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Stable, predictive biomarkers and interpretable 
disease signatures are seen as a significant step 
towards personalized medicine. In this per-
spective, integration of multi-omic data com-
ing from genomics, transcriptomics, glycomics, 
proteomics, metabolomics is a powerful strat-
egy to reconstruct and analyse complex mul-
ti-dimensional interactions, enabling deeper 
mechanistic and medical insight. 

At the same time, there is a rising concern that 
much of such different omic data –although 
often publicly and freely available- lie in data-
bases and repositories underutilised or not 
used at all. Issues coming from lack of stand-
ardisation and shared biological identities are 
also well-known. 

From these considerations, a novel, pressing 
request arises from the life sciences to design 

methodologies and approaches that allow for these data to be interpreted as a whole, i.e. as inter-
twined molecular signatures containing genes, proteins, mRNAs and miRNAs, able to capture 
inter-layers connections and complexity. 

Papers discuss data integration approaches and methods of several types and extents, their 
application in understanding the pathogenesis of specific diseases or in identifying candidate 
biomarkers to exploit the full benefit of multi-omic datasets and their intrinsic information 
content. 

Topics of interest include, but are not limited to: 

•  Methods for the integration of layered data, including, but not limited to, genomics, transcrip-
tomics, glycomics, proteomics, metabolomics; 
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•  Application of multi-omic data integration approaches for diagnostic biomarker discovery in 
any field of the life sciences; 

• Innovative approaches for the analysis and the visualization of multi-omic datasets; 
•  Methods and applications for systematic measurements from single/undivided samples (com-

prising genomic, transcriptomic, proteomic, metabolomic measurements, among others); 
• Multi-scale approaches for integrated dynamic modelling and simulation; 
•  Implementation of applications, computational resources and repositories devoted to data 

integration including, but not limited to, data warehousing, database federation, semantic 
integration, service-oriented and/or wiki integration; 

•  Issues related to the definition and implementation of standards, shared identities and seman-
tics, with particular focus on the integration problem. 

Research papers, reviews and short communications on all topics related to the above issues 
were welcomed.
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As researchers involved in molecular biology, we are witnessing tremendous paradigm changes in a
time frame that becomes shorter and shorter. The epoch-making notion, originally put forward by
the central dogma of biology (Crick, 1970), that there is a unidirectional process and a privileged
level (genetic) of causality at which biological functions are determined, has already long and
strongly been challenged. It is in fact well recognised that multi-level causality with feedback
cycles among all former and newly identified biochemical levels (including small RNAs, epigenomic
changes) is a fundamental attribute of biological systems (Noble, 2012).

Yet, the focus shift from single reactions to transcriptomics, promoted by microarray first and
sequencers now, is already challenged by a novel, pressing offer from fast evolving technologies.
Indeed, the possibility to have a omic view on virtually all molecular layers (genomes, metagenomes,
transcriptomes, proteomes, epigenomes) pushes to integrate the study of systems at yet another
level of complexity, a run harmed, and not negligibly, by the difficulties in formatting, storing, and
reusing the deluge of data encompassing every level of biological organization.

In such a complex background, it is growingly acknowledged that tools and theoretical
frameworks that could help in combining and giving account for both the multi-level causation
scheme and the burden of data are still underdeveloped (Witzany and Baluska, 2012).

From these considerations, a novel, pressing request arises to design methodologies, approaches
and frameworks that allow for these data to be interpreted as a whole, i.e., as intertwined
molecular signatures containing genes, proteins, mRNAs, and miRNAs, but also epigenomic
characterizations, as well as correlations with microbiomes’ compositions, just to name the major,
able to capture the inter-layers connections and the complexity of phenotypes. This request is
seconded by demands and concerns about the storage and reusability of much of such different
omic data. Indeed, although publicly and freely available, these data often lie in databases and
repositories underutilized or not used at all. Issues coming from lack of standardization and shared
biological identities are also well known to represent a hurdle for data reuse (Tieri and Nardini,
2013; Chowdhury and Sarkar, 2015).

The “Multi-Omic Data Integration” Research Topic is in our intention a dedicated forum to
collect efforts that help in defining this emerging field, aimed to the integration of data, analyses
and approaches from, and for multiple omics.

The articles here collected address these questions from a number of perspectives that
we summarize as experimental, network based, and methodological. In the first category the
authors extract and analyse different types of high-throughput data (epitomics, localisomics,
transcriptomics, lipidomics) from different locations on model organisms [Arabidopsis thaliana
(Wilson et al., 2015) and rhesus macaques (Lee et al., 2014)] to understand a complex biological
question (roots’ growth and response to anti-malarial drugs) that could not be addressed with
single-omic approaches.

We transition from these approaches to more theoretical ones via the usage of graphs. Networks
offer a complete, intuitive, versatile, and powerful approach to the representation of complex
systems (genomics, epigenomics, transcriptomics, metabolomics, host-microbiome interface,
diseases’ phenomics) which is here exploited to represent the multifaceted aspects of complex
autoimmune diseases (rheumatoid arthritis, Tieri et al., 2014) in order to evaluate complex side
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effects of old and novel therapies; to identify disease molecules
that can be both effective therapeutic targets relevant progression
markers with application to diabetic nephropathy (Heinzel et al.,
2014); to stratify patients with comorbidities (Moni and Lio,
2015).

Methodological approaches point with a novel emphasis at
the importance of molecules’ spatial localization in the omic
context. From polysome and ribosome profiling, RNA, and
miRNA binding sites annotation and standardization (Dassi and
Quattrone, 2014), to networks including 3Dmolecules’ proximity
thanks to Chromosome Conformation Capture (3C) and its
omic version Hi-C (Merelli et al., 2015), spatial representation
contributes with an important layer of information in this added
multi-omic complexity.

Beyond spatial organization, temporal progression and causal
inference are discussed to model the heterogeneity of CD4+ T
cells and their complex immune responses (Carbo et al., 2014),
and to predict gene networks based on ChIP-seq and RNA-seq
integration (Angelini and Costa, 2014).

Finally, meta analyses of genomes, be it for the exploration of
microbiomes’ compositions or disease genome-wide association
studies (GWAS) still benefit from discussion in this research
topic, on one side for the need of standardization of the workflow
(Ladoukakis et al., 2014) in a relatively novel research area (omic
microbiology) and on the other side to compensate with multi-
omic layers to the limited statistical power and reproducibility of
GWAS (Lin et al., 2014).

This collection is the tip of an iceberg that continues to grow
and to evolve in multiple directions. From the continuously
improving efficiency of existing high-throughput platforms

that imply easier, cheaper and more frequent spatio-temporal
sampling, to the input of novel technologies that will offer omic
views on novel types of data (phenotypes, tissues, 3D proteins
etc., all entailing the production and approval of dedicated
standards for data storage) we are only at the beginning of almost
endless possibilities of data integration.

However, to avoid getting lost in the sea of data, efficient
algorithms as well as biologically meaningful directions in which
to integrate information will be of importance. This will imply
not only the implementation of powerful tools to give answers,
but also the design of careful approaches to form questions.

We hope and foresee that these needs will foster the
collaboration between biologists, medical doctors, statisticians,
and computer scientists further, transforming the residual
perception of this forced cooperation from a burden to a
resource. The impact of completing this other type of integration
among scientific expertise is difficult to predict at large, but can
easily be assumed as a necessary and crucial starting point for
the effective implementation of personalized medicine, where
patients’ and health practitioners’ needs are translated into
technology and report on systemic markers, offering patients the
possibility to be treated as a whole and not as a mere assemblage
of parts to be “adjusted.”
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Plant cell wall composition is important for regulating growth rates, especially in roots.
However, neither analyses of cell wall composition nor transcriptomes on their own
can comprehensively reveal which genes and processes are mediating growth and cell
elongation rates. This study reveals the benefits of carrying out multiple analyses in
combination. Sections of roots from five anatomically and functionally defined zones
in Arabidopsis thaliana were prepared and divided into three biological replicates. We
used glycan microarrays and antibodies to identify the major classes of glycans and
glycoproteins present in the cell walls of these sections, and identified the expected
decrease in pectin and increase in xylan from the meristematic zone (MS), through the
rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the
root, including the emerging lateral roots. Other compositional changes included extensin
and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins
(AGP) epitopes from the MS to the LEZ, which remained high through the subsequent
mature zones. Immuno-staining using the same antibodies identified the tissue and
(sub)cellular localization of many epitopes. Extensins were localized in epidermal and
cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells
to the stele. The transcriptome analysis found several gene families peaking in the REZ.
These included a large family of peroxidases (which produce the reactive oxygen species
(ROS) needed for cell expansion), and three xyloglucan endo-transglycosylase/hydrolase
genes (XTH17, XTH18, and XTH19). The significance of the latter may be related to a role in
breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process
which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root
lengths, confirming a role of the corresponding proteins in root extension growth.

Keywords: root growth, plant cell walls, multiomics, transcriptomics, localisomics, epitomics, cell-wall
polysaccharides, cell elongation

INTRODUCTION
The plant kingdom displays an enormous diversity in shapes and
sizes, varying from unicellular algae with a simple rather spheri-
cal morphology to very complex multicellular organisms that can
reach more than 100 m in height. Growth of plants is the sum
of two processes, namely the increase in cell number by repeated
cycles of cell division and the subsequent—sometimes major—
increase in volume of these newly formed cells by expansion. Both
processes are controlled by the action of plant hormones among
which auxin plays a major role (Perrot-Rechenmann, 2010). In
roots, cells pass sequentially through different developmental
stages along the root axis. Growth occurs through rapid elon-
gation of cells in a zone shootward to the root apical meristem,

which is the site of cell division, and before further cell type
differentiation, for example root hair emergence and lateral organ
initiation (Verbelen et al., 2006).

Plant cell walls are rigid yet deformable materials, and
growth is seen as the irreversible increase in surface area of cell
walls. This process requires an internal turgor pressure, which
arises from water uptake into the cell. Turgor exerts a force
against surrounding cell walls, but is otherwise mediated by
changes in the mechanical properties of the walls, resulting in
stress relaxation (Ray et al., 1972; Cosgrove, 1986, 1993, 2005;
Guerriero et al., 2014). Cell walls are made up of a fibrillar
component, the cellulose microfibrils, that is embedded in a
highly hydrated matrix of pectins, which principally comprise
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homogalacturonan (HGA), rhamnogalacturonan-I (RG-I), and
rhamnogalacturonan-II (RG-II). The tethering of the adjacent
cellulose microfibrils occurs primarily through xyloglucan in
dicotyledonous and non-commelinid monocotyledonous walls
(Hayashi, 1989), or by glucuronoarabinoxylan (Nishitani and
Nevins, 1991; Carpita and Gibeaut, 1993) and mixed-linkage (1-
3),(1-4)-β-D-glucans in the walls of Poales and Equisetales (Kato
et al., 1982; Scheller and Ulvskov, 2010; Mohler et al., 2013).

As well as pectin and hemicelluloses, several different classes
of glycoproteins and enzymes are also present (Albenne et al.,
2009). This complex composition results in the mechanical prop-
erties of the cell wall and greatly influences its growth potential.
The volume increase of a plant cell was described in the Lockhart
equation (1965), dV/dT = φ (P–Y), where (P–Y) is the turgor
above a yield threshold Y that must be exceeded before plastic wall
extension can occur, and φ is the extensibility coefficient that rep-
resents the time-dependent yielding properties of the cell wall in
the direction of growth (Schopfer, 2006). Several proteins that can
influence the cell wall’s yielding parameters have been described,
including expansins (McQueen-Mason et al., 1992), xyloglu-
can endotransglucosylase/hydrolases (XET/XTHs; Nishitani and
Vissenberg, 2007; Miedes et al., 2013), peroxidases (Passardi et al.,
2006), β(1-4)-glucanases (Labrador and Nevins, 1989), yield-
ins (Okamoto-Nakazato et al., 2001), and lipid transfer proteins
(LTPs; Nieuwland et al., 2005).

With the emergence of different molecular biological
approaches and tools, many genes that encode enzymes with a
role in the synthesis of the various cell wall polysaccharides and
proteins found in cell walls have been identified and their mutants
described (e.g., Harholt et al., 2010; Carpita, 2011; Mewalal et al.,
2014). The synthesis of complete cell-wall components, their
trafficking and final assembly in cell walls are, however, very
complex (McCann and Rose, 2010) and there is often not a simple
link between genotype and a growth phenotype. Furthermore,
the content, architecture and biophysical characteristics of the
walls of a cell change at any point along the growth axis as a
consequence of both the cell’s history (i.e., the multiple processes
since the cell originated) and the needs of its current location.

As a result of this complexity, point measurements are
extremely difficult to interpret and the use of a single “omics”
technique to uncover cell-wall processes underpinning plant
growth might not be sufficient (Somerville et al., 2004; Farrokhi
et al., 2006). Therefore, model organisms, such as Arabidopsis
thaliana, and appropriate research tools are needed. The
A. thaliana root has a relatively simple anatomy and develops in
a highly predictable manner (Dolan et al., 1993), lending itself to
investigation of growth mechanisms, and their regulation as evi-
denced by numerous reports (e.g., Ubeda-Thomás et al., 2009;
Band et al., 2011; Bruex et al., 2012; De Rybel et al., 2012). In
addition, its genome sequence is published (Arabidopsis Genome
Initiative, 2000) and many research tools already exist (e.g., Fukao
et al., 2013; Jacques et al., 2013; Moussaieff et al., 2013).

We used a combination of point measurements and three
techniques to characterize the different developmental zones
along the A. thaliana root, looking at cell wall composition by
means of quantitative assessment of cell-wall epitopes (epito-
mics), epitope localization (localisomics), and gene expression
(transcriptomics), and combined the -omics data in this study to

provide an integrated perspective. This revealed that individual
omics-techniques are inadequate and can even result in mis-
leading conclusions. In contrast, the multi-omics approach has
identified three gene families that appear to play a role in regu-
lating root growth, and mutant analysis for one of these families
(XTHs) supports these findings.

MATERIALS AND METHODS
PLANT MATERIAL AND HANDLING
Seeds of Arabidopsis thaliana (L.) Heynh. (ecotype Columbia-
0) were surface-sterilized by incubation in 5% (v/v) sodium
hypochlorite for 5 min, washed three times in sterile water
and sown on vertical 125× 125 mm square Petri plates. Each
plate contained 60 ml 1/2 strength Murashige and Skoog media
(Sigma) solidified with 1% (w/v) agar. For material used for tran-
scriptomic and glycan microarray profiling (epitomics), sterile
9× 9 cm square sections of 100 μm nylon mesh (Clarcor) were
placed onto the media surface before sowing to facilitate root dis-
section and harvesting of cut sections. After 2 days at 4◦C, plates
were transferred to controlled-environment chambers at 23◦C
under continuous light at a photon flux density of 150 μmol m−2

s−1 for 7 days.
Roots were dissected into five sections as shown in Figure 1:

(1) meristem (from the root tip to the top of the lateral root cap,
approximately 350 μm from the tip); (2) rapid elongation zone
(from the top of the lateral root cap to the first visible root hair
bulge, approximately 850 μm from the shootward boundary of
zone 1); (3) late elongation (deceleration) zone (from the first
root hair bulge to the first fully elongated root hair); (4) mature
root (500 μm shootward of the first fully elongated root hair);
and the lateral root zone (2.5 cm in length, from the shootward
boundary of zone 4 in a shootward direction). Dissected samples
were immediately frozen in liquid nitrogen.

EPITOMICS
Techniques involving glycan microarrays were used for this (Shin
et al., 2005; Moller et al., 2007, 2008). Cell wall material was
isolated from dissected material as alcohol-insoluble residue
(AIR). Frozen material was ground in liquid nitrogen using
a micro-pestle, 1 ml of 70% (v/v) ethanol was added to each
tube and the mixture shaken at 4◦C for 1 h. The mixture was
centrifuged (5 min, 10,000 ×g) and the supernatant discarded.
This process was repeated 4 times. Pellets were resuspended in
1 ml of acetone for 5 min and then air-dried overnight. A total of
600 roots were dissected, yielding 10–20 mg AIR for each of the

FIGURE 1 | Overview of the longitudinal sections used for the
whole-genome transcript and epitomic analyses. (1) Meristem (MS); (2)
rapid elongation zone (REZ); (3) late elongation zone (LEZ); (4) mature zone
(MZ); (5) lateral root zone (LRZ). Image from De Rybel et al. (2010).

Frontiers in Cell and Developmental Biology | Systems Biology February 2015 | Volume 3 | Article 10 | 8

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Wilson et al. Multiomics of plant cell walls

five sections, which were subjected to three sequential extractions
as previously described (Sørensen and Willats, 2011). Briefly,
the extractions were performed using 15 μl each of 50 mM
diamino-cyclo-hexane-tetra-acetic acid (CDTA), 4 M sodium
hydroxide (NaOH) with 0.1% v/v sodium borohydride (NaBH4)
and cadoxen [31% (v/v) 1,2-diaminoethane with 0.78 M cad-
mium oxide (CdO)]. These respectively enrich for pectin,
hemicelluloses, and cellulose-associated molecules. The extracted
fractions were printed as microarrays with six replicates and
three dilutions using a Microgrid II microarray robot (Genomic
Solutions, Ann Arbor, MI, USA) and the arrays were probed
with a range of primary antibodies or carbohydrate-binding
modules and appropriate alkaline phosphatase (AP) conjugated
secondary antibodies before developing as previously described
(Sørensen and Willats, 2011). All JIM- and LM-monoclonal
antibodies and 2F4 were obtained from PlantProbes (http://
www.plantprobes.net), CCRC antibodies from CarboSource
(http://www.ccrc.uga.edu/∼carbosource/CSS_home.html) and
secondary antibodies from Sigma-Aldrich (http://www.

sigmaaldrich.com). The arrays were scanned and analyzed
using the microarray software ImaGene 6.0 (http://www.

biodiscovery.com) to obtain raw signal values. These were
then treated in the same way as fluorescent microarray data.
Specifically, the value from the negative control where the

secondary antibody was omitted was subtracted, and then the
median and median-absolute deviation values were calculated. A
heatmap was produced using Microsoft Excel.

LOCALISOMICS
Four-day-old seedlings were fixed and prepared for whole-mount
immunolocalization analyses requiring some cell-wall permeabi-
lization steps as described previously (Peret et al., 2012). Cell wall
antibodies were used at 1:100 dilutions, whereas Alexafluor488 or
Alexafluor543 coupled anti-rat or anti-mouse secondary antibod-
ies were used at 1:200 dilutions to give green or red fluorescence,
respectively. Counter staining was performed using either propid-
ium iodide (for the AlexaFluor488 coupled secondary antibody)
or Sytox Green (for AlexaFluor543 coupled secondary antibody).
Seedlings were mounted in 50% glycerol and images were taken
using a Leica SP2 confocal laser scanning microscope (Leica
Microsystems UK Ltd). The specific antibodies, their epitopes and
localization (primarily as determined in this study) are listed in
Table 1.

TRANSCRIPTOMICS
Three biological replicates from separate pools of seeds were used.
For each biological replicate, plants were grown and approxi-
mately 50 roots dissected as described in Section Plant Material

Table 1 | Cell wall epitopes assessed in the glycan microarray and their localization from in situ fluorescence studies.

Antibody Epitope Localization References/image

CAL (1→3) β-glucan n/a

CCRC-M1 Xyloglucan All walls Figure 3 and Freshour et al., 2003

CBM22 Xylan Secondary cell walls McCartney et al., 2006

2F4 Calcium-stabilized homogalacturonan chains n/a

LM1 Extensin (HRGP) No signal

LM2 AGP (β-linked glucuronic acid) Mainly lateral root cap and young epidermis; in
meristem some cell-wall plates in epidermis and a
stele cell file

Supplementary Figure S1, pp. 12–17

LM5 (1→4)-β-D-galactan All cytoplasm and walls, especially of epidermis
and stele

Supplementary Figure S1, p. 18 and
McCartney et al., 2003

LM6 (1→5)-α-L-arabinan/AGPs Epidermis and lateral root cap; higher up root
localized to patches possibly forming diagonal
stripes

Figure 3 and Talboys et al., 2011

LM8 Xylogalacturonan Mainly lateral root cap Supplementary Figure S1, p. 21 and
Willats et al., 2008

LM10 (1→4)-β-D-xylan No signal

LM15 XXXG motif of xyloglucans Quiescent center and mature epidermis, especially
at interface between cell files and root hairs Figure 3 and Larsen et al., 2014

JIM5 Partially methylesterified-homogalacturonan Mainly lateral root cap, walls of quiescent center
and initial cells, and some cell-division plates Figure 3

JIM7 Partially methylesterified-homogalacturonan No signal

JIM8 AGP glycan No signal

JIM13 AGP glycan Stele files especially zones 2–5, faint signal in
epidermis Figure 3 and Dolan and Roberts, 1995

JIM19 Extensin No signal

JIM20 Extensin Mainly epidermis and cortex from zone 2 upwards,
some in lateral root cap Figure 3

MAC207 AGP glycan n/a
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and Handling. RNA was extracted using the Qiagen MicroRNA
Kit following the manufacturer’s instructions (Qiagen, Crawley,
UK) and quantified using a Nanodrop ND100 spectropho-
tometer (Nanodrop, Wilimington, USA). All RNA samples were
approximately 50 ng μl−1 in a total volume of 10 μl. Labeling
of RNA samples was conducted using the Affymetrix IVT-
Express Eukaryotic Target Labeling Assay kits following stan-
dard Affymetrix protocols (Affymetrix UK Ltd., High Wycombe,
UK). RNA labeling and hybridization to Affymetrix ATH1 arrays
were performed by the Nottingham Arabidopsis Stock Centre
(NASC).

Data were normalized from.cel files with RMA and statisti-
cal tests performed using the Limma package in R/Bioconductor
(Smyth, 2005) and a custom CDF file (ATH1121501_At_TAIRT
v17; Dai et al., 2005). A gene was considered to be expressed if
its expression was greater than 100 and differentially expressed
if a t-test between two zones was significant at a q-value of
0.05 after Benjamini and Hochberg false discovery rate correc-
tion (Smyth, 2005). Further analyses were performed using Excel
2010 (Microsoft Corporation, Redmond, USA). Genes were fur-
ther annotated into cell-wall functional subclasses using Cell Wall
Navigator (Girke et al., 2004) and PlnTFDB (Pérez-Rodrłguez
et al., 2010). Transcriptomics data used in these experiments have
been made available through ArrayExpress (www.ebi.ac.uk) with
accession number E-MEXP-2912.

xth MUTANT ANALYSIS
Atxth17-1(SALK_015077), Atxth19-1 (SALK_034274), Atxth20-
1(SAIL_575_H09), and XTH18-RNAi were kindly provided
by Prof. K. Nishitani (Tohoku University, Japan). Atxth17-
2 (SALK_008429), Atxth19-2 (SAIL_62_A10), and Atxth20-2
(SALK_066689) were obtained from NASC. All lines are in the
Colombia-0 background. To assess basal root growth, the root
length of seedlings grown vertically for 7 days was measured
from the hypocotyl to the root tip. Root lengths were measured
using the NeuronJ plugin of ImageJ 1.4.1j (http://rsb.info.nih.

gov/ij/). Two-tail Student t-tests were performed using Excel 2010
to determine significance (p-value < 0.05).

Confocal microscopy for imaging of A. thaliana roots was
performed using a Leica SP5 confocal laser-scanning micro-
scope (Leica, Milton-Keynes, UK). For cell quantification and
cell length measurements, seedlings were treated with propidium
iodide (10 μg ml−1; Sigma) to visualize cell walls. Cell lengths
were measured using the Cell-o-Tape image-analysis tool (French
et al., 2012). Data are presented as the mean ± the standard
error and two-tail Student t-tests, used to determine significance
(p-value < 0.05), were performed using Microsoft Excel software.

RESULTS
EPITOMICS
Figure 2 depicts the epitope intensities in the different fractions
and root zones, and highlights the zonal difference between anti-
bodies to related epitopes. The signals corresponding to the pectin
I and xyloglucan (XyG) binding antibodies, suggests that the
CDTA and NaOH treatments were effective in terms of extracting
the associated polysaccharides (pectin and hemicelluloses, respec-
tively), since it was expected that some cellulose-associated XyG

would be extracted using cadoxen due to the fact that XyG tethers
adjacent cellulose microfibrils.

The more soluble (1→3)-β-glucans, recognized by CAL,
peaked in zones 2 and 4 in the hemicellulosic fraction while in
the pectin fraction they actually peaked in zone 5, consistent with
the highest pectin-associated signal of crystalline cellulose. The
xylans (recognized by LM10 and CBM22) were present in all three
fractions. The CBM22 signal peaked in zones 1–3 in the pectin
fraction, in zones 2–4 in the hemicellulosic fraction and in zone
5 in the cellulosic fraction. LM10, however, showed an increas-
ing signal in the hemicellulosic fraction as the root matured, a
trend that was also present in the cellulosic fraction where it was
accompanied by a reduction in zones 2 and 3.

Xyloglucans (probed by CCRC-M1 and LM15) peaked in the
REZ and were specific to the hemicellulosic fraction, with only
minor binding in the cellulosic fraction, a pattern becoming
more evident as the root matures. The homogalacturonan/pectin
I epitope, probed by 2F4, JIM5, and JIM7, which differ in their
sensitivity to the degree of esterification, shows a similar pattern
and is specific to the pectin fraction. JIM7 peaked in zones 1 and
2, JIM5 peaked in zone 2, and 2F4 peaked in zones 2 and 3.

The pectin II epitopes show a broad range of patterns, con-
sistent with the complexity of its polymer constituents. LM6,
specific for arabinan, peaked in the hemicellulosic fraction in
zone 1 and rapidly decreased as the root matures. LM8, spe-
cific for xylogalacturonan, peaked in zones 1 and 2 in the same
fraction and to a lesser extent in the cellulosic fraction before
trailing off rapidly after zone 3, whilst in the pectin fraction it
was consistently present at a low level throughout. LM5, recog-
nizing galactan, shows one of the most complex signal patterns,
peaking in zones 2–3 in the pectin fraction, zone 2 in the hemicel-
lulosic fraction while showing the inverse pattern in the cellulosic
fraction.

Three antibodies detect variants from the extensin family. The
LM1 and JIM20 epitopes are present at high levels in all zones,
with the JIM20 signal being higher in the hemicellulosic fraction,
peaking in zone 2, and the LM1 signal being nominally highest in
zone 5. The JIM19 epitope, however, was absent from the meris-
tem, was mostly pectin-associated in the elongation zones, and
showed its highest signal in zones 4 and 5, but was specifically
non-pectin associated. Several antibodies recognize different epi-
topes associated with AGPs. Their signal levels tended to be higher
from zone 2 onwards, but they were also found in all extractions
and developmental zones.

LOCALISOMICS
Figure 3 contains localization results for four classes of cell wall-
related epitopes, namely XyGs, pectins, AGPs, and extensins.
Crucially, the images show that antibodies were able to bind
to epitopes throughout the root, rather than only at the sur-
face, giving us confidence that cell-wall epitope localization can
be obtained when using permeabilization procedures that will
lead to the loss of some cell wall structures. However, five anti-
bodies were not available for localization studies and a further
five gave no signal, possibly due to the epitope being modi-
fied beyond recognition by the permeabilization process. The
full image dataset can be found in the Supplementary Material
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FIGURE 2 | Epitomic heatmap. The results for each antibody are
scaled relative to the maximum signal for that antibody. The
heatmap is supplemented by Supplementary Figure S2, which

shows the actual signals in graph form for each antibody. Pectin I
corresponds to homogalacturonan epitopes and Pectin II to
rhamnogalacturonans.

FIGURE 3 | Immunolocalization with key antibodies. CCRC-M1 and
LM15 detect xyloglucans, JIM5 detects pectins, JIM20 detects extensins,
and JIM13 and LM6 bind to AGPs. An AF488-linked secondary antibody
was used for all antibodies except CCRC-M1 for which an AF543-linked
antibody was used. The scale bars correspond to 100 μm for all images
except LM15 for which it is 25 μm.

(Supplementary Figure S1) and epitope localization arising from
this dataset is described in Table 1.

The XyGs recognized by LM15 were present at low levels
throughout, but with a particularly high signal in the quiescent
center, although no such specificity was seen with the CCRC-M1
antibody, recognizing fucosylated XyG. JIM5 showed the partially
methylesterified pectins to be localized to the lateral root cap and
radial walls in the inner tissues, while the extensins detected by
JIM20 were most prominent in the epidermis and cortex of the
REZ and to a lesser degree in the lateral root cap. JIM13 and LM6
binding patterns suggested that individual AGPs might be specific

Table 2 | Transcriptomic data for the five zones of the A. thaliana root.

Genes expressed Significantly Significantly

(% of 21,331) up-regulated down-regulated

Zone 1 7741 (36.3%)

Zone 1–2 1632 1939

Zone 2 7539 (35.3%)

Zone 2–3 1343 1750

Zone 3 7801 (36.6%)

Zone 3–4 155 369

Zone 4 7854 (36.8%)

Zone 4–5 155 184

Zone 5 8044 (37.7%)

Zone 5–1 1322 2627

A gene was considered to be expressed if its expression was greater than 100

and differentially expressed if a t-test between two zones was significant at a

q-value of 0.05.

to different locations, suggesting that they play specific roles in the
cells where they are expressed but that their general role in root
growth may be difficult to interpret. Finally, binding of the LM8
antibody, recognizing xylogalacturonan, was restricted to the lat-
eral root cap in a manner reminiscent of LM6 (see Supplementary
Material).

TRANSCRIPTOMICS
A large percentage of the genome is expressed in the root with
about 7500–8000 genes detectably expressed in any given root
zone (See Table 2 and Supplementary Table 1). Zones 1–3, despite
their physical proximity, show large inter-zonal differences con-
sistent with their very different developmental roles. Zones 3–5
have more similar gene expression levels, highlighting the general
developmental quiescence of the mature root. However, ∼10%
of significantly differentially expressed genes in these zones are
annotated as cell-wall genes, which is twice the number of genes
changing between the earlier zones. It is the changes between
zones 1–2 and 2–3 that are likely to inform the expression changes
that allow rapid elongation and deceleration, respectively. At their
peak, 52% of reactive oxygen species (ROS) and 63% of aqua-
porin genes are expressed in the root. Only 25% of annotated
transcription factors are detectably expressed in the root, which
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is lower than other annotated gene families—possibly reflecting
tight developmental differentiation.

DISCUSSION
The A. thaliana root develops in a highly predictable man-
ner. Cells pass through consecutive developmental phases dur-
ing which the post-mitotic elongation of cells contributes the

majority of the increase in the root length. Cell wall metabolism
is very important in allowing and controlling cellular expansion.
The synthesis, trafficking, deposition, integration, and remodel-
ing pathways of cell-wall components are, however, very complex
and not completely resolved, so multiple omics-approaches are
needed to establish which genes are contributing to the observed
changes in composition and consequent mechanical properties.

FIGURE 4 | Combined xyloglucan, XyG biosynthesis genes, and XTH expression profiles. (A) epitomic (columns) and XyG biosynthesis mRNA expression
(lines). (B) zonal transcriptomic expression profiles for selected members of the XTH family. Error bars are ±1 SD.
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These issues are complicated further by the observation that the
different tissues differentially contribute to the mechanics of root
elongation (Dyson et al., 2014).

EPITOMICS ANALYSIS
Epitomics (also known as glycan microarray analysis and previ-
ously described as Comprehensive Microarray Polymer Profiling)
is a high-throughput microarray-derived technique that allows
the handling of multiple samples. In this study, it was used to
indicate which polysaccharides and glycoproteins were found
in specific root developmental-zones. Many of the results sup-
port current knowledge of root cell-wall composition, for exam-
ple that pectin is synthesized and deposited into the existing
cell wall in a highly esterified form (Liners and Van Cutsem,
1992) and that pectinesterases modify the pectins while the cells
age (Micheli, 2001). Carbohydrate polymer synthesis is compli-
cated and does not necessarily correlate well with wall compo-
sition. Little is known of extant synthesis pathways, let alone
of any differences in synthesis along developmental zones. In

Table 3 | Mean root lengths in wild type and xth mutants, measured

at 7 days after germination, asterisks denote significance at a

p > 0.05.

Length (mm ± SEM) % vs. Col-0 n

SINGLE MUTANTS

Col-0 37.87 (± 0.39) – 71

xth17-1 34.01 (± 0.40)* 89.8% 44

xth17-2 34.09 (± 0.46)* 90.0% 39

xth18-RNAi 32.75 (± 0.65)* 86.5% 26

xth18-2 38.74 (± 0.45) 102.3% 40

xth19-1 41.31 (± 0.29)* 109.1% 47

xth19-2 32.36 (± 0.48)* 85.5% 19

xth20-1 35.17 (± 0.48)* 92.9% 41

xth20-2 33.73 (± 0.57)* 89.1% 36

DOUBLE MUTANTS

Col-0 38.02 (± 0.39) – 69

17-1×18-1 32.09 (± 0.60)* 84.4% 25

17-2×18-1 27.77 (± 0.61)* 73.0% 31

17-2×19-1 33.63 (± 0.54)* 88.4% 25

19-1×20-2 34.02 (± 1.21)* 89.5% 20

17-1×20-1 35.29 (± 0.40)* 92.8% 40

18-1×20-1 36.13 (± 0.73)* 95.0% 24

addition, the spatial resolution of this experimental approach is
rather poor.

LOCALISOMICS ANALYSIS
In contrast to epitomics, whole-mount immunolocalization pro-
vides high spatial resolution and revealed cell and tissue-specific
locations for some cell wall epitopes that would not have been
clear from the epitomic data alone. The AGPs appear to be the
most remarkable in this respect, suggesting that individual pro-
teins play a specific and subtly different role. The localization of
extensins to zone 2 epidermis and cortex is intriguing, given the
predictions of Dyson et al. (2014) that the outer layers of the root
have most influence on growth. Unfortunately, some of the anti-
bodies were not available for this technique and others did not
yield any signal in the cell walls, probably because of masking of
the epitope by other cell wall components or more likely due to
the use of enzymes in the permeabilization procedures required
for whole-mount preparations. This -omics has refined the roles
of certain epitopes, but cannot be used to link to specific genes.

TRANSCRIPTOMICS ANALYSIS
Analysis of the transcriptomic data in isolation can also be mis-
leading. Three gene families account for nearly as much of the
expression as all the other cell-wall-related families together. The
largest cell wall family is the AGPs with 61 members representing
more than 18% of cell wall-related gene expression, but the role
of individual genes in expansion and maturation is unclear as the
localization shows that different epitopes are found in different
places.

Aquaporins play a role in vacuolar filling and contribute to tur-
gor pressure, the driving force of expansion. Their expression is
present in the elongation zone (zones 2 and 3), naively suggest-
ing that expansion is effected by an increase in turgor pressure.
However, recent work (Dyson et al., 2014) shows that pressures
remain constant, implying that the role of the aquaporins is to
ensure that turgor pressure is not lost by the rapid expansion in
cell size.

The third highly-expressed gene family encodes peroxidases,
which contains members that are involved in the generation
of ROS. These have long been implicated in root growth and
development (Gapper and Dolan, 2006; Manzano et al., 2014).
However, our data (Supplementary Table 1) show that their
expression rises in zone 2, peak in zone 3 and remain high in
the later zones. This suggests a role in maturation rather than

Table 4 | Effect of reduced XTH17 and XTH18 expression on root growth.

Growth rate (mm/h) Average mature cell length (µm)

3 dag 4 dag 5 dag 6 dag 7 dag

Col-0 0.086 (± 0.003) 0.219 (± 0.013) 0.314 (± 0.018) 0.370 (± 0.013) 0.407 (± 0.021) 199.18 (± 1.10)

xth17-2 0.075 (± 0.006)* 0.206 (± 0.016) 0.255 (± 0.024)* 0.354 (± 0.026) 0.367 (± 0.030) 184.42 (± 7.88)*

XTH18-RNAi 0.070 (± 0.005)* 0.172 (± 0.016)* 0.286 (± 0.020) 0.359 (± 0.015) 0.357 (± 0.016)* 189.66 (± 6.78)*

xth17-2 × XTH18-RNAi 0.054 (± 0.004)* 0.193 (± 0.017)* 0.240 (± 0.025)* 0.241 (± 0.019)* 0.319 (± 0.052)* 182.06 (± 7.66)*

Growth rates were measured at the indicated days after germination (dag) using NeuronJ. Cortical cell lengths were measured from confocal microscope images,

asterisks denote significance at a p > 0.05.
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FIGURE 5 | Combined profiles of pectin epitopes, GAUT1, PME, and PMEI expressions. Epitomic (columns) and biosynthesis (GAUT1) and modification
(PME and PMEI) mRNA expression (lines). Error bars are ±1 SD.

elongation, and also possibly in lignification and Casparian strip
formation. Although the other -omics data indicated a role for
extensins, the genes for these proteins are difficult to define
because sequences/functions overlap with other gene families.
Hence they were not considered further in this context. Initial car-
bohydrate biosynthesis peaks in zone 2, where large amounts are
needed for both accelerating and subsequent decelerating expan-
sion, but in order to get enough RNA these transcriptomic data
face the same issue of resolution as the epitomics work.

MULTI-OMICS ANALYSIS
As mentioned above, all these techniques in isolation have their
benefits and drawbacks. We therefore combined data from all
analysis in a multi-omics approach to identify genes that play an
important role in the elongation of A. thaliana root cells.

To investigate xyloglucans, we looked for expression patterns
in the transcriptome that correlated with the epitope pattern
shown by LM15 (peaking in the zone 2). The transcriptomic
dataset showed a large number of genes with a similar pat-
tern (Supplementary Table 1). However, filtering the data to
include only genes known to affect XyG biosynthesis, we found
genes involved in fucose biosynthesis (MUR3, AT2G20370 and
GER1, AT1G73250) and a xyloglucan xylosyltransferase, (XXT3,
AT5G07720) with R2-values of 0.96–0.98, suggesting that these
members from large gene families may be responsible for the
observed LM15-XyG signal (Figure 4).

XyG is highest in zone 2, the rapid elongation zone, correlat-
ing with studies showing that in vivo, XET activity by XTHs is
also highest in this zone (Vissenberg et al., 2000). The general

XTH expression signal peaks in zone 2 and 3 (Figure 4), sug-
gesting an important role for XTHs in root elongation. XTHs
remodel the cell wall and some are believed to promote growth
acceleration (Van Sandt et al., 2007), while others could aid in
the deceleration. Different family members have distinct activ-
ity dependencies and pH optima, suggesting that some can act as
loosening factors, while others could do the opposite (Maris et al.,
2009, 2011). If they were only associated with accelerated cell wall
actions, then the plant might override the loosening in the decel-
eration zone, probably by pectin modifications (Micheli, 2001)
or peroxidase-mediated cross-linking of other cell-wall compo-
nents such as structural proteins (Ma et al., 2004; Passardi et al.,
2004; De Cnodder et al., 2005). The key XTHs controlling expan-
sion might be expected to be expressed as early as possible to
tightly regulate wall extensibility and disruption of these XTHs
may therefore show growth defects.

Looking for XTHs with a peak very early in root development
and associated with gibberellic acid (GA), a known regulator of
cell expansion (Middleton et al., 2012), showed that XTH17 and
18 increase more than 30 fold between zones 1 and 2. One of these
is GA-induced (XTH17) and both belong to a subclade of group
1 XTHs (Rose et al., 2002) consisting of 4 genes (XTH17, 18, 19,
and 20). XTH17, 18, and 19 are expressed in the elongation zones
of the root, and XTH20 is expressed in the vascular tissue of the
mature root (Vissenberg et al., 2005). We therefore investigated
phenotypes in mutant lines for this subclade. Putative knock out
(KO) lines were identified for three of the genes and an RNAi
line was created for the fourth. All these lines showed significant
growth defects with shorter mature root lengths, shorter mature
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FIGURE 6 | Combined profiles of AGP epitopes and expression. (A) epitomic (lines) and mRNA expression (columns), expression is summed over all expressed
AGPsandgivenasapercentageof theexpression ineachzone,errorbarsare ±1SD. (B)Exemplarsof theprincipalexpressionprofiles formembersof theAGPfamily.

root cells and reduced growth rates (Tables 3, 4). The one excep-
tion to this was xth19-1 which, in contrast to the xth19-2 line,
showed an increase in root length. The insertion in the xth19-1
line is 3′ to the gene, which may stabilize the mRNA and hence
act as an over-expression line. The reduction in growth pheno-
type was increased in the xth17-2xXTH18-RNAi double mutant
(Table 4).

Regarding pectin (or more specifically homogalacturonan),
JIM5, and JIM7 recognize esterified pectin, which is present at
highest levels in zones 1 and 2 and drops off in the mature root.
Pectin is deposited into the cell wall in a highly esterified form,
and is typically a component of a loosened cell wall. 2F4 recog-
nizes cross-linked pectin with no more than 40% esterification
(Liners et al., 1992) and this is low in zone 1 but rises to high levels
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in zone 2 and beyond. This suggests zone 2 has a mixture of ester-
ified and non-esterified forms and the distribution is increasingly
biased toward non-esterified along the shootward axis. This fol-
lows the expression of several pectin methylesterases [PMEs; e.g.,
PME2 (AT1G53830)], some of which are highly correlated with
the epitomic pattern (Figure 5).

Several PME Inhibitors (e.g., AT5G04970, AT3G10720) also
correlate with this pattern (Figure 5), suggesting that the root
uses a tight balance of these two groups of enzymes to control the
rate of de-esterification (i.e., stiffening) rather than using one to
shut the other off. With regard to pectin biosynthesis, the galac-
turonosyltransferase 1 enzyme (GAUT1, At3g61130) is expressed
in zones 1 and 2 and then decreases, which correlates (R2 >

0.9) with the pattern of the three antibody epitopes recognizing
homogalacturonan (Figure 5 and Supplementary Figure S2).

The transcriptomics data revealed multiple patterns for AGP
expression, dominated by maximum levels in zones 2 and 3
(Figure 6). In contrast, the epitomic signals peak in zone 3, which
could be accounted for by several hypotheses. One possibility is
that there are delays in synthesis and transport either because of
long synthesis and transport times of the proteins, or accumu-
lation for use in zone 3 walls. Alternatively the epitomic profiles
could simply be reflecting AGP accumulation over time.

Different AGPs may play different roles in the cell wall as
revealed by the localisome, which was also mentioned before
(Ellis et al., 2010). For example, LM6 (AGP or pectic arabinan)
localizes to the lateral root cap and epidermis and its epitope may
play a role in expansion, while the JIM13 epitope is specific to stele
cell files and could be part of the process of vascular patterning.

OVERARCHING CONCLUSIONS
It is evident that the individual -omics approaches provide an
incomplete picture, and a combination of multiple analyses aids
in establishing a clearer picture of the processes involved. In gen-
eral terms, the transcriptomic dataset suggests the location of
cell wall synthesis, whereas the glycan microarray analyses show
the accumulation and dilution as these polymers are modified
or additional material added. This is best shown with regard
to pectins and XyGs. Deceleration in the root elongation rate
appears to be linked to a change in the ratio of esterified to non-
esterified pectins. The mutation studies have confirmed a role
for XTH17, XTH18, and possibly XTH19 in root growth, prob-
ably affecting yield threshold, as this was the case in dark-grown
hypocotyl cells (Miedes et al., 2013).

POTENTIAL APPLICATION TO OTHER SYSTEMS
Root growth is a system in which the genes for synthesis of cell
wall material are expressed in one location, while the molecules
themselves might not appear in the wall until later. Different
molecules contribute to different aspects of the cell-wall mechan-
ics, which are further affected by subsequent modification and
interaction. The multi-omics approach used in this study could
be used for other plant structures and translated to other sys-
tems where the chronology of gene expression, macromolecular
synthesis, and modification contribute to growth or mechanical
properties of an organ as a whole. Potential applications include
musculoskeletal growth, strength, and brittleness in health, aging

and disease states, as well as plant lodging (i.e., the bending or
even falling over of stalks leading to reduced crop yields).
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We describe a multi-omic approach to understanding the effects that the anti-malarial drug
pyrimethamine has on immune physiology in rhesus macaques (Macaca mulatta). Whole
blood and bone marrow (BM) RNA-Seq and plasma metabolome profiles (each with over
15,000 features) have been generated for five naïve individuals at up to seven timepoints
before, during and after three rounds of drug administration. Linear modeling and Bayesian
network analyses are both considered, alongside investigations of the impact of statistical
modeling strategies on biological inference. Individual macaques were found to be a major
source of variance for both omic data types, and factoring individuals into subsequent
modeling increases power to detect temporal effects. A major component of the whole
blood transcriptome follows the BM with a time-delay, while other components of variation
are unique to each compartment. We demonstrate that pyrimethamine administration
does impact both compartments throughout the experiment, but very limited perturbation
of transcript or metabolite abundance was observed following each round of drug
exposure. New insights into the mode of action of the drug are presented in the context
of pyrimethamine’s predicted effect on suppression of cell division and metabolism in the
immune system.

Keywords: pyrimethamine, bone marrow, peripheral blood, axes of variation, bayesian network inference, principal
component analysis (PCA)

INTRODUCTION
The Malaria Host-Pathogen Interaction Center (MaHPIC) has
initiated a systems biology program to understand the course
of events and mechanistic processes that occur in the biology
of infected non-human primates (NHPs) and Plasmodium par-
asites over the course of malaria episodes. The long-term goal
is to advance the development of interventions for this major
global parasitic disease (WHO World Malaria Report, 2013).
This research program investigates how NHP-infective species of
Plasmodium that model human malaria caused by P. falciparum
and P. vivax elicit various host responses, develop immunity,
adopt immune-avoidance strategies, and cope with anti-malarial
drugs (Galinski et al., 2013; Wright and Rayner, 2014). We
are integrating diverse data types, including transcriptomics,
metabolomics, lipidomics, proteomics, and innate and adap-
tive immune profiles and performing cross-species comparisons
with multiple different host-parasite infection model combina-
tions. There are many gaps in knowledge relating to Plasmodium
infections including the immune response, the mechanisms of

malaria pathogenesis and multiorgan dysfunction, the adverse
impact on the bone marrow (BM) progenitors and the dynam-
ics of co-infections (Hafalla et al., 2011; Schwenk and Richie,
2011; Frevert and Nacer, 2013; Stanisic et al., 2013). The NHP
models being studied enable more rigorous experimentation
and in-depth analyses than are possible from direct investi-
gations in humans (Deye et al., 2012; Tachibana et al., 2012;
Moreno et al., 2013) and they are well-suited for systems biology
approaches.

In this study, we establish logistics and procedures that lay
the foundation for studies of rhesus macaques (Macaca mulatta)
inoculated with infectious Plasmodium parasites, following which
intermittent antimalarial drug intervention may be required. The
data presented here serve as pilot data, with inoculations consist-
ing of Anopheline mosquito salivary gland preparations lacking
sporozoites, and the analyses begin to show how multiple diverse
datasets can be integrated. We present multi-omic data analy-
ses using top-down approaches to the integration of RNA-Seq
derived transcriptome data from the BM and peripheral blood
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(PB), as well as plasma metabolite data, and complete blood
cell count (CBC) parameters. These data types were obtained
during a 100-day period, at specific timepoints before and after
pyrimethamine administration to five rhesus macaques.

By top-down integration, we mean statistical and machine-
learning strategies that are naïve to the known biochemical anno-
tation of the transcript and metabolite features (Bang et al., 2008;
Giuliani et al., 2014). Our approach is to use principal compo-
nents analysis (PCA) to describe the major sources of variance
(among individual animals or temporal) in each data type, and
then to seek correlations between the major components across
data types (Boedigheimer et al., 2008). We perform standard dif-
ferential gene expression analysis, also asking how the statistical
modeling strategy and data reduction influence identification of
drug-responsive genes, and employ gene set enrichment analysis
to identify pathways of interest. In an attempt to overcome the
limitations of orthogonal PCA, particularly in the context of a
relatively small experiment, we ask whether biologically derived
axes of variation that are known to consistently capture PB vari-
ation in humans, are conserved in macaques and covary with
drug treatment. A bottom-up strategy, starting with known cel-
lular and biochemical pathways from the Kyoto Encyclopedia of
Genes and Genomes (KEGG: Kanehisa and Goto, 2000; Kanehisa
et al., 2014), is contrasted and used to help draw more inferences
about the physiological impact of pyrimethamine particularly
on the BM. Finally, Bayesian network analysis (Bumgarner and
Yeung, 2009; Pei and Shin, 2012) is also applied as an orthogonal
approach with promise for overcoming the conditional depen-
dence of the transcriptome and metabolome in a dataset with
high dimensionality and a small number of samples. The work
flow is shown in Figure 1 including the questions posed by each
mode of analysis and the major conclusions.

The null hypotheses are first that neither host nor drug admin-
istration impact gene expression, and second that the major
variance components of the BM and PB transcriptomes and
plasma metabolome are uncorrelated. Transcriptome data was
collected by RNA-Seq (Wilhelm and Landry, 2009) with a mean
of 40 million paired-end reads for each of 35 BM and 35 PB
samples studied (five macaques each with seven collection time-
points), focusing on transcript abundance for ∼15,000 genes.
Metabolome data was collected by Orbitrap mass spectrome-
try following liquid chromatography (Jones et al., 2012; Soltow
et al., 2013) on two different columns (AE and C18) with ∼6000
and ∼14,500 m/z features, respectively. Our expectation was that
drug administration would have global effects on each of the four
omic measures (BM and PB transcriptomes, and AE and C18
generated metabolomes), and that among-individual differences
would be relatively minor. However, we had no pre-conception
of the fraction of genes that would be differentially expressed,
or of the degree of correspondence we would find between the
transcriptomes and metabolome. Since the PB consists of cells
generated in the BM, we expected a temporal delay between these
two compartments with considerable overlap in variance com-
ponents, which would also reflect differences in the counts of
major blood cell types obtained by standard CBC analysis. Herein
we quantify departures from each of these expectations as well
as a general failure to reject the null hypothesis that the blood

transcriptomes and metabolomes are uncorrelated, and discuss
the implications for the mode of action of pyrimethamine.

MATERIALS AND METHODS
EXPERIMENTAL DESIGN
The experimental design of this experiment involving rhe-
sus macaques (Macaca mulatta) was approved by the Emory
University Institutional Animal Care and Use Committee
(IACUC) and is as follows. Five males (RCs13, RWr13, RUn13,
RZe13, and RTi13) approximately 2 years of age were injected
intravenously with a preparation of Anopheles dirus salivary gland
material (prepared similarly to how infectious Plasmodium sporo-
zoites would be purified; Kennedy et al., 2012) and then profiled
for clinical and omic measurements over the course of a 100-
day experiment. The animals were moved into experimental pair
housing (RCs13/RWr13 and RUn13/RZe13) 10 days prior to the
baseline sampling point at Day 0, namely timepoint 1 (TP1). The
fifth macaque (RTi13) was housed alone. Capillary blood sam-
ples collected daily from ear pricks into EDTA-tubes were used to
obtain complete blood cell counts (CBCs), with the exception of
days 51 to 53 when an equipment failure occurred. On days 21,
27, 52, 59, 90, and 98, PB and BM samples were collected com-
prising TPs 2-7. These collections, and that of TP1, were taken
under chemical restraint with ketamine delivered intramuscularly
at 10 mg/kg. This dissociative anesthetic has a short elimination
half-life (20–40 min) and, to our knowledge, has no known drug
interaction with pyrimethamine. The experimental design does
not, however, allow for distinguishing the effects of the drug or
anesthetic. BM aspirates were obtained from the right or left iliac
crests in an alternating manner for consecutive timepoints and
performed using 18G needles. Immediately after collection BM
samples were transferred into Vacutainer EDTA tubes. PB sam-
ples were collected from the femoral artery into Vacutainer EDTA
tubes. The transcriptomes and metabolomes were interrogated
at seven (TP1-7) and five (TP3-7) timepoints, respectively, as
shown in Figure 1. Pyrimethamine (Sigma-P7771) was delivered
(1 mg/kg) intramuscularly once on day 20, and for 3 successive
days starting at days 52 and 90 (TP2, 4, and 6), corresponding
to predicted periods for sub-curative and curative experimental
treatment regimens for malaria infection of macaques.

LIBRARY PREPARATION FOR RNA-SEQ
BM (1 ml) was collected into 1.5 ml tubes with EDTA, and the
mononuclear cells were purified by density gradient centrifuga-
tion on Lymphoprep (Stem Cell Technologies) solution and pre-
served in RLT buffer (Qiagen) to stabilize mRNA. Whole blood
(3 ml) was collected in Tempus tubes (Applied Biosystems) which
preserve mRNA; these samples include erythrocytes, platelets
and granulocytes, and mononuclear lymphocytes. RNA was
extracted from the BM samples using Qiagen RNEasy Mini-
Plus kits following the manufacturer-recommended procedures,
and from PB samples using Tempus-Spin RNA isolation kits
(Life Technologies). The quality of all RNA samples was con-
firmed using a Bioanalyzer, with an RNA Integrity Number (RIN;
Schroeder et al., 2006) greater than 8 recorded for all samples.

Approximately 1 µg of total RNA per sample was con-
verted to double-stranded cDNA using poly-A beads to enrich
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FIGURE 1 | Experimental Design. (A) Five macaques were each
delivered a sub-curative dose of pyrimethamine at Day 21, and 3-day
curative doses commencing at Days 52 and 90, in each case
immediately following peripheral blood sampling. This results in two

pre-drug, three post-drug, and two inter-drug treatments as indicated.
Metabolome data was not generated for the first two timepoints.
(B) Flow of analytical approaches including major questions asked and
inferences drawn.

for mRNA, and Illumina TruSeq Stranded mRNA Sample
Prep kits to generate strand-specific libraries. As a qual-
ity control, 96 spike-in RNAs of known concentration and
GC proportions (ERCC Spike-In Control, Life Technologies;
Devonshire et al., 2010) were added to constitute approx-
imately 1% of the total RNA for each library. Adapters
were ligated to facilitate 3-plex sequencing on an Illumina
HiSeq2000 at the Yerkes National Primate Center Genomics
Core, aiming for 80 million paired-end 100 base pair (bp)
reads per library. Average insert sizes were in the range of
300–400 bp.

SHORT READ MAPPING AND GENE EXPRESSION QUANTIFICATION
To quantify gene expression, the RNA-Seq reads were mapped to
an early version of a new assembly of the rhesus macaque (MacaM
assembly, Version 4.0, GenBank accession number PRJNA214746
ID: 214746, created by Aleksey Zimin at the University of
Maryland, Rob Norgren at the University of Nebraska Medical
Center, and their colleagues) using Tophat2 (Trapnell et al.,
2012; Kim et al., 2013). Default options were used with the
exception that the command—library-type fr-secondstrand was
invoked since the reads were generated using a stranded library
preparation method. This allowed us to differentiate between
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sense and antisense transcripts. Rob Norgren and his colleagues
also provided a GTF file (version 4.12) of the annotated MacaM
assembly indicating the exon boundaries of rhesus genes that
was used in our transcriptome analyses to improve the map-
ping accuracy across splice junctions. Only reads that map to
a single location in the genome were included, to ensure high-
confidence mapping. All downstream analyses were performed at
the level of annotated gene: this study does not consider exon-
specific or transcript isoform relative abundance. Transcription
was detected for 15,442 genes. The dataset has been deposited
to the Gene Expression Omnibus archive (GEO) under accession
number GSE58340.

Several quality control steps were used to verify the relia-
bility of the data: linear correlation of estimated abundance of
ERCC spike-in controls with known concentration; confirmation
of 99.9% strand-specificity of the controls; less than 0.1% con-
trol fusion transcripts; and absence of 3′ bias in the controls was
confirmed with RSeqC v2.3.8 software (http://rseqc.sourceforge.
net; Wang et al., 2012). Transcript abundance levels were inferred
using HTSeq v0.5.4p5 (http://www-huber.embl.de/users/anders/
HTSeq/doc; Anders et al., 2014). HTSeq takes the short-read
mapping.bam file from tophat2 and the gene annotation file
which contains the locations of all annotated genes. Since some
libraries were sequenced more deeply than others, the libraries
were normalized before determining differential gene expression
using the gene level expression files with the default parameters of
DESeq version 1.10.1 (http://www.bioconductor.org/packages/
release/bioc/html/DESeq.html; Anders and Huber, 2010).

METABOLOMIC FEATURE QUANTIFICATION
High resolution metabolomics (m/z range 85–2000) was
performed using a liquid chromatography/mass spectrome-
try (LC/MS) approach on a Thermo Orbitrap-Velos Mass
Spectrometer (Thermo Fisher, San Diego, CA) via positive-ion
electrospray ionization (ESI). Two different columns were used
for the LC separation stage: C18 and anion exchange (AE). Each
distinct biological sample was run in triplicate in order to ensure
high reliability of the data, with randomization within batches
(Soltow et al., 2013). MS peaks were called using xMSanalyzer
v1.3.2 (Uppal et al., 2013) with apLCMS v5.9.4 (Yu et al., 2009).
Standard quality control measures were performed, such that fea-
tures with greater than 30% missing values were removed from
the analysis. Since the frequency distributions of all samples were
comparable, no additional normalization was performed, but an
abundance cutoff of 256 peak area units was adopted and all fea-
tures below this were excluded. All downstream analyses utilized
the median values of three technical replicate samples, namely a
single measure per biological sample. The AE and C18 columns
generated 5861 and 14,339 m/z and retention time features
respectively, the majority of which are either not yet annotated
or have ambiguous annotation to multiple possible organic com-
pounds. The m/z features are thought to include the majority of
known components of central metabolism, as well as xenobiotics.

STATISTICAL ANALYSIS
After data normalization, the transcriptome and metabolome lev-
els were log-2-transformed and imported into JMP Genomics

(version 6.0, SAS Institute, Cary, NC). The log-2 transformation
was performed both to ensure that the data is more normally
distributed and to facilitate simple comparison of the magnitude
of differential expression in a symmetrical manner with respect
to up- and down-regulation, as is standard in microarray analy-
sis: plus or minus 1 unit corresponds to a 2-fold change for each
of the datasets. To determine how much of the variance in each of
our datasets is explained by our two measured factors (animal and
timepoint), we performed a principal components (PC)-variance
component analysis using JMP v6.0 (SAS) for the transcriptomes,
metabolomes, and the CBC data (Boedigheimer et al., 2008).
This consists of generation of all PC explaining up to 90% of
the total variance (12–15 for the transcriptomes and ∼30 for the
metabolomes), regressing each PC on “animal” or “timepoint,”
and generating a weighted average of the squared correlation coef-
ficient (percent variance explained) across all of the PC scores.
Since the low abundance features for metabolomics and tran-
scriptomics both have high coefficients of variation, we set thresh-
olds of 5 log2 units for transcripts and 17 log2 units for metabo-
lites based simply on visual inspection of plots of the coefficient of
variance against average abundance. After estimating the effect of
lower-abundance features on the variance components, they were
removed for all downstream analyses. No attempt was made to
optimize the threshold or systematically evaluate its impact, but
the major conclusions of the study are unlikely to be affected.

To assess whether the major PC capture similar aspects of the
data, the first 10 PC were calculated for the four omics datasets
using JMP. All 780 pairwise correlations of these PC values were
determined, and a Bonferroni multiple comparison adjustment
was used to assess the significance of each pair of PC. Exploratory
partial least square regression analyses were also performed with
MixOmics (González et al., 2012; http://cran.r-project.org/web/
packages/mixOmics/index.html) in an attempt to select variables
that co-vary, but did not reveal significant associations.

BLOOD INFORMATIVE TRANSCRIPT (BIT) AXES
In addition to PCA, we employed a second method, blood infor-
mative transcript (BIT) axes analysis (Preininger et al., 2013).
Briefly, 10 highly co-regulated transcripts in blood (the BIT) cap-
ture each of 9 common axes of variation that are observed in all
human PB gene expression datasets. PC1 for each of these 9 sets
of 10 transcripts provide Axis scores for each individual sample,
and were generated independently for both the PB and BM sam-
ples, using the normalized expression data. We then examined
the dynamics of the axes scores (or their residuals after fitting
“Animal”) over time and used ANOVA to evaluate differences
among the timepoints or animals.

DIFFERENTIAL GENE EXPRESSION
The next step in our analysis was the identification of genes
that are differentially expressed across the experimental condi-
tions (Soneson and Delorenzi, 2013). For between-TP differences,
an ANOVA was performed on each transcript separately using
“animal” as a random effect with five levels and “timepoint”
with seven levels, or “drug” with three levels as the fixed effect.
For the drug exposure factor, we define our three experimental
conditions as before drug exposure (pre-drug; TP1 and TP2), 7
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days after the most recent dose (post-drug; TP3, TP5, and TP7),
and 30 days after most recent dose and immediately before the
next dose (inter-drug; TP4 and TP6), as shown in Figure 1. A
Benjamini-Hochberg false discovery rate cutoff of 5% was used to
define differentially expressed genes. These were examined using
hierarchical clustering of the standardized least squares means,
and volcano plots of significance against fold difference between
specific conditions (Wolfinger et al., 2001). The significantly dif-
ferentially expressed genes are reported as a Supplementary flat
file that consists of a list of gene names with their corresponding
F-statistics at http://www.cig.gatech.edu/supplementary-data.

Gene set enrichment analyses were performed using pre-
existing human gene set annotations from the Broad Institute
(Subramanian et al., 2005), considering that the majority of
known genes in the macaque genome have very closely related
syntenic human orthologs (Zhang et al., 2014). We used
the ranked gene list method of GSEA v2.0.14 (http://www.

broadinstitute.org/gsea/index.jsp) to perform the contrast of
interest (pre-vs.-[post plus inter] drug treatment), testing for
enrichment of t-statistics in KEGG pathways and/or GO terms.
Gene sets with a nominal p < 0.001 and an FDR q < 5% were
considered as significant per the recommendations of the GSEA
software manual. Default parameters were used, excluding gene
sets with more than 500 or fewer than 20 genes.

BAYESIAN NETWORK ANALYSIS
For the Bayesian network analyses, only the 1000 most differen-
tially expressed genes (largest F-ratios for the Drug effect) or 500
metabolites were used, so as to ensure computational tractability
of the clustering software while incorporating biologically rele-
vant genes. The transcript abundance measures were the residuals
after fitting “animal” in the ANOVA to remove this large over-
all source of variance, while raw median metabolite abundance
measures were used based on the relatively small contribution of
animal and timepoint to the variance. Custom scripts were writ-
ten in MATLAB and R to perform quality threshold clustering
(Heyer et al., 1999; De Smet et al., 2002) on the mean-centered
expression values, namely the residuals after fitting “animal” to
each gene. A d = 0.3 cluster similarity threshold was employed
as suggested by Heyer et al. (1999). Since the data are normal-
ized and since that similarity threshold is based on a specific type
of correlation metric, it is reasonable to expect that such a value
may be an excellent starting point across transcriptomic studies.
We also performed small perturbations of the cluster similarity
threshold and found that the main differences were in the merg-
ing portions of some smaller clusters into some bigger clusters.
The number and membership of the larger clusters (used for
analysis here) remained similar (data not shown). Only clusters
with at least 10 transcripts (or metabolites) were retained for fur-
ther analysis. Significance and robustness of these clusters were
assessed via permutation tests.

Since robust and accurate Bayesian network inference is typ-
ically very difficult with only 35 observations (five animals and
seven timepoints), we treated genes within clusters as separate
observations of those clusters. We ranked each gene relative to its
correlation with the centroid of the cluster across all 35 samples
(25 for metabolites since TP1 and TP2 were missing) and then

concatenated the top 10 genes into a list of 350 (250) observa-
tions for each of 26 transcript and four metabolite clusters that
satisfied the clustering criteria. We chose to use just the top 10
genes so as to ensure that each node in the network has the same
number of observations (no missing data) and because Bayesian
network inference benchmarking literature has shown that having
a few hundred observations can provide reasonably robust infer-
ence. The selection of 10 genes thus balances robustness with the
number of different clusters that can be analyzed, as increasing
that threshold necessarily eliminates more clusters. Next, the data
was discretized using a mutual information content-preserving
algorithm (Hartemink, 2001), as the Bayesian network analy-
sis is expected to be more robust for discrete data. Briefly, for
each variable, observations are stepwise coalesced into discretized
bins such that the loss in mutual information content between
that variable and all other variables is minimized. The estimated
elbow-point in the remaining mutual information as a function
of the number of discretization levels was then selected as the
desired number of levels (seven for transcriptional and five for
metabolite data). Networks were subsequently generated using
the Sparse Candidate Algorithm (Friedman et al., 1999) of Causal
Explorer in MATLAB (http://www.dsl-lab.org/causal_explorer;
Aliferis et al., 2003). The most robust connections between clus-
ters were identified using subsampling and permutation tests. We
used three shuffled datasets, within which the order of the 10
genes in each cluster was permuted independently, to minimize
the possibility of over-fitting the available data: if the 10 genes
are good representatives of the cluster, then there should not be
much mutual information based solely on a given gene in one
cluster being compared to a specific gene in another cluster, and
so the most robust edges (and least likely to be due to over-fitting)
are the ones that occur in multiple shuffled datasets. For each
of these shuffled datasets we assessed the sensitivity of the infer-
ence method to perturbations in the amount of available data
by performing network inference with 90% subsampling of 1000
replicates of the dataset.

To assess whether the BM clusters are valid in the PB, the PB
data for each of the clusters was used to determine their cen-
troids. The distribution of Pearson correlation coefficients for
each member of the cluster to the centroid was calculated. These
distributions were compared to analogous calculations for ran-
dom samples of the same number of genes for each cluster, using
a one-tailed Kolmogorov–Smirnov test.

To assess whether the BM clusters form a network in the
PB, we used the same 26 clusters from the BM data, identi-
fied the 10 genes closest to the centroid using the PB data for
each cluster, and used concatenated gene data for each cluster to
generate new Bayesian networks. To evaluate whether there are
interactions between transcriptomic and metabolic networks, we
repeated the Bayesian network inference using the 26 BM tran-
script clusters and four plasma metabolite clusters from the C18
column MS data analyzed with essentially the same pipeline. The
same methods as described above were used to form this inte-
grated network, except that for the transcriptional data only the
five timepoints corresponding to the metabolomics timepoints
were kept, the data discretization was performed jointly on the
combined datasets, and metabolomics data was unit normalized.
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RESULTS
VARIANCE COMPONENTS OF OMIC DATA
The experimental design consisted of a 100 day mock-infection
cycle of M. mulatta that follows a similar time course as will
be used for a series of Plasmodium infections in later MaHPIC
studies (Figure 1). Each of five monkeys was transferred, in two
pairs and a single, to indoor cages at the Yerkes National Primate
Research Center in Atlanta, Georgia, 10 days prior to the baseline
(TP1) PB and BM draws. The second timepoint (TP2) samples
were taken 20 days later, immediately prior to administration of
the anti-malarial drug pyrimethamine for the first time and 7 days
before sampling of the first post-Drug timepoint (TP3). After a
further 3 weeks, a second round of drug treatment immediately
followed the TP4 sampling. Consequently, TP1 and TP2 represent
pre-drug samples that nevertheless differ in their gene expression
and metabolic profiles, we suspect due to an acclimation period
of each animal in the new experimental environment. TP3, TP5,
and TP7 represent post-drug samples, and TP4 and TP6 repre-
sent inter-drug samples. Plasma metabolites were only profiled
following the drug administration period (TP3-TP7), but CBCs
were generated for all timepoints except TP4.

Our first objective was to define the variance components
of gene expression and metabolite abundance, namely the con-
tributions of among animal and among timepoint differences
to the overall variance. This was accomplished by generating
the PC that collectively account for 90% of the variance of
each omic data type and computing the weighted average of
the variance of each PC explained by animal or timepoint.
The variance explained by each PC is shown in Table 1 and
typically ranges from 25% for PC1 to less than 3% for PC5
(subsequent PC contribute too little to the overall variance to
significantly impact the evaluation of contributions of animal
and time). Figure 2A shows that for the BM and PB tran-
script data, as well as the CBC data, approximately 30% of
the variance is among animal and 10% among timepoints.
For the metabolomes by contrast, only 15% of the variance
is among animals with a slightly larger proportion due to
timepoint.

The unexplained residual variance could be due to undefined
biological sources, animal-by-timepoint interactions, random
sampling variance, or technical error. To control for contribu-
tions of the latter, we reduced the datasets by removing the
low-abundance features with the greatest coefficients of varia-
tion. Consistent with published findings (Rapaport et al., 2013),
both RNA-Seq and MS have a strong relationship between abun-
dance and variability, and based on the plots we adopted heuristic
cutoffs of 5 log2 units for the transcripts and 17 log2 units for
the metabolites. Figure 2B shows the variance components anal-
ysis based on the remaining features. In the PB, almost 70% of
the variance is among animals, and in the BM approximately
50%. The temporal contribution drops to less than 5% for the
PB, but increases to 20% for the BM. These results confirm that
measurement error is a major contributor to estimation for low
abundance transcripts with RNA-Seq. By contrast, the variance
components for both metabolite columns is relatively unaffected
by the data reduction, with both animal and time each contin-
uing to explain approximately 15% of the overall variance. This

Table 1 | Principle components of variation.

PC PVEa Animalb Timepointb Sig. drugc(effect)

BM1 14.5% 0.67 0.18 3× 10−5(Pre high)

BM2 10.2% 0.92 0.02 0.09ns

BM3 7.1% 0.15 0.74 2× 10−4(inter low)

BM4 6.8% 0.91 0.05 0.0052 (pre high)

BM5 5.8% 0.80 0.13 0.011 (post low)

PB1 12.0% 0.94 0.02 0.59ns

PB2 8.2% 0.97 0.01 0.48ns

PB3 7.4% 0.87 0.01 0.75ns

PB4 7.0% 0.97 0.01 0.98ns

PB5 5.5% 0.12 0.14 0.36ns

AE1 17.3% 0.23 0.41 0.35ns

AE2 8.9% 0.13 0.47 0.14ns

AE3 7.3% 0.23 0.47 0.58ns

AE4 6.2% 0.41 0.34 0.13ns

AE5 4.9% 0.22 0.37 0.07ns

C18_1 18.5% 0.28 0.23 0.17ns

C18_2 9.3% 0.20 0.59 0.11ns

C18_3 6.6% 0.40 0.17 0.15ns

C18_4 6.3% 0.28 0.31 0.49ns

C18_5 4.8% 0.22 0.38 0.38ns

aAmount of total variance explained by the PC.
bAmount of variance explained by Animal or Timepoint.
cSignificance of Drug effect (pre vs. post vs. inter for transcriptome; post vs.

inter for metabolome), also showing which effect was differentiated.

may reflect filtration of the metabolites with the highest technical
variance during peak calling.

HIERARCHICAL CLUSTERING OF THE OMIC DATA
The preceding analysis tells us that both animal and time influ-
ence gene expression, but not which animals or timepoints are
more similar. A quick means of visualizing these relationships is
by two-way hierarchical clustering (Figure 3; Eisen et al., 1998).
Applied to the raw data, in a joint analysis of the BM and PB,
the gene expression of the two tissue types is clearly distinct,
and the greater contribution of animal to the PB than the BM
is seen by the perfect clustering of each of the seven timepoints
within each animal grouping (Figure 3A). In the BM, there is
some mixing of samples across animals, but it is also striking
that TP4 is somewhat distinct since the data from four of the
five animals cluster together. After standardization to z-scores for
each gene, which removes the effect of overall abundance level for
each transcript on the hierarchical clustering, these relationships
are largely maintained (Figure 3B). The separation of TP4 in the
BM is enhanced, although the clustering within animals is dis-
rupted for a few PB samples. The situation for the metabolome is
very different (Figure 3C) as neither the animals nor timepoints
form discrete clusters. Both LC columns have almost identical
topologies (data not shown), and technical variability does not
explain these results since almost without exception all three tech-
nical replicates of each metabolite sample cluster adjacent to one
another.
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FIGURE 2 | Principal component variance component analyses. Bar
graphs show the weighted average contribution of among animal (red) and
among timepoint (blue) variance to gene expression, metabolite, and
complete blood counts. (A) Full data set. (B) Reduced dataset after removal
of low abundance transcripts or metabolites.

With respect to blood cell counts, the hierarchical cluster-
ing topology of monocytes, lymphocytes, granulocytes, RBC,
and platelets did not correspond to either the transcriptome
or metabolome topologies. The final two timepoints (TP6 and
TP7) cluster to the exclusion of the earlier timepoints with
a couple of exceptions, and within the two large clusters the
individual animals are adjacent. However, there is no strong
relationship between blood cell counts and overall gene expres-
sion (Figure 3D). Since each blood cell type has a characteristic
expression profile which allows each cell to perform its spec-
ified role(s), including the limited mRNA complement in a
nuclear RBC, we hypothesized that the macaques that clustered
together in the expression profile would also have similar lev-
els of the major cell types. However, we do not observe such a
trend: macaques RCs13 and RWr13 (relative to RTi13, RUn13, and
RZe13) form two sets of transcript profiles, whereas RTi13 and
RWr13 are most similar for CBC with RZe13 the most variable.
Therefore, we conclude that the CBC is capturing information
about the system that is non-redundant with the transcriptome.
This result is particularly striking when considering that both
the transcriptome datasets as well as the CBC datasets have the
variance component of animal explaining more than 30% of the
variance.

INTEGRATION OF THE TRANSCRIPTOME AND METABOLOME PROFILES
These analyses suggest that the transcriptomes and metabolome
are poorly correlated overall across all timepoints and animals,

but do not exclude the possibility that subsets of features in the
BM, the PB, or the plasma may be co-regulated. To test this using
our top-down strategy, we evaluated the covariance between the
major PC of each of the four omic datasets. Figure 4 shows the
pairwise regression coefficients for each of the first 10 PC, allow-
ing for the possibility that minor PC involving strong covariance
of a small number of transcripts or metabolites may contribute.

The pattern that emerges is informative in many ways. Firstly,
it shows that the two metabolomic datasets are highly corre-
lated. This is to be expected since metabolites are being measured
from the same plasma sample; the difference between the two
datasets is the use of different liquid chromatography columns
to optimize peak resolution across different classes of metabolites
(broadly, sugars and amino acids on the AE anion exchange col-
umn, and lipids on the C18 column). PC1 and PC2 scores for the
two columns are highly significantly correlated; many lower PC
scores are also correlated. Unlike the metabolomic datasets, the
two transcriptomic datasets, representing the BM and PB, do not
show as much correlation (Figure 4, top left quadrant). Statistical
analysis however does indicate that PC1, PC2, PC3, and PC4 in
the PB are significantly correlated with PC2, PC4, PC1, and PC5
from the BM, respectively (Bonferroni corrected p < 0.05). Such
a result is not unexpected considering that the two compartments
have different functions yet one (blood) is composed of cell pop-
ulations derived from the other (marrow). In some cases the sign
of the regression is negative, but this is simply a function of PCA
which commonly reverses signs and order of PC due to sampling
variance. One difference between the compartments is that the
marrow contains many cell types that are rapidly dividing whereas
most of the cells in the blood are likely to be post-mitotic and
terminally differentiated.

Strikingly, there is no significant correlation between the tran-
scriptome PC scores and the metabolome PC scores across ani-
mals and timepoints. Figure 4 (top right box) seems to show
some relationships, but none of these are significant after mul-
tiple testing correction. We also explored 2-block partial least
square analysis (González et al., 2012) to identify minor vari-
ance components that may correlate in a joint analysis, but did
not observe any significant enrichment between the two data
types. This could be explained by the fact that the transcrip-
tome of these two immune compartments is contained within
the cell whereas the metabolome that we are interrogating is in
the plasma. Furthermore, the plasma is not only influenced by
metabolites from blood cells, but by metabolites secreted from all
tissues in the body and taken up from the environment.

The correlation of the major PC between the PB and the
BM datasets is dominated by among animal differences from the
variance component analysis, but also includes a temporal com-
ponent. The pre-drug samples in the BM are distinct from the
post- and inter-drug samples, but TP4 is the most differenti-
ated. In the PB, the baseline sample (TP1) is most differentiated,
but TP4, and, even more strongly, TP5 are also somewhat diver-
gent from the remaining samples. To assess the significance of
the overlap, we extracted the genes that were up-regulated in
the TP4 samples from the BM and performed a binomial sign-
test of whether the same genes were up-regulated at TP5 in the
PB. The result was highly significant (p < 3× 10−16). A similar
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FIGURE 3 | Two-way hierarchical clustering. Each heat map shows the
abundance of each transcript or metabolite (rows) in each sample
(column) with red indicating high expression, blue low, gray
intermediate. (A) Transcriptome, based on absolute log-2 intensity
estimates, and (B) based on standardized log-2 intensities, in both
cases combining both BM and PB in the same clustering. (C) Plasma
metabolome, where each column is a technical replicate, showing

almost perfect alignment of each of the three replicates of each
sample. (D) Complete blood counts are clustered with the branches of
the dendrogram colored according to the identity of the animal, and
cell types ordered as Red Blood Cells, Lymphocytes, Monocytes,
Platelets, and Granulocytes (R, L, M, P, G respectively). Each macaque
is abbreviated as C, T, U, W, or Z for RCs13, RTi13, RUn113, RWr13,
or RZE13 respectively, and numbers refer to timepoints.

result was obtained for the down-regulated genes, but the control
comparison of TP6 and TP7 in the PB for the same up- and down-
regulated genes and did not result in any enrichment (p = 0.74).
These data show that differential gene expression in the BM is
reflected in the PB with a time lag (though contamination of

BM with PB cannot be excluded). Note as well that in both tis-
sues the TP4/5 differentially expressed genes are similar to the
TP1 genes, but with opposite sign of effect, implying that genes
up-regulated at baseline are down-regulated at TP4/5, and vice
versa.
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FIGURE 4 | Pairwise correlation of principal components. Heatmap shows
correlations of the first 10 principal components for each of the four omic
datasets ordered by peripheral blood, bone marrow, AE and C18 (blue
negative, red positive, stronger hues indicate stronger correlation). The
highlighted boxes in the top left and bottom right quadrants show the

correspondence between PC scores for the two transcriptomes and two
metabolome columns, respectively; stronger colors along the diagonal
indicate that those PC are capturing similar signals. Although there are
scattered stronger colors in the top right quadrant comparing transcriptome
and metabolome, the actual correlations are not significant.

IDENTIFICATION OF DRUG-RESPONSIVE GENES AND METABOLITES
The major temporal component of variation is not a cyclical
response to drug administration, which would have produced a
pattern where TP3, TP5, and TP7 were distinct from TP4 and
TP6 and again from TP1 and TP2. None of the first 10 PC in
PB showed a significant effect of drug administration on gene
expression by analysis of variance with pre, inter and post lev-
els of drug (Table 1). We nevertheless employed three strategies to
identify potential drug-responsive genes: axis of variance analysis,
pathway-oriented analysis, and gene set enrichment analysis.

The requirement that PCs are orthogonal to one another
introduces a statistical bias that is well-known to obscure under-
lying biology (Biswas et al., 2008). Consequently, we employed
an alternate partitioning of the transcriptional variance based
on conserved patterns of covariance of axes of gene expression
that are observed in all large human PB transcriptome datasets
(Preininger et al., 2013). Each of 9 axes is defined by 10 BITs that
are highly co-regulated, and the first PC of these BITs is used as
a measure of activity of genes in the axis. Each axis is thought to
represent an aspect of immune function, such as T- or B-cell sig-
naling (Axes 1 and 3), innate immune activation (Axis 5) or an

interferon-related axis (Axis 7). We confirmed that the BIT are
co-regulated in macaques, in both the PB and the BM, and asked
whether they vary by animal or timepoint. Figure 5 shows highly
significant among animal effects in the BM for Axes 3, 5, and 7.
Importantly these data also capture a drug response effect that
is not evident from the standard principal components, as Axes
7 and 9 are clearly differentially expressed at TP3, TP5, and TP7
in the BM, representing the post-drug samples. Axis 7 is also sig-
nificantly divergent in the PB, as is Axis 3, while Axis 9 shows a
non-significant trend (Table 2).

Analysis of variance at the level of individual genes was also
effective at recovering timepoint specific responses in the BM, but
not initially in the PB: Table 3 lists the number of features signif-
icant at a False Discovery Rate of 5% (Benjamini and Hochberg,
1995). Recognizing that animal effects may obscure the tempo-
ral differences, we also ran the model with “animal” included as
a random statistical effect, and recovered almost twice as many
timepoint-responsive transcripts in the BM, and 292 in the PB.
Similarly, ANOVA of the metabolome yielded many more signifi-
cant timepoint-responsive metabolites after inclusion of “animal”
as a random effect.
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FIGURE 5 | Axis of variance analysis. Each plot shows the indicated Axis score (PC1 of the 10 BIT for the Axis) in the five animals (A–C) or at the seven
timepoints (D–F). In bone marrow, Axes 7 and 9 are significantly differentiated at TP3, 5, and 7, the post-drug timepoints.

Table 2 | Axes of variance analysis.

Axis Bone marrow Peripheral blood

PVE by PC1a Sig Animalb Sig Drugc PVE by PC1a Sig Animalb Sig Drugc

1 45 0.0034 0.0006 43 ns ns

2 77 8× 10−6 0.0061 68 0.0002 0.0025*

3 63 1× 10−10 0.0169* 91 2× 10−13 ns

4 25 ns ns 41 0.0005 ns

5 55 5× 10−6 0.0022 73 0.0003 ns

6 35 0.0066 0.0005 29 0.0002 ns

7 54 3× 10−6 0.0008* 76 3× 10−5 0.0267*

8 45 ns 0.0183 58 2× 10−5 ns

9 35 0.0002 1× 10−6* 44 0.0234 ns

aThe percent of variation in the BIT explained by PC1 (>35% implies strong covariance).
bThe signficance of the among-animal effect.
cThe significance of the pre-/post-/inter-drug treatment after removing the animal effect.

*Implies the post-drug treatment effect was extreme relative to pre- and inter-drug.
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The most interesting timepoint effect with respect to drug
exposure is where each of the post-drug timepoints is greater (or
less) than the immediately preceding pre-drug timepoint, namely
TP3 > TP2, TP5 > TP4, and TP7 > TP6. Again, this situation
was only observed in the BM: 73 genes were consistently greater
post-drug, and 25 consistently less strongly expressed post-drug,
but no genes satisfied this criterion in PB (paired t-test, p < 0.05
at each of the three comparisons in 5 animals). A list is provided
in the Supplementary data, and is notable for multiple immune-
related genes, including TLR4, IL1RAP, IL1RAP, IL10RB, and
MAP2K1.

PATHWAY-ORIENTED ENRICHMENT ANALYSES
We next visualized the broad distribution of gene expression in
pathways across the time course of pyrimethamine treatment

Table 3 | Differential gene expression between timepoints.

Data type Tissue Without animal With animal

in model in model

RNA-Seq Bone marrow 3678 6483
RNA-Seq Whole blood 0 292
AE MS Plasma 651 927
C18 MS Plasma 1254 1992
CBC Whole blood 10 13

Table shows number of genes significant at 5% FDR rate for each data type,

contrasting seven timepoints for RNA-Seq, and 5 timepoints for metabolomics.

by performing hierarchical clustering of a summary measure of
each of 270 KEGG pathways. For each pathway with at least five
transcripts expressed in both BM and PB, we generated the first
principal component (PC1) of all of the transcripts annotated to
the pathway, measured in all five monkeys at seven timepoints.
These pathway PC1 values were averaged across the monkeys,
and clustered by Ward’s method in JMP. Figure 6 shows heat
maps of the average PC1 scores for BM (A) and PB (B) with red
corresponding to a high positive score, generally high transcript
abundance, and blue a negative score, generally lower abundance
on average.

In the BM, we observed seven clusters of pathway PC1 scores,
with the major division of timepoints grouping TP1, TP2, and
TP3 separately from TP4 through TP7. There was no clustering of
pathways at the three post-drug timepoints (TP3, TP5, and TP7).
In the PB, we observed just six clusters of pathway PC1 scores,
with the major division of timepoints separating TP1, TP4, and
TP6 from the remainder. Again, there was no evident clustering
of the post-drug timepoints. The grouping of TP4 and TP6 corre-
sponds to expected absence of drug, as does the baseline TP1, but
this does not seem to relate to drug exposure since TP2 sampled
immediately prior to the first drug administration, groups with
the post-drug samples.

Comparing both sample types, 10% of the cluster identities in
the PB are explained by the cluster identities in the BM (Pearson
Chi-square, p < 10−6). However, this also means that the major-
ity of the pathways change their average PC1 profile between the
BM and the PB. There are nevertheless some interesting clusters.

FIGURE 6 | Differential representation of pathways across timepoints.
The two-way hierarchical heat maps summarize co-expression of genes
within pathways in the bone marrow (A) and peripheral blood (B). Data
points are the mean PC1 score for each of 270 KEGG pathways. Rows

are timepoints, and the major clusters of PC1 scores are indicated.
Black tick marks below the heatmap in (A) indicate pathways that
are significantly different for the contrast of post- versus pre-drug
treatment.
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For example, the small green cluster 2 to the left in Figure 6A that
is high prior to drug administration and low at the final three
timepoints includes Ras and Rap 1 signaling, purine metabolism,
and infectious disease response. By contrast, the yellow cluster 7
that is more highly expressed uniformly after first drug adminis-
tration includes inflammatory autoimmune pathways, as well as
extracellular matrix and cell adhesion. Most of the DNA repair
and recombination pathways show the inverse pattern (clusters
4 and 5) implying down-regulation after persistent exposure to
pyrimethamine, as might be expected due to reduction of cell
division in response to folate inhibition. In the blood, the small
blue-green cluster 5 that is high at TP4, TP5, and TP6 involves
diverse pathways indicating perturbation of a variety of aspects of
cellular physiology during that interval of time.

These trends were not necessarily consistent across all five
monkeys. Similar hierarchical clustering of the 270 pathway PC1
scores of all 5 animals showed that two (RCs13 and RWr13) have
quite similar profiles, while another two (RUn13 and RZe13) are
only similar if TP4 is withdrawn from the analysis. Intriguingly,
these pairs of monkeys were each housed together in the same
cage, but there is no way of knowing whether that is coinci-
dence or reflects an effect of shared environment. The result
does however underline the conclusion that any effect of drug
administration is to a large extent animal-specific.

TARGETED AND GENE SET ENRICHMENT ANALYSIS
A disadvantage of the pathway-oriented approach is that it
assumes that the covariance of genes within pathways that is cap-
tured by PC1 represents the most relevant aspect of perturbed
gene expression. A more common approach is to identify differ-
entially expressed genes and then ask whether they are enriched
in particular pathways. We thus applied Gene Set Enrichment
Analysis (GSEA) to the dataset, focusing on genes that are glob-
ally altered at the 5% FDR level following drug treatment, namely
different between the two pre-drug samples and all five post- and
inter-drug samples. In the BM, analysis of 4178 genes revealed
13 pathways down-regulated following pyrimethamine exposure,
and 12 pathways up-regulated, at p < 0.001 and FDR q < 0.01;
these are listed in Table 4. The down-regulated pathways reflect
functions in the cell-cycle and metabolism including nucleotide
biosynthesis and DNA repair, as well as oxidative phosphorylation
(and glycolysis/gluconeogenesis trends in the same direction).
The up-regulated pathways are all involved in immune signal
transduction. Notably, in many cases the gene expression appears
to be intermediate at TP3, suggesting a gradual transition in
response to first drug administration that was reinforced with
subsequent administrations and lasted several months.

A good example of this is provided by focused analysis of
the one-carbon pool by folate pathway, which we expected to
be influenced by pyrimethamine, since the drug functions by
inhibiting the enzyme dihydrofolate reductase (DHFR). The
pathway was too small to include in the GSEA, but neverthe-
less 12 of 17 genes expressed in the macaque and annotated to
KEGG map00670 are positively co-regulated in both BM and
PB samples, with PC1 capturing 51% and 40% of the variance,
respectively (Figures 7A,B). The trajectory of this score trends
downward beginning at TP3 in the BM and over half the variance

Table 4 | Gene set enrichment analysis.

KEGG ID Pathway name Size p FDR p

DOWN REGULATED AFTER PYRIMETHAMINE

3030 DNA replication 26 <0.001 <0.001

4110 Cell cycle 57 <0.001 <0.001

3410 Base excision rep. 18 0.002 <0.001

3420 Nucleotide excis’n 22 0.004 0.006

0072 Ox phosphoryl’n 45 <0.001 <0.001

0010 Glycolysis 23 0.011 0.019

0480 Glutathione 24 <0.001 <0.001

0240 Pyrimidine 37 <0.001 <0.001

0230 Purine 60 0.003 0.006

3040 Spliceosome 46 <0.001 <0.001

5016 Huntington’s 56 <0.001 <0.001

5012 Parkinson’s 44 <0.001 <0.001

5010 Alzheimer’s 53 <0.001 <0.001

5322 SLE 34 0.005 0.008

UP REGULATED AFTER PYRIMETHAMINE

4660 TCR signaling 44 <0.001 <0.001

4650 NK-mediated cytotox 34 <0.001 <0.001

4630 JAK-STAT signaling 36 <0.001 0.001

4070 PI signaling 19 <0.001 0.001

4210 Apoptosis 23 <0.001 0.011

4662 B cell receptor signaling 21 <0.001 0.014

4370 VEGF signaling 19 0.002 0.013

4150 mTOR signaling 19 0.002 0.015

4310 WNT signaling 42 0.007 0.022

4722 Neurotrophin signaling 40 0.007 0.025

4012 ErbB signaling 24 0.007 0.028

4514 Cell adhesion 37 0.007 0.031

is among timepoints (ANOVA p < 0.0001), whereas in the PB
there is no differential expression (Figures 7C,D).

In the PB, purine (KEGG map00230) and pyrimidine (KEGG
map00240) metabolism pathways both show a very large coor-
dinated reduction in PC1 after TP1, namely before the first
drug administration, and remain low throughout the experiment.
Similarly, oxidative phosphorylation (KEGG map00190) is dom-
inated by a transition that precedes drug administration, as is
glycolysis (KEGG map00010), although it occurs in the opposite
direction (i.e., gene expression increases). These results suggest
that the animals experienced a shift in their major mode of energy
production in the circulating blood cells after introduction into
the experimental cages. Fatty acid biosynthesis also shows inter-
esting patterns that we do not have space to describe in detail. All
of these observations await confirmation at the metabolite level
once the annotation of the m/z features on the platform is more
advanced.

BAYESIAN NETWORK ANALYSIS OF THE TRANSCRIPTOME
Finally, we adopted an orthogonal exploratory approach to
describe networks of highly co-regulated genes. Each of the 1000
genes most differentially expressed relative to drug administration
in the BM samples (that is, in the comparison of post- vs. inter-
drug timepoints) were carried forward to quality-thresholded
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FIGURE 7 | Targeted analysis of the folate pathway. (A,B) Loadings of
the first two PC for each of 17 genes in KEGG map00670 (One carbon
pool by folate) in BM and PB, also indicating the percent variation
explained by each PC. Note that MTHFR switches direction effect

between the cell sources. (C,D) Corresponding profiles across the
timecourse, showing decline in PC1 generally in BM following drug
exposure, but no significant differential expression in PB. Colors
correspond to the five monkeys as in Figure 5.

clustering (De Smet et al., 2002). We identified 26 clusters of 10 or
more transcripts, the first 4 of which have at least 50 transcripts
each (Figure 8A). Permutation of sample labels across timepoints
or the entire data set never identified this degree of covariance:
full permutation of sample labels for each gene independently
recovered zero clusters, while permutation of timepoints within
animals for each gene independently yielded just one cluster with
two genes, indicating that the clusters found were not artifacts
of the underlying data distributions while also increasing confi-
dence that the clusters are biologically motivated. Permutation of
animals within timepoints recovered a similar number and size of
clusters as the true data, indicating that animal effects had been
largely (but not completely) removed in generating the residuals.
Since Bayesian network inference is typically much more robust
and reliable with many more than the 35 samples available in
this study, we increased the effective number of observations per
variable by treating each gene (at each timepoint) as an obser-
vation of the behavior if its cluster. To do this, we concatenated
the top 10 genes most closely correlated with the cluster centroid,
yielding 350 observations for each of the 26 clusters. The most
robust and likely connections in the emergent networks were then
determined by subsampling and permutation as described in the
Methods.

An efficient and powerful method for Bayesian network struc-
ture learning, the Sparse Candidate Algorithm (Friedman et al.,
1999), was used to uncover the potential connections between
the clusters. Networks were inferred for 1000 randomly generated
subsamples of 90% of the data for each gene to ensure the robust-
ness of the learning results; all connections shown in Figure 8B
satisfy the criterion that each connection must exist in at least
50% of all of the resampling simulations for the original data, and
in each of the three permutations of that data; we found an aver-
age overlap of 66.7% of interactions conserved between the orig-
inal dataset and each of the three shuffles for the BM data, with
13 connections consistently detected in all datasets (see detailed
descriptions of robustness testing in the Methods). Core features
of this BM network were further investigated by inspection, and
validated by gene set enrichment analysis (Subramanian et al.,
2005). For instance, cluster 1 shows complimentary patterns to
clusters 8 and 22, while it is most similar to clusters 20 and 24. The
core genes in each of these clusters suggest functions in immune
T-cell responses. Clusters 1 and 3 are “hubs” with a relatively high
degree of connectivity in a graph that is otherwise quite sparse.

Although there was little evidence for significant differential
expression among the three drug response classes (pre-, post-, and
inter-) in the PB, we nevertheless assessed whether the BM cluster
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modularity may be present in the PB. Projected onto the PB, many
of the BM clusters appeared to be co-regulated. To statistically
validate this inference, for each cluster we computed the correla-
tion of each gene with the centroid in the PB data, and compared

the observed distribution with that of 100 random samples of the
same size as that cluster, taken from the 660 transcripts contained
in all of the clusters. Figure 8C shows the proportion of permuta-
tions showing a significant deviation in the direction of stronger

FIGURE 8 | Bayesian Network analysis. (A) The results of quality-based
clustering on BM transcriptional data provide tight clusters of coregulated
genes used as input for Bayesian network inference. (B) The resulting robust
network, defined as those connections present in at least 50% of all
subsample analyses for each of four different permutations of the dataset.
The size of nodes indicates the size of the clusters (also included in A), and
the size of edges connecting nodes reflects the relative likelihood of a
connection based on its overall frequency of occurrence across subsample
replicates. (C) Statistical testing of the significance of correlations within

clusters of PB data derived from BM data clustering. For each cluster, 100
random samples of genes of the same size of the cluster were compared to
the PB data using the BM clustering of genes. The distributions of gene
profile correlations to the centroid of their cluster were compared using a
one-tailed Kolmogorov–Smirnov test. Histogram bars represent the number
of random samplings showing statistically significant increases in correlation
of the actual data compared to random data. (D) The PB network derived
using BM clusters; of note there is one conserved connection between this
and the BM network.

Frontiers in Cell and Developmental Biology | Systems Biology October 2014 | Volume 2 | Article 54 | 32

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Lee et al. Multi-omics of macaque pyrimethamine administration

concordance in the observed data, providing good evidence for
cluster conservation in the PB for 12 of the 13 largest clusters,
as well as several of the smaller ones. Furthermore, the Bayesian
network approach identified a number of robust connections in
the PB data, showing an average 37.5% overlap between the orig-
inal data and any of the permutations, and three connections
were observed in common across all permutations (Figure 8D).
One of those three connections was observed in both the PB and
the BM, implying robust dependence of cluster 13 on cluster 2
between the two compartments. Of note, the genes in both of
these clusters have been implicated in 6 and 24 h responses to
the anti-tumor aminopeptidase inhibitor Tosedostat (Krige et al.,
2008). The other two connections (cluster 3 to 2, and cluster 4 to
12) are found in PB but not in BM, suggesting that not only is
there conservation of modularity between the compartments, but
that new relationships using the modularity of one compartment
can be observed in the other.

Application of a similar pipeline to the metabolome data also
revealed novel structure to the data. Since there are fewer differ-
entially abundant m/z features in the plasma, this analysis was
performed on 500 features for each column with relatively high
false discovery rates on the post- vs. inter-drug samples, namely
28% for C18 (p < 0.01) and 36% for AE (p < 0.031). Quality-
thresholded clustering identified 11 and 10 clusters respectively
with more than 5 m/z features, and 4 and 3 with more than
10 m/z features. The profiles of the larger clusters in each of the
two columns are concordant (Figures 9A,B), and most were also
recovered in a joint analysis of both columns, with approximately

double the number of features. This suggests that the two columns
reproduce the same tight clusters of metabolites across animals
and times, although the actual m/z values do not match, suggest-
ing that different ionizations or adducts may have been included
in the selected features for each column. After Bayesian Network
analysis, three robust connections were observed between AE
clusters, but none with the C18 data (Figures 9C,D).

To investigate possible integration of the metabolic and tran-
scriptional data types, we first simply performed correlation
analysis between the centroids of all of the clusters. The strongest
interaction that was identified had a correlation coefficient
of −0.61. Using Bayesian network inference on all clusters of
size greater than 10 between BM transcriptional data and AE
column metabolomics data (using only timepoints 3–7 for all
based on availability of metabolomics data), we found little in the
way of robust connections between the two data types (data not
shown). There were no connections conserved across 50% of the
subsampling analyses in each of the original and four permuted
datasets; however, relaxing this criterion slightly to include any
connection present for 50% of all subsampling runs across all
four datasets (not 50% in each individual dataset) revealed one
potential connection between the two data types.

DISCUSSION
This study with naïve healthy rhesus macaques precedes others
that will involve specific infection and treatment regimens, and,
importantly, it has served to establish logistics and methodolo-
gies for systems biological approaches requiring the monitoring

FIGURE 9 | Quality-thresholded clustering of metabolomics data.
Each plot shows the standardized levels of the indicated number in
parentheses of m/z features in Qt-clusters that have at least 5
features. The order of samples along the x-axis is {RCs18, RTi18,
RUn18, RWr18, and RZe18} at TP3, 4, 5, 6, and 7, and the solid blue

line indicates the centroid of the cluster. (A) AE column. (B) C18
column. (C,D) Bayesian networks assembled on clusters with five
metabolites and seven levels of discretization, and 80% subsampling
threshold, similar to the analyses used to generate the transcriptomic
networks in Figure 8B.
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and evaluation of clinical data, collection of PB and BM samples,
and the integrative analysis of multiple omics and other datasets.
The biological objective of this study was to use the combined
power of transcriptomic and metabolomic profiling to investi-
gate the effects of an anti-malarial drug on the physiology of the
PB and BM. Five rhesus macaques were injected with a prepa-
ration of uninfected Anopheles dirus salivary glands, to mimic an
inoculation of Plasmodium sporozoites, and then followed for 100
days with intermittent administration of pyrimethamine, a drug
known to have an effect on the BM.

Ideally the unbiased top-down analytical approach that we
adopted would identify components of variation in both the
transcriptional and metabolomic domains that covary with drug
administration, and enrichment analysis of both would point
to a common aspect of metabolic regulation such as nucleotide
biosynthesis. To some extent we were thwarted in this objective
by three findings: (i) there is very low correspondence between
the transcriptome and metabolome and no major components of
variation correlate with repeated pyrimethamine administration;
(ii) among animal effects dominate the transcriptome raising
the possibility that pyrimethamine responses are variable among
individuals and obscure any common response; and (iii) although
the metabolomics platform reports thousands of features, anno-
tation is not yet robust enough to support global enrichment
analysis in this dataset (but see Li et al., 2013, for encouraging
developments).

Additionally, we must acknowledge that this is a relatively
small study, with just five monkeys and seven timepoints. The
failure to detect strong drug responses or covariance of the blood
and transcriptome may simply be a function of lack of statis-
tical power. For example, although we can attribute the largest
PC to specific sources of variance, those explaining much less
than 10% of the variance might be regarded as noise, and are
unlikely to replicate. That is one reason why we turned to the Axis
of Variation analysis, since the axes have a more biological basis
that is not as dependent on sample size. The pathway-oriented
analysis also highlights how interpretation of single gene effects
must be placed within the context of the major sources of vari-
ance, in this case animal effects and some temporal shifts that
may not relate to drug administration. It is likely that much
larger studies would be required to detect strong transcriptome-
metabolome covariance: for example, our analysis of 20 strains
of Drosophila profiled on four diets with considerable techni-
cal replication did suggest some specific examples of covariance
despite general absence of correspondence of the major PC axes,
and even in the presence of large genotype-by-diet interactions
(Reed et al., 2014). Studies with hundreds of NHPs are imprac-
tical, so we must make do with analytical methods such as
those reported here, but recognizing that there is low power
and the potential to over-interpret those associations that are
detected.

Nevertheless, several key findings contradict our expectations
and highlight aspects of the biology that emerge from multi-omic
analyses. Most striking is the magnitude of the among-animal dif-
ferentiation of the transcriptome. This is even stronger in the PB
than the BM, with almost perfect clustering of all seven time-
point samples within animals. Each of the major PC and Axes of

variation are significantly different among animals. In the BM, an
unknown variable caused TP4 to generate a markedly different
profile common to all five macaques, yet the individual profiles
return to the animal-specific baseline within weeks. Persistent
among-individual differential expression in the PB has also been
reported in humans (Whitney et al., 2003; GG unpublished), but
here we demonstrate for the first time that the differential expres-
sion is initiated in the BM and the data suggests that it precedes
and is independent of individual-specific environmental influ-
ences faced in the PB. Persistent inter-individual variation is less
marked in the metabolome, but nevertheless present as previously
observed by Park et al. (2009) in a human dietary intervention
study.

The temporal component of transcriptional variance shows
some sign of cycling with drug administration, but it is domi-
nated by timepoints that are not primarily associated with recent
administration of the drug. In the PB, TP1 is most divergent,
possibly indicating incomplete acclimatization of the animals to
their new experimental housing and experimental procedures.
Indeed, one of the pathways elevated at TP1 denotes a general-
ized stress response, as we have previously observed in captive
relative to free range red wolves (Kennerly et al., 2008). This
effect is much less in the BM, and since TP1 and TP2 differ
from the remaining timepoints for 2 of the first 5 PC and 3
of 9 Axes (e.g., Figures 5D,F). Consistent with the observation
that pyrimethamine has an effect on the BM (Wickramasinghe
and Litwinczuk, 1981) our data indicates that in the BM there
is a global impact of pyrimethamine that persists throughout
the experiment following the first administration. Then at TP4
in the BM and TP4 and especially TP5 in the PB, there is fur-
ther differentiation of gene expression consistent with a height-
ened response to the drug. TP4 is an inter-treatment timepoint,
over 20 days after the previous administration at a time when
pyrimethamine should no longer be in circulation based on its
half-life of 140 h (Almond et al., 2000). Based on this figure there
should nevertheless be around one third of the administered dose
still available at the post-drug timepoints (TP3, 5, and 7), but we
do not know to what extent it would be directly available to cells
in the BM or circulating in the blood. Consequently, it is possible
that the relatively weak drug effects are because the animals are
no longer functionally exposed to pyrimethamine at the sampled
timepoints. We have been unable to correlate the change at TP4
with any variable such as a change in handler or cage conditions.
The null hypothesis of no differential expression across time is
rejected, but we do not have a clear alternate hypothesis for the
effect.

In the metabolome, there is very good correspondence
between the PC and the hierarchical cluster profiles of the two
columns, but the major variance components do not correlate
with either animal or drug response. Since retention times dif-
fer between the columns, and m/z peaks included in feature
selection may be from different adducts for several metabo-
lites, it is not straightforward to combine the analysis of both
columns. The major temporal effect is at TP7, which shows a
correlated response across all five animals. It is unclear whether
this represents a long-term effect of more than two months of
drug treatment, or some other unidentified stimulus, but it has
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no correlate in the transcriptome. Several hundred metabolite
features are globally different in the post-drug samples, even
though the major PC also differentiate the post- and inter-drug
timepoints.

The antimalarial drug pyrimethamine interferes with folate
by inhibiting the enzyme dihydrofolate reductase and disrupts
the parasite life cycle by interfering with nucleotide metabolism
and replication. It also affects host metabolism, and in fact
folate supplementation is often used to sustain healthy erythro-
poiesis in pregnant women and infants (Titaley et al., 2010).
Gene set enrichment analysis (Subramanian et al., 2005) of the
transcriptome provides some evidence for effects on metabolism
and cell division. Briefly, contrasting the pre- with the post-
and inter-drug timepoints, some common pathways between the
BM and PB, as well as BM-specific changes, are observed. The
former are of a metabolic nature, including oxidative phospho-
rylation, pentose phosphate, glyoxylate, butanoate, and linoleic
acid metabolism; the latter include multiple KEGG pathways
related to the cell cycle such as DNA replication, recombina-
tion, and repair. Our Bayesian network approach also focuses
attention on regulation of cell division since one of the key
enrichments in the BM is with targets of Tosedostat, an anti-
cancer drug that antagonizes aminopeptidase activity (DiNardo
and Cortes, 2014). Results such as this generate hypotheses that
can be tested by targeted metabolomics and manipulation of gene
expression, suggesting a new integrative genomics approach to
pharmacogenetics.

Our top down analyses also provide some important lessons
regarding the joint use of different data integration strategies
in MaHPIC (or similar) experiments where a relatively small
number of individuals will be followed longitudinally during
an intervention. While the principal components approach effi-
ciently defines the major sources of variation, it misses important
biological results and is not obviously the best strategy for integra-
tion of multiple omic and immunological measures. In particular,
the axis of variation analysis picks up effects of drug admin-
istration on broad aspects of immune function, most notably
interferon-related gene activity highlighted by Axis 7 in both PB
and BM samples. It is unlikely in this case that the elevation
of this axis is due to viral activity, but this result and weaker
evidence for dysregulation of Axes 2 and 9 in the week after
pyrimethamine administration show that the network of immune
interactions is perturbed and that drug activity is not narrowly
restricted to the immediate effects of folate. Finally, given the
small number of animals and timepoints in this experiment, sta-
tistical power is low for formal hypothesis testing, but we begin
to show how Bayesian Network analysis can tease out interaction
effects that are not evident in univariate analysis or in analyses
designed to capture the largest overall components of variance.
The two immune compartments share clusters of co-regulated
gene modules, but the connectivity of these differs between BM
and PB samples. Plasmodium infection will have a much larger
impact on the animals’ physiology than the mock-inoculations
described here, providing ample opportunity for exploring
network-based modeling of the host-parasite interactions that
underlie malaria infections, immunity, pathogenesis, and severe
disease.
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Objective: To provide a frame to estimate the systemic impact (side/adverse events) of
(novel) therapeutic targets by taking into consideration drugs potential on the numerous
districts involved in rheumatoid arthritis (RA) from the inflammatory and immune response
to the gut-intestinal (GI) microbiome.

Methods: We curated the collection of molecules from high-throughput screens of
diverse (multi-omic) biochemical origin, experimentally associated to RA. Starting from
such collection we generated RA-related protein-protein interaction (PPI) networks
(interactomes) based on experimental PPI data. Pharmacological treatment simulation,
topological and functional analyses were further run to gain insight into the proteins most
affected by therapy and by multi-omic modeling.

Results: Simulation on the administration of MTX results in the activation of expected
(apoptosis) and adverse (nitrogenous metabolism alteration) effects. Growth factor
receptor-bound protein 2 (GRB2) and Interleukin-1 Receptor Associated Kinase-4 (IRAK4,
already an RA target) emerge as relevant nodes. The former controls the activation of
inflammatory, proliferative and degenerative pathways in host and pathogens. The latter
controls immune alterations and blocks innate response to pathogens.

Conclusions: This multi-omic map properly recollects in a single analytical picture known,
yet complex, information like the adverse/side effects of MTX, and provides a reliable
platform for in silico hypothesis testing or recommendation on novel therapies. These
results can support the development of RA translational research in the design of validation
experiments and clinical trials, as such we identify GRB2 as a robust potential new target
for RA for its ability to control both synovial degeneracy and dysbiosis, and, conversely,
warn on the usage of IRAK4-inhibitors recently promoted, as this involves potential
adverse effects in the form of impaired innate response to pathogens.

Keywords: rheumatoid arthritis, multi-omic data integration, host-microbiome interface, protein-protein
interaction, network topology

INTRODUCTION
Rheumatoid arthritis (RA) is a multifaceted autoimmune,
chronic and inflammatory disease with, to date, unclear etiology.
As a consequence of its complexity, the definition of efficient and
effective therapies remains a remarkable challenge due to the dif-
ficulties in controlling side effects and adverse events in relation
to known (like genetic susceptibility, Stahl et al., 2010) and emer-
gent (epigenomic factors, Nakano et al., 2012, dysbiosis, Scher
and Abramson, 2011) RA-associated con-causes.

Recently, translational research has welcomed into medicine
a number of novel perspectives. Among these, sequencing tech-
nologies (omic screens) and computational intensive approaches
(systems biology) now coagulate into a practice where tech-
nology and mathematical modeling serve basic research in the
production of selected hypotheses, which testing in vitro, in vivo
and ultimately in clinical studies can support medical research

and practice (Okada et al., 2014; You et al., 2014). The recent
acknowledgment of the importance and complexity of the gut
intestinal (GI) microbiome in the onset, progression and regres-
sion of RA (Scher and Abramson, 2011; Scher et al., 2012,
2013) and other autoimmune diseases, requires to incorpo-
rate the effects on the GI microbiome for any novel therapy.
While protocols and medical best practice recommendations
become mature in this direction, we propose the use of net-
work approaches and omics from diverse origins (i.e., different
biochemical districts/compartments/layers) including genomics,
epigenomics, transcriptomics, post-transcriptomics, proteomics,
and host-microbiome interface to GI metagenomics, to appropri-
ately monitor the complexity of the disease. The novelty of the
present work, therefore, lies not only in its application to RA, but
also in the number of omic layers we have used, from genomic to
proteomic and including the host-microbiome interface. These
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novelties allow to draw a single analytical picture of the frag-
mented molecular information available to date on RA, an easily
consultable and extendable reference map for the researchers in
the field, and—importantly—a systemic evaluation on the impact
of a recently proposed RA therapeutic target (IRAK4), valuable
per se and as an exemplar application of this approach. Overall,
this work contributes to the general debate about data integra-
tion by offering details on our methodology, and to the area of
complex inflammatory diseases, by providing specific examples
of data choice and operational results.

METHODS
MAP CONSTRUCTION
The datasets used to construct the map are gathered from 13
different sources from databases and literature (Table 1). We
included molecules experimentally associated to RA from man-
ual curation of literature sources (core dataset, CD, 377 pro-
teins, Data Sheet 1, Tables S1–S6), and additional molecules and
pathways strongly yet not explicitly associated to RA (extended
dataset, ED, 4709 proteins, Data Sheet 1, Tables S3A–E, S7–S13).
A summary of all datasets and proteins’ Uniprot IDs is pro-
vided in Data Sheet 1, Table S14. While the core set constitutes
a more specific RA map, its extension offers a more systemic
and practically usable map, notably in terms of the significance
of the statistics that can be run on the extended map. The map
presented here assembles genomic, epigenomic, transcriptomic,
post-transcriptomic, proteomic, and host-microbiome interface
data related to RA, as detailed below, and integrates such infor-
mation at the functional level of protein-protein interactions
(PPIs). The PPI framework is an assessed integrative approach
(Hodgman, 2007; Dittrich et al., 2008; Jin et al., 2008; Kim

et al., 2010; Iskar et al., 2012) that has already been used
in computational biology to understand diseases’ pathogenesis
(Huang et al., 2009b); to implement tools for the interpretation of
inferred gene and protein lists (Berger et al., 2007; Antonov et al.,
2009); to prioritize cancer-associated genes (Wu et al., 2012); to
predict functional linkages among genes (Lehner and Lee, 2008);
to show the implication of protein networks topology in genetics,
personal genomics, and therapy (Lee et al., 2013); to implement
data integration workflows showcased in obstructive nephropathy
in children (Moulos et al., 2011).

CORE DATASET
The CD is composed of 377 proteins retrieved from six data
sources (Data Sheet 1, Tables S1–S6):

1) RA genome-wide association studies (GWAS) gathered and
integrated from five different databases (BioGPS (Wu et al.,
2009), HuGE (Yu et al., 2008), NHGRI, OMIM, PharmGKB
(Klein et al., 2001); see Data Sheet 1, Table S1 for the specific
query processes);

2) RA-associated proteins from the Universal Protein Resource
(Uniprot) (Consortium, 2010), retrieved using as search
parameters “rheumatoid arthritis” and “human” and then
manually screened (Data Sheet 1, Table S2);

3) Genes and proteins retrieved from a comprehensive review of
the literature, in particular genes appearing in Tables 1, 2 of
Review (Mcinnes and Schett, 2011) and cited references (Data
Sheet 1, Table S3);

4) Genes that show epigenetic changes in relation to RA, as speci-
fied in Trenkmann et al. (2010); Karouzakis et al. (2011) (Data
Sheet 1, Table S4);

Table 1 | Data sources, subsets and number of elements of the RA map.

Subset
Id.

Source of subset Main
dataset
destination

No. of proteins in
subset

Total no. of
proteins in main

dataset

No. of proteins
(and PPIs) in the
interactome map

No. of proteins (and
PPIs) in the interactome

map: main cluster

1 GWAS Core 223

2 UNIPROT Core 49

3 Literature review Core 53
377 303 (597) 161 (542)

4 Methylation Core 37

5 Exp. valid. micriob. interface Core 54

6 NF-κB consensus Core 16

3A T cell activation pathways Extended 1248

3B Other pathways Extended 283

3C Cytokines Extended 1536

3D Growth and differentiation Extended 472

3E Intracell signaling and TFs Extended 1837

7 Transcriptional RA map Extended 212

8 RA-miRNA reg. proteins Extended 1652 4709 3783 (24457) 3466 (24364)

9A Downreg. genes in RA Extended 451

9B Upreg. genes in RA Extended 210

10 Inflammasomes Extended 152

11 Adenosine receptors Extended 569

12 GPCRs Extended 364

13 Microbiome interface Extended 171
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5) Proteins that are at the interface between the host and the
oral microbiome, in particular proteins experimentally known
to be differentially expressed in presence of Porphyromonas
Gingivalis (Zhou and Amar, 2006), a periodontitis-causing
bacterium that has been strongly linked to the insurgence of
RA (Mikuls et al., 2012; Scher et al., 2012; Smit et al., 2012;
Bingham and Moni, 2013; Ogrendik, 2013; Okada et al., 2013)
(Data Sheet 1, Table S5);

6) The key elements of the NF-κB system, the master regulator of
inflammation (Oeckinghaus et al., 2011; Smale, 2011; Hayden
and Ghosh, 2012) at the center of a complex regulatory inter-
actome (Tieri et al., 2012) prominently implicated in the
onset and development of RA (Miagkov et al., 1998; Makarov,
2001; Feldmann et al., 2002; Okamoto, 2006; Roman-Blas
and Jimenez, 2006, 2008; Simmonds and Foxwell, 2008; Van
Loo and Beyaert, 2011): we included 16 “consensus” proteins
that appear at the intersection of the three main NF-κB-
related datasets described in Tieri et al. (2012) (Data Sheet 1,
Table S6).

EXTENDED DATASET
The extended dataset (ED, that includes CD) is composed of
4709 proteins, which are involved in a broader sense in the
onset and development of RA, such as proteins participating in
signaling pathways or cascades of recognized importance for RA.
This extension provides a more general setting for the molecular
framing of RA, and offers a larger network to operate on, with
more relevant statistics and analyses, giving account for contribu-
tions coming from entities that may have been neglected or that
are not experimentally related to RA, but that participate to the
inception of the disease. In addition to the proteins of the core
dataset, we added eight main subsets, as follows (Data Sheet 1,
Tables S3A–E, S7–S13):

3A-B-C-D-E) in retrieving data from Mcinnes and Schett
(2011) and references cited there, we considered that
some of the key proteins can be “hidden” inside the
signaling pathways involved in the disease. In order to
take into account such potentially important and usu-
ally neglected elements, we expanded subset 3 of CD by
a pathway enrichment analysis process, using the genes
listed in Mcinnes and Schett (2011) Tables 1, 2. To popu-
late these five subsets, the selected genes have been input
in the pathway over-representation analysis (ORA) tool
of InnateDB, one of the most comprehensive sources of
pathways data available (Lynn et al., 2008; Breuer et al.,
2013). Pathway ORA has been performed on InnateDB
using hypergeometric distribution for p-value compu-
tation and Benjamini–Hochberg correction method for
multiple hypothesis testing. All the proteins participating
to such over-represented pathways were then included.
We retrieved respectively: 39 enriched pathways account-
ing for 1248 proteins (subset 3A), 14 pathways and 283
proteins (3B), 46 pathways and 1536 proteins (3C), 5 path-
ways and 472 proteins (3D), and 92 pathways and 1837
proteins (3E), all collected in Data Sheet 1, Tables S3A–E;

7) Genes derived from the transcriptional RA map in Wu
et al. (2010) (Data Sheet 1, Table S7);

8) RA-related miRNA-regulated genes: experimentally vali-
dated target genes of all miRNAs that are associated to
RA in the database miRWalk (Dweep et al., 2011) (search
mode: holistic view of validated disease-miRNA interac-
tions; web reference: http://www.umm.uni-heidelberg.de/
apps/zmf/mirwalk/disease.html; query keywords: Arthritis
AND Rheumatic diseases) (Data Sheet 1, Table S8);

9A,B) gene expression profiles of RA patients and healthy con-
trols were searched on Gene Expression Omnibus (GEO,
(Barrett et al., 2011) http://www.ncbi.nlm.nih.gov/geo/)
with the query [“rheumatoid arthritis” AND “(synovi∗ OR
blood)”] (i.e., in synovial tissue and/or blood). In order
to include only highly consistent information, datasets
without pre-treatment samples, with no details about
the therapy and no raw data were filtered out. Human
PBMCs collected and processed by Affymetrix technology
were selected, leaving only one dataset out of the initial
61, GSE7524, which contains transcriptomic profiles of
2 healthy controls, 2 before and 2 after anti-TNFα treat-
ment samples. Affymetrix Human Genome U133A Array
was used to measure the expression levels of ∼14,500
well-characterized human genes. The raw data were pre-
processed using affy package (Gautier et al., 2004) in
R (http://www.r-project.org/), normalized using robust
multi-array average (rma) (Irizarry et al., 2003) and for
multiple probes corresponding to the same gene, the probe
with the highest standard variation across all samples was
used to represent the gene. Differentially expressed genes
[fold-change (Murie et al., 2009)=2] were identified with
the comparison between the 2 healthy controls and the
2 before anti-TNFα treatment samples resulting in 646
genes differentially expressed, among which 440 genes
(451 proteins) were down-regulated and 206 genes (210
proteins) were up-regulated (Data Sheet 1, Tables S9A,B);

10) Proteins related to the inflammasome, a multiprotein
oligomer responsible for activation of inflammatory pro-
cesses proteins, which is also known to be activated from
the bacterium P. Gingivalis, among others, and recognized
to play a relevant role in RA (Sidiropoulos et al., 2008;
Kolly et al., 2010; Farquharson et al., 2012; Mathews et al.,
2013) (Data Sheet 1, Table S10). This set was retrieved
using ORA as described in 3A-B-C-D-E;

11) Adenosine receptors and related proteins, known to be
involved in RA (Varani et al., 2010, 2011; Vincenzi et al.,
2013) and possibly at the basis of the mechanism of action
of methotrexate, first-line therapy for the treatment of RA
(Stamp et al., 2012) (Data Sheet 1, Table S11). This set was
retrieved using ORA as in 3A-B-C-D-E and 10;

12) The large family of G Protein Coupled Receptors (GPCRs)
(Hutchings et al., 2010; Lozupone et al., 2012; Maynard
et al., 2012; Tremaroli and Backhed, 2012), pertain-
ing to host-microbiome interface proteins (grouped
in a separate set from 13 due to their numerosity),
retrieved from http://www.iuphar-db.org/DATABASE/
ReceptorFamiliesForward?type=GPCR (Sharman et al.,
2013) (Data Sheet 1, Table S12);

13) The set of host-microbiome interacting proteins, manu-
ally curated from recent reviews (Lozupone et al., 2012;
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Maynard et al., 2012; Tremaroli and Backhed, 2012), to
describe the bridge between innate immunity (altered in
RA) and the GI microbiome [known to be involved in
immune diseases in general and in RA in particular (Scher
and Abramson, 2011)]. Globally this dataset accounts for
the Toll-like Receptor family (TLRs), the mucin proteins
family, selected Immunoglobulins (Ig) and their receptors,
among others (Data Sheet 1, Table S13).

Datasets are integrated at the PPI level as peers to avoid
introducing any bias a priori in the network construction
and to warrant that these data are connected in a biologi-
cally meaningful way. Protein-protein interactions were retrieved
in Cytoscape from the Agile Protein Interaction DataAnalyzer
database (APID, Prieto and De Las Rivas, 2006) that includes
all known experimentally validated protein-protein interactions
from BIND, BioGRID, DIP, HPRD, IntAct and MINT databases,
accessed via the APID2NET (Hernandez-Toro et al., 2007) plu-
gin. This process lead to the definitions of, respectively, the
core interactome (CI, 303 proteins, 597 interactions, high reso-
lution Image S1) and the extended interactome (EI, 3783 pro-
teins, 24457 interactions, high resolution Image S2). Discussion
on caveats and choices of original sources can be found in
Tieri and Nardini (2013).

TOPOLOGICAL ANALYSIS
Topological analysis was run separately on the main connected
component of each interactome (i.e., excluding the proteins for
which no PPI was retrieved, i.e., that remained isolated) to eval-
uate a number of network parameters (Assenov et al., 2008):
degree, or connectivity, i.e., the number of nodes linked to the
node of interest (number of edges); and betweenness centrality
(BC), a measure of the amount of control that a node exerts
over the interactions of other nodes in the network. This measure
favors nodes that join communities such as dense subnetworks,
rather than nodes that lie inside a community, and has been
shown to characterize essential proteins (Platzer et al., 2007). All
calculated network parameters and rankings are listed in Data
Sheet 2, Tables S15, S16 or can be recalculated from the Cytoscape
CI_EI.cys (Data Sheet 3) file available at http://www.picb.ac.cn/
ClinicalGenomicNTW/RAmultiomic.html.

PHARMACOLOGICAL TREATMENT SIMULATION
To simulate the pharmacological treatment, a virtual node knock-
out experiment has been performed by controlling (manual
removal of the nodes and Cytoscape plugin Interference (Scardoni
et al., 2014) 20 MTX controlled targets identified in literature
(Cutolo et al., 2001; Chan and Cronstein, 2002) present in EI
(Data Sheet 2, Table S17). Betweenness centrality (and, to add
robustness to the analysis, stress, S, i.e., an alternative central-
ity functional form) were then re-calculated to assess the impact
of such therapy on the topology and hence the functionality of
the network. Manual node removal and pharmacological sim-
ulation plugin present overlapping results (betweenness: 95.9%,
stress: 98.2%, Data Sheet 2, Table S17). The p-values, corrected
for multiple testing (threshold 0.05), have been calculated after
constructing null betweenness centrality distributions by 1000
random deletions of 20 nodes, as many as the MTX targets (Efron

and Tibshirani, 1993). Functional clustering analysis has been
then performed (Data Sheet 2, Table S18).

COMPARATIVE ANALYSIS
We further run a comparative analysis between our newly con-
structed multi-omic map, EI, and TR, that represent an earlier
transcriptional-only version (Wu et al., 2010), to highlight the
biological mechanisms that have been better emphasized from the
usage of multilayer omic data.

Degree was evaluated as the number of edges attached to a
node for the undirected networks as EI (and CI) are (i.e., con-
nections among nodes do not indicate directional cause-effect nor
temporal relationship). For TR (directed network) proteins and
their modified instances (such as MAPKs and phosphorylated-
MAPKs) were first considered as one (complex) node, then
in-degrees (edges to the node) and out-degrees (edges from the
node) of the components (MAPK and phosphorylated-MAPK)
were summed up to obtain the undirected degree, after subtract-
ing the number of edges connecting the members of the complex
node. To complete the compatibility of the degree defined for
undirected maps (and namely EI), given the different sizes of
EI and TR, the percentrank of the degree was also computed.
The nodes which degree rank was modified by more than 10%
between the two networks, were considered as nodes undergo-
ing a transition. A node was defined as accomplished when its %
rank degree was preserved, loser when the ranking reduced from
TR to EI, climber when it increased from TR to EI (Data Sheet 2,
Table S19). From a strictly topological point of view, the thresh-
old that defines a node as accomplished can be set to zero, and
hence this definition identifies only the nodes with the same exact
degree. From a biological standpoint, and for an informative bio-
logical interpretation of the results, it is not necessary to impose
the exact matching of the ranking. For this reason we relaxed the
threshold and defined as accomplished the nodes that present the
same, higher or lower % rank of the degree with±10% tolerance,
as a reasonable compromise.

Biological meaning for climbers and accomplished nodes in the
transition TR to EI was assessed by enrichment analysis Enrichr
(Chen et al., 2013) see Data Sheet 2, Table S20.

RESULTS AND DISCUSSION
After curating all molecular information (Table 1) we inferred
the network from the reconstructed lists with the PPI approach,
which consists of connecting nodes (molecules) based on their
interactions at the protein level, a broadly assessed approach in
computational biology, and already used for RA in both already
cited (Okada et al., 2014; You et al., 2014). All following results
pertain to the analysis on the extended interactome (EI), more
informative for its larger size.

To validate the ability of our network to model the biomolec-
ular aspects of RA, we first simulated a therapeutic approach
with MTX (see methods) and compared the results with the
major known effects reported in literature (Figure 1A). As a
result of the control on 20 MTX targets removal, the network
changes its topology (Figure 1B; Data Sheet 2, Table S17), and
the functional analysis indicates that 32 molecules which BC sig-
nificantly altered (Data Sheet 2, Table S17, col. 2) pertain to
two main functions [Data Sheet 2, Table S18, DAVID (Huang
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Table 2 | RA-associated proteins significantly modified upon MTX therapy release and functional annotation clustering in DAVID.

GO:0042981: reg. of apoptosis
GO:0043067: reg. of progr. cell
death
GO:0010941: reg. of cell death

GO:0031328: positive reg. cellular
biosynth. process
GO:0009891: positive reg. biosynth.
process

GO:0051173: positive reg.
nitrogen compound
metabolic process

GO:0010557: positive
regulation macromolec.
biosynth. process

BC S BC S BC S BC S

ABL1 ↑ ↑
BRCA1 ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
CREBBP ↑ ↑ ↑ ↑ ↑ ↑
CTNNB1 ↑ ↓ ↑ ↓ ↑ ↓
EGFR ↑ ↓ ↑ ↓ ↑ ↓
EP300 ↑ ↑ ↑ ↑ ↑ ↑
ESR1 ↑ ↓
HSP90AA1, 2 ↑ ↓ ↑ ↓
LCK ↑ ↓
MAPK1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
MYC ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
PRKCA ↑ ↑
SMAD3 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
SRC ↑ ↑
STAT3 ↑ ↓ ↑ ↓ ↑ ↓
TP53 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
TRAF6 ↑ ↑ ↑ ↑ ↑ ↑
VHL ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
YWHAZ ↑ ↓

Thirty-two proteins were identified to be significantly changed by the 20 MTX target proteins’ deletion (1000 permutations, adjusted p-value = 0.01). The topological

measures of betweenness and stress centrality were shown to be significantly altered increased (black arrow ↑) or decreased (red arrow ↓) after knocking out the

MTX target proteins. Among the listed proteins, enriched for the shown GO categories, STAT3 was found to belong to the host-microbiome interface as defined

in Methods. The top 2 functional annotation clusters run on the changed proteins identified enrichment for cell death and biosynthetic process as well as nitrogen

compound metabolic process (Functional Annotation Clustering Classification stringency: high, see Supplementary Data Sheet 2, Table S18; BC, betweenness

centrality; S, stress centrality).

et al., 2009a)]: regulation of programmed cell death, a known
effect of MTX (Spurlock et al., 2011); and metabolic and biosyn-
thetic processes, an alteration known to constitute a side effect
of the treatment (Phillips et al., 2003), as well as an area of
synergy between host and microbiome (Tremaroli and Backhed,
2012; Devaraj et al., 2013; Winter et al., 2013). Moving down to
the gene level, as illustrated in Table 2, Signal Transducers and
Activators of Transcription 3 (STAT3) deserves particular atten-
tion, as it is a crucial player in the JAK/STAT signaling cascade, at
the basis of the signal transduction mechanism for many cytokine
receptors, highly activated in RA (Paunovic et al., 2008), and an
important member of the host-microbiome interface (Zhou and
Amar, 2006), being involved in the host susceptibility/defense
against intestinal infections at the mucosal level (Miettinen et al.,
2000).

From a topological point of view, STAT3 presents enhanced
betweenness and reduced stress centralities after virtual MTX treat-
ment. This is an unusual topological condition—since there is
commonly correlation between stress and betweenness—where,
upon perturbation (MTX) a higher fraction of shortest paths con-
verges on STAT3 (gain in betweenness centrality) despite a decrease
in their absolute number (loss of stress centrality). This indicates
that the networks shrinks and STAT3 becomes more important,

a fact that can be translated in biological terms as the com-
pensatory mechanisms induced by the loss of some molecules’
presence/activity (MTX targets), which globally force STAT3 to
become the molecule through which more numerous (higher
betweenness) but less efficient molecular reactions (longer paths,
lower stress) occur.

Overall, STAT3, which is already considered a crucial target
in RA for its critical role in the T regulatory/helper 17 lymphoid
cells [Treg/Th17 balance overabundant in RA (Leipe et al., 2010)]
is coherently shown as an indirectly controlled target by MTX
explaining the ability of the therapy to rebalance Th17/IL17 ratio
(Li et al., 2012).

In conclusion, our map is able to recollect known and yet
complex information about the effects of MTX, this represents
an important validation of our frame for further simulations.
Additionally, our map indicates a clear link between MTX and
dysbiosis, which to date has not been explicitly unrevealed,
although enterocolitis is a known toxic effect of MTX, linked to
the induced nitroxidative stress (Kolli et al., 2008, 2013). This
is a critical fact as the known adverse effects of MTX, gener-
ally described as immunodepressive, appear to be composed not
only by the known oxidative organ stress, but also by an added
dysbiosis, possibly mediated by an overload on STAT3.
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FIGURE 1 | (A) Snapshot of the extended interactome (EI) with nodes
highlighted by betweenness centrality (BC), high resolution browsable
figure provided in Supplementary Files (Image S2). (B) Zoom on the top
ranking BC node (GRB2) and its closer interactome. Pathways relevant in
the indication of GRB2 as an RA target, able to control inflammation
TGF-β (TGFB1-3), TNF-α (TNF, TNFRS10C), MAPK (MAP4K1, MAPK3),
degeneracy EMT (TWIST1-2, CDH1), and dysbiosis (TRL4) are also
highlighted. (C) Visual summary of the influence of GRB2 on the
RA-affected districts highlight a homeostatic (blue) influence on

inflammation, GI microbiome, growth, differentiation. The pie-chart slices’
size is proportional to the number of molecules considered in each
district. Districts were merged from the total 13 datasets according to
biochemical homogeneity in the following 8 categories: Genomic (DNA,
Dataset 1); Epigenomic (mDNA, Dataset 4); Transcriptomic (mRNA,
Datasets 7, 9A, 9B); Post-transcriptomic (miRNA, Dataset 8); Proteomic
(proteins, Dataset 2); Microbiome (Host-microbiome proteins interface,
Oral microbiome Datasets 5, 10, 12, 13); Inflammation (6, 3A, 3B, 3C);
Others, i.e., Growth, Differentiation (Datasets 3, 11, 3D, 3E).

The topological analysis highlights the striking relevance of
Growth factor receptor-bound protein 2 (GRB2) with values of
BC more than two-fold (Data Sheet 2, Table S16) compared to
the second in rank, the Epidermal growth factor receptor (EGFR).
Based on literature, GRB2 is an effective target (Phase I clin-
ical trial, http://www.biopathholdings.com/) for Acute Myeloid
Leukemia (AML), Chronic myelogenous leukemia (CML) and
Myelodysplastic syndromes (MDS); an important mediator of the
oncogenic activities of TGF-β, via epithelial mesenchymal tran-
sition (EMT) (Galliher-Beckley and Schiemann, 2008); a crucial
player in the host-microbiome interaction of Helicobacter pylori,
able to induce host cell scattering and proliferation via the acti-
vation of the Ras/MEK/ERK pathway (Mimuro et al., 2002); a
marker of RA in synoviocites (Huh et al., 2003). GRB2 is addi-
tionally activated by leptin (Pai et al., 2005), abundant in RA

(Bokarewa et al., 2003) and able to increase Prevotella intermedia
LPS-induced TNF-α production (Kim, 2010). Moreover, another
member of the Prevotella genus (P. copri) has recently been liaised
to RA (Scher et al., 2013), as a specific marker of GI micro-
biome dysbiosis associated to the disease. When observed from
the network perspective this apparently scattered information
fits in a connected map (Figure 1B) and hence builds a robust
rationale for considering GRB2 as a target for RA. The activa-
tion of proliferative and inflammatory pathways as well as EMT,
are hallmarks of RA (You et al., 2014) suggesting that the con-
trol on GRB2 as a regulator of such mechanisms is appropriate.
Additionally, the control on GRB2 exerted by H. pylori [already
proposed in relation to RA (Melby et al., 1999)] and by P. inter-
media in the presence of leptin indicate that targeting of GRB2
is not only of relevance to control the phenotypic symptoms of
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RA (joints degeneracy) but also the recently highlighted dysbio-
sis that accompany the disease, via the control of the disruptive
mechanisms by which pathogens can exert their action on the
host (Figure 1C).

Given the relevance of RA as a paradigmatic autoimmune dis-
ease, a variety of in silico modeling approaches have been devised
(Okada et al., 2014; You et al., 2014), and, among those, an early
transcriptional only map (hereinafter TR, 302 nodes; Wu et al.,
2010). The previous compilation of this simplified version put us
in the relatively unique position to be able to quantify the benefit,
in terms of information content, of expanding from transcrip-
tional to multi-omic the network modeling of RA. The molecules
that gain importance (i.e., have a higher degree) in the multi-
omic map versus the TR (climbers, see Methods and Figure 2A)
pertain mostly to the MAPK Signaling Pathway (Figure 2B and
Data Sheet 2, Table S19). This category is also highly enriched
for accomplished nodes, thus validating the importance of this

pathway in the disease. However, climbers, all representing genes
shared between TR and EI, include molecules known to belong
also to the GI interface (SFR, MAP2K4, MAP3K8), absent in
the accomplished, implying the importance of the involvement
of the host-microbiome interface, not taken into account in the
TR map. In particular, Interleukin-1 Receptor Associated Kinase-
4 (IRAK4, climber) is known to play a critical role in initiating
response to foreign pathogens (Hofman and Vouret-Craviari,
2012) and was recently presented to the American College of
Rheumatology (ACR), based on promising results on the con-
trol of B-cell-like diffuse large B-cell lymphoma (DLBCL), as a
potential treatment for RA (Chaudahry and Al, 2012). In the net-
work perspective, this choice calls for words of cautions. Indeed,
while correlating with regression of some aspects of the disease,
the control on IRAK4 affects the response to pathogens, and
in particular IRAK4 inhibitors impacts on pDCs in RA patients
(Chiang et al., 2011), therefore limiting the appropriate and

FIGURE 2 | (A) Multi-omic map (EI) nodes highlighted according to their
role in comparison with a transcriptional-only map (TR). In orange, nodes
that maintain their role and importance in both EI and TR (accomplished );
in red, nodes that gain importance in the multi-omic context, (climbers).
(B) Functional analysis of the climber hubs, which highlight the striking
significance of MAPK signals. Panel (C) is built in the same way of
Figure 1C to permit easy comparison of the two targets. It represents the

summary of the influence of IRAK4 on the RA-affected districts, and
highlights a homeostatic (blue) influence on inflammation, growth,
differentiation as well as transcriptomic and post-transcriptomic districts.
However, the microbiome interface response is impaired by IRAK4
inhibition of the innate immune response to pathogens. The pie-chart
slices’ size is proportional to the number of molecules considered in each
district (as in Figure 1).
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immediate innate host response in case of bacterial infections
(Figure 2C).

CONCLUSION
The aim of the designed framework is to draw hypotheses that can
support basic research and further clinical practice. In particular,
we here highlight two major areas of application: support in the
identification of novel drug targets (exemplified by GRB2); sup-
port in the identification of potential contraindication to novel
therapies, i.e., support in the design of robust clinical trials (exem-
plified by IRAK4-inhibitors). While the former application joins
other efforts in different clinical areas [such as on diabetes (Liu
et al., 2007; Santiago and Potashkin, 2013), in cancer (Hwang
et al., 2013), and on glioblastoma (Junhua et al., 2012)], the latter
descends from the inclusion of numerous data types, including
for the first time to our knowledge, the GI microbiome inter-
face. The results discussed in this article are the output of the
knowledge distilled from ∼4000 selected molecules and ∼15
public databases, a humongous amount of information carefully
and often redundantly peer-reviewed by the scientific commu-
nity. Future and ongoing research and the resulting discoveries
will impact on the breadth and possibly on the topology of our
map. To take into account these expected (and desirable) events,
our map was drawn using open source programs and pathway
molecules’ standards to allow full map usability, editing and
updating by the whole scientific community.
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Omics profiling significantly expanded the molecular landscape describing clinical
phenotypes. Association analysis resulted in first diagnostic and prognostic biomarker
signatures entering clinical utility. However, utilizing Omics for deepening our
understanding of disease pathophysiology, and further including specific interference
with drug mechanism of action on a molecular process level still sees limited added
value in the clinical setting. We exemplify a computational workflow for expanding from
statistics-based association analysis toward deriving molecular pathway and process
models for characterizing phenotypes and drug mechanism of action. Interference analysis
on the molecular model level allows identification of predictive biomarker candidates
for testing drug response. We discuss this strategy on diabetic nephropathy (DN), a
complex clinical phenotype triggered by diabetes and presenting with renal as well as
cardiovascular endpoints. A molecular pathway map indicates involvement of multiple
molecular mechanisms, and selected biomarker candidates reported as associated with
disease progression are identified for specific molecular processes. Selective interference
of drug mechanism of action and disease-associated processes is identified for drug
classes in clinical use, in turn providing precision medicine hypotheses utilizing predictive
biomarkers.

Keywords: omics, integration, molecular model, biomarker, target, systems biology, systems pharmacology,
precision medicine

INTRODUCTION
Despite a continuously rising number of clinical trials the rate
of bringing novel medication to the clinic is stalling (Pammolli
et al., 2011). Here, Omics profiling and high throughput drug
screening technologies at the interface of large scale clinical data
have triggered novel conceptual strategies aimed at improved
patient stratification for enabling precision medicine (Trusheim
et al., 2011; Hollebecque et al., 2014). For implementing such
approaches a number of issues need to be addressed including:
(i) mirroring the clinical categorization of a phenotype on a
molecular level description, (ii) spotting molecular factors mech-
anistically driving disease progression, (iii) drug-based inter-
vention specifically addressing such progression mechanisms,
and (iv) predictive biomarkers allowing fit-for-purpose analysis
regarding a match of relevant pathophysiology and drug mech-
anism of action on the individual patient level (Heinzel et al.,
2012).

A clinically well-established example is HER2 positive breast
cancer characterized by overexpression of a member of the epider-
mal growth factor receptor family (ERBB2) playing a mechanistic
role in progressive disease. In case the factor is proving positive
for a patient the specific presentation is amenable for treat-
ment tackling growth signaling (Hicks and Kulkarni, 2008). Still,

the clinical presentation of breast cancer shows heterogeneous
pathophysiologies apart HER2 positive subtypes. In consequence,
when aiming at a comprehensive assessment of progressive breast
cancer phenotypes multimarker panels are needed, e.g., imple-
mented by a multiplexed assay holding 70 individual molecular
features (Buyse et al., 2006). Such multimarker panels have gen-
erally become a promising strategy for characterizing complex
clinical presentations, e.g., utilizing a serum marker panel for
predicting coronary artery disease in symptomatic patients, or a
urinary proteomics profile for early diagnosis of diabetic kidney
disease (LaFramboise et al., 2012; Zürbig et al., 2012).

Failure for identifying a single causative factor as proxy
for determining progression of a complex clinical phenotype
becomes apparent when comparing the performance of marker
panels with single markers, with the latter e.g., reviewed by
Hellemons et al. for onset and progression of diabetic kidney dis-
ease (Hellemons et al., 2012). In clinical practice a different type
of biomarker may be utilized, providing a phenotypic readout
primarily reflecting the functional status of an organ in contrast
to the pathophysiological characteristics. In kidney disease such
functional markers are used in patient management as well as
clinical trial design, including the estimated glomerular filtration
rate (eGFR) and proteinuria (reflecting glomerular filtration and
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permeation of macromolecules across the glomerular capillary
wall, respectively).

Association of these parameters with worsening of diabetic
kidney disease, together with increasing incidence of endpoints as
cardiovascular events is undisputed (Adler et al., 2003). However,
these markers do not provide information on the specific molec-
ular characteristics of the disease. Functional markers render
stratification for tailored therapy in the concept of precision
medicine essentially impossible.

The molecular pathway of primary interest in the present clin-
ical setting of diabetic kidney disease is the renin-angiotensin
system (RAS), in its activity at foremost controlling blood pres-
sure and fluid balance. Blockade of the RAS has been able to
reduce the incidence of renal events in patients with and with-
out diabetes mellitus (Ruggenenti et al., 1998; Brenner et al.,
2001). In a study by Lewis et al. angiotensin receptor blockade
by Irbesartan reduced the risk of a primary composite endpoint
(doubling of baseline serum creatinine concentration, develop-
ment of end-stage renal disease or death from any cause) during
a follow up period of 2.6 years by 20% when compared to the
placebo (Lewis et al., 2001). Nevertheless, 50% of patients in the
Irbesartan group reached the primary endpoint after 54 months.
In an effort to increase the efficacy of RAS antagonistic therapy an
angiotensin receptor blocker was combined with placebo or the
angiotensin converting enzyme (ACE) inhibitor Lisinopril (Fried
et al., 2013). The combination therapy did not reduce the inci-
dence of a combined renal endpoint. On the contrary an increased
risk of hyperkalemia and acute kidney injury was observed con-
firming other reports questioning the safety of this approach
(Mann et al., 2008; Parving et al., 2008).

Next to addressing RAS, organ-specific molecular processes
involving inflammation and oxidative stress have been impli-
cated in progressive tubulointerstitial fibrosis, the best histolog-
ical, hence molecular mechanistic predictor of an adverse renal
disease prognosis (Rodríguez-Iturbe and García García, 2010).
Bardoxolone, a nuclear factor-erythroid-2-related factor 2 activa-
tor with anti-oxidative capacity increased eGFR in patients with
advanced diabetic renal disease (Pergola et al., 2011). However,
a large prospective controlled randomized trial with hard end-
points had to be stopped because of severe side effects (De Zeeuw
et al., 2013).

As given with these examples for chronic kidney disease (but
in its conceptual fundament holding true for a multitude of
highly prevalent chronic diseases), many of the recent inter-
ventional studies failed to achieve their goals. Here biomarkers
promise to take a key role in selecting patients for studies and/or
to predict the long term effects of a drug on hard endpoints.
Upfront stratification in randomized controlled trials by separat-
ing patients by drug response as measured by biomarkers serving
as endpoint surrogate and then randomizing the groups sepa-
rately is an approach which is, at least from a statistical point
of view, preferable to post-hoc analysis (De Leon, 2012). Such an
enrichment strategy is currently e.g., tested in the SONAR study
(clinicaltrials.gov reference NCT01858532) addressing diabetic
nephropathy (DN).

However, with respect to fit of specific drugs biomarkers
need to carry predictive value, i.e., a biomarker shall on a

patient-specific level identify responders benefitting from drug
effect. In this setting various levels need to be considered involv-
ing genetic and environmental components defining disease
presentation and progression. The drug target may see genetic
polymorphism impacting drug binding, but polymorphism may
further involve drug transport and drug metabolism (Johnson,
2001). A significant number of genetic polymorphisms have in
the meantime become drug label-relevant regarding drug effi-
cacy, but also toxicity and side effects (U.S. Food and Drug
Administration, 2014). Pharmacogenomics has clearly demon-
strated that the genetic background of an individual introduces
heterogeneity in drug response.

Still, this setting assumes a homogeneous patient population
with respect to the molecular mechanistic factors determining
disease progression, only exhibiting differences in genetic pecu-
liarities of one and the same molecular mechanistic context. In
such setting functional biomarkers appear sufficient for identify-
ing progressive disease, and drug variance is fully explained by
the genetic background in regard to the mechanism of action of a
specific drug.

A complementary perspective may be that the molecular
mechanistic background and progression-relevant molecular fac-
tors are per se diverse and patient-specific, naturally determining
drug response (Mayer et al., 2012). In such scenario a biomarker
needs to serve as proxy of key mechanistic factors characteriz-
ing and driving a disease on a patient-specific level, combined
with educating on the specific interference of disease mechanism
with drug mechanism of action. For capturing these constraints
a detailed molecular map of a clinical phenotype and its interfer-
ence with a drug mechanism of action is needed, and here inte-
gration of Omics profiling adds to identifying such mechanisms
(Fechete et al., 2011; Mühlberger et al., 2012).

An a priori stratification of patients based on an appropri-
ately chosen biomarker panel reflecting the pathophysiology of
a given patient (group) allowing to determine a match with a spe-
cific drug’s mechanism of action appears as promising approach.
As recently discussed by Himmelfarb et al. fresh approaches are
critical in finding therapies to kidney disease benefiting patients,
outlining the importance of improving the translational aspect
in clinical research (Himmelfarb and Tuttle, 2013). Here, omics
technologies have added significantly to the data landscape char-
acterizing chronic kidney disease, however, in a first instance
mainly expanding the candidate set of apparently relevant pro-
cesses and pathways, going in hand with a large number of
biomarker candidates, which individually hamper clinically rel-
evant assessment on disease progression (Fechete et al., 2011;
Hellemons et al., 2012).

Integrative approaches in the realm of Systems Biology have
been proposed for reaching a consensus description of chronic
kidney disease pathophysiology, including molecular models
of DN as well as of the reno-cardial axis (He et al., 2012;
Komorowsky et al., 2012; Mayer et al., 2012; Heinzel et al.,
2013). Still, a translation process needs to be followed, joining
disease pathophysiology, stratification markers allowing enrich-
ment strategies, combined with on a molecular mechanistic level
matching drugs for allowing precision medicine (Mirnezami
et al., 2012). In this work we exemplify such procedure on DN
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being the major clinical presentation leading to end stage renal
disease.

MATERIALS AND METHODS
GENERAL DATA SOURCES
Protein coding genes identified as associated with DN were
collected from public domain transcriptomics data sources,
complemented with molecular features reporting such associa-
tion in scientific literature. Molecular signatures educating on
ACE inhibitor mechanism of action were extracted from public
domain transcriptomics sources. Proteins discussed as biomark-
ers or drug target candidates in the context of DN were extracted
from scientific literature, with the set of targets further extended
with known drug targets of drugs currently utilized in clini-
cal trials including renal endpoints. Protein-protein interaction
information and molecular pathway maps were retrieved from
public domain databases.

Clinical phenotype molecular data
A literature search in NCBI Pubmed utilizing the query string dia-
betic nephropathies[majr] AND (microarray analysis[mh] OR gene
expression profiling[mh]) AND humans[mh] NOT review resulted
in 37 transcriptomics studies. Explicitly restricting to explorative,
array-based mRNA expression studies on human kidney tissue
yielded four studies as suitable for inclusion in further analysis.
For Berthier et al. and Cohen et al. expression signatures could
be retrieved directly from the publications (Cohen et al., 2008;
Berthier et al., 2009). For Woroniecka et al. and Baelde et al.
the raw expression profiles were retrieved from Gene Expression
Omnibus (GSE30122, GSE1009) (Baelde et al., 2004; Woroniecka
et al., 2011). Robust Multi-array Average (RMA) normalization

for the data set of Woroniecka et al. and MAS5 normaliza-
tion for the data set of Baelde et al., followed by Significance
Analysis of Microarrays (SAM) was employed for identifying fea-
tures showing differential regulation comparing diabetic kidney
disease and healthy control samples. In case of microdissected
sample material separate analysis was done for the glomerular and
tubulointerstitial compartment.

To further complement the set of DN-associated features a
literature mining approach based on Pubmed Medical Subject
Headings (MeSH) annotation and publication to gene links pro-
vided in gene2pubmed (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
gene2pubmed.gz) was executed. A Pubmed search using diabetic
nephropathies[majr] AND human[mh] as query string was per-
formed for identifying publications of relevance in the context
of DN, resulting in 10,766 publications. Protein coding genes
explicitly discussed in these publications were extracted from
gene2pubmed by filtering based on Pubmed ID and Taxonomy
ID (9606 for human).

Finally, the sets of differentially regulated features identified in
the individual transcriptomics studies as well as the set of genes
from literature extraction were consolidated on the Ensembl gene
namespace (Table 1).

Biomarker and target annotation from scientific literature
A NCBI Pubmed search for publications holding Diabetic
Nephropathies further qualified by one of the following
qualifiers pathology, physiopathology, enzymology, metabolism,
complications, blood, diagnosis, urine, and epidemiology as major
MeSH concept, further demanding one of the MeSH concepts
Biological Markers or Tumor Markers, Biological was performed
for identifying publications discussing biomarker candidates. For

Table 1 | Diabetic nephropathy molecular data space.

Data type Study setup # Protein coding
genes

References

Transcriptomics, tissue biopsies Comparison of healthy references (GFR > 60)
and established DN (GFR 30-59);

Glomerular compartment:
Tubulointerstitial compartment:

5
7

Berthier et al., 2009

Transcriptomics, tissue biopsies Comparison of healthy references (GFR > 60)
and established DN (GFR 30-59);

Glomerular compartment:
Tubulointerstitial compartment:

164
183

Woroniecka et al., 2011

Transcriptomics, tissue biopsies Comparison of healthy references (GFR > 60)
and patients with type 2 diabetes > 5 years;

Glomerular compartment: 167

Baelde et al., 2004

Transcriptomics, tissue biopsies Comparison of healthy references and
established DN (no further details provided)

Tubulointerstitial compartment: 69

Cohen et al., 2008

Literature extraction PubMed MeSH query as defined in main text 415 –

Total number of unique protein coding genes 881

Provided is the data type, study setup details, number of protein coding genes identified as DN-associated, and literature reference for a study.
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retrieving drug target candidates the term Diabetic Nephropathies
with the qualifiers drug therapy and therapy was used, respec-
tively. The search revealed 615 publications for biomarkers and
2,692 for drug targets. Their respective Pubmed IDs were subse-
quently used for extracting human genes from the gene2pubmed
file, resulting in 54 biomarker candidates and 19 drug target
candidates.

Target annotation via drugs under investigation
Clinical trial data for completed and currently ongoing clinical
trials were retrieved from ClinicalTrials.gov (http://clinicaltrials.
gov/). The advanced search as provided on the ClinicalTrials.gov
webpage was used for identifying studies that fulfilled the fol-
lowing two criteria: Study Type equals Interventional Studies and
Condition contains Diabetic Nephropathy, revealing 206 clinical
studies. Title and trial description were manually reviewed for
focus on renal disease, resulting in 124 studies further considered.
Respective drug interventions were mapped to their DrugBank
entries (Law et al., 2014), extracting human drug targets as listed,
being further mapped on the Ensembl gene namespace. In total
86 drug targets were identified using this approach, of which one
was also part of the 19 target candidates retrieved from mining
of scientific literature essentially covering basic and translational
research activities.

Drug mechanism of action molecular data
A set of ACE inhibitors was retrieved from the Anatomical
Therapeutic Chemical (ATC) classification system maintained by
the World Health Organization (WHO). 16 compounds classified
under ACE inhibitors, plain (ATC code: C09AA) were identi-
fied and used for subsequent data extraction from DrugMatrix
(https://ntp.niehs.nih.gov/drugmatrix/index.html). For six out
of the 16 drugs sets of genes being affected by drug presence
in rat kidney tissue after drug administration were available
within DrugMatrix. Obtained rat gene sets were subsequently
mapped from Unigene IDs (Sayers et al., 2009) to Ensembl rat
IDs and from there further to human ortholog genes according to
Ensembl (Table 2).

Table 2 | Drug mechanism of action data space.

Drug name # Protein Database

coding genes references

Benazepril 442 ICX5600735

Captopril 535 ICX5602791

Enalapril 526 ICX5601254

Lisinopril 558 ICX5601689

Quinapril 572 ICX5602295

Ramipril 519 ICX5602317

Total number of unique protein
coding genes

2058

Given is the drug name, number of associated human protein coding genes

identified as significantly affected by drug presence in transcriptomics profiling,

and DrugMatrix reference identifier.

MOLECULAR PATHWAY AND PROTEIN INTERACTION DATA
KEGG and Panther pathway membership information for pro-
tein coding genes was obtained via KEGG’s REST service and
from the plain-text database file available on the Panther web
site, respectively (Thomas et al., 2003; Kanehisa et al., 2014).
Human protein-protein interaction data from BioGRID, INTACT
and Reactome were extracted from the respective plain-text files
provided by the individual data sources (Stark et al., 2006; Kerrien
et al., 2012; Croft et al., 2014). Gene and protein identifiers pro-
vided in the original sources were mapped to their respective
Ensembl gene IDs. Protein-protein interaction data were further
merged into a protein-protein interaction network using Ensembl
gene IDs as common denominator of the individual networks.

MOLECULAR PATHWAY AND PROCESS IDENTIFICATION
Molecular pathways and processes were analyzed on the one hand
on the basis of a literature review of KEGG and Panther pathways
already discussed as relevant in the context of DN. In a second
approach de-novo identification of DN molecular processes was
performed utilizing the DN pathophysiology feature set. A seg-
mentation algorithm for the identification of processes in the DN
protein-protein interaction network was pursued for assembling
a molecular process model for DN. Utilizing an analogous proce-
dure a molecular mechanism of action model for ACE inhibitors
was constructed utilizing expression signatures obtained from
DrugMatrix.

DN pathways from literature
A NCBI Pubmed search for publications utilizing the query
string “diabetic nephropathy”[ti] OR “diabetic nephropathies”[ti])
AND (pathway[ti] OR pathways[ti]) was performed resulting in
53 publications holding the keywords in the title. Subsequently,
named entity recognition was performed to annotate occurrence
of pathway names according to KEGG and Panther entries in the
title and abstract of these publications. Finally, abstracts holding
a pathway name were manually reviewed to ensure an association
of the identified pathway in the context of DN, leading to 27 indi-
vidual pathways discussed in literature as being afflicted with DN.
Relations between pathways were inferred based on shared genes
and the number of protein-protein interactions spanning across
pathway boundaries.

Molecular process models
Computing molecular process models followed the procedure
described in Mayer et al. (2012); Heinzel et al. (2014). In essence,
three main steps are performed: (i) mapping of a feature signa-
ture being either the DN pathophysiology association (Table 1)
or the ACE mechanism of action set (Table 2) on the consoli-
dated protein interaction network, followed by induced subgraph
extraction. Nodes with a degree of zero are removed from the
subgraph. (ii) molecular process identification via utilizing a
segmentation algorithm (MCODE with default settings, Bader
and Hogue, 2003), and (iii) determining inter-process relations
defined by the number of protein-protein interactions observed
between any actual two molecular processes contrasted against
the number of interactions between two random sets of nodes
with matching node set size.
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Enrichment analysis
For identifying significance of enrichment of molecular feature
sets in molecular processes and pathways a Fisher’s exact test with
a significance level set to 0.05 was used. Benjamini Hochberg
correction was employed to adjust for multiple testing.

RESULTS
DN MOLECULAR PATHWAYS
Screening scientific literature resulted in 27 molecular path-
ways being observed in the context of DN according to KEGG
and Panther pathway annotation (Figure 1). The pathway map
is dominated by linked signaling components, with major
elements being MAPK-VEGF, and Jak-STAT-cytokine-cytokine
receptor interaction further interacting with TGF-beta signal-
ing, covering among others mechanisms of hypoxia response and
fibrosis, respectively (Rudnicki et al., 2009; Loeffler and Wolf,
2014). Additional mechanistic aspects include stress response and
involvement of extracellular matrix (McLennan et al., 2013; Tan
and de Haan, 2014). Further, a number of specific pathways in the
context of metabolism are included, as well as the RAS, with the
latter however showing no direct links to other pathways on the
molecular feature overlap or direct protein interaction level.

Screening for biomarker candidates in scientific literature
resulted in 54 protein coding genes, extraction of drug target can-
didates from literature as well as clinical trials brought forward
104 such genes. Of the 54 biomarker candidates 23 are assigned to
the DN pathway map, for the 104 target candidates 52 are involved
(Table 3).

Significant coverage regarding biomarker as well as tar-
get candidates is again seen for central signaling components

including chemokine signaling, cytokine-cytokine receptor inter-
action, complemented by MAPK and PI3K-Akt signaling. Also
mechanisms are addressed including key features as VEGFA
and TGFB1. No specific targeting is seen for counteracting
structural changes in ECM, and minor efforts appear to be
assigned to adapting stress response. For seven out of 20 path-
ways discussed no biomarker or target annotation is iden-
tified, and complementary a large number of such features
are assigned also outside the pathway landscape presented in
Figure 1. Prominent examples for void biomarker assignment
include connective tissue growth factor (CTGF) as factor in
fibrosis not being assigned in KEGG, the same being true for
uromodulin (UMOD) shown to be associated with progressive
disease including genetic polymorphisms (Deshmukh et al., 2013;
James et al., 2013). CTGF is also discussed in the therapeutic con-
text via utilizing a monoclonal antibody-based approach (Adler
et al., 2010).

Testing the DN pathophysiology feature set retrieved from
consolidation of transcriptomics profiles regarding enrichment
in the given DN pathway landscape identified seven such path-
ways as significant, however, missing central mechanisms as
hypoxia response or TGFB signaling. In contrast other path-
ways beyond the map given in Figure 1 appeared significantly
enriched, including focal adhesion, cell adhesion molecules and
adherence junctions, linking to the signaling aspects involved in
the disease.

DN MOLECULAR MODEL
Complementary to analysis on molecular pathways as defined
in KEGG and Panther we performed a network segmentation

FIGURE 1 | Pathway landscape of diabetic nephropathy. Nodes of the
graph represent KEGG and Panther pathways (node diameter scales with
number of protein coding genes assigned), edges between nodes scale with

the number of genes overlapping as well as interactions of genes across
pathways according to the protein interaction network. Pathways are marked
for holding biomarker candidates (green) and drug target candidates (red).
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Table 3 | Molecular pathway annotation, diabetic nephropathy.

Pathway name # Genes Biomarker Drug target Enrichment

Angiogenesis 148 HSPB2, VEGFA, HSPB2-C11orf52 JUN, VEGFA No

Angiotensin II-stimulated signaling
through G proteins and beta-arrestin

35 – AGTR1 No

Chemokine signaling 190 CCL2, NFKB1, CCL5 CCL2 Yes

Cholesterol biosynthesis 11 – HMGCR No

Complement and coagulation cascades 69 F2, FGB, MBL2 SERPIND1, SERPINC1 Yes

Cytokine-cytokine receptor interaction 272 CCL2, LEP, VEGFA, TNFRSF11B,
CCL5, PRL, TGFB1

CCL2, TGFB1, VEGFA, TNFSF12,
IL18, IL1B, FLT1

Yes

ECM-receptor interaction 87 SPP1, FN1 – Yes

Jak-STAT signaling 158 LEP, PRL SOCS1 No

MAPK signaling 256 TGFB1, FGF23, NFKB1 CACNA1H, CACNA1I, CACNB4,
CACNA1S, CASP3, CACNA2D3,
TGFB1, CACNB3, CACNA1A,
CACNA1B, CACNA1C, CACNA1D,
CACNA1F, CACNA1G, JUN,
CACNB2, CACNG1, IL1B,
CACNA2D1, CACNB1

No

Metabolic pathways 1165 XYLT2, PTGDS, KL, PON1, PON2 PTGS2, PDXK, QPRT, ALOX5,
NT5E, IMPDH1, ACSL4, XDH,
CES1, NNMT, ANPEP, HMGCR,
IMPDH2, CYP11B2

No

mTOR signaling 61 VEGFA PDPK1, VEGFA, INS No

NF-kappa B signaling 90 NFKB1 PTGS2, IL1B No

Oxidative stress response 44 – JUN No

PI3K-Akt signaling 345 SPP1, VEGFA, FN1, NFKB1, PRL,
FGF23

PDPK1, FLT1, VEGFA, INS Yes

PPAR signaling 71 ADIPOQ PPARG, ACSL4, FABP1, PDPK1,
PPARA, ADIPOQ

No

Ras Pathway 69 – PDPK1, JUN No

Renin-angiotensin system 17 – ACE2, AGTR1, REN, ANPEP, ACE Yes

TGF-beta signaling 80 TGFB1, SMAD1 TGFB1 No

VEGF signaling 62 VEGFA PTGS2, VEGFA No

Wnt signaling 139 – JUN Yes

– – SPON2, WTAP, UMOD, LCN2, HP,
VNN1, AGER, TGFBI, RBP4,
NPHS1, HBA1, HBA2, DEFA1B,
LPA, CST3, CTGF, ACTA1, PGC,
S100A9, DPP4, ALB, CCKAR,
GSTP1, DEFA3, S100A8, DEFA1,
MMP9, CDH1, S100A4, NPPB,
HAVCR1

SOAT1, SLC6A4, ADORA1,
MC2R, SIRT1, CYCS, RETN,
EDNRA, CRH, EDNRB, KCNA1,
ADORA2A, CALM2, CALM3,
CALM1, PTX3, PDE3A, KCNMA1,
P2RY12, SLC12A1, SLC12A3,
GLP1R, DPP4, PDE5A, NR3C2,
KCNJ11, ITGB2, KIF6, MMP9,
CA12, TUBB1, NAMPT, HCAR3,
HCAR2, AR, HBA1, HBA2, CA9,
KCNH2, CA2, CA1, CASP1,
TUBB, CA4, AHR, CTGF, ABCA1,
PDE4A, PDE4B, SCN5A, MMP2,
NPC1L1

Citrate cycle (TCA cycle) 31 – – No

General transcription regulation 30 – – No

Notch signaling 48 – – No

Oxidative phosphorylation 122 – – No

p38 MAPK 34 – – No

Pentose phosphate 27 – – No

Propanoate metabolism 32 – – No

Provided is the KEGG pathway name, number of genes assigned to the pathway according to the pathway source, biomarker, and drug target candidates included in

the pathway (gene symbols), and indication of significance of enrichment of such pathway on the basis of the consolidated DN kidney tissue transcriptomics data.
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procedure aimed at identifying DN molecular process segments
defined by topological characteristics of the DN-specific sub-
graph. From the in total 881 protein coding genes included in
the DN molecular pathophysiology gene set (Table 1) 880 were
also part of the consolidated interaction network, and 634 were
identified as member of the induced subgraph (Figure 2A). From
the total set of 880 features 246 protein coding genes had no
interaction to any other feature of the DN consensus set, hence
being disregarded in molecular model computation. Apparent is
the relatively minor overlap of features extracted from literature
when compared to signatures from transcriptomics. From the in
total 516 unique features consolidated from four transcriptomics
profiling experiments and 414 features derived from scientific
literature 49 are shared.

After MCODE segmentation 200 molecular features remained
in process segments, forming a molecular model holding 23
process segments (Figure 2B). Median number of protein cod-
ing genes per process segment is 6, with the largest segment
encoding 29 features, the smallest 3. Equivalently to the path-
way graph in Figure 1 a process graph serves as approximation
of individual molecular process characteristics together with their
dependencies. Six process segments of the process model hold
both, biomarker as well as target candidate annotation, with oth-
ers encoding just one of the two or none. Of the 54 biomarker
candidates 22 are included in the molecular model, the respective
number for the 104 targets candidates is 16.

DN MOLECULAR MODEL AND DRUG MECHANISM OF ACTION MODEL
INTERFERENCE
Consolidating transcriptomics signatures reflecting the impact
of ACE inhibitors on the kidney interactome in a rat model
utilizing six representative drugs resulted in 2058 molecular fea-
tures (Table 2), with 661 features being identified in a least two
of the six drug signatures. Mapping this consensus ACE feature
subset on the consolidated interaction network allowed repre-
sentation of 656 features. The induced subgraph included 332
features, after segmentation resulting in 12 process segments
holding in total 92 molecular features (Figure 3, left). Median
process feature set size was 8, with a maximum of 19 and a
minimum of 3.

Interfering the ACE mechanism of action molecular model
with the DN molecular model on the level of feature over-
lap (Figure 3) identified specific process segments of the DN
molecular model also holding biomarker candidates (Table 4).

All four process segments of DN showing interference with
the ACE drug mechanism of action model hold biomarker
candidates. Two segments provide significant enrichment also
on the level of molecular pathways, showing an integration
of chemokine and cytokine signaling, RAS and complement
and coagulation cascades for one process segment, the sec-
ond process segment reflects components of PI3K-Akt sig-
naling in the context of TGFB signaling and ECM receptor
interaction.

FIGURE 2 | Molecular model representation of diabetic nephropathy. (A)
Induced subgraph where each node represents a protein coding gene being
reported as associated with DN, edges denote interactions according to the
underlying interaction network. Features derived from Omics studies are
given in red, features delineated from literature mining are given in green,
features identified in both data sources are depicted in blue. (B) Molecular

model representation of DN where each node represents a process segment
with the node diameter scaling with the number of protein coding genes
involved, and edges between nodes scaling with the number of interactions
of genes across nodes according to the protein interaction network.
Segments are indicated for holding biomarker candidates (green) and drug
target candidates (red).
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FIGURE 3 | ACE inhibitor mechanism of action molecular model and
interference with DN molecular model. ACE Mechanism of Action
molecular model (left) and DN molecular model (right), with overlapping
process segments of drug and phenotype models indicated by dotted

lines. Molecular process segments (U) of the ACE mechanism of action
molecular model showing interference with the DN molecular model are
given in blue, respective interacting process segments on the DN side are
given in red.

Table 4 | Diabetic nephropathy process segment interference.

Segment # Genes in
segment

Interference
overlap

Biomarker
candidates

Enriched pathways

1 29 7 CCL5 Chemokine signaling; Cytokine-cytokine receptor interaction; Renin-angiotensin
system; Complement and coagulation cascades

18 11 2 HBA1,
NFKB1, HP,
HBA2

–

3 20 3 TGFB1 ECM-receptor interaction; TGF-beta signaling; PI3K-Akt signaling

4 16 2 ACTA1 –

Provided is the process segment number of the DN molecular model, number of genes assigned to the segment, number of features identified as affected according

to the drug mechanism of action model, biomarkers involved in the segment (gene symbols), and relevant pathways from the DN pathway map being enriched in

such segment.

Biomarker candidates serving as proxy for the interference
of ACE and DN molecular models involve the chemokine (C-C
motif) ligand 5 involved in immunoregulators and inflammatory
processes, hemoglobin alpha 1 and 2 together with haptoglobin,
the cytokine transforming growth factor, beta 1, along with
the transcription factor NFKB1, finally including actin, alpha 1
involved in cell motility, structure and integrity.

DISCUSSION
For a large spectrum of clinical presentations an impressive num-
ber of drug targets have been proposed out of translational and
preclinical research, with a significant number further proceed-
ing into clinical trials. Just in the first half of 2014 close to
10,000 new clinical studies were recorded on the platform clin-
icaltrials.gov. Taking a specific look at diabetic nephropathy as
clinical phenotype, 124 interventional trials in any status are iden-
tified at clinicaltrials.gov specifically involving the disease term,

covering 45 individual drug entities addressing 86 known tar-
gets. Via mining scientific literature additional 18 drug targets are
identified.

Next to a number of trials utilizing drugs and drug combi-
nations addressing known factors impacting DN progression as
the RAS, drug targets are disparately distributed across molecular
pathways, hence mechanisms assigned to the disease.

From literature mining 27 different pathways according to
KEGG and Panther pathway annotation are discussed as asso-
ciated with DN, of which 19 hold drug targets. These include
well known mechanisms of relevance in DN including hypoxia
response or fibrosis, combined with a large set of signaling com-
ponents. On top, 52 drug targets are embedded in molecular
context outside this literature-derived DN pathway landscape.

For biomarker candidates an equivalent situation is found. 54
unique proteins extracted from scientific literature are discussed
in any biomarker context, covering 14 of the 27 pathways, with 31
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biomarker candidates not assigned to any of the members of the
extracted DN pathway map.

Interestingly, predictive performance regarding disease pro-
gression of any of the individual biomarker candidates proved
limited value. For example, in a review by Hellemons et al. 13
relevant markers were found in the context of nephropathy in
diabetes, of which five were found as significantly associated with
onset as well as progression of DN again covering various mech-
anisms including inflammation (e.g., C-reactive protein), cell
surface interaction and homeostasis (e.g., E-selectin, ICAM1) and
metabolism (triglyceride levels) (Hellemons et al., 2012).

Apparently, individual biomarkers reflecting the status of an
individual molecular process, pathway or mechanism cannot
capture disease prognosis for the comprehensive DN popula-
tion. In alternative approaches multimarker panels were included
in classifiers on disease diagnosis and prognosis demonstrating
improved performance also in blinded validation. In Roscioni
et al. a signature of 273 peptides determined in urine were
included in a support vector machine-based classifier (Roscioni
et al., 2013). The signature held fragments of collagen eventu-
ally mirroring alterations in the extracellular matrix turnover and
fibrosis together with markers of inflammation as e.g., the pro-
inflammatory protein S100-A9, as well as uromodulin shown
to be associated with interstitial fibrosis and tubular atrophy
(Nkuipou-Kenfack et al., 2014).

One contributing factor for needing multimarker panels may
be individual variance of baseline biomarker levels, where inclu-
sion of multiple markers specifically in non-linear classification
methods adds to robustness. However, a second factor may be
generic heterogeneity of the patient population. Specific disease
presentation may significantly vary not only across stages of dis-
ease progression eventually seeing a transition from protective to
damaging mechanisms, but even within a specific chronic kid-
ney disease category as defined by present clinical classification
provided by KDIGO guidelines (KDIGO Board Members, 2013).

Improved prognostic performance of multimarker panels on
top of strict functional classification of stage transitions in DN
utilizing albuminuria but also eGFR as clinically used progression
parameters clearly support the case of pathophysiological het-
erogeneity of a, in present clinical terms homogeneous, patient
population. However, specifically for albuminuria the role of
functional marker vs. factor in disease is discussed (Roscioni et al.,
2014).

Deriving robust diagnostic or prognostic classifiers from e.g.,
proteomics or metabolomics profiling may add to clinical patient
management regarding onset as well as intensity of therapeu-
tic measures (Roscioni et al., 2013; Pena et al., 2014). Also in
clinical trial design such enrichment strategies may be utilized
by e.g., identifying individuals prone to fast disease progres-
sion, and randomizing in this high risk cohort into medication
and placebo arm (e.g., Priority trial, clinicaltrials.gov reference
NCT02040441).

Prognostic biomarkers in contrast to diagnostic parameters
with known assignment to molecular processes and pathways fur-
ther allow an approximation of what specific mechanisms are
associated with disease progression. The DN pathway landscape
discussed in this work is solely a cross-sectional representation

of the disease, in a first place not allowing deciphering which of
the 27 individual pathways drive disease progression, and which
other pathways are just bystanders or downstream consequences
of mechanistic factors of disease. Hence, evaluating biomarker
candidates for their association with progressive disease in turn
allows determining mechanisms associated with progressive dis-
ease. Such knowledge is vital e.g., for determining novel drug
targets, demanding to be embedded in disease mechanisms being
factors for progressive disease. Remaining question however is if
such mechanisms are relevant to the same extent or at all for a
specific patient assigned to a clinical phenotype.

A prognostic biomarker set covering all potentially relevant
processes enables specific molecular phenotyping of individual
patients, being however not sufficient in terms of predicting drug
response as a drug mechanism of action is not factored in. Here
Systems Pharmacology aims at identifying drug response also on
the level of molecular processes and pathways. Rationale is to not
only focus on the specific drug target and its assignment to spe-
cific mechanisms, but to include the systemic molecular changes
triggered by the drug including off-target effects as well as down-
stream molecular changes. Having a drug mechanism of action as
well as a clinical phenotype represented on a molecular process
or pathway level allows intersecting both molecular states. If from
prognostic biomarker profiling of a patient specific progression-
associated molecular disease mechanisms are identified, and a
drug exhibits functional interference in such specific mecha-
nisms such patient may be more prone for showing response to
the drug. With such setting including knowledge on molecular
phenotype composition, molecular process relevance in progres-
sive disease and knowledge on interference of drug mechanism
of action biomarker candidates initially serving a prognostic
purpose can be rendered into predictive biomarkers on drug
response.

Omics profiling has a major contribution to characterizing
both, clinical phenotypes as well as drug mechanism of action.
Integrating profiling results from clinical samples frequently sees
minor overlap of individual studies, being in part driven by insuf-
ficient sample size combined with diverging inclusion criteria and
sample material used (Fechete et al., 2011). In the example pre-
sented here 1010 features in total are identified as differentially
regulated in transcriptomics or are being assigned to DN accord-
ing to literature mining, with 880 unique features. An equivalent
misbalance in feature coherence across studies is also found for
the ACE inhibitor transcriptomics data. All these drugs address
the same functional context, but from the in total 3152 features
identified for six drugs included the total number of unique fea-
tures are still 2058, with 661 being identified in at least two drug
signatures.

Next divergence becoming apparent is the limited overlap
of enrichment analysis based on signatures from profiling and
feature-based literature mining compared to explicit literature
mining for molecular pathways. Of the 27 pathways extracted
from scientific references only seven are confirmed, however, see-
ing other pathways enriched not found via literature mining. On
top, a major shortcoming is restricted representation of protein
coding genes in such pathway maps, e.g., for KEGG covering
6491 and for Panther 2163 protein coding genes, respectively. This
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limitation not only affects pathway enrichment but also assign-
ment of biomarker and target candidates. Of the in total 104 drug
target and 54 biomarker candidates 29 are neither assigned in any
KEGG or Panther pathway.

Here a different approach may be followed, namely segmen-
tation of protein interaction networks exhibiting improved cov-
erage of the protein coding gene set. Consolidation of INTACT,
Reactome, and BioGRID allows representation of in total 13,907
protein coding genes, clearly expanding beyond public domain
pathway databases. In alternative approaches hybrid interaction
networks are utilized for further expanding coverage of protein
coding genes, but also for improving false negative rates regarding
protein-protein interactions and relations (Fechete et al., 2013).

Computing a DN-specific as well as ACE inhibitor-specific
induced subgraph followed by topology-based segmentation
allows an alternative representation of a molecular process land-
scape for the clinical presentation as well as the drug mechanism
of action. Interference analysis on the level of overlapping protein
coding genes resulted in four process segments holding cen-
tral aspects of DN pathophysiology. Seven biomarker candidates
were identified in these interfering molecular processes. CCL5
(RANTES), involved in recruiting monocytes and macrophages
to the renal cortex was shown to be suppressed by ACE inhibition,
indicating that RANTES expression is mediated via Angiotensin
II type 2 receptor (Kashiwagi et al., 2002). Equivalently, in ani-
mal models TGFB1 expression was shown to be reduced by ACE
inhibitors. Activation of NFKB1 by angiotensin II was shown in
vascular smooth muscle and mesangial cells (Hernández-Presa
et al., 1997). In a study by Dong et al. analyzing cost effective-
ness of ACE inhibitor treatment for patients with type 1 diabetes
mellitus the level of glycosylated HbA1c showed clear impact
on cost effectiveness of drug use per quality-adjusted life year
(QALY) (Dong et al., 2004). The authors concluded that next
to patient age also other factors need to be included in therapy
considerations.

Apparently, drug mechanism of action affects numerous
molecular processes, as exemplified for ACE inhibitors, many of
these also afflicted with DN progression. Analyzing the molecular
process interface of disease progression-relevant pathophysiology
and drug mechanism of action allows proposing predictive mark-
ers. Testing such predictive biomarker candidates may educate
on relevance of individual processes on a patient level, directly
linking to likelihood of drug response.
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Multiple diseases (acute or chronic events) occur together in a patient, which refers to

the disease comorbidities, because of the multi ways associations among diseases.

Due to shared genetic, molecular, environmental, and lifestyle-based risk factors, many

diseases are comorbid in the same patient. Methods for integrating multiple types of

omics data play an important role to identify integrative biomarkers for stratification of

patients into groups with different clinical outcomes. Moreover, integrated omics and

clinical information may potentially improve prediction accuracy of disease comorbidities.

However, there is a lack of effective and efficient bioinformatics and statistical software

for true integrative data analysis. With the availability of the wide spread huge omics,

phenotype and ontology information, it is becoming more and more practical to help

doctors in clinical diagnostics and comorbidity prediction by providing appropriate

software tool. We developed an R software POGO to compute novel estimators of the

disease comorbidity risks and patient stratification. Starting from an initial diagnosis,

omics and clinical data of a patient the software identifies the association risk of disease

comorbidities. The input of this software is the initial diagnosis of a patient and the output

provides evidence of disease comorbidities. The functions of POGO offer flexibility for

diagnostic applications to predict disease comorbidities, and can be easily integrated

to high–throughput and clinical data analysis pipelines. POGO is compliant with the

Bioconductor standard and it is freely available at www.cl.cam.ac.uk/ mam211/POGO/.∼

Keywords: comorbidity, multi-omics, ontology, multiplex network, data integration

Introduction

Exploring disease-disease associations by using multi-omics and clinical information is expected to
improve our current knowledge of disease relationships, which may lead to further improvements
in disease diagnosis, prognosis and treatment (Park et al., 2009). Recent research has increasingly
demonstrated that many seemingly dissimilar diseases have common molecular mechanisms and
strong associations among them (Yu andWang, 2015). Because of the associations among diseases,
multiple diseases (acute or chronic events) occur together in a patient, which is called disease
comorbidities. Comorbidities relationships exist among diseases whenever they impact the same
patients significantly more than expected by chance (Žitnik et al., 2013). It represents the co–
occurrence of diseases or presence of different illness or medical conditions simultaneously or one
after another in the same patient (Hidalgo et al., 2009; Park et al., 2009). The set of sequential
disease associations, which refers to disease trajectories, uncovers time based disease comorbidity
associations. They can also form the basis for understanding mathematical properties of
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co-morbidity networks (Hidalgo et al., 2009; Jensen et al., 2014).
Comorbidity associations can be due to direct or indirect causal
relationships and the shared risk factors among them (Tong and
Stevenson, 2007). If two diseases have comorbidity association,
the incidence of one of them in an individual may increase
the likelihood of another disease occurring. Certain diseases,
such as diabetes and obesity often co-occur in the same patient,
sometimes one being considered a significant risk factor for the
other (Lee et al., 2008). Disease comorbidities are increasingly
placing a greater burden on individuals, societies and health care
services. It is an important factor for better risk stratification of
patients and treatment planning.

Diseases with similar molecular, environmental, and lifestyle
risk factors may be comorbid in individuals or may be risk
factors for another disorder (Davis et al., 2010). Shared genetic,
environmental and lifestyle factors have similar consequences,
increasing the co-occurrence of associated diseases in the same
individual. So, a person diagnosed for a combination of disorders
and exposed to particular environmental, lifestyle and genetic
risk factors may be at a increased risk of developing several other
genetically and environmentally associated diseases (Barabási
et al., 2011). It is now well accepted that phenotypes are
determined by genetic material under environmental influences.
For instance, many well-known and influential lifestyle factors
such as smoking, diet, and alcohol intake are actively related to
diabetes type 1 and type 2, and obesity (Astrup, 2001). Moreover,
many complex diseases, such as cancer and diabetes, are affected
by an integrated effect of environment and epistasis among many
genes (Davis et al., 2010).

Recent evidence has exhibited that microRNAs play key
roles in the evolution and progression of human diseases.
Functionally related microRNAs tend to be associated with
phenotypically similar diseases (Lu et al., 2008). Recently,
genome-wide association studies (gwas) proved to be useful as
a method for exploring phenotypic associations with diseases
(Lewis et al., 2011). Single-nucleotide polymorphisms (SNPs),
a variation of a single nucleotide, are assumed to play a major
role in causing phenotypic differences between individuals. It
has become possible to assess systematically the contribution
of common SNPs to complex diseases. Copy number variations
(CNVs; which involve loss, duplication or rearrangement of
long stretches of DNA in individual’s genome) can cause
various phenotypic abnormalities (Zhang et al., 2009). CNVs
are significantly associated with the risk of complex human
diseases including inflammatory autoimmune disorders, diabetes
etc. (Bae et al., 2011). The development of type 2 diabetes has
also been known to be influenced by molecular, lifestyle and
environmental factors (Kahn et al., 2006).

Most of the research works focussed on a particular data
type, for example gene expression, to find profiles that are
associated with particular disease, prognosis and drug response.
The integrative analysis of various omics data has become
increasingly widespread because each approach has intrinsic
caveats. For instance, important information may be missing
because of false negatives or may be misleading because of false
positives. In addition, by analyzing different types of data in
isolation we may miss important information that results from

the coordinated activity of biological components at various
levels. Some studies indicated that these limitations can be
mitigated by integrating two or more omics datasets. Several
studies (Goh et al., 2007; Lee et al., 2008; Lu et al., 2008; Hu
and Agarwal, 2009; Liu et al., 2009; Park et al., 2009; Schadt,
2009; Jiang et al., 2010; Suthram et al., 2010) reported on
the role of a single omic or phenotypic measure to represent
disease-disease associations (such as shared pathways or gene
ontology). But, one needs to study diverse sources of evidence
including miRNA-based relationships, shared environmental
factors, ontology, SNPs, CNVs and phenotypicmanifestations for
better understanding.

Since, diseases may share many different types of associations
with varying levels of risk for disease comorbidities, a singular
view of associations between diseases is not enough to predict
comorbidities. As more and more ontology, phenotype,
omics and environmental data sets become publicly available,
it is beneficial to improve our understanding of human
diseases and diseases comorbidities based on these new
system-level biological data. Combination of multiple types
of omics, phenotype and ontology data identifies integrative
biomarkers for the stratification of patients with clinical
outcome. Further, behavioral and environmental aspects
should also be considered in order to realize disease-disease
associations. Therefore, it is clear that method and tool for
stratifying patients and prediction of disease comorbidities in
order to reliably predict prognosis or success of treatments are
of critical importance in the field of medicine. We propose
a computational framework that integrates all available,
heterogeneous and relevant data including miRNA-target
interactions, miRNA-disease association, phenotype similarities
of diseases, GO (gene ontology), SNPs, CNVs and known
disease-environmental associations to capture the complex
relationships between phenotypes, genotypes and clinical
comordibidity. Therefore, the underlying goal of this chapter is
to integrate diverse sets of omics, environmental and phenotypic
data, and to develop the comprehensive models of interaction
between the disease associated factors for the prediction
of the patient specific disease comorbidity, and to develop
comorbidity map.

In the case of a complex or even in an unknown case
of diseases, physicians may get assistance to take decision
quickly and efficiently by using effective software tool. We
developed an R software tool POGO to compute statistically
significant associations among diseases, to predict disease
comorbidity risk and to develop comorbidity maps, which
are useful for the physicians and informative for the patients.
To perform the computation of the comorbidity risk, this
software uses clinical, gene expression, miRNA, SNPs, CNVs,
ontology, phenotypic, and environmental data. The inputs of
this software is the initial diagnostic result of the patient. The
goal of this software is to construct comorbidity maps that
incorporate disease interactions, omics, phenotypic and ontology
information, and environmental influences. It is a user-friendly
and interactive personalised disease and disease comorbidity
prediction software. It provides different comorbidity assessment
and stratification; integration of omics information with
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POGO output data could be used to predict more accurate
survival probability of patients. The functions included in
POGO offer flexibility for applications, and can be easily
integrated into highthroughput analysis pipelines for translation
medicine.

Implementation

POGO provides a number of processing options to find
comorbidity maps of a patient. R bioconductor annotation data
packages “org.Hs.eg.db,” “HPO.db,” and “GO.db” are used for the
annotation and mapping between gene symbol, Entrez id, HPO
term, OMIM id and GO term (Gentleman et al., 2004). POGO is
dependent on “DOSE” and “GOSemSim” bioconductor packages
for the mapping with different annotation (Yu and Wang, 2015).
We used the mapping manually constructed by Goh et al. (2007)
and Park et al. (2009) to convert OMIM IDs to ICD-9 codes.
A set of differential expressed gene symbols/Entrez ids/OMIM
id/miRNA ids/HPO terms/GO terms/3 or 5 digit ICD-9-CM
code of any disease can be used as input of POGO functions. Flow
diagram of POGO software is shown in Figure 1.

GO–disease Association
GO enables us to analyse disease association by adopting
semantic similarity measures to expand our knowledge of the
relationships among different diseases. We downloaded the
ontology file and annotations of Homo sapiens from the Gene
Ontology database1 in April 2014. In total, we collected 171,888
annotations between 13,166 genes and 10,787 GO terms. We
developed a function comorbidityGO for the computation
of GO based disease comorbidity in an ontology sense. It is a
GO-based enrichment analysis function to measure association
among diseases and to explore their functional associations from
gene sets. We implemented a semantic similarity measurement
to quantify the association between gene ontology and their
associated diseases. The semantics of GO terms are encoded into
a numeric format and the different semantic contributions of the
distinct relations are considered. Moreover, hypergeometric test
is applied to a gene set to calculate the significance of a GO term,
and the significant GO term sets are selected according to their
p-values. Gene set enrichment analysis are used for predicting

1http://www.geneontology.org.

FIGURE 1 | Overview framework of POGO software. (1) POGO takes

as input preliminary diagnosis data of a patient and check the validation

of the input. (2) It preprocesses and updates required databases,

performs statistical computation (hypergeometric and semantic similarity

tests), and calculates relative risk between diseases. (3) Comorbidity

scores and disease network are provided as a result to the user. (4)

Multiplex model is applied for data integration to produce integrated

comorbidity network as (5). (6, 7) Visualization of the comorbidity map

and survival probability of patient considering comorbidity. Env is used

to indicate environment.
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the significance of gene–disease and disease–disease associations.
comorbidityGO function operates by using either of the
following input: GO id, disease OMIM id, a list of gene symbols,
Entrez gene ids or ICD-9 code of the patient disease. This
function provides disease comorbidity associations and network
based on the GO. comorbidityGO requires two parameters:
id list and id type. An example and its output is given in
Figure 2.

1 > comorbidityGO( "189907" , "OMIM" )

2
3 OMIM GO EVIDENCE ONTOLOGY PATH SYMBOL ENTREZID ICD9CM

4 189907 GO:0000122 IEA BP 04950 TCF2 6928 250

5 189907 GO:0001714 IEA BP 04950 BCKDHB 594 270.3

6 189907 GO:0005634 IDA CC 04950 TCF2 6928 189

7 189907 GO:0044212 IEA MF 04950 TCF2 6928 593.9

8 ... ...

Phenotype–disease Association
POGO integrated HPO database that has integrated HPO terms
to represent patients phenotypic abnormalities (Robinson et al.,
2008). The OMIM (McKusick, 2007) is also incorporated with
POGO, and associated to HPO by annotations from http://www.
human-phenotype-ontology.org. The associations are generated
using the information about the phenotypes of a particular
syndrome and the corresponding genes that are known to
cause this syndrome when mutated. With the development of
omics techniques, the number of uncovered gene-phenotype

associations has increased notably over the last few years. In
our approach, phenotypes are linked with diseases through
associating phenotype-gene with gene-disease bipartite graphs
by applying neighborhood-based methods. All the paths from
a phenotype to a disease are explored by considering causative
genes to assign a weight based on frequency and linked
the phenotype to the disease in a new phenotype-disease
bipartite graph. Then, we introduced a Bidirectionally-induced
Importance Weight prediction method to phenotype-disease
bipartite graph in order to approximate the weights of
the edges of diseases with phenotypes, by considering link
information from both sides of the phenotype-disease bipartite
graph. The construction of the phenotype network is based
on the phenotypic similarity score among different disease
phenotypes. In the phenotype network, the association between
any two different disease phenotypes was fixed when their
phenotypic similarity score exceeded the significance threshold.
For visualization, POGO includes links between disease pairs for
which the co-occurrence is notably greater than the random
expectation based on phenotype prevalence of the diseases.
The function comorbidityHPO of POGO package is able
to take input an OMIM id/3 or 5 digit ICD-9-CM code of
a disease or a list of gene symbols/Entrez ids and provides
comorbidity pattern of diseases based on the phenotype disease
associations. comorbidityHPO requires two parameters: id
list and id type. An example and its output is given in
Figure 3.

FIGURE 2 | Output figure and statistics of >comorbidityGO

("189907", "OMIM"). The OMIM disease id of the “Diabetes mellitus,

insulin-dependent” is 189907, which is used as input to the comorbidityGO.

We show disease comorbidity for the Diabetes mellitus through the

GO-disease associations. The size of the nodes represents the degree of

associations. ICD-9 codes are used to represent disease categories.
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1 > comorbidityHPO( "79001" , "Entrez" )

2
3 ENTREZID SYMBOL OMIM PATH GO

4 79001 VKORC1 122700 NA GO:0005789

5 79001 VKORC1 122700 NA GO:0005789

6 79001 VKORC1 607473 NA GO:0005789

7 79001 VKORC1 608547 NA GO:0047057

8 79001 VKORC1 608547 NA GO:0047057

9 ... ...

10
11 HPID HPName

12 HP:0000118 Phenotypic abnormality

13 HP:0012200 Abnormality of prothrombin

14 HP:0001892 Abnormal bleeding

15 HP:0003256 Abnormality of the coagulation cascade

16 HP:0010989 Abnormality of the intrinsic pathway

17 ... ...

Disease–SNPs Association
At present there are only a few databases of genetic variations
associated with diseases. Despite the needs for analyzing SNP
and disease association, most of the existing databases are based
only on functional variants at specific locations on the genome,
or deal with only a few genes correlated with disease. There
is no integrated resource to widely support genes, SNPs, and
disease associated information. Therefore, we integrated data
from different databases (dbSNP Sherry et al., 2001, HGVbase
Fredman et al., 2002, JSNP Hirakawa et al., 2002, GAD Becker
et al., 2004 and OMIMMcKusick, 2007) and literature Yang et al.,
2008 for studying SNPs-diseases associations. We integrated
the information to present the interrelationships among SNPs
located in genes, genes associated with diseases, and SNPs
associated with diseases. It can aid the understanding of the genes
which cause diseases and the impact of SNPs on diseases. For
associated information among genetic variation and diseases, we
built a database, SNP, which is a combined database of genes,
genetic variation and diseases for the utilization in POGO. Two
diseases are connected if they share at least one SNP that is
statistically significant dysregulated to the disease related gene.
Our software is designed to capture the relationships between
SNPs associated with disease and disease-causing genes. POGO
computes disease-disease association by adopting semantic
similarity measures and hypergeometric test. Neighborhood
based benchmark method is used to identify the comorbidity
pattern among diseases (Goh et al., 2007). We built the associated
network as a bipartite graph; each common neighbor node is
selected based on the Jaccard coefficient method (Goh et al.,
2007). comorbiditySNP function of POGO takes as input any
of these three options: a list of gene symbols, a list of Entrez
gene ids, SNPs ids or an OMIM id. This function provides
disease comorbidity associations and network based on the
SNPs-gene-disease associations. comorbiditySNP requires
two parameters: id list and id type. An example and its output
is given in Figure 4.

1 > inputList<-c("TNFSF11", "TNFRSF11B", "TNFRSF11A", "A2M", "TGFBR3")

2 > comorbiditySNP(inputList, "Symbol")

3
4 SYMBOL OMIM ENTREZID PATH

5 TNFRSF11A 174810 8792 04060

6 TNFRSF11A 602080 8792 04060

7 TNFRSF11A 603499 8792 04060

8 TNFRSF11B 239000 4982 04060

9 TNFRSF11B 239000 4982 04060

10 ... ...

11
12 GO SNPID DiseaseName

13 GO:0043123 rs884205 Bone mineral density

14 GO:0002250 rs3018362 Pagets disease

15 GO:0043123 rs694419 Serum albumin level

16 GO:0007165 rs2062375 Osteoporosis

17 GO:0007165 rs12679857 Type 1 diabetes

18 ... ...

Disease–environment Association
The analysis of environment-disease associations is important
to investigate the molecular mechanism of a disease. POGO
integrated “etiome,” human disease etiological factors database
(Liu et al., 2009), and developed a function comorbidityENV
to predict the comorbidity risk based on disease environment
association (Liu et al., 2009). Integrating genetic, nutritional,
behavioral and environmental factors results in the “etiome,”
which they defined as the comprehensive compendium of disease
etiology (Liu et al., 2009). They used natural language processing
to look for annotations in articles, and thus creating associations
between diseases and environmental information. “etiome” has
been developed with the identified 3342 environment related
factors that are associated with 3159 complex diseases (Liu
et al., 2009). They also identified 1100 genes associated with
1034 diseases from the genetic association studies database
GAD (Becker et al., 2004). GAD has 863 diseases information
with both genetic and environmental etiological factors.
By using all these information, POGO is able to develop
comorbidity map by incorporating relations between the diseases
themselves as well as relations to environmental factors. This
software identifies the disease–disease associations using the
associations among environment and their associated diseases.
Hypergeometric test is used for extracting associations among
environment and diseases; graph topological structure is used
to measure the similarity between diseases (Wang et al., 2007).
comorbidityENV function takes as input any of the following
options: a list of gene symbols, a list of Entrez gene ids
or an OMIM id. This function provides disease comorbidity
associations and network based on the gene-environment-disease
associations. comorbidityENV requires two parameters: id
list and id type. An example and its output is given in
Figure 5.

1 > comorbidityENV( "SDHB" , "Symbol" )

2 SYMBOL OMIM ENTREZID PATH GO EVIDENCE

3 SDHB 115310 6390 00020 GO:0005515 IPI

4 SDHB 115310 6390 00020 GO:0005515 IPI

5 SDHB 115310 6390 00020 GO:0005515 IPI

6 SDHB 612359 6390 05016 GO:0051539 ISS

7 SDHB 612359 6390 05016 GO:0051539 ISS

8 ... ...

9
10 ONTOLOGY DiseaseName EnvironmentImpact

11 MF Bone Neoplasms Bone Cysts

12 MF Bone Neoplasms Bone Marrow Transplantation

13 MF Bone Neoplasms HIV Infections

14 MF Bone Neoplasms Kidney Transplantation

15 MF Bone Neoplasms Heart Transplantation

16 ... ...
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FIGURE 3 | Output figure and statistics of > comorbidityHPO

("79001", "Entrez"). The Entrez disease id “79001” is used as input

to the comorbidityHPO. We show an example of disease comorbidity

map for this gene through the phenotype-disease associations. Here the

square nodes represent the phenotypes and spheres represent OMIM

disease ids.

FIGURE 4 | Output figure and statistics of >comorbiditySNP

(c("TNFSF11", "TNFRSF11B", "TNFRSF11A", "A2M", "TGFBR3"),

"Symbol").We show an example of disease comorbidity through the

SNPs-gene-disease associations. Here the square nodes represent the genes

symbols, circles represent SNPs ids, and spheres represent diseases names.

The size of the nodes represents the degree of associations.
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miRNA–disease Association
MicroRNA (miRNA) performs its regulatory function through
its target genes. Two diseases are connected if they share at
least one gene and/or one miRNA that is statistically significant
dysregulated (Goh et al., 2007). miRNAs with similar functions
tend to be associated with diseases with similar phenotypes, and
vice versa (Lu et al., 2008). Based on these hypothesis, we used
a framework to identify miRNA-disease associations through the
direct identified association from the miRNA-disease association
database and indirect association from the combined database
of miRNA-target and gene-disease associations. POGOmakes use
of microRNA-target databases, miR2Disease (Jiang et al., 2009),
HMDD (Li et al., 2014), and gene-disease association databases,
OMIM (McKusick, 2007), to explore the mRNA and miRNA
association between diseases. We filtered out invalid miRNA-
disease associations with incorrect disease names or miRNA
names. We used National Library of Medicine2 to obtain the
correct disease names. We used miRBase to get the correct
miRNA names (Kozomara and Griffiths-Jones, 2011). For a
miRNA-disease pair, firstly, POGO maps the causal genes of
the disease. It uses a p-value to measure the significance of
the association between the miRNA and the disease. OMIM
diseases ids are mapped with ICD-9-CM codes based on the
literature (Park et al., 2009). Neighborhood based benchmark
method is used to identify the comorbidity pattern among
diseases. We build the associated network as a bipartite graph;
each common neighbor node is selected based on the Jaccard
coefficient method (Goh et al., 2007). comorbiditymiRNA
function of POGO takes as input any of the following options:
a list of gene/miRNA symbols, a list of Entrez gene ids, an
ICD-9 code, an GO id or an OMIM id. This function provides
disease comorbidity associations and network based on the
disease-miRNA associations. comorbiditymiRNA requires
two parameters: id list and id type. An example and its output
is given in Figure 6.

1 > comorbiditymiRNA( "TNFRSF11A" , "Symbol" )

2
3 ENTREZID miRNAID DiseaseName SYMBOL

4 8792 hsa-miR-432 Duchenne muscular dystrophy (DMD) TNFRSF11A

5 8792 hsa-miR-324-3p primary biliary cirrhosis (PBC) TNFRSF11A

6 8792 hsa-miR-324-3p lupus nephritis TNFRSF11A

7 8792 hsa-miR-432 miyoshi myopathy (MM) TNFRSF11A

8 8792 hsa-miR-664 multiple sclerosis TNFRSF11A

9 8792 hsa-miR-432 nemaline myopathy (NM) TNFRSF11A

10 ... ...

11
12 GO EVIDENCE ONTOLOGY OMIM PATH

13 GO:0002250 IMP BP 174810 5323

14 GO:0002250 IMP BP 174810 5323

15 GO:0009897 IDA CC 174810 4060

16 GO:0009897 IDA CC 602080 5323

17 GO:0002250 IMP BP 602080 4380

18 GO:0002250 IMP BP 612301 5323

19 ... ...

CNV–disease Association
Copy number variants are hypothesized to cause diseases
through several mechanisms. Sometimes, the combination of
two or more copy number variants can produce a complex

2http://www.nlm.nih.gov/.

disease. Additionally, complex diseases might occur when
copy number variants are combined with other genetic and
environmental factors (McCarroll and Altshuler, 2007). Diseases
might be caused by copy number variants due to both additional
copies of sequence (duplications) and losses of genetic material
(deletions). We used Database Genomic Variants (DGV3)
database and developed a function comorbidityCNV
to predict the comorbidity risk based on CNVs-disease
association (MacDonald et al., 2014). POGO makes use of DGV
and OMIM (McKusick, 2007) to explore the genetic association
between diseases. Two diseases are connected if they share
similar copy number variations. OMIM diseases ids are mapped
with ICD-9-CM codes based on the literature (Park et al., 2009).
Neighborhood based benchmark method is used to identify
the comorbidity pattern among diseases (Goh et al., 2007). We
build the associated network as a bipartite graph; each common
neighbor node is selected based on the Jaccard coefficient
method (Goh et al., 2007). comorbidityCNV function of
POGO takes as input any of the following options: a list of gene
symbols, a list of Entrez gene ids or an OMIM id. This function
provides disease comorbidity associations and network based
on the disease-CNV associations. comorbidityCNV requires
two parameters: id list and id type. An example and its output is
given in Figure 7.

1 > comorbidityCNV("602228", "OMIM")

2
3 SYMBOL OMIM ENTREZID PATH GO EVIDENCE

4 TCF7L2 602228 6934 04310 GO:0005515 IPI

5 TCF7L2 602228 6934 04310 GO:0005515 IPI

6 TCF7L2 602228 6934 04310 GO:0005515 IPI

7 TCF7L2 602228 6934 04310 GO:0005515 IPI

8 TCF7L2 602228 6934 04310 GO:0005515 IPI

9 ... ...

10
11 ONTOLOGY CNV.ID Chr Start End VarSubtype

12 MF nsv7211 10 108617417 118351740 Inversion

13 MF nsv7553 10 114845707 114890646 Loss

14 MF esv2074123 10 114876971 114877374 Deletion

15 MF nsv24033 10 114877162 114877217 Loss

16 MF nsv527837 10 114888608 114911079 Loss

17 ... ...

Integrated Comorbidity Prediction Using

Multiplex

As a single source of genomic data is prone to bias,
incompleteness and noise, integration of different genomic data
sources is designed to accomplish reliable disease comorbidities
prediction. Systematic integration and comparison of multiple
layers of information is required to provide deeper insights
into biological systems. We incorporated a multiplex network
model into POGO to integrate multiple omics, environmental
and phenotypic information. To leverage the potential of
multi-omics studies, exploratory data analysis methods that
provide systematic integration and comparison of multiple
layers of omics information are required. We applied our
multiplex method of integrating different types of data

3http://dgv.tcag.ca/.
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FIGURE 5 | Output figure and statistics of >comorbidityENV("SDHB", "Symbol"). The gene symbol “SDHB” is used as input to the comorbidityENV.

We show disease comorbidity map for this gene input through the disease-environmental associations. The size of the nodes represents the degree of associations.

by modeling similarities between diseases in a multiplex
network. The multiplex network allows us to model diseases
by representing each data type as a layer in the multiplex.
Importantly, this allows us to capture the interactions between
the various types of data, such as the interdependence of
mRNA expression and signaling pathways with clinical
information of the disease comorbidities. We developed a
function comorbidityMultiplex to predict the integrated
comorbidity risk. comorbidityMultiplex function takes
as input any number of layers information. This function
provides integrated comorbidity associations and network. As
an example of integrating with this function we considered three
different types of data for three layers of our multiplex network:
mRNA-disease, pathway-disease and clinical association
information. An example and its output is given in Figure 8.

1 > input = c("S1.txt", "S2.txt", "S3.txt")

2 > sv<-c(1, 1, .5) #strength value of each layer

3 > comorbidityMultiplex(input, sv)

4 ... ...

5 $aggG

6 ICD.155 ICD.157 ICD.199 ICD.286 ICD.287 ICD.571 ICD.572 ICD.574

7 ICD.155 0.0 20.0 14.0 12.0 9.5 12.0 22.5 2.0

8 ICD.157 20.0 0.0 12.5 5.5 14.0 3.0 5.0 2.5

9 ICD.199 14.0 12.5 0.0 2.0 7.5 2.0 3.0 1.5

10 ICD.286 12.0 5.5 2.0 0.0 16.5 4.5 7.5 1.5

11 ICD.287 9.5 14.0 7.5 16.5 0.0 6.5 7.5 1.5

12 ICD.571 12.0 3.0 2.0 4.5 6.5 0.0 27.5 2.5

13 ICD.572 22.5 5.0 3.0 7.5 7.5 27.5 0.0 2.5

14 ICD.574 2.0 2.5 1.5 1.5 1.5 2.5 2.5 0.0

15 ... ...

In this example, we considered association information of 10
diseases, which are the output of other functions of POGO. The
ICD-9 code of the 10 diseases are 155, 157, 199, 286, 287, 571, 572,
574, 576, and 782. POGO identified disease-disease comorbidity
associations network based on the gene-disease association and
pathway-disease association, which are shown in Figures 8A,B

respectively. It is notable that there is no shared pathway for the
disease 572 with the 9 other diseases. The comorbidity network
based on the clinical information is shown in Figure 8C. We
used all these three association networks for the input of our
multiplex network (see Supplementary Tables S1–S3). In this
case, the multiplex network is comprised of three layers, each
with 10 nodes. In each layer, each node has a weighted undirected
edge connecting it to every other node in the same layer. In
addition, each disease is connected to itself in every other layer
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by the strength of interaction between the data types. So the
multiplex network created using POGO is formed of three layers
using the mRNA, pathway and clinical data. Each layer provided
information on the same diseases. This result is a 30 × 30
multiplex matrix, since a multiplex matrix is formed of n × h
rows and columns where n is the number of patients and h is
the number of layers. Our software POGO can find the disease
comorbidities by integrating all the descriptive layers, taking into
account the properties of the multiplex. All these three categories
association data are used as input of our multiplex network and
predicted the integrated disease comorbidities network as shown
in the Figure 8D.

Comorbidity Mapping
Patient medical records contain important clarification regarding
the co-occurrences of diseases affecting the same patient.
Two diseases are connected if they are co-expressed in a
significant number of patients in a population (Hidalgo et al.,
2009). To estimate the correlation starting from disease co-
occurrence, we need to quantify the strength of the comorbidity
risk. We used two comorbidity measures to quantify the
strength of comorbidity associations between two diseases: (i)
the Relative Risk (fraction between the number of patients
diagnosed with both diseases and random expectation based on
disease prevalence) as the quantified measures of comorbidity
tendency of two disease pairs; and (ii) φ-correlation (Pearsons
correlation for binary variables) to measure the robustness of
the comorbidity association (Moni and Lio, 2014). We used the
relative risk RRij and φ-correlation φij of observing a pair of
diseases i and j affecting the same patient. The RRij allows us
to quantify the co-occurrence of disease pairs compared with
the random expectation. When two diseases co-occur more
frequently than expected by chance, we will get RRij > 1 and
φij > 0. The two comorbidity measures are not completely
independent of each other. We included links between disease
pairs for which the co-occurrence is notably greater than the
random expectation based on population prevalence of the
diseases. Clinical information is from the http://www.icd9data.
com in the ICD-9-CM format and collected from Hidalgo et al.
(2009). The function comorbidityMap of POGO package is
able to take input an OMIM id/3 or 5 digit ICD-9-CM code
of a disease or a list of gene symbols/Entrez ids and provides
comorbidity map of the patient based on the relative risk and φ-
correlation. comorbidityMap requires two parameters: id list
and id type. An example and its output is given in Figure 9.

1 > comorbidityMap("042", "ICD9")

2 ICD.9.D1 ICD.9.D2 Prevalence.D1 Prevalence.D2 Co.occurrenceD1D2 RRij

3 "011" "018" 16646 639 110 134.842507

4 "011" "031" 16646 3693 807 171.170619

5 "011" "042" 16646 1067 64 46.984060

6 "011" "112" 16646 141325 752 4.168058

7 "011" "117" 16646 9094 179 15.418178

8 ... ...

9
10 CI1 CI2 phi t

11 131.740584 138.0174686 0.0334998 12.600646

12 170.628511 171.7144495 0.1024054 38.700702

13 45.141791 48.9015140 0.0148728 5.591768

14 4.153894 4.1822713 0.0118565 4.457522

15 15.199244 15.6402660 0.0136184 5.120042

16 ... ...

Methods

Diseases are connected when they share at least one significant
dysregulated gene/miRNA/SNP/CNV/GO/phenotype or
environmental factor. Let a specific set of associated diseases
D and a set of significant biomarker genes G, gene-disease
associations attempt to find whether gene g ∈ G is associated
with disease d ∈ D. If Gi and Gj are the sets of significant
up and down dysregulated genes associated with diseases i
and j respectively then the number of shared dysregulated
genes (n

g
ij) associated with both diseases i and j is as

follows:

n
g
ij = N(Gi ∩ Gj) (1)

We calculated the similarity between a pair of diseases based
on the number of entities (gene, SNP, CNV, miRNA, HPO
or environmental factor) that shared between them. For an
instance, in case of gene-disease association, we generated a
list of genes known to be associated with each disease, and
the disease similarity (association) was calculated based on how
many genes are shared between a pair of diseases. The similarity is
defined as

Sim(i, j) =
N(Gi ∩ Gj)

√
N(Gi) ∗

√

N(Gj)
, (2)

where N(Gi) and N(Gj) are the number of genes linked to
disease i and j respectively, and N(Gi ∩ Gj) is the number
of genes associated to both disease i and j. SNP-sharing,
CNV-sharing, miRNA-sharing, HPO-sharing and environmental
factors were also generated with the same approach used for
gene-sharing.

Hypergeometric test is implemented for enrichment analysis
(Subramanian et al., 2005). It is used to assess whether the
number of selected genes or ontology associated with disease
is larger than expected. To determine whether any disease
annotate a specified list of genes at frequency greater than
what would be expected by chance, POGO calculates a p-
value using the hypergeometric distribution. Significance of
the enrichment analysis is assessed by the hypergeometric test
and the p-value is adjusted by false discovery rate (FDR).
The hypergeometric p-value is calculated using the following
formula:
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FIGURE 6 | Output figure and statistics of >

comorbiditymiRNA( "TNFRSF11A", "Symbol" ). The gene

Symbol TNFRSF11A is used as input to the comorbiditymiRNA.

We show the comorbidities originated using the miRNA-disease

associations information. The size of the nodes represents the

degree of associations.

p− value = 1−

k− 1
∑

i= 0

(M
i

)(N−M
n− i

)

(N
n

)
(3)

where N is the total number of reference genes,M is the number
of genes that are associated to the disease of interest, n is the size
of the list of genes of interest and k is the number of genes within
that list which are associated to the disease. In case of GO term
the p-value reports the likelihood of finding n genes annotated
with a particular GO term in the set of interest by chance alone,
given the number of genes annotated with that GO terms in the
reference set. A biological process, molecular function or cellular
location which are represented by a GO term is called enriched if
the p-value is less than 0.05.

The co-occurrence indicates the number of common
miRNAs/genes/ontology/SNPs/CNVs between two diseases.
We applied the Jaccard index or Jaccard similarity coefficient,
which is known as a standard method for comparing the
similarity between two sets of entities. Each common neighbor
is calculated based on the Jaccard Index method to calculate the
strength of co-occurrence, where association score for a node
pair is as:

Assi,j =
N(Gi ∩ Gj)

N(Gi ∪ Gj)
(4)

We improved the performance of the association scores based
on the Adamic and Adar measure (Adamic and Adar, 2003),
which weights the impact of neighbor disease nodes inversely
with respect to their total number of connections as follows:

AssScore(i, j) =
∑

n∈N(Gi∩Gj)

1

log(degree(n))
(5)

This inverse frequency technique is based on the principle that
rare relationships are more specific and have more impact on the
disease association.

Finally POGO calculates disease-disease interaction score. The
score refers to the strength of the interaction between the diseases
based on the protein interaction. The interaction score (φij) is
assigned for each disease pair i and j as follows:

φij = log(n
g
ij ∗ N + Z)− log(NGi ∗ NGj + Z) (6)

Here, NGi and NGj are the total number of genes for the disease,

i and j, respectively. n
g
ij is the total number of common genes

between the two diseases. N is the size of entire proteins involved
in the disease protein network. Z is a constant (Z = 1) introduced
to avoid out-of bound errors, if NGi = NGj = n

g
ij = 0.
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FIGURE 7 | Output figure and statistics of > comorbidityCNV

("602228", "OMIM"). The OMIM disease id of the “Type 2 Diabetes

mellitus” is 602228, which is used as input to the comorbidityCNV.

We show disease comorbidity for the “Type 2 Diabetes mellitus”

through the CNVs-disease associations. Here the light red color nodes

represent the OMIM disease ids and light green color nodes represent

the CNVs ids. The size of the nodes represents the degree of

associations.

FIGURE 8 | Disease comorbidities network are constructed by

applying the multiplex network model. Each disease is denoted by the

ICD-9-CM code. (A) is a comorbidity association network based on the gene

disease association data. (B) is a comorbidity association network based on

the pathway disease association data. (C) is a comorbidity association

network based on the clinical information. (D) is a comorbidity association

network based on the integrated multiplex network output of the input of

(A–C) as layers of the model.
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FIGURE 9 | Output figure and statistics of >comorbidityMap

("042", "ICD9"). The icd-9-CM code of the HIV is 042, which is

used as input to the comorbidityMap. We show disease comorbidity

for the HIV infection (042) with other diseases, whose ICD-9-CM codes

are 042.0 (with specified infections), 042.1 (causing other specified

infections), 042.2 (with specified malignant neoplasms), 042.9 (acquired

immunodeficiency syndrome, unspecified), 043 (HTLV-III/LAV infection),

043.1 (HTLV-III/LAV infection causing specified diseases of the central

nervous system), 043.3 (HTLV-III/LAV infection causing other specified

conditions), 043.9 (acquired immunodeficiency syndrome-related complex

with or without other conditions), 044 (Other HTLV-III/LAV conditions),

044.9 (HTLV-III/LAV infection, not otherwise specified), 088

(arthropod-borne diseases), 117 (mycoses), 121.3 (fascioliasis), 130

(toxoplasmosis), 130.0 (meningoencephalitis due to toxoplasmosis), 130.8

(multisystemic disseminated toxoplasmosis), 136 (unspecified infectious

and parasitic diseases), 136.3 (pneumocystosis), 137.1 (late effects of

central nervous system tuberculosis), 176 (Kaposi’s sarcoma), 299

(pervasive developmental disorders), 321 (type 2 diabetes mellitus),

363.10 (disseminated chorioretinitis), 429 (ill-defined descriptions and

complications of heart disease), 795 (nonspecific abnormal cytological,

histological, immunological, and dna test findings), and 795.8 (abnormal

tumor markers). POGO uses color rectangle to classify different disease

codes and the size of the rectangle is used to represent the severity of

that disease.
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The expected result of φij is positive, when the disease pair is
over-represented and negative, when the disease pair is under-
represented. Co-occurrence also indicates the number of shared
patients. So, we used weighting scheme to avoid the bias based
on disease prevalence. The mutual information weight W(di, dj)
between two diseases di and dj is defined as

W(di, dj) = log

(

p(di, dj)

p(di) ∗ p(dj)

)

(7)

where the numerator is the observed co-occurrence (joint
probability) and the denominator is the random expectation of
co-occurrence (product of marginal probabilities).

The use of semantic similarity between biological processes
to estimate disease association could enhance the identification
and characterization of disease association besides identifying
novel biological processes involved in the diseases. Graph-
based methods using the topology of GO graph structure is
used to compute semantic similarity. We adapted the approach
for computing the functional similarity of GO terms from
Wang et al. (2007, 2010). Semantic values of GO term are
measured according to the DAG of corresponding disorders.
Semantic similarity for any pair of GO term is calculated based
on disease semantic value. Formally, a GO term a can be
represented as a graph DAGa = (a,Ta,Ea), where Ta is the
set of all GO terms in DAGa, including term a itself and all
of its ancestor terms in the GO graph, and Ea is the set of
corresponding edges that connect the GO terms in DAGa. To
encode the semantic of a GO term in a measurable format
to enable a quantitative comparison, Wang firstly defined the
semantic value of term a as the combined contribution of
all terms in DAGa to the semantics of term a (Wang et al.,
2007). Terms closer to term a in DAGa contribute more to its
semantics (Wang et al., 2010). Thus, the contribution of a GO
term t in DAGa is defined to the semantics of GO term a as
the S value of the term t related to term a, Sa(t), which can be
calculated as:

Sa(t) =

{

Sa(a) = 1 if t= a
Sa(t) = max{we ∗ Sa(t

′)|t′ ∈ children of (t)} if t 6= a
(8)

where we is the semantic contribution factor for edge e (e ∈ Ea)

linking term t with its child term t
′

. It is assigned between 0
and 1 according to the types of associations. Term a contributes
to its own is defined as one. Then the semantic value of GO
term a, SV(a) and the semantic value of GO term b, SV(b) are
calculated as:

SV(a) =
∑

t∈Ta

Sa(t), SV(b) =
∑

t∈Tb

Sb(t) (9)

Thus, for the given two GO terms a and b, the semantic similarity
between these two terms is defined as:

Ssim(a, b) =
∑

t∈Ta∩Tb

Sa(t)+ Sb(t)

SV(a)+ SV(b)
(10)

where Sa(t) is the semantic value of term t related to GO term
a and Sb(t) is the semantic value of GO term t associated to GO
term b. The semantic similarity between two sets of GO terms A
and B is calculated as

Sim(A,B) =
1

|A| + |B|

(

∑

a∈A

Sim(a,B)+
∑

b∈B

Sim(b,A)

)

(11)

where |A| and |B| represent the numbers of terms in sets A and B
respectively.

To obtain more insight into the shared risk factors mechanism
of associated human genetic diseases, mapping was implemented
from disease phenotype to gene based on the disease-gene
association.With the integration of huge numbers and diverse set
of experimental data, prediction of gene-phenotype interactions
has emerged as a very productive subfield with great importance
for the understanding of human disease. Given a specific set of
human phenotype D, a set of human genes G and evidence E,
these approach attempt to find whether gene g ∈ G is associated
with phenotype d ∈ D. It is notable that E could be gene-disease
associations obtained through genetic studies. To quantitatively
explore the phenotypic similarity between different phenotype
records Pi and Pj, according to Zhang et al. (2010) we defined
the association measure as cosine of the angle between their
corresponding phenotype feature vectors using the following
formula:

Sim(Pi, Pj) =

∑N
k= 1 wk,i ∗ wk,j

√

∑N
k= 1(wk,i)2 ∗

√

∑N
k= 1(wk,j)2

(12)

whereN is the total mapping concepts,wk,i andwk,j were the k-th
term, weight in phenotype record Pi and Pj, respectively.

For each of the phenotype clusters, mapping was implemented
from disease phenotypes to their associated disease genes based
on the disease-gene association list in the GAD and OMIM
databases. Therefore, we can get the corresponding gene subsets
mapped to different phenotype clusters. OMIM disease ids were
mapped to the hierarchy of HPO to retrieve the matched HPO
terms. Then, a new HPO similarity is calculated for each pair of
phenotypes by Jaccard similarity Index

SimHPO =
|P1 ∩ P2|

|P1 ∪ P2|
(13)

where P1 and P2 are the set of the matched HPO terms of the two
phenotypes, respectively.

The way to assign terms to objects is to add annotations. In
our case, the entities represent genes and terms corresponding to
phenotypes (HPO terms) or biological processes (GO terms). The
specificity of the terms associated with genes allows us to calculate
the most significant relationships between them, which use to be
related to its proximity to the root.

Each disease is generally mapped to multiple phenotypic
features. In order to compute associations between two diseases,
d1 and d2, we adapt a method previously developed for
estimating protein similarity with GO (Pesquita et al., 2008),
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where each feature of d1 is matched with the most similar
feature of d2 and the average is taken over all such pairs of
features:

sim(d1 → d2) = avg

[

∑

s∈d1

max
t∈d2

sim(s, t)

]

(14)

Equation (14) is not symmetric with respect to d1 and d2, the final
similarity metric is defined as the mean of Equation (14) taken in
both orientations:

sim(d1, d2) =
1

2
∗ sim(d1 → d2)+

1

2
∗ sim(d2 → d1) (15)

This metric is used to indicate the similarity between
two disorders, each of which is mapped to multiple HPO
terms.

Multiplex Network Model for Data Integration
We developed multiplex network model to integrate diverse set
of omics and clinical data to predict disease comorbidities. It
is a special type of multilayered network which is called the
multiplex network, in which the same nodes are present in all
layers, i.e., V1 = V2 = ...... = VM = V and where nodes can
only have interlayer connections to their counterpart nodes, i.e.,
Eαβ = (v, v); v ∈ V for all α, β ∈ 1, ...,M, α 6= β (Boccaletti
et al., 2014).

Let’s consider that we have a set of associated diseases. Each
pair of diseases has different types of associated data describing
them in some way. In each data type, diseases have some level

FIGURE 10 | Multiplex formed by three input layers, each representing

a data type, and four nodes, each representing a disease. The 4th layer

is an output layer, which is an integrated layer of the 3 input layers.

of association to each other and each data type has a level of
dependency or interaction. Each layer in the multiplex represents
a particular type of data with each node representing a disease
in each layer of the multiplex. The edges between nodes in
each layer represent a measure of association between diseases
in corresponding to the level of similarity between diseases for
the particular data type which the layer represents. The strength
of interaction between each data type can be modeled by a
weight connecting each layer in the multiplex. Figure 10 shows
an example with three layers (data types) and four diseases.
In this case we can model the association among diseases in
a multiplex network that can be represented in a matrix as
follows:

M =











A1 ω12I . . . ω1hI

ω21I A2 . . . ω2hI

...
...

. . .
...

ωh1I ωh2I . . . Ah











, (16)

where h is the number of layers,Ai is the adjacencymatrix of layer
i, ωij is the interlayer interaction strength from layer i to j and I is
the corresponding identitymatrix. The strength between layers in
the multiplex, ω, represents a measure of dependency or strength
of interaction between the layers. The edge weights between
nodes represent a measure of similarity between nodes in the
same layer, normalized between zero and one. Therefore, it is
natural for the values of ω to represent a measure of dependence
between zero and one, where zero and one indicate independence
and total dependence between the layers respectively. In our
case the strength of interaction is undirected and symmetric, i.e.,
ωi,j = ωj,i.

To compute an overall disease similarity between patients
given all sets of data, we can find the disease similarity by
aggregating the descriptive layers in some way, taking into
account the properties of the multiplex. Estrada and Gómez-
Gardeñes (2014) defined the aggregate network, Ĝ, of a multiplex
network as follows. Let G1 = (V1,E1),G2 = (V1,E2), ...,Gh =

(V1,Eh) be the set of layers in the multiplex. Then Ĝ = (V̂, Ê)
where V̂ = V1 and Ê = ∪

h
i=1Ei. In other words, the aggregate

is defined as the union of all edges across all layers of the
multiplex. In the literature, the aggregate of a multiplex is often
defined in this way. This method can aggregate layers of a
multiplex in which the layers are unweighted graphs. However,
it is not sufficient for a weighted graph, particularly a complete
weighted graph. In addition, the strengths between layers are not
accounted for.

Let’s consider that the edge weights between nodes provides a
normalized measure of similarity between zero and one. We can
define the weight of a path between two nodes in the multiplex to
be the product of the edges between each node in each step of the
path. Since the weight between nodes is a measure of similarity or
information shared between the nodes, it follows that the weight
of the path provides a measure of information flowing through
the path.

There are a number of ways we can provide a new measure
of similarity between two nodes given the properties of the
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multiplex network. One way would be to take the mean of
the direct paths connecting each patient to and from another
patient in each and every layer. We defined this mathematically
as follows:

Rdirect =

∑h
i = 1(M|piqi +

∑h
j = 1,j 6= iM

2
|piqj )

h2
, (17)

Where h is the number of layers in the multiplex, M|piqi is the
element in the multiplex matrix representing the weight between
node p and q in layer i andM2

|piqj is the element in the square of
the multiplex network, representing the weight of the path from
node p in layer i to node q in layer j. Another way would be to take
the maximum or minimum information shared directly between
two nodes.

Rdirectmin
=

h
min
i= 1



M|piqi +

h
∑

j = 1,j 6= i

M
2
|piqj



 (18)

Rdirectmax
=

h
max
i= 1



M|piqi +

h
∑

j= 1,j 6= i

M
2
|piqj



 (19)

In many situations, a pair of nodes in a network does not
communicate only through the shortest-path routes connecting
both nodes, but also through all possible routes connecting
both nodes. The number of these possible routes can be
enormous. Moreover, the information can also go back
and forth before connecting the pair of nodes. Network
communicability, which was introduced by Estrada and Gómez-
Gardeñes (2014), attempts to quantify such correlation effects in
the communication between nodes in complex networks. Estrada
and Gomez-Gardenes defined communicability as a measure that
“quantifies the number of possible routes that two nodes have
to communicate with each other.” In multiplex networks, the
communicability, C, between two nodes p and q, is a weighted
sum of all walks from p to q.

Cpq = I + M +
M

2

2 !
+ . . . =

k
∑

k= 0

M
k

k !

∣

∣

∣

∣

pq

. (20)

Hence, the communicability between nodes p and q is given by:

Cpq = [e(AL + VLL)]pq = [eM]pq, (21)

where the p, q-th entry in the minor, C, defines the
communicability broadcasted from node p in layer i to
node q in layer j. Therefore, the communicability broadcasted
and received by the nodes in the multiplex is given by:

C = e(AL + VLL) =











C11 C12 . . . C1h

C21 C22 . . . C2h
...

...
. . .

. . .

Ch1 Ch2 . . . Chh











(22)

Since all nodes are present in each layer of the multiplex, we
can calculate the integrated communicability from node p and
q in all layers in the multiplex by taking the harmonic mean
of the communicability between them in each minor in the
matrix C.

Ĉpq =
h

h
∑

i= 1

1

[Ci,i]pq
+

h
∑

j,k= 1,j 6= k

1

[Cjk]pq

. (23)

Hence, the integrated communicability matrix is formed by:

Ĉ =











0 Ĉ12 . . . Ĉ1h

Ĉ21 0 . . . Ĉ2h
...

...
. . .

. . .

Ĉh1 Ĉh2 . . . 0











, (24)

where Ĉij represents the interaction of layer i with layer j.
Therefore, this multiplex networkmodel is applicable to integrate
omics and clinical information of a number of diseases or patients
in an efficient way.

Evaluation

We incorporated verified data from different data source with
our software. Data integration reduces noise associated with each
experimental limitation, thus increases sensitivity and specificity
to detect true association relationships which results in less
number of false positives. By integrating different types of
omics and clinical data can produce more reliable predictions
with increased sensitivity and specificity for detecting true
functional disease comorbidity associations. This can help in
finding the hidden connections between complex diseases. Such
connections between complex diseases reflect common biological
pathways and biological functions that may become manifest
in the form of comorbidity. For an example, we show a
comparative representation of dysregulated genes and lifestyle
impact on the disease comorbidity in Figure 11. Here, panel A
( see Figure 11A) represents an example of only dysregulated
genetic influences on diseases with good lifestyle. Panel B (see
Figure 11B) shows an example of only bad lifestyle influences
on diseases with no genetic variation. Panel C (see Figure 11C)
represents the combined impacts of lifestyle and dysregulated
genes on diseases. Here, we observed that the combined impact
of both lifestyle and dysregulated genes influences more and
multiway on the diseases and disease comorbidities. It is
conceivable that by integrating the data ranging from genotype
to multiple levels of phenotypes, more precise and robust
stratification of the patients with clinical outcome difference can
be achieved.

Discussion

Development of methods combining omics, ontology and
clinical information could assist clinical decision making and
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FIGURE 11 | Comparative representation of dysregulated genes

and lifestyle impact on the disease comorbidity. (A) Represents

an example of only dysregulated genetic influences on diseases with

good lifestyle. (B) Shows an example of only bad lifestyle influences

on diseases with no genetic variation. (C) Represents the combined

impacts of lifestyle and dysregulated genes on diseases. Here, the

circular red nodes nodes represent diseases name, triangular blue

nodes represent genes symbols and square green nodes represent

lifestyle factors. The size of the nodes represents the degree of

associations.

represent a large step toward personalized medicine. Proactive
and personalized medicine will bring fundamental changes to
health care, taking carefully targeted preventative or therapeutic
action at the earliest indications of risk or disease. In order to
facilitate the necessary changes, better tool is needed for assessing
risk and optimizing treatments, which in turn require better
understanding of disease interdependencies, genetic influence,
and translation into a patient’s future. However, most software
is designed to make a prediction about a single disease or
a class of some specific diseases based on the single omics
or clinical information. Phenomizer is a web-based system
that produces a ranked list of hereditary diseases, taking a
set of clinical features (Köhler et al., 2009). This system only
considers the phenotypic annotation to diseases, and semantic
similarity metrics to measure phenotypic similarity between
query phenotypes and disease phenotypes with the use of
the HPO (Robinson and Mundlos, 2010). Another software
DGFinder which is used to assess candidate genes in interested
chromosome regions for their possibility relating to a given
disease (Yuan et al., 2010). It integrated a dataset containing
1045 genes related to 305 diseases. Hidalgo et al. analyzed
comorbidity associations using the medical records (Hidalgo
et al., 2009). There are some online information retrieval tools,
such as AmiGO4 and QuickGO5, to collect gene annotation data
from various databases and manually discover the correlations
or similarities of gene products by their biological functions
(Binns et al., 2009). FindZebra (Dragusin et al., 2013) is a vertical

4http://www.godatabase.org.
5http://www.ebi.ac.uk/ego/.

search engine for rare diseases. This system does not consider
the genetic effects on disease or phenotypic effects on genes
rather it presents a list of disease documents for a given query of
symptoms. CARE uses collaborative filtering methods to predict
each patient’s disease risks based only on their own medical
history and that of similar patient’s information (Davis et al.,
2010). Recently, a tool KnIT has been developed for the complete
medical literature knowledge integration (Spangler et al., 2014).
DisGeNET is a coherent tool that analyses and interprets human
gene network to disease network (Bauer-Mehren et al., 2010). It
is able to display gene-disease association networks as bipartite
graphs and provides gene centric and disease centric views of the
data.

An R package “comorbidities” is able to categorize ICD-9-CM
codes based on published 30 comorbidity indices using Deyo
adaptation of Charlson index and the Elixhauser index (Deyo
et al., 1992; Elixhauser et al., 1998). Our previous R package
comoR that provides relative risk, φ-correlation, associated genes
and pathway between the comorbidity diseases (Moni and Lio,
2014). It is limited to gene expression and pathway molecular
data. To our knowledge, there is no available complete software
tool for the prediction of disease comorbidities maps based on
themultiple omics, gene ontology, phenotype and environmental
influences. So, we developed POGO, another R package that
implements different statistical approach for the prediction of
disease comorbidity maps by integrating diverse set of data.
This software could provide comorbidity mapping among all
diseases using ontology, miRNA, SNPs, CNVs, phenotypic and
environmental information. This software also incorporated
a prediction model that explores the past medical patient
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history to determine the risk of patients to develop future
diseases.

Patient’s omics data is becoming important for clinical
decision making, including disease risk assessment,
disease diagnosis and subtyping, drug therapy and dose
selection (Ullman-Cullere and Mathew, 2011). In the near
future, physician will have to consider omics implications to
patient care throughout their clinical work flow, including
electronic prescribing of medications. In the not-so-distant
future, as we move in to an era of personalized and preventive
medicine, healthy individuals may be tracked by multiple
layers of omic and clinical data in an effort to track potential
disease progression. Our software tool incorporated an
integrated framework to establish the associations between
genetic diseases and ontology information, which may help
to uncover the molecular mechanisms of genetic diseases.
The identified disease patterns from POGO could be useful
for further investigations with regards to their diagnostic
utility or help in the prediction of novel therapeutic targets.
Therefore, POGO could be helpful for the personalized medicine
system. They are able to detect many diseases at the earliest
detectable phase, weeks, months, and maybe years before
symptoms appear. POGO could easily be integrated into pipelines
for high-throughput analysis, such as Galaxy, and other
gene expression data mining, protein interactions validation,
predicting causal relationships among phenotypes and miRNA-
regulated network interpretation. The underlying hypothesis
behind this line of research is that once we catalog all disease-
disease relations through the omics, ontology, phenotypic
and environmental influence, we will be able to predict the
susceptibility of each individual to future diseases using various
molecular biomarkers, ushering us into an era of predictive
medicine.

Thus, a combination of genetic, ontology and population-
level data and information could be analyzed by this software
tool to establish and study novel hypotheses about unknown
disease mechanisms and disease comorbidity. Understanding
how different diseases relate to each other will not only provide
us with a global view of disease associations, but also provide
potentially new insights into the etiology, classification, and
design of novel therapeutic interventions. This has led to the
advent of stratified medicine, which translates advances in basic
research by targeting etiological mechanisms underlying diseases.
Method and tool for stratifying (classifying) patients in order
to reliably predict prognosis or success of treatments are of
critical importance in the field of medicine. However, with the
identification of the new omics and clinical information, we
need to update the integrated databases of the POGO. Using
the temporal data explored by the time dimension approach,
POGO could be extended to predict the time of expected disease
diagnosis in addition to the likelihood of occurrence. The result is
a patient stratification could be based on more complete profiles
than the primary diagnosis. Therefore, POGO is useful for the
stratified medicine.

Conclusion

Integration of multi-omics, ontology and phenotypic
information is important for comorbidity prediction and
patient stratification. Therefore, our methodological framework
and software for integrating genetic and clinical data could be
applicable in clinical decision making for personalized medicine.
We expect that this combined approach may increase accuracy
and decrease effort for disease comorbidity diagnosis. POGO
software tool provides robust approaches to study disease
comorbidity mappings by integrating omics, phenotype and
ontology information, which can be easily integrated into
pipelines for high-throughput and clinical data analysis, and
to predict causal inference of a disease. This software tool will
help to gain a better understanding of the complex pathogenesis
of disease risk phenotypes and the heterogeneity of disease
comorbidities. Moreover, the disease comorbidity patterns
identified using this software tool could be useful for diagnostic
utility or to help in the prediction of novel therapeutic targets.
Thus, this software tool could be applicable in personalized
medicine and clinical bioinformatics. So our software tool for
comorbidity diagnosis and patient stratification could result in
effective aids to the health practice. This will not only result in
improving health outcomes of the patient, but also in reducing
the health care costs.

Availability and Requirements

The software package POGO has been written in the platform
independent R programming language. It requires R version 2.16
or newer to run. The software is freely available at www.cl.cam.
ac.uk/~mam211/POGO/ and will appear in Comprehensive R
Archive Network (CRAN) at (http://cran.r-project.org/).
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The recent explosion of high-throughput sequencing methods applied to RNA molecules
is allowing us to go beyond the description of sequence variants and their relative
abundances, as measured by RNA-seq. We can now probe for RNA engagement in
polysomes, for ribosomes, RNA binding proteins and microRNAs binding sites, for RNA
secondary structure and for RNA methylation. These descriptors produce a steadily
growing multidimensional array of positional information on RNA sequences, whose
effective integration only would bring to decipher the regulatory interplay occurring
between proteins, RNAs and their modifications on the transcriptome. This interplay
ultimately dictates the degree of mRNA availability to translation, and thus the occurrence
of cell phenotypes. However, several issues in data presentation are slowing down
effective integration. A standardization effort for new dataset types produced should
be urgently undertaken to solve these issues. Providing uniformed experimental details
along with datasets processed to be directly usable and employing shared formats would
greatly simplify integration efforts, strengthening hypotheses stemming from correlative
observations and eventually bringing to mechanistic understanding.

Keywords: transcriptome, integration, post-transcriptional control, translation, RNA-seq, mRNA, data format,
standards

PROBING THE BIOLOGICAL STATUS OF WHOLE
TRANSCRIPTOMES
The last 15 years have witnessed, starting with the advent of
microarray-based gene expression probing, an explosion of high-
throughput technologies for the characterization of biological
molecules. These technologies, affordable and relatively simple to
apply, are steadily paving the way for routine multi-omics stud-
ies. The latest of such technologies, high-throughput sequencing
(HTS) (Metzker, 2010), has quickly gained widespread acceptance
and concurrently enabled several different types of measure-
ments. Its sequence-based nature, permitting to pinpoint relevant
features on the genome or transcriptome of interest (position-
aware data), and its massively parallel data production capabilities
are now indeed applied to the study of a wide array of biological
questions. Applications focus on DNA (identification of sequence
and copy number variants, mapping of chromatin binding sites
by transcription factors and other proteins, chromatin topol-
ogy studies in nuclei, etc.) (Koboldt et al., 2013) and on RNA
(sequence variants of mRNAs and non-coding RNAs, expres-
sion levels, mapping of binding sites of RNA binding proteins
(RBPs), post-transcriptional modifications etc.), (Ascano et al.,
2013; Mutz et al., 2013). Translational regulation of gene expres-
sion, in particular, has lately been object of increasing interest: its
role in profoundly reshaping transcriptome variations and being
the determinant of plasticity in the nascent proteome (Vogel
et al., 2010; Stevens and Brown, 2013) is increasingly appreciated.
Consequently, omic approaches have been developed to investi-
gate which features of an mRNA may influence its translation rate,

which trans-factors play a role in such regulatory processes and
how these two aspects combine to yield the final protein levels. We
will focus on RNA-centered methods to examine the types of bio-
logical information they can provide; we will then look at how this
information should be integrated to allow us a better understand-
ing of both the global transcriptome dynamics and their effects on
phenotype.

As shown in Figure 1, such methods can be classified by their
descriptive capability, either molecular for the entire RNA or sub-
molecular for specific RNA portions, and the kind of description
they provide, quantitative, qualitative or both. The description of
entire transcripts is provided by RNA-seq (Mutz et al., 2013), an
HTS-based method which gives the sequence of coding and non-
coding transcripts, including mapping of alternative transcription
or termination sites, splice variants produced on the same locus
and the presence of expressed sequence polymorphisms. Since
different transcripts can be quantified in their relative abundance,
this type of information is both qualitative and quantitative. The
polysome profiling method (Arava, 2003; Gandin et al., 2014)
is based on the separation by sucrose gradient centrifugation of
cellular fractions containing polysomes and the subsequent quan-
tification of their mRNA relative (to the total lysate or to the
fractions not containing polysomes) abundance, which can be
performed by RNA-seq or by the more conventional microarray
analysis. The resulting information is a quantitative and qual-
itative description of the degree of polysomal engagement for
every transcript (by which the molecular nature of this method),
the so called translatome (Tebaldi et al., 2012); a calculation of
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FIGURE 1 | Techniques for positional whole-transcriptome probing. The figure displays techniques allowing to study transcriptomes at various observational
levels, with particular regard to positional information; all techniques, indicated by their representative feature on transcripts, are based on RNA-seq.

translational efficiency can be done by this assay. The qualita-
tive component of polysome profiling is given by computational
approaches which allow us to investigate the differential associ-
ation of mRNAs produced by the same gene locus (splice and
5′/3′ variants) with the polysomes (Frac-seq, Sterne-Weiler et al.,
2013), or which measure the effect of single-nucleotide poly-
morphisms on translational efficiency (Li et al., 2013). Ribosome
profiling (Ingolia, 2014) aims at providing a snapshot of mRNAs
under translation by scoring the transcript regions which are pro-
tected from nuclease attack by ribosomes. It is a RNA-seq-based
method of the submolecular type: obtainable information can be
integrated at the transcript level but has a positional content, so
that translation initiation and termination sites, potential trans-
lation stalling events, upstream ORF translation, can be derived
(Ingolia et al., 2011). Besides engagement in translation, another
type of general, qualitative description of transcript status is
the secondary structures pattern, recently become available to
profiling through nucleotide accessibility probing coupled with
RNA-seq (Ding et al., 2014; Rouskin et al., 2014; Talkish et al.,
2014; Wan et al., 2014). Eventually, a transcript component which
can be investigated is the poly(A) tail: two recent methods, PAL-
seq (Subtelny et al., 2014) and TAIL-seq (Chang et al., 2014),
exploit RNA-seq to characterize its length and potential modifi-
cations (such as uridylation and guanylation). The same principle
of nuclease protection exploited in ribosome profiling is then
systematically applied in locating RNA-associated “footprints” of
RBPs. The CLIP techniques family: HITS-CLIP, PAR-CLIP, and
iCLIP (Ule et al., 2003; Hafner et al., 2010; Konig et al., 2010)
and the CRAC approach (Granneman et al., 2009) exploit an UV-
induced crosslinking of RNA and associated proteins (with the
option of using photoactivatable nucleotides, as done in PAR-
CLIP) to enable the identification of RNA targets and binding

sites for single, immunoprecipitated RBPs. These are therefore
submolecular and essentially qualitative approaches. A variant
method, CLASH (Helwak et al., 2013), introduces a RNA liga-
tion step to locate sites where other RNAs are associated in trans
in a protein complex, allowing to experimentally identify miRNA
binding sites. CLIP methods can also be extended to consider
many RBPs at once: “global CLIP” approaches such as protein
occupancy profiling (Baltz et al., 2012) and PIP-seq (Silverman
et al., 2014) thus provide contact sites for all RBPs at once on a
transcriptome.

Coming finally to the most submolecular level, that of single
nucleotides, mRNA editing events (such as adenosine to inosine
conversions) can be revealed either by inosine chemical eras-
ing (ICE), as in Sakurai et al. (2014), or by directly looking for
sequence variants in RNA-seq reads (St. Laurent et al., 2013;
Bazak et al., 2014). Eventually, RNA 5-methylcytosine and N6-
methyladenosine nucleotide methylation can be detected with
single-nucleotide precision, respectively by bisulfite conversion
(Squires et al., 2012; Edelheit et al., 2013) and immunoprecipita-
tion (Dominissini et al., 2012; Meyer et al., 2012; Khoddami and
Cairns, 2013) or by other biochemical methods (Hussain et al.,
2013; Liu et al., 2013).

APPROACHES FOR THE INTEGRATION OF
TRANSCRIPT-CENTERED OMICS
Currently, several hundred papers employing the described
transcriptome-based omics methods have been published,
including a considerable number of pure RNA-seq datasets, sec-
ondary structure probing, editing and methylation profiles for
the most common cell lines and organisms (see Figure 1), and at
least 40 different CLIP or CLIP-like datasets (Dassi et al., 2014).
With such a huge amount of data available, the naturally arising
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question is how to integrate these different types of information
to obtain more insights than if considering single datasets in iso-
lation. Several works have approached this problem so far. As
shown in Table 1, they can be classified according to the different
perspectives adopted in doing so.

A first, post-experimental way of integrating these heteroge-
neous data sets consists in building a database presenting all the
collected data together, thus allowing users to prioritize and val-
idate potential connections. Mining the data, superimposed on
a reference genome, can be approached by looking for single
genes (as happens in genome browsers) or by studying interesting
gene lists (e.g., through functional enrichment or co-regulation
analyses). This road was taken by AURA/AURA2 (Dassi et al.,
2012, 2014), DORiNA (Anders et al., 2012), and starBase (Li
et al., 2014). The first provides RBP and miRNA binding sites,
cis-elements sites, RNA editing, and methylated nucleotides; the
second offers RBP binding sites and predicted miRNA targets; the
last includes RBP binding sites and miRNA interactions with cod-
ing and non-coding RNAs. While these databases are of general
interest and can be useful for a broad spectrum of preliminary
investigations, they still mostly contain data obtained in a lim-
ited set of particularly common model systems or cell lines (e.g.,
HEK293 cells): users will then likely need to trust this information

to hold in their system of interest or validate the interaction
in their specific conditions (e.g., for an RBP-mRNA interaction,
by integrating expression data to check whether it could indeed
occur, or by performing a RIP-qPCR assay in their system).

The second, most reliable method is obviously measuring sev-
eral mRNA features in the system under study, focusing on a
specific biological question, and then proceed by intersecting the
obtained data to generate hypotheses stemming from the corre-
lation of specific features. An intuitive example of this approach
is in profiling the transcriptome and the translatome (the last
through polysomal profiling, for instance) in various conditions
(e.g., drug treatment vs. control) to identify which genes are sub-
jected to translational control and the impact the treatment may
have on translational efficiency (computed as the translatome
vs. transcriptome ratio): this has already been done in a num-
ber of works (Genolet et al., 2011; Bates et al., 2012; Fu et al.,
2012; Tebaldi et al., 2012; Courtes et al., 2013; Dudek et al., 2013;
Willimott et al., 2013). A variation on this theme could include,
in parallel, a miRNAs profiling in the system to correlate differ-
ences in their levels with differences in translational efficiency,
generating candidate determinants of the latter changes (Clarke
et al., 2012). Another example is the secondary structure and
translational efficiency profiling of mRNAs in the system under

Table 1 | Current approaches for positional information integration on the transcriptome.

Name Description Scope Potential issues References

Integrated databases Collecting and presenting
available datasets of
heterogeneous types and
biological sources; allowing
users to mine the data
types in combination

Global over a vast number
of different data types

Data quality and processing
assessment not always
possible; achieving
database completeness and
constant content update is
particularly time-intensive

Anders et al., 2012; Dassi
et al., 2012, 2014; Li et al.,
2014

Multi-level profiling Performing various types of
measurements (i.e., mRNA
levels, RNA secondary
structure, RNA methylation)
in the same system of
interest (e.g., cell line) to
derive correlative patterns

Global over a limited
number of data types

Need very different
experimental and data
analysis expertise; results
applicability is limited to the
studied system

Genolet et al., 2011; Bates
et al., 2012; Clarke et al.,
2012; Dominissini et al.,
2012; Fu et al., 2012; Tebaldi
et al., 2012; Courtes et al.,
2013; Dudek et al., 2013;
Willimott et al., 2013; Zheng
et al., 2013; Ding et al.,
2014; Mao et al., 2014;
Wang et al., 2014a

Measurements & public
data exploitation

Performing a small number
of measurements (i.e.,
mRNA levels only) in the
system of interest, and
exploiting public data to
study genes derived from
these measurements (i.e.,
presence of translational
regulation) to infer and
validate potential regulatory
mechanisms and patterns

Over a small number
(dozens) of interesting
genes

Publicly available data on
the system one wants to
use may not be available;
further validation and/or
mechanistic experiments
may be needed

Mazza et al., 2013;
Avery-Kiejda et al., 2014;
Schueler et al., 2014; Wang
et al., 2014b

The table describes currently applied approaches to the integration of position-aware RNA datasets. Scope of the various approaches and associated potential issues

are outlined along with the references of works employing them.

www.frontiersin.org August 2014 | Volume 2 | Article 39 | 80

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


Dassi and Quattrone Computational transcriptome data integration

study, aiming at the identification of structural patterns con-
ferring translational advantages to the mRNAs containing them
(Ding et al., 2014; Mao et al., 2014). Along the same line is cou-
pling m6A methylation probing and RNA-seq measurements in
the same system: this allows us to understand whether methy-
lation alters mRNA level, stability and splicing patterns in the
conditions under investigation (Dominissini et al., 2012; Zheng
et al., 2013; Wang et al., 2014a).

The last integration method we describe is based on bridg-
ing the previous two approaches: combining a limited number
of direct measurements performed in the system of interest with
the wealth of data available in public databases such as the
ones described above (even though these data may not be pro-
duced in the same model). One may thus investigate whether,
for instance, an RBP or a miRNA is controlling a group of
mRNAs, whether the gene set under analysis is enriched with
a particular feature (e.g., a 3′UTR cis-element in the form of
a secondary structure, methylated nucleotides, etc.) or match
observed patterns for one feature type (e.g., presence of a sec-
ondary structure feature) with public data (e.g., presence of
trans-factor binding sites) to deduce general rules (e.g., prefer-
ence of a trans-factor for that given structural feature). While
this method leads to hypotheses that need validation as they
may not hold in the system of interest, it allows speeding up
the investigation and reducing the hypotheses space, conse-
quently lowering experimental uncertainty, time and cost. This
approach has been enabled just recently, due to the availability
of the databases discussed above. However, in the few published
works adopting it, it is usually applied to the integration of
data focused on a few specific mRNAs, which have been previ-
ously selected for their behavior as observed in the ongoing study
(Mazza et al., 2013; Avery-Kiejda et al., 2014; Wang et al., 2014b).
One exception is the recent work by Schueler and colleagues,
in which protein contact sites obtained by a global PAR-CLIP
on two cell lines are integrated with known RBP binding sites
to infer differential protein occupancy patterns (Schueler et al.,
2014).

Summing up, even though the approaches we have discussed
are useful examples of data integration applied to the structure
and the behavior of mRNAs, it is evident that these are still
early and limited efforts. Indeed, as also testified by the small
number of published works, there still is a significant lack of
accepted practices and standard procedures which could ren-
der these approaches of effective routine usage. Having built a
database focused on post-transcriptional regulation (Dassi et al.,
2014), we realized that processed data, as submitted by the
authors, vary widely in their processing level: if we take CLIPs
datasets as an example, some datasets include the definition of
sites bound by the studied RBP while others are limited to,
for instance, the indication of T > C conversions (for PAR-
CLIP); obviously this marked differences put additional burden
on whoever wants to use multiple datasets, produced in differ-
ent experiments, together, in order to generate new hypotheses.
Furthermore, methods are often described in many ways, with
different levels of detail, representing further obstacles in individ-
uating steps needed to make these datasets truly comparable. A
last general issue is the absence of a systematic way to evaluate

data quality and robustness, considering for example the pres-
ence of replicates, the number of supporting reads and other
parameters linked to specific techniques.

THE NEED FOR STANDARDIZATION
Given the outlined issues, we asked which steps could be taken
to improve the exploitability and the integration potential of the
RNA-centered high throughput data. We propose two simple,
preliminary actions. The first is the enforced use of standard file
formats with precisely defined fields, a relatively simple goal to
achieve. The second is the enforced provision of a minimal set
of information—enhancing dataset description, uniformity and
allowing quality evaluations—at submission time (similarly to
what was established and is currently enforced for microarrays
with MIAME and related initiatives; Brazma et al., 2001; Rayner
et al., 2006). This could be straightforwardly imposed by repos-
itories commonly used for high-throughput datasets submission
such as GEO (Barrett et al., 2013), ArrayExpress (Parkinson et al.,
2005), and SRA (Wheeler et al., 2008).

Concerning the first requirement, we need to deal with two
types of data: intervals (such as RBP and miRNA binding sites
obtained through CLIPs) and per-nucleotide intensities (contin-
uous values such as the ones produced by RNA methylation or
secondary structure probing assays). Intervals are most often rep-
resented by means of the Browser Extensible Data (BED) format:
its main advantage lies in the extreme simplicity of fields defini-
tion, which nevertheless allows a certain degree of detail, making
it also feasible to represent several datasets in a single file (by
for instance using the name field to distinguish the RBP/miRNA
and possibly specifying methods and data source publication in
the description field). Furthermore, BED files can be converted
to bigBed (Kent et al., 2010), the associated binary indexed for-
mat that is efficient to process and use with genome browsers
even for huge datasets. Concerning continuous values, they are
most often stored by means of either a format similar in nature
to BED, called bedGraph, or through another common option
called Wiggle (Kent et al., 2010). Both formats are stripped down
to the essential and are not really intended to allow mixing differ-
ent datasets in the same file; the file header however leaves room
for some description to be added; furthermore, both can be con-
verted to the binary indexed bigWig format (Kent et al., 2010),
similarly to what mentioned above for bigBed. Given the versatil-
ity and already widespread use of these two formats, coupled with
the storage and display efficiency, we propose that they should be
deemed as de facto standards and systematically required for new
data submissions.

For the second requirement (minimal set of parameters
describing a dataset), which information should be considered as
essential for the data to be exploited at their full potential? First of
all, in the case of CLIP datasets intervals representing binding sites
should be provided, rather than including raw per-nucleotide
data only. Many scientists would not or cannot go the extra mile
to compute intervals out of per-nucleotide data by themselves,
and would thus loose the opportunity to use them. Furthermore,
methods employed for data analysis should be described, at least
briefly, indicating how intervals or per-nucleotide intensities (e.g.,
in the case of secondary structure data) were computed from raw
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reads. Eventually, basic quality metrics such as the number of
replicates and the read depth supporting a given interval/position,
along with call significance p-values (where appropriate) should
also be provided to let the users judge on the data robustness,
eventually allowing the application of homogeneous stringency
filters when integrating multiple datasets. We believe that this
“information package” could be enough to describe the data
under study to an extent that will eventually make going back
to the raw data unnecessary: we therefore propose that these
information should be required when submitting a dataset of
this sort.

Pushing further on this proposal, we may also consider
the need for a dedicated repository storing transcriptome-
centric positional data. Similarly to what major journals ask
for microarrays-containing works, submission to this repository
could be a de facto requirement for publication and have an
unique ID assigned, to which direct reference could be made in
publications further easing data traceability. Using one of the
currently available databases as a repository of this sort could
also have the advantage of allowing us to display various datasets
together, integrated in a transcript-oriented way, thus providing a
first glimpse of the data along with the possibility to retrieve them.
Of course, this collection of proposals, which goes along the lines
of several other “reproducible research” initiatives, can become
a reality only if the majority of scientists in the field agree and
commit to sustain it by complying with these recommendations.

CONCLUSION
The availability of techniques based on high-throughput sequenc-
ing is fostering the investigation of the biological behavior of
transcriptomes with an unprecedented level of detail and a con-
tinuously increasing amount of available data types: the very
nature of this technology effectively allows us to pinpoint the
location of features responsible for known and unknown bio-
chemical properties of mRNAs and non-coding RNAs which may
ultimately influence mRNA translation. However, the integration
of these datasets is still in its infancy, with only a few approaches
and applications in the literature and a lot of room for improv-
ing and making these efforts much easier and useful. We think
that this process could be eased by committing to the introduc-
tion of standardization measures involving file formats, minimal
information to be provided for dataset description and, pos-
sibly, the setup of a dedicated data repository. The choice to
advance a proposal limited to transcripts biological features is
justified in our opinion by the momentum gained by studies in
post-transcriptional regulation of gene expression, by the several
RNA-seq-based techniques introduced in the last 2 years, and the
exponential growth of datasets of this type being released. We
therefore think that the effort needed to implement such proposal
could be worthy and fruitful. While certainly requiring coordina-
tion between laboratories studying the topic, initiatives like OBO
(Smith et al., 2007), MIAPE (Taylor et al., 2007), and BioBricks
(Smolke, 2009) have shown that it is possible to implement and
sustain a standardization effort aimed in our case at a better
exploitation of high-throughput data. Given the pace at which
these data are accumulating, we need for sure to urgently push
their integrated exploitation to its fullest extent.
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The representation, integration, and interpretation of omic data is a complex task,
in particular considering the huge amount of information that is daily produced in
molecular biology laboratories all around the world. The reason is that sequencing data
regarding expression profiles, methylation patterns, and chromatin domains is difficult
to harmonize in a systems biology view, since genome browsers only allow coordinate-
based representations, discarding functional clusters created by the spatial conformation
of the DNA in the nucleus. In this context, recent progresses in high throughput molecular
biology techniques and bioinformatics have provided insights into chromatin interactions
on a larger scale and offer a formidable support for the interpretation of multi-omic data. In
particular, a novel sequencing technique called Chromosome Conformation Capture allows
the analysis of the chromosome organization in the cell’s natural state. While performed
genome wide, this technique is usually called Hi–C. Inspired by service applications such as
Google Maps, we developed NuChart, an R package that integrates Hi–C data to describe
the chromosomal neighborhood starting from the information about gene positions, with
the possibility of mapping on the achieved graphs genomic features such as methylation
patterns and histone modifications, along with expression profiles. In this paper we show
the importance of the NuChart application for the integration of multi-omic data in a systems
biology fashion, with particular interest in cytogenetic applications of these techniques.
Moreover, we demonstrate how the integration of multi-omic data can provide useful
information in understanding why genes are in certain specific positions inside the nucleus
and how epigenetic patterns correlate with their expression.

Keywords: multi-omic data integration, Chromosome Conformation Capture, gene neighborhood map, chromatin
spatial organization, linking gene regulatory elements

INTRODUCTION
What is the best way to integrate and represent omic data? This
inquiry results critical in an era that is witnessing an explosion
of the available molecular biology information. In particular,
the integration and the interpretation of omic data in a systems
biology view is complex, because actual representations rely on
genomic coordinates, discarding at first gene spatial cooperation
and renouncing to exploit the real conformation of the DNA
in the nucleus. Moreover, approaches that are commonly used
to annotate and analyze molecular biology experiments, such as
ontology mapping and enrichment analysis, assume as prereq-
uisite an independent sampling of features, which is clearly not
satisfied while looking at long-range chromatin interactions (de
Wit and de Laat, 2012), since they associate regions that are known
to be functionally correlated.

Considering the number of experiments that highlight the
importance of co-localization and co-expression of genes (Di Ste-
fano et al., 2013), the possibility of mapping multi-omic features
on a map capable of representing the effective disposition of genes
in the nucleus can be of great utility. Moreover, the possibility
of introducing network concepts to represent the behavior of

genomic actors seems a suitable solution for the interpretation
of this kind of data, since they allow to map a lot of informa-
tion in complex, dynamical structures that organize items in an
integrated way.

Recent advances in high throughput molecular biology tech-
niques and bioinformatics have provided insights into chromatin
interactions on a larger scale (Lieberman-Aiden et al., 2009).
A novel technique called Chromosome Conformation Capture
(3C) allows the analysis of chromosome organization in the
cell’s natural state (Duan et al., 2012). The combination of
high-throughput sequencing with this technique, generally called
Hi–C, allows the characterization of long-range chromosomal
interactions genome-wide (Lin et al., 2012). Hi–C gives infor-
mation about coupled DNA fragments that are cross-linked
together due to spatial proximity, providing data of the chro-
mosomal arrangement in the 3D space of the nucleus. If used
in combination with chromatin immunoprecipitation, 3C can
be employed for the analyses of interactions between DNA and
particular proteins, in a technique called ChIA-pet (Fullwood
et al., 2009; Dixon et al., 2012; Li et al., 2012; Papantonis et al.,
2012).
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These techniques allow the description of the nucleus orga-
nization at unprecedented resolution, offering the possibility to
study the structural properties and spatial organization of chro-
mosomes. This is of critical importance for understanding and
evaluating the regulation of gene expression, DNA replication,
repair, and recombination (Chepelev et al., 2012). Moreover,
using the Hi–C approach, the possibility of comparing the
three-dimensional organization of the DNA in physiological and
pathological conditions is achievable. The capability of describing
how diseases reorganize the chromatin conformation to origi-
nate novel co-localized gene clusters of co-expression would be
of primary importance.

To fully exploit the potential of this technique, many issues
have to be faced. First of all the huge amount of data that should
be produced for describing the conformation of the DNA in the
nucleus. Considering that there are more than 200 different cell
types with different profiles, which also change depending on
the cell’s actual state, the sequencing effort required to describe
the three-dimensional configuration of genes in the nucleus is
huge. Moreover, the integration of epigenetic information that
is strictly correlated to the DNA conformation in the cell in a
mutual cross-regulation (since the expression of proteins that
organize the chromatin in the nucleus is correlated to the con-
formation of the chromatin itself), making the data problem
explosive.

In this paper we describe a initial attempt to analyze Hi–C data
and related multi-omic features using a network approach to rep-
resent gene co-localization and co-regulation. In particular, we
describe how the R package NuChart, with its algorithmic features
that have been previously presented (Merelli et al., 2013), can be
used to interpret 3C data for creating a map that represents multi-
omic information. Here, we present the possibilities that can be
opened by using systems biology concepts for the analysis of 3C
data, in particular highlighting how this procedure has the poten-
tial to enter into clinical practice, because it provides information
that can be interpreted in a cytogenetic view, with incomparable
resolution and richness of details.

MATERIALS AND METHODS
Inspired by web applications such as Google Maps, we developed
NuChart (Merelli et al., 2013), an R package that elaborates Hi–C
information to provide a systems biology oriented, gene-centric
view of the three-dimensional organization of the DNA in the
nucleus (the software, the manual, and all the supporting materials
are freely available at ftp://fileserver.itb.cnr.it/nuchart). NuChart
can be used to describe the DNA conformation in the neighbor-
hood of selected genes by mapping on the achieved graph genomic
features that are important for controlling gene expression at
epigenetic level.

Although NuChart is the first R package allowing both visu-
alization and analysis of Hi–C data in a gene-centric fashion
[other software are CytoHi–C (Shavit and Lio’, 2013) and Homer
(Heinz et al., 2010), which both rely on Cytoscape], a similar
approach was initially presented by Wang et al. (2013), for the
analysis of chromatin conformation data in experiments concern-
ing acute lymphoblastic leukemia (ALL) and Lymphoma cells.
This work pioneered the idea of analyzing the social behavior of

genes by using a graph-based approach. A similar method has been
exploited in NuChart, which in addition allows a statistical inter-
pretation of both expression and epigenetic data in comparison to
the topology of the graph, thus allows a deep integration of this
kind of information.

For example, it is possible to map on the neighborhood graph
Linking Gene Regulatory Elements [in particular, the predicted
binding sites for the CTCF or Cohesin proteins (Botta et al., 2011)],
isochores [that describe the variations in the GC content and are
important for the genome organization (Varriale and Bernardi,
2009)], potential cryptic Recombination Signal Sequences [cRSSs,
which are important for generating the antigen receptor diver-
sity (Marculescu et al., 2006)], and other user desired genomic
features (using the bed file format), such as methylation profiles
and histone modifications, to infer how epigenetic features and
the three-dimensional nuclear organization of DNA cooperate in
controlling gene expression. This can be very useful while study-
ing the differentiation of stem cells or for identifying chromosomal
reorganizations in cancer cells.

The package is built upon the functionality of Bioconductor
packages such as biomaRt, Biostrings, ArrayExpress, GEOquery,
KEGGREST, limma, samr, igraph, and ergm, providing a novel
method to exploit Hi–C data in a systems biology context.
NuChart, used in combination with the Hicup software, processes
Hi–C data in FASTQ format, performs some preliminary normal-
izations relying on the fragment distances from the enzymatic cut
sites. The output is a detailed table concerning the chromosomal
spatial neighborhood of the input genes, providing a related graph
on which it is possible to map multi-omic features.

The idea behind this package is to provide a complete suite
of tools for the analysis of Hi–C data using a gene-centric point
of view to provide a map on which other omic data can be
mapped (see Figure 1). Contact matrices, or better their prob-
abilistic models, allow to create representations that only involve
two chromosomes, while we are able to describe the interactions
of all the chromosomes together using a graph-based approach.
This representation gives more importance to the physical prox-
imity of genes in the nucleus in comparison to coordinate-based
representations. This is the same problem that impairs represen-
tations based on Circos, which are able to characterize the whole
genome in one shot, but fail to describe the physical proximity of
genes.

A typical analysis performed with NuChart starts with the
pre-processing of the FASTQ file using Hicup, which provides as
output a SAM file (see the Hicup documentation for more details).
Then, data can be loaded into the R environment and normalized
using a generalized linear model relying on a Poisson distribu-
tion (taking into account Hi–C fragment length, mappability
and GC-content). Considering that this normalization approach
is well-established (Hu et al., 2012), the algorithm returns the
same results of other approaches relying on the computation of
the contact matrices (Servant et al., 2012; Seitan et al., 2013; Ay
et al., 2014), providing a probability score at each edge of the
neighborhood graph.

This method allows to estimate, at the same way of the contact
maps, the probability that different genomic regions are proxi-
mal one to the other, with the advantage of allowing an iterative
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FIGURE 1 | Multi-omic integration of data using Hi–C maps. The
possibility of employing a map describing the chromatin organization in
the nucleus to represent multi-omic data can be very useful for the
interpretation of this kind of information. This approach recall the use
of Google maps to display, on a cartographic representation of a city,

features such as shops and places of interest. By using the same
idea, we can map on the neighborhood graph of the genes
inside the nucleus omic data such as methylation patterns,
immunoprecipitation information, open-chromatin conformations, and
expression profiles.

analysis of the space: it is therefore possible to calculate the prob-
ability that two genes are distant a specific number of contacts.
Moreover, the graph-based description of gene positions in the
nucleus is extremely useful for mapping other multi-omic fea-
tures, since analyzing data through this spatial description of
the DNA conformation allows the identification of long-range
interactions, cooperative genes and common epigenetic patterns,
which are more difficult to identify relying on chromosomal
coordinates.

The core procedure starts from one or more input genes from
which a graph of adjacent genes is constructed. The identification
of neighbor genes begins searching chromosome fragments that
belong to the input genes. These fragments are then compared
with other chromosome fragments located in a different genomic
region, as reported by coupled reads. When a match is found and
a new fragment is identified within a specific gene region, an edge
between the starting gene and the novel detected one is created. A
very important feature of the algorithm is the possibility to specify
the number of iterations to accomplish for creating the neighbor-
hood graph, which means to specify the maximum span that the
graph can reach starting from the input genes (correlated to the
diameter of the graph or, using the graph theory terminology, to
the “longest shortest path”).

By default this value is set to one, which means that, considering
the list of genes given as input and taking into account the desired
normalization, only genes that are directly in contact are mapped
on the graph. If this parameter is set to two the procedure is iterated
twice, meaning that all the genes identified in the neighborhood of

the input genes at the first iteration of the algorithm are searched
again for Hi–C interactions with other genes. And so on. This is
of critical importance because it allows to overcome the limit of
the contact matrix representation, which is limited by definition
at representing only the interactions just one step away from the
considered gene, while here we can identify paths also between
distant genes.

The added value of this package is to provide the possibil-
ity of analyzing Hi–C data in a multi-omic context, by enabling
the capability of mapping on the graph vertices expression data,
according to a particular transcriptomic experiment, and on the
edges genomic features that are known to be involved in chro-
mosomal recombination, looping, and stability. If the user is
interested in mapping on the neighborhood graph also gene
expression data, there are functions for downloading microarray
experiment results from ArrayExpress and GEO. Moreover, using
NuChart it is possible to map on the neighborhood graph many
genomic features such as data concerning cryptic RSSs, isochores,
and CTCF binding sites, which are embedded in the package,
but also any other omic information using the common bed file
format.

NuChart also provides three functions to describe, compare,
and statistically analyze neighborhood graphs once they have
been created, which can be useful to highlight local and global
characteristics of the fragment distribution in the context of the
three-dimensional DNA topology inside the nucleus. In particular,
there is the possibility to create general statistics about the graphs,
which can be useful to describe physiological and pathological
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conditions of the cells, verifying the differences in the spatial dis-
tribution of genes. Then, neighborhood graphs can be compared
by applying a conversion in adjacency matrices and then employ-
ing the Pearson correlation to check their similarity (for example
to see intra and inter experiments variability).

The last set of functions available in NuChart enables the user
to analyze, from a statistical point of view, the neighborhood
graphs in relation to the mapped multi-omic features. In partic-
ular, these functions rely on the R package Exponential-family
Random Graph Models (ERGMs) that provides an integrated
set of tools for creating an estimator of the network through a
stochastic modeling approach. In particular, the ERGM functions
are able to extrapolate the salient characteristics of a network by
implementing a maximum likelihood estimator.

Operatively, the software generates a huge number of net-
works, selects the ones having characteristics similar to the graph
under analysis (i.e., degree distribution, connected components,
topological conformation), and tries iteratively to optimize the
generation parameters until all the created graphs have charac-
teristics similar to those processed. This estimator is extremely
useful, since it allows to create a probability distribution by which
some peculiarities of the graph can be extrapolated, concerning
both its intrinsic topology and specific attributes of the nodes
(Admiraal and Handcock, 2007). In particular, the package allows
to compute simple statistics about the topology of the graph,
such as the significance of the vertex clustering attitude (trian-
gle), or the significance of the network tendency to create multiple
paths between two vertices (twopath). On the other hand, by
choosing more complex modeling functions and exploiting the
mapped multi-omic features, NuChart allows to test, for example,
the probabilities that edges are a function of a specific genomic
feature (nodecov) or the significance of having edges in relation
to the absolute difference of a vertices’ property (absdiff). The
possibility of analyzing data to infer structural-activity relation-
ships in a network is of critical importance (Reagans and McEvily,
2003).

RESULTS AND DISCUSSION
In this section we present some applications of the NuChart pack-
age. In particular, we show some interesting results relying on
the possibility of creating metrics for defining how far two genes
are one from the other, with possible applications to cytogenetic
profiling, to the analysis of the DNA conformation in the prox-
imity of the nucleolus, and for describing the social behavior of
genes.

APPLICATION TO CYTOGENETIC
Applications of 3C techniques to cytogenetics are becoming very
appealing, because the relative position of genes can be identified
using high-throughput experiments. An example can be found
in the work of Naumova et al. (2013), which concerns the analy-
sis of the mitotic chromosome organization, while other studies
showed how it is possible to identify translocations in Hi–C data
(Rusk, 2014). Here we show how Hi–C can be used for dis-
eased versus normal cells comparisons, with particular interest
in leukemias, since it reproduces results achieved by Fluorescence
in situ hybridization (FISH) experiments.

Although Hi–C is intended to estimate the contact frequencies
between different genomic regions, there is a clear correlation with
chromosomal translocations, since recombinations are largely
influenced by the distance between fragments in which DNA
breaks, necessary for translocations, occur. There are already many
evidences in this sense (Meaburn et al., 2007; Engreitz et al., 2012;
Shugay et al., 2012; Zhang et al., 2012; Kenter et al., 2013), which
demonstrate how the physical distance plays a leading role for
recombinations, in particular when the frequency of DNA breaks
are physiological (while in cellular models where a high number
of translocation are artificially induced the frequency becomes
the dominant factor). Considering the association between con-
tact frequencies and translocations, we think that a graph-based
approach may be useful for data analysis from a recombination
point of view. NuChart is capable of providing an immediate rep-
resentation of genomic segments that are more likely to translocate
with a specific gene, taking into account that the recombination
probability is proportional to the weight of the connecting edges,
according to the employed normalization.

The first example we present concerns the Philadelphia translo-
cation, which is a specific chromosomal abnormality associated
with chronic myelogenous leukemia (CML). The presence of this
translocation is a highly sensitive test for CML, since 95% of peo-
ple with CML have this abnormality, although occasionally it may
occur in acute myelogenous leukemia (AML). The result of this
translocation is that a fusion gene created from the juxtaposi-
tion of the ABL1 gene on chromosome 9 (region q34) to part of
the BCR (“breakpoint cluster region”) gene on chromosome 22
(region q11). This is a reciprocal translocation, creating an elon-
gated chromosome 9 (called der 9), and a truncated chromosome
22 (called the Philadelphia chromosome).

Using NuChart we compared the distance of some couples of
genes that are known to create translocation in CML/AML. In
particular, our analysis relies on data from the experiments of
Lieberman-Aiden et al. (2009), which consist in four lines of kary-
otypically normal human lymphoblastoid cell line (GM06990)
sequenced with Illumina Genome Analyzer, compared with two
lines of K562 cells, an erythroleukemia cell line with an aberrant
karyotype. Starting from well-established data related to the cyto-
genetic experiments (Dewald, 2002), we tried to understand if the
Hi–C technology, in combination with NuChart, can successfully
be applied in this context, by verifying if translocations normally
identified by using FISH can also be studied using 3C data. There-
fore, we identified five couples of genes that are know to be involved
in translocations and we compared their Hi–C interactions in
physiological and diseased cells.

The very interesting result is that ABL1 and BCR, consid-
ered a normalization equivalent to the one achieved with Hic-
Norm, are likely to be distant 1 or 2 contacts (p < 0.05) in
sequencing runs concerning GM06990 with HindIII as digestion
enzyme (SRA:SRR027956, SRA:SRR027957, SRA:SRR027958,
SRA:SRR027959), while they are directly in contact (p < 0.05)
in sequencing runs related to K562 with digestion enzyme HindIII
(SRA:SRR027962 and SRA:SRR027963). Therefore, there is a per-
fect agreement between the positive and the negative presence of
Hi–C interactions and FISH data (see Figure 2). At the same way,
AML1 and ETO are in close proximity (p < 0.05) in leukemia cells
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FIGURE 2 | Hi–C for Cytogenetic application. Comparison of FISH data and
Hi–C information for the cytogenetic analysis of translocation in leukemia. In
panel (A) the neighborhood graph of the genes ABL1 and BCR generated
from the GM06990 cell line (Lieberman-Aiden experiment SRA:SRR027956)
is presented. The graph shows that in normal cells the genes are not directly

in contact since other genes are placed between them. In panel (B) the
neighborhood graph of the genes ABL1 and BCR from the K562 cell line
(Lieberman-Aiden experiment SRA:SRR027962) is presented. The graph
shows that in cancer cells the genes are closer one to the other, which is a
preliminary evidence of a possible translocation.

(SRA:SRR027962 and SRA:SRR027963), while they are likely to be
far 2 or 3 contacts (p < 0.05) in normal cells (SRA:SRR027956,
SRA:SRR027957, SRA:SRR027958, SRA:SRR027959). Consid-
ering the translocation CBFβ-MYH11, these genes are distant
2 or 3 contacts (p < 0.05) in GM06990 (SRA:SRR027956,
SRA:SRR027957, SRA:SRR027958, SRA:SRR027959), while they
are proximal with high probability (p < 0.05) in K562
(SRA:SRR027962, but not in SRA:SRR027963). We had no sig-
nificant results for NUP214-DEK and PML-RARα translocations,
which, however, are more rare in this kind of disease.

A second example of Hi–C cytogenetic application concerns
the experiments of Wang et al. (2013) about B-cell ALL. Also in
this disease there are well-characterized translocations, the most
important of which is the TEL-AML1 fusion gene (Stams et al.,
2005) that is present in about 25% of patients. This translocation
of chromosome 12 (region q34) and chromosome 21 (region q22)
results in the expression of chimeric transcription factors, which
block both differentiation and apoptosis by interfering with the
function of their wild-type counterparts.

As before, we employed NuChart to characterize the distance
between some couples of genes in the cells’ physiological and
pathological state. In detail, we used the results of the 4 kary-
otypically normal human lymphoblastoid cell line (GM06990)
from the experiments of Lieberman-Aiden as control data (as
in the Wang’s paper), while pathological profiles are directly
taken from the experiments performed by Wang et al. (2013)
(private communication). This dataset consists of 2 highly over-
lapping Hi–C experiments, the first concerning a case of primary
human B-Cell ALL (B-ALL) and the second regarding the MHH-
CALL-4 B-Cell ALL cell line (CALL4). Also in this case, starting
from some well-established translocations, we tested the capa-
bility of the Hi–C technique, in combination with NuChart, to
capture some genomic rearrangements usually identified using
FISH.

The first result is that TEL and AML1, considered a normaliza-
tion equivalent to the one achieved with HicNorm, are always
distant 2 contacts (p < 0.05) in sequencing runs concerning
GM06990 with HindIII as digestion enzyme (SRA:SRR027956,
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SRA:SRR027957, SRA:SRR027958, SRA:SRR027959), while they
are directly in contact (p < 0.05) in sequencing runs related
to B-ALL and CALL4. Other tests were performed on the E2A-
PBX translocation: these genes are in close proximity (p < 0.05)
in cancer cells (B-ALL and CALL4), while they are likely to
be far 2 or 3 contacts (p < 0.05) in three out four control
cell lines (SRA:SRR027956, SRA:SRR027958, SRA:SRR027959).
Following the results discussed in the work of Taylor et al.
(2013) we also tested the proximity of genes IGH and miR125b1
(related to a microRNA), which are distant 2 or 3 contacts
(p < 0.05) in GM06990 (SRA:SRR027956, SRA:SRR027958,
SRA:SRR027959), while they are proximal with high probabil-
ity (p < 0.05) in leukemias cells (CALL4, but not in B-ALL,
which presents a lower reads density). Considering the translo-
cation BCR–ABL1, genes are distant 2 or 3 contacts (p < 0.05) in
GM06990 (SRA:SRR027956, SRA:SRR027957, SRA:SRR027958,
SRA:SRR027959), while they are proximal with high probability
(p < 0.05) in leukemias cells (CALL4, but not in B-ALL, which
presents a lower reads density). We had no results for the MLL and
AF4 translocation.

These results are of significant importance, because with the
decreasing of sequencing costs the Hi–C technique can be an
effective diagnostic option for cytogenetic analysis, with the
possibility of improving the knowledge regarding the correla-
tion between the genome architecture and translocations. For
example, Hi–C can be used to infer non trivial risk markers
related to aberrant chromosomal conformation, like the Msc5a
loci for breast cancer, which is known to play a critical role
in the re-organization of a portion of chromosome 9 by CTCF
proteins.

RNA POLYMERASES
In the following example, we discuss an interesting analysis regard-
ing the internal organization of the DNA in the nucleus, working
on the data produced in the Dixon et al. (2012) experiments.
The intention is to show the different chromosomal organiza-
tions that occur in the nucleolus, while gene expression is heavily
characterizing the differentiation of stem cells, since this part of
the nucleus is involved in the transcription of ribosomal RNA
(rRNA) subunits and in their combination with proteins to form
complete ribosomes. Therefore, at the border of the nucleolus
are exposed transcriptional units ready to express genes, and it
would be very useful to understand the organization of these
structures in relation to genomic regions that are going to be
transcribed.

For this reason, we performed an Hi–C analysis of some specific
subunits of the RNA Polymerase I (that only transcribes rRNA),
RNA Polymerase II (directly involved in microRNA and gene
expression), and RNA Polymerase III (mainly required to express
tRNA) to shed light in their different configurations in different
cell types. While most of the subunits are shared, some are pecu-
liar of a particular RNA Polymerase and we choose to use these
subunits to verify if there is correlation between their position in
the nucleus and their activities. Respectively, the neighborhood
graphs have been produced according to two different sequencing
runs performed on human embryonic stem cells (SRA:SRR400260
and SRA:SRR400261), and from human lung embryonic fibroblast

(SRA:SRR400266 and SRA:SRR400267) of Dixon et al. (2012)
experiments.

In Figure 3 a detailed representation of the different RNA Poly-
merase II neighborhood graphs is shown. In particular, these
graphs show the neighborhood of the POLR2A gene that encodes
for RPB1 (Strachan and Read, 1999), the largest subunit of the
RNA polymerase II, which catalyzes the transcription of DNA
to synthesize precursors of mRNA, most snRNA and microRNA,
in the different cell lines. The representation shows that there
are a wide range of genes involved in cell differentiation, with
an enrichment of genes related to the cell cycle process (such
as CDC45 and CCNE1, CCNB1) and many transcription factors
(such as EBF1, TFEC, TFAP2A, TFB1M). Concerning POLR1A,
that encodes for the A190 protein of the RNA Polymerase I, in the
different experiments, as expected, it has in its neighborhood genes
that are correlated to the rRNA subunits, such as RPL31, MPRS5,
MRPS9, MRPS24, MRPS27, and MRPL35. Regarding POLR3B,
which encodes for the subunit C128 of the RNA Polymerase
III, we found in its neighborhood a couple of genes related to
tRNA, in particular TRNAD1 (transfer RNA aspartic acid 1 – anti-
codon GUC) and TRNAS26 (transfer RNA serine 26 – anticodon
AGA).

Considering the variability in the neighborhood of these genes,
computed as correlation between lists of adjacent genes, there is
a wide changeability looking at the RNA Polymerase II, while the
differences considering RNA Polymerase I and III are considerably
smaller. In particular, the similarity between two different runs of
sequencing performed on the same cell type is relatively high for
DNA Polymerase II (respectively, 60 and 67%), while there are
very important differences between the two cell lines (correlation
below 30%), which witnesses the importance (and the variability)
that chromosomal re-organizations have at the nucleus/nucleolus
level for co-expression. Considering DNA Polymerase I and III,
there is a high reproducibility for runs performed on the same
samples (respectively, 85 and 87% for POLR1A and 80 and 83%
for POLR3B) and a relative increase in the analyses performed
in different cell lines (correlation around the 40%). This kind
of analysis is very important for understanding, in a particu-
lar moment, what the cells are going to express by reorganizing
their chromosomal structure in the three-dimensional space of
the nucleus.

NETWORK MODELING
The power of NuChart relies on the capability of capturing and
describing the co-localization and co-activation of single entities
in a gene network, exploiting a systems biology approach. More-
over, the interaction of the actor genes with the environment is of
critical importance for understanding the entire system. This can
be performed using the modeling functions of the package, which
allow to statistically characterize the distribution of the edges in
relation to the characteristics of the nodes that are the mapped
multi-omic features. In order to show the possibilities of NuChart
in terms of statistical inference on the graph, we performed the
analysis of the clusters of genes Kruppel-associated box (KRAB;
Figure 4) and human leukocyte antigen (HLA; Figure 5) in the
context of four Dixon et al. (2012) experiments to verify the corre-
lation of the edge distribution in relation to some genomic features
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FIGURE 3 | Analysis of the nucleolus. Neighborhood graphs of the gene
POLR2A in four different runs from the Hi–C experiments of Dixon et al.
(2012) to show inter and intra run modifications of the chromatin
conformation. Panels (A,B) concern sequencing runs from hESC

(SRA:SRR400260, SRA:SRR400261), while data in panels (C,D) are from
IMR90 (SRA: SRR400266, SRA:SRR400267). In these graphs, seed genes
are the genes given as input to the algorithm, while output genes are
differentially represented according to their importance (in terms of degree).

(hypersensitive sites, CTCF binding sites, isochores, RSSs), whose
data are embedded in the NuChart package.

The first analyzed locus is located in cytoband chr19.q13.12
and concerns the clusters of Kruppel-type zinc finger genes,
related to the KRAB, that are distinctive for their tandem orga-
nization (Huntley et al., 2006). Zinc finger proteins are a family
of transcription factors that regulate the gene expression, and
most of these proteins are members of the KZNF family. There
are seven human-specific novel KZNFs and 10 KZNFs that have
undergone pseudo-gene transformation specifically in the human
lineage. 30 additional KZNFs have experienced human-specific

sequence changes that are presumed to be of functional signif-
icance. Members of the KZNF family are often in regions of
segmental duplications, and multiple KZNFs have undergone
human-specific duplications and inversions.

The second analyzed gene cluster concerns the HLA system,
which is the name of the locus containing the genes that encode
for major histocompatibility complex (MHC) in humans. The
proteins encoded by these genes are also known as antigens,
as a result of their historic discovery as factors in organ trans-
plants. The HLA belongs to a super-locus that contains a large
number of genes related to the immune system function in
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FIGURE 4 | Gene clustering analysis. Neighborhood graphs of the
Kruppel-type zinc finger cluster of genes (cytoband chr19.q13.12), related to
the Kruppel-associated box (KRAB), in four different runs from the Hi–C
experiments of Dixon et al. (2012) to show inter and intra run modifications
of the chromatin conformation. Panels (A,B) concern sequencing runs from

hESC (SRA:SRR400260, SRA:SRR400261), while data in panels (C,D) are
from IMR90 (SRA: SRR400266, SRA:SRR400267). In these graphs, seed
genes are the genes given as input to the algorithm, while output genes
are differentially represented according to their importance (in terms of
degree).

humans. In particular, this group of genes resides on cytoband
chr6.p31.21 and encodes for cell-surface antigen-presenting pro-
teins, which have many different functions. Primarily, the HLA
complex helps the immune system distinguish the body’s own
proteins from proteins made by foreign invaders such as viruses
and bacteria.

These statistical results are quite intriguing to analyze (Table 1).
From one side, the correlation between the presence of CTCF

binding sites and edges was predictable since Linking Gene Reg-
ulatory Elements are demanded to keep different regions of the
genome close to each other, but is very interesting to quantify this
association. On the other hand, regions with isochores seem less
involved in long-range interactions, which can be quite surpris-
ing considering that these portions of the genome are considered
gene-rich. The correlation between cryptic RSS sites and edges is
more pronounced in the HLA cluster in comparison to the KRAB
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FIGURE 5 | Gene clustering analysis. Neighborhood graphs of the
human leukocyte antigen (HLA) cluster of genes (cytoband chr6.p31.21)
in four different runs from the Hi–C experiments of Dixon et al. (2012)
to show inter and intra run modifications of the chromatin conformation.
Panels (A,B) concern sequencing runs from hESC (SRA:SRR400260,

SRA:SRR400261), while data in (C,D) are from IMR90 (SRA:
SRR400266, SRA:SRR400267). In these graphs, seed genes are
the genes given as input to the algorithm, while output genes are
differentially represented according to their importance (in terms of
degree).

cluster, probably due to a more consistent presence of this kind of
sequences in genes related to the immune system. Finally, the cor-
relation between hypersensitive sites (super sensitivity to cleavage
by DNase) and edges, although positive, is poor, probably because
the accessibility of these regions are impaired by a large number
of long-range interactions.

CONCLUSION
The integration and visualization of omic data is a critical issue
and they really represent challenges for scientists that work on
Big Data paradigms in the 21st century. Tools to integrate a cas-
cade of multi-omic data with the information about the structure
of the nucleus require a cartographic approach such as Google
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Table 1 | Analyses of CTCF binding sites, isochores, cryptic RSSs, and
hypersensitive sites (super sensitivity to cleavage by DNase) impact
on the edge distribution of the KRAB cluster of genes and of the HLA
cluster of genes.

KRAB HLA

Estimate SE Estimate SE

SRA:SRR400260

Edges + nodecov(“dnase”) 0.2867 0.08451 0.1751 0.07961

Edges + nodecov(“ctcf”) 0.6531 0.01157 0.5845 0.01253

Edges + nodecov(“rss”) 0.5804 0.06176 0.6304 0.08196

Edges + nodecov(“iso”) −1.0470 0.09269 −0.9406 0.09156

SRA:SRR400261

Edges + nodecov(“dnase”) 0.2042 0.06782 0.1706 0.08022

Edges + nodecov(“ctcf”) 0.6629 0.04158 0.6287 0.03225

Edges + nodecov(“rss”) 0.5378 0.03566 0.6419 0.03776

Edges + nodecov(“iso”) −1.0151 0.09566 −0.9335 0.08969

SRA:SRR400266

Edges + nodecov(“dnase”) 0.3042 0.05962 0.1818 0.07822

Edges + nodecov(“ctcf”) 0.6738 0.03744 0.5678 0.02113

Edges + nodecov(“rss”) 0.5569 0.02996 0.6617 0.03776

Edges + nodecov(“iso”) −1.1000 0.09655 −0.8305 0.08969

SRA:SRR400267

Edges + nodecov(“dnase”) 0.3272 0.07932 0.1901 0.05925

Edges + nodecov(“ctcf”) 0.6645 0.04158 0.4677 0.02005

Edges + nodecov(“rss”) 0.5378 0.02755 0.6520 0.03883

Edges + nodecov(“iso”) −0.9501 0.09076 −0.8707 0.09050

SE, Standard Error.
It’s very interesting to highlight the high similarities between the four sequenc-
ing runs. In particular, data demonstrates that CTCF binding sites and cryptic
RSSs have a positive influence on the presence of edges. At the same way
DNase hypersensitive sites are positively correlated with edges although with
less impact, while isochores are negatively correlated with the edge distribution.

maps, because genome browsers only work at the coordinate level,
discarding long-range interactions and associations.

Changing the point of view into a more systems biology fashion,
we think that the information about the chromatin organization
may also be the key to interpret this multi-omic cascade of data,
since they are capable of providing genetic maps to make clearer
the collective behavior of genes. The cooperation among genes can
probably be better interpreted using tools that are typical of the
social network era and the possibility to use tools like NuChart sup-
ports this concept. In particular, the possibility of having suitable
descriptions of how genes are localized in the nucleus, enriched by
genomic features that can characterize the way they are capable of
interacting, and combined with statistical analysis and semantic
tools may result extremely useful in the years to come.

The interpretation of epigenetic features, genomic patterns,
DNA binding sites, co-expression patterns could take an incredible
advantage from the availability of distance matrices between genes,
which can provide a measure of their correlation. Vice versa, due to
the close connection between the three-dimensional organization

of the DNA in the nucleus and the multi-omic features that regu-
late the cellular machinery, distance information can provide new
hints about clusters of genes that cooperate under the control of
the same transcription factors for specific biological processes.
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The immune system is composed of many different cell types and hundreds of
intersecting molecular pathways and signals. This large biological complexity requires
coordination between distinct pro-inflammatory and regulatory cell subsets to respond
to infection while maintaining tissue homeostasis. CD4+ T cells play a central role
in orchestrating immune responses and in maintaining a balance between pro- and
anti- inflammatory responses. This tight balance between regulatory and effector
reactions depends on the ability of CD4+ T cells to modulate distinct pathways within
large molecular networks, since dysregulated CD4+ T cell responses may result in
chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process
comprises an intricate interplay between cytokines, their receptors, adaptor molecules,
signaling cascades and transcription factors that help delineate cell fate and function.
Computational modeling can help to describe, simulate, analyze, and predict some
of the behaviors in this complicated differentiation network. This review provides a
comprehensive overview of existing computational immunology methods as well as novel
strategies used to model immune responses with a particular focus on CD4+ T cell
differentiation.

Keywords: CD4+ T cell differentiation, computational modeling, immunoinformatics, computational immunology,
CD4+ T cell dogma

INTRODUCTION
The human immune system consists of two main behavioral and
functional waves: first, the innate immune response provides a
first barrier against foreign elements and second, the adaptive
immune system builds an effective and specific immune response
to combat such elements. The principal function of the adaptive
responses is not only the specific recognition to foreign anti-
gens, but also the formation of immunologic memory, and the
development of tolerance to self-antigens (Luckheeram et al.,
2012). Originated in the bone marrow and matured in the thy-
mus, CD4+ T cells are part of the specific adaptive immunity
compartment. T cell selection in the thymus allows creating an
array of T cell repertoire for antigen recognition, as well as allow-
ing the selection process through MHC-II and the expression
of surface markers, such as CD4 or CD8 (Klein et al., 2009).
Mature CD4+ T cells then translocate into the secondary lym-
phoid organs, such as the lymph nodes or the spleen, where
they are involved in immune surveillance through interaction
with MHC-II molecules expressed on the surface of antigen-
presenting cells (Drayton et al., 2006). In this inductive site, naïve
CD4+ T cells sample the tissue environment and depending on
the cytokine milieu, they differentiate into functionally distinct
regulatory or effector subsets.

The central dogma of CD4+ T cell differentiation has evolved
over the past decades as new studies have unveiled differentiation

pathways and novel mechanisms shaping the CD4+ T cell com-
partment. The Th1 vs. Th2 conceptual framework that Mossman
and Coffman provided (Mosmann and Coffman, 1989) was
largely expanded when novel discoveries on RORγt and IL-17A
producing T cells defined the Th17 phenotype (Ivanov et al.,
2006) and with the identification of FOXP3 raised as a key tran-
scription factor in charge of driving the regulatory response in
CD4+ T cells (Fontenot et al., 2003; Hori et al., 2003). Recent in-
depth characterization of CD4+ T cell lineages has resulted in the
discovery of new phenotypes, positioning the CD4+ T cell pop-
ulation as one of the most heterogeneous immune cell subsets.
Furthermore, the latest discoveries are pushing the understand-
ing of CD4+ T cell differentiation from a 4-player game to a
multi-pronged interplay of complex networks and common tran-
scription factors and cytokines with highly plastic functionalities.
As an example, the production of IL-9 by the transcription fac-
tor PU.1 leads to the establishment of the Th9 phenotype (Ma
et al., 2010). Furthermore, other phenotypes, such as Th17, are
now under scrutiny since IL-17 and IL-22 are co-expressed in
an IL-23 dependent manner (Trifari and Spits, 2010; Sonnenberg
et al., 2011). New studies are pointing out to the aryl hydrocar-
bon receptor (AhR) as the master transcription factor responsible
for IL-22 secretion (Ramirez et al., 2010), leading to the des-
ignation of a new CD4+ T cell phenotype, Th22, which has
been also identified in humans (Eyerich et al., 2009; Fujita et al.,
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2009) Moreover, FOXP3-independent IL-10 upregulation has
been implicated in the activation of the regulatory axis under the
regulatory type 1 (Tr1) CD4+ T cells (Pot et al., 2011). Lastly, fol-
licular T helper cells (Tfh) have become an object of intense study
since they have been described as a very plastic subset that could
swift the CD4+ T cell balance. Tfh cells can leave the T cell areas
and localize in the B cell follicle, a migration that is facilitated by
their concurrent expression of the B cell zone homing chemokine
receptor CXCR5 and downregulation of the T cell zone hom-
ing chemokine receptor CCR7 (Ansel et al., 1999; Hardtke et al.,
2005). Thus, this close proximity to B cells allows Tfh cells to
support their activation, expansion and differentiation. To help
promote this crosstalk with B cells, Tfh cells produce IL-21 via
activation of the transcription factor BCL-6, thereby promot-
ing a Th1/Th17 profile. Also, IL-2 is emerging as a trigger for
Th1 differentiated cells to adopt a Tfh-like phenotype by down-
regulating BLIMP1 and interacting with STAT proteins (Breitfeld
et al., 2000). Since the BCL-6 pathway is linked to STAT factors
induced by IL-6 that in turn promotes IL-21 and TNFα produc-
tion, the study of the role of Tfh is important in the context of
infectious, immune-mediated, or chronic inflammatory diseases.

Computational modeling has become an indispensable tool to
synthesize, organize, and integrate diverse data types and theo-
retical frameworks to help generate new knowledge and guide
in vivo experimentation. This review highlights how compu-
tational modeling has helped advancing the understanding of
signaling events controlling CD4+ T heterogeneity and it also
discusses new opportunities in the context of modeling strategies
and tools.

MATHEMATICAL MODELING AND CD4+ T CELL
DIFFERENTIATION
Initial attempts to apply computational modeling approaches to
study CD4+ T cell differentiation only focused on the Th1 and
Th2 phenotypes. Indeed the well-established dichotomy between
these two phenotypes is supported by extensive information on
how T-bet (Th1) and GATA3 (Th2) interact. One of the first
published studies extrapolated the Th1/Th2 experimental facts
into systemic behavior during an immune response, indicating
that suppression and domination of one phenotype over the
other could dictate the final differentiation outcome (Fishman
and Perelson, 1999). In this study, the model encompassed not
only Th1 and Th2, but also the effect of antigen presentation via
APCs. This mathematical model illustrated how the final differen-
tiation of Th1 or Th2 depends in both the competition for anti-
genic stimulation and the cytokine-mediated cross suppression
between phenotypes. Subsequent studies applied mathematical
modeling to study the Th1 and Th2 phenotypes in the presence of
other cytokines such as IL-10 or TGFβ (Yates et al., 2000), antigen
availability and instructional intracellular feedbacks (Bergmann
et al., 2001, 2002), upregulation of the master transcription fac-
tors T-bet and GATA3 (Mariani et al., 2004; Yates et al., 2004)
or in the context of cancer and rejection of melanomas (Eftimie
et al., 2010). These modeling efforts highlighted the differences
between instructive and feedback mechanisms as well as acti-
vated pathways in both phenotypes. Other studies solely focused
on a single phenotype, such as the work published by Schulz

et al. (2009) where the computational model revealed that Th1
differentiation is a two-step process in which the early Th1 cell-
polarizing phase is followed by a later phase showing expression of
T-bet. Hofer et al. (2002) published a mathematical model show-
ing that GATA-3 transcriptional activation creates a threshold for
autoactivation, resulting in two GATA-3 expression states: one
for basal expression and one of high expression sustained by its
autoactivation.

As new data became available, the increasing complexity of the
CD4+ T cell paradigm became evident and new computational
approaches were developed to ascertain the regulatory mech-
anisms controlling differentiation, plasticity, and heterogeneity.
van den Ham and de Boer (2008) developed an ODE-based
model that describes important regulators and allows for sta-
ble switches between several different phenotypes. Other studies
focused on the interaction of Th17 and iTreg since Bettelli et al.
(2006) described the functional antagonism of Th17 and iTreg.
For instance, Hong et al. (2011) constructed a mathematical
model of Th17/Treg differentiation that exhibited functionally
distinct states, including a RORγt+ FOXP3+. While reductionist
approaches have improved our ability to understand small com-
ponents of the system, studying CD4+ T cell heterogeneity often
requires implementing systems approaches and computational
methods that can help deciphering complexity. Computational
models of CD4+ T cell differentiation and heterogeneity are
needed to accurately represent how CD4+ T cells are differ-
entiated and accurately predict sensitivities to determine which
pathways and molecules can be most critical to switch from
one phenotype to another. A major challenge in systems-level
models is the calibration process. Estimation of parameters of
large-scale CD4+ T cell differentiation models have proven suc-
cessful (Carbo et al., 2013b) by following a “divide-and-conquer
approach.” This approach is highly useful when parameterizing
large models with more than one parameter estimation. First the
parameter calibration is divided into smaller parameter estima-
tions: one estimation per phenotype represented in the model.
If necessary, other parameter estimations involving specific inter-
actions, such as the Th1/Th2 or the Th17/Treg crosstalk, can
be performed. Once parameters are located in a more targeted
parameter space, a global parameter estimation is run with all the
parameters in the model, allowing us to identify a good global
parameter set. These approaches can be easily performed using
modeling software such as COPASI (Hoops et al., 2006).

The CD4+ T cell differentiation model described in Carbo
et al. (2013b) allows the user to have a global understand-
ing with four CD4+ T cell phenotypes represented. The most
recent systems biology markup language (SBML)-compliant net-
work (Hucka et al., 2003) provides a structured understanding
on different pathways involved in CD4+ T cell differentia-
tion (Figure 1). SBML-based models are indeed highly portable
between different simulation platforms. Of note, SBML-based
topologies allow standardization in the modeling community
and promote cross-transfer of several computational models in
an efficient manner. The SBML standards are an essential step
toward integrating an ensemble of distributed immunological
models (within cells, between cells, at the cell population level,
tissue-level, whole organism and human populations).
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FIGURE 1 | Main intracellular differentiation pathways of a single CD4+ T cell. Systems Biology Markup Language (SBML)-compliant network model of
CD4+ T cell differentiation, including cytokines, receptors, and intracellular signaling pathways controlling CD4+ T cell fate and function.

Another example of CD4+ T cell modeling would be the
model by Mendoza and Pardo (2010). In this model, a contin-
uous dynamical system, in the form of a set of coupled ordinary
differential equations, was used. Such strategy was then applied
to a regulatory network of 36 nodes, representing four CD4+ T
cell phenotypes (Th1, Th2, Th17, and Treg). Although this model
creates a framework for four phenotypes, the calibration of this
larger network, however, was not conducted with experimental
data but with default parameters that enabled the differentiation
of the four phenotypes, not taking in consideration if reactions
occur in a rapid or slow fashion. In addition, the model was not
SBML compliant.

Others have explored the contribution of different CD4+ T
cell phenotypes to the modulation of immune responses toward
Helicobacter pylori infection (Carbo et al., 2013a). This study
aimed to provide new mechanistic insights on the dynamics
of mucosal Th1, Th17, and Treg cells by using both an ODE-
and agent-based (ABM) cellular model of the mucosal immune
responses during H. pylori infection. Alternatively, the logical
model strategy has also been used to explore CD4+ T cell dif-
ferentiation (Mei et al., 2013b; Mendoza, 2013). Mendoza et al.
applied either continuous or discrete dynamical systems, regu-
latory networks of Th1/Th2 or of a combination of different
transcription factors adding Th17 and iTreg to represent dif-
ferent states. Even though network modeling has shown to be
appropriate, as the production of high-dimensional experimen-
tal data is increasingly becoming available, other methods, such
as ODE- or agent-based modeling, could help understanding
the mechanisms of CD4+ T cell differentiation at the systems

level (Hoops et al., 2006; Mei et al., 2012; Wendelsdorf et al.,
2012).

DIVING INTO CD4+ T CELL LINEAGES: PHENOTYPE OR
FUNCTION?
CD4+ T cells form a complex and highly specialized network,
representing a major population implicated in mediating host
protective and homeostatic responses. However, their excessive or
uncontrolled accumulation can also represent a feature in differ-
ent diseases such as Inflammatory Bowel Disease (IBD) (Abraham
and Cho, 2009), Alzheimer’s disease (Monsonego et al., 2013),
multiple sclerosis (Chitnis, 2007), or allergic disease (Islam and
Luster, 2012), among many others. Therefore, their function is
closely guided by external signals that are captured from the envi-
ronment. Also, CD4+ T cells orchestrate immune responses by
modulating the function of other cell subsets, such as dendritic
cells or macrophages, through secretion of an array of soluble
factors, cytokines, and chemokines into the environment. The
cytokine profile secreted by each CD4+ T cell will directly depend
on which intracellular molecular pathways have been activated,
which cytokines are released and how the priming of the sin-
gle CD4+ T cell has occurred. As an example, IL-6 and TGFβ

will activate the Th17 transcriptional machinery, mainly com-
posed by RORγt, RORα, and the phosphorylated form of STAT3.
These molecules will activate the transcription of IL-21 and IL-
17 and will direct the cell into a Th17 phenotype. However,
when a CD4+ T cell is located in an environment rich in TGFβ,
lacking IL-6 or other pro-inflammatory cytokines, TGFβ will pro-
mote FOXP3 and the phosphorylated STAT5, resulting in the

www.frontiersin.org July 2014 | Volume 2 | Article 31 | 98

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


Carbo et al. Computational strategies to CD4+ differentiation

secretion of IL-10 and TGFβ that will activate the regulatory
axis. This differentiation dichotomy also depends in part on the
T-cell receptor (TCR) engagement and a co-stimulatory signal,
frequently involving the CD28 receptor: two basic signals required
for a full CD4+ differentiation process. Indeed, Miskov-Kizanov
et al. showed how the duration of T cell stimulation through the
TCR receptor is a critical determinant of cell date and plasticity
by constructing a logic circuit model of TCR signaling pathways
in CD4+ T cells (Miskov-Zivanov et al., 2013).

CD4+ T cells have a strong predisposition to certain pro-
gramming and developmental programs enabled by the cytokine
environment. However, in the context of disease, where plastic-
ity between phenotypes appears to be the norm, rather than the
exception, double positives, such as IFNγ/IL17A often appear in
pathological states such as in the context of murine colitis, where
the accumulation of IL-17A+ IFNγ+ seems to occur in an IL-23
dependent manner (Ahern et al., 2010). Indeed, IL-23 has been
shown to drive CD4+ T helper cell populations into a pathogenic
state capable to drive autoimmune population by using passive
transfer studies (Langrish et al., 2005), pinpointing IL-23 as a
critical player in CD4+ T cell pathogenicity. Moreover, several
studies showed that IL-17A could potently induce type 2 diabetes
(Arababadi et al., 2010; Jagannathan-Bogdan et al., 2011; Zeng
et al., 2012) potentially by modulating the pathogenesis of insulin
resistance induced by angiotensin II type 1 receptor (Ohshima
et al., 2012) hence increasing the production of renal nitric oxide
(Imanishi et al., 2013). Th17 also showed a pleiotropic func-
tionality, since intestine IL-17A+ IL-10+ T cells were found in
the small intestine following treatment with anti-CD3 antibody,
known to induce an immunosuppressive environment (Esplugues
et al., 2011). Furthermore, intestinal epithelial lesions were accen-
tuated in IL-17A null mice (Yang et al., 2008). These implications
support a theory, whereby CD4+ T cells are not defined by its
inflammatory status but by the functions they accomplish after
being exposed to the cytokine milieu. The CD4+ T cell com-
partment has been demonstrated to be governed, not only by
phenotype, but also by function, therefore forcing the distinction
between a stable T cell lineage and a T cell differentiation state.
Indeed, the ability of a CD4+ T cell to choose a predetermined
differentiation program has been shown to be more complex than
expected. This determination seems to now bow down to a more
functional approach, where CD4+ T cells are not determined
by phenotype, but by function, as needed. The functionality of
CD4+ T cells as a means of classifying and determining their
operational status has already been discussed in O’Connor et al.
(2010) and Basu et al. (2013). The traditional view on the CD4+
T cell dogma has now changed into a more comprehensive vision,
where the innate immune compartment influences differentiation
on CD4+ T cells and not only 2 or 4, but 8 known phenotypes
are represented and new phenotypes or states are likely to emerge
(Figure 2).

DECIPHERING CD4+ T CELL PLASTICITY BY USING
COMPUTATIONAL MODELING APPROACHES
Transcription factors, TCR, chemokines, surface receptors, and
cytokines determine how CD4+ T cells become activated, main-
tained and how they can mature into distinguishable featured

FIGURE 2 | Heterogeneity of CD4+ T cell subsets. T helper type 1 (Th1),
type 2 (Th2), type 17 (Th17), type 9 (Th9) and type 22 (Th22), Follicular T
helper cells (Tfh), and induced regulatory T cells (iTreg) as well as type 1
regulatory T cells (Tr1) are induced based on multiple cytokines being
produced by dendritic cells and macrophages among other immune subsets.

profiles. However, an increasing understanding on how the mech-
anisms of differentiation work is revealing increased flexibility
and plasticity between different CD4+ T cell phenotypes that
allow functional heterogeneity. As discussed above, the functional
plasticity between Th1 and Th17 cells resulting in IFNγ+ IL-
17A+ CD4+ T cells (Lee et al., 2009; Kurschus et al., 2010) has
already been investigated. Indeed, Th17 has been shown to be
a very unstable phenotype (Mathur et al., 2006). Functionally,
Th17 cells during mucosal inflammation seem significantly dif-
ferent than those Th17 cells involved in regulating homeostasis at
the steady state. Whereas IL-17A single positive Th17 cells pro-
duce IL-22, which may provide a mechanisms through which
Tregs cells reinforce the epithelial barrier (Lin et al., 2014), this
same Th17 population can accumulate and produce additional
mediators such as IFNγ or GM-CSF during gut inflammatory
disorders (Ahern et al., 2010; Codarri et al., 2011; El-Behi et al.,
2011). CD4+ T cell plasticity is not only initiated by a change
within the intracellular compartment, but also by a change in
the extracellular environment. Th1 cells have been demonstrated
to acquire plasticity toward a follicular T helper (Tfh)-like phe-
notype when they encounter a cytokine milieu that is not rich
in IL-2 (Liao et al., 2011; Oestreich et al., 2012). Other studies
also suggest that early Th1 differentiation is marked by a Tfh
cell-like transition highlighting the role of Tbet and STAT4 in
mediating these transitions (Nakayamada et al., 2011). The reg-
ulatory phenotype iTreg has also been reported to adopt plasticity
mechanisms. Several studies have identified, for example, a dou-
ble RORγt+ FOXP3+ (Lochner et al., 2008; Zhou et al., 2008)
that can further differentiate into a pathogenic IL-17-expressing
CD4+ T cell (Osorio et al., 2008). These examples illustrate
the need for improving our mechanistic understanding at the
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systems level, where plasticity in the in vivo setting needs to be at
focus.

Computational methods have also been applied to study the
plasticity of CD4+ T cells. Magombedze et al. considered a
population plasticity mechanism between Th1 and Th2 during
Mycobacterium avium infection by using a reduced ODE-based
model where the phenotype change of MAP-specific T cells
occurred due to differences in the rates of differentiation, pro-
liferation, and death at the site of infection (Magombedze et al.,
2014). However, the cellular plasticity involving several intracellu-
lar pathways was not represented. In contrast, Pedicini et al. used
computational models to analyze the cellular plasticity between
Th1 and Th2 cells, extending the regular Tbet/GATA3 plastic-
ity predictions to a broader panel of molecules, involving IRF4,
STAT1 and STAT6, MAF, NFAT, and SOCS1 (Pedicini et al.,
2010). More comprehensive approaches have also been explored
by using extended logical formalisms with Boolean variables to
assess the effect of different cytokines in making a CD4+ T cell
evolve toward a specific state (Naldi et al., 2010). As a general
rule, validation studies are performed to endorse and corroborate
the usefulness of computational models. Whereas computational
models may be used for in silico experimentation, in vivo and
in vitro validation needs to be performed in order to ensure its
predictability and prove that the plasticity described in silico can
be translated into an in vivo setting in those cases. To address
plasticity in vivo, the modeling cycle needs to be completed; first,
the model needs to be created based on either available data
and/or theory-driven knowledge. Afterwards, calibration proce-
dures need to ensure that a good parameter value set has been
found and quality control needs to be run to check that the com-
putational model fully represents our experimental data. Third,
in silico experimentation, using loss-of-function, overexpression
or sensitivity analysis strategies need to be performed. Finally,
in vivo or in vitro validation studies will authenticate the com-
putational model and serve as future calibration data for model
refinement. These new approaches are helping immunologists
to target novel experiments that will shed some light to the
subjective issue of CD4+ T cell plasticity.

The computational CD4+ T cell differentiation landscape has
generated several validated studies. We validated experimentally
that activation of the transcription factor peroxisome proliferator
activated receptor gamma (PPARγ) favored the plasticity of Th17
cells toward iTreg cells, a key prediction of our CD4+ T cell model
(Carbo et al., 2013b). This model consisted of 60 differential
equations, representing 52 reactions and 93 species, computing
the differentiation of a CD4+ T cell into Th1, Th2, Th17, and
Treg. The model included cytokines, nuclear receptors and tran-
scription factors that defined fate and function of CD4+ T cells.
The first set of computationally derived hypotheses were centered
around PPARγ and its modulatory role between Th17 and iTreg.
Time course simulations illustrated how PPARγ can trigger plas-
ticity in IL-17A+ producing Th17 cells, causing the system to
become a iTreg CD4+ T cell. To validate this prediction, in vitro
and in vivo experiments in the context of an IBD onset were
designed with PPARγ null CD4+ T cells as well as with a treat-
ment with pioglitazone, a PPARγ activator. The study presented
in Miskov-Zivanov et al. (2013) also validated the interaction of

FOXP3 and mTOR following TCR activation by purifying and
activating DCs and CD4+ T cells and assessing the expression of
different intracellular markers using cell staining and flow cytom-
etry. Another example is the validation of the time-dependent,
dual T-bet wave during Th1 differentiation validated using gene
expression analysis in CD4+ T cells isolated from wild-type and
IFNγ null mice (Schulz et al., 2009).

COMPLEMENTARITY OF THEORETICAL AND DATA-DRIVEN
MODELS
In computational immunology, often times, the available knowl-
edge about a given set of biological events is used to construct a
specific mathematical model. This theoretical approach is there-
fore directly correlated to the amount of information that is
publicly available and the model created upon these pieces of
data will only represent the processes delineated within. On the
other hand, models can be constructed based solely on analyz-
ing data itself. The increasing availability of high-dimensional
data to quantify signaling and cellular responses, together with
the novel sequencing technology advancements, is opening a new
avenue to use these data-rich datasets to build computational
models and help understanding CD4+ T cell differentiation
responses. This systems-biology approach, however, can be a
double-edged sword: generating high-throughput datasets is part
of a big-data strategy, and sometimes, without the appropriate
tools, can bring more confusion than understanding to the prob-
lem (Bray, 2001). On the other side, this increased availability
of data, if used correctly, can streamline the modeling approach,
offering a tremendous amount of data for calibration purposes
that could allow modelers to build fully calibrated, predictive and
extremely comprehensive models that could help generate impor-
tant hypotheses. These two opposed modeling views can actually
be used as a complementary strategy. Theoretical models lack data
either for network architecture construction or for model cali-
bration. Data-driven modeling, however, is sometimes confusing,
and lack general rules to guide the user and make sense of such
big pieces of data. Combining the organization-based approach
from theory-driven models with the amount of data and novelty
from the data-driven model, highly predictive, hybrid models can
be ultimately constructed. In fact, substantial evidence has been
shown to understand that the just and only use of data-driven
models can represent a trap. The so called “Big Data Hubris” (the
often implicit assumption that big data are a substitute, rather
than a supplement to, traditional data collection and analysis)
already triggered an overestimation of Google’s assessment on flu
prevalence in 2013 (Lazer et al., 2014). This is a clear example
on how data-based and data-driven results were wrongly gen-
erated due to the lack of theory underlying unstructured data
integration.

The long-standing traditional theory-driven approach has
been proven to provide helpful insights on how CD4+ T cells
function, where modeling strategies are based on prior biological
understanding of the molecular mechanisms involved (Fishman
and Perelson, 1999; Hofer et al., 2002; Mendoza, 2006; Klinke,
2007; Hong et al., 2011). However, often times theory-driven
modeling is intimately linked to reductionist approaches, since
the availability of calibration data can become an issue if building
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comprehensive networks. Data-driven modeling emerges as a
new and complementary approach for multivariate analysis and
systems-level analyses. Often times, predictability in computa-
tional systems is linked to either the lack of data to construct
the computational model or the limitations on the model topol-
ogy. The combination of data-driven approaches and theoretical
strategies may solve these problems therefore promoting the cre-
ation of truly predictive models. An example on how to use
high-throughput data to construct a CD4+ T cell comprehensive
network is the study published by Yosef et al., where they used
transcriptional profiling with microarrays at high temporal reso-
lution to build a Th17 induction system (Yosef et al., 2013). In this
study, 1291 genes were differentially identified and clustered into
20 groups, depending on their temporal profiles. Another advan-
tage highlighted in this study is the use of modules to explain
the processes controlling Th17 differentiation. Four regulatory
modules were identified: the positive module that increased IL-17
levels, the negative module that downregulated IL-17, the signa-
ture of Th17 genes and signature of other CD4+ T cell subtypes.
This work supported the finding of 3 novel key regulators of Th17
function: Mina, Fas, and Pou2af1. Another study where data-
driven approaches were taken was the work performed by Ciofani
et al., where they combined genome-wide transcription factor
occupancy, expression profiling of transcription factor mutants,
and transcriptional regulatory network (Ciofani et al., 2012).
Integration of several datasets allowed the inference of a Th17 net-
work that highlighted some key regulators to Th17 plasticity, such
as Fosl2. These two approaches have unveiled novel nodes by using
a data-driven approach. However, both networks, which repre-
sent static pictures, lack dynamics running on the background.
By adding dynamics to the system, a whole new dimension can be
added. These data-rich models could be used to determine how
the system evolves when a node is knocked-out, or how sensitive
are reactions and fluxes to change by a special drug or modu-
lator in a more mechanistic manner. A counterfactual example
related to the CD4+ T cell differentiation process is the role of
IL-17A in chronic inflammation during IBD. Although it has been
reported increased expression of IL-17A during IBD (Fujino et al.,
2003) and both IL-17R-deficient mice in TNBS-induced colitis
model (Zhang et al., 2006) as well as IL-17A-deficient mice in
a DSS-induced colitis model (Ito et al., 2008) were reported to
worsen the clinical disease symptoms, some other opposing stud-
ies highlighted the protective role of IL-17A production in vivo
(Ogawa et al., 2004; O’Connor et al., 2009). Very interestingly,
a human anti-IL-17A monoclonal antibody to treat Crohn’s dis-
ease showed that blockade of IL-17A in humans was ineffective
and higher rates of adverse events were noted compared with the
placebo group (Hueber et al., 2012). In this case, where it is clear
there are missing pieces in this puzzle, a combined strategy with
both theory-driven and data-driven modeling could shed some
light by looking at other players in these intricate and complex
interactions.

Data-driven modeling nicely complements and synergizes
with theory-driven due to the availability of data for calibra-
tion purposes, the potential of discovering novel regulators in the
network that have never been described before, and the capabil-
ity to comprehensively and mechanistically understand complex

systems. At the same time, hypotheses extracted from modeling
need to be validated to become accepted theories by the commu-
nity. The combination of theory driven models with data-driven
approaches is becoming a strong, useful tool to ensure that the
basic knowledge is represented, but at the same time, that nov-
elty and higher predictability is reached. The combination of these
two different strategies and multiscalability is now increasing the
predictability of very comprehensive models.

DETERMINISTIC vs. STOCHASTIC APPROACHES
In complex regulatory schemas, such as the CD4+ T cell differen-
tiation network, gene expression is controlled by transcriptional
signals that determine how rapid and how often a specific gene
is transcribed. This transcription process, however, depends on
other signals and molecules, such as transcription factors and
promoter signals that will trigger cell-to-cell variability. Often
times, gene transcription is a result of a combination of other
signaling cascades, therefore adding not only complexity and vari-
ability due to the differential activation of upstream molecules,
but also a time delay while the signal molecule concentration
either accumulates or decays.

In CD4+ T cell differentiation, variability is a key compo-
nent of the process. In fact, not all the cells expressing RORγt
exhibit IL-17A production even in the presence of the correct
inductors TGFβ and IL-6 (Zhou et al., 2008). Furthermore, Guo
et al. showed how IL-4 secreting and non-secreting cells from
Th2 cultures have a similar probability of producing IL-4 upon
subsequent stimulation, implying that there is stochastic element
in IL-4 production by stimulated Th2 cells (Guo et al., 2004).
Even after assuming that most genes are expressed from both alle-
les when the transcription machinery is in place, some studies
point out that some cytokine genes in T cells are often expressed
in a monoallelic manner (Riviere et al., 1998). Alternatively, the
transcription rates also vary if agonistic transcription factors are
bound (Chen et al., 2011). Given these set of premises, stochastic
approaches that add this type of variability within the CD4+ T
cell subset can be used to help explain biological variation. In this
case, this variability offers a unique way to control regulation, by
inducing stimuli but controlling the fraction of cells expressing a
specific cytokine.

Deterministic models of CD4+ T cell differentiation are more
prevalent than stochastic-based models. Of note, deterministic
approaches have unveiled a large amount of findings that relate
to single cell behavior. A fraction of these models have focused
on the analysis of one phenotype only (Schulz et al., 2009; Gross
et al., 2011), and other models have focused on more than one
phenotype and the interactions between the resulting states (van
den Ham and de Boer, 2008; Gross et al., 2011; Hong et al., 2011;
Carbo et al., 2013b). Mariani et al., in contrast, used a stochastic
approach to show how an IL-4 stochastic mechanism acting at the
chromatin level can be integrated with transcriptional regulation
to quantitatively control cell-to-cell variability (Mariani et al.,
2010). Furthermore, Santoni et al. used an agent-based model to
assess Th1 vs. Th2 fates in the context of hypersensitivity reactions
(Santoni et al., 2008). Recently, Mei et al. assessed the role of the
IL-6 receptor in controlling the balance between Th17 and iTreg
using a novel, web-based stochastic modeling tool (Mei et al.,
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2013a). Other approaches have used the mathematical formula-
tion of a cell population master equation (CPME) that describes
population dynamics and takes into account the major sources of
heterogeneity, namely stochasticity in reaction, DNA-duplication,
and division, using the Montecarlo algorithm (Stamatakis and
Zygourakis, 2010). Manninen et al. (2006) developed several
approaches to incorporate stochasticity into deterministic differ-
ential equation models, obtaining so-called Itô stochastic differ-
ential equations, and applied them to neuronal protein kinase C
signal transduction pathway modeling. Even though traditional
molecular biology research has tended to composite single cell
deterministic models, diversification of T cell fate during CD4+
T cell differentiation implies that the fate of any individual cell
may also be acquired stochastically. Therefore, stochastic simula-
tions within the CD4+ T cell differentiation process could help
to understand the tight regulation between phenotypes as well as
help identify key nodes that, when acting at higher variability, can
skew the output of differentiation into a specific differentiation
program.

APPLICATION OF MULTISCALE MODELING TO STUDY CD4+
T CELL DIFFERENTIATION
CD4+ T cell differentiation is a process where a change in the
intracellular compartment can tremendously impact the outcome
of tissue pathology and clinical disease. Distinct intracellular pro-
cesses dictate the secretion of chemokines, cytokines, and other
soluble factors. These components can, at the same time, mod-
ulate other CD4+ T cell nearby by binding to specific receptors.
This population effect can modulate other downstream immune
subsets that can ultimately affect the formation of lesions at the
tissue level. Thus, CD4+ T cell differentiation is not only an intra-
cellular process: population and cellular organization are another
major mechanism that may contribute to the change in the domi-
nant phenotype of effector CD4+ T cells during chronic patholo-
gies (Magombedze et al., 2013). Indeed, the mucosal immune
system includes hierarchical interactions between cells leading to
emerging behaviors with dimensions ranging from nanometers to

meters and time scales from nanoseconds to years. The spatiotem-
poral scales where CD4+ T cells participate can actually range
from micro-seconds to months or years and to nanometers to
centimeters or meters (Figure 3A). Complex and dynamic infor-
mation processing networks transfer information across scales
in immunity encoding host responses and repair measures. The
architecture of such multiscale network also needs to be com-
pletely embedded in a comprehensive, integrated system. Because
of this flexibility in parameter calibration and sensitivity analyses,
Ordinary or Stochastic Differential Equations (ODE or SDE) are
ideal candidates to encapsulate and simulate intracellular events.
In addition, neural networks have also been used to classify and
simulate immune cell subsets (Mei et al., 2013b). In the multiscale
setting, these ODE- or SDE-based models would reproduce intra-
cellular CD4+ T cell activation with a release of cytokines and
chemokines as a result of the process of differentiation. Partial
Differential Equation (PDE) modeling would be a great way to
simulate the diffusion reactions of such cytokines in the environ-
ment. Ultimately, an agent-based model, adding randomness to
the biological system, which helps to better represent responses at
the cellular level, would encompass and organize the ODE/SDE
models with the PDE simulations by simulating CD4+ T cells as
objects that can change its state depending on the cytokine milieu.
As a result of these premises, multiscale models are positioned
as a comprehensive tool to understand not only the intracellu-
lar events happening within the CD4+ T cell compartment at a
single cell level, but also understanding the interactions and sensi-
tivities, at the cellular, population and tissue levels, that contribute
to disease chronicity, tolerance, or resolution (Figure 3B).

All together, ODE models can calculate the intracellular con-
centration of different species over time, PDE models could
analyze the gradient concentration of cytokines and chemokines
secreted by the ODE model, ABM-based models could modulate
the cell-cell interactions and spatial compartments could repre-
sent the tissue-level scale, including lesion formation. Current
experimental techniques are limited in allowing immunologists
to quantitatively manipulate immune responses to pathogens in

FIGURE 3 | Multiscale modeling of CD4+ T cell differentiation. The CD4+ T cell differentiation process comprises (A) different spatiotemporal parameters
(milliseconds to hours and nanometers to centimeters) as well as (B) different scales (intracellular, difussion gradient, cellular, and tissue-level scale).

www.frontiersin.org July 2014 | Volume 2 | Article 31 | 102

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


Carbo et al. Computational strategies to CD4+ differentiation

a controlled manner in animal models and to trace events at the
tissue level confidently back to specific cellular level interactions
and molecular or signaling mechanisms. In a multiscale model,
one can test whether mechanisms seen in the experimental con-
text in vivo or in vitro are plausible explanations for phenomena
observed at the clinical level. There have been several previous
studies on multiscale modeling in the context of immunity: Sloot
and Hoekstra (2010) proposed a multi-scale modeling method-
ology in computational biomedicine and presented two cases
studies. Krinner et al. (2013) coupled an agent-based model of
hematopoietic stem cells with an ODE model of granulopoiesis.
Also, Klinke (2007) published a multiscale model of dendritic cell
education and trafficking in the lung. Some very recent multi-
scale approaches to study the CD4+ T cell population have been
performed in the context of HIV infection (Yeghiazarian et al.,
2013) and also in the context of CD4+ T cell migration, signal-
ing, and interaction with the APC compartment (Huang, 2010).
Furthermore, Dwivedi et al. recently developed a multiscale sys-
tems model of IL-6–mediated immune regulation in Crohn’s
disease, by integrating intracellular signaling with organ-level
dynamics of pharmacological markers underlying the disease
(Dwivedi et al., 2014). Santoni et al. (2008) also combined an
agent-based model of type I hypersensitivity reactions showing
hallmarks of the response to a generic allergen with a gene regula-
tory network for the switch of Th1/Th2 phenoptypes. Despite all
these strategies and studies, there is no comprehensive multiscale
model that computes more than two phenotypes of CD4+ T cell
differentiation based on the availability of certain factors in the
environment and considers more than one scale in the simulation.

Multiscale modeling may also help integrate immune
processes and metabolic pathways to build systems-level
immunometabolic frameworks. Indeed, T cell metabolism is
highly dynamic and has a tremendous impact on the ability of T
cells to grow, activate and differentiate (Gerriets and Rathmell,
2012). Glucose metabolism is one of the pathways that has been
targeted to explore immunometabolism. One example is the
study from Maciver et al. where they found that activation of
T cells causes a large increase in glucose transporter 1 (Glut1)
expression and surface localization (Maciver et al., 2008).
Furthermore, CD28 appeared to promote Akt-independent
up-regulation of Glut1 and Akt-dependent Glut1 cell surface
trafficking (Jacobs et al., 2008). Multiscale modeling analyses
could also help to differentiate which are the metabolic needs
to promote specific developmental programs. In fact, effector
and regulatory phenotypes have distinct glycolytic and lipid
oxidative metabolic programs (Michalek et al., 2011). Pearce
et al. reviewed (Pearce, 2010) how activated T cells have an
anabolic metabolism, whereas non-proliferating T cells had an
opposed catabolic metabolism. Furthermore, autophagy has
been found to be essential for T cell survival and proliferation
(Pua et al., 2007). Later the same group described how the same
process of autophagy may have a physiologically significant role
in the clearance of mitochondria in T cells as part of normal T
cell homeostasis (Pua et al., 2009), creating a clear link between
immunometabolism and T cell function. By using a multiscale
strategy, these metabolic programs could be integrated in dif-
ferentiation simulations and more importantly, the processes

could be manipulated to control anti- and pro-inflammatory
development in the context of inflammatory diseases. Thus,
modeling can be used to quantitatively study dynamic processes
located at the interface of immunity and metabolism.

Of note, understanding the mechanisms of CD4+ T cell differ-
entiation and plasticity across scales can lead to the identification
of novel therapeutic targets for skewing effector cells into regu-
latory phenotypes that suppress inflammation. Therefore, multi-
scale modeling can, indeed, increase predictability and systems-
wide mechanistic understanding as to how CD4+ T cells are
activated, maintained, and transformed.

CONCLUSION
T cell immune responses are extremely heterogeneous and com-
plex. This variability is not fully understood and there are still sev-
eral questions in regards to CD4+ T cell plasticity and function.
Indeed, the issue of what criteria to use to characterize distinct
T cell subsets is becoming increasingly complicated. Moreover,
the idea that CD4+ T cells are governed by function and not
by phenotype is clearly emerging as more double positive and
plastic behaviors are being unveiled. The possibility that every
helper T cell process is a unique combination of molecules, how-
ever, cannot be discarded. This review highlighted how CD4+
T cells have a strong predisposition to certain developmental
programs, but it also showed how, at certain times with cer-
tain environmental signals, this predisposition is skewed toward
another program. Computationally, the plural CD4+ T cell sce-
nario is still a field of interest and active investigation. As new
advancements in the understanding of immune responses con-
tinue to unfold, computational modeling approaches are likely
to be required to comprehensively and systematically investigate
mechanisms across spatiotemporal scales and to help integrate
diverse data types.
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The availability of omic data produced from international consortia, as well as from
worldwide laboratories, is offering the possibility both to answer long-standing questions
in biomedicine/molecular biology and to formulate novel hypotheses to test. However,
the impact of such data is not fully exploited due to a limited availability of multi-omic
data integration tools and methods. In this paper, we discuss the interplay between
gene expression and epigenetic markers/transcription factors. We show how integrating
ChIP-seq and RNA-seq data can help to elucidate gene regulatory mechanisms. In
particular, we discuss the two following questions: (i) Can transcription factor occupancies
or histone modification data predict gene expression? (ii) Can ChIP-seq and RNA-seq data
be used to infer gene regulatory networks? We propose potential directions for statistical
data integration. We discuss the importance of incorporating underestimated aspects
(such as alternative splicing and long-range chromatin interactions). We also highlight the
lack of data benchmarks and the need to develop tools for data integration from a statistical
viewpoint, designed in the spirit of reproducible research.

Keywords: ChIP-seq, data integration, gene regulatory mechanisms, RNA-seq, statistics

INTRODUCTION
High-throughput technologies have made the collection of
genome-wide data in cells, tissues and model organisms easier
and cheaper. These data allow one to investigate biological
aspects of cell functionality and to better understand previ-
ously unexplored disease etiologies. Nowadays, RNA-seq and
ChIP-seq are widely used to measure gene expression and to
obtain genome-wide maps of transcription factor (TF) occupan-
cies and epigenetic signatures (Park, 2009; Wang et al., 2009;
Costa et al., 2010; Ozsolak and Milos, 2011; Furey, 2012).
Several computational tools have been developed to indepen-
dently analyze these data, both for single sample character-
ization and differential analysis (Pepke et al., 2009; Garber
et al., 2011; Bailey et al., 2013). The interplay between tran-
scriptomics and epigenomics has been widely demonstrated.
Chromatin accessibility to the transcription machinery regu-
lates gene expression and, viceversa, some non-coding RNAs
can affect local chromatin states (Wang et al., 2011b). Such
interplay has significant biomedical implications in physio-
logical processes and pathologic states (Feng et al., 2014).
Therefore, integrating ChIP-seq and RNA-seq data is a com-
pelling need to predict gene expression during cell dif-
ferentiation and development (Comes et al., 2013; Lesch
et al., 2013; Malouf et al., 2013; Jiang et al., 2014; Kadaja
et al., 2014) and to study human diseases, including cancer
(Portela and Esteller, 2010).

The seminal work of Hawkins et al. (2010) explained
why integrative omic data analysis can provide unprecedented
opportunities to address some long-standing questions about
genome functions and diseases. To date, large-scale data pro-
duced by ENCODE/GENCODE (ENCODE Project Consortium.,
2012; Harrow et al., 2012), Cancer Genome Atlas (http://
cancergenome.nih.gov/), Roadmap Epigenomics (http://www.

roadmapepigenomics.org) offer the possibility to answer specific
questions, as well as to raise, formulate and test novel hypotheses
and questions in life science. However, despite the pros, multi-
omic data integration is still one of the most challenging problems
in modern science (Gomez-Cabrero et al., 2014).

In this paper we discuss the following questions: (i) how
to explain and predict gene expression (and differential expres-
sion) and (ii) how to define gene regulatory network (GRN) in
humans or model organisms using epigenetic data (Figure 1).
Section Gene regulation and its impact in biology and medicine
describes the biological context. Section An overview on ChIP-
seq and RNA-seq data integration approaches and tools con-
tains an overview of data visualization and integration tools.
Section Statistical solutions to some biological questions illus-
trates the most recent statistical advances for ChIP-seq and RNA-
seq data integration. Finally, Section Open biological questions
and future perspectives enlightens our perspective view on the
open biological questions and the tools that need to be developed
in the next years. Section Conclusions reports our conclusions.
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FIGURE 1 | (A) Schematic representation of the dynamic interactions among
chromatin modifications and TFs, and their impact on gene transcription in a
cell. Different cells share the same TF binding sites despite of differences in
functionality, shape and differentiation state. Transcriptional patterns are
controlled by differential TF bindings and other factors, such as local
chromatin states and epigenetic modifications. These factors can limit, or
promote, TF occupancies at specific loci, and regulate gene transcription. (B)
Each NGS coverage data track (bedgraph format) is representative of the
result of a single omic data analysis (i.e., ChIP-seq or RNA-seq experiments).
The visualization of several tracks allows qualitatively studying a specific gene
locus. The computational analysis of single omics allows investigating (on a
genome-wide scale) different epigenetic modifications (TFs, HMs, CpG
methylation, chromatin accessibility) and measuring gene expression. (C)

When a limited amount of ChIP-seq (TF binding and/or HMs) and RNA-seq
datasets are available, simple predictive models based on PCA and log-linear
or support vector regression are used to predict gene expression and to
reveal the most relevant epigenetic signatures able to explain the gene
expression. By plotting loading factors it is possible to reveal that epigenetic
signatures can act either as activators or repressors of transcription at
different loci (see Section Can TF occupancies or histone modification data
predict gene expression?). (D) In the presence of a large number of gene
expression datasets more sophisticated models can be used to infer complex
GRNs. This network allows visualizing TF-gene relations. In particular, it is
possible to show that a given TF can control several genes and that genes
are strongly interconnected (see Section Can ChIP-seq and RNA-seq data be
used to infer gene regulatory networks?).

GENE REGULATION AND ITS IMPACT IN BIOLOGY AND
MEDICINE
The sole nucleotide sequence of a gene does not explain its
functions nor its regulation. Gene transcription is specified by
DNA structure and by its accessibility to the basal transcription
machinery. A physical interaction of TFs, chromatin-modifying
enzymes (histone acetyl/methyltransferases and deacety-
lases/demethylases) and other accessory proteins with DNA is
needed to modulate transcription dynamics, determining cell
fate (Atkinson and Halfon, 2014). Local chromatin states and
epigenetic modifications can limit, or promote, TF occupancies
at specific loci. Several diseases can result from the alteration
of chromatin remodeling and gene transcription (Portela and
Esteller, 2010). Thus, understanding—and controlling—such

processes may help to define potential therapies, as well as to
drive cell differentiation toward specific directions.

Many efforts have been made to measure transcript levels, to
detect differential expression and to identify novel alternatively
spliced transcripts in various conditions (reviewed in Costa et al.,
2010, 2013; Steijger et al., 2013; Angelini et al., 2014). However,
regardless of the technology, a challenge is to explain and to
predict gene expression by means of the coordinated binding of
TFs, epigenetic marks and long-range interactions among distant
chromatin domains. Recent studies demonstrate that the bind-
ing of specific TFs and some histone modifications (HMs) can
be used to predict gene expression in vitro and to identify rel-
evant epigenetic actors (Ouyang et al., 2009; Karlić et al., 2010;
Cheng et al., 2011a, 2012; McLeay et al., 2012). Analogously, gene
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expression changes have been correlated to modification of TF
bindings and chromatin marks (Althammer et al., 2012; Klein
et al., 2014).

In general, gene expression can be predicted using a limited
number of samples (in specific conditions). On the opposite,
inferring large GRNs can be reached only using several high-
throughput datasets, as in Gerstein et al. (2012). However, some
networks can be less complicated than expected and can rely on
a low number of factors and interactions. Dunn et al. (2014)
recently identified a minimal set of components (12 TFs and 16
interactions) sufficient to explain the self-renewal of ES cells.

In terms of potential impact on human genetics, we highlight
the following considerations. Cell differentiation is accompanied
by global—and local—chromatin changes, leading to the silenc-
ing of pluripotency genes and lineage-specific gene activation
(Chen and Dent, 2014). In this regard, multi-omic integration
and single-cell omics can be used to explain and to potentially
control differentiation and to explore heterogeneity of cells in
development and disease (Comes et al., 2013; Macaulay and Voet,
2014).

Understanding such mechanisms will significantly improve
the treatment of human genetic diseases, particularly of cancer.
Indeed, epigenetic—unlike genetic—modifications are reversible,
and modulating epi-marks through up/down-regulation of
histone methyltransferases can affect gene expression and tissue-
specific alternative splicing (Luco et al., 2010, 2011). By cor-
recting the aberrant distribution of epi-marks, we may in turn
control pathologic changes in gene expression (Schenk et al.,
2012). In this regard, the proper identification of aberrant epi-
genetic regulators in tumors is of major interest. The final
objective is to identify new therapeutic targets and to develop
novel molecules (epi-drugs, inhibitors or activators of histone
acetyl/methyltransferases and deacetylases/demethylases) that are
able to correct or prevent aberrant epi-marks (Mai and Altucci,
2009). These interesting compounds promise to define more
efficient cancer treatment strategies.

AN OVERVIEW ON ChIP-seq AND RNA-seq DATA
INTEGRATION APPROACHES AND TOOLS
Data integration can be achieved with different methodologies.
Genome browsers and other multidimensional visualization tools
(Schroeder et al., 2013) provide integrated environments to nav-
igate and visualize heterogeneous experimental data. Multi-omic
data visualization in few loci of interest helps to formulate novel
functional hypotheses. However, this is not sufficient to fully
benefit from the genome-wide information that next-generation
sequencing (NGS) data can provide. Naive approaches, so far used
to integrate epigenetic signatures with gene expression, annotate
(by proximity) either peaks or enriched regions with genes. The
epigenetic profiles are displayed on the top of the gene struc-
tures. Then enriched regions are associated to pathways and gene
ontologies by means of gene names (McLean et al., 2010; Statham
et al., 2010; Zhu et al., 2010; Lawrence et al., 2013).

Nowadays, public repositories represent a relevant data source.
Few web-based resources provide integrated information at both
epigenetic and transcriptional levels, e.g., ChIP-Array (Qin et al.,
2011), EpiRegNet (Wang et al., 2011a), ISMARA (Balwierz et al.,

2014), and GeneProf (Halbritter et al., 2011, 2014). In particular,
the latter allows one retrieving data and results of already pro-
cessed ChIP-seq and RNA-seq studies; each result is connected
to the workflow used to generate it. Therefore, previous results
can be easily integrated with user data. Other computational plat-
forms, such as Galaxy (Goecks et al., 2010), constitute a general
framework for omic data integration.

All these approaches are very useful to summarize and visual-
ize global information or to identify associations among different
data types. However, they do not provide mathematical models
for explanatory and predictive inference, as methods described in
Section Statistical solutions to some biological questions.

STATISTICAL SOLUTIONS TO SOME BIOLOGICAL
QUESTIONS
The questions posed in Section Introduction and illustrated in
Figure 1 are discussed in the next subsections.

CAN TF OCCUPANCIES OR HISTONE MODIFICATION DATA PREDICT
GENE EXPRESSION?
The work of Ouyang et al. (2009) represents one of the first
attempts to address the question using ChIP-seq and RNA-seq
data and log-linear regression. In this framework, gene expression
is regarded as a response variable and different TF-related fea-
tures as predictors. The authors build the TF association strength
matrix X as a weighted sum of intensities of peaks surrounding
the genes of interest (Figure 2). They found that a remarkably
high proportion of gene expression variation can be explained
by the binding of 12 specific TFs. Principal component analysis
(PCA) revealed that these TFs may have a dual effect. They can
activate a subset of genes and repress other ones. Similarly, a sim-
ple model selection regression strategy shows that gene expression
can be accurately predicted using only a small number of HMs
(Karlić et al., 2010). The combined usage of different epigenetic
features and chromatin accessibility data (DNase I hypersensi-
tive sites from DNase-seq), within a log-linear regression and
PCA further improves gene expression prediction (McLeay et al.,
2012). More interestingly, McLeay and colleagues demonstrated
that in silico TF binding prediction could be used as surrogate
information, in absence of in vivo binding data.

Differently, Cheng and co-authors (Cheng et al., 2011a, 2012;
Cheng and Gerstein, 2012; Dong et al., 2012) mapped each epige-
netic feature into a vector of several components, measured both
at the transcription starting sites (TSSs) and at the transcription
termination sites (TTSs). They showed that TF binding achieves
the highest predictive power in a small region centered at the TSS,
whereas HMs have high predictive power in wider regions across
genes. Their approach differs both for the building of the feature
matrix and for the use of support vector regression. The latter
does not assume a linear relationship between gene expression
and signals for TFs or HMs, allowing one to capture more com-
plex relationships. Other supervised and unsupervised statistical
methods have been proposed in Xu et al. (2010); Hebenstreit et al.
(2011); Park and Nakai (2011); Gagliardi and Angelini (2013).
The advantage of the above-described statistical approaches is
that they allow carrying out both explanatory and predictive
inference.
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FIGURE 2 | One of the key-points in the integration process is the
way in which the epigenetic and transcriptional signals are
transformed into a statistical model that relates a response
vector Y (i.e., gene expression) with a set of predictors,
represented by a matrix X (i.e., epigenetic signatures). (A) A
scheme showing gene transcription, and the molecular factors
involved (TFs and HMs), is illustrated in the upper part. (B) Different
models have been proposed to build the so-called gene to
epigenetic signature matrix X. Naive models proposed to use a
binary matrix to integrate epigenetic signatures with gene expression.
Therefore, 0/1 values were used to annotate and associate a given
TF or HM to a specific gene according to a proximity measure
between the peak and/or the enriched region and TSS of the
corresponding gene. More advanced models, such as the one from
Ouyang et al. (2009), proposed to use a weighed sum of peaks
around the TSS. In this way it is possible to tune the strength of
the binding and the distance from the TSS in a continuous way.
Along the same direction, Sikora-Wohlfeld et al. (2013) compared

several other measures to build X. All such approaches share the
idea that matrix X is built with respect to the position of the TSSs
(or using reads in a window around the TSSs) by collapsing each
epigenetic feature into a single value per gene. A slightly different,
and more sophisticated, approach consists in mapping each
epigenetic feature into a vector of several components measured (in
several bins) both at the TSSs and TTSs, as proposed in the series
of papers by Cheng and colleagues. In this way, they showed that
the best predictive power for TFs is indeed achieved at TSSs,
however for HMs the information available at TTSs can provide
further improvement. Finally, a set of 13 features for each epigenetic
mark is used in Althammer et al. (2012) to classify genes as
up-regulated; down regulated and no-change between two
experimental conditions. The features are evaluated over the gene
body, on its upstream and downstream regions (including promoters,
TSSs, first exons, first introns, etc). (C) Gene expression Y (usually
measured in terms of Fragment per kilobase of exon per million
fragments mapped, FPKM) is obtained from RNA-seq data.

Previous methods focused on single biological systems for
which both RNA-seq and ChIP-seq data are available. In prin-
ciple, the same methods could be applied to correlate gene
expression variations and changes in epigenetic mark densi-
ties between two conditions. In this context, Althammer et al.
(2012) used 13 features for each epigenetic mark and a machine
learning approach (based on random forest) to classify genes as

up-, down-regulated or no-change when comparing two con-
ditions. The vectors of features are extracted from TFs and
HMs, and also DNase-seq and DNA methylation data. More
recently, approaches based on Bayesian mixture models have
been used to detect genes with differential expression and vari-
ations in the HM profiles between two experimental conditions
(Klein et al., 2014).
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Despite the differences in the statistical models, all the above-
mentioned approaches revealed that it is possible to predict gene
expression using genome-wide TF occupancies or HM data.

CAN ChIP-seq AND RNA-seq DATA BE USED TO INFER GENE
REGULATORY NETWORKS?
The availability of several gene expression datasets generated from
knock-out cells for one or few TFs has made possible to infer
GRNs. Reconstructing GRNs using gene expression data has been
one of the most widely studied problems in the last decade (Wang
and Huang, 2014). However, the integration of TF occupancies
data and mRNA expression values, as well as data from other
transcriptional and post-transcriptional regulators, can improve
methods for inferring GRNs. This task still constitutes a challenge
in system biology especially for complex organisms.

ChIP-seq data were first used to determine target genes and
miRNAs using data from modENCODE (Cheng et al., 2011b).
Then, a regulatory network was obtained by using the correlation
between TF binding and gene expression. A more comprehensive
study, involving hundreds of TFs from ENCODE disclosed sev-
eral structural properties of human regulatory networks (Gerstein
et al., 2012). Both studies are mainly descriptive (i.e., analysis of
how regulatory information is organized) and do not fully benefit
from the amount of information available in terms of improving
inferential approaches.

Under the assumption that network sparseness is higher in
complex than in small genomes, GRN inference can be turned
into a sparse optimization problem (LpRGNI, Qin et al., 2014).
The identification of a small TF set that controls the network is
obtained by solving a regularized lasso-type problem. The inte-
gration of ChIP-seq data improves the inference performance.
As an alternative, as proposed in CMGRN (Guan et al., 2014),
Bayesian network models can be first used to infer causal interre-
lationship among TFs and HMs (i.e., to understand how several
regulators influence or associate with each other) by analyzing
the sequences of regulators based on ChIP-seq read counts on
the promoter of target genes. Then, Bayesian hierarchical Gibbs
sampling allows integrating ChIP-based regulatory signals of TFs
and HMs, microRNA binding targets with differential expression
profile of genes, to construct GRN at different levels (epigenetic,
transcriptional and post-transcriptional).

In general, we are far from inferring realistic quantitative mod-
els of genome-wide regulatory networks. However, it is possible
to reveal the main interactions and the most relevant players.
Then, computational methods can refine sub-networks for spe-
cific functions. In this spirit, Dunn et al. (2014) first generated
all possible networks that could explain stem cell self-renewal.
Then, by using formal verification procedures and Boolean net-
work formalisms, they selected a core network of only 12 TFs and
16 interactions, showing that ES self-renewal relies on a relatively
low number of factors and interactions.

OPEN BIOLOGICAL QUESTIONS AND FUTURE
PERSPECTIVES
From a biological perspective, data integration is not an end
to answer fundamental questions, but a means to generate
new hypotheses. In this regard, genome-wide omic data are

fundamental to drive researchers into a deeper understanding of
many biological aspects (Hawkins et al., 2010).

To date, there is a limited use of multi-omic data. The associ-
ation between epigenetic features and genes is still mainly done
according to their proximity with respect to TSSs (with few
exceptions, Althammer et al., 2012) and the existing approaches
only account for local interactions. Moreover, genome-wide
maps (by ChIA-PET and Hi-C) of long-range chromatin inter-
actions and of chromatin nuclear organization have not been
fully integrated in the previously described inferential models.
Regression approaches in Section Can TF occupancies or his-
tone modification data predict gene expression? are based on
assumption of independence between genes, whereas the phys-
ical proximity of genes in the chromosomes in the nucleus
is evidence of physical interaction. Therefore, we suggest that
future computational methods for multi-omic data integration
include information from genome-wide long-range interaction
studies. To this aim, we propose the use of locus-by-locus inter-
action matrix, as a kind of correlation matrix within a regression
model.

Similarly, chromatin accessibility data (Thurman et al., 2012)
such as DNase-seq data, DNA regions associated with regulatory
activity (FAIRE-seq), and DNA methylation data (MeDip-seq
and BS-seq) should be used to better model DNA-binding back-
ground and reduce the number of false positive relations (as also
suggested by Cheng et al., 2012). In such cases, we believe that
the approaches described by Althammer et al. (2012) could be
useful. However, the choice of the initial set of features has to be
tuned according to the specific omic data at hand. Then, feature
selection strategies have to be applied.

In absence of in vivo data, surrogate data (based on com-
putational predictions or data from closely related cell lines or
conditions) could be used to decrease experimental costs. McLeay
et al. (2012) and Liò et al. (2012) showed in two different contexts
that such strategy is feasible and can improve the results. Further
studies should be devoted to investigate pros and cons of such
approaches.

Another interesting consideration comes from the evidence
that relatively few factors (TFs and/or HMs) are sufficient to
explain gene expression quite accurately. Such an apparent redun-
dancy for HMs (Cheng and Gerstein, 2012) opens the question
whether such factors have a causal function or only constitute a
regulatory code. Notably, such redundancy has been described
only with regard to gene expression levels, without taking into
account alternative splicing and differential isoform abundance.
We hypothesize that the observed redundancy could partially
account for a different layer of complexity, poorly explored till
now. Many recent evidences indicate that some epi-marks are
associated to tissue-specific alternative splicing (Luco et al., 2010,
2011; Ye et al., 2014). In this regard, the works from Chen and
Dent (2014) have tried to partially overcome this issue by achiev-
ing higher predictive accuracy. Although this approach led to a
higher predictive accuracy, it was not able to capture the differ-
ential expression of transcripts sharing the same TSS. We believe
that a more sophisticated analysis may reveal that different com-
binations of epigenetic patterns can tune isoform switching (e.g.,
controlling the type of alternative splicing) and determine their
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relative abundance. The answer to such a complex question is still
a challenge.

We want to underline that, despite the possibility to predict
gene expression using few epigenetic features, no causal relation-
ships can be directly inferred from such methods. The possibility
of determining whether causal relationships exist or markers only
constitute a code (Henikoff and Shilatifard, 2011; Cheng and
Gerstein, 2012) requires developing causal inference that till now
received only limited attention (Yu et al., 2008; Guan et al., 2014).
In this regard, we propose Bayesian models to carry on causal
inference.

Finally, while there exist several tools for data visualization (as
described in Section An overview on ChIP-seq and RNA-seq data
integration approaches and tools), only few tools implementing
the statistical algorithms (Section Statistical solutions to some
biological questions) are available. In addition, there are not gen-
eral tools that allow comparing the developed methods for gene
expression prediction and GRN on the same benchmarks. In light
of these considerations, it is now very difficult for biologists to
carry on data integration. Therefore, to facilitate biologists in
such a task we strongly emphasize the need to develop new and
intuitive explorative tools for the integration of ChIP-seq and
RNA-seq data from a statistical viewpoint. Moreover, we firmly
believe such tools should be designed in the spirit of reproducible
research (Goecks et al., 2010; Russo and Angelini, 2014) to allow
reproducibility and transparent verification of published results
and to improve transfer of knowledge.

CONCLUSIONS
The diffusion of high-throughput technologies has offered the
possibility to answer new questions, but has also posed new chal-
lenges to old problems in life science, such as data integration
(Gomez-Cabrero et al., 2014). Indeed, data integration is grad-
ually losing the merely descriptive function (as representation
of data from different sources) and it is quickly acquiring infer-
ential role. In this scenario, statistical methods can be used not
only to analyze specific types of omic data, but also to integrate
them within explanatory and predictive models. Such models can
be used for further inference and to simulate the effect of spe-
cific changes in silico. However, to fully exploit the data available
from international consortia, novel statistical methods and tools
are required. In this paper, we discussed the work carried out in
the last few years, and we provided our perspective about future
developments.
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The rapid evolution of all sequencing technologies, described by the term Next
Generation Sequencing (NGS), have revolutionized metagenomic analysis. They constitute
a combination of high-throughput analytical protocols, coupled to delicate measuring
techniques, in order to potentially discover, properly assemble and map allelic sequences
to the correct genomes, achieving particularly high yields for only a fraction of the cost of
traditional processes (i.e., Sanger). From a bioinformatic perspective, this boils down to
many GB of data being generated from each single sequencing experiment, rendering
the management or even the storage, critical bottlenecks with respect to the overall
analytical endeavor. The enormous complexity is even more aggravated by the versatility
of the processing steps available, represented by the numerous bioinformatic tools that
are essential, for each analytical task, in order to fully unveil the genetic content of a
metagenomic dataset. These disparate tasks range from simple, nonetheless non-trivial,
quality control of raw data to exceptionally complex protein annotation procedures,
requesting a high level of expertise for their proper application or the neat implementation
of the whole workflow. Furthermore, a bioinformatic analysis of such scale, requires
grand computational resources, imposing as the sole realistic solution, the utilization of
cloud computing infrastructures. In this review article we discuss different, integrative,
bioinformatic solutions available, which address the aforementioned issues, by performing
a critical assessment of the available automated pipelines for data management, quality
control, and annotation of metagenomic data, embracing various, major sequencing
technologies and applications.

Keywords: metagenomics, bioinformatics, distributed computing, cloud computing, workflow engines

INTRODUCTION
Metagenomics refers to the exhaustive study of a collection
of genetic material, encompassing various genomes from a
mixed community of organisms as defined from the National
Human Genome Research Institute (Talking Glossary of Genetic
Terms1). The definition embraces the cases where either the sam-
pling is conducted, in an environmental habitat, or the material
is collected from the tissue of a particular host organism, aim-
ing to unravel the complexity of the microbial species, which
are adapted to cooperate through symbiotic modes. The scrupu-
lous study of a metagenome (Handelsman et al., 1998) offers
insight concerning not only the phylogenetic properties of the
environmental niche itself, but also of its exceptionally abundant
arsenal of enzymes while, at the same time, provides us with a
“recipe” to recreate or even redesign them in vitro, for the sake
of various biotechnological applications. Genomic information
acquired from metagenomic sampling, has become a fundamen-
tal step for the elucidation of the taxonomic composition of the
niche together with each organism’s potent enzymatic capabili-
ties and is derived through the proper analysis of the chunks of

1http://www.genome.gov/glossary/index.cfm?id=503 [Accessed].

DNA sequences, i.e., the full documentation of the nucleotide
sequences that constitute the metagenome that are generated
from a metagenomic sequencing experiment. Sequencing tech-
niques have greatly evolved (Metzker, 2010b) the last decade and
exploiting a variety of high-throughput protocols, so as to achieve
exceptionally high yields for only a fraction of the cost of tra-
ditional processes (i.e., Sanger sequencing, Sanger et al., 1977).
This evolution has resulted in a massive outbreak of data that are
becoming increasingly hard to process due to their size and the
numerous different tools essential for each step of the analytical
endeavor. A thorough analysis of a metagenomic sample requests
certain successive bioinformatic tasks that comprise (i) quality
control, (ii) assembly, (iii) gene detection, (iv) gene annota-
tion, (v) taxonomic analysis, and (vi) comparative analysis, whilst
storing the generated results under a database-structured compu-
tational repository enabling advanced data management, process-
ing, mining, and meta-mining capabilities (Figure 1). Each stage
in this succession of bioinformatic tasks necessitates substantive
expertise concerning the apposite utilization of the given software
tool or algorithm, something that concerns either the mathemat-
ical concepts underlying the operation of a tool, or knowledge
about programming aspects of its implementation and perfor-
mance. The complexity of these tasks augments radically, with
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FIGURE 1 | Typical workflow for analysis of metagenomic sequencing data.

an increasing number of analyses. Recently, many bioinformatic
pipelines have emerged that aim to address these issues through
the provision of automated workflows and user friendly inter-
faces, in an effort to simplify the analytical procedure as much as
possible, and minimize the entry barrier concerning the familiar-
ization of the user with advanced programming or computational
techniques. Each of these integrative analysis pipelines encapsu-
lates a plethora of bioinformatic algorithms, seamlessly embed-
ded into a multi-tasking framework that can address all aspects
of a complete metagenomic analysis in an automated fashion.
In this review we perform an appraisal of the available solu-
tions of this kind for metagenomic purposes, by describing their
configuration and their particular operational features, together

with an assessment of their pros and cons, while we propose the
most appropriate ones for particular analytical tasks.

DATA ACQUISITION
There are numerous protocols available for environmental sam-
ple collection, metagenomic DNA extraction and amplifica-
tion with several commercial kits available on the market. The
sequencing of the acquired metagenomic DNA either with tradi-
tional sequencing techniques (Sanger sequencing) or with Next
Generation Sequencing (NGS) (Metzker, 2010a) methodologies
provides data in the form of small nucleotide sequences (reads)
that correspond to different amplified strands of the same DNA
molecule(s) each of which is randomly sheared into smaller pieces
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FIGURE 2 | Raw sequence reads in FASTA format.

(shotgun sequencing). The generated datasets consist of text files
in FASTA (Figure 2) or FASTQ (Figure 3) format containing, in
the case of a typical experiment, millions of such reads, which are
used for the assembly (partial or complete) of the DNA strand
from which they originated. These datasets correspond to data
files, which size can level, according to the depth of the sequencing
analysis and quality of the instrumentation, up to several GB, thus
rendering their proper processing, an elaborate, intensive task.

DEVELOPMENT OF ANALYTICAL WORKFLOWS
Despite the fact that the experimental implementation of a NGS
experiment comprises a painstaking and arduous procedure, its
output, namely the volumes of short sequence reads, in digitized
format, represents just the initial step, for the whole analyti-
cal process, setting a point where the plethora of available data
are totally illegible and non-comprehensible. In order to dig out
the information hidden in these datasets, one needs to define
elaborate, multi-step, bioinformatic analytical workflows that can
be performed either serially or in parallel with each other. As
such processing tasks are so profoundly versatile and compli-
cated in their logical structure and programmatic development,
that even an experienced team of programmers can only develop
a handful of them. In this respect, the intricate nature of the
various processing steps that need to be assembled together, in
order to form computational workflows appropriate for different

FIGURE 3 | Raw sequence reads in FASTQ format.

analytical tasks, strongly supports the formation of federated
computational infrastructures, representing repositories of soft-
ware services, that can be transparently, (namely without any
knowledge about their internal architecture), integrated in the
available workflows, or can compile new ones. The vision for the
creation of a suitable collaborative, environment, for a long list
of genomic sequence analysis tasks, representing an analog of a
virtual laboratory, relies on the extent of automation, easiness in
integration, transparency, and functional versatility it provides.
Beneath, follows a rough account of the main processing mod-
ules, incorporated in the workflows developed for metagenomic
analysis.

Quality control
The genomic (DNA) material, isolated from a metagenomic sam-
ple, is transformed through the complicated experimental DNA
sequencing protocols into short sequence reads of variable length,
according to the protocols and instrumentation applied (Mardis,
2008; Shendure and Ji, 2008). This base calling procedure, is sus-
ceptible to bias depending on a number of factors (Clark and
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FIGURE 4 | Distribution of quality scores of raw sequence reads from
FASTQC software. Taxonomic sorting of sequencing reads from MEGAN
software (rank level: “species”).

Whittam, 1992) such as G+C content and the actual location of
the base in the sequence. This bias is quantified by measuring the
probability of a base call to be false, providing an index of over-
all quality of the sequencing task. The computation of a quality
score (Phred) (Cox et al., 2010; Schmieder and Edwards, 2011) for
each sequenced base is now possible with this type of information
being handily accommodated in the FASTQ file format, which
represents a highly popular solution for genomic sequencing data
exchange and storage, bearing both sequence and correspond-
ing quality information (Cock et al., 2010). Several tools (Patel
and Jain, 2012; Davis et al., 2013; Yang et al., 2013) have been
developed that can utilize these scores and provide error probabil-
ity distributions (Figure 4) as well as utilize appropriate filtering
algorithms to trim sequences in a way that maintains only high
quality genomic sequences.

Assembly
The next data processing step is the utilization of reads to assem-
ble larger coherent sequence constructs (contigs) and, if possible,
constructs that contain multiple contigs (scaffolds) with reliable
connections between them. Each of these constructs originates
from a different DNA sequence, that can be part of or a genome
by itself and can be later investigated for the detection of open
reading frames (ORFs), that is genomic areas, containing gene
encoding sequences. The assembly task is so far, from the aspect
of computational load, the bottleneck for any sequencing project
whether the data corresponds to single cell genomes or metage-
nomic samples. The assembly of reads to contigs (and scaffolds) is
a very laborious task, requesting avidly memory processing power
resources, setting an important challenge, for which numerous
algorithms (Miller et al., 2010) have been developed to address
various performance issues stemming from it. Whereas there
are numerous algorithms (Miller et al., 2010) dedicated to the
assembly of NGS raw data, we can distinguish two discreet com-
putational approaches; mapping reads to a template genome and
de novo assembly. Assembly via mapping to a known genome as

reference can provide very reliable results for sequencing projects
dealing with single-cell samples as it can bypass performance
issues originating from sequence repeats, short length of reads,
low coverage of sequencing, etc. (Scheibye-Alsing et al., 2009). It
is mainly driven by the choice of the reference genome which has
to be as phylogenetically related to the sequenced sample as possi-
ble. De novo assembly is by far the most computationally intensive
task (Scheibye-Alsing et al., 2009) as it requires algorithms that
perform all possible comparisons between the millions of reads in
order to detect any overlaps between them; a method referred to
as overlay-layout-consensus (OLC). Although the de novo assem-
bly endeavor has been simplified by novel algorithms abandoning
the OLC method and exploiting mathematical concepts such as
de Bruijn graphs (Zerbino and Birney, 2008; Peng et al., 2011),
it still heavily depends on the quality of the sequencing protocol
(read length, sequencing depth, etc.). Nevertheless, because of the
immense diversity of the genomic content in a metagenomic sam-
ple, utilization of a reference genome is ruled out, making thus the
computationally intensive task of de novo assembly the sole prac-
tical alternative, at least at the first steps of an analytical effort,
when there is no prior knowledge about the sequences pertaining
the sample.

Open reading frame/gene detection
The functional patterns, which form the response of all living
organisms in an environmental niche as well as their symbi-
otic or competitive interactions, are encapsulated their genetic
code, where all necessary information for functions such as
nutrition, chemotaxis, adaptation to hostile environments and
proliferation, is encoded in the form of genes. In this sense, the
identification of genes within a genome, through apt mapping
of each gene to its sequence or sequences, is an indispensable
step, for its proper functional annotation and the decipherment
of the underlying regulatory mechanisms. Computationally, the
detection of genes inside a genome starts with the detection of
ORFs, after their evaluation whether they can be translated into
functional proteins (so that the respective nucleotide sequences
may be considered as candidate gene encoding ones). The algo-
rithms (Yok and Rosen, 2010) that perform this assessment,
use various methodologies for gene prediction either from the
area of machine-learning (Hoff et al., 2009; Zhu et al., 2010) or
not (Noguchi et al., 2008), whereas their underlying operational
features, are critically modified according to whether the gene
prediction targets prokaryotic or eukaryotic organisms.

Gene annotation
Even if all gene sequences of a metagenomic population are distin-
guished successfully, the abundance of information they contain
cannot be exploited without a proper annotation of their func-
tion. The most widespread method of annotating a gene sequence
is by measuring its homology (Altschul et al., 1990; Kent, 2002)
to already known genes taken from public databases (Apweiler
et al., 2004; Pruitt et al., 2005; Parasuraman, 2012; Benson et al.,
2014). However, as more than 99% of bacterial species cannot be
cultured in the lab (Rappe and Giovannoni, 2003; Sharon and
Banfield, 2013) and the quantity of metagenomic data that is
generated each year continuously expands, these methods are no
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FIGURE 5 | Taxonomic sorting of sequencing reads from MEGAN
software (rank level: “species”).

longer sufficient to predict the function of novel genes. Instead
new predictive approaches have emerged, becoming the standard
practice for this sort of analysis, such as Hidden Markov Models
techniques (Finn et al., 2011) and machine learning methodolo-
gies (Tian et al., 2004) that assess sequence similarity, exploiting
the whole area of the sequence, seeking profiles (Claudel-Renard
et al., 2003) or motives for any known gene with a given function-
ality, i.e., belong to the same Enzyme Commission (EC) number,
rather than prioritizing serial homology.

Taxonomic analysis (binning)
An environmental niche is composed by a broad range of different
microorganisms being constantly under evolutionary pressure,
which have developed biological interrelations between them, as
a means of symbiotic adaptation to the extreme conditions they
face. As the DNA extraction from a metagenomic sample gets
extracted as a whole, there is no way to separate and segregate
beforehand the collected DNA, according to the organism it orig-
inated from. Nonetheless this challenge may be addressed compu-
tationally, sorting raw sequencing reads taxonomically (Figure 5)
and phylogenetically (Weisburg et al., 1991; Retief, 2000; Darling
et al., 2014) and thus yield conclusive information about the pop-
ulation of the niche, which can be extended subsequently to the
assembled contigs and genes. This process is called taxonomic
binning (Droge and Mchardy, 2012) and there are numerous tools
(Mohammed et al., 2011; Pati et al., 2011; Luo et al., 2014; Wang
et al., 2014) that rely on homology based or composition based
approaches (Rosen and Essinger, 2010).

Comparative integrative analysis
When different metagenomic datasets are brought together, their
overall diversity, which reflects the diversity in the correspond-
ing environmental niches, can be examined computationally. The
available tools (Huson et al., 2007; Markowitz et al., 2008; Meyer
et al., 2008) for this task incorporate algorithms that compare the
functional and taxonomical content of the different datasets and
examine if the detected differences are statistically significant.

Data management
Following the massive advances of NGS technologies, the gen-
erated data from each sequencing analytical job can now reach
the order of several gigabytes (GB) or even terabytes (TB) in
size(Richter and Sexton, 2009). Moreover if elaborate analyti-
cal workflows like the aforementioned are applied, they yield
similarly voluminous chunks of processed metadata (in some
cases even at a higher order of size e.g., gene annotation). Thus,
it is imperative for computational infrastructures, in the form
of repositories, to integrate in a single environment, numer-
ous algorithmic workflows that addressing versatile processing
tasks together with advanced relational database management
functionalities, in order to ensure easy data access, iterative com-
parative processing and integration of similar information from
other datasets. Such infrastructures are now feasible by exploiting
the potential of cloud computing (Schatz et al., 2010; Stein, 2010)
and provide not only the necessary disk space for large data man-
agement but also the appropriate processing capacity for heavy
duty bioinformatic tasks.

CURRENT SOLUTIONS
Each of the aforementioned tasks not only requests high process-
ing power and storage capacity but also an in depth knowledge of
regarding the proper application of computational methodolo-
gies from a broad spectrum of fields (information theory, signal
processing, systems theory, statistics, programming) along with
a yearlong experience in order to produce reliable results. This
is why, there is an earnest need for metagenomic analysis plat-
forms introducing automated, workflows for various processing
goals, integrating tools in the form of services, operative inside
processing pipelines. This has resulted into the development of
various pipelines (Almeida et al., 2004; Harrington et al., 2010;
Angiuoli et al., 2011) dedicated to the analysis of single organ-
ism genomic data. However, the exploitation of NGS technologies
in metagenomic analysis has set off the limitations of similar
solutions developed for single organism data, for the sake of
metagenomic projects. Therefore, for the purposes of this review
we will skip the reference to any single-genome tool and will only
appraise the most recent pipelines (i.e., frameworks that incorpo-
rate two or more tools in consecutive running order) developed
for the analysis of metagenomic sequencing datasets. We will also
omit pipelines (Schloss et al., 2009; Caporaso et al., 2010) ded-
icated solely to the analysis of 16s rDNA datasets as these are
targeting only phylogenetic studies (Weisburg et al., 1991; Woo
et al., 2008), or CAMERA (Seshadri et al., 2007) pipeline as it
is no longer supported starting from 1st of July 2014. We also
exclude MEGAN (Huson et al., 2007) because despite the fact
that it targets metagenomic data, it lacks critical tasks (BLASTX,
taxonomic and functional analysis) as part of an automated
pipeline.

The current bioinformatic arsenal of pipelines able to take
up the challenge of analyzing a metagenomic sequencing dataset
comprises the following tools (in alphabetical order): (i) CloVR-
metagenomics (Angiuoli et al., 2011), (ii) Galaxy platform
(metagenomics pipeline) (Giardine et al., 2005; Kosakovsky Pond
et al., 2009), (iii) IMG/M (Markowitz et al., 2008, 2014), (iv)
MetAMOS (Treangen et al., 2013), (v) MG-RAST (Aziz et al.,
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2008; Meyer et al., 2008), (vi) RAMMCAP (Li, 2009), and (vii)
SmashCommunity (Arumugam et al., 2010).

CloVR-METAGENOMICS
CloVR-metagenomics (CloVR: Cloud Virtual Resource) is a desk-
top application for automated sequence analysis, which requires
two different inputs; a set of fasta-formatted files (raw sequencing
data), and a tab-delimited metadata file which provides sample-
associated information for comparative analysis. Local installa-
tion requires a Virtual Machine (VM) player in order to boot
the appropriate VM image available by their website. For a cloud-
based instance, users can use the Amazon Cloud where they find
an available Amazon Machine Image (AMI) from the Request
Instances Wizard. The pipeline initiates by clustering redundant
sequence reads with UCLUST (Edgar, 2010) and uses BLAST
(Altschul et al., 1990) homology searches against COG (Tatusov
et al., 2000) and RefSeq (Pruitt et al., 2005) databases for func-
tional and taxonomic annotation respectively. The resulting data
from the two different analyses are transferred as input to the inte-
grated Metastats program for detection of differentially abundant
features (White et al., 2009). Finally integrated custom scripts in R
language (The R Project for Statistical Computing 2 ) are utilized in
order to normalize taxonomic or functional counts for clustering
and for visualization purposes. The main advantage of CloVR’s
setup is that it provides the user with the option of using local
resources or to access a cloud provider for additional computa-
tional capacity. A potential downside of the platform is the lack
of quality control, assembly and gene detection tools (which are
available only in the single-genome and 16S-rRNA versions of the
software) making it highly dependent on the read length of the
sequencing datasets.

GALAXY PLATFORM (METAGENOMICS PIPELINE)
Galaxy is an open-source, generic framework for the integration
of computational tools and databases into a cohesive collaborative
workspace, being developed primarily for data intensive biomed-
ical research. A free Galaxy public server (Galaxy 3) is available but
a user can download and install an instance on his/her server for
exploitation of local resources, tools and databases in order to cre-
ate custom workflows. Local installation requires only the down-
loading of the latest release and the initiation of the local instance
can be done by running the appropriate BASH (BASH—The
GNU Bourne-Again SHell 4) script (run.sh) included in the down-
loaded directory. A Galaxy workflow for metagenomic datasets
was published (Kosakovsky Pond et al., 2009) that requires as
input a single dataset of raw sequencing reads and performs an
automated series of analyses exploiting specific integrated tools.
Those analyses include: (i) quality control and filtering of the
reads (custom tool), (ii) text editing and data format converting
(custom tools), (iii) homology search against NCBI-nt database
(Megablast, Altschul et al., 1990), (iv) taxonomic analysis (cus-
tom tools), and (v) visualization of results (custom tools). The
biggest advantage of this platform is besides the rich collection of

2http://www.r-project.org/ [Accessed].
3https://usegalaxy.org/ [Accessed].
4http://tiswww.case.edu/php/chet/bash/bashtop.html [Accessed].

workflows it provides, the capability it offers, via its local instal-
lation, to each user to build customized workflows integrating
any customized tools of his/her choice (third party or propri-
etary) that can handle a very wide range of analytical tasks, while
simultaneously providing a very friendly user interface. However,
in order that a full local installation is achieved, sophisticated,
far from trivial, programming expertise rendering the solution
inappropriate for other than proficient users. Nevertheless, as
the platform becomes more and more popular, many scientific
groups develop their own tools and integrate them into new
workflows (Pilalis et al., 2012), rendering them available to the
relevant communities of users. These workflows provide auto-
mated metagenomic analyses that cover from sequence assembly
to protein annotation even enzymatic functional classification via
machine learning methodologies (Koutsandreas et al., 2013).

IMG/M
IMG/M is an experimental metagenome data management and
analysis system that provides a genome database from bacterial,
archaeal and selected eukaryotic organisms and a suite of tools
for data exploration and comparative data analysis. The data
exploration tools facilitate advanced search queries in assembled
sequence data for genes, for the contigs and scaffolds where they
originated from as well as their associated functional characteriza-
tions (COG, Pfam, Finn et al., 2014, etc.). The comparative data
analysis suite contains (i) profile-based selection tools, (ii) gene
neighborhood analysis tools, and (iii) multiple sequence align-
ment tools that can elucidate the gene content and phylogenetic
profile of any metagenomic sample. This platform constitutes a
very robust and user friendly system for publishing and managing
a user’s (meta) genome via its web server’s graphical user interface
(GUI) as well as performing further functional annotation on it,
while exploiting their cloud infrastructure. Nevertheless, the bur-
den of quality control of the raw reads as well as the assembly
task still befalls on the user. IMG/M is designed for assembled
metagenomes only with no supporting tools for the tasks up to
assembly. Local installation is not available and all users need to
have an IMG Account which can be requested from IMG website.

MetAMOS
MetAMOS is a metagenomic assembly and analysis pipeline that
accepts either raw sequence reads as input or already assem-
bled contigs. Installation requires downloading the latest ver-
sion and running a Python script (INSTALL.py) included in
the release, which automatically handles the whole process.
The modules of this pipeline make up a complete analytical
workflow that includes: (i) quality control using two different
tools (FASTX-Toolkit 5 , Babraham Bioinformatics - FastQC 6 ),
(ii) sequence assembly to contigs with eight different assem-
bly methods exploiting four different assembly tools (Zerbino
and Birney, 2008; Peng et al., 2011; Treangen et al., 2011; Xie
et al., 2014) and to scaffolds with Bambus 2 (Koren et al.,
2011), (iii) assembly assessment using a short read aligner tool
(Langmead and Salzberg, 2012) and a sequence repeats detection

5http://hannonlab.cshl.edu/fastx_toolkit/index.html [Accessed].
6http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Accessed].
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tool (Treangen et al., 2009), (iv) ORF/gene detection with three
different available tools (Rho et al., 2010; Zhu et al., 2010; Kelley
et al., 2012), (v) gene annotation with seven different available
tools (Altschul et al., 1990; Bo et al., 2010; Brady and Salzberg,
2011; Finn et al., 2011; Parks et al., 2011; Darling et al., 2014),
and (vi) result visualization using Krona (Ondov et al., 2011).
MetAMOS’s main strength is the large variety of tools that can
be integrated into the workflows, in order to enable a complete
automated analysis of any sort of metagenomic dataset, either it
constitutes raw sequencing reads or assembled contigs and scaf-
folds. However, the access to its rich collection of tools is seriously
hindered by the lack of a user friendly interface as all tasks must
be executed from the linux command line shell, whereas their
parameterization requests invocation of appropriate scripts.

MG-RAST
This pipeline supports both raw sequence reads datasets or
already assembled contigs, as input. Local installation is not avail-
able as it is offered as an online service for which the user must
register in order to upload metagenome datasets and to create
jobs. The modules of the automated pipeline comprise four main
tasks: (i) normalization of the data, (ii) parallel screening of the
sequences against public databases (Maidak et al., 2001; Wuyts
et al., 2002; Leplae et al., 2004; Overbeek et al., 2005; Desantis
et al., 2006; Meyer et al., 2009), with predetermined default search
parameters, for potential protein encoding genes and coding ele-
ments, (iii) computation of the resulting data in order to assign
functional annotations and taxonomic assignments, and (iv)
visualization of results via the integrated SEED Viewer. During
the implementation of the pipeline, all job-relevant resulting data
are incrementally stored in flat file and SQLite (SQLite 7) format
for optimal data management based on relational database tech-
nology. The results from the previous steps can be utilized for
comparative metagenomic analysis of the original dataset against
other metagenomes or complete genomes derived from the SEED
environment. What makes this platform attractive to the user is
that similar to IMG/M, it provides a user friendly GUI behind a
web server that makes the handling of the data and its analysis
as intuitive as possible. It also provides numerous tools both for
functional analysis and for comparative genomics and it can han-
dle both assembled and not assembled sequence data. The only
thing missing from the pipeline are the appropriate modules for
raw read quality control and assembly tasks but either than that
it constitutes an easy to use and well established functional and
taxonomic annotation system that fully exploits the potential of
public sequence databases.

RAMMCAP
RAMMCAP (RAMMCAP: Rapid Analysis of Multiple
Metagenomes with a Clustering and Annotation Pipeline)
is a metagenomic platform, which workflows enable a complete
metagenomic analysis, emphasizing in the programmatic opti-
mization so that the computational cost of the various processing
tasks, is minimized. Installation requires downloading the latest
version of the package which includes all the essential programs,

7http://www.sqlite.org/ [Accessed].

scripts, and databases. Each of the required programs of the
pipeline must then be compiled and installed separately in
order to be able to be called upon by the automated pipeline.
This pipeline, works with raw read datasets from one or more
metagenomic samples, whose sequences are clustered together
using CD-HIT (Fu et al., 2012) algorithm. Parallel to cluster-
ing the reads, an ORF detection task is implemented, on the
raw reads, using a local algorithm (ORF_finder) followed by
yet another clustering of the resulting protein sequences. For
the clustered and original amino-acid sequences, two parallel
workflows are run for similarity detection against Pfam, Tigrfam,
(Haft et al., 2001) (HMMER tool) and COG (RPS-BLAST tool)
databases generating the subsequent annotation. The final results
from (i) clustered raw reads, (ii) database results from clustered
protein sequences, and (iii) database results from unclustered
protein sequences are examined for statistical comparison of
the metagenomes and visualization of their differences. The
RAMMCAP pipeline was available as a web service via the
CAMERA framework but since the latter has been discontinued it
is now only available as a standalone tool for local installation. As
is the case with MetAMOS, RAMMCAP’s potential gets thwarted
by the lack of user friendliness toward the inexperienced user.
There is no GUI for the pipeline and its installation and run
require a user somewhat more inclined to (bio)informatics. The
lack of an integrated assembler also renders it highly depen-
dent to the sequencing read length when it comes to the ORF
detection tasks. Besides that it is considered a highly optimized
solution in regards to CPU processing and memory demands for
comparative metagenomic analysis.

SMASHCOMMUNITY
SmashCommunity can be considered as the metagenomic version
of its predecessor SmashCell (Harrington et al., 2010), a software
designed for the analysis of high-throughput single cell-amplified
microbial genomes. Installing SmashCommunity requires the
user to download the latest version of the package and to com-
pile/install it using the usual BASH commands (configure, make,
make install). Before installing the pipeline the user must also
install a list of prerequisite programs and databases that are essen-
tial to the various modules of the workflow. This is facilitated by
running the BASH scripts (e.g., install_dependencies.ubuntu.sh)
included in the release. The required input for this pipeline is
raw read datasets from 454 or Sanger sequencing technologies
(i.e., long read sequence data). The automated workflow includes
integrated tools for: (i) sequence assembly (Myers et al., 2000),
(ii) gene detection (Noguchi et al., 2008), (iii) phylogenetic
annotation of raw reads (Altschul et al., 1990; Wang et al., 2007;
Finn et al., 2011), (iv) functional annotation of detected genes
(Altschul et al., 1990; Powell et al., 2014), and (v)comparative
analysis (Retief, 2000). Each tool of this workflow is inte-
grated in the automated pipeline via a wrapper script written
in Perl 8 (Stajich et al., 2002) language for facilitating
the input/output (I/O) of data between different tasks.
SmashCommunity can be considered an “all-inclusive” bioinfor-
matic package but as with similar packages its greatest strength is

8http://www.perl.org/ [Accessed].
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also its greatest weakness. The numerous prerequisite tools that
make up the complete analytical pipeline need to be manually
installed beforehand by the user adding to the complexity of the
command-line only package. Plus the assembler’s restrictions are
passed through the rest of the pipeline making its performance
optimum only with long read sequencing data (an issue that will
soon be obsolete as even Illumina machines are increasing their
read length output with each new sequencer release). Despite
that, the most advanced user will find that it is a great solution
for the conduct of complete and fully automated metagenomic
analyses on a local server with dedicated resources.

DISCUSSION
In order to assess the potential of each metagenomic pipeline we
take into account the range of features each pipeline introduces
in order to offer an all-inclusive analysis, as well as the level of
complexity of its installation. The main features of a full metage-
nomic analytical workflow should include: (i) sequencing quality
control (ii) metagenomic assembly, (iii) ORF/gene detection, (iv)
functional annotation, (v) taxonomic analysis, (vi) compara-
tive analysis, and (vii) data management capabilities. From the
pipelines we examined, only MetAmos and SmashCommunity
included analytical tools for raw sequencing data whereas the
rest mainly focused on detecting and annotating putative gene
coding regions, as well as providing taxonomic characterization
for the generated metagenome. Assessing the complexity of an
installation is a fairly subjective matter, yet as “easy” we con-
sider the installation, where the user doesn’t have to perform
arduous compilation and dependencies’ installation tasks, since
those usually require a higher level of informatics expertise. For
example we consider complex for the inexperienced user, that
of RAMMCAP, as it requires a manual installation of each of
the integrated tools of the pipeline contrary of the installation of
MetAmos, which is handled automatically through the execution
of a Python script. The number of features that constitute each of
the above-mentioned pipelines are summarized in Table 1.

CONCLUSIONS
The field of Metagenomics holds the promise for the elucida-
tion of the genomic and taxonomic diversity of environmental
niches. The rapid advances in sequencing technologies and in the

development of algorithms for massive functional annotation of
the analyzed genomic content intensify the capabilities of metage-
nomic analysis, rendering it feasible for an ever-growing number
of projects. Powerful, fully automated bioinformatic pipelines
lower the entry barrier to the field, through the compilation of
numerous workflows, incorporating state-of-the-art algorithms
optimized for specific analytical tasks, adjusted also for integra-
tion of various datasets, by resolving compatibility issues between
them. There are pipelines focusing more on functional and tax-
onomic analysis, omitting the data-crunchy assembly part while
others offer complete solutions where the user simply inputs
the data from the sequencer machine and gets a fully anno-
tated genomic report. As expected from other areas of computer
science, a trade-off between user-friendliness and efficiency or
flexibility of performance is observed here too. The highest the
quality and the performance superiority of the workflows, the
more profound knowledge they request for their impeccable
installation and operation, thus minimizing their accessibility
by different scientific communities, short of these skills. On the
contrary, pipelines dedicated in resolving smaller, more specific
processing tasks, have matured so as to provide very intuitive
GUI-based solutions, often via a web server, accessible through
the Internet. The broad range of integrative analysis platforms
encompasses various pipelines, addressing the pressing need for
disparate, versatile, complex, processing tasks. The adopted strat-
egy for the development of efficient workflows, adjustable to
varying, yet very specific every time, processing needs, posits
on the modularity and transparency of the integrated code, that
is the autonomous character of these modules, together with
their easiness in integration and user-friendliness in their uti-
lization. Moreover, in order to optimize the computational cost
of such processing tasks, parallel processing designs are put for-
ward, aiming to maximally exploit, multi-processor configura-
tions. Among the examined suites of tools (Table 1), we believe,
based in our experience for a wide range of metagenomic anal-
ysis tasks, that SmashCommunity and MetAmos represent very
reliable pipelines, in terms of quality of results, reliability of oper-
ation and versatility of tools, for the most experienced users. For
those who are analyzing already assembled data for the task of
the functional analysis of their metagenome(s), we consider MG-
RAST and IMG/M as two very robust and intuitive pipelines.

Table 1 | Display of features of current bioinformatic pipelines for metagenomic data analysis.

Tasks
Pipeline Quality

control
Assembly Gene

detection
Functional
annotation

Taxonomic
analysis

Comparative
analysis

Data
management

CloVR-metagenomics

Galaxy platform*

IMG/M

MetAMOS

MG-RAST

RAMMCAP

SmashCommunity

*Refers to the metagenomic pipeline of Galaxy.
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These two aforementioned workflows not only provide tools for
a full analysis of any assembled metagenome, but also efficient
ways for dissemination of the generated results to the scientific
community through a secure database setup.
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A variety of high throughput genome-wide assays enable the exploration of genetic risk
factors underlying complex traits. Although these studies have remarkable impact on
identifying susceptible biomarkers, they suffer from issues such as limited sample size
and low reproducibility. Combining individual studies of different genetic levels/platforms
has the promise to improve the power and consistency of biomarker identification.
In this paper, we propose a novel integrative method, namely sparse group multitask
regression, for integrating diverse omics datasets, platforms, and populations to identify
risk genes/factors of complex diseases. This method combines multitask learning with
sparse group regularization, which will: (1) treat the biomarker identification in each single
study as a task and then combine them by multitask learning; (2) group variables from
all studies for identifying significant genes; (3) enforce sparse constraint on groups of
variables to overcome the “small sample, but large variables” problem. We introduce
two sparse group penalties: sparse group lasso and sparse group ridge in our multitask
model, and provide an effective algorithm for each model. In addition, we propose a
significance test for the identification of potential risk genes. Two simulation studies
are performed to evaluate the performance of our integrative method by comparing
it with conventional meta-analysis method. The results show that our sparse group
multitask method outperforms meta-analysis method significantly. In an application to our
osteoporosis studies, 7 genes are identified as significant genes by our method and are
found to have significant effects in other three independent studies for validation. The most
significant gene SOD2 has been identified in our previous osteoporosis study involving the
same expression dataset. Several other genes such as TREML2, HTR1E, and GLO1 are
shown to be novel susceptible genes for osteoporosis, as confirmed from other studies.

Keywords: sparse regression, multitask learning, group lasso, significant test, osteoporosis

INTRODUCTION
Increasing amounts of high-throughput biological data have been
collected to investigate the genetic mechanism underlying com-
plex traits at different levels, e.g., genomics, transcriptomics,
proteomics, and metabolomics. However, there are usually two
bottlenecks for these genetic studies. One is availability of limited
sample size due to the experimental cost. Small sample size can
lead to the loss of detection power and the reduction of confidence
on identified biomarkers. To analyze data with small sample size
but large variables is still a challenging statistical problem (Hamid
et al., 2009). The other is that biomarkers identified from these
different studies often suffer from poor reproducibility. This issue
could be caused by many factors such as differences on profiling
techniques, demographic, and ancestral information of subjects,
sample sizes, and quality control in these datasets (Phan et al.,
2012; Song et al., 2012). To increase the power and consistency of
biomarker identification, integrating the information of diverse
biological datasets from different levels and platforms shows great
promise and is highly demanded.

Methods for integration of diverse biological datasets
include conventional meta-analysis and a variety of integrative
approaches recently developed (Huttenhower et al., 2006; Liu
et al., 2013). Meta-analysis is a statistical method to summa-
rize the p-values or statistics (e.g., z-score) from each individual
dataset (Evangelou and Ioannidis, 2013). There are a dozen of
approaches for combing multiple p-values or statistics such as
Fisher method. Meta-analysis is usually used to find common fea-
tures across multiple datasets with different sample sizes and plat-
forms but under the same hypothesis (Rhodes and Chinnaiyan,
2005). Recently, a number of integrative approaches have been
developed, which are based on machine learning and statisti-
cal methods (Zhang et al., 2010; Kirk et al., 2012; Xiong et al.,
2012). They can analyze multiple datasets from: (1) different plat-
forms and levels but for the same subjects; (2) same platforms
but different levels and subjects; (3) different platforms but for
the same levels and subjects. They have been successfully used for
various applications such as a single or a set of biomarker iden-
tification (Chen et al., 2013), gene-gene interaction prediction
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(Troyanskaya et al., 2003), and genetic network construction
(Balbin et al., 2013). The results in these studies demonstrate the
advantage of integrating multiple diverse datasets over analyzing
them individually.

In this work, we propose a novel method for integrating
multiple datasets from different platforms, levels, and samples
to identify common biomarkers (e.g., genes). The method was
based on multitask regression model enforced with sparse group
regularization, which can overcome the “small sample size, but
large number of variables” problem. Multitask learning method
has been successfully applied to medical imaging data fusion,
where multiple types of images (e.g., CT, MRI) were combined
for identifying susceptible brain regions and improving disease
classification (Zhang and Shen, 2012). Among various sparse reg-
ularization terms, the use of sparse group penalty has been shown
to outperform other penalties such as lasso in our previous study
of pair-wise genomic data integration (Lin et al., 2013). In this
study, we enforce two sparse group penalties [i.e., sparse group
lasso (Friedman et al., 2010) and sparse group ridge (Chen et al.,
2010a)] into the multitask regression model for data integration.
We assume a regression model for each dataset as a task, and then
multiple regression models will be considered as multiple tasks.
Variables from all datasets will be grouped by specific units (e.g.,
genes). A sparse group penalty is introduced with the aims to
(1) reduce dimensionality, i.e., removing a number of irrelevant
genes; (2) perform group-wise feature selection, i.e., removing
SNPs or expression measurements from the same gene. An effec-
tive algorithm based on alternative direction method (ADM) is
proposed to solve the model. Based on the estimation of the
model, a statistical test is constructed for the identification of
potentially causal genes. We perform two simulation studies with
both fixed and dynamic genetic effects to evaluate our sparse
regression methods, which shows that our sparse group multitask
regression model can increase the power of detecting risk genes
by integrating multiple diverse datasets effectively. Real data anal-
ysis on four osteoporosis studies identifies some significant genes
with highly susceptible to bone mineral density and osteoporosis.

MATERIALS AND METHODS
In this section, we will first introduce the sparse group multitask
regression model and then propose an effective algorithm based
on ADM to solve the model. Finally, a gene based statistical test is
constructed to give the level of significance for each selected gene.

SPARSE GROUP MULTITASK REGRESSION MODEL
We assume T independent datasets collected from K levels of
genomic data (e.g., SNP, mRNA) with Pk(k = 1, . . . , K) plat-
forms (e.g., Affymetrix, Illumina) for each level, and thus T =
∑K

k = 1 Pk. The number of observations in each dataset is denoted
by ni, i = 1,. . . T. Sample sizes could also be different due to
the diversity of protocols in each experiment. The measure-
ment matrix of each experiment is denoted by X(i) ∈ Rni×di ,
i = 1, . . . , T, where di is the dimension of features in the i-th
dataset, and usually di >> ni. These features (e.g., SNPs and
mRNA expression probes) are annotated to the genes and we
assume that the genes in different datasets are the same, denoted
by G = {Gi|i = 1, . . . Q}. For example, all SNPs and mRNA

expressions are tested for the same set of genes G. To reduce scale
differences among different levels and platforms, the features in
X(i)s will be normalized to have zero mean and unit standard
deviation. The phenotypic response in each dataset is Y (i) ∈ Rni ,
i = 1, . . . T, which can be binary or quantitative trait. The study
is to identify biomarkers shared by different experiments for the
same phenotype. The coefficient matrix for the regression model

is denoted by C =
[

C(1)′ , C(2)′ , . . . , C(T)′
]′

, where C(i) ∈ Rdi is

the coefficient vector of the i-th model Link
(

Y (i)
) = X(i)C(i), and

Link(.) is the known link function.
Multitask learning is adopted in this study for identifying the

shared biomarkers across a set of distinct but correlated tasks
for better accuracy. In this context, each regression model for an
experiment under different level and/or platform is considered
as a task. For the sake of simplicity, we assume a linear regres-
sion model for each experiment with quantitative trait (i.e., link
function will be the identity matrix). The loss function for each
model L(i)

(

X(i), C(i)
)

can be derived from the negative log likeli-
hood function and thus the total loss function for the multitask
regression model is L(X, C) =∑T

i= 1 L(i)
(

X(i), C(i)
)

.
Many conventional regression methods become ineffective for

processing the large scale biological data, which usually have small
sample sizes and large number of features. This issue can be
addressed by introducing sparse penalty in the model. We propose
a sparse multitask regression model as follows:

minCL(X, C)+�(C) (1)

where �(C) is the sparse penalty function. Two popular penal-
ties are used: sparse group lasso and sparse group ridge, and
the corresponding models are denoted by multitask-sglasso and
multitask-sgridge, respectively. For multitask-sglasso, �(C) =
λ1

∑Q
q= 1

∥

∥

∥
C{k∈Gq}

∥

∥

∥

2
+ λ2 ‖C‖1, 1, where C{k∈Gq} indicates a

subset of vector C corresponding to the set of features anno-
tated to gene Gq from Ttypes of datasets and ‖C‖1, 1 =
∑T

i= 1

∑di
k= 1

∣

∣C(i,k)
∣

∣ is the l-1 norm on C. This sparse group
lasso penalty groups features from all datasets based on genes
to perform gene level selection. The l-1 norm penalty on C can
further remove those irrelevant features from each gene. This bi-
level feature selection penalty has been proven to outperform
several other single level sparse penalties such as lasso, group
lasso, and elastic net for feature identification. For multitask-
sgridge, a composite sparse penalty, i.e., group ridge penalty

�(C) =∑Q
q= 1

∥

∥

∥
C{k∈Gq}

∥

∥

∥

2

1
, is imposed on C to perform bi-level

feature selection, where the features are also grouped by genes.
The penalty uses the inner l-1 norm penalty on C{k∈Gq} to achieve
the sparsity within each gene while the outer ridge penalty to per-
form ridge regression at the gene level. This group ridge penalty
has also been found to give higher power in identifying causal
genes in high dimensional genomic dataset than other single level
sparse penalties (Chen et al., 2010a).

In this study, we adopt these two bi-level penalties in our mul-
titask regression models to integrate multiple diverse genomic
datasets for gene-based test. Specifically, these two sparse group
multitask regression models are formulated as follows:
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Multitask-sglasso: minC

K
∑

i= 1

ωi

Pi
∑

j= 1

δj

∥

∥

∥
Y (i,j) − X(i,j)C(i,j)

∥

∥

∥

2

F

+ λ1

Q
∑

q= 1

∥

∥

∥
C{k∈Gq}

∥

∥

∥

2
+ λ2 ‖C‖1, 1 (2)

Multitask-sgridge: minC

K
∑

i= 1

ωi

Pi
∑

j= 1

δj

∥

∥

∥
Y (i,j) − X(i,j)C(i,j)

∥

∥

∥

2

F

+ λ

Q
∑

q= 1

∥

∥

∥
C{k∈Gq}

∥

∥

∥

2

1
(3)

where ωis are the weights for the loss function of different levels
of datasets, and δjs are the weights accounting for the sample size
differences among the experiments of the same type of datasets.
To be more specific, ωis reflect the prior knowledge on the impor-
tance of different levels of measurements, e.g., SNP, gene expres-
sion, and proteomics. We choose ωi = 1, i = 1, 2, l . . . K in this
work, assuming that all levels of measurements contain the same
important genetic information. Larger sample size is expected to
provide more reliable significance test on biomarkers; therefore,
the weight for the experiment under the j-th platform to mea-
sure the i-th level of genomic data is given by δj = nj

∑Pi
j= 1 nj

, j ∈ Pi,

where λ1, λ2, and λ are the tuning parameters to control the
sparsity of genes and the number of features in the models.

It could be noted that our sparse multitask regression model
can be taken as the generalization of those existing sparse regres-
sion models to the representation of multiple datasets from differ-
ent levels and/or platforms. For example, when K = 1, P = 1, it
is sparse regression model for single dataset as used in Chen et al.
(2010a) and Simon et al. (2013); when K = 1, P > 1, it can be
reduced to sparse model on multiple datasets at the same level but
from different platforms, similar to the work in Ma et al. (2011);
when K > 1, P = 1, it can work for multiple datasets at different
levels.

SOLUTION ALGORITHM BY ALTERNATIVE DIRECT METHOD (ADM)
Although both (2) and (3) are convex optimization problem with
global solutions, the non-smoothness and the composite norms
still cause difficulties in solving the optimization. Several algo-
rithms have been studied to address such an issue for single task
regression models, e.g., second-order cone programming (SOCP)
algorithm (Candes and Romberg, 2005), spectral projected gradi-
ent method (SPGL1) (van den Berg et al., 2008), accelerated gra-
dient method (SLEP) (Liu et al., 2009), block-coordinate descent
algorithm and SpaRSA (Wright et al., 2009). In sparse multitask
regression model, since the loss function is separable, these algo-
rithms are still applicable but expensive in computations. In this
study, we apply ADM to solve sparse multitask regression model.
ADM uses the splitting strategy to decompose the optimization
problem into several easily solvable ones and updates the variable
in each subproblem iteratively until the convergence is achieved.
It has been successfully applied to solve many convex or non-
convex optimization problems, such as lasso (Yang and Zhang,

2011), total variation regularization (Esser, 2009), matrix decom-
position and our recent work on sparse low rank decomposition
(Dongdong et al., 2013). Deng et al. compared ADM with several
other algorithms and found that ADM outperformed others with
more robustness and faster computation (Deng et al., 2013).

Taking the model in (2) for example, we use ADM to split the
penalties and transform (2) into the following optimization:

minC

K
∑

i= 1

ωi

Pi
∑

j= 1

δj

∥

∥

∥
Y (i,j) − X(i,j)C(i,j)

∥

∥

∥

2

F
+ λ1

Q
∑

q= 1

∥

∥

∥
V1{k∈Gq}

∥

∥

∥

2

+λ2 ‖V2‖1,1 (4)

s.t. C = V1, C = V2

where V1, V2 are two variables making the loss function separa-
ble. The augmented Lagrange function can be derived as

L (C, V1, V2, D1, D2, λ1, λ2, μ, ρ)

=
K

∑

i= 1

ωi

Pi
∑

j= 1

δj

∥

∥

∥
Y (i,j) − X(i,j)C(i,j)

∥

∥

∥

2

F
+ λ1

Q
∑

q= 1

∥

∥

∥
V1{k∈Gq}

∥

∥

∥

2

+ λ2 ‖V2‖1,1 + ρ

2
‖C − V1 − D1‖2

2 +
ρ

2
‖C − V2 − D2‖2

2 (5)

where ρ is augmentedLagrangian parameter which can be
updated iteratively; D1,D2 are the Lagrange multipliers to approx-
imate the residuals between C and V1, V2, respectively. Since the
objective function and constraints are both separable and convex,
ADM method is effective to solve {C, V1, V2, D1, D2} sequen-
tially. We present the algorithm for solving multitask-sglasso by
ADM in Table 1.

Remark 1. We decouple (2) into several small convex opti-
mization problems. Step 3 is a regular least square estimation
on matrix C, where an analytical solution can be derived. Step
4 is a classical sparse group lasso minimization, which can be
solved efficiently by block coordinate decent in Sprechmann et al.
(2011). Step 5 is a simple lasso problem, which can also be solved
by soft-thresholding. The division of complex optimization into

Table 1 | Algorithm of solving multitask-sglasso by ADM.

1 Initialization: k = 0, choose λ1, λ2, μ, ρ, > 0,V0
1, V0

2, D0
1, D0

2

2 Repeat:

3 Ck + 1 ← argminAL
(

C, Vk
1, Vk

2, Dk
1, Dk

2

)

4 Vk + 1
1 ← argminV1

L
(

Ck + 1, V1, Vk
2, Dk

1, Dk
2

)

= argminV1

ρ
2

∥

∥

∥
Ck + 1 − V1 − Dk

1

∥

∥

∥

2

2
+ λ1

∑Q
q= 1

∥

∥

∥
V1{k∈Gq}

∥

∥

∥

2

5 Vk + 1
2 ← argminV2

L
(

Ck + 1, Vk+1
1 , V2, Dk

1, Dk
2

)

= argminV2

ρ
2

∥

∥

∥
Ck + 1 − V2 − Dk

2

∥

∥

∥

2

2
+ λ2 ‖V2‖1, 1

6 Update Lagrange multipliers

Dk + 1
1 ← Dk

1 − Ck + 1 + Vk + 1
1

Dk + 1
2 ← Dk

2 − Ck + 1 + Vk + 1
2

7 Update iteration k← k+ 1

8 Until some stopping criterion is satisfied
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several simple sub-optimizations will improve the efficiency of
computation.

Remark 2. We adopt the stopping criterion as suggested by
Boyd et al. (2010) that both primal res pri and dual res dual residu-
als must be small, i.e., respri ≤ εpri, resdual ≤ εdual, where primal
residual indicates the difference between C and V1 (V2) while
dual residual measures the difference between V1 (V2) and the
values at the last iteration.

Remark 3. The convergence rate depends on the choice of
Lagrangian parameter ρ. Some studies adjust ρ based on primal
and dual variables iteratively to speed up the convergence. In this
work, we update ρ by keeping the ratio between primal and dual
residual norms within a given interval, say [0.1, 10] until they
both converge to zeros.

For optimization (3), it can similarly be transformed into
ADM formulation where only one splitting variable (i.e., V1) is
needed to separate (3) into two subproblems. The estimation of
V1 at Step 4 can be replaced by:

Vk + 1
1 ← argminV1

ρ

2

∥

∥

∥
Ck + 1 − V1 − Dk

1

∥

∥

∥

2

2
+ λ

Q
∑

q= 1

∥

∥

∥
C{k∈Gq}

∥

∥

∥

2

1
(6)

where soft-threshold can be used to get the solution.

STATISTICAL TEST
λ1, λ2, and λ are tuning parameters used to control the number
of genes and features within a gene. The K-fold cross validation is
widely used to select optimal values of these parameters. Briefly,
the subjects are divided into k groups, where k−1 groups of sub-
jects are used for estimating the coefficient matrix C and the rest
group of subjects is used to calculate the prediction error by the
estimated C. We set λ1, λ2, and λ to [100.1, 100.2, . . . , 103] with
30 values. We search the 30× 30 grid to find an optimal combina-
tion of (λ∗1, λ∗2) for multitask-sglasso and similarly optimal value
of λ∗ for multitask-sgridge by 5-fold cross validation. Finally, the
estimate of C can be calculated by the derived optimal parameters.

To test the significance of identified biomarkers with non-
zeros coefficients at C, we construct a gene based statistical test to
measure the strength and significance of the association between
genes and phenotype across experiments from different platforms

and levels. For the i-th gene Gi,
{

̂C
(j)
i |j = 1, 2, . . . , T

}

indi-

cates the corresponding coefficient vector estimated from the j-th

experiment, denoted by
[

Ĉ
(j)
i, 1, Ĉ

(j)
i, 2, . . . , Ĉ

(j)
i, mi

]

, where mi is the

number of features annotated to gene Gi in the j-th experimen-
tal dataset. The null hypothesis is there is no association between
the i-th gene and phenotype in all T experiments, denoted by

H0 :
[

Ĉ(1)
i
′
, Ĉ(2)

i
′
, . . . , Ĉ(T)

i
′]′ = 0, vs. the alternative hypothesis

HA : Ĉ(k)
i �= 0, k = 1, 2, . . . , T for some k. To test the hypothe-

sis, we summarize the coefficients of the i-th gene on all datasets
as follows.

Ŝi =

√

√

√

√

√

T
∑

j= 1

∥

∥

∥
Ĉ

(j)
i

∥

∥

∥

2

2
(7)

where Ŝi, i = 1, 2, . . . , Q is the statistical value on all Q genes.
Due to different number of features included in different genes,
an adjustment for gene size is necessary. A permutation based
approach is used to reduce the potential bias due to varying gene
size. The standardized gene level statistic is given by

S̃i = Ŝi − Ŝ0
i

σ̂i
(8)

where Ŝ0
i and σ̂i are the mean and standard deviation of the i-th

gene under the null hypothesis. Samples are permuted B times
to construct null distribution of Ŝi, denoted by ̂	0

i = {Ŝ0
i,j|j =

1, 2, . . . , B}. Ŝ0
i and σ̂i are then estimated based on permutation

data. Since all Ŝ0
i,j have been normalized, we could pool all ̂	0

i

into a set 	0 = {̂	0
i |i = 1, 2, . . . , Q} as the estimated null dis-

tribution. Therefore, the gene-level p-value of the i-th gene can
be calculated by

pi = # of {	0 ≥ Ŝi}
# of {	0} (9)

SIMULATION
To evaluate the performance of our proposed integrative method
for identifying biomarkers, we simulated two levels of measure-
ments: SNP and gene expression, and assigned different sample
size for each dataset.

For each simulation, we generated 3 SNP datasets and 3 gene
expression datasets. The sample sizes were 600, 400, and 200
for SNP data and 70, 50, and 30 for gene expression, respec-
tively. 200 genes were simulated in each dataset. To mimic the
linkage disequilibrium (LD) structure among SNPs, we chose a
chromosome, chromosome 22, from HapMap CEU panel with
phase III data and sample subjects by software HAPGEN2 (Su
et al., 2011). Those SNPs were kept after the following filters were
applied: (1) Minor allele frequency (MAF) at least 5%; and (2)
Hardy-Weinberg Equilibrium (HWE) with significant level less
than 0.001. We generated a dataset consisting of 15,235 SNPs
which were assigned to 576 genes as the gene pool. Assuming an
additive genetic model, each SNP was recorded as the count of
minor allele (denoted as A) at that locus and thereby was valued
by 0 (homozygote of major allele, aa), 1 (heterozygote, Aa) and
2 (homozygote of minor allele, AA). 200 genes including more
than 10 SNPs were randomly selected from the pool, of which 20
genes were chosen as causal genes and 2 SNPs with MAF from
uniform distribution (Unif) (0.15, 0.25) from each causal gene
were further used to induce causal genetic effects on gene expres-
sion. The number of SNPs from 200 selected genes was randomly
set from Unif(10,100) and those non-causal SNPs in each gene
were selected from pooled SNPs.

We used SNP data to generate gene expression and phenotype
data, referring to the similar method in Huang et al. (2014). Three
SNP datasets with 70, 50, and 30 subjects were first simulated, as
described in the method section. For each causal gene, e.g., gene
i, the expression value Gi was derived from the causal SNPs in this
gene by
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Gi =
n

∑

j= 1

SNP
j
causalβj + ε (10)

where n was the number of causal SNPs included in Gi; and βj

indicated the effect of the j-th causal SNP(SNP
j
causal) on Gi. We

set β value from Unif(1, 1.2) and noise ε from normal distribu-
tion N(0, 1). The other non-causal gene expression values were
generated by multivariate normal distribution N(0, �), where �

was the covariance matrix of gene expressions, and the expres-
sions of gene i and j have correlation coefficient 0.3|i− j|. Based on
the simulated gene expression, the phenotype was generated by
the following formula:

logit{Pr(Yi = 1)} =
m

∑

j= 1

G
j
causalτj + ε

′
(11)

where m was the number of causal genes, i.e., m = 20 in this

study; G
j
causal was gene expression for the j-th causal gene and τj

was the corresponding effects on the outcome. The logit func-
tion was used to generate binary outcome. The identity func-
tion can be used if the quantitative phenotype was used. ε

′

was non-genetic variable, which was assumed to follow normal
distribution N(0, 1).

RESULTS
SYNTHETIC DATA
We assessed the performance of the two proposed sparse mul-
titask models- multitask sglasso and multitask sgridge-on each
single dataset and all datasets, respectively, and also compared
them with widely used meta-analysis on three SNP datasets

(meta-SNP) and three gene expression datasets (meta-EXP).
Meta-analysis was implemented by the software MetaL (Willer
et al., 2010).

Simulation 1: Fixed effect of causal genes in diverse dataset
In this simulation, we studied the scenario that the effects of
causal genes across diverse datasets were fixed, i.e., τ 1

j = τ 2
j =

· · · = τ 6
j , i = 1, 2, . . . , m, which indicated a causal gene had the

same effect on all datasets. For m casual genes, first, we set a
baseline vector η ∈ Rm from Unif(0.2, 2) and Unif(−2, −0.2).
Next, to evaluate the performance of different methods on iden-
tifying casual genes under different levels of effects, a factor δ =
0, 0.2, 0.4, 0.6, 0.8, 1.0 was multiplied by η to have the final
value of gene effects τ = η × δ. 50 replicates were performed
and B = 500 permutations in each replicate were implemented
to calculate empirical p-value of sparse multitask models. Finally,
we compared the results of the following eight cases: multitask-
sglasso on three expression datasets, three SNP datasets, and all
six datasets; multitask-sgridge on three expression datasets, three
SNP datasets and all six datasets; meta-analysis on three SNP
datasets and three expression datasets.

Figure 1 shows the comparison result of a set of methods
under different values of δ, i.e., [0, 0.2, 0.4, 0.6, 0.8, 1.0].
The ROC curves were plotted using the false positive rate against
true positive rate by varying the p-value threshold from 10−4

to 1. It could be seen that all methods had similar performance
when there were no effective causal genes in all datasets (i.e.,
δ = 0). When the effects of causal genes (i.e., δ) increase, i.e.,
more variability of phenotypes could be explained by genetic
variants, multitask-sglasso method shows better performance by
removing the irrelevant genes with improved signal to noise ratio.
When δ was greater than 0.2, multitask-sglasso methods on SNP,

FIGURE 1 | The ROC curves for the comparison of eight cases: sparse multitask-sglasso and multitask-sgridge methods on three SNP datasets,
expression datasets and all datasets, and meta-analysis on SNP and expression datasets, respectively.
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expression and both datasets significantly outperformed the other
methods. This indicates that Multitask-sglasso method showed
better performance by integrating all datasets than that of using
only one level of data. In addition, when δ was greater than 0.4,
multitask-sglasso method using only SNP or expression datasets
still gave higher power than meta-analysis method. Multitask-
sgridge method had less power than multitask-sglasso method
and only showed better performance than meta-analysis method
when causal genes have high effect sizes.

Simulation 2: Dynamic effects of causal genes in diverse datasets
In this simulation, we consider the situation that a causal gene
has different effects at different levels and platforms. This is
more likely to happen for real datasets since multiple datasets are
usually generated from different studies with different study pro-
tocols, profiling techniques, and experimental platforms, leading
to dynamic effect sizes of casual genes. We aimed to compare
the performance of our sparse multitask methods with meta-
analysis for biomarker identification in this dynamic case. Six
datasets were generated with the same sample size and causal
genes as those in the first simulation study. We simulated the
dynamic effects of causal genes at different datasets by setting τj ∼
N

(

η, σ 2
)

, i = 1, 2, . . . , 6, where η was fixed effect as described
above, and σ was standard deviation indicating the dynamic effect
of genes across datasets. We changed the value of σ from 0 to 1
with the interval of 0.2 to show different extent of heterogeneity
of causal genes across diverse datasets. 50 replicates were averaged
to draw the ROC curve for comparison.

Figure 2 showed the comparison result of eight cases under
dynamic effect models with variance of causal genes varying
from 0 to 1. When σ = 0, the models reduced to the ones with
fixed effects. When σ was greater than 0.4, sparse multitask-
sglasso method on SNP, expression and both datasets significantly

outperformed other methods in identifying casual genes. Except
for sparse multitask-sglasso method, we can also see that the per-
formance of sparse multitask-sgridge on all datasets was better
than meta-analysis methods, which indicated the advantage of
multitask method for integrating diverse datasets.

REAL DATA ANALYSIS
In this study, we took advantage of 3 gene expression datasets and
1 GWAS dataset with bone mineral density (BMD) measurements
from our previous studies. The cohort I of gene expression data
contained 80 Caucasian females, including 40 high and 40 low
hip subjects (Chen et al., 2010b). The cohort II of gene expression
data contained 19 Caucasian females, including 10 high and 9 low
hip BMD subjects (Liu et al., 2005). The cohort III of gene expres-
sion data contained 26 Chinese females, all premenopausal and
including 14 high and 12 low hip BMD subjects (Lei et al., 2009).
For the GWAS dataset, SNP data were obtained using Affymetrix
500K arrays on 1,000 unrelated homogeneous Caucasians. After
a suite of quality control procedures were performed, the SNP set
for subsequent analysis contained 379,319 SNPs, yielding an aver-
age marker spacing of ∼7.9 kb throughout the human genome
(Xiong et al., 2009).

We combined gene expression and SNP datasets to identify
those risk genes of BMD by our sparse multitask-sglasso integra-
tive method. We chose one chromosome 6 containing the largest
number of genes to perform gene-based analysis. 504 genes were
included in the chromosome. More details in each dataset were
given in Table 2.

We applied sparse multitask-sglasso method to SNP, gene
expression and both datasets, respectively. To compare with meta-
analysis, two gene expression datasets with the same level and
experimental platforms, EXP-19 and EXP-80, were used for meta-
analysis, denoted by meta-Exp. The most significant expression

FIGURE 2 | The comparison of eight methods on three SNP and three expression datasets simulated with the dynamic model. The variance of effect
size of causal genes is set to normal distribution with variance varying from 0 to 1 at an interval of 0.2.
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Table 2 | A summary of four datasets from different levels and

platforms used in this analysis.

Data type Platform Gene Genetic Sample

variants

SNP Affymetrix 500K 504 10685 1000

Gene expression HG-U133A 504 874 19

Gene expression HG-U133A 504 1225 26

Gene expression HG-U133A-Plus_2.0 504 874 80

measurement in each gene was chosen to represent signifi-
cance level of the gene. Figure 3 shows the Venn diagram of
gene list by three methods: multitask-sglasso on all gene expres-
sion datasets, multitask-sglasso on all gene expression and SNP
datasets, and meta-analysis on two expression datasets under the
significant threshold 0.05. We could see that there were 45 genes
shared by meta-Exp and multitask-sglasso on three expression
datasets; 10 genes overlapped by meta-Exp and multitask-sglasso
on both SNP and expression datasets; and three genes (“GPR116,”
“HLA-DMB,” “PHACTR1”) identified by all methods. The small
overlapping between multitask-sglasso Exp and multitask sglasso
SNP+ Exp is due to the use of additional information from large
sample size of SNP dataset.

Table 3 lists 7 top significant genes identified and sorted
by their p-values from sparse multitask-sglasso method on all
datasets and the corresponding p-values by meta-analysis. Note
that the p-values of the same gene usually were different in dif-
ferent studies. For example, SOD2 had much lower p-values
in SNP and EXP-26 datasets than those in other datasets. This
difference showed the dynamic effects of genes across diverse
datasets with different levels and platforms. There are three genes
(“TREML2,” “ HTR1E,” and “GLO1”) shared by sparse multitask-
sglasso method on all of datasets and meta-Exp. Except for gene
TREML2, the p-values of genes derived from all datasets were
lower than those from the other methods, indicating higher level
of significance given by our multitask method. The relatively
smaller p-values of these genes in SNP data were due to the large
sample size of SNP dataset, which will give more confidence on
the findings.

To further evaluate the significance of identified genes by
multitask-sglasso, we performed gene level meta-analysis on
three independent BMD studies for validation, more details were
shown in supplementary data. The result (Table S1) listed the
p-values of 24 identified genes based on single studies and meta-
analysis. Most of these genes showed significant effects on BMD
(p < 0.01), indicating the effectiveness of our sparse multitask
regression method in identifying genetic risk factors.

Three shared genes (“TREML2,” “HTR1E,” and “GLO1”) may
have important biological functions related to BMD associated
with osteoporosis. TREML2 (also known as TLT-2) was located
in a gene cluster on chromosome 6 with the single Ig vari-
able (IgV) domain activating receptors TREM1 and TREM2,
while these TREM receptor families were found to participate
in the process of bone homeostasis by controlling the rate of
osteoclastogenesis and regulating the differentiation of osteo-
clasts (Klesney-Tait et al., 2006; Otero et al., 2012). HTR1E was

FIGURE 3 | The Venn diagram of identified genes by three methods:
meta-analysis on EXP-19 and EXP-80 datasets, multitask-sglasso on all
three expression datasets and multitask-sglasso on all gene expression
and SNP datasets.

recently identified to contain SNPs significantly associated with a
linear combination of multiple osteoporosis-related phenotypes
including BMD (Karasik et al., 2012). GLO1, as a binding pro-
tein of methyl-gerfelin (M-GFN), was found to be able to result
in the inhibition of osteoclastogenesis (Kawatani et al., 2008).
Besides these three common genes, our method was also able
to identify other osteoporosis-susceptible genes but was unde-
tectable by meta-analysis. For instance, SOD2 has been identified
as the gene susceptible to osteoporosis in our previous inte-
grative analysis of mRNA, SNP, and protein data (Deng et al.,
2011). It may play a significant role in BMD variation and
pathogenesis of osteoporosis. HDAC2, as a member of histone
deacetylases (HDACs), was found to play a critical role in bone
development and biology (McGee-Lawrence and Westendorf,
2011). These genes were missed out with meta-analysis but
can be detected with our proposed method, showing improved
sensitivity.

CONCLUSION AND DISCUSSION
In this work, we proposed a multi-omics integration method,
i.e., sparse group multitask regression model, which can inte-
grate multiple genomic datasets from different levels, platforms,
and subjects for gene based analysis. An efficient computational
algorithm based on ADM was provided for its solution. The
performance of the model was compared with meta-analysis
in simulation datasets. The simulation results showed that our
sparse group multitask regression model can increase the power
of detecting risk genes by integrating multiple diverse datasets
effectively. In particular, multitask-sglasso model outperformed
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Table 3 | The top 7 identified genes and their p-values by sparse multitask-sglasso method in bone mineral density studies.
�������Gene ID

Methods
SNP EXP-19 EXP-26 EXP-80 EXP_all Meta-EXP SNP + EXP

SOD2 0.0021 0.9136 0.0017 0.9566 0.7152 0.0752 0.0016

TREML2* 0.0014 0.1295 0.5243 0.1648 0.1665 0.0312 0.0018

HTR1E* 0.0030 0.4062 0.3481 0.0963 0.0750 0.0203 0.0023

HDAC2 0.0067 0.0089 0.1118 0.4382 0.4360 0.0553 0.0032

HCRTR2 0.0045 0.1074 0.5972 0.3293 0.3282 0.6297 0.0044

MUT 0.0073 0.2173 0.7665 0.9763 0.9910 0.571 0.0055

GLO1* 0.0084 0.0651 0.6182 0.1012 0.1298 0.0183 0.0073

* Genes identified by both meta-Exp and sparse multitask-sglasso on all datasets.

meta-analysis method in simulations on genes with both fixed
and dynamic effects. Our real data analysis on osteoporosis stud-
ies identified significant genes but missed by meta-analysis, and
these genes were reported to be highly susceptible to BMD
and osteoporosis. Overall, the advantages of our sparse group
multitask regression method for biomarker identification from
multiple omics datasets include: (1) it can combine diverse and
complementary omic datasets without; (2) group the features
by gene or gene set to account for the group structures in data
(e.g., LD structure, co-expression, and genetic regulatory net-
work); (3) remove irrelevant genes and/or features within a gene
simultaneously.

Our proposed sparse multitask regression model provided a
general framework for integrative analysis of diverse datasets.
To fuse multiple diverse datasets, we considered the regression
on each single dataset as a single task and then combined all
single tasks into the model. Two sets of parameters were used
in the model. ωis were used to weight object functions (i.e.,
data fitting term at each level) different levels, while δj were
used for different platforms. Similar to other works, we set ω

to be equal by assuming each level of genetic data contains
the same information (Ma et al., 2011). We assign δj to the
data from different platforms by their sample sizes (Wilson and
Lipsey, 2001). Other methods can also be applied to estimat-
ing weights such as Kaplan–Meier estimate (Liu et al., 2013)
and inverse variance (Wilson and Lipsey, 2001). In order to
account for the group effects and reduce the large number of
features, we used two group sparse penalties in our multitask
regression models, i.e., sparse group lasso and sparse group ridge,
respectively. These penalties can perform feature selection at both
group level and individual for multiple dataset levels, showing
better performance than those of using lasso and group lasso
penalties for single dataset analysis. Similar regression models
were also recently proposed for using two-level sparse group
penalties such as group bridge and group MCP (Huang et al.,
2012). Ma et al. has recently applied these penalties in regression
model for cancer studies to identify those risk oncology genes
by integrating multiple expression level datasets from different
cancer studies (Liu et al., 2013). Chen et al. has also compared
and found that sparse group ridge outperformed group bridge
penalty in single dataset regression model (Chen et al., 2010c).
However, no study has been performed to compare them for
multiple dataset integration and further work is needed in this
direction.

WEB SOURCES
The gene expression datasets from three cohorts can be
accessed in GEO database (http://www.ncbi.nlm.nih.gov/geo/)
with the following accession numbers: 19 Caucasians BMD study
(GSE2208), 26 Chinese study (GSE7158), and 80 Caucasians
study (GSE56815).
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