases Low and High Temperature
Conversion Yields
Rebecca M. Brown1*, Amber N. Hoover2, Jordan L. Klinger2, Bradley D. Wahlen1,
Damon Hartley3, Hyeonseok Lee4 and Vicki S. Thompson1

1Biological Processing, Idaho National Laboratory, Idaho Falls, ID, United States, 2Biomass Characterization, Idaho National
Laboratory, Idaho Falls, ID, United States, 3Operations Research and Analysis, Idaho National Laboratory, Idaho Falls, ID,
United States, 4Chemical Separations, Idaho National Laboratory, Idaho Falls, ID, United States

With the implementation of China’s Green Fence Policy and the following National Sword
Policy, there is a need to divert previously accepted waste materials away from the landfill.
Mixed plastic and paper wastes that are too contaminated to be economically recycled can
be used for conversion into fuels and products. The effect of common contaminants
present in waste streams must be determined to make municipal solid waste (MSW) a
viable alternative to agricultural feedstocks for conversion. In this study, MSWwas sourced
from a dual stream materials recovery facility (MRF) in Emmet County, Michigan and
characterized via mass balance. The most common contaminants in mixed paper and
plastic were quantified and targeted for decontamination when mixed paper was explored
for low temperature conversion pathways and plastics for high temperature conversion
pathways. Ink, stickies, and plastic contamination were sorted out of the mixed paper
stream and did not have an impact on sugar yields during enzymatic hydrolysis (EH).
Although no improvement in yield was found, it was noted that copy paper within themixed
paper stream had an elevated pH and higher concentration of fermentation inhibitors,
suggesting that intrinsic properties of some paper types may not be ideal for EH and
fermentation conversion. Dilute alkaline pretreatment and mechanical refining of mixed
paper increased the EH yield of mixed paper, suggesting this previously established
process could be used as a decontamination method. “Dirt” and particulates were washed
frommixed plastic using either an aqueous detergent or a non-aqueous chemical washing
method. Liquid oil yields were increased during microwave assisted fast pyrolysis. All
decontamination techniques met the cost target of less than $30/dry ton with plastic
decontamination ranging from $18.16 to $24.81/dry ton. Because dilute alkaline pre-
treatment and mechanical refining is considered part of the conversion process, the
decontamination cost during feedstock preprocessing was considered $0/dry ton.
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INTRODUCTION

The waste and recycling industry in the United States has
drastically changed since China implemented the Green Fence
and National Sword policies. Due to these policy changes,
recycling programs in many areas were scaled back or
completely discontinued (Beitsch, 2019). The waste materials
that were previously imported into China are now
accumulating at materials recovery facilities (MRFs) in the US
and are often too contaminated or expensive to recycle. Because
these materials represent a zero or negative value, they are
eventually landfilled. The US Environmental Protection
Agency (EPA) estimated that about 27 million tons of plastic
and 17 million tons of paper were landfilled in the US in 2018
(EPA, 2018). These MSW fractions could potentially be diverted
from the landfill and used as feedstocks for conversion into value-
added fuels and products via low temperature and high
temperature pathways.

Because MSWpaper closely resembles lignocellulosic biomass,
low temperature conversion processes can be used to screen the
performance of these materials. Enzymatic hydrolysis is a low
temperature conversion method traditionally used for
agricultural biomass, such as corn stover, that makes their
sugars available for fermentation into fuels and products. Due
to the recalcitrance of many agricultural feedstock types, a
pretreatment step is often needed to remove lignin and make
cellulose more accessible to the enzymes used in enzymatic
hydrolysis (Avila-Lara et al., 2015).

MSW paper has been found to be an economically viable
feedstock for biochemical conversion (Wang et al., 2013).
Previous studies have shown that blending mixed paper waste
with corn stover can lower costs while maintaining sugar yield in
ionic liquid pretreatment and enzymatic hydrolysis (Sun et al.,
2015). However, more recent studies have shown that MSW
paper had lower enzymatic hydrolysis yields compared to corn
stover and corn stover/paper blends (Li et al., 2017; Thompson
et al., 2019). This could be indicative of some type of inhibition,
likely due to the presence of contaminants.

Alternately, MSW plastics are polymers of chemical building
blocks such as ethylene and propylene and are rich in carbon-to-
carbon bonds. These bonds are difficult to break biologically, and
the monomer units are not suitable for fermentation. Pyrolysis is
a high temperature process for converting biomass to fuels and
would be more suitable for plastics. Fast pyrolysis is a high
temperature degradation process that occurs between
450–700°C in the absence of oxygen. During this process,
biomass is converted to liquid bio-oil, solid char, and gas. Bio-
oil produced from this process can be further refined into fuels or
chemicals (Zhang et al., 2019). The chemical composition of the
bio-oil varies widely depending on reaction conditions and
feedstock type. In addition, gaseous products rich in
hydrocarbons can be used for energy recovery (Sipra et al., 2018).

There are many factors that can render MSW plastic
unsuitable for traditional mechanical recycling. MSW plastic is
a heterogenous mixture of resin types that are often contaminated
with exogenous materials such as food residue, chemicals, metal,
and glass (Qureshi et al., 2020). Heavily contaminated plastic

waste cannot be recycled and is usually landfilled or incinerated.
Degradation caused by factors like UV radiation and temperature
conditions can also make plastic unsuitable for recycling (Shah
et al., 2008). Pyrolysis can tolerate high levels of contamination
and can convert degraded plastic products to fuels and chemicals.
Although pyrolysis can tolerate a wider array of feedstock types
and contaminants, it is possible that these contaminants can
negatively affect conversion yields. For example, MSW may
contain large amounts of alkali metals, which can cause
cracking reactions that result in a higher yield of gaseous
products and a lower yield of liquid oil products (Wang et al.,
2015; Alcazar-Ruiz et al., 2021).

This is the first study to investigate the effect of
decontamination methods to increase conversion yields of
MSW. Low and high temperature conversion methods were
used to assess the impact of common contaminants on the
conversion of mixed MSW paper and plastic, respectively.
Decontamination strategies for the paper and plastic streams
were developed and analyzed using enzymatic hydrolysis and
microwave assisted fast pyrolysis. The added cost of
decontamination to preprocessing of MSW is analyzed and
compared to corn stover.

MATERIALS AND METHODS

Sampling and Characterization
Municipal solid waste (MSW) samples were sourced from a
materials recovery facility (MRF) in Emmet County, Michigan
through Resource Recycling Systems (RRS). The samples were
non-recyclable residuals that were sorted from dual stream
recycling collection. Mixed paper and mixed plastic waste
streams were received at Idaho National Laboratory in Idaho
Falls, Idaho and refrigerated at 4°C for future experimentation.
Approximately 21.7 kg of mixed paper and 23.5 kg of mixed

FIGURE 1 | Flow diagram depicting MSW sample preparation and
experimentation.
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plastic was received. The paper and plastic MSW streams were
mixed, coned, and quartered separately on a large plastic tarp.
Two quadrants were sampled for characterization and
experimentation (8.5 kg mixed paper and 12.2 kg mixed
plastic). The remaining two quadrants were reserved for future
experimental needs (Figure 1). The samples were air dried at
room temperature for 24 h in a fume hood prior to sorting. Mass
balance characterization of the samples was performed by first
sorting into distinct product types (Figure 2). Paper samples were
sorted into one of six categories: newspaper/office paper, food
containers, cardboard, glossy/coated, other paper, and non-paper
contaminants (e.g., glass, textiles, aluminum cans). Plastic
samples were also sorted into one of six categories: food
containers, bottles, durable goods, films, other plastic, and
non-plastic contaminants (e.g., glass, aluminum cans, paper
products). Plastic waste was further sorted by plastic type
using the plastic identification number printed on the product.
If no plastic identification number was visible or available, the
plastic was sorted into a category based on similar product types.
The mass of each plastic type was measured on a standard
laboratory balance and used to calculate the mass balance.

During sorting, common contaminants were visually
identified in each waste stream for further quantification.
Common contaminants in paper and plastic waste fractions
were quantified by counting the pieces of waste that contained
contamination. Paper contaminants were sorted into the
following categories: glossy coatings, food residue, ink, stickies
(adhesives or glues), and staples. Plastic contaminants were
sorted into the following categories: food residue, “dirt” and
labels/thin films. “Dirt” contamination was defined as a
coating of particulate that is likely a complex mix of residual
container contents (e.g., food, liquids, chemicals) that leaked and
had contact transfer from more heavily contaminated materials.
Pieces of waste that contained multiple contaminants

simultaneously were quantified separately from waste that
contained only a single contamination type.

Size Reduction
Mixed paper and plastic samples were initially shredded to 0.25
inches using a TaskMaster TM8500 industrial shredder
(Franklin-Miller, Livingston, NJ, United States). Shredded
paper samples were split using a custom rotary splitter and
size reduced using a Model 4 Wiley knife mill (Thomas
Scientific, Swedesboro, NJ, United States) to pass through a
6 mm screen. The 6 mm paper samples were used for dilute
alkaline pretreatment and mechanical refining followed by
enzymatic hydrolysis. A portion of the 6 mm samples were re-
fed through the Wiley mill to pass through a 2 mm screen. The
2 mm paper samples were fed directly to enzymatic hydrolysis
without further pretreatment. The shredded plastic samples were
size reduced to pass through a 2 mm screen using an M24M-30e
industrial crumbler rotary shear (Forest Concepts, Auburn, WA,
United States). Oversized particles were collected and
continuously re-fed through the crumbler until they were able
to pass through a 2 mm screen.

Plastic, Ink, and Stickies Decontamination
The impact of plastic contamination within the mixed paper
stream was investigated by sorting. All non-paper materials were
removed from the mixed paper waste prior to size reduction.
Plastic contaminants were size reduced separately from paper
samples. Based on the mass balance characterization results
(Section 3.1), 1.42 wt% plastic contaminants were added back
to a portion of the size reduced paper.

The impact of ink contamination was investigated using two
common paper types found within the mixed paper samples:
newspaper and copy paper. Samples without ink contamination
were produced by manually cutting out un-printed regions of

FIGURE 2 | Representative images of MSW during sampling and sorting. Plastic as received (A) and coned and quartered (B). Plastic was sorted into non-plastic
contaminants (C), films and baggies (D), food containers (E), bottles (F), other (G), and durable goods (H).
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MSW copy paper and newspaper. Samples with ink were
produced using the same paper sources that were visibly
contaminated with ink. As a control, pristine paper samples
were produced from brand new copy paper and newspaper
that had never been printed on.

The impact of stickies contamination was investigated with
cardboard food containers and packaging materials (cereal boxes,
six-pack carriers, etc.). Samples with stickies were created by
manually cutting out portions of cardboard packaging that
contained visible adhesives or glue. Samples without stickies
were produced using the same cardboard that did not have
visible adhesives or glue. Pristine cardboard samples were
produced using brand new cardboard boxes that did not
contain visible stickies contamination.

Dilute Alkaline Pre-treatment
30 g of MSW paper samples were dilute alkaline pre-treated in
triplicate with 7% (w/w) NaOH at 8% solids loading. The NaOH
was diluted with water in a 1-L polypropylene (PP) flask before
being inoculated with paper samples. The flasks were incubated at
85°C in a shaking water bath rotating at 100 rpm for 2 h and were
manually mixed every 15 min. The flasks were removed from the
water bath and allowed to cool at room temperature for 1 h. After
cooling, the samples were filtered through a PP fabric filter to
remove particles down to 100 microns (McMaster-Carr,
Elmhurst, IL, United States) with 4-L vacuum flasks. The
paper samples were removed from the PP filter and rinsed
twice with 1 L of water for 15 min. The rinsed paper was
filtered a second time using the same procedure mentioned
above. The pre-treated paper was recovered, and the pH of the
material was estimated using pH strips. Replicates were combined
into a single composite sample for subsequent analysis. The pre-
treated material was dried at 40°C overnight to determine the
moisture content. The dilute alkaline pre-treatment liquor was
reserved, and sugar concentrations removed during pre-
treatment were determined with ion chromatography (IC).
Sugars lost during pre-treatment were below the IC limit of
detection and were therefore not accounted for in yield
calculations. Dilute alkaline pre-treated paper samples were
mechanically refined using a Laboratory Beater PFI Mill
(Techlab Systems, Itasca, IL, United States) at 4,000
revolutions prior to enzyme hydrolysis.

Low Temperature Conversion
The chemical composition of untreated MSW was measured
according to National Renewable Energy Laboratory’s
(NREL) Laboratory Analytical Procedure for standard
biomass analysis (Sluiter et al., 2012). The conversion
performance of mixed paper samples was screened using
the measurement of sugar yield in enzymatic hydrolysis
either with or without dilute alkaline pre-treatment and
PFI milling. The percent solids loading of each reaction
was decreased to 6% to enable thorough mixing and equal
distribution of sodium azide. Enzymatic hydrolysis was
performed in triplicate according to the NREL procedure
(Selig et al., 2008) using Cellic CTec2 (Novozymes,
Franklinton, NC, United States) loaded at 40 mg/g dry
weight of biomass and Cellic HTec2 (Novozymes,
Franklinton, NC, United States) loaded at 4 mg/g dry
weight of biomass. The reactions were incubated at 50°C
for 5 days. The hydrolysates were filtered through a
0.22 µm filter plate (MilliporeSigma, Burlington, MA,
United States) and sugar concentrations were measured via
high pressure liquid chromatography (HPLC). Percent yield
achieved during enzymatic hydrolysis was calculated with the
following equation:

% yield � sugar solubilized during EH

sugar present in untreatedMSW
× 100

The presence of fermentation inhibitors was investigated with
newspaper, copy paper, and cardboard hydrolysates. HPLC was
performed to determine the concentration of acetic acid, levulinic
acid, furfural, and 5-hydroxymethylfurfural (HMF).

Detergent and Chemical Washing
10 g of size reduced plastic particles (2 mm) were loaded into a
250 ml Erlenmeyer flask containing 100 ml water. A few drops of
dawn dish soap were added, and the flask was placed into a 40°C
shaking incubator rotating at 150 rpm for 1 h. The liquid was
removed by gravity filtration through filter paper (Whatman,
Florham Park, NJ, United States). The washed plastic was rinsed
twice by submerging the particles in fresh water and incubating in
a 40°C shaking incubator for 1 h. The liquid again was removed
by gravity filtration through filter paper. Rinsed plastic was dried
overnight in a 40°C oven.

FIGURE 3 | Process flows for feedstock pre-processing unit operations. Paper size reduction (A), plastic size reduction and detergent washing-drying (B), and
plastic DME-based washing (C).
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A laboratory-scale condensable solvent system has been
developed based on a MiniMeP hydrocarbon extraction
platform (ExtractionTek Solutions, Wheat Ridge, CO,
United States) for use with dimethyl ether (DME) as the

working solvent. To prevent seal and gasket failures, the
system was modified in accordance with ASTM specification
D7901. The DME within this system operates in a closed loop,
with liquified DME solvent returned to the operating tank after
extraction and decontamination. The solvent transfers through
the chilled injection coil to the extraction vessel, where the solvent
diffuses into the MSW material. Liquified DME, water, and
extracted contaminants is then transferred to the collection
vessel and expansion vessel, where heat is supplied to drive
the vaporization of solvent, permitting separation and recovery
of DME from contaminants. Vaporized solvent is returned to the
solvent tank through a recovery pump and discharge coil. This
decontamination process operates under 85 psi, and temperature
range between min. −4°C (at injection coil) and max. 35°C (at
expansion vessel). Approximately 70 g of mixed plastic was
washed with DME inside a nylon bag by recirculation for 2 h.

High Temperature Conversion
The conversion performance of mixed plastic samples was screened
using microwave assisted fast pyrolysis. One-gram pellets of washed
and unwashed plastic were made using a benchtop manual hydraulic
press (Carver, Wabash, IN, United States). The plastic was weighed

FIGURE 4 | Mass balance of mixed paper product type (A), mixed plastic product type (B), and plastic type (C).

TABLE 1 | Quantification of mixed paper intrinsic contaminants.

Category Contaminant Quantity
(pieces of MSW)

Single contaminant Ink 243
Glossy 24
Stickies 13
Other 3
Food 1
Staples 0

Multiple contaminants Ink + stickies 24
Glossy + stickies 21
Ink + staples 13
Glossy + staples 3
Glossy + food 1
Glossy + food + stickies 1

Total 347
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using a laboratory scale and loaded into a pellet die (approximately
16mm square with 4mm rounded corners). The die and plastic
samples were heated together in an oven at 150°C for 15min and
compressed at 4,000 psi (20,000 lb-f). Two pellets (~2 g) were loaded
into a pre-weighed quartz tube (26mm diameter, 1 m length)
assembly and loaded into a microwave assisted pyrolysis
instrument that was previously described (Klinger et al., 2015;
Klinger et al., 2018). The oxygen was purged from the quartz tube
using nitrogen gas. A portion of the quartz tube was packed with dry
ice snow to condense vapor to liquid oil. The samples were heated to
approximately 500°C and allowed to devolatilize completely. The
pyrolysis gas yield was measured by a digital gas flow meter (Omega
Engineering, Norwalk, CT, United States) and gas analyzer (Nova
Analytical Systems,Hamilton, ON,Canada) equippedwith sensors to
detect O2, CO, CO2, CH4, and total hydrocarbons. The tube assembly
was removed from the instrument, allowed to cool, and weighed. The
remaining char present in the quartz tube was removed and weighed
using a laboratory balance. The percent yield of gas, char, and liquid
oil were calculated gravimetrically.

Unwashed, detergent washed, and DME washed samples were
milled using a Retsch ZM200 (Haan, Germany) to pass a 0.2 mm
screen and then sent to Huffman Hazen Laboratories (Golden,

CO, United States) for analysis. Samples were dried at 60°C in a
forced air oven overnight. Total ash was determined by holding
the sample at 750°C in air for 8 h. Inorganic element analysis was
completed following ASTMs D3682 and D6349.

Techno-Economic Assessment
Because corn stover can potentially be available at a feedstock cost
as low as $30/ton, we targeted this price as an acceptable cost for
decontamination to make the material cost competitive with corn
stover (Langholtz et al., 2016). A techno-economic assessment
(TEA) was conducted to determine the costs of decontamination
methods. The TEA examined the complete pre-processing for
size reduction and decontamination of non-recyclable plastic and
paper residuals from an MRF. A total of four scenarios were
evaluated, including: 1) size reduction of paper without old
corrugated cardboard (OCC); 2) size reduction of paper
including OCC; 3) decontamination of plastic using detergent
washing and drying; and 4) decontamination of plastic using the
DME process. For each scenario, the total estimated cost included
both fixed and operational costs. Fixed costs, that include capital
recovery, insurance, and taxes, were estimated following the
guidelines published in Turhollow et al. (2009). Operational
estimated costs include energy and labor costs to operate
equipment.

Figure 3A presents the process flow designed for the size
reduction process to reduce particle size of recycled paper to
6 mm. RRS provided the mixed paper tonnage for an
appropriately sized MRF (34,125 dry tons/year). It was
assumed that processed materials would only include mixed
paper recovered from an MRF and would be size reduced and
decontaminated on-site prior to shipping to a conversion facility.
For both the shredding and knife milling process, it was assumed
that there was a dry matter loss of 1%. For scenario four, the
process flow and assumptions are identical to scenario three.

TABLE 2 | Quantification of mixed plastic contaminants.

Category Contaminant Quantity
(pieces of MSW)

Single contaminant Dirt 589
Multiple contaminants Dirt + labels 286

Dirt + food + labels 10
Dirt + food 6

Total 891

FIGURE 5 | Compositional analysis of MSW paper types. The balance of composition (not shown) consists of glucan, xylan, lignin, extractives, and minor sugars
(arabinan, mannan, and galactan).
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However, in this scenario the OCC fraction was included in the
infeed.

The design of the system for plastic size reduction and
decontamination is presented in Figure 3B. This system was
designed to process about 3,500 dry tons of plastic annually,
assuming 200 operation days a year and 10 h operating time per
day. The project collaborators from RRS provided tonnage of
plastics produced by a typical MRF that operates with good
economics of scale and it was assumed that each MRF would
pre-process and decontaminate its ownmaterials prior to sending
them to a conversion facility. It was assumed that plastic will be

ground by a M24M-30e industrial crumbler rotary shear (Forest
Concepts, Auburn, WA, United States) to 2 mm before going to
the decontamination step.

Figure 3C presents the design for a pre-processing system that
includes DME-based plastic decontamination with 3,500 dry tons
annual capacity. It was assumed that plastic will be ground by a
M24M-30e industrial crumbler rotary shear (Forest Concepts,
Auburn, WA, United States) to 2 mm before sending to the DME
decontamination tank. It also was assumed that about 10% of the
DME solution will be used to remove the contaminants and water
from the recycled plastic.

FIGURE 6 | Dilute alkaline pre-treatment and PFI milling increased sugar yields in enzymatic hydrolysis.

FIGURE 7 | Enzymatic hydrolysis yields were not impacted by the presence of ink and stickies. DiAlkPT, dilute alkaline pre-treated.
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RESULTS AND DISCUSSION

Mass Balance Characterization
The obtained sample of mixed paper MSW was sorted into
product types to characterize mass balance (Figure 4A). Office
paper and newspaper make upmost of the paper fraction (46.5%),
followed by cardboard (19.5%), glossy coated (16.7%), food
containers (10.4%), and other paper (5.01%).

Non-paper contaminants (plastic, metal, glass, and other)
make up 1.9% of the total mass balance of mixed paper MSW.
Plastic makes up most (76.4%) of these non-paper contaminants,
followed by metal (9.6%), glass (8.9%), and other (5.1%). The
presence of glass and metal could be a potential cause of
premature wear in process equipment or even damage
equipment causing shutdowns for repairs, so they must be
removed. The most common intrinsic contaminant present in
paper was ink (68.1%), followed by stickies (14.4%), glossy

coatings (12.2%), staples (3.9%), and food (0.7%). Mixed paper
contaminant data is summarized in Table 1.

The mixed plastic MSW sample was sorted into product types
to characterize the composition (Figure 4B). Food containers
made up most of the plastic fraction (61.3%), followed by bottles
(21.8%), other plastic (8.9%), durable goods (4.5%), and films
(0.9%). Plastic MSWwas further sorted into plastic type using the
identification number printed on the product (Figure 4C). The
most common plastic types identified were polyethylene
terephthalate (PET, 51.3%), followed by polypropylene (PP,
26.3%), other (10.6%), low-density polyethylene (LDPE, 5.0%),
polystyrene (PS, 3.3%), high-density polyethylene (HDPE, 3.3%),
and polyvinyl chloride (PVC, 0.2%).

Non plastic contaminants (paper, metal, glass, and other)
made up 2.6% of the total mass balance of mixed plastic
MSW. Paper makes up most (51.5%) of these non-plastic
contaminants, followed by metal (29.3%), glass (16.1%), and
other (3.1%). As described above, glass and metal could have
downstream impacts such as equipment wear and trace amounts
of metal catalyzing undesirable reactions during pyrolysis.

A contaminant coating labelled as “dirt” was present on 100%
of the plastic received. The next most common contaminant was
thin film labels, which were present on 33.2% of the plastic
products. The least common contaminant was food residue,
which was present on only 1.8% of the plastic products. Mixed
plastic contaminant data is summarized in Table 2.

Low Temperature Conversion
The glucan, xylan, minor sugars (arabinan, mannan, and
galactan), and ash contents of MSW paper are shown in
Figure 5. Enzymatic hydrolysis was carried out to
determine the impact of plastic contamination on sugar
yields in untreated and dilute alkaline pre-treated mixed
paper samples. It was notable that sugar yields for
untreated paper were low, which could be indicative of
hornification or surface treatments of the paper materials

FIGURE 8 | Copy paper had an elevated concentration of the fermentation inhibitor acetic acid during enzymatic hydrolysis. DiAlkPT, dilute alkaline pre-treated.

FIGURE 9 | Detergent and DME washed plastic produced an increased
yield of liquid oil during pyrolysis.
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(Fernandes Diniz et al., 2004). Glucose and xylose yields from
EH were not increased when plastic contaminants were
removed from mixed paper samples, but yields were
increased when samples were dilute alkaline pre-treated
and PFI milled.

Dilute alkaline pre-treatment is performed at a relatively low
temperature and plastics could be problematic if higher
temperatures pre-treatments were used. MSW paper without
plastic contamination showed a 31% glucose yield and a 58%
xylose yield. When that sample was dilute alkaline pre-treated
and PFI milled, the glucose and xylose yields increased to 78%
and 90%, respectively. Similarly, MSW paper with plastic
contamination showed a 26% glucose yield and a 53% xylose
yield. When that sample was dilute alkaline pre-treated and PFI
milled, the glucose yield increased to 73% and the xylose yield
increased to 86% (Figure 6). During the dilute alkaline pre-
treatment process, it was noted that ink seemed to be present in
the pre-treatment liquor and stickies coated the bottom of the

reaction flask, suggesting that the pre-treatment process could
remove these contaminants present in paper.

Enzymatic hydrolysis was used to investigate the effect of ink
contamination in newspaper and copy paper. The effect of
stickies contamination was investigated with cardboard.
Glucose and xylose yield during EH was not increased when
ink contaminated paper was removed from the newspaper and
copy paper fractions, nor when stickies contamination was
removed from the cardboard fractions. The sugar yields of
MSW newspaper, copy paper, and cardboard fractions were
compared to brand new, pristine samples that did not contain
ink and stickies. The results showed that the yield of pristine
samples was not different than paper fractions found in MSW.
Although no increase in yield was seen when ink or stickies were
removed the MSW paper, the sugar yields were increased across
all paper fractions when they were dilute alkaline pre-treated and
PFI milled (Figure 7). Interestingly, higher yields were observed
in pre-treated and PFI milled copy paper and cardboard samples
that were contaminated with ink and stickies, respectively.
Alkaline de-inking causes swelling and peeling of cellulose
fibers (Pala et al., 2004). We hypothesize that the removal of
ink and stickies observed during dilute alkaline pre-treatment
resulted in more extensive fiber damage, resulting in an increased
surface area that is vulnerable to enzyme attack. Future research
will explore this phenomenon.

It was observed that dilute alkaline pre-treated and mechanically
refined newspaper samples had a higher yield of xylose compared to
glucose, while the opposite was true for copy paper and cardboard.
Production processes used for different paper types result in differing
composition and cellulose crystallinity. For example, copy paper has a
high cellulose content and low hemicellulose content, while
newspaper has a higher hemicellulose content and lower cellulose
content (Guerfali et al., 2015). The ratio of newspaper or copy paper
within a waste paper stream will impact the corresponding yield of
glucose and xylose during EH.

FIGURE 10 | Gaseous products of pyrolysis were mainly composed of hydrocarbons. HC, hydrocarbons.

TABLE 3 | Ash analysis of unwashed, detergent washed, and DME washed MSW
plastic. Ash components are % of total ash content.

Unwashed Detergent washed DME washed

Ash % (w/w) 2.59 1.68 1.87
Al as Al2CO3% (w/w) 6.02 4.06 4.92
Ca as CaO % (w/w) 15.76 19.24 21.54
Fe as Fe2O3% (w/w) 3.24 1.85 3.06
K as K2O % (w/w) 0.72 0.25 0.44
Mg as MgO % (w/w) 4.81 6.42 3.04
Mn as MnO % (w/w) 0.03 0.02 0.03
Na as Na2O % (w/w) 8.20 5.29 6.16
P as P2O5% (w/w) 0.61 0.85 0.19
Si as SiO2% (w/w) 52.29 41.00 45.36
Ti as TiO2% (w/w) 8.45 13.15 14.97
S as SO3% (w/w) 1.04 1.49 1.33
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During initial enzymatic hydrolysis experiments with pristine
and MSW copy paper fractions, it was noted that very low sugar
yields were achieved. Further investigation revealed that
these enzymatic hydrolysis reactions had an elevated pH
that was outside the working range of the CTec2 and
HTec2 enzymes (pH 5–5.55). Untreated copy paper
samples had an average pH of 8.03 and dilute alkaline pre-
treated copy paper had an average pH of 7.87. The
concentration of citrate buffer was increased from 0.05 to
0.25 M to account for the elevated pH in subsequent EH
experiments using copy paper. All newspaper and cardboard
samples fell within the working pH range of the enzymes. The
variation in these streams and the need to optimize reaction
conditions has potential processing implications.

The presence of fermentation inhibitors in newspaper, copy
paper, and cardboard hydrolysate samples was used to determine
the potential impacts on downstream fermentation. HMF and
furfural concentrations were undetectable in all paper fractions.
The concentration of acetic acid was notably higher in copy paper
samples compared to newspaper and cardboard, while levulinic
acid was present in a very low concentration across all samples
(Figure 8).

The combined pH and fermentation inhibitor data suggests that
copy paper has intrinsic qualities that are not ideal for enzymatic
hydrolysis and downstream fermentation. A variety of additives and
chemicals are used in paper making to increase the brightness and
whiteness of copy paper, as well as improving the mechanical and
physical properties of the paper.We hypothesize that fillers, bleaching
agents, and/or chemical pulping agents present in the copy paper are
elevating the pH and concentration of fermentation inhibitors in
these samples despite the presence of a 50mM citrate buffer and
40mMacetate (Figure 8) for buffering. For the copy paper EH, it was
necessary to increase the citrate buffer concentration to 250mM to
eliminate the pH shift. Further investigation is needed to determine
the potential sources of this phenomenon and to test the impacts of
these inhibitor concentrations on fermentation efficiency.

High Temperature Conversion
Liquid oil products obtained from pyrolysis can be upgraded and
used as a substitute for conventional fossil fuels (Zaman et al.,
2017). Untreated mixed plastic waste produced about 5% char,
42% liquid oil, and 53% gas in microwave fast pyrolysis
experiments while mixed plastic washed with detergent

reduced char yields to 2%, increased liquid oil yields to 69%,
and reduced gas yields to 29%. Mixed plastic washed with DME
produced about 7% char, 61% oil, and 32% gas (Figure 9). These
experiments were intended to quickly screen conversion
performance of decontaminated materials. Therefore, the
composition of the bio-oil was not determined. In the future,
we hope to complete an in-depth investigation of the bio-oil and
determine the mechanisms involved in increased oil production.
A component of the “dirt” coating in unwashed plastic may have
catalyzed cracking reactions that decreased liquid yields. During
pyrolysis, it was noted that some types of plastic melted in the
transfer tube prior to entry into the pyrolysis chamber and caused
feeding problems in the system. Our DME decontamination
approach is an effective, novel, and economically feasible
method that does not create a wastewater stream.

The composition of gaseous products from pyrolysis of
unwashed mixed plastic primarily contained hydrocarbons
(Figure 10). This suggests that the “dirt” in unwashed plastic
is catalyzing cracking reactions that break plastic into lighter
hydrocarbons that decrease the liquid oil yields.

Alkali and alkaline earth metals (K, Na, Mg and Ca) are known
to catalyze cracking reactions during pyrolysis (Wang et al.,
2015). Initial ash analysis indicates that potassium or sodium
may be the culprits although further testing is needed to verify
this (Table 3).

Techno-Economic Assessment
Themixed paper materials that were tested benefitted from a dilute
alkaline pre-treatment; however, since this TEA focused on the
steps prior to low temperature pre-treatment process, it was not
necessary to further decontaminate these materials. The primary
contributors to pre-processing costs in paper size reduction
without OCC (scenario one) were the knife mill and shredding
operations. The overall cost of this pre-processing system (Table 4)
is estimated at $5.25/dry ton. The inclusion of the OCC fraction
(scenario two) into the system increases the annual infeed by 10%.
Higher throughput translates in greater economies of scale to
reduce the pre-processing costs (Table 4) by $0.84/dry ton. The
mixed paper materials that were tested benefitted from a dilute
alkaline pre-treatment; however, since this is part of the NREL low
temperature pre-treatment process, it was not necessary to further
decontaminate these materials. Therefore, the decontamination
cost was $0/dry ton.

TABLE 4 | Breakdown of costs for size reduction without OCC (scenario 1) and
with OCC (scenario 2) pre-processing unit operations.

Scenario 1 Scenario 2

Equipment Cost ($/dry ton) Equipment Cost ($/dry ton)

Conveyor $0.23 Conveyor $0.20
Shredder $1.61 Shredder $1.37
Conveyor
to storage

$0.24 Conveyor
to storage

$0.21

Knife mill $3.16 Knife mill $2.64

Total $5.25 Total $4.41

The bold values means the total preprocessing costs for the associated scenario

TABLE 5 | Breakdown of costs for detergent washing (scenario 3) and DME-
based (scenario 4) pre-processing unit operations.

Scenario 3 Scenario 4

Equipment Cost ($/dry ton) Equipment Cost ($/dry ton)

Conveyor $2.09 Conveyor $2.09
Crumbler $21.00 Crumbler $21.00
Conveyor $2.11 Conveyor $2.11
Washing tank $24.81 DME tank $18.16

Total $50.01 Total $43.36

The bold values means the total preprocessing costs for the associated scenario
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The total cost for the detergent washing system (scenario one)
was about $50.01/dry ton (2021$), assuming 1% of dry matter loss
in the size reduction step. The washing line combined the washing
and drying stages of the pre-processing operation. This unit
operation contributed about $24.81/dry ton, nearly 50% of the
overall costs (Table 5). The crumbler accounted for $21.00/dry
ton while the conveyors accounted for $2.09/dry ton. The costs
for the system were also influenced by lowmaterial throughput of
approximately 1.75 tons per hour. The total cost for the DME-
based washing system (scenario two) was about $43.36/dry ton,
assuming 1% of dry matter loss in the size reduction step
(Table 5). Compared to the detergent washing-drying process,
the DME-based pre-processing costs $6.65 less, mainly due to the
lower energy cost in the DME tank as compared to the washing
line used in the conventional system. In this system, the crumbler
accounts for $21.00/dry ton while the DME system contributes
$18.16/dry ton to overall pre-processing costs.

CONCLUSION

In the United States, MSW that is too contaminated or
expensive to recycle was exported to China prior to the
Green Fence and National Sword policies. The
United States lost a destination for much of its
contaminated wastes due to these policies. Many cities were
forced to discontinue or scale back their recycling programs,
resulting in many waste materials being landfilled. Paper and
plastic fractions of MSW could potentially be diverted from
the landfill and used as feedstocks for conversion to fuels and
chemicals. MSW could represent a viable alternative to
agricultural residues for biofuel production if low-cost
methods for decontamination can be developed.

Although plastic, ink, and stickies contamination within the
mixed paper stream did not have a negative impact on enzymatic
hydrolysis yield, dilute alkaline pre-treatment and mechanical
refining was able to increase yields. When certain paper types
within the mixed paper samples were tested, it was observed that
copy paper had an elevated pH and increased concentration of
fermentation inhibitors. The increased pH had an adverse impact
on enzymatic hydrolysis, but it could be compensated for by
increasing the reaction buffer concentration. The effect of
elevated concentration of fermentation inhibitors was not
observed in our experiments but is hypothesized to have an
impact in downstream fermentation processes. We hypothesize
that additives such as fillers, bleaching agents, and/or pulping
agents are causing this phenomenon.

Removal of “dirt” and particulate contamination in mixed
plastic MSW with detergent and chemical washing resulted in
an increase in liquid oil products during pyrolysis. This is the
first study to employ an affordable, non-aqueous
decontamination system for MSW that does not create a
wastewater problem. DME washing is a promising
decontamination technique that can be used for a wide range
of waste materials. Further research is needed to determine the
impacts of DME decontamination on the conversion of other
waste streams (e.g., paper, yard waste).

The major gaseous products produced during pyrolysis
were light hydrocarbons, suggesting that “dirt” in unwashed
MSW is catalyzing cracking reactions and resulting in lower
liquid yields. Initial ash analysis studies suggest that
potassium is catalyzing cracking reactions during pyrolysis
and decreasing oil yield. The impacts of potassium on
pyrolysis are well-known. Future experimentation should
focus on determining the composition of bio-oil from
washed waste and investigating the mechanism behind
increased oil yield.

The washing techniques developed for plastic decontamination
ranged from $18.16 to $24.81/dry ton. This fell below the cost target
of $30/dry ton,making thematerial cost competitive with corn stover.
Dilute alkaline pre-treated paper did not require further
decontamination processes, making the cost $0/dry ton for any
decontamination prior to pretreatment. The cost of paper
preprocessing ranged from $4.41 to $5.25/dry ton.

Further study is required to determine the culprit behind elevated
pH and fermentation inhibitor concentration in copy paper, as well as
decreased oil yield in unwashed plastic. In summary, dilute alkaline
pre-treatment and washing methods have been shown to be effective
decontamination strategies to increase conversion yields of mixed
paper and plastic MSW, respectively.
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Using Incremental Changes to
Convert Lignocellulosic Feedstocks to
Cellulosic Ethanol
Michael G. Resch1 and Brandon Emme2*
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One billion tons of biomass feedstocks have been identified for the production of renewable
biofuels and biochemicals. This is one of the key carbon feedstocks to supply energy to the
transportation sector for light duty, heavy duty and aviation fuels. Utilization of lignocellulosic
feedstocks supports an improved energy security by reducing demand of petroleum imports,
agricultural development, job creation, and reducing greenhouse gas emissions. To date,
however, operational challenges have stymied the industrial production of large volumes of
lignocellulosic-based fuels and chemicals. As a result, significant research investment has
been led by the United States Department of Energy to understand and improve operational
reliability at pioneer cellulosic biorefineries. In this perspective article lignocellulosic conversion
technologies are described that have been adopted from the starch ethanol process. The
developed process culminated in successful demonstration of 1,000-h integrated runs using
several feedstocks, including switchgrass, energy sorghum, and two types of corn kernel fiber.
This article highlights process development that solved several of the issues that
plagued—and continue to plague—many in the cellulosic sugars space such as biomass
feeding into equipment, high ash content, diversified co-product value, and others.

Keywords: biomass, biofuels (biodiesel, bioethanol, biogas), biochemicals and bioenergy, biochemical conversions,
lignocelllulose saccharification, biorefineries

INTRODUCTION

Process Integration Approaches to Cellulosic Processing Design
The road to commercialization of lignocellulosic biomass to production of biofuels and
chemicals has not been as easy as it was sold to investors a decade ago. At that time, [bio]
catalyst costs in pretreatment and hydrolysis were considered the critical path to overcome the
hurdles to commercialization. Through significant efforts and good science, producers realized
dramatic cost reductions in biocatalyst (enzymes and yeast) in the years that followed. Those
milestones were followed by a handful of cellulosic plant groundbreakings, largely using
engineering and technology originally developed for the pulp and paper industry, where the
process design seemed intrinsically obvious, to fill out the rest of the process design around the
key technologies.

Unfortunately, these pioneer plants struggled to realize their design capacity. Consequently,
policy incentives remain inconsistent and the second round of cellulosic capacity buildout has not
occurred. Many potential producers and investors, seeking to “be first to be second,” feel the correct
first-of-its-kind cellulosic process is still not proven out, noting that significant risks remain in
realizing design uptime at full scale.
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Processes that break down the fiber structure to low-cost liquid
fuels has proven dissimilar to processing pulp and paper where the
goal instead is to preserve the fiber structure. These differences are
reflected in the significant downtime due to retooling and
engineering redesign at pioneer plants, many of whom by 2021
have shuttered operations (Slupska and Bushong, 2019). Producers
realized they must cope with broad input variations in moisture, ash
content, etc. that were not evaluated at relevant scale during
development. These issues have been problematic, with many
related to materials transport.

This Perspective article describes process development via
incremental changes from the commercial starch ethanol process
rather than the pulp and paper process. Herein process design
concepts are described that culminated in successful
demonstration of 1,000-h integrated runs using several feedstocks,
including switchgrass, energy sorghum, and two types of corn kernel
fiber. This article highlights a process design approach that solved the
issues that plagued—and continue to plague—many processes in the
pioneer cellulosic space such as biomass feeding of grasses and grain
fibers, high ash content, diversified coproduct value, and others.

MANAGING MATERIAL HANDLING
CHALLENGES
Lignocellulosic Feedstocks Systems Are
Not Agnostic
The design challenge for an industrial process with poor control
of input feedstock quality attributes is exacerbated by the
heterogeneous nature of different forms of biomass:

• Agricultural. Agricultural feedstock can be subdivided into
several subclasses, including grasses, residues, and energy
crops. All these agricultural solids have substantive
differences in composition, physical characteristics,
harvesting methods and storage conditions.

• Municipal Solid Waste. MSW can be as varied as the
collection and sorting methods used to recover the material
post-consumer. MSW cellulose content may include different
types of extractives, binders, and inks as part of their previous
application.

• Captive Fibers. These consist of post-processed food, and
are subject to extraction method variations, microbial
degradation, and food sources.

• Woody biomass. Woody biomass has been used industrially
for centuries. Industrial woody feedstocks are almost always
subdivided into hardwood and softwood, with variant
processing methods applied to exploit each one. Experience
has taught the pulp and paper industry that in many cases,
blends of hardwood and softwood can improve their flowability
and processability (Chauhan et al., 2011; Nugroho, 2012).

Non-Agnosticism: Switchgrass, Energy
Sorghum, and Corn Kernel Fiber
In 2015, industry demonstrated ethanol production using
lignocellulosic feestocks, including switchgrass, energy

sorghum, and corn kernel fibers at a scale of 10 tons per day
of continuous production (Javers, 2017). During those runs,
process engineers experienced the inherent variation between
feedstocks, even those within a lignocellulose sub-category.
Special care had been taken to grow, harvest, store and
process the feedstocks in such a way as to avoid storage
variability from moisture and decomposition (Smith et al.,
2013). However, upon grinding the feedstocks and
pneumatically transferring to downstream processing,
seemingly innocuous steps like tramp washing and wetting of
feedstock led to material bridging, rotary airlock plugging, high
wear areas, cooling and pumping issues, among others
(Supplementary Figure S1). Those challenges proved difficult
to overcome without equipment and process changes specific for
each lignocellulose type.

Agricultural Residues Have Many Ash
Sources
Ash content is a significant variant in feedstocks for
bioprocessing. In addition to bound ash in the form of dirt
and intrinsic ash within the feedstock itself, manufacturing
plants must also manage the levels of tramp that comes in
with biomass (Zhang et al., 2017). In one of the runs, almost
two cubic meters of small rocks were removed from just 10–12
tons of feedstock (Javers, 2017), requiring improved storage
design.

Feedstock Variation Impacts the Front End
Ash content, stalk thickness and moisture content can have
pronounced impacts on the milling operation. When ash
content (often as soil) is high, mechanical wear on milling
equipment can significantly reduce equipment lifetime and
plant uptime. Stalk thickness directly impacts the load on
milling devices to the point where staged milling may be
necessary to realize a cost-effective attrition to the desired
pretreatment particle size (Zhang et al., 2017). Heterogeneity
of feedstock quality also has profound impacts upon the particle
size distribution of pre-processing: higher moisture contents in
milling tend towards larger particles, while dry biomass produces
more fine particles and dust, frequently with a wider particle size
distribution (Smith et al., 2013). It is here that the benefits of
captive [processed] fibers have distinct advantages, with the cost
and consistency burden of grinding already being paid for by the
primary product (starch ethanol).

Grinding technology also provides process variability that can
cause challenges in hydrolysis. Cutting/chipping, shearing,
grinding and crushing modes of attrition can alter the biomass
particle morphology and size distribution differently. Cutting and
chipping—often used for primary milling of biomass to more
homogeneous sizes—are limited by cost at lower particle sizes, yet
leave the material still too large to effectively convey and seal into
high-pressure reactors (Karinkanta, 2015). Secondary milling is
often accomplished by hammermills and similar equipment.
While effective, they produce a broad particle size distribution.
During the United States Department of Energy’s Integrated
BioRefinery (DOE IBR) funding of 1,000-h pilot trials at ICM,

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8357142

Resch and Emme Incremental Changes to Convert Lignocellulosics

69

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


a population of unconverted particles persisted even after
hydrolysis for both switchgrass and energy sorghum
(Figure 1). A sugar clarification step was applied to prevent
these large pieces from moving forward in the process and
causing issues.

Normalizing Storage to Manage
Heterogeneity
Storage can play a large role in downtime resulting from some of
the above variations. Recently, the national laboratories
successfully demonstrated the impact of adaptive controls on
reducing downtime of a mill grinding corn stover with variable
moisture content (US Department of Energy, 2016). Although
uptime was increased, there was a significant loss of rate.

A second approach is to implement a standard feedstock form,
such as pellets (Kim et al., 2019). Pellets have the advantages of
pre-milled feedstock, reduced moisture variation, improved
transportation costs, and ability to use existing infrastructure.
Care must be taken with a pelleting approach however to ensure
full, rapid and cost effective rehydration at the biorefinery. As of
this writing, there are no known uses of pelleting in the biomass
process (Tumuluru et al., 2011).

In the end, to process slurries with high solids concentrations
(>20% solids to liquid) it may be more pragmatic to control
variation by employing bulk averaging to dampen
inhomogeneity. This introduces a substantial cost to many
biomass feedstocks, and in some cases makes it more
expensive than its competitive carbohydrate source: grain starch.

The Biomass Conveying Challenge
The compressibility, cohesivity, plasticity and low bulk density of
most biomass sources make it difficult to design, and many
pioneer plants are known to have gone through redesigns of
the feedstock conveyance systems. Some IBRs found that pre-
ground feedstocks pneumatically transported from storage into
the plant required a steady feed rate to prevent line plugging (US
Department of Energy, 2016).

Mitigating the conveying challenge is not easy or inexpensive
for dry solids streams. Narrowing the particle size is often the
easiest and most effective mitigation for heterogeneous materials.
At smaller particle sizes (50–1,500 micron), most feedstocks act
like spheres and flow freely. However, much research has
demonstrated that grinding of biomass below 10 mm
introduces an unacceptable cost to production (Humbird
et al., 2011; Hartley et al., 2021).

To reduce the impact of mechanical cohesivity, dilution of the
feedstock with air can help. Making a robust, functioning system
involves careful consideration of the feed rate, air velocity and line
layout. Overfeeding the conveyance system can result in settling/
packing of material. At high air velocity, the biomass stays dilute
but wear at piping elbows increases (Supplementary Figure S1);
too low velocity and material falls out and settles in the line. Too
long of a horizontal run—especially one with many elbows—and
gravity settles the biomass out in the lines, often requiring human
intervention to restore flow.

Hydration—The Floaters and Sinkers
Challenge
In order to achieve optimal heating of biomass, fully hydrating
the material is not easily achieved for all feedstocks.
Switchgrass—presumably due to its stem coating—is easy to
wash but problematic to wet, making tempering of the
feedstock to constant total solids challenging. Switchgrass
formed floating mats on top of IBR slurring vessels; it was
difficult to maintain homogeneity, a problem that was solved
only after many attempts and equipment modifications
(Figure 2A).

Conversely, energy sorghum wet too readily. In washing steps,
sorghum retained water, resulting in inefficient ash removal and
leading to a higher acid requirement and elevated levels of
equipment wear. In the slurry vessel, the sorghum would
readily dewater and sink. Special controls had to be employed
to maintain consistent total solids while continuous feeding into
the downstream reactor (Figure 2B).

FIGURE 1 | Comparison of woody and herbaceous feedstocks under similar pre-processing particle size reduction. Wood chips (A) and switchgrass (B) were
processed with a hammer mill with screen size #10. The particle and conglomerate material attributes differ substantially using similar processing methods. Thus, the
need to tailor handling equipment designs for each feedstock is critical.
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Industry processes used suspended solids instead of wetted
solids, thus more aggressive horsepower and thoughtful agitation
were adequate to maintain the homogeneity necessary to achieve
reliable flow control.

Avoiding Backpressure at the Reactor
Throat
Achieving the seal at a high-pressure reactor throat is challenging
for solids systems like biomass and can have catastrophic impact
on plant uptime and safety if the boundary between high and low
pressure fails. If corrosive catalysts are able to blow back in the
process, the result can introduce rapid degradation of upstream
equipment, especially seals. Backpressure can also cause elevated
reaction temperatures that make the area an unsafe work
environment.

Many high solids approaches involve mechanically
compressing the biomass feed material into a plug, while
others attempt to form a seal with the biomass directly. In
early designs, one IBR attempted both approaches, neither of
which ran successfully for more than a day or two. One key issue
was gas permeability in and around the biomass. It was difficult to
consistently and sustainably create a seal with material present in
the seal; soft seals broke down under the abrasiveness of the
biomass, and hard seals would not close completely unless they
managed to cut the material or move it from the sealing surface.

The Move to Lower Solids Processing
Due to these challenges during development, one IBR process
opted to take a different direction with the reactor design.
Whereas making a high-pressure seal with biomass requires
complex mechanical sealing systems, making a seal with
liquids is relatively simple and reliable. By reducing the total
solids target in pretreatment, the demonstration plant achieved a
slurry with larger particles yet consistent operation. Additional

benefits included superior heat transfer, mixing, pumping and
flash. An artifact of running pretreatment at lower total solids was
that hydrolysate sugar concentrations were low, but the costs
were effectively mitigated with waste heat evaporators to
concentrate the sugars. The approach effectively decoupled the
pretreatment and hydrolysis operating conditions from the
fermentation such that the pretreatment optima did not limit
the fermentation ethanol titer. It was possible to run hydrolysis at
only 100 g-sugars/L but still run fermentation at 300 g-sugars/L
to realize cost-effective distillation.

Impacts of Lower Solids Front End
A slurry step is often used prior to the pretreatment reactor to
condition and temper the biomass for optimal reaction. Removal
of buffers, such as ash or proteins, improves the catalyst
performance. Additionally, elevating the biomass temperature
can improve the heating process by reducing the amount of steam
required to reach the reaction temperature. The slurry step also
can be utilized to introduce some (or all) of the catalyst where it
can be done in a more dilute environment with better mixing.

Pretreatment slurry conditioning depends upon reactor
design. Direct steam injection is used in many applications
because it is efficient at heating. However, steam injection has
the disadvantage of being difficult to distribute evenly due to
increased solids, diluted biomass, and requirements on steam
quality. Similarly, chemical additions can be problematic (pH
adjustment and control) in packed fiber beds where tempering
the biomass in a slurry may be limited to avoid over-dilution.

Some process designs utilize slurry to wash and/or transport
the biomass to the rector throat, then recover the water and
recycle it back to the front of the transport. This approach can
mitigate several issues in the process while also saving water,
provided considerations are made to reduce build-up of
unwanted compounds in the biomass flow that enters the
reactor (ex. ash, dirt, and sugars). This must be balanced with

FIGURE 2 | Dilute acid pretreatment switchgrass (A) and energy sorghum (B) illustrating the floater and sinker characteristic, respectively. Two seemingly similar
herbaceous materials pre-processed and thermochemically pre-treated behave quite differently when suspended in liquid. Thus, the equipment design and process for
the transport of materials needs is unique for specific feedstock properties throughout the process.
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additional capital cost and water balance management. The slurry
and/or hydration liquids may not be sent forward with the
biomass in the reactor to reduce dilution. When catalyst is
applied prior to the reactor where some hydrolysis may occur,
it is generally necessary to send the liquid into the reactor with the
solids to maintain mass balance control.

A CASE FOR CO-LOCATION

Water balance is arguably themost important considerationwith the
frontend of a biorefinery. Water provides the heating and cooling,
some of the catalyst, and functionally distributes all other chemistry
at play. When a biorefinery is designed to be a standalone operation,
water and energy must balance. However, when a cellulosic process
is co-located with another process, many new and advantageous
integrations can be realized.

Consider the biorefinery design where all of the lignin is
combusted for energy (Davis et al., 2018). In this case, the
lignin volume provides a net electricity export to the grid.
However, electricity gets discounted when it goes onto the grid
because of unavoidable power transmission losses. If a suitable
colocation partner is at-site, all value of the electricity can be
utilized by that process at (green) market price.

In some 1.5 generation (captive/corn fiber) processes, sulfuric
acid and ammonia used in pretreatment are carried over into the
starch based 1st Generation (1G) process at the integrated corn fiber
fermentation. The chemicals are still able to perform their normal
functions as nitrogen source for yeast growth and pH control for
evaporation, effectively cutting the acid/base consumption in half
relative to a standalone ethanol plant. Additionally, waste heat from
the pretreatment can be used to drive 1G evaporation, and cook
water from the 1G ethanol process used for fiber treatment and
washing prior to dilute acid pretreatment. Recalcitrant protein on the
incoming fiber is partially hydrolyzed during pretreatment,
increasing the overall protein efficacy (digestibility) in the feed
product (Karinkanta, 2015). Ultimately, all insoluble solids from
the 1G process end up in the animal feed stream, providing higher
value to a plant than combustion for power.

In a co-located 1st and 2nd generation (cellulosic) biorefinery, the
size of the cellulosic site relative to the 1G site next door depends
upon integration of the nominal sulfuric acid dose in pretreatment,
somewhere between 25–50% of the starch ethanol output. The 1G
plant provides inexpensive carbohydrate for the yeast propagation,
such that an excess of yeast is produced and can be sold as a high
value single cell protein or combined with the rest of the feed ration
to boost the overall protein content. The pretreatment provides both
steam and waste heat to the 1G process as well.

To date, the process decision to use high dry matter pretreatment
for cellulosic processes has been challenging for a large portion of the
pioneer cellulosic ethanol plants. The high level of variation in real-
world feedstocks has made it difficult to design a robust frontend
process to deliver the feedstock to the high-temperature and -pressure
reactors with low free water. For biochemical route processes, the
lower solids approach of the process will average many of the
feedstock quality differences and provide reliable flow into the
pretreatment reactor.

IBR process integration allowed for low solids to be done so
economically. Colocation afforded many advantages to the water
and energy balances of the lignocellulosic facility. As a result, the
resulting cellulosic process has a lower capital cost per gallon ethanol
than most reported cellulose plants in operation. There may also be
other advantages of co-localization such as utilizing the waste CO2,
fertilizer and nutrient separation to take advantage of national and
regional incentives to realize low carbon fuels and chemicals.

DISCUSSION

Cellulosic ethanol was validated with over 4,000 h of integrated
run at 10 tons per day in the ICM IBR pilot plant, using
switchgrass, energy sorghum and two types of corn kernel
fiber. The validation process also used a frontend capable of
mitigating feedstock variation for more than 400 tons of biomass
processed during each trial. It was facilitated by use of
incremental engineering changes from the first-generation
ethanol process, instead of the more common adaptation of
the industrial Pulp and Paper process. There is a foundational
truth that feedstock diversity can (and will) resist a “one size fits
all” process design for all sources of biomass. The perspectives
described in this article are a recognition of the importance of
employing demonstrated tools for reducing material flow
heterogeneity and variation over time—most notably, use of
dilution and benefits of pairing the process with adjacent
manufacturing to mitigate water balance and ash limitations.
Agricultural feedstock variability is inevitable but leveraging
decades of experience with processing cereal grains has
demonstrated at scale a cellulosic systems that can be
successful in realizing robust operations with low downtime,
and as such, should be a consideration of anyone trying to
mitigate risk in biorefinery development.
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Optimizing Chemical-Free
Pretreatment for Maximizing Oil/Lipid
Recovery From Transgenic Bioenergy
Crops and Its Rapid Analysis Using
Time Domain-NMR
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Transgenic bioenergy crops have shown the potential to produce vegetative oil by
accumulating energy-rich triacylglyceride molecules that can be converted into biofuels
(biodiesel and biojet). These transgenic crops cater to improved biofuel yield by providing
lipids along with cellulosic sugars. Efficient bioprocessing technologies are needed to
utilize these transgenic plants to their maximum potential. To this end, this study
investigates a low- and high-severity chemical-free hydrothermal pretreatment of
transgenic oilcane 1566 bagasse with in situ lipids to maximize the recovery of lipids
for biodiesel and fermentable sugars for ethanol with minimal inhibitor generation.
Hydrothermal pretreatment at 170°C recovered ~25% of total lipids in the pretreatment
liquor, leaving the remainder in bagasse residue for hexane recovery post fermentation .
The recovery of lipids in pretreatment liquor remained constant beyond 170°C. Along with
lipids, ~35%w/w and ~50%w/w fermentable sugars were recovered post saccharification
from bagasse pretreated at 170°C and 210°C for 20 min, respectively. Hydrothermal
pretreatment at 170°C for 20 min provided the optimum conditions for maximum recovery
of lipids and cellulosic sugars that resulted in enhanced biofuel yield per unit biomass. High
severity pretreatment increased the generation of inhibitors beyond the tolerance of
fermentation microorganisms. In addition, the application of time-domain proton NMR
spectroscopy was extended to bioprocessing. NMR technology facilitated the analysis of
total lipids, the composition of fatty acids, and the characterization of free and bound lipids
in untreated and pretreated oilcane 1566 bagasse subsequent to each step of biomass to
biofuel conversion.

Keywords: biofuels (biodiesel and bioethanol), hydrothermal pretreatment, time-domain 1H NMR spectroscopy,
lipid analysis, bioenergy crops
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Graphical Abstract |

INTRODUCTION

Biofuels are a drop-in, environmentally nontoxic, biodegradable,
and less contaminating alternative to conventional fuels with
comparable energy efficiency, with strong potential for lowering
CO2 emissions. Cellulosic biomass has immense potential as a
renewable feedstock for global energy needs. Bioenergy from
traditional biomass such as cereal grains, forestry, and other
energy crops constitutes approximately 7% of total global
energy consumption (REN21, 2020). Oils from plants are
particularly valued since they can be easily converted to
biodiesel and bio-jet, serving markets that are unlikely to be
electrified. To this end, bioenergy crops such as sugarcane,
energycane, sorghum, and miscanthus are being metabolically
engineered to shift the carbon flux from sugar to lipid synthesis
and accumulation in their vegetative tissues (Zale et al., 2016;
Vanhercke et al., 2019; Parajuli et al., 2020).

The accumulation of energy-rich triacylglyceride (TAG)
molecules enhances the energy density of these transgenic
bioenergy crops as compared to their wild-type varieties.
These metabolically engineered transgenic bioenergy crops can
be used for the production of both fermentable sugars and lipids/
oil. Moreover, the very high productivity of these crops would
result in substantially more oil per unit area than conventionally
used oilseed crops (Parajuli et al., 2020). For example, sugarcane
produces an annual yield of dry biomass of at least 10–20 times
more per hectare than soybean; thus, accumulation of ~20%
lipids in the vegetative tissues would produce 10–20 times more
oil for biodiesel than soybean per unit area (Huang et al., 2016a;

2016b). However, the quality of biodiesel is influenced by the
composition of the total lipids of transgenic crops. Genetic
engineering to modify the metabolic pathways of transgenic
bioenergy crops provides a tool to develop desired feedstock to
improve biodiesel quality by having a higher content of short,
unbranched, and saturated fatty acids (Knothe, 2008, 2009).

Mechanical pressing and solvent extraction are the two most
commonly used procedures for commercial oil extraction from
oilseeds for biodiesel production (Atabani et al., 2013; Bhuiya
et al., 2016). Although it is anticipated that refinement of
bioengineering would eventually raise total oil content in
transgenic bioenergy crops to 20%, initial steps have only
raised total TAG content to 8 and 4.3% dry weight in the leaf
and stem, respectively, along with an increase in total fatty acid
content to 13% dry weight in the leaf (Parajuli et al., 2020).
Nevertheless, this provides material on which challenges to
extraction technologies may be evaluated. Since the total lipid
content in transgenic bioenergy crops is lower than that in
oilseeds and a considerable percentage of lipids are present in
a complex bound form (Zale et al., 2016; Parajuli et al., 2020;
Maitra et al., 2021), the conventional methods for oil recovery
from oilseeds are not sufficient for effective lipid recovery from
transgenic cellulosic biomass. Chemical-free low-severity
methods for the extraction are necessary to prevent the
decomposition of lipids during pretreatment, followed by
saccharification of the residual cellulosic biomass to produce
fermentable sugars. Jia et al. (2020) reported an improvement
in lipid recovery upon hydrothermal pretreatment of oil-bearing
corn germ meal at 180°C for 15 min (Jia et al., 2020).
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The time-domain NMR technique provides a faster alternative
to the existing lipid characterization and profiling techniques
(Berman et al., 2013; Robinson and Cistola, 2014; Nascimento
et al., 2017; Nikolskaya and Hiltunen, 2018). Rapid analytical
methods for the initial screening of samples are critical in
optimizing the extraction technology. Previously, we showed
the application of TD-NMR as an effective high-throughput
phenotyping method to quantify and characterize in situ lipids
in transgenic lignocellulosic bagasse (Maitra et al., 2021). TD-
NMR facilitates direct analysis of cellulosic biomass for lipid
analysis without sample preparation or lipid extraction. Thus,
TD-1H NMR provides a convenient and rapid alternative to the
tedious wet chemistry technique of fatty acid analysis. The
application of TD-NMR for qualitative and quantitative
characterization of in situ vegetative lipids in cellulosic
biomass after each bioprocessing step such as pretreatment,
saccharification, simultaneous saccharification, and
fermentation (SSF) has not been reported.

The present work investigates low- and high-severity
hydrothermal pretreatment for maximizing lipid and sugar
recovery with negligible inhibitor generation from the
transgenic lipid-producing sugarcane (oilcane 1566) bagasse
and extends the application of TD-NMR spectroscopy for the
estimation of the total lipid and fatty acid composition in the
cellulosic biomass before and after each of the following steps:
pretreatment, enzyme hydrolysis, and SSF.

MATERIALS AND METHODS

Transgenic Bioenergy Crop
The transgenic oilcane event 1566 was grown in a greenhouse at
the University of Illinois at Urbana-Champaign under controlled
environmental conditions. This was a 16-h day in which sunlight
was supplemented to ensure a minimum photon flux of
600 μmol m−2 s−1 light from high-pressure sodium lamps. The
temperature was controlled between 28° and 31°C. Whole shoots
of wild-type and transgenic plants were harvested at the stage that
they would be harvested in the field for processing, that is, before
flowering. The leaves were separated from the stem, and juice was
extracted using a juicer (Juicematic SC-3 commercial sugarcane
juicer). Each stem was passed through the juicer three times to
extract maximum juice. The bagasse was dried to constant weight
at 50°C. The dried bagasse was cut into smaller pieces of 1–2
inches with pruning shears, followed by shredding in a hammer
mill (W-8-H, Schutte-Buffalo Hammermill, Buffalo, NY), with a
sieve size of 2 mm. Bagasse was stored at −20°C until it could be
used for further processing.

Hydrothermal Pretreatment
The hydrothermal pretreatment at 170 and 210°C for 10 and
20 min was performed in a sand bath (IFB-51 Industrial Fluidized
Bath, Techne Inc., Burlington, NJ) attached to an air compressor
for even heat distribution. Pretreatment was performed with a
20% w/w biomass solid loading. The transgenic oilcane 1566
bagasse samples were loaded into capped pipe reactors (316
stainless steel reactors: 10.478 cm length × 1.905 cm outer

diameter × 0.165 cm wall thickness tubing, SS-T12-S-065–20,
Swagelok, Chicago Fluid System Technologies, Chicago, IL; 316
stainless steel caps: SS-1210-C, Swagelok, Chicago Fluid System
Technologies, Chicago, IL). A thermocouple [Penetration/
Immersion Thermocouple Probe Mini Conn (−418–1652°F),
Mc Master-Carr, Robbinsville, NJ] inserted into the reference
pipe reactor filled with deionized water was used tomonitor the in
situ temperature. The thermocouple was connected to a data
logger (HH306/306A, Datalogger Thermometer, Omega,
Stamford, CT). The pretreatment reactions were quenched
immediately after 10 and 20 min of pretreatment by
submerging the reactors into cold water. The resulting,
pretreatment liquor was analyzed for solubilized sugars and
inhibitors using HPLC. The pretreated bagasse residue was
kept at 4°C for lipid analysis and saccharification.

Saccharification
Enzymatic saccharification was performed on both untreated and
pretreated transgenic oilcane 1566 bagasse using standard protocol
NREL/TP-5100-63351 (Resch et al., 2015). Enzyme hydrolysis was
carried out with 10% (w/w) biomass solid loading for 72 h at 50°C
in an incubator shaker at 180 rpm. The working concentrations of
the enzyme hydrolysis reaction mixture contained citrate buffer
(0.05M) and sodium azide (0.005%) to inhibit the growth of
microorganisms and 16.9 mg protein/g of dry biomass of
cellulase and hemicellulose mixture [59.64 FPU/g dry biomass
enzyme loading (NS 22257, Novozymes North America, Inc.,
Franklinton, NC, United States)].

Simultaneous Saccharification and
Fermentation (SSF)
Simultaneous saccharification and fermentation were performed
on untreated and two differently pretreated transgenic 1566
bagasse [170°C for 20 min and 210°C for 20 min]. The
working concentrations of the SSF reaction mixture contained
citrate buffer (0.05 M), 16.9 mg protein/g of dry biomass of
cellulase and hemicellulase mixture (NS 22257, Novozymes
North America, Inc., Franklinton, NC, United States )], and
C6/C5 fermenting recombinant Saccharomyces cerevisiae
(kindly provided by DSM). The yeast was grown on a YPX
medium (1% yeast extract, 2% peptone, and 2% xylose) for
48 h at 32°C. Yeast cells were centrifuged and inoculated in
the SSF medium to obtain a starting cell O.D600 of 0.5. SSF
was carried out for 96 h in a shaking incubator (180 rpm) at 32°C
with 10% solid loading and sampled after every 24 h. The samples
were filtered using 0.2-μm syringe filters and analyzed for sugars
and ethanol using HPLC. The bagasse residue obtained post SSF
was evaluated for lipid content and composition using TD-NMR.

Sugars and Inhibitor Analysis
The pretreatment liquors and hydrolyzates were centrifuged to
separate the solid particles. The supernatants were filtered
through 0.2-μm PTFE filters for HPLC analysis. The
concentrations of sugars and inhibitors were estimated using
an HPLC system (Waters alliance e2695 Separation module,
Waters Corporation, MA, United States ) equipped with a
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refractive index detector and a Bio-Rad Aminex HPX- 87H
column (Bio-Rad, Hercules, CA, United States ).

Time-Domain 1H-NMR Spectroscopy
Time-domain NMR spectroscopy was used for quantification of
total lipids and major fatty acids, that is, palmitic (C16:0), oleic
(C18:1), and linoleic (c18:2) acid and characterization of bound
and free lipids in the untreated and pretreated transgenic oilcane
1566 bagasse.

Quantification of Total Lipid Using
Benchtop Time-Domain- 1H-NMR
Spectroscopy
The total in situ lipids in untreated and pretreated transgenic
oilcane 1566 bagasse were quantified and analyzed for bound and
free fractions and major fatty acids (palmitic acid, oleic acid, and
linoleic acid) using TD-NMR spectroscopy (Maitra et al., 2021).
A low-field benchtop time-domain proton NMR spectroscope
(Minispec mq20, Bruker, Massachusetts, United States) was used.
The NMR system was equipped with an 18-mm thermostat
1H-probe operating at 0.47 T/20 MHz and 40°C. For lipid
analysis, the bagasse samples were dried (≤2% moisture
content) to alleviate the interference of proton signals from
water molecules. The time-domain 1H NMR was calibrated
with lipids extracted from transgenic bioenergy crops for
analyzing in situ lipids in transgenic lignocellulosic biomass as
reported in previous work (Maitra et al., 2021).

Characterization of Bound and Free Oil
Fraction Using TD-NMR
T1T2 relaxation/intensity curves were analyzed for
characterization of total lipids into bound and free lipid
fractions as reported in the previous work (Maitra et al.,
2021). The Carr–Purcell–Meiboom–Gill (CPMG) application
was used for acquiring the full exponential decay curves for
transverse (T2) relaxation times. The longitudinal (T1)
relaxation time was obtained by the inversion recovery
method. A CPMG pulse sequence was applied for the
measurement of spin–spin relaxation. The total number of
acquired echoes was 800. 90°–180° pulse separation (tau) was
2. The T1 inversion recovery relaxation time had a first and final
pulse separation of 2 and 800 ms, respectively. A sampling
window of 0.1 ms was used. The recycle sampling delay for
the T1 inversion recovery experiment was 2 s. A total of 10
data points were used to fit the curve for each sample. Both T1
and T2 relaxation spectra were fitted to a bi-exponential equation
of second order as reported previously (Maitra et al., 2021). The
CONTIN algorithm software obtained from Bruker provided the
continuous distribution of T1 and T2 values.

Analyzing Fatty Acid Composition Using
TD-NMR
TD-1H NMR was calibrated to quantify palmitic acid (16:0), oleic
acid (18:1), and linoleic acid (18:2) in transgenic bagasse samples.

The minispec Plus, containing Bruker’s OPUS software, was used
for chemometric processing and storage of TD-NMR data.
Chemometric processing included discerning differences
between samples, identifying outliers, and obtaining regression
models to correlate NMR values with the existing reference data
in the software. Separate calibration curves were prepared for
each fatty acid. Individual pure fatty acids (≥99% purity) were
purchased from Sigma-Aldrich. The fatty acids were stored at
−20°C. Palmitic acid (16:0), oleic acid (18:1), and linoleic acid (18:
2) used in the study did not show susceptibility to oxidation at the
experimental temperature of 40°C on repeated usage.

For non-invasive analysis of fatty acid composition in bagasse
samples, pure free fatty acid standards were mixed with the
“biomass matrix” as a background for calibration. Since
bagasse itself is a complex matrix consisting primarily of
lignin, cellulose, and hemicellulose, mixed with a variety of
pigments, polyquinones and their oxidation products,
membrane-proteins, and phospholipids, it is critical to abate
the background signal of proton nuclei because of lipid
molecules. The lipid biomolecules were removed from the
bagasse by hexane, isopropanol, and ethanol extraction in a
Soxhlet extractor. The bagasse obtained after extraction served
as a “biomass matrix” for calibration purposes. The lipid-
extracted bagasse was mixed with different amounts of pure
fatty acid to calibrate the TD-NMR. Palmitic acid (16:0) was
heated in a water bath at 65°C to ensure that it was in the oil form
and above the crystalline-liquid phase transition before mixing it
into the “biomass matrix” for calibration. A combination of FID
(free induction decay) and CPMG applications was used to
analyze the time decay signal of each fatty acid based on the
nanofluidity of hydrocarbon chain packing (Robinson and
Cistola, 2014). The decay spectra were evaluated by taking 16
scans with no dummy scans and a receiver gain of 40. Each fatty
acid (palmitic acid, oleic acid, and linoleic acid) is expressed as the
percentage of the total lipid present per gram of dry biomass.

Organic Solvent Lipid Extraction
Lipids/oils were extracted from the untreated and pretreated
bagasse using the organic solvent method as reported by Huang
et al. (2017). The organic solvent–extracted samples were analyzed
for lipid classes and metabolites using GC/MS and LC/MS/MS.
GC/MS and LC/MS/MS were performed at the Metabolomics Lab,
Roy J. Carver Biotechnology Center, University of Illinois at
Urbana-Champaign, IL, United States. A benchtop Agilent GC/
MS (7890AGCwith 5975CMS) with commercial Wiley and NIST
libraries and a mass range of m/z 2 ~ m/z 800 designed for small
metabolite analysis equipped with EI and CI sources were used for
targeted metabolite profiling analysis. For LC/MS/MS analysis, a
benchtop Sciex LC/MS-5500 QTrap Mass Spectrometer (hybrid
triple Quadrupole-linear accelerator trap mass spectrometer) with
TurboV™ Source including ESI andAPCI connected to an Agilent
1200 HPLC was used. The scan modes include full scan and
selected ion scan for both Q1 and Q3, Product Ion Scan,
Precursor Ion Scan, Neutral Loss Scan, Multiple Reaction
Monitoring (MRM), Enhanced MS Scan, Enhanced Product Ion
Scan, Enhanced Resolution Scan, and MS3 scan with a mass range
of m/z 5 ~ m/z 1,250.
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RESULTS

Lipid Analysis Using TD-NMRSpectroscopy
The recovery of lipids from transgenic bagasse needs bioprocessing
that prevents them from decomposition. To maximize lipid
recovery, the transgenic oilcane 1566 bagasse was pretreated
with a chemical-free hydrothermal pretreatment at low and
high severity. The severity of the pretreatment (Ro) was
calculated using the equation (Overend et al., 1987),

Ro � tpe(T−TR)/14.75, (1)
where, t, T, and TR represent the pretreatment time (minutes),
pretreatment temperature (°C), and reference temperature, that
is, 100°C, respectively. The severity factor of hydrothermal
pretreatment at 170°C for 10 and 20 min is 3.06 and 3.36 but
4.23 and 4.54 for pretreatment at 210°C for 10 and 20 min,
respectively. The untreated and pretreated bagasse residues
were analyzed for total lipids using time-domain 1H-NMR
spectroscopy. The untreated transgenic oilcane 1566 bagasse
contained 3.05% total lipid per g of dry biomass. Upon
hydrothermal pretreatment at 170°C and 210°C for 10 and
20 min, approximately 25% of total lipids were released in the
pretreatment liquor (Figure 1A). The remaining 75% lipids
remained in the bagasse irrespective of the severity of the
pretreatment, which was recovered in subsequent steps.

Oil-associated proton relaxation time distributions of
untreated and pretreated transgenic oilcane 1566 bagasse were
analyzed. The samples exhibited two distinct oil-associated
subpopulations of proton nuclei. Shorter and longer relaxation
times of proton nuclei correspond to a lesser and higher degree of
freedom, which represents the bound and free form of oils/lipids
in the cellulosic biomass. In addition, the NMR intensity and
magnitude of relaxation times qualitatively correspond to the
relative amount of bound and free lipids in the bagasse residue
(Maitra et al., 2021). The magnitudes of T1 relaxation times of
untreated and hydrothermally pretreated bagasse are presented in
Table 1. A decrease in the magnitude of the T1 relaxation times of
pretreated bagasse as compared to untreated bagasse confirmed
the release of lipids from the bagasse to the pretreatment liquor.
The magnitude of T2 relaxation times also showed lower oil-
associated proton fluidity of bound oil in pretreated biomass
residue as compared to the untreated bagasse, while no oil-
associated proton fluidity was observed for free oil
(Supplementary Table S1). The result was mirrored in the
total lipid measurement using NMR spectroscopy (Figure 1A).
The total lipid content of the bagasse residue was reduced from ~3
to 2.3% per g of dry bagasse. The lipid analysis of transgenic oil-
containing bagasse using NMR is in agreement with that in our
previous study with model biomass (bagasse with externally
added crude corn oil) that successfully established the

FIGURE 1 | Estimation of total in situ lipids in (A) the untreated and pretreated transgenic oilcane 1566 bagasse residues and (B) untreated and pretreated bagasse
residues after saccharification using TD-NMR. Data present the mean of triplicates with a standard deviation of 0.05%.

TABLE 1 | Analyzing T1 relaxation/intensity curves to investigate the fraction of bound and free lipids in the untreated and pretreated bagasse residues after various
hydrothermal pretreatment conditions, saccharification, and SSF.

Pretreatment (Temperature,
Time)

T1 ms
(bound lipid)

T1 ms
(free lipid)

T1 ms
(free lipid)

T1 ms
(free lipid)

T1 ms
(bound lipid)

T1 ms
(free lipid)

(after pretreatment) (after saccharification) (after SSF)

Untreated 44 ± 5 190 ± 10 11.2 ± 0.5 75 ± 3 46 ± 5 200 ± 20
170°C, 10 min 37 ± 5 170 ± 10 15 ± 1 72 ± 4 NDa NDa

170°C, 20 min 40 ± 4 166 ± 9 16 ± 1 55 ± 4 38 ± 4 140 ± 9
210°C, 10 min 34 ± 2 172 ± 5 13.8 ± 0.5 57 ± 5 NDa NDa

210°C, 20 min 35 ± 3 182 ± 6 11.6 ± 0.5 66 ± 5 31 ± 4 99 ± 5

aND- not determined.
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application of TD-NMR spectroscopy for precise measurement
and characterization of the residual lipids in the biomass fibers
after hydrothermal pretreatment (Maitra et al., 2021).

The bagasse residues obtained post saccharification were also
analyzed for total lipid content and a change in the magnitude of
T1 relaxation times using TD-1H NMR to investigate the further
release of lipids. After saccharification, the total lipid content of
bagasse residues increased by 26 and 54% for bagasse pretreated
at 170°C (~2.3 to ~2.9% w/w) and 210°C (~2.4 to ~3.9% w/w),
respectively (Figure 1B). The magnitude of T1 relaxation times
of bagasse residues after saccharification for free oil was found to
be lower than their corresponding untreated and pretreated
bagasse residues (Table 1). The magnitude of T2 relaxation
times for bound oil remained low, and no oil-associated proton
fluidity was observed for free oil in biomass residues after
saccharification (Supplementary Table S1). The magnitude
of relaxation times corresponds to the amount of oil-
associated proton nuclei, which is directly correlated to the
concentration of oil/lipid in the residue (Maitra et al., 2021).
Therefore, this observation indicates a further recovery of

45–60% of lipids in the hydrolyzate after saccharification.
However, the magnitude of T1 relaxation time for bound oil
showed no significant change in the signals. This suggests that
the process of enzyme hydrolysis releases sugars by disrupting
the cellulosic and hemicellulosic framework of the bagasse
structure, which aids in the further recovery of the free form
of lipids. However, the membrane-bound lipids are not
recovered.

Analysis of NMR Relaxation/Intensity
Curves
The study correlatesT1 relaxation/intensity curves with the recovery
of lipid from bagasse residues (Figure 2). A reduction in the NMR
intensity of the T1 relaxation/intensity curves of the bagasse
pretreated at 170°C for 10 and 20min as compared to the
untreated bagasse suggests reduced oil-associated proton fluidity
of the bagasse and, hence, is directly correlated with the release of
lipids from cellulosic biomass upon pretreatment (Maitra et al.,
2021). The observation is in agreement with the quantitative analysis

FIGURE 2 | T1 relaxation/intensity curve analysis of in situ lipids in the untreated and pretreated bagasse residue of the transgenic oilcane 1566 bagasse.
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of the lipid content of the biomass residues (Figure 1A). T2
relaxation/intensity curves mirrored the results of the T1
relaxation/intensity curves but displayed lower NMR intensity for
each biomass residue (Supplementary Figure S1). On the contrary,
bagasse pretreated under severe conditions, that is, 210°C for 10 and
20min exhibited higherNMR intensity. Therefore, the samples were
analyzed using GC/MS to investigate the reason for the higher NMR
intensity. The GC/MS analysis of the samples showed higher
amounts of phenolics and various other metabolites than the
untreated bagasse (Figure 3A). The proton nucleus metabolites
could possibly contribute to the total proton signals, resulting in
higher NMR intensity.

Analyzing Changes in Lipid Composition on
Pretreatment
A qualitative GC/MS analysis was performed on the hexane-/
IPA-extracted samples from untreated and pretreated transgenic
oilcane 1566 bagasse (170°C for 10 min and 210°C for 10 and
20 min). The untreated bagasse sample contained >50% lipids; ~

40% plant metabolites such as maleic acid, fumaric acid, salicylic
acid, itaconic acid, hydroxyquinone, and their derivatives; and
0.51% of phytohormones like derivatives of phenylacetic acid,
indole-acetic acid, and indole-carboxylic acid. Hydrothermal
pretreatment significantly increased the generation of phenolic
compounds (Figure 3A).

LC/MS/MS analysis was performed to investigate the changes
in the composition of lipid classes due to low and high severity
hydrothermal pretreatment as compared to the untreated bagasse
(Figure 3B). The untreated bagasse sample showed a higher
relative percentage of membrane lipids, that is`, phospholipids
and sphingolipids and only 0.02% w/w of free fatty acids. Both
low and high severity pretreatment procedures aided in
decreasing the membrane lipid content. The levels of mono
glycerol (MG) and free fatty acids increased on pretreatment,
which can be attributed to the thermal decomposition of
membrane lipids during hydrothermal pretreatment (Maher
and Bressler, 2007). The relative percentage of triglycerides
(TGs), diglycerides (DGs), and sterol remained similar after
pretreatment.

FIGURE 3 | (A) GC/MS analysis of total metabolites and (B) LC/MS/MS analysis of various lipid classes of untreated and hydrothermally pretreated transgenic
oilcane 1566 bagasse using the organic solvent method. TG, DG, and MG denote triglycerides, diglycerides, and monoglycerides, respectively.
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Analysis of Fatty Acid Composition of
Transgenic Bagasse Using TD-NMR
The fatty acid profiles of untreated and pretreated bagasse
residues are shown in Figure 4A. A decrease in the percentage
of palmitic acid (C16:0) and oleic acid (C18:1) in the pretreated
bagasse residue as compared to untreated bagasse indicates that
both low- and high-severity pretreatment release fatty acids in the
pretreatment liquor upon pretreatment. Pretreatment at 170°C
for 10 and 20 min recovered ~42% palmitic acid (C16:0) (a
decrease from 14 to ~8% C16:0 per g dry biomass), ~55%
oleic acid (C18:1) (a decrease from 38 to ~17% C18:1 per g
dry biomass), and ~30% linoleic acid (C18:2) (~9 to ~6% C18:2
per g dry biomass) in the pretreatment liquor. On the other hand,
high-severity pretreatment at 210°C for 10 and 20 min released
~42% palmitic acid (C16:0) (a decrease from 14 to ~8% C16:0 per
g dry biomass), 39% of oleic acid (C18:1) (a decrease from 38 to
~23% C18:1 per g dry biomass), and 20% of linoleic acid (C18:2)
(a decrease from ~9 to ~7% C18:2 per g dry biomass) in the
pretreatment liquor. The other fatty acids and lipid classes were
concentrated in the bagasse residue on pretreatment. This
observation is in agreement with that of the previously
reported study (Jia et al., 2020). Pretreatment temperatures
beyond 170°C exhibited no significant improvement in the
recovery of fatty acids in pretreatment liquor.

On the other hand, enzyme hydrolysis aided the recovery of
fatty acids other than C16:0, C18:1, and C18:2 by ~16% (a
decrease from 54 to ~45% per g dry biomass) and ~63% (a
decrease from 54 to ~20% C per g dry biomass) from 170°C and

210°C pretreated bagasse, respectively (Figure 4B). No further
recovery of palmitic (C16:0) or linoleic acids (C18:2) was
observed after saccharification. However, bagasse pretreated at
170°C and 210°C showed 1.3 and 2.1 times higher accumulation
of oleic acid (C18:1) in the bagasse residue post saccharification,
respectively.

Recovery of Fermentable Sugars From
Transgenic Oilcane 1566 Bagasse
Besides lipids for biodiesel, fermentable sugars for bioethanol and
various value-added bioproducts were recovered from the
transgenic oilcane 1566 bagasse. The study categorizes the
total sugar yield into solubilized and non-solubilized sugars.
The sugars recovered in pretreatment liquor represented the
solubilized sugar, while the yield of glucose and xylose
obtained post saccharification is denoted as non-solubilized
sugar as previously discussed (Maitra and Singh, 2021).
Untreated oilcane 1566 bagasse yielded 0.200 ± 0.042 g sugar
per g dry biomass on enzyme hydrolysis. Hydrothermal
pretreatment at 170°C for 10 and 20 min yielded 0.227 ± 0.004
and 0.268 ± 0.004 g sugar per g dry biomass on saccharification,
respectively. Pretreatment at 210°C for 10 and 20 min increased
the sugar yield by 1.9 times (0.388 ± 0.003 g/g dry biomass) and
2.3 times (0.457 ± 0.010 g/g dry biomass) post saccharification as
compared to the untreated biomass, respectively (Figure 5A).
The total fermentable sugar (solubilized + non-solubilized sugars)
increased from 20% w/w (untreated biomass) to 50% w/w
(pretreated at 210°C), demonstrating >80% recovery of total
sugar on pretreatment. However, with an increase in sugar

FIGURE 4 |Non-invasive analysis of the recovery of three important fatty
acids such as palmitic (C16:0), oleic (C18:1), and linoleic (C18:2) acids in the
bagasse residues before and after (A) hydrothermal pretreatment and (B)
saccharification using TD-NMR.

FIGURE 5 | (A) Total sugar recovered and (B) inhibitors generated
during hydrothermal pretreatment of transgenic oilcane 1566 bagasse.
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recovery, the yield of inhibitors, specifically acetic acid, also
increased significantly beyond the 170°C pretreatment
temperature (Figure 5B). The observation is in agreement
with that in our previous study that inhibitor generation
increases exponentially beyond 170°C in hydrothermal
pretreatment (Maitra and Singh, 2021).

Lipid and Ethanol Yield After Simultaneous
Saccharification and Fermentation (SSF)
Since ethanol has lipid-solubilizing property, simultaneous
saccharification and fermentation (SSF) were performed with
untreated and pretreated (170°C and 210°C for 20 min) bagasse to
examine the recovery of lipids in the post-fermentation broth as
observed in the corn dry–grind process (Moreau et al., 2010;
Luangthongkam et al., 2015). The release of lipids from the
cellulosic biomass after SSF is evident from the decrease in the
magnitude of T1 relaxation time of pretreated bagasse samples
(Table 1). A left shift in relaxation/intensity curves of the
pretreated bagasse residue after SSF in Figure 6A indicates a
reduction in the degree of freedom of lipid-associated proton
molecules of the pretreated bagasse samples (Maitra et al., 2021).
An increase in NMR intensity could be due to the contribution of
proton molecules from citrate buffer, yeast, or enzymes used in

SSF. The lipid released during fermentation can be present in
different forms, such as oil-in-water emulsion, oil inside
unbroken oil bodies, and oil droplets attached to cellulosic
biomass (Luangthongkam et al., 2015). However, unlike the
dry–grind process, due to the low lipid content in transgenic
oilcane 1566 bagasse, most of the lipids remained either attached
to or accumulated in the cellulosic biomass. Thus, an increase in
the total lipid content of the pretreated bagasse residue after SSF
was observed (Figure 6B). The fatty acid composition of the
bagasse residue after SSF was similar to that of post-
saccharification (Figure 6C).

The sugar and ethanol profiles of untreated and pretreated
bagasse during SSF are presented in Figures 6D–F. Oilcane 1566
bagasse pretreated at 170°C for 20 min resulted in the best
outcome for enhanced biofuel yield. It yielded a maximum
ethanol concentration of 15.3 g/l which is 23.7 and 92.1%
higher than ethanol obtained from untreated bagasse (11.6 g/l)
and bagasse pretreated at 210°C for 20 min (1.2 g/l), respectively.
Glucose and xylose were consumed simultaneously and
completely within 48 h of fermentation (Figure 6E). A
decrease in ethanol concentration after 55 h was observed that
could be due to the consumption of ethanol by yeast as a carbon
source after complete consumption of sugars (Figures 6D, E)
(Raamsdonk et al., 2001). It has been observed in several

FIGURE 6 | (A) T1 relaxation/intensity curves analysis of in situ lipids, (B) amount of total in situ lipids, and (C) fatty acid profile of lipids in the untreated and
pretreated bagasse residues after SSF. Sugar and ethanol profile of (D) untreated and hydrothermally pretreated oilcane 1566 bagasse, that is, (E) 170°C for 20 min, and
(F) 210°C for 20 min during SSF.
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fermentation studies with both Crabtree positive and negative yeasts
that once all the sugars in the fermentation medium are consumed,
yeasts start to consume sugar metabolism products as a carbon
source and proliferate slowly (Polakis and Bartley, 1965; Skoog et al.,
1992). Unfortunately, due to high concentration of inhibitors
(Figure 5B), yeast could not grow well on bagasse pretreated at
210°C for 20 min. No significant change in sugar consumption or
ethanol production was observed over 96 h of fermentation
(Figure 6F). High-severity pretreatment generates inhibitory
compounds that restrict the growth of yeast and reduce ethanol
yield (Figures 5B, 6F). Removal of inhibitors could improve the
fermentation efficiency of high-severity–pretreated bagasse.

DISCUSSION

Recovery and Stability of Lipids During
Bioprocess Steps
Plant tissues have a variety of lipid classes present in both bound
and free forms. Triacylglyceride (TAG) molecules in the
transgenic oilcane 1566 accumulate in the form of droplets
inside the vegetative tissues (Parajuli et al., 2020). Recovery of
a fraction of these free lipids in the pretreatment liquor decreases
the cost of subsequent solvent extraction. The present NMR study
showed that hydrothermal pretreatment and saccharification
release ~25% of total lipids in pretreatment liquor and

FIGURE 6 | (Continued).
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45–60% of the remaining lipids in hydrolyzate, respectively. The
remaining bound lipids in the cellulosic biomass can be extracted
at the end of the bioprocess using organic solvent extraction
(Huang et al., 2017).

Analysis of the stability of in situ lipids in the transgenic
cellulosic biomass upon pretreatment is critical to optimizing the
pretreatment parameters. To this end, time-domain proton NMR
spectroscopy can detect minute alterations in the degree of
freedom of oil-associated proton nuclei in the bagasse residues
after various pretreatment procedures. Changes can be observed
in the NMR intensity and the magnitude of relaxation time
distribution (Robinson and Cistola, 2014; Nikolskaya and
Hiltunen, 2020; Maitra et al., 2021). The T1 relaxation/
intensity curves also provide information on the
decomposition of lipids in the pretreated bagasse residue upon
pretreatment. In the previous study, the authors demonstrated
the effects of hydrothermal, dilute-acid, and alkali pretreatment
on model biomass systems (bagasse with externally added crude
corn oil). In the alkaline pretreated biomass, alkali caused
saponification of the oil in the biomass which resulted in
inconsistent relaxation/intensity curves, indicating the
decomposition of oil due to the saponification reaction
(Maitra et al., 2021). Unlike the NMR relaxation/intensity
curves of alkali-pretreated biomass, both low- and high-
severity hydrothermal pretreatment retain the stability of in
situ lipids (Figure 2).

The Composition of Lipids Recovered
Decides the Quality of Biodiesel
In addition to the stability of lipids, the lipid classes and the
fatty acid profile of the lipids in the transgenic bioenergy crops
are crucial as they decide the properties of biodiesel such as
oxidative stability, freezing point, heating value, lubricity,
kinematic viscosity, and cloud point (Knothe and Gerpen,
2005; Knothe, 2008). The approach of hyperaccumulation of
lipids in transgenic bioenergy crops also aims to improve the
percentage of desirable fatty acids. Therefore, during the
development and optimization of the pretreatment protocol
for transgenic bioenergy crops, it is necessary to analyze the
fatty acid composition of lipids after each step of
bioprocessing. TD-NMR provides a rapid and convenient
screening method during the initial developmental stages.
The TD-NMR technique utilizes the specific T1T2
relaxometry spectra of saturated (SFA), unsaturated (UFA),
and polyunsaturated (PUFA) fatty acids. Each fatty acid
exhibits distinct spectra due to the nanofluidity of the
hydrocarbon side chains and molecular properties
(Robinson and Cistola, 2014; Nikolskaya and Hiltunen,
2018, 2019). The fatty acid composition of seed oils is
routinely analyzed using NMR (Ebrahimi et al., 2017;
Engelsen and van den Berg, 2017; Gottstein et al., 2019).
The present study extends the application of the TD-NMR
technique for determining the fatty acid profile of lipids in
cellulosic biomass residues subsequent to each
bioprocessing step.

TD-NMR analysis of the oil-associated proton fluidity
(Figure 2) and fatty acid profile (Figure 4A) of untreated and
pretreated bagasse residues confirmed the release of lipid
molecules in the pretreatment liquor upon pretreatment.
However, bagasse residues obtained post saccharification
showed a relatively higher percentage of C16:0, C18:1, and
C18:2 fatty acids (Figure 4B). This can be attributed to the
deconstruction of the biomass residue to release sugars and
the accumulation of membrane-bound lipids in the remaining
bagasse residue. An increased fraction of C18:1 (oleic) was
observed in the pretreated biomass post saccharification. C18
unsaturated fatty acids are one of the predominant fatty acids in
plants. Since both pretreatment and saccharification solubilize the
structural carbohydrates, an increase in the percentage of oleic
acid (C18:1) in the pretreated bagasse residue after
saccharification can be attributed to its higher occurrence as
part of membrane-bound lipids (Reszczyńska and Hanaka, 2020).
A higher percentage of C18 unsaturated fatty acids, specifically
oleic acid in the lipids recovered from transgenic crops, aids the
improvement in biodiesel quality by balancing the oxidative
stability and cold flow of biodiesel without affecting the cetane
number (Knothe, 2009). Interestingly, genetically modification
expressed higher average values of oleic fatty acid in the
transgenic oilcane bagasse which is best suited for biodiesel.

Enhanced Biofuel Yield From Transgenic
Oilcane 1566 Bagasse
Both low- and high-severity chemical-free hydrothermal
pretreatment of the transgenic oilcane 1566 bagasse efficiently
recover lipids in pretreatment liquor and hydrolyzate, while
remaining lipids get concentrated in the bagasse residue that
could be recovered post fermentation for biodiesel production.
High-severity hydrothermal pretreatment (210°C for 10 and
20 min) improved recovery of various lipid classes as
compared to low severity pretreatment (170°C for 10 min)
(Figure 3A). However, unfortunately, high-severity
pretreatment produced >15%, >2.5%, >2% per g dry biomass
of acetic acid, HMF, and furfurals, respectively (Figure 5B). The
high concentration of inhibitory compounds restricted the
growth and fermentation process of yeast during SSF, which
limited the optimal production of bioethanol (Figure 6F), even
though the recovery of lipids (Figure 3A) and fermentable sugars
on saccharification was higher (Figure 5A). In hydrothermal
pretreatment, the amount of inhibitory compounds generated is a
function of biomass type, moisture content during pretreatment,
and pretreatment time and temperature (Ximenes et al., 2011;
Maitra and Singh, 2021). To this end, the low-severity
pretreatment of bagasse recovered comparable lipids, ~35%
w/w fermentable sugars, and significantly fewer inhibitory
compounds that resulted in enhanced biofuel yield (lipids for
biodiesel and bioethanol). Hence, hydrothermal pretreatment of
transgenic oilcane 1566 bagasse at 170°C for 20 min provides
optimum pretreatment conditions to balance the maximum
recovery of lipid and fermentable sugar and minimal
generation of inhibitors.
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CONCLUSION

The study evaluates and presents chemical-free hydrothermal
pretreatment at 170°C for 20 min as an optimized condition that
balances the maximum recovery of lipid and fermentable sugars
and minimal generation of inhibitors from oilcane 1566 bagasse.
The NMR relaxometry spectra revealed that hydrothermal
pretreatment prevents the decomposition of in situ lipids of
transgenic bioenergy crops during the recovery process.
Moreover, the study successfully demonstrates the application
of time-domain 1H-NMR spectroscopy in the field of
bioprocessing for quantification of total lipids in cellulosic
biomass, characterization of in-situ lipids into bound and free
fractions, and determining the fatty acid composition of cellulosic
biomass. The use of NMR spectroscopy has significantly sped up
the analysis.
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Lignocellulosic biomass has a complex, species-specific microstructure that governs heat
and mass transport during conversion processes. A quantitative understanding of the
evolution of pore size and structure is critical to optimize conversion processes for biofuel
and bio-based chemical production. Further, improving our understanding of the
microstructure of biochar coproduct will accelerate development of its myriad
applications. This work quantitatively compares the microstructural features and the
anisotropic permeabilities of two woody feedstocks, red oak and Douglas fir, using
X-ray computed tomography (XCT) before and after the feedstocks are subjected to
pyrolysis. Quantitative analysis of the three-dimensional (3D) reconstructions allows for
direct calculations of void fractions, pore size distributions and tortuosity factors. Next, 3D
images are imported into an immersed boundary based finite volume solver to simulate gas
flow through the porous structure and to directly calculate the principal permeabilities
along longitudinal, radial, and tangential directions. The permeabilities of native biomass
are seen to differ by three to four orders of magnitude in the different principal directions,
but we find that this anisotropy is substantially reduced in the biochar formed during
pyrolysis. The quantitative transport properties reported here enhance the ability of
pyrolysis simulations to account for feedstock-specific effects and thereby provide a
useful touchstone for the biorefining community.

Keywords: feedstock conversion, x-ray computed tomography, adaptive mesh refinement, pyrolysis, biomass,
transport phenomena, characterization, image analysis
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INTRODUCTION

Lignocellulosic biomass comprises a species-specific, highly
porous, and anisotropic microstructure that originates from its
function to transport and store water and nutrients throughout
the plant during its lifetime. After harvesting, this microstructure,
in tandem with the properties of the cell walls from which it is
composed, govern the physical properties of lignocellulosic tissue.
These features also influence important phenomena such as
intraparticle heat and mass transfer that underlie conversion
performance in biofuel and biochemical production processes
(Ciesielski et al., 2020). Pyrolysis is a thermochemical method for
converting biomass to molecular and oligomeric intermediates
(Kan et al., 2016) and is often limited by internal transport of heat
and fluid egress within particle pores (Pecha et al., 2019). Another
product of pyrolysis is biochar, a carbonaceous material whose
porosity is derived partially from the microstructure of the
original biomass and partially from the pyrolysis process itself.
Biochar has long been used as a soil amendment, (Lehmann,
2007; Verheijen et al., 2010), but has also found utility in
advanced applications including catalysis, (Lee et al., 2017),
adsorption, (Inyang et al., 2016), and electrochemical devices
(Jiang et al., 2013). All of these aforementioned applications rely
upon the transport of molecules, ions and/or thermal energy
throughout hierarchical porous structures, necessitating a
rigorous understanding of the microstructural transport
properties of biochar and its parent feedstocks. Indeed, Di
Blasi (1997) showed that differences in transport properties
including permeability and porosity significantly impact
pyrolysis product distributions.

Fundamental physical properties including permeability,
tortuosity, and void fraction constrain the diffusive and
advective transport that govern applications employing
biomass and biochar as substrates. In the context of pyrolysis,
intraparticle transport can affect the yield and distribution of
products, which highlights the importance of accurately handling
microstructural effects to achieve predictive models (Ciesielski
et al., 2015; Ciesielski et al., 2020). Direct analysis of the
microstructure of biomass feedstocks enables quantification of
structural features including permeability, tortuosity, and void
fraction to parameterize simulations for transport in porous
media (Ciesielski et al., 2021). High-fidelity models of biomass
conversion and biochar utilization require accurate transport
models to enable scale-up and to mitigate technoeconomic
risk of industrial deployment. Combined modeling and
experimental works have previously elucidated the importance
of directional permeability of biomass during pyrolysis (Di Blasi,
1998; Pecha et al., 2021). Other factors such as density and
orientation in a gas stream also impact pyrolysis product
quality and yield and have been investigated in studies such as
in Kumari et al. (2022) and Pecha et al. (2017), but were not
examined in this study as these properties can be measured
without detailed information of the 3D microstructure of the
material.

Accurate quantitative analysis of the microstructure of
biomass by traditional experimental methods is difficult to
perform. As discussed by Sun et al. (2021), the fidelity of

commonly used techniques for experimentally measuring
porosity or specific surface area, such as the density method
or physisorption, are negatively impacted by pore structure
breakage and undesired off-gassing that occur as functions of
the temperature and pressure of the testing environment.
Mercury intrusion porosimetry (MIP) is also commonly
used, (Plötze and Niemz, 2011), but mercury handling poses
significant safety concerns in the laboratory, and it can be
difficult to interpret and reproduce results. Furthermore,
particle size distributions may lead to misleading readouts
of multiple pore sizes that are not necessarily statistically
significant. For example, MIP tends to overrepresent the
bottlenecks, thus providing an estimation of the minimum
radius and not of the desired average radius (Holzer et al.,
2013). Both the density method and mercury porosimetry
provide limited information regarding geometric features of
the microstructure, such as pore connectivity and tortuosity.
Biomass tortuosity measurements are scant in the literature,
and the techniques employed are difficult and specialized
(Törnqvist et al., 2001). In the absence of such information
and the inability to assume simplified particle geometries,
some of us have previously assumed models of tortuosity as
a function of void fraction (Sitaraman et al., 2015; Thornburg
et al., 2020), although these assumptions extend beyond the
models’ intended derivations (Bruggeman, 1935; Millington
and Quirk, 1961; Thornburg et al., 2020). In all cases, the
sparse information available regarding biomass tortuosity and
void fraction applies only to the material’s fresh,
unconverted state.

Therefore, there is an emergent need to understand partially
and fully converted biomass structures to advance physics-based
modeling of such conversion processes. X-ray Computed
Tomography (XCT)-based techniques and the application of
numerical analyses described here provide accessible, direct
answers to these knowledge gaps. Refined measurements of
tortuosity and void fraction further enable accurate
determination of effective diffusivities, which in turn allow for
more robust assessments of reaction vs. diffusion limitations in
gas–solid (Pecha et al., 2021) and liquid–solid systems
(Luterbacher et al., 2013; Thornburg et al., 2020). Mechanical
approaches have also been used to measure some microstructural
properties. Envelope density analyzers can be used to measure
bulk density and thereby estimate particle porosity, also known as
the void fraction, defined as the ratio of the volume of void space
in a material to its total volume, though this method does not
measure pore structure. Directional gas permeabilities can be
measured with a Hassler cell and has been performed for various
wood samples (Comstock, 1970; Choong et al., 1974; Filomena
et al., 2014). However, these experimental approaches have their
limitations, and permeability measurement is a time-intensive
process that requires specially cut samples. These techniques are
likely not applicable to biochar, which is brittle and cannot easily
be shaped without damage.

Imaging methods offer a promising approach for
characterizing the microstructure of biomass. Confocal
scanning laser microscopy (CSLM), scanning electron
microscopy (SEM), and transmission electron microscopy
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(TEM) are commonly employed to visualize biomass
microstructure, yet each have their limitations (Ciesielski et al.,
2014). Sample preparation via microtomy for CSLM and TEM
can be challenging and may result in artifacts that significantly
affect the quality of the images (Boigné et al., 2022). While these
methods can be used to produce 3D information about
microstructure, by using z-stacking in the case of confocal
microscopy, stereo pairs for SEM, and tomography for TEM,
the reconstructions often suffer from limited resolution (Shah
et al., 2017) and/or missing regions (Bartesaghi et al., 2008) which
reduce confidence in measurements of pore geometry. X-ray
computed tomography (XCT) is a widely used imaging
method to analyze solid samples that produces 3D volumetric
images of the microstructure of materials. XCT can provide high
spatial resolution while mitigating optical limitations such as
beam steering or limited depth of field (Boigné et al., 2022). The
3D reconstructions provided by XCT permit detailed, non-
destructive, and direct characterization of the pore
microstructure of biomass without the need for any
histochemical treatments or intensive sample preparation.
Several recent studies have employed XCT to characterize the
microstructure of biomass. Sun et al. (2021) calculated the
porosity and pore size distribution of loblolly pine samples
from XCT reconstructions in a novel study, but important
features such as the permeability tensor, tortuosity, or void
fraction were not calculated. Boigné et al. (2022) analyzed
volume shrinkage within biomass during pyrolysis and
oxidation using real-time, in situ XCT, but the effects of
pyrolysis on transport properties were not quantitatively
investigated. Zolghadr et al. (2019) used XCT imaging to
characterize the microstructure of crystalline cellulose,
switchgrass, and tall fescue microspheres, calculating void
fraction and tortuosity but not directional permeabilities.

This study characterizes the microstructure of early wood
hardwood (red oak, Quercus rubra) and softwood (Douglas fir,
Pseudotsuga menziesii) samples, before and after pyrolysis, using
XCT imaging and quantitative numerical analysis to determine
the void fraction, pore size distribution, tortuosity factor, and
directional permeability. MesoFlow, our in house computational
fluid dynamics (CFD) solver, developed using the block
structured Cartesian adaptive mesh refinement library
AMReX, (Zhang et al., 2019), is used to simulate gas-phase
mass transport through the samples by directly importing sub-
volumes of the XCT reconstructions. These simulations
subsequently provide the principal permeabilities for each
sample. Segmented XCT sub-volumes are also imported into
the Microstructure Analysis Toolbox (MATBOX), (Cooper et al.,
2016; Usseglio-Viretta, 2022), an open-source MATLAB app
developed at NREL (available at https://github.com/NREL/
MATBOX_Microstructure_analysis_toolbox) to calculate void
fraction, pore size distribution, and tortuosity factor by
numerical analysis. To the authors’ knowledge, this is the first
study to import 3D volumetric geometries of biomass before and
after pyrolysis from XCT reconstructions into a CFD framework
for permeability characterization. A diagram of the XCT
workflow is shown in Figure 1, illustrating sample renderings
from the raw tomographic images to 3D reconstruction, and final
reduction to a sub-volume portion used for numerical analysis.

EXPERIMENTAL AND COMPUTATIONAL
METHODS

Samples and Experimental Set up
Four total samples were analyzed for this study: a native
hardwood red oak particle measuring 13.5 × 3.2 × 3.2 mm, a

FIGURE 1 | Diagram of XCT workflow. (A) Initial particle, native red oak photograph. (B) Raw image slice from XCT radiograph. (C) 3D Reconstruction of the full
particle from the raw images. (D) Cropped sub-volume used for numerical analysis and calculation of material properties.
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pyrolyzed red oak particle measuring 11.7 × 3.0 × 3.0 mm, both
provided by Iowa State University, a native softwood Douglas fir
particle measuring 2.0 × 2.0 × 2.0 mm provided by Forest
Concepts and Idaho National Lab and a pyrolyzed Douglas fir
particle of dimensions 4.0 × 2.4 × 4.1 mm provided by Forest
Concepts. The red oak and pyrolyzed Douglas fir particles were
imaged at the Colorado School of Mines using a Zeiss Xradia 520
Versa sub-micron XCT Scanner, while the native Douglas fir
particle was imaged using a General Electric (GE) Phoenix
vǀtomeǀx nano X-ray CT at Idaho National Lab.

The red oak dowels were pyrolyzed at 500°C under He in a
modified Frontier micropyrolyzer as described in (Pecha et al.,
2021) with a char yield of 19% after 90 s. The two Douglas fir
samples (25–35 mg) were pyrolyzed in a horizontal spoon reactor
under He at 500°C as described by (Christensen et al., 2017) for
5 min with char yields averaging 25%. At least 20 particles were
pyrolyzed for each Douglas fir sample and random char particles
were chosen for XCT imaging.

For the red oak and pyrolyzed Douglas fir XCT scans, each
sample was secured to a mount in the chamber of the scanner
using transparent adhesive tape for the larger red oak particles
and glue adhesive for the pyrolyzed Douglas fir sample. Tape was
not used to secure the Douglas fir sample to the mount because of
its smaller size, and the layers of tape negatively impacted the
contrast of the images. The X-ray source was tuned to emit with a
voltage of 40 kV, 3W power, and 75 µA current. The X-ray
source was positioned 37.1 mm away from the detector, with
the sample 20 mm away from the source placed between the
source and detector. A ×4 objective magnification was used
resulting in a 2 µm resolution for each scan, which was
determined by (Sun et al., 2021) to be the minimum
resolution to capture sufficient pore structure information.4

The scanner rotated the sample on the mount from 0 to 360
with an angular step size of 0.22°. X-ray radiographs were
captured at each angle with 15 s exposure. The total data
acquisition time for each sample ranged from 8 to 32 h, with
the larger red oak particles requiring longer acquisition times and
the pyrolyzed Douglas fir particle requiring the shortest
acquisition time.

The procedure of acquiring the 3D scan of the native Douglas
fir sample using a General Electric (GE) Phoenix vǀtomeǀx nano
X-ray CT system can be found in (Sun et al., 2021) and is briefly
described as follows. First, a sample particle is fixed onto a holder
in the system chamber and the holder is programmed to rotate
from 0 to 360° with an angular step size of 0.1°. Then radiographs
are collected at each angle. Using the phoenix datos|x CT data
acquisition software, the projections are then reconstructed to a
3D volume. The raw grey-scale image slices are exported from the
software. For the 3D scan in this work, four Douglas fir pine
particles are selected from the bulk samples produced by a Forest
Concepts Crumbler® rotary shear system. In the imaging stage,
several resolution settings, from 0.5 × 0.5 µm2 to 4 × 4 μm2 were
tested, and the 2.2 × 2.2 µm2 per voxel is the highest usable
resolution to preserve the fine voids in the microstructure. The
four 3D scanning processes resulted in four image stacks, each
containing 1,419, 1,518, 3,838, and 3,997 images. To avoid the
boundary effect in the porosity analysis, in each image stack a

region of interest (ROI) with size of 1.1 × 1.1 × 1.1 mm3 was
cropped from the center.

The raw XCT scans of each sample, excluding the native
Douglas fir which was imaged at Idaho National Lab, were
reconstructed using Zeiss’ proprietary software,
XMReconstructor, and were subsequently exported as tiff
image stacks using DragonFly Pro, (Object Research Systems
Inc, 2021), a Graphical User Interface (GUI) application for
analyzing and manipulating 3D XCT data. Each data set varies
in size due to size variations of the particles. The native red oak
data set contains 1,603 total images, where each image is a slice in
the z axis with x- and y-dimensions of 1,604 by 6,740 voxels. Each
image is 24 MB, resulting in a 34 GB size of the entire dataset. The
pyrolyzed red oak data set contains 1,515 total images measuring
1,521 by 5,825 voxels. Each image is 17.8 MB, culminating in a
27 GB dataset. The pyrolyzed Douglas fir data set comprises 1,383
images measuring 1,251 by 977 voxels. The images are 17.8 MB
each, for a cumulative size of 3.38 GB. The native Douglas fir data
set has 1,520 z-slice images, each with a size of 1,571 by
1,383 voxels and 4.17 MB. The total size of the native Douglas
fir dataset is 6.30 GB. All datasets were stored with 16-bit data
precision.

Each of the full particle reconstructions were cropped into
sub-volumes for direct import into MesoFlow and MATBOX
using DragonFly Pro. The native and pyrolyzed red oak data were
cropped to a cube measuring 6423 voxels, approximately
1.28 mm3. This reduced the size of each data set to 503 MB.
The native Douglas fir was binned by a factor of 2 and cropped to
a cube measuring 2503 voxels, approximately 1 mm3 reducing the
size of the dataset to 30 MB. The pyrolyzed Douglas fir data was
smaller and more irregular in size, therefore a rectangular prism
measuring 434 × 322 × 424 voxels, approximately 0.87 × 0.64 ×
0.85 mm3, was cropped from the data, reducing the size to
237.1 MB.

Gas Flow Simulations and Permeability
Calculations
The cropped sub-volumes of each data set are directly imported into
a CFD simulation using our in-house solver, Mesoflow, which is a
compressible finite-volume solver that uses immersed boundary
methods and structured Cartesian grids. Our solver is developed
on block structured Cartesian adaptive mesh refinement library,
AMReX, (Zhang et al., 2019), which has been recently employed for
several applications pertaining to combustion, (Sitaraman et al.,
2021b), multiphase (Sitaraman et al., 2021a; Musser et al., 2021) and
astrophysical (Almgren et al., 2020) flows. Gas-phase transport
simulations were run with flow in the longitudinal, radial, or
tangential directions using the cropped XCT sub-volumes as the
porous media. The National Renewable Energy Laboratory (NREL)
High-Performance Computing (HPC) system was used to run all
simulations. A total of 12 simulations were run, one with gas flow in
each of the three directions for each sub-volume of red oak and
Douglas fir before and after pyrolysis. In each simulation, a pressure
drop of 1,000 Pa (inlet pressure = 1 E5 Pa, outlet pressure =
1.01E5 Pa) was applied to either end of the sub-volume in the
direction of interest, with wall boundaries along the other two
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directions. This ensured gas flow only in the direction of interest, and
that the three principal components of the permeability could be
calculated in isolation. Air was used as the gas in all simulations, with
a viscosity of 1e-5 Pa s and a net molecular weight of 0.0289 kg/mol.
The native Douglas fir simulations were run with a 4-micron image
resolution for each voxel, while the pyrolyzedDouglas fir simulations
were run with a resolution of 2microns. A uniform 512 × 512 × 512
Cartesian grid was used in the native and pyrolyzed Douglas fir
simulations. These simulations were run on 128 nodes for a total
4,096 cores for 48 h to ensure the simulation reached steady state
with a 4 to 5 order of magnitude drop in momentum residuals. The
native and pyrolyzed red oak simulations were run with a 2-micron
voxel size, and a uniform 768 × 768 × 768 Cartesian grid. Twelve
nodes with 18 cores per node for a total of 216 cores for 240 h were
utilized for each of the red oak simulations. The number of nodes
used for the red oak simulations was less because the grid size was
larger: 128 voxels versus 32 voxels for the Douglas fir simulations.
More computational cells were utilized for the red oak simulations
because the data sets were larger with a higher resolution than the
Douglas fir datasets.

We solve the Navier-Stokes equations in the compressible
form on a Cartesian grid framework with an immersed boundary
method for resolving complex pore structures, given by:

zρ

zt
+ z(ρUi)

zxi
� 0 (1)

z(ρUi)
zt

+ z

zxj
(ρUiUj) � −zP

zxi
+ zτij
zxj

(2)

z(ρe)
zt

+ z

zxi
(ρe + P) � z

zxi
(k zT

zxi
) + z (τijvj)

zxi
(3)

where ρ, Ui, P, e, τij, k, xi represent fluid density, velocity,
pressure, total specific energy, viscous stress tensor, thermal
conductivity, and spatial coordinate, respectively. The
equations are closed using ideal gas law, total energy, and
Newtonian fluid assumption, given by Eqs. 4–6, respectively:

P � ρRT (4)
ρe � P

γ − 1
+ 1
2
ρUiUi (5)

τij � μ(zUj

zxi
+ zUi

zxj
) − 2

3
μ
zUk

zxk
δij (6)

where R, μ, γ are the gas constant, fluid viscosity and isentropic
exponent, respectively.

A modified advection upwind splitting method (AUSM)
scheme (Liou, 2006) suitable for low Mach number flows
along with second-order reconstruction and limiting (Tatsumi
et al., 2012) is used for hyperbolic flux discretization and a second
order central differencing scheme is used for viscous flux
discretization away from the immersed boundary. A second-
order explicit Runge-Kutta scheme is used for time advance until
a steady-state is achieved.

The XCT geometry, obtained as a voxelated file of intensities,
is first read into Mesoflow. A threshold intensity value obtained
from image processing is used to identify whether a voxel is a

solid or a void region. The intensity values were then extrapolated
onto the Cartesian grid and all points greater than the threshold
are identified as solid regions while the rest are in the fluid region.
The Cartesian grids used in this work are kept at a higher
resolution than the voxelated files for greater accuracy and
grid convergence. The hyperbolic and viscous fluxes were then
obtained at each Cartesian face that separates a fluid and solid cell
using a simple velocity reflection method which is first order
accurate.

Principal permeabilities were extracted from these
simulations for application in particle models that utilize a
pseudo-homogeneous assumption for internal pore structure
(Di Blasi, 1998; Gentile et al., 2017; Pecha et al., 2021). For each
particle, three simulations with dominant flow along each axis
were set up with a pressure inlet and an outlet along the
dominant flow direction and wall boundaries on the
transverse boundaries. To the other four boundaries was
applied a no flux condition to simulate the Hassler cell type
permeability experiments. The simulations were run to steady
state as determined by a decrease in calculated momentum
residuals of at least four to five orders of magnitude.
Permeability was extracted with the simple Darcy’s law
equation:

Ki � �Uiμ⎛⎜⎜⎝zP

zxi

⎞⎟⎟⎠
−1

(7)

where Ki is the permeability, �Ui is the surface averaged normal
fluid velocity and zP

zxi
is the average pressure gradient along flow

direction i.

MATBOXNumerical Analysis: Void Fraction,
Pore Size Distribution and Tortuosity
Calculations
Filtering, segmentation, and calculation of void fraction, pore
size distribution, and tortuosity factor were performed with the
open source software tool MATBOX (Usseglio-Viretta et al.,
2022). The image stacks of the cropped XCT sub-volumes of
each sample were loaded in tiff format into the MATBOX
Filtering and Segmentation module and segmented into 8-bit
tiff files with two phases: Phase 0 (void) and Phase 1 (solid) by
applying a threshold specific to each sample which was
determined by visually analyzing the images. Voxels with
intensities below the threshold value are considered void
space. An anisotropic diffusion filter developed by (Perona
and Malik, 1990) was applied to the full sub-volumes of all
of the datasets to smooth the data and reduce noise, except for
the native Douglas fir sample which did not require filtering.
The pore size distribution, void fraction, and tortuosity factor of
each sample were then calculated using the MATBOX
Microstructure Characterization module.

The volume fraction is calculated according to Eq. 8:

εk � 1
N

∑N

i�1v(i), with v(i) � { 1 if v(i) ∈ phase k
0 if v(i) ∉ phase k

(8)
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Where εk is the volume fraction of phase k, N is the total number
of voxels in the sub-volume, and v(i) is equal to one if it is an
element of phase k, and zero otherwise.

The tortuosity factors of the sub-volumes are calculated from
the ratio between the effective diffusion coefficient along the
longitudinal, radial, or tangential directions and the bulk
diffusion coefficient, and the porosity using TauFactor
developed by (Cooper et al., 2016). TauFactor calculates
tortuosity using a finite-difference based approach and fixed
Dirichlet boundary conditions. The algorithm first solves the
Laplace equation within the sub-volume in the direction of
interest, and the effective diffusion coefficient is obtained by
analyzing the concentration field via 1D Fick’s first law described
in (Laurencin et al., 2012). With these values, the tortuosity, τ,
along direction i can be solved for according to Eq. 9:

Deff,i

Dbulk
� ε

τi
(9)

Where Deff,i

Dbulk
is the ratio between the effective diffusion coefficient

along direction i and the bulk (free fluid) diffusion coefficient, and
ε is the porosity (void fraction).

Pore size distributions are calculated using the Euclidean
Distance Map Fitting Method (EDMF) described in (Usseglio-
Viretta et al., 2020). This method fits the diameter of a sphere
such that its Euclidean distance map cumulative function agrees
with the one calculated on the sub-volume, providing a
distribution of the distance of the void space to the nearest
solid surface calculated on the investigated medium. The
method provides a characteristic length relevant to be used as
a pore diameter to model transport mechanisms. Size

distributions are highly dependent on the numerical method
employed to calculate them, as thoroughly investigated in a
previous work (Usseglio-Viretta et al., 2020). EDMF exhibits
similar results with state of the art discrete particle size
algorithms, while being much faster to calculate, and does not
suffer from size underestimation of continuum particle size
distribution algorithm (Usseglio-Viretta et al., 2020).

RESULTS

3D reconstructions of native and pyrolyzed red oak and Douglas
fir particles were obtained via X-Ray computed tomography and
reconstruction software. Millimeter-size sub-volumes were
extracted from the reconstructions for direct importation into
MesoFlow gas-phase flow simulations and MATBOX for
numerical analysis. Figure 2 shows the full 3D XCT
reconstructions of each sample. The volume shrinkage due to
pyrolysis can clearly be seen comparing the native and pyrolyzed
samples. Figure 3 depicts the cropped sub-volumes from each of
the full particle reconstructions, along with longitudinal, radial,
and tangential slices of each sample. The species-specific
microstructures are revealed, as the native red oak exhibits a
fine pore (i.e., lumen) structure of fiber cells with large-diameter
vessel cell channels characteristic of hardwoods, while the native
Douglas fir exemplifies the highly regular pore structure
comprising arrays of axial tracheids characteristic of softwoods
(Ciesielski et al., 2015). Additionally, the effects of thermal
treatment on pore structure are apparent: pyrolysis degrades
the pore structure, increases void volume, and reduces

FIGURE 2 | Full particle reconstructions of each sample. (A) Native red oak, (B) Pyrolyzed red oak, (C) Native Douglas fir (D) Pyrolyzed Douglas fir. All scale bars
indicate 1 mm length.
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directional anisotropy, which is especially obvious in the red oak
slices. Despite the stark directional differences inherent to native
tissues, thermochemical conversion appears to obscure and even
erase several key anatomical features.

To quantify these species- and treatment-specific
observations, XCT sub-volumes were next subjected to
numerical analysis to estimate microstructural features before
and after pyrolysis. The calculated volume fraction and tortuosity

FIGURE 3 | Sub-volumes of each sample with longitudinal, radial, and tangential slices. (A) Native red oak sub-volume, (B) Pyrolyzed red oak sub-volume, (C)
Native Douglas fir sub-volume, (D) Pyrolyzed Douglas fir sub-volume, Longitudinal slices of (E)Native red oak, (F) Pyrolyzed red oak, (G)Native Douglas fir, (H) Pyrolyzed
Douglas fir, Radial slices of (I)Native red oak, (J) Pyrolyzed red oak, (K)Native Douglas fir, (L) Pyrolyzed Douglas fir, Tangential slices of (M)Native red oak, (N) Pyrolyzed
red oak, (O) Native Douglas fir, (P) Pyrolyzed Douglas fir. All scale bars indicate 400 µm length.

TABLE 1 | Calculated void fraction, directional tortuosity factors of the void phase, and directional effective diffusivity multipliers [see Eq. 9] of each species before and after
pyrolysis.

Property Native red oak Pyrolyzed red oak Native Douglas fir Pyrolyzed Douglas fir

Void Fraction 0.71 0.87 0.66 0.77
Material porosity, % [Literature values from Boigné et al. (2022)] 46.6 ± 0.8 76.6 ± 1.1 51.8 ± 0.8 78.2 ± 1.6
Longitudinal tortuosity factor 1.13 1.16 1.26 1.08
Radial tortuosity factor 2.47 1.29 16.7 1.99
Tangential tortuosity factor 6.00 1.39 38.5 4.02
Longitudinal effective diffusivity multiplier 0.62 0.75 0.52 0.71
Radial effective diffusivity multiplier 0.29 0.67 0.04 0.38
Tangential effective diffusivity multiplier 0.12 0.62 0.02 0.19
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factors of the void phase of each sample are reported in Table 1.
The void fractions of the native red oak and the pyrolyzed red oak
are overall larger in magnitude compared to those of the native
and pyrolyzed Douglas fir. This is likely because of the presence of
larger diameter pore channels in the red oak samples, while the
Douglas fir samples exhibit smaller pore channels overall. After
pyrolysis, a significant increase in void fraction is observed for all
samples. The Douglas fir samples show a 15.9% increase in void
fraction after pyrolysis, while that of the red oak show a 22.8%
increase in void fraction after pyrolysis. Previously reported
values of void fraction for Oak and Douglas Fir from Boigné
et al. (2022) are also listed in Table 1. The calculated values from
the current study agree with the previously reported values, with
slight variations likely due to variability of the material.
Particularly, our calculated value for the void fraction of red
oak is significantly higher than that reported by Boigné et al.
(2022). We attribute this difference to our sample being taken
from early wood red oak, which contains more vessel elements
than the bulk material and thus a higher void fraction.

Interesting trends are gleaned from the collection of calculated
tortuosity factors and the resultant effective diffusivity multipliers
(Eq. 9). First, the longitudinal direction of each sample shows the
lowest tortuosity factor, consistent with observations of the
permeability being highest in the longitudinal directions. This
is due to the relatively large vessels present in red oak and the
closely packed axial tracheid lumen of Douglas fir species
oriented parallel to the longitudinal direction, which promote
facile, direct flow (Comstock, 1970). The tortuosity factor in the
tangential direction is the highest for all analyzed samples, also in
agreement with the calculated values of permeability being lowest

in the tangential direction for all samples, because the tangential
direction is perpendicular to both the large longitudinal pore
channels and the smaller radial ray cells, therefore there are few if
any direct paths for flow in the tangential direction. Second,
pyrolysis decreases and nearly unifies all directional tortuosity
factors regardless of species by reducing the solid phase volume
and increasing void fraction, creating larger pore channels with
more direct paths for flow. Remarkably, post-treatment tortuosity
values are closely consolidated across all coordinates, as seen by
the tight agreement among effective diffusivity multipliers
following pyrolysis. Indeed, thermal treatment appears to
quantitatively erase many anatomical features, creating less
tortuous and more directionally uniform channels for heat and
mass transport within partially converted biomass particles.

Figure 4 shows color maps representing the distance to the
nearest solid phase surface for each sample normal to the
longitudinal and tangential directions. The warmer colors
indicate a longer distance to the nearest surface, while cooler
colors indicate a shorter distance. The centers of the largest pores
are deep red, reflecting that they are furthest from the nearest
solid surface, i.e., the cell wall. From these graphs and the results
of Table 2, one can qualitatively ascertain that pyrolysis increases
the size of the void space for both red oak and Douglas fir
samples; this finding is visualized by the increase in scale of the
colored regions in Figure 4. Additionally, the red oak samples
show a higher number of warm-colored areas due to the large
diameter pore channels characteristic of this species.

Figure 5 shows the fitted Euclidean distance map distribution
of the distances to the nearest solid surface for native and
pyrolyzed red oak in plot A) as well as native and pyrolyzed

FIGURE 4 | Distance-to-surface map of each sample normal to longitudinal and transverse directions: (A) native red oak normal to the longitudinal direction, (B)
native red oak normal to the tangential direction, (C) pyrolyzed red oak normal to the longitudinal direction, (D) pyrolyzed red oak normal to the tangential direction, (E)
native Douglas fir normal to the longitudinal direction, (F) native Douglas fir normal to the tangential direction, (G) pyrolyzed Douglas fir normal to the longitudinal direction,
(H) pyrolyzed Douglas fir normal to the tangential direction. Slices shown are taken from the middle of the analyzed XCT reconstruction sub-volumes. Note that the
scalebars are unique to each plot.
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Douglas fir in plot B). We note that these distances roughly
correspond to half the pore diameter, since they represent the
distance from the center of the pore to the nearest cell wall. The
distribution of distances to the nearest surface for native red oak
shows two peaks, one at 2.2 µm and the other at 4.5 µm. These
distances are characteristic of fiber and vessel cells, respectively,
present in the red oak microstructure. While the large vessel
elements are clearly visible in the XCT reconstructions and
distance maps, their relatively low abundance does not produce
a recognizable peak in the distribution function. The pyrolyzed
red oak distribution also exhibits these two peaks, although the
smaller peaks indicate that less of the void population occupies
these distances. Most of the population of pores in the native red
oak lies below 10 μm, while the pyrolyzed red oak has a larger
population beyond 10 µm. This is due to the increase in void
space that occurs during pyrolysis, therefore the pore sizes
increase, and their interiors are farther away from the nearest
solid surface. Similarly, the native Douglas fir distribution shows
peaks at 2 and 6.8 µm, representing the ray cells and tracheid
cells, respectively, present in the material. The peaks are
noticeably wider for the Douglas fir samples compared to the
red oak samples, suggesting that the sizes of the ray and tracheid
cells in the Douglas fir samples have more variance. There is a
higher population of void spaces beyond 10 µm in the native
Douglas fir compared to the red oak, likely due to the more
uniformly arrayed pore structures characteristic of the larger

tracheid and ray cells in the softwood tissue compared to the
sparser large-diameter vessel cells in red oak. Pyrolysis increases
the population of voids beyond 10 µm from the surface in the
case of both samples. Interestingly, the pyrolyzed Douglas fir
population exhibits a greater number of peaks at different
distances, suggesting that there are dominant pore sizes
arising from solid phase deterioration upon pyrolysis. The
sizes of such voids become more heterogeneous, with fewer
populations being concentrated in specific regions characteristic
to the large and small cell lumen domains observed for each
native species.

The dominant avenues for gas-phase transport in each
direction are visualized by the steady-state velocity magnitudes
obtained from the permeability simulations plotted in Figure 6.
For the softwood prior to pyrolysis, fluid transport expectedly
occurs primarily in the longitudinal direction, facilitated by axial
tracheids, while that in the radial direction traverses ray cell
channels. In the tangential direction, pits connecting adjacent
tracheid cells serve as the major conduits. Transport follows a
similar trend for the red oak samples, apart from the large vessel
elements providing the primary avenues in the longitudinal
direction. The radial and tangential native oak samples also
exhibited the lowest permeability values obtained in this study,
with values so low in some regions that they were below the
visualization cutoff, giving rise to partially unfilled velocity plots
for these two simulations.

TABLE 2 | Calculated permeability tensors for each sample. All values in units of m2 (i.e., m3·m/m2).

Direction Native red
oak calculated

Literature range
red oak

(0% moisture)Choong
et al. (1974)

Pyrolyzed red
oak calculated

Native Douglas
fir calculated

Literature range
Douglas fir/Pine

(5–9% moisture)Choong
et al. (1974)

Pyrolyzed Douglas
fir calculated

Longitudinal 8.76E-12 9.6E-12 to 6E-11 9.13E-12 1.36E-12 9E-13 to 3E-11 2.81E-12
Radial 3.64E-15 8E-16 to 3.5E-15 3.35E-13 1.81E-14 8E-17 to 2E-15 2.29E-13
Tangential 1.30E-15 4.5E-16 to 1.3E-15 8.98E-13 3.46E-16 1E-17 to 1E-15 1.32E-13

FIGURE 5 | Euclidean distance map probability density distribution of pore to surface distance of each sample. Plot (A) shows the distance to surface distribution
function of native red oak, shown in black, and pyrolyzed red oak, shown in red. Plot (B) shows the distribution function of native Douglas fir, shown in black, and
pyrolyzed Douglas fir, shown in red.
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The reduction in anisotropy due to pyrolysis is visualized by
the velocity magnitude plotted in Figure 6 and further reflected in
the calculated permeability values reported in Table 2. In the
native samples, the longitudinal direction has the highest
permeability by two to four orders of magnitude compared to
radial and tangential directions. By contrast, the pyrolyzed
samples differ only by roughly one order of magnitude
between longitudinal and tangential or radial directions. The
permeability of the Douglas fir sample increases in all directions
after pyrolysis, whereas the red oak particle exhibits a more
significant increase in the tangential and radial directions than
in the longitudinal direction after pyrolysis. This is consistent

with what can be visually ascertained from the slices in Figure 3,
and with the consolidation of directional tortuosity factors upon
thermal treatment (Table 1); the large pore channels in the
longitudinal direction of the red oak samples contribute
significantly to the permeability, and their growth proportional
to their initial size is not as significant as in the tangential and
radial directions, or as in the longitudinal direction of the Douglas
fir samples. Some of the smaller pores in the red oak sample may
also be more prone to plugging by plasticized char material
during pyrolysis than in the other directions, an effect which
may be further compensated by the creation of new macropores
within char domains.

FIGURE 6 | Visualization of permeability simulations at steady state for native and pyrolyzed Douglas fir and red oak XCT sub-volumes. Pressure gradients were
applied to only one of the longitudinal, radial, and tangential directions in each case. Velocity magnitudes less than 10−4 are below the visualization cutoff, hence the
partial renditions for the native red oak simulations in the radial and tangential directions.
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The permeability values computed from the transport
simulations shown in Table 2 yielded results that are nearly
within the range of values for red oak and Douglas fir reported in
the literature almost 50 years ago. It is interesting to note that for
red oak the ratio of longitudinal to axial permeability was
calculated as 2,406 and longitudinal to tangential as 6,738;
Choong et al. (1974) reported ratios of approximately 2000
and 1,500, respectively. For oak char, the calculated ratio of
longitudinal to axial permeability was 27 and the calculated
ratio of longitudinal to tangential permeability was 10.
Notably, greater macroporosity was evolved in the radial and
tangential direction than in the longitudinal direction, which only
increases by around 4%. This is consistent with observations that
biochar retains its longitudinal pore structure during pyrolysis in
part due to the catalytic effects of ash (Montoya et al., 2017). For
Douglas fir, the ratio of longitudinal to axial permeability was
calculated as 75 and longitudinal to tangential as 3,930; Comstock
(1970) reported ratios of approximately 10,000 and 50,000,
respectively. Additionally, for nearly all of the native wood
samples, the permeabilities calculated in this study fall within
the range of the reported values by Choong and Comstock, except
for the radial permeability of the native Douglas fir sample which
is higher by an order of magnitude. Although the origin of this
discrepancy is uncertain, it could potentially be attributed to the
specific geometry of the sub-volume investigated here, or to
differences in the sensitivity to very small flowrates of our
computational method and of the experimental method
employed by Comstock. The reported values for permeability
from the literature are measured from native biomass samples
and not representative of biochar, for which there are no values
reported in the literature to the authors knowledge.

DISCUSSION

In biomass pyrolysis, the effects of anisotropic transport
phenomena have become increasingly important for
sufficiently predictive models. Often, a suitable permeability
tensor is not considered due to a lack of viable data, especially
to describe its evolution over the course of pyrolytic conversion of
biomass. Di Blasi (1998) noted that this permeability tensor is
important for accurate predictions of conversion times and
intraparticle flow patterns with large particles in the
conduction-controlled regime. To confront this issue, our team
has previously constructed geometric approximations that
attempted to capture the dominant features that control
transport phenomena at the intraparticle scale, which were
assumed to be axial tracheids for softwoods and fiber and
vessel cells for hardwoods (Ciesielski et al., 2015). However,
the geometric models investigated in the aforementioned study
neglected important features such as ray cells and pits, which are
revealed by the current work to play a dominant role in
facilitating transport in the radial and tangential directions.
Additional recent work by some of us has empirically
investigated the importance of anisotropic permeability and
similarly concluded that large ratios of longitudinal to radial
permeabilities must be employed in numerical models in order to

agree with experimental results (Pecha et al., 2021). However, this
study did not include dramatic evolution of radial porosity
throughout the pyrolytic process that we observe here, due to
lack of quantitative microstructural information. The findings in
this work suggest that intraparticle transport models may be
improved by calculating the permeability tensor as a function of
conversion, wherein longitudinal permeability is marginally
enhanced, while new macroporosity emerges in the radial and
longitudinal dimensions.

Porosity and pore structure also play a role in reactor-scale
modeling. Current state-of-the-art reactor-scale models account
for changes in particle size and density, as the drag model for
particles is a strong function of these parameters. Recently,
particle rocketing due to explosive devolatilization along its
longitudinal axis has been observed for small particles in
benchtop reactor systems with high temperatures (1200°C),
which is evidently due to vapors escaping one end of a
particle at high velocities (Llamas et al., 2022). Evidently,
anisotropic pore structure and porosity evolution play integral
roles in the motion of particles inside of a high-temperature
fluidized reactor (Ciesielski et al., 2021; Lu et al., 2021; Llamas
et al., 2022; Lu et al., 2022).

Despite its advantages, there are still challenges associated with
the method of microstructure characterization described in this
work. The first is the sheer size of the data acquired and the time
required for acquisition: full particle reconstructions range from
around 4–35 GB, with up to tens of billions of voxels, requiring an
acquisition time exceeding 30 h for the largest samples. The large
size of the datasets makes transfer, analysis, simulation, and
visualization of the data computationally expensive and
arduous. This can be mitigated by downscaling the data by
sampling; however, most of the datasets we acquired could not
be down-sampled without losing crucial pore resolution.
Choosing smaller samples to image is another approach to
decreasing the size of the data acquired. Samples with
dimensions between 1–5 mm are ideal for reducing data size
and acquisition time while still being easy to handle and
representative of bulk microstructure. We addressed this issue
by cropping regions of the full datasets into smaller sub-volumes,
but this could arguably sacrifice the generality of our results as it
may not account for natural variations of extended
microstructures within the samples. However, the periodicity
and scale of the sub-volumes (~1 mm3) are sufficiently general
descriptors of the diversity of pore details, which typically exist on
the scale of a few microns (Forest Products Laboratory, 1953).
Even after cropping the full datasets into sub-volumes, Mesoflow
simulations required at least 50,000 CPU core-hours to achieve
steady state, using an abundance of high-performance computing
resources.

An additional limitation of the present study is the lack of
information regarding intra-cell wall transport, phenomena
which are expected to strongly depend on biomass speciation.
Pyrolysis products originate from the cell wall biopolymers and
must navigate out of the nanoporous wall matrix into the
macroporosity of the cell lumen prior to exiting the particle
(Carpita et al., 1979; Kojiro et al., 2010). Future studies could
confront this shortcoming using TEM tomography coupled to
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similar computational methods (Hinkle et al., 2015) to develop a
dynamic, intra-cell wall transport model that could be coupled to
bulk transport in a hierarchical transport simulation. It remains
unknown which of these length scales and expected species
dependencies may dominate observable pyrolysis performance
in laboratory measurements.

While this work provides datapoints regarding the microstructure
of biomass before and after pyrolysis, there still exists a knowledge gap
regarding the precise physics which underlie microstructural
evolution during pyrolysis. A truly game-changing simulation tool
would be capable of predicting the dynamic evolution of pore
structure as a function of initial pore structure, external heating
conditions, intraparticle transport phenomena, and overall extent of
pyrolytic conversion. Such a universal tool would enable a priori
selection of biomass feedstocks and design of pyrolytic processes to
achieve specific, optimized porosity for biochar applications, such as
soil remediation, adsorption, filtration, and catalysis. However, much
work remains to fully parameterize a pyrolysis simulation that
accurately predicts pore structure evolution, including quantifying
the mechanical properties of lignocellulose at different temperatures
and extents of conversion.

CONCLUSION

The current study stands as a proof-of-concept and exposition for
capturing particle-scale transport properties of native and
thermally treated biomass microstructures using non-destructive
XCT imaging paired with numerical analysis and CFD simulations.
Detailed characterization of transport properties of red oak and
Douglas fir is achieved, including the calculation of directional
permeabilities, tortuosity factors, pore size distributions, and void
fractions, along with the comparison of these properties before and
after pyrolysis. The quantitative microstructural values reported
here may be used to parameterize intra-particle transport
simulations for these biomass species before and after pyrolysis.
A crucial finding of this work is that the anisotropy of the
permeability exhibited by native wood tissue is largely
attenuated by pyrolysis, which in turn facilitates the creation of
unique macroporosity spatially distributed throughout char
coproduct domains. While the present findings are specific to
the two wood species characterized here, our methods are readily
extensible to other feedstocks of interest, such as grasses or
genetically modified energy crops, and to alternate conversion
strategies where permeability and physical transport properties
play governing roles.
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Flowability of Crumbler Rotary Shear
Size-Reduced Granular Biomass: An
Experiment-Informed Modeling Study
on the Angle of Repose
Ahmed Hamed1, Yidong Xia1*, Nepu Saha1, Jordan Klinger1, David N. Lanning2 and
Jim Dooley2

1Energy and Environmental Science and Technology Directorate, Idaho National Laboratory, Idaho Falls, ID, United States,
2Forest Concepts LLC, Auburn, WA, United States

Biomass has potential as a carbon-neutral alternative to petroleum for chemical and
energy products. However, complete replacement of fossil fuel is contingent upon efficient
processes to eliminate undesirable characteristics of biomass, e.g., low bulk density,
variability, and storage-induced quality problems. Mechanical size reduction via
comminution is a processing operation to engineer favorable biomass flowability in
handling. Crumbler rotary shear mill has been empirically demonstrated to produce
more uniformly shaped particles with higher flowability than hammermilled biomass.
This study combines modeling and experimentation to unveil fundamental
understandings of the relation between granular particle characteristics and biomass
flow behavior, which elucidate underlying mechanisms and guide selection of critical
processing parameters. For this purpose, the impact of critical material attributes, including
particle size (2–6mm), particle shape (briquette, chip, clumped-sphere, cube, etc.), and
surface roughness, on the angle of repose (AOR) of milled pine chips were investigated
using discrete element method (DEM) simulations. Forest Concepts Crumbler rotary shear
system is used to produce milled pine particles within the same size range considered in
DEM simulations. AOR of different sets of these particles were measured experimentally to
benchmark DEM results against experimental data. Specific energy consumption for the
comminution of biomass with different particle size and moisture content are measured for
technoeconomic analysis. Our results show that the smaller size (2 mm) of pine particle
achieves better followability (i.e., smaller AOR) while the energy cost of comminution is
significantly higher and bulk density is almost the same as the 6-mm pine particles. For the
2-mm particle size, Crumbles from veneer have better flow properties than Crumbles from
chips. Contrarily, no significant difference was observed between the AOR of the two
materials for the 6-mm particle size. Furthermore, from DEM simulations, mechanical
interlocking between particles was found as a dominant factor in determining AOR of
complex-shaped particles such as milled pine, which cannot be accurately captured by
using simple particle shapes (e.g., mono-sphere) with a rolling resistance model.
Conversely, clumped-sphere model alleviates this limitation without increasing
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computational cost significantly and can be used for accurate representation of biomass
granular particles when simulating free-flow behavior.

Keywords: angle of repose, discrete element method, mechanical size reduction, biomass feedstocks, Douglas fir

1 INTRODUCTION

The continuing global increase of energy demand dictates
exploring more energy resources and expanding the
utilization of available options, which should be accompanied
by improving the efficiency of the existing technologies. At the
same time, the rising concerns about climate change have led to
international initiatives that attempt to enforce the
decarbonization of energy systems by advocating the
transition to clean energy technologies. Accordingly, more
stringent constraints on greenhouse gas emission rates to
decelerate the global warming effect puts diminishing fossil
fuels in a least favorable position in the strategic planning for the
future energy roadmap (Renewable Energy Agency, 2018).
Bioenergy is a promising technology that can be a crucial
player in supplying the energy needs in the years to come
(U.S. Department of Energy Bioenergy Technologies Office,
2016). In addition to bioenergy, beneficial bio-based products
(e.g., chemicals and materials) are produced during biomass
conversion in the biorefinery, analogous to a petroleum refinery.
Although biomass is a versatile source of energy with the
advantage of being one of the few renewable energy sources
that can generate energy on-demand, there are several technical
challenges that need to be overcome before policy makers can
depend widely on this naturally abundant resource. For
example, unlike fossil fuel, the raw form of biomass is not
suitable for energy applications due to several reasons including
its low bulk density, low calorific value, high moisture and
oxygen content, high variability, and hydrophilic nature
(Ciesielski et al., 2020; Oyedeji et al., 2020). Consequently,
biomass preprocessing is imperative. In this regard, different
mechanical (e.g., size reduction and densification), chemical
(i.e., washing and leaching), and thermal (e.g., drying and
torrefaction) processes can be applied to produce high-
quality, uniform feedstock from lignocellulosic biomass
(Stelte et al., 2012). This is achieved through changing the
biomass physical properties and chemical composition in a
way that improves the biofuel conversion performance and
efficiency (Gao et al., 2021). Biomass preprocessing
techniques are energy intensive processes. Starting from the
pretreatment of the raw biomass materials, the energy produced
during the feedstock conversion must be much higher than the
overall energy consumed in manufacturing the fuel for the
biofuel to be economically competitive. In addition, logistics
operations (i.e., storage, transport, and reactor feeding)
represent another large component of the total cost of
generating bioenergy in the biorefinery. Moreover, poor
flowability of the biomass feedstocks can lead to process
upsets, such as jamming and clogging, during the handling
operations (Rackl et al., 2017; Jin et al., 2020; Xia et al., 2020; Lu
et al., 2021). This, in turn, can further increase the cost by

increasing the downtime. Therefore, optimizing all different
processes involved in the production of the biomass feedstock is
necessary for this industry to be viable on commercial scale.

Instead of depending on empirical techniques applying
univariate trial-and-error methods to reach this goal, Quality
by Design (QbD) is a science- and risk-based holistic approach
that can be employed to advance the product and process quality
in a streamlined, systematic way (Adam et al., 2011). In this
approach, the identification of the critical process parameters
(CPPs) and critical materials attributes (CMAs) is required to
develop a thorough understanding of the relation between the
final product quality and the involved materials and processes. In
addition, the sensitivity of the end-product quality to the
variation in these critical parameters should be determined.
Comminution, which comprises several mechanical size
reduction techniques such as impact, shear, or compression
forces, is an example of an energy consuming unit operation
used in the preprocessing of the biomass materials to change the
particle size and shape.

Inspired by the QbD approach, the present study investigates
the effect of the granular biomass particle characteristics on its
flow behavior by combining experimental and computational
work. More specifically, the Forest Concepts Crumbler® rotary
shear system is used to produce a set of “matched” bulk feedstock
samples from conifer veneer and chips that are used to compare
the effect of feedstock physical properties, such as particle size
and shape, on flowability properties, i.e., angle of repose (AOR).
After milling, the feedstocks were dried to less than 10 percent
wet-weight basis (%wb) in a low temperature (50°C) downdraft
tray dryer. One objective is to compare the attributes and
performance of similarly sized particles made from conifer
veneer and from Douglas fir chips. The target nominal particle
sizes are 6 and 2 mm geometric mean diameter. These represent
the most common particle size specifications for gasification and
catalytic fast pyrolysis, respectively. Both sizes are also used for
biochemical conversion, depending on the pretreatment process,
and are in the typical size range for thermochemical conversion of
lignocellulosic biomass produced from woody residues.
Furthermore, the specific energy consumption for
comminution of the biomass with different particle size and
moisture content of the feeds and products are measured to
facilitate a potential technoeconomic analysis (TEA). Bottomless
cylinder test is then used to measure the static AOR
experimentally for the different sets of the milled particles to
validate the simulation results. For the computational work, the
particle-based discrete element method (DEM) is employed to
examine the effects of the milled particle morphology models on
the granular flow behavior. In details, the impact of particle size
(2–6 mm), particle shape (briquette, chips, clumped-sphere, cube,
etc.), and surface roughness on the AOR of milled pine are
investigated.
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AOR, defined as the steepest slope measured from a horizontal
plane a heap of unconfined material can maintain without
collapsing, is one of the critical parameters used to
characterize the mechanical behavior of the granular materials
(Cheng and Zhao, 2017; Beakawi Al-Hashemi and Baghabra Al-
Amoudi, 2018). It depends on particle contacts and packing
arrangements and indicates the self-stability of the materials
under certain loading conditions and stress states. Therefore, it
is used as a design parameter in applications that depend on slope
stability such as bins and hoppers. For example, it is an important
index in the design of silos for stockpiling. Moreover, AOR can be
used as a quantitative indicator of material flowability. However,
several material attributes influence the AOR, which make
understanding the micro-behavior of the granular particles
essential to reliably predict the macro-behavior, because of the
interplay between various underlying mechanisms acting at
different length and time scales. Zhou et al. (Zhou et al., 2014)
found particle size as well as sliding and rolling frictions to be
significant factors controlling the angle of repose in the case of a
sand pile, while the bulk density, Young’s modulus, Poisson’s
ratio, and the damping coefficients played negligible roles. The
effects of lifting velocity and container shape on the repose angle
in a bottomless cylinder test were examined by Liu et al. (Liu et al.,
2014). They observed that the repose angle decreases when the
lifting velocity or the material height is increased. On the other
hand, the increase of the base roughness results in an increase of
the AOR. In addition, Nakashima et al. (Nakashima et al., 2011)
showed that the sensitivity of AOR to gravity is minimal. Many
DEM simulations of AOR considered simplified particle shapes to
improve the simulation efficiency and to reduce the
computational cost. To examine the validity of this
simplification, Chen et al. (Chen et al., 2019, 2020) studied the
effect of particle morphology on the angle of repose of ballast
materials. They concluded that simple particle shapes can
satisfactorily make a good prediction of the AOR in the case
of fine particles, where the particle size (rather than the particle
morphology) is the predominant factor in determining the
mechanical response. However, interlocking effects due to the
angularity on the particle surface become more important for
larger size aggregates. Liu et al. (Liu et al., 2014, 2020) used
ellipsoidal particles to understand the effect of particle shape on
flow behavior in cylindrical hoppers and it was found that
spherical particles with unity aspect ratio achieves the highest
flow rate, and that particle shape has a significant effect on the
discharge rate.

From the discussion above, it is evident that DEM is an adept
tool to tackle the AOR problem in granular materials. Its
significance relies on the fact that emergent dynamics from
the interplay between attractive interparticle forces (arising
from interatomic and intermolecular interactions) and contact
forces (due to friction and resistance to rolling and sliding along
the heap surface) are still poorly understood. Thus, without the
aid of numerical experiments, it is hard to make a theoretical
prediction about which attribute is more important in
determining the granular material flowability: particle size or
particle shape. This question becomes more important in the case
of milled biomass particles with their complex shapes and the

high energy consumed in the comminution process. The answer
to this question imposes an additional constraint that should be
considered in optimizing the system of biomass materials
preprocessing, feeding, and handling. The present work sheds
light on the impact of particle size and shape on the granular flow
behavior and the cost to produce such particle size in terms of the
specific energy consumption. The rest of the paper is organized as
follows: In the next section, the comminution process for Douglas
fir pine is explained, as well as the evaluation of specific energy
consumption data for the comminution process. In addition, the
bottomless cylinder test is described, and the computational
approach is detailed in the same section. In Section 3, the
DEM simulation results of AOR are presented and compared
with the experimental results. Moreover, the implications of the
particle size and particle shape are discussed, and the
computational cost of the DEM simulations is analyzed.
Finally, conclusive remarks are outlined in Section 4 along
with an outlook for future research directions.

2 MATERIALS AND METHODS

2.1 Comminution Process for Douglas Fir
Pine
Forest Concepts, LLC produced a set of “matched” bulk feedstock
samples from wood veneer and chips that were used to compare
the effect of feedstock particle characteristics on flowability
properties, i.e., AOR. A single, locally harvested, Douglas fir
tree was sectioned into logs and delivered to Forest Concepts
in March 2021. The veneer was made by Forest Concepts with its
centerless lathe from the Douglas fir logs freshly cut in Edgewood,
WA. The log sections were alternately assigned to two lots for the
wood veneer processing. The log lots were processed at separate
lathe settings to produce veneer with 2 and 6 mm nominal
thickness required for downstream processing. The softwood
wood chips were supplied at the same time by Shearer
Brothers in Shelton, WA for a second preprocessing stream.
All materials were comminuted using a Crumbler® rotary
shear milling and screening system to produce either the 6-
mm or 2-mm nominal particle size feedstocks.

A Forest Concepts Model M24S-30e rotary shear milling
system was used for preprocessing to produce Crumbles® from
the Douglas fir softwood wood chips and wood veneer, see
Figure 1 for a depiction of the Crumbler® rotary shear system.
Particles from wood veneer are observed to be more cubic, have
more surface checking, and have a more defined length than
particles produced from wood chips. Wood chips, on the other
hand, exhibited a needle-like shape. Figure 2 shows batches from
the different samples produced. In the case of veneer, particle
thickness is established by the thickness of veneer and particle
length is established by the cutter thickness, as the veneer is fed
into the rotary shear with the grain parallel to the cutter shaft
(i.e., cross-grain). Particle width is less defined as it is created by
particle breakage parallel to grain. In contrast, wood chips feed
into the rotary shear cutting heads at a random orientation since
the chips have nearly equal length and width. Recirculation of the
output from one rotary shear unit to another, or recirculation
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from a screen that has capability to sort by length enables
recutting of high-aspect-ratio particles into more cubic shapes.
Processing heads with appropriate cutter sets were used during
comminution to 6 and 2 mm nominal sizes. The Forest
Concepts standard 6-mm nominal size is produced by final
screening with a 12.5 mm (1/2-inch) round-hole top screen

and a 2.38 mm (3/32-inch) wire mesh bottom screen using the
Forest Concepts Model 2448 orbital screen system. The Forest
Concepts standard 2-mm nominal size is produced by final
screening with a 3.97 mm (5/32-inch) round-hole top screen
and a 0.76 mm wire mesh bottom screen. After milling to size,
each material was dried on trays in a Forest Concepts custom
cabinet-type downdraft dryer set for 40–50°C. Drying generally
took 12–16 h. Low temperature drying is used to avoid loss of
volatile organic compounds or otherwise thermally modify the
bulk materials. Raw Douglas fir wood veneer and chips had an
initial moisture content of 37–44 percent wet-weight basis (wb),
well above the fiber saturation level and typical of green wood.
After milling, and drying, the final feedstocks had a moisture
content between 6 and 10% (wb). Bulk density ranged from 124 to
151 kg/m3 at the final as-shipped moisture contents.

2.2 Comminution Energy Evaluation
Procedure
Although the main objective of this study is to quantify the effects
of particle characteristics on the flowability of Crumblers, the cost
of the comminution process is an equally important aspect that
should be always considered side by side with the mechanical
performance of feedstocks. To emphasize the importance of the
technoeconomic aspect in optimizing feedstocks performance,
the present section will be dedicated to cover the method of
calculating comminution energy as a mean to include the cost
factor in making recommendations about different Crumblers (as
will be shown later). Engineering design data for operational
biomass milling facilities needs to project the expected total
connected power needed to supply a comminution system.
The projected total connected power (total energy multiplied

FIGURE 1 | The Forest Concepts Crumbler
®
rotary shear system at Idaho National Laboratory.

FIGURE 2 | The four types of Crumbler comminuted Douglas fir pine
particle samples.
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by mass flow rate), or the total power needed at a machine
including inefficiencies, is a critical value for scaled plant design.
While we can directly scale the specific comminution energy from
one feed rate to another, the no-load power must be estimated
using engineering judgment or other heuristics. In the following
section, the method used to evaluate different parameters needed
to calculate the comminution energy will be explained. In
addition, implied assumptions will be outlined.

2.2.1 Mass Measurement and Normalization
To determine the as-processed moisture content, Forest Concepts
follows a practice of measuring the actual mass at the outfeed
from comminution equipment during energy experiments. A
sample of the outfeed material is either oven-dried using
50–500-g samples or tested in a rapid moisture analyzer
(Arizona Instruments Computrac® Max 4000XL) using 5–10-g
samples following standard protocols to determine the oven dry
mass of the material processed. The mass flow rate during
processing is then stated in terms of oven dry mass per unit
time, e.g., oven dry megagrams per hour equivalent (odMg/hour).

2.2.2 Total Energy (Measured)
Total energy is important because it is the most directly
measurable energy value from which specific and total
connected design energy are calculated. The as-measured total
energy is defined as themeasured connected electrical load energy
input into an actual machine used to conduct an energy
consumption experiment. While measuring the electrical feed
to a processing device, it is important to be aware that total energy
to get the mechanical power output must be adjusted for the
power factor. When processing biomass at partial load, total
energy will be overstated if voltage and amperage are the only
measurements taken. Power measurement must include volts,
amps, and phase angle when the machine is powered by an
electric motor to account for motor reactive power (power that
does not contribute to mechanical work, an artifact of electric
motor design). An extensive discussion of power measurement
and calculation is included in an American Society of Agricultural
and Biological Engineers (ASABE) paper published in 2011
(David N Lanning et al., 2011). The measured total energy,
ET, is given by

ET �
∑[(Ins tan taneous power) × ( 1

Sampling frequency)]
Oven dry mass at outfeed

(1)

Total energy is expressed in terms of energy consumed per
unit mass of material processed. A limitation of the total energy
method is that the reported energy consumption includes both
the specific energy used in actual processing and the drivetrain
energy due to friction in the motor, gearboxes, belts, chains, etc.
While the actual processing energy is expected to directly relate to
biomass feed rates, the drivetrain energy (also called no-load
energy) tends to be constant and essentially independent of
biomass loading rate. Total energy is thus dependent on
machine feed rates and does not scale well from laboratory
experiments to commercial-scale well-designed machine

systems. The no-load energy rate must be measured and
subtracted from the total energy to obtain the actual
comminution energy required for milling the material. This
value is called Specific Energy.

2.2.3 Specific Energy (Calculated)
Specific energy can be conceptualized as the amount of energy
that is consumed per unit mass of the process beyond what is
required to operate the machine with no material. It is the
energy that goes into the material to convert infeed particles
into smaller outfeed particles. This includes all energy
expended in reducing the size of the material, raising the
temperature of the material, particle friction, or changing
the material moisture content but does not include
drivetrain losses, bearing friction, or motor inefficiencies.
Specific energy is a critical design value as it is scalable. It
can be used to determine the energy requirements for both
large and small-scale operations. This value can also be
compared to other processes regardless of machine type,
quantity, or mass flow rate of material processed. Methods
for measurement are detailed in (David N Lanning et al., 2011).
Specific energy is often calculated from measurements of the
connected electrical load energy prior to processing biomass
(no-load energy) and during processing of the biomass (total
measured energy, as described above). Subtraction of the no-
load from the total during processing yields a reasonable
estimate of the specific energy, provided changes in power
factor and other drivetrain efficiencies are accounted for. The
specific energy, Es, reads

ES �
∑[(Ins tan taneous power − Avg.no load power) × ( 1

Sampling frequency)]
Ovendry mass at outfeed

(2)

2.2.4 Total Connected Design Energy (Calculated)
Specific-to-total energy or “S/T ratio” can be used to estimate
total connected design electrical energy load, ETCD, of a well-
designed plant from experimentally derived specific energy
according to Eq. 3. In this equation, design values for
commercial-scale processing facilities are calculated by adding
estimated drivetrain and motor inefficiencies to the specific
energy.

ETCD � ES

S/Tratio. (3)

The total connected design power, PTCD, is expressed as

PTCD � ETCD pMass Flow Rate. (4)
The value of the S/T ratio is determined based on experience

and is specific to machine configuration and power source
(electric, hydraulic, direct-drive, geared, pneumatic, etc.). A
specific hammermill may not have the same S/T ratio as a
rotary shearing Crumbler machine or a screen. For reference,
when fully and continuously loaded, the Crumbler M24 series
machines routinely demonstrate an S/T ratio of 70–85%. As
such, a reasonable S/T ratio value for the Crumbler machine is
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75% for an at-scale production facility with continuous
operation. All total connected design energies and powers
reported herein assume an S/T ratio of 75%.

Table 1 provides the values of the specific and design
comminution energy for the different particles, along with
the initial and final moisture content. As expected,
comminution energy was inversely proportional to target
particle size. Production of 2-mm nominal size particles
consumed approximately 6–8 times as much specific energy
as for 6-mm nominal size particle production. In these
calculations, design energy values assumed a 75% energy

efficiency for motors and drives powering the comminution
equipment. Thus, the comminution energy to produce 6-mm
nominal size particles is approximately 9 kwh/odt and the
energy to produce 2-mm nominal size particles is in the
range of 60–70 kwh/odt, depending on the processing
pathway. The energy consumed to produce the raw wood
chips is not known. We use the value of 5.5 kwh/odt
(19.9 MJ/odt) as reported in the literature (Papworth and
Erickson, 1966). The design energy for producing rotary
veneer from the logs was 9 kwh/odt for the 6-mm veneer
and 14 kwh/odt for the 2-mm veneer.

TABLE 1 | Moisture content and comminution energy for crumbles from wood veneer and chips feedstocks.

Nominal size/Raw format Moisture content (%wb) Comminution energy (kwh/odt)

Initial MC Final MC Specific ( ES) Design ( ETCD)

6 mm–Veneer 37 7.8 7 9
2 mm–Veneer 42 6.4 44 59
6 mm–Chips 44 8.9 6 9
2 mm–Chips 44 9.1 51 68

FIGURE 3 | Experimental setup and measurement technique of the static AOR (A) empty setup, (B) cylinder loaded with sample, (C) pile formation, and (D) direct
AOR measurement using digital protractor.
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2.3 Bottomless Cylinder Test and AOR
Measurements
The static AOR was measured experimentally at Idaho National
Laboratory (INL) for the different samples produced by Forest
Concepts. For this purpose, a bottomless (lifting) cylinder test was
utilized to contain the sample and generate the pile with little
disturbance and equal radial distribution. A hollow
polycarbonate cylinder, 7.5 cm in internal diameter and 38 cm
long, and a smooth stainless-steel surface (serving as a base) were
used for this set of experiments. The distance from the center
along the four principal directions was graduated to track the
onset and dimension of the pile base. During a typical
experiment, the cylinder was placed vertically at the center of
the stainless-steel surface shown in Figure 3A. The cylinder was
filled with a prepared material to a height of 30 cm, see Figure 3B.
This allowed about 8 cm of empty space to exist between the top
of the sample and the cylinder top base tominimize the end effect.
The cylinder was lifted manually with caution (slowly with a pull-
out velocity around 1.5 m/min). To minimize the human error in
the measurement and have a qualitative comparison, only a single
operator conducted the whole set of experiments. The material
formed a pile while being released from the cylinder as
demonstrated in Figure 3C. The static AOR was measured
from the pile by using two methods: i) direct measurement,
and ii) indirect measurement. In the direct measurement a digital
protractor was used with a readout to 0.1°, see Figure 3D. The
device was placed on the hypotenuse of the pile in at least four
different locations and the measurements were averaged. For the
indirect measurement the height (h) and the radius (r, taken as
the average of the four readings along the four principal
directions) of the pile were measured and used to calculate the
AOR from the relation αAOR � tan−1(h/r). Static AOR was
measured at least 10 times for each sample using different
batches to minimize the measurement error and material
variability. Table 2 lists the measured angle of repose values
for the milled wood veneer and chips feedstocks (2-mm and 6-
mm) along with the measurement errors.

2.4 Computational Approach: DEM Model
Description
The discrete element methods (DEM) used in the present study
refer to a family of computational models that are widely used to
simulate the dynamics of particulate materials and predict their
behavior. This method is of particular interest to problems
pertinent to granular flow, powder mechanics, and rock
mechanics (Cleary and Sawley, 2002; Scherer et al., 2016;

Zhong et al., 2016; Rackl et al., 2017). It was originally
introduced by Cundall and Strack (Cundall and Strack, 1979).
Like molecular dynamics (MD), DEM explores the temporal
evolution of its constituents in the phase space by solving the
Newton’s equation of motion. However, unlike MD, DEM does
not resolve the atomic structure. Instead, a DEM particle is a
granular or coarse-grained particle representing an ensemble of
material atoms and/or molecules at a length scale that typically
spans a range between submicron up to a few centimeters. Due to
the finite-size nature of DEM particles, rotational degrees of
freedom are considered explicitly and stateful contact is
trackable. DEM is relatively computationally intensive, and for
this reason many DEM studies employ simple shapes (mainly
single sphere) for the model particles. This common practice is
attributed to the reduction in the computational cost gained from
speeding up the force calculation and contact detection, in
addition to achieving efficient scaling performance on parallel
computers. To capture the actual particle shape effects on the
simulated dynamics, a rolling resistance model is usually invoked
with an adjustable parameter called the coefficient of rolling
friction (Abbaspour-Fard, 2004; Wensrich and Katterfeld,
2012). However, the accuracy of this practice is not clear and
requires the recalibration of the model parameters for different
particle shapes. To better approximate particles with complex
shapes, clumped-sphere model can be employed (Kruggel-
Emden et al., 2008). In this model, each particle consists of
several rigid base spheres connected by unbreakable bonds
and spatially arranged in a way that mimics the targeted
shape. Nevertheless, clumped-sphere models are not well
suited to model situations where the loading conditions can
lead to particle deformation. Another class of DEM
simulations make use of bonded-sphere models to account for
the deformability of the particles (Xia et al., 2019; Guo et al., 2020,
2021). The main difference between the clumped-sphere and the
bonded-sphere models lies in the nature of the bonds connecting
the base-spheres comprising individual DEM particles. Unlike
the clumped-sphere models, the bonds in the bonded-sphere
models can carry forces and moments and allow relative
displacements between the base-spheres by the act of external
forces. In addition, the bonds between the base-spheres can be
broken according to specific criteria, i.e., when the normal or
shear stress exceeds the bond strength. A recent review of the
state-of-the-art DEM models for the flow of milled biomass can
be found in (Xia et al., 2020). More information can also be found
in (Coetzee, 2017). In the present work, bonded-sphere models
were not considered, as particle deformation is not important in
the simulation of the bottomless cylinder test with the granular
material heap being unconfined and the gravitational force is the
only acting external force.

2.4.1 DEM Fundamental Model Formulation
The system dynamics in DEM is governed by the conservation of
linear and angular momentums. So, the translational and
rotational motions of particle i are given by, respectively,

mi€ri � ∑N

j�1Fij +mig (5)

TABLE 2 | Direct and indirect measurement of static Angle of Repose (AOR).

Sample Indirect AOR (°) Direct AOR (°)

2 mm Veneer 28.96 ± 2.99 34.75 ± 3.2
6 mm Veneer 34.55 ± 1.84 40.04 ± 1.33
2 mm Chips 37.54 ± 2.76 39.57 ± 2.12
6 mm Chips 36.7 ± 2.66 40.5 ± 3.18
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Ii _ωi � ∑N

j�1Mij (6)

In the above, the subscripts denote the particle index;m labels the
particle mass; r and ω are the position vector and rotational
velocity, respectively; F and M stand for the pairwise interaction
force and torque, respectively, exerted by particle j on particle i;
and g is gravity. In addition, N denotes the total number of
particles in the system. It is worth noting that particle self-
interaction is excluded, i.e., i ≠ j.

In the current work, the Hertz-Mindlin contact model (Hertz,
1882; Mindlin and Deresiewicz, 1953) is used to represent the
particle-particle interaction forces. In this model, the contact
forces have two components, namely, a normal force and a
tangential force. Each component is represented by the sum of
two terms accounting for elastic and damping forces. In the case
of the normal force, it consists of a spring force and a damping
force, while for the tangential force a shear force and a damping
force are utilized. It is worth noting that the shear force bears a
memory effect, as it depends on the history of the relative
tangential displacement between the two interacting particles
over the time they are in contact. Overall, the pairwise contact
force in Hertz-Mindlin model takes the form

Fij � Fij,n + Fij,t � (knδij,n − γnνij,n) + (ktδij,t − γtνij,t); (7)
with Coulomb friction limit imposed on the magnitude of the
tangential force. This yield

∣∣∣∣Fij,t

∣∣∣∣≤ f p
∣∣∣∣Fij,n

∣∣∣∣; (8)
where kn and kt denote the elastic constants for the normal and
tangential contacts; δij,n indicate the overlaps between the two
particles in the normal direction; δij,t represents the cumulative
relative displacement in tangential direction during the time the
two particles being in contact; γn and γt are the viscoelastic
damping constants for the normal and tangential contacts; ]ij,n
and ]ij,t label the relative normal and tangential velocities
between the two particles at the point of contact; fp is the
particle friction coefficient; Fij,n and Fij,t are the normal and
tangential contact forces, respectively.

The model parameters kn, kt, δij,n, and δij,t are computed from
the material properties through the relations (Guo et al., 2020)

kn � 4
3
Ê(R̂δij,n)1/2; (9)

kt � 8Ĝ(R̂δij,n)1/2; (10)

γn � −2
�
5
3

√
β(m̂Ê)1/2(R̂δij,n)1/4; (11)

γt � −4
�
5
3

√
β(m̂Ĝ)1/2(R̂δij,n)1/4; (12)

where the equivalent Young’s modulus (Ê), radius (R̂), shear
modulus (Ĝ), mass of two contacting spheres (m̂); and the
restitutions coefficients (β) are given by (Guo et al., 2020):

1

Ê
� 1 − ν2i

Ei
+ 1 − ν2j

Ej
; (13)

1

R̂
� 1
Ri

+ 1
Rj
; (14)

1

Ĝ
� 2(2 − νi)(1 + νi)

Ei
+ 2(2 − νj)(1 + νj)

Ej
; (15)

1
m̂

� 1
mi

+ 1
mj

; (16)

β � ln(e)���������
ln2(e) + π2

√ . (17)

In the above relations, ] is Poisson’s ratio; E denotes
Young’s modulus; R and m label the particle radius and
mass, respectively; e stands for the coefficient of the
restitution; and again, the subscripts i and j refer to the
particle index.

The torque exerted by particle j on particle i can be defined as

Mij � Mij,t +Mij,r +Mij,n. (18)
The three torque components on the right-hand-side of Eq.

14 refer to the torques generated by the tangential contact
forces, the rolling friction, and the normal contact forces,
respectively. The normal force contribution to the total
torque arises when its line of action does not pass through
the particle center. Moreover, asymmetric normal forces
produce the rolling friction torque, which always acts in the
opposite direction of the relative rotation between the two
particles to slow it down. Several physical mechanisms can
cause rolling friction to be present at the contact between two
particles or at the contact between a surface and particle.
Micro-slip and friction, plastic deformation, viscous
hysteresis, and surface adhesion are all examples of these
mechanisms (Ai et al., 2011). In addition, as discussed
earlier, the use of idealized spherical shapes in DEM
modelling requires considering rolling friction to account
for the shape effects due to the non-spherical nature of real
particles. A directional constant torque model is used for the
rolling friction description in the current work. As the name
suggests, in this model the pairwise torque is assumed to be
always acting in the opposite direction of the relative rotation
between the two interacting particles. Furthermore, the
magnitude of the torque depends linearly on the magnitude
of the normal contact force. Accordingly, the rolling friction
torque acting at the contact between two particles i and j can be
expressed as (Ai et al., 2011)

Mij,r � − ωi − ωj∣∣∣∣ωi − ωj

∣∣∣∣ μrR̂
∣∣∣∣Fij,n

∣∣∣∣; (19)

with μr being the coefficient of the rolling friction.

2.4.2 AOR Calculation Algorithm From DEM Data
Due to the discrete nature of the granular material with edgy
particles and broad range of grain size distribution, the
resulting material heap in the bottomless cylinder test is
always nonuniform. This deviation from a perfect conical
shape is intensified by the initial random packing of the
cylinder at rest. The non-ideal heap shape introduces a
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challenge in the analysis of the angle of repose from the DEM
simulation results, as the irregular outline curves make the
determination of the flank angle difficult, see Figure 4. So, for
high reproducibility of the analysis and for the evaluated AOR
to be reliable, a robust algorithm is needed with numerical
errors estimated (Fraczek et al., 2007; Liao et al., 2021; Müller
et al., 2021). In this study, an algorithm was developed to
achieve this goal. For this purpose, following (Müller et al.,
2021), the definition of the angle of repose was modified to be
the steepest average slope, measured from the horizontal
plane, a distinct volume of the unconfined material heap
can maintain without collapsing. The enhanced definition
accommodates the local variation of the slope arising from

the nonuniform heap and cohesive materials by avoiding the
overestimation of the angle of repose that occurs when the
steepest slope is used. It also accounts for the fact that some of
the granular particles may settle at locations far from the main
heap, which introduces error in the calculations of the slope.
Our algorithm consists of three main steps. They can be
summarized as follows:

1. Cluster analysis is performed using the centroid coordinates
of DEM particles after the end of the simulation, see
Figure 4B. A cut-off distance is used as the criterion to
determine whether a particle belongs to a given cluster. If
the distance between the particle and any of the particles

FIGURE 4 | Simulation set-up of the bottomless-cylinder test (A) and the clustering analysis of the formed heap based on a cut-off distance (B).

FIGURE 5 | The variation of the particles radial extent of the formed heap at different heap heights as a function of the azimuth angle using 2-mm chips particle
shape (case index #5 in Table 4) and the rolling friction coefficient of 0.5.
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belonging to the cluster under consideration is found to be
less than a factor of 1.1 multiplied by the sum of the two
particles radii, then the particle is assigned to that cluster.
This procedure is repeated until each individual DEM
particle in the system is assigned to a certain cluster. It is

worth noting that every DEM particle belongs to one and
only one cluster. Afterwards, the clusters are organized in
descending order according to their size, and the largest
cluster is considered the distinct heap volume and used for
further analysis. In this regard, in all simulations, one very

TABLE 3 | List of DEM particle shape models.

Particle shape model Template shape Dimensions Case index

Non-overlapping Clumped-spheres Cube Multi-sphere inside a cube with a side length of 2 mm (2 × 2 × 2 spheres of
D = 1 mm)

1

Multi-sphere inside a cube with a side length of 6 mm (2 × 2 × 2 spheres of
D = 3 mm)

2

Overlapping Clumped-spheres Cube Multi-sphere inside a cube with a side length of 2 mm (2 × 2 × 2 spheres of
D = 2 mm)

3

Multi-sphere inside a cube with a side length of 6 mm (2 × 2 × 2 spheres of
D = 6 mm)

4

Clumped-sphere chip 1 × 2 × 4 [mm3] (1 × 2 × 4 spheres of D = 1 mm) 5
3 × 6 × 12 [mm3] (1 × 2 × 4 spheres of D = 3 mm) 6

Briquette 2 mm length 7
6 mm length 8

Single Cube 2 mm side length 9
6 mm side length 10

Single Cuboid 1 × 2 × 4 [mm3] 11

Single Sphere 3 mm in diameter 12
6 mm in diameter 13
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large cluster containing at least 70% of the total number of
the particles in the system was always observed, in addition
to a much smaller, scattered clusters.

2. To evaluate the average radial extent of the particles within the
heap, the volume enclosing the largest cluster is discretized.
The discretization scheme employs the cylindrical
coordinates. It works by first dividing the total height along
the vertical z direction into 20 equally spaced slabs, and then
the angular domain within each slab is divided into small bins
with an azimuth angle increment of 5°. Within each element of
volume, the particle with the farthest radial distance is located,
and this radial distance (measured from the heap center) is
used as the maximum particle radial extent for that volume
element. Next, the average of the collected radial particle
extent from different elements of volume at the same
height (within the same slab) is calculated and used for
further analysis. Figure 5 shows the variation of the radial
particle extent versus the azimuth angle at different heap
heights obtained from the analysis of a selected
simulation case.

3. The heap slope is finally found by carrying out a linear regression
using the data points calculated in the previous step comprising
pairs of the average radial particle extent and the associated
height. Figure 6 depicts the angle of repose calculated from the
slope of the fitted line along with the raw data and the error in the
estimated angle of repose due to the fitting error. The raw data
appearing in Figure 6 was generated from the same simulation
case used in Figure 5.

3 DEM SIMULATION RESULTS AND
DISCUSSION

3.1 Simulation Setup
As was highlighted earlier, several particle shape models were
considered in the current DEM simulations. They consist of three

clumped-sphere models (i.e., a cube composed of eight
overlapping base-spheres; a cube composed of eight non-
overlapping base-spheres; a chip composed of eight base-
spheres arranged in a two-row by four-column layout), in
addition to four individual particle shape models
(i.e., briquette, cube, cuboid, and sphere). The overlapping and
non-overlapping clumped-sphere cube models share the same
shape. However, they differ in the surface roughness. On the
other hand, the surface roughness of both the non-overlapping
clumped-sphere cube and the clumped-sphere chip models are
the same. Table 3 lists all particle shape models along with their
dimensions and schematic diagrams. In addition, all DEMmodel
parameters are listed in Table 4. It is worth mentioning that for
every case shown in Table 3 two different sets of simulations were
conducted: one with a rolling friction coefficient of 0.5 (as listed in
Table 4) and the other with no rolling resistance (i.e., μr � 0).
Figure 4A shows the dimensions of the mesh used in the
simulations to represent the cylinder surface, which is
composed of triangular elements. To be comparable with the
physical experiment setup, the diameter was set to 7 cm, while the
height was taken as 35 cm. The ratio between the cylinder
diameter and the maximum particle size is large enough to
minimize the boundary effects. To confirm that, a separate
simulation was performed using the particle shape model with
the largest size (case index #4) and a larger bottomless cylinder
with a diameter as twice large as the original cylinder diameter
(14 cm) and the same height (35 cm). No difference in the
obtained AOR was observed. To initialize the simulation, a
random packing algorithm was used to fill the whole cylinder
by DEM particles from one of the considered shape models.
The packing stage was controlled by the particle volume
fraction with a targeted value of 0.6. This is followed by an
equilibration step for 1 s, where the cylinder was kept
stationary and resting on an impenetrable horizontal base.
During this equilibration stage, the DEM particles move
downward inside the cylinder under the influence of gravity
causing the top region of the cylinder to become completely
empty, while the porosity of the bottom region continues to
decrease. The transients induced by the particles
rearrangement ends after the system being completely
relaxed and all the particles become motionless, which

FIGURE 6 | Determination of the static AOR by fitting a linear relation
between the heap height and the averaged heap radius using the discretized
angular domain scheme shown in Figure 5.

TABLE 4 | Material and contact model parameters used in DEM particle
simulations.

Parameter Value (default)

Particle density [kg/m3] 300
Particle Young’s modulus [Pa] 1 × 106

Particle Poisson’s ratio 0.3
Boundary density [kg/m3] 7850
Boundary Young’s modulus [Pa] 1 × 1011

Boundary Poisson’s ratio 0.3
Rolling friction coefficient 0.5
Particle-particle friction coefficient 0.7
Particle-boundary friction coefficient 0.3
Particle-particle restitution coefficient 0.3
Particle-boundary restitution coefficient 0.3
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usually occurs in a fraction of one second. Afterward, the
bottomless cylinder test starts by lifting the cylinder upward
with a constant velocity of 1 cm/s, which is close to the value
reported in the physical experiment. The DEM simulation

continues for an additional period of 10 s. This time was found
long enough for all particles in each simulation to reach a
complete stop. A timestep size of 1 microsecond was used in all
simulations.

TABLE 5 | Comparison of the rolling resistance effect on the simulated AOR for different Clumped-spheres particle shape models.

Case index With rolling resistance
(μr = 0.5)

No rolling resistance
(μr = 0)

1

4

6
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TABLE 6 | Effect of rolling resistance on the AOR for different single particle shape models.

Case index With rolling resistance
(μr = 0.5)

No rolling resistance
(μr = 0)

7

9

11

13
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The DEM simulations of the bottomless cylinder test were
performed using two different software. LIGGHTS-INL (Idaho
National Laboratory, 2021), which is a capability extension of
LIGGGHTS (LAMMPS improved for General Granular and
Granular Heat Transfer Simulation) open-source DEM
particle simulation software (Kloss et al., 2012), was utilized
to simulate the clumped-sphere shape models as well as the
single sphere shape model. Rocky DEM (Fonte et al., 2015; Xia
et al., 2021) was employed to simulate the rest of the shape
models considered in the current work. The main reason for
using two different software is because of the difference in the
available particle shape features supported by the two software.
For example, contrary to Rocky DEM, the briquette shape was
not available in LIGGGHTS-INL. Nevertheless, LIGGGHTS-
INL efficient parallel computing capabilities make it more
suitable for the computationally intensive simulations such
as the ones adopting clumped-sphere models, with the total
number of elementary particles in the simulation system
scaling up by a factor of eight for the same DEM particle
size. This remarkable increase in the system size dictates the
use of high-performance computer (HPC) for an affordable
computational time. To verify that results obtained from the
two different software are comparable, the simulation of the
particle shape model No. 13 (which adopts a single sphere
with a diameter of 6 mm as the DEM particle) was carried
out using the two software. In this comparison, the obtained
angle of repose (from the set of simulation with the rolling
resistance model invoked) was used as the criterion to assess
the degree of agreement between the simulation results
from the two software. A repose angle of 32.01° ± 0.95° was
predicted by LIGGGHTS-INL, while the value obtained
from Rocky DEM was 31.75° ± 0.89°. The good agreement
indicates results obtained from the two different software

packages can be directly compared without affecting our
conclusions.

3.2 Particle Shape Impact on AOR and
Underlying Mechanisms
One of the main objectives of this study is to understand the
effect of particle shape on flow behavior of granular material.
Table 5 presents the formed material heap for the three
different clumped-sphere models [visualized with OVITO
(Stukowski, 2010)], with and without the rolling resistance
model invoked. In addition, the angle of repose analysis for
each case is also shown in the same table. By examining the
angle of repose obtained from the different clumped-sphere
shape models, we find the values range from 28° to 45° with a
numerical error that is smaller than 1°. It is evident that the
values are high enough to reasonably represent milled biomass
materials response. The chip model achieved the highest values
for angle of repose, while the overlapping clumped-sphere
cube model resulted in the lowest values. This trend was
persistent regardless of the particle size. Furthermore, the
effect of rolling resistance model on the angle of repose was
minimal in all the clumped-sphere models. This was a strong
indication that at a given particle size a different mechanism
other than the rolling resistance controls the slope of the
formed heap. Due to the complex-shape nature of the
clumped-sphere models associated with high surface
roughness, mechanical interlocking mechanism was
considered as the culprit in the degradation of the
particulate material flowability in the case of these shape
models. This is consistent with our observation that for a
particle having a cubic shape of a given size the angle of repose
was always higher when non-overlapping base spheres are

FIGURE 7 | Particle size effect on AOR: the static angle of repose for the different particle shapes considered in the present study versus the effective particle radius
using rolling friction coefficients of 0.5 along with the experimentally measured values for Veneer and Chips.
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used. This is attributed to the high surface roughness achieved
in this case when compared with the case of overlapping base
spheres.

To confirm the role played by the mechanical interlocking
mechanism, Table 6 shows the effect of the rolling resistance
model on the bottomless cylinder test results for the case of single

FIGURE 8 | Computational cost of the DEM simulations for different particle shape models (A) the total computational cost versus the total number of base-
particles (i.e., the total number of particles multiplied by the number of base-sphere for the clumped-sphere shapes), and (B) the computational cost normalized by the
system size versus the effective particle radius.

TABLE 7 | Computational cost of DEM simulations for different particle shape models.

Case index Total no.
of base-particles

No. of
nodes

No. of
CPU cores/node

CPU time (hours) Total computational time (processor-
hours)

With rolling
friction (μr = 0.5)

Without rolling
friction (μr = 0.0)

With rolling
friction (μr = 0.5)

Without rolling
friction (μr = 0.0)

1 752328 8 24 160.5 161.4 30816.0 30988.8
2 34488 1 24 10.1 9.6 242.4 229.9
3 243984 8 24 52.5 49.4 10080.0 9481.6
4 12248 1 24 5.1 5.0 123.3 120.9
5 726320 8 24 200.7 190.6 38529.1 36583.8
6 28592 1 12 12.4 11.9 148.2 142.7
12 54349 4 24 10.2 7.0 977.5 676.1
13 6033 2 24 2.2 1.7 103.1 83.2
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elementary particle shape models. By looking at the AOR values
for the same particle shape with and without rolling resistance, it
can be discerned that rolling resistance plays the key role in
determining the slope in the case of these shapes. For example, by
activating the rolling resistance mechanism, the AOR elevates
from values below 15° to above 30°. The absence of any
contribution from the mechanical interlocking mechanism in
these cases is ascribed to the smoothness of the surface of their
particles, which asserts the importance of accounting for the
surface roughness of the real granular materials for a reliable
prediction of the repose angle. In addition, this behavior
emphasizes the importance of adopting rolling resistance
model in conjunction with the simple particle shape models,
in agreement with the common practice in DEM simulations.
Accordingly, in the rest of this study, the comparison between the
prediction of the different shape models will focus on the results
obtained from the simulations with the rolling resistance
activated.

By closely examining the impact of the aspect ratio of the
particle dimensions on AOR, we realize that needle-like particle
shapes have the highest AOR among all the considered particle
shape models. For instance, both the non-overlapping clumped-
sphere cube and clumped-sphere chip models consist of eight
base spheres of the same size with the only difference being about
their layout. However, we see clearly that the chip shape results in
a larger angle of repose. The angle of repose for the briquette
particle shape asserts the same remark. This is consistent with our
experimental measurements showing Crumbles from chips
exhibiting slopes larger than the Crumbles from veneer (for
which the particles resemble a cubic shape). On the other
hand, the smallest AOR obtained in the DEM simulations
coincides with the single sphere adopted as the DEM particle
shape model. This is related to the features of the spherical shape
with its highest symmetry and smoothest surface containing no
edges. In agreement with our observation, Zhou et al. (Zhou et al.,
2014) analyzed the stress distribution for different particle shapes.
They found a significant influence of the particle shape on the
magnitude of the pairwise normal contact force. The spherical
shapes exhibited the smallest magnitude with normal pressure
distribution, showing a relatively constant value in the central
region. Unlike spherical particles, a more pronounced stress dip
was observed in the case of the non-spherical particles.

3.3 Particle Size Effect on AOR.
Another factor that influences AOR is the particle size. In the
present study, we investigated the size effect using both numerical
and physical experiments. Figure 7 combines all AORs obtained
from the simulation of different particle shape models along with
the experimental data for veneer and chips particles. In this
regard, for the sake of comparison with the simulated AOR,
experimental results obtained from the direct measurement
method was used, see Section 2.3. The reason behind the
choice of this method is its compatibility with the developed
algorithm used in the slope analysis of the simulation results. For
each DEM particle shape model, two different particle sizes were
simulated. The results are plotted versus the effective particle
radius. For the clumped-sphere models and particle shapes with

aspect ratio different from one, the effective size was taken to be
the radius of the sphere with equivalent volume. The effective
particle radius lies in the range between 1 and 5 mm, with the
overlapping clumped-sphere shape model having the largest
effective size. For all the modeled shapes, the static AOR
increases with increasing the particle size.

It is apparent that the values of simulated AOR obtained using
the non-overlapping clumped-sphere cube shape model is in a
good agreement with the experimentally measured values for
Crumbles from veneer, while the clumped-sphere chip model
achieves the best agreement with the Crumbles from chips.
However, we would like to emphasize that the assessment of
which particle shape models agrees better with experiment based
solely on the value of AOR can be sometimes misleading. For
example, recalibrating the rolling friction coefficient can render
other shape models (i.e., the briquette, cube, and cuboid shapes)
good candidates to reproduce the experimental data for a given
particle size. Nevertheless, the significant difference between
these different shape models belongs to the variation in the
sensitivity of the AOR to the change in the particle size. This
serves as strong evidence that particle size should not be regarded
as a completely independent parameter in the description of
AOR. It is correlated with other factors such as particle shape and
surface roughness. So, the dependence of AOR on the particle size
is implicit but not explicit. Thus, using simpler shape models
along with the right particle size and calibrated rolling resistance
coefficient does not guaranty reliable prediction of the flow
behavior of the granular materials when the particle size is
changed. In this regard, our experimental results indicate that
Crumbles from chips have minimal sensitivity to the size effects,
which is unlike the case of Crumbles from veneer. This suggests
that as far as the mechanical characteristic are concerned,
accurate estimation of the particle size is more important in
the case of Crumbles from veneer. In addition, Crumbles from
chips can tolerate a wider range of particle size distribution
without affecting its flow properties.

In agreement with our findings, anecdotal results from various
labs and researchers suggest a preference for using feedstocks
from veneer over feedstocks from chips. The most-stated benefit
is that veneer-derived feedstocks flow very easily through hoppers
and screw feeders. The uniform particle length of veneer-based
particles and high surface checking are believed to enable more
precise tuning of reactors, resulting in higher yields and higher
quality products. However, the cost of producing veneer-derived
feedstocks is perceived to be higher than for particles from chips.
Also, chips are widely available and can be made from branches,
small diameter stems, and short rotation trees; however, veneer
can only be made from bole wood of sufficient diameter to be
economical (typically 125 mm or greater for centerless lathes and
250 mm or greater for spindle-type lathes).

Before we conclude this discussion, it should be noted that our
DEM contact model assumes cohesionless particles, which should
be deemed appropriate given the fact that the Crumbles used in
the experiment were dried to small values of moisture content.
Nevertheless, in other scenarios where cohesion is not negligible,
additional attractive forces should be added to the DEM contact
model. For those scenarios, the relation between the angle of
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repose and the particle size could show the opposite trend using
the same simulation setup. For example, Elekes and Parteli
(Elekes and Parteli, 2021) constructed a semi-empirical
formula for such scenarios, which predicts the static AOR as a
function of the particle size over a large span of length scale. They
used experimental data as well as DEM simulations for this
purpose. Given the varieties of particle shape models
considered in the present study and the persistent trend
exhibiting larger AOR for bigger particle size, capturing the
opposite behavior should be mainly attributed to the
incorporation of attractive forces in the contact model itself.
This type of force can arise due to particle cohesion induced by
moisture content, for example, or because of the Van der Waals
forces originating from intermolecular interactions. The
contribution of the Van der Waals forces to the particle-
particle interactions is mainly important at a much lower
length scale with particle sizes less than a few microns (Elekes
and Parteli, 2021). This reported opposite trend serves as
additional evidence that the dependence of AOR on the
particle size is implicit. Furthermore, the relation between the
particle size and AOR can alternate trend by changing the values
of other influential parameters.

3.4 Analysis of the DEM Simulations
Computational Cost on HPC.
As noted earlier in Section 3.1, HPCs were used to perform the
clumped-sphere shape models simulations via LIGGGHTS-INL.
In this regard, Sawtooth, the latest INL supercomputer, was
utilized for these sets of simulations. Sawtooth uses CentOS
platform and consists of 2079 compute nodes with each
compute node having two Intel Xeon 8268 CPUs (each CPU
comprises 24 HPE SGI 8600 cores) and 192 GB of RAM. In this
part, HPC computational resources for the different simulated
cases is furnished. For the sake of comparison, mono-sphere
shape model simulations were also performed on HPC to
establish a reference case. Table 7 provides a detailed
information about the computational resources used for each
simulation, which includes the number of compute nodes, the
CPU cores count per node, and the CPU time. In addition, the
computational system size in terms of the total number of base
spheres is also reported in the same table. Moreover, the
computational cost, taken as the total computational time in
the unit of Processors-hours, is listed. Total computational time
was evaluated by calculating the multiplication product of the
total number of CPU cores used and the CPU time.

Figure 8A depicts the relation between the computational cost
and the system size for the different particle shape models, with
and without the rolling resistance model invoked. As would be
expected, higher computational cost is needed to simulate larger
systems. However, invoking the rolling resistance model does not
introduce any remarkable computational cost except for the case
of the mono-sphere shape model. This indicates the additional
cost needed to calculate the extra term in the contact model
accounting for the rolling resistance is minimal. Moreover, it
suggests the relatively higher cost in the case of mono-sphere
model is attributed to the communication time overhead and the

populous neighbor lists associated with activating the rolling
resistance model. This overhead originates from the denser
material heap formed in that case, remember that the AOR
for a mono-sphere model with a rolling resistance is higher
than the case without a rolling resistance by a factor of two. It
is worth noting that the absence of the rolling resistance in the
case of mono-base DEM particles with smooth surface causes
some of these particles to roll away from the main material pile
and form isolated small clusters, which introduces computing
load imbalance among the CPU cores. Nevertheless, the load
balance feature available in LIGGGHTS-INL adjusts the size of
the processor subdomain to balance the number of particles and
thus the computational loads continue to be evenly distributed
across the computational resources. Apparently, the dynamic
load balance successfully minimized the impact of the
scattered particles on the computational cost.

To facilitate the comparison between the computational cost
of different particle shape models, a normalized metric was
utilized. The normalized computational cost was plotted versus
the effective particle radius, as shown in Figure 8B. For the
vertical axis, the computational cost was normalized by the
system size and has the unit of processor-hours per base-
sphere A careful examination reveals all clumped-sphere
models exhibit an increase in the normalized computational
cost regardless of the state of the rolling resistance model.
However, the rate of increase of this computational cost is
different. Moreover, the clumped-sphere models outperform
the mono-sphere model for the larger effective DEM particle
size (smaller system size). Nevertheless, this behavior changes for
the smaller particle size with the mono-sphere model having a
cost lower by a factor in the range of 2–3. This suggests the major
component contributing to the overall computational cost differs
for the larger particle sizes from the smaller ones. For the larger
particle size, particle shape models that produced higher repose
angle incurred lower normalized computational cost. To the
contrary, the situation is quite the opposite for the smaller
particle size, with the clumped-sphere chip model possessing
the highest normalized computational cost. This could be
attributed to the nonlinear increase in the coordination
number by increasing the system size and the associated
increase in the computing time spent in calculating the
pairwise interactions between particles in direct contact. This
is augmented by the increase in the communication time across
compute nodes, since a higher number of compute nodes is
needed to simulate a larger system size. This effect is expected to
be more prominent in the case of heaps with higher density,
i.e., larger AOR. On the other hand, for a smaller system size, the
temporal evolution of system dynamics with particles exploring
larger region in the spatial domain makes neighbor list updates
more frequent, and it turns out this contribution to the overall
computational workload becomes more significant. This is
accompanied by the decrease in the workload required to
compute particle-particle interaction forces. Hence, the
computational cost under such circumstances will be higher
for systems with smaller AOR.

The analysis of the used computational resources presented
herein demonstrates the computational efficiency of clumped-
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sphere models for force calculations and contact detection. Even
for simulation cases of the clumped-sphere models that are more
expensive than the corresponding mono-sphere case, the increase
in the computational cost is moderate. Furthermore, this
comparison does not account for one more aspect that
pertains to the minimum feature size resolved by each model.
Although different shape models used similar effective particle
sizes, clumped-sphere particle shape models possess higher
resolution, as the base-sphere size is much smaller.
Accordingly, the moderate increase in the computational cost
associated with the use of some of these shape models is still
affordable for the length scale under consideration and is
completely justified by the more accurate physical behaviors
captured through these particle shape models.

4 SUMMARY AND FUTURE OUTLOOK

Angle of repose (AOR) is an important macroscopic parameter
that can be used to characterize the free-flow behavior of
granular materials. The AOR is not an intrinsic material
property, as it depends on several extrinsic factors including
particle characteristics, which can be engineered to control the
flowability of these particulate materials. In the case of
lignocellulosic biomass, identifying the underlying
mechanisms controlling its mechanical behavior and
determining influential parameters is crucial for the
optimization of preprocessing and handling unit operations
without compromising feedstocks performance or conversion
efficiency. Promoting fundamental understandings of the
impact of the critical material attributes on the biomass
feedstocks response can guide the selection of the critical
processing parameters. This progress will render bioenergy
technologies economically competitive and enable their
deployment at the commercial scale. Thus, advances in
bioenergy research will allow this energy source to play a
vital role in shaping the clean energy portfolio to meet
increasing global energy demands while satisfying the
proposed measures to mitigate climate changes.
Comminution is one of the costliest and energy-intensive
operations in the preprocessing of biomass feedstocks. So,
the present study employed an integrated experimental and
computational approach to investigate the effects of particle
shape and size on the AOR using Forest Concepts Crumbler®
rotary shear system to produce two reduced particle sizes of
conifer veneer and Douglas fir, i.e., 2 and 6 mm. The
bottomless cylinder test was conducted in the laboratory
and simulated using discrete element method (DEM) to
evaluate AOR. Simulated AOR for different particles shapes
and sizes were compared and benchmarked against
experiment. In addition, the specific energy consumption
for the comminution of produced Crumbles and moisture
content for different particle sizes were also measured and
reported. Moreover, the impact of additional factors on AOR,
e.g., surface roughness and rolling resistance were investigated.

Our experimental results showed that while the smaller size
(2 mm) of pine particles achieves better followability

(i.e., smaller AOR), the energy cost of comminution is
significantly higher, and the bulk density is almost the same
as the 6-mm pine particles. In addition, 2-mm Crumbles from
veneer have better flow properties than 2-mm Crumbles from
chips, which was ascribed to the difference in particle shape.
To the contrary, no significant difference was observed
between the AOR of the two geometries when the 6-mm
particle size was utilized. In addition, Crumbles from chips
exhibited minimal sensitivity to variation in particles size.
Furthermore, the DEM results identified the mechanical
interlocking between contacting particles as the dominant
factor in determining the AOR in the case of complex-
shaped particles such as milled pine, which cannot be
accurately captured by using simple particle shapes (e.g.,
mono-sphere) in conjunction with a rolling resistance
model. This is attributed to the correlation between the
sensitivity of AOR to the variation in particle size and
particle shape. Hence, the use of simple particle shapes
along with a rolling friction coefficient calibrated with
experimental data for a given particle size will not be
adequate to predict the AOR for a different particle size. To
the contrary, the clumped-sphere model alleviates this
limitation without significant increase in the computational
cost and can be used for accurate simulations of biomass
granular flow. This was evidenced by the better agreement
achieved with the experiment by using clumped-sphere
particle model with a layout mimicking the shape of the
corresponding Crumble. In addition, the minimal
dependency of clumped-sphere models prediction on the
contribution of rolling resistance mechanism to the particle-
particle interaction asserts the adequacy of these models to
predict AOR. This observation indicated the role played by
other underlying mechanisms arising from particle
morphology and motivated the investigation of surface
roughness and aspect ratio effects on AOR. The DEM
results confirmed that for the same particle shape, higher
surface roughness leads to larger AOR. Similarly, using
different configurations having the same composition of
base spheres within clumped-sphere shape models indicated
that the deviation of the aspect ratio from one gives rise to a
larger repose angle. This is found consistent with the observed
trend highlighting the increase of repose angle with the particle
size. All remarks concluded from the DEM simulation results
were found in good agreement with our experimental findings.

In conclusion, the present study investigated quantitatively the
impact of particle characteristics of dry milled pine on its flow
behavior and illustrated the importance of adopting
experimentally validated computational models to explore
regions in topological space that could be inaccessible to
experimentation. In addition, the coupling of the
computational approach to the experimental work elucidated
the underlying mechanisms and their individual contributions to
the mechanical behavior of this granular material. However,
developing reliable predictive models to this multivariate
problem dictates accounting for many factors. Several future
directions can be considered to achieve this goal, which can be
summarized as follows.
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• As noted, AOR is not an intrinsic material property, so the
influence of other factors such as moisture content, porosity,
and temperature need to be examined.

• Regardless of the shape model used in the present study, a
persistent trend was observed regarding the relation
between particle size and predicted AOR for the same
amount of material: the larger the particle size the larger
AOR. Capturing scenarios under which this trend is
reversed requires incorporation of the attractive forces
(for example Van der Waals force) in the description of
the contact model in DEM simulations. This is expected
to be more important for small particle sizes at or below
the microscale and/or for wet particles.

• AOR could be an effective indicator of the flow behavior of
granular particles. However, the prediction from this
indicator should be limited to stress-free circumstances.
For applications where external stresses are expected to
be affecting the behavior of the material, a more reliable
indicator is needed. This requires extending the scope of the
study to probe the viscoplastic response of the materials
under consideration to account for inelastic deformation
processes. DEM models that account for these effects are
available, e.g., (Chen et al., 2022), and will be considered in
future studies.

• The selection of the set of optimal process parameters can
be performed through a comprehensive technoeconomic
analysis. This, in turn, requires a thorough quantification
of the impact of critical material properties on different
aspects of the feedstock, from the time of harvesting the
raw biomass all the way up to its service-time in the
conversion reactor. This includes optimizing for material
handling, transportation, and preprocessing operations
in conjunction with the feedstock performance and
thermochemical conversion efficiency in the
biorefinery. Accordingly, engineering particle
characteristics for favorable flowability is only one
criterion in a multi-objective optimization problem
that should include other characteristics such as the
chemical and thermal behavior.
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Comparing Calibration Algorithms for
the Rapid Characterization of
Pretreated Corn Stover Using
Near-Infrared Spectroscopy
Zofia Tillman and Edward J. Wolfrum*

Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, United States

Rapid characterization of biomass composition is a key enabling technology for
biorefineries—the ability to measure the chemical composition of biomass materials
entering the biorefinery as well as the composition of key process intermediate streams
would allow real-time process control and the development of robust models to predict
process performance. The utility of near-infrared (NIR) spectroscopy for rapid
characterization requires multivariate algorithms for building calibration models. The
most prevalent algorithm used for building calibration models using NIR spectra is the
linear modeling algorithm Partial Least Squares Regression (PLS). Nonlinear regression
algorithms (which are typically more computationally intensive than linear modeling
approaches) have gained popularity in recent years due to their ability to solve a wide
variety of classification and regression problems and the dramatic increase in available
computational resources. In this work, we demonstrate that a calibration model can
predict the composition of corn stover process intermediate samples pretreated with
three different treatments—hot water (HW), dilute acid (DA), and deacetylation followed
by dilute acid (DDA). We quantitatively compare three different algorithms for building
prediction models based on near-infrared spectroscopy—partial least squares (PLS),
support vector machines (SVM), and random forests (RF). We demonstrate the utility of
improving model performance by accounting for instrument performance variability
using repeated measurements of standard materials (e.g., the “repeatability file”
strategy) and investigate its performance with nonlinear regression techniques, and
we discuss methods for quantifying the uncertainties of specific predictions among the
three methods.

Keywords: NIR, rapid analysis, corn stover, pretreatment, chemometrics, biomass

1 INTRODUCTION

Rapid characterization of biomass composition is a key enabling technology for biorefineries—the
ability to measure the chemical composition of biomass materials entering the biorefinery as well as
the composition of key process intermediate streams would allow real-time process control and the
development of robust models to predict process performance. There is substantial literature on the
use of spectroscopic methods such as near-infrared (NIR) spectroscopy for rapid biomass
characterization going back several decades (Abrams et al., 1987; Sanderson et al., 1996; Kelley
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et al., 2002; Tsuchikawa, 2007; Labbe et al., 2008; Tsuchikawa and
Kobori, 2015) and including some comprehensive reviews (Xiao
et al., 2014; Skvaril et al., 2017).

The use of NIR spectroscopy for rapid characterization
requires multivariate algorithms for building calibration
models (Höskuldsson, 1988; Beebe et al., 1998; Pasquini,
2018). The most prevalent algorithm used for building
calibration models using NIR spectra is Partial Least Squares
Regression (PLS). PLS is an extension of multiple linear
regression and uses feature extraction to produce new latent
variables (principal components) composed of linear
combinations of the original variables that describe the
majority of the variance correlated with the outcome of
interest (Höskuldsson, 1988). While originally developed for
the field of econometrics, PLS has been used in chemometrics
since the 1970s, and is currently a standard method for NIRS
regression (Geladi and Kowalski, 1986).

Nonlinear regression techniques have demonstrated utility in
solving a wide variety of classification and prediction problems.
In recent years their usage has increased due to a combination of
dramatically increased availability of high-performance
computing (HPC) tools and access to open-source
implementation of these algorithms in computing languages
such as R and Python. Support Vector Machines (SVM)
(Awad and Khanna, 2015) and Random Forest (RF) (Breiman,
2001; Fawagreh et al., 2014) are two such nonlinear machine
learning techniques. SVM regression expands upon the support
vector machine classification technique (Cristianini and Shawe-
Taylor, 2000) to fit a hyperplane that minimizes the residuals
outside a defined error margin (ε-margin). In the training
process, a cost parameter, C, is chosen, which defines the
penalty for residuals above a certain value. SVM can be used
to explain linear and nonlinear relationships through the use of
kernel functions (Cristianini and Shawe-Taylor, 2000; Awad and
Khanna, 2015). Radial bias functions (RBF) are often used with
training sets having nonlinear relationships between dependent
and independent variables. RBF functions require the additional
tuning of the parameter σ, which controls for the level of
nonlinearity in the model. Random Forest Modeling develops
individual decision trees based on a randomly chosen selection of
predictors and then aggregates tree results to determine the
outcome of interest. The user must decide upon the number
of predictors to use in each model, and the number of models (the
number of trees) to include in the forest (Breiman, 2001).

There have been direct comparisons of the performance of
these regression techniques with NIR spectral data. RBF-SVM
was found to be statistically significantly better than PLS at
predicting soil quality parameters in spectral data sets greater
than 1,000 samples, as evidenced by reductions in RMSEP of
14%–29% (de Santana et al., 2021). A study using NIR to
quantify caffeine content in tea samples found a 9%
improvement in RMSEP from SVM as compared to PLS
(Chanda et al., 2019). RF was found to be statistically
significantly better than PLS at predicting soil quality
parameters from a regionally diverse soil spectra database,
with improvements ranging from 8%–16% RMSEP (de
Santana et al., 2018). RF led to improvements in the

predictive modeling of petroleum products (paraffin,
naphthene, and total aromatic wt%) in naphtha and
gasoline samples of up to 18% SEP compared to PLS, and
RF was more robust against overfitting than PLS for outcomes
with narrow ranges (Lee et al., 2013). It may be that the success
of these nonlinear approaches may be related to the presence of
nonlinear relationships between NIR spectra and the primary
analytical measurements.

The strategy of using a “repeatability file” to reduce the impact
of instrument and environmental changes on spectral variability
over the long term was introduced over 30 years ago (Shenk and
Westerhaus, 1991). It has been demonstrated to decrease the
effect of spectral variance associated with instrument and
environmental (e.g., temperature, humidity) variability in
partial least squares regression. These variabilities are more
prominent and important to account for in samples that
inherently contain water, such as biomass (Near-Infrared
Spectroscopy in Agriculture, 2004). This approach uses
repeated measurements of external materials to create a
collection of spectra. The difference of each spectrum in the
collection from the collection mean value are then calculated.
These difference spectra are appended to the mean-centered
calibration or training set (with appropriate weighting factors)
and assigned the mean composition values for the training set.
These “repeatability” spectra thus capture any spectral variation
that is not correlated with compositional changes because the
composition of these external materials does not change over
time. The difference spectra represent uncontrolled
environmental or instrumental variability. Including these
spectra in the calibration set explicitly quantifies measured
spectral variation not associated with sample composition
variability.

To our knowledge, a comparison of how the nonlinear
regression algorithms SVM and RF perform at predicting key
biomass compositional attributes (structural carbohydrate,
lignin, and ash content) in pretreated corn stover samples
across a variety of pretreatments has not been demonstrated
previously. Furthermore, the effect of the “repeatability file”
strategy to control for instrument and environmental variance
using nonlinear regression algorithms (rather than PLS) has not
been demonstrated. In this work, we thus extend the existing
literature in the following ways –

• We demonstrate that a single calibration model can predict
the composition of corn stover samples subjected to three
different pretreatments—hot water (HW), dilute acid (DA),
and deacetylation followed by dilute acid (DDA)

• We quantitatively compare three different algorithms for
building prediction models based on near-infrared
spectroscopy—partial least squares (PLS), support vector
machines (SVM), and random forests (RF)

• We demonstrate the utility of improving model
performance by accounting for instrument performance
and environmental variability using repeated
measurements of standard materials (e.g., the
“repeatability file” algorithm) and its performance with
nonlinear regression techniques.
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• We discuss methods for quantifying the uncertainties of
specific predictions from the three methods

2 MATERIALS AND METHODS

2.1 Sample Set
The dataset used in this work consisted of 151 corn stover
samples which were subject to different pretreatments– hot
water (HT), dilute acid (DA), and deacetylation followed by
dilute acid (DDA). All pretreatment experiments were
performed using a horizontal pretreatment reactor operated at
multiple temperatures (150°C–200°C) and two different mean
residence times (12 and 20 min). The reactor systems used have
been described previously (Shekiro et al., 2014). In brief, the corn
stover was impregnated with either hot water (HW) or dilute acid
(DA, DDA) prior to entering the pretreatment reactor. DDA
samples were subjected to a batch deacetylation step using a
separate reaction system. Samples were taken immediately before
or immediately after the horizontal pretreatment reactor once
steady-state conditions were reached in the reactor and were
refrigerated until compositional analysis.

The corn stover feedstock used in this work was harvested in
Trumbull County Iowa in September 2020 using single-pass
harvesting. The corn stover was milled to pass through a
19.05 mm (¾ inch) screen using a knife mill and stored in
flexible supersacks until use.

2.2 Analytical Methods
To prepare the corn stover samples for analytical chemistry,
stored samples were removed from refrigeration, washed with
deionized water to remove any soluble material, air-dried to less
than 10% moisture, knife-milled to pass through a 2 mm screen,
and stored in plastic bags until further analysis.

Primary analytical data were generated using NREL
Laboratory Analytical Procedures (LAPs, https://www.nrel.gov/
bioenergy/biomass-compositional-analysis.html). In brief, the
biomass samples underwent a 2-stage acid hydrolysis to
solubilize structural carbohydrates which were measured via
high-pressure liquid chromatography. Lignin was measured as
the acid-insoluble residue after hydrolysis, and total ash was
determined using a combustion assay. Because all samples in this
work had undergone pretreatment, the samples were not
extracted prior to analytical hydrolysis. The primary analytical
chemical data (wet chemistry) were produced between August
2020 and January 2021.

2.3 Near Infrared Spectroscopy Methods
Near-infrared (NIR) spectra used in the training set were
collected using a Metrohm NIRS XDS Multivial Analyzer
(Metrohm AG Switzerland). Samples were removed from their
plastic bags and stored under house vacuum for at least 24 h
before scanning to eliminate variability due to moisture content.
Relative humidity readings in the lab on all days of scanning
ranged from 13%–44%. Temperature readings in the lab on all
days of scanning ranged from 21.8°C to 25.2°C. Samples were
placed in quartz optical glass sample cups and scanned in

reflectance mode between April and June 2021. Spectra were
collected over the range of 400.0–2499.5 nm (0.5 nm resolution).
Spectra were the average of 32 unique scans, which were reference
standardized to Certified Reflectance standards (Metrohm AG
Switzerland). Spectra were collected using NIRS Vision 4.1
(Metrohm AG Switzerland). The entire sample population was
scanned a second time between October 2021 and January 2022.
None of the spectra created during this second scanning period
were included in the calibration set, but instead used to evaluate
the robustness of the models. The duplicate scans will be referred
to later as the “late training” set.

2.4 Modeling
The open-source programming language R (http://www.r-
project.org) was used for all model building. The following
packages were used: prospectr for spectral transformation and
selection of calibration and independent validation populations,
tidymodels recipes for dimensionality reduction techniques, the
pls package for PLS models, kernlab for SVM models,
randomForest for RF models, caret for model tuning and
cross-validation, and the tidyverse collection of packages for
data cleaning and wrangling. All model training was
performed on individual laptops or a local HPC cluster.
Unique models were created for four analytes—glucan, xylan,
lignin, and ash—using each modeling algorithm (PLS, SVM, RF).

Supervised (PLS) and unsupervised (PCA) dimensionality
reduction were evaluated as additional preprocessing
techniques for both SVM and RF models. No additional
preprocessing was used for the PLS model building.

The R scripts used to for spectral transformation, developing
the repeatability file, and regression modeling can be found in the
Supplementary Material.

2.4.1 Spectral Transformation
Spectra were normalized using the Standard Normal Variate
(SNV) transformation and smoothed using the Savitzky-Golay
algorithm (second order polynomial, first derivative, and window
size of 7). Spectra were then truncated to remove the visible
region below 600 nm, which corresponded with a low signal to
noise ratio, and the region between 1,075 and 1,125 nm, which
corresponded with a detector change that causes an abrupt shift
in absorbance. Centering was performed on the training-set prior
to model fitting.

The Kennard Stone algorithm (prospectr package) was used to
select an independent validation set that was spectrally
representative of the population, and therefore could evaluate
how well each model acted at predicting samples within the
observed spectral variance. This method resulted in 120 samples
for calibration and 31 for validation.

2.4.2 Managing Instrumental Variability
To minimize the effect(s) of instrument variability on spectra
collection and therefore regression model performance, we
implemented the “repeatability file” strategy using stable
biomass check cell spectra (Near-Infrared Spectroscopy in
Agriculture, 2004). A total of 15 spectra were collected from
each of two corn stover samples over the course of the scanning
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campaign. The two samples were selected to be representative of
the calibration population.

The spectra were normalized, smoothed, and truncated using
the same procedure used on the training spectra. The spectra were
then grouped by sample and recentered to a mean value of zero.
The centered, transformed spectra were weighted using the
technique suggested by Acharya (Acharya et al., 2014), which
corresponded to a weight (W) of 2. The spectra were paired with
the mean wet chemistry values for the entire calibration set and
added to the calibration set used for modeling. All models were
created and evaluated with and without the addition of these
spectra to the calibration data set to determine how the
“repeatability file” strategy affected model performance.

2.4.3 Model Validation
Ten repeated-10-fold cross validation was used to tune each
model to the appropriate hyperparameter selection. For the
PLS model, the only hyperparameter was the number of
principal components (PCs) in the model. The optimal
number of PCs was chosen based on the RMSECV value. For
the SVM model, two hyperparameters required tuning—cost (C)
and the radial kernel scaling parameter sigma (σ). For the RF
model, two hyperparameters required tuning—the number of
randomly selected predictors chosen at each split (mtry) and the
number of trees used in the model (ntree). For the SVM and RF
models, hyperparameter tuning was performed using a grid
search across an initially wide set of hyperparameters, and
selection was based on the combination of hyperparameters
that resulted in the lowest RMSECV. The initial grids for each
model are shown in the Supplemental Material model building
scripts. If the hyperparameter combination chosen by this
technique resulted in an edge case (at least one of the
parameters was one of the minimum or maximum options in
the grid), the grid was expanded iteratively until the resulting
hyperparameter combination did not include an edge case.

Model performance was evaluated by comparing the root
mean squared errors (RMSE) associated with different
predictions—predictions of the calibration or training
population (RMSEC), the repeated 10-fold cross validation
results (RMSECV), and the prediction of the independent
validation set (RMSEP). In addition to these three standard
measures of model performance, we also calculated the RMSE
of the prediction of the second set of calibration set spectra, the
“late training” set—the calibration set re-scanned several months
after the original scans (RMSE-late). Models were also evaluated
via the correlation coefficients (R2) for the same scenarios (e.g.,
training, cross-validation, independent validation, late training).
We used a Student’s t-test (after applying the Fisher z-transform)
to compare correlation coefficients, and an F-test to compare
RMSE values (Roggo et al., 2003).

3 RESULTS AND DISCUSSION

3.1 Compositional and Spectral Variability
The compositional analysis data for the pretreated corn stover
samples (organized by pretreatment chemistry and sampling

location) are shown in Table 1 and Figure 1. The
compositional analysis results show several consistent trends
that are attributed to the both the pretreatment used and the
sampling location.

3.1.1 Compositional Variability
The overall composition of the HW and DA samples taken at the
reactor inlet are very similar for all four analytes, while the DDA
samples taken at the reactor inlet are consistently higher in glucan
content and lower in both lignin and ash content. The xylan
content for inlet samples with all pretreatments is similar.
Because the HW and DA samples from the reactor inlet had
not yet been subject to elevated temperatures, and all samples
were washed prior to analysis, these samples should be quite
similar in glucan, xylan, and lignin content. The mean ash
content of the DA samples is slightly lower than for the HW
samples, since dilute acid is more aggressive in removing
inorganic materials than water even at ambient temperature.
The DDA samples at the reactor inlet had been subjected to
deacetylation, which removes acetate side chains from
hemicellulose, extractives, and a portion of lignin, xylan, and
ash. Thus, this results in increased glucan content and reduced
lignin and ash content. The loss in extractives, lignin, and ash,
which collectively increases the remaining glucan content, is
offset by the loss in hemicellulose during deacetylation,
keeping the xylan content approximately constant.

Thermochemical pretreatment increases the glucan and lignin
content and decreases the xylan content. Again, this is consistent
with the chemistry of pretreatment, where elevated temperature
and the presence of a catalyst (for DA and DDA) result in the
solubilization of a large portion of the hemicellulose fraction, a
small portion of the lignin fraction, but virtually none of the
glucan fraction. This results in pretreated samples with
substantially higher glucan, lower xylan, and higher lignin
contents. The HW chemistry does not use a catalyst, and so is
less effective in removing xylan and therefore enriching the
sample in glucan and lignin. The larger variability in the post-
pretreatment HW samples is due to the impact of reactor
temperature and residence time—higher temperatures and
longer residence times increase xylan removal and therefore
increase the residual glucan and lignin contents (full data
presented in Supplementary Material).

3.1.2 Spectral Variability
Figure 2 shows the mean values of the collected (A and B) and
mathematically-transformed (C and D) NIR spectra both before
(A and C) and after (column and D) thermochemical
pretreatment for the three different pretreatments used in this
work. As described previously, all collected spectra were
mathematically transformed (normalization and derivatization)
prior to use in model building.

The collected spectra of samples taken before pretreatment
(Figure 2A) have lower maximum absorbance at 500 nm in
comparison to corresponding samples taken after pretreatment
(Figure 2B) but have higher absorbance in the NIR range. The
spectra of DDA samples show higher absorbance in the NIR
range prior to pretreatment, while HW treated samples show the
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highest absorbance in the visible range after treatment. The
transformed spectra of the samples collected prior to
pretreatment are substantially different from the
corresponding spectra collected after pretreatment. Close
inspection of the transformed spectra shows that the HW and
DA sample spectra are more similar to each other than to the
DDA sample spectra, both before and after pretreatment. This is
consistent with the differences in primary analytical
chemistry—spectral variability follows compositional variability.

To investigate the spectral variability in more detail, we
used Principal Component Analysis (PCA) to reduce the
dimensionality of the transformed NIR spectra of the corn
stover samples. Figure 3A shows a key result of this PCA in a
score plot of the first two principal components. Sample points
are colored by sampling location, and sample point symbols
denote different pretreatment chemistries. The NIR spectra of
the reactor inlet and reactor outlet samples are substantially
different from each other (PC1), and the NIR spectra of the
DDA samples are substantially different from the DA and HW
samples (PC2). The DA and HW samples show substantial
overlap. Note also that the NIR spectra of the independent
validation samples held out of the model building (solid
symbols) overlap the NIR spectra of the calibration samples
(open symbols)—they are representative of the overall sample
population and therefore a good indicator of model
performance for spectra within the variance described by
the calibration set. In Figure 3B we plot the glucan content
vs. PC1 values. Glucan content correlates strongly and

inversely with sampling location (r = −0.87)—samples taken
from the reactor outlet have higher glucan content and lower
PC1 values than reactor inlet samples. The separation of the
population by chemistry seen in Figure 3A is still
evident—DDA samples are consistently higher in glucan
content than either HW or DA samples.

3.2 Construction of Quantitative Models
Supervised (PLS) and unsupervised (PCA) dimensionality
reduction techniques were evaluated as additional spectral
transformation techniques prior to SVM and RF. No
additional spectral preprocessing was used for PLS.
Dimensionality reduction using PLS resulted in better SVM
models compared to either no dimensionality reduction or
dimensionality reduction using PCA. No dimensionality
reduction led to the best performing RF model. Details of
these models are provided in the Supplementary
Material—for the balance of this work we compare PLS, SVM
with dimensionality reduction using PLS, and RF with no
dimensionality reduction.

Figure 4A shows the variability in raw spectra observed in the
biomass external reference check cells. Regions of high variability
in check cell spectra occur at 1,400 and 1,900 nm, which
correspond to the first overtone of the O-H stretch and the
combination mode H-O-H bend and O-H stretch in water,
respectively (Near-Infrared Spectroscopy in Agriculture, 2004).
Ambient building sensor data showed fluctuations in both the
relative humidity and temperature of the laboratory over that

TABLE 1 | Summary of compositional analysis data for population. Summary statistics for glucan, xylan, lignin and ash (%DW) content in the sample population used in this
work. Summary statistics are shown for each of the pretreatments, with samples taken from catalyst-impregnated samples prior to (before) and after thermochemical
pretreatment (after).

ALL Pretreatment

Hot water (HW) Dilute acid (DA) Deacetylated dilute
acid (DDA)

Before After Before After Before After

N 151 17 10 41 27 28 28

Mean (%) Glucan 48.0 39.0 49.9 39.2 54.4 47.2 60.1
Xylan 18.5 23.2 16.0 24.1 9.2 24.5 11.4
Lignin 23.2 20.8 23.4 22.0 29.1 19.4 24.5
Ash 1.6 2.3 1.8 1.7 2.3 1.0 1.1

Min (%) Glucan 35.6 37.5 42.8 35.6 50.1 44.1 56.9
Xylan 4.2 22.1 4.2 22.0 5.5 20.1 6.8
Lignin 17.5 19.8 20.7 19.7 25.8 17.5 22.8
Ash 0.6 1.8 1.5 0.7 1.6 0.6 1.0

Max (%) Glucan 64.5 40.4 58.9 41.6 57.9 51.4 64.5
Xylan 29.5 25.6 22.8 29.5 14.4 27.3 15.0
Lignin 31.3 22.1 29.2 23.1 31.3 21.6 26.2
Ash 3.0 3.0 2.2 2.8 2.8 1.3 1.4

SD (%) Glucan 8.4 0.9 6.1 1.0 2.1 2.1 2.1
Xylan 7.0 1.0 7.1 1.9 2.3 1.9 2.4
Lignin 3.4 0.7 3.1 0.7 1.3 1.1 0.8
Ash 0.6 0.4 0.2 0.4 0.3 0.2 0.1

DA, dilute acid; DDA, deacetylated/dilute acid; HW, hot water; DW, dry weight.
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time. It is likely that these fluctuations are the root cause of this
variability. Figure 4B compares the variability observed in the
transformed check cell spectra to that observed in the training set.
The variability observed at 1,900 nm in the check cells has a
similar in range to that observed across the entire training set,
suggesting that little useful compositional information can be
obtained from this region of the spectra.

Figure 5 compares the performance results (measured as
RMSE) for cross validation (Figures 5A–D), independent
validation Figures 5E–H, and late training validation
(Figures 5I–L) for PLS, RF, and SVM models made with
and without the addition of the check cell spectra variability
to the calibration set through implementation of the
“repeatability file” strategy. The tabulated results are
presented in the Supplementary Material. SVM and PLS
models showed statistically significant improvements in
glucan, xylan, and ash performance across the independent
validation and late training sets with the inclusion of a
repeatability file (α = 0.05). These results support the idea
that the repeatability file improves NIR model performance for
outcomes that are highly influenced by water when PLS is used

for dimensionality reduction. All models predicting lignin
showed no statistically significant improvement with the
addition of a repeatability file, indicating that the prediction
of lignin from pretreated biomass viaNIR is more robust to the
environmental variability encountered during this work than
the structural carbohydrates.

RF models showed no significant difference in performance
with the use of the “repeatability file” strategy. Random forest
models are known to be robust against the inclusion of
unimportant predictors and outliers (Breiman, 2001; Lee
et al., 2013). Because of the algorithm’s robustness against
unimportant variables, inclusion of the NIR regions with high
check cell variability had no substantial impact on the model
performance, regardless of whether a repeatability file is added.
Furthermore, the decision tree algorithm used in RF models
treats the repeatability file check cell variance like outliers to
the calibration set rather than variance to ignore. The
nonlinear nature of the individual decision trees is robust
against such outliers, making the addition of the check cell
spectra in the repeatability file algorithm superfluous—it
neither improves the model by decreasing the effect of this

FIGURE 1 | Dot plot depicting the distribution of primary analytical data (separated by pretreatment chemistry) of the combined calibration and independent
validation sample set for glucan (A), xylan (B), lignin (C), and ash (D) content (%DW). Samples are prior to (before) and after thermochemical pretreatment (after), which is
represented by color. Average measured glucan and lignin contents (%DW) increase and average measured xylan content (%DW) decreases after thermochemical
pretreatment for all pretreatments. DDA treated samples show higher glucan and lower lignin and ash content than DA or HW. DA, dilute acid; DDA, deacetylated/
dilute acid; Water, hot water; DW, dry weight.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 8789736

Tillman and Wolfrum Comparing NIR Calibration Algorithms

126

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


FIGURE 2 | Average Near-infrared (NIR) and Visible (Vis) diffuse reflectance spectra collected across the three different pretreatments. Samples are taken from
catalyst-impregnated samples prior to pretreatment (before) and after thermochemical pretreatment (after). Plots (A) and (B)—raw NIR spectra as collected. Plots (C)
and (D)—NIR spectra after spectral transforming via Standard Normal Variate and Savitsky-Golay smoothing. DA, dilute acid; DDA, deacetylated/dilute acid; Water, hot
water; DW, dry weight.

FIGURE 3 | (A) Scatter plot of Principal Component 2 (PC 2) vs. PC 1 of transformed near-infrared (NIR) spectra of pretreated corn stover samples. The samples
represent three different pretreatments. Samples are taken from catalyst-impregnated samples prior to (before) and after thermochemical pretreatment (after). The DA
and HW samples appear more similar to each other than to the DDA samples. (B) Scatter plot of measured glucan content (%DW) vs. PC 1 of transformed NIR spectra of
pretreated corn stover samples. PC 1 is highly correlated with the glucan content—variability in chemical composition strongly affects PC 1 variance, demonstrating
that spectral variance follows composition variance. DDA samples have consistently higher glucan content than DA and HW samples (see text). DA, dilute acid; DDA,
deacetylated/dilute acid; Water, hot water; DW, dry weight.
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variability nor decreases model performance by including this
variability. A comparison of the variable importance predictor
scores between the RF models with and without the inclusion
of the repeatability file (Supplementary Material) shows little
change in which predictors are used in modeling.

3.3 Modeling Algorithm Comparisons
In Table 2 we show the R2 and RMSE values for all four
analytes of interest (glucan, xylan, lignin, ash) for all three
modeling approaches (PLS, SVM, RF) for calibration, cross-
validation, independent validation, and late training. For these
models, the calibration data set was augmented with repeated
check cell spectra using the “repeatability file” strategy.

The SVM algorithm resulted in the statistically significantly
better cross validation performance compared to both PLS and
RF across all constituents. The best SVM models had an
RMSECV of 0.89 for glucan content, 0.71 for xylan content,
0.49 for lignin content, and 0.23 for ash content. No statistically
significant differences were found between the RF and PLS model
RMSECV results for any analyte.

Prediction performance with an independent validation set is
a more stringent test of model performance than cross-validation.
The performance results for the independent validation
predictions (RMSEP) were mixed between the different model
types. The SVM algorithm predicted glucan, xylan, and lignin

content from the independent validation set with greater accuracy
than the PLS algorithm. The residual plots included in the
Supplementary Material graphically demonstrate the reduced
scatter in the prediction residuals and reduced bias in samples
with high glucan content with the SVM algorithm. The RF
algorithm predicted glucan and xylan content with greater
accuracy than the PLS algorithm, while the SVM algorithm
resulted in better accuracy at predicting lignin content and
reduced bias in samples with high glucan content than RF, but
similar overall performance at predicting xylan content. All
modeling techniques resulted in similar prediction
performance at predicting ash content for the independent
validation set.

Finally, the prediction performance of the rescanned
calibration set (the “late-training” set described above) is
another test of model performance which includes the
model’s ability to differentiate instrumental or
environmental variance from variance associated with wet
chemistry. The SVM algorithm showed better performance
at predicting all constituents using the late training set as
compared to PLS, and better performance at predicting xylan
and lignin content than RF. SVM and RF had similar
performance for predicting ash and glucan content. RF
models predicted all constituents with higher accuracy
than PLS.

FIGURE 4 | (A) Plot of raw diffuse reflectance spectra of external standard materials check cells. The two external standard material check cells were created at the
beginning of the project from two unique pretreated corn stover feedstocks. The check cells were scanned 15 times over the course of 6 months. High variability in the
reflectance spectra exists at 1,900 nm, which corresponds to a known water overtone (B) SNV/SG/centered spectra of calibration spectra (grey) overlaid with SNV/SG/
centered difference spectra of the external standard material check cells (green). The variability of the calibration spectral between 1,900 and 2,050 nm is similar in
magnitude to the variability observed in the external standard material check cells. The ratio of calibration spectra variability to repeatability file variability is low in the visible
region below 500 nm, at the 1,100 nm detector change, and at 1,400 nm, which corresponds to another water peak.
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While all three algorithms provided acceptable models, the RF
algorithm required more computational resources—approximately
10–20 times longer than either the PLS or SVM algorithms. Final
versions of the RF models were trained using a local HPC cluster,

while the final PLS and SVM models were trained on a standard
laptop computer.

Figures 6, 7 show the predicted versus measured cross
validation and independent validation results across the three

FIGURE 5 | Bar chart of the model performance measured by RMSE values by constituent with the calibration data set alone or augmented by the check cell
difference spectra, the “repeatability file” strategy. The measures of performance shown are as follows: (A–D) : RMSECV (root mean square error of 10 × 10-fold cross
validation); (E–H): the RMSEP root mean square error of prediction; (I–L): the RMSE-late (root mean square error of late scan predictions). Themeasurement uncertainty
associated with the primary analytical method, (Templeton et al., 2010) which is two times the standard deviation from the primary analytical method, is shown for
scale as the leftmost black bar on each graph. The “repeatability file” algorithm improves the performance of the SVM and PLS models as measured by RMSEP and
RMSE-late but has little effect on the RF model (see text).

TABLE 2 | Summary of model performance results by constituent. Performance results for each model build for each constituent of interest.

Performance parameter %Glucan %Xylan %Lignin %Ash

PLS SVM (PLS) RF PLS SVM (PLS) RF PLS SVM (PLS) RF PLS SVM (PLS) RF

Training RMSEC 1.04 0.73 0.46 0.91 0.58 0.41 0.60 0.43 0.28 0.24 0.17 0.11
R2 0.98 0.99 1.00 0.98 0.99 1.00 0.97 0.98 0.99 0.83 0.92 0.97

Cross validation RMSECV 1.16 0.89 1.21 1.06 0.71 1.10 0.68 0.49 0.72 0.28 0.23 0.27
R2 0.98 0.99 0.98 0.98 0.99 0.97 0.96 0.98 0.95 0.77 0.85 0.79

Independent validation RMSEP 1.33 1.01 1.11 1.13 0.93 0.97 0.78 0.55 0.73 0.24 0.27 0.27
R2 0.98 0.99 0.99 0.98 0.99 0.99 0.96 0.98 0.97 0.83 0.80 0.81

Late training RMSE-late 1.64 1.12 1.27 1.30 0.88 1.07 0.76 0.52 0.64 0.31 0.25 0.25
R2 0.97 0.99 0.98 0.97 0.99 0.98 0.96 0.98 0.97 0.77 0.83 0.88

RMSEC, root mean squared error of calibration; R2, coefficient of determination, the square of correlation coefficient R; RMSECV, root mean square error of cross validation; RMSEP, root
mean square error of prediction; RMSE-late, root mean square error of late scan predictions.
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modeling techniques for measured glucan and lignin content (%
DW). Similar plots for measured xylan and ash, as well as residual
plots for all four constituents, are provided in the Supplementary
Material. In agreement with the statistics presented in Table 2
and discussed above, graphical displays of model performance
show all three algorithms provide acceptable prediction results
for all constituents, with the SVM modeling results appearing
slightly superior to PLS and RF for both the cross-validation and
independent validation predictions. In particular, we observe that
the SVM modeling algorithm appears to provide better glucan
predictions for the samples with the highest glucan content (as
measured by prediction residuals).

Moreover, a single model can accurately predict the
composition of corn stover samples undergoing three different
pretreatment chemistries (HW, DA, DDA) and at multiple
locations within the process (before and after the
thermochemical pretreatment reactor). We believe this has
substantial implications on the feasibility of real-time
characterization using on-line NIR spectroscopy—a single
model could be built and maintained for implementation at
multiple points in the process.

Discussions about the relative performance of different
modeling approaches or different modeling algorithms should
take the uncertainty of the primary analytical data used as the
dependent variables into account. Differences in RMSE values
smaller than the primary analytical uncertainties are not
practically significant. In Figure 5 we include a small vertical

bar in all plots corresponding to the uncertainty of the primary
analytical chemistry (Templeton et al., 2010) estimated as two
times the standard deviation of multiple replicate measurements
by analysts. Thus, the improvements in both glucan and xylan
RMSE-late values for the PLS and SVM models by using the
“repeatability file” strategy are both statistically and practically
significant, while the improvements in the ash predictions for
these models are statistically significant but not practically
significant.

RMSE values like those presented for the PLS, SVM, and RF
models developed in this work provide an estimate of the average
uncertainty for samples in the model population (e.g., training,
independent validation). However, they do not provide an
estimate of uncertainty of a specific prediction. Like in
primary analytical chemistry measurements, some estimation
of the uncertainty of a specific prediction from a rapid
characterization model is important to provide a quantitative
estimate of the confidence the user should have in that specific
prediction.

Linear modelling approaches like PLS have a robust literature
discussing this issue (Faber, 2005; Olivieri et al., 2006; Zhang and
Garcia-Munoz, 2009; Garrido-Varo et al., 2019; Emil Eskildsen
and Næs, 2020). Some measures of uncertainty calculate a
confidence interval for the prediction similarly to that of a
linear model where the confidence interval increases with the
distance in multivariate space from the spectra to be predicted to
the center of the calibration population and decreases as the

FIGURE 6 | Predicted vs. measured glucan content (%DW) for PLS, RF, and SVMmodels. The symbol shape represents the different pretreatment used, while the
color represents the sampling location—before or after thermochemical pretreatment. The upper row depicts the repeated 10-fold cross validation results for each
model. The lower row depicts the independent validation results for each model. DA, dilute acid; DDA, deacetylated/dilute acid; Water, hot water; DW, dry weight.
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quality of the calibration model increases. Other uncertainty
measures calculate a population membership region based on
the Mahalanobis distance of a sample to the center of the
calibration population. This is the basis of the well-known
global-H, neighborhood-H (GH, NH) statistic (Westerhaus,
2014).

While a detailed comparison of these different uncertainty
measures is beyond the scope of this work, we wish to point out
that these measures are based on an evaluation of spectral
similarity in a linear modeling framework (e.g., PLS, PCA,
PCR). Thus, such uncertainty estimates may be appropriate
for use with Support Vector Regression even with nonlinear
kernels if a linear dimensionality reduction technique (like
PCA or PLS) is used. However, Random Forest Regression is a
nonlinear technique, and use of uncertainty estimations using
such assumptions are inappropriate. There has been some
research into uncertainty measures for RF (McAlexander and
Mentch, 2020; Tavazza et al., 2021), but consensus on the best
approach has not been reached, nor has the application of any
specific approach to RF models based on spectroscopy been
demonstrated. In the absence of such consensus, a concern
with using an RF model is the inability to estimate a
confidence interval for individual predictions.

3.4 Selecting a Model
In this work we have compared the performance of three
different modelling approaches (PLS, SVM, and RF) for

developing a rapid characterization model for a population of
pretreated corn stover samples using three different
pretreatment chemistries. All three approaches resulted in
acceptable models as measured by multiple RMSE
assessments (training, cross-validation, independent
validation, late-training) when compared to the uncertainty
in the primary analytical chemistry methods. The use of
repeated check cell spectra via the “repeatability file” strategy
improved the performance of both the PLS and SVM
algorithms. The RF algorithm performed equivalently with or
without a “repeatability file”. The use of dimensionality
reduction via PLS improved the performance of the SVM
algorithm. The RF algorithm performed best without any
dimensionality reduction. While all three algorithms
provided acceptable models, the RF algorithm required more
computational resources—RF models took approximately
10–20 times longer to solve than the either PLS or SVM
models. Multiple robust estimations of prediction uncertainty
exist for the PLS algorithm, and these uncertainty algorithms
can also be used for SVM algorithms when dimensionality
reduction is used as an additional spectral preprocessing step.
No such robust estimates of uncertainty exist for the RF
algorithm.

Based on these results, we believe the SVM algorithm is the
method of choice for this dataset when used with both the
“repeatability file” strategy and dimensionality reduction using
PLS. The SVM algorithm presents a good compromise between

FIGURE 7 | Predicted vs. measured lignin content (%DW) for PLS, RF, and SVM models. The symbol shape represents the different pretreatment used, while the
color represents the sampling location—before or after thermochemical pretreatment. The upper row depicts the repeated 10-fold cross validation results for each
model. The lower row depicts the independent validation results for each model.
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computational efficiency and prediction performance and
permits the use of multiple robust estimations of individual
prediction uncertainties.
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Arthrospira (Spirulina) platensis is a freshwater cyanobacterium that is commercially
produced as a food source on a global scale and considered safe for human
consumption. After C-phycocyanin (C-PC) extraction, the waste cell residue (WCR) is
composed of nutrients with 30% protein content. Here, the potential of WCR as a nitrogen
source for Bacillus coagulans cultivation and bioproducts was evaluated. Nitrogen
substitute from WCR under different conditions of 20—100 g L−1 was performed. B.
coagulans cultivation was achieved with maximal viable cells at 7.6–9.5 log CFUmL−1.
Increasing WCR gave decreasing lactate production. The highest lactate production at
27 g L−1 was achieved from WCR 20 g L−1, highlighting the potential use of A. platensis
waste biomass residue as a nitrogen source for the growth of lactic acid bacteria and zero-
waste biotechnology methodology. The utilization of renewable resources is a crucial step
toward developing a sustainable industrial society.

Keywords: Arthrospira, waste cell residue, Bacillus coagulans, bioproduct, zero-waste

INTRODUCTION

Arthrospira (Spirulina) platensis cyanobacteria have attracted increased commercial interest due to
their high protein content, essential amino acids, fatty acids, and pigments (De la Jara et al., 2018).
The rich source of biochemical composition has become an interest in the food and health industry,
and Arthrospira has shown value from the medical point of view (Furmaniak et al., 2017). Microalgal
biomass is a valuable natural source of bioactive compounds that can be used in a variety of
applications including the food sector (Ferreira et al., 2021), pharmaceuticals and nutraceuticals (Jha
et al., 2017; Mehariya et al., 2021), therapeutic potentials (Khavari et al., 2021), cosmetics (Yarkent
et al., 2020), biodiesel and biogas (González-González et al., 2018), and wastewater bioremediation
(De Souza et al., 2022). Arthrospira, also known as Spirulina, is a well-known microalgal strain that
has been globally cultured on a large commercial scale (Mostafa and El-Gendy, 2017). A. platensis
biomass showed high potential as a source of various value-added product applications including
bioethanol from carbohydrate and feed supplements because of its high protein and fatty acid
contents (Raja et al., 2016). Previous studies demonstrated bioethanol production from A. platensis
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biomass and biomethane production from waste cell residue
(WCR) (Rempel et al., 2019). Chng et al. (2016) studied the
production of bioethanol using lipid-extracted biomass from
Scenedesmus dimorphus microalgae. Bioproducts from
microalgae or waste cell residues are directly produced by
fermentation or hydrolysis of the fraction before fermentation.
Recent studies have shown the effectiveness of Arthrospira in the
prevention of diabetes as an antiviral, immune-stimulator, and
anticancer agent, with digestive improvement as well as growth of
Lactobacilli (Christaki et al., 2011; Nicoletti, 2016). Several
products from microalgal and cyanobacterial biorefineries with
minimal waste outputs have been approved for the powerful
valorization of biomass (Prabha et al., 2022).

Lactic acid fermentation as a food preservative method
significantly improves the safety, shelf life, and nutritional
properties of foods (De Marco Castro et al., 2019; Thompson
et al., 2020) and is utilized in around 70% of food industry
products (Eş et al., 2018). Fermentative biorefineries have wide-
ranging product potential including fermented vegetables,
fermented milk, meat industries, bio-preservatives, probiotics
chemicals, biofuels, and pharmaceuticals (Raj et al., 2022).

Moreover, lactic acid fermentation has the potential for green
production, biodegradation, and biocompatible polylactic acid
(PLA) substitution for petroleum-based plastic (Nduko and
Taguchi, 2021). Lactic acid fermentation can produce three
forms of lactic acid, namely, L-lactate, D-lactate, or both D-
and L-lactates depending on the microorganism used
(Prasirtsak et al., 2019). Bacillus coagulans is a lactic acid-
producing, spore-forming, catalase-positive bacterium with an
optimal growth temperature of 35–50°C. These bacteria can
utilize glucose, sucrose, lactose, and mannitol to produce
L-lactic acid (Cao et al., 2020). Moreover, B. coagulans has also
been accorded the Generally Recognized as Safe (GRAS) status by
the US Food and Drug Administration (FDA) (Endres et al.,
2009; Hazards, 2013). B. coagulans has significant benefits to the
host immune system (Cao et al., 2020). Currently, B. coagulans is
used as a functional food in chocolate, ice cream, and pasta. The
spore-forming nature of B. coagulans is comparable to other
probiotic bacterial strains, with high stability in functional food
products (Majeed et al., 2016). Previous studies reported that
lactic acid bacteria (LAB) have the ability to degrade the cell walls
of plants and cyanobacteria through hydrolysis, resulting in the
conversion of complex organic compounds such as
polysaccharides, lipids, and proteins within the cells into
smaller molecules with enhanced properties (De Marco Castro
et al., 2019).

Algae and cyanobacteria have high nutritional values as
suitable substrates for fermented food production. Fermented
products from seaweed, microalgae, and Arthrospira were
obtained as plant-derived substrates using various
fermentation processes of lactic acid bacteria, yeast, or mixed
cultures of microorganisms. These products are highly desired in
the market with bioproduct applications (Gupta and Abu-
Ghannam, 2011; Uchida and Miyoshi, 2013; Niccolai et al.,
2019). Most previous reports studied microalgae as feedstock
for lactic acid production using lactobacilli as the lactic acid
bacteria. The hydrolysate of microalgae Chlorella vulgaris ESP-31

was used as feedstock for lactate production from Lactobacillus
plantarum 23 (Chen et al., 2020) and L. brevis (Ścieszka and
Klewicka, 2020), while whole freeze-dried Arthrospira biomass
was used as the substrate for lactate production by L. plantarum
ATCC 8014 (Niccolai et al., 2019; Niccolai et al., 2020) and wet
Arthrospira biomass was used as the substrate in fermentation by
L. plantarum ATCC 8014 for nutraceutical properties (De Marco
Castro et al., 2019). However, large-scale lactate production from
microorganisms involves the high cost of fermentation media as
one of the most critical bottlenecks in industrial lactate
production (Cubas-Cano et al., 2018). Lactic acid bacteria
(LAB) require complex nutrition that consists of high carbon
sources, amino acids, vitamins, and nucleotides (Mokoena, 2017).
Nitrogen, vitamins, and other nitrogenous growth-stimulating
elements are abundant in yeast extract and peptone (Abbasiliasi
et al., 2017). Organic nitrogen sources such as yeast extract,
peptone, and other proteinous substrates must be added to
LAB culture media, increasing the cost of medium
formulation. As a result, it is important to discover low-cost
alternatives for these expensive ingredients. Bacillus strains can
grow and produce L-lactic acid under minimal nutritional
requirements (Poudel et al., 2016).

Few studies have focused on producing lactate from waste cells
of microalgal biomass in a biorefinery as a zero-waste process,
while lactate production from Bacillus coagulans has never been
reported. Waste microalgae and cyanobacteria can be used as an
alternative nitrogen source for lactic acid production,
representing bioproducts as a renewable resource with reduced
production cost. Therefore, this study was conducted to
investigate the potential of novelty waste A. platensis cell
residues after C-phycocyanin extraction in a culture medium
by B. coagulans ATCC 7050 for lactate production as a renewable
resource.

MATERIALS AND METHODS

Materials
Analytical grade Zarrouk medium composed of sodium
bicarbonate, sodium nitrate, dipotassium phosphate, potassium
sulfate, sodium chloride, magnesium sulfate, calcium chloride,
iron sulfate, ethylenediaminetetraacetic acid, and other reagents
was purchased from Ajax Finechem Pty Ltd. (Auckland,
New Zealand). GYP medium composed of glucose
monohydrate, granulated yeast extract, peptone from meat,
and other reagents was purchased from EMD Millipore
Corporation (Burlington, United States). Bacillus coagulans
ATCC 7050 was purchased from the American Type Culture
Collection (ATCC, United States).

Microalgae Cultivation and Preparation
Microalgae Preparation
Arthrospira (Spirulina) platensis IFRPD 1182 was obtained from
the Algae Laboratory at the Institute of Food Research and
Product Development, Kasetsart University, Thailand. A.
platensis was maintained and cultivated in a modified Zarrouk
medium (Pan-utai et al., 2020) in photobioreactors and then
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scaled up to a 200-L outdoor open raceway pond. The biomass of
A. platensis was grown to log phase and then harvested by nylon
membrane filtration. The harvested cells were cleaned with fresh
water to remove any residual culture medium. A. platensis
biomass preparation was dried in a hot air oven (Thermo
Scientific, Germany) at 60°C for 6 h and then milled to
0.5 mm particle size.

Waste Cell Residue Preparation
C-phycocyanin (C-PC) was extracted from A. platensis biomass
under optimal conditions (Pan-utai et al., 2018) of biomass
solvent ratio 1:15 (w/v) with 10 mM phosphate buffer at pH
7.0 and incubated under a controlled extraction temperature of
25°C for 24 h. The C-phycocyanin (C-PC) supernatant was then
separated by centrifugation at 10,000 x g for 30 min (Model 6000,
High-Speed Refrigerated Centrifuge, KUBOTA, Japan) at 25°C.
After C-PC extraction, the cell pellet remained as the waste cell
residue (WCR). This residue was dried in a hot air oven at 60°C
for 6 h and then milled to 0.5 mm particle size for further analysis
as a substrate for lactic acid fermentation.

Biochemical Composition
The prepared A. platensis biomass and waste cell residue (WCR)
were analyzed to determine their biochemical compositions
following NREL methods. Moisture content was determined
by oven-drying at 105°C to constant weight (Sluiter et al.,
2008a). Ash content was determined by ignition of the dried
samples in an electric furnace at 550°C (Sluiter et al., 2008b).
Protein content was determined by the Kjeldahl method (Hames
et al., 2008), and lipid content was determined using a modified
Bligh and Dyer method (Pan-utai et al., 2019). Briefly, the
samples were suspended in distilled water, methanol, and
chloroform at a ratio of 0.8:2.0:1.0 and mixed well. The
mixture was ultrasonically homogenized for 15 min and then
separated by centrifuging at 6,153 x g for 15 min. The lipid phase
was collected, and the cell debris was extracted until the cells had
no color. The lipid extract was filtered to remove contaminated
cell debris and dried to constant weight at 80°C. After extraction
of C-PC, the supernatant was collected, and the absorbance was
determined at 615 and 652 nm using a UV-vis spectrophotometer
(SP-8001, UV/Vis Spectrophotometer, Metertech, Taiwan) (Pan-
utai and Iamtham, 2019). C-phycocyanin content (C-PC) is
calculated by Eq. 1as follows:

C − PC (mgmL−1) � OD615 − 0.474OD652

5.34
(1)

Pigment Determination
Chlorophyll was extracted from the samples with methanol and
stored at 4°C for 24 h. The optical density of the supernatant was
measured at 662 and 645 nm. The chlorophyll content is
calculated from the combination of chlorophyll a and b using
the following Eqs.2, 3 (Pan-utai et al., 2021):

Chlorophyll a (mg mL−1) � 11.75OD662 − 2.35OD645 (2)
Chlorophyll b (mg mL−1) � 18.61OD645 − 3.96OD662 (3)

Glucose Analysis
Glucose in waste cell residues was determined by analysis of
the carbohydrate in the biomass following Yuan et al. (2016).
WCR A. platensis biomass was hydrolyzed by 72% (w/w)
sulfuric acid at 30°C for 1 h. The acid concentration of the
samples was then adjusted to 4% (w/w), and the samples were
sterilized at 121°C for 1 h. The glucose concentration in the
supernatant hydrolysate was determined on a Hewlett-
Packard HP 1100 Series HPLC system with a refractive
index detector (Agilent Technologies, United States), using
a cross-linked resin hydrogen ionic 300 × 7.8 mm Aminex
HPX-87H (9 µm) column (Bio-Rad). The column oven was set
at 50°C, and the mobile phase was 5 mM sulfuric acid. The flow
rate was set at 0.5 ml min−1 using a refractive index detector at
40°C. Glucose contents in the samples are calculated according
to Eq. 4:

Glu cos e content (%) � Glu cos e produced (g)
Dry weight of sample

× 100. (4)

FERMENTATION

Inoculum Preparation
Lactate production was performed by B. coagulans ATCC 7050
maintained in GYP medium and 10% skim milk and stored at
−20°C. The GYP medium had the following composition (g
L−1): glucose 10 g, yeast extract 5 g, peptone 5 g, KH2PO4 0.25
g, K2HPO4 0.25 g, and salt solution 10 ml consisting of (L−1)
MgSO4.7H2O 40 g, MnSO4.5H2O 2 g, FeSO4.7H2O 2 g, and
NaCl 2 g. The pH value of the GYP medium was adjusted to 6.8
(Thitiprasert et al., 2017). Primary inoculum preparation of B.
coagulans ATCC 7050 was cultured in GY medium consisting
of (g L−1): glucose 10 g, yeast extract 15 g, NH4Cl 4 g, KH2PO4

0.5 g, K2HPO4 0.5 g, and salt solution 20 ml. The pH value of
the GY medium was adjusted to 6.8 (Jaiaue et al., 2021). The
inoculum culture was placed in an incubator shaker at
200 rpm, with temperature controlled at 37°C for 18 h.
Then, 10% (v v−1) of B. coagulans ATCC 7050 cells were
transferred to secondary inoculum preparation, cultured at
37°C, 200 rpm for 6 h, and used as the starter for B. coagulans
cultivation.

Lactate Production by B. coagulans
WCR was used as the supplemented feedstock for lactate
production under different concentrations of 20, 40, 60, 80,
and 100 g L−1 in the culture medium. The control experiment
was conducted without WCR. The medium formulation was
modified by the culture medium corresponding to lactate
fermentation from 120 g L−1 of initial glucose concentration
(Tolieng et al., 2018). WCR was used to replace yeast extract
in the culture medium, consisting of (g L−1): glucose 120 g,
NH4Cl 2 g, KH2PO4 0.25 g K2HPO4 0.25 g, and salt solution
10 ml. Then, the culture medium was sterilized at 121°C for
15 min. B. coagulans ATCC 7050 inoculum at 10% (v v−1) was
transferred into the culture medium for growth and lactate
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production. The cultivation was performed at a working
volume of 50 ml medium in a 250-ml Erlenmeyer flask.
The culture was incubated at 37°C in a shaker at 200 rpm.
Fermented samples were collected at the start of fermentation
and every 12 h for viable cell growth, glucose, and lactic acid
determination. The pH was measured using a pH meter (Lab
850, Schott, Germany).

Viable Cell Determination
B. coagulans ATCC 7050 was collected during the fermentation
process for viable cell determination. Colony-forming units
(CFU) were counted in 1 ml sample collected from the
fermentation broth. The fermentation broth was diluted to an
appropriate multiple with sterile water, and then 100 µL sample
was spread on a nutrient agar (NA) plate and cultured at 37°C
for 48 h.

Glucose and Lactate Determination
Fermentation samples were collected and centrifuged at
6,153 x g for 20 min, with the supernatant stored at −20°C
until analysis. Glucose, lactate, acetate, and ethanol were
analyzed using high-performance liquid chromatography
(HPLC). Cell-free fermentation broth samples were filtered
through a nylon membrane, while the remaining glucose and
lactate products were determined using a Hewlett-Packard HP
1100 Series HPLC system with a reflective index detector
(Agilent Technologies, United States) and a 300 mm ×
7.8 mm Aminex HPX-87H organic acid column (9 µm
particle size and 8% cross-linkage) (Bio-Rad). The column
was maintained at 50°C in a column oven. The sample was
injected and eluted with 5 mM H2SO4 at a flow rate of 0.5 ml
min−1. Glucose anhydrous (CAS-No. 108337, Merck,
Germany), L-lactic acid (CAS-No. 46937, Sigma-Aldrich,
Singapore), acetic acid (Glacial, AR grade, Ajax Finechem
Pty Ltd., Auckland, New Zealand), and absolute ethanol
(99.5%, GR grade, DUKSAN, South Korea) were used as
external standards to calculate the concentration from the
peak area.

Kinetic Parameters
Viable cells of B. coagulans ATCC 7050 were assessed for growth
and lactate production, and the kinetic parameters were
calculated. The maximal value of viable cell growth was Xm.
Lactate productivity (QP) was calculated as the ratio of variation
in lactate concentration (Pm − P0) to fermentation time, as shown
in Eq. 5:

QP (g L−1 h−1) � Pm − P0

dt
. (5)

The lactate yield coefficient is calculated using Eq. 6:

YP/S (g g−1) � ΔP
ΔS (6)

where YP/S is the lactate yield coefficient in g g−1 unit.
Abbreviations of ΔP and ΔS represent differences in lactate
and glucose production, respectively.

RESULTS

Biochemical Composition of theMicroalgae
A. platensis IFRPD 1182 was used as the initial substrate, which
was prepared as both microalgal biomass and waste cell residue
(WCR) from C-PC extraction and also used as the substrate for
fermentation as of renewable resource. Biochemical compositions
of Arthrospira platensis IFRPD 1182 microalgal biomass and
WCR are shown in Supplementary Table S1. The initial A.
platensis biomass had the highest protein and C-PC contents.
C-PC is a blue pigment composed of proteins. After C-PC
extraction, the C-PC remaining contained 8.33% (mg g−1) as
around 12.6% of C-PC in the initial biomass. However, 30%
(DW) protein content and more than 63% of the initial biomass,
including other compositions, remained in the WCR. Therefore,
the potential of the remaining WCR nutrition was studied as an
alternative nitrogen source for lactate production.

Potential of B. coagulans ATCC 7050
Cultivation
The potential of WCR substitution for nitrogen sources in the
fermentation of lactic acid bacteria was studied as a low-cost
medium and renewable resource. Lactate fermentation by B.
coagulans ATCC 7050 with different WCR concentrations at
20–100 g L−1 substituted for yeast extract as the alternative
nitrogen source was studied in the culture broth. Parameters
of cell growth, glucose consumed, and lactate produced are shown
in Figure 1. Various WCR concentrations were studied to
substitute nitrogen sources in the fermentation medium of B.
coagulans ATCC 7050. The fermentation medium without WCR
and yeast extract was used as the control (Figure 1A). B.
coagulans ATCC 7050 cells grown at different WCR
concentrations and constant glucose of 120 g L−1 reached
exponential values within 12 h of fermentation, while glucose
concentration slightly reduced at 48 h of fermentation. A
maximal lactate concentration was obtained after 12 h of
fermentation at 4.5 g L−1. The results from the control
experiments without a nitrogen source in the fermentation
medium showed that B. coagulans was not appropriate for cell
growth and lactate production. Fermentation in all experiments
produced by-products, shown in Figure 2. At longer
fermentation time, acetate and ethanol production increased
with also large amounts of by-products.

Viable B. coagulans ATCC 7050 growth at different WCR
concentrations during fermentation are shown in Figures 1B–F.
The results indicated that higher WCR concentration led to
higher viable cell growth, while glucose as the carbon source
in the culture media was almost completely consumed by B.
coagulans at the end of fermentation. Lactate production at
different treatments increased with cell growth and
fermentation time. Supplementary Table S2 shows the pH
values during fermentation at various treatments. B. coagulans
ATCC 7050 growth and lactate production led to an increase in
acidity from 6 to 4.6. Maximal B. coagulans ATCC 7050 viable
growth at variousWCR concentrations without a nitrogen source
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is shown in Figure 2. B. coagulans ATCC 7050 grew and
increased during fermentation. Maximal cell growth at various
WCR concentrations ranged from 7.6 to 9.5 log CFU mL−1

(Figure 3). Increasing WCR concentration in the fermentation
media gave viable cell growth, whereas viable B. coagulans ATCC
7050 decreased in the treatment withoutWCR and other nitrogen
sources (control experiment).

Parameters of B. coagulans ATCC 7050 fermentation at
different WCR conditions for potential lactate production are
shown in Supplementary Table S3. Maximal lactate
concentration (CP) under various WCR concentrations ranged
from 8 to 27 g L−1, with the highest recorded at 20 g L−1. Higher
WCR concentration in the fermentation broth decreased lactate
production. Lactate productivity (QP) ranged from 0.23 to 0.75 g
L−1 h−1 under different WCR concentrations in the fermentation
process. Maximal lactate concentration and productivity were
recorded at 20 g L−1 WCR and not significantly different from
80 g L−1. The maximal lactate yield coefficient (YP/S) and

theoretical yield of lactate (Yield) were obtained from B.
coagulans ATCC 7050 fermentation using 20 and 80 g L−1

WCR concentration, with a nonsignificant difference
compared to the control. The optimal condition for B.
coagulans ATCC 7050 fermentation, giving a maximal yield of
lactate, was 80 g L−1 WCR.

DISCUSSION

Arthrospira is well known as a rich protein source with high
nutritional value. The nutritional composition of WCR showed
useful protein, carbohydrate, and lipid content, with
C-phycocyanin and chlorophyll contents of 8.33 ± 0.54 and
13.43 ± 0.17 mg g−1 DW, respectively. Previous reports
recorded that wet biomass of Arthrospira gave enhanced
nutraceutical properties by fermentation with Lactobacillus
plantarum (De Marco Castro et al., 2019). Microalgal biomass

FIGURE 1 | Time course of B. coagulans ATCC 7050 growth and lactate production under various conditions as (A) control, (B)WCR 20 g L−1, (C)WCR 40 g L−1,
(D) WCR 60 g L−1, (E) WCR 80 g L−1, and (F) 100 g L−1. All values are represented as means (±SD).
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of A. platensis was used as feedstock for biogas production
(Dębowski et al., 2020), while A. platensis solid-state
fermentation with LAB was performed for aromatic profile
evaluation (Martelli et al., 2021). Generally, simple sugars such
as glucose and sucrose are used as carbon sources for lactate
fermentation (Olszewska-Widdrat et al., 2020). Most previous
reports focused on Arthrospira with complete nutritional
enrichment of microalgae. Carbohydrates from microalgae can
be converted to fermentable sugars by hydrolytic processes.
However, the fermentation requires large amounts of
carbohydrate at up to more than 70% DW of the microalgal
biomass, limiting control in large-scale cultivation of
carbohydrate-enriched Arthrospira (Liu et al., 2019). Our
results showed glucose content from WCR biomass using acid
hydrolysis followed by HPLC determination as 35.50 ± 0.13%

FIGURE 2 | Time course of B. coagulans ATCC 7050 growth and acetate and ethanol production under various conditions as (A) control, (B)WCR 20 g L−1, (C)
WCR 40 g L−1, (D) WCR 60 g L−1, (E) WCR 80 g L−1, and (F) 100 g L−1. All values are represented as means (±SD).

FIGURE 3 | Maximal B. coagulans ATCC 7050 growth using waste
Arthrospira cell residues at various concentrations. All values are represented
as mean (±SD).
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DW. Various WCR concentrations were used as feedstock
addition fermentation at 20, 40, 60, 80, and 100 g L−1, with
hydrolyzed glucose contents of 7.10, 14.20, 21.30, 28.40, and
35.50 g L−1, respectively. WCR was sterilized at 121°C for 15 min
without pretreatment with acid hydrolysis and performed the
same as culture broth giving glucose content at only 0.3% DW.
Thus, the addition of WCR substitute in culture media at
0.06–0.30 g L−1 gave reduced glucose with increasing media
formulation. Our results showed mainly protein content in the
biochemical composition of nutrition values from WCR. Yeast
extract is a nutrient source of vitamins and amino acids for
microorganism growth, with high cost at approximately 38% of
the total medium cost in lactate production (Meng et al., 2012;Ma
et al., 2014). Therefore, WCR shows significant potential as a
source of nitrogen feedstock to produce bioproducts. In our
study, fermentation of WCR as the nitrogen source was
evaluated for B. coagulans growth and lactate production.

B. coagulans cultivation from WCR addition in culture media
at different loadings showed variable cell growth and lactate
production. Increasing WCR gave higher maximal viable cell
growth because the biomolecules of WCR containing amino
acids, vitamins, and proteins supported cell growth. The
control experiments without WCR and nitrogen source
addition found that B. coagulans could use glucose as the
carbon source. However, cell growth limitation was stimulated
by other nutrients necessary for complete cell growth. Oh et al.
(2003) confirmed that yeast extract was the most effective
nitrogen source for cell growth and lactate production. Amino
acids are important molecules that serve as the fundamental
components or building blocks of proteins (Moini, 2019). They
play a significant role in facilitating microbial cell growth (Idrees
et al., 2020). Moreover, amino acids including glycine, serine, and
tyrosine in yeast extract play a central role in promoting cell
growth (Li et al., 2011). The protein content of Arthrospira is high
and contains all the essential amino acids with good digestibility
(Bernaerts et al., 2019; Niccolai et al., 2019). Khandual et al.
(2021) found large amounts of each amino acid in the total
biomass after C-phycocyanin extraction. Therefore, WCR
addition in B. coagulans culture media stimulated microbial
cell growth.

Viable cell growth increased when WCR feedstock loading
increased, while lactate production increased with fermentation
time. WCR loading in the culture medium stimulated cell growth
and lactate production, as confirmed by the control experiments.
The results showed glucose consumption to produce lactate.
Moreover, during B. coagulans ATCC 7050 fermentation
supplemented with WCR, various LAB fermentation
metabolites such as lactate, acetate, ethanol, aroma
compounds, and enzymes were produced (Raj et al., 2022). B.
coagulans produces homofermentative lactic acid under
anaerobic conditions (Okada et al., 1979). However, this
homofermentation reaction also produces by-products
including acetate kinase and alcohol dehydrogenase in the
acetate and ethanol conversion process. Our results showed
that both lactate and by-products were produced under
unsuitable fermentation conditions. Su and Xu (2014) also
determined ethanol and acetate as the primary fermentation

products under aerobic conditions. The acetate kinase-
encoding gene present in the B. coagulans genome prefers an
energy-generating pathway, with acetic acid synthesis to
metabolize accumulated NADH following the loss of the
lactate dehydrogenase function (Sun et al., 2016). These
reasons support our results. Moreover, lactate production by
glucose fermentation of B. coagulans was inhibited by glucose
concentrations higher than 100 g L−1 (Michelson et al., 2006),
leading to decreased growth rate and underfermentation (Glaser
and Venus, 2018). Lactic acid-producing bacteria are metabolized
by the phosphogluconase pathway that produces various co-
products such as acetate, CO2, and ethanol, with low lactate
yield as the end product of fermentation (Bintsis, 2018; Abedi and
Hashemi, 2020). Pyruvate molecules can be reduced to lactate,
with acetate to ethanol and CO2 (Mendes Ferreira and Mendes-
Faia, 2020). These were used as a carbon source for lactate and
bioproducts in this study. Therefore, the relationship between the
quantities of acetate and ethanol that decreased the theoretical
yield to 0.50 g g−1 depends on the capacity of bacteria to reoxidize
NADH created in the initial procedure, as well as its energy
demands (Yu et al., 2020).

Kinetic parameters of B. coagulans ATCC 7050 cultivation using
WCR substituted by yeast extract were calculated in terms of
fermentation time for maximal lactate production at 12 h. WCR
addition achieved higher lactate production, with increased nutrients
in the culture media associated with cell growth. Maximal lactate
yield was achieved atWCR addition of 20 g L−1, indicating sufficient
nitrogen and other nutrients for direct utilization of cell growth.
When WCR loading increased, the pigments of C-PC and
chlorophyll also increased, promoting the nutraceutical properties
of Arthrospira fermentation (De Marco Castro et al., 2019).
However, higher pigments and total phenolic compounds may
inhibit bacteria cultivation (Takó et al., 2020) as well as have a
positive effect on microorganisms (Adebo and Gabriela Medina-
Meza, 2020). Arthrospira biomass can also serve as a nutrient source
during the fermentation process (Luiza Astolfi et al., 2020).
Moreover, B. coagulans is catalase-positive and produces energy
from glucose via glycolysis, the citric acid cycle (TCA), and the
electron transport chain, resulting in high growth rates. Lactate was
produced with high productivity at higher cell growth (Thitiprasert
et al., 2017). Therefore, WCR was utilized as a renewable resource to
replace expensive yeast extract for lactate production byB. coagulans.

Supplementary Table S4 compares previous fermentation
studies of bioproducts produced from various substances.
Lactate production from lyophilized biomass cyanobacterium
Arthrospira platensis F&M-C256 by Lactobacillus plantarum
ATCC 8014 reached 3.7 g L−1 lactate concentration (Niccolai
et al., 2019). A. platensis F&M-C256 was also successfully
evaluated in a vegetal soybean drink and in water by probiotic
L. plantarum ATCC 8014 at 1.7 g L−1 (Niccolai et al., 2020). Our
results showed the highest lactate production due to different
bacterial strains and substrate consumed. Using WCR as the
nitrogen source reduced the cost of the culture medium with
direct utilization without pretreatment. Werlang et al. (2020)
studied A. platensis as a raw material for D-lactic acid production
via saccharification and fermentation enzymatic processes using
the lactogenic Escherichia coli strain JU15, giving D-lactate at
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25.5 g L−1, as an alternative option for renewable resources as the
carbon source for bacterial cultivation. B. coagulans can produce
L-lactate by fermentation generally in a synthetic medium.
L-Lactate production by B. coagulans has been studied using
different fermentation medium compositions and processes (Fan
et al., 2016; Tolieng et al., 2018). Here, alternative nitrogen
sources to replace yeast extract in the fermentation medium
realized higher L-lactate concentrations. Other substrates as the
fermentation medium and processes for lactate production were
applied to cassava starch hydrolysates and sludge hydrolysates
(Ma et al., 2014; Ooi and Wu, 2015). The complete GY culture
medium obtained high lactate production (Tolieng et al., 2018).
Our results gave lower lactate but still reduced medium cost and
used WCR as a renewable resource for nutraceutical ingredients
for health. Using Arthrospira biomass as the substrate for lactate
production by the probiotic bacterium significantly increased
essential amino acid contents and the bioactive profile through
probiotic growth and pre- and probiotic bio-active substance
production (De Marco Castro et al., 2019; Yu et al., 2020).
Therefore, waste Arthrospira cell residue from C-PC extraction
can act as an alternative substrate for probiotic B. coagulans
cultivation and produce lactate as renewable bioproducts.

CONCLUSION

Waste cell residue of Arthrospira IFRPD 1182 biomass from
C-PC extraction showed feasibility as an alternative substrate for
B. coagulans ATCC 7050 cultivation. WCR acted as a nitrogen
source that replaced yeast extract in culture media, resulting in
reduced production cost. B. coagulans ATCC 7050 cultivation
gave maximal lactate yield at 20 g L−1 WCR. However, the
fermentation process should be further studied to give high
lactate production in a shorter time, with Arthrospira
saccharification and fermentation also investigated to enhance
production efficiency. Our results demonstrated the feasibility of
utilizing waste resources from the cyanobacterium Arthrospira to
produce valuable products. WCR was proven as a significant

alternative resource for Bacillus coagulans growth, bioproduct
production, and also reducing waste in food systems.
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Ziwei Cheng1*, David W. Gao1,2, Fiona M. Powers1,3, Ricardo Navar1, Juan H. Leal 1,
Oyelayo O. Ajayi 4 and Troy A. Semelsberger1*

1Material Physics Applications Division, Los Alamos National Laboratory, Los Alamos, NM, United States, 2Department of
Chemical and Biomolecular Engineering, University of California, Los Angeles, United States, 3Department of Mechanical
Engineering, Montana State University, Bozeman, MT, United States, 4Applied Materials Division, Argonne National Laboratory,
Argonne, IL, United States

Continuous feeding, processing, and handling of biomass powders is pivotal to the
economic viability of integrated biorefineries. However, current challenges associated
with the operational reliability of bulk solids handling and transport greatly impact the
process economics and ultimately the widespread commercialization of integrated
biorefineries. In this work, we examine the effect of moisture and feedstock variability on
the flow behavior of corn stover biomass particles. The total flow energy, compressibility,
shear properties, and wall friction angles were measured for corn stover samples A and B
containing 0%, 15%, 25%, 50%, and 75% (mass fraction) moisture contents using a FT4
powder rheometer. In general, the flowability of both A and B was reduced when moisture
was present as indicated by the stability and variable flow rate, compressibility, and shear
tests. The 15%moisture sample had the highest flowenergy, revealing the interplay between
the increased surface tension and looser packing both of which were caused by liquid
bridging. The 75% moisture sample had the highest compressibility and the lowest
flowability factor (ffc). The trend in wall friction angle was found to be dependent upon
the surface hydrophobicity of the wall material. The wall friction angle on the hydrophilic,
stainless-steel surface increased with moisture and therefore poses additional handling
challenges. On the other hand, the wall friction angle on the hydrophobic polymer surfaces
were the lowest for samples with intermediate moisture contents. SampleB had greater bulk
density, smaller compressibility, and greater flowability than the sample A, as suggested by
the compressibility and shear tests. The wall friction angle of sample B was higher than or
equal to that of sample A depending on both the type and the surface roughness of the wall
material.

Keywords: corn stover, moisture, wettability, feedstock variability, powder rheology, FT4, surface energy, cohesion

1 INTRODUCTION

As global fossil fuel resources continue to diminish and awareness on greenhouse gas emissions and
national energy security grow, the industrial and research communities have been seeking alternative
renewable sources to produce fuels and chemicals. Non-edible biomass such as forestry and
agricultural wastes has become an attractive option because it is renewable, abundant, and does
not compete with the global food supply. Biorefineries are processing facilities that convert biomass
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into value-added products such as biofuels, biochemicals,
bioenergy, and other biomaterials (Ng et al., 2017). An
integrated biorefinery (IBR) employs various combinations of
feedstock and conversion technologies to produce a variety of
products. Despite decades of research and development, IBRs have
still not been commercialized due to challenges in their economic
viability. Achieving the economic viability of IBRs calls for the
continuous, reliable operation of biomass processing and handling
equipment. However, existing bulk solids handling equipment was
often designed for the continuous flow of coal, and it is common
for biomass-sourced bulk solids to clog, jam, and form arches and
ratholes in them. These flow stoppages result in down times and
increased operational costs associated with shutting down,
unclogging, cleaning, and restarting the equipment, hampering
the process economics. It is therefore crucial to understand the flow
behavior of biomass so that processing and handling equipment
can be redesigned to ensure continuous flow.

The flow behavior of biomass is based upon many intrinsic and
extrinsic factors, such as particle size, shape, chemical composition,
degree of self-heating, ash content, and moisture. Among these
properties, moisture in general negatively impacts the flow of
biomass bulk solids and therefore has been extensively
researched. Prior literature works on the flow behavior of
biomass-sourced bulk solids have demonstrated that the
indicators for flowability can be either sensitive or insensitive to
moisture depending on the type of biomass and the moisture
content being studied. Mattsson et al. (Mattsson and Kofman,
2003) determined the bridging tendency of willow shoot particles
with different particle sizes and moisture contents using an in-
house built bridging apparatus. Two moisture levels from each
particle size group were studied, ranging from 15.7 wt% to 58.1 wt
%. The critical diameter to avoid bridging was always higher for the
high moisture sample. In a follow-up work from the same group,
Jensen et al. (2004) determined the bridging tendency of whole
trees, logging residues, and roundwood fuels processed by different
chippers with various moisture contents. When the type of wood,
processing equipment, and particle size distribution were kept
constant, while sample moisture was adjusted through drying, a
decrease in the tendency to bridge was observed in most samples.
For a few samples, drying did not affect the tendency to bridge.
Thompson and Ross (1983) reported that the coefficient of friction
(µ) of wheat grain on a steel surface increased with increasing
moisture content from 8 to 20%, but at 24% moisture content, it
decreased.5Afzalinia and Roberge (2007) studied the wall friction
coefficient of alfalfa and barley straw on a stainless steel surface.
Bothmaterials had increasedwall friction angles withmoisture. For
alfalfa, µ showed a quadratic relationship within the range of
12.0–42.2 wt% moisture content. For barley straw, however, µ
showed a linear relationship within the range of 12.2–45.7 wt%
moisture content. Ileleji and Zhou (2008) measured the angle of
repose of high moisture (63.2 wt% water) and low moisture (7.2 wt
% water) bulk corn stover particles; they found the high moisture
sample has much higher angle of repose than the low moisture
sample. Littlefield et al. (2011) studied the effect of moisture on the
compression, angle of repose, and shear properties of pecan shells.
Five samples, ranging from 4.2 to 24.6 wt% moisture were used. It
was discovered that the bulk density, particle density and tap

density linearly decreased with increase in moisture. Both the
compressibility and angle of repose increased with the increase
in moisture. As for the shear properties, the cohesion significantly
increased with the increase in moisture, and the flowability factor
dropped from free-flowing regime (ffc > 10) to the cohesive regime
(2 < ffc < 4) with the increase in moisture. The angle of internal
friction, however, was not affected by the change in moisture. Gil
et al. (2013) investigated the effect of moisture on the shear
properties and wall friction angles of poplar and corn stover
powders using a Jenike shear cell tester. Again, only a low
moisture (7–9 wt% water) and a high moisture (28–33 wt%
water) sample were used. The cohesion, unconfined yield stress,
major principal stress, and static and effective angles of internal
friction were all higher in the high moisture poplar and corn stover
samples than the low moisture samples. The wall friction angle on
the stainless steel surface was higher for the high moisture poplar
and corn stover sample, while the wall friction angle on the high
molecular polyethylene (HMPE) surface was lower for the high
moisture poplar and corn stover samples. Crawford et al. (2016)
studied the effect of moisture on the compression, shear, and wall
friction properties of corn stover using a Freeman FT4 powder
rheometer. Only one stainless steel surface was used for the wall
friction test. Only a 50 wt% (water) and a dry sample were used for
comparison. The corn stover sample had greater compressibility,
static and effective angles of internal friction, cohesion, unconfined
yield stress, major principal stress and wall friction angle than the
dry corn stover sample. These conclusions were in good agreement
with the work of Gil et al. (2013), Stasiak et al. (2019) used a Jenike
shear tester and a Schulze ring shear tester to measure the shear
properties of pine sawdust, shavings and pellets as a function of
moisture. Six wet samples (10, 20, 30, 40, 50 and 60 wt% water)
were used. They have also constructed a vane shear tester (VST) to
measure the torque exerted by the sample. It was observed that the
torque measured by the VST increases monotonically with
moisture for all three types of pine samples on both testers.
However, the moisture did not significantly affect the cohesion,
apparent shear stress or the flowability factor.

Although the aforementioned studies have investigated the
effect of moisture on the flow properties of corn stover and other
biomass feedstocks, most studies focused on shear properties and
dynamics data were lacking. In addition, only a few moisture
levels within a narrow moisture range of no more than 50 wt%
was covered in these studies, and flowability data on biomass
powders with high moisture contents are very limited. Little
studies were focused on the difference in flow properties of
agricultural biomass materials harvested from different bales.
Surface property measurements, such as surface energy and
surface area, have been not used alongside rheological
measurements to correlate flow to surface properties. To
bridge these gaps, the effect of moisture and feedstock
variability on the rheological properties of corn stover powders
was investigated. The objective of this study is to measure the
dynamics, bulk, shear, and surface properties of dry and wet corn
stover samples harvested from different bales and evaluate how
these properties are affected by moisture in these different bales.
A wide range of moisture contents will be covered, ranging from
0 wt% to 75 wt%, to obtain a complete moisture profile.
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2 MATERIALS AND METHODS

2.1 Corn Stover Samples
Corn stover refers to non-edible portions of the plant—including the
stem, leaves, stalk and cob. Corn stover is the largest single agricultural
resource with an estimated production of 154–232million dry metric
tons per annum (Leal et al., 2019). The abundance of corn stover
therefore makes it a desirable biomass feedstock. The corn stover
samples referred to as A and B used in this work were from two
different bales that were both harvested from Poweshiek County in
Iowa, United States. Both were baled using a Heston 2270XD square
baler inOctober 2018. The ash contents ofA andBwere very similar -
7% and 6%, respectively. The grinding andmilling were carried out at
Idaho National Laboratory (INL, Idaho Falls, Idaho, USA). The bales
were processed through a Vermeer BG480 bale processer with a
75mm screen then a Bliss Hammermill with a 25mm screen at the
Biomass Feedstock National User Facility (BFNUF) located at INL.
Select samples were collected after the secondmill, thenmilled to pass
a 2mm screen (Ray et al., 2020). Particle size distributions were
provided by Idaho National Laboratory and are presented in the
Supplementary Tables S1, S2.

2.2 Sample Preparation
The subsequent drying and wetting for the as-received A and B was
carried out at Los Alamos National Laboratory (Los Alamos, New
Mexico, United States). Samples were placed through various drying
and wetting steps, indicated byAy

x , where x is the wt%moisture used
in the sample, and y is the step in the procedure. Y is comprised of f
total steps, as can be seen in Scheme 1 (vide infra), which are:

(1) Drying of the as-received sample
(2) Wetting at x wt% moisture
(3) Drying of the wet sample
(4) Re-wetting of the sample using x wt% moisture
(5) Re-drying of the sample

The as-received A and B samples were placed in an oven kept
at 45°C for 24 h to remove any existing moisture. The dried A and

B were referred to as A1
0 and B1

0 , respectively. To prepare the wet
samples, A1

0 and B1
0 samples were placed in a plastic bag; the

moisture was then introduced by manually adding deionized (DI)
water to the respective samples. The bag containing the corn
stover-water mixture was then manually shaken to ensure
homogeneous mixing. The wet sample was left in the sealed
bag for at least 12 h before testing to allow moisture equilibration.
The moisture content (MC, Eq. 1) of the sample is defined as the
mass percentage of water over the total weight of the sample, as
follows:

MC � mwater

mwater +mDCS
× 100% (1)

where mwater is the mass of water added, and mDCS is the mass of
the dry corn stover.

Four mixtures containing 15%, 25%, 50% and 75% moisture
content were prepared for each corn stover sample (Figure 1).
Samples were labelled as AX and BX, where X is the moisture wt%
Photos of dry and wet A samples are shown in Supplementary
Figure S1. These wet A and B samples, together with A0 and B0,
were analyzed using a powder rheometer with details provided in
Section 2.3. Additionally, all dried samples were analyzed with
Inverse Gas Chromatography (IGC) to study the changes in the
surface of the biomass.

For the wetting-redrying study, a separate batch of as-received
corn stover A was first dried to remove any existing moisture (i.e.,
A1
0), and then mixed with equal mass of DI water to reach 50%

moisture (named the “wet” sample), to create A2
50, as outlined in

Scheme 1. Subsequently, A2
50 was transferred from the bag into a

beaker to be placed in the oven kept at 45°C for 24 h (Scheme 1,
A3
0). Lastly, an additional wetting (A4

50) and redrying (A5
0) step

was performed on the same sample and was subsequently
analyzed.

2.3 Powder Rheometer
The rheological properties of the dry and wet samples A and B
were analyzed using a Freeman FT4 powder rheometer
(Freeman Technology Ltd., UK). The instrument can run
shear, bulk, and dynamics properties testing. Because
powders can be subject to shear, stirring and compression
forces during processing and handling, all three types of
testing need to be conducted to understand the flow
behavior of powders when they are subject to different
types of forces. Shear properties testing measures the flow
properties of a powdered sample when its top surface is
subject to shear. These include shear and wall friction
tests. Bulk property testing measures the properties of the
powder as a bulk, such as bulk density and % compressibility
under different consolidation pressures. Dynamics properties
testing measures the flow properties of the powder under
constant stirring, such as the flow energy. In this work, we
conduct all three types of tests to access the flow behavior of
corn stover in different powder handling processes. The
details in the test methods are provided in Section 2.3.1
through Section 2.3.4.

Four types of fixtures—a 48 mm diameter blade, a 48 mm
diameter vented piston, a 48 mm diameter shear cell, and a

SCHEME 1 | The wetting and drying protocol for corn stover A.
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48 mm diameter wall friction disk assembly were used. Different
fixtures were attached to the instrument depending on the type of
test performed. For the stability and variable flow rate test, a
sample holder 160 ml in volume and 50 mm in inner diameter
was used. For the other tests, a sample holder 85 ml in volume and
50 mm in inner diameter was used. Each testing program starts
with one or more conditioning cycles where the blade rotates into
the bottom of the powder bed and rotates back up to the initial
position. This blade action eliminates any prior stress history of
the sample. Next, the top portion of sample was manually split off
using the splitting mechanism on the sample holder shown in
Figure 2, so that the amount and height of the sample was always
consistent before the start of testing steps. Each test was run
repeatedly for at least five times to ensure reproducibility. The
error bars were calculated as the standard deviation of these
five runs.

2.3.1 Shear Test
Shear testing yields rich information about the strength of the
bulk solid and the interaction among the particles themselves.
During shear testing, the sample was first conditioned once
using the 48 mm diameter blade to remove any previous stress
history. Next, a vented piston 48 mm in diameter was used to
compress the sample to 9 kPa of normal stress. Then the top

portion of the sample was split off, the vented piston was
removed and a shear cell 48 mm in diameter was attached.
The shear cell has 18 blades. The shear cell was first lowered into
the powder bed to be in contact with the sample to reach 9 kPa
normal stress. This is also referred to as “pre-shear” stress. Then
the shear cell started rotating at an angular velocity of 18°/min.
The sample was sheared at 9 kPa until the shear stress reaches a
steady state as defined by the measured shear stresses having less
than 1% difference. Subsequently, the normal stress was
reduced, allowing room for the particles to distend and move
past one another. At that point, a yield stress could be measured
(Crawford et al., 2016). The sample was again pre-sheared at
9 kPa and then sheared at a smaller normal stress of 7 kPa. The
pre-shear/shear cycles were repeated at decreasing normal
stresses of 6, 5, 4, 3, 2, and 1 kPa. The shear stress vs.
normal stress plot was referred to as the yield locus. The
yield locus was then analyzed using the FT4 data analysis
software. Mohr’s stress circle analysis was carried out to find
the cohesion, unconfined yield strength (UYS), major principal
stress (MPS), static angle of internal friction (ϕi), and effective
angle of internal friction (ϕe). The flowability factor, ffc, is
defined as the ratio between the major principal stress to the
unconfined yield strength and is used to compare the flowability
of the samples.

FIGURE 1 | Images of the (A) dry, (B) 15%moisture, (C) 25%moisture, (D) 50%moisture, and (E) 75%moisture A samples. The ruler is included in each image for
scale.
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2.3.2 Compressibility Test
The compressibility test measures changes in sample volume (%)
as a function of a series of mechanical forces (normal pressures)
applied downward on the vertical axis via a vented piston.
Initially, an accurate estimation of the sample volume was
problematic as the loading of the wet sample produced poor
consolidation resulting in large voids within the bulk. To overcome
this, the initial conditioning step was replaced with the following
steps:

(1) Load 1/6 (volume) of the sample into the sample holder
(2) Place a flat 50 g weight over sample
(3) Tap weight 3 times, elevating the weight at ca. 2 inches from

the sample
(4) Split off portion above split level
(5) Attach 48 mm vented piston

Steps 1–3 were repeated 3 times, until the final volume was 2/3
full (over the sample split-level). The piston started compressing
the sample at a range of increasing applied normal stresses
between 0.5 and 15 kPa. The compressibility of the sample
(C), as can be seen in Eq. 2, is calculated as follows:

C � V0 − V

V0
× 100% (2)

whereV0 is the volume of the sample before compression andV is
the volume of the sample at a given applied normal stress. Aside
from compressibility, this test also outputs the initial bulk density
of the sample before compression. Photos of the dry and wet
samples before and after compression are given in
Supplementary Figure S1.

2.3.3 Stability and Variable Flow Rate Test
The stability and variable flow rate test measures the amount of
work a blade exerts to move through a bed containing the
powdered sample. First, the sample was conditioned once
using the 48 mm diameter blade, and the top portion was then
split off. The testing procedure involves 11 alternating
conditioning and testing cycles. In each conditioning cycle, the
blade rotates down clockwise into the sample holder to 35 mm
above the bottom of the powder bed; then, it travels up clockwise
to the initial height. In each testing cycle, the blade rotates
clockwise as it travels to 35 mm above the bottom of the
sample holder. The 35 mm minimum height was chosen to
avoid force and torque overloads when running the wet
samples with high flow energies. Photos of sample A with 75%
moisture (A2

75) before, during and after the test was given in
Supplementary Figures S2A,C, respectively. When the blade
rotates in the sample bed, it forms a rat-hole behind it
(Supplementary Figure S2B). When the blade comes around,
the rat-hole is eliminated as a new one forms. As a result, the
powders become loosened (Supplementary Figure S2C).

The work the blade has done during each test cycle was
calculated from force and torque recordings and referred to as
the total energy (E), as shown in Eq. 3:

E � ∫
H

0
( T

Rtanα
+ F)dH (3)

where H is the instantaneous penetration depth, T is the
measured torque, R is the radius of the blade, α is the blade
helix angle, and F is the measured axial force. A helix angle of 5°

was used for all the tests.
The linear velocity of the blade was 100 mm/s for the first eight

testing cycles, and decreases to 70, 40, and 10 mm/s for the ninth,
tenth and eleventh testing cycles, respectively. An illustration of
the test setup and calculation of the total energy is shown in
Figure 3.

The total energy (TE) of the seventh test is defined as the basic
flowability energy (BFE).

The stability of the sample was evaluated by calculating the
stability index (SI). SI (Eq. 4) is used as an indicator for the
change in flow energy during repeated testing:

SI � BFE

TE, test 1
(4)

The sensitivity of flow energy to blade rotation speed was
evaluated by calculating the Flow rate Index (FRI) (Eq. 5):

FRI � TE, test 11
TE, test 8

(5)

FIGURE 2 | Splitting mechanism on all the sample holders used in this
work. Adapted with permission from Freeman et al. (2015).
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2.3.4 Wall Friction Test
The wall friction test measures the amount of wall shear stress
between the bulk solid and the wall material of the storage or
processing equipment given a series of wall normal stresses. In
this test, the sample was first conditioned once using the 48 mm
diameter blade, and then consolidated to 9 kPa normal stress
using the 48 mm diameter vented piston. Next, the wall friction
disk assembly was attached to the instrument. The wall friction
disk assembly consists of a rod, a 48 mm diameter disk, and a
screw that holds the rod and the disk together. The assembly was
lowered to get in contact with the top surface of the sample until
the normal stress reaches 9 kPa. Then the disk started rotating at
an angular velocity of 18°/min, creating a shear stress on the
surface of the powder bed. The sample underwent one pre-shear
step where the normal stress used for the pre-shear cycle was
kept at 9 kPa, followed by five successive shear steps where the
normal stress used started out at 7 kPa and went down to 6, 5, 4,
and 3 kPa. The measured wall shear stress vs. the wall normal
stress was called the wall yield locus. The wall yield locus was
fitted using linear regression with a coefficient of
determinization (R2) greater than 0.99, and the wall friction
angle (Eq. 6) was calculated as the inverse tangent of the slope of
the best-fit line:

Φw � arctan(τw
σw

) (6)

where ϕw denotes wall friction angle, τw and σw are the wall shear
and normal stresses, respectively.

Three wall friction disks were used in this study:

(1) Stainless-steel disk (manufacturer supplied); average
roughness factor (Ra) 1.2 µm

(2) In-house manufactured polytetrafluoroethylene (PTFE) disk;
average Ra 0.480 µm

(3) In-house manufactured high-density polyethylene (HDPE)
disk; average Ra 0.094 µm

The stainless-steel disks were cut out from a large sheet with
the grain being lateral across the face of the disk. The Ra value
represents the average surface roughness of the entire sheet. The
Ra of the PTFE and HDPE disks were measured using a Bruker
Contour GT optical profilometer, as can be seen in
Supplementary Figures S3, S4. The Ra of the PTFE disk is
0.48 µm in the X direction and 0.48 µm in the Y-direction.
The Ra of the HDPE disk is 0.094 µm in the X direction and
0.107 µm in the Y-direction. At the pre-shear step, it was found
that each wall material required a different amount of time for the
shear stress to reach equilibrium. Therefore, different disks were
made to rotate over different angles at the same angular velocity.
The stainless-steel disk was made to rotate for 60°, while the PTFE
and HDPE disks were made to rotate for 240° and 180°,
respectively.

In the wetting-drying study, to preserve any structure within
the wetted-and-dried A samples (A3

0) they were analyzed on the
FT4 using shear, compressibility, stability and variable flow rate,
and wall friction testing programs that were the same as described
in Section 2.3 except that there were no conditioning steps at the
beginning of each program. The error bars were also calculated as
the standard deviation of five repeat runs.

2.4 BET Surface Area
Multipoint BET specific surface area (SSA) was collected using a
Micromeritics 3Flex instrument. All BET analyses data were
obtained using nitrogen as the adsorbate gas. The secondary
drying step and outgassing consisted of samples with masses
ranging from 1.3 to 1.6 g; these were further conditioned with low
pressure at 45°C until isobaric conditions were reached (≤1 ×
10–5 mmHg). This step was crucial in obtaining reproducible and
reliable results. The typical masses lost during this final drying
step for all samples was less than 0.5 mg. BET range was
determined from a linear fit of the BET plot. The linear fit
was selected using seven increasing points (1-p/p°) up to the
maximum on the Rouquerol transform plot. All experiments
performed produced positive BET “C” constants.

FIGURE 3 | Stability and variable flow rate test setup. The graph on the right depicts the calculation of the total energy of a test cycle. Adapted with permission from
Freeman et al. (2015).
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2.5 Surface Energy via Inverse Gas
Chromatograph
The impact of wetting and drying on at the microscale was
investigated by tracking surface chemistry changes with
surface energy measurements. These measurements were
performed via Inverse Gas Chromatography (IGC) using a
Surface Energy Analyzer (SEA) from Surface Measurement
Systems (SMS). After surface area data collection, samples A1

0,
A3
0, and A5

0 were loaded and packed into silanized glass columns
sourced from SMS with the following dimensions: 4 mm ID x
6 mm OD x 300 mm L. Each sample was loaded into a new
silanized column resulting in a solid (no gaps) packed column of
densities between 0.13 and 0.64 g/cm3. Dispersive surface energy
(γds ) was estimated using HPLC grade n-alkanes (C7–C10) from
Sigma-Aldrich. A monopolar Lewis acid (trichloromethane) and
base (ethyl acetate) of HPLC grade from Sigma-Aldrich were used
for the specific surface energy (γabs ) portion of the experiments.
Probe to probe interactions were avoided by conducting
experiments at infinite dilution (0.005 n/nm or 0.5% mono-
layer coverage). Analysis conditions such as carrier gas type
(He), flow rate (10 sccm) and column temperature of 30°C
were maintained throughout all analyses. A 60 min
conditioning step was selected before each run with identical
conditions to allow for equilibration. The dispersive surface
energy component was calculated using the Dorris-Gray
method, and the acid-base (or specific) surface energy
components were calculated using the Della Volpe scale and
the polarization method (Hargreaves et al., 2013). In the SEA
Analysis software, the center of mass option was used to
determine retention time due to the asymmetrical peaks
produced as a result of the polar probe-surface interactions.
Instrument reproducibility was within 0.5% deviation using
the mannitol reference standard provided by Surface
Measurement Systems.

3 RESULTS AND DISCUSSION

3.1 Effect of Moisture and Feedstock
Variability on Corn Stover Flow Behavior
3.1.1 Shear Testing
The shear properties of dry and wet samples A and B obtained by
performing Mohr’s stress circle analysis on the yield locus are
presented in Figure 4. As depicted in Figure 4A, the flowability
factors (ffc) of both A and B sharply decrease with the increase in
moisture from 0% to 25%, and then slowly decrease with the
increase in moisture to 50%. The ffc of the samples with 50% and
75% moisture contents are very similar. Both A1

0 and B1
0 samples

fell into the “free-flowing” regimewhile all the wetA and B samples
fell into the “cohesive” regime. Based on the ffc value, the B1

0 has
greater flowability than A1

0. The cohesion (Figure 4B) of A first
increased as moisture content increases from 0% to 25%, and then
reached a plateau at higher moisture levels. The cohesion of B first
increased as moisture content increases from 0% to 50%, and then
reaches a plateau at 75% moisture. The increase in cohesion with
moisture has been commonly observed in literature works focusing

on the flow behavior of wet food (Rennie et al., 1999; Teunou and
Fitzpatrick, 1999) and biomass (Hargreaves et al., 2013; Littlefield
et al., 2011; Gil et al., 2013; Crawford et al., 2016) particles.
However, the plateauing cohesion at high moisture contents has
not been observed possibly due to such high moisture contents
(above 50%) were not investigated by other researchers. The static
and effective angles of internal friction for both A and B first
increase with moisture from 0% to 25% (Figures 3C,D) and then
stops increasing when the moisture becomes higher. The UYS and
MPS values for dry and wet A and B samples are given in
Supplementary Figure S5.

3.1.2 Compressibility and Bulk Density
As shown in Figures 5A,B, the compressibility of both A and B
increase monotonically with the moisture content at each applied
normal stress level. At lower moistures (0%–15%), the liquid bridges
loosen the packing of the particles, therefore increasing the amount of
void space between the particles thus increasing the compressibility.
As shown in Figures 5C,D, there is a slight decrease in bulk density
from 0% to 15%moisture. At higher moistures (25%, 50%, and 75%),
larger agglomerates form and the packing becomes even looser. The
bulk density, however, reaches aminimum at 25%moisture and starts
to increase rapidly at higher moistures (Figures 5C,D). This sharp
increase is expected due to the density of water being much higher
than the bulk density of the dry corn stover.

3.1.3 Stability and Variable Flow Rate Test
The full total energy profile of the dry and wet A and B samples,
obtained by the stability and variable flow rate test, is depicted in
Figure 6. By comparing Figures 6A,B, one can see the total energy of
dry sample B is higher than that of the dry sample A. Taken together
with the bulk density data in Figures 5C,D, the higher total energy of
dry sample B can be attributed by the greater number of particles
impinging upon the blade. To better observe the effect of repeated
testing and blade speed on the total energy, the stability index (SI) and
flow rate index (FRI) were calculated, with the results given in
Supplementary Figure S6. Due to the inhomogeneous and
polydisperse nature of the samples, large relative standard
deviations (>10%) in both SI and FRI were observed. The SI for
samples A and B with 0% through 50%moisture contents are similar
and close to 1, suggesting that the flow energy measured at each
testing cycle was relatively stable. The SI values for the 75% moisture
samples are smaller than that of the other samples. The smaller SI is
most likely due to the deagglomeration of the large clusters within the
highly wet sample as it was beingmade to flow. The FRI for all the dry
and wet samplesA and Bwere similar and close to 0.8, which suggests
that all the samples are sensitive to the blade speed and exhibits a
pseudoplastic behavior.

The BFE values for A and B with different moisture contents
(Supplementary Figure S7) were examined. Interestingly, the BFE
values of A samples increase as the moisture content rises from 0 to
15% and goes through a maximum at 15% moisture
(Supplementary Figure S7A). As the moisture further increase,
the BFE starts to decrease. However, the BFE at 75%moisture is still
slightly higher compared to the BFE of the dry sample. This non-
monotonic trend, when taken together with the previously observed
trends in cohesion and compressibility, can be attributed to the
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formation of liquid bridges between the particles. On one hand,
liquid bridges increase the cohesive forces between the particles,
therefore leading to greater resistance to the blade and causing
increased flow energy. On the other hand, the liquid bridges can
result in looser packing in the bulk structure which decreases the
resistance to the blade by decreasing the interaction between the
blade and the more loosely packed particles. When the moisture
content is less than or equal to 15%, the effect of the cohesive forces
dominates, so that the BFE increases with the moisture content and
reaches a maximum at 15%. However, as moisture further increases
to 25% and the packing of the powder becomes looser due to the
formation of more and larger liquid bridges, the effect of the looser
packing becomes dominant, so that the BFE starts to decrease. As

moisture increases to 50%, the cohesion stops increasing
(Figure 4B) while the compressibility continues to increase as
the packing becomes even looser. The BFE continues to decrease
but the BFE at 75% moisture is still higher than that of the dry
sample. At this point, it is unclear whether water has completely
saturated some of the particles and formed liquid films around them.
However, since the BFE at 75% is still higher than that of the dry
sample, the flow-resisting effect of liquid bridges outweighs the flow-
enhancing effect that the liquid films have. For the B samples, the
BFE still peaks at 15% moisture and decreases as the moisture
further increases (Supplementary Figure S5B). However, different
from Sample A, the BFE of sample B at 75% moisture content is
lower than that of the dry sample B.

FIGURE 4 | Shear test results for A and B. (A) Flowability factor for A and B at 0, 15, 25, 50, and 75%moisture contents. (B) Cohesion for A and B at 0, 15, 25, 50,
and 75%moisture contents. (C) Static and effective angles of internal friction ofAwith 0, 15, 25, 50, and 75%moisture contents. (D) Static and effective angles of internal
friction of B with 0, 15, 25, 50, and 75% moisture contents. Data points were obtained from steps A1

0, A
2
x , B

1
0, and B2

x .
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The role of water on the flow behavior on non-biomass powders,
such as coal, has beenmore thoroughly studied. For example, Lu et al.
(Lu et al., 2018) studied the effect of moisture on the flowability of
pulverized coal. A shear test and a stability and variable flow rate test

were conducted using an FT4 powder rheometer. As expected, the ffc
kept decreasing with moisture in the 1.6 to 29 wt% moisture range.
The cohesion first increased at a slow rate and then started increasing
more rapidly when themoisture went above 15 wt%. Surprisingly, the

FIGURE 5 | (A) The % compressibility as a function of applied normal stress for (A) A samples and (B) B samples, and the bulk density for (C) A samples and (D) B
samples with 0, 15, 25, 50, and 75% moisture contents. Data points were obtained from steps A1

0, A
2
x , B

1
0, and B2

x .

FIGURE 6 | The total energy of the 11 test cycles for (A) A samples and (B) B samples, with 0, 15, 25, 50, and 75%moisture contents. Data points were obtained
from steps A1

0, A
2
x , B

1
0, and B2

x .
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BFE of coal first decreased as moisture increased from 1.6 to 15 wt%,
and then increased as moisture further increased to 29 wt%. The
authors then predicted the interparticle forces using a microscale
approach with the Rumpf equation combined with the shear testing
data as well as using a theoretical approach by combining the Kelvin
equation and the Laplace–Young equation. Based on the cohesion and
BFE data, and visual observations of the wet coal samples, the authors
categorized their samples into four different regimes—the dry regime,
the dispersed moisture regime, the consolidated moisture regime and
the slurry regime (Figure 7). In the dry regime, there is little to no
water between the coal particles and the bulk appears powdery. As the
moisture content increased, the powder entered the dispersed
moisture regime where coal particles started to agglomerate as
water starts to form liquid bridges between the particles and
driving up the interparticle capillary forces. As the moisture
content keeps increasing, small liquid bridges merge and form
large ones which leads to faster increase in the capillary forces,
hence the consolidated moisture regime. Adding moisture beyond
the consolidated moisture regime resulted in the slurry
regime—defined as the point where all particles are completely
surrounded by water.

Pictures of the dry (A0) and wet (A15, A25, A50, A75) A
samples are shown in Supplementary Figure S1. It can be seen
in Supplementary Figure S1A that the dry sample appears
powdery and free of lumps. As the moisture continued to
increase, the color of the sample gradually darkened
(Supplementary Figures S1C,D). Uponreaching 75% moisture
content (Supplementary Figure S1E), the samples became darker
in color and clumping was observed. The formation of liquid
bridges is supported by data from the shear, compressibility, and
stability and variable flow rate tests. Nevertheless, no consolidated
moisture regime could be observed, as the cohesion value first
increased at 0–50% moisture and then plateaued at 75% moisture.

3.1.4 Wall Friction
Three commonly used materials for constructing powder
handling and storage units are chosen for the wall friction test.
Among them, stainless steel represents a hydrophilic surface
while PTFE and HDPE both represent hydrophobic surfaces.

The wall friction angles of A and B samples as a function of
moisture content on all three surfaces is given in Figure 8. The
dry sample B has a slightly higher ϕw than the dry sample A. The
ϕw for both A and B on the stainless-steel surface first increases
when the moisture content increases from 0% to 50%. This can be
attributed to the increasing number of liquid bridges between the
particles which increases the adhesive forces between the stainless
steel surface and the sample. ϕw stops increasing as the moisture
reaches 50% and above, indicating that liquid bridges have taken
up all the available spaces between the particles.

The ϕw values of A and B on both PTFE and HDPE surfaces
first decreased when the moisture content increases (0%–50%
for PTFE and 0%–25% for HDPE). This trend aligned with the
change in wall friction angle on the HMWPE surface with
moisture for poplar and corn stover observed by Gil et al.8 In
another study conducted by Schulze (Schulze, 2008), it was
found that the wall friction angle of flue gas desulfurization
(FGD) gypsum powders on a mild steel surface increased with
moisture content, but the wall friction angle of the same
powder on the ultra-high molecular weight polyethylene
(UHWM-PE) surface decreased with moisture content.
According to Schulze (Schulze, 2008), on poorly wetted,
hydrophobic materials such as PTFE, no liquid bridges can
form. Instead, liquid films form between the PTFE and the
particles, creating lubrication which lowers the ϕw of the
particles. Nevertheless, the wall friction angles go through a
minimum at intermediate moisture levels (50% for PTFE and
25% for HDPE), and then starts to increase at higher moisture
levels (75% for PTFE and 50% for HDPE). This increase is
likely due to the presence of free water in the sample holder
which makes the powder to slightly float, enabling a greater
amount of powders to be in contact with the hydrophobic disks
and exerting greater resistance on them.

In general, a ϕw equal to or greater than 30° signifies a high
potential for material binding to vessel walls during discharge
(Crawford et al., 2016). The wall friction data given in Figure 8
suggested that vessels constructed with stainless steel walls of Ra =
1.2 µm will pose greater challenges when processing corn stover
compared to with PTFE and HDPE walls.

FIGURE 7 | Schematic of contacting particles with increasingmoisture content. The white shapes with coarse edges represent particles and the gray dots and lines
represent water droplets. Adapted with permission from Lu et al. (2018).
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3.2 Re-Drying the Wet Sample
To further elucidate the effect of moisture addition to the dried
corn stover sample,A2

50 was prepared and subsequently dried (A3
0)

following the procedure described in Scheme 1, so that the effect of
water on the corn stover particles can be analyzed without the
liquid bridges. Images of these wetting and drying steps can be seen
in Figures 7A–C, respectively. Furthermore, an additional
rewetting (A4

50) and redrying step (A5
0)) was carried out to the

same sample to observe if any effects or changes with respect to its
rheological properties have undergone in the first wetting-drying
step. It can be observed in Supplementary Figure S8C that after
the 50% moisture sample was dried, the lumps were still present,
and in addition, some new, large, loose clusters formed. The flow
properties of these wetting-and-drying steps were then compared
to the initial dried sample with the results given in Figure 9.

As illustrated in Figure 9A, A3
0 and A5

0 demonstrated lower
flow energies than A1

0. But the compressibility, given in
Figure 9B, was very similar to that of the dry, initial sample.
It is possible that after the wetting and drying, some residual
moisture is still bound to the surfaces of the particles, causing
greater electric potential between the particles. Furthermore,
when comparing the dry samples, an increase in the ffc along
with a decrease in cohesion can be observed fromA1

0 to A
5
0. Using

unpaired student’s t-test for the data in Figures 9C–F revealed
thatA3

0 sample has greater cohesion, smaller ffc, angles of internal
friction and wall friction angle compared to A1

0. These all point to
the greater cohesive strength, adhesive strength and difficulty to
flow in step A3

0. A
5
0 interestingly showed a lower cohesion and

higher ffc, which may indicate possible changes of the biomass in
the macroscale, improving overall handling.

3.3 Surface Area, Brunauer–Emmett–Teller
Approach
Sample mass and surface area values are required input during
method development for IGC experiments—the targeted surface
coverage relies on an accurate estimate of surface area in the

column. The resulting surface areas for samples A1
0, A

3
0, and A5

0
were 1.29 m2/g, 0.61m2/g, and 0.99 m2/g, respectively. The
differences in surface area values can be attributed to structural
changes as well as the inherent variability that biomass is associated
with. Wetting, drying, and mechanical stirring may affect the pore
structure, ultimately closing or opening pores, thus causing
variations in surface area measurements.

3.4 Surface Energy via Inverse Gas
Chromatography
In certain situations, the forces governing particle-particle
interactions at the microscale can often be significant enough
to influence bulk solid flow through cohesive mechanisms such
as caking, ratholing, or adhesive methods such as gumming up
equipment. The effect of wetting and drying on surface energy
with sample A was investigated. Figure 10 illustrates the percent
changes of surface energy in sample A relative to the native
sample, A1

0 (initial starting condition for comparison). The
surfaces of sample A were sensitive to wetting and drying,
demonstrated by the increases in all components with the
exception of the work of adhesion. For example, the
“Dispersive SE” category in Figure 10 illustrates the increase
in dispersive surface energy (~20%) of the second wetting and
drying cycle (A5

0) from the initial sample (A1
0). The work of

adhesion (sample A to liquid water) was calculated using the
Della Volpe scale and Della Volpe surface energy values
of water.

The process of wetting and drying may have facilitated the
removal of water-soluble extracts or surface contaminants as well
as migration of bulk (internal) moieties towards the surface
(external) through a leaching process, thus exposing a new
surface. These modified surfaces appeared as a result of
continued cycling which exhibited a decreased adhesion to
liquid water. The data suggested that internal moieties
favorable towards the adhesion of water migrate towards the
surface in the first cycle and remain on the corn stover surface

FIGURE 8 | The wall friction angles of the (A) A and (B) B samples, with 0, 15, 25, 50, and 75%moisture contents on stainless steel, PTFE and HDPE surfaces. The
Ra value of the stainless-steel surface is 1.2 µm. The Ra of the PTFE disk is 0.48 µm in the X direction and 0.48 µm in the Y-direction. The Ra of the HDPE disk is 0.094 µm
in the X direction and 0.107 µm in the Y-direction.
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throughout the drying (A1
0 toA

3
0). Results after the second cycle

suggest a stronger dispersive surface energy influence due to
possible surface changes. Consequently, the measured increases

in dispersive surface energy from A3
0 toA

5
0 resulted in a more

hydrophobic surface, which had a negative impact on the
calculated adhesion to water.

FIGURE 9 | The (A) total energy, (B) compressibility, (C) flowability factor, (D) cohesion, (E) static and effective angles of internal friction and (F) wall friction angles
as a function of repeated wetting/drying of sample A.
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The approximate surface energies of the wall materials
under study can be found throughout the literature.
Although the values may differ slightly from article to
article, the general trend for total surface energy follows
that stainless steel > HDPE > PTFE. In addition, the
chemical nature of stainless steel surface has a profound
effect as well, i.e., oxidized or reduced. The low specific
surface energy of PTFE is responsible for the degree of
hydrophobicity and decreased interactions with hydrophilic
surfaces, i.e. water and corn stover.

4 CONCLUSION

The flow energy, compressibility, shear properties and wall
friction angles were measured for corn stover samples from
two different bales—A and B, with 0% (dry), 15%, 25%, 50%
and 75% moisture contents. All the wet samples showed greater
basic flowability energy, compressibility, cohesion, unconfined
yield strength, angles of internal friction and lower flowability
factor (ffc) than the dried samples. Of all the dry and wet A and B
samples, the A and B samples with 15% moisture had the highest
basic flowability energy. The A and B samples with 75% moisture
was the most compressible and had the smallest ffc. Among all the
wall materials tested, the wall friction angle on the stainless-steel
surface were in general greater than those on the PTFE andHDPE
surfaces. Although samples A and B showed slight variations in
their rheological properties, these values do not significantly
differ to hinder the overall processing of these samples; both
samples were similarly affected by the different moisture content,
where they both exhibited the same trends at different wt%. In
general, the feedstock variability observed among two disparate
samples, originating from two different bales typically lead to
significant changes in critical material attributes such as (but not
limited to) ash content, crystallinity, surface energy, composition,
and surface area; however, our study showed that the rheological

properties were not impacted by feedstock variability. Wetting
and then drying the corn stover leads to lower flow energies,
higher compressibility, higher unconfined yield strength, and
higher angles of internal friction compared to the initial, dry
sample, pointing to the looser packing and formation of new
clusters during wetting. However, when repeating the process,
some changes could be observed, particularly in the cohesion, ffc,
and UYS. Rheological data indicated that the sample was more
free-flowing when applying more wetting and subsequent drying
steps, possibly modifying how the particles are interacting with
one another, as evidenced by surface energy analysis carried out
in the IGC. Such changes can be crucial when it comes to the
handling of the feedstock along with potentially showing that
undergoing wetting-drying steps can be considered as a pre-
treatment to attain a better-flowing feed, aiding in the overall
discharging and handling operation.
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The upstream of bioenergy industry has suffered from unreliable operations of
granular biomass feedstocks in handling equipment. Computational modeling,
including continuum-mechanics models and discrete-particle models, offers insightful
understandings and predictive capabilities on the flow of milled biomass and can assist
equipment design and optimization. This paper presents a benchmark study on the fidelity
of the continuum and discrete modeling approaches for predicting granular biomass flow.
We first introduce the constitutive law of the continuum-mechanics model and the contact
law of the coarse-grained discrete-particle model, with model parameters calibrated
against laboratory characterization tests of the milled loblolly pine. Three classical granular
material flow systems (i.e., a lab-scale rotating drum, a pilot-scale hopper, and a full-scale
inclined plane) are then simulated using the twomodels with the same initial and boundary
conditions as the physical experiments. The close agreement of the numerical predictions
with the experimental measurements on the hopper mass flow rate, the hopper critical
outlet width, the material stopping thickness on the inclined plane, and the dynamic
angle of repose, clearly indicates that the two methods can capture the critical flow
behavior of granular biomass. The qualitative comparison shows that the continuum-
mechanics model outperforms in parameterization of materials and wall friction, and
large-scale systems, while the discrete-particle model is more preferred for discontinuous
flow systems at smaller scales. Industry stakeholders can use these findings as guidance
for choosing appropriate numerical tools to model biomass material flow in part of the
optimization of material handling equipment in biorefineries.

Keywords: granular materials, discrete-element, finite-element, lignocellulose biomass, hopper flow, flow regime

1 INTRODUCTION

Biorefineries can convert sustainable biomass into bio-energy (directly via combustion through
intermediate fuels such as ethanol) and bio-chemicals (e.g., succinic acid). Over the past decade, bio-
energy has achieved a steady increase in theU.S. renewable energy portfolio and is a vital contributor
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for supporting the U.S. to accomplish the carbon-neutral
goal (DOE-BETO, 2016). However, biorefineries suffer from
unreliable operations in transportation, storage, and handling
of granular biomass feedstocks. These process upsets, manifested
in various occasions such as hopper arching, screw jamming,
and particle segregation, can cause significant downtime of
operations resulting in non-competitive market values of bio-
products (Hess et al., 2007; Ramírez-Gómez, 2016; Dale, 2017;
Ilic et al., 2018; Cheng et al., 2021). All these issues result
from the poor flowability of the granular biomass feedstocks.
Both experimental characterization (Hernandez et al., 2017;
Salehi et al., 2019; Stasiak et al., 2019) and numerical modeling
(Jin et al., 2020b; Xia et al., 2020) have been used to address the
flowability issue with the objectives of optimizing equipment
geometry/operation and optimizing the granular feedstock
characteristics. However, experiments cannot measure all the
critical state parameters constraint by sensors (e.g., shear testers
only quantify two stress components of a full stress tensor),
which are crucial to elucidate the flow physics. In addition,
experiments are not economically viable to conduct at the
industrial scale with a comprehensive test plan. Numerical
modeling validated by experimental data is expected to address
the experimental limitations and achieve the above objectives.
Both the continuum-mechanics models and the discrete-particle
models have been continuously developed, improved, and used
to predict the flow behavior of the granular biomass feedstocks.

The continuum-mechanics models assume that the granular
material can be treated as a continuum, for which the constitutive
laws can describe the mechanical flow behavior. The variation
of biomass species, particle size, and particle morphology are
realized by using different constitutive laws or different values
of the constitutive material parameters. For example, the authors
previously applied the modified Drucker-Prager/Cap model
(Jin et al., 2020a), the NorSand model (Jin et al., 2020b), and
the hypoplastic model (Lu et al., 2021a,b) to predict the flow
behavior of the milled loblolly pine with different particle size
distributions. Yi et al. (2020a,b) used the modified Cam-Clay
model and the Drucker-Prager/Capmodel to simulate the milled
corn stover and Douglas fir.

The discrete-particle models track individual particles
and predict particle trajectories from the collisions with
neighboring particles. The variation of particle size, morphology,
and mechanical properties resulting from biomass species
and pre-processing are explicitly described and simulated in
discrete-particle modeling. For example, Xia et al. (2019) and
Guo et al. (2020) used flexible clumped spheres to approximate
different particle shapes for milled loblolly pine and switch
grass. Xia et al. (2021) explicitly modeled the complex-shaped
pine chips using the polyhedral discrete element model.
Guo et al. (2021) developed an experiment-informed, semi-
empirical, elasto-plastic bond model for discrete element
modeling of woody biomass particles. A recent effort by
Chen et al. (2022) proposed a set of complex particle contact
laws to describe particle interactions using monospheres.

The continuum-mechanics and discrete-particle models have
been used to simulate the granular biomass flow in various
characterization tests, including uniaxial compression, axial

shear, Schulz ring shear, and pilot-scale hopper with considerable
success so far. In general, the continuum-mechanics models
are found to be efficient in predicting large flow systems with
reduced-order accuracy. In contrast, the discrete-particle models
are more computationally expensive with higher precision and
are more suitable for investigating the fundamental physics
of granular flow at smaller scales. However, a quantitative
comparison on capturing the in-depth flow physics at different
scales and the associated computational cost of the twomodeling
approaches has been an untouched area in the literature.

This paper attempts to address this issue by benchmarking
the numerical predictions of flow systems from a continuum
model and a particle model against physical experiments. In
Section 2, we briefly introduce the solution algorithms and
the constitutive/contact laws of the two modeling approaches,
followed by the targeted granular material (i.e., milled loblolly
pine) and its material parameters for the two models. In
Section 3, we detail the experimental and numerical setup of
a lab-scale rotary drum test, a pilot-scale hopper test, and a
full-scale inclined plate test. The qualitative and quantitative
comparison among the experimental measurements and the
numerical predictions from the two modeling methods are
presented for each test. We then discuss the apparent advantages
and disadvantages of the two modeling approaches based on the
benchmark cases in Section 4. Lastly, the conclusion is provided
in Section 5.

2 METHODS AND MATERIALS

2.1 Continuum-Mechanics Model
2.1.1 Solution Algorithm
The principles of continuum-mechanics are the conservation of
mass and momentum, which are the governing equations to
describe the motion at any point, x⃗, in the granular flow system:

1
ρ
Dρ
Dt
+∇ ⋅ v⃗ = 0, (1)

ρDv⃗
Dt
= ρg⃗ +∇ ⋅ σ , (2)

where ρ is the bulk density of the granular material, v⃗ is the
velocity vector, σ is the Cauchy stress tensor, and g⃗ is the body-
force vector due to gravity. We also use Da/Dt = ∂a/∂t + v⃗ ⋅∇a
to represent the material derivative. A constitutive model that
relates the stress tensor to the motion is required to close the
above governing equations. The hypoplastic model developed
by Gudehus (1996) and Bauer (1996) (termed as G-B model
hereafter) is adopted and briefly outlined in Section 2.1.2.

The above governing equations can be solved by many
numerical methods, such as the mesh-based finite-element
method (FEM) and finite-volume method (FVM), and the
meshless smoothed-particle hydrodynamic (Jin et al., 2020b).
We adopt the FEM with the coupled Lagrangian-Eulerian (CEL)
approach as the resolution algorithm in this paper. The CEL
approach solves the governing equations using two steps: 1)
The granular material domain is discretized using Lagrangian
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mesh, and the deformablemesh tracks themovement ofmaterial;
2) the deformed mesh is returned to its initial position, and
the deformed material properties are then interpolated back
to the “fixed” mesh. This scheme enables CEL to model large
deformation without the mesh-tangling issue.

2.1.2 Constitutive Model
The G-B hypoplastic model was formulated to model the soil
behavior with the critical state concept, defined as the state
of stress and void ratio upon which granular material can
flow infinitely without volumetric changes. This constitutive
model has been applied to effectively model various types
of soil (Bauer, 1996; Gudehus, 1996; Herle and Gudehus, 1999;
Mašín, 2005; Wójcik and Tejchman, 2009; Liao and Yang, 2021)
and biomass materials (Lu et al., 2021b,a). The stress-motion
relation and the void ratio e evolution of the G-B model are
expressed in rate form as:

̊σ = fs(𝕃 ∶ ̇γ + fdN√ ̇γ ∶ ̇γ) (3a)

̇e = (1+ e)Tr ( ̇γ) (3b)

where ̊σ = ̇σ − ̇ω ⋅ σ + σ ⋅ ̇ω is the objective (Jaumann) stress-rate
tensor. ̇γ and ̇ω are the symmetrical strain rate tensor and the anti-
symmetrical spin rate tensor, and they can be obtained as:

̇γ = 1
2
(∇v⃗ +∇v⃗T) , (4a)

̇ω = 1
2
(∇v⃗ −∇v⃗T) . (4b)

The forth order tensor 𝕃 and the second order tensor N in
Eq. 3a are the linear andnonlinearmodulus, they are expressed in
terms of the current state (i.e., stress tensor σ and void ratio e) and
the material friction angle at the critical state ϕc. The coefficients
fs and fd in Eq. 3a take the influence of density and pressure on
the stress into account. Their detailed expression are described
in Gudehus (1996), Bauer (1996), and Lu et al. (2021b). We
implemented the G-B hypoplastic model in the Abaqus User
Material Subroutine (VUMAT) and open-sourced the code in
GitHub (https://github.com/idaholab/GranularFlowModels).We
also validated the model for various lab-scale shear tests and
pilot-scale hopper tests (Lu et al., 2021a,b).

2.2 Discrete-Particle Model
2.2.1 Solution Algorithm
The discrete-particle models are generally referred as models
solved by the discrete element method (DEM). With the
theory initially established by Cundall and Strack (1979) and
Chung (2006), DEM simulates the bulk flow behavior of granular
materials by explicitly tracking the motion of each single particle
of an assembly. The particle motion, expressed in terms of
translation and rotation, is governed by the Newton-Euler
equations:

md2x⃗
dt2
= F⃗ (5)

I
d2ψ⃗
dt2
= M⃗ (6)

where m and I are the particle’s mass and moment of inertia,
x⃗ and ψ⃗ are the particle’s translational and rotational vectors,
F⃗ and M⃗ are the internal and external force and moment
experienced by the particle. The force and moment are evaluated
and summed through the contact forces from the interaction
with its neighbours, the gravity and prescribed body forces,
and the damping due to particle movement. The governing
equations automatically satisfy the mass conservation, and they
are explicitly solved in each time increment for all particles. A
contactmodel that relatesmotion and force between two particles
is required to complete the above governing equations in Eqs 5,
6. We adopt the contact model proposed by Chen et al. (2022)
in this paper, and we briefly introduce it in the following
section.

2.2.2 Contact Model
For granular material with complex particle shapes and
sizes, one can explicitly model the complex shapes and sizes
in DEM. However, such an approach is computationally
expensive because of the mathematical complexity involved
in describing particle shapes and in detecting and resolving
particle contacts. Alternatively, the influence of particle-scale
characteristics (e.g., shapes, sizes, deformability) on bulk
behavior can be indirectly modeled with advanced contact
laws with spherical particles. This latter approach is appealing
for simulating larger-scale problems due to its computational
efficiency and is therefore adopted in this study. Specifically,
we adopt a recently proposed nonlinear hysteretic model to
calculate the interaction forces (Chen et al.,2022). This model
is capable of capturing the sophisticated bulk behavior of
granular biomass that yield strain hardening, interlocking,
and cohesion, when subjected to variable compressive and
repeated loading conditions. It is mathematically expressed as:

Fhys =

{{{{{{{
{{{{{{{
{

̃F(m)nl = αk
(m)
1 (δ − δ

(m−1)
0 )

χ
+ f (m)1 loading/reloading

̃F(m)nu = Ck
(m)
2 (e

β(m)
r∗ (δ−δ

(m)
0 ) − 1)+ f (m)2 unloading

F(m)nc = −Kncδ cohesion
(7)

where Fnl and Fnu denote the normal force component in
compressive loading and unloading, respectively. Fnc is the
cohesion force. The superscripts (m) and (m− 1) indicate the
current and previous loading cycles, respectively. δ and δ0
are the total and plastic overlap distances. k1, k2, Knc, α, and
C are the material parameters to represent particle stiffness.
The exponent χ is the loading displacement power function
index, f1 and f2 are two numerical correction terms to avoid the
discontinuity in force calculation. Note that this model tracks the
contact history of two contacting particles since the detection of
their contact. The storage of history (e.g., plastic deformation
δ0, loading cycle m) requires large computing memory and
enables to model history-dependent flow behavior. The above
contact model only accounts for normal interaction forces. We
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adopt the classical Mindlin theory (Mindlin, 1953; Kruggel-
Emden et al., 2008) to calculate the tangential interaction
forces.

2.3 Granular Material
The granular material used in this study is milled loblolly
pine chips. The loblolly pine trees from a southeastern Georgia
plantation in the U.S. were first processed in a flail chain to
remove the bark, limbs, and needles.Themain bole of the treewas
chipped at the plantation to a nominal 50 mm size, then hammer
milled in the Biomass Feedstock National User Facility at Idaho
National Laboratory until the particles pass a retention screen of
6 mm.We further dried the granular pine chips in a rotary drum
and stored with a moisture content of approximately 6%. The
sieve analysis of the material sample shows that the cumulative
passing particle size distribution has characteristic (10, 50, and
90% respectively) parameters of d10 = 0.38 mm, d50 = 0.82 mm,
d90 =1.79 mm.Amore detailed description of sample preparation
has been reported in an earlier work (Jin et al., 2020a).

We conducted extensive characterization on the mechanical
behavior of the loblolly pine chips using the cyclic axial
compression, the Schulze ring shear test, and the vibration test
(Jin et al., 2020a). A workflow to calibrate the G-B hypoplastic
model parameters for the loblolly pine chips using the
characterization datawas established by Lu et al. (2021b).Table 1
lists the calibrated material parameters, in which the internal
friction angle at critical state ϕc and the exponent α determine
the critical and the peak stress values. The granulate hardness hs,
the exponent n and β control the elastic behavior of the material.
The minimum, the critical and the maximum void ratios at zero
pressure ed0, ec0 and ei0 provide the void ratio (density) boundaries
that the granular material can achieve.

For the discrete-particle model, we calibrated both the contact
model parameters and the DEM spherical particle parameters
(i.e., particle radius, particle density, Young’s modulus, Poisson’s
ratio) for the targeted loblolly pine chips.Table 2 summarizes the
calibrated DEMparticle-particle (P-P) contact model parameters
against the cyclic axial compression tests on loblolly pine chips.
The calibration procedure is detailed in Chen et al. (2022) for
the hysteretic contact model parameters (for normal contact
force component) and in Xia et al. (2019) for the Mindlin model
(for tangential contact force component). Note the parameters
(A1,A2,A3) listed in the table are correlated with k1 and k2 in
Eq. 7. Also, the “coarse-grained” DEM adopted in this study
allows the spherical particles not equivalent to physical particles
in shape and size.The bulks of sphereswith radius of 1.5 mmwere
calibrated to render the equivalent bulk behavior of the biomass
samples and used for all the following simulations. In addition
to the hysteretic and the Mindlin contact models, we also adopt
the rolling resistance model to account for the interlocking effect

TABLE 1 | Calibrated G-B hypoplastic model parameters for the loblolly pine
chips.

ϕc [°] hs (kPa) n (-) ed0 (-) ec0 (-) ei0 (-) α (-) β (-)

47.3 187.6 0.30 0.50 1.06 1.38 0.3 1.0

of the complex-shaped pine particles by applying the constant
torque (Zhou et al., 1999). The typical range of the parameter
associated with this model (i.e., rolling resistance μr) is 0.6–1.0,
and we calibrated this parameter through trial-and-error in
hopper simulation detailed in the following section.

For the particle-wall (P-W) contact, we adopted the same
set of contact models as for the particle-particle (P-P) contact.
All the model parameters are the same except the friction
coefficient μf and rolling friction coefficient μr, which are the two
dominant parameters controlling frictional behavior. We chose
the initial values of the two parameters by balancing a single
sphere particle on an inclined plane with an inclination angle of
8.5° (Chen, 2022) from the experimental measurement formilled
loblolly pine. The influence of varying these parameters on the
flow behavior will be demonstrated in the case studies. The P-
W column in Table 2 lists all parameters for the particle-wall
contact.

3 BENCHMARK CASES

3.1 Hopper Flow and Arching
Hoppers are one of the most widely used equipment to
handle granular materials across several industries including
the bioenergy sector. Inconsistent hopper flow, such as hopper
arching (Horabik and Molenda, 2014), rathole, surging flow,
poses a significant challenge in biorefineries. Robust and high-
fidelity numerical models can help to address this challenge by
directly simulating hopper flow at various scales. In this section,
we used the calibrated FEM and DEM models to simulate a
hopper flow of the milled loblolly pine at the pilot-scale, and
compared the predictions against experimental measurements to
show the capabilities of the two models.

3.1.1 Experimental and Model Setup
The experimental tests to characterize the flow of milled loblolly
pine in a wedge-shaped hopper are detailed in Lu et al. (2021a).
Figures 1A,B show the front, side, and top views of the hopper
and the size of the hopper, respectively.The hopper is customized
with motors that can rotate its sidewalls to form any given semi-
inclination angle θ. During the experiments, the hopper is first
charged with the milled pine feedstock to a targeted height
H = 0.68 m.Then the hopper opens its outlet by gradually sliding
the two sidewalls in the upward-directions, holding the semi-
angle constant. We measured the critical outlet width as the
maximumorifice size at which the feedstock cannot continuously
flow out of the hopper. We also logged the accumulated mass
during the flow test to quantify the mass flow rate for any
combination of outlet opening width W and semi-inclination
angle θ.

A full 3D hopper discharge simulation is neither
computationally viable for DEM nor necessary, as the
experiments observed flow pattern is in plane strain condition.
As shown in Figures 1A,B thin cross-section of the hopper is
considered with a depth of 3 mm in the out-of-plane direction
(i.e, one layer of mono-spheres). The hopper walls are meshed
with triangular elements. The charging process was simulated
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TABLE 2 | Calibrated DEM model parameters for loblolly pine chips.

Parameter Symbol Value (P-P) Value (P-W) Unit

Loading force scaling coefficient α′ 20 20 —
Loading power function index χ 2 2 —
Loading stiffness coefficient A1 6 × 108 6 × 108 —
Initial loading stiffness coefficient A2 5 × 104 5 × 104 —
Unloading stiffness coefficient A3 5 5 —
Cohesion force coefficient Knc 1 × 10–4 1 × 10–4 —
Unloading force scaling coefficient C 1 × 10–7 1 × 10–7 —
Particle radius r 1.5 — mm
Density ρ 390 — kg/m3

Young’s modulus E 1 × 106 1 × 106 Pa
Poisson’s ratio ν 0.3 0.3 —
Restitution coefficient e 0.3 0.3 —
Friction coefficient μf 0.5 0.2 —
Rolling friction coefficient μr 0.8 0.6 —

using the rainfall method (Härtl and Ooi, 2008; Xia et al., 2019),
with which the particles were inserted into the computational
domain and allowed to deposit in the hopper under gravity. The
insertion zone is located at the top of the bin (1.2 m above the
bottom of hopper) with a width of 0.6 m and height of 0.2 m. We
adopted the rainfall method because it resembles the physical

hopper charging procedure in experiments. Once the hopper
was charged up to the same height H as the experiments, we
stopped the insertion and let the particles sit in the hopper for a
period to reach force equilibrium. The equilibrium was achieved
when the maximum velocity of all the inserted particles was less
than 1 mm/s. The charging and equilibrium process took about

FIGURE 1 | Overview of the hopper flow problem: (A) The top, side and front views of the customized hopper; (B) The geometry of the numerical models with
simplified hopper thickness; (C) The comparison of flow pattern and arching from the DEM and FEM models; (D) The comparison of the stress distributions for the
consistent flow and arching cases from the DEM and FEM models.
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1.5 s of physical time to finish. We trimmed the extra particles
that are above the target height after the equilibrium. Different
from the experimental procedure, we removed the lower sections
of the hopper walls to create an opening with target width to
initiate the discharging process. This simplification prevents
additional disturbance of the particle packing. To obtain the
critical outlet width, we run multiple simulations with gradually
smaller opening widths until clogging happens. The mean value
of the width of the clogging case and the width of the last case
with smooth flow is defined as the critical outlet width, which
has an accuracy of ±1.25 mm as we use 2.5 mm step size for
hopper opening. The cumulative discharged mass was calculated
by multiplying the discharge particle number with the particle
mass.

The hopper flow simulation using the continuum FEMmodel
has been described in our previous studies Lu et al. (2021b,a).
Briefly, a half slice of the hopper with a thickness of 25 mm is
modeled given its plane strain condition and its symmetrical flow
pattern. The hopper walls are modeled as rigid bodies, and their
interaction with the material is directly simulated through the
Coulomb friction model with a wall friction angle of 8.5°. We
simulated the charging step by applying gravity on the material
and letting it rest until the stress equilibrium is achieved. Note
that we assigned initial bulk density and void ratio according to
the physical measurement. The following discharging step was
realized by sliding sidewalls upwards following the experimental
procedure and the material began flowing until the hopper is
fully discharged. The mass flow rate qm is evaluated by extracting
and integrating the nodal velocity and the elemental density
of all elements at the outlet. The critical outlet width Wcr is
obtained by the Dichotomy method, in which we simulated
two different outlet widths W of flowing and arching situations
and then gradually narrow the range of W until a dramatic
change of flow responses occurs with two close outlet widths in
1 mm.

3.1.2 Results
Comparing the DEM results with experimental results of hopper
discharge, we found that when the rolling friction coefficient μr is

in the range of 0.6–1.0, theDEMmodel provides predictions with
a good agreementwith the FEMpredictions and the experimental
measurements. Accordingly, we used μr = 0.8 for all the following
hopper flow simulations.

Figure 1C presents a qualitative comparison of the flow
patterns predicted by the DEM and FEM models, with a hopper
semi-inclination angle of 30° and a hopper openingW = 60 mm.
Note the original distribution of the particles is colored by
horizontal bands in the DEM case, while the FEM case shows the
bulk density. While both the models predict a smooth discharge,
the DEM model shows a funnel flow pattern (i.e., first-in last-
out) and the FEM model predicts a mass flow pattern (i.e.,
first-in first-out). As the corresponding physical experiment of
the same hopper configuration tended to yield pattern toward
mass flow from our laboratory observation, we surmise that the
particle-wall friction coefficient assigned in theDEM simulations
might be higher than needed. Normally, lower wall friction tends
to yield mass flow patterns in hopper discharge. Nevertheless,
the particle-wall interaction parameters chosen in the DEM
simulations have negligible influence on the mass flow rate and
the critical arching distance reported in the following. When the
hopper opening reduces to 20 mm, both models predict hopper
arching phenomenon with arch-shaped virial stress distribution
(Subramaniyan and Sun, 2008) from the DEM model and the
arch-shaped vertical stress distribution from the FEM model in
Figure 1D. Figure 1D also shows the stress distribution for case
ofW = 60 mm. The stress pattern of the two models match each
other in general except in the hopper outlet area.

To examine whether the two numerical models can
quantitatively capture the effect of outlet width on the discharging
flow response, a suite of simulations with different outlet widths
are performed. The results of the accumulative discharged mass
against time are plotted in Figure 2A. For the same hopper
opening width W, the DEM model prediction (solid lines) and
the FEMmodel results (dashed line withmarkers) agree well with
each other, especially for the openingsW larger than 40 mm.Note
that we scaled both the DEM and FEM predictions, because the
DEM model has less total material for flow due to its model set-
up (trim and hopper opening) and FEM model post-processing
assumes the same velocity and density at a node within a time

FIGURE 2 | Quantitative comparison of (A) the cumulative mass discharged where the case with W= 20 mm is clogged, and (B) the mass flow rate qm against
hopper opening width W among the DEM and FEM model predictions, and the experimental measurements, where the error bar in FEM results represents the
numerical variation caused by different time step size.
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increment. Figure 2B compares the calculated mass flow rate
qm between the DEM and FEM results, with reference to the
experimentalmeasurements for different hopper openingwidths.
The FEMmodel predicts a close agreement with the experimental
data, whereas theDEMmodel slightly over-predicts themass flow
rate.The slight over-prediction is primarily due to larger particle-
particle porosity of the bulk (and consequently lower total solid
fraction of the bulk) than the physical materials in the initial
packing. In the DEM simulation, the total mass of the material
is nevertheless guaranteed by using a large sphere density, so
the bulk density of the packed DEM spheres is comparable
to the FEM simulation and the physical material. The coarse-
grained spheres in the DEM simulations, without considering
any cohesive force between the spheres in this case study, tend
to deplete slightly faster from the hopper than the continuum
description of the same process.

Moreover, we obtained the critical outlet widths for different
semi-inclination angles from the DEM and FEM results, and
compared them against the experimental measurements in
Figure 3. The error bar of the experimental data represents
the variation of multiple measurements except the case of
inclination angle θ = 30°. Both the FEM and DEM models
predicted values of theWcr agree well with the experimental data
for different inclination angles. The slight difference between the
model predictions and the experimental data for 32o < θ < 34o
is primarily due to the local effect of pine samples near the
outlet area with a non-representative particle size distribution
(Lu et al., 2021a). This localization effect is often observed in
biorefineries as a variation of critical outlet size (error bar) is
observed for the same feeding material.

The quantitative comparison in Figure 2 and in Figure 3
demonstrates that both the FEM model and DEM model can
reasonably capture the critical flow behavior of milled loblolly
pine inside the hopper. If we neglect the required computational
cost and modeling effort, we recommend that both models are
suitable to inform the operation and design of wedge-shaped
hoppers for the flowing of milled biomass.

FIGURE 3 | The variation of the critical outlet width with increasing hopper
semi-inclination angle, predicted by the DEM and FEM models along with the
experimental measurements. The error bar of the experimental data
represents the min-max range of multiple measurements.

3.2 Inclined Plane Flow
Granular flow on an inclined plane is a widely adopted
benchmark test to decipher flow physics given it is a well-
controlled granular flow system. It can also physically model
engineering applications, such as landslides in geohazard
mitigation. One of the most intriguing features is its inclusion
of flows in both quasi-static and dense flow regimes, which
are distinguished by their shear rate and realized simply
with a variation of the inclination angle (Pouliquen, 1999;
Pouliquen and Forterre, 2002; Jop et al., 2005, 2006; Forterre
and Pouliquen, 2008). In this work, we focus on investigating the
in-flow velocity and the after-flowmaterial stopping thickness on
the plane, by performing FEM and DEM simulations as well as
physical inclined plane experiments.

3.2.1 Experimental and Model Setup
Figure 4A presents the customized experimental setup of pine
chips flowing on an inclined plane with adjustable inclined angle
η, along with its front view sketched in Figure 4B. An inclined
ramp with a width of 760 mm is fixed on an aluminum frame. A
cuboid-shaped material storage bin is installed at the upper end
of the rampwith a length of 570 mm, a height of 915 mm, and the
same width of 760 mm as the ramp.The sidewall facing the ramp
can slide upwards in its plane to initiatematerial flow at a targeted
gate opening. The plane’s inclination angle η can be adjusted by
changing the height of the two supporting legs near the storage
bin. A layer of pine chips is glued on the ramp to form a no-slip
boundary condition.

The physical tests started with filling the storage bin with the
milled loblolly pine, followed by flow initiation through sliding
the gate to a preset height. After the flow stopped, we measured
the thickness hstop of the material remained on the ramp using
laser displacement sensors. hstop was only characterized at the
middle of the ramp along the length of the plane.

Given the symmetrical feature with respect to the middle
surface (shown as red plane in Figure 5A) of the experiment
setup and the observed flow pattern, we constructed a 3D
symmetrical FEMmodel with the same geometry as the physical
experiment. For the boundary conditions, the inclined plane was
considered as a no-slip boundary with all degrees of freedom
been constrained, and the surfaces inside the storage box were
considered as full-slip boundaries with no movements at the
normal direction and no constraints at the tangential direction.
We performed the FEM simulation using the calibrated G-B
hypoplastic model (Section 2.1) following the same steps as the
experiments. Each simulation began with a consolidation step
until the stress equilibrium was achieved in the storage bin.
The flow was then initiated by releasing the constraints of the
nodes at the gate surface within a preset height. We stopped the
simulation until material stops flowing, and we quantified the
stopping thickness by extracting the material volume fraction in
each element above the plane and summing up the heights of the
elements occupied by the material.

Constrained by the computational cost, the DEM model
for the inclined plane assumed the flow follows plane strain
condition. A thin cross-section with a thickness of 15 mm (5
times of the mono-sphere size) in the out-of-plane direction
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FIGURE 4 | Experimental setup and geometry of the inclined plane tests. (A) A plane with a material storage bin at the top is hold by an aluminum frame. The height
of the frame below the bin can be adjusted to vary the inclined angle of the plane. (B) The front view of the experimental setup.

was modeled with a periodic boundary condition for the two
surfaces. The rest of the DEM model geometry was kept the
same as the experiments. The plane and storage bin walls
were explicitly modeled as rigid walls composited by triangular
elements. The initial particle packing inside the storage box was
created following the same rainfall procedure as described in
Section 3.1. Once the storage box was filled up to the target
height (i.e., 0.5 m in this study), we stopped the insertion
and consolidated the particles until they reached equilibrium.
The flow was initiated by raising the right wall of the storage
box to a certain height. After the modeled flow stopped, the
thickness of the material remained on the ramp was measured
by capturing the maximum heights of particles along the
ramp.

3.2.2 Results
Figure 5A presents a qualitative comparison of FEM- and
DEM-simulated material profiles with the colors denoting the
magnitude of flow velocity during a steady-flow state. The
“steady-flow state” is defined as the state at which the material
height on the ramp stays the same with negligible variance in
velocity distribution. The FEM and DEM results generally agree
with each other on both the velocity magnitude and the material
profile for the inclined angle η = 29.5° and 37°. However, the
DEMmodel cannot capture material flow outside along the ramp
side boundaries, as the DEM simulation domain used periodic
condition (plane strain assumption) at these boundaries.

Figure 5B quantitatively compares the material stopping
thickness hstop along the length of the ramp obtained from

FIGURE 5 | (A) Qualitative comparison of the predicted material profile overlapped with velocity distribution at a steady-flow state for two inclination angles. (B)
Quantitative comparison of the stopping thickness hstop of the material among the FEM and DEM model predictions and physical measurements.
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physical experiments and numerical simulations, in which “×”s
and “+”s stand for two experimentalmeasurements with the same
plane inclination angle and gate opening height, “◦”s represent
the FEM results, where the error bars mean the prediction
variation from different gate opening heights (22–48 cm for 29.5°
ramp and 8–19 cm for 37° ramp); the colored bands between
dashed lines are the DEM predicted hstop range with the rolling
resistance between 0.6 and 1.0 (as discussed in Section 3.1.2).
It was found that, at both the inclination angles 29.5° and 37°,
the DEM model with the calibrated material parameters can
successfully cover the range of experimental measurements using
different rolling resistance coefficients. The FEM model results
render a smoothmaterial profile and agree with the experimental
measurements. Moreover, the small error bars on the FEM
data points indicate that the gate opening height, equivalent to
the initial flow velocity, has a minor influence on the material
stopping thickness, as proved by the experimental observation
(note the two experimental measurements of each inclination
angle η were measured with the same gate opening, the variation
is due to particle packing difference.). Both the quantitative and
qualitative comparisons demonstrate the FEM and DEMmodels
with proper material calibration can capture the quasi-static and
dense flow regimes.

3.3 Rotating Drum
Angle of Repose (AoR) is an effective macroscopic property
that is often used to characterize the mechanical behavior of
granular materials. AoR has been widely used as a quantitative
measure of granular materials flowability under stress-free
condition. For example, AoR is one of the parameters utilized
in the design of hoppers and storage bins (Frankowski and
Morgeneyer, 2013; Beakawi Al-Hashemi and Baghabra Al-
Amoudi, 2018; Hamed et al., 2022). Two types of AoR can be
identified, namely, the static and the dynamic one. They differ
by a few degrees with the smaller one being the dynamic AoR.
The dynamic AoR is defined as the inclination angle of the free
surface with respect to the horizontal of the formed material
heap, and it is linked to the segregation phenomena of the
particulate materials (Beakawi Al-Hashemi and Baghabra Al-
Amoudi, 2018). In this work, the dynamic AoR of loblolly pine
chips was studied using the rotating drum test. Both DEM and
FEM were used to simulate the test. In addition, the dynamic
AoR of the as-ground pine chips was physically measured

in the laboratory as a benchmark value for the numerical
models.

3.3.1 Experimental and Model Setup
A sealed polycarbonate drum is used to measure the dynamic
AoR as shown in Figure 6A. The drum is 14.5 cm in internal
diameter and 20.2 cm long. The cylinder was loaded up to 50%
of its height with the milled loblolly pine (around 303.8 +/−
0.2 g) following the standard testing procedure. We closed the
drum with a transparent polycarbonate sheet and placed it on
the revolver. The revolver was rotated at a fixed speed of 20
revolutions per minute (rpm) until the free plane surface was
formed with a constant slope, see Figure 6A. The inclination
angle between the free surface and the horizon is the dynamic
AoR and was measuredmanually from outside of the transparent
side of the cylinder using a digital protractor (with readout
to 0.1°). Dynamic AoR was measured 10 times using different
batches to minimize the measurement error and the sample
variability.

Different rotational speeds were attempted in the simulations
of the rotating drum test using DEM and FEM. Figure 6B
shows the full 3D DEM model with the same geometry as
the experiments. The calibrated contact model parameters with
3 mm mono-sphere particles reported in the previous section
were used for the drum simulation. We start the simulation by
filling the stationary drum up to 50% of the drum volume using
a random packing algorithm. This is followed by an equilibrium
step, where the particles rearrange themselves under the influence
of gravity. Afterwards, we rotate the drum with a preset constant
rotational speed. Once the steady-state is achieved, we extract the
slope of the free surface as the dynamic AoR. We used 1 μs as the
step size and simulated 10 s of rotating.

The configuration of the FEM model is presented in
Figure 6C, where the cross-section geometry is exactly same as
the experiment and a reduced thickness of 25 mm along the
axial direction is utilized to save the computational cost. This
plane-strain consideration was validated by a full 3D modeling
study, in which the predicted dynamic AoR is uniform along
the axial direction and equals to the value predicted from the
plane-strain case. A symmetrical boundary condition along the
thickness direction is applied on the front and the back surfaces
of the FEM model, while the contact between the drum and the
material is explicitlymodeled using the Coulomb friction law.We

FIGURE 6 | Rotating drum test configuration: the experimental set-up (A); the DEM model set-up with the same dimension as the experiment (B); and the
geometrical configuration of the FEM model (C).
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FIGURE 7 | Three particle flow patterns observed at different rotational speeds. The top row are snapshots obtained from FEM simulations, while the DEM
snapshots are displayed at the bottom row.

analyzed the influence of wall friction on the modeling results
and we found that a wall friction angle greater than 20° results
in a stable dynamic AoR with negligible variation. Therefore,
friction angle of 20° is used for all rotating drum simulations.
The simulation domain was meshed with element size of 5 mm
and a time step of 10–20 μs was used for all simulation
cases.

3.3.2 Results
The flow pattern in the rotating drum differs due to differences
in rotational speeds, the wall friction angle between the drum
surface and the material, and the filling degree (Frankowski and
Morgeneyer, 2013; Zheng and Yu, 2015; Beakawi Al-Hashemi
and Baghabra Al-Amoudi, 2018). Figure 7 depicts three different
particle flow patterns (i.e., rolling, cascading, and centrifuging)
observed in the FEM and DEM simulations of the rotating
drum at different rotational speeds. The FEM snapshots display
a color-coded bulk density, while the DEM snapshots show the
particles configuration and the outline of the free surface at
a cross-section. The rolling pattern occurs at a low rotational
speed of 10 rpm and is characterized by a flat free surface that
arises due to the continuous circulation of the particles in the
drum. When the drum rotates at an intermediate rotational
speed of 50 rpm, particles undergo cascading pattern at which
the free surface fails to maintain a flat shape. The exhibited
curvature in the free surface and expanded volume of material
are associated with the spatial heterogeneity of porosity with
denser interior region and higher porosity near the surface.
Fast rotational speeds (300 rpm) give rise to the centrifuging
regime because the centrifugal force outweighs gravity. In this
regime, the particles adhere to the drum and form a ring-like
shape.

The effect of the rotational speed on the dynamic AoR
within the rolling regime was investigated. Figure 8 illustrates
the change of the dynamic AoR with the increasing rotational

speed. The experimentally measured value of AoR at the
rotational speed of 20 rpm is overlapped in the same figure.
The error bar represents the standard deviation of multiple
measurements. The quantitative comparison shows the DEM
model predicted value has an excellent agreement with the
experimental data while the FEM model slightly over-predicts
the dynamic AoR about 1.5° for the rotation speed of 20 rpm.
In addition, the two models correctly capture the increase of
the dynamic AoR with the increasing rotational speeds, which
is consistent with the observations and findings in (Frankowski
and Morgeneyer, 2013). We also observe the slight difference in
the predicted rate of increase with FEM showing a faster rate.
This flow characteristic will be investigated using experiments in
a future study.

FIGURE 8 | Dynamic angle of repose (AoR) versus the rotational speed from
the FEM and DEM model predictions and the experimental measurement.
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4 DISCUSSION

Generally, continuum-mechanics models are more efficient and
effective formodeling bulk granular flow problems at large scales,
while the discrete-particle models are more often applied to
understand the interactions of particles at smaller scales. The
three flow cases presented in this work have demonstrated that
both the continuum-mechanics model with a classic constitutive
law and the discrete-particle model with a group of sophisticated
contact laws can quantitatively simulate the biomass granular
flow behavior at different scales. Nevertheless, the two modeling
approaches are found to apparently have distinctive advantages
and disadvantages given their fundamental differences described
in Section 2.

• The constitutive law of the continuum-mechanics FEM
model only requires eight material parameters to describe
the flow behavior of the milled loblolly pine, whereas the
contact laws and mono-sphere particles of the discrete-
particle DEM model require 14 parameters. In addition,
most of the material parameters of the FEM model (Table 1)
have physical meaning and can be directly obtained from
the lab characterization data (Lu et al., 2021b). In contrast,
the particle-scale contact parameters (Table 2) were all
fitted through a single set of cyclic axial compression data
(Xia et al., 2019; Chen et al., 2022), though more sets of data
can be used.The risk is that, if the objective fitting function has
multiple saddle points, the calibration process may result in a
local set of optimal values instead of their true global optimal.
• The Coulomb friction between the wall and the granular

material is directly realized in the continuum FEMmodel.The
wall friction angle is an independent parameter that can be
assigned for any given wall materials and granular materials.
In contrast, the particle-based DEMmodel indirectly captures
wall friction by adjusting contact model parameters (e.g.,
frictional coefficient and rolling friction coefficient in this
study). This disadvantage makes the DEM model double the
effort in parameterization.
• Limited by the continuum assumption, the FEMmodel cannot

accurately simulate the sharp boundaries between the moving
material and the void (i.e., void in this paper). In contrast, the
particle-basedDEMmodel can easily handle these boundaries.
For example, the FEM model predicts a extremely small mass
flow rate for hopper arching shown in Figures 1C,D, while the
DEM can predict a complete stop of material flow. Another
example is the centrifuging pattern of rotary drum shown in
Figure 7.The continuumFEMmodel represents the void space
with an extremely-low density material, while the particle
DEM model can physically simulate the centrifuging pattern
with the void at the center.
• The initial void ratio/porosity of a granular system plays a

significant role in its flow pattern (surge flow v. s. mass flow, see
Lu et al. (2021a)). The initial value of the void ratio/porosity
can be assigned directly in the continuum FEM model given
its constitutive model is formulated in the framework of the
critical state particle mechanics (i.e., the state of a granular
assembly is determined by the stress tensor and the void

ratio, and the assembly can shear/flow infinitely under a
critical state without volumetric strain variation). The coarse-
grained DEM model describes bulk solids using spheres,
which limits its theoretical min-max void ratio/porosity range.
To overcome this limit, dilation of DEM particle volume
can be used to reduce the initial void volume fraction
(Lattanzi and Stickel, 2020), which yet requires additional force
equilibrium afterwards. Also, the initial particle packing (i.e.,
void ratio/porosity) prepared using the rain fall method of the
DEM model results in the inter-particle void ratio in a bulk
that is often larger than the physical material. Particle shape-
resolved DEMmodel is another way to realistically realize any
initial porosity of materials; yet, its computational cost is not
affordable for large systems Xia et al. (2021).

In addition to the capability differences in capturing physics
between the continuum model and the particle model, the
computational cost of the twomodels is also distinctive. Figure 9
shows the comparison of computational cost between the
continuum FEM model and the DEM model for typical cases
of the three simulated flow problems. Note we used the CPU
core hours—the computational time multiplied by the number
of cores, to quantify the computational cost. Figure 9 shows that
the DEM model took more core hours for all three cases, which
is though expected. However, regarding the computational cost,
the degree of advantage of the continuum FEM model over the
DEM model varies in each case. For the hopper simulation,
the computational cost of the case with semi-inclination angle
30o and outlet opening width 60 mm is presented with modeled
physical flow time 11 s for both the FEM model and the DEM
model. Because only a single layer of spheres (3 mm) in the
out-of-plane direction for hopper were simulated by the particle
DEM model, the computational efficiency of DEM is close to
the continuummodel. However, for the inclined plate simulation
with inclination angle 29.5o modeling 18.8 s physical time, the

FIGURE 9 | Comparison on the computational cost between the continuum
FEM model and the particle DEM model for the hopper flow simulation
(θ =30o,W =60mm and physical time t = 11s), the inclined plate simulation (η
= 29.5o, t = 18.8 s), and the rotary drum simulation (ω = 20 rpm, t = 10 s).
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FEM model outperforms the particle model with about 40 times
the computational time advantage. This is because the high
dimension ratio between a typical size of the experimental set-
up and the size of the DEM spheres (3 mm in diameter) requires
a huge amount of DEM spheres to represent the material, while
the FEM model can mesh the 3D domain using relative coarse
meshes and takes advantage of the non-slip boundary condition
between the material and inclined plate wall. However, this huge
amount of computational cost advantage of the continuummodel
does not hold for the lab-scale rotary drum. Only two times of
computational cost is gained by the continuum model over the
particle model for the case with 20 rpm rotation modeling 10 s
physical time.

The above comparison of physics capturing and
computational cost shows that the FEM model is preferred
when the targeted problems are at pilot- or industry-scales and
its continuum assumption is satisfied. In contrast, the DEM
model is better at simulating lab-scale granular systems with
discontinuities. A more sophisticated strategy is to couple the
advantages of the continuum and particle models and simulate
the granular flow problems using the multi-scale concurrent
framework (Liang and Zhao, 2019). Take the hopper as an
example, the bulk hopper material, as well as the interaction
between the material and hopper wall, can be modeled using
the efficient continuum FEM model. While the domain in the
vicinity of the hopper outlet, including the particle flow into the
downstream feeder/reactor, can be better handled by the particle
DEM model. Nevertheless, a coupled FEM-DEM modeling
approach will require significant further development and
validation, before it can be reliably introduced for engineering
applications that involve complex geometries.

5 CONCLUSION

This study reports the detailed comparison of a continuum-
mechanics model and a coarse-grained discrete-particle model
on the predictive fidelity and computational cost for simulating
biomass granular flow. After briefly introducing the two
models, we benchmarked their predictions against physical
measurements for a lab-scale rotating drum flow test, a pilot-
scale hopper flow test, and a full-scale inclined plate flow test.
The predicted bulk flow behavior from the two models, i.e.,
the dynamic angle of repose of the rotary drum, the mass flow
rate and the critical outlet width of hopper, and the stopping
thickness of the inclined plate flow, all matched well with
the experimental measurements. However, their fundamental
differences in theories and solution algorithms resulted in
distinctive apparent advantages and disadvantages of capturing

granular flow physics. The continuum-mechanics model has
the apparent advantages of parameterization in material and
wall friction, direct initial state assignment, and computational
efficiency for large-scale flow systems. In contrast, the discrete-
particle model is more robust for handling discontinuous flow
problems and decipher particle interaction during flow for
smaller-scale systems. This comparative study has provided
insights that industry stakeholders may find helpful when
choosing suitable and experiment-informed/validated numerical
models and packages as advanced design tools to assist the design
and optimization of biomass granular flow systems.
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Impacts of Biologically Induced
Degradation on Surface Energy,
Wettability, and Cohesion of Corn
Stover
Juan H. Leal 1*, Eric J. Meierdierks1, Ricardo Navar1, Cameron M. Moore2, Allison E. Ray3

and Troy A. Semelsberger1*

1Material Physics Applications Division, Los Alamos National Laboratory, Los Alamos, NM, United States, 2Chemistry Division,
Los Alamos National Laboratory, Los Alamos, NM, United States, 3Science and Technology, Idaho National Laboratory,
Idaho Falls, ID, United States

The impacts of biological degradation on surface area, surface energy, wettability, and
cohesion of anatomically fractionated (i.e., leaf, stalk, and cob) and bulk corn stover are
presented in this study. The physical, thermal and chemical properties of corn stover are
critical material attributes that not only influence the mechanical processing and chemical
conversion of corn stover, but also the bulk solids handling and transport. The measured
surface areas were observed to be dependent on the degree of biological degradation
(mild vs. moderate vs. severe) and on the anatomical fraction. The surface area of the bulk
corn stover samples increased with the degree of biological degradation. The leaf fraction
was the most sensitive to biological degradation, resulting in an increase in surface area
from 0.5 m2/g (mildly degraded) to 1.2 m2/g (severely degraded). In contrast, the surface
area of the cob fraction remained relatively unaffected by the degree of biological
degradation (i.e., mildly degraded−0.55 m2/g, severely degraded−0.40 m2/g. All
biologically degraded samples resulted in significant changes to the surface chemistry
(evidenced by an increase in surface energy. As a general trend, the surface energy of bulk
corn stover increased with the degree of biological degradation—the same trend was
observed for the leaf and stalk anatomical fractions; however, the surface energy for the
cob fraction remained unchanged. Wettability, calculated from surface energy, for bulk
corn stover samples did not reveal any discernable trend with the degree of biological
degradation. However, trends in wettability were observed for the anatomical fractions,
with wettability increasing for the stalk and leaf fractions, and decreasing for the cob
fraction. Excluding the cob fraction, the work of cohesion increased with the degree of
biological degradation. Understanding the impacts of biological degradation on the
physical, chemical and thermal properties of corn stover offers insights to improve the
overall operational reliability, efficiency and economics of integrated biorefineries.
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1 INTRODUCTION

Global energy consumption continues to increase steadily as
predicted by the United States. Energy Information
Administration (EIA), with renewables slated to be the fastest
growing energy source by 2040 (EIA, 2019). As energy demands
increase, so does the importance of securing our nation’s energy
supplies, and with global climate change as a serious concern, the
motivation for the United States and others in the global
community to work towards replacing petroleum with
renewable energy sources is gaining momentum. Currently,
almost half (45%) of renewable energy used in the
United States is biomass sourced, making up 5% of total
energy usage—which has more than doubled in the past
20 years (Renewable Energy Sources, 2019). After the 3 Billion
Ton study, the UnitedStates Department of Energy (DOE) has
determined that there is a sustainable supply of biomass to
potentially replace 30% of petroleum production with biofuel
by 2030 (Perlack, 2005; Perlack et al., 2011; Langholtz et al.,
20162016).

Biomass is a renewable, low cost, and abundant feedstock
with established conversion methods to biofuels and platform
chemicals; however, the commercialization of Integrated
Biorefineries (IBR) is still not achievable. The challenges
facing IBRs are associated with the lack of throughput and
operational reliability of bulk solids and handling; thus
preventing IBRs from achieving the DOE technical cost
target of ethanol at $3.00 per gallon of gasoline (gge)
(Harmon et al., 2017). In order to achieve the cost target,
the operational reliability (i.e., time on stream) of a bio-
refinery must exceed 90% (currently estimated around 30%)
(Biorefinery Optimization Workshop Summary, 2016).
Critical material attributes and feedstock variability are
largely responsible for the inconsistent and unreliable
operations of bulk solids handling and transport. Critical
material attributes include (but not limited to): moisture
content, surface area, particle size, aspect ratios, wettability,
cohesion and anatomical fraction. The critical material
attributes investigated in this paper are anatomical fraction,
wettability, surface area, and ash.

Biomass storage conditions (time, temperature, environment)
is a major source of feedstock variability that directly impacts the
quality of feedstock through changes in the critical material
attributes (Searcy et al., 2015; Nagle et al., 2020). Biomass
storage is a necessary process because the harvest window is
much shorter than the required year-long processing window. A
known challenge with biomass storage is biologically induced
degradation, which occurs in piles or bales of organic material
such as corn stover (Smith et al., 2020). Biological degradation is
complex process resulting from respiration of plant tissues,
abiotic oxidation and microbial degradation—resulting in the
loss of valuable sugars, and dry-matter (Bose et al., 2020).

The biological degradation of biomass directly affects the
quality of the feedstock, which in turn influences the overall
conversion, yield and economics of IBRs (Smith et al., 2014; Ray
et al., 2020). Biological degradation is analogous to composting
which involves three types of bacteria, psychrophilic, mesophilic,

and thermophilic. (Hanson-Harding, 2013) Biological
degradation can be broadly grouped into microbial-induced
degradation, thermal degradation and partial/complete
oxidation. Microbial-induced degradation is the result of
bacteria breaking down the biomass. Thermal degradation is
the temperature dependent degradation (i.e., decomposition)
of biomass in the presence or absence of oxygen. Under
adiabatic conditions, the bale temperature continues to rise to
the point where partial oxidative degradation starts. Complete
oxidation only proceeds when the oxygen concentration is high
enough to support combustion. Prior to complete combustion,
partial oxidation is the dominate reaction because oxygen is the
limiting reactant. The products from biological heating is a
function of time, temperature, and oxygen concentration. A
deeper understanding how biological heating contributes to
feedstock variability offers opportunities for engineering
improvements to handle the range of feedstock properties
while still maintaining continuous operation.

The objective of this research is to investigate the effects that
biological heating has on corn stover properties such as surface
area, surface energy, cohesion, and wettability. This paper
presents the characterization of 21 samples (bulk and
anatomical fractions) among five bales that were visually
identified as being exposed to varying degrees of biologically
degradation.

2 MATERIALS AND METHODS

2.1 Corn Stover Samples
Corn stover, the residue left after corn (Zea mays) has been
harvested, is the greatest source of agricultural residue in the
United States (Turhollow et al., 2014; Bradley et al., 2019). Corn
stover consists of stalks, leaves, cobs and is a low-cost material for
the production and supply of biofuel and platform chemicals
(Kumar et al., 2008; Liu et al., 2014; Woźniak et al., 2021).
Samples of corn stover were provided by Idaho National
Laboratory (INL) for surface energy analysis and were stored
in sealed plastic bags at room temperature. All samples were
sourced from five bales (bale 1, 2, 3, 5, and 6) collected within a
single field in Iowa and dissected into three categories based on
visual identification of biologically induced heating or
degradation. Figure 1A shows a segmented bale affected by
biological degradation. There is a visual difference between the
mildly heated (Figure 1B), which are light in color, and the
severely heated, (Figure 1C) darker and almost black, samples.
The stalk, leaf, and cob (anatomical fractions) were separated
from part of bale 5 by visual inspection into 3 degrees of
heating—mild 1), moderate 2), and severely 3) heated corn
stover (Figure 2). All samples were then processed through
three stages of milling. First through a Vermeer BG480 bale
processer fitted with a 75 mm screen, followed by a Bliss
Hammermill with a 25 mm screen. Samples were further
milled using a Thomas Model 4 Wiley knife mill (Thomas
Scientific, Swedesboro, NJ) fitted with a 2 mm screen
producing 21 samples (Table 1) and were placed in plastic
grab bags (25 g).
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2.2 Sample Drying
The as-received moisture content of the corn stover samples were
measured using our TGA (thermal gravimetric analyzer). The as-
received moisture contents ranged from 7–15 wt%. All samples
were dried to moisture contents less than 2 wt% in a custom built
in-house drying station consisting of a packed-bed, convection
oven and argon purge gas. Sample drying was necessary to
obtaining surface area measurements using the nitrogen
adsorption technique (residual moisture would produce a
virtual leak). The samples were weighed and loaded into a
stainless steel tube (O.D. = 1 inch, Length = 8 inches) which
was then placed into the convection oven and connected to the

UHP argon purge gas. The isothermal drying temperature was
maintained at 45°C during the 10 h drying cycle. The argon flow
rate through the packed-bed was maintained at 150 sccm for all
samples. Three to 4 g of corn stover were typical bed loadings. A
final sample conditioning step was performed on the surface area
analyzer (see § 2.3) prior to surface area analysis.

2.3 Specific Surface Areas
Multipoint specific surface area (SSA) was collected using a
Micromeritics 3Flex instrument and the
Brunauer–Emmett–Teller (BET) theory. All adsorption data
were obtained using nitrogen as the adsorbate gas. The

FIGURE 1 | (A) A dissected bale showing various degrees of biological degradation, (B) a closer look at the mildly degraded section showing little to no browning,
and (C) severely degraded corn stover appearing very dark, nearly black (images provided by staff at Idaho National Laboratory*).

FIGURE 2 | (A) 2 mm grind of mildly heated corn stover (leaf), (B) moderately heated, (C) severely heated.
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secondary drying step and outgassing consisted of samples with
masses ranging from 1.3 to 1.6 g. BET range was determined from
a linear fit of the BET plot. The linear fit was selected using seven
increasing points (1-p/p°) up to the maximum on the Rouquerol
transform plot. All experiments performed produced positive
BET “C” constants.

2.4 Ash Content Measurement
Corn stover reportedly contains about 5-7 wt% of intrinsic ash
(Bonner et al., 2014)—which is inorganic material that is taken up
naturally within plant tissue during the growth process.
Conversely, extrinsic ash is inorganic material introduced to
the plant exterior by the external surroundings during harvest,
collection, and storage (Lizotte et al., 2015; Lacey et al., 2016). In
order to track and correlate the impacts of ash, all ash data were
collected after completing the surface energy measurements.
Note: surface energy measurements are non-destructive which
allowed us to use the same sample for ash quantification.

Ash content was determined using a Netzsch 449 Jupiter
simultaneous thermal analyzer (STA). The corn stover
recovered after surface energy analysis was weighed and placed
in three 500 μl alumina crucibles (~333 mg corn stover per
crucible) for ash analyses. The temperature program consisted
of an initial 30 min isotherm at 25°C, followed by a 6°C/min ramp
to 107°C in an argon environment (40 sccm), where the
temperature was held isothermally until no further mass loss
could be observed (approximately 2 h). Afterwards, the purge gas
was switched from argon to air (40 sccm) with a temperature
ramp of 10°C/min to 750°C. Temperature was held isothermally
at 750°C for 1 h to verify the complete oxidation of the
material—indicated by no additional mass loss. The remaining
mass represented the weight percent of total ash (extrinsic plus
intrinsic) relative to moisture-free corn stover.

2.5 Surface Energy, Inverse Gas
Chromatography
Surface energy measurements were carried out at via inverse gas
chromatography at infinite dilution using a Surface Energy Analyzer
(SEA) from Surface Measurement Systems (SMS), outfitted with a
flame ionization detector (FID). After drying and collecting surface
area measurements the corn stover samples were packed in silanized
glass columns. Vapor probe properties used for the calculations in
this study are tabulated in Table 2. The silanized glass columns used
for all analyses were sourced from SMS with the following

dimensions; 4 mm ID, 6mm OD × 300mmL. Each sample was
loaded into a new silanized column resulting in a solid (no gaps)
packed column of densities between 0.13 and 0.64 g/cm3. To avoid
probe to probe interactions, all surface energy measurements were
performed at infinite dilution (0.005 n/nm or 0.5% mono-layer
coverage). For each analysis (1 column per sample run in
triplicate), the carrier gas used was helium (10 sccm), and the
column temperature was maintained at 30°C with a 60min
conditioning step (identical conditions). In the SEA Analysis
software, the center of mass option was used to determine
retention time due to the asymmetrical peaks produced as a
result of the polar probe-surface interactions. Instrument
reproducibility was within 0.5% deviation using the mannitol
reference standard provided by Surface Measurement Systems.

2.5.1 Total Surface Energy
The free total surface energy (γts) is the sum of the dispersive (γds )
and specific (γsps ) surface energy components. The subscripts in
the equations presented represent either corn stover surface using
an s (solid) or the vapor probe using an l (liquid), while the
superscripts denote the surface energy component (t = total, d =
dispersive, sp = specific).

γts � γds + γsps (1)
2.5.2 Dispersive Surface Energy
Dispersive surface energy (γds ) was estimated using HPLC (High
Performance Liquid Chromatography) grade n-alkanes
(C7–C10) from Sigma-Aldrich. The dispersive surface energy
component was calculated using the Dorris-Gray method. The
adsorption dispersive free energy of a methylene group ΔGCH2 ,
is calculated from the slope of the line, RTΔ ln(VN,n +1

VN,n
) from

plotting RTΔ lnV against n, the number of carbons in the alkane.
Retention volume, V is measured directly from the surface energy
analyzer. The dead volume (obtained from the methane injections)
was subtracted to provide net retention volume,VN. Eq. 2was used
to therefore calculate the dispersive surface energy where R is the
gas constant, T is temperature, VN is net retention volume, NA is
Avogadro’s number, aCH2 is the cross sectional area of a methylene
group, γCH2

is the dispersive surface energy of a methylene group,
and n is the number of carbons in the alkane.

γds � 1
4γCH2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
RT · ln(VN,n +1

VN,n
)

NA · aCH2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

(2)

TABLE 1 | Corn stover samples used in this study, “B” indicates bulk
(unfractionated), “C,” “S,” and “L” indicate the fractions, cob, stalk and leaf,
respectively.

Control Mildly
biologically

heated

Moderately
biologically heated

Severely
biologically

heated

Bale 1 B B
Bale 2 B B
Bale 3 B B B
Bale 5 B,C,S,L B,C,S,L C,S,L
Bale 6 B B B

TABLE 2 | Characteristics of the Dispersive and Acid-Base IGC probes used in
this study.

Solvent a γd γ+ γ−

(Å2) (mJ/m2) (mJ/m2) (mJ/m2)

Water 1.1 21.8 25.5 25.5
n-heptane 57.0 20.3 0.0 0.0
n-octane 63.0 21.3 0.0 0.0
n-nonane 69.0 22.7 0.0 0.0
n-decane 75.0 23.4 0.0 0.0
Trichloromethane 44.0 25.0 3.8 0.0
Ethyl acetate 33.0 19.6 0.0 19.2
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2.5.3 Specific Surface Energy
A monopolar Lewis acid (trichloromethane) and base (ethyl
acetate), of HPLC grade from Sigma-Aldrich were used for the
specific surface energy ( γsps ) portion of the experiments. The
acid-base (or specific) surface energy components were calculated
using the van Oss-Chaudhury-Good (vOCG) scale and the
polarization method (Leal et al., 2019). The product of RT and
the natural log of the net retention volumes of the polar probes
were plotted against their deformation polarizability, PD. The
vertical distance from the alkane trend line to the plotted polar
probe determines the specific free energy of adsorption:

−ΔGsp � −(ΔG − ΔGd) � RT · lnVN (3)
Determining the specific contributions was applied using the

following approach:

−ΔGsp � 2NAa(
����
γ+l γ−s

√
+ ����

γl γ
+
s

√ ) (4)

where γ+l and γ−l represent the electron acceptor (acid) and
electron donor (base) parameters (vOCG scale) of the probe
molecule (Table 2), γ+s and γ

−
s are the acid and base parameters of

the corn stover surface. Values of γ+s and γ
−
s were calculated using

the measured −ΔGsp values of trichloromethane (TCM) and ethyl
acetate (EtOAc). Monopolar probes such as TCM are assigned a
zero value for either the acidic or basic component (whether
Lewis acid or base), e.g., γ−s = 0.0 mJ/m2, and was reduced to:

−ΔGTCM � 2NAaTCM
������
γ+TCMγ−S

√
(5)

Then Rearranged Into:

γ−S � ( −ΔGTCM

2NAaTCM
)

2

( 1
γ+TCM

) (6)

This same process was followed using ethyl acetate’s measured
free enthalpy of adsorption (−ΔGEtOAc), electron donor value and
cross-sectional to obtain the acidic component of the corn stover
surface, γ+s . With both γ+s and γ−s , the specific surface energy (γ

ab
s )

was obtained using:

γabs � 2
����
γ+s γ−s

√
(7)

2.5.4 Wettability
The ratio of specific over total surface energy, known as
hydrophilicity, is a useful tool in the prediction of changes in
wettability. These values can be used to track changes in sample
sets as a result of storage conditions, and physical or chemical
treatments.

Wettability � γsps
γts

(8)

2.5.5 Work of Cohesion and Work of Adhesion
The work of cohesion is defined as the intermolecular
attractive force acting between two adjacent portions of a
substance, the force that holds a piece of matter together

(Li et al., 2020). The work of cohesion for both corn stover
and water was calculated using Eq. 9. The variable x may be
substituted for either s to denote a solid or l, when referring to
liquid (water in this case).

Work of Cohesion(Wx
coh) � 2(

����
γdxγ

d
x

√
+ ����

γ+xγ−x
√ + ����

γ−xγ+x
√ ) (9)

The work of adhesion (calculated with Eq. 10 measures the
sum of interfacial forces between the corn stover surface (s) and
the surface of liquid water (l) in a multicomponent approach. All
calculations involving water surface energy used the physical
properties of water presented in Table 2.

Work of Adhesion(Wsl
adh) � 2(

����
γds γ

d
l

√
+ ����

γ+s γ
−
l

√ +
����
γ−s γ

+
l

√
)
(10)

The ratio (Φ, phi) of the work of adhesion (Wsl
adh) to the work

of cohesion of water (Wl
coh) is represented by Eq. 11.

ϕ � Wsl
adh/Wl

coh
(11)

FIGURE 3 | (A) Surface areas of corn stover samples;H Bale 1,H Bale
2,HBale 3,HBale 5,HBale 6. (B)Surface areas of fractionated corn stover
samples from Bale 5
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3 RESULTS AND DISCUSSION

3.1 Bet Surface Areas
Surface area and porosity changes may affect downstream
processes such as enzymatic conversion. Enhanced enzyme
accessibility is a limiting factor and pretreatments aim to
increase this by creating or increasing voids, slits and generally
increasing surface area (Ishizawa et al., 2007). In addition to
surface energy, surface texture, area, and porosity plays an
important role in wetting behavior of biomass. Understanding
and controlling the parameters that affect biomass wetting
characteristics may prove to be useful to biorefinery operators
seeking to reduce wetting times during pretreatment or
enzymatic digestion. Figure 3A shows the measured surface
areas for the 12 non-fractionated bulk corn stover samples.
The average surface area for the bulk corn stover samples was
1.03 m2/g, with a standard deviation of 0.09 m2/g and a range of
0.90–1.22 m2/g. The overall trend in surface area of the bulk corn
stover samples increased with extent of biological degradation.
The surface areas for the fractionated samples (stalk, leaf, and
cob) are shown in Figure 3B as a function of the degree of self-
heating. The average (�x) surface area for the anatomical fractions
was 0.76 m2/g which is lower than the average surface area of the
bulk corn stover samples. The surface areas among the
fractionated samples ranged from 0.44–1.16 m2/g, with the
highest surface areas observed for the severely degraded leaf
and stalk fractions. The lowest surface areas were observed for
the cob fraction with surface area ranging from 0.55 m2/g for the
mildly degraded sample, to 0.44 m2/g for the severely degraded
sample. The surface area of the cob fraction remained relatively
unchanged with respect to degree of degradation—demonstrating
a resistance to thermal degradation, perhaps attributed to
properties unique to the cob such as structure and density. The
leaf fraction was observed to be the most sensitive to the degree of
biological degradation. A two-fold increase in the leaf surface area
was measured, with the surface area increasing from 0.53 m2/g for
the mildly degraded sample, to 1.12 m2/g for the severely
degraded sample. The surface areas of the stalk fraction are
unique in that the surface areas are uncorrelated to the degree
of biological degradation. Given the relative size of the sample to
the size of the bale for which the samples came from, the mildly
degraded stalk sample may not be a representative sample of these
conditions. The authors fully recognize that the most challenging
aspect in correlating our characterization data to the degree of
biological degradation lies in the fact that the degraded samples
were visually identified as being mildly, moderately, or severely
degraded; unfortunately, there are no quantitative metrics to
differentiate the degree of biological degradation at this point.
Until then the characterization trends provided are based on
visual markers.

3.2 Total Ash Content Measurement
High level of inorganic material in corn stover can cause
accelerated wear in hammer-mills, knife-mills, and screw
feeders (Lacey et al., 2018). This soil-borne contamination has
deleterious effects in downstream operations such as acid
pretreatment, enzymatic hydrolysis and the fermentation

processes (Weiss et al., 2010; Fang and Jia, 2012). Ash
measurements were congruent with data collected previously
in house and by collaborators from Idaho National Laboratory
(Leal et al., 2020; Li et al., 2020). Ash data are plotted for the bulk
bale samples in Figure 4A as a function of biological self-heating.
The percent ash is the mass ratio of remaining ash to the mass of
dried corn stover (× 100). The data set has an average ash content
of 8.9% with a standard deviation (σ) and variance (σ2) of 3.2%,
and 10.3, respectively. The range of total ash measured was
4–17%. The ash data for the fractionated samples are
presented in Figure 4B as a function of biological self-heating.
The average ash content of this data set is 8.2% with a standard
deviation (σ) and variance (σ2) of 3.9%, and 15.2, respectively. The
range of measured ash among the fractionated corn stover data
set was 2%–16%. The variability in ash content observed here and
in the literature (Xiong et al., 2008; Agblevor et al., 1995; K.
J. Shinners et al., 2009; Shinners et al., 2011; Xiong et al., 2010;

FIGURE 4 | (A) Total ash measurements of bulk bale samples; □ Bale 1,
□ Bale 2, □ Bale 3, □ Bale 5, □ Bale 6. (B) Total ash measurements of
fractionated corn stover samples from Bale 5 [box upper and lower limit = data
max. and min., whiskers = sample standard deviation (Coeff. 1.5), solid
horizontal line = median, hollow internal box = mean].
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Fang and Jia, 2012; Werther et al., 2000) are most likely due to the
variations in the collecting, storage, handling, and analytical
technique.

3.3 Inverse Gas Chromatography Surface
Energy
The intermolecular forces related to van der Waals (non-polar)
interactions and Coulombic (polar) interactions are studied using
surface energy characterization with inverse gas chromatography
(IGC). The non-polar or van der Waals interactions are termed
the dispersive surface energy component. The polar, or
Coulombic interactions are referred to as the specific surface
energy portion of the surface energy. These measurements offer
fundamental thermodynamic insights that lead to predictions in
surface compatibility, solubility, adhesion, cohesion, wettability
(hydrophilicity/hydrophobicity), and adsorption capacity (Lloyd,
1994; Colorado and Lee, 2000; Etzler, 2003; Gérardin et al., 2007;
Lee et al., 2008; Winandy and Shupe, 2010; Hubbe et al., 2015).
Increased cohesion in corn stover is suspected to cause poor flow
and agglomeration in bulk solids handling through rat-holing
and arching in hoppers during conveyance operations (Leal et al.,
2020; Ray et al., 2020).

Measured surface energies of a material are representative of
the chemical composition of the surface exposed to the vapor
probes. Inorganic material (ash content) on the surface of corn
stover may result in higher values of surface energy as they
generally present higher values (often greater than 1,000 mJ/
m2) (Vitos et al., 1998). Another influence on surface energy
that has been reported is particle size (Amara et al., 2012).
However, that dependency can be misleading. Articles
suggesting a dependency of surface energy on particle size are
strictly measuring sub-micron particles (nano) composed of
inorganic material. The corn stover particles measured in this
study are of sizes ranging from 0.18 to 2.00 mm (50% greater than
0.5 mm) and carbonaceous. Surface energy dependency from
particle size does not apply to these larger particles.

Surface energy units are energy per unit area of surface (i.e. mJ/
m2). Therefore, if the chemical composition of the surface does
not change there should be zero difference in surface energy
between large and small particles. However, smaller particles
often have different surface energy values compared to larger
particles. There are a few explanations for this. During size
reduction, particles often undergo energetic processes such as
milling or grinding (Ho et al., 2012). These processes can create
surface disorder, reduce crystallinity, expose preciously
inaccessible interfaces, or cleave material in ways that favor
one crystal plane over others (Heng et al., 2006; Jaffari et al.,
2014; Shah et al., 2015). Nanoparticles may have different surface
energy values as they may be composed of fewer crystal planes, or
a dominant plane may be exposed compared to surfaces of larger
particles (Heng et al., 2006; Ho et al., 2009; Smith et al., 2017).

3.3.1 Total Surface Energy
The bulk ground samples in Figure 3C, (bales 1, 2, 3, 5, and 6)
show increases in total surface energy as the degree of self-heating
increases. The average value was 108.07 mJ/m2 for this set of

samples, and the range was 92.68–128.12 mJ/m2; �σ = 0.86 mJ/m2.
In Figure 5C, the total surface energy for the fractionated samples
is displayed as a function of the degree of self-heating. The
average total surface energy for all nine fractionated samples
was 97.68 mJ/m2, and the range was 85.89–124.37 mJ/m2; �σ =
0.46 mJ/m2. The greatest changes in total surface energy were
evidenced in the leaf fraction, an increase from 91.10 mJ/m2 in
the mildly self-heated sample to 123.65 mJ/m2 in the severely self-
heated sample. There was no observable change in the total
surface energy of the cob with varied degrees of self-heating.
The total surface energy of the stalk was observed to increase from
the mildly self-heated to the moderately self-heated sample, 86.13
and 89.25 mJ/m2, respectively.

3.3.2 Dispersive Surface Energy
The dispersive surface energy of the bulk ground samples of bales
1, 2, 3, 5, and 6 are displayed in Figure 5A. There is an observed
increase in dispersive surface energy in all bales with increased
degrees of self-heating. A measurable change in dispersive energy
is an indicator of chemical changes to the surface, a change in the
amount of apolar chemical species exposed per area. The self-
heating may have caused migration of or movement of apolar
portions to the surface resulting in an observed increase in
dispersive surface energy. Bale 6, for example, shows an
increase from 39.10 mJ/m2 (mild) to 45.40 mJ/m2 (severe),
demonstrating the greatest change among the bales. Student
t-tests reveal the changes in dispersive energy from self-
heating to be significant among all bale samples (non-
fractionated). The fractionated samples, with the exception of
the cob (Figure 6A), increase monotonically as a function of self-
heating. According to student t-tests all samples showed to be
different from one another with the exception of the moderate (�x
= 39.87, σ = 0.08) to severe (�x = 39.82, σ = 0.125) cob samples; t
(Perlack, 2005) = 0.50, p = 0.65. The effects of self-heating had the
most impact on the leaf fraction, evidenced in Figure 6A. The leaf
dispersive surface energy increased from 40.24 mJ/m2 to
46.96 mJ/m2, mild to moderately self-heated, respectively. The
dispersive energies of the stalk and cob were not impacted as
strongly as in the leaf fraction. One possible explanation for this
can be explored among the differences in composition, structure,
or even the position in the self-heated bale. For example, the leaf
is much thinner than the stalk or cob, possibly resulting in a more
efficient transfer of heat. There are also compositional differences
between the fractions, varying concentrations of cellulose,
hemicellulose, and lignin, which could possibly influence the
selection process of the organisms responsible for the self-
heating. The authors believe that without better control over
the experimental parameters and sample selection, it is not
possible to determine the exact reasons behind the discrepancies.

3.3.3 Specific Surface Energy
Specific surface energy for bales 1, 2, 3, 5, and 6 are plotted against
the degrees of self-heating in Figure 5B. Bales 3 and 6 severe
samples measured at higher specific surface energies than those
samples self-heated to a lesser degree. Student t-tests suggest self-
heating significantly changes the specific surface energy of the
samples in Figure 5B, with the exception of bale 2 mild (�x = 65.1,
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σ = 0.12) to moderate (�x = 66.75, σ = 0.74); t (Renewable Energy
Sources, 2019) = 3.83, p = 0.06. A look at the specific surface
energies of the three fractions on Figure 6B shows the leaf to be
more sensitive to self-heating than the stalk or the cob. The leaf
experienced an increase of ~26 mJ/m2 from mild (50.86 mJ/m2)
to severe (76.69 mJ/m2), however, the stalk increased ~10 mJ/m2

from mild (47.18 mJ/m2) to moderate (~57.83 mJ/m2) and then
decreased by ~4 mJ/m2 to 53.60 mJ/m2. t-tests revealed no
significant changes in the cobs specific surface energy (~50 mJ/
m2). The measured changes of specific surface energy in these
samples are indicators of chemical changes to the exposed
surfaces of the corn stover. The data suggests heating
influences the surface chemistry of the leaf, by way of either
creating new surfaces, or exposing new surfaces through
migration of inner positioned, polar moieties to the surface.
Corn stover has a varied composition; the lignin, cellulose,
inorganics, and extractives that make up the plant have very
different chemical structures. For example, lignin is an aromatic
alcohol, its migration (Ray et al., 2020), or exposure to the surface
would be expected to cause an increase in the specific surface
energy, via acidic contributions.

3.3.3.1 Effects of Self-Heating on Acid/Base Values
Figures 7A,B display the acid and base surface energy values,
respectively, which comprise the specific surface energy.

Self-heating increased the acid sites (electron acceptors) on the
surface except for bale 2, which experienced a decrease in acid
sites from the mild to moderate self-heating. The basic sites
(electron donators) were also observed to increase with self-
heating, although the changes in bale 1 control (�x = 53.41, σ =
2.16) to moderate (�x = 52.54, σ = 2.88); t (Perlack et al., 2011) =
0.42, p = 0.70 and bale 3 moderate (�x = 53.24, σ = 0.39) to severe
(�x = 52.69, σ = 0.25); t (Perlack, 2005) = 2.06, p = 0.13 were not
determined to be significant. In Figures Figures 7C,D, the leaf is
measured to increase in both the acid and base contributions of
specific surface energy. The surface of the stalk tends to increase
in acid sites when heated from mild to moderate. However, the
increases observed here may also be contributed to ash content
(inorganics) present in all corn stover samples.

3.3.3.2 Ash Influence on Specific Surface Energy
The amounts of inorganic matter in biomass feedstocks can range
widely based on harvesting practices, plant type, and storage.
Plants naturally contain a physiological amount of inorganics that
are vital to biological functions; these amounts can vary among
plant types and are referred to as intrinsic ash content. Proximate
analysis provides values of this physiological mineral content as a
wt% of the dry biomass matter and are reported to be less than
10 wt. % on the average. High ash content (above 10%) in biomass
feedstock is often attributed to practices and techniques in

FIGURE 5 | (A) Dispersive, (B) specific, (C) total surface energy and (D) hydrophilicity of bulk bale samples; □ Bale 1, □ Bale 2, □ Bale 3, □ Bale 5, □ Bale 6 [box
upper and lower limit = data max. and min., whiskers = sample standard deviation (Coeff. 1.5), solid horizontal line = median, hollow internal box = mean].
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harvesting, handling and storage—these methods allow for the
accumulation of extrinsic mineral/inorganic content such as dirt.
The impacts of ash on the surface energy of corn stover has been
found to significantly increase specific surface energy values in
ash concentrations above 10% w/w (Leal et al., 2020). It was
demonstrated that it is possible to wash out most of the ash over
10% w/w, suggesting that those inorganics were extrinsic, not
intrinsic. Increases in surface energy translate into increased
values of calculated hydrophilicity (section 3.3.4)—changes
that may negatively affect material flowability properties.
Figure 4A shows the variability of ash content in the bulk
bale samples. Ash contents over 10% were observed only in
the bale five mild, moderate and bale 3 moderate samples.
These samples are a ground mix of stalk, leaf, and cob
fractions and the mass distribution of each is uncertain.
Amounts of ash increase in samples from control to mild or
mild to moderate but decrease in bale 3 moderate to severe
sample. The increase in ash may contribute to increases in surface
energy, but in the case of bale 3 the ash content decreases from the
moderate to severe self-heating, however the specific surface
energy increases from ~63 mJ/m2 to ~84 mJ/m2. The increase
in ash as a result of heating from mild to moderate is unclear and
may be a result of a loss in organic mass during the heating or as a
result of biological organismal consumption. Figure 4B illustrates
the amount of ash measured in the mild, moderate and severely

heated fractionated samples. Previously observed trends in non-
degraded corn stover indicated a monotonic increase in surface
energy with increasing ash content (mostly in increases of the
acidic component of the surface) (Leal et al., 2020). The effects of
self-heating have convoluted the interpretation of the
aforementioned trend of surface energy and ash.

3.3.4 Wettability
Figure 5D shows self-heating did not affect the wettability of
samples in bales 2 and 5. However, according to the calculated
hydrophilicity, bales 1, 3, and 6 are predicted to have increased in
wetting ability. Severe degradation of corn stover results in an
increase in water extractive content, likely due to a disruption of
the cell wall structural integrity (Li et al., 2020). Changes in the
surface chemistry of the degraded corn stover, in addition to the
disrupted cell wall integrity, may also contribute to the increase in
water extracted content observed by Li et al. (2020). Functional
groups on the right side inTable 3 are conducive to a hydrophobic
surface, whereas the groups on the left side contribute to its
hydrophilic nature. Without more information, it is unclear to
whether an increase in oxygen to carbon ratio has occurred.
Figure 6D shows a monotonic increase in calculated wettability
of the leaf. The stalk fraction increased wettability with moderate
self-heating, but further exposure to self-heating reversed the
trend. Of all three fractions, the cob was the least affected by

FIGURE 6 | (A) Dispersive, (B) specific, (C) total surface energy, and (D) hydrophilicity of corn stover anatomically fractionated samples from Bale 5 [box upper and
lower limit = data max. and min., whiskers = sample standard deviation (Coeff. 1.5), solid horizontal line = median, hollow internal box = mean].
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self-heating with respect to wettability. The cylindrical solid
structure of the cob may have prevented the effects of
degradation from reaching internal parts of the cob, restricting
the changes to the surface, thus leaving the bulk of the cobs mass
relatively unaffected. The overall implications on downstream
processing may manifest themselves in slower drying times for
fractions with higher wettability, or decreased moisture uptake
rates for fractions with decreased wettability. The differences in
wettability among the fractions and degrees of degradation can
result in segregation, or clumping of the bulk material, causing
issues with handling operations through biorefinery equipment
(e.g., hoppers and screw feeders).

3.3.5 Work of Cohesion and Work of Adhesion
The calculated work of cohesion for bulk and fractionated corn
stover samples can be observed in Figures 8A,C, respectively.
Increases in cohesive forces were observed from the control to
the severely heated bulk corn stover samples. Self-heating had the
greatest effect on the leaf fraction of corn stover, and least on the cob.

Figures 8B,D display the work of adhesion (corn stover
sample to liquid water) of both the bulk and fractionated corn
stover samples. Using the vOCG scale, the trend in adhesion is
similar to the work of cohesion (corn stover), but the values are
overall lower. The average percent difference from work of
cohesion to adhesion of the bulk samples increases with
degrees of self-heating. Work of adhesion is 13.00% lower
than work of cohesion in the control, 14.68% in the mild,
16.99% in the moderate, and 22.01% in the severe group. This
indicates that self-heating produces a compounding effect on
biomass feedstock via increases in water adsorption and
particle cohesion, potentially resulting in rat-holing,
arching, and poor flow in hoppers or jamming of screw
feeders of biorefineries.

Eq. 11 implies that when comparing the two competing forces
acting on a drop of water, if Φ is greater than one, the drop will
spread easier because the net forces are in favor of adhesion.
Figure 9 illustrates an observable monotonic increase in Φ with
respect to biological self-heating. The authors understand this to
be an oversimplified estimation of real-world phenomena where
there are other factors to consider, e.g., surface roughness,
hierarchal structures, heterogeneity, etc., which may positively
or negatively affect the magnitude of IGC measured cohesion or
adhesion. The simplicity of Φ offers a less abstract view of
wettability and provides another method of evaluation for
discussion.

FIGURE 7 | (A) Acid (bulk corn stover), (B) Base (bulk corn stover); □ Bale 1, □ Bale 2, □ Bale 3, □ Bale 5, □ Bale 6. (C) Acid (anatomical fractions), and (D) Base
(anatomical fractions) contributions of surface energy with respect to degree of biological heating [box upper and lower limit = data max. and min., whiskers = sample
standard deviation (Coeff. 1.5), solid horizontal line = median, hollow internal box = mean].

TABLE 3 | Common functional groups contributing to wettability.

More wettable Less wettable

R-OH R-CH3

R-CO0� R-CH2-CH2-R′
R-Aln(OH)m R-CF3
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Further utility in the works of adhesion can be explored in the
measurements of solid-solid interfaces involving biomass feedstock, for
instance the surface of a hopper, or surface of a screw feederwhere lower
works of adhesion could prove optimal. Future work aims to couple

flow behavior of biomass feedstock (rheological measurements) with
surface energy for a direct evaluation of impacts (Cheng et al., 2021).

4 CONCLUSION

Biological degradation (a known source of feedstock variability) was
shown to have pronounced impacts on the surface area, surface
energy, wettability and cohesion of corn stover. The implications of
biological degradation negatively impact not only the overall
efficiency, conversion, and yields of integrated biorefineries; but
also the operational reliability of bulk solids handling and transport
of corn stover. Surface area is a critical material attribute that can be
used as a proxy for the pretreatment reactivity; an increase in the corn
stover surface area corresponds to an increase in the pretreatment
conversion/reactivity. The surface area of the bulk corn stover samples
increased with the degree of biological degradation. The leaf fraction
was the most sensitive to biological degradation, resulting in an
increase in surface area from 0.5m2/g (mildly degraded) to 1.2m2/
g (severely degraded). In contrast, the surface area of the cob fraction
remained relatively unaffected by the degree of biological degradation
(i.e., mildly degraded–0.55m2/g, severely degraded–0.40m2/g).

All biologically degraded samples in this study resulted in
significant changes to the surface chemistry (evidenced by an

FIGURE 8 | (A)Work of Cohesion, (B)Work of Adhesion, of bulk bale samples; □ Bale 1, □ Bale 2, □ Bale 3, □ Bale 5, □ Bale 6. (C)Work of Cohesion (anatomical
fractions), and (D) Work of Adhesion (anatomical fractions) with respect to degree of biological heating [box upper and lower limit = data max. and min., whiskers =
sample standard deviation (Coeff. 1.5), solid horizontal line = median, hollow internal box = mean].

FIGURE 9 | The ratio of the work of adhesion, Wsl
adh, and work of

cohesion of water, Wl
coh, is plotted as a dimensionless value denoted by “Φ.”

Dotted lines have been added to assist the reader in comparing samples of the
same bale; 2 Bale 1, 2 Bale 2, 2 Bale 3, 2 Bale 5, 2 Bale 6.
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increase in surface energy). As a general trend, the surface energy
of bulk corn stover increased with the degree of biological
degradation—the same trend was observed for the leaf and
stalk anatomical fractions; however, the surface energy for the
cob fraction remained unchanged. Wettability (calculated from
surface energy) is a characteristic property that impacts the
overall efficiency and conversion of pretreatment
processes—hydrophilic (i.e., wettable) materials lead to higher
water-uptake rates (correlating to higher conversion rates) as
compared to hydrophobic, or non-wettable materials. The
wettability for bulk corn stover samples did not reveal any
discernable trend with the degree of biological degradation.
However, trends in wettability were observed for the
anatomical fractions, with wettability increasing for the stalk
and leaf fractions, and decreasing for the cob fraction.
Excluding the cob fraction, the work of cohesion increased
with the degree of biological degradation. The quantified
impacts of biological degradation on the physiochemical and
thermodynamic properties of corn stover presented in this study
offer fundamental insights to improve the overall conversion,
economics, and operational reliability of Integrated Biorefineries.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JL performed most of the experiments, EM assisted with a few
surface area measurements, TS assisted JL with writing, RN and
CM assisted in editing content. AR helped process and supply
samples from INL.

FUNDING

This work was supported by the United States. Department of
Energy, Bioenergy Technologies (BETO) Office as part of the
FCIC: Feedstock Conversion Interface Consortium (CPS
Agreement Number: 33740).

ACKNOWLEDGMENTS

The authors would like to thank all our colleagues in the FCIC
and of the Bioenergy Technologies Office for their support on
Feedstock-Conversion Interface Consortium R&D. We also
thank Sergio Hernandez (INL Biomass Feedstock
Characterization Researcher) and Dr. Daniel Burnett (Director
of Science Strategy at Surface Measurement Systems). This
research leveraged resources of the Biomass Feedstock
National User Facility (BFNUF), which is a DOE Office of
Energy Efficiency and Renewable Energy User Facility located
at Idaho National Laboratory.

REFERENCES

Agblevor, F. A., Besler, S., and Wiselogel, A. E. (1995). Fast Pyrolysis of Stored
Biomass Feedstocks. Energy fuels. 9 (4), 635–640. doi:10.1021/ef00052a010

Amara, H., Nelayah, J., Creuze, J., Chmielewski, A., Alloyeau, D., Ricolleau, C., et al.
(2012). Is There Really a Size Effect on the Surface Energy of Nanoparticles.
[Internet]. Available from: https://hal.archives-ouvertes.fr/hal-03310351.

Biorefinery Optimization Workshop Summary (2016). Biorefinery Optimization
Workshop Summary Report. [Internet]. Chicago. [cited 2019 Mar 28]. Available
from: https://www.energy.gov/sites/prod/files/2017/02/f34/biorefinery_
optimization_workshop_summary_report.pdf.

Bonner, I. J., Smith, W. A., Einerson, J. J., and Kenney, K. L. (2014). Impact of
Harvest Equipment on Ash Variability of Baled Corn Stover Biomass for
Bioenergy. Bioenerg. Res. 7 (3), 845–855. doi:10.1007/s12155-014-9432-x

Bose, E., Leal, J. H., Hoover, A. N., Zeng, Y., Li, C., Ray, A. E., et al. (2020). Impacts
of Biological Heating and Degradation during Bale Storage on the Surface
Properties of Corn Stover. ACS Sustain. Chem. Eng. 8 (37). doi:10.1021/
acssuschemeng.0c03356

Bradley, T. H., Baral, N. R., Davis, R., Baral, N. R., Davis, R., and Bradley, T. H. (2019).
Supply and Value Chain Analysis of Mixed Biomass Feedstock Supply System for
Lignocellulosic Sugar Production. Biofuels, Bioprod. Biorefining. 13 (3), 635–659.

Cheng, Z., Leal, J. H., Hartford, C. E., Carson, J. W., Donohoe, B. S., Craig, D. A.,
et al. (2021). Flow Behavior Characterization of Biomass Feedstocks. Powder
Technol., 156–180. doi:10.1016/j.powtec.2021.04.004

Colorado, R., and Lee, T. R. (2000). Physical Organic Probes of Interfacial
Wettability Reveal the Importance of Surface Dipole Effects. J. Phys. Org.
Chem. 13 (12), 796–807. doi:10.1002/1099-1395(200012)13:12<796::aid-
poc317>3.0.co;2-#

Eia (2019). EIA Projects 28% Increase in World Energy Use by 2040 - Today in
Energy. U.S. Energy Inf. Adm. [Internet]. [cited 2019 Mar 28]. Available from:
https://www.eia.gov/todayinenergy/detail.php?id=32912.

Etzler, F. M. (2003). Characterisation of Surface Free Energies and Surface
Chemistry of Solids. Contact angle, wettability adhesion 3, 219–263.

Fang, X., and Jia, L. (2012). Experimental Study on Ash Fusion Characteristics of
Biomass. Bioresour. Technol. 104, 769–774. doi:10.1016/j.biortech.2011.11.055

Gérardin, P., Petrič, M., Petrissans, M., Lambert, J., and Ehrhrardt, J. J. (2007).
Evolution of Wood Surface Free Energy after Heat Treatment. Polym. Degrad.
Stab. 92 (4), 653–657.

Hanson-Harding, B. (2013). Composting. New York, NY: The Rosen Publishing
Group, Inc.

Harmon, L., Hallen, R., Lilga, M., Heijstra, B., Palou-Rivera, I., and Handler, R.
(2017). A Hybrid Catalytic Route to Fuels from Biomass Syngas. Golden, CO
(United States).

Heng, J. Y. Y., Bismarck, A., Lee, A. F., Wilson, K., and Williams, D. R. (2006).
Anisotropic Surface Energetics and Wettability of Macroscopic Form I
Paracetamol Crystals. Langmuir 22 (6), 2760–2769. doi:10.1021/la0532407

Ho, R., Naderi, M., Heng, J. Y. Y., Williams, D. R., Thielmann, F., Bouza, P., et al.
(2012). Effect of Milling on Particle Shape and Surface Energy Heterogeneity of
Needle-Shaped Crystals. Pharm. Res. 29 (10), 2806–2816. doi:10.1007/s11095-
012-0842-1

Ho, R., Wilson, D. A., and Heng, J. Y. Y. (2009). Crystal Habits and the Variation in
Surface Energy Heterogeneity. Cryst. Growth & Des. 9 (11), 4907–4911. doi:10.
1021/cg900696f

Hubbe, M. A., Gardner, D. J., and Shen, W. (2015). Contact Angles and
Wettability of Cellulosic Surfaces: A Review of Proposed Mechanisms and
Test Strategies. BioResources 10 (4), 8657–8749. doi:10.15376/biores.10.4.
hubbe_gardner_shen

Ishizawa, C. I., Davis, M. F., Schell, D. F., and Johnson, D. K. (2007). Porosity and
its Effect on the Digestibility of Dilute Sulfuric Acid Pretreated Corn Stover.
J. Agric. Food Chem. 55 (7), 2575–2581. doi:10.1021/jf062131a

Jaffari, S., Forbes, B., Collins, E., Khoo, J., Martin, G. P., and Murnane, D. (2014).
Evidence for the Existence of Powder Sub-populations in Micronized Materials:
Aerodynamic Size-Fractions of Aerosolized Powders Possess Distinct
Physicochemical Properties. Pharm. Res. 31 (12), 3251–3264. doi:10.1007/
s11095-014-1414-3

K. J. Shinners, K. J. K. J., G. C. Boettcher, G. C., D. S. Hoffman, D. S. D. S., J. T.
Munk, J. T., R. E. Muck, R. E., and P. J. Weimer, P. J. (2009). Single-Pass Harvest

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 86801912

Leal et al. Impacts of Biologically Induced Degradation

183

https://doi.org/10.1021/ef00052a010
https://hal.archives-ouvertes.fr/hal-03310351
https://www.energy.gov/sites/prod/files/2017/02/f34/biorefinery_optimization_workshop_summary_report.pdf
https://www.energy.gov/sites/prod/files/2017/02/f34/biorefinery_optimization_workshop_summary_report.pdf
https://doi.org/10.1007/s12155-014-9432-x
https://doi.org/10.1021/acssuschemeng.0c03356
https://doi.org/10.1021/acssuschemeng.0c03356
https://doi.org/10.1016/j.powtec.2021.04.004
https://doi.org/10.1002/1099-1395(200012)13:12<796::aid-poc317>3.0.co;2-#
https://doi.org/10.1002/1099-1395(200012)13:12<796::aid-poc317>3.0.co;2-#
https://www.eia.gov/todayinenergy/detail.php?id=32912
https://doi.org/10.1016/j.biortech.2011.11.055
https://doi.org/10.1021/la0532407
https://doi.org/10.1007/s11095-012-0842-1
https://doi.org/10.1007/s11095-012-0842-1
https://doi.org/10.1021/cg900696f
https://doi.org/10.1021/cg900696f
https://doi.org/10.15376/biores.10.4.hubbe_gardner_shen
https://doi.org/10.15376/biores.10.4.hubbe_gardner_shen
https://doi.org/10.1021/jf062131a
https://doi.org/10.1007/s11095-014-1414-3
https://doi.org/10.1007/s11095-014-1414-3
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


of Corn Grain and Stover: Performance of Three Harvester Configurations.
Trans. ASABE 52 (1), 51–60. doi:10.13031/2013.25940

Kumar, A., Wang, L., Dzenis, Y. A., Jones, D. D., and Hanna, M. A. (2008).
Thermogravimetric Characterization of Corn Stover as Gasification and
Pyrolysis Feedstock. Biomass Bioenergy 32 (5), 460–467. doi:10.1016/j.
biombioe.2007.11.004

Lacey, J. A., Aston, J. E., and Thompson, V. S. (2018). Wear Properties of Ash
Minerals in Biomass. Front. Energy Res. 6, 119. doi:10.3389/fenrg.2018.00119

Lacey, J. A., Emerson, R. M., Thompson, D. N., and Westover, T. L. (2016). Ash
Reduction Strategies in Corn Stover Facilitated by Anatomical and Size
Fractionation. Biomass Bioenergy 90, 173–180. doi:10.1016/j.biombioe.2016.
04.006

Langholtz, M., Stokes, B., and Eaton, L. (20162016). 2016 Billion-Ton Report:
Advancing Domestic Resources for a Thriving Bioeconomy (Executive
Summary). Ind. Biotechnol. 12 (5), 282–289. doi:10.1089/ind.2016.29051.doe

Leal, J. H., Torres, E. L., Rouse, W. T., Moore, C. M., Sutton, A. D., Hoover, A. N.,
et al. (2020). Impacts of Inorganic Material (Total Ash) on Surface Energy,
Wettability, and Cohesion of Corn Stover.

Leal, J. H., Moore, C. M., Sutton, A. D., and Semelsberger, T. A. (2019). Surface
Energy of Air Fractionated Corn Stover. Industrial Crops Prod. 137, 628–635.
doi:10.1016/j.indcrop.2019.05.046

Lee, S., Park, J.-S., and Lee, T. R. (2008). The Wettability of Fluoropolymer
Surfaces: Influence of Surface Dipoles. Langmuir 24 (9), 4817–4826. doi:10.
1021/la700902h

Li, C., Kerner, P., Williams, C. L., Hoover, A., and Ray, A. E. (2020).
Characterization and Localization of Dynamic Cell Wall Structure and
Inorganic Species Variability in Harvested and Stored Corn Stover Fractions
as Functions of Biological Degradation. ACS Sustain. Chem. Eng. 8 (18),
6924–6934. doi:10.1021/acssuschemeng.9b06977

Liu, Z.-H., Qin, L., Li, B.-Z., and Yuan, Y.-J. (2014). Physical and Chemical
Characterizations of Corn Stover from Leading Pretreatment Methods and
Effects on Enzymatic Hydrolysis. ACS Sustain. Chem. Eng. 3 (1), 140–146.
doi:10.1021/sc500637c

Lizotte, P.-L., Savoie, P., and De Champlain, A. (2015). Ash Content and Calorific
Energy of Corn Stover Components in Eastern Canada. Energies 88 (6),
48274827–48483838. doi:10.3390/en8064827

Lloyd, T. B. (1994). Experimental Procedures to Characterize Acid-Base and
Dispersion Force Contributions to Solid Wettability A Review. Colloids
Surfaces A Physicochem. Eng. Aspects 93 (C), 25–37. doi:10.1016/0927-
7757(94)02907-5

Nagle, N. J., Donohoe, B. S., Wolfrum, E. J., Kuhn, E. M., Haas, T. J., Ray, A. E., et al.
(2020). Chemical and Structural Changes in Corn Stover after Ensiling:
Influence on Bioconversion. Front. Bioeng. Biotechnol. 8, 739. doi:10.3389/
fbioe.2020.00739

Perlack, R. D. (2005). Biomass as Feedstock for a Bioenergy and Bioproducts
Industry: The Technical Feasability of a Billion-Ton Annual Supply. Oak
Ridge, TN: Oak Ridge National Laboratory.

Perlack, R. D., Eaton, L. M., and Langholtz, M. H. (2011). US Billion Ton Update:
Biomass Supply for a Bioenergy and Bioproducts Industry (Executive
Summary). Ind. Biotechnol. 7 (5), 375–380.

Ray, A. E., Williams, C. L., Hoover, A. N., Li, C., Sale, K. L., Emerson, R. M., et al.
(2020). Multiscale Characterization of Lignocellulosic Biomass Variability and
its Implications to Preprocessing and Conversion: A Case Study for Corn
Stover. ACS Sustain. Chem. Eng. 8 (8), 3218–3230. doi:10.1021/acssuschemeng.
9b06763

Renewable Energy Sources (2019). Energy Explained, Your Guide to
Understanding Energy. Energy Inf. Adm. [Internet]. [cited 2019 Mar 28].
Available from: https://www.eia.gov/energyexplained/?page=renewable_home.

Searcy, E., Lamers, P., Hansen, J., Jacobson, J., Hess, R., and Webb, E. (2015).
Advanced Feedstock Supply System Validation Workshop. United States:
Golden, CO.

Shah, U. V., Olusanmi, D., Narang, A. S., Hussain, M. A., Tobyn, M. J., Hinder, S. J.,
et al. (2015). Decoupling the Contribution of Surface Energy and Surface Area
on the Cohesion of Pharmaceutical Powders. Pharm. Res. 32 (1), 248–259.
doi:10.1007/s11095-014-1459-3

Shinners, K. J., Wepner, A. D., Muck, R. E., and Weimer, P. J. (2011). Aerobic and
Anaerobic Storage of Single-Pass, Chopped Corn Stover. Bioenerg. Res. 4 (1),
61–75. doi:10.1007/s12155-010-9101-7

Smith, R. R., Shah, U. V., Parambil, J. V., Burnett, D. J., Thielmann, F., andHeng, J. Y. Y.
(2017). The Effect of Polymorphism on Surface Energetics of D-Mannitol
Polymorphs. Aaps J. 19 (1), 103–109. doi:10.1208/s12248-016-9978-y

Smith, W. A., Bonner, I. J., Kenney, K. L., Wendt, L. M., Smith, W. A., Bonner, I.
J., et al. (2014). Practical Considerations of Moisture in Baled Biomass
Feedstocks Practical Considerations of Moisture in Baled Biomass
Feedstocks, 7269.

Smith, W. A., Wendt, L. M., Bonner, I. J., and Murphy, J. A. (2020). Effects of
Storage Moisture Content on Corn Stover Biomass Stability, Composition, and
Conversion Efficacy. Front. Bioeng. Biotechnol. 8, 716. doi:10.3389/fbioe.2020.
00716

Turhollow, A., Perlack, R., Eaton, L., Langholtz, M., Brandt, C., Downing, M., et al.
(2014). The Updated Billion-Ton Resource Assessment. Biomass Bioenergy
70,149–164. doi:10.1016/j.biombioe.2014.09.007

Vitos, L., Ruban, A. v., Skriver, H. L., and Kollár, J. (1998). The Surface Energy of
Metals. Surf. Sci., 411 (1–2), 186–202. doi:10.1016/s0039-6028(98)00363-x

Weiss, N. D., Farmer, J. D., and Schell, D. J. (2010). Impact of Corn Stover
Composition on Hemicellulose Conversion during Dilute Acid Pretreatment
and Enzymatic Cellulose Digestibility of the Pretreated Solids. Bioresour.
Technol. 101 (2), 674–678. doi:10.1016/j.biortech.2009.08.082

Werther, J., Saenger, M., Hartge, E.-U., Ogada, T., and Siagi, Z. (2000). Combustion
of Agricultural Residues. Prog. Energy Combust. Sci. 26 (1), 1–27. doi:10.1016/
s0360-1285(99)00005-2

Winandy, J. E., and Shupe, T. F. (2010). FROM HYDROPHILICITY to
HYDROPHOBICITY : A CRITICAL REVIEW : PART I . WETTABILITY
and SURFACE BEHAVIOR Cheng Piao. Wood Fiber 42 (4), 490–510.

Woźniak, M., Ratajczak, I., Wojcieszak, D., Waśkiewicz, A., Szentner, K., Przybył,
J., et al. (2021). Chemical and Structural Characterization of Maize Stover
Fractions in Aspect of its Possible Applications. Materials 14 (6).

Xiong, S., Burvall, J., Örberg, H., Kalen, G., Thyrel, M., Öhman, M., et al. (2008).
Slagging Characteristics during Combustion of Corn Stovers with and
without Kaolin and Calcite. Energy fuels. 22 (5), 3465–3470. doi:10.1021/
ef700718j

Xiong, S., Öhman, M., Zhang, Y., and Lestander, T. (2010). Corn Stalk Ash
Composition and its Melting (Slagging) Behavior during Combustion. Energy
fuels. 24 (9), 4866–4871. doi:10.1021/ef1005995

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Leal, Meierdierks, Navar, Moore, Ray and Semelsberger. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 86801913

Leal et al. Impacts of Biologically Induced Degradation

184

https://doi.org/10.13031/2013.25940
https://doi.org/10.1016/j.biombioe.2007.11.004
https://doi.org/10.1016/j.biombioe.2007.11.004
https://doi.org/10.3389/fenrg.2018.00119
https://doi.org/10.1016/j.biombioe.2016.04.006
https://doi.org/10.1016/j.biombioe.2016.04.006
https://doi.org/10.1089/ind.2016.29051.doe
https://doi.org/10.1016/j.indcrop.2019.05.046
https://doi.org/10.1021/la700902h
https://doi.org/10.1021/la700902h
https://doi.org/10.1021/acssuschemeng.9b06977
https://doi.org/10.1021/sc500637c
https://doi.org/10.3390/en8064827
https://doi.org/10.1016/0927-7757(94)02907-5
https://doi.org/10.1016/0927-7757(94)02907-5
https://doi.org/10.3389/fbioe.2020.00739
https://doi.org/10.3389/fbioe.2020.00739
https://doi.org/10.1021/acssuschemeng.9b06763
https://doi.org/10.1021/acssuschemeng.9b06763
https://www.eia.gov/energyexplained/?page=renewable_home
https://doi.org/10.1007/s11095-014-1459-3
https://doi.org/10.1007/s12155-010-9101-7
https://doi.org/10.1208/s12248-016-9978-y
https://doi.org/10.3389/fbioe.2020.00716
https://doi.org/10.3389/fbioe.2020.00716
https://doi.org/10.1016/j.biombioe.2014.09.007
https://doi.org/10.1016/s0039-6028(98)00363-x
https://doi.org/10.1016/j.biortech.2009.08.082
https://doi.org/10.1016/s0360-1285(99)00005-2
https://doi.org/10.1016/s0360-1285(99)00005-2
https://doi.org/10.1021/ef700718j
https://doi.org/10.1021/ef700718j
https://doi.org/10.1021/ef1005995
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Revisiting Theoretical Tools and
Approaches for the Valorization of
Recalcitrant Lignocellulosic Biomass
to Value-Added Chemicals
Le Thanh Mai Pham1,2†, Hemant Choudhary1,2†, Rahul Gauttam1,3†, Steven W. Singer1,3,
John M. Gladden1,4, Blake A. Simmons1,3, Seema Singh1,2* and Kenneth L. Sale1,5*

1Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, United States, 2Department of Bioresource and Environmental
Security, Sandia National Laboratories, Livermore, CA, United States, 3Biological Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, CA, United States, 4Department of Biomaterials and Biomanufacturing, Sandia National
Laboratories, Livermore, CA, United States, 5Department of Computational Biology and Biophysics, Sandia National
Laboratories, Livermore, CA, United States

Biorefinery processes for converting lignocellulosic biomass to fuels and chemicals
proceed via an integrated series of steps. Biomass is first pretreated and
deconstructed using chemical catalysts and/or enzymes to liberate sugar monomers
and lignin fragments. Deconstruction is followed by a conversion step in which engineered
host organisms assimilate the released sugar monomers and lignin fragments, and
produce value-added fuels and chemicals. Over the past couple of decades, a
significant amount of work has been done to develop innovative biomass
deconstruction and conversion processes that efficiently solubilize biomass, separate
lignin from the biomass, maximize yields of bioavailable sugars and lignin fragments and
convert the majority of these carbon sources into fuels, commodity chemicals, and
materials. Herein, we advocate that advanced in silico approaches provide a
theoretical framework for developing efficient processes for lignocellulosic biomass
valorization and maximizing yields of sugars and lignin fragments during deconstruction
and fuel and chemical titers during conversion. This manuscript surveys the latest
developments in lignocellulosic biomass valorization with special attention given to
highlighting computational approaches used in process optimization for lignocellulose
pretreatment; enzyme engineering for enhanced saccharification and delignification; and
prediction of the genome modification necessary for desired pathway fine-tuning to
upgrade products from biomass deconstruction into value-added products. Physics-
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based modeling approaches such as density functional theory calculations and molecular
dynamics simulations have been most impactful in studies aimed at exploring the
molecular level details of solvent-biomass interactions, reaction mechanisms occurring
in biomass-solvent systems, and the catalytic mechanisms and engineering of enzymes
involved in biomass degradation. More recently, with ever increasing amounts of data
from, for example, advanced mutli-omics experiments, machine learning approaches have
begun to make important contributions in synthetic biology and optimization of metabolic
pathways for production of biofuels and chemicals.

Keywords: multi-omic analyses, lignin peroxidase, cellulase, predictive biology, ionic liquid, lignocellulosic biomass,
computational biology, and chemistry

INTRODUCTION

Plant biomass is the most abundant renewable source of carbon
accessible to humanity. Lignocellulosic biomass is primarily
comprised of three natural polymers: cellulose, hemicellulose,
and lignin (Higuchi, 1997) (Figure 1). Cellulose is a linear,
homologous polymer consisting of β-D-glucose units bonded
together by β-1-4-glycosidic bonds. The degree of polymerization
(DP) of cellulose is variable in different types of biomass (Hallac
and Ragauskas, 2011). For example, the DP of cellulose chains
ranges from 10,000 to 15,000 for native wood and cotton,
respectively. The glucose polymers of cellulose are held
together by van der Waals bonds and networks of strong
H-bonds, enforcing crystalline regions and leading to the great
strength and recalcitrance of cellulose (Shen and Gnanakaran,
2009). These cellulose microfibrils are entangled with
hemicellulose and lignin within the plant cell wall.
Hemicellulose is a heteropolysaccharide composed of pentose

polymers (xylose and arabinose) and hexose polymers (glucose,
galactose, and mannose) with DP ranging from 50 to
200 monosaccharides (Farhat et al., 2017; You et al., 2019)
and sugar (uronic) acids (Huffman, 2003). Lignin is the third
component and comprises 15 – 35 wt% of lignocellulose. Lignin is
a three-dimensional amorphous polymer composed of three
phenylpropanoid monolignols: ρ-coumaryl, coniferyl, and
sinapyl alcohols, which in the lignin polymer are the ρ-
hydroxyphenyl (H), guaicyl (G), and syringyl (S) units,
respectively. The ratio of the three monolignols varies among
plant phenotypes, resulting in many different lignin forms. The
creation of a variety of linkages among these monolignols
during lignin polymerization in the cell wall makes lignin a
highly branched complex heterologous polymer. These
linkages between H, G and S subunits are β-O-4′, β-5, α-O-
4, 4-O-5′, β-β in primary and β-1′, and 5-5′ in minor content
(Yoo et al., 2016). The predominant linkages in lignin are beta-
aryl ether bonds, typically 50% in softwood and 60% in

FIGURE 1 | Computational strategies used in process optimization for lignocellulose biomass deconstruction and upgrading to valuable fuels and chemicals.
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hardwood (Yoo et al., 2016). Several parameters affect the
structure of lignocellulose, including the DP of cellulose fibers,
the degree of crystallinity, how well the hemicellulose coats
cellulose, the amount of lignin, and how the lignin protects the
cellulose fibers. Therefore, the information on lignocellulose
structure and composition will govern and direct strategies for
deconstructing lignocellulose and converting it into value-
added products.

Due to the complex nature of biomass and variation in its
composition and structure, there is no universally optimized
process for physical-chemical pretreatment and conversion of
lignocellulosic biomass to valuable products (Ray et al., 2020).
The recalcitrance of biomass to deconstruction and conversion is
created in part by the crystallinity of cellulose, the complex
interactions among cellulose, hemicellulose, and lignin, and
the heterogeneity of lignin. This limits biomass deconstruction
and escalates the pretreatment and enzymatic saccharification
costs. To help optimize the processing steps, computational
approaches have been used to develop a fundamental
understanding of the interactions among biomass components
and solvents for improving the accessibility to carbohydrate fibers
before enzyme-catalyzed saccharification, the structure and
function of biomass-degrading enzymes for engineering
improved stability and activity under harsh pretreatment
conditions, and the engineering of metabolic pathways in
production hosts for improved titers and metabolic rates. The
use of advanced computational techniques to optimize integrated
pretreatment technologies (Figure 1, left panel) is discussed in
Section 2. Computational methods, including quantum
mechanical and molecular mechanical calculations, have been
employed to help develop novel strategies for enzyme
preparation, enzyme engineering, and enzyme mixture
formulations to improve saccharification and lignolysis. Some
of the latest studies on protein engineering approaches are
discussed in Section 3 (Figure 1, middle panel). Finally, in
Section 4 (Figure 1, right panel) of this review, we survey
computational tools applied to system biology studies,
including advanced technologies, multi-omics, and additional
tools necessary for desired pathway engineering and fine-
tuning to maximize yields from upgrading products produced
during biomass deconstruction into value-added fuels, chemicals,
and other products.

HIGHLIGHTS IN THE APPLICATION OF
COMPUTATIONAL METHODS IN
LIGNOCELLULOSE PRETREATMENT
Lignocellulosic biomass, including human-inedible agricultural,
forest, and herbaceous residues, stands out as a sustainable
alternative for renewable, carbon-neutral production of fuels,
chemicals, materials, and energy (Castilla-Archilla et al., 2019).
However, the direct use of lignocellulosic biomass is restricted
due to its recalcitrance to degradation, which is due to the strong
covalent and hydrogen bond interactions among the complex
chemical structure of its constituents, namely, cellulose,
hemicellulose, and lignin, and thus, pretreatment is necessary

(Gibson, 2012; Haghighi Mood et al., 2013). Existing approaches
include biological, abiotic (physical, chemical, and
physicochemical), and hybrid technologies (Figure 2) (Tu and
Hallett, 2019). An ideal pretreatment technology would
successfully disrupt the strong interactions among
biopolymers, leading to their selective fractionation, minimize
by-product formation, and be economically viable. Nevertheless,
optimizing these objectives alone or in combination is essential to
benefit the overall process, as each pretreatment technology,
owing to its unique characteristics, is applicable to a specific
biomass type and source. For example, physical pretreatment
approaches are the most conventional methods for lignocellulosic
biomass pretreatment. However, their limited scalability, high
energy requirements, and multiple feedstock non-viability
narrow their applicability. Chemical pretreatment methods
involving hot water, dilute acid, ionic liquids, alkali, organic
solvents (organosolv), and ammonia fiber expansion have been
widely studied (Haghighi Mood et al., 2013; Bhardwaj et al.,
2019). While requiring less energy and being generally non-toxic,
biological pretreatments typically require longer retention times
for effective pretreatment, hindering their commercial feasibility.

Pretreatment of lignocellulosic biomass facilitates the
production of biologically available intermediates such as
glucose, cellulose, and lignin fragments that can be converted
to final products such as biohydrogen, biomethane, bioethanol,
biomethanol, biobutanol, and bio-diesel. The efficiency of a given
pretreatment process is a function of the constituents of the
biomass and how they interact with the pretreatment process.
Rigorous efforts to optimize a single biomass pretreatment
technology or combinations of technologies have improved
economic viability and environmental sustainability. However,
the mission is still not accomplished, given the vast number of
variables involved in optimizing pretreatment technologies. In
this regard, computational tools that leverage experimental
datasets have become essential in identifying sustainable and
robust multi-product biorefinery methodologies. The field of
computational chemistry and biology has become increasingly
predictive in the twenty-first century, and active applications have
been extended to studies, predictions, and optimization of
biomass pretreatment technologies. These simulation
approaches predict desired outputs based on existing
experimental datasets in which pretreatment efficacy has been
measured for a diverse set of feedstocks under a variety of
pretreatment conditions. Computational methods used to
understand and predict pretreatment efficacy have
predominantly used atomistic physics-based modeling, but
atomic scale machine learning methods are also being
developed that have the potential to speed up pretreatment
optimization.

Atomic-scale modeling techniques, including density
functional theory (DFT) and molecular dynamics (MD), have
been instrumental in advancing the understanding of
experimental pretreatment results and predicting the
properties of biomass-solvent systems at the level of atom-by-
atom interactions among biomass, water, and solvent. DFT is a
powerful tool for obtaining static properties such as local energy
minima, reaction pathways, and transition states and calculating
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other thermodynamic properties for a relatively small system
(tens to hundreds of atoms) (Cohen et al., 2012). For evaluation of
larger systems (thousands to millions of atoms), MD simulations
are critical in calculating equilibrium thermodynamic and
physical properties (as a function of hydrogen bonds),
sampling conformational states, and evaluating femtosecond to
millisecond dynamics and the role of long-range forces (Rapaport
et al., 1996; Frenkel and Smit, 2002). It is to be noted that classical
MD simulations are limited to studying equilibrium states and
properties of the system, and quantum chemistries such as bond-
breaking and bond-forming are not considered. However,
accurate force fields for calculating non-bonded interactions,
including van der Waals and Coulombic interactions, are
essential to understanding interactions between lignocellulosic
biomass components and pretreatment solvents to design an
efficient process. The total potential energy of the given
lignocellulosic biomass system is calculated using empirical
force fields such as GROningen MOlecular Simulation
(GROMOS), Polymer Consistent Force Field (PCFF), and
Chemistry at Harvard Macromolecular Mechanics
(CHARMM). The MD methods using these force fields to
study biomass–solvent interactions are discussed in the
upcoming sections.

Machine learning (ML) approaches have the potential to
generate predictive models of biomass pretreatment efficacy
and would provide potentially much faster ways to evaluate

and optimize pretreatment technologies. However, ML
approaches require either very large databases from which to
learn how to predict pretreatment outcomes from inputs and/or
the ability to account for and features the atomic scale forces
governing biomass–solvent interactions. Recently, neural
networks have been developed that provide insights into the
atomistic properties of molecules and are trained to look for a
specific “structure” or “moiety” with a defined interaction or
activity (Grisafi and Ceriotti, 2019). They computed the atom-
global information on the structure and composition utilizing
Smooth Overlap of Atomic Properties (SOAP), long-distance
equivariant (LODE), and similar ideas to improve the accuracy
and efficiency of long-range information. This ML approach
provides a representation of the system that accounts for both
short-range atomistic interactions and long-range interactions,
giving it the potential to help design and optimize an efficient
pretreatment method.

Modeling Cellulose and Lignin Structures
The structures of cellulose, hemicellulose, and lignin and their
interactions play an essential role in accurately predicting the
pretreatment efficacies, i.e., creating the initial coordinates in
terms of biopolymer structure is vital for investigating their
properties and their interactions with solvents (Ciesielski et al.,
2020). Typical tools for building structures of sugar polymers
include “Cellulose Builder” (Gomes and Skaf, 2012) and

FIGURE 2 | Pivotal pretreatment approaches for the valorization of lignocellulosic biomass.
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“doGlycans” (Danne et al., 2017). While the former facilitates the
construction of any length of various cellulose crystalline forms
such as Iα, Iβ, II, and III, the latter enables a structural topology for
cellulose and hemicellulose. In 2003, amorphous and crystalline
cellulose models were compared using MD simulations for the
first time. The study also analyzed various properties and showed
that their conformational states, density, and hydrogen bonding
networks were consistent with available experimental data
(Mazeau and Heux, 2003). Since then, significant progress has
been made in modeling cellulose crystal structures and their
hydrogen-bonding networks (Ciesielski et al., 2020). MD
simulations have also been employed to study twisted
conformations of cellulose around their glycosidic linkages, as
was observed in atomic force and transmission electron
microscopy studies (Hanley et al., 1997; Bowling et al., 2001).
The deviation of glycosidic linkages from 180° was suggested
using MD simulations; however, the twisted microfibril was
unstable and reverted to the original untwisted structure
independent of the temperature (Matthews et al., 2011;
Matthews et al., 2012). In another interesting study, the anti-
and syn-conformations of four different glucan decasaccharides
were evaluated using the CHARMM36 force field and compared
with small-angle X-ray scattering to unveil the glycosidic linkage
flexibility (Kameda et al., 2018). MD simulation of branched
hemicelluloses revealed the higher stiffness of the glucomannan
backbone compared to the xylan backbone (Martínez-Abad et al.,
2017), stability of various conformers (Berglund et al., 2019), and
impact of acetylation on cellulosic interactions (Busse-Wicher
et al., 2014).

Similarly, “Lignin Builder” (Vermaas et al., 2018) enables the
design of representative lignin linkages into models of lignin
polymers (hardwood, softwood, and grass) for simulation studies.
Several other approaches based on kinetic Monte Carlo and DFT
have also been reported to generate lignin structures (Zhang et al.,
2011; Dellon et al., 2017; Orella et al., 2019). Based on the
structures developed, quantum chemical calculations using
AM1, HF, and DFT/B3LYP levels of theory were employed to
examine the interaction characteristics such as hydrogen bonding
between cellulose-hemicellulose and covalent bond linkages for
hemicellulose-lignin systems (Zhang et al., 2011). These studies
predicted the potential to disrupt or dissociate C1-O bonds in
xylan-lignin complexes and β-O bonds in lignin-glucomannan
complexes during pretreatment. In addition, an exciting study
highlighted the variability of interaction energy based on the
orientation of these biopolymers, i.e., a stacked configuration
between polymers affords higher interactions (Yang et al., 2019).
As discussed in the next section, these builder tools have
facilitated the building of various lignocellulosic models and
the understanding of interactions between biomass and
various solvents.

Understanding the Interactions of Biomass
With Pretreatment Solvents
In this section, we will limit our discussions to molecular and
ionic solvent-based pretreatment technologies. The limitless
possibilities of molecular and ionic solvents limit the full

exploration of every unique combination within the context of
experimental methodologies. Computational methods have been
used to help understand the dominant factors governing the
efficacy of solvent-based pretreatment of lignocellulosic biomass.
Typically, in biomass pretreatment, quantum chemical (QC) and
MD simulations have been adapted to understand the
interactions of the various biomass components with the
pretreatment solvent, which in turn helps to understand and
predict the fractionation abilities of the solvent (or solvent class)
under consideration (Table 1). Also, pre-existing solubility
parameters such as Hildebrand (Quesada-Medina et al., 2010),
Hansen solubility parameters (HSP) (Hansen, 2007; Cheng et al.,
2018), and Conductor like Screening Model for Real Solvents
(COSMO-RS) models have been extensively studied for several
chemical pretreatment technologies employing organic solvents,
deep eutectic solvents, and ionic liquids (Balaji et al., 2012; Casas
et al., 2013; Achinivu et al., 2021). Recently, ionic liquids (salts
possessing organic cations with a melting point below 100°C)
have attracted significant attention as a promising pretreatment
solvent. Several modeling methods have been developed to
understand how these solvents fractionate or solubilize
lignocellulosic biomass. For instance, the solubility of lignin in
a given solvent was determined based on the Hildebrand
solubility and thermodynamic parameters such as activity
coefficients and excess enthalpy (Casas et al., 2012). These
studies concluded that more robust exothermic behavior and
lower activity coefficient values are required for enhanced
interaction/solubility for any given solute-solvent pair. In
another instance, density functional theory (DFT) studies were
employed to calculate the hydrogen bonding interaction between
solvent (ionic liquid) and biopolymer (lignin) to determine the
pretreatment efficacies of these solvents (Rashid et al., 2016;
Zhang et al., 2017). Dispersion-corrected DFT models
established the role of cations in regulating the solubilities of
lignocellulosic components as a function π-stacking (Janesko,
2011). Ji and Lv suggested that both C-H···π and strong hydrogen
bonding are critical to enhanced delignification performance
using three solvent systems, namely para-toluenesulfonic acid,
choline chloride-lactic acid eutectic, and 1-allyl-3-
methylimidazolium chloride (Ji and Lv, 2020). Singh et al.
have extensively studied the dissolution of cellulose in pure 1-
ethyl-3-methylimidazolium acetate ([C2mim][OAc]) and
mixtures of [C2mim][OAc] and water systems (Liu H. et al.,
2010; Shi et al., 2014; Parthasarathi et al., 2015). The role of water
as cosolvent was established in these studies, identifying the
“ideal” IL-water ratio (4:1 for [C2mim][OAc] and water
system) for maximum disruption of intermolecular hydrogen
bonding within cellulose.

Interestingly, the simulation studies suggested repacking de-
crystallized cellulose into an amorphous form with high water
content in pure [C2mim][OAc]. A recent study by Achinivu
et al. and team has screened various structurally and
functionally distinct amines and developed a toolset to
provide rapid identification of effective pretreatment solvents
(Achinivu et al., 2021). This study employed a theoretical
analysis (validated by an experimental dataset) to develop a
predictive model for a given class of solvent. In the first step, the
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interaction of biomass with organic solvents with various
functional groups was studied using HSP and COSMO-RS
toolsets to reveal amines as better solvents for lignocellulosic
pretreatment. Then, the differences in the interactions of
various amines were studied using the quantum theory of
atoms in molecules (QTAIM) and QC calculations
(interaction energies and natural bond orbital (NBO)
analysis) to suggest the importance of electrostatic
interactions and hydrogen bonding between amines and
lignin for enhanced solubility. Various computational studies
of ionic liquid solvent systems in the pretreatment of biomass
have heavily relied on COSMO-RS predictions and hydrogen
bond basicity to predict the biopolymer solubilities in the ionic
liquid (Chu and He, 2019; Iqbal et al., 2019). Yao et al. extended
the application of COSMO-RS prediction to demonstrate the
synergistic advantages of multiple ions in a cholinium-based
ionic liquid system for the pretreatment of sorghum biomass
(Yao et al., 2021). Mood et al. showed that solubility parameters
of ionic liquids and deep eutectic solvents calculated using
COSMO-RS are predictive of lignin solubility under the like-
dissolves-like principal and developed a new method to
calculate solubility parameters from MD simulation
trajectories, allowing predictions to be made for much larger
lignin polymers (Mohan et al., 2021; Mohan et al., 2022).

In summary, molecular simulations are necessary to support
experiments and provide critical missing links that experiments
cannot access, considering the complexity of the lignocellulosic
biomass structure. MD simulations are used to account for the
dynamical behavior of molecular systems and understand
solvent–biomass interactions during pretreatment. In contrast,
reactive force fields, which rely on the bond order, bond distance,
and bond energy, provide a detailed explanation of bond breaking
and bond-forming reactions during simulations. Multiscale
modeling has been used to successfully investigate physical
and chemical properties, reaction mechanisms, and overall
system dynamics. These tools and approaches also help
understand the structure-activity relationships and assist in
developing novel solvents and maximizing yields or selectivity
in multi-product biorefinery settings. These computational
toolsets have the potential to speed up the design,
development, and deployment of novel solvents for a robust
biorefinery and, when eventually combined with machine
learning, will provide tools for rapidly evaluating potential
new solvents and deconstruction processes. Despite all these
developments in both computational and experimental
techniques, a knowledge gap still exists in developing a robust
multi-product biorefinery, namely: 1) complete insights into the
whole molecular structure of biomass; 2) efficient and robust

TABLE 1 | Molecular simulation techniques used for understanding interactions between biomass-solvent.

Method [Basis set/Force
Field]

Substrate Solvent Reference

DFT [6-31G(d)] Cellobiose [C4mim]Cl Novoselov et al. (2007)
Dimethoxyglucose [C2mim][OAc] Ding et al. (2012)

DFT [6-311+G(d,p)] Cellobiose [C4mim]Cl Li et al. (2015b)
Lignin [C4mim]-anion Zhang et al. (2017)

DFT-D [6-311++G(2d,2p)] Glucose [C1mim]Cl Janesko, (2011)
DFT [6-311+G(d,p)]/MD [GLYCAM] 2,4,6-mer oligomers [C4mim]Cl Xu et al. (2012)

10-mer oligomer [C4mim][OAc] Zhao et al. (2013b)
MD [COMPASS] Glucose derivatives [Cnmim]Cl Derecskei and Derecskei-Kovacs, (2006)
MD [CHARMM] Microfibril [C4mim]Cl (Cho et al. 2011; Gross et al., 2011; 2012)
MD [AMBER] Cellulose Iβ [C4mim][OAc] Gupta et al. (2011)
MD [OPLS] Cellobiose [C4mim]Cl Zhang et al. (2012)

Cellulose bunch [C4mim]Cl (Rabideau et al. 2013; Rabideau et al. 2014; Rabideau and Ismail, 2015)
MD [OPLS-AA] Glucose [C1mim]Cl Youngs et al. (2006)

Glucose [C2mim][OAc] Felczak et al. (2011)
Glucose [C2mim][OAc] Andanson et al. (2014)
Cellulose Iβ [Cnmim]Cl Huo et al. (2013)
Lignin 9 ILs Hu et al. (2020)

MD [GLYCAM] Glucose [C4mim]Cl Jarin and Pfaendtner, (2014)
Glucose and Cellobiose [C2mim][OAc] Bharadwaj et al. (2015)
5,10,20-mer oligomers [C2mim][OAc] Liu et al. (2010a)
10-mer oligomer [C2mim]-anions Zhao et al. (2013a)
10-mer oligomer [C4mim]Cl Mostofian et al. (2014a)
Microfibril [C4mim]Cl (Mostofian et al. 2011; Mostofian et al. 2014b)
Microfibril [C2mim][OAc] Liu et al. (2012)
Cellulose bunch [C2mim][OAc] Li et al. (2015b)

COSMO-RS Glucose 320 ILs Casas et al. (2012)
Cellotriose >2000 ILs Kahlen et al. (2010)
3*3 structure 750 ILs Casas et al. (2013)
1,3,4-mer oligomers 357 ILs Liu et al. (2016)
Lignin Cholinium-Anions Yao et al. (2021)
Lignocellulosic biomass Ethanolamine and Acetic acid Huang et al. (2021)
Lignin Cholinium-Anions Mohan et al. (2021)
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processes for the conversion of biomass to chemicals; 3)
mechanistic understanding of the role of solvents during
pretreatment; and 4) key interactions and orientations of
polymer components. In addition, some of these simulations
are fundamentally expensive as they may take several days
depending on the complexity of the molecule involved. The
combination of experiments including imaging and
spectroscopy, computational modeling, and/or machine
learning is expected to contribute to the future design of
stratified structures of lignocellulosics and generate a large
number of structured materials and chemicals in the future.
Furthermore, the understanding developed through the
optimization of biomass pretreatment using these simulation
tools will promote overall process yields while reducing energy
requirements and carbon footprints.

COMPUTATIONAL MODELING METHODS
FOR UNDERSTANDING CATALYTIC
MECHANISMS AND ENGINEERING
ENZYMES

A variety of computational methods utilize new advances in
computing to understand the underlying mechanisms of the
biocatalysts used to promote efficient biotransformation of
substrates into value-added products. These computational
methods, which differ in computational cost and accuracy, can
simulate biocatalytic processes at different molecular levels. For
instance, protein-ligand or enzyme-substrate docking is a
molecular modeling technique that can predict a ligand’s
position and orientation (substrate, a small molecule) when it
is bound to a protein/enzyme (Kearsley et al., 1994; Friesner et al.,
2004; Wang and Pang, 2007; Zsoldos et al., 2007). Modeled
interactions between an enzyme and its substrate(s) provide
insights into predicting the activation or inhibition of an
enzyme and providing information for rational enzyme design.
In this method, dealing with receptor flexibility in docking
methodologies is still challenging due to the large number of
degrees of freedom of the enzyme the calculation needs to
consider (Totrov and Abagyan, 2008; Cerqueira et al., 2009;
Antunes et al., 2015). The enzyme-ligand complex is often the
starting point for molecular dynamics (MD) simulations, which
are used to analyze the physical movements of atoms and
molecules and the time evolution of enzyme-substrate
interactions (Levitt and Warshel, 1975; Warshel, 1976). MD
simulations explore the time evolution of a particular
interacting system for a fixed period of time on nano to
microsecond time scales, and the trajectories of atoms and
molecules are determined by numerically solving Newton’s
equations of motion. Theoretical studies utilizing MD
simulation provide insights into the intricate dynamics of
biological macromolecules (protein or protein-ligand complex)
through observing crucial interactions (e.g., hydrophobic
interactions, van der Waals, hydrogen bonds), thus
understanding protein folding and unfolding, protein stability,
and conformational changes (Levitt, 1982; Moal and Bates, 2012;

Khan et al., 2016). However, simulation accuracy is strongly
dependent on the quality of ligand parameterization, which
can be improved by using high-accuracy quantum mechanics/
molecular mechanics (QM/MM) methods (Warshel and Levitt,
1976; Brunk and Rothlisberger, 2015). This method combines the
strengths of ab initioQM calculation (accuracy) and MM (speed)
methods. However, it demands the high computational cost of
conformational searching and the limitations of implicit solvation
effects. In the last two decades, hybrid QM/MM calculations have
become a powerful approach to studying enzymatic reactions
(Martí et al., 2004; Mulholland, 2005; Riccardi et al., 2006; Senn
and Thiel, 2009; Warshel, 2014).

There has been exhaustive research to improve individual
enzyme characteristics through either rational design or directed
evolution strategies. The rational approach to protein engineering
via computational methods facilitates development in this field.
Simulation of an enzyme structure, substrate, or complex cam
provides molecular and structural mechanisms of enzymatic
action. This section highlights the increasing evidence of
computational modeling methods as a powerful tool in the
study and engineering of hydrolases and oxidoreductases,
especially for their application as biocatalysts in lignocellulose
deconstruction. We compiled and tabulated the computational
methods in the studies cited below in Table 2.

Cellulases and Hemicellulases
Cellulases are divided into three groups: endoglucanases (EC
3.2.1.4), cellobiohydrolases (EC 3.2.1.91), and β-glycosidases (3.
2. 1. 21), that work synergistically to catalyze the conversion of
cellulose to glucose in a process known as saccharification.
Endoglucanases (EGs) catalyze the breaking of internal
glycosidic bonds of the amorphous part of the cellulose chain,
producing new ends of glucose polymers (Medve et al., 1998).
Cellobiohydrolases (CBHs), also called exoglucanases, bind to
these newly created ends and catalyze hydrolysis of glycosidic
bonds in glucose polymers, producing cellobiose (Teeri, 1997).
Finally, β-glycosidases catalyze the break of glycosidic bonds in
cellobiose, producing glucose monomers (Riou et al., 1998;
Decker et al., 2001) and are typically the rate-limiting step in
the full conversion of cellulose to glucose. Due to the recalcitrant
nature of lignocellulosic, saccharification of cellulose to glucose is
slow, and in the second generation of conversion of lignocellulose
to ethanol requires several-fold more active hydrolytic enzymes
than for saccharification from starch (Balan, 2014). Low activity
and high costs of cellulases are the bottlenecks for their industrial
use in the valorization of lignocellulosic biomass. Some
endoglucanases and cellobiohydrolases are composed of a
catalytic domain (CD) and a carbohydrate-binding domain
(CBD). The CBD increases enzymatic activity on specific and
solid substrates and helps disrupt the crystalline structure of
cellulose. Several MD simulation studies have been conducted to
understand cellulase adsorption to cellulose and the role of CBDs.
A hundred nanosecond timescale MD simulations of Cel7A from
Geotrichum candidum strain 3C (GcaCel7A) were studied in
three different forms: free form, in complex with a
cellononaose substrate, and in complex with microfibrils of
cellulose. These simulations revealed a significant difference in
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the dynamics of substrate-bound enzymes compared with free
enzymes (Borisova et al., 2015). Similar studies on substrate-
bound enzymes revealed the cellulose-binding site was highly
conserved in other cellulases, Cel7A from Heterobasidion
irregulare (HirCel7A), Heterobasidion jecorina (HjeCel7A),
and Cel7D from Phanerochaete chrysosporium (PchCel7D),
and PfCBH1 from Penicillium funiculosum when bound with
cellononaose and microcrystalline cellulose (Momeni et al., 2013;
Ogunmolu et al., 2017). Forty nanosecond MD simulations of
Trichoderma reesei Cel6A and Cel7A showed the flexible
glycosylated linkers of CBD bind nonspecifically to cellulose
and can serve as the rate-limiting step in cellulose degradation
(Payne et al., 2013; Knott et al., 2014). While MD simulations
have been used to study the interaction between cellulases and
cellulose and cellulase CBDs and cellulose, QM/MM simulations
have been used to reveal the transition state of oligosaccharide
hydrolysis (Liu J. et al., 2010; Li et al., 2010; Wang et al., 2011;
Wang et al., 2016; Iglesias-Fernández et al., 2017; Zong et al.,
2019; Bharadwaj et al., 2020; Pereira et al., 2021). Li et al.
elucidated the mechanism of enzymatic catalysis of cellulase
Cel7A from Trichoderma reesei (Li et al., 2010). At the level of
accuracy of the applied theory, detailed structural and energetic
information revealed an S(N)2-type-like mechanism via loose
transition state structures. In similar work using QM/MM, an
endocyclic mechanism for PcCel45A was revealed in which an
acyclic oxocarbenium-like transition state is stabilized, leading to
the opening of the glucopyranose ring and the formation of an
unstable acyclic hemiacetal that can be readily decomposed into
hydrolysis products (Pereira et al., 2021).

Hemicellulases are a group of enzymes that catalyze the
hydrolysis of galactans, xylans, and mannans. The primary
enzyme is endoxylanase (EC 3.2.1.8), which hydrolyzes β-d
xylano pyranosyl linkages of xylan to form
xylooligosaccharides. Secondly, β-D xylosidase (EC 3.2.1.3,
xylobiase) catalyzes the hydrolysis of xylobiose or
xylooligosaccharides from the nonreducing end, producing
D-xylose sugar in the hydrolysates. Control of the desired
xylooligosaccharide size range is one of the most challenging
studies in xylose degradation, and several endoxylanase
engineering attempts have been aimed at changing the range
of xylooligosaccharides produced. For example, Pollet et al.
engineered the BsXynA xylanase from Bacillus subtilis by
replacing a Tyr at the binding site with an Ala and improved
the variety of xylooligosaccharides produced by the enzyme
(Pollet et al., 2010). A similar catalytic pattern in T-Xyn
xylanase from Talaromyces thermophilus F1208 was revealed
by double mutations at a region near the N-terminal and the
C-terminal, which resulted in the absence of xylose monomer
product (Li et al., 2017). Atomistic MD simulations were used to
understand the mechanisms underlying these efficiency losses.
The MD trajectory analysis suggested that the mutation-induced
binding pocket tilting resulted in an additional hydrophobic
contact between the reducing end of xylooligosaccharides and
Trp128 (Ngenyoung et al., 2021).

A secondary binding site (SBS) on the surface of the
GH11 xylanases has been discovered in a few endoxylanases
from Bacillus subtilis (PDB ID: 2QZ3) (Cuyvers et al., 2011),
Aspergillus niger (PDB ID: 2QZ2) (Vandermarliere et al., 2008),

TABLE 2 | List of hydrolases and lignin-modifying enzymes engineered by protein engineering.

Enzyme Organism Techniques Improvement/understanding References

Cellulase Geotrichum candidum Heterobasidion
irregulare Heterobasidion jecorina
Phanerocheate chrysosporium
Penicillium funiculosum

MD simulation Interaction between cellulase and
cellononaose, microfibril of cellulose

(Borisova et al. 2015; Momeni et al. 2013;
Ogunmolu et al. 2017)

Trichoderma reesei MD simulation Glycosylated linkers of CBM serve as the
rate-limiting step in cellulose degradation

(Payne et al. 2013; Knott et al. 2014)

Trichoderma reesei Phanerodontia
chrysosporium

QM/MM Hydrolysis mechanism via stabilization of
acyclic oxocarbenium-like transition state,
leading to the opening of the glucopyranose
ring and formation of an unstable acyclic
hemiacetal

(Li et al. 2010; Liu et al. 2010; Wang et al.
2011; Wang et al. 2016; Iglesias-Fernández
et al. 2017; Zong et al. 2019; Bharadwaj
et al. 2020; Pereira et al. 2021)

Xylanase Bacillus subtilis Talaromyces
thermophilus

MD simulation The hydrophobic site at N-terminal and
C-terminal plays a vital role in contact with
the reducing end of xylooligosaccharides

(Li et al. 2017; Ngenyoung et al. 2021)

Paenibacillus xylanivorans MD simulation Unveiling secondary binding site on the
surface of xylanases

Lignin
peroxidase

Phanerocheate chrysosporium
Trametopsis cervine Pleurotus eryngii
Klebsiella pneumoniae

QM/MM
calculation

Unveiling role of the surface-active site in the
oxidation of high redox potential substrates

(Smith et al. 2009; Bernini et al. 2012;
Romero et al. 2019; Miki et al. 2013;
Acebes et al. 2017; Nys et al. 2021)

Phanerocheate chrysosporium QM/MM
calculation

Identifying specific amino acids which
influence the oxidative power

(Castro et al. 2016; Pham et al. 2016; Singh
et al. 2021; Pham et al. 2021)

Manganese
peroxidase

Ceriporiopsis subvermispora Docking and
MD simulation

Two histidines, H220 and H142, interacted,
forming hydrogen bonds with ABTS’s
negatively charged ABTS sulfonates

Laccase Trametes versicolor QM/MM-FEP The oxidation state of the surrounding
residues affected the T1 copper site redox
potential

Götze and Bühl, (2016)
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and Bacillus circulans (BcX) (PDB ID: 1XNB) (Ludwiczek et al.,
2007). Recently, MD simulations of PxXyn11B from
Paenibacillus xylanivorans A57 revealed an essential role of
SBS in the activity and conformational mobility of the
enzyme, demonstrating that the SBS stabilizes ligand binding,
allowing it to be bound within the active site for a longer time
period and resulting in more controlled enzymatic breakdown to
products (Briganti et al., 2021). These findings explain the
observed enzyme kinetics and shed light on the product
control of the xylanase enzymes by protein engineering.

Lignin-Modifying Enzymes
Lignin-modifying enzymes (LMEs) are enzymes produced by
fungi and bacteria that catalyze bond breaking of a variety of
bonds in lignin polymers to degrade lignin to bioavailable
substrates. In nature, these lignin fragments are consumed by
microbes, and in synthetic biology applications they are fed to
organisms engineered to convert them into biofuels and
bioproducts. LMEs include peroxidases, such as lignin
peroxidase (LiP, EC 1.11.1.14), manganese peroxidase (MnP,
EC 1.11.1.13), versatile peroxidase (VP, EC 1.11.1.16), and
many phenol oxidases of the laccase type (EC 1.10.3.2). LiP
and MnP contain a heme-iron in their active sites that
participates as a reducing agent in the general peroxidase
catalytic mechanism. The heme-iron is first oxidized by
hydrogen peroxide, and electrons are then shuttled from lignin
through soluble mediators such as phenolic veratryl alcohol or, in
the case of MnP, Mn(II). VP shares the structural and catalytic
properties of both LiP and MnP (Ruiz-Dueñas and Martínez,
2009). Laccases are multi-copper oxidases that catalyze one-
electron oxidation of a wide range of phenolic compounds
(Hamid and Khalil ur, 2009; Pollegioni et al., 2015). Various
computation-aided studies have attempted to improve the
catalytic efficiency of LDEs through understanding lignin-
aromatic compound binding modes, critical structures that
impact oxidative power, and electron transfer pathways, using
the approaches elaborated in the following paragraphs.

Molecular docking studies have been carried out to predict the
binding modes of aromatic substrates and lignin model
compounds to LiP, MnP, and laccase, and MD simulations
were performed to study the resulting enzyme-substrate
complexes (Borrelli et al., 2005; Chen et al., 2011; Fernández-
Fueyo et al., 2014; Singh et al., 2021). Rational enzyme
engineering of MnP6 from C. subvermispora has also been
carried out with the help of computational methods (Acebes
et al., 2016). Acebes et al. started by using the protein energy
landscape exploration (PELE) algorithm to inspect the active sites
of both systems, ABTS-MnP6 and ABTS-MnP4. These
explorations showed that in the energetically minimum
structure of MnP4 located at the main heme channel, two
histidines, H220 and H142, interacted, forming hydrogen
bonds with the negatively charged sulfonates of ABTS.
Furthermore, the high-performance molecular dynamics
simulations-DESMOND were recently used to perform deep,
rigorous structural and functional fluctuation analyses of
docked complexes between lignin model compounds and LiP.
The findings demonstrated that LiP interacts with chlorinated

compounds through ionic interaction, while hydrophobic and
H-bond contacts have been observed in all lignin-model
compounds (Singh et al., 2021).

The oxidative power (redox potential) of LDE is a critical
factor in the successful degradation of bulky and recalcitrant
lignin substrates. QM/MM simulations have been used to identify
specific amino acids that influence the oxidative power of LiP,
which suggested mutations with higher oxidative abilities or with
the capacity to function under different pH conditions (Castro
et al., 2016; Pham et al., 2016; Kohler et al., 2018; Singh et al.,
2021). Recently, using ab initio molecular dynamic simulations
and climbing-image Nudge Elastic Band-based transition state
searches, Pham et al. suggested the effect of lower pH on LiP
activity is via protonation of aliphatic hydroxyl groups, which
resulted in lower energetic barriers for bond-cleavages,
particularly β-O-4′ bonds (Pham et al., 2021). Molecular
mechanical free-energy perturbation (QM/MM-FEP) methods
in combination with explicit solvent simulations have been used
to study the redox potentials (RP), acidity constants, and
isomerization reactions of the laccases (Hong et al., 2011;
Vázquez-Lima et al., 2012; Li J. et al., 2015; Götze and Bühl,
2016). More recently, the pH dependence and effect of mutants
on the laccase redox potentials at the T1 site were studied with
QM/MM approaches. The authors found that the oxidation state
of the surrounding residues affected the T1 copper site redox
potential by about 0.2–0.3 V and was changed to −1.37 V when
the replacement of a protonation state corresponded to a neutral
environment. The predicted change in the redox potential of the
F463M mutant (−0.1 V) was consistent with observations for a
related laccase (Götze and Bühl, 2016).

The extant peroxidases (LiP and VP), which have high redox
potentials, proved their ability to degrade non-phenolic lignin by
using a tryptophanyl radical interacting with the bulky polymer at
the surface of the enzyme (Ayuso-Fernández et al., 2018). LiP
oxidizes different non-phenolic lignin model compounds,
including β-O-4 linkage-type arylglycerol-aryl ethers, forming
a radical cation through one-electron oxidation. Radical cation
formation leads to side-chain cleavage, demethylation,
intramolecular addition, and rearrangements (Kirk et al., 1986;
Miki et al., 1986; Wong, 2009). Oxidation of non-phenolic
aromatic substrates of high redox potential such as veratryl
alcohol (VA) was mediated through the tryptophan radical
(Trp171) present in LiP from Phanerocheate chrysosporium,
which has been elucidated through QM/MM calculations at
the B3LYP/CHARMM level of theory (Bernini et al., 2012;
Romero et al., 2019). The experimental work was performed
to validate these calculations through the catalytic engineering
activity of Coprinus cinereus peroxidase (CiP) (Smith et al., 2009).
By mimicking the surroundings of Trp171 in Phanerocheate
chrysosporium LiP, some specific acid residues were introduced
to the catalytic Trp178 in CiP to create variant D178W/R257E/
R271D. The EPR characterization crucially showed that [Fe(IV) =
O Trp-179(*)] in engineered CiP was the reactive intermediate
with veratryl alcohol (Smith et al., 2009). Similar works reported
the electron transfer mechanism of VA at Tyr181 in Trametopsis
cervina LiP (Miki et al., 2013), at Trp164 in VP from Pleurotus
eryngii (Pogni et al., 2006; Bernini et al., 2014; Acebes et al., 2017)
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and ABTS oxidation at Y247 in Klebsiella pneumoniae dye-
decolorizing peroxidase (KpDyP) (Nys et al., 2021).

The MD, QM, and QM/MM simulations were mainly
presented as auxiliary tools to explain the experimental
evidence in aspects like cellulose and lignin fractionation
reported for these enzymes. A broad set of molecular and
computational tools allowed the creation of models and more
efficient screening methods. We believe that, during subsequent
years and advances in hardware, software, and algorithms, more
accurate and predictive computational tools will greatly benefit
studies aimed at rational protein design to improve the catalytic
activity of a given hydrolase and oxidoreductase for a specific
substrate. The conjunction of these experimental and
computational techniques will help design more efficient
biocatalysts for lignocellulosic bioconversion.

Auxiliary Enzymes
In addition to the three classes of synergistic cellulolytic enzymes
and the various lignin modifying enzymes described above,
additional auxiliary enzymes have been implicated as being
required for maximum bioconversion of lignocellulosic
biomass to compounds amenable to biological uptake and
conversion. Besides cellulolytic enzymes that cleave off various
monosaccharide side chains, other enzymes are required for the
deprotection of the polysaccharide backbone. Polysaccharide
sulfatases remove sulfate ester groups (Bäumgen et al., 2021),
while carbohydrate esterases catalyze the cleavage of O- and
N-acetyl groups from carbohydrates (Davies et al., 2005). In
contrast to the carbohydrate esterases (CEs), the sulfatases are
not included in the Crazy database but are listed in the SulfAtlas
database instead (Barbeyron et al., 2016).

Lignin-degrading auxiliary enzymes enable lignin degradation
through the sequential action of several proteins that may include
oxidative H2O2 (Kumar and Chandra, 2020). This group
includes cellobiose dehydrogenase, aryl alcohol oxidases,
glyoxal oxidase, glucose oxidase, and pyranose 2-oxidase
(Kumar and Chandra, 2020). Lignin-degrading auxiliary
enzymes cannot alone catalyze complete depolymerization of
lignin and typically work synergistically with additional
enzymes. The auxiliary enzyme classes, such as redox
enzymes, act in conjunction with other CAZymes, including
lytic polysaccharide monooxygenases (LPMOs), lignin
peroxidases and laccases. LPMO activity has been described as
crucial during cellulose hydrolysis and is currently present in
commercial cellulase preparations. These enzymes have also been
studied by molecular dynamics simulations to understand
binding properties and to design rational engineering
approaches (Liu et al., 2018; Guo et al., 2020). In particular,
MD simulations suggest roles for both aromatic and acidic
residues in the substrate-binding of LPMO from the white-rot
fungus Heterobasidion irregulare (Liu et al., 2018). This study
provided additional insight into cellulose binding by C1-specific
LPMOs, giving a molecular-level picture of active site substrate
interactions. Furthermore, a combination of information from
calculations run on the HotSpot Wizard 3.0, dezyme web server,
and MD simulations in the study of LPMO fromMyceliophthora
thermophila C1, was used to rationally design a mutant (R17L)

LPMO with a 1.8-fold increase in specific activity and a 1.92-fold
increase in catalytic efficiency (kcat/Km). The increased degree of
the reducing sugar yield frommicrocrystalline cellulose and three
plant biomass materials during hydrolysis using cellulase in
combination with the R17L LPMO mutant was approximately
two times higher than with the WT LPMO (Guo et al., 2020).

COMPUTATIONAL APPROACHES USED IN
HARNESSING MICROBIAL POTENTIAL
FOR LIGNOCELLULOSE VALORIZATION
Systems biology follows a holistic approach to analyzing cell
biology from subcellular levels to the entire organism using
computer-aided tools and mathematical models (Kitano,
2002). System biology tools include the following advanced
omics technologies: Genomics – the set of studies on the
structure, function, evolution, mapping, and editing of
genomes (Khoury et al., 2009); Transcriptomics - the complete
set of RNA transcripts (Piétu et al., 1999);
Proteomics – investigation of protein production, degradation,
modification, and their interactions (Dupree et al., 2020); and
Metabolomics - chemical processes involving small molecule
substrates, intermediates, and products of cell metabolism
(Clish, 2015). Each omics platform requires data handling,
annotation of biomolecules, design and analytic assumptions,
statistical power analysis, and data archiving and sharing.
However, a single omics analysis can’t fully solve the
complexities of microbial biology. Multi-omics techniques
have opened new avenues for exploring microbial diversity by
contributing to available databases (metabolite, RNA, DNA, and
protein databases) at a scale not imagined previously. Integrating
such diverse data types requires data normalization, statistical
power analysis, and big-data machine-learning tools for a multi-
omics analysis (Libbrecht and Noble, 2015; Min et al., 2016).
Available computational tools for interpretation and analysis of
analysis of omics data and integration of genomics and
metabolomics data include MapMan (Thimm et al., 2004),
Pathway Studio (Yuryev et al., 2009); for transcriptomics and
proteomics data include iCluster (Shen et al., 2009), SteinerNet
(Tuncbag et al., 2012), Paintomics (Hernández-de-Diego et al.,
2018); for transcriptomics and metabolomics data include
Paintomics (Hernández-de-Diego et al., 2018), PRIMe
(Akiyama et al., 2008), MEtaboAnalyst 5.0 (Pang et al., 2021)
and for multi-omics data include IntegrOmics (Lê Cao et al.,
2009), 3Omics (Kuo et al., 2013), Qiagen Ingenuity Pathway
Analysis (Krämer et al., 2014). Multi-omics approaches have been
applied in several research areas, from bio-based fuel production
to biopharmaceutical development to studies of diseases. This
section will highlight some multi-omics-aided studies for
lignocellulose valorization.

High-Throughput Genome Sequencing
The massive development in next-generation sequencing (NGS)
technologies has led to extensive publicly available genomics
databases. However, genome mining is dependent solely on
computational methods and bioinformatics tools to
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interconnect the complex biological networks within a single
species and across microbial species. The recent development in
genome mining tools such as antiSMASH, ClustScan, BAGEL,
SMURF, NP.searcher, and PRISM has untapped the metabolic
potential of microorganisms for biomass degradation (Lee N.
et al., 2020). These tools can be used to scan the genomes of
multiple organisms simultaneously to predict homologous genes
based on highly conserved sequences. In their review, Ren et al.
have covered the progress of genome-mining tools for predicting
natural products of pharmaceutical importance (Ren et al., 2020).
The majority of them are used for pathway prediction by
identifying essential genes involved in metabolite synthesis and
utilizing Basic Local Alignment Search Tool (BLAST) or hidden
Markovmodels (HMMs) for genomemining (Ren et al., 2020). In
one metagenomic study, stable isotope probing (SIP) was used to
identify and characterize the microbiome in different soil layers
for lignocellulose degradation (Wilhelm et al., 2019). The
identification and genomic content of bacterial consortia were
assessed using 16S rRNA gene amplicon and shotgun
metagenomics. In another study, the comparative genomic
analysis of C. subvermispora and P. chrysosporium revealed the
presence of more than seven genes encoding laccases in C.
subvermispora. In contrast, there was no gene encoding for
laccase for lignin degradation in P. chrysosporium. The same
study identified that the C. subvermispora genome contains as
many as three times more genes for MnP than P. chrysosporium
(Fernandez-Fueyo et al., 2012).

From Protein Chemistry to Proteomics
Proteomic analysis is used to identify enzymes present and to
quantify the expression of enzymes and has proved helpful for
identifying the CAZymes in microbes involved in biomass
deconstruction. LC-MS/MS-based secretome profiling from
several microorganisms grown on different substrates revealed the
presence of laccases, auxiliary proteins, and hydrolases (Sethupathy
et al., 2021). Proteomic analysis of the ligninolytic bacterium
Arthrobacter phenanthrenivorans Sphe3 on a medium containing
three different carbon sources identified several enzymes involved in
catalysis of aromatic degradation, including phenanthrene (Vandera
et al., 2015). The study also identified genes involved in catabolite
repression in the presence of glucose. When exposed to three
xenobiotics, a similar study performed in Sphingobium
chungbukense DJ77 identified major proteins to map catabolic
pathways for naphthalene, phenanthrene, and biphenyl (Lee
et al., 2016). The proteomic analysis of the secretomes and
enzymes from different microorganisms can be used to begin to
understand the full complement of enzymes involved in lignin
depolymerization and facilitate increasing the ligninolytic activity
of commercially used enzyme cocktails.

Multi-Omics and Genome Engineering
Tools–Game-Changers for Systems Biology
Synthetic biology involves engineering new biological systems for
the practical purposes of providing them with new and/or
improved metabolic abilities. Synthetic biology exploits both
traditional metabolic engineering tools (such as plasmid-

mediated) and more sophisticated modern genome
engineering tools (such as CRISPR/Cas9 and CRAGE) for
combinatorial strain development for the industrial production
of compounds (Wang et al., 2019; Gauttam et al., 2021). Then, the
genome editing era and multi-omics technology led to new
synthetic biology, metabolic engineering, and systems biology
tools for metabolic pathway analysis and engineering. These tools
contributed to the discovery of novel native metabolic pathways
to degrade lignin and assimilate its aromatic products (Brown
and Chang, 2014). For example, the combinatorial genomic and
proteomic analysis of Pandoraea sp. ISTKB grown in the presence
of vanillic acid and kraft lignin has revealed a unique aerobic
pathway for lignin degradation (Kumar and Kim, 2018). This
“-CoA” mediated degradation pathway for phenylacetate and
benzoate has been reported in merely 4–5% of sequenced
bacterial genomes. The comparative analysis also revealed the
presence of ligninolytic enzymes such as peroxidases, oxidases,
oxidoreductases, laccases, oxygenases, and etherizes in Pandoraea
sp (Kumar and Kim, 2018). The information accumulated
through multi-omics approaches can be integrated to rebuild
models for novel lignin-degrading pathways in novel
microorganisms with ligninolytic potential.

Besides revealing novel ligninolytic microbes and enzymes,
several studies have been performed using synthetic biology to
produce high-value end products from lignin using engineered
microorganisms. Most microorganisms utilize glucose; however,
deconstructed lignocellulosics also consist of alternative sugars
such as xylose and arabinose that are also economically attractive
sources of fermentable and upgradable sugars. For example, an
Escherichia coli MS04 strain was engineered to assimilate xylose
anaerobically and tolerate high acetate concentrations
(Fernández-Sandoval et al., 2012). This strain was used to
produce ethanol from corn stover hydrolysate (Parra-Ramírez
et al., 2018). Among eukaryotes, oleaginous yeasts such as
Rhodosporidium toruloides, Cutaneotrichosporon oleaginosus,
and Lipomyces starkeyi can readily metabolize many
substrates, including xylose and aromatics, and show excellent
tolerance against a wide range of potentially toxic intermediates
(Yaegashi et al., 2017; Valdés et al., 2020). Naturally, very few
microbes can decompose lignin into vanillin; nevertheless, there
are reports for microbial production of vanillin from lignin
(Nguyen et al., 2021). For example, the deletion of the vdh
gene resulted in the conversion of ferulic acid to vanillin in
Pycnoporus cinnabarinus (Tilay et al., 2010), Amycolatopsis sp.
(Fleige et al., 2013), and Pseudomonas fluorescens (Di Gioia et al.,
2011). Similarly, vdh deletion in R. jostii RHA1 resulted in 96 mg/
L vanillin from wheat straw lignocellulose (Sainsbury et al., 2013).
On the other hand, Pseudomonas putida KT2440 strain is well
known for its tolerance against xenobiotics compounds, aromatic
metabolism (e.g., p-coumarate and ferrulate), and the availability
of a wide range of advanced genetic factors tools for pathway
engineering (Martínez-García and de Lorenzo, 2019; Lee S. et al.,
2020). P. putida KT2440 was engineered to enhance the conversion
of non-preferred substrates such as p-coumarate and ferrulate in the
presence of preferred substrate glucose (Johnson et al., 2017).
Through metabolic modeling and genome editing, Pseudomonas
not only can grow in harsh environments but can also co-utilize
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multiple substrates, which suggests the potential of this organism to
convert most of the carbon present in lignocellulosic biomass into
advanced bioproducts.

The compounds cis, cis-muconic acid (cis, cis-MA) recently
drew significant attention because they are an intermediate for
adipic acid production, a captive feedstock in the production of
nylon fibers and plastics. Recently, Crc regulation of metabolic
pathways for the production of muconate in the engineered strain
P. putidaKT2440-CJ102 was predicted and confirmed using mass
spectrometry (MS)-based proteomics and gene editing (Johnson
et al., 2017a). It was demonstrated that deletion of the gene
encoding Crc enhances metabolism of both 4-HBA and vanillate,
leading to enhanced muconate production from p-coumarate or
ferulate when either glucose or acetate are supplied as a source of
carbon and energy. In similar work, an engineered Sphingobium
sp. SYK6 strain produced muconic acid in the absence of glucose
from lignin extracts of Japanese cedar and birch (Sonoki et al.,
2018). The deletion of muconate cycloisomerase, combined with
further engineering, improved muconic acid production in
Amycolatopsis sp., Corynebacterium glutamicum, and P. putida
(Barton et al., 2018; Becker et al., 2018; Kohlstedt et al., 2018).
Notably, NExT-EMA used a tool that channels elementary flux
modes (EFMs) into network-embedded thermodynamic (NET)
analysis to analyze E. coli and Saccharomyces cerevisiaemetabolic
networks. Stoichiometric analysis of 32–99% on glucose and/or
palmitate can contribute to the maximum theoretical product
carbon yield in routes to adipic acid production. This work
highlights the importance of pathway and organism choice to
maximize the potential of a biobased process, leading the
metabolic engineering community toward highly efficient
biotechnical production of adipic acid (Averesch et al., 2018).

Developing synthetic microbial constructs for bioconversion of
lignocellulose-based products into industrial chemicals often requires
extensive pathway engineering involving designing artificial pathways
and optimizing rate-limiting enzymes. While integrating multi-omics
data and genome editing tools has opened newmetabolic engineering
avenues to speed up the combinatorial strain development for
lignocellulosic biomass conversion using microbes, engineering a
host organism to produce new products still has long development
times due to the need for a detailed understanding of the host
organism’s metabolic pathways. Recently, researchers have begun
to apply machine learning and probabilistic modeling algorithms
to predict how cells respond to changes in their DNA and
biochemistry and to make recommendations for the next
engineering cycle without the need for a detailed understanding of
the host organism’smetabolism (Radivojević et al., 2020; Lawson et al.,
2021). The development and application of machine learning
approaches to systems biology and metabolic engineering promises
to greatly reduce development times.

CONCLUDING REMARKS

Computational tools and methods are becoming essential to
optimizing the various processes involved in converting
lignocellulosic biomass to valuable fuels and chemicals, from
data-driven optimization of deconstruction to molecular-level

understanding and rational engineering of enzymes to discovery
and building metabolic pathways for synthesis of final products.
The tremendous amount of complex chemical and biological data
available for analysis and generated by computational biology and
chemistry highlights the considerable power and usefulness of
computational sciences to develop lignocellulosic biofuels and
products. This review highlights and emphasizes the power of
synergistic computational and experimental studies aimed at the
full-scale optimization of the conversion of lignocellulosic
biomass into valuable products. Through valid approximations
to the physical laws, modern algorithms, and supercomputers,
computational biology and chemistry tools can simulate systems
containing hundreds of millions of atoms, required to study the
interactions of solvent systems with biomass components and
simulate the interactions of solvent systems and engineer
enzymes. Recent developments in machine learning and big
data analytics have enabled the discovery of new enzyme
systems, microbes for biomass conversion, and the engineering
of metabolic pathways to produce desired fuels and chemicals.
Continued development and growth in applications of
computational approaches to optimize pretreatment of
lignocellulosic biomass, rational design of enzymes, and next-
generation paradigms of predictive approaches in synthetic and
system biology are essential for the fundamental science required
for development and optimization of viable lignocellulosic
biomass conversion processes.

AUTHOR CONTRIBUTIONS

LTMP, HC, and RG wrote the manuscript. All authors read and
approved the final manuscript.

FUNDING

This work was part of the DOE Joint BioEnergy Institute (http://
www.jbei.org) and was supported by the U.S. Department of
Energy, Office of Science, Office of Biological and Environmental
Research, through contract DE-AC02-05CH11231 between
Lawrence Berkeley National Laboratory and the U.S.
Department of Energy. This work was also supported by the
US Department of Energy, Office of Energy Efficiency and
Renewable Energy, Bioenergy Technologies Office as part of
the Feedstock Conversion Interface Consortium (FCIC).
Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. The
United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so,
for United States Government purposes.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 86315312

Pham et al. Theoretical Tools for Valorizing Lignocellulose

196

http://www.jbei.org
http://www.jbei.org
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


REFERENCES

Acebes, S., Fernandez-Fueyo, E., Monza, E., Lucas, M. F., Almendral, D., Ruiz-
Dueñas, F. J., et al. (2016). Rational Enzyme Engineering through Biophysical
and Biochemical Modeling. ACS Catal. 6 (3), 1624–1629. doi:10.1021/acscatal.
6b00028

Acebes, S., Ruiz-Dueñas, F. J., Toubes, M., Sáez-Jiménez, V., Pérez-Boada, M.,
Lucas, M. F., et al. (2017). Mapping the Long-Range Electron Transfer Route in
Ligninolytic Peroxidases. J. Phys. Chem. B 121 (16), 3946–3954. doi:10.1021/
acs.jpcb.7b00835

Achinivu, E. C., Mohan, M., Choudhary, H., Das, L., Huang, K., Magurudeniya, H.
D., et al. (2021). A Predictive Toolset for the Identification of Effective
Lignocellulosic Pretreatment Solvents: a Case Study of Solvents Tailored for
Lignin Extraction. Green Chem. 23 (18), 7269–7289. doi:10.1039/D1GC01186C

Akiyama, K., Chikayama, E., Yuasa, H., Shimada, Y., Tohge, T., Shinozaki, K., et al.
(2008). PRIMe: a Web Site that Assembles Tools for Metabolomics and
Transcriptomics. Silico Biol 8 (3-4), 339–345.

Andanson, J.-M., Bordes, E., Devémy, J., Leroux, F., Pádua, A. A. H., and Gomes,
M. F. C. (2014). Understanding the Role of Co-solvents in the Dissolution of
Cellulose in Ionic Liquids. Green Chem. 16 (5), 2528–2538. doi:10.1039/
C3GC42244E

Antunes, D. A., Devaurs, D., and Kavraki, L. E. (2015). Understanding the
Challenges of Protein Flexibility in Drug Design. Expert Opin. Drug Discov.
10 (12), 1301–1313. doi:10.1517/17460441.2015.1094458

Averesch, N. J. H., Martínez, V. S., Nielsen, L. K., and Krömer, J. O. (2018). Toward
Synthetic Biology Strategies for Adipic Acid Production: An In Silico Tool for
Combined Thermodynamics and Stoichiometric Analysis of Metabolic
Networks. ACS Synth. Biol. 7 (2), 490–509. doi:10.1021/acssynbio.7b00304

Ayuso-Fernández, I., Ruiz-Dueñas, F. J., and Martínez, A. T. (2018). Evolutionary
Convergence in Lignin-Degrading Enzymes. Proc. Natl. Acad. Sci. U.S.A. 115
(25), 6428–6433. doi:10.1073/pnas.1802555115

Balaji, C., Banerjee, T., and Goud, V. V. (2012). COSMO-RS Based Predictions for
the Extraction of Lignin from Lignocellulosic Biomass Using Ionic Liquids:
Effect of Cation and Anion Combination. J. Solut. Chem. 41 (9), 1610–1630.
doi:10.1007/s10953-012-9887-3

Balan, V. (2014). Current Challenges in Commercially Producing Biofuels from
Lignocellulosic Biomass. ISRN Biotechnol. 2014, 1–31. doi:10.1155/2014/
463074

Barbeyron, T., Brillet-Guéguen, L., Carré, W., Carrière, C., Caron, C., Czjzek, M.,
et al. (2016). Matching the Diversity of Sulfated Biomolecules: Creation of a
Classification Database for Sulfatases Reflecting Their Substrate Specificity.
PLOS ONE 11 (10), e0164846. doi:10.1371/journal.pone.0164846

Barton, N., Horbal, L., Starck, S., Kohlstedt, M., Luzhetskyy, A., and Wittmann, C.
(201839116). Enabling the Valorization of Guaiacol-Based Lignin: Integrated
Chemical and Biochemical Production of Cis,cis-Muconic Acid Using
Metabolically Engineered Amycolatopsis Sp ATCC 39116. Metab. Eng. 45,
200–210. doi:10.1016/j.ymben.2017.12.001

Bäumgen, M., Dutschei, T., and Bornscheuer, U. T. (2021). Marine
Polysaccharides: Occurrence, Enzymatic Degradation and Utilization.
ChemBioChem 22 (13), 2247–2256. doi:10.1002/cbic.202100078

Becker, J., Kuhl, M., Kohlstedt, M., Starck, S., and Wittmann, C. (2018). Metabolic
Engineering of Corynebacterium Glutamicum for the Production of Cis, Cis-
Muconic Acid from Lignin. Microb. Cell. Fact. 17 (1), 115–129. doi:10.1186/
s12934-018-0963-2

Berglund, J., Azhar, S., Lawoko, M., Lindström, M., Vilaplana, F., Wohlert, J., et al.
(2019). The Structure of Galactoglucomannan Impacts the Degradation under
Alkaline Conditions. Cellulose 26 (3), 2155–2175. doi:10.1007/s10570-018-
1737-z

Bernini, C., Pogni, R., Basosi, R., and Sinicropi, A. (2014). Prediction of Hydrogen-
Bonding Networks Around Tyrosyl Radical inP. Eryngiiversatile Peroxidase
W164Y Variants: a QM/MM MD Study. Mol. Simul. 40 (6), 485–490. doi:10.
1080/08927022.2013.822967

Bernini, C., Pogni, R., Basosi, R., and Sinicropi, A. (2012). The Nature of
Tryptophan Radicals Involved in the Long-Range Electron Transfer of
Lignin Peroxidase and Lignin Peroxidase-like Systems: Insights from
Quantum Mechanical/molecular Mechanics Simulations. Proteins 80 (5),
1476–1483. doi:10.1002/prot.24046

Bharadwaj, V. S., Knott, B. C., Ståhlberg, J., Beckham, G. T., and Crowley, M. F.
(2020). The Hydrolysis Mechanism of a GH45 Cellulase and its Potential
Relation to Lytic Transglycosylase and Expansin Function. J. Biol. Chem. 295
(14), 4477–4487. doi:10.1074/jbc.RA119.011406

Bharadwaj, V. S., Schutt, T. C., Ashurst, T. C., and Maupin, C. M. (2015).
Elucidating the Conformational Energetics of Glucose and Cellobiose in
Ionic Liquids. Phys. Chem. Chem. Phys. 17 (16), 10668–10678. doi:10.1039/
c5cp00118h

Bhardwaj, N., Kumar, B., and Verma, P. (2019). A Detailed Overview of Xylanases:
an Emerging Biomolecule for Current and Future Prospective. Bioresour.
Bioprocess. 6 (1), 40. doi:10.1186/s40643-019-0276-2

Borisova, A. S., Eneyskaya, E. V., Bobrov, K. S., Jana, S., Logachev, A., Polev, D. E.,
et al. (2015). Sequencing, Biochemical Characterization, Crystal Structure and
Molecular Dynamics of Cellobiohydrolase Cel7A from Geotrichum Candidum
3C. Febs J. 282 (23), 4515–4537. doi:10.1111/febs.13509

Borrelli, K. W., Vitalis, A., Alcantara, R., and Guallar, V. (2005). PELE: Protein
Energy Landscape Exploration. A Novel Monte Carlo Based Technique.
J. Chem. Theory Comput. 1 (6), 1304–1311. doi:10.1021/ct0501811

Bowling, A. J., Amano, Y., Lindstrom, R., and Brown, Jr, R. M. (2001). Rotation of
Cellulose Ribbons During Degradation with Fungal Cellulase. Cellulose 8 (1),
91–97. doi:10.1023/A:1016660621440

Briganti, L., Capetti, C., Pellegrini, V. O. A., Ghio, S., Campos, E., Nascimento, A.
S., et al. (2021). Structural and molecular dynamics investigations of ligand
stabilization via secondary binding site interactions in Paenibacillus
xylanivorans GH11 xylanase. Comput. Struct. Biotechnol. J. 19, 1557–1566.
doi:10.1016/j.csbj.2021.03.002

Brown, M. E., and Chang, M. C. (2014). Exploring bacterial lignin degradation.
Curr. Opin. Chem. Biol. 19, 1–7. doi:10.1016/j.cbpa.2013.11.015

Brunk, E., and Rothlisberger, U. (2015). Mixed Quantum Mechanical/Molecular
Mechanical Molecular Dynamics Simulations of Biological Systems in Ground
and Electronically Excited States. Chem. Rev. 115 (12), 6217–6263. doi:10.1021/
cr500628b

Busse-Wicher, M., Gomes, T. C. F., Tryfona, T., Nikolovski, N., Stott, K.,
Grantham, N. J., et al. (2014). The pattern of xylan acetylation suggests
xylan may interact with cellulose microfibrils as a twofold helical screw in
the secondary plant cell wall of Arabidopsis thaliana. Plant J. 79 (3), 492–506.
doi:10.1111/tpj.12575

Casas, A., Omar, S., Palomar, J., Oliet, M., Alonso, M. V., and Rodriguez, F. (2013).
Relation between differential solubility of cellulose and lignin in ionic liquids
and activity coefficients. RSC Adv. 3 (10), 3453–3460. doi:10.1039/
C2RA22800A

Casas, A., Palomar, J., Alonso, M. V., Oliet, M., Omar, S., and Rodriguez, F. (2012).
Comparison of lignin and cellulose solubilities in ionic liquids by COSMO-RS
analysis and experimental validation. Industrial Crops Prod. 37 (1), 155–163.
doi:10.1016/j.indcrop.2011.11.032

Castilla-Archilla, J., O’Flaherty, V., and Lens, P. N. L. (2019). “Biorefineries:
Industrial Innovation and Tendencies,” in Biorefinery: Integrated Sustainable
Processes for Biomass Conversion to Biomaterials, Biofuels, and Fertilizers.
Editors J.-R. Bastidas-Oyanedel and J. E. Schmidt (Cham: Springer
International Publishing), 3–35. doi:10.1007/978-3-030-10961-5_1

Castro, L., Crawford, L. E., Mutengwa, A., Götze, J. P., and Bühl, M. (2016).
Insights into structure and redox potential of lignin peroxidase from QM/
MM calculations. Org. Biomol. Chem. 14 (8), 2385–2389. doi:10.1039/
c6ob00037a

Cerqueira, N. M. F. S. A., Bras, N. F., Fernandes, P. A., and Ramos, M. J. (2009).
MADAMM: a multistaged docking with an automated molecular modeling
protocol. Proteins 74 (1), 192–206. doi:10.1002/prot.22146

Chen, M., Zeng, G., Tan, Z., Jiang, M., Li, H., Liu, L., et al. (2011). Understanding
lignin-degrading reactions of ligninolytic enzymes: binding affinity and
interactional profile. PLoS One 6 (9), e25647. doi:10.1371/journal.pone.0025647

Cheng, F., Ouyang, T., Sun, J., Jiang, T., and Luo, J. (2018). Using solubility
parameter analysis to understand delignification of poplar and rice straw with
catalyzed organosolv fractionation processes. BioRes 14 (1), 486–499. doi:10.
15376/biores.14.1.486-499

Cho, H. M., Gross, A. S., and Chu, J.-W. (2011). Dissecting force interactions in
cellulose deconstruction reveals the required solvent versatility for overcoming
biomass recalcitrance. J. Am. Chem. Soc. 133 (35), 14033–14041. doi:10.1021/
ja2046155

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 86315313

Pham et al. Theoretical Tools for Valorizing Lignocellulose

197

https://doi.org/10.1021/acscatal.6b00028
https://doi.org/10.1021/acscatal.6b00028
https://doi.org/10.1021/acs.jpcb.7b00835
https://doi.org/10.1021/acs.jpcb.7b00835
https://doi.org/10.1039/D1GC01186C
https://doi.org/10.1039/C3GC42244E
https://doi.org/10.1039/C3GC42244E
https://doi.org/10.1517/17460441.2015.1094458
https://doi.org/10.1021/acssynbio.7b00304
https://doi.org/10.1073/pnas.1802555115
https://doi.org/10.1007/s10953-012-9887-3
https://doi.org/10.1155/2014/463074
https://doi.org/10.1155/2014/463074
https://doi.org/10.1371/journal.pone.0164846
https://doi.org/10.1016/j.ymben.2017.12.001
https://doi.org/10.1002/cbic.202100078
https://doi.org/10.1186/s12934-018-0963-2
https://doi.org/10.1186/s12934-018-0963-2
https://doi.org/10.1007/s10570-018-1737-z
https://doi.org/10.1007/s10570-018-1737-z
https://doi.org/10.1080/08927022.2013.822967
https://doi.org/10.1080/08927022.2013.822967
https://doi.org/10.1002/prot.24046
https://doi.org/10.1074/jbc.RA119.011406
https://doi.org/10.1039/c5cp00118h
https://doi.org/10.1039/c5cp00118h
https://doi.org/10.1186/s40643-019-0276-2
https://doi.org/10.1111/febs.13509
https://doi.org/10.1021/ct0501811
https://doi.org/10.1023/A:1016660621440
https://doi.org/10.1016/j.csbj.2021.03.002
https://doi.org/10.1016/j.cbpa.2013.11.015
https://doi.org/10.1021/cr500628b
https://doi.org/10.1021/cr500628b
https://doi.org/10.1111/tpj.12575
https://doi.org/10.1039/C2RA22800A
https://doi.org/10.1039/C2RA22800A
https://doi.org/10.1016/j.indcrop.2011.11.032
https://doi.org/10.1007/978-3-030-10961-5_1
https://doi.org/10.1039/c6ob00037a
https://doi.org/10.1039/c6ob00037a
https://doi.org/10.1002/prot.22146
https://doi.org/10.1371/journal.pone.0025647
https://doi.org/10.15376/biores.14.1.486-499
https://doi.org/10.15376/biores.14.1.486-499
https://doi.org/10.1021/ja2046155
https://doi.org/10.1021/ja2046155
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Chu, Y., and He, X. (2019). MoDoop: An Automated Computational Approach for
COSMO-RS Prediction of Biopolymer Solubilities in Ionic Liquids. ACS Omega
4 (1), 2337–2343. doi:10.1021/acsomega.8b03255

Ciesielski, P. N., Pecha, M. B., Lattanzi, A. M., Bharadwaj, V. S., Crowley, M. F., Bu,
L., et al. (2020). Advances in Multiscale Modeling of Lignocellulosic Biomass.
ACS Sustain. Chem. Eng. 8 (9), 3512–3531. doi:10.1021/acssuschemeng.
9b07415

Clish, C. B. (2015). Metabolomics: an emerging but powerful tool for precision
medicine. Cold Spring Harb. Mol. Case Stud. 1 (1), a000588. doi:10.1101/mcs.
a000588

Cohen, A. J., Mori-Sánchez, P., and Yang, W. (2012). Challenges for Density
Functional Theory. Chem. Rev. 112 (1), 289–320. doi:10.1021/cr200107z

Cuyvers, S., Dornez, E., Rezaei, M. N., Pollet, A., Delcour, J. A., and Courtin, C. M.
(2011). Secondary substrate binding strongly affects activity and binding
affinity ofBacillus subtilisandAspergillus nigerGH11 xylanases. Febs J. 278
(7), 1098–1111. doi:10.1111/j.1742-4658.2011.08023.x

Danne, R., Poojari, C., Martinez-Seara, H., Rissanen, S., Lolicato, F., Róg, T., et al.
(2017). doGlycans-Tools for Preparing Carbohydrate Structures for Atomistic
Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for
GROMACS. J. Chem. Inf. Model. 57 (10), 2401–2406. doi:10.1021/acs.jcim.
7b00237

Davies, G. J., Gloster, T. M., and Henrissat, B. (2005). Recent structural insights
into the expanding world of carbohydrate-active enzymes. Curr. Opin. Struct.
Biol. 15 (6), 637–645. doi:10.1016/j.sbi.2005.10.008

Decker, C. H., Visser, J., and Schreier, P. (2001). β-Glucosidase multiplicity from
Aspergillus tubingensis CBS 643.92: purification and characterization of four β-
glucosidases and their differentiation with respect to substrate specificity,
glucose inhibition and acid tolerance. Appl. Microbiol. Biotechnol. 55 (2),
157–163. doi:10.1007/s002530000462

Dellon, L. D., Yanez, A. J., Li, W., Mabon, R., and Broadbelt, L. J. (2017).
Computational Generation of Lignin Libraries from Diverse Biomass
Sources. Energy fuels. 31 (8), 8263–8274. doi:10.1021/acs.energyfuels.7b01150

Derecskei, B., and Derecskei-Kovacs, A. (2006). Molecular dynamic studies of the
compatibility of some cellulose derivatives with selected ionic liquids. Mol.
Simul. 32 (2), 109–115. doi:10.1080/08927020600669627

Di Gioia, D., Luziatelli, F., Negroni, A., Ficca, A. G., Fava, F., and Ruzzi, M. (2011).
Metabolic engineering of Pseudomonas fluorescens for the production of
vanillin from ferulic acid. J. Biotechnol. 156 (4), 309–316. doi:10.1016/j.
jbiotec.2011.08.014

Ding, Z.-D., Chi, Z., Gu, W.-X., Gu, S.-M., Liu, J.-H., and Wang, H.-J. (2012).
Theoretical and experimental investigation on dissolution and regeneration of
cellulose in ionic liquid. Carbohydr. Polym. 89 (1), 7–16. doi:10.1016/j.carbpol.
2012.01.080

Dupree, E. J., Jayathirtha, M., Yorkey, H., Mihasan, M., Petre, B. A., and
Darie, C. C. (2020). A Critical Review of Bottom-Up Proteomics: The
Good, the Bad, and the Future of this Field. Proteomes 8 (3), 14. doi:10.
3390/proteomes8030014

Farhat, W., Venditti, R. A., Hubbe, M., Taha, M., Becquart, F., and Ayoub, A.
(2017). A Review of Water-Resistant Hemicellulose-Based Materials:
Processing and Applications. ChemSusChem 10 (2), 305–323. doi:10.1002/
cssc.201601047

Felczak, K., Chen, L., Wilson, D., Williams, J., Vince, R., Petrelli, R., et al. (2011).
Cofactor-type inhibitors of inosine monophosphate dehydrogenase via
modular approach: targeting the pyrophosphate binding sub-domain.
Bioorg. Med. Chem. 19 (5), 1594–1605. doi:10.1016/j.bmc.2011.01.042

Fernández-Fueyo, E., Acebes, S., Ruiz-Dueñas, F. J., Martínez, M. J., Romero, A.,
Medrano, F. J., et al. (2014). Structural implications of the C-terminal tail in the
catalytic and stability properties of manganese peroxidases from ligninolytic
fungi. Acta Cryst. D. Biol. Crystallogr. 70 (Pt 12), 3253–3265. doi:10.1107/
s1399004714022755

Fernandez-Fueyo, E., Ruiz-Dueñas, F. J., Ferreira, P., Floudas, D., Hibbett, D. S.,
Canessa, P., et al. (2012). Comparative genomics of Ceriporiopsis
subvermispora and Phanerochaete chrysosporium provide insight into
selective ligninolysis. Proc. Natl. Acad. Sci. U.S.A. 109 (14), 5458–5463.
doi:10.1073/pnas.1119912109

Fernández-Sandoval, M. T., Huerta-Beristain, G., Trujillo-Martinez, B., Bustos, P.,
González, V., Bolivar, F., et al. (2012). Laboratory metabolic evolution improves
acetate tolerance and growth on acetate of ethanologenic Escherichia coli under

non-aerated conditions in glucose-mineral medium. Appl. Microbiol.
Biotechnol. 96 (5), 1291–1300. doi:10.1007/s00253-012-4177-y

Fleige, C., Hansen, G., Kroll, J., Steinbüchel, A., and microbiology, e. (2013).
Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin
dehydrogenase and its impact on the biotechnical production of vanillin.
Appl. Environ. Microbiol. 79 (1), 81–90. doi:10.1128/AEM.02358-12

Frenkel, D., and Smit, B. (2002). “Introduction,” in Understanding Molecular
Simulation. Editors D. Frenkel and B. Smit. Second Edition (San Diego:
Academic Press), 1–6. doi:10.1016/b978-012267351-1/50003-1

Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T.,
et al. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1.
Method and assessment of docking accuracy. J. Med. Chem. 47 (7), 1739–1749.
doi:10.1021/jm0306430

Gauttam, R., Mukhopadhyay, A., Simmons, B. A., and Singer, S. W. (2021).
Development of dual-inducible duet-expression vectors for tunable gene
expression control and CRISPR interference-based gene repression in
Pseudomonas putida KT2440. Microb. Biotechnol. 14 (6), 2659–2678. doi:10.
1111/1751-7915.13832

Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials.
J. R. Soc. Interface. 9 (76), 2749–2766. doi:10.1098/rsif.2012.0341

Gomes, T. C. F., and Skaf, M. S. (2012). Cellulose-builder: a toolkit for building
crystalline structures of cellulose. J. Comput. Chem. 33 (14), 1338–1346. doi:10.
1002/jcc.22959

Götze, J. P., and Bühl, M. (2016). Laccase Redox Potentials: pH Dependence and
Mutants, a QM/MM Study. J. Phys. Chem. B 120 (35), 9265–9276. doi:10.1021/
acs.jpcb.6b04978

Grisafi, A., and Ceriotti, M. (2019). Incorporating long-range physics in atomic-
scale machine learning. J. Chem. Phys. 151 (20), 204105. doi:10.1063/1.5128375

Gross, A. S., Bell, A. T., and Chu, J.-W. (2012). Entropy of cellulose dissolution in
water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys. Chem.
Chem. Phys. 14 (23), 8425–8430. doi:10.1039/c2cp40417f

Gross, A. S., Bell, A. T., and Chu, J.-W. (2011). Thermodynamics of cellulose
solvation in water and the ionic liquid 1-butyl-3-methylimidazolim chloride.
J. Phys. Chem. B 115 (46), 13433–13440. doi:10.1021/jp202415v

Guo, X., An, Y., Chai, C., Sang, J., Jiang, L., Lu, F., et al. (2020). Construction of the
R17L mutant of MtC1LPMO for improved lignocellulosic biomass conversion
by rational point mutation and investigation of the mechanism by molecular
dynamics simulations. Bioresour. Technol. 317, 124024. doi:10.1016/j.biortech.
2020.124024

Gupta, K. M., Hu, Z., and Jiang, J. (2011). Mechanistic understanding of
interactions between cellulose and ionic liquids: A molecular simulation
study. Polymer 52 (25), 5904–5911. doi:10.1016/j.polymer.2011.10.035

Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G.,
Najafi, G. H., Gholami, M., et al. (2013). Lignocellulosic biomass to bioethanol,
a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy
Rev. 27 (C), 77–93. doi:10.1016/j.rser.2013.06.033

Hallac, B. B., and Ragauskas, A. J. (2011). Analyzing cellulose degree of
polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioprod.
Bioref. 5 (2), 215–225. doi:10.1002/bbb.269

Hamid, M., and Khalil-ur-Rehman, R. (2009). Potential applications of
peroxidases. Food Chem. 115 (4), 1177–1186. doi:10.1016/j.foodchem.2009.
02.035

Hanley, S. J., Revol, J.-F., Godbout, L., and Gray, D. G. (1997). Atomic force
microscopy and transmission electron microscopy of cellulose from
Micrasterias denticulata; evidence for a chiral helical microfibril twist.
Cellulose 4 (3), 209–220. doi:10.1023/A:1018483722417

Hansen, C. M. (2007). “Hansen Solubility Parameters,” in Hansen Solubility
Parameters: A User’s Handbook. 2nd Edn (Boca Raton, FL: CRC Press).
doi:10.1201/9781420006834

Hernández-de-Diego, R., Tarazona, S., Martínez-Mira, C., Balzano-Nogueira, L.,
Furió-Tarí, P., Pappas, G. J., Jr., et al. (2018). PaintOmics 3: a web resource for
the pathway analysis and visualization of multi-omics data. Nucleic Acids Res.
46 (W1), W503–w509. doi:10.1093/nar/gky466

Higuchi, T. (1997). “Structure and Functions of Wood,” in Biochemistry and
Molecular Biology of Wood. Editor T. Higuchi (Berlin, Heidelberg: Springer
Berlin Heidelberg), 1–42. doi:10.1007/978-3-642-60469-0_1

Hong, G., Ivnitski, D. M., Johnson, G. R., Atanassov, P., and Pachter, R. (2011).
Design parameters for tuning the type 1 Cu multicopper oxidase redox

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 86315314

Pham et al. Theoretical Tools for Valorizing Lignocellulose

198

https://doi.org/10.1021/acsomega.8b03255
https://doi.org/10.1021/acssuschemeng.9b07415
https://doi.org/10.1021/acssuschemeng.9b07415
https://doi.org/10.1101/mcs.a000588
https://doi.org/10.1101/mcs.a000588
https://doi.org/10.1021/cr200107z
https://doi.org/10.1111/j.1742-4658.2011.08023.x
https://doi.org/10.1021/acs.jcim.7b00237
https://doi.org/10.1021/acs.jcim.7b00237
https://doi.org/10.1016/j.sbi.2005.10.008
https://doi.org/10.1007/s002530000462
https://doi.org/10.1021/acs.energyfuels.7b01150
https://doi.org/10.1080/08927020600669627
https://doi.org/10.1016/j.jbiotec.2011.08.014
https://doi.org/10.1016/j.jbiotec.2011.08.014
https://doi.org/10.1016/j.carbpol.2012.01.080
https://doi.org/10.1016/j.carbpol.2012.01.080
https://doi.org/10.3390/proteomes8030014
https://doi.org/10.3390/proteomes8030014
https://doi.org/10.1002/cssc.201601047
https://doi.org/10.1002/cssc.201601047
https://doi.org/10.1016/j.bmc.2011.01.042
https://doi.org/10.1107/s1399004714022755
https://doi.org/10.1107/s1399004714022755
https://doi.org/10.1073/pnas.1119912109
https://doi.org/10.1007/s00253-012-4177-y
https://doi.org/10.1128/AEM.02358-12
https://doi.org/10.1016/b978-012267351-1/50003-1
https://doi.org/10.1021/jm0306430
https://doi.org/10.1111/1751-7915.13832
https://doi.org/10.1111/1751-7915.13832
https://doi.org/10.1098/rsif.2012.0341
https://doi.org/10.1002/jcc.22959
https://doi.org/10.1002/jcc.22959
https://doi.org/10.1021/acs.jpcb.6b04978
https://doi.org/10.1021/acs.jpcb.6b04978
https://doi.org/10.1063/1.5128375
https://doi.org/10.1039/c2cp40417f
https://doi.org/10.1021/jp202415v
https://doi.org/10.1016/j.biortech.2020.124024
https://doi.org/10.1016/j.biortech.2020.124024
https://doi.org/10.1016/j.polymer.2011.10.035
https://doi.org/10.1016/j.rser.2013.06.033
https://doi.org/10.1002/bbb.269
https://doi.org/10.1016/j.foodchem.2009.02.035
https://doi.org/10.1016/j.foodchem.2009.02.035
https://doi.org/10.1023/A:1018483722417
https://doi.org/10.1201/9781420006834
https://doi.org/10.1093/nar/gky466
https://doi.org/10.1007/978-3-642-60469-0_1
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


potential: insight from a combination of first principles and empirical molecular
dynamics simulations. J. Am. Chem. Soc. 133 (13), 4802–4809. doi:10.1021/
ja105586q

Hu, N., Xu, D., Fang, J., Li, H., Mo, J., Zhou, M., et al. (2020). Intracellular recording
of cardiomyocyte action potentials by nanobranched microelectrode array.
Biosens. Bioelectron. 169, 112588. doi:10.1016/j.bios.2020.112588

Huang, K., Mohan, M., George, A., Simmons, B. A., Xu, Y., and Gladden, J. M.
(2021). Integration of acetic acid catalysis with one-pot protic ionic liquid
configuration to achieve high-efficient biorefinery of poplar biomass. Green
Chem. 23 (16), 6036–6049. doi:10.1039/D1GC01727F

Huffman, F. G. (2003). “URONIC ACIDS,” in Encyclopedia of Food Sciences and
Nutrition. Editor B. Caballero. Second Edition (Oxford: Academic Press),
5890–5896. doi:10.1016/b0-12-227055-x/01221-9

Huo, F., Liu, Z., and Wang, W. (2013). Cosolvent or antisolvent? A molecular view
of the interface between ionic liquids and cellulose upon addition of another
molecular solvent. J. Phys. Chem. B 117 (39), 11780–11792. doi:10.1021/
jp407480b

Iglesias-Fernández, J., Hancock, S. M., Lee, S. S., Khan, M., Kirkpatrick, J., Oldham,
N. J., et al. (2017). A front-face ’SNi synthase’ engineered from a retaining
’double-SN2’ hydrolase. Nat. Chem. Biol. 13 (8), 874–881. doi:10.1038/
nchembio.2394

Iqbal, J., Muhammad, N., Rahim, A., Khan, A. S., Ullah, Z., Gonfa, G., et al. (2019).
COSMO-RS predictions, hydrogen bond basicity values and experimental
evaluation of amino acid-based ionic liquids for lignocellulosic biomass
dissolution. J. Mol. Liq. 273, 215–221. doi:10.1016/j.molliq.2018.10.044

Janesko, B. G. (2011). Modeling interactions between lignocellulose and ionic
liquids using DFT-D. Phys. Chem. Chem. Phys. 13 (23), 11393–11401. doi:10.
1039/C1CP20072K

Jarin, Z., and Pfaendtner, J. (2014). Ionic Liquids Can Selectively Change the
Conformational Free-Energy Landscape of Sugar Rings. J. Chem. Theory
Comput. 10 (2), 507–510. doi:10.1021/ct4010036

Ji, H., and Lv, P. (2020). Mechanistic insights into the lignin dissolution behaviors
of a recyclable acid hydrotrope, deep eutectic solvent (DES), and ionic liquid
(IL). Green Chem. 22 (4), 1378–1387. doi:10.1039/C9GC02760B

Johnson, C. W., Abraham, P. E., Linger, J. G., Khanna, P., Hettich, R. L., and
Beckham, G. T. (2017a). Eliminating a global regulator of carbon catabolite
repression enhances the conversion of aromatic lignin monomers to muconate
in Pseudomonas putida KT2440.Metab. Eng. Commun. 5, 19–25. doi:10.1016/j.
meteno.2017.05.002

Kahlen, J., Masuch, K., and Leonhard, K. (2010). Modelling cellulose solubilities in
ionic liquids using COSMO-RS. Green Chem. 12 (12), 2172–2181. doi:10.1039/
C0GC00200C

Kameda, Y., Maeda, S., Amo, Y., Usuki, T., Ikeda, K., and Otomo, T. (2018).
Neutron Diffraction Study on the Structure of Hydrated Li+ in Dilute Aqueous
Solutions. J. Phys. Chem. B 122 (5), 1695–1701. doi:10.1021/acs.jpcb.7b12218

Kearsley, S. K., Underwood, D. J., Sheridan, R. P., and Miller, M. D. (1994).
Flexibases: A way to enhance the use of molecular docking methods.
J. Computer-Aided Mol. Des. 8 (5), 565–582. doi:10.1007/BF00123666

Khan, S., Farooq, U., and Kurnikova, M. (2016). Exploring Protein Stability by
Comparative Molecular Dynamics Simulations of Homologous
Hyperthermophilic, Mesophilic, and Psychrophilic Proteins. J. Chem. Inf.
Model. 56 (11), 2129–2139. doi:10.1021/acs.jcim.6b00305

Khoury, M. J., Feero, W. G., Reyes, M., Citrin, T., Freedman, A., Leonard, D., et al.
(2009). The genomic applications in practice and prevention network. Genet.
Med. 11 (7), 488–494. doi:10.1097/GIM.0b013e3181a551cc

Kirk, T. K., Tien, M., Kersten, P. J., Mozuch, M. D., and Kalyanaraman, B. (1986).
Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of
the non-phenolic arylglycerol β-aryl ether substructure of lignin. Biochem. J.
236 (1), 279–287. doi:10.1042/bj2360279

Kitano, H. (2002). Systems biology: a brief overview. Science 295 (5560),
1662–1664. doi:10.1126/science.1069492

Knott, B. C., Crowley, M. F., Himmel, M. E., Ståhlberg, J., and Beckham, G. T.
(2014). Carbohydrate-protein interactions that drive processive polysaccharide
translocation in enzymes revealed from a computational study of
cellobiohydrolase processivity. J. Am. Chem. Soc. 136 (24), 8810–8819.
doi:10.1021/ja504074g

Kohler, A. C., Simmons, B. A., and Sale, K. L. (2018). Structure-based Engineering
of a Plant-Fungal Hybrid Peroxidase for Enhanced Temperature and

pH Tolerance. Cell. Chem. Biol. 25 (8), 974–983. e973. doi:10.1016/j.
chembiol.2018.04.014

Kohlstedt, M., Starck, S., Barton, N., Stolzenberger, J., Selzer, M., Mehlmann, K.,
et al. (2018). From lignin to nylon: cascaded chemical and biochemical
conversion using metabolically engineered Pseudomonas putida. Metab.
Eng. 47, 279–293. doi:10.1016/j.ymben.2018.03.003

Krämer, A., Green, J., Pollard, J., Jr., and Tugendreich, S. (2014). Causal analysis
approaches in Ingenuity Pathway Analysis. Bioinformatics 30 (4), 523–530.
doi:10.1093/bioinformatics/btt703

Kumar, A., and Chandra, R. (2020). Ligninolytic enzymes and its mechanisms for
degradation of lignocellulosic waste in environment. Heliyon 6 (2), e03170.
doi:10.1016/j.heliyon.2020.e03170

Kumar, P., and Kim, B. S. (2018). Valorization of polyhydroxyalkanoates
production process by co-synthesis of value-added products. Bioresour.
Technol. 269, 544–556. doi:10.1016/j.biortech.2018.08.120

Kuo, T.-C., Tian, T.-F., and Tseng, Y. J. (2013). 3Omics: a web-based systems
biology tool for analysis, integration and visualization of human transcriptomic,
proteomic and metabolomic data. BMC Syst. Biol. 7 (1), 64. doi:10.1186/1752-
0509-7-64

Lawson, C. E., Martí, J. M., Radivojevic, T., Jonnalagadda, S. V. R., Gentz, R.,
Hillson, N. J., et al. (2021). Machine learning for metabolic engineering: A
review. Metab. Eng. 63, 34–60. doi:10.1016/j.ymben.2020.10.005

Lê Cao, K.-A., González, I., and Déjean, S. (2009). integrOmics: an R package to
unravel relationships between two omics datasets. Bioinformatics 25 (21),
2855–2856. doi:10.1093/bioinformatics/btp515

Lee, N., Hwang, S., Kim, J., Cho, S., Palsson, B., Cho, B.-K., et al. (2020a). Mini
review: genome mining approaches for the identification of secondary
metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct.
Biotechnol. J. 18, 1548–1556. doi:10.1016/j.csbj.2020.06.024

Lee, S., Sohn, J.-H., Bae, J.-H., Kim, S. C., Sung, B. H. J. B., and Engineering, B.
(2020b). Current Status of Pseudomonas Putida Engineering for Lignin
Valorization, 1–10.

Lee, S. Y., Sekhon, S. S., Ban, Y.-H., Ahn, J.-Y., Ko, J. H., Lee, L., et al. (2016).
Proteomic analysis of polycyclic aromatic hydrocarbons (PAHs) degradation
and detoxification in Sphingobium chungbukense DJ77. J. Microbiol.
Biotechnol. 26 (11), 1943–1950. doi:10.4014/jmb.1606.06005

Levitt, M. (1982). Protein conformation, dynamics, and folding by computer
simulation. Annu. Rev. Biophys. Bioeng. 11, 251–271. doi:10.1146/annurev.
bb.11.060182.001343

Levitt, M., andWarshel, A. (1975). Computer simulation of protein folding.Nature
253 (5494), 694–698. doi:10.1038/253694a0

Li, J., Du, L., and Wang, L. (2010). Glycosidic-bond hydrolysis mechanism
catalyzed by cellulase Cel7A from Trichoderma reesei: a comprehensive
theoretical study by performing MD, QM, and QM/MM calculations.
J. Phys. Chem. B 114 (46), 15261–15268. doi:10.1021/jp1064177

Li, J., Farrokhnia, M., Rulíšek, L., and Ryde, U. (2015a). Catalytic Cycle of
Multicopper Oxidases Studied by Combined Quantum- and Molecular-
Mechanical Free-Energy Perturbation Methods. J. Phys. Chem. B 119 (26),
8268–8284. doi:10.1021/acs.jpcb.5b02864

Li, Q., Sun, B., Xiong, K., Teng, C., Xu, Y., Li, L., et al. (2017). Improving special
hydrolysis characterization into Talaromyces thermophilus F1208 xylanase by
engineering of N-terminal extension and site-directed mutagenesis in
C-terminal. Int. J. Biol. Macromol. 96, 451–458. doi:10.1016/10.1016/j.
ijbiomac.2016.12.050

Li, Y., Liu, X., Zhang, S., Yao, Y., Yao, X., Xu, J., et al. (2015b). Dissolving process of
a cellulose bunch in ionic liquids: a molecular dynamics study. Phys. Chem.
Chem. Phys. 17 (27), 17894–17905. doi:10.1039/C5CP02009C

Libbrecht, M. W., and Noble, W. S. (2015). Machine learning applications in
genetics and genomics. Nat. Rev. Genet. 16, 321–332. doi:10.1038/nrg3920

Liu, B., Kognole, A. A., Wu,M., Westereng, B., Crowley, M. F., Kim, S., et al. (2018).
Structural and molecular dynamics studies of a C1-oxidizing lytic
polysaccharide monooxygenase from Heterobasidion irregulare reveal amino
acids important for substrate recognition. Febs J. 285 (12), 2225–2242. doi:10.
1111/febs.14472

Liu, H., Cheng, G., Kent, M., Stavila, V., Simmons, B. A., Sale, K. L., et al. (2012).
Simulations Reveal Conformational Changes ofMethylhydroxyl Groups during
Dissolution of Cellulose Iβ in Ionic Liquid 1-Ethyl-3-methylimidazolium
Acetate. J. Phys. Chem. B 116 (28), 8131–8138. doi:10.1021/jp301673h

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 86315315

Pham et al. Theoretical Tools for Valorizing Lignocellulose

199

https://doi.org/10.1021/ja105586q
https://doi.org/10.1021/ja105586q
https://doi.org/10.1016/j.bios.2020.112588
https://doi.org/10.1039/D1GC01727F
https://doi.org/10.1016/b0-12-227055-x/01221-9
https://doi.org/10.1021/jp407480b
https://doi.org/10.1021/jp407480b
https://doi.org/10.1038/nchembio.2394
https://doi.org/10.1038/nchembio.2394
https://doi.org/10.1016/j.molliq.2018.10.044
https://doi.org/10.1039/C1CP20072K
https://doi.org/10.1039/C1CP20072K
https://doi.org/10.1021/ct4010036
https://doi.org/10.1039/C9GC02760B
https://doi.org/10.1016/j.meteno.2017.05.002
https://doi.org/10.1016/j.meteno.2017.05.002
https://doi.org/10.1039/C0GC00200C
https://doi.org/10.1039/C0GC00200C
https://doi.org/10.1021/acs.jpcb.7b12218
https://doi.org/10.1007/BF00123666
https://doi.org/10.1021/acs.jcim.6b00305
https://doi.org/10.1097/GIM.0b013e3181a551cc
https://doi.org/10.1042/bj2360279
https://doi.org/10.1126/science.1069492
https://doi.org/10.1021/ja504074g
https://doi.org/10.1016/j.chembiol.2018.04.014
https://doi.org/10.1016/j.chembiol.2018.04.014
https://doi.org/10.1016/j.ymben.2018.03.003
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1016/j.heliyon.2020.e03170
https://doi.org/10.1016/j.biortech.2018.08.120
https://doi.org/10.1186/1752-0509-7-64
https://doi.org/10.1186/1752-0509-7-64
https://doi.org/10.1016/j.ymben.2020.10.005
https://doi.org/10.1093/bioinformatics/btp515
https://doi.org/10.1016/j.csbj.2020.06.024
https://doi.org/10.4014/jmb.1606.06005
https://doi.org/10.1146/annurev.bb.11.060182.001343
https://doi.org/10.1146/annurev.bb.11.060182.001343
https://doi.org/10.1038/253694a0
https://doi.org/10.1021/jp1064177
https://doi.org/10.1021/acs.jpcb.5b02864
https://doi.org/10.1016/10.1016/j.ijbiomac.2016.12.050
https://doi.org/10.1016/10.1016/j.ijbiomac.2016.12.050
https://doi.org/10.1039/C5CP02009C
https://doi.org/10.1038/nrg3920
https://doi.org/10.1111/febs.14472
https://doi.org/10.1111/febs.14472
https://doi.org/10.1021/jp301673h
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Liu, H., Sale, K. L., Holmes, B. M., Simmons, B. A., and Singh, S. (2010a).
Understanding the Interactions of Cellulose with Ionic Liquids: A Molecular
Dynamics Study. J. Phys. Chem. B 114 (12), 4293–4301. doi:10.1021/jp9117437

Liu, J., Wang, X., and Xu, D. (2010b). QM/MM study on the catalytic mechanism of
cellulose hydrolysis catalyzed by cellulase Cel5A from Acidothermus
cellulolyticus. J. Phys. Chem. B 114 (3), 1462–1470. doi:10.1021/jp909177e

Liu, Y.-R., Thomsen, K., Nie, Y., Zhang, S.-J., and Meyer, A. S. (2016). Predictive
screening of ionic liquids for dissolving cellulose and experimental verification.
Green Chem. 18 (23), 6246–6254. doi:10.1039/C6GC01827K

Ludwiczek, M. L., Heller, M., Kantner, T., and McIntosh, L. P. (2007). A secondary
xylan-binding site enhances the catalytic activity of a single-domain family
11 glycoside hydrolase. J. Mol. Biol. 373 (2), 337–354. doi:10.1016/j.jmb.2007.
07.057

Martí, S., Roca, M., Andrés, J., Moliner, V., Silla, E., Tuñón, I., et al. (2004).
Theoretical insights in enzyme catalysis. Chem. Soc. Rev. 33 (2), 98–107. doi:10.
1039/B301875J

Martínez-Abad, A., Berglund, J., Toriz, G., Gatenholm, P., Henriksson, G.,
Lindström, M., et al. (2017). Regular Motifs in Xylan Modulate Molecular
Flexibility and Interactions with Cellulose Surfaces. Plant Physiol. 175 (4),
1579–1592. doi:10.1104/pp.17.01184

Martínez-García, E., and de Lorenzo, V. (2019). Pseudomonas putida in the quest
of programmable chemistry. Curr. Opin. Biotechnol. 59, 111–121. doi:10.1016/j.
copbio.2019.03.012

Matthews, J. F., Beckham, G. T., Bergenstråhle-Wohlert, M., Brady, J. W., Himmel,
M. E., and Crowley, M. F. (2012). Comparison of Cellulose Iβ Simulations with
Three Carbohydrate Force Fields. J. Chem. Theory Comput. 8 (2), 735–748.
doi:10.1021/ct2007692

Matthews, J. F., Bergenstråhle, M., Beckham, G. T., Himmel, M. E., Nimlos, M. R.,
Brady, J. W., et al. (2011). High-Temperature Behavior of Cellulose I. J. Phys.
Chem. B 115 (10), 2155–2166. doi:10.1021/jp1106839

Mazeau, K., and Heux, L. (2003). Molecular Dynamics Simulations of Bulk Native
Crystalline and Amorphous Structures of Cellulose. J. Phys. Chem. B 107 (10),
2394–2403. doi:10.1021/jp0219395

Medve, J., Karlsson, J., Lee, D., and Tjerneld, F. (1998). Hydrolysis of
microcrystalline cellulose by cellobiohydrolase I and endoglucanase II
fromTrichoderma reesei: Adsorption, sugar production pattern, and
synergism of the enzymes. Biotechnol. Bioeng. 59 (5), 621–634. doi:10.1002/
(sici)1097-0290(19980905)59:5<621::aid-bit13>3.0.co;2-c

Miki, K., Renganathan, V., and Gold, M. H. (1986). Mechanism of .beta.-aryl ether
dimeric lignin model compound oxidation by lignin peroxidase by
Phanerochaete chrysosporium. Biochemistry 25 (17), 4790–4796. doi:10.
1021/bi00365a011

Miki, Y., Pogni, R., Acebes, S., Lucas, F., Fernández-Fueyo, E., Baratto, M. C., et al.
(2013). Formation of a tyrosine adduct involved in lignin degradation by
Trametopsis cervina lignin peroxidase: a novel peroxidase activation
mechanism. Biochem. J. 452 (3), 575–584. doi:10.1042/bj20130251

Min, S., Lee, B., and Yoon, S. (2016). Deep learning in bioinformatics. Brief.
Bioinform 18, 851–869. doi:10.1093/bib/bbw068

Moal, I. H., and Bates, P. A. (2012). Kinetic rate constant prediction supports the
conformational selection mechanism of protein binding. PLoS Comput. Biol. 8
(1), e1002351. doi:10.1371/journal.pcbi.1002351

Mohan, M., Choudhary, H., George, A., Simmons, B. A., Sale, K., and Gladden,
J. M. (2021). Towards understanding of delignification of grassy and woody
biomass in cholinium-based ionic liquids. Green Chem. 23 (16), 6020–6035.
doi:10.1039/D1GC01622A

Mohan, M., Huang, K., Pidatala, V. R., Simmons, B. A., Singh, S., Sale, K. L., et al.
(2022). Prediction of solubility parameters of lignin and ionic liquids using
multi-resolution simulation approaches. Green Chem. 24 (3), 1165–1176.
doi:10.1039/D1GC03798F

Momeni, M. H., Payne, C. M., Hansson, H., Mikkelsen, N. E., Svedberg, J.,
Engström, Å., et al. (2013). Structural, Biochemical, and Computational
Characterization of the Glycoside Hydrolase Family 7 Cellobiohydrolase of
the Tree-killing Fungus Heterobasidion irregulare*. J. Biol. Chem. 288 (8),
5861–5872. doi:10.1074/jbc.M112.440891

Mostofian, B., Cheng, X., and Smith, J. C. (2014a). Replica-exchange molecular
dynamics simulations of cellulose solvated in water and in the ionic liquid 1-
butyl-3-methylimidazolium chloride. J. Phys. Chem. B 118 (38), 11037–11049.
doi:10.1021/jp502889c

Mostofian, B., Smith, J. C., and Cheng, X. (2014b). Simulation of a cellulose fiber in
ionic liquid suggests a synergistic approach to dissolution. Cellulose 21 (2),
983–997. doi:10.1007/s10570-013-0018-0

Mostofian, B., Smith, J. C., and Cheng, X. (2011). The solvation structures of
cellulose microfibrils in ionic liquids. Interdiscip. Sci. Comput. Life Sci. 3 (4),
308–320. doi:10.1007/s12539-011-0111-8

Mulholland, A. J. (2005). Modelling enzyme reaction mechanisms, specificity and
catalysis. Drug Discov. Today 10 (20), 1393–1402. doi:10.1016/s1359-6446(05)
03611-1

Ngenyoung, A., Muhammad, A., Rattanarojpong, T., Sutthibutpong, T., and
Khunrae, P. (2021). Effect of N-terminal modification on the mode of
action between the Xyn11A and Xylotetraose. Int. J. Biol. Macromol. 170,
240–247. doi:10.1016/10.1016/j.ijbiomac.2020.12.154

Nguyen, L. T., Phan, D.-P., Sarwar, A., Tran, M. H., Lee, O. K., Lee, E. Y., et al.
(2021). Valorization of industrial lignin to value-added chemicals by chemical
depolymerization and biological conversion. Industrial Crops Prod. 161,
113219. doi:10.1016/j.indcrop.2020.113219

Novoselov, N. P., Sashina, E. S., Petrenko, V. E., and Zaborsky, M. (2007). Study of
dissolution of cellulose in ionic liquids by computer modeling. Fibre Chem. 39
(2), 153–158. doi:10.1007/s10692-007-0030-y

Nys, K., Furtmüller, P. G., Obinger, C., Van Doorslaer, S., and Pfanzagl, V. (2021).
On the Track of Long-Range Electron Transfer in B-Type Dye-Decolorizing
Peroxidases: Identification of a Tyrosyl Radical by Computational Prediction
and Electron Paramagnetic Resonance Spectroscopy. Biochemistry 60 (15),
1226–1241. doi:10.1021/acs.biochem.1c00129

Ogunmolu, F. E., Jagadeesha, N. B. K., Kumar, R., Kumar, P., Gupta, D., and
Yazdani, S. S. (2017). Comparative insights into the saccharification potentials
of a relatively unexplored but robust Penicillium funiculosum glycoside
hydrolase 7 cellobiohydrolase. Biotechnol. Biofuels 10 (1), 71. doi:10.1186/
s13068-017-0752-x

Orella, M. J., Gani, T. Z. H., Vermaas, J. V., Stone, M. L., Anderson, E. M.,
Beckham, G. T., et al. (2019). Lignin-KMC: A Toolkit for Simulating Lignin
Biosynthesis. ACS Sustain. Chem. Eng. 7 (22), 18313–18322. doi:10.1021/
acssuschemeng.9b03534

Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., et al.
(2021). MetaboAnalyst 5.0: narrowing the gap between raw spectra and
functional insights. Nucleic Acids Res. 49 (W1), W388–W396. doi:10.1093/
nar/gkab382

Parra-Ramírez, D., Martinez, A., and Cardona, C. A. (2018). Technical and
economic potential evaluation of the strain Escherichia coli MS04 in the
ethanol production from glucose and xylose. Biochem. Eng. J. 140, 123–129.
doi:10.1016/j.bej.2018.09.015

Parthasarathi, R., Balamurugan, K., Shi, J., Subramanian, V., Simmons, B. A., and
Singh, S. (2015). Theoretical Insights into the Role of Water in the Dissolution
of Cellulose Using IL/Water Mixed Solvent Systems. J. Phys. Chem. B 119 (45),
14339–14349. doi:10.1021/acs.jpcb.5b02680

Payne, C. M., Resch, M. G., Chen, L., Crowley, M. F., Himmel, M. E., Taylor, L. E.,
2nd, et al. (2013). Glycosylated linkers in multimodular lignocellulose-
degrading enzymes dynamically bind to cellulose. Proc. Natl. Acad. Sci.
U.S.A. 110 (36), 14646–14651. doi:10.1073/pnas.1309106110

Pereira, C. S., Silveira, R. L., and Skaf, M. S. (2021). QM/MM Simulations of
Enzymatic Hydrolysis of Cellulose: Probing the Viability of an Endocyclic
Mechanism for an Inverting Cellulase. J. Chem. Inf. Model. 61 (4), 1902–1912.
doi:10.1021/acs.jcim.0c01380

Pham, L. T. M., Deng, K., Northen, T. R., Singer, S. W., Adams, P. D., Simmons, B.
A., et al. (2021). Experimental and theoretical insights into the effects of pH on
catalysis of bond-cleavage by the lignin peroxidase isozyme H8 from
Phanerochaete chrysosporium. Biotechnol. Biofuels 14 (1), 108. doi:10.1186/
s13068-021-01953-7

Pham, L. T. M., Kim, S. J., and Kim, Y. H. (2016). Improvement of catalytic
performance of lignin peroxidase for the enhanced degradation of
lignocellulose biomass based on the imbedded electron-relay in long-range
electron transfer route. Biotechnol. Biofuels 9 (1), 247. doi:10.1186/s13068-016-
0664-1

Piétu, G., Mariage-Samson, R., Fayein, N.-A., Matingou, C., Eveno, E., Houlgatte,
R., et al. (1999). The Genexpress IMAGE knowledge base of the human brain
transcriptome: a prototype integrated resource for functional and
computational genomics. Genome Res. 9 (2), 195–209. doi:10.1101/gr.9.2.195

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 86315316

Pham et al. Theoretical Tools for Valorizing Lignocellulose

200

https://doi.org/10.1021/jp9117437
https://doi.org/10.1021/jp909177e
https://doi.org/10.1039/C6GC01827K
https://doi.org/10.1016/j.jmb.2007.07.057
https://doi.org/10.1016/j.jmb.2007.07.057
https://doi.org/10.1039/B301875J
https://doi.org/10.1039/B301875J
https://doi.org/10.1104/pp.17.01184
https://doi.org/10.1016/j.copbio.2019.03.012
https://doi.org/10.1016/j.copbio.2019.03.012
https://doi.org/10.1021/ct2007692
https://doi.org/10.1021/jp1106839
https://doi.org/10.1021/jp0219395
https://doi.org/10.1002/(sici)1097-0290(19980905)59:5<621::aid-bit13>3.0.co;2-c
https://doi.org/10.1002/(sici)1097-0290(19980905)59:5<621::aid-bit13>3.0.co;2-c
https://doi.org/10.1021/bi00365a011
https://doi.org/10.1021/bi00365a011
https://doi.org/10.1042/bj20130251
https://doi.org/10.1093/bib/bbw068
https://doi.org/10.1371/journal.pcbi.1002351
https://doi.org/10.1039/D1GC01622A
https://doi.org/10.1039/D1GC03798F
https://doi.org/10.1074/jbc.M112.440891
https://doi.org/10.1021/jp502889c
https://doi.org/10.1007/s10570-013-0018-0
https://doi.org/10.1007/s12539-011-0111-8
https://doi.org/10.1016/s1359-6446(05)03611-1
https://doi.org/10.1016/s1359-6446(05)03611-1
https://doi.org/10.1016/10.1016/j.ijbiomac.2020.12.154
https://doi.org/10.1016/j.indcrop.2020.113219
https://doi.org/10.1007/s10692-007-0030-y
https://doi.org/10.1021/acs.biochem.1c00129
https://doi.org/10.1186/s13068-017-0752-x
https://doi.org/10.1186/s13068-017-0752-x
https://doi.org/10.1021/acssuschemeng.9b03534
https://doi.org/10.1021/acssuschemeng.9b03534
https://doi.org/10.1093/nar/gkab382
https://doi.org/10.1093/nar/gkab382
https://doi.org/10.1016/j.bej.2018.09.015
https://doi.org/10.1021/acs.jpcb.5b02680
https://doi.org/10.1073/pnas.1309106110
https://doi.org/10.1021/acs.jcim.0c01380
https://doi.org/10.1186/s13068-021-01953-7
https://doi.org/10.1186/s13068-021-01953-7
https://doi.org/10.1186/s13068-016-0664-1
https://doi.org/10.1186/s13068-016-0664-1
https://doi.org/10.1101/gr.9.2.195
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Pogni, R., Baratto, M. C., Teutloff, C., Giansanti, S., Ruiz-Dueñas, F. J., Choinowski,
T., et al. (2006). A Tryptophan Neutral Radical in the Oxidized State of Versatile
Peroxidase from Pleurotus eryngii. J. Biol. Chem. 281 (14), 9517–9526. doi:10.
1074/jbc.M510424200

Pollegioni, L., Tonin, F., and Rosini, E. (2015). Lignin-degrading enzymes. Febs J.
282 (7), 1190–1213. doi:10.1111/febs.13224

Pollet, A., Lagaert, S., Eneyskaya, E., Kulminskaya, A., Delcour, J. A., and Courtin,
C. M. (2010). Mutagenesis and subsite mapping underpin the importance for
substrate specificity of the aglycon subsites of glycoside hydrolase family
11 xylanases. Biochimica Biophysica Acta (BBA) - Proteins Proteomics 1804
(4), 977–985. doi:10.1016/j.bbapap.2010.01.009

Quesada-Medina, J., López-Cremades, F. J., and Olivares-Carrillo, P. (2010).
Organosolv extraction of lignin from hydrolyzed almond shells and
application of the δ-value theory. Bioresour. Technol. 101 (21), 8252–8260.
doi:10.1016/j.biortech.2010.06.011

Rabideau, B. D., Agarwal, A., and Ismail, A. E. (2013). ObservedMechanism for the
Breakup of Small Bundles of Cellulose Iα and Iβ in Ionic Liquids from
Molecular Dynamics Simulations. J. Phys. Chem. B 117 (13), 3469–3479.
doi:10.1021/jp310225t

Rabideau, B. D., Agarwal, A., and Ismail, A. E. (2014). The role of the cation in the
solvation of cellulose by imidazolium-based ionic liquids. J. Phys. Chem. B 118
(6), 1621–1629. doi:10.1021/jp4115755

Rabideau, B. D., and Ismail, A. E. (2015). Mechanisms of hydrogen bond formation
between ionic liquids and cellulose and the influence of water content. Phys.
Chem. Chem. Phys. 17 (8), 5767–5775. doi:10.1039/C4CP04060K

Radivojević, T., Costello, Z., Workman, K., and Garcia Martin, H. (2020). A
machine learning Automated Recommendation Tool for synthetic biology.Nat.
Commun. 11 (1), 4879. doi:10.1038/s41467-020-18008-4

Rapaport, D. C., Blumberg, R. L., McKay, S. R., and Christian, W. (1996). The Art
of Molecular Dynamics Simulation. Comput. Phys. 10 (5), 456. doi:10.1063/1.
4822471

Rashid, T., Kait, C. F., and Murugesan, T. (2016). A “Fourier Transformed
Infrared” Compound Study of Lignin Recovered from a Formic Acid
Process. Procedia Eng. 148, 1312–1319. doi:10.1016/j10.1016/j.proeng.2016.
06.547

Ray, A. E., Williams, C. L., Hoover, A. N., Li, C., Sale, K. L., Emerson, R. M., et al.
(2020). Multiscale Characterization of Lignocellulosic Biomass Variability and
Its Implications to Preprocessing and Conversion: a Case Study for Corn Stover.
ACS Sustain. Chem. Eng. 8 (8), 3218–3230. doi:10.1021/acssuschemeng.
9b06763

Ren, H., Shi, C., and Zhao, H. (2020). Computational tools for discovering and
engineering natural product biosynthetic pathways. iScience 23 (1), 100795.
doi:10.1016/j.isci.2019.100795

Riccardi, D., Schaefer, P., YangYu, H., Yu, H., Ghosh, N., Prat-Resina, X., et al.
(2006). Development of Effective Quantum Mechanical/Molecular Mechanical
(QM/MM) Methods for Complex Biological Processes. J. Phys. Chem. B 110
(13), 6458–6469. doi:10.1021/jp056361o

Riou, C., Salmon, J.-M., Vallier, M.-J., Gu€nata, Z., and Barre, P. (1998). Purification,
Characterization, and Substrate Specificity of a Novel Highly Glucose-Tolerant
β-Glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 64 (10),
3607–3614. doi:10.1128/aem.64.10.3607-3614.1998

Romero, J. O., Fernández-Fueyo, E., Avila-Salas, F., Recabarren, R., Alzate-
Morales, J., and Martínez, A. T. (2019). Binding and Catalytic Mechanisms
of Veratryl Alcohol Oxidation by Lignin Peroxidase: A Theoretical and
Experimental Study. Comput. Struct. Biotechnol. J. 17, 1066–1074. doi:10.
1016/j.csbj.2019.07.002

Ruiz-Dueñas, F. J., and Martínez, Á. T. (2009). Microbial degradation of lignin:
how a bulky recalcitrant polymer is efficiently recycled in nature and how we
can take advantage of this. Microb. Biotechnol. 2 (2), 164–177. doi:10.1111/j.
1751-7915.2008.00078.x

Sainsbury, P. D., Hardiman, E. M., Ahmad, M., Otani, H., Seghezzi, N., Eltis, L. D.,
et al. (2013). Breaking Down Lignin to High-Value Chemicals: The Conversion
of Lignocellulose to Vanillin in a Gene Deletion Mutant of Rhodococcus jostii
RHA1. ACS Chem. Biol. 8 (10), 2151–2156. doi:10.1021/cb400505a

Senn, H. M., and Thiel, W. (2009). QM/MM methods for biomolecular systems.
Angew. Chem. Int. Ed. 48 (7), 1198–1229. doi:10.1002/anie.200802019

Sethupathy, S., Morales, G. M., Li, Y., Wang, Y., Jiang, J., Sun, J., et al. (2021).
Harnessing microbial wealth for lignocellulose biomass valorization through

secretomics: a review. Biotechnol. Biofuels Bioproducts14 (1), 1–31. doi:10.1186/
s13068-021-02006-9

Shen, R., Olshen, A. B., and Ladanyi, M. (2009). Integrative clustering of multiple
genomic data types using a joint latent variable model with application to breast
and lung cancer subtype analysis. Bioinformatics 25 (22), 2906–2912. doi:10.
1093/bioinformatics/btp543

Shen, T., and Gnanakaran, S. (2009). The stability of cellulose: a statistical
perspective from a coarse-grained model of hydrogen-bond networks.
Biophysical J. 96 (8), 3032–3040. doi:10.1016/j.bpj.2008.12.3953

Shi, J., Balamurugan, K., Parthasarathi, R., Sathitsuksanoh, N., Zhang, S., Stavila,
V., et al. (2014). Understanding the role of water during ionic liquid
pretreatment of lignocellulose: co-solvent or anti-solvent? Green Chem. 16
(8), 3830–3840. doi:10.1039/C4GC00373J

Singh, A. K., Katari, S. K., Umamaheswari, A., and Raj, A. (2021). In Silico
exploration of lignin peroxidase for unraveling the degradation mechanism
employing lignin model compounds. RSC Adv. 11 (24), 14632–14653. doi:10.
1039/D0RA10840E

Smith, A. T., Doyle, W. A., Dorlet, P., and Ivancich, A. (2009). Spectroscopic
evidence for an engineered, catalytically active Trp radical that creates the
unique reactivity of lignin peroxidase. Proc. Natl. Acad. Sci. U.S.A. 106 (38),
16084–16089. doi:10.1073/pnas.0904535106

Sonoki, T., Takahashi, K., Sugita, H., Hatamura, M., Azuma, Y., Sato, T., et al.
(2018). Glucose-Free cis,cis-Muconic Acid Production via New Metabolic
Designs Corresponding to the Heterogeneity of Lignin. ACS Sustain. Chem.
Eng. 6 (1), 1256–1264. doi:10.1021/acssuschemeng.7b03597

Teeri, T. T. (1997). Crystalline cellulose degradation: new insight into the function
of cellobiohydrolases. Trends Biotechnol. 15 (5), 160–167. doi:10.1016/S0167-
7799(97)01032-9

Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., et al. (2004).
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of
metabolic pathways and other biological processes. Plant J. 37 (6), 914–939.
doi:10.1111/j.1365-313x.2004.02016.x

Tilay, A., Bule, M., Annapure, U., and chemistry, f. (2010). Production of
Biovanillin by One-Step Biotransformation Using Fungus Pycnoporous
cinnabarinus. J. Agric. Food Chem. 58 (7), 4401–4405. doi:10.1021/jf904141u

Totrov, M., and Abagyan, R. (2008). Flexible ligand docking to multiple receptor
conformations: a practical alternative. Curr. Opin. Struct. Biol. 18 (2), 178–184.
doi:10.1016/j.sbi.2008.01.004

Tu, W.-C., and Hallett, J. P. (2019). Recent advances in the pretreatment of
lignocellulosic biomass. Curr. Opin. Green Sustain. Chem. 20, 11–17. doi:10.
1016/j.cogsc.2019.07.004

Tuncbag, N., McCallum, S., Huang, S.-s. C., and Fraenkel, E. (2012). SteinerNet: a
web server for integrating ’omic’ data to discover hidden components of
response pathways. Nucleic Acids Res. 40, W505–W509. Web Server issue).
doi:10.1093/nar/gks445

Valdés, G., Mendonça, R. T., and Aggelis, G. (2020). Lignocellulosic biomass as a
substrate for oleaginous microorganisms: a review. Appl. Sci. 10 (21), 7698.
doi:10.3390/app10217698

Vandera, E., Samiotaki, M., Parapouli, M., Panayotou, G., and Koukkou, A. I.
(2015). Comparative proteomic analysis of Arthrobacter phenanthrenivorans
Sphe3 on phenanthrene, phthalate and glucose. J. Proteomics 113, 73–89.
doi:10.1016/j.jprot.2014.08.018

Vandermarliere, E., Bourgois, T. M., Rombouts, S., van Campenhout, S., Volckaert,
G., Strelkov, S. V., et al. (2008). Crystallographic analysis shows substrate
binding at the −3 to +1 active-site subsites and at the surface of glycoside
hydrolase family 11 endo-1,4-β-xylanases. Biochem. J. 410 (1), 71–79. doi:10.
1042/bj20071128

Vázquez-Lima, H., Guadarrama, P., and Martínez-Anaya, C. (2012). Geometric
distortions on a three-coordinated T1 Cu site model as a potential strategy to
modulate redox potential. A theoretical study. J. Mol. Model. 18 (2), 455–466.
doi:10.1007/s00894-011-1063-y

Vermaas, J. V., Dellon, L. D., Broadbelt, L. J., Beckham, G. T., and Crowley, M. F.
(2018). Automated Transformation of Lignin Topologies into Atomic
Structures with LigninBuilder. ACS Sustain. Chem. Eng. 7 (3), 3443–3453.
doi:10.1021/acssuschemeng.8b05665

Wang, G., Zhao, Z., Ke, J., Engel, Y., Shi, Y.-M., Robinson, D., et al. (2019). CRAGE
enables rapid activation of biosynthetic gene clusters in undomesticated
bacteria. Nat. Microbiol. 4 (12), 2498–2510. doi:10.1038/s41564-019-0573-8

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 86315317

Pham et al. Theoretical Tools for Valorizing Lignocellulose

201

https://doi.org/10.1074/jbc.M510424200
https://doi.org/10.1074/jbc.M510424200
https://doi.org/10.1111/febs.13224
https://doi.org/10.1016/j.bbapap.2010.01.009
https://doi.org/10.1016/j.biortech.2010.06.011
https://doi.org/10.1021/jp310225t
https://doi.org/10.1021/jp4115755
https://doi.org/10.1039/C4CP04060K
https://doi.org/10.1038/s41467-020-18008-4
https://doi.org/10.1063/1.4822471
https://doi.org/10.1063/1.4822471
https://doi.org/10.1016/j10.1016/j.proeng.2016.06.547
https://doi.org/10.1016/j10.1016/j.proeng.2016.06.547
https://doi.org/10.1021/acssuschemeng.9b06763
https://doi.org/10.1021/acssuschemeng.9b06763
https://doi.org/10.1016/j.isci.2019.100795
https://doi.org/10.1021/jp056361o
https://doi.org/10.1128/aem.64.10.3607-3614.1998
https://doi.org/10.1016/j.csbj.2019.07.002
https://doi.org/10.1016/j.csbj.2019.07.002
https://doi.org/10.1111/j.1751-7915.2008.00078.x
https://doi.org/10.1111/j.1751-7915.2008.00078.x
https://doi.org/10.1021/cb400505a
https://doi.org/10.1002/anie.200802019
https://doi.org/10.1186/s13068-021-02006-9
https://doi.org/10.1186/s13068-021-02006-9
https://doi.org/10.1093/bioinformatics/btp543
https://doi.org/10.1093/bioinformatics/btp543
https://doi.org/10.1016/j.bpj.2008.12.3953
https://doi.org/10.1039/C4GC00373J
https://doi.org/10.1039/D0RA10840E
https://doi.org/10.1039/D0RA10840E
https://doi.org/10.1073/pnas.0904535106
https://doi.org/10.1021/acssuschemeng.7b03597
https://doi.org/10.1016/S0167-7799(97)01032-9
https://doi.org/10.1016/S0167-7799(97)01032-9
https://doi.org/10.1111/j.1365-313x.2004.02016.x
https://doi.org/10.1021/jf904141u
https://doi.org/10.1016/j.sbi.2008.01.004
https://doi.org/10.1016/j.cogsc.2019.07.004
https://doi.org/10.1016/j.cogsc.2019.07.004
https://doi.org/10.1093/nar/gks445
https://doi.org/10.3390/app10217698
https://doi.org/10.1016/j.jprot.2014.08.018
https://doi.org/10.1042/bj20071128
https://doi.org/10.1042/bj20071128
https://doi.org/10.1007/s00894-011-1063-y
https://doi.org/10.1021/acssuschemeng.8b05665
https://doi.org/10.1038/s41564-019-0573-8
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Wang, J., Hou, Q., Dong, L., Liu, Y., and Liu, C. (2011). QM/MM studies on the
glycosylation mechanism of rice BGlu1 β-glucosidase. J. Mol. Graph. Model. 30,
148–152. doi:10.1016/j.jmgm.2011.06.012

Wang, Q., and Pang, Y.-P. (2007). Preference of small molecules for local
minimum conformations when binding to proteins. PLoS One 2 (9), e820.
doi:10.1371/journal.pone.0000820

Wang, Y., Song, X., Zhang, S., Li, J., Shu, Z., He, C., et al. (2016). Improving the
activity ofTrichoderma reeseicel7B through stabilizing the transition state.
Biotechnol. Bioeng. 113 (6), 1171–1177. doi:10.1002/bit.25887

Warshel, A. (1976). Bicycle-pedal model for the first step in the vision process.
Nature 260 (5553), 679–683. doi:10.1038/260679a0

Warshel, A., and Levitt, M. (1976). Theoretical studies of enzymic reactions:
dielectric, electrostatic and steric stabilization of the carbonium ion in the
reaction of lysozyme. J. Mol. Biol. 103 (2), 227–249. doi:10.1016/0022-2836(76)
90311-9

Warshel, A. (2014). Multiscale Modeling of Biological Functions: From Enzymes to
Molecular Machines (Nobel Lecture). Angew. Chem. Int. Ed. 53 (38),
10020–10031. doi:10.1002/anie.201403689

Wilhelm, R. C., Singh, R., Eltis, L. D., and Mohn, W. W. (2019). Bacterial
contributions to delignification and lignocellulose degradation in forest soils
with metagenomic and quantitative stable isotope probing. Isme J. 13 (2),
413–429. doi:10.1038/s41396-018-0279-6

Wong, D. W. S. (2009). Structure and action mechanism of ligninolytic
enzymes. Appl. Biochem. Biotechnol. 157 (2), 174–209. doi:10.1007/
s12010-008-8279-z

Xu, H., Pan, W., Wang, R., Zhang, D., and Liu, C. (2012). Understanding the
mechanism of cellulose dissolution in 1-butyl-3-methylimidazolium chloride
ionic liquid via quantum chemistry calculations and molecular dynamics
simulations. J. Comput. Aided Mol. Des. 26 (3), 329–337. doi:10.1007/
s10822-012-9559-9

Yaegashi, J., Kirby, J., Ito, M., Sun, J., Dutta, T., Mirsiaghi, M., et al. (2017).
Rhodosporidium toruloides: a new platform organism for conversion of
lignocellulose into terpene biofuels and bioproducts. Biotechnol. Biofuels 10
(1), 241. doi:10.1186/s13068-017-0927-5

Yang, H., Watts, H. D., Gibilterra, V., Weiss, T. B., Petridis, L., Cosgrove, D. J., et al.
(2019). Quantum Calculations on Plant Cell Wall Component Interactions.
Interdiscip. Sci. Comput. Life Sci. 11 (3), 485–495. doi:10.1007/s12539-018-
0293-4

Yao, A., Choudhary, H., Mohan, M., Rodriguez, A., Magurudeniya, H., Pelton,
J. G., et al. (2021). Can Multiple Ions in an Ionic Liquid Improve the Biomass
Pretreatment Efficacy? ACS Sustain. Chem. Eng. 9 (12), 4371–4376. doi:10.
1021/acssuschemeng.0c09330

Yoo, C. G., Pu, Y., Li, M., and Ragauskas, A. J. (2016). Elucidating Structural
Characteristics of Biomass using Solution-State 2 D NMR with a Mixture of
Deuterated Dimethylsulfoxide and Hexamethylphosphoramide.
ChemSusChem 9 (10), 1090–1095. doi:10.1002/cssc.201600135

You, X., Wang, X., Liang, C., Liu, X., and Wang, S. (2019). Purification of
hemicellulose from sugarcane bagasse alkaline hydrolysate using an

aromatic-selective adsorption resin. Carbohydr. Polym. 225, 115216. doi:10.
1016/j.carbpol.2019.115216

Youngs, T. G. A., Holbrey, J. D., Deetlefs, M., Nieuwenhuyzen, M., Costa Gomes,
M. F., and Hardacre, C. (2006). A molecular dynamics study of glucose
solvation in the ionic liquid 1,3-dimethylimidazolium chloride.
Chemphyschem 7 (11), 2279–2281. doi:10.1002/cphc.200600569

Yuryev, A., Kotelnikova, E., and Daraselia, N. (2009). Ariadne’s ChemEffect and
Pathway Studio knowledge base. Expert Opin. Drug Discov. 4 (12), 1307–1318.
doi:10.1517/17460440903413488

Zhang, X., Yang, W., and Blasiak, W. (2011). Modeling Study of Woody Biomass:
Interactions of Cellulose, Hemicellulose, and Lignin. Energy fuels. 25 (10),
4786–4795. doi:10.1021/ef201097d

Zhang, Y., He, H., Dong, K., Fan, M., and Zhang, S. (2017). A DFT study on lignin
dissolution in imidazolium-based ionic liquids. RSC Adv. 7 (21), 12670–12681.
doi:10.1039/C6RA27059J

Zhang, Z., Liu, B., and Zhao, Z. (2012). Efficient acid-catalyzed hydrolysis of
cellulose in organic electrolyte solutions. Polym. Degrad. Stab. 97 (4), 573–577.
doi:10.1016/j.polymdegradstab.2012.01.010

Zhao, Y., Liu, X.,Wang, J., and Zhang, S. (2013a). Effects of anionic structure on the
dissolution of cellulose in ionic liquids revealed by molecular simulation.
Carbohydr. Polym. 94 (2), 723–730. doi:10.1016/j.carbpol.2013.02.011

Zhao, Y., Liu, X., Wang, J., and Zhang, S. (2013b). Insight into the cosolvent effect
of cellulose dissolution in imidazolium-based ionic liquid systems. J. Phys.
Chem. B 117 (30), 9042–9049. doi:10.1021/jp4038039

Zong, Z., Li, Q., Hong, Z., Fu, H., Cai, W., Chipot, C., et al. (2019). Lysine Mutation
of the Claw-Arm-Like Loop Accelerates Catalysis by Cellobiohydrolases. J. Am.
Chem. Soc. 141 (36), 14451–14459. doi:10.1021/jacs.9b08477

Zsoldos, Z., Reid, D., Simon, A., Sadjad, S. B., and Johnson, A. P. (2007). eHiTS: a
new fast, exhaustive flexible ligand docking system. J. Mol. Graph. Model. 26 (1),
198–212. doi:10.1016/j.jmgm.2006.06.002

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Pham, Choudhary, Gauttam, Singer, Gladden, Simmons, Singh
and Sale. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 86315318

Pham et al. Theoretical Tools for Valorizing Lignocellulose

202

https://doi.org/10.1016/j.jmgm.2011.06.012
https://doi.org/10.1371/journal.pone.0000820
https://doi.org/10.1002/bit.25887
https://doi.org/10.1038/260679a0
https://doi.org/10.1016/0022-2836(76)90311-9
https://doi.org/10.1016/0022-2836(76)90311-9
https://doi.org/10.1002/anie.201403689
https://doi.org/10.1038/s41396-018-0279-6
https://doi.org/10.1007/s12010-008-8279-z
https://doi.org/10.1007/s12010-008-8279-z
https://doi.org/10.1007/s10822-012-9559-9
https://doi.org/10.1007/s10822-012-9559-9
https://doi.org/10.1186/s13068-017-0927-5
https://doi.org/10.1007/s12539-018-0293-4
https://doi.org/10.1007/s12539-018-0293-4
https://doi.org/10.1021/acssuschemeng.0c09330
https://doi.org/10.1021/acssuschemeng.0c09330
https://doi.org/10.1002/cssc.201600135
https://doi.org/10.1016/j.carbpol.2019.115216
https://doi.org/10.1016/j.carbpol.2019.115216
https://doi.org/10.1002/cphc.200600569
https://doi.org/10.1517/17460440903413488
https://doi.org/10.1021/ef201097d
https://doi.org/10.1039/C6RA27059J
https://doi.org/10.1016/j.polymdegradstab.2012.01.010
https://doi.org/10.1016/j.carbpol.2013.02.011
https://doi.org/10.1021/jp4038039
https://doi.org/10.1021/jacs.9b08477
https://doi.org/10.1016/j.jmgm.2006.06.002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Multiscale Shear Properties and Flow
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One dominant challenge facing the development of biorefineries is achieving consistent
system throughput with highly variant biomass feedstock quality and handling
performance. Current handling unit operations are adapted from other sectors
(primarily agriculture), where some simplifying assumptions about granular mechanics
and flow performance do not translate well to a highly compressible and anisotropic
material with nonlinear time- and stress-dependent properties. This work explores the
shear and frictional properties of loblolly pine at multiple experimental test apparatus and
particle scales to elucidate a property window that defines the shear behavior over a range
of material attributes (particle size, size distribution, moisture content, etc.). In general, it
was observed that the bulk internal friction and apparent cohesion depend strongly on
both the stress state of the sample in granular shear testers and the overall particle size and
distribution span. For equipment designed to characterize the quasi-static shear stress
failure of bulk materials ranging from 50 to 1,000ml in test volume, similar test results were
observed for finely milled particles (50% passing size of 1.4 mm) with a narrow size
distribution (span between 10 and 90% passing size of 0.9 mm), while stress chaining and
over-torque issues persisted for the bench-scale test apparatus for larger particle sizes or
widely dispersed sample sizes. Measurement of the anisotropic particle–particle friction
ranged from coefficients of approximately 0.20 to 0.45 and resulted in significantly higher
and more variable friction measurements for larger particle sizes and in perpendicular
alignment orientations. To supplement these laboratory-scale properties, this work
explores the flow of loblolly pine and Douglas fir through a pilot-scale wedge-shaped
hopper and a screw feeder. For the gravity-driven hopper flow, the critical arching distance
and mass discharge rate ranged from approximately 10 to 30 mm and 2 to 16 tons/hour,
respectively, for both materials, where the arching distance depends strongly on the overall
particle size and depends less on the hopper inclination angle. Comparatively, the auger
feeder was found to be much more impacted by the size of the particles, where smaller
particles had a more consistent and stable flow while consuming less power.
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1 INTRODUCTION

Due to the limited resource of fossil fuel and growing sentiment
toward global warming, alternative sources of energy are today’s
demand. Biomass is considered one of the most abundant and
easy-to-access alternative renewable resources of energy and
chemicals (Binder and Raines, 2009; Bilgili et al., 2017).
However, handling of biomass feedstock is one of the key
challenges to the commercialization of biomass as an energy
source. Poor understanding of biomass handling, especially with
regard to biomass flowability during feedstock conversion process
design, may result in excessive process downtime due to common
granular material interactions such as unanticipated feed silo
ratholing, screw feeder jamming, etc. (Ramírez-Gómez, 2016;
Dale, 2017; Ilic et al., 2018; Cheng et al., 2021). Many factors
influence the flow properties of biomass materials, such as
particle size, particle shape, moisture content, and surface
roughness (Liu et al., 2015; Lu et al., 2018). A complete
understanding of the flow behavior of biomass as functions of
their intrinsic material properties is required to minimize the
downtime and improve the commercialization feasibility of
feedstock conversion processes.

Until themid-20th century, the bulk solid flowmainly focused on
pharmaceutical ingredients and food powders with relatively regular
particle shape and size and little if any moisture content (Fitzpatrick
et al., 2004; Faqih et al., 2007; Hou and Sun, 2008; Zhou et al., 2010).
The traditional methods used for the powder flowability
characterization include the angle of repose test, packing property
test, gravity discharge test, and shear test (Krantz et al., 2009; Leturia
et al., 2014; Rezaei et al., 2018). Typical properties of biomass
particles, which include high moisture content, hygroscopic
nature, low bulk density, heterogeneous shapes, and fibrous
nature, make them different from the conventional granular
particles (e.g., pharmaceutical ingredients). Since the powder flow
is multidimensional (Prescott and Barnum, 2000), these unique
characteristics of biomass make it more difficult to experimentally
measure the characteristic properties. For example, the standard
characterization tests suffer from either an inadequate measurement
of full stress state (e.g., ring shear test) or limited strain range to reach
the critical shear state (e.g., triaxial shear test) for granular biomass
feedstocks (Barletta et al., 2015; Hernandez et al., 2017; Lu et al.,
2021b).

A variety of shear characterization techniques exist on the
market. These range in complexity from rotating plates common
in commercial rheometers (or linear stages) to textured cups and
customized devices/cells, with a variety of shear mechanisms/
zones to accommodate non-idealities in large or non-uniform
samples. It is of scientific and commercial interest to evaluate the
performance of the range of available commercial and custom
shear testers to gain confidence in their ability to accurately
characterize the flowability of complex biomass feedstocks and
enable a broader range of material characterization techniques to
academia and industry. In general, these devices measure the
resistance to dynamic or quasi-static (dependent on the rate)
shearing with varying applied stresses. These devices usually
measure either a continuous shear response (more typical to
rheometer-style devices) or create discretized test conditions

where the bulk is either re-tested or exchanged between test
zones (more typical of “granular testers”). Typically, granular
tests preformat the granular solids to yield a given internal stress
and particle packing (void volume) configuration. By
preformatting the material over a range of internal stresses
and measuring the force required to initiate motion, one can
characterize apparent internal friction, bulk cohesion, and the
unconfined yield strength and major principal stresses through a
Mohr’s circle analysis (Comanici and Barsanescu, 2018;Westover
and Hartley, 2018; Pachón-Morales et al., 2020). Compared to
granular testers, rheometers are more common due to their ease
of use and ability to quantify the shear behavior of both viscous
fluids and semi-solid materials (such as yield stress fluids).
However, for granular materials, they are known to have
torque and particle size limitations stemming from the
tendency of granular materials to develop stress chains
between test geometry surfaces and resulting in bias, noisy, or
stochastic measurements because of convoluted impacting factors
from particle size and morphology-induced complex packing,
interlocking, etc. (Senff et al., 2009; Leturia et al., 2014). While the
physical properties of low-moisture, granular biomass feedstocks
drive the use of specialized test instruments (e.g., the shear cells
developed by Jenike, Schulze, and Peschl) for granular materials,
the ubiquity of rheometers in industrial and research laboratory
settings facilitates their potential use as opportunistic
replacements for specialized granular testing equipment.
However, several factors, such as specialized geometries and
test apparatuses, limit the use of rheometers for testing
granular materials. Regardless of the instrument used to carry
out material shear characterization, the main thrust of any
characterization effort is to enable 1) predictive assessment of
material feeding and handling behaviors and 2) evaluation of the
prime impacts of material attributes on handling operation
performance. As a first step in meeting this goal for biomass
feedstock materials, it is critical to benchmark the effectiveness
and impact of these characterization techniques and
measurement scales on shear properties while working with
biomass particles of various sizes.

To this end, we investigated the bulk shear failure of softwoods
resulting in an apparent internal friction angle and bulk cohesion
as well as contributing factors of particle–particle and
particle–surface frictions using various testers, including a
Schulze ring shear tester, a high precision air bearing
rheometer, and a Freeman FT4 powder rheometer. These
shear characterizations are performed at different scales, in
addition to a range of particle scales to collectively contribute
to this multiscale analysis. In particulate systems, as in the present
study of pine particles, the complex kinematics of
micromechanics of the particles’ motion and rearrangement
also contribute to the measured friction. Nevertheless, the
examination of the particle surface features and structures
provides some insight into the strong anisotropic friction
behavior of the pine particles. This study also explored the
impact of the material attributes on the flow performance by
gravity-driven flow in a variable wedge hopper and mechanically
assisted flow in a screw feeder. Finally, the applicability and
limitations of the characterization techniques were discussed.
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2 MATERIALS AND METHODS

2.1 Materials
This study on the multiscale shear properties focuses on loblolly
pine grown on plantations (Edgefield, South Carolina,
approximately 25 years of maturity) and collected using
relevant industrial methods. Whole trees were cut (Tigercat
724G feller buncher) and pulled by a grapple skidder (Tigercat
630E grapple skidder) to loading decks. The whole trees passed
through a flail chain system to remove most of the bark, limbs,
and needles on the way to the infeed of the chipper (Peterson
Pacific 5000H disc knife chipper) by knuckle boom. The
remaining chipped and de-barked stem/bole was loaded into
primary transportation and stored outdoors at Idaho National
Laboratory (INL). The pine samples were then further size-
reduced using a Schutte Buffalo (18 7,300) hammer mill with
a 12 mm screen. The wood chips were air-dried over 24 h at 105°C
to an approximate moisture content of 10%. The samples then
went through particle size exclusion performed with a continuous
sieve system (SWECO-ZS24C4444INP3WC) to make sample
volumes needed for testing. Sample nomenclature is by the
sieve screen size obtained from this separation, and the actual
size distribution is noted in the respective analysis. The
continuous and imperfect nature of this separator yields an
actual size distribution that is slightly more dispersed than the
nominal size class suggests but still has >85% of particles, by
mass, within the stated class.

The Douglas fir samples used in this study were obtained and
preprocessed by Forest Concepts (Auburn, WA) with their rotary
sheer size reduction technique. Clean, debarked logs were sourced
from the Pacific northwest and chipped prior to arriving at Forest
Concepts. These chips were processed as-received (green
moisture, ~35%–40%) through a nominal 4-mm crumbling
rotor set and sieved between 9.5 mm (3/8 inch) and 2.4 mm
(3/32 inch). Particles over the sieve top size were recirculated until
all material passed through to the smaller sizes, and the fines
below the bottom screen were not used in this study. A portion of
the material between these screen sizes was set aside and dried
(nominally labeled 4 mm), while the rest was carried to produce
the smaller sample sizes. The nominal 2- and 1-mm samples were

produced in a similar manner, with sieve screening between
4.0 mm (5/32 in)–0.8 mm (20 mesh) and 1.7 mm (10 mesh)–
0.4 mm (40 mesh) for the samples, respectively. After the 2-mm
nominal reduction, the sample was dried prior to producing the
1-mm nominal sample.

The size distribution and bulk density, along with the
nomenclature (used in the later sections) of the feedstocks, are
shown in Table 1. The particle size distributions (approximately
100 g samples) were measured in a stack of analytical sieves (RX-
30 W.S. Tyler Rotap). The sieve stack was agitated for 15min to
achieve size separation, and the recovered mass on each screen was
measured on a balance with readability to 0.01 g. Particle size
distribution measurements were performed in triplicate. In the case
of the incremental particle classes (S1–S5), the whole material
distribution was used to estimate the size distribution parameters
with a log–normal distribution fitted through least-squares regression.
As listed in Table 1, the particle size and size distribution of the
investigated samples span multiple classes. Quantitatively, there is up
to approximately an order of magnitude (D50 ranging from 0.69 to
5.26) change in particle scales studied.

2.2 Methods
2.2.1 Shear Test
Shear test of the studied feedstock (denoted “S1”–“S6” in Table 1)
was conducted using three different testing instruments,
including a Schulze ring shear tester, a high precision air
bearing rheometer, and a Freeman FT4 powder rheometer, to
understand the limitations of the characterization techniques. An
automated Schulze ring shear tester (Dietmar Schulze
Schüttgutmesstechnik, Wolfenbüttel, Germany) was used to
measure the shear strength of the materials using a size M
shear cell (outer diameter of 20 cm and inner diameter of
10 cm) as per ASTM D6773-08. The comparison tests were
performed at 1, 5, and 10 kPa pre-shear consolidation stresses,
followed by four varying levels of normal stress to develop the
yield criterion. For reference, the ring shear tester has a large
annular cross-section with an outer diameter of approximately
200 mm and a material depth of 40 mm with a test volume of
900 ml and a rotational speed of 0.02 rad/min, resulting in a
quasi-static yielding measurement.

TABLE 1 | Size distribution and bulk density of the feedstocks.

Feedstock Label Comminution method Nominal separatory
sieve size

(mm)

Size distribution Bulk density
(kg/m3)D10 (mm) D50 (mm) D90 (mm)

Loblolly pine S1 Hammer mill, ½” 0.00–0.85 0.46 ± 0.01 0.69 ± 0.01 0.82 ± 0.00 237.9
Loblolly pine S2 Hammer mill, ½” 0.85–2.00 0.96 ± 0.00 1.36 ± 0.01 1.84 ± 0.00 242.2
Loblolly pine S3 Hammer mill, ½” 2.00–3.35 2.08 ± 0.00 2.45 ± 0.00 3.08 ± 0.00 236.4
Loblolly pine S4 Hammer mill, ½” 3.35–4.75 3.43 ± 0.00 3.80 ± 0.01 4.47 ± 0.01 242.5
Loblolly pine S5 Hammer mill, ½” 4.75–6.35 4.84 ± 0.00 5.26 ± 0.01 6.02 ± 0.01 240.7
Loblolly pine S6 Hammer mill, ½” 0.85–6.35 0.76 ± 0.02 1.52 ± 0.01 3.01 ± 0.03 258.0
Loblolly pine S7 Hammer mill, ¼” N/A 0.34 ± 0.01 0.84 ± 0.02 1.64 ± 0.04 248.4
Loblolly pine S8 Hammer mill, ½” 0.85–6.35 1.14 ± 0.05 2.36 ± 0.09 4.24 ± 0.17 184.2
Douglas fir S9 Rotary shear 1 mm 0.40–1.70 0.51 ± 0.01 0.99 ± 0.02 1.5 ± 0.02 174.0
Douglas fir S10 Rotary shear 2 mm 0.80–4.00 0.83 ± 0.02 1.51 ± 0.03 2.14 ± 0.02 177.8
Douglas fir S11 Rotary shear 4 mm 2.40–9.50 1.95 ± 0.1 3.27 ± 0.17 4.67 ± 0.12 176.5
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An AR 2000 high-precision air-bearing rheometer (TA
Instruments, New Castle, DE) was used to characterize the
stress response of sized fractions of a loblolly pine biomass
feedstock as a function of normal force loads spanning
0.2–5 N (nominally 0.1–2.5 kPa) and at an angular velocity of
0.03 rad/s. To maintain normal force targets during testing, the
rheometer was allowed to adjust its own gap (between −2 and
+5 mm deeper into the material as needed). The test was
conducted in a test cup with an irregular finned baseplate and
baffled fins on the wall. For the majority of measurements, the
diameter of the base was 64.0 mm, while the base asperities were
2 mm tall and 1 mm width. The radial fins were 1 mm high and
ran the length of the wall (20 mm). For select measurements,
55.0 and 59.5 mm bases were used to evaluate the impact of base
radius on the measurement. For all tests, a 50-mm plate rotor
with matching irregular fins was used. All tests employed
approximately 10 mm of fill material. In general, loblolly pine
samples were tested in their as-received condition. However, a
limited set of tests were conducted with loblolly pines that had
been soaked in room-temperature (20 ± 2°C) deionized water for
24 h and free-drained (resulting in loblolly pine with
approximately 70% moisture by mass). In total, 14 separate
“shear vs. normal force response” curves were characterized to
characterize the impact of loblolly pine size fraction and moisture
content as well as the impact of test geometry size on
measurements made by the standard laboratory rheometer.

This study also examined the rheological properties measured
via a Freeman FT4 powder rheometer (Norcross, GA). The
primary use of the instrument is to characterize the flow
properties of solid particles, while offering the ability to
quantify the flow properties under dynamic conditions.
External variables influencing the flow properties include
consolidation, composition, wall friction, particle size, aeration,
moisture, shear rate, and storage time. Critical material attributes
focused on including particle size and distribution and moisture
content. For these tests, a 50-mm diameter cup was used. The
rotational rates were varied from 10 to 100 mm/s, and the applied
normal stress ranged from 5 to 15 kPa in a similar range to those
studied in the Schulze tester.

2.2.2 Multiscale Friction
A testmethod to directlymeasure the instantaneous particle–particle
and particle–wall friction of biomass materials was developed to
probe how friction changed under different conditions. The method
is based on the adaptation of a high-precision reciprocating sliding
tribometer shown in Supplementary Figure S1. Tribometers are
devices designed specifically to measure friction and can measure
normal and tangential forces at a contact interface at a very high
sampling rate (>1,000 Hz) and hence can provide fine details of
instantaneous friction behavior at contact interface. The setup for
biomass friction measurement consists of a stationary top
rectangular (12 × 10 × 6.5 mm) plate made of the wall material
and a moving lower rectangular (45 × 40 × 6.5 mm) plate in
reciprocating motion (see Supplementary Figure S1B). The
contact kinematics of the Jenike shear tester and the
reciprocating tribometer are indeed very similar; there are some
salient differences between the two measurement techniques. The

Jenike shear tester measures the shear strength of confined and
consolidated bulk granular materials, while the tribometer measures
instantaneous frictional interactions between ensembles of
unconfined particles. Comparison of the average friction or shear
forces (shear stress) from tribometer and the shear strength from
Jenike tester could be instructive and provide potential connection
between the two test methods. The tribometer data provide fine
details that enable a better understanding of contact dynamics and
physics governing particle interaction during shear, such as the
anisotropy of friction in irregular shaped particles. Furthermore, the
tribometer requires relatively small quantity of materials for testing,
while the Jenike shear cell could require a considerable amount of
material, depending on the cell size.

For the biomass material friction measurement, a copious
amount of biomass material was attached to the lower plate. A
second layer of loose biomass material is placed on top of the
attached layer to accommodate the shear during testing. For
particle–particle friction measurements, the biomass material is
attached to the top plate as well. For particle–wall friction
measurement, the top plate (made of the wall material of
interest) without biomass material is slid over the loss biomass
layer. Both the normal and tangential forces are measured during
sliding. The test parameters for friction measurement in the
tribometer include pressure (normal force), shear rate (sliding
speed), stroke length, and temperature. The normal loads of 5, 10,
15, and 25 N impose a nominal pressure of about 42 kPa (6 Psi),
83 kPa (12 Psi), 125 kPa (18 Psi), and 208 kPa (30 Psi),
respectively. It should be noted that the interparticle pressures
were considerably higher, as indicated by the pressure map. For
each load, friction measurements were conducted at sliding
speeds of 1.67, 3.33, 5.0, and 6.67 mm/sec. Five replicate
measurements were made under each test condition to test the
range of variability in the frictional behavior of the tested biomass
materials. All the tests were conducted under ambient conditions.

Scanning electron microscopy (SEM) examination of the pine
particle surfaces was also conducted to enable better
understanding of the frictional behavior. An FEI Quanta 400F
environmental SEM system was used for the examination in a
secondary electron imaging (SEI) mode. A relatively low
accelerating voltage of 1.0 kV was used for the SEM
examination in order to minimize the charging effect because
the particles of pine biomass material are not electrically
conducting. The characteristic features on the surfaces of the
pine particles in different orientations were examined.

2.2.3 Flow Performance
To understand and demonstrate how variable material attributes
impact the flow performance in real flow systems, five samples
(denoted “S7”–“S11” in Table 1) were tested in the wedge hopper
and the Acrison® screw feeder. A custom hopper with an
adjustable outlet and sidewalls was used to measure the critical
arching distance and flow rate of the studied feedstocks. The
hopper consists of two side walls and two vertical end walls. For
the critical arching distance and flow tests, around 15 kg of
sample was loaded in the adjustable hopper for each batch
test. The inclination angle of the side walls was varied between
28 and 36° at 4° intervals, where the end walls remained 400 mm

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 8552894

Klinger et al. Multiscale Flow of Woody Biomass

206

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


apart during all tests. The hopper opening was increased step-
wise using 2-step motors attached with the two side walls. The
minimum opening at which all the loaded material smoothly
flows out from the hopper is defined as the critical arching
distance of the material. The critical arching distance was
determined for each sample at each inclination angle. The
flow test was conducted at nine random openings (> critical
arching) of the hopper. The time required to pass all the material
through the hopper opening was recorded, which was ultimately
used for the flow rate calculation. All these tests were conducted at
least twice.

The feeding behavior of each sample was further tested using the
Acrison® BinWeight Screw Feeder (model 402X-250-75-BDF1.5-E/
2). This unit consists of a large feed bin atop an interchangeable feed
screw auger and several conditioning augers slightly above the feed
screw tomix the material and ensure reliable flow. These tests used a
63-mm diameter solid shaft screw with a pitch of equal dimension.
The entire unit is mounted on load cells to measure the systemmass
and connected to a power meter, allowing for measurements of the
feed rate and power consumption.

During the feeder tests, the unit was operated under two different
modes: 1) controlled auger rotational frequency and 2) controlled loss-
in-mass feed rate with active control. Inmode (1), the rotational speeds
of the auger were set at 10, 20, 30, 40, and 50% of its full capacity. In
mode (2), the tests were conducted at set feed rates of 20, 40, 60, 80, and
100 pounds per hour (LBH). For all tests, the mass feed rate was
recorded by the feeder controller and archived in a laptop computer via
a custom LabView VI. These data were further used to calculate the
specific power consumption of each sample under both operational
modes. All tests were performed in duplicate for each sample.

3 RESULTS AND DISCUSSION

3.1 Effect of Measurement Techniques on
Shear Properties
3.1.1 Schulze Ring Shear Tester
Figure 1 shows the shear stress of feedstock S2 under three
different pre-shear stresses (1, 5, and 10 kPa) using the RST

technique. The apparent internal friction is relatively consistent
(41.6 ± 2.0°, 42.2 ± 0.8°, and 42.6 ± 1.0°) among the three pre-shear
stress conditions, and their standard deviation is within
experimental variability. The results also show a slight increase
in the average value with increasing pre-shear stress. The bulk
cohesion shows an increase with increasing pre-shear conditions
and is approximately 0.08 ± 0.01, 0.35 ± 0.04, and 0.85 ± 0.25 kPa
for initial pre-shear of 1, 5, and 10 kPa, respectively. The values
for the analysis are tabulated in Table 2. As the shear condition
approached the pre-shear condition, the yield surface has a
slightly sub-linear decrease that is accounted for the prediction
of the principal stresses. Figure 1 also shows the 95% confidence
interval bands for the respective yield loci. For presentation and
clarity, the compressive stress, σ, is normalized with the relevant
pre-shear condition, σpreshear, to place the data on similar scales.
The results show that the loci depend significantly on the applied
pre-shear event and that the material’s bulk yielding behavior is
dependent on both the stress state of the material and the stress
history. Materials with higher magnitude stress history require a
greater force to reach flow inception. As a result, this implies that
rapidly fluctuating stress environments can cause inconsistent
flow patterns and performance in larger-scale equipment.

These testing procedures were extended to two additional
samples, S6 and S4, to compare a relatively broad particle size
distribution and an overall larger particle size distribution. These
overall results from the RST are summarized in Table 2, where σ1
is the major principal stress, FC is the unconfined yield stress, δ is
the apparent internal friction assuming zero cohesion, ϕi is the
internal friction, and flowability is a relative index calculated as
the ratio of σ1 and FC. On average, the RST resulted in a
statistically similar internal friction for all three samples (42.4°

on average), with a slightly increasing friction angle for increasing
pre-shear stress with an exception for the S4 sample. Similarly,
the apparent cohesion increases for all samples with increasing
pre-shear stress. For all the pre-shear levels, the highest cohesion
was measured in the smallest particle size sample, while the larger
size sample (S4) had the lowest cohesion. For all three materials,
there is a systematic bias when comparing to a linear trend, and
the measured cohesion appears to have a power law or

FIGURE 1 | (Left) Ring shear test for sample S2 at pre-shear conditions of 1, 5, and 10 kPa. The error bars represent the standard deviation between
10 measurements. (Right) Log–log scale plot of the 95% confidence interval bands for the yield loci at the three conditions with the compressive stress condition
normalized by the applied pre-shear stress as labeled.
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exponential-type growth with increasing pre-shear stress. The
flowability of the powder is qualitatively interpreted through the
ratio of the major principal stress to the unconfined yield
strength, where higher values indicate more free-flowing solids
(Dietmar, 2008; Miccio et al., 2011; Pachón-Morales et al., 2020).
The highest flowability was measured in the largest particle size,
while the lowest was in the small particles, while the distribution
has a value closer to the smaller particles than the large (i.e., the
sample flowability is given by S4 > S6 >~ S2). The largest particles
showed a decreasing flowability with increasing stress, while the
other samples showed a more complex result with higher stress
values. Here, the intermediate stresses (2.5 and 5.0 kPa) appeared
to make the bulk easier to shear followed by a more resilient bulk
solid with further increase in the stress state.

The range in the unconfined yield strength measured here for
pine samples S2, S4, and S6 are similar to those reported by Falk
et al. (2015), which ranged from approximately 0.3 to 3.0 kPa over
the similar pre-shear stress region. In the testing of mixed pine
chips at a 15 kPa normal pressure in a Jenike shear cell, Stasiak
et al. (2018) reported lower values of internal friction (31.3°) and
higher values of cohesion (2.5 kPa). This could be due to the
difference in the test method as well as testing at higher normal
pressure conditions. Miccio et al. (2013) measured the shear
properties of several sawdust samples at relatively low pre-shear
conditions in an RST and found similar values for cohesion
(0.12 and 0.16 kPa) and internal friction (43.3 and 45.6°) at
~0.79 kPa pre-shear. Their testing of olive husks at higher
normal stress conditions also resulted in similar values to the
wood reported here (42.8° internal friction and 0.27 kPa cohesion
at 4.4 kPa pre-shear).

When examining the internal friction and cohesion, there can
be some shift or translation due to different levels of pre-shear
compression stress. This is related to the stress-memory of the
material and can be significant for biomass. Between different
levels of pre-shear stress, changes in the cohesion and in some
cases the internal friction were observed (Chen et al., 2018; Fanesi
et al., 2021). As a result, the magnitude of the measured shear
properties, as well as the changes in the stress memory to the
generalized size and shape parameters, was further studied to
understand their effect on biomass rotational shear. The bulk
cohesion of additional loblolly pine samples, shown in Figure 2, is
well-described by a power-law-type relation with increasing stress

(for example, see the sample trend for S6 in the Supplementary
Figure S2 with R2 > 0.99 and standard error in a cohesion
prediction of 0.001 kPa or 0.2%–2%). As shown in Figure 2,
the smaller particle size fractions (e.g., S1 and S2) appear to have
higher cohesion, and the bulk cohesion decreases with an increase
in particle size. It is apparent that the particle size/distribution is a
material attribute that impacts the apparent cohesion and the
flow behavior of the materials. Materials with smaller particle
sizes or more fine contents tend to have higher cohesion and
lower flowability than those with larger particle sizes and fewer
fines. This is because smaller particles or more distributed
particles led to more contact points, thereby increasing
apparent cohesion (Shi et al., 2018). A more comprehensive
statistical investigation of how particle size and size
distribution quantitatively track with these shear properties is
planned for future work.

3.1.2 High Precision Air Bearing Rheometer
A select subset of results collected in the TA rheometer system
using different size loblolly pin biomass samples (S2, S4, and S6)
and tested under the same nominal measuring conditions (cup

TABLE 2 | Shear properties of loblolly pine (S2, S4, and S6) from the RST.

Sample Pre-shear (kPa) σ1 (kPa) FC (kPa) δ (°) ϕi (°) Cohesion (kPa) Flowability

S2 10 24.1 3.9 46.1 42.6 0.85 6.3
5 12.9 1.6 44.8 42.2 0.35 8.2
1 2.3 0.3 44.7 41.6 0.08 6.9

S4 10 25.0 3.3 45.0 42.2 0.73 7.6
5 11.4 0.8 41.4 39.9 0.18 15.0
1 2.4 0.1 45.8 44.8 0.03 19.7

S6 10 25.3 3.2 46.1 43.4 0.70 7.9
7.5 18.7 1.9 45.0 42.8 0.42 9.7
5 12.0 1.0 43.1 41.3 0.22 12.2
2.5 5.9 0.5 45.4 43.7 0.10 12.4
1 2.3 0.3 44.7 41.6 0.07 7.2

FIGURE 2 | Bulk cohesion for various size classes of loblolly pine under
different pre-shear stress conditions.
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size andmoisture content) are summarized in Table 3. In general,
the measured values of the internal friction are close to those
measured in the RST, however with the exception of the larger
particle sizes (S4) where a significantly lower internal friction was
recorded. Here, direct comparison of μ for S4 and the other two
materials reported in Table 3 finds S4 to be approximately 15%
smaller, whereas S2 and S6 agree with the RST measurement
within ~3%. These measurements with larger particles also show
the most variable or widest distributions of recorded values. This
phenomenon is likely due to a coupled interaction of equipment
limitations along with material impacts (e.g., limited shear region
gap relative to measured particle dimension). In general, the
apparent cohesion for all materials and trials trended toward
0 kPa, likely due to the comparatively low applied normal stress
achievable by this commercial unit (typically 3.5 kPa or less).

The measured normal force (σ) and torque (τ) data depend on
how the time series measurements at each normal force condition
are interpreted, and for this study, the values were taken each
0.3 s. Because these tests are performed dynamically, many points
are captured during a test. Through replication, the tests were
composited into a single data series where linear regression was
used to fit the data series. For sample S2, the fit parameters for
friction angle and cohesion were 43.5 ± 0.1° and −0.110 ±

0.006 kPa, respectively. Compared to the granular tester
discussed earlier, the friction angle was biased slightly low but
very close in the overall magnitude. The predicted cohesion
(essentially zero) is closer to the lower end of the applied
normal force (~1 kPa) of the granular tester. Distributions of
the apparent dynamic friction angle were also generated to
describe the range of commonly observed values with the
10th, 50th, and 90th percentile values presented in Table 3.

Parametric studies on the TA rheometer data were also
distilled through statistical analysis to determine the most
impactful material attributes and test conditions. Figure 3
shows the aggregated shear stress (τ) measured as a function
of the applied normal stress (σ) for all 14 loblolly pine
measurement sets presented in Supplementary Table S1. Each
point in Figure 3 represents a single 3.3 Hz measurement. The
data presented in Figure 3 suggest that, as expected, normal and
shear stresses are correlated. However, the correlation is broadly
distributed (i.e., it is not characterized by a singular or narrowly
distributed apparent friction angle). Rather, the combination of
system parameters (wood moisture content, feedstock size, test
cup diameter, etc.), coupled with the evolution of the particle
configuration in the test geometry itself, leads to the variation in
the stress required to maintain parallel plate rotation. That is,
variation in the apparent dynamic friction arises from both
natural variation in the orientation of the wood particles
(which allows sliding in some configurations or leads to stress
chaining in others) and variation associated with the system
configuration itself (cup size and wood moisture content).

Different from the analysis and conclusions from the RST
above, data gathered on this rheometer in Figure 3 suggest that
the aggregate granular response of loblolly pine, at least as
characterized by the TA rheometer, was approximately
Columbic with no apparent stress of cohesion over the range
of normal forces tested (roughly 0–3 kPa). The loblolly pine,
appearing to be a cohesionless Columbic material in this stress
range, means that the apparent dynamic friction angle (θapp)
should be independent of the applied normal force under the
tested conditions. Figure 4 shows the probability and
cumulative density functions for all θapp measured. The
distribution is approximately Gaussian with a median and
average friction angle of 34.7 and 36.3°, respectively. The
configurational variation of the friction angle manifests by a
relatively broad distribution; here, the 2-sigma (i.e., the 5th and
95th percentiles) are 19.3 and 50.6° and represent a roughly ±15°

confidence bound.

TABLE 3 | Best-fit constitutive parameters (µ and c) and dynamic friction angle (θ) as determined by the linear regression analysis of source measurements for loblolly pine
along with the apparent dynamic (θapp) angle at three selected percentiles.

Sample Cup size (mm) μ θ (°) Cohesion (kPa) r2 θapp (°) θapp span (°)

D10 D50 D90

S2 64.0 0.759 ± 0.002 43.5 ± 0.1 −0.110 ± 0.006 0.969 22.9 37.2 46.4 23.5
S4 64.0 0.633 ± 0.004 36.2 ± 0.2 0.018 ± 0.010 0.964 21.5 37.2 51.5 30.0
S6 64.0 0.747 ± 0.012 42.8 ± 0.7 −0.075 ± 0.044 0.736 20.2 39.7 54.0 33.8

The span listed in the right-most column represents the difference between the θapp for the 10th and 90th percentiles. The uncertainties provided for each set of µ, θ, and c represent twice
the standard error of the fitting parameter. All measurements were carried out using the 64-mm base.

FIGURE 3 | Collected shear stress (τ) vs. normal stress (σ). The solid line
represents the median apparent friction angle (θapp), while the two dashed
lines represent the 5th and 95th percentiles of θapp. Themarker color indicates
replicate tests.
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3.1.3 FT4 Rheometer
Results obtained in an FT4 rheometer are shown in Figure 5 (and
tabulated in Supplementary Table S2), again, for the same three
loblolly pine samples (S2, S4, and S6). Overall, the translation
between the normal and measured shear stresses is similar in
magnitude between the feedstocks. The largest particle size
among those three samples, 3.35–4.75 mm (S4) sample, has
the lowest resultant friction (~15% lower), while the smallest
(S2) and the broad (S6) samples have similar (within 6%) and
slightly higher friction angles, respectively. Like the common RST
analysis, the apparent bulk cohesion is extracted by extrapolating
the yield surface back to a zero applied compressive stress.
Comparatively to the lower particle size discussed above, these
data are the highest in the largest particle size (S4) and are

significantly higher in magnitude (5.9 kPa), as compared to what
was measured in the RST. As a result, the effective internal
friction for this sample was lower with an unexpectedly high
unconfined yield strength (22.7 kPa). Note that there were
limitations in measuring at very low normal stresses in the
FT4, which, in turn, impacts the accuracy of this prediction.
Furthermore, additional work in the future would be needed to
better understand the impact of the comparative loading material
depth and rotor design that is embedded in the material.

Comparatively, the shear stresses measured with the
FT4 rheometer for the smallest sample (S2), as shown in
Figure 5, resulted in a very similar extrapolated apparent
cohesion (1.01 kPa) to that measured at 10 kPa pre-shear stress
in the RST and slightly higher measured shear stress per unit of
applied normal stress (51.7° internal friction). The respective internal
frictions for S4 and S6 are closer to the RST magnitude at 43.5° and
48.0°, respectively. Qualitatively, S2 and S6 have statistically similar
internal frictions and S4 has a lower average measured friction. This
agrees with the observations on the TA rheometer system and could
be an artifact of the comparatively large particles. To that effect, there
was also the greatest observed variability for these larger particles in
the TA rheometer system. This indicates that the measurement was
perhaps strongly coupled to the loading method, particular
orientation of particles, packing, etc., that accumulated to larger
uncertainty as well as incompatibility with this scale of particle. The
results presented here, however, are also consistent with
measurements of other sawdust (43.8–48.2 kPa) and rice straw
(42.4–46.3 kPa) measured in the literature with the same
commercial device (Guo et al., 2015). Additional information
from these testing routines (compressibility and rotation energy)
is presented in Supplementary Figure S3 and Supplementary
Figure S4. In general, it was found that the materials were
similar in compressibility from 4.2 to 8.3% at 2 kPa and
11.3–13.3% at 12 kPa, and the flow energies were similar for
S6 and S4, while S2 was significantly lower.

3.2 Particle–Particle and Particle–Surface
Interactions
The tribometry measurements were made for sample S4 with the
particles aligned in such a way that the sliding direction is either
parallel or perpendicular to the wood grain of the particles.
Figure 6 shows the variation of the instantaneous friction
coefficient during one reciprocating particle–particle sliding
cycle. In general, the particle–particle instantaneous friction
coefficient is relatively higher and rather noisy when sliding in
the perpendicular direction. For parallel direction sliding, the
instantaneous friction is smaller and less noisy. The average
friction coefficients for particles sliding in the parallel and
perpendicular directions are 0.26 and 0.34, respectively, as
shown in Figure 6. However, the standard deviation of friction
in the perpendicular direction is substantially high, reflective of the
noisy behavior of instantaneous friction behavior in that direction.
In simple flow systems such as hoppers and bins, particles tend to
align as they are discharged. These differences in friction
coefficients could suggest that as materials are charged or
loaded into intermediate vessels or batch/semi-batch systems,

FIGURE 4 | Collected apparent granular friction angle (θapp) for all
14 measurement sets in Supplementary Table S1. The blue line indicates
the probability density function, while the orange shows the cumulative density
function.

FIGURE 5 |Measured shear and normal stress for the three comparative
loblolly pine samples.
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the flow friction of random particle orientation could directly
contribute to problems during flow inception, such as that
presented later in this work.

The friction coefficient is defined as the ratio of the tangential
or frictional force to the normal force. Traditional definition of
the friction coefficient ignores the direction of the forces. In
Figure 6, as well as later figures, the direction of the frictional
forces is considered when calculating the friction coefficient.
Thus, frictional force reversal during reciprocation is reflected
as negative values for friction coefficient. The figures can be
viewed as the friction force vector normalized by the normal
force. This approach enables the assessment of the symmetry for
friction behavior during reciprocal sliding as well as the
evaluation of frictional energy dissipation. As can be seen in
Figure 6, the forward motion (~1–6 s) of the tribometer results in
an average parallel friction coefficient near 0.25, while a similar
value near −0.25 is observed during the period (~8–14 s) when
the stage is moving in the opposite direction.

In the tribometry measurement of friction of pine particles,
clear anisotropy was observed in terms of friction behavior and
magnitude of the friction coefficient. This was further confirmed by
the SEM images of pine particles. Figure 7 shows the SEM
micrograph of the sides and cross-sectional views of a pine
particle. The image scales are shown in the bottom-right corner,
and panels 1) and 2) are at 200 µm, while 3) is 100 µm. The
distinctive structures of the pine surfaces were expected, which
contributed to the frictional anisotropy. Differences in the particle
surface features are not the only reason for the frictional variation.
The particle scale frictional anisotropy may have a significant
impact on the biomass material flow at the macroscale in a unit
operating system. Alignment in some direction may be more
conducive to easy flow, while other particle arrangements may
be detrimental to flow.

In the particle scale measurement of particle–particle and
particle–wall, the results are highly repeatable, as shown in
three repeat tests of Figures 8A–C for the three studied loblolly
pine samples, respectively. For the three materials (S2, S4, and S6),
the size scale of the particles was less of an impact on the
measurement, and the larger impact was the variation and
inconsistency in measurement that increased with the

concentration of large particles. One major observation in the
friction result is the effect of particle size on the frictional behavior.
For sample S2, the friction (Figure 8A) exhibits relatively minimal
noise which should translate to more consistent shear and flow.
Interestingly, although this also resulted in a lower friction
coefficient compared to the other samples, this sample has the
highest apparent bulk cohesion measured from the shear tests
above. The friction in the larger particles (S4) was higher and rather
noisy (Figure 8B), which can result in uneven shear and flow. The
friction behavior of broad particle sieve (S3) was also noisy but not
to the same extent as the large ones.

The relative frictional energy dissipation during the
tribometry particle scale friction measurement can be
estimated by plotting the friction coefficient as a function of
position, as shown in Figure 9. The smaller the area of the
friction–distance plot, the smaller the amount of frictional energy
dissipation. This frictional energy assessment from lab-scale
measurement may provide an indication of the energy or
power required for bulk shear and flow of biomass materials.

It is clear from the abovementioned discussion that both the
physical properties of feedstock and the measuring techniques have
a great impact on the shear properties. In the study, we further
investigated the interaction of the particle–surface friction using RST
and FT4. In both systems, a range of material surface finishes were
used and characterized for the areal roughness texture. This is a
measure of the average deviation in height changes about a mean
plane (Sa) or line scan (Ra). To determine the wall friction angle, a
similar set of conditions were used to measure the resultant shear
stress at stable flow, as particles are forced across a surface coupon
with a vaned lid/bob. Figure 10 shows a summary of the measured
(RST) wall friction angle for S2 and the areal surface roughness as
measured by a laser scanning confocal microscope. In this test setup,
a variety of potential equipment surface materials were selected to
bound potential equipment wall frictions, including steel
(304 stainless brushed and mirror finish, carbon steel,
AR500 ultra wear-resistant steel), aluminum (two different
brushed finished and a mirror finish), and a polymer surface
(texture and ultra-slippery). In general, it is observed that a
greater surface texture translates to a higher measured wall
friction in the test setup. Interestingly, the measurement increases

FIGURE 6 | (Left) Instantaneous friction coefficient for pine particle (S4) sliding in parallel direction and perpendicular direction and (right) average friction coefficient.
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more than 15° across the (aluminum) samples and indicates a strong
potential for changes in surface frictions from what might be
intuited as modest changes in surface finish (<1.0 µm difference
in Sa). This sample (S2) was observed to have a particle–surface
friction angle between 15 and 23° (excluding the high/low data
point) depending on the surface finish.

Similar tests (discussed above) were performed in the FT4 with
the three materials, and the findings are shown in Table 4 and
Supplementary Figure S5. In these tests, the wall coupons
studied included a stainless steel (SS), as well as a Teflon
(PTFE) and high-density polyethylene (HDPE) surface. The
measured friction for the SS has the highest value and has the
highest roughness. The polymer surfaces have more complex
relationships but result in overall lower friction angles. The
impact of the particle size on the measured friction angle is
likewise difficult to discern a direct relationship. For the SS disc
coupon, S2 and S6 samples have similar stress relationships. For
the PTFE sample, the magnitude of the resulting wall stresses is
statistically distinct, although the apparent friction angle given

FIGURE 7 | SEM micrograph of a pine particle: (A) side view, (B) cross-sectional view, and (C) angular side.

FIGURE 8 | Particle–wall friction for samples (A) S2, (B) S4, and (C) S6.

FIGURE 9 | Friction energy dissipation during the particle–particle
friction measurement for samples S2 and S6.
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the standard error in the slope regression suggests they are
similar. For the HPDE surface, S4 and S6 samples have similar
friction angles and magnitudes, while the smallest particle size
(S2) results in a drastically lower friction angle. Although the
same material surfaces were not shared for this comparison, both
show that the surface texture had an influence on the overall
friction angle. Compared to the measurements made between the
devices, the SS coupons have similar magnitudes (17–23° in RST,
while 20–24° in FT4 for the common, smallest sample size), where
the values measured here are slightly higher. The polymer
surfaces characterized in the FT4 have significantly lower
measured friction angles compared to those in the RST.

The abovementioned discussion and characterization clearly
suggest that the physical properties of both biomass and
particle–surface interaction have a significant influence on the
shear properties, which ultimately affect the material flowability at
bulk. Thus, the following section will discuss the flow properties of
loblolly pine (S7–S8), and as a comparison, Douglass fir (S9–S11).

3.3 Flow Performance
One of the critical design criteria for a feed bin or hopper is the
discharge opening gap. While this is chiefly linked to the
discharge rate through the cross-sectional opening, this is also
critical to ensuring that the material is consistently discharged,
and the feedstock is not able to establish stress bridges that
support the bulk solid from the gravitational driving force. As
a result, this critical arching distance is a minimum design
criterion and should be regarded as a loose design parameter,

where conservative design practices would consider a design
factor that is able to incorporate material variability and
process upset conditions as much as possible (Lu et al.,
2021a). Figure 11 shows the data collected from the critical
arching distance testing for the five samples (S7–S11), as shown in
Table 1, where S11 has the largest measured arching distance
(followed by S8), while S7 is the lowest (followed by S10). Here,
these data correlate well with the overall particle sizes noted in the
samples; S7 had the smallest particle sizes, while S11 had the
largest. Interestingly, S9 and S10 had very similar performance,
where the mean size of S10 was much closer to that of S8 rather
than S9. This suggests that the performance is rather sensitive to
the mean particle sizes, or the various preprocessing strategies
used in sample generation had a direct influence as well. Note that
the disparate differences between S7 and S8 compared to S9 and
S10 (similar jumps in particle sizes for different comminution
methods) support the later. One hypothesis for the observation of
these flow performance arises from differences in the particle
aspect ratios. The S9–S11 samples were produced from a shear-
based comminution process (Forest Concepts Crumbler®), which
uses particle recycle to more readily control the fiber length and
size distribution compared to a once-through high-velocity
hammer mill impact. These resulting particle geometries and
sizes could play into the bulk properties through the cohesion and
internal friction, for example, as discussed above. These materials
show arching distances from 10 to 27 mm. While prior work has
indicated generally higher values and a positive relationship
between arching distance and inclination angle (Lu et al.,
2021a), here there was only a modest positive trend with no
clear description for all samples. However, in this situation where
there was minimal material surcharge above the arching test, it
can be concluded that the arching distance results are much less
sensitive to the inclination angle compared to even the relatively
modest changes in material type/format/size presented here. As a
result, we recommend that the style and consistency of biomass
comminution should be critically considered when designing or
adapting flow systems for biomass samples.

When the hopper gap is opened sufficiently beyond the
arching distance to achieve mass flow, the discharge rate for

FIGURE 10 | Wall friction angle measured by RST and areal surface
roughness for loblolly pine (S2).

TABLE 4 | Effective friction angles in the FT4 for loblolly pine for different wall
coupons.

Sample Friction angle (°)

SS, Ra = 1.2 PTFE, Ra = 0.48 HDPE, Ra = 0.10

S2 24.0 4.4 3.5
S4 20.3 3.3 10.9
S6 23.3 3.4 9.6

FIGURE 11 | Critical arching distance in a wedge hopper.
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each material and inclination angle was measured for nine
variable opening distances (cross-sectional area). Sample traces
of this are shown in Figure 12 and in Supplementary Figure S6
for S7 and S8–S11, respectively. The incremental change in flow
rate with opening and inclination angle for all five samples is
summarized in Table 5. Similar qualitative trends (inverse) are
observed in the flow rate compared to the arching distance. For
example, S7 has the lowest arching distance and the greatest
specific discharge rate, while S11 has the greatest arching distance
and the lowest specific discharge rate. S8–S10 were recorded at
similar discharge rates with incremental opening. These trends
are also qualitatively like that of the material bulk density in
Table 1. Due to the linearity of these specific rates, a provisional
mass flow rate, or flow envelope, could be designed for using such
flow data. While the relative deviation in specific flow rates
between the materials had a 13%–22% relative standard
deviation, when these were normalized with the bulk density,
this decreases to 3%–6%, indicating that a significant variance in
the discharge rate with opening is explainable with the bulk
density. Additionally, this suggests that the overall volumetric
discharge rate is similar between the materials. Given the variable,
but fixed outlet geometry, this might also suggest that the particle
packing at the discharge is similar on a gross volumetric basis.

In comparison to these gravity-driven flow tests, these test
samples were also characterized in a screw feeder. To convey
material through a conveyor (i.e., screw), the central shaft imparts
a forward motion to the material contained in the feeder barrel.
Typically for dry solid feeders with non-powder materials, the
flights are partially filled and lead to a periodic or short-time
“slugging” feeding behavior due to the nature of the device. In
general, as particles approach smaller, more uniform geometries,
this behavior will dampen and similar reduction in rate variability
is expected, as the rotation frequency is increased (although the
flights become more difficult to fill completely or consistently).
This is similarly observed through the reaction torque (power

consumption measured and used as a proxy here) exerted on the
feed screw. Typical power consumption traces from S7 and S8 are
shown in Figure 13 (see Supplementary Figure S7 for S9–S11)
and are illustrative to how different the results can be from the
same material with a slightly different size/distribution. Falk et al.
(2015) noted similar slugging behaviors in their study of screw
feeders and related this to a measured dynamic angle of repose.
They concluded that on a small timescale (10 Hz), there was no
relationship to the feeding variability or behavior. On a
comparatively larger timescale (0.5 Hz), however, they noted
that this pulsating flow variability was correlated with the
dynamic angle of repose. With lower angles, the buildup of
material piles was hypothesized to fail earlier at the discharge
outlet, resulting in a less pronounced variability.

The data shown in Figure 13 become more sporadic in
magnitude and frequency, as the rotational frequency
increases. The differences in these bounds are more clearly
shown in S8, where the power consumption both increases
dramatically in magnitude and deviation about a baseline
consumption compared to the more well-behaved increased
baseline observed in S7. The data for both the average flow
rate and power consumption and their respective deviations
are shown in Table 6. As the rotation frequency increases, so
too does the flow rate and the power consumption. Because screw
conveyors are designed to move a consistent volume of material
with time based on the fractional filling of the flights, the resultant
flow rate also follows similar qualitative trends as the material
bulk density. These rates appear to deviate more with larger
particles (S8 and S11), which is consistent with increased variance
in particle packing within a confined, finite volume available to fill
between flights. Comparatively, the smaller particles can more
freely rotate, pack, and fill voids during the screw extraction from
the bulk feed bin and result in higher space utilization and
ultimately mass flow rate. The power draw during feeding
increases with increasing particle size (S8 compared to S7, and
S11 compared to S9). Here, it is interesting to note the large
deviation in conveyance in particles produced from a
hammermill (0.274 vs. 0.190 kW at 50%), compared to
particles produced from the rotary shear process (0.207 vs.
0.167 kW). Here, the increase in power draw is lessened in
addition to having less overall power draw, despite having
larger-sized particle on average. This is hypothesized to occur
due to a more uniform particle format in addition to having
preferential internal, partial–particle, and partial–surface friction
measurements. As a result, there is less energy dissipation or loss
during the feeding. As noted above, this agrees with the

FIGURE 12 | Mass discharge rate data for S7 at variable hopper
inclination angles and hopper openings. The error bars represent standard
deviation between replicate measurements, but most are within symbol
markers.

TABLE 5 | Hopper-specific flowrate through the wedge hopper per unit hopper
opening.

Inclination angle (°) Specific flowrate (Ton/hr/mm)

S7 S8 S9 S10 S11

28 0.2758 0.1986 0.1832 0.1778 0.1654
32 0.2636 0.2050 0.1969 0.1989 0.1813
36 0.2552 0.2030 0.1923 0.1958 0.1884
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observations of friction in respect to the particle scale, suggesting
one potential source for these differences.

4 CONCLUSION

Various experimental shear and friction characterization
techniques were investigated at multiple test and particle scales
to examine the impact on the resulting shear characteristics. The
critical material attributes, including particle size and distribution,
were investigated as exploratory variables to describe the
differential shear properties and behavior. To supplement these
laboratory-scale properties, this work explored the flow properties
through a pilot-scale wedge-shaped hopper and an Acrison® screw
feeder. Several conclusions can be drawn from this study:

• Bulk cohesion was found to increase (from 0.68 to 1.3 kPa in
an RST at 10 kPa preshear) with decreasing biomass particle
size (D50 of 3.80–0.69 mm), except the largest test size. The
measured internal friction was statistically constant with
particle size and only varied by a few degrees when tested in
the RST.

• The scale and type of characterization method were observed
to be less sensitive as the particle size of the tested biomasses
approached to that of more fine-milled powders (i.e., less than
1–2 mm) but diverged as the stress-chaining potential induced
stochastic events to the testing protocols. In granular shear
testers, it was found that the multi-scale feedstock properties

were more inclined to be influenced through the apparent
bulk cohesion or unconfined microscale interactions
compared to internal friction when investigating a specific
material. Comparatively, the analysis performed in the
smaller, more commonly available rheometers showed
indeterminant trends of cohesive properties and nonlinear
behavior with respect to the resulting effective internal friction.
While the RST is a more robust primary characterization tool
to provide shear flow property reference data for biomass
material handling equipment design, lower-scale shear testers
and rheometers are useful for cross-validation of the RST and
qualitatively ranking materials, particularly for small-sized or
fine-milled particles and are more widely available at research
and industrial institutions.

• Themass discharge rate in a wedge hopper was proportionate
to the discharge cross-sectional area and was largely
dominated by the overall size of the biomass particles and
their reduction technique, while the size distribution and the
hopper inclination were comparatively minor. A positive
regression relationship was observed when normalized
with the discharge opening, suggesting some differences in
the internal stresses governing forces distributed to the
container walls and those in-line with the gravitational
flow. The arching distance results had only modest
positive correlation with inclination angle and were much
less sensitive compared to even the relatively modest changes
in the material type/format/size presented here. As a result,
the style and consistency of biomass type, comminution, and

FIGURE 13 | Power consumption in the Acrison
®
screw feeder at a controlled speed for (left) S7 and (right) S8. The solid blue, orange, gray, dotted blue, and

orange indicate results at auger rotational speeds of 10, 20, 30, 40, and 50%, respectively.

TABLE 6 | Summary of performance data for screw feeder in terms of flowrate and power consumption.

Auger frequency Flowrate (LBH) Power x 103 (kW)

PCT (%) RPM S7 S8 S9 S10 S11 S7 S8 S9 S10 S11

10 6.4 31 ± 10 21 ± 9 26 ± 10 27 ± 11 25 ± 10 66 ± 3 83 ± 16 56 ± 1 57 ± 1 70 ± 5
20 12.3 59 ± 13 39 ± 13 46 ± 16 47 ± 15 47 ± 17 97 ± 4 146 ± 42 85 ± 2 89 ± 3 109 ± 9
30 18.3 87 ± 17 61 ± 14 67 ± 13 67 ± 13 66 ± 18 131 ± 5 197 ± 6 117 ± 3 116 ± 3 144 ± 12
40 24.2 117 ± 7 82 ± 14 93 ± 13 93 ± 11 90 ± 13 161 ± 7 243 ± 84 142 ± 3 141 ± 4 177 ± 15
50 30.0 145 ± 6 105 ± 13 119 ± 13 116 ± 9 113 ± 10 190 ± 9 274 ± 91 167 ± 4 168 ± 5 207 ± 17
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overall preparation should be critically considered when
designing or adapting flow systems for biomass.

• Overall, wedge hopper mass discharge rates were
explainable with the bulk density (positive correlation,
from 0.26 to 0.19 tonne/hr/mm opening for S7 to S11 at
248 to 177 kg/m3, for example, at 36°). Additionally, this
suggests that the overall volumetric discharge rate is similar
between similar materials such as the softwoods studied
here. For the variable discharge geometries studied here, this
suggest that as the particles approach states like what is
studied in the unconfined bulk density tests.

• The screw feeder was found to be more consistent for the
smaller and more uniform samples, which led to stable flow
and less power consumption. This was also aligned with
particle–particle anisotropic friction characterizations that
found that overall energy dissipation was significantly less
for smaller particles. As a result, the scale of mechanical
conveyor (or particles being conveyed) must be well
controlled to limit downstream “pulsing” flow, energy
consumption, and excessive equipment wear as a result.

Overall, the direct understanding of how the shear properties
of compressible, irregular, and anisotropic materials translate
into flow performance at scale is still in the developing area;
understanding how material attributes trend with both shear
characteristics and flow performance provides some common
qualitative linkages to build foundational knowledge.
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