Hearing loss in old age, which often goes untreated, has far-reaching consequences. Furthermore, reduction of cognitive abilities and dementia can also occur, which also affects quality of life. The aim of this study was to investigate the hearing performance of seniors without hearing complaints with respect to speech perception in noise and the ability to localize sounds. Results were tested for correlations with age and cognitive performance. The study included 40 subjects aged between 60 and 90 years (mean age: 69.3 years) with not self-reported hearing problems. The subjects were screened for dementia. Audiological tests included pure-tone audiometry and speech perception in two types of background noise (continuous and amplitude-modulated noise) which was either co-located or spatially separated (multi-source noise field, MSNF) from the target speech. Sound localization ability was assessed and hearing performance was self-evaluated by a questionnaire. Speech in noise and sound localization was compared with young normal hearing adults. Although considering themselves as hearing normal, 17 subjects had at least a mild hearing loss. There was a significant negative correlation between hearing loss and dementia screening (DemTect) score. Speech perception in noise decreased significantly with age. There were significant negative correlations between speech perception in noise and DemTect score for both spatial configurations. Mean SRTs obtained in the co-located noise condition with amplitude-modulated noise were on average 3.1 dB better than with continuous noise. This gap-listening effect was severely diminished compared to a younger normal hearing subject group. In continuous noise, spatial separation of speech and noise led to better SRTs compared to the co-located masker condition. SRTs in MSNF deteriorated in modulated noise compared to continuous noise by 2.6 dB. Highest impact of age was found for speech perception scores using noise stimuli with temporal modulation in binaural test conditions. Mean localization error was in the range of young adults. Mean amount of front/back confusions was 11.5% higher than for young adults. Speech perception tests in the presence of temporally modulated noise can serve as a screening method for early detection of hearing disorders in older adults. This allows for early prescription of hearing aids.
Difficulties understanding speech form one of the most prevalent complaints among older adults. Successful speech perception depends on top-down linguistic and cognitive processes that interact with the bottom-up sensory processing of the incoming acoustic information. The relative roles of these processes in age-related difficulties in speech perception, especially when listening conditions are not ideal, are still unclear. In the current study, we asked whether older adults with a larger working memory capacity process speech more efficiently than peers with lower capacity when speech is presented in noise, with another task performed in tandem. Using the Eye-tracking of Word Identification in Noise Under Memory Increased Load (E-WINDMIL) an adapted version of the “visual world” paradigm, 36 older listeners were asked to follow spoken instructions presented in background noise, while retaining digits for later recall under low (single-digit) or high (four-digits) memory load. In critical trials, instructions (e.g., “point at the candle”) directed listeners’ gaze to pictures of objects whose names shared onset or offset sounds with the name of a competitor that was displayed on the screen at the same time (e.g., candy or sandal). We compared listeners with different memory capacities on the time course for spoken word recognition under the two memory loads by testing eye-fixations on a named object, relative to fixations on an object whose name shared phonology with the named object. Results indicated two trends. (1) For older adults with lower working memory capacity, increased memory load did not affect online speech processing, however, it impaired offline word recognition accuracy. (2) The reverse pattern was observed for older adults with higher working memory capacity: increased task difficulty significantly decreases online speech processing efficiency but had no effect on offline word recognition accuracy. Results suggest that in older adults, adaptation to adverse listening conditions is at least partially supported by cognitive reserve. Therefore, additional cognitive capacity may lead to greater resilience of older listeners to adverse listening conditions. The differential effects documented by eye movements and accuracy highlight the importance of using both online and offline measures of speech processing to explore age-related changes in speech perception.
Human listeners are assumed to apply different strategies to improve speech recognition in background noise. Young listeners with normal hearing (NH), e.g., have been shown to follow the voice of a particular speaker based on the fundamental (F0) and formant frequencies, which are both influenced by the gender, age, and size of the speaker. However, the auditory and cognitive processes that underlie the extraction and discrimination of these voice cues across speakers may be subject to age-related decline. The present study aimed to examine the utilization of F0 and formant cues for voice discrimination (VD) in older adults with hearing expected for their age. Difference limens (DLs) for VD were estimated in 15 healthy older adults (65–78 years old) and 35 young adults (18–35 years old) using only F0 cues, only formant frequency cues, and a combination of F0 + formant frequencies. A three-alternative forced-choice paradigm with an adaptive-tracking threshold-seeking procedure was used. Wechsler backward digit span test was used as a measure of auditory working memory. Trail Making Test (TMT) was used to provide cognitive information reflecting a combined effect of processing speed, mental flexibility, and executive control abilities. The results showed that (a) the mean VD thresholds of the older adults were poorer than those of the young adults for all voice cues, although larger variability was observed among the older listeners; (b) both age groups found the formant cues more beneficial for VD, compared to the F0 cues, and the combined (F0 + formant) cues resulted in better thresholds, compared to each cue separately; (c) significant associations were found for the older adults in the combined F0 + formant condition between VD and TMT scores, and between VD and hearing sensitivity, supporting the notion that a decline with age in both top-down and bottom-up mechanisms may hamper the ability of older adults to discriminate between voices. The present findings suggest that older listeners may have difficulty following the voice of a specific speaker and thus implementing doing so as a strategy for listening amid noise. This may contribute to understanding their reported difficulty listening in adverse conditions.
Older adults with age-related hearing loss exhibit substantial individual differences in speech perception in adverse listening conditions. We propose that the ability to rapidly adapt to changes in the auditory environment (i.e., perceptual learning) is among the processes contributing to these individual differences, in addition to the cognitive and sensory processes that were explored in the past. Seventy older adults with age-related hearing loss participated in this study. We assessed the relative contribution of hearing acuity, cognitive factors (working memory, vocabulary, and selective attention), rapid perceptual learning of time-compressed speech, and hearing aid use to the perception of speech presented at a natural fast rate (fast speech), speech embedded in babble noise (speech in noise), and competing speech (dichotic listening). Speech perception was modeled as a function of the other variables. For fast speech, age [odds ratio (OR) = 0.79], hearing acuity (OR = 0.62), pre-learning (baseline) perception of time-compressed speech (OR = 1.47), and rapid perceptual learning (OR = 1.36) were all significant predictors. For speech in noise, only hearing and pre-learning perception of time-compressed speech were significant predictors (OR = 0.51 and OR = 1.53, respectively). Consistent with previous findings, the severity of hearing loss and auditory processing (as captured by pre-learning perception of time-compressed speech) was strong contributors to individual differences in fast speech and speech in noise perception. Furthermore, older adults with good rapid perceptual learning can use this capacity to partially offset the effects of age and hearing loss on the perception of speech presented at fast conversational rates. Our results highlight the potential contribution of dynamic processes to speech perception.
It has been well documented, and fairly well known, that concomitant with an increase in chronological age is a corresponding increase in sensory impairment. As most people realize, our hearing suffers as we get older; hence, the increased need for hearing aids. The first portion of the present paper is how the change in age apparently affects auditory judgments of sound source position. A summary of the literature evaluating the changes in the perception of sound source location and the perception of sound source motion as a function of chronological age is presented. The review is limited to empirical studies with behavioral findings involving humans. It is the view of the author that we have an immensely limited understanding of how chronological age affects perception of space when based on sound. In the latter part of the paper, discussion is given to how auditory spatial perception is traditionally conducted in the laboratory. Theoretically, beneficial reasons exist for conducting research in the manner it has been. Nonetheless, from an ecological perspective, the vast majority of previous research can be considered unnatural and greatly lacking in ecological validity. Suggestions for an alternative and more ecologically valid approach to the investigation of auditory spatial perception are proposed. It is believed an ecological approach to auditory spatial perception will enhance our understanding of the extent to which individuals perceive sound source location and how those perceptual judgments change with an increase in chronological age.
The Test of Basic Auditory Capabilities (TBAC) is a battery of auditory-discrimination tasks and speech-identification tasks that has been normed on several hundred young normal-hearing adults. Previous research with the TBAC suggested that cognitive function may impact the performance of older adults. Here, we examined differences in performance on several TBAC tasks between a group of 34 young adults with a mean age of 22.5 years (SD = 3.1 years) and a group of 115 older adults with a mean age of 69.2 years (SD = 6.2 years) recruited from the local community. Performance of the young adults was consistent with prior norms for this age group. Not surprisingly, the two groups differed significantly in hearing loss and working memory with the older adults having more hearing loss and poorer working memory than the young adults. The two age groups also differed significantly in performance on six of the nine measures extracted from the TBAC (eight test scores and one average test score) with the older adults consistently performing worse than the young adults. However, when these age-group comparisons were repeated with working memory and hearing loss as covariates, the groups differed in performance on only one of the nine auditory measures from the TBAC. For eight of the nine TBAC measures, working memory was a significant covariate and hearing loss never emerged as a significant factor. Thus, the age-group deficits observed initially on the TBAC most often appeared to be mediated by age-related differences in working memory rather than deficits in auditory processing. The results of these analyses of age-group differences were supported further by linear-regression analyses with each of the 9 TBAC scores serving as the dependent measure and age, hearing loss, and working memory as the predictors. Regression analyses were conducted for the full set of 149 adults and for just the 115 older adults. Working memory again emerged as the predominant factor impacting TBAC performance. It is concluded that working memory should be considered when comparing the performance of young and older adults on auditory tasks, including the TBAC.
Previous studies indicate that there are at least two levels of temporal processing: the sub- and supra-second domains. The relationship between these domains remains unclear. The aim of this study was to test whether performance on the sub-second level is related to that on the supra-second one, or whether these two domains operate independently. Participants were 118 healthy adults (mean age = 23 years). The sub-second level was studied with a temporal-order judgment task and indexed by the Temporal Order Threshold (TOT), on which lower values corresponded to better performance. On the basis of TOT results, the initial sample was classified into two groups characterized by either higher temporal efficiency (HTE) or lower temporal efficiency (LTE). Next, the efficiency of performance on the supra-second level was studied in these two groups using the subjective accentuation task, in which participants listened to monotonous sequences of beats and were asked to mentally accentuate every n-th beat to create individual rhythmic patterns. The extent of temporal integration was assessed on the basis of the number of beats being united and better performance corresponded to longer units. The novel results are differences between groups in this temporal integration. The HTE group integrated beats in significantly longer units than did the LTE group. Moreover, for tasks with higher mental load, the HTE group relied more on a constant time strategy, whereas the LTE group relied more on mental counting, probably because of less efficient temporal integration. These findings provide insight into associations between sub- and supra-second levels of processing and point to a common time keeping system, which is active independently of temporal domain.