Bullous pemphigoid is an autoimmune blistering disease caused by autoantibodies targeting BP180 and BP230. While deposits of IgG and/or complement along the epidermal basement membrane are typically seen suggesting complement -mediated pathogenesis, several recent lines of evidence point towards complement-independent pathways contributing to tissue damage and subepidermal blister formation. Notable pathways include macropinocytosis of IgG-BP180 complexes resulting in depletion of cellular BP180, direct induction of pro-inflammatory cytokines from keratinocytes, as well as IgE autoantibody- and eosinophil-mediated effects. We review these mechanisms which open new perspectives on novel targeted treatment modalities.
In the endemic variants of pemphigus foliaceus (PF), in Brazil and Tunisia, patients generate pathogenic IgG4 anti-desmoglein 1 autoantibodies. Additionally, these patients possess antibodies against salivary proteins from sand flies that react with Dsg1, which may lead to skin disease in susceptible individuals living in endemic areas. This minireview focuses on recent studies highlighting the possible role of salivary proteins from Lutzomyia longipalpis (L. longipalpis) in EPF from Brazil and Phlebotomus papatasi (P. papatasi) in EPF from Tunisia. We will briefly discuss the potential mechanisms of molecular mimicry and epitope spreading in the initiation and development of endemic PF (EPF) in Brazil and Tunisia.
Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1 and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by defined hallmarks including a reduction in desmosome number and size, formation of split desmosomes, as well as uncoupling of keratin filaments from desmosomes. The pathophysiology underlying the disease is known to involve several intracellular signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in which we used transmission electron microscopy to characterize the roles of signaling pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown to be protective in cell cultures and murine models, was not effective for human skin explants. The ultrastructural analysis revealed that for preventing skin blistering at least desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate desmosome number, size, and keratin insertion indicating that they control desmosome assembly and disassembly on different levels. Taken together, studies in human skin delineate target mechanisms for the treatment of pemphigus patients. In addition, ultrastructural analysis supports defining the specific role of a given signaling molecule in desmosome turnover at ultrastructural level.
Background: Immunoglobulin G (IgG) levels are maintained by the IgG-recycling neonatal Fc-receptor (FcRn). Pemphigus vulgaris and pemphigus foliaceus are debilitating autoimmune disorders triggered by IgG autoantibodies against mucosal and epidermal desmogleins. Recently, a phase 2 clinical trial (NCT03334058; https://clinicaltrials.gov/NCT03334058) was completed in participants with pemphigus using efgartigimod, an FcRn inhibitor, in combination with prednisone. Efgartigimod demonstrated an early effect on diease activity and was well tolerated. In addition to the safety and efficacy assessment, clinical trials present an opportunity to gain more insights into the mechanism of disease, the mode of action of treatment, and potential for corticosteroid-sparing activity.
Objective: The aim of our study was to assess the impact of FcRn antagonism by efgartigimod on immunological parameters known to be directly involved in pemphigus pathology, such as cellular and serological responses.
Methods: We investigated total and antigen-specific IgG subclass level kinetics during and after treatment, assessed antigen-specific B-cell responses, followed T- and B-cell immunophenotypes, and analyzed how different immunophenotypes link to clinical response.
Results: Treatment resulted in reduction of total IgG as well as autoreactive IgG antibody levels. Surprisingly, unlike total IgG and vaccine- or natural-infection-elicited IgG, which returned to baseline levels after stopping efgartigimod treatment, autoreactive antibody levels remained low in several study participants. Efgartigimod showed no effect on total leukocytes, neutrophils, monocytes, or lymphocytes in patients treated with extended efgartigimod therapy. Intriguingly, antigen-specific analyses revealed a loss of desmoglein-specific B cells in several participants responding to efgartigimod, in line with prolonged reduction of pathogenic IgG levels.
Conclusions: Efgartigimod treatment of participants with pemphigus improved their conditions and exerted an immunomodulatory effect beyond the blockade of IgG recycling. Further studies in larger populations with an appropriate placebo control are needed to confirm these potentially important observations to establish long-term clinical responses in autoimmune diseases.
Frontiers in Medicine
Hemostasis in ECMO and VAD