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Editorial on the Research Topic

Rapid, reproducible, and robust environmental modeling for decision
support: worked examples and open-source software tools

To provide support for resource management decision making, computational modeling
workflows in environmental simulations need to be efficient, reproducible, and robust with
regard to informing assessments of the risk of unwanted outcomes. Each of these three
attributes is difficult to achieve in practice; aspirations to simultaneously achieve all of them
are truly lofty. Too often,modeling analyses are inefficient, theworkflow is largely opaque and
unknown, and the important simulated outcomes lack the context of uncertainty and/or risk.
This Research Topic called for papers that demonstrate rapid, reproducible and/or robust
modeling through worked examples and software tools (a preference for open source). The
worked examples should demonstrate how the researcher aspired to be rapid, reproducible,
and robust; we were interested in the process and approach as much as the results. We aim to
stimulate discussion based on lessons learned and results presented, for other researchers and
practitioners to build on. We particularly welcomed descriptions of trials and tribulations:
What was difficult? What did not work? How were these issues overcome?1

Generally, we identified three categories of contributions:

• New open-source software tools designed to facilitate aspects of environmental,
hydrological and geophysical modeling;
• New approaches to enable better decision support with modeling;
• Demonstrations/case studies of rapid, reproducible, and robust modeling.

1 Any use of trade, firm, or product names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.
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These contributions came from a wide range of author
backgrounds and institutions. This diversity shows that there is
broad interest from academia, industry, and government agencies in
rapid, reproducible, and robustmodelingworkflows.We continue to
help promote such methods through convening dedicated sessions
at international conferences.

Open-source software to support
modeling

Leaf and Fienen present Modflow-setup, a workflow toolset to
automate the construction of numerical groundwater models for
the MODFLOW platform from original geospatial and tabular
datasets. The open-source, online code base is extensible through
collaborative version control.

Moges et al. call for reproducible model benchmarking
and diagnostics, which will find wide acceptance in modeling
communities only through standardized methods and ready-to-
use toolkits. Using the Jupyter platform, they have introduced
HydroBench: an open-source toolset for objectively benchmarking
hydrological models that can further be developed by the
hydrological community.

Larsen et al. present pyGSFLOW, a Python toolset to
transparently and reproducibly prepare input for and postprocess
output of the integrated surface-water/groundwater model
GSFLOW.

James et al. provide a new standard for geophysical data
formats, termed GS Convention, to improve the interoperability,
transferability, and long-term archival of such data. Their open-
source toolset GSPy provides methods and workflows to build the
respective standardized files.

Morvillo et al. present VisU-HydRA, a Python toolbox to
compute exceedance probabilities and resilience measures as a basis
for assessing the risk of groundwater contamination. It comes with
a step-by-step tutorial to ensure reproducibility of the workflow.

Schorpp et al. introduceArchPy, a python toolset for automating
the construction of Quaternary geological models. This is an
important step toward including these uncertainties in subsurface
modeling workflows in a transparent and reproducible way, because
the traditional approach required multiple manual steps using
different software, which rendered updates with new data or
automation almost intractable.

Pryet et al. present a scripted workflow that facilitates the
use of reverse particle tracking in applied groundwater modeling
as an efficient surrogate to more computationally demanding
advection-diffusion transport modeling for well susceptibility
evaluation.

Mudunuru et al. present an approach to improve the calibration
of large-scale integrated hydrological models such as SWAT
via deep-learning techniques. Compared to more traditional
approaches, the proposed routine is more efficient and achieves
higher skill scores in calibration.

New approaches to support
model-based decision making

Hugman and Doherty discuss the challenge of choosing the
right amount of model complexity for decision-making and propose
a methodology that allows expert knowledge of system properties
to inform the parameters of a structurally simple model. They
demonstrate navigating the conflicting and competing objectives of
simple and complex model designs on a case study of predictive
modeling to support the management of a stressed coastal aquifer.

Elshall et al. present a method for prescreening-based
subset selection with decision relevant metrics to exclude non-
representative model runs from the prediction ensemble. Following
the FAIR (Findability, Accessibility, Interoperability, and Reuse)
Guiding Principles for scientific data management and stewardship,
they developed and shared interactive Colab notebooks for data
analysis.

Moore et al. present a sequential conditioning approach to
account for geostatistical model uncertainty, which is shown to
have a decisive impact on representing the connectivity of high
permeability pathways in contaminant transport assessment.

Manewell et al. investigate spatial averaging functions to infer
aquifer properties from aquifer test drawdowns under heterogeneity
and feature boundaries. This helps to characterize and robustly
estimate aquifer property heterogeneity in hydrogeological site
investigation.

Case studies of rapid, reproducible,
and robust workflows

Kitlasten et al. present a scripted, reproducible workflow to
analyze the impact of ensemble size and vertical resolution on
groundwater age predictions for New Zealand.

Standen et al. demonstrate a scripted and open-source
application of decision-support modeling for managed aquifer
recharge scenarios to mitigate aquifer contamination from saltwater
intrusion in the Algarve region of Portugal.

Chambers et al. present a decision-support modeling analysis
of the potential for increased groundwater flooding as a result
of projected sea-level rise in the low-lying South Dunedin region
of New Zealand. They incorporate risk into the analysis proving
valuable new information to decision makers.

Brakenhoff et al. present a fully repeatable demonstration
of large-scale transfer-function-noise modeling to differentiate
contributions to observed groundwater level variations in a region
of the Netherlands. Differentiating pumping and climate sources on
water level impacts has important implications in how to manage
water resources.

De Sousa et al. present a surface-water/groundwater modeling
analysis of a semi-arid closed-basin in southwest Australia, and
demonstrate efficient, at-scale application of several advanced
analyses.
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Höglund et al. report a fully-scripted decision-support
modeling analysis within the context of contaminated groundwater
discharging to surface-water. Innovative techniques are used
to assimilate thermal measurements to better resolve patterns
of surface-water/groundwater exchange, leading to improved
modeling predictions, and ultimately decision support.

The editors are grateful to all of the authors for providing
valuable contributions in the space of rapid, reproducible, and robust
modeling. We hope that you enjoy reading these contributions. We
also hope that in reading these contributions some of you may
feel inspired to engage with the open-source community of your
modeling field.
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We present the ensemble method of prescreening-based subset selection to improve
ensemble predictions of Earth system models (ESMs). In the prescreening step, the
independent ensemble members are categorized based on their ability to reproduce
physically-interpretable features of interest that are regional and problem-specific. The
ensemble size is then updated by selecting the subsets that improve the performance of
the ensemble prediction using decision relevant metrics. We apply the method to improve the
prediction of red tide along the West Florida Shelf in the Gulf of Mexico, which affects coastal
water quality and has substantial environmental and socioeconomic impacts on the State of
Florida. Red tide is a common name for harmful algal blooms that occur worldwide, which
result from large concentrations of aquatic microorganisms, such as dinoflagellate Karenia
brevis, a toxic single celled protist. We present ensemble method for improving red tide
prediction using the high resolution ESMs of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) and reanalysis data. The study results highlight the importance of
prescreening-based subset selection with decision relevant metrics in identifying non-
representative models, understanding their impact on ensemble prediction, and improving
the ensemble prediction. These findings are pertinent to other regional environmental
management applications and climate services. Additionally, our analysis follows the FAIR
GuidingPrinciples for scientificdatamanagement and stewardship such that data and analysis
tools are findable, accessible, interoperable, and reusable. As such, the interactive Colab
notebooks developed for data analysis are annotated in the paper. This allows for efficient and
transparent testing of the results’ sensitivity to different modeling assumptions. Moreover, this
research serves as a starting point to build upon for red tide management, using the publicly
available CMIP, Coordinated Regional Downscaling Experiment (CORDEX), and
reanalysis data.

Keywords: regional environmental management, harmful algae blooms of red tide, climatemodels and Earth system
models, HighResMIP of CMIP6, multi-model ensemble methods, sub-ensemble selection and subset selection,
decision-relevant metrics
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INTRODUCTION

To improve raw outputs directly given by Earth system models
(ESMs) for providing useful services to societal decision
making, a combination of multiple methods is often used
such as bias-correction to account for systematic errors
(Szabó-Takács et al., 2019; Wang et al., 2019), ensemble
recalibration to improve ensemble characteristics (Manzanas
et al., 2019), downscaling to improve the spatial and temporal
resolution (Gutowski Jr. et al., 2016; Gutowski et al., 2020), and
ensemble methods to select and combine different models.
Ensemble methods are an active research area as multi-model
ensemble can be more robust then a single-model ensemble
(DelSole et al., 2014; Al Samouly et al., 2018; Wallach et al.,
2018). Single model ensemble is a single Earth system model
(ESM) with multiple realizations given perturbed parameters,
initialization, physics, and forcings. Multi-model ensemble
refers to an ensemble of multiple ESMs with single or
multiple realizations of each ESM. Ensemble methods aim
at selecting and combining multiple ESMs to form a robust and
diverse ensemble of models. Ensemble methods include model
weighting by assigning lower weights to less favorable models
(Knutti, 2010; Weigel et al., 2010), bagging by using subsets of
data or variables (Ahmed et al., 2019), subset-selection in
which the best performing independent models are selected
(Chandler, 2013; Herger et al., 2018; Ahmed et al., 2019; Hemri
et al., 2020), and the combination of these methods (e.g., using
subset selection prior to model weighting).

This study focuses on subset selection, which has not received
adequate attention in climate and Earth system research (DelSole
et al., 2013; Herger et al., 2018). In subset selection, a subset of
models, which have better performance in a set of models, are
selected as ensemble members. One model could perform better
than other models due to more accurate parameterizations,
higher spatial resolution, more tight calibration to relevant
data sets, inclusion of more physical components, more
accurate initialization, and imposition of more complete or
more accurate external forcings (Haughton et al., 2015). In
addition, one model could perform better than another model
for a specific application as we show in this study. Accordingly, a
question that often arises in multi-model combination is whether
the original set of models should be screened such that “poor”
models are excluded before model combination (DelSole et al.,
2013). One argument is that combining all “robust” and “poor”
models to form an ensemble (e.g., by assigning lower weights for
poorly performing models than others) is an intuitive solution
that has advantage over subset selection that uses the best
performing model (Haughton et al., 2015). One justification is
that, while the “poor” model can be useless by itself, it is useful
when combined with other models due to error cancellation
(Knutti et al., 2010; DelSole et al., 2013; Herger et al., 2018).
Another justification is that no small set of models can represent
the full range of possibilities for all variables, regions and seasons
(Parding et al., 2020). On the other hand, it has been argued that
the objective of subset selection is to create an ensemble of well-
chosen, robust and diverse models, and thus if the subset contains
a large enough number of the highest ranked and independent

models, then it will have the characteristics that reflect the full
ensemble (Evans et al., 2013).

Subset selection has several advantages and practical needs.
First, a thorough evaluation is generally required to remove
doubtful and potentially erroneous simulations (Sorland et al.,
2020), and to avoid the least realistic models for a given region
(McSweeney et al., 2015). Second, predictive performance can
generally improve from model diversity rather than from larger
ensemble (DelSole et al., 2014). A reason for this is that as more
models are included in an ensemble, the amount of new
information diminishes in proportion, which may lead to
overly confident climate predictions (Pennell and Reichler,
2011). Accordingly, several studies (Herger et al., 2018;
Ahmed et al., 2019; Hemri et al., 2020) developed evaluation
frameworks in which subset selection is performed prior to
model weighting. A third advantage of subset selection is to
identify models based on physical relationships highlighting the
importance of process-based model evaluation. For example,
Knutti et al. (2017) defined the metric of September Arctic sea
ice extent, showing that models that have more sea ice in 2100
than observed today and models that have almost no sea ice
today are not suitable for the projection of future sea ice. There
is no obvious reason to include these “poor model” that cannot
simulate the main process of interest. Likewise, for our case
study, we show that models that are unable to simulate the
looping of a regional warm ocean current in the Gulf of Mexico
(i.e., Loop Current) are unsuitable for our environmental
management objective (i.e., prediction of the harmful algal
blooms of red tide) as described later. Yun et al. (2017)
indicate that incorporating such process-based information is
important for highlighting key underlying mechanistic
processes of the individual models of the ensemble. Fourth,
subset selection allows for flexibility in terms of metrics and
thresholds to tailor the multi-model ensemble for the needs of
specific applications (Bartók et al., 2019). As noted by
Jagannathan et al. (2020), model selection studies are often
based on evaluations of broad physical climate metrics (e.g.,
temperature averages or extremes) at regional scales, without
additional examination of local-scale decision-relevant climatic
metrics, which can provide better insights on model credibility
and choice. For example, Bartók et al. (2019) and Bartók et al.
(2019) employ subset selection to tailor the ensemble for energy
sector needs, and local agricultural need in California,
respectively. Finally, another practical need for subset
selection is that, due to high computational cost, it is
common that only a small subset of models can be
considered for downscaling (Ahmed et al., 2019; Parding
et al., 2020; Sorland et al., 2020).

Although there is a need for an efficient and versatile method
that finds a subset which maintains certain key properties of the
ensemble, few work has been done in climate and Earth system
research (Herger et al., 2018). Without a well-defined guideline
on optimum subset selection (Herger et al., 2018; Ahmed et al.,
2019; Bartók et al., 2019; Parding et al., 2020), it is unclear how to
best utilize the information of multiple imperfect models with the
aim of optimizing the ensemble performance and reducing the
presence of duplicated information (Herger et al., 2018). It may
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be difficult to predict exactly how many models are necessary to
meet certain criteria, and subsets with good properties in one
region are not guaranteed to maintain the same properties in
other regions (Ross and Najjar, 2019). Typically, modelers make
their own somewhat subjective subset choices, and use equal
weighting for the models in the subset (Herger et al., 2018). A
commonly used approach is model ranking, typically based on
model performance to select the top models, which is generally
the top three to five models (Jiang et al., 2015; Xuan et al., 2017;
Hussain et al., 2018; Ahmed et al., 2019). For example, to derive
an overall rank for each model, Ahmed et al. (2019) use
comprehensive rating metric to combine information from
multiple goodness-of-fit measures for multiple climate
variables based on the ability to mimic the spatial or temporal
characteristics of observations. Then to form the multi-model
ensemble, Ahmed et al. (2019) select the four top-ranked models
to evaluate the two cases of equal weighting and a bagging
technique of random forest regression. A limitation of this
approach is the arbitrary choice of the number of the top
ranked model to include. For example, Ross and Najjar (2019)
evaluate six subset-selection methods with respect to
performance, and investigate the sensitivity of the results to
the number of model chosen. They show that selection
methods and models used should be carefully chosen. To aid
this common approach of subset selection, Parding et al. (2020)
present an interactive tool to compare subsets of CMIP5 and
CMIP6 models based on their representation of the present
climate, with user-determined weights indicating the
importance of different regions, seasons, climate variables, and
skill scores. This allows the users to understand the implications
of their different subjective weights and ensemble member
choices.

A less subjective approach for subset selection is to use a
method that is designed to address specific key properties of the
ensemble. In other words, a subset-selection method finds a
subset which maintains certain key properties of the ensemble.
Key properties include any combination of several criteria that
are performance, ensemble range, ensemble spread, capture of
extreme events, model independence, and decision relevant
metrics. First, the performance criterion reflects the model’s
skills in representing past and present climate and Earth
system states. Examples include subset-selection methods to
favor skilled models (Bartók et al., 2019), and to eliminate
models with poorest representation of the present system
states (Parding et al., 2020). A second criterion is the range of
projected climate and Earth system changes. For example,
McSweeney et al. (2015) developed a subset-selection method
that captures the maximum possible range of changes in surface
temperature and precipitation for three continental-scale regions.
Third, the model spread criterion ensures that the ensemble
contains representative models that conserve as much as
possible the original spread in climate sensitivity and climate
future scenarios with respect to variables of interest (Mendlik and
Gobiet, 2016; Bartók et al., 2019). Fourth, another subset selection
criterion, which is related to model spread, is the captures
extreme events (Cannon, 2015; Mendlik and Gobiet, 2016;
Farjad et al., 2019). Although some sectors are affected by

mean climate changes, the most acute impacts are related to
extreme events (Eyring et al., 2019). Fifth, model independence is
another important criterion, which can be accounted for using
diverse approaches. Sanderson et al. (2015) propose a stepwise
model elimination procedure that maximizes intermodel
distances to find a diverse and robust subset of models.
Similarly, Evans et al. (2013) and Herger et al. (2018) use an
indicator method with binary weights to find a small subset of
models that reproduces certain performance and independence
characteristics of the full ensemble. Binary weights are either zero
or one for models to be either discarded or retained, respectively.
Sixth, an additional criterion that is particularly important from
many climate services is to consider regional application and
decision-relevant metrics (Bartók et al., 2019; Jagannathan et al.,
2020). Since a primary goal of climate research is to identify how
climate affects society and to inform decision making, a
community generally needs rigorous regional-scale evaluation
for different impacted sectors that include agriculture, forestry,
water resources, infrastructure, energy production, land and
marine ecosystems, and human health (Eyring et al., 2019). By
considering this criterion, subset-selection is not based on general
model evaluation irrespective of the application (e.g., Sanderson
et al., 2017), but is rather based on regional model evaluation with
sector-specific information (Elliott et al., 2015). This includes, for
example, considering a combination of climate hazards at a
specific region (Zscheischler et al., 2018), and the use of
application-specific metrics as in this study.

This study complements an important aspect of subset
selection by explicitly considering application specific metrics
for subset selection based on a prescreening step. To find more
skillful and realistic models for a specific process or application,
we develop an indicator-based subset-selection method with a
prescreening step. In a prescreening step, models are scored based
on physical relationships and their ability to reproduce key
features of interest, highlighting the importance of process-
based and application specific evaluation of climate models.
Our method extends the indicator method based on binary
weights of Herger et al. (2018), by scoring each model based
on evolving binary weights, which are either zero or one for
models to be either discarded or selected, respectively, as
explained in the method section. Thus, irrespective of the
general predictive performance of the model for the variables
of interest (e.g., temperature, sea surface height, wind speed, and
precipitation), the model performance is evaluated based on
suitability to specific applications for a given problem
definition with key features of interest.

In this case study of red tide, models that cannot reproduce key
features of interest are the models that cannot simulate the
process of Loop Current penetration into the Gulf of Mexico,
for example, along with other key features as explained in the
method section. Red tide is a common name of harmful algae
blooms that occur in coastal regions worldwide due to high
concentrations of marine microorganisms such as
dinoflagellates, diatoms, and protozoans. Along the West
Florida Shelf in the Gulf of Mexico, red tide occurs by the
increase of the concentration of Karenia brevis, a toxic
mixotrophic dinoflagellate. This study focuses on Loop
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Current (LC), which is one of the main drivers of red tide in the
West Florida Shelf (Weisberg et al., 2014; Maze et al., 2015;
Perkins, 2019). LC is a warm ocean current that penetrates and
loops through the Gulf of Mexico until exiting the gulf to join the
Gulf Stream. Several relations have been established between red
tide and LC (Weisberg et al., 2014; Maze et al., 2015; Liu et al.,
2016; Weisberg et al., 2019). The relation discussed in Maze et al.
(2015) shows that the LC position, which can be inferred from sea
surface heigh, can be a definitive predictor of a large red tide
bloom possibility. Using CMIP6 and reanalysis data of sea surface
heigh as described in the method section, we show that this
prescreening-based subset-selection step can help reduce the
ensemble size without degrading the predictive performance.
We additionally illustrate the caveats of using non-
representative models given the notation of error cancellation,
showing that that a parsimonious ensemble can be more robust.

In the remainder of the manuscript, we present inMethods the
red tide case study including the CMIP6 data, reanalysis data, and
Karenia brevis data. Methods also presents the prescreening-
based subset selection method. Results presents the results,
which is following in Discussion by providing a discussion on
subset selection, challenges of seasonal prediction, and the study
limitations and outlook. Finally, we summarize our main
findings, and draw conclusions in Conclusion.

METHODS

FAIR Guiding Principles
To better support transparency and reproducibility of scientific
research, data and codes of scientific research should be part of
the scholarly work, and must be considered and treated as a first-
class research product (Horsburgh et al., 2020). We follow the
FAIR Guiding Principles for scientific data management and
stewardship (Wilkinson et al., 2016). Accordingly, the data and
codes that are used and developed for this study are Findable,
Accessible, Interoperable, and Reusable (FAIR). With respect to
the “findable” criterion, our data and codes for data analysis are
presented in Jupyter notebooks (Elshall, 2021) to provide rich
metadata about the used CMIP data, reanalysis data and Karenia
brevis data (Data). With respect to the “Accessible” criterion, the
notebooks are opensource and are available on GitHub (Elshall,
2021). Additionally, the notebooks are supported by Colab cloud
computing to make the codes immediately accessible and
reproducible by anyone with no software installation and
download to the local machine. With respect to the
“interoperable” criterion, which refers to the exchange and use
of information, the notebooks provide rich metadata with
additional analysis details not found in the manuscript. This
allows users to make use of the presented information by
rerunning the codes to reproduce the results, and to
understand the sensitivity of the results to different
assumptions and configurations as described in the
manuscript. Also, the codes can be used to visualize additional
data and results that are not shown in the manuscript as described
below. With respect to the “reusable” criterion, all the used data
are publicly available, and the codes have publicly data usage

license. This allows the users to build additional components to
the codes as discussed in the manuscript.

Data
The Karenia brevis cell count used in this study are from the
harmful algal bloom database of the Fish and Wildlife Research
Institute at the Florida Fish and the Wildlife Conservation
Commission (FWRI, 2020). In the study area (Figure 1) and
given the study period from 1993-01 to 2014-12, we identify
15 time intervals of large blooms, and 29 time intervals with no
bloom; each time interval is six-month long. FollowingMaze et al.
(2015), to identify a bloom/no-bloom event (zt), a large bloom is
defined as an event with the cell count exceeding 1×105 cells/L for
ten or more successive days without a gap of more than five
consecutive days, or 20% of the bloom length. Similar to Maze
et al. (2015) we define no bloom as the absence of large bloom.
The notebook “Karenia_brevis_data_processing” (Elshall, 2021)
provides the data processing details.

We use global reanalysis data, which combine observations
with shortrange weather forecast using weather forecasting
models to fill the gaps in the observational records. We use
the Copernicus Marine Environment Monitoring Service
(CMEMS) monthly gridded observation reanalysis product. Th
product identifier is Global_Reanalysis_PHY_001_030
(Drévillon et al., 2018; Fernandez and Lellouche, 2018), and
can be download from Mercator Ocean International as part
of the Copernicus Programme (https://resources.marine.
copernicus.eu/products). The used CMEMS reanalysis product
is a global ocean eddy-resolving reanalysis with approximatively
8 km horizontal resolution covering the altimetry from 1993
onward. Similar to CMIP6 data, we only focus on sea surface
height above geoid, which is the variable name zos according to
the Climate and Forecast Metadata Conventions (CF
Conventions).

We use 41 CMIP6 model runs from 14 different models
developed by eight institutes (Roberts et al., 2018, Roberts
et al., 2019; Cherchi et al., 2019; Golaz et al., 2019; Held et al.,
2019; Voldoire et al., 2019; Chang et al., 2020; Haarsma et al.,
2020). CMIP6 data can be download from any node (e.g., https://
esgf-data.dkrz.de/search/cmip6-dkrz) of the Earth System Grid
Federation (ESGF) of World Climate Research Programme
(WCRP). The study period is from 1993-01 to 2014-12. We
select CMIP6 model runs from the historical experiment (Eyring
et al., 2016) and the hist-1950 experiment (Haarsma et al., 2016),
which are sibling experiments that use historical forcing of recent
past until 2015. The historical simulation that starts from 1850
uses all-forcing simulation of the recent past (Eyring et al., 2016).
The hist-1950 experiment that starts from 1950 uses forced global
atmosphere-land simulations with daily 0.25° sea surface
temperature and sea-ice forcings, and aerosol optical
properties (Haarsma et al., 2016). For high-resolution models,
our selection criteria are to select all model runs with gridded
monthly “sea surface height above geoid,” which is the
variable name zos according to the Climate and Forecast
Metadata Conventions (CF Conventions), with nominal
resolution less than or equal to 25 km. For each model we
only consider variable zos. Given the available CMIP6 data
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until September 2020 when this study started, this resulted in 33
model runs. We mainly focus on high-resolution models with
eddy-rich ocean resolution, which is important for simulating
Loop Current. For our analysis purpose, we include two models
with standard resolution. One is EC-Earth3P with nominal ocean
resolution of about 100 km given in the hist-1950 experiment
with three model runs, and E3SM-1-0 with variable ocean
resolution of 30–60 km given in the historical experiment with
five model runs.

Model Independence
To account for model independence, we use institutional
democracy (Leduc et al., 2016), which can be regarded as a
first proxy to obtain an independent subset (Herger et al.,
2018), reflecting a priori definition of dependence. For the
same institution we created further subsets for different grids.
This is the case for the standard- and medium-resolution models
of EC-Earth-Consortium that use ORCA1 and ORCA025 grids,
respectively. It is also the case for the high-resolution and
medium-resolution model of MOHC-NERC that uses
ORCA12 and ORC025 grids, respectively. The ORCA family is
a series of global ocean configurations with tripolar grid of
various resolutions. Thus, the considered 14 models that are
listed aphetically by model name in Table 1, results in 11
independent model subsets.

For each independent model subset (IMS), multiple perturbed
runs of (parameter) realizations (r), initializations (i), physics (p),
and forcings (f) are considered. For example, IMS01 has only one
model run r1i1p1f1, and IMS11 has seven model runs, three with
perturbed initialization r1i (1-3)p1f1, and four with perturbed
parameter realizations r (1-4)i1p1f3 as shown in Table 1. Note
that this naming convention are relative given different modeling
groups. For example, the coupled E3SM-1-0 simulations (Golaz
et al., 2019) use five ensemble members that are r (1-5)i1p1f1
representing five model runs with different initialization. Each
ensemble member (i.e., independent model subset, IMS) in
Table 1 contains one or more models, and each model has

one or more model runs. These model runs of each ensemble
member should not simply be included in a multi-model
ensemble as they represent the same model, hence artificially
increasing the weight of models with more model runs. On the
other hand, using only one model run per ensemble member
discards the additional information provided by these different
runs (Brunner et al., 2019). Accordingly, the zos data of each
ensemble member is averaged in the way described in Loop
Current Position and Karenia brevis Blooms.

With the default model independence criteria of institutional
democracy and ocean grid we identify 11 ensemble members
listed in Table 1. The notebook “SubsetSelection” (Elshall, 2021)
and its interactive Colab version (https://colab.research.google.
com/github/aselshall/feart/blob/main/i/c2.ipynb) provide other
model independence criteria that can be investigated by the
users. For example, a second case is to use institutional
democracy criterion as the first criterion, ocean grid as a
second criterion and experiment as a third criterion, which
results in 13 ensemble members. In this case historical
experiment and hist-1950 experiment are assumed to be
independent. A third case is to assume all models are
independent, which results in 14 ensemble members. A fourth
case is to assume all models are independent, and use experiment
as a second criterion, which results in 16 ensemble members. A
fifth case is to assume that all members are independent, which
results is 41 ensemble members. The code additionally allows for
any user defined criteria. While the presented results in this paper
are all based on the default model independence criteria, the user
can instantly use the above link to investigate the sensitivity of the
prescreening and subset selection results and reproduce all figures
and under different model independence criteria.

Loop Current Position and Karenia brevis
Blooms
The mechanisms of initiation, growth, maintenance, and
termination of red tides have not been fully understood. Yet

FIGURE 1 |Observation reanalysis data of sea surface height above geoid (zos) [m] showing (A) LC-S and (B) LC-N. Two red segments along the 300 m isobath in
(A) are used to determine Loop Current position. The area where red tide blooms are considered by Maze et al. (2015) and this study is shown in the red box of (B).
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Loop Current, which is a warm ocean current that moves into
the Gulf of Mexico, is an important factor that controls the
occurrence of red tide (Weisberg et al., 2014; Maze et al., 2015;
Perkins, 2019). Maze et al. (2015) shows that the difference
between time intervals of large blooms and no blooms is
statistically significant for the Loop Current’s position.
Maze et al. (2015) also show that the Loop current in a
north position penetrating through the Gulf of Mexico is a
necessarily condition for a large Karenia brevis bloom to occur.
As such, when the Loop Current is in the south position shown
in Figure 1A, which is hereinafter denoted as Loop Current-

South (LC-S), then there is no large bloom (Maze et al., 2015).
When the Loop Current is in the north position shown in
Figure 1B, which hereinafter is denoted as Loop Current-
North (LC-N), then there could be either large blooms or no
blooms. This relationship between the loop current positions
and Karenia brevis is based on retention time. With
approximately 0.3 divisions per day, Karenia brevis is a
slow growing dinoflagellate that requires an area with
mixing slower than the growth rate to form a bloom
(Magaña and Villareal, 2006). As such, LC-N increases the
retention rate allowing bloom formation, if other conditions

TABLE 1 | Independent model subsets based on institutional democracy and using ocean grid as a secondary criterion when applicable.

Independent
model
subset
(IMS)

Institution Country Model
(reference)

Experiment
ID

Members Ocean
model

resolution

Ocean
model

Ocean
grid

ESM
nominal
resolution

(km)

IMS01 NCAR United States CESM1-CAM5-
SE-HR (Chang
et al., 2020)

hist-1950 r1i1p1f1 0.1° (11 km) nominal
resolution

POP2 POP2-HR 25

IMS02 CMCC Italy CMCC-CM2-HR4
(Cherchi et al.,
2019)

hist-1950 r1i1p1f1 0.25° from the
Equator degrading at
the poles

NEMO
v3.6

ORCA025 25

CMCC-CM2-
VHR4 (Cherchi
et al., 2019)

hist-1950 r1i1p1f1 0.25° from the
Equator degrading at
the poles

NEMO
v3.6

ORCA025 25

IMS03 CNRM-
CERFACS

France CNRM-CM6-1-
HR (Voldoire et al.
(2019))

hist-1950 r (1-3)
i1p1f2

0.25° (27–28 km)
nominal resolution

NEMO
v3.6

eORCA025 25

CNRM-CM6-1-
HR (Voldoire et al.,
2019)

Historical r1i1p1f2 0.25° (27–28 km)
nominal resolution

NEMO
v3.6

eORCA025 25

IMS04 DOE-E3SM-
Project

United States E3SM-1-0 (Golaz
et al., 2019)

Historical r (1-5)
i1p1f1

60 km in mid-
latitudes and 30 km at
the equator and poles

MPAS-
O

EC60to30 100

IMS05 EC-Earth-
Consortium

Europe EC-Earth3P
(Haarsma et al.,
2020)

hist-1950 r (1-3)
i1p2f1

about 1° (110 km) NEMO
v3.6

ORCA1 100

IMS06 EC-Earth-
Consortium

Europe EC-Earth3P-HR
(Haarsma et al.,
2020)

hist-1950 r (1-3)
i1p2f1

about 0.25°

(27–28 km)
NEMO
v3.6

ORCA025 25

IMS07 ECMWF Europe ECMWF-IFS-HR
(Roberts et al.,
2018)

hist-1950 r (1-6)
i1p1f1

25 km nominal
resolution

NEMO
v3.4

ORCA025 25

IMS08 ECMWF-IFS-MR
(Roberts et al.,
2018)

hist-1950 r (1-3)
i1p1f1

25 km nominal
resolution

NEMO
v3.4

ORCA025 25

IMS09 NOAA-GFDL United States GFDL-CM4 (Held
et al., 2019)

Historical r1i1p1f1 0.25° (27–28 km)
nominal resolution

MOM6 tri-polar
grid

50

GFDL-ESM4 (Held
et al., 2019)

Historical r (2-3)
i1p1f1

0.25° (27–28 km)
nominal resolution

MOM6 tri-polar
grid

50

IMS10 NERC United Kingdom HadGEM3-GC31-
HH (Roberts et al.,
2019)

hist-1950 r1i1p1f1 8 km nominal
resolution

NEMO
v3.6

ORCA12 10

MOHC-
NERC

United Kingdom HadGEM3-GC31-
HM (Roberts et al.,
2019)

hist-1950 r1i (1-3)
p1f1

25 km nominal
resolution

NEMO
v3.6

ORCA12 50

IMS11 MOHC United Kingdom HadGEM3-GC31-
MM (Roberts et al.,
2019)

hist-1950 r1i (1-3)
p1f1

25 km nominal
resolution

NEMO
v3.6

ORCA025 100

HadGEM3-GC31-
MM (Roberts et al.,
2019)

Historical r (1-4)
i1p1f3

25 km nominal
resolution

NEMO
v3.6

ORCA025 25
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are ideal (Maze et al., 2015). While there are several studies
that establish different relationships between Loop Current
and Karenia brevis (Weisberg et al., 2014; Maze et al., 2015; Liu
et al., 2016; Weisberg et al., 2019), the aim of this study is not to
support or refute any of these relationships, but to use the
study of Maze et al. (2015) for the purpose of our subset
selection analysis.

The LC and its eddies can be detected from sea surface height
variability. When the difference between the average sea surface
height of the north and south segments along the 300 m isobath
(Figure 1A) is positive and negative, this is a good proxy for
identify LC-N and LC-S, respectively (Maze et al., 2015). The zos
data processing steps to determine the Loop Current positions
(i.e., LC-N and LC-S) are as follows:

1) The zos data is preprocessed for the north and south segments
(Figure 1A) for all model runs and observation analysis data.
Model runs and observation reanalysis data are sampled using
nearest neighborhood method along the line points
(approximately spaced at 1 km interval between two
neighboring points) of the north and south segments
(Figure 1A). The nearest neighborhood sampling is
performed using the python package of xarray project
(http://xarray.pydata.org) that handles NetCDF (Network
Common Data Form) data formats with file extension NC
that is used typically for climate data (e.g., CMIP and
reanalysis data). This has an additional practice advantage
of reducing the size of the ESMs and reanalysis data. For
example, in this case preprocessing CMIP6 and CMEMS data
reduced that data size from more than 80 GB to about 11 MB
interactive cloud computing feasible. Given data
preprocessing, we have a zos datum h(j,k,l,m,n,t) for a model
run with index j, an ensemble member with index k, a spatial
point along the segment with index l, a segment (i.e., the north
or south segment in Figure 1A) with index m, a model and
reanalysis datasets temporal interval (i.e., 1 month) with index
n, and a prediction interval with index t.

2) The expectation of zos data is taken for all model runs
j ∈ [1, J] of each ensemble member Mk

hk,l,m,n,t � Ej(hj,k,l,m,n,t

∣∣∣∣Mk) (1)

The size J of each ensemble member varies depending on the
number of model runs in the ensemble member, with the
minimum J � 1 for ensemble member IMS01 and the
maximum J � 7 for ensemble member IMS11 (Table 1).

(3) The zos data is averaged for all ensemble members k ∈ [1, K]
hl,m,n,t � Ek(Ej(hj,k,l,m,n,t

∣∣∣∣Mk)) (2)

where k is the index of each ensemblememberMk. The sizeK of the
multi-model ensemble varies based on subset selection (Prescreening),
which determines the inclusion and exclusion of ensemble members.
For example, using all available ensemble members without any
subset selection results in K � 11 that is all the independent model
subsets inTable 1. If we evaluate k for only one ensemblemember for
prescreening purpose (Prescreening), then K � 1.

4) For each of the north and south segments the expected zos is
calculated for each segment

hm,n,t � El[Ek(Ej(hj,k,l,m,n,t

∣∣∣∣Mk))] (3)

5) The zos data of the north segment is subtracted from the south
segment

hn,t � Δm[El[Ek(Ej(hj,k,l,m,n,t

∣∣∣∣Mk))]] (4)

resulting in zos difference data hn,t with n ∈ [1, N] and
t ∈ [1, T]. As such, N represents the interval length such that
N � 3 for a season interval, andN � 6 for a semiannual interval,
and T represents the number of intervals. For example, givenN �
6 as considered in this study and the 22-year study period,
then T � 44.

6) The maximum hn,t in the 6-month interval is selected to
obtain the zos anomaly per time interval

ht � max
hn

(Δm[El[Ek(Ej(hj,k,l,m,n,t

∣∣∣∣Mk))]]) (5)

For each zos anomaly datum ht, positive and negative values
are used as an indicator of LC-N dominated interval and LC-S
dominated interval, respectively. Selecting the maximum value
max
hn

(.) is more robust than using the average value, which may

dilute the signals since the Loop Current position is a cycling
event, recalling that loop current has a random and chaotic cycle
with the average period of 8–18 months per cycle (Sturges and
Evans, 1983; Maze et al., 2015).

The objective of this analysis is not to model the LC cycle, but
rather to use the relationship between Loop Current position and
Karenia brevis bloom of Maze et al. (2015) to obtain a heuristic
coarse-temporal-resolution relation between Loop Current
position and Karenia brevis. Thus, the ht values given by Eq.
5 can be expressed as an indicator function for LC-N:

HLC−N(ht) � { 1, ht ≥ 0
0, ht < 0

(6)

and LC-S:

HLC−S(ht) � { 1, ht < 0
0, ht ≥ 0

(7)

such that HLC−N(ht) � 1 and HLC−S(ht) � 1 indicate a LC-N
interval and LC-S interval, respectively. Eqs 6 and 7 are
convenient to use since we are not interested in the value of
zos anomaly between the north and south segments per se, but
rather in sign difference. Finally, Eqs 5–7 are valid for both model
simulation and observation reanalysis data, which hereinafter are
donated as ht and ht,obs, respectively.

Model Performance Metrics
A model performance is based on its ability to reproduce the
observed phenomena. We define three qualitative metrics to
prescreen for physical relationships, and four quantitative
metrics of the model performance. Based on this prescreening
we can do subset selection. For prescreening, a process-based
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FIGURE 2 | Snapshots of sea surface height above geoid (zos) [m] from 1993-02 to 1993-06 simulated using (A–E) a high-resolution ESM, and (F–J) standard-
resolution ESM with nominal resolution of 10 and 100 km, respectively.
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metric is needed, for example, to understand if the model can
simulate certain mechanistic aspects of the problem of interest.
For example, Christensen et al. (2010) use metrics that capture
aspects of model performance in reproducing large-scale
circulation patterns and meso-scale signals. A qualitative
metric reflects if the model is suitable or unsuitable for
reproducing key features of the problem. In our case study,
models that cannot reproduce key features of interest would
be the models that cannot 1) simulate the penetration of LC into
the Gulf of Mexico, 2) represent the alternation of LC in the
North and South positions given the empirical method (Eqs 5–7),
3) reproduce the higher frequency of Loop Current in the
northern and southern positions as described below. For
example, with respect to (1), the Loop Current penetrates the
Gulf of Mexico extending its northward reach with eddy shedding
as shown by the high-resolution model EC-Earth3P-HR (Figures
2A–C). As such, intrusion of cooler water increases the
stratification of the core of the Loop Current, and the Loop
Current becomes unstable forming anticyclonic eddy that breaks
from the parent Loop Current westward without reconnecting
(Caldwell et al., 2019), as shown by the high-resolution model
EC-Earth3P-HR (Figures 2D,E). On the other hand, the
standard-resolution model EC-Earth3P (Figures 2F–J) cannot
reproduce the observed physical phenomena, and thus unsuitable
for this application. Models that are unable to simulate LC-N are
unsuitable for this environmental management purpose.
Justifications about selecting these three qualitative metrics
and details about them are given below. Finally, for a further
illustration of the models that are capable and incapable of
reproducing the Loop Current, Elshall (2020) shows an
animation of a Loop Current cycle of year 2010 given monthly
zos data for all the 41 model runs in Table 1 shown side-by-side
with the reanalysis data. In addition, the reader can visualize the
reanalysis data in Figure 1 and the CMIP6 data in Figure 2 for
any month in the study period 1993–2015 using the Jupyter
notebook “DataVisualization_zos” (Elshall, 2021), and its
interactive Colab version (https://colab.research.google.com/
github/aselshall/feart/blob/main/i/c1.ipynb).

The binary qualitative metrics (y1-y3) used for prescreening
are as follows:

Physical phenomena simulation (y1): Accurate simulation of
Loop Current positions is generally a challenging task, yet the
objective of this first metric is to determine if the model can
simulate LC-N irrespective of the accuracy. Thus, the model
receives a score one y1 � 1 if it can simulate LC-N (e.g., Figures
2A–E), and zero y1 � 0 otherwise (e.g., Figures 2F–J), i.e.,

y1 �
⎧⎪⎨⎪⎩ 1, ∑T

t�1HLC−N(ht)> 0

0, ∑T

t�1HLC−N(ht) � 0
(8)

such that∑T
t�1HLC−N(ht) is the count on LC-N intervals given the

total number of intervals T � 44 as explained before.
Oscillating event representation (y2): This metric is specific to

the method of Maze et al. (2015) for determining LC-N and LC-S.
If the sea surface height is consistently higher at the north
segment than at the south segment, then the model is unable
to represent alternation of LC-N and LC-S according to the proxy

method of Maze et al. (2015). In this case, the model receives a
score zero y2 � 0, and one y2 � 1 otherwise, i.e.,

y2 �
⎧⎪⎨⎪⎩ 1, 0<∑T

t�1HLC−N(ht)<T
0, ∑T

t�1HLC−N(ht) � T
(9)

Oscillating event realism (y3): If the frequency of LC-N is
greater than that of LC-S for a model, the model receives the score
of one y3 � 1 and zero y3 � 0 otherwise, i.e.,

y3 �
⎧⎪⎨⎪⎩ 1, ∑T

t�1HLC−N(ht)≥∑T

t�1HLC−S(ht)
0, ∑T

t�1HLC−N(ht)<∑T

t�1HLC−S(ht)
(10)

It is more realistic that the frequency of LC-N is greater than
that of LC-S. In the study ofMaze et al. (2015), the ratio of the LC-
S intervals∑T

t�1HLC−N(ht) to the total number of intervals T � 60
is 0.267, given their altimetry data product with study period of
15 years and 3-month interval (i.e.,N � 3). In this study the ratio
of LC-S to total number of intervals is 0.273, given our reanalysis
product with T � 44 and N � 6 as previously explained.

We define four quantitative metrics (y4-y7) to evaluate the
predictive performance, and the scoring rules (y8) to evaluate
complexity. These performance criteria are as follows.

Oscillating event frequency (y4): This is the ratio of the number
of a LC position (LC-S or LC-N) to the total number of intervals.
Hereinafter, we refer to the oscillating event frequency as the
number of LC-S to the total number of intervals T,

y4 � ∑T
t�1HLC−S(ht)

T
(11)

which can be compared to reanalysis data that is 0.273 as
presented in the results section. Additionally, we define the
oscillating event frequency error as

y4,err �
∣∣∣∣∑T

t�1HLC−S(ht) −∑T
t�1HLC−S(ht,obs)∣∣∣∣

T
(12)

which is the absolute difference of LC-S counts of ensemble
prediction ht and reanalysis data ht,obs.

Temporal match error (y5): This is a temporal match of model
predictions and reanalysis data with respect to LC position for
LC-N

y5,LC−N � ∑T
t�1HLC−N(ht,obs) − ∑T

t�1(ht,obs ≥ 0＾ht ≥ 0)∑T
t�1HLC−N(ht,obs) (13)

for LC-S

y5,LC−S � ∑T
t�1HLC−S(ht,obs) −∑T

t�1(ht,obs < 0＾ht < 0)∑T
t�1HLC−S(ht,obs) (14)

and both positions

y5 � T −∑T
t�1(ht,obs ≥ 0＾ht ≥ 0) −∑T

t�1(ht,obs < 0＾ht < 0)
T

(15)

such that ∑T
t�1HLC−N(ht,obs) and ∑T

t�1HLC−S(ht,obs) are the counts
of the LC-N and LC-S intervals, respectively, given the observation
reanalysis data ht,obs; the terms ∑T

t�1(ht,obs ≥ 0＾ht ≥ 0) and
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∑T
t�1(ht,obs < 0＾ht < 0) are the temporal match counts of model

simulation and reanalysis data for LC-N and LC-S, respectively. The
logical conjunction ∧ gives a value of one when the statement
(ht,obs ≥ 0＾ht ≥ 0) is true if ht,obs ≥ 0 and ht ≥ 0 are both true,
otherwise gives a value of zero if false. Temporal match is the
most challenging task. While ESMs are well established on climate
timescale, the temporal match at seasonal timescale can be
challenging (Hewitt et al., 2017). Generally speaking, the hist-
1950 and historical experiments are free-running, and accordingly
are neither designed nor expected to have temporal coincide with
real-world conditions, which is especially true for the historical
experiment. However, one aim of this study is to investigate if
any temporal match is possible given the used heuristic relation for
determining Loop Current position with a coarse temporal
resolution of 6-month interval.

Karenia brevis error (y6): A false negative prediction of
Karenia brevis bloom occurs when large bloom coincides with
LC-S. For the study period, we define the Karenia brevis error as
the ratio of the number of LC-S with large bloom to the number of
large-bloom Nbloom

y6 � ∑T
t�1(ht < 0＾H(zt) � 1)

Nbloom
(16)

where H(zt) is an indicator function with one and zero for large
bloom and no bloom, respectively.

Root-mean-square error (y7): It is the root-mean-square error
(RMSE) between model simulation and reanalysis data

y7 �
��������������∑T

t�1(ht − ht,obs)2
T

√
(17)

The defined metrics (y1- y7) are specifically designed to judge
the predictive performance of these ESMs with respect to the
targets of a specific application, and are not meant to judge the
predictive skill of these ESMs globally or regionally for general
purposes. Judging the predictive skills of these models with
respect to global or regional simulations of sea surface height
above geoid (variable: zos) or any other variable, is beyond the
scope of this work.

Prescreening
Evaluation of specific regional applications is another important
criterion, which is the focus of this manuscript. We develop a
subset-selection method that extends the binary method of
Herger et al. (2018) based on a prescreening step as shown in
Figure 3. Model independence is accounted for as described in
FAIR Guiding Principles, and a score is obtained for each
ensemble member using three binary qualitative metrics y1-
y3 (Model Independence). Binary refers to a score of either
zero or one if the ensemble member is unable or able to
produce the metric target. The three binary metrics (Eqs

FIGURE 3 | The prescreening method.
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8–10) are evolving such that if the ensemble member fails the first
metric, then it will consequently fail in the other two, and will
accordingly receive a score of zero. For example, given score (y1,
y2, y3), the model receives a score from zero to three for score
(0,0,0), (1,0,0), (1,1,0), and (1,1,1), respectively. In other words, if
a model score is one for y3 (Eq. 10) it will by default score ones for
y1 (Eq.11) and y2 (Eq.9).

Subset Selection
The subset selection step is shown in Figure 4. In this step we
compose five multi-model ensembles using simple-average multi-
model ensemble (SME). Each SME is composed of ensemble
members based on prescreening score. The notation SME3210
means that members with prescreening score from zero to three
are included in the ensemble. The notation SM321X means that
members with prescreening score from one to three are included
in the ensemble and members with prescreening score of zero are
excluded, and so on. Ensemble SME321X, SME32XX, and
SME3XXX exclude ensemble members based on the three
binary qualitative metrics (y1- y3), respectively. These are
evolving metrics such that if an ensemble member scores zero
in y1, it will score zero in y2 and y3, and have an overall score of
zero. If a model has a score y3 � 1, it will by default score one in
y1 and y2, and have an overall score of three. As such, SME3210
contains all ensemble members with scores from zero to three,
which is all the 11 ensemble members listed in Table1. On the
other hand, SME3XXX contains the best ensemble members,
which are the ones with a score of three. Ensemble SME32XX
contains ensemble members with scores of three and two, and so
on. On the other hand, ensemble SMEXXX0 contains only the
least performing ensemble members with a score of zero. More

discussion on the model scores is given in the next section. We
evaluate the predictive performance of these five multi-model
ensembles using the quantitative metrics (y4-y7). The evaluation
of these five multi-model ensembles serves multiple purposes as
described in the results section.

RESULTS

Prescreening
We plot the oscillation of the Loop Current position for each
ensemble member (Figure 5), following the zos data processing
steps described in Loop Current Position and Karenia brevis
Blooms. This is to conduct qualitative comparison between the
reanalysis data (Figure 5A) and the prediction of each ensemble
member (Figures 5B–L). Accordingly, we score the ensemble
member given its performance with respect to three binary
evolving metrics (y1-y3). The score is zero if the ensemble
member fails to pass all the three metrics. This is the case for
E3SM-1-0 of DOE-E3SM-Project (Figure 5E) and the EC-
Earth3P of EC-Earth-Consortium (Figure 5F). As these two
ensemble members do not pass the first metric of physical
phenomena simulation (y1) that is the simulation of the LC-
N, then accordingly they score zero in the next two metrics of
oscillating event representation (y2) and oscillating event realism
(y3). This is not unexpected as these two ensemble members are
standard-resolution ESMs, which do not have improved process
description as the high-resolution ESMs do. The standard-
resolution grids EC60to30 of E3SM-1-0 and ORCA1 of EC-
Earth3P do not explicitly resolve the mesoscale eddies and
boundary currents, but rather require global parametrization

FIGURE 4 | The subset-selection method.
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of mesoscale eddies. For example, EC60to30 is an eddy closure
(EC) grid with global parameterization that is not designed to
resolve regional spatial phenomena. On the other hand, with a
high horizontal resolution, the eddy-permitting grids such as
eORCA12, ORCA12, eORCA025, and ORCA025 (Table 1) can
resolve mesoscale eddies, and do not require ocean eddy flux
parameterization. For comparison of high- and standard-
resolution grid see also Figure 2. On the other hand, the
model runs of CESM1-CAM5-SE-HR of NCAR (Figure 5B)
and CNRM-CM6-1-HR of CNRM-CERFACS (Figure 5D) can
simulate LC-N, but without a sign difference of zos at the two
segments (Figure 1A), and accordingly fail in the second metric

of oscillating event representation (y2). These two ensemble
members receive a score of one. This score does not indicate
that the sea surface height simulation of these models is poor in
general, but rather that these models are unsuitable for this target
given the problem definition. The ensemble members of CMCC-
CM2-(V)HR4 of CMCC (Figure 5C), EC-Earth3P-HR of EC-
Earth-Consortium (Figure 5G), and GFDL-CM4/ESM4 of
NOAA-GFDL (Figure 5J), pass the second metric, but fail on
the oscillating event realism (y3). These ensemble members show
a higher LC-S frequency than LC-N, which is not consistent with
the reanalysis data (Figure 5A). Accordingly, these three
ensemble members receive a score of two. Finally, the

FIGURE 5 | The surface height above geoid (zos) anomaly (Eq. 5) of (A) reanalysis data, and (B–L) enesmble members (i.e, independent model subsets). The title of
the reanalysis data shows the data provider name, and product ID. The title of ensemble member shows ensemble member number, modeling group name, model
name(s), and ensmble member score.
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ensemble members that pass the three evolving binary metrics
and receive a score of three are ECMWF-IFS-HR of ECMWF
(Figure 5H), ECMWF-IFS-MR of ECMWF (Figure 5I),
HadGEM3-GC31-HH/HM of MOHC-NERC (Figure 5K), and
HadGEM3-GC31-MM of MOHC-NERC (Figure 5L). Visual
inspection shows that these four ensemble members are
qualitatively similar to the reanalysis data (Figure 5A) with
respect to Loop Current position oscillation.

Using metrics y4–y7, we evaluate the predictive performance
of these 11 ensemble members with respect to reanalysis data as
shown in Table 2. According to Maze et al. (2015) there are no
red tide blooms for LC-S, and there are either large blooms or no
blooms for LC-N. The results of our reanalysis data shown in
Table 2 are consistent with Maze et al. (2015) such that none of
the 12 intervals of LC-S has large blooms for the study period. Out
of the 32 intervals of LC-N, 15 intervals have large blooms. This
indicates that LC-N is a necessarily condition for the large bloom
to occur and be sustained. Given the reanalysis data, the LC-S
frequency is 0.273 for our 22-year study period, which is
comparable to Maze et al. (2015), which is 0.267 for their 15-
year study period. The ensemble members IMS07, IMS10, IMS11,
and IMS08 have the best agreement with the reanalysis data
showing LC-S frequencies (y4) of 0.295, 0.318, 0.205, and 0.182,
respectively. These correspond to the oscillating event frequency
errors (y4,err) of 0.022, 0.045, −0.068, and −0.091, respectively.
Ensemble members that can simulate the oscillation of LC-N and
LC-S and have the best temporal match are IMS08, IMS07,
IMS10, and IMS11 with temporal match error (y5) of 27, 34,
34, and 41%, respectively. Given the high-resolution model runs,
IMS08, IMS07, IMS10, and IMS11 have the lowest Karenia brevis
error (y6) of 0.1, 0.3, 0.3, and 0.3, respectively. IMS09, IMS08,
IMS10, IMS03 have the lowest RMSE (y7) of 3.77, 3.87, 3.88, and
4.02, respectively. While no ensemble member is consistently
ranked as the top ensemble member given the four metrics,
IMS08 is ranked twice as the top ensemble member given the
two metrics y5 and y6. Thus, this analysis shows that there is no
single ensemble member that consistently perform better with
respect to all metrics, and that different ensemble members show
both over and underestimation of zos anomaly. These two

remarks indicate the importance of using a multi-model
ensemble.

Subset Selection
There is generally no specific guideline on the composition of
multi-model ensemble of ESMs. While composing information
from multiple imperfect ensemble members can be an
arbitrarily task, the prescreening step can help find subsets
that maintain key features of the problem of interest. We
first discuss the two ensembles of SME3210 and SME321X.
The ensemble SME3210, which includes both high- and
standard-resolution model runs, is generally a flawed
ensemble composition, since we know from prior existing
knowledge of other studies (Caldwell et al., 2019; Hoch et al.,
2020) that standard-resolution ESMs are generally incapable of
simulating Loop Current. On the other hand, SME321X is the
most straightforward ensemble composition that acknowledges
prior information, and includes all high-resolution runs that are
capable of simulating Loop Current. We consider SME321X as
our reference ensemble. Figure 6 shows the predictive
performance of the four multi-model ensembles. Large red
tide blooms do not occur for LC-S given reanalysis data
(Figure 6A). Comparing reanalysis data (Figure 6A) and the
multi-model ensembles (Figures 6B–E) shows that ensembles
based on prior information (i.e., SME321X, SME32XX, and
SME3XXX) correspond better to reanalysis data than without
accounting for prior information (i.e., SME3210).

Visual examination in Figure 6 is insufficient to understand
the impact of prescreening information (i.e., SME32XX and
SME3XXX) in comparison to the reference ensemble
SME321X without prescreening information, and qualitative
metrics are needed. Table 3 quantitatively shows that
including standard-resolution model runs (i.e., SME3210)
results in prediction degradation with respect to the four
qualitative metrics (y4-y7). As can be calculated from raw
data in Table 3, SME321X shows relatively good agreement
with the reanalysis data with a LC-S frequency (y4) of 0.227,
temporal match error (y5) of 36%, Karenia brevis bloom error
(y6) of 20%, and RMSE (y7) of 3.71.

TABLE 2 |Raw data of Loop Current at North (LC-N) and South (LC-S) positions, and their relation to the occurrence of large blooms for reanalysis data, and each ensemble
member (i.e., independent model subset, IMS). The ensemble size is the number of model runs per ensemble member, and the reanalysis data has only one realization.
Note given Score (y1, y2, y3) the model receives a score from 0 to 3 for Score (0, 0, 0), Score (1,0,0), Score (1, 1, 0), and Score (1, 1, 1), respectively.

IMS Ensemble Count Count LC-N Count LC-S Temporal match RMSE Score

Size LC-N LC-S No-Bloom Large-Bloom No-Bloom Large-Bloom LC-N LC-S Total

Reanalysis data 1 32 12 17 15 12 0 32 12 44 0 3
IMS01 1 44 0 29 15 0 0 32 0 32 13.16 1
IMS02 2 20 24 14 6 15 9 15 7 22 5.48 2
IMS03 4 44 0 29 15 0 0 32 0 32 4.02 1
IMS04 5 0 44 0 0 29 15 0 12 12 9.27 0
IMS05 3 0 44 0 0 29 15 0 12 12 20.16 0
IMS06 3 20 24 13 7 16 8 13 5 18 4.34 2
IMS07 6 31 13 21 10 8 5 24 5 29 3.77 3
IMS08 3 36 8 22 14 7 1 28 4 32 3.87 3
IMS09 3 8 36 6 2 23 13 5 9 14 5.06 2
IMS10 4 35 9 24 11 5 4 26 3 29 3.88 3
IMS11 7 30 14 20 10 9 5 22 4 26 4.08 3
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Another approach for ensemble composition is to use
information from the prescreening step. These are ensembles
SME32XX and SME3XXX that exclude the models that cannot
represent the oscillation of LC-N and LC-S (y2). Ensemble
SME3XXX only includes model runs with realistic
presentation of LC-N and LC-S (y3). SME32XX shows
degraded predictions with respect to the reference ensemble

SME321X for all the four quantitative metrics (y4-y7). This is
not unexpected since members of SME321X show both under
and overestimation. For simple model average of model runs with
over and underestimation the errors are expected to cancel out
(Herger et al., 2018). However, this is not the case for SME3XXX
that leverages on most information gained from the prescreening
step (i.e., by only including the best members that meet the targets

FIGURE 6 | Temporal match of large bloom/no bloomwith Loop Current positions given the surface height above geoid (zos) anomaly (Eq. 5) of (A) reanalysis data,
and (B–E) simulations of four multi-model ensembles. Positive and negative bars indicate Loop Current North (LC-N) and Loop Current South (LC-S), respectively.
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of interest). SME3XXX shows mixed predictive performance with
respect to the reference ensemble showing better performance
with respect to temporal match error (y5) of 25% (versus 36% for
the reference ensemble), Karenia brevis error (y6) of 13% (versus
20% for the reference ensemble), and RMSE (y7) of 3.68 (versus
3.71 for the reference ensemble), but inferior performance with
respect to LC-S frequency (y4) of 0.205 (versus 0.273 and 0.227
for the reanalysis data and reference ensemble, respectively). Yet
temporal coverage error is not important for future predictions as
discussed in Discussion. The relatively good performance of
SME3XXX is expected, because this ensemble ensures that
members with good performance are only included.

Table 3 additionally shows the case of SMEXXX0, which only
considers standard-resolution runs. SMEXXX0 shows a poor
predictive performance with respect to all metrics. We present
the SMEXXX0 ensemble to illustrate the breakthrough of the
HighResMIP of CMIP6. With respect to sea surface height
simulation and regional phenomena, our results clearly show
the significant improvement of the high-resolution runs of
CMIP6 in comparison to the standard-resolution models that
are typical to CMIP5.

Ensemble Composition
Our results show that using prior information is important for
ensemble composition, and prescreening- based subset selection
can be helpful. Figure 7 summarizes the effect of different

ensemble composition criteria. Prior information appears as an
important criterion that should be considered as SME3210 has the
worst predictive performance with respect to the other ensembles
given y4–y7. Prescreening-based subset selection seems to relatively
improve the predictive performance given y5–y7, and slightly
degraded performance with respect to y4. However, pre-
screening-based subsect selection has a second conceptual
advantage. Given prior information, the first approach of using all
the available ensemble members (i.e., SME321X) is a straightforward
choice that can result in error cancellation. The second approach of
using information from prescreening results in a reduced size
ensemble (i.e., SME3XXX), which maintains the most important
ensemble characteristics with respect to the problem of interest.
While in the first approach we attempt to maintain a more
conservative ensemble, with the second approach we create an
ensemble with robust ensemble members. Our results suggest that
pre-screening based subset section used to substitute or prior to
model weighting, which is a subject of a future research.

DISCUSSION

Subset Selection
To find a robust ensemble that improves the predictive
performance of ESMs, this article shows the importance of
subset selection based on prior information, prescreening, and

TABLE 3 | Raw data of Loop Current at North (LC-N) and South (LC-S) positions, and their relation to the occurrence of large blooms simple-average multi-model ensemble
(SME). The ensemble size refers to the number of model runs per multi-model ensemble.

SME Ensemble
size

Count Count LC-N Count LC-S Temporal match RMSE

LC-N LC-S No-Bloom Large-Bloom No-Bloom Large-Bloom LC-N LC-S Total

Reanalysis
data

1 32 12 17 15 12 0 32 12 44 0

SME3210 41 3 41 2 1 27 14 2 11 13 5.13
SME321X 33 34 10 22 12 7 3 25 3 28 3.71
SME32XX 28 23 21 17 6 12 9 17 6 23 3.92
SME3XXX 20 35 9 22 13 7 2 28 5 33 3.68
SMEXXX0 8 0 44 0 0 29 15 0 12 12 13.52

FIGURE 7 | Predictive performance (y4–y7) given different ensemble composition criteria.
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process-based evaluation. By evaluating the prescreening-based
subset-selection method we deduce two key points as follows.
First, we present additional advantages to subset selection that are
not well recognized in the literature, which is the importance of
subset selection based on process-based evaluation similar to Yun
et al. (2017). Eliminating models from an ensemble can be
justified if they are known to lack key mechanisms that are
indispensable for meaningful climate projections (Weigel et al.,
2010). As shown in this study, models that cannot simulate the
processes of interest based on a prescreening step can be excluded
from the ensemble without degrading the ensemble prediction.
Second, the selection of subset-selection method depends on the
criteria that are relevant for the application in question (Herger
et al., 2018). For example, the process-based evolving binary
weights developed in this study is particularly important to
eliminate non-representative models. Unlike other subset-
selection methods in literature that can be technically
challenging to implement, we present a subset-selection
method that can be frequently used, as it is intuitive and
straightforward to apply. This approach is an addition to
subset-selection literature, and is not meant to supersede any
of the existing approaches in the literature.

Seasonal Prediction Limitations
Improving seasonal prediction of ESMs to provide useful services for
societal decision making is an active research area. Techniques to
improve temporal correspondence between predictions and
observations at the regional scale is needed for climate services in
many sectors such as energy, water resources, agriculture, and health
(Manzanas et al., 2019). In this study we used raw outputs without
using a postprocessingmethod to improve temporal correspondence
of seasonal prediction. Our results show that the temporal
correspondence is not poor, which could be just coincident.
Alternatively, this could be attributed to the chosen Loop Current
position heuristic with a coarse-temporal-resolution. Accordingly,
given a long 6-month period, this is not a month-by-month or
season-by-season temporal match, but rather a pseudo-temporal
correspondence that captures the general pattern of a dynamic
process. Accordingly, using this heuristic relationship, a form of
temporal relationship might be possible as long as there is no large
drift. If such a temporal correspondence cannot be established for
ESMs for Loop Current or other factors that drives the red tide, this
would limit the use of the ESMs in terms of providing an early
warning system. However, this will not affect the main purpose of
the intended model, which is to understand the frequency and trend
of red tide under different climate scenarios and estimating the
socioeconomic impacts accordingly. If temporal correspondence is
required, seasonal prediction of ESMs has generally been possible
through statistical and dynamical downscaling methods, and other
similar techniques such as pattern scaling and use of analogue (van
den Hurk et al., 2018). Alternatives to more complex statistical
downscaling techniques to improve temporal correspondence
include bias correction (Rozante et al., 2014; Oh and Suh, 2017;
Wang et al., 2019), ensemble recalibration (Sansom et al., 2016;
Manzanas et al., 2019), and postprocessing techniques such as
copula-based postprocessing (Li et al., 2020). For example, to
improve temporal correspondence of seasonal prediction,

Manzanas (2020) use bias correction and recalibration methods
to remove mean prediction bias, and intraseasonal biases from drift
(i.e., lead-time dependent bias).

Limitations and Outlook
In this study we present the advantages of subset selection using
Loop Current prediction as an example. We show these advantages
for the simplest case of using a deterministic analysis, and by
considering only historical data. For red tide management
purpose, which is to understand the frequency of red tide and
the corresponding socioeconomic impacts under different climate
scenarios, further steps are needed. First, using CMIP6 model
projection data is important to understand the frequency and
future trends of red tide under different Shared Socioeconomic
Pathways (SSPs) of CMIP6 in which socio-economic scenarios are
used to derive emission scenarios without mitigation (i.e., baseline
scenario) and with mitigation (i.e., climate polices). Additionally,
CMIP6 data can be readily replaced by high resolution data of
Coordinated Regional Downscaling Experiment (CORDEX) as soon
as they become available. CORDEX which is driven by the CMIP
outputs, provides dynamically downscaled climate change
experiments for selected regions (Gutowski Jr. et al., 2016;
Gutowski et al., 2020). Second, we need to extend our method to
a probabilistic framework that considers both historical and future
simulations. As historical assessment criteria are not necessarily
informative in terms of the quality of model projections of future
climate change, identifying the performance metrics that are most
relevant to climate projections is one of the biggest challenges in
ESM evaluation (Eyring et al., 2019). As the choice of model is a
tradeoff between good performance in the past and projected climate
change, selecting only the best performing models may limit the
spread of projected climate change (Parding et al., 2020). Exploring
such trade-off is warranted in a future study in which a probabilistic
framework (e.g., Brunner et al., 2019) is needed to account for model
performance, model independence, and the representation of future
climate projections. Third, it is imperative to consider not only Loop
Current, but also other factors that control red tide such as
alongshore and offshore wind speed, African Sahara dust, and
atmospheric CO2 concentration need to be considered. To
account for these different factors simultaneously to predict red
tide, machine learning is needed similar to the study of Tonelli et al.
(2021) that uses CMIP6 data and machine learning to study marine
microbial communities under different climate scenarios. In
summary, there are still many further steps needed to develop a
probabilistic machine learning framework for regional
environmental management of red tide using ESMs of CMIP6
and CORDEX when available. This study is merely a showcase
for the potential of using ESMs for red tide management.

CONCLUSION

To improve ensemble performance and to avoid prediction artifacts
from including non-representative models, which are models that
cannot simulate the process(es) of interest, we introduce a
prescreening based subset-selection method. Including non-
representative models with both over and underestimation can
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result in error cancellation.Whether to include or exclude these non-
representative models from the ensemble is a point that requires
further investigation through studyingmodel projection.We present
a generic subset-selection method to exclude non-representative
models based on process-based evolving binary weights. This
prescreening step screens each model with respect to its ability to
reproduce certain key features. This research emphasizes the
importance of ensemble prescreening, which is a topic that is
rarely discussed. The presented subset-selection method is flexible
as it scores each model givenmultiple binary criteria. This allows the
user to systematically evaluate the sensitivity of the results to
different choices of ensemble members. Such flexibility is
generally needed to allow the user to understand the implication
of ensemble subset selection under different cases (e.g., historic
versus historic and future simulations, etc.). Our prescreening-
based subset selection method is not meant to replace any of the
existing approaches in the literature, but to provide a straightforward
and easy-to-implement approach that can be used for many climate
services in different sectors as needed.
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Complex or Simple—Does a Model
Have to be One or the Other?
Rui Hugman1* and John Doherty1,2

1National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, SA,
Australia, 2Watermark Numerical Computing, Brisbane, QLD, Australia

The primary tasks of decision-support modelling are to quantify and reduce the
uncertainties of decision-critical model predictions. Reduction of predictive uncertainty
requires assimilation of information. Generally, this information resides in two places: 1)
expert knowledge emerging from site characterization and 2) field measurements of
present and historical system behavior. The former is uncertain and should therefore
be expressed stochastically in a model. The range of parameter and predictive possibilities
can then be constrained through history-matching. Implementation of these Bayesian
principles places conflicting demands on the level of model structural complexity. A high
level of structural complexity can facilitate expression of expert knowledge by establishing
model details that are recognizable by site experts, and through supporting model
parameters that bear a close relationship to real-world hydraulic properties. However,
such models often run slowly and are numerically delicate; history-matching therefore
becomes difficult or impossible. In contrast, if endowed with enough parameters,
structurally simple models facilitate the achievement of a good fit between model
outputs and field measurements. However, the values with which parameters are
endowed may bear a looser relationship with real-world properties and are therefore
less receptive to information born of expert knowledge. The model design process is
therefore one of compromise. In this paper we describe a methodology that reduces the
cost of compromise by allowing expert knowledge of system properties to inform the
parameters of a structurally simple model. The methodology requires the use of a
complementary model of strategic, but not excessive, structural complexity that is
stochastic, fast-running and requires no history-matching. We demonstrate the
approach using a real-world case in which modelling is used to support management
of a stressed coastal aquifer. We empirically validate the approach using a synthetic model.

Keywords: optimisation, expert knowledge, modelling, groundwater, decision-support, complexity, data-
assimilation, uncertainty

1 INTRODUCTION

Groundwater systems are complex. Our ability to characterise this complexity is limited. It is
not possible to calculate the exact outcomes of a proposed groundwater management action, as
they depend on too many unknown system details. However, it is often possible to characterize
them probabilistically. Hence, forecasts of future system behaviour can be accompanied by
estimates of their uncertainties. This is essential to risk-based decision-making (Freeze et al.,
1990; Doherty and Moore, 2020).
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In principle, a model that represents a high level of system and
process detail (referred to as a “complex”model herein) supports
1) quantification of the uncertainties of management-critical
predictions through inclusion of all facets of system behaviour
on which those predictions depend, and 2) reduction of predictive
uncertainty by employing parameter sets that allow it to also
replicate the historical behaviour of the system. Complex models
are generally physically based; their numerical details attempt to
mimic what is known of reality. Ideally, field or laboratory
measurements of system properties can therefore directly
inform the values of their parameters and the prior probability
distributions of these parameters. The link between expert
knowledge and model parameterization is therefore direct.

A major problem with complex models, however, is that they
are generally characterized by long run times, and often react
badly to parameters sets that embody stochastic expression of
hydraulic property heterogeneity. They make poor partners for
software such as PEST and PEST++ which can implement the
Bayesian imperative of constraining model parameters so that the
model’s outputs can replicate historical system states, thereby
reducing uncertainties associated with its evaluation of future
system states.

Assimilation of historical information can be rendered more
tractable by use of a fast-running, numerically-stable, structurally
simple model. Such a model can be physically-based; however, its
design philosophy is to represent the repercussions of system
detail on model outputs, rather than explicitly representing the
detail itself. The link between parameters of a structurally simple
model and real-world hydraulic properties may therefore become
more abstract. However, if a strategically-designed, structurally
simple model is sufficiently highly parameterized, programs such
as PEST and PEST++ can easily find sets of parameters that allow
it to replicate historical system behaviour well. This has the
potential to reduce the uncertainties of some decision-critical
predictions. However, this reduction in uncertainty must be
balanced against the need to inflate prior parameter
uncertainties because of their looser links with recognizable
hydraulic properties, and for the need for any bias that is
induced through history-matching of a simplified model to be
included in the posterior uncertainties of its predictions (Doherty
and Simmons, 2013).

Predictive bias can be reduced by strategic design of a
simplified model; it can also be reduced through strategic
design of the history-matching process. See White et al.
(2014). The problem of assigning prior probability
distributions to parameters of a structurally simple model,
especially those that may be somewhat abstract because they
are used to characterise its boundary conditions, has (to the
authors’ knowledge) received little, if any, attention in the
modelling literature. A simple response to this problem is the
assignment of generous prior uncertainties to pertinent
parameters, and/or the use of noninformative priors and/or
uniform prior probability distributions. While this strategy
avoids the under-estimation of predictive uncertainty, it may
erode the decision-support potential of numerical modelling by
excluding information born of expert knowledge from the
modelling process.

This paper demonstrates a methodology that can be used to
characterise the prior probability distributions of some
parameters that are assigned to a structurally simple model, in
particular those that characterise one of its boundary conditions.
This methodology relies on the use of a complementary model of
greater structural complexity that embodies explicit (yet still
simplified) representation of geometry and processes that are
replaced by the simple model’s boundary condition. Running of
the complementary physically-based model is computationally
expensive; however relatively few runs of this model are required.

We demonstrate this approach to assessment of boundary
parameter prior stochasticity using a model that was built to
support the management of a highly stressed coastal aquifer at
Vale do Lobo, Portugal. A structurally simple, but parametrically
complex, constant-density model represents the onshore portion
of the aquifer. A Cauchy (i.e., “general head”) boundary condition
dispenses with the need for this model to simulate groundwater
process in that part of the aquifer that extends a considerable
distance offshore. Heads and flows computed by a structurally
and parametrically stochastic, variable-density model are used to
assign heads and conductances to the boundary condition of the
onshore model.

This paper is organised as follows. Section 2 describes the
hydrogeology of the Vale do Lobo area, the problems that beset it,
and a model that was built to support improved management of
the area. However, the discussion is brief as a more complete
description can be found elsewhere (Hugman et al., 2021).
Section 3 describes the methodology that was developed for
prior stochastic parameterisation of the coastal boundary
condition of the Vale do Lobo management model;
implementation details of this methodology are also provided.
Reference is made to Supplementary Material wherein the
methodology is verified using a synthetic case whose details
are inspired by Vale do Lobo hydrology. Section 4 describes
stochastic history-matching and deployment of the Vale do Lobo
management model. Discussion and conclusions follow in
Section 5.

2 VALE DO LOBO

This section describes modelling undertaken for an aquifer
system in southern Portugal which faces the threat of sea
water intrusion because of excessive groundwater extraction
for irrigation. The study area is located to the west of Faro,
capital of the Algarve province of Portugal (Figure 1).

2.1 Conceptual Model
The Vale do Lobo (VL) subsystem of the Campina de Faro aquifer
occupies an area of about 32 km2. The boundary which separates
it from the Campina de Faro subsystem to its east is a
management rather than a hydrogeological boundary; it runs
roughly perpendicular to topographic contours. To the
northwest, the VL subsystem boundary is defined by the
Carcavai fault zone. Low permeability marls outcrop along the
northern boundary; this creates a barrier between the VL system
and a highly permeable karstic aquifer further to the north.
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The VL subsystem is comprised of two aquifers. An upper,
phreatic aquifer and a lower, semi-confined aquifer formed of
calcareous sandstones and limestones. Nearby and offshore
drilling suggests that the base of the semi-confined aquifer reaches
a depth of 350m below mean sea level at the coast. A clay aquitard,
typically about 10m thick, separates the two aquifer formations. The
aquifer formations dip towards the coast at about 4°. Fresh water that
flows seaward through the deep aquifer emerges in the sea at an
unknown distance offshore. However, the offshore perseverance of
the overlying aquitard, together with all other details of offshore
freshwater flow and the geology which controls it, are unknown.

Figure 2 displays heads measured in a representative well (see
the labelled location in Figure 1). The well is open to the deep

aquifer. This is the longest record of piezometric heads available
in the VL area. It exhibits a gradual decline from the late 1970s to
the late 1990s, at which time groundwater levels appear to reach a
new equilibrium. Groundwater heads are, on average, below sea
level in the deep aquifer. The lowest levels are in the central and
north-western corner of the system. Groundwater appears to flow
towards this area of depressed heads from all system boundaries,
including from adjacent aquifers and from the coast.

The local regulatory agency estimates that total groundwater
use during 2019 was around 6.45 Mm3. Most of this water was
extracted from the deep aquifer. Diffuse recharge to the phreatic
aquifer is estimated to be about 3.46 Mm3/yr (i.e., 108 mm/yr).
The proportion of this water which reaches the deep aquifer is
unknown. The deep aquifer probably receives most of its recharge
laterally through its northern and/or eastern boundaries.

Chloride concentrations measured at observation wells within
the deep aquifer are mostly below 300 mg/L. However, these
measurements, as well as anecdotal evidence pertaining to the
quality of water extracted from production wells, suggest
increasing salinities over time at some locations. There is some
evidence that dissolution of evaporites that are disseminated
through sediments which comprise the deep aquifer may be
partly responsible for increased chloride concentrations. It
appears, therefore, that VL groundwaters have not yet suffered
a serious decline in quality because of seawater intrusion.
Nevertheless, hydraulic head data makes it clear that its
occurrence is inevitable.

2.2 The Problem
Continued extraction of water from the VL system at current rates is
unsustainable. In the long term, it will result in serious degradation of

FIGURE 1 | Location and main hydrogeological features of the Vale do Lobo aquifer system. The locations of groundwater abstraction wells, piezometers, and
contoured average measured hydraulic heads during 2020 are also depicted.

FIGURE 2 | Time-series of hydraulic heads measured in piezometer
606/647. The location of this piezometer is labelled in Figure 1.
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aquifer water quality through seawater intrusion. In the short term, it
will occasion noncompliance with an EU Water Framework
Directive (WFD) which specifies that average abstraction from a
groundwater system must be lower than 90% of average annual
recharge. Local authorities are looking at a number of ways to
complywith this directive. These include the impositions of limits on
existing water use licenses and/or implementation of managed
aquifer recharge (MAR). However, technical and legal obstacles
presently impede both of these options.

Modelling that is described herein serves to:
1) Estimate the historical components of the VL water budget,

along with their uncertainties. These include calculation of
groundwater withdrawals where records are unavailable, and
quantification of lateral inflows from neighbouring systems.
Outcomes of these analyses provide an estimate of the
minimum change in water budget required to comply with
WFD requirements.

2) Explore management strategies that maximize
groundwater use while mitigating the potential for
seawater intrusion. Outcomes of these analyses are
intended to identify maximum allocation limits for
existing groundwater users.

2.3 The Numerical Model
2.3.1 Model Structure
A numerical model was developed in order to explore
management options for the VL subsystem. The model is a
composite of a constant-density MODFLOW 6 (Langevin
et al., 2021) model and eight LUMPREM (Doherty, 2020)
models. LUMPREM stands for “lumped parameter recharge
model”; LUMPREM models are used to compute irrigation
demand, and hence groundwater withdrawal rates employed
by the MODFLOW 6 model.

History-matching is undertaken over the period October
2000–October 2020. Unfortunately, records of historical
abstraction over this period are incomplete. However, they
comprise the only direct measurement of any aspect of the VL
subsystem water balance. Other aspects of the water balance
must be inferred from the system’s response to this extraction.
A single LUMPREM model is used to calculate irrigation
demand for each groundwater user group. LUMPREM
models are calibrated against measured extraction rates
where these are available.

The groundwater flow model employs a single layer. This
represents the deeper semi-confined aquifer. Its landward
boundaries coincide with that of the VL system described
above. To its southwest, the coastline bounds the model
domain. Aquifer top and bottom elevations are interpolated
from onshore and offshore borehole logs and topographic
elevations of outcrops.

The bottom boundary of the VL groundwater model is a no-
flow boundary. A general-head boundary (GHB) is ascribed to its
top. This simulates the connection of the lower aquifer with the
overlying phreatic aquifer. Temporal and spatial variation in
GHB heads at each cell are calculated by applying a linear
function of surface elevation to measured time series of heads

in the phreatic aquifer. Constants of this function are adjustable
during history-matching.

All lateral boundaries of the VLmodel are also simulated using
GHBs. For the north-western and eastern boundaries of the VL
model, GHB heads vary with time while conductance is time-
invariant. Time-varying heads are obtained from time-series of
measured heads at representative piezometers; these are spatially
interpolated along the boundaries.

2.3.2 Model Parameters
An array of 565 pilot points, distributed throughout the model
domain, is employed to represent spatial variation of each of
hydraulic conductivity, specific storage and conductance of the
aquitard which separates the deep aquifer from the upper aquifer.

Pilot points are also placed along all model boundaries. These
are used to represent spatial variation of conductance along these
boundaries. They are also used to parameterise spatial variation of
heads along these boundaries. However, as stated above, time-
varying heads at certain locations along the north-western and
eastern model boundaries are informed from heads measured in
nearby wells. Hugman et al. (2021) for details.

As stated above, the coastal boundary of the VL model is
represented by a continuous, coast-coincident GHB. Heads and
conductances along this boundary are parameterised using pilot
points. Statistical characterisation of these heads and
conductances is discussed next.

Statistical characterisation of model parameters is required for
two reasons. It is used in formulation of a regularisation scheme
which seeks parameter uniqueness through model calibration. It
is also used in calculation of an ensemble of parameter
realisations which comprise samples of a parameter probability
distribution. Prior means and probability density functions for
hydraulic conductivity, specific storage and aquitard conductance
can be assigned on the basis of expert knowledge. Expert
knowledge can also be employed in assigning prior means and
standard deviations to pilot points which represent heads along
the north-western and eastern boundaries. Conductances along
these boundaries are not well informed by expert knowledge;
hence large prior uncertainties must be assumed. Fortunately,
they are moderately well constrained through history matching.

The assignment of prior means and variances/covariances to
coastal GHB boundary heads and conductances is a different
matter. These parameters are somewhat abstract, as they are
numerical surrogates for complex off-shore processes whose
details are poorly known. However, there are physical and
geometric constraints on these offshore processes that are set
by local geology and the mechanics of density-dependent
groundwater flow. Conceptually, these can be used to place
constraints on the values of coastal GHB boundary
parameters. It is to this subject that we now turn.

3 THE COASTAL BOUNDARY CONDITION

3.1 General
Confined and semi-confined coastal aquifers can convey fresh
groundwater 10 s or even 100 s of kilometres beyond the coast
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(Post et al., 2013; Knight et al., 2018). In confined systems, fresh
groundwater discharges where the permeable formation outcrops
on the seabed. In semi-confined systems, freshwater percolates
through the overlying low permeability formation, reaching the
sea as diffuse discharge along its bed. The offshore extent of
freshwater in the latter case is determined by the hydraulic
characteristics of the system and the stresses to which it has
been subjected.

Data on offshore and under-sea conditions is rarely available.
Stresses that determine the nature of present-day freshwater
outflow can date back thousands of years. Explicit (necessarily
stochastic) representation of these conditions in the same model
as that which is used for aquifer management may require
extension of the model grid tens of kilometres offshore; it may
also require a long “wind-up” time in which the system is
subjected to uncertain stresses. In conducting this modelling,
the effects of density differences cannot be ignored.

For exploration of VL aquifer management options, we
represent offshore conditions implicitly using a GHB.
Meanwhile, constant density, freshwater conditions are
assumed to prevail under land. This is in accordance with
current assessments of the VL subsystem. A single-layer, fast-
running model can then be used for assimilation of onshore data
and probabilistic exploration of management options.

3.2 Conditions at the Boundary
Water enters or leaves a GHB in proportion to the difference
between the head assigned to the boundary and that calculated by
the model for the cell which the boundary occupies. The constant
of proportionality is the boundary’s conductance. For a coastal
boundary condition, the head ascribed to the GHB represents a
head at some point offshore. GHB conductance represents the
resistance to flow between the model cell (i.e., the coast) and that
point. Conceptually, the coastal GHB can provide simplified
numerical representation of the hydraulic linkage between the
model and an offshore portion of the same system. However, this
simplification ignores the effects of changes in offshore storage
while assuming that the dynamics of offshore flow do not change
drastically throughout the simulated period.

Use of a GHB to represent a coastal system which is at
equilibrium resembles an approach recommended by Lu et al.
(2015). However real-world, coastal aquifer systems are rarely at
equilibrium. Semi-confined coastal aquifers in particular can take
a very long time to reach a new equilibrium because of the
relatively slow movement of the fresh-saltwater interface, and the
potentially large volume of water stored offshore (Knight et al.,
2018). Matters are further complicated when the purpose of
modelling is to assess the long-term consequences to a system
of a change in onshore pressures.

A GHB that attempts to alleviate the need to simulate offshore
conditions must be capable of representing the range of
conditions to which the onshore part of the aquifer is
subjected. In the current case these conditions are 1) those
which prevailed prior to development, 2) those which
prevailed in the last few decades when water extraction
induced a landward hydraulic gradient, and 3) those which

will prevail in the future when groundwater withdrawals are
reduced in order to promote aquifer sustainability.

Figure 3 illustrates the first two of these conditions.
Conditions in the future lie between these two extremes. The
methodology that we now describe provides a statistical
characterisation of GHB parameters that can emulate these
conditions. Its use is based on the premise that offshore
processes can be represented by time-invariant boundary
conditions over the simulation time of the VL model. We
demonstrate below that this is actually the case.

3.3 Stochasticity of GHB Parameters
Before describing the methodology through which a prior
probability distribution can be ascribed to GHB parameters,
we describe the manner in which the stochasticity of these
parameters is represented. We then describe how values of
variables which define this representation can be derived
through strategic use of a density-dependent model to
represent the range of possible offshore conditions.

Let the vector h represent heads ascribed to pilot points that
are used to parameterize the coastal model boundary of the VL
management model; let the vector c represent pilot point
conductances. Collectively, boundary parameters are therefore

FIGURE 3 | Schematic representation of (A) emergence of fresh water
through the aquitard overlying a semi-confined aquifer under pre-
development conditions, and (B) landward flow of water under conditions that
result in active seawater intrusion (adapted from Hugman et al., 2021).
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represented by the composite vector [ h
c
]. Stochastic

representation of boundary parameters requires that mean
values be provided for these parameters at the locations of all
pilot points; these mean values are represented by the vector[ h
c
]. It also requires that a covariance matrix C([ h

c
]) be

ascribed to these parameters. This covariance matrix is used to
represent spatial correlation between parameters of the same type
at each pilot point along the boundary, as well as correlation
between parameters of different types. We assume a Gaussian
probability distribution; note, however, that this assumption is
not invoked until realisations of boundary parameters are
generated for use during stochastic history-matching.
Meanwhile prior means, together with the prior covariance
matrix, form the basis of regularized inversion through which
model calibration is achieved.

Characterization of Stochasticity using a Density-Dependent
Model.

The prior mean vector and the prior mean covariance matrix

of the [ h
c
] parameter set which characterize the coastal

boundary of the VL model are obtained through a two-step
process. The first of these steps samples a one-dimensional

counterpart of [ h
c
]. We refer to this vector as [ h

c
]; it

possesses just two elements (each of them random), namely a
single head h and a single conductance c. Once enough samples of[ h
c
] have been obtained, its mean [ h

c
] and covariance matrix

C([ h
c
]) can be estimated. Samples of [ h

c
] are obtained by

running a two-dimensional, cross-section, variable density model
many times, using random samples of hydraulic properties and
geometry which are representative of the offshore VL aquifer
system.

In the second step, the stochastic description of [ h
c
] is

modified to provide a stochastic description of [ h
c
]. That is, a

mean [ h
c
] vector and a covariance matrix C([ h

c
]) are

determined. Once these are available, random realizations of[ h
c
] can be generated through standard statistical sampling.

Details of the manner in which C ([ h
c
]) is obtained are

provided in Supplementary Material. Briefly, the steps are as
follows:

1) Assume a correlation length for h and c along the boundary.
This is a heuristic decision that supports representation of
spatial variability of these variables along the boundary, while
suppressing its expression on too short or too long a
spatial scale.

2) Determine the variance of h and c and the correlation between
h and c from strategic deployment of a suite of random, one-
dimensional, sectional models in the manner described below.

3) Use linear algebra (see Supplementary Material) to derive

expressions for [ h
c
] and C ([ h

c
]) based on the above

information

Details are provided in Supplementary Material.

3.4 Details of the Density-dependent Model
A stochastic, physically based model of the offshore system is

used to obtain samples of [ h
c
]. The model is coarse, but reflects

the properties, geometry and dynamics of the real-world VL
system.

Figure 4 depicts the domain of a two-dimensional, cross-
sectional, density dependent SEAWAT model (Langevin et al
2008). This model simulates conditions which are illustrated
schematically in Figure 3. Part of its domain lies beneath
land, and part of its domain lies beneath the sea. The model
simulates head-driven flow of water through a confined aquifer
and under-sea emergence of water through a semi-confining
aquitard.

An ensemble of model realizations is constructed. Each
realization of the model is endowed with random hydraulic
properties, a random landward boundary head, and
randomized aspects of its geometry sampled from uniform or
log-uniform distributions representative of those that
characterize the VL subsystem. Table 1 lists aspects of model
design which vary between realizations.

For each model realization, aquifer and aquitard properties are
homogeneous within their respective subdomains. However, they
are different between realizations. On the seaward side of the
coast, a constant-head boundary is introduced to all top-layer
cells and along the vertical model boundary; the head is
equivalent to 0 m of salt water. Cells comprising the vertical

FIGURE 4 | Schematic representation of a two-dimensional, density-
dependent, cross-sectional model (adapted from Hugman et al., 2021).
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landward model boundary are assigned a uniform freshwater
head. Depending on the model stress period, this is either positive
(i.e., above sea level) to simulate pre-development conditions, or
negative (i.e., below sea level) to simulate present-day, extractive
conditions. The value of landward heads is randomly selected
from realization to realization. The distance from the coast to the
landward model boundary also varies from realization to
realization. Collectively, the range of post-development
landward heads, and onshore distances to these heads,
encompass those which presently prevail in the VL subsystem.

For each realization, the model is first run under pre-
development conditions until equilibrium is established. It is
then run for a 50-year period in which landward head is set
in accordance with present-day conditions. Fifty years
corresponds to the time over which groundwater has been
extracted from the VL subsystem. The last 20 years of the last
period are thus representative of conditions which prevailed
during history-matching of the VL management model
described above. For each realization, time series of simulated
concentrations and heads at the coastline, together with budget
components, are recorded.

Over all realizations the location of the toe of the interface
varies from 30 km offshore to 500 m onshore. Figure 5 shows the
freshwater head at the coast plotted against time for the 100
realizations that were employed for this study. For most
realizations, a sudden change in head occurs shortly after
landward extraction of water commences. The head remains
reasonably constant thereafter.

The difference in head across the coastline between pre-
development and development conditions is used to determine
values of h and c for a single realization of the VLmodel GHB. For
any one realization of the density-dependent model, let the
freshwater head at the coastline be Ho when water flows
toward the sea (i.e., under pre-development conditions), and
Hi when water flows toward the land (i.e. under post-
development conditions). Values of Ho and Hi are easily
obtained from outputs of this model; a value for Hi is
established by averaging model-calculated coastal heads over
the development period.

Let qo and qi denote flow of water (fresh and saline) under the
coastline during pre- and post-development conditions. Note also
that qi and qo have opposite signs. We wish to describe flow across
the coastal boundary using a GHBwith head h and conductance c.
Under outflow conditions:

qo � (Ho − h )c (1)
while under inflow conditions:

qi � (Hi − h )c (2)
These two equations can be solved for the two unknowns h

and c. The solutions are:

c � qo − qi
Ho − Hi

(3)

h � qoHi − qiHo

qo − qi
(4)

By running the two-dimensional, sectional, density-dependent

model many times, many different values of [ h
c
] can be obtained

using Equations (3), (4). Values of [ h
c
] and C ([ h

c
]) can then

calculated in the manner described above and in Supplementary
Material.

TABLE 1 | Aspects of the design of the density-dependent model which vary between realizations.

Design variable Lower bound Upper bound Units Distribution type

Aquifer horizontal hydraulic conductivity 1 100 m/day Log-uniform
Aquifer thickness 20 500 m Uniform
Aquifer porosity 0.1 0.3 — —

Aquifer specific storage 1 × 10−6 1 × 10−3 m−1 Log-uniform
Aquitard vertical hydraulic conductivity 1 × 10−4 1 × 10−3 m/day Log-uniform
Depth to top of aquitard below sea level at landward edge of model domain 0 100 m Uniform
Seaward dip of all model layers 0 6 Degrees Uniform
Pre-development landward head 5 20 m Uniform
Distance from coast to landward model boundary 2.5 5.0 km Uniform
Post-development landward head −10.0 0.0 m Uniform

FIGURE 5 | Simulated freshwater heads at the coast during pre-
development and development conditions simulated by the cross-
section model.
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4 HISTORY-MATCHING AND
DEPLOYMENT OF THE VL MANAGEMENT
MODEL
Only a brief description of history-matching and deployment of the
VLmodel is provided here. Formore details, seeHugman et al. (2021).

4.1 History Matching
History-matching of the VL model was a two-step process. First,
parameters were calibrated to obtain a parameter field of minimum
error variance using PEST_HP (Doherty, 2021). During this process,
parameter uniqueness was attained using preferred-value Tikhonov
regularization supplemented with prior parameter covariance
matrices to promote parameter field smoothness. An ensemble of
200 parameter realizations was then sampled from a linear

approximation to the posterior parameter probability distribution.
These were adjusted in order for model outputs to match field
measurements using the PESTPP-IES ensemble smoother (White,
2018).

The inversion process featured a total of 2,241 adjustable
parameters. These include 211 parameters for the set of
LUMPREM models and three sets of 565 pilot point parameters
representing hydraulic conductivity, specific storage and aquitard
conductance within the VL model domain. The remaining
parameters pertain to lateral GHB’s. Of these 58 were used to
characterize head and conductance along the coastal GHB.

The history-matching observation dataset included both hard
and soft data. LUMPREM-calculated water demands were
compared to measured extraction rates recorded by
groundwater users where these are available. Simulated heads
were compared to borehole heads measured in the piezometric
monitoring network. Temporal head differences were also
compared; this encourages the history-matching process to
replicate seasonal head variations. The calibration dataset also
included constraints of minimum heads in abstraction wells and
upper limits on lateral recharge.

4.2 Model Deployment
4.2.1 Components of the Water Budget
Compliance with the European Water Directive (WFD)
requires evaluation of components of the VL subsystem
water balance. Time series of water budget components
were computed using 200 samples of the posterior
parameter probability distribution calculated by PESTPP-
IES. These include flows through the coastal model
boundary, through each of the landward model boundaries,
and from the overlying unconfined aquifer. It also includes
LUMPREM-calculated extraction rates. Figure 6. Time-
averaged components of the water balance, together with
respective uncertainty standard deviations, are listed in
Table 2.

Features of interest in Table 2 include the following:

• Inflow to the deep (exploited) aquifer from the overlying
unconfined aquifer comprises only a small component of
the overall water balance.

• There is a considerable influx of water to the system from
the seaward side of the coastal boundary.

• Inflow to the system from the north-western boundary
is large.

• Uncertainties associated with all lateral boundary inflows
are large.

FIGURE 6 | Time-series for each of the VL water balance components
simulated with the post-history-matching parameter ensemble (blue lines); net
flow through the (A) eastern, (B) north-western (C) aquitard and (D) coastal
boundaries, and (E) extracted through pumping. The black line
highlights time series calculated using the parameter set achieved through
model calibration (adapted from Hugman et al., 2021).

TABLE 2 | Water balance of VL aquifer over the history-matching period.

Inflow from Mean (Mm3/yr) Standard deviation (Mm3/yr)

Eastern boundary 0.23 0.59
North-western boundary 2.30 0.89
Aquitard 1.4 × 10−3 0.01
Coastal boundary 2.64 0.42
Pumping −5.17 0.17
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The WFD requires that groundwater extraction be less than
90% of average annual (freshwater) recharge in managed
groundwater systems such as Vale do Lobo by 2027. This
criterion is simplistic and difficult to apply to the VL
subsystem, as extraction from the system induces recharge.
Nevertheless, if Table 2 is viewed as a static ledger, it can be
established that 2.9 ± 1.07 Mm3/yr of extra recharge is required if
all non-coastal inflow is to exceed pumping. This value represents
the lower limit of additional recharge (or reduced abstraction)
that is required to meet WFD requirements. However, it probably
underestimates alterations to the current water balance that are
required to preclude the threat of saltwater intrusion.

4.3 Optimal Distribution of Extraction
VL irrigation is almost entirely dependent on groundwater
extraction. Reduction of extraction is a prerequisite for reducing
the risk of seawater intrusion. However, a strategic distribution of
extraction locations may mitigate the amount by which extraction
must be reduced in order to ensure sustainability.

The VL management model was used to calculate how much
water can be extracted from the VL subsystem under the constraint
that extraction remains sustainable. Decision variables in this
optimisation problem are extraction rates employed by the nine
major VL groundwater user groups; it is assumed that the wells from
which these groups extract water is unchanged from that which they
presently employ. As extraction rates attributed to these user groups
change, so too does the geographical distribution of groundwater
extraction from the VL subsystem.

Maximization of extraction is subject to a single constraint.
This is that there be zero net flow of water landward from the VL
coastal boundary into the model domain. We recognise that this
constraint does not preclude seawater intrusion. It only ensures
net freshwater discharge to the sea. Extraction rates which satisfy
this constraint may exceed those that preclude seawater intrusion.
Thus, outcomes of this optimisation problem provide an upper
estimate of the sustainable rate of extraction from the VL
subsystem. More detailed constraints can be imposed if this
value is large enough to warrant further investigation. Results
presented below suggest that it is not likely to be worth the effort.

4.3.1 Difficulties
History-matching ascribes high conductances to the eastern GHB
of the VL model. This indicates that the VL system cannot be
managed in isolation. Pumping of the deep aquifer to the east of
this boundary lowers groundwater levels within the VL
subsystem. (Recall the artificial nature of the VL management
boundary.)

To accommodate this issue the optimization problem is solved
with five different head distributions ascribed to the eastern GHB,
these simulating five different intensities of water extraction from
the neighbouring subsystem. The highest of these five head
distributions mimic pre-development conditions in which
extraction from the neighbouring, easterly subsystem is
minimal. The lowest of these five head distributions are
slightly above those that characterise present-day conditions.
The optimization problem is solved five times, once for each
of these boundary head distributions.

To accommodate parameter uncertainty, these optimization
problems are solved in two different ways. First the VL model is
endowed with a single parameter set, namely the parameter set
emerging from model calibration. We refer to these five solutions
as “risk neutral”, for they take no account of posterior parameter
uncertainty. Ideally the calibrated parameter field, and model
predictions that are made using this field, lie somewhere near the
centre of their respective posterior probability distributions.
These optimization problems are solved using the PESTPP-
OPT optimizer that is supplied with the PEST++ suite.

We then solve the optimization problem using the ensemble of
parameter sets that were calculated by the PESTPP-IES ensemble
smoother. In this case, definition of the optimization constraint is
varied to accommodate parameter uncertainty. Groundwater
extraction is now optimized under the constraint that inland
flow from the coastal boundary is zero or less (i.e., flow is
outward) for all 200 parameter fields that comprise samples of
the posterior parameter distribution. This simulates the operation
of a risk-averse management strategy. This optimization-under-
uncertainty problem is solved using the CMAES_HP global
optimizer (supplied with PEST_HP).

4.3.2 Results
Risk neutral and risk averse solutions to the optimization problem
are depicted in Figures 7A–C. The vertical axis of Figure 7A
expresses optimal total extraction as a fraction of current
extraction; the horizontal axis expresses conditions at the eastern
boundary using an observation well that is close to this boundary.
Figure 7B, C depict the distribution of optimized extraction between
user groups. Themajor groundwater users in the area are several golf
courses, an area of intensive agriculture and distributed small users.
They are intentionally not named in Figure 7 for privacy.

As stated above, the lowest of the five head distributions
attributed to the eastern GHB corresponds to heads that are
slightly above those that are currently being experienced.
Figure 7A demonstrates that it is not possible to obtain a feasible
solution to the constrained optimization problem under head
conditions that are any lower than this, including those which
characterise present-day conditions. It follows that if water use on
the other side of the eastern boundary continues at its current rate,
any extraction from the VL aquifer is unsustainable regardless of the
risk stance. This is because eastern groundwater extraction induces
landward flow of water through the VL subsystem. The VL
subsystem cannot be managed in isolation.

5 DISCUSSION AND CONCLUSION

5.1 The “Simple” Model Setup
It is apparent from the above description that construction,
calibration and deployment of the simple model that is described
herein requires a rather complicated workflow. The model is
“simple” in that it runs fast and is numerically stable; this is
achieved by representing processes and structure through simple
functions and boundary conditions. All of these are customized, this
requiring that software be written for their implementation and
parameterisation. Fine-tunning this setup required some trial-and-
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error; the workflow was revisedmany times as modelling proceeded.
This is not an uncommon occurrence in real-world, decision-
support modelling. The advent of new information, and lessons
that are painfully learned during model development, frequently
require that modelling plans be considerably revised. Fortunately, all
components of all of the workflows that are outlined in this paper are
scripted. Furthermore, the run time of the management model is
small. This allowed rapid experimentation and testing of different
ideas in ways that were flexible and reproducible.

All real-world modelling is difficult. Innovation is a necessity.
“Back to the drawing board” moments are common. The
advantages of reproducibility and reduced mental overhead
that are enabled by a scripted workflow and a structurally
simple model cannot be overemphasized.

5.2 Complementary Models
This paper demonstrates how abstract, non-physical parameters that
characterise the boundary conditions of a fast-running, decision-
support model can be informed by expert knowledge. This enables
derivation of the prior expected values of boundary condition
parameters, as well as characterisation of the prior uncertainties
of these parameters. This obviates the need for non-informative
priors whose use may unnecessarily inflate the posterior
uncertainties of decision-critical model predictions.

Themethodology described herein is based on the conjunctive use
of two models. One of these models is complex. Its role is to simulate
system structures and processes that are represented in an abstract
manner in a complementary, simple, fast-running model that is
designed with data assimilation and uncertainty quantification in
mind. Simulation of hydrogeological complexities by the complex
model cannot be exact, for many of the structures and processes that
it includes are only vaguely known. Its task is to represent the
ramifications of this vague knowledge for parameters that are
assigned to part of the simpler management model—one of its
boundary conditions in this case. Representation of this boundary
must be stochastic. To the extent that expert-knowledge-informed
stochasticity of the complex model can limit the stochasticity of

management model boundary parameters, the latter’s role in
supporting environmental decision-making is enhanced, for the
uncertainties of some of its predictions may thereby be reduced.

It is evident from the above that such an approach is of value in
cases where 1) prediction uncertainty is affected by abstract
parameter uncertainty and 2) this uncertainty is not reduced
through history matching. In such cases, as discussed, expert
knowledge can be an important (or only) source of information to
constrain decision-pertinent uncertainties.

Figure 8 displays a generalisation of our workflow. It can be
summarized as follows:

• A simple model is constructed in which numerically
problematic processes and structures are replaced with
approximate representations that are populated by non-
physically based parameters. Forecasts of interest simulated
by the simple model are affected by the uncertainties of
these parameters where these cannot be adequately
constrained by field observations of system states and fluxes.

• A complementary complex model is constructed which
explicitly represents some of the processes and structures
that prevail at a study site. Prior probability distributions
for parameters of the complex model are characterized
using expert knowledge derived from site characterisation.
The complex model is populated using an ensemble of
parameter fields sampled from this expert-knowledge-
informed prior probability distribution. From the outcomes
of many complex model runs, equivalent values for the more
abstract parameters of the simple model are calculated.

• Samples of abstract parameters which are thus obtained are
used to characterize the prior probability distribution of
simple model parameters.

• The simple model is then subjected to stochastic history-
matching. Posterior parameter probabilities obtained
through this process therefore reflect information gained
from both measured data and expert knowledge. These are
used to explore predictive outcomes of management interest.

FIGURE 7 | (A) Solutions to constrained extraction optimization problems and, relative extraction rates for different user groups for (B) the five solutions of the risk
neutral optimization problem and (C) the three solutions of the risk averse optimization problem (adapted from Hugman et al., 2021).
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It is safe to say that few, if any,modelling alternatives to the approach
that we have documented herein would have enabled data assimilation,
uncertainty quantification, and exploration of optimized management
strategies for the VL subsystem in ways that were achieved with the
present modelling strategy. The option of building a single, complex,
density dependent model (an option that is often taken in coastal
contexts) would have made high-end data assimilation and uncertainty
quantification almost impossible because of long run times and likely
numerical instability. These problems would have been exacerbated if
the domain of this model was made to extend for a considerable
distance under the sea in order to simulate freshwater outflow. This
could not have been accommodated in a properly stochastic fashion.
Simplifications in representing outflow conditions and testing of only

one or a small number of outflow options, may have led to
unquantifiable predictive bias.

Decision-support modelling always requires compromises. These
compromises do not result in loss of “simulation integrity”, for
integrity of simulation is an unachievable goal. If the task of decision-
support modelling is properly defined (see, for example Doherty and
Moore, 2021), the search for a compromise requires that reduction of
uncertainty accrued through assimilation of expert knowledge be
traded off against reduction of uncertainty accrued through history-
matching. If a model is structurally simple, if may be capable of
fitting a history-matching dataset very well. However, if this dataset
is not rich in prediction-specific information, the parametric and
predictive bias that may be incurred through model structural
simplicity, may outweigh the benefits of assimilation of these
data. Meanwhile, use of an abstract model design may have
precluded parameter value insights gained from expert knowledge
of real-world hydraulic properties. The optimal compromise will
always be context and prediction specific.

This study demonstrates that selection of an appropriate level of
model structural complexity does not always have to be an “either/
or” choice. This is because themodel that performs data assimilation
does not need to be the same model as that which is used to extract
information from expert knowledge. Two different models can be
used conjunctively for these two different purposes. They can “meet”
at a boundary condition of the data assimilation model. The
parameters of this boundary condition are thereby provided with
prior probability distributions that reflect process and properties that
aremissing from themodel itself, but thatmay have profound effects
on the uncertainties of management-critical predictions.

By separating the tasks of assimilating information that is resident
in measurements of system state on the one hand, and assimilating
information that is resident in expert knowledge on the other hand,
each model can be tuned to its primary task. Fast execution speed
and numerical stability are primary requirements for the former task.
An ability to represent the range of possible conditions that are
compatible with expert knowledge is a primary requirement for the
latter task. The “complex”model that was used for the latter task in
work that is documented herein, was actually not very complex; it is
a two-dimensional sectional model. However, its two-dimensional
design enhanced, rather than impeded, its ability to explore a wide
range of hydraulic and geometric possibilities for undersea
emergence of fresh water off the coast of Vale do Lobo. These
possibilities were then made available to the management model
through stochastic characterisation of its coastal boundary condition.

5.3 Final Remarks
Decision-support modelling in coastal areas is notoriously
difficult. Uncertainties are often high. The potential of
available data to reduce these uncertainties may be limited.

This may be a blessing rather than a curse. Compromises must be
made. These compromises often require that a modeller identify
sources of information that may be most effective in reducing the
uncertainties of predictions that he/she cares about. Modelling must
then be tuned to extraction of information from these sources
without inducing bias or inflating uncertainties by impeding or
distorting the flow of information from other sources to too great an
extent. However, where uncertainties are already high, the costs in

FIGURE 8 | Diagram of a workflow that uses complementary models to
extract information from both expert knowledge and measurements of
system state.
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extra uncertainty that are incurred by designing a model, and a
modelling workflow, that are optimal for one task but not necessarily
another, may not be great in comparison to these inherent,
background uncertainties that are born of information
insufficiency. This gives a modeller the freedom to test different
workflows, and then tailor them to suit his/her needs.

We have demonstrated in this paper that strategic use of
complementary models may make modelling choices less painful. A
“win/lose” choice can be transformed into a “win/win” choice.Wehave
also attempted to demonstrate that where innovation is required, the
use of automated workflows allows amodeller to free him/herself from
the yoke of having to adhere to one particular workflow. Different
options can be rapidly tested. Once a suitable option is discovered, it
can be rapidly improved. The cost of exploration becomes remarkably
low. The journey of discovery becomes remarkably rewarding.
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Automated Hierarchical 3D Modeling
of Quaternary Aquifers: The ArchPy
Approach
Ludovic Schorpp1*, Julien Straubhaar1 and Philippe Renard 1,2

1Centre for Hydrogeology and Geothermics, University of Neuchâtel, Neuchâtel, Switzerland, 2Department of Geosciences,
University of Oslo, Oslo, Norway

When modeling groundwater systems in Quaternary formations, one of the first steps is to
construct a geological and petrophysical model. This is often cumbersome because it
requires multiple manual steps which include geophysical interpretation, construction of a
structural model, and identification of geostatistical model parameters, facies, and
property simulations. Those steps are often carried out using different software, which
makes the automation intractable or very difficult. A non-automated approach is time-
consuming and makes the model updating difficult when new data are available or when
some geological interpretations are modified. Furthermore, conducting a cross-validation
procedure to assess the overall quality of the models and quantifying the joint structural
and parametric uncertainty are tedious. To address these issues, we propose a new
approach and a Python module, ArchPy, to automatically generate realistic geological and
parameter models. One of its main features is that the modeling operates in a hierarchical
manner. The input data consist of a set of borehole data and a stratigraphic pile. The
stratigraphic pile describes how the model should be constructed formally and in a
compact manner. It contains the list of the different stratigraphic units and their order in the
pile, their conformability (eroded or onlap), the surface interpolation method (e.g., kriging,
sequential Gaussian simulation (SGS), and multiple-point statistics (MPS)), the filling
method for the lithologies (e.g., MPS and sequential indicator simulation (SIS)), and the
petrophysical properties (e.g., MPS and SGS). Then, the procedure is automatic. In a first
step, the stratigraphic unit boundaries are simulated. Second, they are filled with
lithologies, and finally, the petrophysical properties are simulated inside the lithologies.
All these steps are straightforward and automated once the stratigraphic pile and its
related parameters have been defined. Hence, this approach is extremely flexible. The
automation provides a framework to generate end-to-end stochastic models and then the
proposed method allows for uncertainty quantification at any level and may be used for full
inversion. In this work, ArchPy is illustrated using data from an alpine Quaternary aquifer in
the upper Aare plain (southeast of Bern, Switzerland).

Keywords: automated modeling, geological modeling, stochastic, hierarchy, Quaternary, Python, open-source,
multiplepoint statistics
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1 INTRODUCTION

When constructing a 3D groundwater flow model, one of the first
steps is to build a geological model. This includes defining the
geometry of the stratigraphic units, filling them with a spatial
distribution of lithofacies, and finally filling the lithofacies with
petrophysical parameter values. The construction of these models
is often complex and involves multiple assumptions and
computing tools (Pyrcz and Deutsch, 2014; Ringrose and
Bentley, 2016; Wellmann and Caumon, 2018). It is necessary
to evaluate the uncertainties related to the parameter values, and
indeed, geological structures of the aquifer or inversion using
hydrogeological or geophysical data are also important sources of
uncertainty. It is therefore extremely important to be able to
construct all the components of these geological models in a
manner that is fully automated, well documented, and repeatable.
In this study, our aim is to introduce a new tool that can be used
for this purpose for Quaternary aquifers.

The history of geological modeling techniques is rich and
diverse (Matheron, 1963; Mallet, 1989; Koltermann and Gorelick,
1996; Ringrose and Bentley, 2016). However, some geological
features such as the Quaternary formations are still difficult to
model. These sediments were deposited during various
sedimentological events, acting at different scales, both
temporally and spatially, leading to complex relations and
hierarchical structures. Larger and bigger units are the results
of the aggregation of subunits of smaller hierarchical order that
can themselves be the results of the aggregation of sub-subunits of
even smaller hierarchical order, and so on (Miall et al., 1991;
Heinz and Aigner, 2003; Bridge, 2009). The definition of this
stratigraphic hierarchy is very important when analyzing field
data (Aigner et al., 1996; Ford and Pyles, 2014) but also to develop
stochastic modeling techniques.

However, one difficulty is that the concept of hierarchy is used
differently depending on the modeling techniques, and the
hierarchical modeling does not necessarily match exactly what
is meant by stratigraphic hierarchy. For example, Neuman (1990)
approached the question of the hierarchy by showing that it is
likely that the hydraulic conductivity of hierarchical sedimentary
deposits should have a truncated-power law variogram, while
Ritzi et al. (2004) used the same type of tools but derived different
types of variograms. In these approaches the sedimentological
heterogeneity is not represented explicitly but represented by
multi-Gaussian fields having specific correlation structures. On
the other hand, Scheibe and Freyberg (1995) and Ramanathan
et al. (2010) constructed highly detailed simulations of fluvial
deposits using the concept of hierarchical deposits to investigate
the effective properties of these types of sediment.

Whenmodeling aquifers, the word hierarchy is often used with
a slightly different meaning. It generally means that the modeling
of the hydraulic conductivity field includes several steps such as
the modeling of stratigraphic units using a given technique,
followed by the modeling of the lithofacies within the
stratigraphic units, and, finally, followed by the modeling of
the hydraulic conductivities within the facies. This hierarchical
modeling approach may include only two or all of these steps. It
was used in many case studies (Weissmann and Fogg, 1999;

Feyen and Caers, 2006; Comunian et al., 2011; Bennett et al.,
2019). We note that this approach can be refined by using
categorical geostatistical modeling methods to define
stratigraphic units in which subunits can be modeled again
using categorical simulations tools and so on to obtain
multiple levels of hierarchy (Zappa et al., 2006; Comunian
et al., 2016). But this last method does not account for the fact
that sedimentary units are usually deposited as subhorizontal
layers and that, in general, their geometry is controlled by a set of
stratigraphic rules. Other methods account for that information,
such as the implicit interpolation method implemented in
Geomodeller 3D or in Gempy software (Calcagno et al., 2008;
de la Varga et al., 2019). In this approach, the user defines the
order of the stratigraphic units and the relations between them,
allowing us to automatically model the volumes. This is
convenient for building complex models in an efficient
manner, but Zuffetti et al. (2020) showed that these tools
cannot properly handle the concept of subunits within a
stratigraphic unit. These authors therefore propose to
formalize the stratigraphic hierarchy and define rules allowing
us to automatically construct 3D models based on that concept,
and they show promising results.

All these observations show that there is still a need for a tool
that would facilitate stochastic 3D geological modeling. The tool
must allow the user to conduct a complete and proper uncertainty
quantification including uncertainty at the level of the unit
geometry as well as their lithologies and properties. The tool
must allow for carrying out cross-validation efficiently, meaning
that it must be possible to remove any type of data and
reconstruct an ensemble of models automatically. The model
must also be easy to update when new data are acquired or if the
geological interpretation is modified.

The aim of this study is to present the ArchPy approach. The
method includes the two types of hierarchy discussed earlier.
ArchPy defines the stratigraphic units from borehole data while
accounting for as many hierarchical levels as needed from a
stratigraphic point of view. But the method is also hierarchic in
the sense that the same method will include the modeling of the
stratigraphic units and then the modeling of the lithofacies within
the units and, finally, the modeling of the properties within the
lithofacies. ArchPy is a methodology but it is also a Python
module allowing the automatic generation of stochastic,
reproducible, and hierarchical models from borehole data and
a geological concept.

To minimize the user interventions during the simulations, we
rely on a formal description of the geological concept that ArchPy
uses to construct the hierarchical model. This type of formal
description is not new; it was described, for example, by Renard
and Courrioux (1994) for fracture networks, and is at the core of
Geomodeller 3D or Gempy in which a geological pile is defined to
express the relations between the geological events and must be
given explicitly (Calcagno et al., 2008). However, as revealed by
Zuffetti et al. (2020), the manner in which the pile is defined and
used in these codes does not allow us to describe the stratigraphic
hierarchy. It is therefore necessary to find more general ways to
describe the pile. One approach, using a tree, was proposed in the
study by Zuffetti et al. (2020). Here, we adjust this initial data
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structure, and we extend it to include additional information
allowing us to encapsulate all the knowledge required to
automatically build the 3D model. We call this formal
description the stratigraphic pile (SP). The SP contains the
description of the interpolation methods for all surfaces
bounding the stratigraphic units, as well as the description of
the simulation methods and parameters for filling the different
units with lithofacies and properties.

It is important to note that the geological data in boreholes
or outcrops are not always representing the actual position of
the boundary between two units; instead, they indicate that
this boundary should be lower or above these data. Such
situations arise in the presence of erosion or hiatus in the
deposition sequence or because a borehole is too shallow and
does not reach the base of a given unit. These data are frequent
and can be treated as inequalities (Dubrule and Kostov, 1986;
Mallet, 1989; Freulon and de Fouquet, 1993; Straubhaar and
Renard, 2021). The use of such data can significantly increase
the quality of the simulations as shown, for example, by
Freulon and de Fouquet (1993). In the ArchPy
methodology, we include not only the possibility of
interpolating the boundaries between stratigraphic units
using such inequalities but we also propose a method to
automatically identify the inequalities in the borehole data
to facilitate the automatic updating of models with large
borehole data sets.

ArchPy is also an object-oriented Python package allowing us
to illustrate the applicability and the benefits of the proposed
approach. While describing the methodology, we will also discuss
the key objects that are used to implement the concepts
underlying the approach. Its Python interface and open-source
nature facilitate its use for a large number of users.

The main novelty of the proposed approach and this software
is to allow fast and reproducible simulations of Quaternary
aquifers as well as their related uncertainties to any desired
hierarchical level (unit, subunits, facies, and properties).

This article first describes the different components of the
ArchPy approach and then illustrates its main features using a
synthetic and a real case example.

2 ARCHPY APPROACH

In this section, we first present a brief overview of the main
components of the proposed methodology. We then describe in
detail the concept of stratigraphic pile (SP) and the way we deal
with the stratigraphic rules (erosion and hiatus). All the
simulation steps and modeling guidelines are explained using
a synthetic case. In the following sections, for the sake of brevity,
the word unit will refer to the stratigraphic unit as defined in the
SP and lithology or facies will refer to the different lithofacies that
can be found inside these units.

2.1 General Overview
The final aim of ArchPy is to generate an ensemble of
petrophysical models (or property models) that describe the
spatial distribution of specified properties consistent with the

location of the units and facies. To achieve these results, ArchPy
proceeds in several steps (Figure 1). The input data are a
stratigraphic pile (SP) and a set of hard data (HD). The HD
can be either borehole data or punctual information (e.g., from
outcrops). First, the HD are processed to extract the contact
points (equalities and inequalities). Then, a whole simulation
takes place hierarchically in three main steps:

FIGURE 1 | Overview of the ArchPy approach.
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1) simulate the surfaces delimiting the unit boundaries and thus
allowing the definition of the stratigraphic unit domain;

2) simulate the facies to fill each unit using various geostatistical
methods according to prior geological knowledge; and

3) simulate the properties inside each facies independently.

All these steps are done conditionally to the HD. In the end,
the final models are validated by the user. If they are not satisfying
(based on expert knowledge or on some criterion), the SP can be
modified (e.g., on the simulationmethods), and previous steps are
re-executed, depending on the modified parameters.

ArchPy can be used in several manners. It can be used to
generate one or an ensemble of models to quantify uncertainty. It
can be used to facilitate the update of geological models when new
data are collected in the field. It can also be coupled with an
inversion technique to express the prior distribution of the
geological and petrophysical parameter values.

It is important to note that each step depends on the results of
the previous ones. For example, after a first complete simulation,
if the only parameters changed are those of the filling step, it will
only be required to simulate the facies in the units and,
subsequently, the properties inside them. Similarly, if only one
surface has been recomputed and the others have been kept, the
only unit domains that will need to be re-simulated (as well as
their filling) will be those impacted by a modification of this
surface. This flexibility is important for dealing with large inverse
problems as the number of unknown parameters can make the
problem tedious and difficult (Biegler et al., 2011). It allows us to
focus on particular units of interest and only simulate parts of the
domain at any desired level, without being forced to simulate the
whole system each time a modification is decided.

2.2 Stratigraphic Pile
The concept of stratigraphic pile (SP) is the backbone of the
ArchPy methodology. Indeed, it contains almost all the
information needed for the simulations, including the
stratigraphic relations between units and the description of
the simulation methods of the surfaces, the filling, and the
properties as well as the parameters controlling them
(Figure 2). The SP is made of different components (coded
as Python objects): units, surfaces, facies, properties, and
possible other piles. Following an object-oriented
programming logic, all these objects have different attributes
(name, color, interpolation method, etc.) that define and
differentiate them. These object attributes can also be
composed of other different objects. A practical example is
the unit object which has a list_lithofacies attribute,
containing the lithofacies objects that populate this unit.

1) Surfaces. They delimit the top of the units and are defined
using an interpolation (or simulation) method and by a
contact type to indicate if the surface is conformable
(onlap) or erosional (erode). The difference is that an
erode surface erodes older units where it is simulated
below their top surface while an onlap surface is simply
ignored in such locations, meaning there is no deposition
(see Section 2.3).

2) Units. They correspond to stratigraphic units that can be
observed in HD or on outcrops. Each unit belongs to an SP,
and has a specific order index to determine its position in the
pile. A unit also needs a surface object to determine its upper
boundary, and its lower boundary is defined by the surface at
the top of the underlying unit. Finally, the unit contains a
description of the filling method and a list of facies objects to
simulate inside the unit domain.

3) Facies. The facies describe the hydro- or lithofacies that are
contained inside the units. They can be very different
depending on the modeling purposes and data available
(e.g., stratigraphic facies, lithologies, or USCS codes). A list
of facies is given for each unit to indicate which ones to
simulate during the facies simulation. Furthermore, each
facies can be composed by one or more properties that are
simulated inside the facies domain (where a specific facies is
present).

4) Properties. They are independent ArchPy objects that
composed the different facies. For each property inside a
facies, some parameters can be set, such as the mean value
of the property (inside a specific facies), the covariance model,
and the method of simulation.

5) Stratigraphic Pile. An SP is the combination of all the objects
described before that synthesize the geological concept. Note
that an SP can be inserted as a filling method within a unit.
This allows us to construct a stratigraphic hierarchy. For
example, in Figure 2, the sub-pile PB is used as input for
filling unit B.

Thus, the stratigraphic pile is an object that can easily be
manipulated and modified. Using such an approach, the user
can focus more on the conceptual aspects of the modeling (unit
relations, erosional events, spatial distribution of the lithologies
or facies, etc.). In clear terms, the whole modeling process can be
easily reproduced because all the steps are documented in
the SP.

2.3 Erosion Rules
Erosion (stratigraphic) rules (ERs) describe how the surfaces
influence each other after having been simulated. They are
similar to those denominated “geological rules” by Calcagno
et al. (2008). Figure 3 shows a simple example of the
difference between onlap and erode behaviors. Here, two
surfaces are simulated: S1 (old) and S2 (young), while the gray
surface is simply set to the topography or the digital elevation
model (DEM). S1 is defined onlap and S2 has both behaviors. If
S2 is specified onlap, unit 2 (young, in black in the figure) is not
deposited where S2 is below S1, whereas if S2 is specified erode,
the effective top of unit 1 (young, in yellow in the figure) is set to
S2. This approach allows incorporating geological time directly by
choosing the appropriate truncation operation to remain
consistent with the sedimentological history (Wellmann and
Caumon, 2018). Another rule is that a surface cannot be
above (or below) the DEM (resp. bottom of the domain); if
this case arises, the surface will be automatically set to the DEM
(resp. bottom). These ER are applied each time a new surface is
simulated during the surface simulation.
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2.4 Synthetic Example
To illustrate the ArchPy capabilities, Figure 4 shows one stochastic
realization of hydraulic conductivity and porosity based on the SP
of Figure 2. The domain dimensions (x, y, z) are 3 × 1 × 0.2 km3

with a spatial resolution of 15 × 15 × 4 m3. The model is purely
synthetic, but it mimics a valley filled by a series of sedimentary
episodes. For this example, we assume that unit A is a moraine
deposit only filled with gravel and silt. The B formation is deposited
during three sub-steps (sub-pile PB, Figure 2). It represents a
fluvio-glacial environment including three stages (B1, B2, and B3).
On top of that, unit C is an important glacio-lacustrine phase
where only fine particles are deposited (clay and silt). Unit D ends
the process by setting up a fluvial environment that was more
active in the southern part of the area (toward the -y main axis).
The different steps to obtain this result will be explained in detail in
the following sections.

2.5 Data Pre-Processing
The main hard data to describe the geology in a Quaternary
environment are the borehole information. For each borehole,

ArchPy requires the following: a borehole ID, the depth, and
location (x, y, and z) of the borehole as well as a stratigraphic unit
log and/or a lithology log. Both logs contain the elevation of the
top of the interpreted units and lithologies in the simulation grid
reference system. These locations will be used as the conditioning
point for simulations. An important thing to note is that the logs
of borehole objects in the ArchPy interface only need top
elevation for each unit/lithology encountered. To facilitate the
geostatistical simulation of the properties, we consider only
regular Cartesian grids for the moment in ArchPy (to avoid
support effects). The extension and parameters of the grid are
provided by the user. The SP and eventual sub-piles are also given
as input. We then pre-process the borehole data (HD) to check
that they are consistent with the SP and to extract the contact
points between the units. The difficulty here (which is not
intuitive) is that a contact between two units in a borehole
does not necessarily correspond to the top of the unit located
below this contact because of possible erosion or sedimentation
hiatus. It is therefore necessary to analyze the borehole logs to
identify the information that the contacts bring about the possible
positions of the surfaces. To code this information, we will define
contact points where the position of the surface is perfectly
defined (equality contact point) and those which provide only
indirect information (inequality contact point). Formally, an
inequality contact point consists of a lower or upper bound
for the actual surface.

Figure 5 shows how HD are interpreted automatically in the
ArchPy pre-processing step given four different examples. We do
not fully detail each example for brevity, but the main points are
covered.

Considering the example showed in Figure 5A, three surfaces
need to be simulated: blue, green, and red tops (the yellow top is
defined by the DEM). Equality points can be safely attributed in
B1 between all contacts as there are no hiatus and no erosion layer
in the Pile. However, in B2 and B3 boreholes, as the blue outcrops
directly, its topmust go above the surface, assuming erosion at the

FIGURE 2 | Schematic representation of an ArchPy stratigraphic pile (B) given a geological concept (A); interp. method, interpolation method; GRF, Gaussian
random functions; DEM, digital elevation model; Prop method, property simulation method; MPS, multiple-points statistics; SIS, sequential indicator simulation; TPG,
truncated pluri-Gaussians; HO, homogeneous; K, hydraulic conductivity; FFT, fast Fourier transform; SGS, sequential Gaussian simulation.

FIGURE 3 | Schematic example of the erosion rules (ER) used in ArchPy.
The surfaces are first simulated from oldest to youngest and then adjusted
following the ER.
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surface. This means that the tops of the borehole B2 and B3 are
then lower bounds for the top of the blue unit. Also, the red unit is
not encountered by B2 which indicates that it must go below the
bottom of the borehole which is an upper bound for the top of the
red unit. The Figure 5B example adds an erosional event (the blue
top) that cross-cuts the green and red top layers. This implies that
we must add an inequality contact point (lower bound) in B3 for
the green top and equality contacts along the erosion surface (B2
and B3) for the blue top because of the ER. Indeed, the green top
in B3 cannot be considered as the actual green top since the green
unit has been eroded. The same event occurs in Figure 5C in B3
where the red unit has been eroded by an erosional event (the
green top).

The more complex example (Figure 5D) shows that the
number of extracted data can become important, especially
when the number of layers increases. Here, additional outcrop
information has been added with unit contacts (C1 and C2) that
inform about a transition between two units. Yellow goes above as
it is the unit reaching the topography. The contact between yellow
and blue is an equality for blue (the only erode layer above blue is
yellow, but it has been deposited and thus cannot have eroded
blue). The bottom of B2 ends in the blue unit which indicates that
all layers below it (dark green and red) must go below the bottom
of the borehole. When two units in a borehole are separated by
two (or more) erosion surfaces, ArchPy assumes that the contact
belongs to the younger erosion surface. This is shown in

FIGURE 4 | Realizations of two different properties ((A) hydraulic conductivity and (B) porosity) for the synthetic case. (C) and (D) are 3D blocs of the (A) and (B)
realizations, respectively. The simulations used respective corresponding facies realizations of Figure 7 as simulation domains. Vertical exaggeration = 3x.

FIGURE 5 | Four examples (A–D) of how inequalities and equalities are extracted from boreholes and field data. (B) indicates borehole information and (C) a unit
contact (e.g., observed on the field). For each example, a stratigraphic pile is defined to indicate the relationships between the units and the nature of the surface contact
(straight line is onlap and corrugated is erode). Dashed lines represent simulated surfaces before applying erosion rules (see Section 2.3).
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Figure 5D at B4 between the orange and dark green units. In the
pile, these two units are separated by two other units (blue and
yellow) characterized by their erosional top. As yellow is younger
than blue, the equality point is attributed to yellow.

All boreholes are then processed this way, and HD are
extracted and assigned to respective surfaces. It is relevant to
note that this step is completely automated in ArchPy and the
only required inputs are the SP, the boreholes, and the
simulation grid.

2.6 Simulation of the Surfaces and Units
Using the HD and the information provided by the SP, ArchPy
performs a 2D simulation (interpolation) for each surface of the
SP over the complete domain. Simulations are generally
performed conditionally on HD, but unconditional simulations
are also possible by defining a mean altitude.

The surfaces are simulated successively from the oldest to the
most recent (for a hierarchic level). After having simulated a
surface, we apply the ER (see Section 2.3). The surfaces are also
simulated hierarchically, which implies that surfaces of higher
order (main units) are simulated before those of lower order
(subunits). For example, in the case of the pile in Figure 2,
ArchPy first computes the surfaces of the top of A, B, and C, and
only after, the surfaces of the top of B1 and B2 are computed
inside the unit B. It means that no surface of the top of these
subunits can go above or below the limits of B unit, even if it is an
erode surface. The other lower hierarchical units (if present) are
simulated following the same strategy. The top unit surface is not
simulated since it must be equal to the digital elevation model
(DEM) for consistency; it is then simply set as equal to the DEM.
Equivalently, as lower limits of all units are defined by the top of
the underlying unit, the bottom last unit must be defined. In
ArchPy, this is done by setting it to the bottom of the simulation
domain.

In the SP, the user must indicate an interpolation method
for each layer among the following choices: simple and
ordinary kriging (SK and OK, resp., Chilès and Delfiner,
2009), multi-Gaussian random functions with or without
inequalities (GRF, Chilès and Delfiner, 2009), basic 2D
interpolation methods (linear, nearest neighbors, and cubic)
using SciPy (Virtanen et al., 2020), and, finally, direct sampling
multiple-points statistics algorithm with or without
inequalities (MPS, Mariethoz et al., 2010; Straubhaar and
Renard, 2021). For the multi-Gaussian simulation methods,
a normal-score transform can be applied automatically to the
HD if they do not follow a Gaussian distribution. Most of the
methods are taken from the Python module Geone that
provides a set of geostatistical and MPS modeling tools. For
each method, the user has to provide the set of required
parameters. For example, for the kriging or multi-Gaussian
simulations, a variogram model must be provided. The
inference of the parameters can be done manually or
automatically if sufficient data are available using the Geone
toolbox. For the MPS approach, a training image and the
relevant parameters also need to be provided. Anisotropy can
be easily modeled by choosing appropriate variogram or MPS
parameters.

Once all the surfaces of the SP are defined, it is straightforward
to define the volumes representing the units (unit domains),
knowing the top and bottom surfaces for each unit according to
the ER. These volumes are discretized by defining which cells are
intersected by the surfaces for each (x, y) location. All the cells
lying vertically between these 2 cells are assigned to the unit
domain. Concerning the intersected cells, they belong to the unit
domain only if they go above (or below) the middle of the cell for
the top surface (or bot resp.).

Figure 6 shows two realizations of the unit domains. The
realizations are conditioned to the borehole data and the
stratigraphic pile. The effect of using subunits is clearly visible:
the B2 (middle green) top surface (which is set as erode) does not
cross-cut unit A (as expected) in the front cross-section of both
realizations. This approach allows for representing the
uncertainty of the position and extension of the units. By
running a large number of realizations, the uncertainty can be
quantified: for example, probability maps can be produced for
each unit by post-processing those results.

2.7 Simulation of the Facies
Once the stratigraphic unit volumes are defined, it is possible to
fill these volumes with different facies or lithologies using
different geostatistical methods. The simulation takes place in
each unit independently, even if the same facies is present in
different units, as in the example in Figure 2 where the sand
appears in B and D units. This means that only the sand HD
located inside the unit D will be taken into account when
simulating the facies (sand) inside unit D. If a certain facies
HD, which does not belong to a specific unit, is present inside its
domain (e.g., a sand HD in unit C, Figure 2), these HD will be
ignored. In such cases, warnings are issued by the software. This
situation leads to inconsistencies with facies HD that principally
reflect a probable mismatch in the HD (false geological
interpretation) or in the geological concept.

As facies (resp. property) simulations are dependent on unit
(resp. facies) simulation results, at least one facies (resp. property)
simulation must be done for each unit (resp. facies) realization. It
means that if the modeler chooses 100 unit realizations and 100
facies simulations, a total of 100 × 100 simulations will be
generated. The same logic applies for the property simulations.

In the SP, the user must define one simulationmethod for each
unit. The choices available in the current version of the code are as
follows: homogeneous (one unique facies for the whole unit),
sequential indicator simulations (SIS, Journel, 1983; Journel and
Isaaks, 1984), Truncated pluri-Gaussians (TPG, Loc’h et al., 1994;
Mariethoz et al., 2009; Armstrong et al., 2011), multiple-points
statistics (MPS, Mariethoz et al., 2010; Straubhaar and Renard,
2021), and sub-pile which indicates that the unit will be populated
by another pile containing subunits (e.g., PB in Figure 2).

Thus, multiple facies simulation techniques can be used to
assess the uncertainty. Note that it is rather straightforward to
switch from one method to another. This capability allows us to
cover a broad uncertainty space by providing the user with
different simulation methods within the same framework.
Hence, if little geological knowledge is available for the spatial
distribution of the facies within a unit, SIS can be used since little
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user inputs are required, while if there is more detailed geological
knowledge available, other methods can be used, such as TPG or
MPS, if an analog geological concept can be defined (e.g., training
image). All the geostatistical methods used for this step are
included inside Geone except for the TPG that are directly
included inside ArchPy with various tools to define the
truncated flag or estimate the variogram parameters of the
underlying multi-Gaussian random fields.

Figure 7 shows two realizations of lithologies according to the
unit realizations (Figure 6). The spatial variability of the
lithologies is significant despite the fact that only four
lithologies have been defined. This is mainly due to the
combination of structural heterogeneity coming from the
stratigraphic units and the lithology distribution within these
units. This allows the exploration of many different plausible
realities that are consistent with the HD and the concept. We can
also observe the non-stationarity in unit D where the channels are
sparser in the back than in the front (along the y axis). Indeed, it is

important to mention that most of the facies simulation methods
available in ArchPy can be non-stationary, allowing amuch better
representation of geological trends and exploration of the
uncertainty.

2.8 Simulation of the Properties
Once the facies are simulated, the simulation of the properties is
straightforward and requires little input. Indeed, there are only
two requirements: define the properties that must be simulated
and define how to simulate them (method and parameters). The
available methods for the moment are multi-Gaussian Random
Fields (GRF) or homogeneous. If a GRF is used, two methods can
be used to generate them: fast Fourier transform moving average
(FFT, Ravalec et al., 2000) and sequential Gaussian simulation
(SGS, Deutsch and Journel 1992). As the FFT method needs to
perform the simulations on an entire grid, it can be less effective
than SGS, especially if there are many lithologies and units. It is
important to note that properties are simulated for a given

FIGURE 6 | Two realizations (A,B) of the units (1st step of the ArchPy simulations) for the synthetic case. (C) and (D) are lateral view of the realizations (A) and (B),
respectively. The colors of the units are those defined in the stratigraphic pile of Figure 2. They are presented with cross-sections for visualization purposes. Vertical
exaggeration = 3x.

FIGURE 7 | Two realizations (A,B) of the lithofacies (2nd step of the ArchPy simulations) for the synthetic case. (C,D) are 3D bloc realizations of (A) and (B),
respectively. The simulations used the respective corresponding units of Figure 6 as simulation domains. Vertical exaggeration = 3x.
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lithofacies, independently and sequentially for each unit. For
example, if we have a facies which is present in multiple units
(consider the sand in Figure 2), the properties will be simulated
first in the sand occurrences of the top unit and sequentially in the
other occurrences in underlying units. This allows us to avoid
spurious correlations that can arise if we consider the whole sand
domains at once. Indeed, if sands of different units are in contact,
they should not be considered as part of the same entity and thus
should not be simulated together.

Conditional simulations are available with punctual data (x, y,
z and property value). As some methods require at most one HD
per cell, values that lie in the same cell are averaged if necessary.

2.9 Implementation of ArchPy
The ArchPy methodology is coded in an open-source Python
code1. The code is designed using an object-oriented approach.
All the concepts described earlier are implemented using classes
of objects designed to match the concepts and to facilitate their
use. Most of the data imports and exports are based on simple text
files. The geostatistical kernel of ArchPy is based on the Geone2

Python library. For the visualization, ArchPy integrates some
functionalities to produce various figures (e.g., stratigraphic units
at a specific hierarchical level, only specified units, and cross-
sections). These plots are generated mainly using PyVista3. If
needed, data can also be exported in a vtk format for further use.
Post-processing tools are also provided, to estimate, for example,
the probability of encountering a specific unit (facies) or estimate
the excepted value of a property over a part of the simulation
domain. The structure and the principles underlying the ArchPy
code are designed to allow the user to script the construction of
the geological model in a very flexible manner. This also facilitates
the coupling of ArchPy with any forward or inverse simulator.
Some example Python notebooks are given on the online
repository of the code.

3 A FIRST FIELD APPLICATION

3.1 The Upper Aare Valley
The upper Aare Valley (Figure 8B) is a Quaternary alpine valley
located between the cities of Thun and Bern in Switzerland with a
complex and rich geological history due to its proximity to the
Alps (Kellerhals et al., 1981; Haeuselmann et al., 2007). Previous
studies on Quaternary deposits, on this particular site
(Schlüchter, 1989; Preusser and Schlüchter, 2004) or at a
regional scale (Preusser et al., 2011; Graf and Burkhalter,
2016), have shown the complex relations occurring between
multiple depositional and erosional processes (mainly glacial,
glacio-fluvial, and glacio-lacustrine). This led to the valley being
incised and filled with a wide variety of sediments and facies (tills/
moraines, fluvial gravels, glacio-lacustrine deposits, lake deposits,
alluvial cones, etc.) explaining the great heterogeneity of this type

of deposit. Two main aquifers have been identified in the valley: a
superficial one which is actively used for drinking water supply,
shallow geothermal energy, and some local industries and a deep
one that is poorly known due to its higher depth (only few
boreholes have reached it). Figure 8B shows that the superficial
aquifer is mainly composed of the Aare gravels, the Late Glacial
alluvial deposits, alluvial cones, and the Münsingen gravels.

A major hydrogeological synthesis of the valley was
undertaken at the end of the 1970s and at the beginning of
the 1980s (Kellerhals et al., 1981). Since then, additional data
have been collected (Schlüchter (1989); Preusser and
Schlüchter (2004)) for various projects in different parts of
the valley, but no new hydrogeological synthesis has been
assembled and published. Among the new data, the Swiss
Geological Survey has systematically gathered the borehole
data for Quaternary sediments in several pilot sites and
homogenized the data and terminology (Volken et al.,
2016). This data set includes around 800 digitized boreholes
in the upper Aare Valley. A geological model of the valley
filling has also been produced by the Swiss Geological Survey
to illustrate how those data can be used. In addition, a valley
scale towed Transient Electromagnetic Survey has been
acquired and published in 2021 (Neven et al., 2021) by the
University of Neuchâtel to better constrain and characterize
the aquifer dimensions and its internal heterogeneity.

3.2 Modeling Area and Borehole Dataset
To illustrate the ArchPy approach, we chose an area with a high
density of boreholes located in the south of the Valley
(Figure 8B). The extent of this area is given by its coordinates
in the CH 1903+ - LV95 system: lower left corner, 2′611′000 m/
1′178′000 m, and upper-right corner, 2′613′000 m/1′182′000 m.

The depth of the boreholes rarely exceeds 50 m; they do not
reach the deepest aquifer and stay in the shallow one that is
50–60 m thick in this part of the valley (Kellerhals et al., 1981).
The data set contains a large part of the boreholes that have been
drilled over decades in the area (Volken et al., 2016). Each
borehole is described in terms of intervals with information
about the granulometry (lithofacies), the units encountered,
the quality of the interpretations, etc. However, unit data can
be missing, contrary to granulometry data, meaning that for
many boreholes, only lithofacies data are available. Granulometry
information is described with one, two, or up to three different
grain sizes, each defined with a USCS classification code
(Casagrande, 1948). No hydraulic conductivity data have been
taken into account.

The boreholes (133 in total) intercept a total of four major
stratigraphic units: Aare young gravel (YG, Holocene), Late
Glacial alluvial deposits (LGA, Holocene), late glacio-lacustrine
deposits (LGL, Holocene), and Late Glacial Till (LGT, late
Pleistocene). The LGT appears only on two boreholes on the
southern part of this section of the aquifer and will therefore be
difficult to model. YG and LGA are the most present units and
constitute the largest part of the shallow aquifer in this area while
LGL and LGT are more scattered and can be seen as its bottom.

Note that this stratigraphic pile is simplified given that 23
major stratigraphic units can be distinguished on the entire valley

1http://www.github.com/randlab/ArchPy.
2http://www.github.com/randlab/geone.
3https://www.pyvista.org/.
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(Volken et al., 2016). However, most of these units are absent in
the modeled area.

3.3 Modeling Settings
The extension of the simulation domain is 2 km in the W-E
direction and 3.3 km in the N-S direction. The elevation ranges
from 520 to 570 m a.s.l and the resolution is 15 × 15 × 1 m, which
implies a number of cells of 134 × 220 × 60 (nx × ny × nz). The top
of the domain is defined according to the DEM of Switzerland
with a resolution of 25 × 25 m (DHM25, Swisstopo) and the
bottom is defined by a raster map of the bedrock elevation
(TopFels25, Swisstopo), also with a resolution of 25 × 25 m,
both freely distributed by the Swiss Federal Office of Topography.

The units were defined mainly on the basis of the HD and the
geological knowledge of this area (Kellerhals et al., 1981). Five
units were recognized (Figure 8A). A superior unit (SUP) was
added which includes superficial (soil and peat) and artificial
(anthropogenic) deposits. No subunit has been defined as such
data are not available in this actual dataset. The top surfaces of the
units have been modeled with GRF to take the effect of
inequalities into account, except for the SUP top surface which
was set to the DEM as it is the most superficial unit. The
associated covariance models (variograms) were estimated
using an automatic fitting method (least squares optimization)
on the HD. The optimized parameters are shown inTable 1. Most

FIGURE 8 | (A) Schematic stratigraphic pile used for the ArchPy simulations of the local geological models in the upper Aare Valley. It shows the different units that
have been taken into account, their stratigraphic relations (which is above/below (i.e., younger/older)), the nature of its contact (erode or onlap), the interpolationmethods
used or the lithofacies (see Table 2), and the property to simulate (hydraulic conductivity (K) using sequential Gaussian simulations (SGS)). See Section 2.2 for more
details. (B) Situation and simplified geological map of the upper Aare Valley. Only unconsolidated deposits that are near the aquifer are shown. The moraines are
represented undifferentiated. The coordinates are presented in CH 1903+ - LV95 (epsg: 2056). All the data used come from the Swiss Geological Survey (Swisstopo).

TABLE 1 | Covariance model parameters (C: contribution and r: range) used for
the surface interpolation of each surface. All models are isotropic, except the
LGT one with an orientation of N-S for the major axis). No covariance model was
fitted for SUP as its surface is defined by the DEM. Subscripts exp and sph indicate
exponential and spherical covariance models.

Unit rsph [m] Csph [m2] rexp [m] Cexp [m2] Nugget [m2]

YG 2,986 8.9 5,000 17.8 0
LGA 2,854 24.8 4,846 49.5 1.0
LGL 2,531 19.0 3,942 38.1 1.0
LGT (2000, 4,000)a 200 - - -

a(Ranges in x and y directions, resp.).

TABLE 2 | Grouped USCS codes. It indicates in which group code the classical
USCS groups are rearranged.

Grouped code USCS classical groups

O (OH, OL, Pt)
G (G, G-GM, GW-GM, GP-GM, GP, GW, GP-GC, G-GC)
S (S-SM, S, SP-SM, SP, SW, S-SC, SP-SC, SW-SM)
GC (GM, GC, GC-GM)
SC (SM, SC, SC-SM)
C (ML, CL-ML, CL, CM, CH)
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of the surfaces were defined as onlap except the LGA top surface
which represents a former terrace of the Aare river, generally
deposited at a slightly higher altitude than YG (Kellerhals et al.,
1981).

In the HD, the lithofacies are described by up to three different
grain sizes. We chose to only take the most present one for each
layer and we also grouped certain similar USCS codes (Table 2) to
reduce the number of lithofacies to 7: others (O), gravel (G), sand
(S), clayey gravel (GC), clayey sand (SC), and clay (C). The other
facies regroup superficial codes such as OH or Pt. Facies were
then considered within a unit if their proportions exceed 5%
(inside that specific unit).

For the sake of simplicity in that example, all the units were
filled using SIS. Prior variography analysis on the lithofacies HD
shows significant variability which required the SIS variograms to
be fitted manually; the chosen parameters are given in Table 3.
Only the hydraulic conductivity K property has been simulated
for that example using the covariance models given in Table 4.
Note that adding other properties is possible and very simple
since only the interpolation method and the covariance models
(for each facies) are required.

The ArchPy Aare model was run several times to illustrate its
applicability for uncertainty estimation. In that example, we
generated 10 simulations of the stratigraphic units. For each
stratigraphic unit simulation, we generated 10 facies simulations.
Finally, for each combined realization, we generated 1
unconditional simulation for K. This procedure resulted in a
total of 100 simulations (10 × 10 × 1). The code allows us to

proceed in this manner, but it also permits us to simulate all the
components successively for each realization (units, facies, and
properties). These different modes of simulation can be used for
quantifying the impact of these different sources of uncertainty
on the distribution of the properties but also on their
groundwater flow or geophysical responses.

Figures 9–12 show the results of ArchPy simulations
conditioned to the borehole data. The figures illustrate the
type of heterogeneity and complexity that can be modeled
rather simply using the ArchPy approach. For example, the
two unit realizations (Figures 9A,B) differ significantly while
being consistent and honoring both the borehole data. This
variability is important for quantifying the uncertainty. To
visualize that part of the uncertainty, ArchPy allows the user
to compute the probability of observing a specific unit. Figure 10
shows in yellow the locations where it is quite certain that a given
unit is present and with which thickness. For example,
Figure 10A shows that the unit YG is well constrained in the
eastern and northern part of the domain due to the important
number of boreholes that reach it. The unit LGA seems to be
more present in the southern part of the area (Figure 10B),
thinner than the unit YG and almost absent (or very thin) in the
north. The unit LGT (Figure 10C) does not display such trends
and has a more uncertain distribution, probably mainly due to a
lack of data (shallow boreholes).

Lithofacies simulations are shown in Figures 9C, 11 and are
the results of the filling of the simulations shown in Figure 9A.
These simulations honor both the borehole data and geometry of
the stratigraphic units. As for the stratigraphic units, it is possible
to compute and produce figures showing the probability of
occurrence of each facies.

Finally, two simulated hydraulic conductivity fields are shown
in Figure 12. They display a broad range of values that is expected
for this geology and that honor all the borehole data. It also shows
the complex relations between the property values, the
stratigraphic units, and the lithofacies. The variability between
the realizations suggests a strong heterogeneity that would have
been extremely difficult to model properly without the
hierarchical approach (e.g., Feyen and Caers 2006; Zappa
et al., 2006; Zech et al., 2021). The mean of the logarithm of K

TABLE 3 | Covariance model parameters (C: contribution and r: ranges in x, y, and z directions) manually adjusted and used for the SIS of each unit. For units where the
number of data points was too low (LGL and LGT), a default model was taken (“Default” row). The ranges are given in the three main axis directions without any rotation (x
axis goes toward E and y axis toward N). Subscripts exp and sph indicate exponential and spherical covariance models.

Unit (lithofacies) rsph [m] Csph [m2] rexp [m] Cexp [m2] Nugget [m2]

SUP (O) (200, 400, 5) 0.15 - - 0.1
SUP (C) (200, 200, 5) 0.11 - - 0
SUP (G) (200, 200, 5) 0.25 - - 0
SUP (GC) (300, 100, 4) 0.20 - - 0
YG (G) - - (50, 50, 15) 0.22 0
YG (GC) (200, 200, 1) 0.06 (300, 200, 6) 0.09 0
YG (S) (200, 200, 15) 0.03 (200, 200, 1) 0.03 0
LGA (G) (100, 200, 8) 0.12 (100, 200, 20) 0.12 0
LGA (GC) (100, 150, 15) 0.10 (100, 150, 15) 0.11 0
LGA (S) (50, 100, 15) 0.13 - - 0.01
Default (100, 100, 10) Variablea - - 0

aVariance was adjusted according to lithofacies proportions.

TABLE 4 |Covariance model parameters (C: contribution and r: ranges in x, y, and
z directions) used for the property simulations. Subscript exp indicates an
exponential covariance model.

Lithofacies rexp [m] Cexp [m2]

O (50, 50, 2) 0.1
G (50, 50, 2) 0.25
S (50, 50, 2) 0.16
GC (50, 50, 2) 0.2
SC (50, 50, 2) 0.2
C (50, 50, 2) 0.2
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(Figure 9E) highlights the location of the aquifer where the values
are likely to be especially high. These locations also coincide with
those where the standard deviation (Figure 9D) is low, indicating
that the property values are better defined inside the aquifer than
outside. Elsewhere, the standard deviation values may be quite
high, easily reaching 2 log10 (m/s), indicating an uncertainty of up
to two orders of magnitude. The variance is low around the
boreholes as expected.

4 DISCUSSION

One of the most important novel features of the ArchPy approach
is the extended concept of stratigraphic pile (SP) as compared to
the findings of Calcagno et al. (2008), for example. This concept
has been shown to be an effective way to formulate all the

geological knowledge into one entity (practically, a Python
object). Thanks to this representation, it is easy to embed
multiple SPs inside other SPs and to simulate the units to any
level of hierarchy and do this without any particular restrictions.
By including various interpolation and simulation methods
which can be applied independently for each unit, lithofacies,
and property, the ArchPy approach offers a high flexibility to the
user who can adapt the methods to the quantity of available data
and the complexity that he needs to represent for a specific site. In
addition, the use of inequality data that are automatically derived
from the SP and the borehole data allows ArchPy to extract a
larger amount of information from boreholes than what is usually
done in alternative geo-modeling tools.

The results obtained for the upper Aare Valley illustrate the
type of stochastic models that can be easily and rapidly
constructed for Quaternary deposits using the ArchPy

FIGURE 9 | Aare aquifer results obtained for (A,B) two unit realizations, (C) one facies realization (within model (A)), and (D,E) K standard deviation and mean
simulated along the 100 models; units are in log10 (m/s). Vertical exaggeration = 3x.
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approach. Due to the simple assumptions made about the geology
and the concepts (simplified SP and use of SIS to fill the units),
some aspects of the proposed method could not be illustrated in
this example. Several limitations in the data set were also
identified. For example, the LGT unit is not well constrained
because only a few boreholes reach it. Indeed, most boreholes in
this area are drilled for hydrogeological purposes (Kellerhals et al.,
1981), and local communities are generally not interested in
reaching the LGT unit because of its lower hydraulic conductivity
as compared to the YG or LGA unit. A sampling bias is also
expected in the lithofacies inside the LGL and LGT units. Indeed,
we observe that the simulations of these units tend to have more
sand (S code) than expected in glacio-lacustrine or till deposits.
This can be due to a sampling bias in the borehole database
because the areas of high permeability are preferentially drilled
while clay and silt areas are generally avoided. Since the simulated
proportions of lithofacies are conditioned on the HD, the
lithofacies simulations can reflect this bias. It is, however,
possible to correct it by imposing proportions that differ from
those of the HD, but further secondary information should then

be used to guide the simulations. One possible method to correct
that bias could also be to use geophysical data, as we will discuss
more in detail below.

Another important feature of the ArchPy approach is that it
allows quantifying the uncertainty by generating an ensemble of
models. The uncertainty can be evaluated at any desired
hierarchical level among the units, subunits, sub-subunits,
lithofacies, or properties. The uncertainty on the geological
concept and stratigraphic pile (SP) itself can also be evaluated.
This type of uncertainty was not covered in the example of the
upper Aare valley, where the concept was simple. But there are
situations in which different geological concepts or different
geostatistical models for the different components of the SP
are plausible. Using the ArchPy approach and its scripting
possibilities, it is straightforward to automatically explore all
these possibilities and generate an ensemble of models that
covers this uncertainty.

Due to its recent existence, ArchPy still lacks some interesting
features and has several limitations. First of all, it is only usable
through scripts in Python, which may prevent a certain number

FIGURE 10 | Probability of occurrence along the 100 models for units YG (A), LGA (B), and LGL (C). Vertical exaggeration = 3x.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 88407513

Schorpp et al. Hierchical 3D Modeling With ArchPy

51

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


of people from using it. However, examples are provided and can
easily be edited; therefore, it is not necessary to be an expert in
Python to use ArchPy. This approach has many advantages such
as ensuring efficient model update when new data are acquired or
accurately documenting the model construction steps. In future,
one could construct a graphical user interface (GUI). The main

limitation of ArchPy for the moment is that it assumes that the
boundaries of the stratigraphic units can be modeled using
functions that can be represented on a 2D grid. Therefore,
ArchPy cannot, at the moment, represent overturned folds. It
also does not include faults. We consider that these situations are
extremely rare in Quaternary environments; adapting ArchPy to

FIGURE 11 | (A, B) Two facies realizations that are the results of the filling of the unit realization in Figure 9A. Boreholes show the spatial distribution of the HD.

FIGURE 12 | (A, B) Two property realizations made on the two facies realizations in Figure 11.
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account for these structures would be feasible but is not currently
a priority. ArchPy is also limited by the set of geostatistical
methods that are proposed. It implies, for example, that the
code may be slow if the number of borehole data and inequalities
is important. We will continue to optimize the methods as much
as possible. Concerning the simulation of non-Gaussian data, a
normal-score transform should always be considered before
using any GRF method. But the user must be aware that this
kind of transformation is only suitable when the number of data is
sufficient (a Cumulative Function Distribution can be built).
When data are sparse, it is simply possible to assume that the
data follow a normal distribution or the use of other available
methods can be considered (MPS). Moreover, GRF simulations,
performed on data normally transformed, do not guarantee that
the covariance will be preserved in the original data space. The
use of more advanced simulation methods such as Direct
Sequential Simulation (Soares, 2001) could be a solution. The
final note is about the trends in the data (surface elevations or
facies proportions). Such behaviors can be modeled but not in a
fully automated manner as it requires user-inputs (e.g., local
facies proportions over the domain). These must be computed or
derived externally. However, implementing such routines in
future updates is straightforward.

Because it is simple and easy to run ArchPy automatically, it is
straightforward to conduct parameter sensitivity analysis. We
even suggest that the parameters should be tested as well as the
stratigraphic pile, including all its various geostatistical
components, using cross-validation. This approach should be
used to test and compare different alternative SPs. The procedure
consists in splitting the borehole data and applying a K-fold
cross-validation approach as we discussed in a previous study
(Juda et al., 2020). An ensemble of models is generated to predict
the units, lithologies, and properties at the location of a subset of
the boreholes (removed from the HD). A score can then be
computed to compare the quality of the stochastic predictions
with the actual data. We plan to incorporate cross-validation
frameworks inside the ArchPy architecture.

To go a step further, ArchPy is already coupled with several
geophysical and groundwater flow simulation tools Cockett et al.
(2015); Bakker et al. (2016). Property models generated using
ArchPy (e.g., resistivity, gravity, storativity, and hydraulic
conductivity) can be passed to forward models. The outputs
are retrieved and compared with real field measurements
which are then used to adapt the ArchPy models to reduce
the misfit between both actual and simulated data. For
example, this adaptation could be done in a Monte Carlo
scheme (Tokdar and Kass 2010) or with ensemble methods
(Chen and Oliver, 2012). This approach opens the way toward
geologically constrained joint inversion involving different
forward models.

5 CONCLUSION

The ArchPy approach that is proposed in this study combines
many techniques that are well known (geostatistical simulation
techniques for continuous or categorical variables). One important

novelty is to formally separate the description of the list of tasks
that are required to construct themodel and the construction of the
model itself. This is done by embedding all the geological and
geostatistical knowledge in an object called “stratigraphic pile.”
Based on this formalism, a piece of software can be constructed that
can automate all the tedious tasks of the model construction. The
Python module that implements the ArchPy approach allows the
fast and reproducible creation of an ensemble of stochastic models
respecting both the conditional data and the user inputs (geological
concepts). The only inputs required are the digital elevation model,
the borehole data, and how to interpolate and simulate the different
components of the model (surfaces, lithofacies, and properties); the
rest is up to ArchPy. The simulations take place during three main
phases: simulation of the units, of the lithofacies, and then of the
properties. Each step depends on the previous ones. A major
novelty is that the stratigraphic pile allows defining a
hierarchical stratigraphy and therefore allows modeling
automatically consistent subunits of any hierarchical level
within units of higher levels. The code allows quantifying
uncertainty using a sound geostatistical model. It also allows
updating the model easily when new data are available or
embedding the model construction into an inverse procedure.
The code is open-source and freely distributed. Due to its open-
source nature, the coupling with other software is facilitated. It
opens the doors to an easier and more accessible geological
modeling of Quaternary aquifers.
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Decision-Support Groundwater
Modelling of Managed Aquifer
Recharge in a Coastal Aquifer in South
Portugal
Kath Standen1,2*, Rui Hugman3 and José Paulo Monteiro1,2

1Centro de Ciências e Tecnologias da Água (CTA), Universidade do Algarve, Faro, Portugal, 2CERIS, Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal, 3National Centre for Groundwater Research and Training, Flinders University,
Groundwater Modelling Decision Support Initiative (GMDSI), Adelaide, SA, Australia

The Vale do Lobo sector of the Campina de Faro aquifer system in the Algarve (Portugal) is
at risk of seawater intrusion. Managed Aquifer Recharge (MAR) is being considered to
avoid groundwater quality deterioration. Numerical modelling was undertaken to assess
the feasibility of several proposed MAR schemes. Although some data is available, many
aspects of system behaviour are not well understood or measured. We demonstrate the
use of a structurally simple but parametrically complex model for decision-making in a
coastal aquifer. Modelling was designed to facilitate uncertainty reduction through data
assimilation where possible, whilst acknowledging that which remains unknown
elsewhere. Open-source software was employed throughout, and the workflow was
scripted (reproducible). The model was designed to be fast-running (rapid) and numerically
stable to facilitate data assimilation and represent prediction-pertinent uncertainty (robust).
Omitting physical processes and structural detail constrains the type of predictions that
can be made. This was addressed by assessing the effectiveness of MAR at maintaining
the fresh-seawater interface (approximated using the Ghyben-Herzberg relationship)
below specified thresholds. This enabled the use of a constant-density model, rather
than attempting to explicitly simulating the interaction between fresh and seawater.
Although predictive uncertainty may be increased, it is outweighed by the ability to
extract information from the available data. Results show that, due to the limit on
water availability and the continued groundwater extraction at unsustainable rates, only
limited improvements in hydraulic heads can be achieved with the proposed MAR
schemes. This is an important finding for decision-makers, as it indicates that a
considerable reduction in extraction in addition to MAR will be required. Our approach
identified these limitations, avoiding the need for further data collection, and demonstrating
the value of purposeful model design.
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1 INTRODUCTION

Seawater intrusion is a global issue exacerbated by increasing
dependence on coastal groundwater resources, sea level rise and
climate change. Most severe cases of salinization occur where
groundwater levels fall below mean sea level and the groundwater
flow direction turns landward (Werner, 2017). The interactions
between fresh and saline groundwater involve complex density-
dependent and hydrochemical processes, and are therefore
inherently difficult and expensive to monitor, investigate and
manage (Werner et al., 2013).

Corrective measures for aquifers already impacted by, or at
risk of, seawater intrusion essentially comprise two options:
reducing extraction rates, or artificially increasing recharge
(Abarca et al., 2006). Both are often prevented or limited due
to regulatory issues. It is often not possible to revoke existing
groundwater abstraction licences, and decisions to reduce
groundwater use have far-reaching economic, political, and
social consequences. Managed Aquifer Recharge (MAR)
includes a suite of methods to enhance aquifer recharge that
are increasingly used to maintain, enhance, and secure
groundwater systems under stress (Dillon et al., 2019).
However, many countries lack detailed regulations making
implementation challenging (Yuan et al., 2016). Although
global implementation of MAR is increasing, it is not keeping
pace with increasing groundwater extraction (Dillon et al., 2019).

MAR is expensive, particularly for seawater intrusion barriers,
or where deep recharge boreholes are needed (Vanderzalm et al.,
2022). Further pre-treatment of water prior to discharge is often
necessary, particularly where urban wastewater or storm water is
used (Dillon et al., 2019). Such schemes have high capital and
operational costs. However, in comparison to desalination of
seawater as an alternative water source, additional treatment of
wastewater incurs lower energy costs, and fewer environmental
impacts (Koussis et al., 2010).

Given the costs associated with MAR, and the challenges in
predicting seawater intrusion, identifying the appropriate course
of action is difficult. It is hard to demonstrate to stakeholders why,
and when, action is necessary. However, decision-making under
uncertainty is the norm for most decisions of consequence in
groundwater management (Caers, 2011). Notwithstanding,
decision-makers need to be informed of the risks surrounding
their decisions. This requires quantifying the uncertainty of
decision outcomes. Modelling supports decision making by
providing the means to consolidate available data and
information to both quantify, and reduce, the uncertainty
surrounding outcomes of a management action (Doherty and
Moore, 2021).

The subsurface is complex, and data on aquifer properties and
boundary conditions are typically very limited. Expressing their
uncertainty requires the use of many parameters to allow spatial
variability to emerge through history-matching of the model to
the historical behaviour of the system. The methods employed by
industry standard tools for history-matching, PEST (Doherty,
2020) and PESTPP (White et al., 2020) software suites, need to
run models many times to calculate parameter sensitivities.
Therefore, incorporating existing information on system

properties and past system behaviour into a model that is
capable of quantifying and reducing uncertainty, requires a
model that is fast and stable. To accomplish this, model
development and deployment must be purposefully designed
to achieve these two goals (Caers, 2011; Doherty and Moore,
2021). Models that simulate the effects of density changes
between fresh and seawater require fine spatial and time
discretization, have long run times, and are susceptible to
numerical instability (Dausman et al., 2010). As a result,
model-based data assimilation and uncertainty quantification
become difficult, if not impossible (Carrera et al., 2010).
Therefore, an alternative approach is needed.

Using a simpler model of a coastal aquifer introduces
limitations in the types of questions that the model can
answer. These limitations can be overcome by purposeful
design of the modelling workflow and the prediction. We
present a case study of decision-support groundwater
modelling to assess MAR as a solution to seawater intrusion
in the Vale do Lobo aquifer, Portugal. We demonstrate the
development and use of a constant-density, highly-
parameterized model, building upon the methods described in
Hugman and Doherty, 2022. This approach enables the
assimilation of information from both expert knowledge and
field measurements to quantify and reduce predictive
uncertainty. The effectiveness of MAR is assessed in terms of
whether MAR can raise hydraulic heads sufficiently to levels
preventative of seawater intrusion; a simple metric enabling this
feasibility stage assessment of MAR.

Details of the study area and conceptual model are provided in
Section 2, an outline of the problem, modelling rationale and
design are described in Section 3. The numerical model
configuration is described in Section 4, the data assimilation
and uncertainty quantification process in Section 5, with
discussion and conclusions presented in Section 6.

2 STUDY AREA

The study area is located to the west of Faro, capital of the Algarve
province of Portugal, and comprises the western part of the
Campina de Faro aquifer system, known as the Vale do Lobo
(VL) sector as shown in Figure 1. The aquifer covers an area of
32 km2. Groundwater from this coastal aquifer has been used
extensively for irrigation over the last 50 years, for golf, tourism,
and agricultural purposes. Long term annual average rainfall is
approximately 600 mm/yr largely falling between November and
April, whilst potential evapotranspiration is approximately
1,600 mm/yr with a substantial excess over rainfall during the
summer months (DRAP-ALGARVE, 2021). Most irrigation is
applied between the months of March and October and is almost
entirely supplied from groundwater. Consequently, hydraulic
heads are now below sea level across much of the aquifer (0 to
-9 m above sea level (asl)), and several boreholes can no longer be
used due to chloride concentrations of 927–2,242 mg/l measured
in 2019 (Fernandes et al., 2020)). Currently the VL sector does not
meet the regulatory requirement of “good” quantitative status
under the EU Water Framework Directive (WFD), where
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groundwater extraction is required to be less than 90% of average
annual recharge. The aquifer is at risk of further deterioration and
losing “good” status based on water quality considerations
considering that the Portuguese threshold value for chloride is
250 mg/l (APA, 2016). Stakeholders are interested in
understanding to what extent Managed Aquifer Recharge
(MAR) can be part of the solution to reverse the decline in
hydraulic heads and prevent further seawater intrusion,
recognising that achieving an aquifer-scale solution to SWI is
a very ambitious aim, likely to require a combination of methods.

The VL sector is bounded to the east by an administrative
boundary which divides the western sector of the aquifer (at risk
of seawater intrusion), from the Faro sector to the east, where the
problems affecting groundwater status are related with excess
nitrates due to agriculture (Stigter et al., 2011). These sectors were
defined to enable appropriate independent measures for each
sector to be defined in the River Basin Management Plans
(RBMPs) (APA, 2016) to meet WFD requirements. To the
northwest, the VL boundary is defined by the Carcavai fault
zone. An outcrop of Lower Cretaceous strata form the northern
boundary of the VL sector, with Jurassic sediments forming a
karstic aquifer further to the north.

The aquifer is formed of a thick sedimentary sequence of
superimposed sedimentary basins of Mesozoic and Cenozoic age,
underlain by Palaeozoic basement. The VL sector is comprised of
two aquifers, an upper phreatic sand to sandy clay aquifer of Plio-
Quaternary (PQ) age, and a lower semi-confined aquifer of
calcareous sandstones and limestones of mainly Miocene (MC)
age. A clay aquitard, with an average thickness of 10 m, separates
these two aquifers. The PQ is absent at the northern boundary of
the VL and increases to a maximum thickness of around 70 m in
the south-east, where it is postulated that PQ sediments infilled a
karstic depression in the MC surface (Carvalho et al., 2012). The

PQ is highly heterogenous with 5 distinct layers mapped
(Manuppella et al., 2007).

Although deep borehole records are limited, correlation with
offshore and onshore borehole logs suggest that the MC aquifer
reaches a depth of 350m below mean sea level at the coast. It is
underlain by the same low permeability marls of Lower Cretaceous
age that form the northern boundary of the aquifer (Lopes et al.,
2006). In addition to the faulted north-western boundary of the
aquifer, two NNW-SSE-oriented faults transect the eastern part of
the VL area (Manuppella et al., 2007). Their locations are somewhat
uncertain; it is possible that their alignment is closer to that of the
streams than depicted in Figure 1. A strike-slip fault is also located
parallel to the coast approximately 1 km inland.

Most groundwater extraction is now from the MC aquifer,
although the PQ aquifer was exploited historically by shallow,
large diameter wells (Almeida et al., 2000). Current groundwater
extraction is estimated at 6.45 Mm3/yr (APA, 2016), based on
measured extraction for the major groundwater users, and
estimated extraction based on land cover and crop type for
the smaller users who are not required to submit extraction
returns. Detailed borehole construction records are limited,
and it is often unclear if, and where, extraction is occurring
from the phreatic aquifer.

The environmental regulator, the Agência Portuguesa do
Ambiente (APA), estimates long term annual diffuse recharge
to the VL sector is 3.46 Mm3/yr. However, diffuse recharge is
limited by the weathered red clays found at the surface, and it is
recognized that a major, but unquantified, source of water to
the aquifer is likely to be groundwater flowing laterally from
the northern boundary from Cretaceous and Jurassic strata
(Almeida et al., 2000; Hugman, 2016).

Hydraulic heads are regularly monitored by APA and are
available for boreholes in the long-term monitoring network

FIGURE 1 | Location and main hydrogeological features of the Vale do Lobo aquifer system, including piezometer locations.
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(SNIRH, 2021). Additional heads measured monthly by the
groundwater users in piezometers and extraction boreholes
were also made available for use in this study. The location of
hydraulic head time series used for history matching are shown in
Figure 1.

Piezometric contours of the MC aquifer, along with
selected hydraulic head time series, are shown on
Figure 2A. The contours show that hydraulic heads are
below sea level (between 0 and −9 m asl) across most of
the aquifer, with the lowest values in the centre and north of
the aquifer, resulting in radial flow towards this depression.
Time series from three boreholes with the longest period of
record are shown in Figure 2B, indicating that hydraulic
heads were already declining during the 1980s, possibly
reaching a new equilibrium since the late 1990s with
higher seasonal variation, in both the PQ and MC aquifers.
Hydraulic heads in the PQ are only measured in 5 locations,
but these generally show slightly higher heads with reduced
seasonal fluctuations compared to heads in the MC.
Piezometers 610/179 (MC) and 610/180 (PQ) are adjacent
to one another and represent the only location where heads
are measured simultaneously in both aquifers.

Time series measurements of chloride concentrations over
time are only available at four locations in the VL sector, with
2 of these exhibiting increasing trends (SNIRH, 2021). A
monitoring program during 2019/2020 encountered chloride
concentrations up to 2,200 mg/l in extraction boreholes, with
land managers reporting that several boreholes are no longer
used as their chloride concentrations are too high for
irrigation (Fernandes et al., 2020).

Previous numerical modelling studies covering this area have
included density-driven flow (DDF) models to investigate
seawater intrusion (Hugman, 2016), assessment of nitrate
contamination in the eastern sector of the Campina de Faro
(Costa et al., 2021), and to assess the potential of using
greenhouse runoff as water source for MAR (Costa et al.,
2020). More recently, (Hugman et al., 2021) investigated
sustainable extraction rates to avoid seawater intrusion.

3 THE PROBLEM

It is clear the current rates of extraction from the VL sector are
unsustainable. Meeting the water balance requirement of the
WFD will not prevent seawater intrusion. Without other
mitigation measures, groundwater extraction would need to
be reduced to 30% of current rates in VL, possibly even less
(Hugman and Doherty, 2022). This would be exceedingly
difficult to achieve in practice. There are few viable
alternatives, and these are expensive, i.e., replacing
groundwater use with desalinated seawater.

MAR has been identified as a potential mitigation measure.
However, additional treatment is likely to make it an expensive
option, the water available for MAR is limited, and legal issues
would need to be overcome. Before committing to further
investment in investigating MAR options, decision-makers
need to understand whether it is likely to prevent seawater
intrusion in this aquifer.

3.1 MAR Design and Water Availability
Two types of water are potentially available for MAR in this
area: 1) ephemeral river flow, and 2) treated wastewater. The
Ribeira da São Lourenço 1) flows from north to south close to
the eastern boundary of the aquifer, with average annual flow
of 1.25 Mm3/yr between 1996 and 2008. Flow occurs on
average 77 days per year. No flow is recorded in some years.
Preliminary pre-settlement basin designs limit the average
MAR recharge from this source to 0.5 Mm3/yr (Standen
et al., 2021).

Treated wastewater 2) is available from three treatment
works in the area: Quinta do Lago, Vale do Lobo and Faro
Noroeste. In 2020, available volumes were 0.76, 0.16 and
1.50 Mm3/yr respectively (written communication, Águas do
Algarve, S.A.).

The preferred MAR design would use surface infiltration
basins recharging into the PQ, thereby avoiding direct
injection into the MC, and allowing soil-aquifer treatment
in the unsaturated zone. However, the current understanding

FIGURE 2 | Hydraulic head contours from semi-confined aquifer, October 2018 (A), Selected hydraulic head time series at piezometer locations 606/647 (semi-
confined), 610/179 (semi-confined), and 610/180 (phreatic) (B).
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of the permeability of the PQ and the presence of the aquitard
suggests this option is unlikely to be feasible. Therefore,
recharge is proposed by boreholes into the MC, at locations
close to the water sources, as shown on Figure 3.

3.2 Modelling Rationale and Prediction
3.2.1 Rationale
To model the physical coastal aquifer processes requires density-
coupled flow and transport models. These require fine spatial and
time discretization, with typically very long run times, and are
susceptible to numerical instability. They also require the offshore
part of the system to be characterized and included in the model,
yet these aspects of the system are often poorly known. Sharp-
interface codes offer an alternative, but simulated outcomes can
be quite sensitive to initial conditions, definition of the coastal
boundary condition, and they still require the offshore portion to
be modelled explicitly (Bakker and Schaars, 2013; Coulon et al.,
2021).

To achieve a fast and stable numerical model, process
complexity is reduced by using a constant-density model. We
assume that the changes in density do not play a large role in the
aquifer response during the simulation period. Although this
simplification will introduce some error, this will likely be small in
comparison to other sources of uncertainty in the model (Caers,
2011; Doherty and Moore, 2021). The prediction cannot be based
on chloride concentrations; therefore, an alternative prediction is
described in Section 3.2.2 below.

The model structure is simplified in terms of reducing the
model layers and extent. The rigid structure of the offshore
portion of the model is replaced by flexible parameters which
represent the offshore extent. This allows us to stochastically
represent the uncertainty in aquifer structure and properties
offshore through physically abstract parameters. It removes the

need for an offshore extent entirely, reducing the number of grid
cells significantly, whilst also avoiding hard wiring assumed (but
unknown) offshore structure and properties into the model. The
number of layers is then limited to main hydro-stratigraphic units
that are likely to control the hydraulic head response to the
current pressures, and the proposed artificial recharge.

Initial assessment of the water volumes available compared to
the estimated aquifer water balance indicates that these volumes
may be insufficient to achieve the aquifer-scale improvements in
hydraulic heads necessary to prevent SWI. However, given the
uncertainties in the water balance, and the interest from
regulators and stakeholders in MAR, the modelling presented
herein investigates the feasibility of MAR in more detail.

3.2.2 The Prediction
Modelling undertaken herein aims to determine whether MAR
can prevent seawater intrusion, an ambitious but important aim.
The depth of the fresh-seawater interface as a function of
hydraulic head can be obtained using the Ghyben-Herzberg
relationship (Bear and Verruijt, 1987), based on the
assumptions of static equilibrium, stationary seawater, and
assuming that a sharp interface exists between fresh and salt
water:

z � α×h (1)
where z is the position of the interface below sea level [m], α [-] is
defined as ρf /(ρs - ρf ), where ρf [M/L3] and ρs [M/L3] are the fresh
water and sea water densities respectively, and h is the hydraulic
head [m]. The minimum value of hydraulic head that ensures the
fresh-seawater interface does not rise above a specified depth can
be calculated using Eq. 1.

The effectiveness of MAR is assessed on its ability to maintain
hydraulic heads at levels that ensure that the interface remains
deeper than a critical value at specified locations (e.g., deeper than
the base of existing extraction boreholes). This is admittedly a
coarse metric. It ignores the effects of dispersion, the (potentially
wide) transition zone between fresh and seawater, and up-coning
in response to individual extractions. However, it is a metric that
allows preliminary assessment at the aquifer scale of the feasibility
of the scheme. Modelling in this context cannot ensure that MAR
will be successful; however, it can determine if MAR will not be
successful. As the purpose of this exercise is to assess whether it is
worth exploring these schemes further, such a prediction is
sufficient, and more robust, than attempting to simulate the
full complexity of processes and structure.

4 NUMERICAL MODEL DEVELOPMENT

The groundwater model was constructed using MODFLOW6
(MF6) (Langevin et al., 2021), using the open source Flopy
environment (v.3.3.4) (Bakker et al., 2016). The model has
three stress periods: an initial steady state period to obtain
representative heads and extraction rates for the start of the
second stress period; a transient period from October 2000 to
October 2020. A third stress period extends themodel for 20 years

FIGURE 3 | Locations of wastewater treatment plants and proposed
MAR borehole locations.
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incorporating MAR, with the same hydrological inputs and
extraction rates from the calibration period. It was not
possible to start from a pre-development scenario, due to a
lack of head data from this time.

The model was discretized with 400 × 400 m cell size, with
quadtree mesh refinement applied using the open-source
software, GRIDGEN (Lien et al., 2015). Cell sizes were
reduced adjacent to potential drains and the MAR borehole
locations. The model has three layers representing the phreatic
aquifer, the aquitard, and the semi-confined aquifer (all layers
were necessary to capture the hydraulic head response under
MAR). To avoid discontinuous layers, the upper layer was
assigned a minimum thickness where necessary.

The lumped parameter recharge model, LUMPREM (Doherty
J., 2021), was used to estimate both recharge and groundwater
withdrawal for irrigation, based on daily rainfall and potential
evapotranspiration from the Faro-Patacão meteorological station
(DRAP-ALGARVE, 2021). Recharge is applied to layer 1 (the
phreatic aquifer), at rates depending on rainfall, irrigation,
evapotranspiration, and the capacity and current volume of
the soil-moisture store. Recharge occurs up to the potential
evapotranspiration rate until the soil moisture store is empty,
with rates decreasing as the volume of the soil moisture store
decreases (the shape of this function is controlled by the gamma
parameter). Transfer of rainfall-recharge to layer 3 (the semi-
confined aquifer) is limited by the presence of the clay aquitard
separating the two aquifers.

Using LUMPREM allowed estimation of groundwater
extraction based on irrigation demand, thereby accounting for
missing extraction data. It can be integrated with MF6 and PEST
by the python package Lumpyrem (Hugman, 2021). The
combined model (MF6 + LUMPREM) includes LUMPREM
models for each of the major groundwater users, the extensive

agriculture (non-metered) group, and non-irrigated land.
Recharge was applied to areas defined by grid intersection
with the respective land uses. Total groundwater withdrawal
for irrigation was applied as time-varying total extraction rates
for each group, these are then sub-divided between individual
extraction wells. The locations of irrigated areas and extraction
boreholes/wells are shown on Figure 4 in relation to the model
grid and boundaries.

The inland boundaries are represented by Cauchy (i.e., general
head) boundary conditions applied to the semi-confined aquifer.
These represent the inflows to the MC aquifer from the Jurassic
aquifer to the north, and the eastern sector of the Campina de
Faro aquifer to the east). The heads vary according to time series
measured at 606/1050 and 610/183 for the northwestern, and
eastern boundaries respectively (at locations shown on Figure 1).
Definition of the coastal boundary condition for the semi-
confined aquifer is described in Section 4.1, whilst for the
phreatic aquifer, a head correction of 1.0124 was applied,
based on the method of Lu et al. (2015). For all the
boundaries, conductance is time-invariant, as are heads for the
coastal boundary.

4.1 Coastal Boundary
As previously described, there is little to no data on hydraulic
properties or system behaviour in the offshore portion of the
aquifer system. Rather than attempt to simulate it explicitly, we
represent the offshore conditions implicitly with a general head
boundary, using the approach described in Hugman and Doherty
(2022). This enables us to limit the model domain to the onshore
portion of the system, where freshwater conditions are assumed
to prevail. In turn, this allows us to ignore the effects of density
differences and use a fast-running model that enables data
assimilation and uncertainty analysis.

General head boundaries require specification of head and
conductance parameters. Conceptually, these parameters
represent the linkage between the model and the offshore
portion of the system. However, they omit the effects of
changes in offshore storage and assume that the dynamics of
offshore flow do not change significantly during the simulated
period. As such, these head and conductance parameters take on
a somewhat “abstract” nature. As they are no longer physically-
based, these parameters are no longer useful recipients for expert
knowledge, And as they are not informed by measured data,
uncertainty can be large.

The approach described in Hugman and Doherty (2022)
enables the transfer of expert knowledge to these abstract
parameters through the use of a simple-complex model pair.
The “complex” model simulates physical process which are
omitted from the “simple” model. The complex model is
simulated for an ensemble representative of stresses and
hydraulic properties. Values for the abstract parameters in a
corresponding “simple”model are calculated for each realization.
This allows the statistical distribution of abstract parameters to be
characterized.

For the VL, this is achieved with use of a complementary
two-dimensional DDF model (using SEAWAT) of the VL
semi-confined aquifer. It was run for a long pre-

FIGURE 4 | Irrigated areas and extraction boreholes /wells, with model
domain, grid and boundaries.
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development period (during which flow is towards the sea),
followed by a post-development (land-ward flow) period. A
total of 100 stochastic realisations were created, sampling from
the prior probability distribution of aquifer properties and
inland heads based on the aquifer conceptualization (expert
knowledge). By recording head and flow for both pre- and
post- development conditions for each realization, values of
head and conductance at the coastal boundary were obtained
through the following equations:

qo � (Ho − h )c (2)
qi � (Hi − h )c (3)

For sea-ward flow and land-ward flow conditions respectively.
These two equations can be solved for the two unknowns h and c.
The solutions are:

c � qo − qi
Ho − Hi

(4)

h � qoHi − qiHo

qo − qi
(5)

Where H is the freshwater head at the coastline [m], q is
groundwater flow under the coastline [m3/d], and for a
general head boundary along the coastline, h represents the
head [m], and c the conductance [m2/d]. The subscripts o and
i represent outflow (pre-development) and inflow (post-
development) conditions respectively. Values of Ho and Hi and
values of qo and qi are obtained from the complex model for each
realization. The mean and covariance of the heads and
conductance can be calculated to form the combined
covariance matrix:

C([ h
c
]) � [ σ2

h σhc

σch σ2
c
] (6)

Where c is the value of log10 conductance [log10 m
2/d] at the

coastal boundary, σ2h is the variance of heads, σ
2
c is the variance of

log10 conductance, and σhc and σch are the variance of head with
log10 conductance, and the variance of log10 conductance with
head respectively.

The values of h and c for a single point are used to
characterize the full length of the coastal boundary by pilot
points. However, values of h and c are expected to show some
degree of spatial correlation along the boundary. Therefore, a
joint probability distribution is required. Values were selected

from a probability distribution that has the mean of [ h
c
] and

whose covariance matrix is C([ h
c
]) based on a maximum

distance over which spatial correlation could be expected, by
specifying an exponential decay of h correlation with distance,
i.e., an exponential variogram, from which a covariance matrix
can be obtained using the PPCOV utilities in PEST. The mean
values of this prior probability distribution, together with the
covariance matrix, form the basis of regularized inversion
through which model calibration is achieved. The coastal
boundary condition parameters characterised in this

manner are thus informed by expert knowledge. This
enables representation of uncertainty, whilst constraining it
as much as is reasonable.

5 DATA ASSIMILATION AND
UNCERTAINTY QUANTIFICATION

5.1 Methods
For the combined model a solution of minimum error variance
(MEV) was sought using PEST_HP (Doherty, 2020), employing a
highly-parameterized approach. A unique solution was obtained
using Tikhonov (preferred value) regularization. This was
followed by history-matching and uncertainty quantification
(and reduction) using PESTPP-IES (White, 2018).

5.1.1 Parameterisation and Prior Information
An array of 962 pilot points distributed across the model domain,
layers and boundaries allowed spatial variation of parameters. For
aquifer properties these included horizontal hydraulic
conductivity (K) for all layers (and thus for ratio-linked
vertical hydraulic conductivity), specific yield (layer 1), and
storativity (layer 3). Pilot points were placed manually, located
between observation points and extraction well/borehole
locations, and between these features and the model
boundaries. Pilot points were also included along model
boundaries and drains to allow spatial variation in boundary
condition parameters.

Recharge and groundwater withdrawal for irrigation vary by
land use zones linked to LUMPREM models, the parameters of
which are adjustable. Prior to coupling LUMPREM and MF6,
LUMPREM model parameters were first calibrated against
measured extraction rates. Obtained values were subsequently
used as initial parameter values when calibrating the combined
model. LUMPREM provided a time series of groundwater
extraction totals for each major groundwater user, and these
were subdivided into groundwater extraction rates at each
extraction point with a multiplier. As the extraction rates at
each well were unknown, the multipliers were allowed to vary if
needed during the calibration process.

The prior estimates of parameters, including the LUMPREM
parameters, are shown in Supplementary Table S1 of the
Supplementary Material, with the mean of the prior
probability distribution representing preferred values in the
regularization. The model is parameterized with a total of
1,437 adjustable parameters. Parameter field uniqueness is
achieved through numerical regularization which seeks
minimum departure of each parameter from a user-specified
“preferred value.” For spatially varying parameters, covariance
matrices are used instead of regularization weights to ensure
smoothness of emergent parameter fields.

5.1.2 Observations and Weighting
In total, 5,103 observations were included as history matching
targets. A total of 12 hydraulic head time series from the semi-
confined, and 5 from the phreatic aquifer were used as history-
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matching targets. At one location, head differences between the
two aquifers were also included as observations (610/179 and
610/180 in Figure 2B). Metered quantities of groundwater
extraction reported to APA from 2010 onwards were also
included as observations.

First-order temporal variations were calculated by subtracting
each observation from the previous observation, giving equal
importance to the temporal changes in the observation borehole
time series as the actual measurement value (White et al., 2014;
Foster et al., 2021; Hugman et al., 2021).

Soft data was also incorporated, with drains set at ground level
across the entire model domain, and observations of zero flow
included, where appropriate.

The weighting scheme aimed to give equal importance to
matching of heads and extraction rates in the history-matching
process. Heads were sub-divided into several observation groups to
increase the weight of boreholes in different layers, and those that
exhibited different responses. Groundwater extraction observations
also were sub-divided to account for large difference in the temporal
resolution of observations between the groups.

5.1.3 History Matching and Uncertainty Quantification
The PESTPP-IES iterative ensemble smoother generates
alternative, calibration-constrained, parameter realizations, by
sampling from a selected probability distribution (White,
2018). The parameter realizations are then iteratively adjusted

until the model outputs attain a better fit to observations. In this
case, the linear approximation to the posterior probability
distribution was used as the starting point for PESTPP-IES, as
often this can provide a better starting point for the process
(Gallagher and Doherty, 2020).

Noise was added to the non-zero weighted observations by
replacing the observation weights used during the history
matching process with the inverse of the standard deviation of
measurement noise. These were applied to heads (0.1 m) and
pumping rates (0.5–2.5 m3/d ), with larger uncertainty applied to
the non-metered groundwater users. The PEST utility RANDOBS
was used to generate realisations containing noise-enhanced
observations. The number of realisations (200) was selected to
be more than double the number of uniquely identifiable pieces of
information in the calibration dataset (90) identified by the PEST
utility SUPCALC (Doherty J. E., 2021) following other recent
studies (Hayley et al., 2019).

5.2 Results
5.2.1 Calibration
The resulting MEV parameter set achieved a good fit to measured
observations of both hydraulic heads and groundwater
extraction. In general, a better fit was obtained for heads in
the semi-confined aquifer compared to the phreatic (as shown in
Figure 5). This is not surprising, as there are fewer head
observation points in the phreatic aquifer. The PQ formation

FIGURE 5 |Measured and simulated hydraulic heads for 606/647, 606/1026 and 610/179 from the semi-confined aquifer, and 610/167 from the phreatic aquifer.
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is known to be highly heterogeneous, and it is difficult to
determine if, and where, extraction is occurring from this
phreatic aquifer. As the fit of 610/167 only improved once
extraction was permitted from both aquifers, this suggests that
extraction is occurring from the PQ in this area.

Simulated and observed extraction rates are shown in
Figure 6. In general, simulated extractions match measured

extractions well, particularly in the central and eastern parts of
the model.

Calibrated total annual average recharge values of
0.33–0.59 Mm3/yr, with an average of 0.44 Mm3/yr, were
obtained. These values are an order of magnitude lower
than the APA estimate (3.46 Mm3/yr), which has been
recognised as an over-estimate by several authors (Almeida

FIGURE 6 | Measured and simulated extraction rates for user group D, and the extensive agriculture group.

FIGURE 7 | Measured and ensemble of simulated hydraulic heads for 606/647, 606/1026 and 610/179 from the semi-confined aquifer, and 610/167 from the
phreatic aquifer.
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et al., 2000; Hugman, 2016). The calibrated recharge values
reflect the conceptual understanding that weathered red clays
at the ground surface are of low permeability, limiting diffuse
rainfall-recharge to the phreatic aquifer. The lowest recharge
rates occur under the non-irrigated land (2 mm/yr), which
accounts for 25 km2 of the total 32 km2. The other land uses
have higher recharge rates (4–295 mm/yr) and include
irrigation return. Diffuse recharge is largely prevented from
reaching the semi-confined aquifer by the presence of the
aquitard, with the majority of inflow occurring at depth
from the adjacent aquifer systems.

5.2.2 History-Matching
Of the 200 realizations, 138 resulted in model convergence.
The remaining model runs generally failed due to convergence
issues related to drying of the upper layers. History matching
results are shown in Figure 7 for the same piezometers as
Figure 5, along with the MEV results. The ensemble
encompasses almost all the observations, apart from
piezometer 610/179 where heads recover earlier in the year
than the model predicts, indicating that extraction in this
location perhaps ceases earlier in the year than expected by
the soil-moisture balance. The ensemble resulted in a wider
distribution of heads in the phreatic aquifer, as shown by 610/
167, where although the temporal variation in heads matches

the measured data well, there is a large range of predicted
groundwater levels in this location. This occurred despite
increasing the weight of the phreatic aquifer observations.

5.2.3 MAR Scenario Results
The impact of MAR at the locations denoted Marsl (Ribeira da
São Lourenço), Marww1 (Quinta do Lago), Marww2 (Vale do
Lobo) and Marww3 (Faro Noroeste) is shown in Figure 8,
where the ensemble of predicted heads is plotted against the
minimum head required at each location. Results at extraction
boreholes are not shown, as the impact of MAR is negligible.

At Marsl, the heads are highly dependent on the variability of
ephemeral flow, with large increases occurring during recharge
periods. However, these are short-lived, falling rapidly to levels
similar to the minimum head requirement when additional
recharge is not occurring. This indicates that MAR is probably

FIGURE 8 | Predicted hydraulic heads at MAR locations, showing MEV model results (green), each ensemble member (grey), mean of ensemble (blue), and the
minimum head requirement at that location (red dashed).

TABLE 1 | Average head differences (m) at MAR locations during 20 years
simulation period (MAR scenario minus no-MAR scenario).

Location 5th Percentile Mean 95th Percentile

Marww1 0.78 2.03 3.36
Marww2 0.28 2.01 3.80
Marww3 0.77 1.62 2.80
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not necessary at this location; a location further downstream
would be more beneficial.

At the other MAR locations, the minimum head
requirement is only met during limited times and for some
realisations. A no-MAR scenario was run to identify the head
improvements resulting from MAR. The time-averaged head
differences show only limited improvement in hydraulic
heads as shown in Table 1 (averages are not appropriate
for Marsl due to the ephemeral flow variability and are not
presented). Time series of head differences, in the
Supplementary Figure S1, indicate that head
improvements occur rapidly after the implementation
of MAR.

These results raise the question whether it is possible to reach
the minimum heads under any scenario, remembering that heads
for the pre-development period are unknown. This was examined
by undertaking an additional scenario with no extraction (and no
MAR). The minimum heads required at each extraction borehole
were compared to the predicted heads (5th percentile of the
ensemble) at those locations, confirming that the minimum
heads could be met with a small number of exceptions (see
Supplementary Table S2). These occurred where extraction
boreholes are deep (up to 200 m), or where the boreholes were
located close to the eastern boundary. Here, the average heads are
already low (1.1 m asl), preventing the minimum head
requirement from being met close to the boundary. This
provides confidence that somewhere between no-extraction
and current extraction plus MAR, a management solution to
protect the aquifer exists.

5.2.4 Insights From Linear Analysis
The spatial distributions of hydraulic conductivity for each layer
from the MEV parameter set are plotted in Figure 9, along with
the corresponding values of the relative parameter uncertainty
variance reduction (RUPVR) (Doherty J. E., 2021). This ratio
varies from 0 to 1, with higher values indicating the locations
where posterior parameter uncertainty has been reduced in
comparison to the prior during history-matching. Of
particular interest is the area in the centre of the model, which
appears to have relatively higher K in both layer 1 and layer 2,
where the RPUVR shows that the uncertainty has been reduced to
a greater extent than the surrounding area. This is an important
insight, which could justify further site investigation for a
potential infiltration basin MAR scheme in this location.

Values of RUPVR were low for pilot points along the
boundary conditions, with mean values of 3 × 10−2 to 6 ×
10−6 obtained for conductance and head values, indicating that
history matching was not effective in reducing uncertainty in the
boundary condition parameters, outlining the importance of
constraining the prior probability distributions by the method
described in Section 4.1.

6 DISCUSSION AND CONCLUSIONS

6.1 The Workflow
The combined model was scripted, and therefore reproducible.
Furthermore, conceptual changes identified during the model
construction and calibration process could easily be altered in the

FIGURE 9 | Spatial distribution of (log) hydraulic conductivity in layers 1 (phreatic), 2 (aquitard) and 3 (semi-confined) (top, left to right), and RPUVR of hydraulic
conductivity in layers 1, 2 and 3 (bottom, left to right), location of hydraulic head observations for each layer indicated by black crosses.
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base model. Whilst the model was designed to have a fast run time,
the scripting involved significant time investment and cognitive
effort for the modeller in moving away from GUI based methods to
the open-source tools described herein, but it was considered to be
worth it for the resulting flexibility and reproducibility.

The model development and deployment were considered
simultaneously, with reduced process complexity (constant-
density) and structural complexity (modelling the offshore
extent and processes as described in Section 4.1). The
resulting model was capable of uncertainty quantification and
reduction, but with limitations in terms of the predictions it can
make. For an initial first-order assessment, evaluating the
effectiveness of MAR against minimum heads was an
acceptable compromise. This relatively simple metric quickly
identified that MAR was not likely to be successful and thus
no further effort was put into a more comprehensive analysis. If
this had not been the case, further efforts into designing adequate
metrics would have been warranted. An alternative (or
complementary) analysis could use the results from the
complementary DDF model to determine the relation between
fresh-saltwater interface response to changes in flux across the
GHB coastal boundary. If a defensible relation between change in
flux and gradient reversal could be established, this would allow
the magnitude of change in GHB flux to be used as a metric for
effectiveness.

Calibrating with PEST_HP was time-consuming. Balancing
the weights requiring subjective expert knowledge about the
important features of the system. To obtain an acceptable fit
across all observation groups required testing of multiple
weighting strategies. However, calibration allowed the use of
linear analysis. This identified (with the RPUVR statistic) that
the uncertainty of coastal boundary parameters was not
reduced by history-matching. This provided further
justification for the method used to stochastically
characterise the coastal boundary, which constrained the
prior probability distribution. It also enabled the linearized
posterior probability distribution to be used as the starting
point for PESTPP-IES, reducing the number of model
convergence failures during this process (one-third of
realizations failed to converge even with this workflow).

Where decisions need to be made relatively quickly to protect
the aquifer, the use of a simpler model is beneficial. If building a
complex model takes too long, decisions are likely to be taken
before such a model is available (Caers, 2011). Furthermore, if a
complex model cannot quantify and reduce uncertainty, a likely
outcome given the nature of DDF models, then the decision-
support such a model can provide is limited.

6.2 The VL Sector
This case study demonstrates the development of a decision-
support groundwater model to assess the effectiveness of MAR to
prevent seawater intrusion in a coastal aquifer system, whilst
allowing reduction of prediction uncertainty through data
assimilation in a highly-parameterized framework. Process
complexity was reduced using a constant-density model, along
with a complementary 2D DDF model, to allow stochastic
characterisation of the head and conductance along the

boundary. This allowed us to achieve the fast run times
necessary to undertake history-matching and reduce predictive
uncertainty.

Evaluating MAR by the ability to achieve minimum heads
that prevent the seawater interface encroaching above the base
of the current extraction boreholes is pragmatic. It permits a
preliminary, aquifer-wide assessment, and allows regulators
and stakeholders to understand the benefits and limitations of
MAR with a simple metric. The results demonstrate that MAR
cannot increase the hydraulic heads sufficiently to attain the
minimum heads required, even locally. Therefore, the
proposed MAR schemes cannot prevent the interface from
reaching the base of the existing extraction boreholes, and
seawater intrusion in the VL cannot be mitigated by
MAR alone.

The minimum heads can be met for the majority of locations
in a “no-extraction” scenario, the exception being deep boreholes
close to the eastern boundary. Here heads are not sufficiently high
enough to prevent seawater intrusion, indicating that the VL
sector cannot be entirely protected from seawater intrusion even
under this scenario without concurrent management action in the
eastern part of the Campina de Faro.

This modelling, in conjunction with that of Hugman and
Doherty (2022), identifies for the first time, the true scale of the
problem in this area, and how difficult it will be to resolve. A
significant reduction in extraction will be needed in addition
to, or as an alternative to MAR. Hugman and Doherty (2022)
have shown that extraction rates would need to be reduced at
least to 30% of current rates in VL, possibly even less. Required
reduction in extraction would be less in conjunction with
MAR. An integrated approach to water management in the
VL sector could use the available treated waste-water directly
for irrigation as an alternative to MAR. Although this has not
been explicitly modelled, the implication of our model results
is that the waste-water volumes remain insufficient, and
further reductions in extraction would still be required.

Predicted climate change impacts on rainfall indicate that
for the RCP4.5 scenario, rainfall is expected to decrease by 10%
in the south of Portugal, with an associated reduction in wet
days of 10–20%, which will lead to associated reductions in
recharge (Soares et al., 2017). River flows in the Mediterranean
region are likely to be even more intermittent in the future due
to climate change, with an increasing number of zero flow
events (Schneider et al., 2013), reducing the availability of
water for MAR from this source. Meanwhile, socio-economic
and agricultural development in the region will result in
increased water demand for irrigation (Stigter et al., 1998;
Hugman et al., 2017). These compounding factors will result in
higher demand at a time when less water is available. Without
action, the aquifer will face even more severe pressures in the
future.

Collecting further information on the aquifer properties and
state of seawater intrusion, such as geophysics and further water
quality studies, adds to the available body of knowledge, but it is
time-consuming and expensive. Meanwhile, decisions are not
taken. The existing data is already rich in prediction-specific
information, as measured water levels are available close to where
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water level predictions are required. We have demonstrated an
approach and associated model to support decision-making with
the data currently available. This modelling has limitations, but
we are still able to state with a relative degree of confidence that
investing in MAR on its own is not going to solve the problem. In
conjunction with Hugman & Doherty (2022), we have
demonstrated that substantial further actions are needed to
protect groundwater quality in the VL sector.
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VisU-HydRA: A Computational
Toolbox for Groundwater
Contaminant Transport to Support
Risk-Based Decision Making
Maria Morvillo*, Jinwoo Im and Felipe P. J. de Barros

Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA,
United States

Obtaining accurate and deterministic predictions of the risks associated with the presence
of contaminants in aquifers is an illusive goal given the presence of heterogeneity in
hydrological properties and limited site characterization data. For such reasons, a
probabilistic framework is needed to quantify the risks in groundwater systems. In this
work, we present a computational toolbox VisU-HydRA that aims to statistically
characterize and visualize metrics that are relevant in risk analysis with the ultimate
goal of supporting decision making. The VisU-HydRA computational toolbox is an
open-source Python package that can be linked to a series of existing codes such as
MODFLOW and PAR2, a GPU-accelerated transport simulator. To illustrate the capabilities
of the computational toolbox, we simulate flow and transport in a heterogeneous aquifer
within a Monte Carlo framework. The computational toolbox allows to compute the
probability of a contaminant’s concentration exceeding a safe threshold value as well
as the uncertainty associated with the loss of resilience of the aquifer. To ensure
consistency and a reproducible workflow, a step-by-step tutorial is provided and
available on a GitHub repository.

Keywords: uncertainty quantification (UQ), stochastic hydrogeology, reproducible, decision making, probabilistic
risk analysis

1 INTRODUCTION

Assessing the risks associated with the presence of pollutants in groundwater often times relies on the
use of mathematical models. The key challenge is that model predictions in the subsurface
environment are subject to significant amount of uncertainty. These uncertainties arise due to
insufficient site characterization and our inability to fully resolve the spatial fluctuations of
hydrological properties at multiple scales. The combined effect of these factors leads to
uncertainty in model input parameters which render model outputs to be uncertain (Rubin,
2003). Quantifying this uncertainty and understanding how it propagates to quantities of
interest, such as environmental performance metrics (de Barros et al., 2012), are critical in risk
analysis as well as for decision makers to better allocate resources toward uncertainty reduction (de
Barros and Rubin, 2008) and define optimal aquifer remediation strategies (Cardiff et al., 2010).

A number of computational approaches have been proposed to quantify the effects of aquifer
heterogeneity on the spatiotemporal dynamics of a solute plume (see the following review articles,
Dentz et al., 2011; Neuman and Tartakovsky, 2009; Fiori et al., 2015) and the associated uncertainty
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(e.g., Kapoor and Kitanidis, 1998; Fiori and Dagan, 2000; Dentz
and Tartakovsky, 2010; Meyer et al., 2013; de Barros and Fiori,
2014; Boso and Tartakovsky, 2016; Ciriello and de Barros, 2020).
The computational stochastic frameworks provided in most of
the above-mentioned works are of analytical or semi-analytical
nature (i.e. based on perturbation theory). Many of these
analytical approaches have been applied to human health
probabilistic risk analysis (Andričević and Cvetković, 1996; de
Barros and Rubin, 2008) and successfully compared with
concentration field data (i.e., de Barros and Fiori, 2021). Fully
numerical approaches allow to relax on simplifying assumptions,
and uncertainty is typically quantified through the Monte Carlo
framework (e.g., Maxwell et al., 2008; Siirila et al., 2012; Henri
et al., 2016; Im et al., 2020). An in-depth analysis of the reliability
assessment of the computed statistical moments obtained from
Monte Carlo simulations within the context of subsurface
hydrology is provided in Ballio and Guadagnini (2004). In
addition to Monte Carlo methods, other approaches for
uncertainty quantification are reported in the literature (see
Oladyshkin and Nowak, 2012; Ciriello et al., 2017, and
references therein). A review comparing the advantages of
different numerical stochastic methodologies used for
uncertainty quantification can be found in Zhang et al. (2010).

Despite significant contributions in computational methods
in the field of stochastic hydrogeology (see Rubin, 2003), many
of the developed computational tools are not easily accessible
to the hydrological community. With the exception of few
tools (e.g. Li and Liu, 2006; Maxwell et al., 2015; Hammond
et al., 2014, amongst others), most existing computational
tools are difficult to access and are not open source. There
is an ever-increasing need within the hydrological community
for models’ transparency and reproducibility. Being able to
reproduce numerical results is, nowadays, an essential feature
that needs to be present in tools used for environmental
modeling, risk analysis and data management (e.g., Fienen
and Bakker, 2016; Fienen et al., 2022). The usage of
collaborative coding environments (such as GitHub,
Dabbish et al., 2012), where scripts are written in open-
source languages (e.g., Python, vanRossum, 1995), has the
potential of creating clear, shareable and reproducible
knowledge. As stated by White et al. (2020), the absence of
those characteristics can reduce the credibility of the model as
a decision support tool and hamper resource management
efforts.

In this work, we present a computational toolbox that links the
various components relevant for the estimation of the pollutant
concentration at an environmentally sensitive target and its
associated uncertainty. The computational framework builds
upon existing computational tools such as HYDRO_GEN
(Bellin and Rubin, 1996), FloPy (Bakker et al., 2016), and a
GPU-based random walk particle tracking code (Rizzo et al.,
2019). The key features of this computational toolbox are as
follows:

• The proposed computational toolbox is fully open source,
including coding language and utilized software, to enhance
accessibility of the modeling workflow.

• All the utilized software are run through Python scripts, to
provide a complete, transparent and repeatable record of the
modeling process following the ideas put forth in Bakker
et al. (2016).

• All the steps necessary to construct the model, compute
risks and uncertainty, are smoothly connected in a unified
script, to ensure efficiency in computing the Monte Carlo
iterations, for uncertainty quantification.

• All the software have been selected for their precision,
robustness, compatibility among each other, user-
friendliness and transparency.

• All files are shared on a GitHub repository, to be constantly
accessible, editable and expandable as a communal effort in
creating a consistent and efficient modeling framework.

As mentioned in Bakker et al. (2016), models are commonly
constructed with a graphical user interface (GUI), due to their
interactive environment and guided structure in populating the
model and post processing the results. However, when GUIs are
utilized for constructing and post processing numerical
groundwater flow and transport models, no records of the
modeling process are available, limiting repeatability and
accessibility of the employed modeling framework. On the other
hand, Python scripts can be seen as a complete, clear, easy and
readable structure of the modeling approach. It serves as a
documentation of the model input data and provides the
hydrological community a cooperative script-based workflow
that is easy to access (Peñuela et al., 2021). The visual and
interactive nature of our workflow and software package
enhance the accessibility and understanding of model
predictions, overcoming the communication limits of static
documentation, with the final goal of assisting decision makers
(Woodruff et al., 2013). For such reasons, we provide a step-by-step
tutorial on how to utilize the proposed computational toolbox and
illustrate how this toolbox can be employed to 1) perform risk
assessment and 2) improve our fundamental understanding of the
role of aquifer heterogeneity in the physics of contaminant
transport.

2 PROBLEM STATEMENT

We start by considering a scenario where an hazardous substance
is released into an aquifer with ambient base flow rate Qb. The
contaminant plume originating from the source zone will
undergo a series of physical and (bio)chemical processes until
it reaches a receptor, e.g. a compliance plane or pumping wells.
Due to limited site characterization of the subsurface
environment, the spatiotemporal dynamics of the solute plume
is subject to uncertainty. In this work, the main source of
uncertainty stems from the randomness of the hydraulic
conductivity field, denoted by K. Under these conditions,
decision makers are interested in determining the probability
that the contaminant concentration C at an environmentally
sensitive location will exceed a threshold value C* established
by a regulatory agency, namely Prob[C > C*]. The concentration
estimate C at a given location x = [x1, . . . , xd], with d denoting the
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dimensionality of the flow domain, and time t is typically
obtained by solving the partial differential equations governing
the physics of transport.

The concept of reliability, traditionally defined as the
probability of non-failure, can be employed to formulate this
problem. Let ξ(t) denote the aquifer reliability [-] evaluated at an
environmentally sensitive target exposed to contamination for a
given realization of the hydraulic conductivity field. In this work,
we define that aquifer reliability function at the environmentally
sensitive target as follows:

ξ t;VT( ) � 1, C x ∈ VT, t( )≤Cp,
0, otherwise,

{ (1)

where t is time and VT is the geometric configuration (i.e. volume,
area, line or point) that characterizes the dimensions of the
environmentally sensitive location. In order to measure the
capability of the aquifer to recover its reliability as a potable
water source, we will rely on the concept of loss of resilience. The
aquifer resilience loss, denoted here by RL, over a given time
period t0 ≤ t ≤ t0 + tf is computed at the target location VT as
follows:

RL t;VT( ) � ∫t0+tf
t0

Ψ t;VT( )dt, (2)

where

Ψ t;VT( ) � 1 − ξ t;VT( ). (3)
Due to the inherent uncertainty in the parameters

characterizing the aquifer system, such as the K-field, the
functions C, ξ and RL are regarded as random functions. As
a consequence, both Ψ and RL are characterized in terms of
their statistical moments and their probability density
functions (or cumulative density functions). For this work,
we will compute uncertainty in Ψ and RL through Monte
Carlo framework. With the goal of ensuring transparency
and reproducibility of the results presented in this work, we
provide all the codes necessary to compute Eqs 2, 3 for a
fully worked illustration. We include a detailed description of
the files and scripts for the illustrations, following the
mindset presented in some works within the
hydrological community (e.g., Fienen and Bakker, 2016;
White et al., 2020).

3 METHODS AND IMPLEMENTATION

Our approach for modeling the resilience loss of an aquifer
consists of following four components: the generation of the
hydraulic conductivity fields, a groundwater flow and
contaminant transport model accompanied by an initially
known contaminant injection zone, the computation of Eq. 2
and a Monte Carlo framework to evaluate the uncertainty
associated with the resilience loss. For our computational
illustrations, we will assume that groundwater flow and
contaminant transport take place in a hypothetical two-

dimensional (2D) aquifer. The computational domain has
dimensions ℓi along the ith direction where i = 1, 2. Below we
provide details regarding each step.

1. Geology and Geostatistics: First, a description of the site
geology is needed. This description is based on a grid of
hydraulic conductivity values that will serve as input for the
groundwater flow model. The log-conductivity field is
assumed to be isotropic and spatially heterogeneous Y(x)
= log K(x). As previously mentioned, Y is uncertain given
the incomplete information of the hydrogeological system.
Therefore, Y is regarded as a random space function (RSF)
(Kitanidis, 1997; Rubin, 2003) and considered here as
statistically stationary and multi-variate Gaussian. The
RSF model for Y is therefore characterized by the mean
(μY), variance (σ2Y) and spatial covariance CY(r) of Y with r
denoting the lag-distance. We adopt an exponential model
for CY with isotropic correlation length λ. The ensemble of
random Y fields used in the simulations is generated
using the robust HYDRO_GEN tool (Bellin and Rubin,
1996).

2. Groundwater Flow Field: Groundwater flow is assumed to be
at steady-state and far from the presence of sinks and sources.
The governing equation for the flow field is provided in
Appendix A, see Eq. A1. Permeameter-like boundary
conditions are assumed, i.e. prescribed hydraulic heads at
the inlet (hin) and outlet (hout) along the longitudinal
direction of the computational domain and no-flux
conditions at the remaining boundaries. The groundwater
balance equations are solved numerically and the solution
of hydraulic head in the computational domain is obtained.
Groundwater fluxes are computed using MODFLOW
(Harbaugh, 2005) together with the Python library FloPy
(Bakker et al., 2016). The dimensions of the numerical grid
block are Δxi, with i = 1, 2. The velocity field can be calculated
through Darcy’s law by combining the computed hydraulic
head with the hydraulic conductivity and with the knowledge
of the porosity.

3. Solute Transport: A contaminant is instantaneously released
along a source zone with area Ao � Δs1 × Δs2. The initial
concentration of the contaminant is given by C0. We
assume that transport is non-reactive and governed by
the advection-dispersion equation (see Appendix A, Eq.
A2). Transport is solved through the use of a Lagrangian-
based simulator, i.e., Random Walk Particle Tracking
(RWPT). The transport simulator is a parallelized GPU-
based RWPT dubbed PAR2 (Rizzo et al., 2019). The
transport simulations will allow to compute the
concentration breakthrough curve at a given target
location (i.e. a protection zone or an observation well).
The concentration values at the target location are then
compared to a given regulatory threshold value, C*, for the
pollutant of interest. Based on the solute breakthrough
curves and C*, we can then calculate the resilience
loss, Eq. 2.

4. Uncertainty Quantification: To estimate the uncertainty
associated with the quantities of interest, we employ a
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Monte Carlo (MC) framework. In this approach, a series of
hydraulic conductivity field realizations are generated,
based upon some geostatistical representation of the
subsurface environment (see step 1). Then, the
groundwater flow and contaminant transport equations
are solved for each realization of the K field. This results

in a statistical description of the concentration
breakthrough curves at a given location and
consequently, the resilience loss, Eq. 2. In our fully
worked out example, we evaluate an ensemble consisting
of five hundred realizations of the conductivity field
(NMC = 500).

FIGURE 1 | A schematic representation of VisU-HydRA. As a computational toolbox for groundwater contaminant transport and its uncertainty, VisU-HydRA
integrates all necessary numerical software and post-processing codes in a single Jupyter Notebook. Each component (1-6) is executed by each code cell in the Jupyter
Notebook in order. Colored are the names of the employed software, and NMC stands for the number of Monte Carlo realizations.

FIGURE 2 | Examples of Jupyter Notebook code cells corresponding to the numbered processes (see Figure 1). Detailed descriptions are included in each cell so
that users can easily reproduce the results of the tutorial presented in this study.
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4 TUTORIAL

Here, we describe the structure and the contents of the
computational code adopted in our study and a tutorial. For
our case study, we provide an open-source code to ensure the
reproducibility and re-usability of its model outputs (Peñuela
et al., 2021). We will make use of the appealing features of Jupyter
Notebooks (i.e., web-based applications) to write a simple and
transparent code. The proposed package is aimed at Visualizing
Uncertainty for Hydrological Risk Analysis and it is called
VisU-HydRA.

The VisU-HydRA package is available on GitHub repository
(https://github.com/mariamorvillo/VisU-HydRA). A Jupyter
Notebook, named “Tutorial_MC_F&T.ipynb”, contains all the
scripts necessary to produce the results and analysis associated
with the case study presented in this work (see further details in
Section 3). All other functions and files are also made available to
support the user in better understanding the features of the
tutorial and to eventually apply all (or some) of the available
tools to scenarios of their interest. As shown in Figure 1, the
tutorial consist of six components. These components are
subdivided into code cells (see Figure 2) in the Jupyter
Notebook as follow:

1. Import Libraries: The first tutorial code cell imports libraries
which are needed in order to run some of the tools offered by
Python. A Python library is simply a collection of codes, or
modules of codes, that can be used in a program for specific
operations. Among the most commonly used libraries, NumPy
supports large matrices, multi-dimensional data and consists
of in-built mathematical functions to facilitate the

computations (Oliphant, 2006). Further libraries are needed
in order to generate spatially random K fields, to assist in the
execution of flow and contaminant transport simulations and
in post-processing the output data to compute relevant
quantities such as the reliability and resilience loss of the
aquifer.

2. Model domain & Grid Definition: In the second code cell, the
dimensions of the computational domain and related
contaminant source and target zone areas as well as the
characteristics of the numerical mesh (i.e. the discretization
scheme) are declared. The hydraulic properties of the aquifer,
such as the hydraulic conductivity, are specified for each cell
which will serve as input for the flow simulator (such as
MODFLOW). In any finite-difference based flow simulation,
such as the one employed in this analysis through
MODFLOW, the hydraulic heads are calculated at discrete
points in space; those points are termed the nodes of the
Finite Difference or Finite Volume grid with dimensions ncol
× nrow × nlay (e.g., Zheng and Bennett, 2002).

3. Hydraulic Conductivity Fields Generation: This code cell
contains the first step of the MC loop (see Figure 1). As
stated in Section 3, this analysis considers 500 realizations of
the hydraulic conductivity field, namely NMC = 500. To start,
spatially heterogeneous log-conductivity fields Y ≡ ln[K] are
generated, with the characteristics indicated in Table 1. To
produce the ensemble of spatially correlated Y field
realizations, we use HYDRO_GEN (Bellin and Rubin,
1996). The HYDRO_GEN executable is available for Linux
and Mac platforms, meaning that if a Windows platform is
used, the user needs to generate a file containing the K fields
realizations (“Kfileds_Hydrogen.npy”) on a different
platform. The output of the code cell is a “.npy” file
containing the K values related to all the generated fields.
Each of these K fields are distributed along the file columns.
The user has to declare only the number of MC realizations
and the used operating system in the code cell. All the
information, such as the geostatistical parameters used to
generate the random K fields, have to be indicated on the
“hydrogen_info.txt” file. This “.txt” file can be easily
compiled following the instructions included in the
“manual_hydrogen.pdf” file made available by the software
creators (Bellin and Rubin, 1996) and included in the GitHub
repository, as all the documents discussed in this work (see
Table 2).

4. Flow Simulations: The fourth code cell computes the
second step of the MC framework, by processing the
flow simulations using the randomly generated
heterogeneous K fields. The flow field is computed using
numerical simulator MODFLOW (Harbaugh, 2005). To
create, run, and post-process MODFLOW-based models,
the Python package FloPy (Bakker et al., 2016) is employed.
The FloPy library is imported in the first step on this
tutorial. The MODFLOW executable, “mf2005dbl.exe,” is
needed in order to run this code cell (in the GitHub
repository, the one for Windows platform), while all the
variables related to the flow simulation (see Harbaugh,
2005, for details regarding MODFLOW and its packages),

TABLE 1 | Input parameters used in the proposed tutorial for hydraulic
conductivity field generation and flow and transport simulations.

Random space function model for Y = log K

Symbol Value Units

ℓ1 × ℓ2 170 × 150 [m]
μY 1.6 [m/day]
KG � exp[μY ] 5 [m/day]
σ2Y 3 [-]

λ1, λ2 8, 8 [m]

Flow Simulations

hin, hout 1, 0 [m]
Δx1 ×Δx2 1 × 1 [m]
tTOT 1,000 [days]
Δt 4 [days]

Transport Simulations

α1, α2 0.01, 0.001 [m]
Dm 8.6 × 10–5 [m2/day]
s01 , s

0
2 25, 65 [m]

Δs1, Δs2 12, 20 [m]
]01 , ]

0
2 117, 55 [m]

Δ]1, Δ]2 12, 40 [m]
C0 1 [mg/L]
C* 0.001 [mg/L]
Np 105 [-]
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have to be specified in this cell’s code. Documentation on
how to install the FloPy package is available on https://
github.com/modflowpy/flopy, in addition to the full

description of all the functions available in the just
mentioned package, needed to run different
MODFLOW’s features. The cell gives as output, in the

TABLE 2 | A list of software, Python libraries, configuration files for each step and the corresponding output data. Users need to install and prepare them to run the tutorial
that reproduces the data and the analysis shown in this work.

What you need What to install Output

K Fields Generation • hydrogen_linux or hydrogen_mac • numpy library • Kfield_Hydrogen.npy
• hydrogen_input.txt
• hydrogen.py

Flow Simulations • mf2005dbl.exe • flopy library • NMC model-*.ftl files in the folder tmp
Contaminant Transport Simulations • NVIDIA GPU • yaml library • NMC result-*.csv files in the output folder

• config.yaml • os library
• config-tmp.yaml • subprocess library • snap-{}-*.cvs files for each chosen simulation time step ({})
• par2.exe

Uncertainty Quantification & Risk Analysis • RAUQ_function.py • matplotlib library • data_output folder

FIGURE 3 | Schematic representation of the contaminant transport simulations code cell output. The image schematizes a possible output (depending on the
declared parameters in the YAML file) of a randomly selected hydraulic conductivity field from the Monte Carlo ensemble (realization number 47). The model output for
this specific hydraulic conductivity realization is given by “result-47.csv”. This file contains the data related to the contaminant’s cumulative breakthrough curve at the
control plane (represented by the vertical red line). In addition, snapshot files are generated for 400 simulation time steps. For example, “snap-0-47.csv”, “snap-
400-47.csv”, “snap-800-47.csv” and “snap-1200-47.csv” contain the position of each particle at time steps 0, 400, 800 and 1200. For visualization purposes, the
position (x = [x, y, z]) of the 1st, 2nd and 6478th particles are highlighted by red circles.
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folder named “tmp”, NMC “.ftl” files (“model-*.ftl”), each of
them containing respectively the flow simulation output
related to the “p” MC iteration.

5. Contaminant Transport Simulations: PAR2 (Rizzo et al., 2019)
is used to run the contaminant transport simulations. It
requires, as input, the groundwater flow velocities
originating from the previous code cell output. PAR2 is a
GPU-accelerated solute transport simulator, as explained in
Section 3, and consequently needs to be run on a platform
equipped with an NVIDIA GPU. Simulation parameters can
be easily defined through a YAML configuration file. Thus, to
run this code cell, the user needs the PAR2 executable,
“par2.exe”(in the GitHub repository, the one for Windows
platform) and two YAML files. Note that “config-tmp.yaml” is
a temporary file that is modified at each MC iteration,
following the structure of “config.yaml,” by substituting the
“*” symbol with the number of the current MC iteration and
the “{}” symbol with the evaluated simulation time step. The
user needs to provide the input simulation parameters in both
the YAML files. Further information on how to compile these
files can be found at “PAR2Info.” The output of this code cell,
in the folder “output”, areNMC.csv files (“result-*.csv”), each of
them containing respectively the data related to the
contaminant’s cumulative breakthrough curves at the
selected control planes for the “*” MC iteration. Snap files
(i.e., “snap-{}-*.csv”), for each MC iteration, can be an output
of the simulation as well. Those files contain respectively the
positions of the particles in which the contaminant has been

discretized into, at the “{}” time step selected by the user
through the YAML file. A schematic representation of the
potential output of a contaminant transport simulation with
PAR2 is shown in Figure 3. Asmentioned above, snapshot files
are created for each simulation of the MC ensemble. The time
required for a simulation is, among other variables,
proportional to the number of generated snapshot files. As
a consequence, the user should choose this variable wisely, to
avoid too prolonged simulations.

6. Uncertainties Quantification & Risk Analysis: This
component of the tutorial consists of post-processing
the previous data and generating the graphical output
that can support the decision-making process. In order
to run this last part of the Jupyter Notebook, the “.py” file
containing the scripts of the implemented functions is
necessary to elaborate the data coming from the
previous sections. The file is called
“RAUQ_function.py”, written following a basic and
intuitive structure to allow the user to access and easily
modify it accordingly. This section of the package allows
the user to visualize the geometry of the model, the location
of the source of contaminant and target zone (AT �
Δ]1 × Δ]2) and the positions of observation wells. The
user can also visualize the spatiotemporal evolution of
the solute plume (including the positions of the leading
edge of the plume and the maximum concentration) and
the hydraulic conductivity field (see Figure 4). For this
plume visualization step, the user can choose a specific MC
realization and the specific snapshot in time ([days]). The
user can also visualize the ensemble statistics of the
concentration field in both space and time as well as
other risk-related metrics (e.g., probability of
contaminant concentration exceedance and the statistics
of the maximum concentration, resilience loss, reliability,
etc.). Further detail on the generated files and other
information can be found in the text included in the
Jupyter Notebook.

5 APPLICATION TO RISK AND RESILIENCE

5.1 Probability of Concentration
Exceedance and Resilience Loss Maps
We will now use VisU-HydRA to investigate the risks associated
with an accidental benzene spill. For this hypothetical case study,
we will consider a 2D simulation as previously described
(therefore, x1 = x and x2 = y). All parameter values employed
in the upcoming results are reported in Table 1. Benzene is a
wildly used chemical for industrial solvents and for constituents
of fossil fuels and is considered to be a major threat to
groundwater resources and human health (Sivasankar et al.,
2017). Benzene spills are typically associated with
transportation and storage tank leakages. Due to its potential
health risk (e.g., Logue and Fox, 1986), the State of California
(United States) set the Maximum Contaminant Level, i.e. the
highest level of a contaminant that is allowed in drinking water, to
C* = 10–3 [mg/L] (Proctor et al., 2020). Note that benzene’s

FIGURE 4 | Schematic representation of the contaminant plume, in
green, for a given random realization of the hydraulic conductivity field. The
figure shows where observations wells (circles) are positioned over the target
area (rectangle) and how the locations of the leading edge of the plume
(blue cross) and of the maximum contaminant concentration (red cross),
experienced at each time steps of the simulation, evolve in time. The trajectory
of the leading edge of the plume follows the trajectory given by the dotted blue
line. The location of the maximum concentration of the plume bounces from
one location to another (see red crosses).
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degradation in water is extremely slow (i.e., Sivasankar et al.,
2017), and consequently, for the purpose of our illustration, we
will assume transport to be non-reactive (see Eq. A2).

Figure 5 depicts the spatial map of the expected value of Ψ
(Figure 5, top row), namely 〈Ψ〉, as well as its variance σ2Ψ
(Figure 5, bottom row) at different time snapshots. The statistics
of Ψ are computed over all NMC realizations of the hydraulic
conductivity field. Given that ξ (Eq. 1) is a Bernoulli distribution,
Ψ (Eq. 3) also follows a Bernoulli distribution (see Chapter 2.2. of
Mood et al., 1974). Therefore, the expected value of Ψ is equal to
the probability of concentration exceedance at the position x and
instant of time t. In other words, 〈Ψ(x, t)〉≡ Pr[C(x, t) ≤ Cp]. The
results shown in Figure 5 (top row) show that the probability of
being at risk decreases with time as an outcome of the enhanced
plume dilution due to macroscale spreading (e.g., Dentz et al.,
2011; de Barros et al., 2015; Ye et al., 2015; Henri et al., 2016). The
maps depicted in Figure 5 can be used by decision makers for
evaluating the risks associated with contamination, identifying
sampling locations and allocating resources towards uncertainty
reduction.

Next, we analyze the loss of resilience of the aquifer system.
Figure 6 shows the spatial map of first two statistical moments of RL,
see Eq. 2. The results illustrated provide information regarding the
locations where the expected resilience loss will be the largest
(Figure 6A) and its corresponding uncertainty (Figure 6B). RL
represents a measure of the amount of days necessary for the
aquifer to recover up to a state where the risks associated with the
contamination can be considered negligible.

As expected, the values of 〈RL〉 increase with travel distance
from the source location. This is explained by the increase of the
macroscale dispersion as the plume moves downstream from the
source. An increase in plume dispersion leads to the presence of
long tails in the solute breakthrough curve. Therefore, the
residence time for the plume while crossing a given location
increases thus leading to an increase in the averaged resilience
loss. As observed in Figure 6A, the maximum number of days
necessary for the right boundary of the flow domain to recover is

FIGURE 5 |Maps of the probability of concentration exceedance (top), and its uncertainty (bottom) at different instant of time in the simulation (columns). Plots of
the top row shows how 〈Ψ〉 [-] evolves in space respectively after 0, 10 and 30 days from the beginning of the contamination process. 〈Ψ〉 is expressed as a probability,
as indicated by its values on the color bar on the right. The bottom row shows σ2Ψ, as a measure of the uncertainty related to the information given by the plots in the
row above.

FIGURE 6 | Maps of the average loss of resilience (A) in the model
domain, and its variance values (B) throughout the whole simulation time. The
plot on the top shows how 〈RL〉 [d] evolves in space, expressing the amount
of days necessary for each point in the domain to recover up to a reliable
status. The amount of days associated with the different shades of blue are
indicated by the values on the color bar on the right of the top plot. The plot at
the bottom shows the values of the variance of RL, σ2RL

, as a measure of the
uncertainty related to the information given by the plot above.
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approximately 80. The results at the bottom of Figure 6 quantify
the uncertainties related to the estimated resilience loss values. As
shown in Figure 6B, larger uncertainty in RL is observed at large
distances from the source. One possible explanation for this
phenomenon may be due to the fact the contaminant plume
has sampled more fluctuations of the velocity field (i.e. the plume
travels through many correlation scales) thus leading to
increased uncertainty in the solute breakthrough curves at
those locations.

5.2 Impact of Contaminant Source
Efficiency on Aquifer Reliability
The computational package VisU-HydRA can also be employed
to improve our understanding on the impact of groundwater flow
physics and decision making metrics such as RL. Here we
illustrate how the hydraulics conditions within the
contaminant source zone could be used as an indicator of RL.
de Barros and Nowak (2010) introduced the source zone
efficiency η

η � Qsz

Qb
, (4)

where Qsz is the volumetric flow rate [m3/days] crossing the
contaminant source zone while Qb indicates the total background
volumetric flow rate passing through the entire aquifer’s cross
section. de Barros and Nowak (2010) showed that Eq. 4 controls
the overall plume dispersion downstream from the source.
Similar results are reported in Henri et al. (2016) in the
context of risk analysis, where the authors showed that high
water flux crossing the source zone leads to decrease in the

magnitude of human health risk due to the presence of
chlorinated solvents. Gueting and Englert (2013) also report
experimental evidence regarding the importance of source
zone hydraulics on transport behavior. Through the use of a
Bayesian framework, Nowak et al. (2010) showed that
characterizing the flow field surrounding the source zone
could significantly reduce the uncertainty of transport
observables.

Figure 7 shows the scatter plot of the maximum value of
resilience loss RL experienced within the target area
(AT � Δ]1 × Δ]2, see Table 1) and η. Each point in Figure 7
represents the RL obtained for each realization of hydraulic
conductivity ensemble. The data are fitted by a logarithmic
curve, the blue line, that has been found through genetic
programming (see Im et al., 2021). The data suggest that
scenarios characterized by high η values correspond to lower
estimates of RL. For completeness, we include the three plot insets
of the plume. These insets belong to the red dots in Figure 7
which correspond to 33rd, 34th and 102nd Monte Carlo
realizations. The results depicted in the plot insets suggest that
η has a clear impact in controlling the overall longitudinal
macrodispersion of the plume, which in turn will impact the
value of RL. Close inspection of Figure 7 reveals that a realization
characterized by a high value of η, such as realization number 102,
is characterized by a compact (along the longitudinal direction)
plume and therefore a lower RL value when compared to
realization number 33. When the strength of the contaminant
source area decreases (η < 1), the plume is more dispersed.
Increased plume spreading leads to larger plume residence
times at an environmentally sensitive target and therefore
higher RL values. Note that the aforementioned conclusions
are limited to the groundwater flow and transport scenario
adopted, the initial concentration of the contaminant and the
threshold concentration C*. Nevertheless, the analysis carried out
in this section re-emphasize the importance of 1) η in decision
making and 2) the characterization of the source zone in risk
analysis.

6 SUMMARY

In this work we provide VisU-HydRA, an open source,
documented, computationally efficient toolbox to characterize
specific features of the contaminant plume transport. The
proposed package serves as a user-ready toolbox and allows to
compute the uncertainty associated with metrics typically used in
risk analysis. VisU-HydRA consists of a collection of rapid and
open source software which have been assembled to deliver a
rapid, reproducible and transparent modeling framework.
Computational efficiency and rapidity are ensured by the
usage of a GPU-accelerated solute transport simulator (Rizzo
et al., 2019) and the automatized and solid structure of the
iterative processes. Reproducibility and transparency are
guaranteed by the open source coding language, the user-
friendly interface of the Python code and the availability of a
well documented and easy to follow tutorial made available on a
web-based application.

FIGURE 7 |Maximum value of resilience loss (RL [d]) experienced within
the target area versus contaminant source efficiency (η [-]) for all the Monte
Carlo realizations. Data (gray dots) are fitted by a logarithmic curve, the blue
line in the plot. The red dots highlight three Monte Carlo realizations, the
33rd, 34th and 102nd, in which the spatial configuration of the contaminant
plume is investigated at a given time snapshot. The insets are connected, by a
black arrow, to the simulated scenario. The black rectangles in the insets
represent the environmentally sensitive target location.
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In order to support the decision making process, the
computational toolbox includes a visualization component
that allows users to generate probability maps of aquifer
resilience loss and risk hot spots. Furthermore, a GitHub
repository was created and contains all the material reported
to this work. The results reported are limited to a two
dimensional application and the hydraulic conductivity
field is the only source of uncertainty. As a consequence,
the computational toolbox can be expanded to account for
other sources of uncertainty as well as three dimensional
models. In our work we opted to employ a two-dimensional
“reference model” typically encountered in the stochastic
hydrogeological community to study dispersion and
mixing of solutes in heterogeneous aquifers. However,
more realistic scenarios can be incorporated, such as the
one reported in Fiori et al. (2019). We point out that the
computational efficiency of the proposed toolbox could be
improved by making use of other uncertainty quantification
methodologies (as opposed to the classic Monte Carlo
framework). For example, Olivier et al. (2020) presents an
open-source, user-ready, Python package that includes
several of the latest approaches for uncertainty estimation
that are computationally efficient. The current contribution
represents one step towards an integrated framework for
analyzing groundwater contamination in risk assessment
under uncertainty.
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APPENDIX A FLOW AND TRANSPORT
EQUATIONS

For computational illustrations, we simulated a steady-state fully
saturated incompressible flow in a spatially heterogeneous aquifer
in absence of sink or sources. Flow is 2D, and in our computational
2D domain, x1 denotes the longitudinal dimension and x2 the
transverse one. The steady flow field is governed by:

∇ · K x( )∇h x( )[ ] � 0, (A1)
with h denoting the hydraulic head and K the hydraulic
conductivity.

For all our simulations, we considered permeameter-like
boundary conditions for the flow field. That is, no-flux
boundary conditions in the transverse boundaries and
constant heads, respectively hin and hout, are adopted in the
inflow and outflow boundaries of the computational domain.

For the transport simulation we consider that instantaneous
release of Benzene within a rectangular source zone of area
Ao � Δs1 × Δs2. The spatiotemporal evolution of the
concentration field is assumed to be governed by the
advection-dispersion equation:

zC x, t( )
zt

+ u x( ) · ∇C x, t( ) � ∇ · D x( )∇C x, t( )[ ]. (A2)

where C is the resident concentration, u is the velocity field, D is
the local-scale dispersion tensor assumed to be anisotropic and
defined as:

D x( ) � αT|u x( )| +Dm( )I + αL − αT
|u x( )| u x( )u x( )T (A3)

where Dm is the molecular diffusion, αL is the longitudinal (along
x1) dispersivity and αT is the transverse (along x2) dispersivity.
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Application of Time Series Analysis to
Estimate Drawdown From Multiple
Well Fields
Davíd A. Brakenhoff 1, Martin A. Vonk1,2, Raoul A. Collenteur3, Marco Van Baar1 and
Mark Bakker2*

1Artesia B.V, Schoonhoven, Netherlands, 2Water Management Department, Faculty of Civil Engineering and Geosciences, Delft
University of Technology, Delft, Netherlands, 3NAWI Graz Geocenter, Institute of Earth Sciences, University of Graz, Graz, Austria

In 2018–2020, meteorological droughts over Northwestern Europe caused severe
declines in groundwater heads with significant damage to groundwater-dependent
ecosystems and agriculture. The response of the groundwater system to different
hydrological stresses is valuable information for decision-makers. In this paper, a
reproducible, data-driven approach using open-source software is proposed to
quantify the effects of different hydrological stresses on heads. A scripted workflow
was developed using the open-source Pastas software for time series modeling of
heads. For each head time series, the best model structure and relevant hydrological
stresses (rainfall, evaporation, river stages, and pumping at one or more well fields) were
selected iteratively. A new method was applied to model multiple well fields with a single
response function, where the response was scaled by the distances between the pumping
and observation wells. Selection of the best model structure was performed through
reliability checking based on four criteria. The time series model of each observation well
represents an independent estimate of the contribution of different hydrological stresses to
the head and is based exclusively on observed data. The approach was applied to
estimate the drawdown caused by nearby well fields to 250 observed head time series
measured at 122 locations in the eastern part of the Netherlands, a country where summer
droughts can cause problems, even though the country is better known for problems with
too much water. Reliable models were obtained for 126 head time series of which 78
contain one or more well fields as a contributing stress. The spatial variation of the modeled
responses to pumping at the well fields show the expected decline with distance from the
well field, even though all responses were modeled independently. An example application
at one well field showed how the head response to pumping varies per aquifer. Time series
analysis was used to determine the feasibility of reducing pumping rates to mitigate large
drawdowns during droughts, which depends on the magnitude and response time of the
groundwater system to changes in pumping. This is salient information for decision-
makers. This article is part of the special issue “Rapid, Reproducible, and Robust
Environmental Modeling for Decision Support: Worked Examples and Open-Source
Software Tools”.

Keywords: time series analysis, groundwater, decision support, reproducible, model selection, Hantush response
function, well drawdown
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1 INTRODUCTION

The competition for groundwater resources is fierce, including
demands for agricultural production, drinking water supply,
groundwater-dependent ecosystems, and for mitigation of
land subsidence to maintain the stability of buildings. Dry
summers and the growing demand for freshwater increases the
pressure on limited groundwater resources. The groundwater
table may drop significantly during and after dry summers
(e.g., Brakkee et al., 2022) due to a set of stresses on the system
including a decrease in precipitation, an increase in
evaporation and transpiration, lower surface water levels,
and higher groundwater use for both drinking water and
irrigation (e.g., Van Loon et al., 2016). The effect of
pumping wells on the head is one of the few stresses on the
system that can be controlled. Estimates of the head response
to pumping wells are therefore salient information for decision
makers to manage groundwater resources and possibly
mitigate low groundwater tables.

The effect of pumping on the heads in a multi-aquifer system
can be estimated with a numerical groundwater model (e.g.,
Anderson et al., 2015). Such process-based models typically
require a large amount of input data to incorporate system
and process details (e.g., Hugman and Doherty, 2022).
Significant time investment is required to build and calibrate
these models, and, even after considerable effort, they are rarely
able to simulate the transient head variation with reasonable
accuracy. Alternatively, models based on time series analysis are
generally much better at simulating the heads measured in an
observation well (e.g., Bakker and Schaars, 2019). Additionally,
time series models have the advantage of low data requirements
and can be developed in a short amount of time.

Many time series analysis approaches are black-box models,
for example ARIMA models (e.g., Patle et al., 2015) or deep
learning methods (e.g., Wunsch et al., 2018). A disadvantage of
such black-box models is that it can be difficult to physically
interpret the resulting models. More transparent, gray-box
approaches include lumped conceptual models (Mackay et al.,
2014) or time series modeling using physically-based response
functions (e.g., Von Asmuth et al., 2012; Collenteur et al., 2019).
The latter also allows for the differentiation between the stresses
causing the head variation (e.g., Von Asmuth et al., 2008).

An important application of time series analysis is the
estimation of the drawdown caused by pumping. For example,
Von Asmuth et al. (2008), Obergfell et al. (2013), and Shapoori
et al. (2015) applied time series analysis to determine the
drawdown due to pumping from a single well field. Many
observation wells worldwide are impacted by multiple well
fields. The pumping rates at these well fields are commonly
correlated, which complicates the estimation of the
contributions of different well fields and may lead to increased
uncertainty in the model outcomes and less robust models.

The objective of this paper is to present a data-driven,
reproducible, and robust approach to estimate the head
response at observation wells that are potentially affected by
variations in rainfall, evaporation, rivers stages, and pumping
from multiple well fields. The main objective is to quantify both

the magnitude and timing of the head response to the
surrounding well fields at each observation well using a new
parsimonious approach to incorporate multiple well fields in a
time series model. The approach is tested in an area of the
Netherlands where the heads are measured at 213 observation
wells at multiple depths, resulting in 395 head time series. The
heads are potentially affected by four different well fields. A
detailed decision tree is developed to determine which stresses
have a significant effect on the head variation. Time series analysis
is conducted with the open-source Pastas software (version
0.20.0 Collenteur et al., 2019) to determine the response of
each well field. The analysis is entirely implemented in Python
scripts and is fully reproducible as advocated by Fienen and
Bakker (2016) & White et al. (2020).

In the following, the approach to quantify the effects of
groundwater pumping using time series analysis is
presented. Next, the study area and all available data are
described and the results of the analysis are presented
including an estimate of the uncertainty. A possible
application of the results is presented for the mitigation of
low heads in dry summers. The applicability and limitations
of the method are discussed, including some challenges faced
while performing the study. Concluding remarks are
presented at the end of this paper.

2 METHODOLOGY

A time series model represents an independent estimate of the
contribution of different stresses on the heads in an observation
well that is derived exclusively from observed data. A multi-
model approach is applied to determine which hydrological
stresses are relevant in describing the head dynamics in an
observation well.

Precipitation-excess, river stage, and groundwater pumping
are included as potentially relevant hydrological stresses. Eight
different model structures are tested for each head time series.
The simplest model considers only precipitation-excess,
computed from precipitation and potential evaporation. The
next model adds the river stage as a stress. In the next three
models, up to three well fields are added as potential stresses,
starting from the closest well field and moving towards the
farthest one. The final three models repeat this last step but
leave out the river as a stress.

A set of criteria is used to determine which model structures
are deemed reliable. The best model structure is selected from the
set of reliable models for each observation well. Split-sample
testing, in which a portion of the time series is kept separate, is
applied to test the calibrated model.

2.1 Time Series Modeling
The time series modeling approach, also referred to as transfer
function noise modeling, uses physically-based impulse response
functions that describe the head response to different stresses
(Von Asmuth et al., 2002). Simulation of the effect of
precipitation-excess, river stage variations, and noise modeling
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is based on the standard approach of Von Asmuth et al. (2008).
The time series model is written as

h t( ) � ∑M
m�1

hm t( ) + d + r t( ) (1)

where h(t) are the observed heads, hm(t) is the contribution of
stress m to the head, d is the base elevation of the model, and
r(t) are the residuals. Each model has an arbitrary number of
stresses M, depending on the chosen model structure. The
contribution of each stress is computed through
convolution as

hm t( ) � ∫t

−∞
Sm τ( )θm t − τ( )dτ (2)

where Sm(t) is the time series of a stressm and θm is the associated
impulse response function. An auto-regressive noise model of
order 1 (AR1) is used in an attempt to transform the residuals
into a noise time series n(t) that is approximately white noise
(Von Asmuth and Bierkens, 2005)

n ti( ) � r ti( ) − e ti−ti−1( )/α (3)
where n(ti) is the remaining noise at time ti and α is the auto-
regressive parameter.

The precipitation-excess, N(t), is modeled as

N t( ) � P t( ) − fEr t( ) (4)
where P(t) is the precipitation, Er(t) is the Makkink reference
evaporation (de Bruin and Lablans, 1998), and parameter f is used
to scale the reference evaporation to local hydrological
conditions. The impulse response of groundwater to
precipitation-excess is described using the scaled Gamma
distribution (Collenteur et al., 2019)

θ t( ) � A

anΓ n( )t1−ne
−t/a (5)

whereA, a, and n are fitting parameters. In this formulation of the
response function, parameter A is the gain of the response
function, i.e., the rise in the head due to a constant unit
precipitation-excess. The groundwater response to river stage
fluctuations is described with an exponential response function,
which is a special case of the scaled Gamma response function
with n = 1.

The head response to groundwater pumping may be simulated
with a response function that has the same mathematical form as
the Hantush well function (Hantush and Jacob, 1955). There is a
risk of over-parameterization of a time series model when
multiple pumping wells are added to the model that each have
their own response function and corresponding parameters. For
example, adding three pumping wells with a Hantush well
function would already add 9 parameters to the model. The
use of a single response function is proposed, scaled with the
distance to the well field, to quantify the effect of all groundwater
pumping wells. The response function is based on the Hantush
response function used by Von Asmuth et al. (2008) and is
modified to include the distance of the well field to the

observation well r explicitly, so that the impulse response
function is

θ r, t( ) � A

2t
e−t/a−abr

2/t (6)

where A, a, and b are fitting parameters. The gain of the response
function is AK0(2r

�
b

√ ), where K0 is the modified Bessel function
of the second kind and order zero. It is noted here that the
parameter A for this response function does not equal the gain.

The step response Θ(t), the response to a constant unit stress,
is obtained from the impulse response function through
integration

Θ t( ) � ∫t

0
θ t − τ( )dτ (7)

An example of the Hantush step response is shown in
Figure 1. The t50 and t95 represent the time when 50 and 95%
of the total response has occurred, respectively. For this modified
Hantush response function, the t50 can be conveniently computed
following Veling and Maas (2010).

t50 � ar
�
b

√
(8)

The calculation of the variances of the gain and the t50 is
provided in the Supplementary Material.

2.2 Model Calibration, Reliability Criteria,
and Selection
The most complex model considered in this paper has a total of
eleven parameters: four parameters for the response to
precipitation-excess, two parameters for the response to river
stages, three parameters for the response to pumping wells, one
parameter for the noise model, and one parameter for the base
elevation of the model.

The head time series of each observation well is divided
into a calibration period and a validation period. The
calibration data is used to calibrate each time series model
with a two-step optimization approach following Collenteur

FIGURE 1 | An example of the Hantush step response. The t50 and t95
represent the time when 50 and 95% of the total response has occurred,
respectively.
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et al. (2021). In the first step, the parameters are optimized
without the use of a noise model by minimizing the sum of
squared residuals. In the second step, the noise model is
added and the sum of squared noise is minimized using
the optimized model parameters from the first step as
initial parameter values.

A set of criteria is applied to all eight model structures to
determine which model structures are considered reliable for
further analysis. A reliable model is defined here as a model
meeting four acceptance criteria. From the model structures
passing these criteria, a single model structure is selected for
each observation well based on two selection criteria. The
selection scheme including all reliability criteria is presented in
Figure 2. The following four acceptance criteria are used:

1) Goodness of fit. The model goodness of fit in the calibration
period, measured as the coefficient of determination (R2),
must be equal or larger than 0.7, which means that the model
has at least a basic fit.

2) Autocorrelation. There must be no significant autocorrelation
in the noise. This is determined with the Runs-test for
autocorrelation (Wald and Wolfowitz, 1940) using a
significance level of α = 0.05. This requirement is
important to obtain reliable estimates of the parameter
uncertainties (Hipel and McLeod, 1994).

3) Response time. The response time, expressed as the t95 (see
Figure 1), must not exceed half the length calibration period.
The calibration time series is potentially too short to
accurately estimate the parameters of the response function
when the t95 of the response is longer than half the length of
the calibration period.

4) Uncertainty of gain. The estimated gain of each response
function must be significantly different from zero. This is
checked by requiring that the estimated gain is larger than
twice the estimated standard deviation of the gain (e.g.,
Collenteur et al., 2019).

When multiple model structures are reliable, the Akaike
Information Criterion (AIC; Akaike, 1974) is used to select
the best model structure, by selecting the model with the
lowest AIC (Burnham et al., 2011). After the AIC selection,
the selected model structure is visually inspected for both the
calibration and validation periods. Model structure must
perform well in both the calibration and the validation
period.

The described approach to determine the best model
structure for each observation well is applied to all
observation wells in a study area. The entire analysis is
implemented in Python scripts to ensure reproducibility of
the results. All data, scripts, and environment settings required
to reproduce the results from this study are available from
Zenodo (Brakenhoff et al., 2022).

3 STUDY SITE AND DATA

The study area is the Overbetuwe area in the Netherlands, a
polder region of approximately 30 km by 10 km, flanked by two
branches of the Rhine river (see Figure 3). The land surface
elevation varies from around +10 m in the east to around +7 m in
the west (all elevations are given relative to the Dutch reference
level called NAP, which is approximately equal to mean sea-
level). The region is divided into several polders that each strive to
keep water levels at a fixed level with a complex system of ditches,
canals, weirs, and pumping stations. The land use is a mix of
agriculture, nature, and urban environments.

The shallow subsurface is characterized by a low-permeable
phreatic layer consistingmostly of clay and clayey sand, underlain
by two aquifers, separated by an aquitard (see Figure 3). The
aquitard consists of clay with a thickness varying from 0 to 15 m.
The groundwater is relatively shallow with the depth to water
table varying between 0.8 and 4.2 m.

Heads are actively monitored at 213 observation wells in the
study area, some measuring heads in multiple filters at
different depths, resulting in 395 head time series. Heads

FIGURE 2 | Criteria for reliable models and selection of best model
structure.
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are measured with automatic pressure loggers, with daily, or
shorter, measurement intervals for the period 2004–2020.
Head measurements prior to 2004 are manual
measurements, which are available at lower frequencies for
some of the wells.

Daily precipitation data is available at seven measurement
stations in the region (KNMI, 2022). Daily Makkink reference
evaporation (de Bruin and Lablans, 1998) is available at two
automatic weather stations. Mean yearly precipitation for
1990–2021 is 850 mm/year while mean yearly reference
evaporation is 584 mm/year.

The river stage is measured at 10-min intervals at eight
observation stations along both rivers (Figure 3)
(Rijkswaterstaat, 2022). The time series are resampled to daily
mean values. The maximum recorded daily mean river stage in
the period 1990–2021 is 15.8 m, while the minimum recorded
stage is 2.9 m.

Drinking water is extracted from the second aquifer at four
well fields, at depths between −28 m and −74 m. From west to
east, the well fields are Hemmen, Zetten, Fikkersdries, and
Sijmons (see Figure 3). The date when pumping started, the
average well screen depth, and mean pumping discharge are
summarized in Table 1.

3.1 Data Preparation
The calibration period was selected as 1990–2014 and the
validation period as 2015–2021. All head data was pre-
screened. Outliers were removed and head data was corrected
for sudden unexpected jumps in the time series. Time series were
discarded if they had fewer than 6 years with at least 180
measurements per year in the calibration period and/or fewer
than one year of at least 180 measurements in the validation
period. In addition, time series were discarded that visually
showed a strong effect of the on- and off-switching of
individual pumping wells in a well field. The resulting dataset
consists of 250 head time series at 122 observation wells. Each
head time series is assigned to one of the aquifers based on the
observation depth.

The river stage is spatially interpolated at the point nearest to
the observation well along the center line of the nearest river.
Time series are calculated using a distance-weighted average
between two observation stations. If the nearest point does not
lie between two observation stations, the time series of the nearest
observation station is used. The time series of the river stage is
normalized by subtracting the mean.

The pumping data was resampled to obtain a time series of
daily discharge for each well field. The available data was a mix of

FIGURE 3 | Overview of study area with locations of observation wells, and locations at which stresses are measured (A). Cross-section of the subsurface along
well fields showing well screens, aquifers and aquitards (B).
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monthly (before 2007) and daily (after 2007) volumes. The time
series prior to 2007 were converted to daily volumes by equally
dividing the monthly volumes over each day in the month. The
time series of daily pumping discharge for each well field are
provided in the Supplementary Material (Supplementary
Figure S1). The average location of all wells in a well field was
used to measure the distance between a well field and an
observation well (r in Eq. 6).

Heads are computed in the calibration period using daily
data for all stresses. The noise model (Eq. 3) is rarely adequate
for obtaining uncorrelated noise when using daily head
observations, but works reasonably well for head data at 14-
days intervals (e.g., Von Asmuth and Bierkens, 2005;
Collenteur et al., 2021). The calibration data is obtained by
taking a sample from each head time series on a 14-days
interval within the calibration period.

4 RESULTS

4.1 Example Results at One Observation
Well
The results obtained for one observation well are discussed here
in detail to illustrate the output of the time series model. Consider
observation well B39F0579 (highlighted point in Figure 3),
situated close to pumping station Hemmen (0.6 km) and at
larger distances from stations Zetten (3.1 km) and Fikkersdries

(7.1 km). Precipitation-excess, reference evaporation, river stage,
and pumping rates from all three pumping wells are shown in
Figure 4. Pumping at the well field in Fikkersdries started in the
1960s, before the start of the head observations. The pumping
stations Hemmen and Zetten started operation in late 2006 with a
relatively constant pumping rate until 2015, after which the
pumping rate varied somewhat, with a significant increase in
pumping in Hemmen in the last year of data. Observed heads in
screen 5 of well B39F0579 (located in aquifer 2) are shown in the
top graph of Figure 5. A clear decrease in head is visible from
2007 onwards, which coincides with the start of pumping. A
further decline in heads is measured after 2015.

Time series models are developed with eight different model
structures, as described in the previous section. Out of the 8
model structures, 6 model structures passed all four reliability
checks. The selected best model structure includes precipitation-
excess, the variation of the river stage, and three pumping wells.
The results are shown in Figure 5. The simulated heads show a
good fit with the data, as shown by a R2 = 0.90 and R2 = 0.79 in the
calibration and the validation period respectively. During the
validation period, the model overestimates the head in the
summer months. These summers were particularly dry (e.g.,
Brakkee et al., 2022), and possibly stresses not included in the
model (e.g., pumping for irrigation) could explain these
deviations, but this has not been investigated here.

The contribution of each stress (precipitation excess, river
stage, and pumping at the well fields) to the changes in head and

TABLE 1 | Average pumping depth, pumping start date, mean discharge in the period 1990–2021, and the coefficient of variation (CV) for the four well fields. The coefficient
of variation is calculated by dividing the standard deviation of the discharge by the mean discharge in the period 1990–2014.

Start Date Screen Top Screen Bottom Mean Discharge CV

Well field [m] [m] [Mm3/yr] [-]

Hemmen 2006–10-01 −32 −49 1.97 0.61
Zetten 2006–10-01 −46 −63 3.62 0.53
Fikkersdries 1961–06-01 −37 −63 12.12 0.11
Sijmons 1980–01-01 −32 −66 4.00 0.28

FIGURE 4 | Stresses included in the time series model for observation well B39F0579 (Filter 5).
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their associated step response functions, as determined by the
time series model, are shown in separate graphs in Figure 5. Up to
2006, the well field Fikkersdries caused a small drawdown that
was stable over time. The drawdown caused by the other well
fields started in late 2006 and stayed relatively constant until
2019, after which the drawdown increased as a result of increased
pumping rates at Hemmen and to some extent Zetten. The total
drawdown caused by all well fields exceeded 1 m after 2020,
according to the model. The calibrated response functions (see
plots on the right in Figure 5) are used to quantify the magnitude
and timing of the drawdown caused by pumping from the three
well fields.

4.2 Results for all Observation Wells
For each of the 250 head time series in the data set, 8 models with
different structures were created and calibrated. The resulting

2000 time series models were evaluated and a best model
structure was selected following the approach outlined in
Figure 2. The total number of models that meet all four
reliability criteria are presented in Table 2. 247 models for 129
unique head time series meet all four reliability criteria and are
considered reliable. Some time series have multiple reliable
models. For 121 (48%) time series no reliable model was
present in the set of 8 model structures, and these time series
are not considered further. Selection of the best model structure
(according to the AIC) at each location, followed by a visual
inspection, yields 126 (50%) reliable models that are used for
further analysis. Out of these 126 models, 75 models include
pumping at one or more well fields as a stress. Table 3
summarizes the model structures of the selected models,
categorized per aquifer.

The steady-state drawdown caused by a well field is computed
for all 75 observation wells where at least one well field has a
significant effect on the head. The steady-state drawdown is
computed using the average discharge of each well field for
the period 2015–2021 and is plotted versus the distance
between the observation well and the well field in Figure 6.
The estimated steady-state drawdown in aquifer 2 shows a clear
relationship with distance at well fields Hemmen, Zetten, and
Sijmons. The estimated drawdown in aquifer 2 decreases with
distance from those well fields (green symbols). There are
insufficient models that meet all reliability criteria in aquifer 2
near well field Fikkersdries to discern any pattern.

In the phreatic layer and aquifer 1, no spatial pattern in
drawdown is discernible. At Hemmen, the phreatic drawdown
is in the same order of magnitude as the drawdown in aquifer
1. At Zetten, there are no models for observation well screens
located in the top two layers within the first 2 km that passed

FIGURE 5 | Contribution of the different stresses and the estimated step responses for the example model for observation well B39F0579 (Filter 5) in aquifer 2. The
shaded areas around the step responses represent the 95% confidence intervals.

TABLE 2 | Results for the reliability and selection criteria for all 2000 time series
models for 250 locations.

No. of Models

1. Goodness of fit 920
2. Autocorrelation 1558
3. Response time 1269
4. Uncertainty gain 743

Reliable models 247

Best models based on AIC 129

Passed visual inspection 126

Selected Models 126
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all reliability criteria. At Sijmons, there are almost no models
for phreatic observation wells and there is no discernible
pattern in aquifer 1. The estimated steady state drawdown
is much smaller in the top two layers, which are separated by
an aquitard from the pumped aquifer. The vertical resistance
of the aquitard is lowest around Hemmen and highest around

Zetten (see Supplementary Figure S2 showing aquitard
resistance in the Supplementary Material). This fits well
with the results from time series analysis, where a
significant effect of pumping was estimated in shallow
observation wells near Hemmen, whereas this is not the
case near Zetten.

TABLE 3 | Summary of model structures for selected time series models, counted per aquifer.

Model Structure Phreatic Aquifer 1 Aquifer 2 Total

Precipitation excess 5 6 1 12
Precipitation excess + river 3 23 13 39
Precipitation excess + river + 1 well 6 20 27 53
Precipitation excess + river + 2 wells 0 2 4 6
Precipitation excess + river + 3 wells 0 0 4 4
Precipitation excess + 1 well 4 5 3 12
Precipitation excess + 2 wells 0 0 0 0
Precipitation excess + 3 wells 0 0 0 0

Total selected (percentage) 18 (38%) 56 (45%) 52 (66%) 126 (50%)
Total no. of time series 47 124 79 250

FIGURE 6 | The estimated steady state head change versus the distance between the well field and the observation well using the average pumping rate ( �Q)
between 2015 and 2020 for each well field. Uncertainty bars are 2 times the estimated standard deviation. The black ticks at the top of each graph indicate the distances
at which an observation well is present but either none of the model structures was reliable or the well field was not included in the selected model structure.

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 9076098

Brakenhoff et al. Time Series Analysis: Estimating Drawdown

89

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


The drawdown estimates near Fikkersdries show no consistent
and plausible pattern. This may be explained through the historic
development of pumping at this well field, which has been active
since the early 1960s. In the period 2000–2021, the yearly
pumping volumes have been relatively constant, varying
between 10.5 and 13.6 Mm3/year. As such, the time series has
a low coefficient of variation (CV, see Table 1) over the
calibration period (CV = 0.11). In contrast, Hemmen (CV =
0.61) and Zetten (CV = 0.53) started pumping in 2006, and
Sijmons (CV = 0.28) has seen a reduction in yearly pumping rate
from around 5.5 Mm3/year to about 3 Mm3/year towards the end
of the calibration period. The small variation in the pumping
discharge at Fikkersdries makes it difficult to estimate the effect of
pumping in observation wells.

5 EXAMPLE APPLICATION: TIMING AND
MAGNITUDEOFDRAWDOWNATHEMMEN

The time series analysis revealed a significant effect of
pumping on the heads in 22 observation wells near the well
field of Hemmen. Here, the effect of pumping on heads is
compared per aquifer. Additionally, it is investigated whether
low summer groundwater tables may be mitigated by reducing
the pumping rate. Before implementing a potential mitigation
measure, a decision-maker would need to determine the
effectiveness of such a measure. Information on the
magnitude and timing of the head response to reduced
pumping is required for this purpose. This information is
contained in the response functions associated with the
pumping stresses.

The estimated step responses are plotted for all models that
include pumping at Hemmen as a stress in Figure 7. The step
responses are scaled with the gain for comparison purposes. The
responses in aquifer 2 are the fastest because the well fields pump
from the second aquifer. The responses in the phreatic
observation wells are the slowest and show a 15–30-days lag
after the start of pumping. Using these results, specifically the

magnitude and the timing of the estimated head response to
pumping, a decision-maker can determine the effectiveness of
reduced pumping as a mitigation measure and what type of
pumping strategy is potentially feasible.

The response time, represented by the t50, is plotted versus
the distance from well field Hemmen in Figure 8 for each
aquifer. The t50 is a linear function of the distance from the well
field (Eq. 8) for constant values of the fitting parameters a and
b in the response function (Figure 1). The response times in
the second aquifer are the shortest, ranging from about 1 to 11
days. The model at about 2000 m from Hemmen shows a larger
uncertainty than other points, casting some doubt on the
estimation of the response for this model. In the first
aquifer the t50 varies between 1 and 30 days. For the five
observation wells in the phreatic layer, the t50 is between 30
and 60 days. This means that 50% of the maximum reduction
in drawdown as a result of a change in pumping rate takes
30–60 days to manifest itself in the phreatic layer. The
estimated uncertainties are larger in more shallow aquifers.
The general trend is that the independently estimated t50
response times increase with the distance, as would be
expected, though individual models do show significant
variation.

The timing of the response of the phreatic layer to pumping
at Hemmen means that reduction in pumping informed by
weather forecasts (typically available for a 14-day period) to
mitigate low groundwater tables in the summer would not be
an effective mitigation measure at Hemmen. As an alternative,
a systematic reduction in summer pumping is considered.

Two hypothetical pumping regimes are compared to
investigate the effect of reduced pumping during the summer
months on the heads. The first regime is a constant pumping rate
of 6 Mm3/year. The second regime pumps 7 Mm3/year for
9 months per year and a reduced rate of 3 Mm3/year for three
months. The total yearly production volume is equal in both

FIGURE 7 | Scaled step responses for well field Hemmen, categorized
per aquifer.

FIGURE 8 | Estimated 50% response time for observations wells near
well field Hemmen including estimated uncertainty (2σ).
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scenarios, and equal to the current permit (6 Mm3/year). The
pumping is reduced in the months May, June, and July such that
the drawdown is minimized in June, July, and August,
traditionally the driest months in the Netherlands. This
variable pumping regime requires additional pumping at, e.g.,
well field Zetten to compensate for the reduction in drinking
water production at Hemmen during the dry summer months.
Whether this compensation can be realized in practice is outside
the scope of this research.

Figure 9 shows the drawdown calculated with the response
function for well field Hemmen for observation well B39H0384-
001 (see highlighted point in Figure 3) for both pumping regimes,
including a 95% confidence interval based on estimated
parameter uncertainties. The drawdown at a constant
pumping rate of 6 Mm3/year is 37 cm (with a relatively large
95% confidence interval of 8–45 cm). By reducing the pumping
rate from May to July, the drawdown can be reduced in the
summer. The maximum effect occurs in August, when the
drawdown is reduced to 20 cm (with a 95% confidence
interval of 5–27 cm), a reduction of 17 cm as compared to the
constant pumping scenario. There is a 5 cm larger drawdown
outside the summer months as a result of the increased pumping
rate in those periods. The reduction in drawdown caused by the
variable pumping regime for all five observation wells is shown in
the bottom graph of Figure 9. The effect of the variable pumping
regime is similar in all observation wells. The largest effect occurs
in August and the maximum drawdown reduction varies between
10 and 17 cm.

6 DISCUSSION

The objective of this paper is to develop and apply a data-driven,
reproducible, and robust approach to estimate drawdowns as a
result of pumping at multiple well fields. The proposed method is
based on time series models that are derived exclusively from
commonly observed data. The models can be constructed in a
limited amount of time with low input data requirements. The
described approach is implemented in Python scripts using the
open-source software Pastas (Collenteur et al., 2019) to ensure
full transparency and reproducibility.

The challenge of anymodeling study is that a number of more-
or-less subjective modeling decisions must be made. In the
following, five major challenges are discussed:

1) Selection of the time periods used for model calibration and
validation. A validation period is potentially valuable to test
model performance, but the downside is that there is less data
available for calibration. Shen et al. (2022) even propose
skipping model validation entirely, based on a study of
river discharge data in the United States. In the current
study, the validation period (2015–2021) contains the driest
years on record while at the same time the pumping stations of
Hemmen and Zetten show a distinct increase in pumping
rates (see Figure 4). This dry period may contain information
of the head response that is not present in the calibration data.
Exclusion of this period from the calibration period means the
models might not be able to simulate these periods accurately.

FIGURE 9 | Comparison of the effect of two pumping regimes (A) on the calculated drawdowns for well B39H0384 (B) and the differences between calculated
drawdowns corresponding to different pumping regimes for all 5 phreatic models (C). The drawdown is calculated using the derived response to pumping at well field
Hemmen. The shaded areas represent the 95% confidence intervals.
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On the other hand, if models perform well despite this choice,
this is a strong indication that the models are performing well
for the right reasons. The mean R2 for the selected models in
the calibration period is 0.82 and 0.66 in the validation period.
Good performance in the validation periods suggests the
method and the models are robust. A robust method
should yield the same model structure while a robust
model should not produce significantly different estimates
for the drawdown for an extension of the calibration period.

2) Time interval between head observations. A related challenge
was the selection of the time interval between head
observations used for model calibration. Higher frequency
observations (i.e., daily) mean faster processes are captured by
the data, potentially providing additional information to
quantify the effects of the different stresses (Kavetski et al.,
2011). However, the use of high frequency data increases the
autocorrelation in the model residuals, troubling the
estimation of parameter uncertainties. Reliable estimates of
the parameter standard errors are important in this study,
because they are used in the reliability criteria. Theoretically,
autocorrelation can be reduced by improving the input data,
improving the deterministic model, and/or improving the
noise model. There is probably a point, however, where
more head observations introduce more problems (e.g.,
autocorrelation) than they solve (e.g., better models).
Different frequencies (daily, weekly, bi-weekly) of head
observations were evaluated to calibrate the models
(following Collenteur et al., 2021). A time interval of
14 days yielded good models while greatly reducing the
number of models with significant autocorrelation in the
noise. As a result, 1558 out of 2000 models (78%) passed
the autocorrelation check, showcasing the effectiveness of the
AR(1) noise model for data at a 14-days interval. The
robustness of the method and the models to a different
sample of head observations was tested by shifting the
sample by 7 days and comparing the results visually. This
led to somewhat different drawdown estimates for some
models, but most models showed no significant changes in
the estimated drawdowns. This analysis can be repeated
14 times to give additional insight into the robustness of
the method to the selected sample of head observations (as
was done by Collenteur et al., 2021).

3) Goodness-of-fit criterion. One of the four reliability criteria is
the goodness-of-fit criterion that R2 ≥ 0.7 (Figure 2). This is
obviously a subjective criterion. It basically means that the
model must fit the data reasonably well. It is unclear whether
this requirement is really necessary. Other studies, for
example Zaadnoordijk et al. (2019), opted for a much
lower R2 cutoffs of 0.1–0.3. When the R2 criterion is
dropped entirely, the number of observations wells where
at least one model structure passes the three remaining
reliability criteria, increases from 50 to 85%. The
underlying question is whether the drawdown of the well
fields can be estimated with sufficient accuracy even though
the model fits the data poorly. Further research is needed to
determine whether, and under what conditions, a goodness-
of-fit criterion is needed to estimate the drawdown accurately.

4) Selection of the best model structure. The minimum AIC was
used to select the best model structure from all reliable model
structures for an observed head time series. In some cases, the
differences in AIC values for different model structures were
smaller than 2, meaning that multiple model structures are
potentially supported by the data (Burnham et al., 2011). This
introduces an uncertainty to the model selection step that was
not taken into account in this study. Other methods of
selecting the best model structure were considered, such as
the model goodness-of-fit in the validation period, but
occasional dubious observation data in the validation
period, or minute differences in model performance,
sometimes resulted in the selection of the model with the
most parameters, while this did not seem to be warranted.

5) Visual inspection. Visual inspection of model performance in the
validation period was deemed necessary as a last step in the
selection process. A visual inspection remains valuable to identify
models that show odd results, even though they pass all criteria,
but a visual inspection is subjective as it is based on the expertise
of the modeler. It is desirable to eliminate this subjective step, but
this requires additional reliability criteria or fine-tuning of
current criteria to local conditions. In each of the three cases
where a model was rejected based on visual inspection, the t95 of
the response to river stage exceeded several years, but was not
long enough to be rejected by the model reliability criteria. The
model used the long response time to simulate a long-term trend
in the data. For this specific study site, an additional reliability
criterion can be added to limit the response time of changes in
river stage, as such eliminating the necessity for visual inspection.
This was not done, however, as such a criterion is applicable only
for this local situation, while the four reliability criteria presented
in Figure 2 are broadly applicable.

In groundwater hydrology, drawdowns of well fields are
commonly estimated with physically-based groundwater
models that are calibrated against head observations by
adjusting the (spatial distribution) of the aquifer parameters.
As a result, the estimated drawdowns make hydrological sense,
as they are derived from basic principles such as continuity of
flow and Darcy’s law. The approach presented in this paper is
fully data-driven. The drawdown is estimated independently at
each observation well using physically-based response functions.
Each model had to pass four reliability checks and the uncertainty
of the modeled drawdowns was estimated and plotted (e.g.,
Figure 6). The resulting spatial pattern of drawdowns makes
hydrological sense, with drawdowns decreasing within a limited
distance from a pumping station. Collenteur et al. (2019) applied
a similar approach for single well fields and showed for an
example application in the Netherlands that the drawdowns
estimated with time series analysis compared well with the
results of an analytic element model.

Application of time series analysis has been shown to be a
viable method to estimate drawdowns, for example, through the
use of synthetic data generated with a MODFLOW model
(Shapoori et al., 2015). The same study also showed, however,
that drawdown estimates can be biased if important processes
(e.g., groundwater evaporation) are not taken into account in the

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 90760911

Brakenhoff et al. Time Series Analysis: Estimating Drawdown

92

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


model. In the current paper, eight different model structures were
tested for each observation well. Different models to compute
groundwater recharge (e.g., nonlinear approaches, Peterson and
Western, 2014) were not considered, because a linear
precipitation-excess model is commonly adequate to simulate
head time series with 14-days time intervals in the Netherlands. A
final uncertainty in the estimated drawdowns is the possible
impact of unknown stresses. For example, pumping for
irrigation probably occurs in the area during dry summers.
Irrigation wells are largely unmetered, however, so that they
can not be included in the model. This may affect the
estimated drawdowns, but this is not any different from the
application of a physically-based groundwater model.

A reproducible and transparent workflow was presented to
develop reliable time series models. Application of this workflow
at the study site resulted in reliable models for approximately 50% of
the observed head time series. Asmentioned above, the goodness-of-
fit criterion was responsible for most of the rejections. It is the
experience of the authors that a 50% success rate is pretty common
in the modeling of transient flow. For example, Zaadnoordijk et al.
(2019) obtained 47%decent or good time seriesmodels, according to
their criteria. There are numerous reasons that can lead to a poor fit
varying from data errors and missing stresses to inadequate model
structures or local phenomena that affect the head variations.
Additional research is needed to increase the percentage of
successful models.

7 CONCLUSION

A reproducible, data-driven approach using open-source software is
proposed to quantify the effects of different hydrological stresses on
heads. A new method was developed to estimate the drawdown
caused by pumping at multiple well fields. The data and the code for
(re)producing the results presented in this study are available from a
dedicated Zenodo repository (Brakenhoff et al., 2022). Themethod is
able to derive reliable models for 50% (126) of the 250 considered
head time series and quantify the effect of one or multiple well fields
for 78 head time series.

The relative simplicity of the time series models allows the
modeler to test multiple model structures (such as stresses and
response functions) and model settings (such as the time interval
between observations, and the calibration and validation periods)
in a short amount of time. This quickly yields valuable insights
into the driving hydrological processes affecting the head
variations. The data-driven nature of the approach avoids the
many approximations that have to be made when analyzing a
similar problem using more traditional modeling techniques (e.g.,
numerical groundwater models). Each time series model is valid
only at the specific location of the observation well where the
heads are measured. Results at multiple observation wells show
clear spatial patterns: drawdowns are larger in the pumped
aquifers and decrease with distance from the well field while
response times increase with distance from the well field, even

though the data at each observation well is analyzed independent
from the other observation wells.

The example application at well field Hemmen shows how
time series models can be used to estimate the effects of the well
field, both spatially and over time. Reduced pumping in May-July
can reduce drawdown by about 10–20 cm in the summer months
June-August. This is valuable information for decision-makers
weighing potential strategies for mitigating low groundwater
tables in dry periods.
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Rapid Model Development for
GSFLOW With Python and pyGSFLOW
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Water Mission Area, Menlo Park, CA, United States

Following the advancement of high-performance computing and sensor technology and
the increased availability of larger climate and land-use data sets, hydrologic models have
become more sophisticated. Instead of simple boundary conditions, these data sets are
incorporated with the aim of providing more accurate insights into hydrologic processes.
Integrated surface-water and groundwater models are developed to represent the most
important processes that affect the distribution of water in hydrologic systems. GSFLOW is
an integrated hydrologic modeling software that couples surface-water processes from
PRMS and groundwater processes from MODFLOW and simulates feedbacks between
both components of the hydrologic system. Development of GSFLOW models has
previously required multiple tools to separately create surface-water and groundwater
input files. The use of these multiple tools, custom workflows, and manual processing
complicates reproducibility and confidence in model results. Based on a need for rapid,
reproduceable, and robust methods, we present two example problems that showcase
the latest updates to pyGSFLOW. The software package, pyGSFLOW, is an end-to-end
data processing tool made from open-source Python libraries that enables the user to edit,
write input files, run models, and postprocess model output. The first example showcases
pyGSFLOW’s capabilities by developing a streamflow network in the Russian River
watershed with an area of 3,850 km2 located on the coast of northern California. A
second example examines the effects of model discretization on hydrologic prediction for
the Sagehen Creek watershed with an area of 28 km2, near Lake Tahoe, California, in the
northern Sierra Nevada.

Keywords: groundwater, surface-water, integrated hydrologic modeling, GSFLOW, PRMS, MODFLOW, python

INTRODUCTION

Water resources are dynamic and managing them, given competing demands as supplies of both
surface water and groundwater change rapidly, is difficult. The challenges are compounded as human
reliance on groundwater grows faster than the ability to monitor groundwater supplies (Konikow
and Kendy, 2005; Wada et al., 2010). With this background as context, integrated hydrologic models
such as GSFLOW (Markstrom et al., 2008) can be used to evaluate management strategies. Integrated
models that can simulate surface water and groundwater have potential to improve decision making.
However, their benefits are often not fully realized, due in part to errors in model predictions caused
by data limitations and incomplete process understanding (Beven, 2019; Blöschl et al., 2019).

Model calibration and application requires hypothesis testing to better represent important
processes impacting water storage and flow in hydrologic systems (Clark et al., 2011). Hypothesis
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testing necessitates rapid processing and construction of input
data for multiple models to integrate soft knowledge, test multiple
parameter sets, and different conceptualizations; without
automation, developing such hydrologic models for river
basins is onerous. Automated data processing tools can
improve the value of hydrologic models because they reduce
the occurrence of data input errors, improve reproducibility, and
reduce model construction time and effort (Gardner et al., 2018;
Ng et al., 2018).

Techniques for developing and applying coupled surface-
water and groundwater models to represent conditions within
hydrologic systems have developed along with the design and
complexity of hydrologic simulators. In recent decades,
hydrologic models have been developed over much larger
regions, including river basins (Schoups et al., 2005; Werner
et al., 2006; Huntington and Niswonger, 2012; Kitlasten et al.,
2021) and continental scales (Wood et al., 1997; Condon and
Maxwell, 2015; Regan et al., 2019; Shin et al., 2019). Regional to
continental scale models require processing of massive
geographic data sets to provide realistic representation of
distributed drainage networks. Furthermore, simulating
surface-water and groundwater interactions require hydraulic
gradients which are sensitive to the relative positioning of
streams and topographic features like river canyons, flood
plains, and riparian forests (Gardner et al., 2018; Leaf et al., 2021).

Models constructed at river basin and larger scales require
sampling digital elevation models (DEMs) at the model grid scale
to represent topography. Surface-water networks should be
consistent with the both the DEM used to represent the model
surface boundary and the model grid scale. Stream networks
generated from fine-scale DEMs and overlayed onto coarse
DEMs can cause streams to become incongruent, for example
streams that are offset from river canyons or unaligned with
watershed boundaries. These types of scale mismatches can lead
to erroneous surface-water and groundwater exchanges (e.g.,
reversed hydrologic gradients between surface-water and
groundwater systems) and numerical problems (Kampf and
Burges, 2007; Schoups et al., 2010; Gardner et al., 2018).
Consequently, stream networks often need to be developed
consistent with the model surface discretization. Existing
software used to build input data sets for large scale
hydrologic models have most often relied on stream
hydrography data sets built on DEMs at their native scale
(e.g., 30 m or finer; Ng et al., 2018; Leaf et al., 2021).

In contrast to using established national stream networks like
NHDPlus (Buto and Anderson, 2020), topographic analysis can
be used to develop stream networks using DEMs at any
resolution. These analyses rely on two geographic data sets
used exclusively to develop drainage networks: flow direction
and contributing area, also called flow accumulation
(O’Callaghan and Mark, 1984; Jenson and Domingue, 1988;
Mark, 1988; Tarboton, 1997). Flow direction methods typically
choose 1 of 8 possible outflow directions for each grid cell,
including directions perpendicular and diagonal to cell faces
(D8; O’Callaghan and Mark, 1984) or by using the direction
of greatest slope from triangular facets at the center of each grid
cell (D-infinity; Tarboton, 1997). Methods that calculate multiple

outflow directions for each grid cell and variable flow partitioning
also have been applied to address dispersion (Qin et al., 2007).
Flow direction methods are then combined with an algorithm for
calculating upslope contributing area (Mark, 1988). These
approaches form the basis for the popular Arc-Hydro toolset
(Maidment and Morehouse, 2002).

Topographic analysis methods used to develop stream
networks from DEMs have their own limitations. Digital
artifacts in DEMs related to spatial averaging can misassign a
flow network and associated model grid cell altitudes. Increasing
DEM resolution can reduce these artifacts (Goodchild, 2011);
however, finer-scale data are not always available for a geographic
area, and computational costs can require coarse spatial
discretization for hydrologic models applied to large regions.
In low relief basins, spatial averaging can lead to digitally closed
sinks, create uncertainty in flow direction assignment, or even
lead to digital flow directions that contradict the natural system.
Hydrologic conditioning methods such as digitally filling (Jenson
and Domingue, 1988; Garbrecht and Martz, 1997; Metz et al.,
2011) and outlet breaching (Martz and Garbrecht, 1999) can be
applied to the DEM or flow-direction system to remove sink
artifacts from flow accumulation. Uncertainty in flow direction
assignment generally occurs in flat areas of DEMs associated with
low relief watersheds and create maze-like conditions where flow
directions cannot be determined without additional information.
Previous approaches to solving digitally flat areas have included
iterative methods to connect uncertain flow directions (Jenson
and Domingue, 1988), incrementally raising flat portions of a
DEM to create a gradient from higher terrain to lower terrain
(Garbrecht and Martz, 1997), cost function solutions (Metz et al.,
2011), and weighted topological methods (Zhang et al., 2017).
Given these issues and solutions, stream networks produced for
hydrologic modeling are a simplification of the actual network
limited primarily by DEM scale and model scale resolution.

Previous approaches for developing coupled surface-water/
groundwater systems that can be simulated with GSFLOW
(Markstrom et al., 2008) have relied on multiple software
tools. GSFLOW is an integrated hydrologic modeling software
that couples surface-water processes from the Precipitation
Runoff Modeling System (PRMS; Markstrom et al., 2015) and
groundwater processes from MODFLOW (Harbaugh, 2005;
Niswonger et al., 2011) and is often applied to build models at
scales of 10s to 1,000s of km2. GSFlow-ArcPy provides
functionality to transform raster data sets, such as a DEM or
land use/land cover data sets, into PRMS input files (Gardner
et al., 2018). GSFLOW-GRASS allows users to build GSFLOW
input files from raster and vector data through a command line
scripting process within a GRASS GIS environment (Ng et al.,
2018). SFRBuilder (Leaf et al., 2021) overlays vector data of
streamlines provided by NHDPlus or another custom
hydrography dataset onto a DEM to develop the Streamflow
Routing Package (SFR) in MODFLOW. PRMS-Python allows the
user to load, modify, and run simulation scenarios with existing
PRMS input data sets (Volk and Turner, 2019). Finally, the FloPy
Python package allows users to build and modify most
MODFLOW package files that represent the groundwater
system in GSFLOW (Bakker et al., 2016; Bakker et al., 2022).
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Although these tools can be used to complement each other and
create most of the GSFLOW input, proprietary software is
sometimes required and manual edits to input files and
additional scripts are needed to build, edit, run models, and
process output data. These requirements create a disconnected
process which requires multiple tools and/or scripts to develop
input files and estimate parameters for the surface-water and
groundwater systems and hinders reproducibility.

Based on a need for a rapid, reproducible, and robust
GSFLOW model building pipeline, we seek to address the
needs of constructing complex stream networks from large
geographic data sets by presenting the latest version of
pyGSFLOW (pronounced “pie-g-s-flow”). The pyGSFLOW
Python scripting library allows users to develop input files and
set boundary conditions, climate forcing, and hydrologic
parameters, edit existing GSFLOW input files, and postprocess
model results (Larsen et al., 2021; 2022). Instead of creating an
entirely new approach, pyGSFLOW improves upon previous
conceptual frameworks and leverages existing tools to create a
framework for constructing GSFLOW models (Henson et al.,
2013; Gardner et al., 2018; Larsen et al., 2021; Bakker et al., 2022;
Larsen et al., 2022). The pyGSFLOW package leverages FloPy
(Bakker et al., 2022) for interfacing with MODFLOWmodel files
and integrates this functionality with custom features for

interfacing with PRMS and GSFLOW model files. This work
extends the existing pyGSFLOW software (Larsen et al., 2021;
2022) with new open-source methods to construct flow direction,
flow accumulation, watershed and subbasin delineation, and
stream network data sets. These advancements add robustness
to the model development process.

METHODS

The approach presented here improves upon the existing
pyGSFLOW package (Larsen et al., 2021; 2022) to include
model-building tools for rapidly generating GSFLOW
(Markstrom et al., 2008) models from external raster data. The
pyGSFLOW model building tools are part of an open-source
python toolkit and can ingest and process ancillary data sets to
produce intermediate and primary data required by GSFLOW.
Table 1 provides a list of data sets that are required to build a
simple GSFLOW model; additional data not included in this list
can be used to modify the model. This process can be started or
stopped at any point to allow modifications to pre-existing
models or to update a single part of the workflow. The steps
are presented in the following sections and an overview
describing the required data for each step is outlined in Table 1.

TABLE 1 | Overview of the pyGSFLOW process types and the required input data to create a simple GSFLOW model.

Process Required input(s)

model grid creation Raster, shapefile, or extent of model grid
Cell dimensions in x and y direction

raster resampling model grid and input raster dataset
flow directions model grid

resampled Digital Elevation Model
flow accumulation flow direction array
watershed delineation flow direction array

watershed pour point location (xy coordinate or row column location)
model grid

subbasin delineation flow direction array
watershed boundary
subbasin pour point locations (xy coordinates or row column location)
model grid

stream network generation watershed boundary
flow direction array
flow accumulation array
number of contributing grid cells for determining streamflow

Cascade routing flow direction array
stream network information

Model inputs (MODFLOW) model grid. resampled Digital Elevation Model. user supplied model name. stream network information
optional inputs. model bottom elevations. UZF infiltration array watershed boundary

Model inputs (PRMS) stream network information
cascade routing information
model grid
Digital Elevation Model
watershed boundary
Climate information

Model inputs (GSFLOW) model start time
model end time
MODFLOW time zero
Climate module and data information

Editing GSFLOW parameters GSFLOW input files
Ancillary data
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Model Grid Creation andRaster Resampling
Model spatial discretization, referred to herein as a model grid,
serves as the foundation for building hydrologic models in
GSFLOW. GSFLOW and MODFLOW-NWT model grids are
structured cellular grids, composed of rectangular cells that are
discretized on the basis of row and column spacing. Model grid
discretization choices affect not only the location of boundary
conditions but also the numerical solution of a model
(Markstrom et al., 2008). The pyGSFLOW package provides
support for quickly creating rectilinear model grids from
geographic information. A raster, shapefile, or bounding box
can be supplied with grid spacing information to produce a model
grid. Upon creation of the model grid, raster resampling to the
model grid scale is accomplished with a simple Python function
from FloPy’s “Raster” class (Bakker et al., 2016; Bakker et al.,
2022).

The model grid produced by pyGSFLOW is a FloPy
“StructuredGrid” (Bakker et al., 2022) object that contains
polyline, polygon, and geographic feature information.
Resampling the native DEM to the model grid produces an
array of raster values consistent in shape and size to the
model grid. Model grid land-surface elevations can be
calculated for each model grid cell using mean, median,
minimum, maximum, or interpolated elevations resampled
from the native DEM. The model grid and the resampled
DEM are used to develop the flow direction, flow
accumulation, and stream network, as described in the next
sections.

Flow Direction and Flow Accumulation
Gridded flow-direction calculations determine the direction of
flow based on the slopes between a cell and each of its neighboring
cells. For 8-direction (D8) flow direction calculations,
information for a cell and its 8 adjacent cells are compared
(Jenson and Domingue, 1988). Calculations are performed on
elevation data resampled from a DEM, and a one-to-one outflow
connection is assumed (Jenson and Domingue, 1988). The flow
direction is set by calculating the cell index (icell) using Eq. 1.

icell � argmax⎛⎜⎜⎜⎝ Δ �e���������
Δ �x2 + Δ �y2

√ ⎞⎟⎟⎟⎠ (1)

where Δ �x and Δ �y are the difference between a cell’s center
coordinates and a vector of neighboring cell’s center coordinates,
and Δ �e is the difference between a cell’s elevation and a vector of
its neighbors’ elevations. Once icell is known, the flow direction is
encoded with a digital number that describes the outflow
direction using the convention:

⎡⎢⎢⎢⎢⎢⎣ 64 128 1
32 −1 2
16 8 4

⎤⎥⎥⎥⎥⎥⎦
where −1 represents the model cell for which calculations are

being applied and the digital numbers 1 through 128 represent
the specific direction of neighboring cells relative to the model
cell. When icell is not a unique value, flow direction is undefined

based on the slope between cells. The pyGSFLOW package’s
default method of solving flow direction for undefined cells is a
topological method that maps each undefined cell to the nearest
outlet and attempts to minimize the absolute distance of the flow
direction to the outlet. In cases where the default method does not
perform well (e.g., in large, complex, digitally flat areas), a
modified version of Dijkstra’s (1959) algorithm can be used to
solve the flow direction problem. The pyGSFLOW
implementation of Dijkstra’s (1959) algorithm first creates a
connectivity graph of all cells and their potential flow paths
within a digitally flat area. The algorithm then solves the
digitally flat area from the outlet location and minimizes the
routing distance for each cell within the graph by weighting each
potential flow direction by the routing distance to the outlet.
Although hydrologic conditioning is recommended to fill sinks
prior to calculating flow directions, a breaching stage threshold
can be applied for cases where small digital artifacts in the DEM
data create sinks or produce flow directions that conflict with the
hydrologic flow system. The breaching stage threshold is a small
user defined value that can be used to smooth out differences in
resampled DEM elevation values caused by artifacts. Elevation
differences between neighboring cells smaller than the breaching
stage threshold are considered as equal in elevation which allows
the flow direction to pass over a slightly higher cell. The
“FlowAccumulation” object in pyGSFLOW performs the flow
direction, as well as flow accumulation, calculations from a model
grid object and a DEM (shown in “Sagehen Creek Watershed
Example” section).

Flow accumulation calculates the number of upslope cells that
drain to each cell within the watershed. The flow direction array
defines the connectivity of cells and drainage pattern for the flow
accumulation calculation. For the D8 flow direction model, each
cell can have flow drain into it frommultiple neighbors; however,
the flow from each cell only can drain to a single neighbor. Flow
accumulation numbers are calculated using a queue where
accumulation numbers of downstream cells are increased as
each cell is taken off the queue, and the number of input
drainage paths for the given cell is decreased by one (Wang
et al., 2011). If the number of input drainage paths for a cell equals
zero, it is added back to the queue. The algorithm completes when
the queue is empty.

Watershed and Subbasin Delineation
Watershed boundary delineation is calculated from flow direction
arrays following Jenson and Domingue (1988). In-lieu of
automated subbasin delineation, user supplied watershed
outlets, called “pour points,” are used to define the outlet
locations for both the watershed and subbasin delineation
calculations. From a single pour point, a topological diagram
that includes connection information from the flow direction
array is produced, and a watershed is classified from topographic
divide information inherent in connection data from the flow
direction array. Subbasin delineation is performed in a similar
manner as watershed delineation. Multiple pour points are
supplied by the user and subbasins, within a watershed, are
classified with a unique value. Upstream subbasin boundaries
are respected while delineating downstream subbasins. This
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approach is preferable to fully automated subbasin delineation
because hydrologic areas of interest and contributing areas for
gaged flows can be isolated by the user for subsequent
parameterization, calibration, and output analysis.

Stream Network Generation
Stream network generation is a critical step in defining model
boundary conditions for both PRMS and the Streamflow
Routing Package (SFR; Niswonger and Prudic, 2005)
components of GSFLOW. Streams in GSFLOW are
discretized into reaches and segments, where a reach is a
part of stream spanning a grid cell, and a segment is
generally defined as a stream spanning two confluences or
the start of a stream to a confluence. Stream segments can
also be further divided at the user discretion to represent other
surface-water features such as diversions. Network generation
has three distinct parts: classifying grid cells that contain
streams, defining the connectivity between stream cells, and
defining the number of cells that drain to each stream cell.
Stream cell classification is performed by comparing the
contributing number of cells in the flow accumulation array
data to a user-specified threshold. If the number of accumulated
cells is greater than the user-specified threshold value, the cell
will be classified as a stream cell. Stream connectivity and flow
direction are determined using information from the flow
direction array to ensure that streams are continuously
connected and that flow occurs in the downslope direction.
Clusters of adjacent stream cells are grouped into segments
based on the connectivity of the flow direction array. Stream
segments either begin at the most upstream cells based on the
flow directions or at locations where more than one stream cell
drains into a cell. Stream segments end either at a confluence of
stream cells, the watershed outlet, or at the watershed boundary.
After grouping, topological sorting (Kahn, 1962) and
renumbering is performed on the stream network to ensure
upstream flows are calculated before downstream flows and to
provide optimal calculation order for GSFLOW. Finally, a graph
of landscape flow connectivity is created from the flow direction
array and stream cells. Each cell is then assigned to a specific
stream segment to which it drains.

Once the stream network has been produced, cell to cell
routing information for PRMS, referred to as cascade routing,
can be extracted from the existing flow direction arrays and the
stream network. Because flow direction calculations rely on a D8
method, the cascade routing calculation allows many cells to
contribute flow to a single cell, but an individual cell can only
drain to 1 cell.

Model Input Generation
PRMS and MODFLOW packages reliant on the stream network
can be generated after the stream connectivity has been
determined. A set of default model input parameters are
stored in a JavaScript Object Notation (JSON) file that can
either be loaded, edited by the user, and supplied to the
package generation classes or be automatically applied by the
package generation classes. These parameters are then passed to
their respective PRMS and MODFLOW packages and by default,
a single-layer model is created with a GSFLOW control file,
PRMS parameter file, and MODFLOW packages (Table 2). After
Python input objects are generated, the user can write these inputs
to file, edit existing model parameters, and/or add additional
information and packages to the model. Because integrated
hydrologic modeling includes many more processes than DEM
information can provide alone, this approach allows the user to
define many additional processes—e.g., vegetative cover, soil
zone, climate, pumping, general head boundaries, etc.—outside
of the automated model builder methods. Groundwater flow
processes can be added or edited with FloPy (Bakker et al.,
2016; Bakker et al., 2022), and surface-water water processes
including simulation modules can be adjusted with built in
functionality from pyGSFLOW (Larsen et al., 2021; 2022).
Climate information can be applied as daily time-series
information from one or multiple climate stations to the data
file or as arrays in climate by hydrologic response unit (grid cell;
HRU) files and adjustment factors can be specified in the
parameter file. The pyGSFLOW approach gives the user
flexibility on how best to represent the climate of the
simulated watershed and provides python tools to aid in the
processing and writing of these input files. After input objects are
generated, users can write the packages to GSFLOW compatible
input files and then run the model.

Editing GSFLOW Model Parameters
After model creation, surface-water and groundwater parameters
are commonly added or adjusted in themodel calibration process.
The pyGSFLOW package allows the user to easily add new
parameters, remove unused parameters, and edit existing ones
within a python environment. Surface-water parameters, such as
land cover, impervious surfaces, and soil physical properties, can
be sampled from existing raster data using the raster resampling
methods described earlier. Once a raster has been sampled into an
array, it can be set directly as a parameter, be scaled or masked, or
be used in a mathematical relationship to derive one or multiple
parameters. Groundwater parameters can be added and edited
using FloPy’s built in features (Bakker et al., 2016; Bakker et al.,
2022). After model parameters have been adjusted, new input files
can be written for subsequent model runs and analysis. More

TABLE 2 | GSFLOW model input files that are produced with pyGSFLOW’s
automated model building methods. Note that climate input files are not
automatically populated with default values and instead the user must specify their
climate representation.

GSFLOW Input Files
Control file (Markstrom et al., 2008)
PRMS input files
Parameter file (Markstrom et al., 2015)
MODFLOW package input files
Discretization package (DIS; Harbaugh, 2005)
Basic package (BAS6; Harbaugh, 2005)
Upstream weighting package (UPW; Niswonger et al., 2011)
Streamflow Routing package (SFR2; Niswonger and Prudic, 2005)
Unsaturated Zone Flow package (UZF; Niswonger et al., 2006)
Output control package (OC; Harbaugh et al., 2000)
Newton solver package (NWT; Niswonger et al., 2011)
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information and detailed instructions on pyGSFLOW’s usage can
be found in Larsen et al. (2021).

Example Problems
Two example problems are presented in this section where the
first example illustrates the robustness of pyGSFLOW to develop
model input for a complex watershed and the second example
demonstrates the utility of pyGSFLOW to rapidly produce
multiple conceptualizations of a hydrologic model. The first
example is of the Russian River watershed. Only a cursory
description is provided for the “Russian River Watershed
Example”; instead, the example focuses on demonstrating the
robustness of pyGSFLOW for automatically developing a stream
network and watershed boundary in a complex watershed. The
second example is of the undeveloped Sagehen Creek watershed.
This example demonstrates the complete process of building and
running the model, including descriptions of all the required
ancillary data. The “Sagehen Creek Watershed Example”
provides detail to convey each step in the GSFLOW model
construction process for a simpler watershed that is
computationally inexpensive to build for testing and evaluating
results across different users and computing environments.

Russian River Watershed Example
The Russian River watershed, in northwestern California, was
chosen as an example to illustrate the stream network generation
methods (Figure 1). Construction of the stream network for the

Russian River provides an opportunity to showcase pyGSFLOW’s
capabilities in a complex system; however, because this system
has extensive anthropogenic modifications, it is beyond the scope
of this work to present a fully functional model of the Russian
River watershed. For this example, only details regarding the grid
and stream network generation are provided.

The Russian River’s main channel flows from north to south
for about 180 km and drains about 3,850 sq. km. of Mendocino
and Sonoma Counties to the Pacific Ocean (Figure 1). The
watershed contains both steep terrain from the northern
coastal range and gentle to flat terrain within the valley
regions. Large sections of the watershed are digitally flat at
30 m DEM resolution, parts of the watershed near the Russian
River have steep canyon walls with low relief river drainage that
creates digital artifacts, and large sections of the watershed have
significant topographic relief. The process for generating a flow
network for the Russian River watershed begins with DEM
selection, spatial discretization, and resampling the DEM to
the spatial discretization of the model. A 1 arc-second DEM
product was selected for the Russian River watershed (U.S.
Geological Survey, 2020). Grid cell size for the Russian River
watershed was set to 300 m × 300 m (410 rows, 252 columns;
103,320 grid cells) to adequately represent the topography of the
watershed without creating a model that is too computationally
demanding. GSFLOW is most often applied to regional-scale
systems ranging in size from 10 s to 1,000 s of km2 to answer
questions about water resources, and the total number of model

FIGURE 1 | Location of the Russian River watershed study area in northwestern California (A). Main drainages of the Russian River watershed provided by
NHDPlus dataset (Buto and Anderson, 2020) within the study area boundary (B). Black box inset in (B) defines the boundary for flow direction vectors shown in Figure 3.
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cells were determined to meet the computational constraints for
the project. The DEM was resampled using the minimum
elevation in each model grid cell to produce a model-elevation
profile that can be used to construct the GSFLOW model
(Figure 2).

Preparation of the Russian River DEM for flow direction and
flow accumulation processes involved filling large sinks and pits
prior to resampling to the grid scale (Wang and Liu, 2006).
Groups of cells in the model grid that have a lower elevation than
their surrounding cells are referred to as sinks that must be filled
to provide continuous pathways across all cells from all ridges in
the watershed to the watershed outlet at the Pacific Ocean.
However, this sink-filling process did not remove all digital
artifacts within the watershed. Near the watershed outlet,
artifacts from high-relief canyon walls that border low-relief
valley floors persisted. In parts of the DEM, large digitally flat
areas were also present. Model grid cell elevations adjacent to the
Russian River’s outlet, in the Pacific Ocean, were slightly lowered
to create a unique condition that Dijkstra’s (1959) algorithm
could solve. In the case of a non-unique watershed outlet (all cells
are the same elevation), Dijkstra’s algorithm is unable to
automatically identify an outlet cell and will try to choose an
outlet cell that minimizes the number of uncertain connections,
which can yield unexpected results.

Flow direction and flow accumulation processes were applied
on the resampled DEM. Flow direction vectors, created from the
flow direction array, show that the solution generally follows
existing NHDPlus flowlines (Figure 3A). A comparison of the
flow direction arrays produced by using pyGSFLOW’s Dijkstra
algorithm to solve digitally flat areas (Figure 3A) and
pyGSFLOW’s default topographic method shows that 1) the
Dijkstra algorithm is well suited to solve this problem and 2)

the simple topological method is unable to solve this complex
scenario (Figure 3B). Furthermore, a small breaching threshold
(1.52e-3 m) was applied to resolve the diverging flow directions
caused by digital artifacts. Flow accumulation processes were run
to calculate the contributing area to each cell. For the Russian
River watershed this process creates an array of values that
represent the drainage watershed area for each cell. A
threshold of 30 grid cells or about 2.7 km2 of contributing area
was applied to define the Russian River watershed stream
network (Figure 4).

The final steps to prepare the Russian River surface-water
network were to define the watershed and subbasin boundaries
within the watershed. A single pour point was selected at the
outflow location of the Russian River to the Pacific Ocean to
define the watershed. The “define_watershed” method in
pyGSFLOW (method shown in the “Sagehen Creek Watershed
Example”) was applied to the flow direction array to binarize the
grid into active and inactive model cells (watershed outline shown
in Figure 4). Subbasin delineation was then run. Pour points were
selected based on the locations of streamgages throughout the
watershed to isolate contributing areas to the streamgages. These
contributing areas were grouped using a unique numerical
identifier and are presented in Figure 4.

Results from stream generation were compared to the flow
accumulation methods available in ArcGIS Pro. Both methods
were able to produce representations of the Russian River stream
network from the same pour point (Figure 5), and in much of the
watershed, both methods follow the same path. Some differences
are present in low relief and digitally flat parts the watershed. For
example, in the southern part of the Russian River watershed, the
ArcGIS Pro stream representation has sections follow a
completely straight path, whereas our method produces a

FIGURE 2 | Digital elevation model (27.28 m x 27.28 m; DEM; U.S. Geological Survey, 2020) of the Russian River study area (A). DEM values were resampled by
minimum elevation to model grid size (300 m × 300 m) and are shown for a subset of the watershed: the raw DEM data (27.8 m resolution) (B) and the resampled DEM
values (300 m resolution) (C) correspond to the inset box in (A).
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sinuous section of stream cells (Figure 5). Both representations of
the stream network would likely be suited for hydrologic
modeling; however, pyGSFLOW is open-source, and additions
and inputs can be suggested by the larger modeling community.

Sagehen Creek Watershed Example
The Sagehen Creek watershed is located near Lake Tahoe,
California, in the northern Sierra Nevada (Figure 6). The
watershed drains an area of about 27 km2 and has an east
facing aspect with about 720 m of relief. The Sagehen Creek
watershed has been described in detail and documented as a
GSFLOW example problem by Markstrom et al. (2008). In this
example, pyGSFLOW model building tools are applied to the
Sagehen Creek watershed to create two separate GSFLOW
models from raster data with model grid discretization of
50 m × 50 m and 90 m × 90 m to illustrate the utility of
pyGSFLOW for creating multiple model frameworks or
conceptualizations of the same hydrologic system; specifically,
the grid-cell size is evaluated with respect to simulated streamflow
and surface-water/groundwater exchanges. This version of the
Sagehen Creek watershed model has a different spatial
discretization compared to that presented by Markstrom et al.,
2008 and consequently has a different set of parameter values and
solution.

Ancillary data sets used to develop the Sagehen Creek
GSFLOW model with pyGSFLOW include a 1 arc-second
(30 m) resolution DEM for the Sagehen Creek watershed area
(U.S. Geological Survey, 2022), a pour point located at the USGS
streamgage near the outlet of the watershed (10,343,500

FIGURE 3 |Maps showing calculated flow direction vectors for a part of the Russian River watershed (inset box in Figure 1B) with a low relief valley bounded by
steep topography. The modified Dijkstra Algorithm (Dijkstra, 1959) produces flow direction vectors that generally follow the NHDPlus streamline (blue; Buto and
Anderson, 2020) (A). The red box shows a problem section of the watershed that contains digital artifacts. Stream direction vectors within the red box drain downstream
in (A). The red box in (B) shows stream direction vectors that diverge from the watershed drainage pattern and create a condition where the flow direction array
does provide a continuous drainage path.

FIGURE 4 |Watershed and subbasin delineation results for the Russian
River watershed. U.S. Geological Survey streamgages (U.S. Geological
Survey, 2021) were supplied to the script as pour points for watershed and
subbasin delineation. The black outline represents the Russian River
watershed, and unique colors represent individual subbasins calculated by
pyGSFLOW. Blue lines show the stream network generated from 1 Arc-
second (27.28 m) digital elevation data (U.S. Geological Survey, 2020) by
pyGSFLOW, Russian River watershed, northwestern California.
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FIGURE 5 | Stream network generation from pyGSFLOW (blue lines) and ArcGIS Pro’s Flow Direction and Flow Accumulation tools (red lines) show that both
methods are able to create representations of the Russian River watershed’s drainage pattern (A). Some differences in the two stream network representations are
observed in low-relief areas throughout the watershed (B).

FIGURE 6 | Location of the Sagehen Creek watershed study area near Lake Tahoe, California, in the northern Sierra Nevada (A); the study area extent (black
outline), Sagehen Creek watershed streamlines (blue lines), and USGS streamgage (10,343,500 SAGEHEN C NR TRUCKEE CA; U.S. Geological Survey, 2021; blue
marker) is shown in (B).
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SAGEHEN C NR TRUCKEE CA), LANDFIRE existing
vegetation layers (LANDFIRE, 2016), SSURGO 1:24,000
inventory of soil and non-soil layers (USDA, 2021), National
Land Cover Database (NLCD) impervious cover data layer
(National Land Cover Database, 2020), and PRISM 30-years
normals (PRISM Climate Group, 2014). Data from Sagehen
Creek co-operative station were provided by University of
California, Berkeley (2008), and these daily values of minimum
and maximum air temperature and precipitation were distributed to
all model grid cells using the PRMS modules temp_1sta and
precip_1sta and adjustment factors calculated from the PRISM
30-years normals (800m resolution), due to spatial resolution
constraints from PRISM daily data (4 km resolution).

Two scripts were written specifically for the Sagehen Creek
watershed example to construct models with a constant 50m ×
50m grid cell size (50 mmodel) and a constant 90 m× 90m grid cell
size (90 m model). These scripts processed the ancillary data sets to
construct the GSFLOWmodels with pyGSFLOW. The outline of the
Sagehen Creek watershed script is provided below to illustrate the
process. However, some of the coding is not included here for
brevity, and users can refer to the two python scripts, Sagehen_50m
py and Sagehen_90m py or example notebooks, included in the
pyGSFLOW repository for details:

1) Generate a structured model grid and resample the native
DEM to the model grid:

2) Generate the flow direction and flow accumulation data sets
for the model grid:

3) Define the watershed boundary using the pour point located at
the USGS streamgage:

4) Generate the stream network and cascade directions used to
route flow from overland runoff and interflow to streams:

5) Generate the MODFLOW component of the GSFLOW input
files using the Fishnet and stream network:

6) Generate the PRMS component of the GSFLOW input files:

In addition to building the MODFLOW and PRMS
components, the GSFLOW control and climate data file also
must be built using pyGSFLOW, as shown in the Saghen_50 m py
script. Because Sagehen Creek has a relatively small watershed,
manual calibration was used here by adjusting MODFLOW input

TABLE 3 | Parameter values for models using two different spatial resolutions. Parameter values were modified from their default values to calibrate the model with 50 m by
50 m horizontal discretization, and calibrated parameters for the 90 m by 90 m model. Simulated snowpack, temperature, and horizontal hydraulic conductivity values
were sensitive to changes in model discretization.

Input Data/Parameter Sagehen_50 m model Sagehen_90 m model

Grid cell dimension (in meters) 50 90
Number of layers, rows, and columns 1,149,138 1,77,83
Horizontal hydraulic conductivity of aquifer (in meters per day) 0.018 0.022
Aquifer specific storage (in per meter) 1 × 10-7 1 × 10-7
Aquifer specific yield 0.2 0.2
Model layer thickness (in meters) 100 100
Saturated water content of unsaturated zone 0.25 0.25
Brooks-Corey exponent 3.5 3.5
Vertical hydraulic conductivity of the unsaturated zone (in meters per day) 1 1
Streambed hydraulic conductivity (in meters per day) 1 1
Average stream cross-sectional width (in meters) 10 10
Mannings roughness coefficient 0.04 0.04
Depth water holding capacity of the soil zone held in tension (soil_moist_max, in centimeters) 9–15.12 9–15.12
Depth of water holding capacity of the soil zone drained by gravity (sat_threshold, in centimeters) 333 333
Jensen-Haise potential evapotranspiration coefficient (in per degrees Fahrenheit) 0.03 0.03
Lapse rates for minimum and maximum air temperatures (in degrees Celsius per 1,000 m) 1.2 1
Maximum air temperature when precipitation is assumed to be all snow (in degrees Celsius) 0.7 0.3
Maximum air temperature when precipitation is assumed to be rain (in degrees Celsius) 2.1 3.1
Maximum snowmelt infiltration rate (in inches per day) 10 4
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data and PRMS parameters using pyGSFLOW. Manual
calibration of the Sagehen Creek watershed for the 50 and
90 m models followed a stepwise procedure outlined by Hay
et al. (2006). The MODFLOW input data sets and PRMS
parameters determined from the calibration of the 50 m model
were first directly applied to the 90 m Sagehen Creek watershed
model and then calibrated to evaluate the effects of grid cell size
on simulated streamflow (Table 3).

Both the 50 and 90m models were run for the 14-year period 1
October 1982, to 31 September 1996, and the first 3 years of the
simulation were used to develop equilibrium storage conditions,

often referred to as the “spin-up” period for which results are not
included in the calibration or in the results shown in Figure 7.
Model results were analyzed by comparing the streamflow between
the measured and simulated values at the outlet of the watershed
(Figure 7) and by comparing the components of streamflow for the
50 and 90m models. GSFLOW simulates several components that
contribute to the total streamflow, including interflow that flows
laterally to streams through soils, groundwater seepage from
aquifers to the stream, Dunnian overland flow generated by
saturation excess, and Hortonian overland flow generated by
snowmelt and rainfall in excess of the soil infiltration capacity.

FIGURE 7 | Sagehen Creek test model (Larsen et al., 2021) results showing comparisons between simulated and measured streamflow (10,343,500 SAGEHEN C
NR TRUCKEE CA; U.S. Geological Survey, 2021) and contributions to streamflow for (A,B) 50 m × 50 m, and (C,D) 90 m × 90 mmodel cell sizes, respectively. All flows
correspond to the location of the streamgage at the outlet of the watershed shown in Figure 6. Part (C) shows simulated versus measured flows for parameters
unchanged from the 50 m calibration used in the 90 m calibration and the calibrated 90 m simulation.
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Because the 50 m model was calibrated to the measured
streamflow, and these parameter values were transferred
directly to the 90 m model, the effect of grid size on
simulated streamflow can be isolated and evaluated. The
results confirm previous research that indicates larger grid
cells tend to slightly increase dispersion and attenuate peak
flow events (Sulis et al., 2010), and because the model was
calibrated using the 50 m model, this attenuation results in a
slight underprediction of peak flow in the 90 m model. The
daily Nash-Sutcliffe Efficiency (NSE) values are equal to 0.74
and 0.69 for the 50 and 90 m models, respectively, when the
50 m calibrated parameters are transferred unchanged to the
90 mmodel. Calibrated results for the 90 m model show that a
slightly better NSE is obtained with the finer discretization,
where NSE is 0.72 and 0.74 for the calibrated 90 m and
calibrated 50 m models (comparison between subparts 7a
and 7c). Note that the slight reduction in the NSE value
for the 90 m model is a result of changes in the magnitude of
Hortonian runoff and groundwater discharge to the stream
network shown in Figures 7B,D. This example illustrates the
value of using automated model construction approaches like
that provided by pyGSFLOW to quickly evaluate how
different model resolutions impact hydrologic prediction, a
process that is time consuming and prohibitive using
conventional model construction approaches. The
pyGSFLOW package provides an automated and efficient
approach for evaluating the impacts of model
conceptualization on predictions that allow the user to
optimize model construction and quickly balance different
factors, such as the tradeoff between fine spatial
discretization and accuracy versus model computational
costs. Increases in cell size from 50 to 90 m resulted in
slightly lower Nash-Sutcliffe Efficiency, 0.74 to 0.72;
however, this small sacrifice in accuracy is balanced by the
significant reduction in computation time from 603 to 294 s.

SUMMARY AND CONCLUSION

GSFLOW models simulate complex interactions between
surface-water and groundwater flow systems and require large
data sets from many sources to fully parameterize. This paper
presents methods that outline GSFLOW integrated hydrologic
model development from raster digital elevation data to running
model with pyGSFLOW. This approach builds on previous works
(Bakker et al., 2016; Gardner et al., 2018; Larsen et al., 2021;
Bakker et al., 2022) to create an open-source method for building
PRMS, MODFLOW, and ultimately GSFLOW models. Flow
direction, flow accumulation, watershed and subbasin
delineation, and model building methods were developed
specifically for use with tightly coupled GSFLOW models.
Two example problems are presented to illustrate the
robustness of the approach and illustrate the model
construction process using pyGSFLOW.

The “Russian River Watershed Example” presents a regional
system that is characterized by large areas of digitally flat digital
elevation model (DEM), low-relief terrain with steep canyon walls

that creates digital artifacts in the DEM data, and areas with high-
relief topography. The D8 flow direction algorithm implemented in
pyGSFLOW was used to define flow vectors within the watershed
and ultimately be used to define subbasin boundaries and a
model stream network. Results from this study showed that
1) pyGSFLOW’s modified Dijkstra algorithm is well suited for
solving systems with large digitally flat expanses, like the
Russian River; 2) the standard topological D8 flow
direction method is ill suited for performing this task; and
3) the results are comparable but slightly different than both
NHDPlus streamlines and ArcGIS’s flow accumulation
methods. Differences between NHDPlus and pyGSFLOW’s
results are explained by DEM scale mismatches between the
model spatial discretization and NHDPlus streamlines.

The “Sagehen Creek Watershed Example” illustrates the
step-by-step approach to developing input data required for a
GSFLOW application. The python scripts are summarized
here and provided in the pyGSFLOW repository to walk the
user through the model development process using
pyGSFLOW, including the processing of raster data to
provide model parameters for both the PRMS and
MODFLOW components of GSFLOW. This example
compares two models created by varying spatial
discretization with pyGSFLOW’s model building tools
(Table 3). The first model has 50 m × 50 m grid cells, and
the second model has 90 m × 90 m grid cells. The 90 m × 90 m
model was quickly produced from a copy of the 50 m × 50 m
model by changing only the spatial discretization of the model.
Comparison of the two models shows that larger grid cells
impact both the surface-water and groundwater components
of simulated streamflow. Additional calibration beyond the
parameterization of the 50 m model could be applied to the
90 m model to compensate for the deterioration in model fit
when compared to the finer discretization model.

The pyGSFLOW package is currently being used to develop
GSFLOW models of hydrologic watersheds in California to
support groundwater sustainability and for tools that water
managers can use to better manage surface water and
groundwater as a single resource. Some example applications
include, but are not limited to, evaluating different land-
management or land-use scenarios, evaluating climate scenarios
under historical or future conditions, parameter estimation, and
sensitivity analysis. Because pyGSFLOW is a programmatic
method for model creation, editing, and postprocessing, these
applications can be accomplished by either creating a
comprehensive script or with a series of scripts. Both options can
be used for repeatable, transferable, and transparent model
development.

The pyGSFLOW package is an open-source project that
welcomes community input and involvement. The Russian
River watershed and Sagehen Creek watershed example
problems discussed in this paper can be found as python
scripts in the pyGSFLOW repository (Larsen et al., 2021).
Installation instructions, example problems, and links to
documentation that demonstrate model building, editing
existing models, and output data visualization can be accessed
from the pyGSFLOW repository.
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The diversity of geophysical methods and datatypes, as well as the isolated

nature of various specialties (e.g., electromagnetic, seismic, potential fields)

leads to a profusion of separate data file formats and documentation

conventions. This can hinder cooperation and reduce the impact of datasets

researchers have invested in heavily to collect and prepare. An open, portable,

and well-supported community data standard could greatly improve the

interoperability, transferability, and long-term archival of geophysical data.

Airborne geophysical methods particularly need an open and accessible data

standard, and they exemplify the complexity that is common in geophysical

datasets where critical auxiliary information on the survey and system

parameters are required to fully utilize and understand the data. Here, we

propose a newGeophysical Standard, termed the GS convention, that leverages

the well-established and widely used NetCDF file format and builds on the

Climate and Forecasts (CF) metadata convention. We also present an

accompanying open-source Python package, GSPy, to provide methods and

workflows for building the GS-standardized NetCDF files, importing and

exporting between common data formats, preparing input files for

geophysical inversion software, and visualizing data and inverted models. By

using the NetCDF format, handled through the Xarray Python package, and

following the CF conventions, we standardize how metadata is recorded and

directly stored with the data, from general survey and system information down

to specific variable attributes. Utilizing the hierarchical nature of NetCDF, GS-

formatted files are organized with a root Survey group that contains global

metadata about the geophysical survey. Data are then organized into subgroups

beneath Survey and are categorized as Tabular or Raster depending on the

geometry and point of origin for the data. Lastly, the standard ensures

consistency in constructing and tracking coordinate reference systems,

which is vital for accurate portability and analysis. Development and

adoption of a NetCDF-based data standard for geophysical surveys can

greatly improve how these complex datasets are shared and utilized, making

the data more accessible to a broader science community. The architecture of

GSPy can be easily transferred to additional geophysical datatypes andmethods

in future releases.
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1 Introduction

Accurate management and usage of scientific data is

fundamentally dependent on how the data are stored and

documented. Community-agreed-upon standards in data

formatting and organization are a natural and necessary step

in simplifying the transfer and analysis of complex datasets, both

within and across disciplines. In the Earth Sciences, many

communities of practice have evolved, such as Cooperative

Ocean/Atmosphere Research Data Service (COARDS) from

the National Oceanic and Atmospheric Administration

(NOAA), Common Data Form (CDF) from the National

Aeronautics and Space Administration (NASA), or

Hierarchical Data Format (HDF) originally developed by the

National Center for Supercomputing Applications (NCSA) but

currently maintained by The HDF Group (NOAA, 1995; Folk

et al., 1999; Yang et al., 2005; NASA, 2019). Notably, the Network

Common Data Form (NetCDF) architecture has become the

basis for many modern data standards (Rew et al., 2006; Hankin

et al., 2010; Unidata, 2021b). Overall, the purpose of a data

standard is to control how data and metadata are documented,

formatted, and stored such that datasets can be shared, displayed,

and operated on with minimal user intervention across platforms

and software (Eaton et al., 2020).

Geophysical datasets are widely used in Earth system studies

to interrogate subsurface properties and processes. Methods vary

considerably, each relying on different physics and are sensitive

to different physical properties of Earth materials (e.g., rocks,

sediments, and fluids). Geophysical data are commonly acquired

using instruments on land, on or beneath water, from airborne

platforms, or in boreholes. Broad categories of geophysical

methods (e.g., electrical, magnetic, seismic, electromagnetic,

radiometric, gravity) have specific measurement modalities

(e.g., frequency-domain or time-domain electromagnetics),

each of which can have many unique instruments with

differing designs and configurations. In addition to the values

measured by an instrument’s sensors, a host of other auxiliary

information is often needed but contained in separate

supplementary files, field notes, or contractor’s reports and

not directly attached to the data. The supplementary

information includes fundamental positioning information,

general survey metadata, as well as details about acquisition

parameters or instrument characteristics needed to interpret

the measured data. Without this accompanying supplementary

information, acquiring meaningful results and interpretations

would be a challenge.

Although geophysical datasets have much in common at a

basic level—recorded data values, system information,

coordinate information, and auxiliary metadata—data formats

vary widely by method and by instrument. Probably the most

established geophysical formats relate to the Society of

Exploration Geophysicists (SEG) digital tape standards used

for seismic data, owing to the vast amount of industrial

seismic data collection (Northwood et al., 1967; Hagelund and

Levin, 2017). Yet, even within data formats that are more widely

used in the geophysical community, none meet the criteria of 1)

being an open format that allow for publication according to

Findability, Accessibility, Interoperability, and Reuse (FAIR)

principles in public repositories, 2) attaching important

system information and metadata to the data in a single file,

and 3) incorporate a file structure that facilitates transferability

between open-source computational software, web services, and

geospatial systems. The lack of a common open data standard

leads to inefficiencies where processing or interpretation software

must be customized to read specific formats from different

instruments, and data need to be re-formatted before they can

be used by software and/or published according to FAIR

standards (Wilkinson et al., 2016; Salman et al., 2022).

Similar to seismic acquisitions, airborne geophysical surveys

are often acquired by industry for a wide range of government,

academic, and private clients. Airborne geophysical surveys are

becoming more commonplace, providing cost-effective, high

resolution, and multi-scale subsurface imaging not easily

obtained with ground-based observations over large areas. As

with the field of geophysics overall, there is currently no open

community standard that is widely used for sharing and releasing

airborne geophysical datasets. Furthermore, airborne datasets

entail significant supplementary information on survey design,

system and acquisition parameters, and post-processing details

that are often included in PDFs or other report documents

separate from the digital data, posing a risk to the long-term

integrity of the data. The large size and complexity of airborne

geophysical data, as well as their broad community value,

necessitates accessible tools and standards be developed to

keep pace with rising demands and usage.

Efforts have been made in the past to standardize airborne

data formats, along with interoperable inversion software for

working with airborne electromagnetic (AEM) datasets (Møller

et al., 2009; Brodie, 2017). The Australian Society of Exploration

Geophysicists (ASEG) established the ASEG-GDF2 (General

Data Format Revision 2) data standard (Dampney et al., 1985;

Pratt, 2003), an ASCII-based data structure for general point and

line data, with particular focus on large airborne geophysical

datasets such as magnetic, radiometric, electromagnetic, and

gravity. Tabular ASCII data, such as ASEG-GDF2 or CSV,

have the advantage of being both human and machine

readable for easy usage, but these formats result in larger file

sizes compared with binary formats. ASCII formats are also

limited in how datasets can be structured, grouped, and

documented. For example, the ASEG-GDF2 structure includes

general and variable-specific metadata information in separate

definition files that accompany the data, but this design requires

users to always maintain multiple files. In Denmark, a national,

publicly accessible geophysical database (GERDA) hosts

numerous types of airborne and ground-based geophysical

datasets in a structured relational database (Møller et al.,
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2009); however, GERDA databases are not easily used or accessed

outside of proprietary software. Geosoft databases are also an

industry standard for delivery and storage of airborne

geophysical tabular datasets. Their binary format has

advantages in data compression and file size, and Geosoft

databases are supported by sophisticated software such as

Oasis Montaj (Seequent Ltd. https://www.seequent.com/

products-solutions/) for processing, analysis, and visualization.

However, use of this software requires a commercial

subscription, and the binary Geosoft databases do not meet

open standards for publication. Lastly, gridded data and

products often accompany airborne datasets and can be

provided in many binary and ASCII raster formats (e.g., TIF/

GeoTIFF, ARC/INFO, GXF, Geosoft GRD, Surfer GRD, etc.),

each compatible with one or more of the commonly used

software tools. However, some tools are open while others are

proprietary and require paid subscription.

Here, we present a data standard using the NetCDF file format

that provides a structure for storing geophysical data, metadata, and

survey information in a single file. The proposed geophysical

standard (GS) balances the need to require information for

certain datatypes be stored in a well-defined structure, while also

allowing for flexibility with optional information. In addition to

recorded data, we use the hierarchical group structure within the

NetCDF file to store multiple related datasets or products together.

For example, separate groups might contain raw data, processed

data, and physical propertymodels determined through inversion or

other analyses. Storing digital data along with associated coordinate

and system information in a single self-describing open file structure

with well-established standards can greatly improve the

interoperability, transferability, and impact of geophysical

datasets. The underlying HDF data structure is computationally

advantageous when compared to human-readable ASCII files (Yang

et al., 2005; Rew et al., 2006).

Along with the new GS data convention, we developed a

Python package (GSPy) as a community tool which facilitates use

of the NetCDF file structure. A basic function of GSPy is

conversion, either reading original input files into our

proposed data structure and creating the standardized

NetCDF file or converting content from the standard

structure into a different format needed to work with specific

software or for cooperator and end-user needs. Beyond this basic

input-output functionality, GSPy can also be incorporated into

processing and visualization workflows utilizing the GS structure.

Though GSPy is not required to work with the GS data

model—any tools capable of interacting with a NetCDF file

can be used—we developed GSPy as a building block to make

the process of transforming datasets into the GS structure easy

and straightforward to maximize their usability.

In this paper, we define the proposed data standard and provide

an overview of the GSPy software structure and functionality. Our

focus in the initial stage of development of the GS model and

associated GSPy tools has been on airborne geophysical data due to

their immediate need for an open-source community standard,

while also keeping in mind flexibility in design to allow future

accommodation of other types of geophysical data in the same

model. We use an existing airborne geophysical dataset from

Wisconsin as a case study to exemplify the GS convention and

demonstrate usage of the GSPy package (Minsley et al., 2022).

Finally, we discuss the scalability, limitations, and opportunities

provided by a NetCDF-based community geophysics data standard.

2 Methods

Our goal with the GS data model and GSPy software tool is to

assimilate data from a variety of file formats, geometries, and

geophysical methods into a common and open data structure

that can be broadly shared and utilized (Figure 1). The GS data

model provides a common, open, and standardized framework

for geophysical datasets, which is disconnected and independent

from the original source formatting.

In airborne surveys, data from one or more geophysical sensors

(e.g., electromagnetic, magnetic, radiometric, gravity) are acquired

along relatively linear flight lines covering large areas. Data are

stored at a regular sampling interval typically in tabular format, and

published in ASCII files such as CSV or ASEG-GDF2 (e.g., Ley-

Cooper et al., 2019; Drenth and Brown, 2020; Shah, 2020; Minsley

et al., 2021). Data from multiple sensors acquired at the same time

(e.g., electromagnetic and magnetic) are often combined in a

singular tabular dataset at the same sample interval. Two-

dimensional rasterized data, typically gridded maps of measured

values (e.g., flight altitude or powerline monitor) and/or multi-

dimensional interpreted products (e.g., resistivity depth slices or

residual magnetic intensity), are often included with contractor-

delivered datasets or as publicly archived products. In addition to

geophysical sensor data, each measurement also includes important

auxiliary information needed for quality control, processing,

interpretation, and visualization. Auxiliary metadata includes

information such as the position and attitude of the aircraft and

geophysical sensors during acquisition, flight line numbers and

fiducials, timestamps, noise channels (e.g., powerline monitoring

channel for AEM data), and processed or corrected data channels.

The GS convention, through GSPy, integrates airborne geophysical

data and auxiliary metadata from these various input formats and

geometries into a standardized NetCDF file that can be publicly

released and shared through data repositories like ScienceBase

(https://www.sciencebase.gov), and is portable to common

geospatial and visualization software (Figure 1).

2.1 Geophysical data standard

To support efficient metadata documentation, combined

storage of related datasets, and transferability to multiple

software tools and web services, the GS data model is founded
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within the NetCDF file format. NetCDF was established in

1989 by the University Corporation for Atmospheric Research

(UCAR)’s Unidata program (Rew and Davis, 1990), who

continue to provide development and support for newer

NetCDF versions and related software (Rew et al., 2006;

Unidata, 2021b). The latest version, NetCDF-4 is built on the

HDF5 storage layer and format (Rew et al., 2006). As modern

datasets are becoming larger and more complex, e.g., studies are

more often data-rich and/or employ “big data” approaches

(Vermeesch and Garzanti, 2015; Shelestov et al., 2017;

Reichstein et al., 2019; Li and Choi, 2021) the appeal of

NetCDF is growing. Organizations such as NASA, NOAA,

National Snow and Ice Data Center (NSIDC), and National

Center for Atmospheric Research (NCAR) have adopted

NetCDF as one of their preferred formats (Ramapriyan and

Leonard, 2021, see complete list of users at https://www.unidata.

ucar.edu/software/netcdf/usage.html). We have chosen to follow

the same path, recognizing the many advantages provided by the

NetCDF format:

• Self-describing: Metadata are directly attached to datasets.

This architecture eliminates any risk of critical metadata

becoming separated from the data, which can severely

reduce dataset usability. This structure is especially

important in geophysical datasets, where auxiliary

system information such as transmitter waveforms, time

gates, or transmitter-receiver coil orientations are essential

for accurate analysis and interpretation of the data.

• Space-saving: The binary format has a smaller file size

compared to ASCII files. Extra packing and compression

options can further reduce file sizes.

• Accessible: Subsets of large datasets can be accessed

directly without needing to read in the full dataset,

thereby minimizing memory requirements.

• Portable: Files are platform-independent, meaning

datasets are represented uniformly across different

computer operating systems.

• Hierarchical: Multiple datasets can be stored in a single file

following a tiered group organization. This structure

provides a clean and efficient mechanism for archiving

and sharing related datasets in a single file, such as raw

versus processed data, in addition to inverted models and

any products derived from those models.

• Scalable: Files can be read from and written to using large-

scale distributed memory machines, allowing fast access at

massive computational scales.

The GS design builds on existing conventions in other Earth

science disciplines. Specifically, we adapt and extend the Climate and

Forecast (CF)Metadata Conventions (hereafter, the CF conventions;

FIGURE 1
Conceptual diagram of GSPyworkflow. Data from a variety of formats and types are read into GSPy, alongwith requiredmetadata files. Through
the GSPy software, data are converted into a standardized NetCDF file containing the dataset and metadata appropriate for archiving and sharing.
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Eaton et al., 2020) to satisfy the needs of geophysical datasets. The

CF conventions ensure datasets conform to a minimum standard of

description, with common fields and elements, and guarantee data

values can be accurately located in time and space (Eaton et al.,

2020). The CF conventions originated as an extension of the

COARDS NetCDF convention from NOAA (NOAA, 1995), and

are Unidata’s recommended standard of choice. The GS convention

follows the rules and guidelines of the CF standard, with additional

constraints in grouping datasets and metadata while also allowing

for nuances inherent to geophysical datasets. Specific details on GS-

FIGURE 2
GS data convention. (A) Datasets are structured into three fundamental group types based on content and data geometry. The Survey group
contains general metadata about the dataset. Unstructured datasets, such as from CSV or TXT files, form Tabular groups, whereas structured
(gridded) datasets are categorized under the Raster group. Metadata is attached to all groups, with various required attributes (green text) that
expands on the CF-1.8 convention. (B)Groups follow a strict hierarchy in the NetCDF file, with a single Survey group at the top to which all data
groups are attached. Datasets are indexed within their respective group type. (C) Tabular and Raster data groups must contain clearly defined
dimensions, such as index or x, y, z, as well as coordinate variables. Raster groups are distinct in that dimensions are also coordinates, whereas
Tabular datasets are assigned spatial coordinates that align with the index dimension. Lastly, the coordinate variable “spatial_ref” is required for all
data groups, which expands on the “coordinate_information” variable required in the Survey metadata.
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specific metadata requirements are outlined in the GSPy

documentation pages (Foks et al., 2022).

2.1.1 GS group structure
The hierarchical nature of NetCDF allows for groups of

multiple self-described datasets within a single file, where each

dataset can have differing structure or dimensions and can be

accessed separately using a defined path, similar to a file system

directory path (e.g., /group1/group2). The GS data model

contains three fundamental categories for grouping data and

metadata (Figure 2). General metadata for the dataset(s) as a

whole are contained within the Survey group. Every file is

required to have a Survey group which sits at the root of the

hierarchical group structure and contains all data subgroups

(Figure 2B). Data are then categorized by the nature and

geometry of the values. Unstructured data, such as

scattered points or lists of values, are contained within the

Tabular group. Structured data, i.e., gridded data, are

contained within the Raster group. Having two separate

data groups is meant to ease import/export of datasets

with minimal manipulation or alteration, thereby ensuring

transparency and accountability in cataloging processing

steps as well as improving accessibility in data handling.

For example, a Raster dataset can immediately be exported

to a GeoTIFF file, whereas a Tabular dataset would require

modification such as interpolation onto a regular grid. When

there are multiple datasets attached to a single group, we

separate them with a simple integer index (e.g., /survey/

tabular/0 and /survey/tabular/1, in the case where two

tabular entries are attached).

1) Survey: This group contains general metadata about the

dataset, or collection of related datasets, within the

NetCDF file. General information about where the data

was collected, acquisition start and end dates, who

collected the data, any clients or contractors involved,

system specifications, equipment details, and so on are

contained within data variables of the Survey

group. Information included in the Survey group is often

provided or recorded separately from the data, such as in

contractor PDF reports or field notes. Attaching this digital

metadata preserves important survey details and facilitates

processing and analysis, for example, by including instrument

parameters needed for visualization or geophysical inversion.

Users are allowed to add as much or little information to the

Survey data variables as they choose. However, following the

CF convention, we require a set of global attributes [e.g., title,

institution, source, history, references, see section 2.6.2. of

Eaton et al. (2020)]. In the GS standard, we add an additional

“content” key that provides a brief summary of what datasets

are included in the file and their locations, e.g., “raw data at

/survey/tabular/0”. Secondly, a “coordinate_information”

variable is required within Survey and should contain all

relevant information about the coordinate reference system.

More details on handling coordinate reference systems are

described in section 2.1.2.

2) Tabular: Data that is organized in a tabular format, such as a

CSV file with discrete locations along rows and measurement

values along columns, are read and categorized into a Tabular

group. In the case of airborne geophysics this would include

data collected at discrete points along flight lines, inverted

physical property models determined from measured data, or

any other type of scattered point data.

3) Raster: Data that is structured into predefined grids are

categorized into the Raster group. Generally, this includes

two-dimensional (2D) and three-dimensional (3D) gridded

data, such as interpolated geophysical models or surfaces.

Data groups are located a level below the Survey group in the

NetCDF file and have access to the same global metadata

(Figure 2B). The hierarchical group structure allows for

multiple related datasets to be stored and shared together,

such as raw data, processed data, inverted models, and any

products derived from those models. This structure also

inherently provides an audit trail for users, thereby

encouraging transparency and dataset integrity. It is best

practice to provide meaningful variable and dimension names

and follow established conventions (e.g., CF) or community

norms whenever possible. A small set of global attributes are

required for all data groups, as well as required variable

attributes, and a defined “spatial_ref” variable containing the

coordinate system information (Figure 2A).

The relationship between dimensions, coordinates, and data

values differs between Tabular and Raster groups (Figure 2C).

For Tabular datasets, data variables are more often one-

dimensional (1D), such as columns in a CSV, which are by

default given an “index” dimension. For 2D or 3D variables, the

second or third dimensions are defined and attached to the

dataset, such as measurement time gates for time-domain AEM

data channels, or frequencies for frequency-domain data

channels. All data groups require spatial coordinate variables,

standardized as “x” and “y”. In the case of Tabular data, the

coordinate variables match the size of the 1D index dimension

and are sourced from corresponding input data variables, e.g., the

longitude and latitude of data points, through the “key_mapping”

attributes. In contrast, Raster datasets are gridded such that the

dimensions of the data are also the coordinates (Figure 2C). A

Raster group may contain multiple variables (e.g., total magnetic

intensity and residual magnetic field) if all variables within the

dataset share the same dimensions, otherwise separate Raster

groups are encouraged (e.g., /survey/raster/0 and /survey/

raster/1).
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2.1.2 Coordinate reference systems
All datasets are required to have a defined coordinate

reference system to maintain accurate representation of data

values for both visualization and analysis purposes. Information

about the coordinate system, such as a Well-known ID (WKID;

Esri, 2016) and corresponding authority (e.g., EPSG), if it is

geographic or projected, horizontal and vertical datums, and so

on are stored within the Survey group’s required

“coordinate_information” variable. Any Tabular or Raster

datasets attached to the Survey must have a matching variable

“spatial_ref” and adhere to the same coordinate reference system.

Following CF conventions (see section 5.6 of Eaton et al. (2020)),

the “spatial_ref” coordinate variable must have the attribute

“grid_mapping_name” which ties to a corresponding

“grid_mapping” attribute within the data variables.

Additionally, the “x” and “y” coordinate variables require

certain attributes, such as “GeoX” and “GeoY” for

“_CoordinateAxisType” which connects to a related key in the

“spatial_ref” variable. If the coordinate system is a projection,

then the “standard_name” keys for “x” and “y” should be

“projection_x_coordinate” and “projection_y_coordinate”.

These details ensure that datasets are portable and accurately

represented within geospatial systems (Eaton et al., 2020; Esri,

2022).

2.1.3 NcML
The last piece of the GS convention is the NetCDF eXtensible

Markup Language (XML), NcML,metadata file, which is an XML

representation of the metadata and group structure within the

NetCDF file. NcML files are commonly used to allow simple

updates or corrections to the metadata contained within NetCDF

files (Nativi et al., 2005). For example, the Thematic Real-time

Environmental Distributed Data Services (THREDDS) data

server (TDS) employs NcML to define new NetCDF files, or

augment and correct existing files hosted on their web service

(Caron et al., 2006; Unidata, 2021c). NcML files also serve as a

quick means for users to gain an overview of NetCDF file

contents without needing to access the binary files. The NcML

is not required to understand the data or metadata, but are an

optional component that we recommend including when sharing

or archiving GS NetCDF files.

2.2 GSPy v0.1.0

To implement this new GS data convention, we developed an

open-source Python package, GSPy, which provides a basic

toolkit to build, interface with, and export standardized

geophysical datasets. GSPy utilizes the extensive Xarray

Python package to assemble the GS groups and read/write the

NetCDF files (Hoyer and Hamman, 2017). Xarray’s architecture

consists of DataArrays and Datasets. An Xarray DataArray is a

labeled, multi-dimensional array containing 1) “data”: an

N-dimensional array of data values, 2) “coords”: a dictionary

container of the data coordinates, 3) “dims”: the dimensions for

each axis of the data array, and 4) “attrs”: an attribute dictionary

of key metadata (e.g., units, null values, descriptions) (Hoyer and

Hamman, 2017). An Xarray Dataset is a collection of DataArrays,

and similarly has the components of “dims” and “coords” which

reflect those of the DataArrays (categorized as “data_vars” in the

Dataset) and “attrs” for global metadata attributes that describe

the collection. In the GS structure, each Tabular and Raster data

group, as well as the Survey group, are individual Xarray Datasets.

The data variables (DataArrays) within the Survey group’s

Dataset are unique in that they contain no data values, only

variable attributes of Survey metadata information.

The GSPy package can be found at https://doi.org/10.5066/

P9XNQVGQ, and requires Python version 3.5 or later

(Foks et al., 2022). The software is platform independent

(operates on both Windows and Unix operating systems) and

has been released under the CC-0 license as per U.S. Geological

Survey (USGS) software release policy. In this initial version,

GSPy primarily serves as a data conversion tool, with functionality

to interface with multiple input data formats and output to a GS-

structured NetCDF file. Metadata is currently documented and

input to GSPy through user-prepared JSON files.

2.2.1 Classes
GSPy contains Survey and Data classes, and the Data class is

extended to the Tabular and Raster classes allowing for specific

handling of those data types. The code requires a Survey object be

instantiated as the first step to building a GS dataset (Figure 3A).

A JSON metadata file (Figure 3B) is required to initialize the

Survey object, where dictionaries such as “system_information,”

“survey_equipment,” and “coordinate_information,” for

example, become data-less DataArray variables within the

Survey’s Dataset, consisting primarily of metadata within the

variable attributes. The required dictionary “dataset_attrs”

populates the Dataset attributes, most of which follow the CF

convention required inputs.

Each data assemblage, typically contained within a single tabular

text file or a collection of related raster files, are attached to the

established Survey object as the appropriate Data class using the

“add_tabular” or “add_raster” methods of the Survey (Figure 4A,

Figure 5A). Each instance of “add_tabular” and “add_raster” appends

a new class object, Tabular or Raster, respectively, to the Survey

with an incremented index for each location once written to disk,

e.g., /survey/tabular/0, /survey/tabular/1, and /survey/tabular/2.

The code is ignorant of any meaningful descriptions of data

type, e.g., raw data vs. inverted models, and instead handles

data purely based on the input format type and geometry.

Therefore, it is up to the user to ensure the metadata—we

recommend the “content” attribute field—provide sufficient

description of what each Dataset within a Survey contains.
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GSPy version 0.1.0 supports CSV and ASEG-GDF2 text file

formats for Tabular groups. For CSV files, a “variable_metadata”

dictionary needs to be passed through the JSON file (Figure 4B).

In contrast, ASEG-GDF2 files allow for variable attributes to be

populated from the structured ASEG definition (.dfn) metadata

file (Pratt, 2003). The “variable_metadata” dictionary can be

optionally included for ASEG files to add or overwrite metadata

values. For both input file types, GSPy executes one-to-one

FIGURE 3
Starting a GS dataset with the GSPy package. (A) A GS dataset is always initialized with an instance of the Survey class. General metadata about
the project and survey are read from a JSON file (B) and formatted into an Xarray Dataset attached to the Survey class object. The “dataset_attrs”
dictionary contains required fields that populate the general attributes of the Xarray Dataset, while all other dictionaries become DataArray variables
(black arrows).
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mapping of columns into DataArrays by default. Variables that

comprise multiple columns are handled in one of two ways. First,

if the columns contain an incrementor following the variable

name formatted as [0], [1], . . .. [N] for N number of columns—a

common format for geophysical datasets—then the columns are

concatenated in order and labeled by the root column name. For

example, a time-domain AEM variable that appears as

“EMX_HPRG [0]”, “EMX_HPRG [1]”, “EMX_HPRG [2]” etc.

FIGURE 4
Attaching a Tabular group to a Survey. (A) The “add_tabular” method is used to add a Tabular Dataset to Survey. (B) The Dataset attributes,
coordinate “key_mapping,” variable-specificmetadata, and any second-dimension variables are passed through a required JSON file when attaching
the Tabular group.
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within the contractor-provided data file would be combined into

a 2D DataArray variable, “EMX_HPRG”, within the GSPy

Dataset. In this example, the dimensions of the

“EMX_HPRG” variable would be “index” and “gate_times.”

The “gate_times” dimension values and metadata are also

defined through the JSON file in the “dimensions” dictionary

(Figure 4B). For Tabular groups, users also have the option to

provide bounds on dimensions, when appropriate, such as the

start and end times for each time gate. We follow the CF

conventions’ approach to bounding variables, such that a rank

1 dimension of length N will have bounds of shape (N, 2), where

each value along the first axis has 2 vertices corresponding to its

bounds (Figure 4).

The second approach to multi-dimensional column variables

is to pass a “raw_data_columns” key within the

“variable_metadata” dictionary of the JSON for the desired

FIGURE 5
Attaching a Raster group to a Survey. (A) The “add_raster” method is used to add a Raster Dataset to Survey. (B) As with Tabular groups, the
Dataset attributes, coordinate “key_mapping”, and variable-specific metadata are passed through a required JSON file. The Raster class allows for a
one-to-onemapping of GeoTIFF files toDataArray variables within the Dataset, ormultiple files can be stacked into a single variable. The “raster_files”
dictionary maps the desired variables to its input file(s).
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output variable name, where the values of “raw_data_columns”

points to the original column names in the data file in the order

they should be concatenated. For example, a frequency-domain

AEM variable for in-phase filtered data can often appear in the

raw data file with unique columns named by frequency, such as

“cpi400_filt”, “cpi1800_filt”, etc. A sorted list of these data

columns should be passed through the metadata of a new

variable, such as “ip_filtered,” which would have the

dimensions “index” and “frequency.” As before, the

“frequency” dimension would be defined and described

through a “dimensions” dictionary. Coordinates for Tabular

data are defined through the “key_mapping” dictionary of the

JSON. As stated previously, Tabular variables have coordinates

of dimension “index” and the “key_mapping” allows GSPy to

create the coordinate variables based on named input variables,

e.g., {“x”: “Longitude”, “y”: “Latitude”}.

GSPy v0.1.0 supports GeoTIFF files as the primary input/

output format for Raster groups. In contrast to Tabular groups,

variables are added either as 2D variables from single GeoTIFF

files (1 file = 1 DataArray) or 3D variables by stacking multiple

files along a named dimension (e.g., individual depth slices). In

the JSON metadata file, the “raster_files” dictionary maps each

DataArray variable to a file or list of files. As before, a

“variable_metadata” dictionary is needed to complete the

attributes of each variable. The dimensions of the data are by

default the coordinates defined by the input file, thus no

“dimensions” dictionary is needed. The “key_mapping”

dictionary is still needed for Raster datasets to update the

metadata of the dimension coordinates (“x” and “y”). We use

the Rioxarray module (http://github.com/corteva/rioxarray) to

go between GeoTIFF files and Xarray DataArrays. Upon reading

in a GeoTIFF file, GSPy compares the input coordinate reference

system with that of the Survey. If the input reference system does

not match, the DataArray is reprojected using Rioxarray. Future

versions can follow the same procedures for other standard raster

data file formats.

For all data types regardless of geometry (Tabular and

Raster), the JSON metadata file is required to contain a

“dataset_attrs” dictionary, which populates the attributes of

the Dataset. Since data groups are contained within the Survey

group of the NetCDF file, the globally required attributes of the

Survey apply to all data groups, per CF conventions (Eaton et al.,

2020). Therefore, the attributes of data groups only require the

“content” key and any “key_mapping”, with additional keys such

as “comment” optionally included at user-discretion. Lastly, the

coordinate reference system of the Survey is used to create the

“spatial_ref” coordinate variable to accompany each Dataset,

thereby requiring all groups under a Survey to have matching

coordinate systems. Either a well-known identification (WKID)

number and associated authority, e.g., EPSG:4326, or a

coordinate reference system well-known text (CRS_WKT)

string are needed to then generate the complete “spatial_ref”

variable using the GDAL and Pyproj packages (GDAL/OGR

contributors, 2022; https://github.com/pyproj4/pyproj). We

follow CF conventions and ArcGIS guidelines (e.g., Esri, 2022)

to ensure proper transferability of datasets into common

geospatial and NetCDF-supported software.

2.2.2 Class properties and methods
GSPy provides many helpful properties and methods for

working with datasets. Here we highlight some essential

functions, and refer readers to the GSPy documentation pages

for a complete description of all classes, methods, and

functionality, along with code examples (Foks et al., 2022).

First, all classes share the property of “xarray” to return the

GS-formatted Xarray Dataset (Figures 3, 4, 5A). The

“read_metadatafile” method is common to each class and

attaches the full dictionary read from the provided JSON file

to the property “json_metadata”. If a metadata file does not get

passed or is missing required dictionaries, the

“write_metadata_template” method is called to generate a

template file that users can then edit. This function is useful

for large CSV datasets with many variables, as it will generate a

“variable_metadata” dictionary based on the column names. All

attributes are given “not_defined” values that users can then

update.

Once all groups have been attached to a Survey, the

“write_netcdf” and “write_ncml” methods will write the GS-

structured NetCDF file and accompanying NcML file,

respectively (Figure 6). The data classes, Tabular and Raster,

also contain “write_netcdf” functions to export groups in

separate files; however, we recommend always using the

Survey class “write_netcdf” function to adhere to the standard

with all groups written to a single file. The Tabular and Raster

classes also contain export methods such as “to_csv” and “to_tif”,

respectively. Lastly, some simple plotting methods are provided

for both Raster and Tabular classes using Xarray’s scatter and

pcolor functions (Figure 6).

3 Results

To demonstrate the proposed GS convention and the

functionality provided by GSPy, we converted a recently

acquired airborne geophysical dataset into the new standard

through GSPy workflows. This dataset provides the

opportunity to showcase examples of diverse input data

formats (CSV and GeoTIFF) and geometries (Tabular and

Raster) within the proposed GS architecture. In January and

February 2021, the U.S. Geological Survey oversaw collection of

3,170 line kilometers of AEM and magnetic data over northeast

Wisconsin through collaboration with the Wisconsin

Department of Agriculture, Trade, and Consumer Protection

(DATCP) andWisconsin Geological and Natural History Survey

(WGNHS) (Minsley et al., 2022). The primary purpose of this

effort was to improve understanding of the depth to bedrock
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across the study area. The airborne data were acquired by

SkyTEM Canada Inc. with the SkyTEM 304M time-domain

helicopter-borne electromagnetic system together with a

Geometrics G822A cesium vapor magnetometer.

Input data consisted of 1) a CSV file (3.17 GB) of contractor-

provided raw AEM and magnetic data along with auxiliary flight

data; 2) a CSV file (123.9 MB) of processed AEM data; 3) a CSV

file (145.3 MB) of inverted resistivity models; 4) a CSV file

(4.4 MB) of AEM-derived point estimates of the elevation of

the top of bedrock; and 5) four GeoTIFF files containing gridded

magnetic data (total magnetic intensity: 7.4 MB, residual

magnetic field: 7.4 MB), AEM-derived gridded depth to the

top of bedrock (3.7 MB) and top of bedrock elevation

(3.7 MB). We created JSON files for the Survey group, pulling

critical information on the flightlines, system parameters, and

equipment from the contractor-provided report (Figure 3B).

Each CSV file was added as a separate Tabular group with an

individual JSON metadata file (e.g., Figure 4B). The four

GeoTIFF files were added as variables within a single Raster

group with an accompanying JSON file (Figure 5B).

With the GSPy workflow, and proper documentation in the

JSON files, all datasets were assembled under the Survey group

with complete dataset- and variable-specific metadata, mapping

of dimensions and coordinates, and standardized coordinate

reference systems variables. We then used GSPy methods to

export the combined datasets into a single NetCDF file and

generate the NcML metadata file. Figure 7 shows a simplified

version of the NcML file, with essential elements represented.

Both NetCDF and NcML files were publicly released in

ScienceBase (Minsley et al., 2022). The size of the final GS

NetCDF file was 1.93 GB, corresponding to a file size

reduction of 44% relative to the original input files without

utilizing further compression. The complete file and its

contents were accurately imported into common NetCDF

software such as Unidata’s Integrated Data Viewer (IDV)

(Unidata, 2021a). Raster variables from the full GS NetCDF

file were accurately imported into Quantum Geographic

Information System (QGIS), with correct placement,

coordinate reference system, and null value representation.

ArcMap was unable to import the full NetCDF file

comprising multiple groups, but datasets exported to

individual files, at the root group position, were accurately

imported. Notably, both scattered Tabular data and gridded

Raster data were successfully viewed in ArcMap, but we were

unable to view scattered data in QGIS.

4 Discussion

The GS data convention improves the accessibility and

functionality of geophysical datasets by providing much-

needed standards for the storage of both data and metadata

built on the established NetCDF open data structure and existing

CF conventions. By building on the NetCDF CF conventions, the

GS model has several advantageous characteristics summarized

earlier: it is self-describing, space-saving, accessible, portable,

scalable, and hierarchical. Most importantly, the GSmodel allows

multiple types of geophysical data and incremental data

processing steps to be stored together in a single self-

FIGURE 6
Writing and plotting examples. Once all groups have been
attached to a Survey, the “write_netcdf” and “write_ncml”methods
will write the GS NetCDF and NcML files, respectively. GSPy also
provides methods to generate scatter and pcolor plots for
variables.
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described file with all variable-specific and general survey

metadata attached. Our support for unstructured point data

(tabular) within the NetCDF is particularly novel, as both

historical and modern implementations of the NetCDF format

have dominantly been for gridded (raster) datasets (e.g., Hankin

et al., 2010; Eaton et al., 2020; Morim et al., 2020). These

characteristics are important for both the long-term

accessibility and interoperability of geophysical datasets. While

FIGURE 7
Example NcML file. Due to space constraints, only essential elements are shown here for example representations. Gaps in variable and attribute
lists are noted by ellipses.
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our focus here is on airborne geophysical surveys, this data model

can be readily extended to other survey data that can be described

in tabular or raster formats.

Application of the GSPy workflow and GS data model to a

real airborne geophysical dataset resulted in several successful

outcomes and insights. First, what began as several disconnected,

undocumented, and uniquely formatted data files became a

single NetCDF file with related, self-described datasets clearly

categorized and standardized. This improved the shareability and

usability of the data, as every variable and dataset group were

fully documented and easily accessed within the single file.

Second, the NetCDF file, and its accompanying NcML file,

was all that was needed to be archived for public release. This

resulted in a significantly simplified data release process, i.e., file

preparation, metadata documentation, and the review process

were all streamlined compared to a traditional release of the

original data files and incomplete metadata documentation.

Lastly, the standardized datasets within the NetCDF file were

accurately viewed and represented within common NetCDF and

GIS software, signifying the broad transferability and

interoperability of the GS format.

We recognize the aforementioned advantages of using the

NetCDF file structure also comes with some challenges.

Accessing information in binary NetCDF files may be a

barrier for users not familiar with this format, especially

compared with ASCII-based file formats. The accompanying

GSPy software tools include methods for exporting to

common tabular or raster formats if those are needed for

specific end-users. Additionally, raising awareness about

common GIS or other software tools that can read NetCDF

files, along with their current limitations, will be important.

Preparing the JSON metadata files can be time consuming,

but once prepared executing the GSPy workflow is

straightforward and efficient. Furthermore, datasets being

published in an open repository would need much of the

same metadata information, prepared here in JSON input

files, to instead be produced in XML or other online

metadata records. Thus, we recognize that documentation

of metadata can be a tedious endeavour but a necessary one

nevertheless. While accessibility and ease-of-use need to be

continually improved upon, such as changing to a slightly

more user-friendly metadata input format like Yet Another

Markup Language (YAML), for example, the additional

complexity of the GS convention is outweighed by its

broader advantages discussed above. Upfront time costs

with the GSPy workflow will likely balance out with time

savings during archival, as well as improve overall dataset

usability and impact.

The first version of GSPy has focused on an implementation

of the GS data model for airborne geophysical data; however, we

have developed the software, data classes, and functions with the

intention of being generalized and adaptable to all types of

geophysical methods. We plan to layer new functionality for

ground-based and airborne geophysical data alike in future

versions, such as method-specific converters for ground

resistivity data and models or seismic timeseries. A guiding

principle is to build a strong foundation for the data standard

and software tools that can be readily extended to other datatypes

without changing the basic structure. Any number or type of

classes can be attached as groups within the hierarchical NetCDF

file structure, always falling under a general metadata Survey

group. Most geophysical datasets and related products can be

described by the generic Tabular or Raster classes, and additional

classes can be developed as needs are identified. By developing

GSPy as an open-source package, our goal is to enable a broad

community of users to improve its functionality and capabilities.

New GSPy functionality is planned for future versions to

simplify import and export workflows, such as automatically

recognizing different datatypes and routing to customized

methods that handle different datatype requirements. Support

for other data formats and software interfaces is also planned, for

example leveraging existing packages such as gxpy (https://

github.com/GeosoftInc/gxpy) to directly import data from

commonly used binary Geosoft databases and sciencebasepy

(https://github.com/usgs/sciencebasepy) to automate the

publication process to the USGS ScienceBase repository.

Accessibility can also be broadened by including

documentation and links in future versions for common

software programs that can read GS-structured NetCDF files.

Additional worked examples of other airborne geophysical

datasets and data types are needed to continue refining the

structural details of how data and metadata are imported to and

stored in the GS data model. For example, identifying and revising

required versus recommended versus optional attributes and

variables, defining generic and adaptable structures for storing

Survey metadata information, and standardizing JSON templates

for various data types will improve the overall usability of the data

standard. Future GSPy functionality can also be added to aid in data

processing and visualization—eventually with GSPy serving as a

central platform for importing datasets, processing, exploring,

reformatting, interfacing with various inversion software, and

exporting in a standardized format for public release.

Additionally, we plan to explore the use of web-based tools such

as the THREDDS Data Server (Caron et al., 2006; Unidata, 2021c)

for accessing and subsetting content from GS-structured files stored

in online repositories, without needing to download entire datasets.

If adopted as a common standard for geophysical datasets,

further efficiency could be realized by having instruments or

contractor-delivered datasets directly create GS-structured files,

or at least the information needed to readily create them. Likewise,

processing, visualization, and inversion software tools could

directly read files in the GS convention without having to

export other specialized input formats. For example, the study

presented in this paper required multiple file format conversion

steps throughout the workflow: contractor-provided databases and

PDF reports, processed data, inverted geophysical models, and
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bedrock elevation picks were all exported from proprietary

software tools into CSV and JSON formats to prepare them for

publication in open formats. Significant improvements in

workflow efficiency and interoperability can be achieved by

using the GS convention as a link that connects instrument-

recorded data and metadata to processing, visualization, and

interpretation tools as well as archival-ready data structures.

5 Conclusion

The field of geophysics encompasses diverse and complex data

formats that can vary between methods, techniques, and from one

collection to another. Inconsistencies in data and metadata

documentation reduce the longevity and impact of geophysical

datasets. To address the pressing need for a community-supported

geophysical data standard, we have developed the GS convention,

based on the NetCDF file format and CF metadata conventions. The

GS convention meets the goals we set out to achieve in a geophysical

data standard:

• The format is open source meeting the requirements of

FAIR data publication standards.

• The file format allows for multiple related and self-

described datasets to be grouped together under a clear

and standardized hierarchical structure.

• Dataset- and variable-specific attributes join important

auxiliary information and metadata directly to the

digital data, ensuring dataset integrity, longevity, and

interoperability.

• Data dimensions and coordinates are clearly defined, along

with a well-defined coordinate reference system for

accurate visualization and representation.

• The format is transferable between open-source

computational software, web services, and geospatial

systems.

The accompanying open-source Python package, GSPy,

facilitates efficient data conversion between common data

formats (e.g., CSV, ASEG-GDF2, GeoTIFF), proper metadata

documentation through JSON supporting files, and export of GS

NetCDF files. We demonstrated the GS structure and GSPy

workflow using an example airborne geophysical dataset from

Wisconsin. The single resulting GS NetCDF file was significantly

reduced in size compared to the multiple ASCII-text and

GeoTIFF input files. Furthermore, metadata that was

previously distributed throughout a contractor-provided PDF

report was cleanly incorporated and appropriately attached to

specific dataset groups and variables. Aside from a few

limitations identified, such as the group structure in ArcMap

or scattered data in QGIS, the GS-formatted file and/or

individual data groups were successfully loaded and accurately

represented in geospatial software.

Adoption of the GS standard for airborne geophysical data fills a

particular need for an open-source, community-wide standard that

ensures accurate archival of critical metadata jointly with digital

datasets. Moreover, establishment of a NetCDF-based open data

standard for a broad range of geophysical survey types can help to

greatly improve how these complex datasets are shared and utilized,

making the datamore accessible to a broader science community and

the public. File formats and functionality supported by GSPy v0.1.0 is

limited; however, by developing the standard and package as open

source, we aim to leverage the broad geophysical community to

contribute to the continued development of robust data standard

requirements and tools to facilitate their use.
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The simulation of concentration values and use of such data for history-

matching is often impeded by the computation time of groundwater

transport models based on the resolution of the advection-dispersion

equation. This is unfortunate because such data are often rich in information

and the prediction of concentration values is of great interest for decision

making. Particle tracking can be used as an efficient alternative under a series of

simplifying assumptions, which are often reasonable at groundwater sinks (wells

and drains). Our approach consists of seeding particles around a sink and

tracking particles backward, up to the source boundary condition, such as a

contaminated stream. This particle tracking approach allows the use of

parameter estimation and optimization methods requiring numerous model

calls. We present a Python module facilitating the pre- and post-processing

operations of a modeling workflow based on the widely used USGS

MODFLOW6 and MODPATH7 programs. The module handles particle

seeding around the sink and estimation of the mixing ratio of water

withdrawn from the sink. This ratio is computed with a mixing law from the

particle endpoints, accounting for particle velocities and mixing in the source

model cells. We investigate the best practice to obtain robust derivatives with

this approach, which is a benefit for the screening methods based on linear

analysis. We illustrate the interest of the approach with a real world case study,

considering a drinkingwater well field vulnerable to a contaminated stream. The

configuration is typical of many other drinking water production sites. The

modeling workflow is fully script-based to make the approach easily

reproducible in similar cases.

KEYWORDS

particle-tracking, advective transport, steady state, surrogate model, groundwater
contamination, stream-aquifer flow, well vulnerability
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1 Introduction

Drinking water contamination is a major matter of concern

for worldwide public health, with worldwide economic and

social effects (Daud et al., 2017; Sharma and Bhattacharya,

2017; Gwimbi et al., 2019; Turner et al., 2021). This emphasizes

the need for decision-support modeling tools that could provide

1) reliable predictions of the risk associated with water

contamination in prospective scenarios and 2) optimized

production settings to mitigate the impact of reported

contamination. To this end, models may be of great interest

provided a series of conditions are satisfied (Doherty, 2015;

Hermans, 2017; Doherty and Moore, 2020). First, that models

should properly account for the processes governing the

outputs of interest. Second, that an appropriate and reliable

observational dataset constrains the parameters of importance.

Third, that the model is “practical”, which implies reasonable

computation time and effective tools to automatize time

consuming operations (Bakker et al., 2016; White et al.,

2020a). Such conditions may not be easy to fulfill, in

particular when dealing with the complex process of

contaminant transport in heterogeneous aquifers.

In such a context, a thorough analysis of the simplicity-

complexity trade-off becomes a critical step for which guidelines

are now available (Hrachowitz et al., 2014; Guthke, 2017;

Schwartz et al., 2017; Hugman and Doherty, 2022). In

practice, appropriate choices have to be made on 1) the

parameterization of hydraulic and transport properties and

2) the simulated physio-chemical processes driving the

propagation of contaminant. For the parameterization of

hydraulic properties, the options range from homogeneous

equivalent hydraulic conductivity zones to heterogeneous

fields with discrete features (de Marsily et al., 2005; Carniato

et al., 2015; Pool et al., 2015). For the selection of processes

governing transport, the options range from simplified models

that rely on assumptions such as steady-state and dominant

processes (e.g., advection), to complex, advection-dispersion

reactive transport models to provide a detailed description of

the physics of the problem (Anderson et al., 2015). Several studies

highlighted that the best balance in terms of robustness,

efficiency and reliability may be achieved with relatively

simple “surrogate” models based on simplified representations

of the physics (Razavi et al., 2012; Asher et al., 2015; Burrows and

Doherty, 2015). Surrogate transport models present fast run

times allowing for thousands of model executions of transport

calculations, which are necessary for history matching of highly

parameterized models. The interest of including a diverse

observational data types has been highlighted by Hunt et al.

(2006) and concentration in particular has been recently

discussed by Schilling et al. (2019) and Knowling et al. (2020).

Furthermore, fast run time allows the use of more robust but

demanding algorithms for uncertainty quantification (Rajabi

et al., 2018).

During the last decades, parameter estimation and

uncertainty quantification algorithms have been made

available with an ever growing variety of approaches

(Doherty, 2016; White et al., 2020b). Their use is now

facilitated by Python interfaces (White et al., 2016). More

recently, studies provided repeatable script-based workflows

which greatly facilitate the replication of the presented

approaches (White et al., 2020a; Fienen et al., 2022). Though

facilitated, the interfacing of parameter estimation and

uncertainty quantification algorithms with complex models

remains difficult for transport models, which are

characterized by long computation times and numerical

instabilities.

Focusing on the widely reported risk of contaminant transfer

from contaminated rivers to groundwater production units, we

present a framework based on particle tracking as a fast and

effective surrogate model for contaminant transport. The

approach, initially presented by (Cousquer et al., 2018), is

made available in a newly developed Python module,

TrackTools which will facilitate its replication. The module

provides particle seeding capabilities and post-processing

options that are valuable for analyzing drinking water

vulnerability of production wells or drains to pre-defined

sources of contamination. The script facilitates exploratory

parametric analysis, which can be useful to investigate the

system response to different configurations. The interfacing

with the PEST + + suite (White et al., 2020b) is detailed on a

real-world case study which paves the way for history matching,

hypothesis testing, and optimization of decision variables, which

are essential to support decision related to the definition of

wellhead protection area and the optimization of production

settings.

The theoretical background and numerical tools related to

the developed Python module are described in Section 2. A

simple synthetic model is presented in Section 3 and a

parametric study is conducted to investigate the driving

factors of mixing ratios computed with this approach. In

Section 4, the interest of the method is illustrated on a

drinking water production site with a fully script-based

approach from model setup to pumping optimization

through parameter estimation.

2 Methodology

A common practice in vulnerability analysis is to investigate

the origin of water withdrawn at a groundwater sink (well or

drain) originating from one, or a series of potential or effective

contaminant sources. This can be conducted from the analysis of

the flow contributions of each source to the discharge rate of the

sink. The methodology described hereafter is an extension of the

approach described by Cousquer et al. (2018) initially designed

for a single river reach. The method may now be applicable to
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multiple weak or strong source boundary conditions (e.g., fixed

head, river, general head boundary condition).

Consider a groundwater flow model with a groundwater

sink (well or drain) subject to a potential are effective

contamination originating from one of the model boundary

conditions. A set of N starting points is seeded around the

model cells where the sink condition is applied. Given the flow

field, the origin of flow to the sink can be described by backward

particle tracking.

The sink discharge rateQ can then be decomposed as follows:

Q � ∑N
i�1qi, where qi is the contribution of the i-th particle to the

discharge rate at the sink. This can be rewritten considering

particle velocities, vi: Q � ∑N
i�1vi · Si where Si is the area of the

surface crossed by qi. When particles are evenly distributed

around the model cell, it can be assumed that Si � S
N for all i.

Assume that from the N particles seeded around the sink, nj
originate from the j − th boundary condition, subject to

contamination. The contribution of this boundary condition

to the sink contamination can be written as follows:

αj � 1
Q

∑nj
k�1

vk · βkSk( ) (1)

where βk is the mixing ratio in the source model cell where the k-

th particle ends. βk = 1 for “strong” sources and 0 ≤ βk ≤ 1 for

“weak sources” where a mixing occurs (Pollock, 2016). In the

latter case, βk can be quantified from the cell water budget at the

endpoint cell (Cousquer et al., 2018). This allows the method to

account for mixing in the source aquifer cell, where the boundary

condition (typically a river) is applied.

The approach is now integrated in the TrackTools Python

module. Our approach relies on the USGS MODFLOW6

(Langevin et al., 2017) and MODPATH7 (Pollock, 2016)

programs to simulate fluid flow and transport processes,

respectively. We rely on the FloPy module (Bakker et al.,

2016) for the processing of model input and output files.

Pre-processing capabilities of the TrackTools module are

provided in the ParticleGenerator class, which can handle:

• Particle seeding around groundwater sinks, which can be

described by a Python geometry or ESRITM shapefile,

• Adding, removing and merging particles into groups for

FloPy and MODPATH7.

After the simulation of flow with MODFLOW and particle

tracking with MODPATH, the TrackingAnalyzer class of

TrackTools can be used to process particle pathline data and

derive the values of mixing ratios at each groundwater sink. The

MODFLOW cell-by-cell water budget file is also required to

derive the source cell mixing ratio βk. Results can be provided in

the form of a data frame and plotting options are proposed for

the description of the origin of groundwater withdrawn in the

series of sinks where particles were seeded.

3 Synthetic case

3.1 Model description

In order to illustrate the presented Python module, a

synthetic 2D case is considered with a production well in an

unconfined aquifer in interaction with a stream. The domain

(3,750 × 5,000 m) is discretized with a 2D regular mesh (25 ×

25 m cells) with a local refinement around the stream and the

well (6.5 × 6.5 m cells). A Cauchy-type boundary condition is

applied to the upper limit of the model domain with a stage of

40 m and conductance of 10–3 m2 s−1, while a Dirichlet-type

condition is prescribed to the lower boundary with a stage of

20 m. They are simulated with the General Head Boundary

(GHB) and Fixed Head (FH) MODFLOW packages,

respectively. The left and right domain boundaries are

considered as impermeable. The stream is simulated with a

head-dependent flux (Cauchy-type) boundary condition with

the dedicated MODFLOW river package (RIV), with a head

ranging from 35 m to 25 m from the upper to the lower boundary

condition. The stream conductance is set to 10–3 m2 s−1. Steady-

state flow conditions are considered and the transmissivity is

assumed to be independent of water level fluctuations, which

corresponds to the Boussinesq assumption. The well is

considered as fully penetrating and is located at position (x,

y) = (1212, 1363).

We consider both homogeneous and heterogeneous

hydraulic conductivity fields, the heterogeneous cases being

generated with an isotropic exponential variogram for

log 10(k) defined by a sill of one and a nugget of 0.1 for two

different ranges of 200 and 500 m as presented in Figure 1. These

fields are generated using the geostatistical python package

GSTools (Müller et al., 2021). During the following

simulations, the mean hydraulic conductivity value will evolve

in heterogeneity patterns (Figures 1B,C).

3.2 Parametric study

The synthetic case previously described is used to illustrate

the behavior of the mixing ratio α depending on key parameters

such as the hydraulic conductivity K and pumping dischargeQ. β

from Eq. (1) is quantified from the river cell water budget and can

vary from 0 to 1. Figure 2 shows the distribution of α for

parameters K and Q ranging from 10–5 to 10–3 m s−1 and from

0 to 200 m3 h−1, respectively, considering a homogeneous

distribution of K. Boundary conditions remain the same

throughout this parametric study. We also present in Figure 3

three examples of the spatial distribution of the hydraulic headH

with K set to (A) 10–5, (B) 10–4 and (C) 10–3 m s−1 and the same

configuration but with a pumping discharge of 90 m3 h−1 for D, E

and F. These values have been chosen as representative of the

three main tendencies that are observed for α: 1) the yellow

Frontiers in Earth Science frontiersin.org03

Pryet et al. 10.3389/feart.2022.975156

127

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.975156


region in which example D is located corresponding to the

highest values of α, 2) the dark blue region in which example

E is located corresponding to the lowest values of α and,

3) the green region in which example F is located

corresponding to intermediate values of α. This shows

that increasing K for a given value of Q results in

decreasing (from D to E) and then increasing (from E to

F) α, except for very small values of Q for which α directly

increases (from E to F). These different behaviors are

explained by the different sources of water that contribute

to the pumped water, which are characterized by the particle

paths represented on the hydraulic head distributions in

blue. For small values of K (example D), most of the

particles comes from the portion of the river that is

located right next to the well, implying that the river

provides a substantial proportion of water to the pumping

well. Increasing K (example E) results in reducing the impact

of the pumping on the natural hydraulic head distribution,

implying that the top boundary condition contributes to the

pumping. When we keep increasing K (example F), we reach

configurations that do not depend on the pumping rate (green

triangular region on the right side of Figure 2). For these cases,

the pumping does not modify the natural hydraulic head

distribution and the particle paths are fully driven by the

boundary conditions, resulting in particles coming from the

top of the river and thus high values of α. For small values of Q

and K (black region of the bottom of the figure), the impact of

the pumping on the natural hydraulic head distribution is still

negligible but the values of K imply that there is no

contribution of the river to the pumping (α = 0).

Figure 4 shows the distribution of α when considering the

heterogeneous hydraulic conductivity fields provided in Figure 1.

The three main tendencies described above for the homogeneous

case are also observed for the heterogeneous cases, showing that

these behaviors are mostly driven by the boundary, river and

pumping conditions. However, small differences are noticeable,

in particular for small values of Q and large values of �K, which

correspond to configurations with a small impact of the pumping

on the natural hydraulic head distribution. For example, the

extent of the dark blue region observed at the bottom of Figure 3

is reduced and increased in Figures 4A,B, respectively, showing

that the river does not contribute to the pumping for different

values of Q and �K. We also observe the presence of yellow areas

for large values of �K in the heterogeneous cases,

corresponding to high values of α and thus a strong

contribution of the river to the pumping. These different

FIGURE 1
(A) Synthetic case model structure and boundary conditions with a General Head Boundary Condition (GHB) of 40 m to the upper boundary
and a Fixed Head (FH) of 20 m to the lower boundary. No flow is imposed at the left and right domain boundaries. The stream is simulated with a
head-dependent flux (Cauchy-type) boundary condition and the well position is represented with a red dot. The hydraulic conductivity field patterns
correspond to an exponential viariogram with a sill of 1, a nugget of 0.1 and a range of (B) 200 m and (C) 500 m.

FIGURE 2
Distribution of the mixing ratio α depending on the hydraulic
conductivity K and pumping discharge Q.
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behaviors are due to different flow paths induced by the

heterogeneities of the hydraulic conductivity fields. Note

that, as mentioned before, the impact of these

heterogeneities is reduced when increasing the

pumping rate.

3.3 Derivative analysis

This synthetic case is also used to set some rules in order to

obtain robust derivatives which is essential for parameter

estimation and model analysis based on linearization methods.

FIGURE 3
The spatial distribution of the hydraulic head H(x, y) for hydraulic conductivity K set to 10–5 m s−1 (A,D), 10–4 m s−1 (B,E) and 10–3 m s−1 (C,F).
Cases (A,B,C) are without pumping, while a pumping rate of 90 m3 h−1 is set for cases (D,E,F). The red dot represent the pumping well locations, the
vertical bold black line represents the stream and the blue lines in cases (D,E,F) are the path of the particles from the backward particle tracking.

FIGURE 4
Distribution of the mixing ratio α depending on the average hydraulic conductivity �K and pumping discharge Q for the hydraulic conductivity
patterns presented in (A) Figures 1B and (B) Figure 1C.
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The sufficient number of particles corresponding to this synthetic

case is evaluated with the derivative calculation of zα
zK which

constitutes the Jacobian matrix used for model linearization. The

use of gradient based methods for parameter estimation (e.g., the

Gauss-Marquardt-Levenberg method on which PEST and

PEST++ are based (Doherty, 2015; White et al., 2018))

requires that model outputs are differentiable or at least

continuous with regard to model parameters (Doherty, 2010).

Doherty and Hunt (2010) mentioned that this assumption often

does not hold because of poor model performance and the lack of

differentiability can be due to, among others reasons, a low

number of particles in the MODPATH particle tracking

model. In order to avoid this issue, we explore the

differentiability of model output regarding particles number.

Let the mixing ratio α be the output of interest, the hydraulic

conductivity K is the parameter and ΔK is the parameter

increment. The sensitivity of α to K is approximated as follows:

zα

zK
|Ki

~
α Ki + ΔK( ) − α Ki( )

ΔK . (2)

The estimate of zαzKmay be biased when 1)ΔK is too small, due

to numerical noise, 2) when ΔK is too large due to model non-

linearity, or 3) when the number of particles is not high enough

to correctly simulate the mixing ratio. These three points are

evaluated by calculating the value of the derivative for several

numbers of particles and different values of Ki considering two

values of ΔK set to 0.01 × Ki and 0.1 × Ki (Figure 5).

For both ΔK = 0.01 × Ki and ΔK = 0.1 × Ki, Figure 5 shows

changes in the derivative sign that are visible when the color

representing the derivative goes from blue (negative values) to

red (positive values) and vice versa. For a given line, these

changes depend on the number of particles Np used in the

model, showing wrong estimations of the derivative when Np

is too small (due to wrong estimations of the mixing ratio). This

results in instabilities of the derivative along K for small number

of particles (Np < 200−500, columns that are located on the left

side of Figure 5). For parameter estimation and inversion

purposes, these instabilities could be interpreted as local

minima and lead to wrong estimates and optimized values.

When Np is high enough (columns on the right side), the

derivative values are stable in the sense that they do not

change with the value of Np. In this case, changes in zα
zK along

K are due to the non-linearity of the model, which needs to be

taken into account for parameter estimation and optimization.

Furthermore, comparing Figures 5A,B shows that the choice

of the increment of K influences the stability of the derivative.

The number of particles that is required to observe stable values

of zα
zK is lower when increasing ΔK.
Although they are expected, these results clearly show that

the derivative calculation requires to carefully choose the

parameters Np and ΔK with 1) a sufficient number of particles

to correctly simulate the mixing ratios and its derivative, and

2) an increment that is neither too small to avoid that the

derivative calculation is tainted by numerical problems, nor

too large to take into account the non-linearity of the model.

In all cases, increasing the number of particles is a systematic

method to improve the definition of the derivative whatever the

value of the discretization step of the derivative.

4 Case study

4.1 Model description

The method described above is embedded in a workflow

designed for model-based decision making and applied to a

FIGURE 5
Exploration of derivatives quality behaviour regarding the number of particles with the hydraulic conductivity Ki ranging from 10–5 to 10–3 m s−1

and the increment ΔK set to (A) 0.01 × Ki and (B) 0.1 × Ki.
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complex real world case study. We describe the script-based

modeling workflow and interfacing with the PEST + +, which

provides an illustration of the interest of the method and

facilitates the replication of the approach to other cases. All

scripts are available on a GitHub® repository.
The well field is located in South-West France and is critical

to the water supply for the city of Bordeaux (Cousquer, 2017;

Valois et al., 2018; Delbart et al., 2021) as it accounts for about

20% of the needs. The aquifer lies in Oligocene limestone

overlain by sandy and alluvial deposits. Limestones are

locally subject to karstification, leading to strongly

heterogeneous hydraulic properties. Two wells (W1, W2)

and two horizontal drains (D1, D2) are used for

groundwater extraction. Due to industrial activities, the main

stream crossing the well field from west to east is prone to

contamination. The vicinity of pumping wells and drains to the

stream is favorable to stream-aquifer exchanges. The end-

purpose of this modeling exercise is to maximize

groundwater production while meeting drinking water

quality standards.

For this model purpose, the geographical data describing

the domain and geometry of boundary conditions was first

processed with QGIS (QGIS Development Team, 2022). The

model setup was fully script-based with the FloPy Python

library (Bakker et al., 2016) for the pre- and post-processing

of MODFLOW6 and MODPATH7 input and output files. A

2D single layer was considered under the Dupuit-

Forchheimer approximation to represent the aquifer of

interest. The model domain was discretized by Gridgen

(Lien et al., 2015) with a quadtree grid with four

horizontal refinement levels so that square cell dimensions

range from 200 m to 12.5 m (Figure 6). External boundaries

have been defined from the regional groundwater levels as

no-flow or 3rd type head-dependent flow boundary

condition. The streams and drains are simulated with

head-dependent (Cauchy-type) flux boundary conditions

and the wells are represented by sink terms in the aquifer

cells corresponding to their location.

In order to consider contrasting settings while avoiding

the burden of transient simulations, pseudo steady-state flow

conditions are considered (Haitjema, 2006; Moore and

Doherty, 2021). This hypothesis is supported in the present

case since the permeable aquifer responds quickly to changes

Cousquer (2017). The TrackTools module is used to seed

particles around the two wells and the two drains and to derive

the mixing ratio of the water withdrawn. It was found that

FIGURE 6
Model domain with boundary conditions inferred from the regional groundwater flows. Mesh refinement is conducted in the area of interest
around the production and observation wells and drains (see inset). The parameterization of hydraulic conductivity has been conducted with pilot
points.

Frontiers in Earth Science frontiersin.org07

Pryet et al. 10.3389/feart.2022.975156

131

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.975156


simulated mixing ratios were relatively stable with

500 particles seeded around each production unit (wells

and drains). As detailed in Section 2 and references

herein, the mixing ratios at source cells where particles

stop (β) is inferred from the cell water budget. This allows

to account for mixing of aquifer and river water in model

cells where a river boundary condition is applied. Note that

only the main river is prone to contamination, water

originating from the tributaries is not considered as

contaminated.

4.2 Parameter estimation and
optimization

The model interfacing with the PEST + + suite has been

performed by means of PyEMU (White et al., 2016). The

hydraulic conductivity field was parameterized with a dense

set of pilot points. Hydraulic conductivity values at pilot

points lying at the center of the study area were all

considered as independent, but they were tied in the

outer portion of model domain (Figure 6). This is

motivated by the lack of observations in the outer zone

and it is unlikely that model predictions are sensitive to

details in this remote area.

A series of 10 field surveys, spread over 4 years (2014–2018)

have been considered for history matching, considering pseudo

steady-state conditions for contrasting stream levels and

operating conditions. Though it was challenging for a well

field in activity, we have made our best for operating

conditions (well discharge rates and drain levels) to remain

relatively stable on the period preceding each of the surveys.

The observation data set is composed of hydraulic heads, drain

discharge rates, and mixing ratios. The latter were derived by

end-member analysis from HCO3− and Ca2+ concentrations

(Delbart et al., 2021).

In order to reduce run times, all model files for each of these

surveys were setup in separate folders (Figure 7). Doing so, file

operations during parameter estimation were limited to writing

parameter files and reading output files. These operations were all

conducted with the dedicated methods of the PyEMU Python

package.

The parameter estimation was conducted with the widely

used Gauss-Levenberg-Marquardt Algorithm (GLMA) as

implemented in PEST + + suite (White et al., 2020b).

Parameter increments (DERINC) values were adjusted by

trial and error. Best results were obtained with relative

parameter increments of 15% for hydraulic conductivities

and 10% for all the other parameters. Both zero order

(preferred value) and first order Tikhonov regularizations

were employed (Doherty, 2015).

After parameter estimation, the resulting model was used

to optimize the total abstraction rate. The optimization

problem consists in maximizing the total abstraction rate

Q while verifying the drinking water quality standards after

mixing. It can be expressed as follows:

FIGURE 7
Directory tree structure used for parameter estimation and optimization workflow.
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max
Qi,hi

Q � ∑N
i�1

Qi

s.t. α � 1∑
i
Qi

∑N
i�1

Qiαi ≤ αcrit

Qi ≤Qmax ,i i ∈ 1; 2{ }
hi ≥ hmin ,i j ∈ 1; 2{ }.

(3)

where the decision variablesQi and hi correspond to well discharge

rate and drain level, respectively, and the constraint on water

quality is expressed as a critical stream-aquifer mixing ratio αcrit.

For this illustrative exercise, the optimization is solved with a

sequential version of linear programming as implemented in

PESTPP-OPT (White et al., 2018) considering a 50% risk

(maximum likelihood) configuration. This algorithm is fast

but sensitive to model non-linearity.

4.3 Results

The history matching conducted with the GLMA converged

in approximately 10 iterations (Figure 8A). The fit between

simulated values with their observed counterparts can be
considered as satisfying for heads (Figure 8B) and reasonable
for discharge rates and mixing ratios (Figures 8C,D).
Measurements of drain discharge rates can be considered as
reliable and themisfit may rather be explained by the static, linear
relation that is considered with the MODFLOW drain package.
In contrast, measurement of mixing ratios derived from
concentrations by end-member analysis are prone to
uncertainties (Delbart et al., 2021). The structural error of this
simplified model is therefore strong and surely contributes to the
misfit, but uncertainties in the observation data and historic
operating variables are also important. In this context, it is
unclear whether more detailed process-modeling could
improve the predictive capacity of the model.

The estimated hydraulic conductivity field is highly

heterogeneous (Figure 9A), as expected for partly

karstified limestones. Attempts to smooth these contrasts

with stronger regularization constraints lead to an important

increase of the misfit with historical data. Karst conduits are

expected to be narrow and of limited extension but can be at

the origin of the high values of estimated hydraulic

FIGURE 8
Results of the parameter estimation with the GLMA. (A) Evolution of the measurement objective function throughout GLMA iterations.
Simulated versus measured hydraulic heads (B), drain discharges (C), and mixing ratios (D). Numbers in (B,C,D) refer to the surveys; colors in (B) refer
to the observation wells.
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conductivity (Cousquer, 2017). On the opposite, low values

can be explained by fine deposits in the riverbed (Delbart

et al., 2021).

We followed a deterministic approach, which can be

considered as a first exploratory step for more robust

methods. The “best” calibrated parameter set was therefore

FIGURE 9
(A) Hydraulic conductivity field after parameter estimation. (B) Simulated groundwater table level and particle tracking trajectory for the initial
values of parameters Q and α. Particle trajectory from the contaminated stream are colored in red and those from uncontaminated boundaries in
blue. Particle tracking was conducted from production wells W1, W2 and drains D1, D2 shown in black. Pumping from wells Wx1 and Wx2 was
considered in the flow model but they do not pertain to the studied drinking water facility.

FIGURE 10
Optimization results with (A) total discharge rate and mixing ratio for each optimization iteration of PESTPP-OPT and (B) discharge rate (Q),
mixing ratio (MR), and drain stage (H) for each optimization iteration. it0 represents the initial parameter values, it1, it2 and it3 the values for the first,
second and third iterations, respectively.
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used to conduct the optimization of well and drain discharge

given a quality constraint expressed as a global mixing ratio

αcrit=25%. This corresponds to a 4-fold reduction of contaminant

concentration with respect to river contamination levels. The

optimization algorithm was run from a situation close to the

current operating configuration over three iterations of the

sequential linear programming algorithm (Figure 10).

Compared to the initial settings (iteration 0), the third and

last iteration lead to an increase of production rate by + 25%

for a similar contamination level. The particle pathlines for this

configuration are presented in Figure 9B.

5 Discussion and conclusion

In the context of drinking water contamination issues, we

provided a decision-making tool to investigate the vulnerability

of groundwater production units. The TrackTools Python

module offers pre- and post-processing functions of particle

tracking data simulated with MODFLOW and MODPATH.

Mixing ratios are inferred from flow contributions of each

contaminant source to the discharge rate of a groundwater

sink considering particle velocities and mixing in source cells.

This can be appropriate where a production well or drain is

vulnerable to a boundary condition such as a river. However, the

method is not relevant when the source of the contamination is

diffuse, such as agricultural contaminants driven by groundwater

recharge. In the latter case, forward particle tracking is more

appropriate [see e.g., Fienen et al. (2022)].

The synthetic case presented in this work illustrates that

contrasting behaviors can be observed even for simple

configurations. It highlights the interest of the method to

explore the sensitivity of mixing ratios to operating variables

(pumping rates, drain levels) and model parameters. The impact

of the number of particles seeded around each sink, and the size

of the increment used for model linearization was also evaluated

through the analysis of the derivatives of α. Derivative

instabilities are mitigated when increasing the number of

particles or increasing the parameter increment for estimating

model derivatives (DERINC). However, adding particles tends to

increase the computation time, so that a reasonable particle

number should be considered.

Relatively fast and easy to implement, this approach will

facilitate the use of contaminant transport models for history

matching, uncertainty quantification or optimization. It also

presents the advantage to be didactic and can be used to

represent contaminant transfer in a visual and potentially

interactive manner, which is important for end-users.

The method was implemented on a real world case study and

is providedwith a series a script for the interfacing with the PEST +

+ suite. The parameter estimation with the GLMA and

optimization by linear programming illustrated the interest of

the approach. Difficulties in reproducing observations can be

explained by errors in the historic dataset (observations and

operating variables) and model structural error. In spite of our

efforts to obtain a robust linear version of the model, the methods

based on the Jacobian matrix have shown their limitations. This

advocates for the use ofmore robust ensemblemethods such as the

Iterative Ensemble Smoother (IES (White et al., 2018)) for

parameter estimation and uncertainty quantification, and

evolutionary algorithms for optimization [PESTPP-MOU

(White et al., 2022)]. The presented workflow may easily be

extended to these methods recently available in the PEST + + Suite.

The method was illustrated on 2D horizontal models

assuming steady state flow conditions. This simplifies the

implementation and leads to particularly fast run times, but

3Dmodels and transient conditions may have to be considered in

other contexts. The method may be extended to these

configurations with some additional processing. The

implementation of the method on 3D models will be

straightforward so long the wells and drains penetrate a single

model layer. Otherwise, particles should be seeded in each of the

intersected layers and mixing in the multi-layer well should be

accounted considering the respective flow contributions

provided by the dedicated Multi-Aquifer Well package

(MAW) from MODFLOW6 (Langevin et al., 2017). The

impact of transient flow dynamics on the mixing ratio at a

specific instant will be easy to consider with backward particle

tracking over historic conditions. However, it would be more

challenging to quantify mixing ratios averaged over a period as it

would require multiple runs of the particle tracking algorithm.

Among the simplifying assumptions of this approach, we

assumed the respective flow contributions of particles evenly

placed around the sink to be proportional to their velocities

(Eq. 1). The validity of this approach has been investigated by

Cousquer et al. (2018) with an advective-dispersive model on a

synthetic, homogeneous model. Results were encouraging but the

performance of the simplified model based on particle tracking

may be put into question in other contexts. The use of a paired

simple-complexmodel approach (Doherty and Christensen, 2011)

can be suggested, where the complex model would be based on the

resolution of the advection-dispersion equation.

Future work will also focus on improving the reliability of the

simplified transport models by considering additional processes,

such as dispersion. For this matter, various recent particle-based

methods (Noetinger et al., 2016; Gouze et al., 2020; Roubinet

et al., 2022) and machine learning techniques (Kang et al., 2021;

Zhou et al., 2021) could be considered in order to consider more

realistic configurations while keeping the low computational cost

of the forward models.

As mentioned in the introduction, the optimal complexity

level is to great extent, case- and purpose-specific, as it will

depend on the purpose of the modeling exercise and the quality

of the available observation dataset. In this perspective, it is likely

that simple and effective methods such as the one presented in

this study remain of interest in numerous situations.
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Modflow-setup: Robust
automation of groundwater
model construction

Andrew T. Leaf* and Michael N. Fienen

U.S. Geological Survey Upper Midwest Water Science Center, Middleton, WI, United States

In an age of both big data and increasing strain on water resources, sound

management decisions often rely on numerical models. Numerical models

provide a physics-based framework for assimilating and making sense of

information that by itself only provides a limited description of the

hydrologic system. Often, numerical models are the best option for

quantifying even intuitively obvious connections between human activities

and water resource impacts. However, despite many recent advances in

model data assimilation and uncertainty quantification, the process of

constructing numerical models remains laborious, expensive, and opaque,

often precluding their use in decision making. Modflow-setup aims to

provide rapid and consistent construction of MODFLOW groundwater

models through robust and repeatable automation. Common model

construction tasks are distilled in an open-source, online code base that is

tested and extensible through collaborative version control. Input to Modflow-

setup consists of a single configuration file that summarizes the workflow for

building a model, including source data, construction options, and output

packages. Source data providing model structure and parameter information

including shapefiles, rasters, NetCDF files, tables, and other (geolocated)

sources to MODFLOW models are read in and mapped to the model

discretization, using Flopy and other general open-source scientific Python

libraries. In a fewminutes, an external array-basedMODFLOWmodel amenable

to parameter estimation and uncertainty quantification is produced. This paper

describes the core functionality of Modflow-setup, including a worked example

of a MODFLOW 6 model for evaluating pumping impacts to a lake in central

Wisconsin, United States.

KEYWORDS

groundwater modeling, Python, MODFLOW, Flopy, numerical modeling, software,
automation

Introduction

Numerical groundwater models can provide water managers and other stakeholders

with a powerful physics-based framework for evaluating complex hydrologic systems,

which may be difficult or impossible to represent analytically (e.g., Anderson et al., 2015).

In comparison to analytical methods, numerical models provide flexibility in their ability
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to finely discretize natural heterogeneity and complex boundaries

or structures, and in their ability to represent transient effects. In

many real-world systems, these capabilities may be essential to

representing and understanding questions of interest (e.g., Leaf

et al., 2015; Fienen et al., 2022,2021a). Just as importantly,

numerical models allow for higher dimensional

parametrization that can be critical for effective data

assimilation, associated model error reduction, and

meaningful consideration of model uncertainty (e.g., Moore

and Doherty 2005; Hunt et al., 2007; White et al., 2021,

2014). Because of these advantages, numerical groundwater

models are used widely. MODFLOW (e.g., Niswonger et al.,

2011; Langevin et al., 2017) and related codes are the most

popular framework for numerical modeling of groundwater

flow and transport worldwide.

The flexibility of numerical models, however, comes with

steep costs. Disparate input data must bemapped to thousands or

millions of computational cells, a process that can be

cumbersome, labor-intensive, and error-prone. The number

and complexity of operations presents a fundamental

challenge to scientific reproducibility (e.g., Peng 2011; Fienen

and Bakker, 2016), step-wise modeling (Haitjema, 1995), and the

modeler’s own cognitive load (e.g., Sweller 1988). The inherent

difficulty of, for example, changing discretization or model

structure makes it difficult to revisit these choices later in a

project in response to what is learned, and carrying alternative

conceptual models through a project is seldom feasible. As noted

by White et al. (2021), realistic representation of model

uncertainty presents an additional set of challenges that may

be out of reach if the basic model inputs cannot be efficiently

built. As a result of these costs, numerical groundwater models

are not only expensive but can often fall short of expectations

(e.g., Donoho et al., 2008; Moran 2016; Doherty and Moore,

2020). A key goal, then, is to automate repetitive, but crucial,

model construction tasks such that a modeler can focus their

efforts on the underlying problem and conceptualization rather

than model mechanics.

Numerical groundwater models are often constructed with

the help of a graphical user interface (GUI). GUIs provide an

interactive environment for building and post-processing models

that is especially helpful for visualization and handling of model

input and output formats. Some GUIs even support grid-

independent input. The reader is referred to Anderson et al.

(2015) for a more thorough discussion of GUI options. Although

many consider the “point and click” approach afforded by GUIs

to be more intuitive than direct manipulation of model input

files, most GUI workflows are not readily automatable, and

therefore prone to the issues mentioned earlier. Without

automation, meaningful documentation of the workflow

requires additional effort on the modeler’s part and may not

be feasible under typical project constraints.

In recent years, open-source software tools to automate the

mapping of disparate data to computational grids have become

readily available and easy to use. These include Python packages

for working with MODFLOW files (Bakker et al., 2016), GIS file

formats and geoprocessing (Gillies 2022a,b,c,d), NetCDF data

(Hoyer and Hamman, 2017), coordinate transformations (Snow

et al., 2022), and general scientific algorithms (Virtanen et al.,

2020); as well as software development tools that facilitate

collaborative version control (e.g., Git; https://git-scm.com/and

GitHub; https://github.com/), automated testing (e.g., Pytest;

https://pytest.org), continuous integration, and online

documentation (e.g., Sphinx; https://www.sphinx-doc.org/);

and accessible tutorials that show domain scientists how to

use them (e.g., https://nsls-ii.github.io/scientific-python-

cookiecutter).

Script-based development of model input with a high-level

language such as Python has therefore been proposed as a

solution to overcome model construction challenges (e.g.,

Bakker et al., 2016), but in practice this is easier said than

done. Ad hoc scripts must be assembled into a carefully

documented workflow that can have many steps and

interdependencies and is itself subject to the “ubiquity of

error” (Donoho et al., 2008). Even the most well documented

workflows depend on the quality of the underlying code and

therefore, the fastidiousness and programming abilities of the

modeler. In the end, a fully scripted workflowmay be no easier to

understand, repeat, or reproduce than a sequence of manual

operations in a GUI or spreadsheet environment.

Fisher et al. (2016) presented what may be the best published

example of a fastidious model construction workflow. In

development of a groundwater model for a project in Idaho,

United States, they developed code functions and assembled

them into a formal R package complete with code

documentation and vignettes (R Core Team, 2014) walking

users through the workflow. Although this approach almost

certainly improved reproducibility and likely carried other

advantages, it was focused on a single project, and likely

required considerable overhead effort that may not be readily

transferable to other work.

Quality code development for robust and reproducible

workflows takes time (e.g., Donoho et al., 2008; Wilson et al.,

2014) that is most efficiently spent developing general code that

can be reused in many different contexts. Functions and other

objects that are dedicated to specific tasks and can be readily

imported into a script or called repeatedly in a loop provide a

local means for reusability. Functions carry the added benefit of

breaking complex workflows into easily understandable pieces

that can also be readily tested, thereby reducing error. At a higher

level, software packages provide a well-understood framework

for developing, testing, and sharing collections of functions and

other objects. The Flopy project (Bakker et al., 2016) provides

such a package, but at a low level that typically requires extensive

ad hoc scripting and geoprocessing outside of Flopy to develop a

MODFLOWmodel in a real-world context. MODFLOWmodels

are not internally geolocated, so Flopy is always referenced to
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MODFLOWmodel grids rather than geospatial coordinates. As a

result, all source data must be mapped to the MODFLOW grid.

Modflow-setup provides a formal, tested, and documented

Python package that builds on Flopy and the other packages

referenced earlier to provide a robust, fully automated workflow

for constructing MODFLOW models in a wide variety of

contexts. Source data can include shapefiles, rasters, NetCDF

files, and other MODFLOW models that are geolocated. We

chose MODFLOW as the endpoint because it is free, open-

source, easy to use (and widely used), well documented and

tested, and well supported by Flopy. Modflow-setup extends the

datatypes of Flopy to facilitate reading and writing MODFLOW

package input and handle inter-package dependencies in

memory. A key advance of Modflow-setup is the

configuration file, which succinctly summarizes the data

sources to a groundwater model and the methods used to

process the data into model input. The information in the

configuration file can be used to drive a fully automated

model construction workflow, reducing the scripting needed

to build a MODFLOW model to as little as a few lines of

Python. This paper gives an overview of Modflow-setup,

including a working example based on a published study in

Wisconsin, United States (Fienen et al., 2022; 2021b).

Methods

Overview of the Modflow-setup workflow

Figure 1 illustrates the use of Modflow-setup in a

groundwater modeling workflow. Grid-independent source

data are preprocessed as needed and specified in a

configuration file for input to Modflow-setup, along with

other settings such as space and time discretization. Modflow-

setup reads the configuration file, maps the input data to the

model grid, and produces a modified Flopy model object. Some

model inputs, such as external array text files, are written directly

by Modflow-setup; other input, such as MODFLOW package

input files, are written by Flopy. Prior to writing any files,

additional scripting can be performed on the Flopy model

object as needed, to prepare any input not supported by

Modflow-setup. Parameter estimation can then be performed

on the working model, which may lead to re-evaluation of the

conceptual model and changes to the model structure or

discretization. Modflow-setup can rapidly regenerate a new

model incorporating the changes.

General paradigms

Modflow-setup supports the construction of MODFLOW 6

(Langevin et al., 2017) or MODFLOW-NWT (Niswonger et al.,

2011) models from scratch (i.e., from grid-independent source

data) or as an “inset” model that is coupled in one direction to a

“parent” model via specified head or flux perimeter boundaries

from the parent model solution. Parent and inset models can be

mixed between MODFLOW 6 and MODFLOW-NWT. An

additional “local grid refinement” (LGR) option for

MODFLOW 6 models allows for specification of an inset

model that is dynamically linked (in both directions) to the

parent model at a finer grid resolution. Unlike previous versions

of LGR (e.g., Mehl et al., 2006; Vilhelmsen et al., 2012), this inset

model formulation is coupled to the parent model at the matrix

level (Langevin et al., 2017), making this an efficient option for

simulating both regional flow and a detailed area of interest. To

facilitate array resampling and dereferencing, currently; only

uniform structured grids (that may be rotated) are supported.

Temporal discretization is specified in blocks that are piecewise-

constant, allowing, for example, for longer spin-up periods early

in a simulation, followed by a finer temporal discretization in a

FIGURE 1
Modflow-setup in the groundwater modeling workflow. Modflow input can be written directly, or additional scripting can be performed with
Flopy to customize the model. By automating the discretization of input data, Modflow-setup allows the conceptual model and model structure to
be more readily revised in response to parameter estimation or new information.
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period of interest. The model grid is referenced internally to a

specified projected coordinate reference system (CRS; with units

of feet or meters), but source data can be in any CRS; reprojection

is handled automatically as needed via the Pyproj package (Snow

et al., 2022). Similarly, length and time units can be specified for

the inset and parent models, and any source data and unit

conversions are handled automatically.

Time-varying specified head or specified flux boundaries can

be applied to the perimeter of an inset model from a parent

model solution, via the Constant Head and Well Packages,

respectively. The parent and inset model grids need not align,

but spatial alignment of the two grids can be beneficial for

preserving mass when resampling recharge from one grid to

another. Parent and inset model grids are located relative to one

another using their respective CRS. Currently, transient inset

models must have either a steady-state parent, or align

temporally with a subset of the parent model stress periods.

Currently, the Streamflow Routing (SFR), Lake, and basic

stress packages (Constant Head, Drain, General Head, River, and

Well Packages) are fully supported for internal boundaries, with

some limited support for the Multi-node Well 2 (MNW2)

Package in MODFLOW-NWT. Unlike previous inset model

translators such as MODTMR (Leake and Claar, 1999),

internal boundary conditions are always re-discretized from

their grid-independent source data (typically shapefiles), as

inset models will usually carry a finer discretization than the

parent. An exception is an option to translate the Well Package

based on the nearest neighbor location of the model cell centers.

Preparation of SFR input is handled by SFRmaker (Leaf et al.,

2021). In general, the geographic extents of surface water features

are specified via shapefiles, and any transient data such as stream

inflows or pumping rates are specified via comma separated

variable (CSV) files. Well locations can be specified with CSV or

shapefiles. Transient input data are mapped to the model stress

periods by computing a specified statistic (usually the mean) for

values falling within each model stress period, or within a user-

specified timeframe (for example, a long-term average period

representing steady-state conditions).

Array-based input can be specified from rasters, shapefiles,

NetCDF files, or the parent MODFLOW model. Rasters can be

used to assign values to specific layers or stress periods; input is

resampled to themodel grid at the cell center locations using either a

nearest neighbor or linear interpolation approach. Shapefiles are

generally only used for delineating discrete features such as the active

model area and are mapped using the rasterize method in the

Rasterio package (Gillies, 2022b). NetCDF files provide a convenient

mechanism for array-based input with many two-dimensional time

slices, for example, daily estimates of net infiltration from Soil-

Water-Balance code (SWB; Westenbroek et al., 2018). Similar to

other transient inputs, NetCDF time slices are mapped to the model

time discretization by computing period statistics. As with other

data, unit conversions are performed automatically if the units are

specified. Finally, arrays from a parent MODFLOW model can be

resampled to the inset grid in time or space. Inset-parent layer

mapping is typically specified for static inputs such as aquifer

properties or cell top and bottom elevations. The coarser parent

model values are then upsampled by layer to the inset model

resolution, using a barycentric scheme similar to the griddata

method in Scipy (Virtanen et al., 2020). In the case of perimeter

boundary conditions, fields of head or flux components from the

parentmodel are upsampled by stress period to the inset model grid,

using the same barycentric interpolation scheme but in three

dimensions, which simplifies specification of the system state

along the inset model perimeter when the inset and parent grids

do not align exactly (e.g., Leake and Claar, 1999).

Another key feature of Modflow-setup is the creation of

MODFLOW observation input. Head observation locations can

be supplied via a CSV file and are then mapped to the closest model

cell center. Observations are set up in each model layer at the

mapped locations, to allow for subsequent post-processing of model

output to derive simulated head equivalents for the well open

intervals (for example, using the transmissivity-based weighting

functionality in Modflow-obs; https://github.com/aleaf/modflow-

obs). Head observation input is created for the observation utility

in MODFLOW 6 (Langevin et al., 2017) or the HYDMOD Package

in MODFLOW-NWT (Hanson et al., 1999). Streamflow

observations can also be supplied, with either coordinate

locations or unique identifiers referencing them to a specific

flowline within the input hydrography. SFRmaker will then

locate the observations within the SFR package and create the

relevant SFR package observation input (Leaf et al., 2021).

Finally, other types of observations can be set up automatically

based on lake numbers (for the Lake Package) or boundnames (for

the basic stress packages in MODFLOW 6; Langevin et al., 2017).

Version control presents a fundamental challenge to

reproducibility and robustness in numerical models. Even if a

version control system such as Git is used to track model

construction, the model files may inevitably get copied or

modified outside of the Git framework, leading to confusion

about their provenance. Modflow-setup records up to three levels

of version information in the comment headers of the produced

MODFLOW input files: 1) the Flopy version, 2) the Modflow-setup

version (including the commit hash), and 3) themodel version, if the

model is being tracked by Git, or if a version is specified in the

configuration file. In the former case, Git versioning information is

read by Modflow-setup using an approach similar to the Versioneer

package (https://github.com/python-versioneer/python-versioneer).

This way, the methods used to generate a particular model input file

can be understood and reproduced, even if the code base and model

have changed.

Software implementation

Modflow-setup is implemented as a Python package that works

on Linux, OSX, orWindows. The version of the code documented in
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this study is available as a USGS software release (Leaf et al., 2022);

the current development version that incorporates bug fixes and

other improvements is available through GitHub (https://github.

com/doi-usgs/modflow-setup) or the Python Package Index (PyPI).

It should be noted that Modflow-setup has software dependencies

thatmust be installed prior to its use. Detailed instructions on how to

install the dependencies and Modflow-setup are available in the

online documentation (https://doi-usgs.github.io/modflow-setup).

Similar to any Python package, Modflow-setup consists of objects

that can be imported into a Python session and therefore usedwithin

scripts or other Python code. The use of Modflow-setup does not

require extensive knowledge of Python, however. In the simplest use

case, input can be specified in a configuration file, and a

MODFLOW model can be built from the configuration file

using only a few lines of Python, as illustrated in the example.

Code organization

The core function of Modflow-setup is to automate mapping of

disparate, grid-independent data to a finite difference grid. At a basic

level, the Modflow-setup package houses general objects (functions,

classes, and methods) to do this. The objects are organized into

modules that loosely correspond to the components of a

MODFLOW model (e.g., “oc.py” for output control) or specific

functionality (e.g., “interpolate.py” for interpolation). Ideally, each

module has a corresponding test module in the “tests” folder, and

each object a corresponding test within that test module. In practice,

much of the testing follows an integration approach where entire

packages or models are built within a single test, effectively testing

the interactions of multiple objects at once.

While Modflow-setup may evolve to include more functionality

as a library of stand-alone components, the current development

focus is on an integrated workflow that builds Flopy model objects

from information provided in a configuration file. Three model

classes, each contained in their own module, are central to this focus.

The MF6model and MFnwtModel classes subclass the Flopy

ModflowGwf and Modflow classes, respectively, to add additional

model construction functionality for MODFLOW 6 and

MODFLOW-NWT models. Both MF6model and MFnwtModel

also subclass a shared MFsetupMixin class that contains core

functionality common to any MODFLOW version. The model

classes themselves contain a number of methods centered around

various arrays and packages, which, in turn, interact with functions

and other objects in the remaining Modflow-setup modules.

The configuration file

Most user interaction with Modflow-setup is through the

configuration file, which is specified in the YAML format (yaml.

org). YAML maps key:value pairs similar to a Python dictionary

(https://docs.python.org/3/tutorial/datastructures.html), except

that whitespace and newlines can often be used in the place

of commas and brackets to delimit structures. YAML input in the

configuration file is organized into blocks that generally follow

the MODFLOW input structure, with primary blocks

representing specific MODFLOW packages or model

components, and sub-blocks representing MODFLOW 6 input

blocks or features in Modflow-setup. The naming of blocks and

variables is intended to follow MODFLOW and Flopy

conventions as closely as possible, with MODFLOW given

preference where these conflict. For example, this block (from

the example problem discussed below) describes the

MODFLOW 6 simulation:

In the model setup workflow, input from the configuration

file is loaded by Modflow-setup into a configuration dictionary

attached to the model object. For example, the simulation:

block shown above would be loaded as:

The above dictionary would then be fed to the Flopy

MFSimulation class constructor to create a simulation

instance. Within package blocks, input to MODFLOW can be

specified directly using the appropriate variables and structures

described in the MODFLOW input instructions (Niswonger

et al., 2011; Langevin et al., 2017). For example, in the block

below, the dimensions: and griddata: sub-blocks would be fed

directly to the MODFLOW 6 Discretization Package constructor

in Flopy:

Such direct input might also contain paths to external text

file arrays that are consistent with the model grid.

Alternatively, source_data: sub-blocks can be used to

reference grid-independent data (shapefiles, rasters, or

comma separated variable files, etc.) that need to be

mapped to the model grid. The Pleasant Lake example

described below includes a DIS package block that

references GeoTIFF rasters as input for layer tops and

bottoms. More details on configuration file input options

are available in the online documentation (https://doi-usgs.
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github.io/modflow-setup), which includes a gallery of working

configuration files for various models in the Modflow-setup

test suite.

An example model build script

With an appropriate configuration file, a Python script to build

aMODFLOWmodel can be as simple as the following three lines of

Python:

In this example, the model object class is imported, similar

to Flopy, and the setup_from_yaml constructor method is

called with the configuration file. An MF6model instance,

which is essentially a Flopy model object with additional

functionality, is returned. The MF6model instance can be

used to write the model input files or as the basis for additional

custom scripting.

Example: Setup of the Pleasant Lake
model

The Pleasant Lake model (Fienen et al., 2022) is a MODFLOW

6 simulation that was constructed using Modflow-setup. We show

this example both because this projectmotivated the development of

the Modflow-setup code and because it highlights a complex

workflow that benefits greatly from the scripting approach. A

simplified version of this workflow with a smaller model domain

is available on the Modflow-setup GitHub site (https://github.com/

doi-usgs/modflow-setup); the published, fully detailed models for

Pleasant Lake are available from Fienen et al. (2021b). Another

worked example including uncertainty analysis and a decision

support outcome is available from Fienen and Corson-Dosch

(2021; https://github.com/usgs/neversink_workflow).

The goal of the Pleasant Lake model, part of the Central Sands

Lake Study (Fienen et al., 2022), was to address connections between

groundwater abstraction and the ecological function of a lake in central

Wisconsin, United States (WDNR 2021; Figure 2). This required

modeling at multiple scales. Fine discretization was needed near the

FIGURE 2
The full Pleasant Lake model domain with location map, showing the relationship between the regional, intermediate and LGR inset models, as
well as the irrigation wells considered.
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lake for accurate simulation of water levels and groundwater–lake flux.

A large model domain was also needed to simulate farfield water-

use activity (chiefly irrigated agriculture), in order to delineate a

limit of connection, as well as to incorporate distant hydrologic

boundaries. Adopting a fine enough discretization for the lake

detail throughout the farfield would have resulted in amodel with

more cells than could be practically managed. To mitigate this,

three models were combined: a large regional model built with

MODFLOW-NWT, an intermediate MODFLOW 6 model inset

within the regional model to simulate the irrigated agriculture

area, and a refined MODFLOW 6 inset model (nested within the

intermediate model) to simulate the lake (Figure 2; Fienen et al.,

2022). Regional groundwater flow and the effects of distant

boundaries were simulated with the MODFLOW-NWT

model, which was coupled sequentially (one-way) to the

MODFLOW 6 models through time-varying specified head

boundaries along the intermediate MODFLOW 6 model

perimeter. The two MODFLOW 6 models were coupled

dynamically (both ways) within the groundwater flow

solution, allowing for feedback between the models. Estimates

of groundwater recharge for the MODFLOW models were

provided by a SWB simulation that could represent alternative

assumptions of climate and land use. Net infiltration estimates

from the SWBmodel in the NetCDF format were read directly by

Modflow-setup to produce Recharge Packages for the

MODFLOW models. Climate-based estimates of irrigation

demand from SWB were also passed to the Well Package for

simulations that considered future scenarios.

TheMODFLOW 6models were set up using theModflow-setup

LGR feature, which uses the LGR utility in Flopy (Bakker et al., 2016)

to create input for the Groundwater Flow Exchange Package, which

dynamically links MODFLOW 6 models within the same matrix

solution via fluxes across their shared boundaries (Langevin et al.,

2017). TheModflow-setup LGR feature also sets up theWater Mover

Package to maintain continuity in the SFR Package streamflow across

the linked model boundaries. Construction of the LGR inset model is

activated by an lgr: sublock within the parent model configuration

file, which points to a second configuration file for the LGR inset. Full

versions of the parent and inset model configuration files for the

example are available in the online documentation (https://doi-usgs.

github.io/modflow-setup). An abbreviated version of the example

LGR inset model configuration file is reproduced in snippets here for

illustration.

As noted earlier, the simulation: block provides input to the

Flopy MFSimulation constructor, and, critically, the version:

argument that also tells Modflow-setup which version of

MODFLOW to use. Similarly, the model: block contains input to

the Flopy ModflowGwf constructor and ultimately, the MODFLOW

6 Name file (Langevin et al., 2017). The packages: argument tells

Modflow-setup which packages to build. Since this model is an LGR

inset, the parent model is already known to Modflow-setup and does

not need to be re-specified here. Similarly, any packages included in the

package list, but not specified in the inset model configuration file, are

simply built (on the inset model grid) from the input in the parent

model configuration file.

The setup_grid: block specifies the orientation and

discretization of the LGR inset grid. Model grids in Modflow-

setup can be defined explicitly or using a buffer around a feature

of interest. If the model is associated with a parent model, the model

discretization is aligned with the parent model grid by default (this is

required for LGR models). A snap_to_parent: option allows

for unaligned grids. Unrotated models with a grid spacing that is a

factor of 1,000 m can also be aligned with the National

Hydrogeologic Grid, a framework intended to facilitate the

development and use of national-scale hydrogeologic datasets in

the United States (Clark et al., 2018).

In this case, a polygon for Pleasant Lake is provided via a

shapefile, and Modflow-setup is instructed to create a regular 40-m

mesh within a 1000-m buffer of the lake. The projected CRS for the

model grid is Wisconsin Transverse Mercator (indicated by EPSG

code 3070). The vertical discretization is specified in a dis:

(Discretization Package) block. A digital elevation model (DEM)

in units of meters is specified for the model top. As in Python,

numbering for layers or stress periods is zero-based. Since no bottom

elevation grid is supplied for layer 0, the bottom of that layer will be

set halfway between the model top and the specified bottom of layer

1. Additional layers could be similarly subdivided by specifying the

desired layer number for the next bottom surface elevation.

The Lake Package (lak:) block includes shapefile input to

delineate the horizontal extent of the lake, and optionally, a
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bathymetry_raster: input to delineate bottom depths that

are subtracted off the initialmodel top (which is assumed to represent

the water surface, typically the case for DEMs). Alternatively, a

stage_area_volume_file: can be specified to allow for

more accurate representation of lake volume and surface area as

lake levels change. Initial values for lakebed leakance can be input for

both a littoral zone extending a specified distance from shore around

the perimeter of the lake, and a lower permeability profundal zone in

the lake interior (e.g., afterHunt et al., 2013; Leaf andHaserodt, 2020).

Finally, climate input, including daily precipitation and mean air

temperatures, are supplied in a text file downloaded from the PRISM

Climate Group (2019); PRISM provides modeled climate time series

at any point location within the United States. Precipitation is used

directly by the Lake Package to compute the lake water balance;

Modflow-setup uses the Hamon (1961) method to convert daily

mean air temperatures to estimates of lake surface evaporation

(Harwell, 2012). A period_stats: sub-block specifies how the

climate input should be aggregated to the model stress periods. For

the initial steady-state period, 2012–2018 averages of the daily

precipitation and lake surface evaporation are used; subsequently,

the average values within each monthly stress period are used.

Alternatively, lake climate information can be input directly or

supplied in a general CSV format.

The sfr: block instructs Modflow-setup to generate an SFR

Package for the LGR inset model area, using SFRmaker (Leaf

et al., 2021). Since this is an LGR inset model, Modflow-setup will

automatically set up the Water Mover Package as needed to

connect the SFR network across the boundary with the enclosing

parent model.

To simplify input as much as possible, Modflow-setup

includes configuration files of default settings for MODFLOW

6 and MODFLOW-NWT models. In constructing a model, the

default configuration files are read first, and the settings within

them are recursively updated with user-specified input.

Therefore, many settings are optional. For example,

save_flows: True in the sfr: block earlier is also specified

in the default configuration, making it technically redundant,

although perhaps useful as a placeholder to turn the setting on or

off. Other examples of default configurations include the Output

Control Package, which is generated by default to save output on

the last timestep of each stress period, and initial heads, which are

set to the model top by default if no configuration is specified.

The default configuration files can be viewed in the online

documentation.

The obs: block here illustrates how head observation

locations can be supplied from multiple CSV files. In this

case, no x and y column arguments are needed, because both

files have the default column names of “x” and “y.” Non-default

column names can be specified with the column_mappings:

argument. In this example, the column names “obsprefix” and

“common_name” are mapped to the default “obsname,” column

for observation names.

Since this is an LGR inset model that shares a MODFLOW

6 simulation with the enclosing parent model, the simulation-

level Temporal Discretization and Iterative Model Solution

Packages are specified in the parent model configuration file.

The remaining unspecified packages (Initial Conditions, Output

Control, Node Property Flow, Storage, Recharge, and Well

packages) are generated for the LGR inset model using the

input blocks specified for the parent (MODFLOW 6) model,

as described previously. The simplified example version of the

Pleasant Lake model from the online documentation is shown in

Figure 3.

Discussion

After setting up this framework for model construction and

linkage, it is straightforward to evaluate some of the many decisions

that are often made once in a modeling workflow and not revisited

again, such as spatial discretization, time discretization, changing

data sources, or hypothesis testing. In the Pleasant Lake example, the

key goal of establishing a causal connection between human water

use (chiefly irrigation abstraction) and lake levels required

evaluation of multiple conditions. Under a unified representative

climate, we evaluated recharge and irrigation-required water

abstraction for three land use scenarios: 1) no irrigated

agriculture, 2) irrigated agriculture in the footprint of current

conditions, and 3) potential maximum irrigated agriculture.
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Consideration of these multiple hypotheses required multiple

instances of the SWB model, with the outputs from each

instance ingested as recharge and water-use inputs to multiple

MODFLOW 6 models. The robust and repeatable nature of the

Modflow-setup framework enabled efficient evaluation of the

scenarios and has yielded similar benefits to other projects

involving multiple numerical models or advanced analyses (e.g.,

Fienen et al., 2022; 2021a).

As is typical in modeling projects, a single iteration of this

workflow was insufficient, as all modeling requires

refinement of datasets, testing of hypotheses, and

incorporation of lessons learned (e.g., Anderson et al.,

2015). For example, examination of model history

matching results pointed to the need to better represent

headwater springs near the lake. This required rebuilding

the SFR package, a task that would be prohibitively time-

consuming in a traditional modeling workflow but that was

easily done with Modflow-setup. In addition, Modflow-setup

allowed for multiple updates to the layering and geological

structures represented in the model as new data became

available during the course of the project. By opening the

numerical model structure to testing and improvement, the

FIGURE 3
Close-up of the example local grid refinement inset model configuration, showing the discretization and combined water table solution, as well
as Streamflow Routing (SFR) Package cells and the littoral and profundal lakebed leakance zones.
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automated workflow enabled by the Modflow-setup can

maximize the assimilation of data and ultimately provide

models that are better suited for decision support.

It is important to note that while Modflow-setup aims to be

general, development is ongoing on the project GitHub site, and to

date has focused primarily onmeeting project needs through iterative

improvement, instead of building a comprehensive tool from the

ground up. Some features are incomplete, and others haven't been

developed yet. While the configuration file interface is mostly

established, it may change somewhat going forward to

accommodate new features or improve the user experience. The

internal code structure is almost certain to change. While the online

documentation is also a work in progress, it aims to accurately

describe the current state of the project and how to use it.

Contributions and ideas at all levels are encouraged and can be

submitted through issues and pull requests on the project GitHub

page, or via email. In any case, the integration ofModflow-setup with

the general Python interface provided by Flopy allows for custom

code to be added to a model construction workflow as needed.

Finally, like many open-source software projects, Modflow-

setup depends on a large “stack” of other software that is

constantly changing. Regular continuous integration testing helps

ensure functionality by executing the test suite in freshly built

Python environments encompassing the last two minor versions

of Python (e.g., 3.10 and 3.9), across the supported platforms. For

reproducibility, a project-specific Python environment built from a

configuration file works well (for example, a Conda environment

file; https://docs.conda.io/). Long-term archives that are meant to

persist over years may consider packaging this environment into a

stand-alone Python distribution, for example using Conda-pack

(https://github.com/conda/conda-pack).

Conclusions

Modflow-setup provides a rapid, reproducible, and robust

framework for building MODFLOW models from grid-

independent source data. Common model construction tasks

are distilled in an open-source, online code base that is tested

and extensible through collaborative version control. The

workflow for building the model—including input data,

construction options, and output packages—is summarized

in a single configuration file in the human-readable YAML

format. Integration with Flopy allows for additional

customization of the model construction workflow as

needed. The benefits of Modflow-setup include reduced time

and labor required to build a groundwater model, reduced

potential for error, improved reproducibility, expanded

ability to explore alternative conceptual models or

hypotheses, and a reduction in cognitive load that allows the

modeler to focus on the most important aspects of the analysis.

In the case of the Pleasant Lake model, the robust automation

enabled by Modflow-setup allowed for efficient exploration of

cumulative pumping impacts to lake levels from hundreds of

wells, across multiple scenarios.
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Evaluating whether hydrological models are right for the right reasons demands

reproducible model benchmarking and diagnostics that evaluate not just

statistical predictive model performance but also internal processes. Such

model benchmarking and diagnostic efforts will benefit from standardized

methods and ready-to-use toolkits. Using the Jupyter platform, this work

presents HydroBench, a model-agnostic benchmarking tool consisting of

three sets of metrics: 1) common statistical predictive measures, 2)

hydrological signature-based process metrics, including a new time-linked

flow duration curve and 3) information-theoretic diagnostics that measure

the flow of information among model variables. As a test case, HydroBench

was applied to compare two model products (calibrated and uncalibrated) of

the National Hydrologic Model - Precipitation Runoff Modeling System (NHM-

PRMS) at the Cedar River watershed, WA, United States. Although the

uncalibrated model has the highest predictive performance, particularly for

high flows, the signature-based diagnostics showed that the model

overestimates low flows and poorly represents the recession processes.

Elucidating why low flows may have been overestimated, the information-

theoretic diagnostics indicated a higher flow of information from precipitation

to snowmelt to streamflow in the uncalibrated model compared to the

calibrated model, where information flowed more directly from precipitation

to streamflow. This test case demonstrated the capability of HydroBench in

process diagnostics and model predictive and functional performance

evaluations, along with their tradeoffs. Having such a model benchmarking

tool not only provides modelers with a comprehensive model evaluation

system but also provides an open-source tool that can further be developed

by the hydrological community.
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Introduction

Supported by advances in computational capacity, there is a

proliferation of hydrological models ranging from simple black

box data-driven models to complex integrated models. Similarly,

the application of these models ranges from local to regional and

continental-domain hydrological decision support tools. In this

regard, the U.S. Geological Survey’s National Hydrologic Model-

Precipitation Runoff Modeling System (NHM-PRMS) (Regan

et al., 2018, 2019) and National Oceanic and Atmospheric

Administration’s National Water Model (Cohen et al., 2018)

are examples of continental-domain models that strive to address

national-scale water balance, water supply, and flood risk

analyses. Although model adoption can be more of a function

of legacy than adequacy, models’ reliability rests on performance

evaluation (Adorr and Melsen, 2019). Performance evaluation,

which includes model benchmarking and diagnostic efforts,

benefits from standardized methods and ready-to-use toolkits

that implement those methods (Kollet et al., 2017; Nearing et al.,

2018; Lane et al., 2019; Saxe et al., 2021; Tijerina et al., 2021).

Standardized methods and toolkits also help modeling

communities and model users build trust in a model’s

operational reliability. As such, having a ready-to-use,

organized, and comprehensive model-agnostic (i.e., model-

independent) benchmarking tool is critical for advancing

modeling communities and modeling practice.

Hydrologic model performance evaluations often rely on

statistical metrics such as Nash-Sutcliffe efficiency and

correlation coefficient. However, as these metrics are

indicative of focused aspects of model performance, there is a

call of comprehensive model evaluation that includes process-

based model diagnostics (Gupta et al., 2008; McMillan, 2020,

2021) and functional model evaluations (Weijs et al., 2010;

Ruddell et al., 2019). Process-based model diagnostics evaluate

the hydrological consistency of the model with observations (e.g.,

through examination of hydrological signatures that capture

dominant processes), while the functional model performance

evaluation focuses on the interactions or information flows

among internal flux and state variables (e.g., uncertainty

reduction of streamflow by precipitation data). Thus, a

comprehensive model benchmarking tool may need to include

at least three types of metrics that 1) quantify model predictive

performances by comparing observations and their

corresponding model outputs, 2) reveal hydrological process

consistency and 3) assess the functional performance of the

model. As a whole, such a benchmarking practice helps

evaluate not only predictive performance but also reveals

whether the models are right for the right reasons (Kirchner,

2006).

Hydrologic model consistency, which refers to the

representation of dominant processes by the model, can be

evaluated by using hydrological process signatures. This

benchmarking strategy reveals a model’s ability to reproduce

observed process-informative signatures such as flow duration

curve, runoff coefficient, and recession curves. For instance,

Yilmaz et al. (2008) used flow duration curves to diagnose

model performance in capturing the different segments of a

hydrograph, while De Boer-Euser et al. (2017) showed the use of

flow duration curves in diagnosing model inadequacy. Similarly,

recession curves are employed to evaluate and derive models that

characterize subsurface processes (Clark et al., 2009; Kirchner,

2009). Meanwhile, numerous studies used a mixture of different

signature measures (e.g., McMillan et al., 2011; Tian et al., 2012;

Moges et al., 2016). These studies have shown that hydrological

signatures can highlight how well the model is capturing the

causal processes rather than being a mere predictive tool that

may suffer in out-of-sample tests.

Model functional performances can be evaluated using

information-theoretic metrics that quantify information flows

between flux and state variables. These metrics are used as 1) a

better measure of dependence between simulations and

observations than linear metrics such as the Pearson

correlation coefficient and similar L-norm based metrics

(Pechlivanidis et al., 2010, 2014; Weijs et al., 2010), 2) tools

that reveal model internal interactions among all variables

(termed “process networks”) (Ruddell and Kumar, 2009;

Bennett et al., 2019; Moges et al., 2022), and 3) quantitative

measures of the synergies or tradeoffs between predictive and

functional performance in a model. L-norm based metrics

quantify the actual differences between observed and

simulated values as opposed to information flow metrics that

quantify differences in probabilistic distributions. Here, synergies

refer to simultaneous improvements in both predictive and

functional performance, while tradeoffs refer to gains in either

functional or predictive performance leading to a loss in the other

(i.e, between “right answers” versus “right reasons”) (Kirchner,

2006; Ruddell et al., 2019). The use of functional model

performance metrics, particularly a model’s process network,

helps to evaluate the validity of the model’s constitutive

functional hypotheses in light of both expert judgment and

model intercomparisons. However, as some of these tools

were developed only recently, there is a lack of widespread

application and ready-to-use interfaces accessible to the wider

community.

Reproducibility is central to science and one of the key

features of the geosciences paper of the future (Gil et al.,

2016). It involves the full documentation, description, and

sharing of research data, software, and workflows that

underpin published results. However, multiple disciplines

including hydrology have indicated that there is a

reproducibility crisis (Stagge et al., 2019). Thus, similar to the

call for model diagnostics and benchmarking, there is a drive

towards hydrological research reproducibility. Hutton et al.

(2016) indicated that the lack of common standards that

facilitate code readability and reuse, well-documenting

workflows, open availability of codes with metadata, and
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citation of codes are key challenges in hydrological

computational reproducibility. As a potential solution, recent

tools in computer science are enabling ease of documenting,

collaborating, self-descriptiveness, and sharing of codes and

workflows. These tools can likewise be used to support

reproducibility in computational hydrology. Furthermore, as

these tools are user-friendly and interactive, they can be used

to support not only modelers but also decision-makers who are

not as equally code-adept and trained as modelers.

One way to meet the call for an organized (less fragmented)

system of comprehensive model evaluation and reproducibility is

to have a readily available tool. For instance, the Toolbox for

Streamflow Signatures in Hydrology (TOSSH) was recently

developed as a Matlab ® toolbox that provides a variety of

hydrological process signatures (Gnann et al., 2021). Similarly,

Hydroeval focuses on statistical predictor metrics (Hallouin,

2021). Although these tools are available, they are limited in

their focus to one set of diagnostics and lack interactivity. For

instance, Hydroeval is focused on multiple predictive

performance measures such as the Nash-Sutcliffe coefficient

while TOSSH provides an extended list of hydrological

signature measures to evaluate process consistency.

Furthermore, they do not incorporate the recent information-

theoretic toolsets that quantify model functional performances.

On the other hand, although various Jupyter based tools that

support reproducibility are being developed in hydrology (for

example, Peñuela et al. (2021) on reservoir management), they

cannot typically produce benchmarking and diagnostic metrics.

Building on the existing model benchmarking and diagnostic

tools, HydroBench (https://emscience.github.io/

HydroBenchJBook/HydroBenchIntroduction.html) serves as

an open-source, model agnostic hydrological diagnostics

platform that emphasizes reproducibility. As a comprehensive

model performance evaluation tool, HydroBench consists of

three sets of metrics that include 1) predictive performance

metrics, 2) hydrological signatures, and 3) functional

performance metrics that use information-theoretic concepts.

The tool can be used to help modelers diagnose potential issues

with their models, users to reproduce model performance

evaluations, decision-makers to quickly evaluate and

understand model performances interactively, and educators

to teach hydrological science students about both model

diagnostics and reproducibility. In order to demonstrate its

usefulness and application, HydroBench is applied to the

NHM-PRMS product at the watershed scale near Cedar

River, WA.

Methods

HydroBench helps answer the following model performance

evaluation questions in a reproducible manner:

1) How good a predictor is the model with respect to statistical

predictive performance measures?

2) How consistent is the model with a suite of observed

hydrological behaviors (i.e., signatures)?

3) How well do the model’s internal dynamics replicate

interactions among observed system variables?

These three questions are addressed within HydroBench

through three types of hydrological benchmarking metrics

that aid in model performance diagnostics. In this section, we

first highlight the software ecosystem that underlies HydroBench

and supports reproducible research and then discuss the three

sets of benchmarking metrics.

Reproducibility and the jupyter ecosystem

Model diagnosis and benchmarking require evaluation

strategies that are applicable to any watershed or model

(i.e., “model-agnostic”). Standardizing model benchmarking

and diagnostics in a reproducible and collaborative manner

will allow modelers to better focus their time on research

development, rather than on reinventing the model evaluation

wheel. In this regard, the Jupyter ecosystem (https://jupyter.org/)

FIGURE 1
HydroBench supports computational hydrology and water
resources decision making by facilitating reproducibility,
collaboration, and computational interactivity. Voila is a widget
rendering tool that enables interactive computation (https://
github.com/voila-dashboards/voila), while Xarray is a standardized
data format that eases working on multidimensional datasets
(https://docs.xarray.dev/en/stable/).
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provides foundational tools that are intended to facilitate

reproducibility and collaboration.

In HydroBench, we followed a three-pillar scheme to support

hydrological model benchmarking and diagnostics: 1)

reproducibility, 2) collaboration and 3) interactive

computation (Figure 1). To support reproducibility, we used

Jupyter Notebook, Binder and JupyterBook (Project Jupyter 2022

| https://jupyter.org/). Jupyter Notebooks are open-source

documents that merge code, results, texts and interactive

widgets to narrate a computational story (Pérez and Granger,

2007). By narrating a computational story rather than presenting

mere codes or results, notebooks make computational workflows

self-descriptive. Furthermore, as notebooks can be viewed and

shared easily, they also facilitate collaboration and

reproducibility. For a detailed description of Jupyter

Notebooks, the ten best practices of using Jupyter Notebooks

are outlined in Rule et al. (2019) while ten best practices of

reproducible research are outlined by Sandve et al. (2013).

Hydrological computations may require the use of more than

one Jupyter Notebook or a very long single notebook. Having

long or multiple notebooks leads to story fragmentation. To

avoid this fragmentation, a Jupyter Book can be used to bind

together multiple notebooks (Community, 2020 - https://

jupyterbook.org/intro.html). A Jupyter Book is a compilation

of notebooks and markdown (text) readme-files. This

compilation can then be published as a traditional book

narrating the computational story from its multiple components.

One way to facilitate scientific reproducibility is by openly

sharing a complete, re-runnable workflow over the cloud. Binder

is a web-based cloud platform that enables sharing and executing

codes by recreating the computational environment without

installing packages locally (Jupyter et al., 2018). Since the

computational environment is recreated on the cloud, Binder

makes reproducing codes and their results a single-click task.

Thus, Binder not only provides a reproducible environment but

also simplifies the user experience.

Collaboration is key in both model development and

diagnostics. Git is a version control state-of-the art tool for

code development and collaboration, while GitHub and other

similar platforms are online repositories that enable sharing and

collaboration on codes. Through its version-control features, Git

enables a reproducible workflow among groups of collaborators

on a project. In addition to collaboration on code developments,

open-source hydrological data are also critical for community-

wide model benchmarking, as they enable modelers to test their

hypotheses beyond local watersheds and over a broad range of

time against consistent information. Examples of large-sample

open-source data in hydrology include the MOPEX, CAMELS,

EMDNA, and CHOSEN datasets (Duan et al., 2006; Addor et al.,

2017; Tang et al., 2021; Zhang et al., 2021).

The third pillar of HydroBench is interactive computation.

Although sharing codes, executables and data is critical in

reproducibility, codes are not always user-friendly, as their use

is impossible without baseline expertise. In contrast, widgets are

user-friendly tools that can be intuitively executed with clicks and

slider bars. As a result, they can support most users and

stakeholders across the spectrum of computing skills. In

addition, widgets clear up code blocks and can facilitate

interpretation through informative visualizations.

Model benchmarking and diagnostics

Statistical predictive metrics
Numerous model predictive performance metrics are used

in hydrological model evaluation to compare hydrological

responses such as observed and modeled streamflow (and/

or water table, or evapotranspiration) data. Each metric has a

different skill in its evaluation. For instance, the Pearson

correlation coefficient is effective in revealing the linear

relationship between observed and modeled output, while

the log-transformed Nash-Sutcliffe coefficient is more

sensitive to low flow regimes than high flows. A detailed

skills description of these metrics can be found in Krause

et al. (2005), Gupta et al. (2009), and Moriasi et al. (2015). Due

to their variation in skill, it is recommended to evaluate

models using multiple metrics (Bennett et al., 2013). As a

result, HydroBench includes multiple statistical metrics as

indicators of models’ predictive performances. Table 1

provides the list of HydroBench’s model predictive

performance metrics and their corresponding skills. These

metrics are selected according to their skill, widespread use in

hydrology, complementarity, and avoidance of redundancy.

In terms of skill, they cover high and low flows, volume, and

overall hydrograph characteristics (Table 1 and Figure 2).

Process-based hydrological signature metrics
Statistical predictive performance metrics lack

hydrological rigor and are not sufficient in diagnosing

model performances (Gupta et al., 2008; McMillan, 2021).

In contrast, the use of hydrological signature metrics can help

diagnose model performances by indicating the model’s

ability to reproduce specific hydrological processes such as

high/low flows or subsurface flows. Multiple process-based

signature metrics are implemented in HydroBench (Table 2).

Table 2 provides a description and relative skills of the

signature metrics, which are complementary to each other

in characterizing subsurface flow, different segments of a

hydrograph and water balance. In addition, we have also

created an interface between TOSSH and HydroBench to

support the full access of the TOSSH hydrological signature

metrics to HydroBench users. A detailed guide of the

interface is provided in the example notebook included in

HydroBench. For an extended list, skill, and computation of

hydrological signatures, we refer users to the TOSSH toolbox

and the references therein (Gnann et al., 2021).
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HydroBench includes Hydrograph and Flow Duration Curve

(FDC) as part of the signature metrics. However, a hydrograph

becomes cumbersome and difficult to interpret when the time-

series being evaluated is long (i.e., multiple years of fine

resolution data). Similarly, as FDC is purely probabilistic, it

delinks the temporal dimension of the streamflow magnitude.

That is, as long as the model preserves the exceedance probability

of the observed data, FDC suggests high model performance,

TABLE 1 List and description of predictive performance evaluation metrics in HydroBench. Here, Q represents streamflow, an example of the
dependent variable, P represents precipitation, as an example of an input flux variable, mod = model, and obs = observed.

Name Equation Description and skill

Nash-Sutcliffe
efficiency (NSE)

NSE � 1 − ∑n
i�1(Qobs,i − Qmod,i)2/∑n

i�1(Qobs,i − Q
obs
)2 NSE is relatively skilled in revealing model performance in

capturing high flows, while it has limited skill in capturing low
flows, as it is an L2 norm-derived metric

Log transformed
(logNSE)

Similar to NSE but with Qobs and Qmod in the logarithm space logNSE is similar to the Nash Sutcliffe efficiency but with the
inputs being transformed to the logarithm space. As it is
computed based on log-transformed inputs, it is skilled in
capturing model predictive performances of low flows

Percent Bias (PBIAS) PBIAS � ∑n
i�(Qobs,i − Qmod,i)/∑n

i�1Qobs,i Compared to the L2 norm-derived NSE, PBIAS is an L1-
derived metric that is less sensitive to peaks and suitable to
reveal predictive performances of total streamflow volume
Moriasi et al. (2015)

Pearson correlation
coefficient (r)

r � ∑n
i�1(Qobs,i − Q

obs
)(Qmod,i − Q

mod
)/

����������������∑n
i�1(Qobs,i − Q

obs
)2

√ �����������������∑n
i�1(Qmod,i − Q

mod
)2

√
r is a linear measure of model performance. It quantifies the
linear relationship between observed and model prediction

Kling-Gupta
efficiency (KGE)

α � stdev(Qmod)/stdev(Qobs) KGE addresses NSE's biases and better evaluates model
performance in capturing both high and low flows (Gupta
et al., 2009)

β � mean(Qmod)/mean(Qobs)
KGE � 1 −

������������������������
(r − 1)2 + (α − 1)2 + (β − 1)2

√

FIGURE 2
(A) Example of a standard input table to HydroBench. The empty cells refer to user provided input data, and (B) Summary of the output metrics
of HydroBench and their sensitivities (color-coded). Color codes, described in the lower table (“Key: sensitivity of metrics”) indicate the hydrological
feature to which the metric is most sensitive.
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regardless of the time coincidence of the model simulation.

Complementing the hydrograph and FDC, we developed a

signature metric that is probabilistic like FDC but also

preserves the time correspondence of the simulation like a

hydrograph. The metric is called Time linked Flow Duration

Curve (T-FDC), and it inherits the characteristics of both FDC

and a hydrograph.

T-FDC is a heatmap-based model performance evaluation

hydrological signature metric. In constructing the heatmap,

T-FDC first lets users define a bin size for segmenting

streamflow. Second, it bins the observed streamflow to the

predefined bin size and sets it as the y-axis. Then, for its

x-axis, T-FDC tracks whether the time corresponding model-

simulated streamflow is binned in the same bin class as the

observed streamflow or other bin classes. Finally, it generates a

heatmap based on the time-tracked counts of the simulated

streamflow in each bin class. A perfect model with a high

number of data counts in the same bin as the observed values

will only populate the main diagonal of the heatmap. In contrast,

a high number of data counts below the diagonal indicate an

underestimating model, while an overestimating model will have

a high number of counts above the diagonal. This makes T-FDC's

visual interpretation intuitive. In addition to the visual

interpretation, we have included a numerical quantification of

model performance based on T-FDC using the percentage of data

counts in the diagonal. Higher percentages indicate higher

performance and vice versa.

Information-theoretic metrics
Beyond the predictive metrics and signature measures, recent

developments in hydrological model diagnostics involve the use

of information-theoretic metrics (Nearing et al., 2018, 2020).

Compared to the predictive and hydrological signature metrics,

the information-theoretic metrics require longer hydrological

records. However, the diagnostic information they provide about

why a model may be exhibiting poor performance, or whether it

exhibits good performance for the right reasons, can be more

powerful. Specifically, HydroBench provides a suite of

information theoretic-based metrics (Table 3) that reveal 1)

functional model performance, 2) predictive model

performance and 3) the tradeoff between functional and

predictive performances. Functional performance can be

quantified by comparing observed transfer entropy (TE) with

modeled TE and visualized using information flow process

network (PN) illustrating functional relationships within the

model (Ruddell et al., 2019). TE is a measure of time-lagged

information flow from a “source” to a “sink” variable that

accounts for autocorrelation in the “sink” time series. Unlike

the runoff coefficient, which quantifies the flow of mass from

precipitation (P) to streamflow (Q), PNs quantify information

flow (i.e., uncertainty reduction of Q by P) between these and

other variables. On the other hand, the predictive performance of

a model can be quantified as the mutual information (MI)

between the observed and modeled time series, which

functions similarly to a correlation coefficient but is robust to

nonlinearity (Ruddell et al., 2019). By providing visualizations of

these metrics and how they vary across alternative models,

HydroBench helps reveal the tradeoffs between predictive and

functional performances.

In HydroBench, predictive performance is quantified based

on the similarity between the observed and predicted streamflow

time series, computed through their mutual (i.e., shared)

TABLE 2 List and description of hydrological signature-based model diagnostic metrics in HydroBench. Here, Q denotes streamflow, an example of
the dependent variable, P denotes precipitation, an example of an input flux variable, and r denotes rank based on a decreasing sorting of a time
series.

Name Equation/
Function

Description and skill

Runoff coefficient (RC) RC � ΣQ/ΣP RC deals with the flow of mass from precipitation to streamflow and helps in diagnosing water balance
discrepancies between the observed and model time series at the annual scale. Namely, it measures to what
extent the model captures the observed annual water balance

Flow duration curve (FDC) Qr � f(Qrank) FDC provides visual diagnostics of model performance in capturing both high- and low-flow segments of a
hydrograph in a temporally delinked mannerQrank � r/n + 1

Recession curve dQ/dt � f(Q) Recession curves help evaluate model performance in the absence of precipitation. Their shape is most
sensitive to the rate at which water is released from catchment storage. Consequently, recession curves can
indicate a model’s performance in characterizing subsurface processes

Time Linked Flow Duration curve
(T-FDC)

f(Q, bin size) Because FDC does not have a time component in revealing under- and overestimation of flows, we
developed T-FDC, which complements FDC by incorporating a time component. For a given day observed
streamflow, T-FDC tracks whether a model estimate results in the same, higher or lower bin. This is
analogous to the confusion matrix and requires binning of the data according to the observed minimum
and maximum values. T-FDC is a (visual) metric between FDC and hydrograph. Thus T-FDC eases the
interpretation of a hydrograph by simplifying it to be within a specific bin count
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information (1-MI). Functional performance is evaluated as a

comparison of information flows from a forcing variable (e.g.,

temperature, precipitation) to a sink variable (e.g., streamflow) in

the model versus observations

(TEsource→sink: model − TEsource→sink: observed). Ideally, information

will flow similarly among modeled variables as in observations

leading to a zero score in functional performance. Negative

values of functional performance indicate that the model does

not extract enough information from the forcing variable, with

extreme negative values being indicative of an overly-random fit.

Positive values of functional performance indicate that the model

extracts too much information from the forcing variable of

interest, resulting in an overly-deterministic fit. Further details

of this interpretation can be found in Ruddell et al. (2019).

HydroBench additionally provides one, two and three-

dimensional entropy measures for the given random variables

X, Y, and Z as H(X), H(X, Y) and H(X, Y, Z), that quantify the

information content of a single variable or its simultaneous

interactions with multiple other variables. However, higher-

dimensional quantities require longer data record lengths than

the metrics discussed above. Along with their data length

requirements, information theoretic metrics have a few

shortcomings or caveats in comparison to the other metrics.

As information theoretic metrics are dependent on probability

distributions rather than on actual variable values, it is important

to use them along with hydrological signatures and statistical

performance measures that are a function of the actual values of

the variables. Moreover, the computation of these information-

theoretic metrics involves subjective parameters such as the

number of bins and the statistical significance threshold. The

Jupyter notebook accompanying HydroBench describes these

parameters and their computation, including the number of bins

and statistical significance.

HydroBench interface—Input and output
data structure

HydroBench is a model-agnostic platform that requires basic

Python programming skills. It can be downloaded/cloned from

the following GitHub link https://github.com/EMscience/

HydroBench with multiple application test cases and a

particular focus on the Cedar River, WA. HydroBench accepts

model and observed data in a predefined structure. The input

structure is a table of data that consists of at least two data

columns (e.g., observed streamflow, and model streamflow),

along with their start and end dates (Figure 2). The model

that generated the data can be lumped or distributed, as

HydroBench requires inputs of time series variables. With

these inputs, basic benchmarking results can be obtained. The

basic results are the predictive performance metrics, plus FDC

and T-FDC diagnostics. With an extended input table that

contains one or more additional columns of independent

variables (e.g., precipitation), HydroBench can provide all

three types of metrics - predictive, hydrological signature, and

functional (Figure 2). Since HydroBench has a modular design, it

can easily be called into any notebooks that host model results

and generate a table of inputs (e.g., Figure 2A). Additionally, any

single metric can be employed depending on users’ preferences.

Case study description

HydroBench was applied to a 103.5-km2, relatively low-

gradient watershed near Cedar River, WA (Figure 3), which

was extracted from the NHM infrastructure (Regan et al., 2018)

for this case study. The Cedar River watershed was selected for

the case study because it is considered undisturbed according to

the GAGES II classification (Falcone et al., 2010) and because

NHM-PRMS predictions of its streamflow strongly contrast

between the calibrated and uncalibrated version of the model

(Section 3). The catchment’s land cover is dominated by a

coniferous forest (Falcone et al., 2010). Comparing the long-

term (1980–2016) average monthly precipitation and catchment

area-normalized streamflow volume, streamflow is higher than

precipitation from April to July, indicating that most of the

streamflow is a function of storage during these months, while

the remaining months are dominated by precipitation, meaning

that water enters storage. The catchment resides in a humid

climate, where 53% of precipitation falls as snow (Figure 3 and

Falcone et al., 2010).

The model under consideration is NHM-PRMS. NHM-

PRMS provides two hydrological model products based on

two model parameter sets: a nationally calibrated set and the

uncalibrated set (Driscoll et al., 2018; Hay, 2019). In the NHM-

PRMS uncalibrated model (Driscoll et al., 2018), parameters are

estimated from both catchment and climatic characteristics

(Markstrom et al., 2015; Regan et al., 2018; Regan et al.,

2018). In cases where estimation is impossible, the

uncalibrated product is based on model default parameter

values from Markstrom et al. (2015). This approach has its

advantages and limitations. Primarily, it is fast compared to

automatic calibration schemes and can be used to initialize

the PRMS model for a further automatic calibration.

Additionally, the approach might also be beneficial for

parameter estimation in ungauged watersheds and

nonstationary systems, as it does not rely on historical

climatic/meteorological data. However, the approach becomes

poor in cases where local data is sparse and in regions where the

model is not tested before, as the default values may not be

relevant. An extended description of the uncalibrated NHM-

PRMS model parameter estimation and its product can be found

at Regan et al. (2018) and Driscoll et al. (2018).

The calibrated version of NHM-PRMS employed a

multivariable stepwise parameter estimation using the Shuffle

Complex Evolution algorithm (Hay and Umemoto, 2007; Hay

Frontiers in Earth Science frontiersin.org07

Moges et al. 10.3389/feart.2022.884766

155

https://github.com/EMscience/HydroBench
https://github.com/EMscience/HydroBench
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.884766


et al., 2006 & 2019). In starting the calibration, the parameters

were initialized at their uncalibrated NHM-PRMS value. The

calibration uses multiple variables, including daily streamflow

from 1980 to 2010 and for the same period, monthly snow cover

area (SCA, from SNODAS; National Operational Hydrologic

Remote Sensing Center, 2004), potential evapotranspiration and

solar radiation (PET and SR, from Farnsworth and Thompson,

1982, the DAYMET climate data and Regan et al., 2018), actual

evapotranspiration (AET, from Cao et al., 2006; Rietjes et al.,

2013) and soil moisture estimates (SM, from Campo et al., 2006;

Thorstensen et al., 2016). These data are derived from national

scale remotely sensed datasets and other model products. The

sensitivity of the different model parameters to these variables is

assessed, and parameters are then sequentially calibrated with an

objective function defined as the normalized root mean square

error between the observed and simulated values of the output

variables in decreasing order of sensitivity (Markstrom et al.,

2016). That is, in calibrating PRMS to these variables, sensitivity

analysis guides the identification of which parameters are

calibrated by which variable in a stepwise manner. Stepwise

calibration starts with 1) PET and SR, followed by 2) SM and

AET, and finally, 3) streamflow. For a detailed description of the

model calibration and the optimization employed, please refer to

Hay et al. (2006), Hay and Umemoto (2007) and LaFontaine et al.

(2019).

In demonstrating the application of HydroBench at the

Cedar River, we evaluated model performance with respect to

the input, state, and output variables of the calibrated and

uncalibrated NHM-PRMS model. Namely, as NHM-PRMS

computes hydrologic fluxes using inputs of daily precipitation

and maximum and minimum air temperature, these variables

were included in our analysis. Similarly, we extracted the

predicted variables of streamflow, snowmelt, basin soil

moisture, and actual evapotranspiration from 1980 to 2016 at

a daily time step for our model benchmarking and diagnostics at

the Cedar River, WA.

Results

Facilitating reproducibility, all inputs and the results

presented in this section are available on GitHub (https://

github.com/EMscience/HydroBench). As a Binder link is also

included, the analysis can be fully reproduced, and the different

widgets can also be used for further interactive computation on

the cloud. Thus, users of HydroBench can emulate and adapt the

workflow easily.

Statistical predictive performance metrics

At the Cedar River watershed, the uncalibrated model shows

better statistical predictive performance than the calibrated

model, according to the HydroBench-provided statistics,

except for the KGE metric under the log-transformed flow

condition (Table 4 and Figure 4). Regardless of the skills of

the metrics in representing the different hydrograph segments

(low or high flows), most of the predictive performance metrics

suggest that the uncalibrated model is a preferred choice (Tables

1–3). However, the predictive performance metrics do not

explain why and how the uncalibrated model exhibits better

predictive performance than the calibrated model. In addition, it

is important to note that the calibration of NHM-PRMS does not

only focus on the prediction of streamflow but also on capturing

remotely sensed ET and other variables with a stepwise

calibration method.

FIGURE 3
Case study watershed near Cedar River, WA: (A) location and elevation, and (B) annual hydrometeorological characteristics. The WA basemap
source data is from https://geo.wa.gov/.
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FIGURE 4
Screenshot of HydroBench interactive window showing predictive performance metrics and the corresponding hydrograph for NHM-PRMS
simulations of the Cedar River watershed daily streamflow, 1980–2016, compared to observations (USGS stream gage, 12115000).

TABLE 3 List and description of information-theoretic model diagnostic metrics. Here, Q denotes streamflow, an example of the dependent variable
of interest, and P denotes precipitation, an example of an input flux variable.

Name Equation Description and skill

Entropy (H(x)) H(Q) � −1p∑i�1
i�1 p(Qi)plog(p(Qi)) Provides a measure of the uncertainty of the indicated flux or store variable(s)

Shannon (1948)

Mutual Information (MI) MI(P, Q) � ∑n
P,Qp(P, Q)log(–––––p(P,Q)

p(P)p(Q)) MI quantifies the predictive performance of a model. It measures the shared
information content of the observed and modeled dependent variable

Transfer Entropy (TE) TE(P → Q) � MI(Qt, Pt|Qt−1) TE quantifies the shared information between two variables (typically thought of as an
independent and dependent variable) conditioned on the history of the dependent
variable Schreiber (2000). In HydroBench, the variables can be any flux or store
variables as chosen by expert's (user's) choice

The trade-off between functional and
predictive performances

f(MI, TE) The tradeoffs between functional and predictive performance metrics across models
are visualized through a bivariate plot showing MI and TE Ruddell et al. (2019); see
also Figure 7C here for an example)

Process networks (PN) PN � f(TE) PNs provide a visual web of the model internal information flow between different
flux and store variables as computed by TE
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Hydrological process consistency using
hydrological signature metrics

Both the FDC and T-FDC indicate that high flows are better

represented by the uncalibrated model (Figures 5A, 6; Table 5).

In contrast, the recession curves indicate that the subsurface

release of water from storage over extended periods is better

represented by the calibrated model (Figures 5C,D; Table 5), as it

has a scatter (slope and intercept) more similar to the

observations than does the partly near-linear (in a semi-log

space) uncalibrated model. Figure 6 along with Table 5 shows

that the calibrated model is closely related to the observed data

(35% than 33%). On the other hand, the runoff coefficient (RC)

comparison between both model versions indicates strong

similarity between the models, with an RC model to RC

observed ratio of 0.969 for the calibrated and 1.003 for the

uncalibrated model (Figure 5B). The similarity in RC may

suggest that the annual mass flow (precipitation to

streamflow) of the two models is similar, with slightly more

precipitation converted into streamflow in the uncalibrated

model.

Despite the high statistical predictive performance reports of

the uncalibrated model (Table 4), the hydrological signature

metrics revealed that the calibrated model better represents

the low-flow segments of the Cedar River hydrograph. This

comparison of predictive and hydrological signature metrics

underscores the need for both types of performance

evaluations. Although hydrological process signature metrics

illuminate the failure or success of each model in representing

different processes, neither they nor the statistical predictive

metrics can reveal what type of model input and output

interactions lead to the model results, underscoring the need

for functional performance evaluations.

Model functional performances using
information-theoretic metrics

The calibrated and uncalibrated models have a similar

pattern of information flows, depicted in their process

networks (PN), with a few exceptions (Figures 7A,B; Table 6).

For example, the PNs depict high transfer entropy (TE) from

precipitation to snowmelt in the uncalibrated model. In

contrast, the calibrated model has high TE from

precipitation directly to streamflow. Although observations

of daily snowmelt are not available for this watershed for

FIGURE 5
Hydrological signature-based evaluation of NHM-PRMS predictions of daily streamflow at Cedar River, WA over 1980–2016: (A) flow duration
curve, (B) annual (i.e., October to September water year) runoff coefficient, (C)winter/cold season (months October to March) recession curves and,
(D) summer/warm season (months April to September) recession curves. The seasons and the corresponding months can be adaptively defined in
HydroBench.
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comparison to an observed PN, the PN difference noted by the

models suggests that snowmelt contributions in the

uncalibrated model could be the cause of low flow

overestimation in the FDC. Following these insights from the

PN plots, we explored the day of the year (DoY) averages,

minimums and maximums of snowmelt, actual

evapotranspiration and soil moisture of the two models

(Figure 8). The figure showed that the uncalibrated model

leads to snowmelt processes even in the late summer

months, which is not likely.

The visualization of tradeoffs between predictive and

functional performance metrics (Figure 7C) shows that

FIGURE 6
Time-linked flow duration curve for (A) the uncalibratedmodel and (B) the calibratedmodel (C) the sumof the number of simulated flows in the
same flow range bin as the observed for the uncalibrated model and (D) the same as C but for the calibrated model. Figures (A,B) show how the
observed flows in each bin are distributed across the bins of the model estimated flows. The number of bins, a user-defined value, is 25 here. Ideally,
hot colors would populate the diagonal, implying minimum over/underestimations.

TABLE 4 Summary of statistical predictive performance metrics for the uncalibrated and calibrated NHM-PRMS model of a watershed near Cedar
River, WA, based on daily streamflow, 1980–2016.

NSE KGE PBIAS r

Model
Versions

Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated

Untransformed flow 0.50 0.76 0.66 0.85 2.6% −0.35% 0.84 0.88

Log transformed flow 0.69 0.78 0.85 0.79 N/A N/A 0.85 0.90
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FIGURE 7
Functional performance metrics based on evaluation of NHM-PRMS at the Cedar River watershed. (A) uncalibrated model and (B) calibrated
model, and (C) tradeoff between functional and predictive performance metrics. In interpreting PN plots, the outer colored circle indicates the
interacting variables. The width of the chords linking the interacting variables corresponds to the TE magnitudes. In (C), the change in predictive
performance and functional performance from the uncalibrated model (origin of the arrow, blue) to the calibrated model (point of the arrow,
red) is plotted. Thus, the arrows show the effect of calibration. The difference between the two figures is presented in Table 6.

TABLE 5 Numerical scores of hydrological signature metrics. For this test case, we chose the mid slope of the FDC (25–45% exceedance probability).
Similarly, we chose the main diagonal in T-FDC as a strict measure and ‘Dry’months (April—September) for recession score as a representative of
subsurface flow dominant season. HydroBench allows users to choose the exceedance probabilities, the number of diagonals in T-FDC and seasons
for recession curve scores.

FDC slope at
exceedance probability of
0.25–0.45

T-FDC main diagonal Recession
coefficients

Annual runoff coefficient
ratio (model/observed)

Slope Intercept

Observed 14.27 N/A 1.384 −5.087 N/A

Calibrated 14.86 35% 1.396 −5.561 0.969

Uncalibrated 7.63 33% 1.179 −4.816 1.003
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calibration decreased the predictive performance of the

model, primarily by over-extracting information from

precipitation to inform streamflow (as seen in the higher

transfer entropy from precipitation to model streamflow,

i.e., TEP→Qmodel compared to observed streamflow

TEP→Qobserved). However, both the uncalibrated and calibrated

TABLE 6 TE difference between Calibrated and Uncalibrated model (%) ((TEcal − TEuncal)p100

Sink

Source Streamflow Soil moisture Snowmelt Actual ET Potential ET

Precipitation 3.216 0.306 −3.310 — —

Min Air Temperature −0.011 0.121 0.518 0.112 −0.053

Max Air Temperature 0.132 −0.046 0.537 −0.139 0.155

Soil Moisture −0.352 — — 0.185 −0.316

Snow melt −0.061 −2.400 — — —

Actual ET — −0.482 — — —

Potential ET — −0.213 — −0.124 —

FIGURE 8
Day of the year averages of (A) snowmelt, (B) actual evapotranspiration and (C) soil moisture for both the calibrated and uncalibrated model.
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models have TEP→Qmodel greater than TEP→Qobserved for

precipitation (i.e., overly-deterministic fitting), suggesting that

other processes involved in water balance partitioning (e.g.,

evapotranspiration) or through which precipitation is routed to

streams (via subsurface or snow storage) may be imperfectly

represented in the model structure and/or parameter values. In

contrast to the information flows originating from precipitation,

information flows from both maximum and minimum air

temperatures to streamflow are close to the observed

information flows and near the ‘ideal fit’ point. Given the

dominant role of temperature as a driver of evapotranspiration,

this similarity of temperature-to-streamflow information flows

between models may suggest, by elimination, that the overly-

deterministic information flow from precipitation to streamflow

observed in the calibrated model is likely attributable to its

representation (or lack thereof) of storage processes. Namely, a

more direct translation of precipitation to streamflow in the

calibrated model may neglect some of the contributions of

snow storage to peak flow that are better reflected in the

uncalibrated model. However, larger flows of information from

snowmelt and soil moisture to streamflow in the uncalibrated

model may underlie its poorer performance (relative to the

calibrated model) during periods of baseflow and suggest that

too much water is extracted from storage over longer time periods.

Discussion

Case-study reflections: Example of how a
hydrologist may use HydroBench results

Overall, HydroBench showed that the calibrated and

uncalibrated NHM-PRMS model products at the Cedar

River watershed have different skills. Although long-term

snow and moisture observational data were not available to

support the diagnosis of performance discrepancies,

HydroBench produced a set of insights into the mechanisms

underlying performance differences. In summary, the

uncalibrated model exhibited better statistical predictive

performance than the calibrated model, particularly during

high flows. However, the uncalibrated model was less skilled at

capturing low flows and streamflow recession processes, based

on the hydrological signature metrics. Functional metrics

suggested that routing of precipitation through snow storage

and melt differs between the two models, with the calibrated

model abstracting too much information directly from

precipitation. Thus, it is likely that the uncalibrated model

does a better job of capturing peak flows than the calibrated

model because it better represents the initial release of water

from the snowpack. However, the tradeoff is that the release of

water from storage from the uncalibrated simulation is too

high during baseflow-dominated periods, in comparison to the

calibrated model.

In general, information about whether the relationship

between variables is overly random or overly deterministic, as

in the Cedar River, can provide useful insight into the next steps.

In an overly-random system, although the process information is

contained in the observations, it is under-utilized, meaning the

model might not have extracted it effectively. Structural changes

to the model to represent hydrologic processes more realistically,

a better calibration strategy, and/or better objective function may

help extract the process information contained in the

observations. In contrast, in an overly-deterministic system

where there is ‘over extraction’, it might be better to reduce

the dependency of the model on the observed input data. The

reduction in dependency might be achieved through diversifying

the input data by, for example, incorporating new data (e.g.,

adding snow and soil moisture data into a model that was forced

by precipitation and temperature inputs). Additionally, the user

may consider changing the model optimization strategy.

Alternative strategies may include calibrating and validating

the model in contrasting seasons and hydrograph regimes,

using transformed data, and/or changing calibration and

validation objective functions in a way that penalizes models

in which training data have substantially higher performance

than test data. These approaches may lead to less reliance of the

model on specific variables or aspects of a variable that have

resulted in the overly-deterministic fit.

For the Cedar River case study, the insight provided by

HydroBench suggests that further calibration would be a

logical next step. Though the calibrated model exhibited

poorer predictive performance, its improved ability to capture

low flow dynamics may indicate that performance gains can be

obtained without changing the model structure. The parameters

of focus may be those relevant to snow and soil storage, and the

objective function of the calibration may need to be adjusted

further to upweight peak flows. Alternatively, the tradeoff in

better low-flow performance at the expense of high-flow

performance seen in the calibrated model may suggest that

rather than an ‘absolute best model’ parameter set, there exists

a Pareto front (i.e., an unavoidable tradeoff). However, this

possibility would need to be tested using a multi-objective

optimization scheme for calibration that provides the Pareto

front. Finally, if further parameter calibration attempts failed

to improve the predictive performance of the model while

maintaining acceptable functional performance, the modeler

may wish to revisit the fundamental structure (i.e., equations)

of the model. In this case, the representation of snow storage

and melt processes in PRMS might need to be revised to better

reflect the Cedar River catchment response.

Alternatively, given the two tested models, a user may decide

to opt for the uncalibrated model if most interested in outcomes

related to high flows, or the calibrated model if most interested in

low flows. Additionally, users or developers may decide to adopt

model averaging techniques such as Bayesian Model Averaging

-or Hierarchical Mixture of Experts to derive a consensus
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prediction (Marshall et al., 2006; Duan et al., 2007; Moges et al.,

2016). Importantly, the application of HydroBench to the test

case proves that relying only on high performance statistical

predictive measures can be misleading as shown by the high

predictive performance but the poor functional performance of

the uncalibrated model. Thus, a holistic performance evaluation

is critical.

The value of a systematic framework for
model benchmarking

Model benchmarking and diagnostics are not only at the core

of model trust and reliability but also serve as guides for future

model development and improvements. HydroBench was

designed as a model diagnostic and benchmarking tool in a

practice of open, reproducible science. The tool relies on the

Jupyter ecosystem for reproducible, collaborative, and interactive

computation. HydroBench enables model performance

evaluation and diagnosis of performance discrepancies by

providing three sets of complementary metrics, including

statistical performance metrics, process-based hydrological

signatures, and information theoretic-based tools. As

demonstrated in the test case, this tool produces insight into

many different aspects of a model’s performance and helps

diagnose performance shortfalls.

The metrics in HydroBench support the different aspects of

model evaluation outlined in Gleeson et al. (2021), including a

comparison of model results against 1) observations, 2) other

models, and/or 3) expert-based expectations. All of the metric

categories in HydroBench (predictive, process diagnostics, and

functional performances) facilitate comparison against

observations in watersheds that have observed data. The

information theoretic-based model functional performance

metric using PN supports model comparisons even in the

absence of observed data, though availability of observed

data strengthens such comparisons (e.g., Figures 7A,B).

Similarly, PNs and the hydrological signatures can facilitate

expert-based model evaluation as they highlight the key

hydrological processes and model hypotheses. The graphical

representation of a PN can be interpreted as an imprint of the

models’ process conceptualization. HydroBench can be used to

formalize and standardize the ad-hoc expert-based model

evaluation approaches commonly applied by the hydrologic

science community.

Although all the three categories of metrics in HydroBench

are designed to be used in concert, HydroBench is modular and

supports the use of any of the metrics individually. For instance,

in watersheds with abundant data, all capabilities of HydroBench

can be utilized. However, in cases of limited record length or data

diversity, a user may decline to use information-theoretic metrics

because they are not reliable in limited record lengths.

Choice of calibration objective functions dictates model

performance and sensitivity analysis results (Diskin and

Simon, 1977; Jie et al., 2016; Markstrom et al., 2016;

Garcia et al., 2017). For instance, a model calibrated using

root mean square error may not result in better performance

in logNSE. Thus, in using HydroBench, we suggest a careful

choice of performance metrics that reflect the modeling

objective. For instance, for pure predictive purposes, such

as short term flow forecasts, relying on predictive

performance metrics is beneficial. On the other hand,

water balance projections and quantifications can better be

served by signature based diagnostics and functional

performance evaluation metrics as they seek to get the

right answer for the right reasons. Furthermore, in

modeling works that start with a sensitivity analysis, the

sensitivity analysis result can also be used to align sensitive

parameters, modeling objectives and evaluation metrics. That is,

evaluating models based on a metric that reflects the objective

function set for the sensitivity analysis. Although this approach is

consistent with the user’s modeling objective, the approach is

susceptible to getting the right answer for the wrong reasons. For

instance, in a non-stationary system, an insensitive parameter or

process can be activated and the prediction and evaluations can be

misplaced. In this regard, multi-objective calibration and

comprehensive model evaluation across the three categories of

HydroBench can be beneficial in diagnosing whether the model is

right for the right reasons.

In addition to its utility in hydrologic research and applications,

HydroBench can be used to support hydrological teaching that focuses

on modeling and model evaluations (Wagener and Mcintyre, 2007;

Wagener et al., 2012). Last, HydroBench is an open source project and

can be extended by the community and also integrated with other

benchmarking tools, as TOSSH is interfaced with HydroBench.
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Using sequential conditioning to
explore uncertainties in
geostatistical characterization
and in groundwater transport
predictions
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Rapid transmission of contaminants in groundwater can occur in alluvial

gravel aquifers that are permeated by highly conductive small-scale open

framework gravels (OFGs). This open framework gravel structure and the

associated distribution of hydraulic properties is complex, and so

assessments of contamination risks in these aquifers are highly

uncertain. Geostatistical models, based on lithological data, can be

used to quantitatively characterize this structure. These models can

then be used to support analyses of the risks of contamination in

groundwater systems. However, these geostatistical models are

themselves accompanied by significant uncertainty. This is seldom

considered when assessing risks to groundwater systems. Geostatistical

model uncertainty can be reduced by assimilating information from

hydraulic system response data, but this process can be

computationally challenging. We developed a sequential conditioning

method designed to address these challenges. This method is

demonstrated on a transition probability based geostatistical simulation

model (TP), which has been shown to be superior for representing the

connectivity of high permeability pathways, such as OFGs. The results

demonstrate that the common modelling practice of adopting a single

geostatistical model may result in realistic predictions being overlooked,

and significantly underestimate the uncertainties of groundwater transport

predictions. This has important repercussions for uncertainty

quantification in general. It also has repercussions if using ensemble-

based methods for history matching, since it also relies on geostatistical

models to generate prior parameter distributions. This work highlights the

need to explore the uncertainty of geostatistical models in the context of

the predictions being made.
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1 Introduction

Alluvial gravel aquifers are a valuable source of freshwater

globally (Alsharhan and Rizk, 2020; De Luca et al., 2020). Due to

their alluvial nature, such aquifers are inherently heterogeneous,

being composed of various sedimentary textural classes that

include open framework gravels (OFGs) (Cary, 1951; Lunt

et al., 2004; Bridge & Lunt, 2006; Lunt & Bridge, 2007). A

characteristic trait of OFGs is their macroporosity, which

makes them highly permeable (Klingbeil et al., 1999; Ferreira

et al., 2010). Dann et al. (2008), and Jussel et al. (1994) have

shown through field tests and numerical modelling that the

connectedness of OFGs has a profound effect on the hydraulic

function of alluvial gravel aquifers, by facilitating preferential

flow and rapid solute transport. OFGs also have a low capacity for

microbial removal (Rossi et al., 1994; Pang, 2009; Flynn et al.,

2015) and therefore pose a significant risk in regard to human

exposure to pathogenic disease in situations where untreated

drinking water is sourced from alluvial gravel aquifers. The

2016 [ground]waterborne Campylobacteriosis outbreak

(around 7,000 cases) that occurred at Havelock North,

New Zealand is a case example (Government Inquiry into

Havelock North Drinking Water, 2017; Gilpin et al., 2020).

The work presented in this paper was motivated by the need

for robust methods to evaluate groundwater contamination risks

associated with alluvial gravel aquifer settings that incorporate

OFG. Robust model-based assessments of contaminant risk in

these groundwater systems are based on geostatistical models

that characterize the structure of these rapid transport pathways.

In this paper we focus on the geostatistical characterization of

these most permeable pathways, and the implications of

uncertainty in this characterization.

1.1 Geostatistical methods in
hydrogeological modelling

There are many practical limitations to mapping the

structure of alluvial gravels at a resolution that can detect

OFGs. Heterogeneous aquifer datasets are almost always

sparse and incomplete, particularly in lateral dimensions

(Sanchez-Vila & Fernandez-Garcia, 2016). Consequently,

stochastic inversion methods, even when coupled with

distributed parameterizations, are unlikely to identify small-

scale highly heterogeneous pathways (Doherty & Moore,

2021). Because of this, we use stochastic frameworks to

characterize heterogeneity structure, based on geostatistical or

physical process-based modelling methods (e.g. Riva et al., 2006;

Riva et al., 2008; Ritzi & Soltanian, 2015; Scheibe et al., 2015;

Siena & Riva, 2020).

Physical process-based modelling methods simulate structural

aspects of alluvial deposits based on probabilistic representations of

lithological categories within a meandering river geometry, and are

informed by the sedimentary disposition of the system. Examples

include BCS-3D (Webb & Anderson, 1996), FLUVSIM (Deutsch &

Tran, 2002) and ALLUVSIM (Pyrcz et al., 2009). Geostatistical

models can be based on covariance or variogram structures for

continuously variable hydraulic properties (Deutsch & Journel,

1998). Other options, such as training image methods, including

Multiple-Point Statistics, can be used to represent more complex

geological environments that cannot be fully represented by two-

point covariance relationships (Strebelle, 2002; Huysmans &

Dassargues, 2009).

Where sharp interfaces occur between high and low

conductivity media, such as in aquifers with OFGs,

geostatistical models based on categorical variables can be

used to generate realizations of aquifer media. Categorical

methods include Sequential Indicator Simulation (SIS) which

relies on indicator variograms based on borehole lithological data

(Goovaerts, 1997; Deutsch & Journel, 1998), and Transition

Probability (TP) Simulation (Carle, 1999). TP simulation has

the advantage that it honors volumetric proportions, mean

dimensions and the connectivity patterns of the categorical

variables.

The choice of the most appropriate structural model of

heterogeneity largely depends on the features that control the

predictive response of concern (e.g., Jafarpour & Tarrahi, 2011;

Ciriello et al., 2013; Riva et al., 2015). We opted to use TP

simulation which has been shown to be superior for representing

the connectivity of high permeability pathways (Siena & Riva,

2020). TP simulation is also well-established and used in

numerous modelling studies, including groundwater modelling

studies, that rely on a geostatistical description of the spatial

dependencies of selected categories (e.g. Park et al., 2004;

Engdahl & Weissmann, 2010; Hansen et al., 2014; He et al.,

2014).

1.2 Direct and indirect data and sequential
conditioning

The sparsity of information with which to develop

geostatistical models of heterogeneity structure has motivated

efforts to combine ‘direct’ observations made of mapped

lithological properties with ‘indirect’ data (Refsgaard et al.,

2012; Carle & Fogg, 2020) that require another level of

interpretation that carries with it uncertainty. Pumping test

data (Harp et al., 2008; Harp and Vessilinov, 2010; Harp &

Vessilinov, 2012) and geophysical data (Engdahl & Weissmann,

2010; Koch, 2013; He et al., 2014; Zhu et al., 2016) are examples of

‘indirect’ observational data often used to condition and reduce

the uncertainty of geostatistical models. Indirect data relating to

dynamical physical processes such as flow and transport can be

extremely informative, since they provide a measure of

connectivity within the hydrogeological model (Renard and

Allard, 2013).
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Using information from indirect hydrogeologic data can

nonetheless impose a significant computational burden, as this

involves the comparison of field observations with groundwater

model simulation outputs within a stochastic or Bayesian

workflow (Jafarpour & Tarrahi, 2011; Ciriello et al., 2013;

Linde et al., 2015; Riva et al., 2015). Selection of the

conditioning method can also be problematic, potentially

degrading the geological realism of the conditioned

realizations when spatially distributed parameters are adjusted

in order to provide a match to field observations (Oliveira et al.,

2017; Chan & Elsheikh, 2020).

Sequential conditioning can be used to address the

computational burden described above, where some data

requires more computational processing effort than others

(Feyen et al., 2003; Hassan et al., 2009; Dorn et al., 2012).

Sequential conditioning commences by history matching to

datasets that require the least computational effort. Each

subsequent conditioning step is focused on a selection of

observations requiring increasingly greater computational

processing. Using this process allows the prior distribution to

gradually morph into a posterior distribution. We develop an

approach that harnesses the strengths, and mitigates the

weaknesses, of two distinct conditioning methods: stochastic

inversion and rejection sampling.

The stochastic inversion method uses a history matching

approach to condition the TP model parameters through

minimizing the residuals between the transition probabilities

derived from the TP geostatistical model and those derived

from the direct lithological data. The TP model parameters

are further conditioned using “greater than” and “less than”

constraints, via a rejection sampling methodology applied to the

indirect observations.

Conditioning of geostatistical models is easier to discuss

when adopting Bayesian nomenclature (Kennedy and

O’Hagan, 2002). Therefore, in the sections that follow the

geostatistical model parameters (facies lengths, and volumetric

proportions) are referred to as ‘hyperparameters’, to distinguish

them from ‘model parameters’ i.e., hydraulic properties of the

underlying aquifer system being analyzed. Probability density

functions of hyperparameters are thus used to describe the

uncertainty of the geostatistical model. Note that if alternative

geostatistical models were adopted the hyperparameters would

differ: e.g. for a variogram based geostatistical model, the

hyperparameters would comprise the sill, range and nugget

parameters.

1.3 Research objectives

This paper explores the implications of geostatistical model

uncertainty for a particle transport modelling problem in an

alluvial gravel aquifer, where transport function is determined by

the connected, small-scale OFG textural class (Dann et al., 2008;

Burbery et al., 2017; Theel et al., 2020). It also demonstrates the

potential of a Sequential Conditioning Approach, using a case

study which contains a uniquely detailed field dataset (consisting

of direct and indirect observations) that was initially described by

Burbery et al. (2017). This case study includes data from novel

smoke tracing experiments designed to characterize the

connectivity of OFG pathways. These data are particularly

valuable, given the advantages of conditioning to prediction-

salient information (White et al., 2014; Doherty, 2015). Using the

geostatistical model hyperparameter distribution derived from

the analysis, we explored the predictive implications of the

common practice of adopting a single most likely

geostatistical model to underpin a groundwater contamination

risk assessment.

The structure of the paper is as follows: in Section 2 we

provide some background to the case study field site and describe

the direct and indirect field observational datasets that were

compiled for the alluvial gravel aquifer model used in the study.

The mathematical methodologies and framework developed and

tested in this study are described in Section 3. In Section 4 we

present the results from our modelling analyses, whilst also

exploring and discussing some implications that the

equifinality of structural heterogeneity models have for

predictions of travel time in alluvial gravel aquifers. Section 5

presents our conclusions and discusses implications of these for

stochastic decision support modelling in practice.

2 Case study

The Canterbury Plains aquifer on the South Island,

New Zealand (NZ) covers an area of approximately 8,000 km2

and consists of sets of coalesced alluvial fans that were active

during the Quaternary period (Leckie, 1994; Bal, 1996; Ashworth

et al., 1999; Browne & Naish, 2003; Leckie, 2003). This extensive

aquifer, used for irrigation, industrial and potable water supply

(Bal, 1996; Brown, 2001) is ranked as the most valuable

groundwater resource in NZ (White, 2001). The general

sedimentary structure of the aquifer is characteristic of gravel

outwash deposits formed from large braided-river systems. The

Kyle field site (43.94338 S, 172.06788 E), from which the

observational datasets used in this study were obtained, is

located on the Rakaia River fan, on the coastal boundary of

the Canterbury Plains. At the last glacial maxima, the site would

have been positioned approximately mid-point on the Rakaia fan

(Browne & Naish, 2003).

2.1 Lithological mapping (direct
observational data)

A 3D portion of the alluvial deposits at Kyle has been

mapped, covering an area measuring 28 m x 20 m and to a

Frontiers in Earth Science frontiersin.org03

Moore et al. 10.3389/feart.2022.979823

168

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.979823


depth of 6 m below the Rakaia fan surface. Mapping was

conducted from two cliff exposures (a sea cliff oriented

perpendicular to the presumed paleoflow direction and a

‘donga’, i.e. a steep-sided gully created by soil erosion, with a

face aligned 90° to the sea cliff), and nine large (1.2 m) diameter

boreholes (coded K1 to K9) that were drilled 5 m apart on a

3x3 uniform grid, 18 m inland from the cliffs (see Figure 1 inset).

The lithological examination is limited to the unsaturated zone.

However, these vertically-stacked gravel packages mapped near

the surface at Kyle represent a sample of the alluvial sequence

that forms the Canterbury Plains aquifer system. Therefore we

are able to make the assumption that this sample provides a

useful analogue model of a saturated gravel aquifer system.

Further details of the Kyle field site and investigative methods

are provided in Burbery et al. (2017).

Employing descriptive methods such as those described by

Koltermann & Gorelick (1996), Burbery et al. (2017) compiled a

map of the Kyle site adopting four lithological categories, being:

sand (S); sandy gravel (SG); open framework gravel (OFG) and

clay-bound gravel (CBG). Photographic examples of the four

lithological categories, as imaged at Kyle, are presented in

Figure 1. Particle size distribution data, and a description of

the geological depositional history for this alluvial system can be

found in Burbery et al. (2017). The relative compositions of the

lithological categories at the Kyle site are: S 5.1%, SG 67.8%, OFG

14.2% and CBG 12.9%.

OFG at the Kyle site predominantly occur as cross-strata

comprising packaged sets of alternating OFG and SG. The

thickness of the OFG lithological category is dependent on the

angle of the foresets and was observed to vary between 0.2 m and

1 m. The lateral extent of OFG seen in cliff exposures was more

than 25 m in some cases. Although less common, OFGs at Kyle

also feature as planar beds up to 0.3 m thick and 4 m–5 m wide.

From exposures observed on the donga face that is orientated

along the paleoflow direction, it is apparent that the planar beds

can extend for at least 15 m in length (Burbery et al., 2017).

On the basis of pumping and tracer test data, Dann et al.

(2008) established that typical hydraulic conductivities of OFG in

the Canterbury Plains alluvial aquifer system are two to three

orders of magnitude greater (i.e. more permeable) than those of

the other three categories (i.e. OFG have a saturated conductivity

of 1,498–10,646 m/day compared with a range for the other three

categories from 5.5 to 117.28 m/day). This is consistent with

Klingbeil et al. (1999) who described the average hydraulic

FIGURE 1
Box plot map of the Kyle site showing the spatial distribution of the four main lithological categories (textural classes), as identified on cliff
exposures and borehole walls. Site location, and themodel domain and grid that is used in the geostatistical and groundwatermodelling analyses, are
shown in inset of site plan. Representative photographic images of textural classes are included in the legend.
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conductivity of OFG being around 100 times greater than the

other alluvial categories studied. Dann et al. (2008) estimated that

this hydraulic conductivity contrast between lithological

categories results in approximately 98% of aquifer flow

occurring through these permeable connected OFGs.

Therefore, it is the connectivity of these rapid transport OFG

pathways that is relevant to the representation of pathogen

transport in aquifers (Fiori et al., 2013; Hunt & Johnson 2017).

We adopt a ‘forecast first’ approach to the development of the

geostatistical model (Doherty 2015; White 2017) and focus our

analysis on the connectivity of the OFG category identified from

observations to generate random realizations of the OFG and

other lithological categories at the scale of the numerical grid.

Assignment of hydraulic conductivity values reflected the order

of magnitude differences in conductivity between the most

permeable (OFG) and the next most permeable facies (S, SG,

CBG), resulting in a binary characterization of the hydraulic

properties within the aquifer system. While at first glance this

grouping may seem to overly simplify the geological

characterization described in Burbery et al. (2017), this

simplification has no impact on the predictions we are

making, given the contrast in permeability between the OFG

and the other lithological categories, which are considered to be

analogous to hydrofacies (Soltanian & Ritzi, 2014; Theel et al.,

2020).

2.2 Smoke tracer tests to determine
connectivity of OFG (indirect
observational data)

Three smoke tracer tests were conducted using the array of

open boreholes described to examine the interconnectedness of

OFGs at Kyle. The tests are documented in detail in Burbery et al.

(2017). In brief, they involved injecting smoke under a low

positive pressure into each of the centrally-located boreholes

K2, K5 and K8 for an extended period. The arrival time and

position of smoke emerging from OFG in neighboring boreholes

was then recorded. The results of the smoke experiments

confirmed that OFGs are truly ‘open’ since smoke was able to

travel rapidly between boreholes through OFGs. Connectivity

was found to be non-uniform in direction, reflecting both the

heterogeneity and anisotropy of the alluvial sediments. Figure 2

illustrates the connectivity between OFGs, as inferred from the

three smoke tracer tests at boreholes K2, K5 and K8.

The earliest arrival time for smoke transmitted between two

boreholes located 5 m apart was 48 s, along a co-set of planar

OFG strata running between K2 and K1 that were aligned with

the paleoflow direction. For all tests, fastest velocities

corresponded to the mean paleoflow direction, i.e. NNW-SSE

or y-direction (Figure 1). In some cases, no smoke was detected to

have travelled between adjacent boreholes, suggestive of no

apparent connectivity between the observed OFG strata.

When transmission between boreholes occurred, the latest

observed smoke arrival time was 30 min, between boreholes

K5 and K1. A specific result of the smoke tracer tests was the

lack of any observable hydraulic connection between OFG in test

borehole K5 and OFG mapped in both K8 and K9, to the north

(Figure 2).

The lithological data from borehole-logs, outcrops and

geological characterization (Figure 1), and the observed cross-

borehole connectivity from these smoke tracer experiment

results (Figure 2), provided the respective direct, and indirect,

observational data that were used to derive the geostatistical

model of the most permeable and least permeable categories in

this aquifer structure. The following sections describe the

processes and mathematical methods that utilized these

different types of information.

FIGURE 2
Schematic of smoke tracer test results. Arrows indicate connections between injection boreholes and observation points. The width of the
arrows indicates the relative strength of those connections of high conductivity pathways as inferred from the observed arrival times.
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3 Methodology

3.1 Sequential conditioning of
heterogeneity structure models

The sequential conditioning approach provides a Monte

Carlo implementation of Bayes theorem and involves a

sequence of history matching steps. The initial step

focusses on the data which is the most rapid to process.

Subsequent conditioning steps are only applied to those

parameter ranges identified as plausible from the preceding

step, and targets data that is increasingly slower to process.

The approach has computational advantages over joint

inversion if assimilating information from multiple datasets

with one dataset involving a simulation model with long run

times (Feyen et al., 2003; Hassan et al., 2009).

Previous sequential conditioning studies have adopted a

single conditioning approach (Feyen et al., 2003; Hassan et al.,

2009; Dorn et al., 2012). We combine two stochastic inversion

approaches to further reduce the computation burden of

history matching to disparate datasets. Computationally

efficient stochastic inversion methods, such as randomized

maximum likelihood approaches, are used to condition

observation groups where possible. However, rejection

sampling is used if stochastic inversion risks degrading the

representation of important spatially defined geological

features, such as a connected flow pathway, as

demonstrated by Dorn et al. (2012) with observations of

cross-borehole connectivity in a fractured rock aquifer.

While rejection sampling is too computationally inefficient

for most groundwater modelling contexts, this burden is

alleviated when using it only in final conditioning steps

(Dorn et al., 2012; Linde et al., 2015; Cirpka & Valocchi,

2016; Carle & Fogg, 2020). In this way the different strengths

of conditioning methods can be employed where appropriate,

while the respective weaknesses of each method are mitigated.

We applied this sequential conditioning approach using

direct and indirect geological observations. Direct observations

were comprised of lithological log data and were processed using

a stochastic inversion approach. Indirect observations of cross-

borehole connectivity, derived from the case study tracer test,

were processed using rejection sampling.

3.2 Geostatistical model
Geostatistical models based on transition probability (TP)

simulation are used in a number of fields (e.g. Huang et al., 2017;

Li & Zhang, 2019) to characterize the distribution and

juxtapositional characteristics of heterogeneity, such as the

connected high permeability features of interest to this case

study. We adopted the T-PROGS software for our TP model

implementation (Carle (1999), which has been used widely in the

hydrogeological field. Carle (1999) defines a transition

probability, tij, as:

‘Given that a facies j is present at location x, what is the probability

that another (or the same) facies i occurs at location x+h’, or:

tij(h) � P{j occurs at x + h
∣∣∣∣i occurs at x} (1)

Borehole-log and outcrop data is catalogued into categories,

at regular depth intervals, allowing the juxtapositional

probabilities of lithological categories to be calculated. These

are summarized in matrices of transition probabilities at specific

lags (h), in the vertical (z) and horizontal directions, i.e. along the

mean paleoflow direction (y or dip direction) and transverse to

this direction (x or strike direction). The collation of these

transition probabilities at specified separation distances (lags)

can also be depicted as a transiogram (Figure 5). These transition

probability matrices form the lithological constraints in the

sequential conditioning approach.

From Carle & Fogg (1997), the mean length �L of the ith

category unit in a particular direction can be calculated as:

�Li � 1
rii

� [ztii (0)
zh

]−1
(2)

where rii is the auto-transition rate, and tii is the auto-transition

probability.

A range of assumptions can be adopted to simplify the

calculation of transition probability matrices. Given the

emphasis of this study is on the impact of the geostatistical

representation of the connectivity of the high permeability

OFG category on the uncertainty, we adopt the simplifying

constraint of assuming that the probability of transition from

the ith to the jth category is solely dependent on the volumetric

probability of the jth facies as discussed in Harp and

Vesselinov (2010).

This allows the probability of a transition from one category

to another to be expressed as a function of the volumetric

proportions, p, and the mean lengths of the categories:

tij (h) � (1 − tii(h))
pj

1 − pi
f or j ≠ i (3a)

Which can be expressed for transition rates as:

rij � −rii
pj

1 − pi
f or j ≠ i (3b)

3.3 Conditioning using direct lithological
constraints with stochastic inversion

We adopted the Null Space Monte Carlo (NSMC)

procedure (Tonkin & Doherty, 2009), as implemented in the

PEST software suite (Doherty, 2016), which provides a close

approximation to randomized maximum likelihood methods.

This automated the task of exploring the range of TP model

hyperparameters that provides a fit to the empirical transition

probabilities. The objective function, Jlithology, used in the
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inversion procedure is the L2 norm, or sum of squared residuals

between the transition probabilities derived from the

geostatistical model and those derived from the lithological

data:

Jlithology � min βB∑M

i�1( ̂tki(h∅)(B) − tki(h∅))2

(4)

where empirical transition probabilities tki(h∅) are calculated

directly from the lithology. The modelled transition probabilitieŝtki(h∅)(B), are derived from the TP model with

hyperparameters in the vector β which has upper and lower

limits as defined by B.M refers to the number of specified lags h∅
at which transition probabilities are calculated. The parameter

bounds B are informed by the estimates of mean category lengths

from the borehole and cliff observations and analyses in Burbery

et al. (2017). These mean lengths in the paleoflow, transverse and

vertical directions are the TP model hyperparameters being

estimated by the sequential conditioning approach (refer to

Table 1).

The following steps summarize this process of conditioning

the TP models, using stochastic inversion (also depicted in

Figure 3).

1. Generate empirical transiograms from the lithological logs at

specified lags (Eq. 1).

2. Draw realizations from a prior hyperparameter distribution of

the mean lengths in the paleoflow, transverse and vertical

directions of the OFG lithological category.

3. Derive TP model based on the mean lengths, and the

calculated textural class proportions from lithological logs

for the same specified lags as in Eq. 1) above (Eqs 3a and 3b).

4. Compare modelled and empirical transition probabilities at

specified lag distances (Eq. 4).

5. Adjust hyperparameter values using stochastic inversion

algorithm until a good fit between modelled and measured

transition probabilities is obtained.

6. Repeat the process until first and second moments of the

distribution of mean OFG lengths have stabilized.

3.4 Conditioning using indirect
hydrological constraints with rejection
sampling

We adopted a straightforward implementation of rejection

sampling, consistent with the Generalized likelihood uncertainty

estimation (GLUE)method introduced by Beven&Binley (1992). It

relies on generating multiple realizations from a prior probability

distribution, running the model with each realization, and

comparing model outputs with the observations. Each realization

that does not provide a good fit tomeasured observations is rejected.

However, the ‘indirect’ nature of the observations of cross-

borehole connectivity requires many additional steps before the

information in these observations can be used to condition TP

model hyperparameters. For every hyperparameter set we generate

multiple aquifer heterogeneity realizations. Each realization is then

FIGURE 3
Flow chart showing the steps involved in the sequential Monte Carlo modelling procedure.
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converted to a hydraulic parameter field and used in a groundwater

model simulation. Based on work in Dann et al. (2008 and 2009), this

assignment of hydraulic conductivity values forOFG is 100 times that

of the other three categories. The groundwatermodel simulates a flow

process that provides outputs that correspond to the observations of

cross-borehole connectivity. The details of this groundwater model

are discussed in the following section.

Cross-borehole connectivity observations can be denoted as

fluxi. When a model-to-measurement comparison is made, it is

assessed according to an acceptance metric ∅hydrology(θ)which
defines the sum of differences between the observed and

modelled cross-borehole fluxes across all nobs observed fluxes,

i.e. the sum of squared residuals or L2 norm:

∅hydrology(θ) � ∑nobs

i�1 (f luxi(θ) − f luxi)2 (5)

where θ defines the vector of hydraulic parameters defining the

realization, which are generated from a specific geostatistical

hyperparameter set and random seed. An acceptable fit threshold

is applied to the fits between modelled and observed cross-borehole

fluxes, defined as ∅hydrology(max ). This is used to define a set of

acceptable realizations, Ω(∅hydrology(θ) ) as:

Ω(∅hydrology(θ) ) � { 0, ∅hydrology(θ) >∅hydrology(max )
1,∅hydrology(θ) ≤∅hydrology(max )

(6)

Note that this set will vary if the acceptance threshold is

varied.

Collating the heterogeneity realizations that meet the

acceptance threshold in Eq. 6 provides an acceptance

probability P̂A for each mean hydrofacies length

hyperparameter set Eq. 7:

P̂A � 1
Nr

� ∑Nr

i�1Ω(∅hydrology(i) ) (7)

where Nr is the total number of realizations.

In summary, this rejection sampling process requires the

generation of both hyperparameter realizations (also

described as hyperparameter sets in the discussion that

follows to avoid confusion with the aquifer heterogeneity

realizations) as well as heterogeneity realizations and the

hydraulic conductivity realizations based on them. The

following steps summarize this process (as depicted in

Figure 3):

7. Construct a groundwater flow model that simulates a flow

field to represent the cross-borehole connectivity

observations revealed by the smoke tracer test.

8. Select a subset of hyperparameter realizations that span the

range of mean OFG length values defined in step 6 and

generate an ensemble of heterogeneity realizations on the

basis of each selected hyperparameter realization.

9. Assign hydraulic parameter values to the high and low

conductivity categories of each realization, import these

into the flow model, and run the flow model simulation

to provide model outputs that correspond to cross-borehole

observations.

10. Compare model outputs with these indirect observations

(Eq. 5) and retain or reject the heterogeneity realization

depending on whether the model-to-observation fit is

sufficient to meet the selected acceptance criteria (Eq. 6).

11. Collate those heterogeneity realizations that meet the

acceptance criteria and calculate an acceptance probability

for each geostatistical model hyperparameter set.

12. For each of the selected subset of geostatistical

hyperparameter realizations, return to Step 9 and

continue until all realizations have been completed.

3.5 The flow model
Heterogeneity realizations were generated at a regular fine-

scale grid discretization which covered the case study site (Step

TABLE 1 Rate of producing plausible fields for 21 alternative
geostatistical model hyperparameters, and the OFGmean lengths
in the paleoflow (Ly) and perpendicular to paleoflow (Lx) directions.
Representative samples from the range of plausible geostatistical
model hyperparameters identified in the initial conditioning step
were selected for prediction uncertainty analysis are identified by
a suffix (a to i).

OFG mean length Ly2/Lx,
(m)a

Acceptance
probabilityP̂A

Paleoflow
direction,
Ly (m)

Orthogonal to
paleoflow
direction,
Lx (m)

1.99 4.86 0.81a 0

0.06 0.01 0.3 0

1.26 10.2 0.16 0.005

1.39 3.09 0.6 0.03

1.26 10.41 0.15 0.04

1.25 3.93 0.4 0.08

1.47 2.19 0.98 0.12

1.27 2.05 0.8 0.2

1.26 2.21 0.71 0.22

1.26 2.06 0.77 0.28

1.26 1.95 0.81 0.44

2.72 1.67 4.43 1.06

0.99 0.02 56.1b 2.6

2.49 1.34 4.6c 8.0

1.08 0.02 73.2d 11.7

1.12 0.02 56.9e 17.4

0.93 0.01 87f 23.0

0.96 0.03 31g 26.7

2.84 0.23 35h 38.5

6.47 0.26 158.6 80.0

2.37 0.03 178.1i 80.1

*The suffix identifies the TP, models evaluated in particle track modelling.
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8 above): an area of 40 m by 50 m by 10 m, with a grid cell

dimension of 1 m by 1 m in the horizontal direction, and 0.1 m in

the vertical direction. As noted above, each category (i.e. OFG

and the combined SG, S and CBG category) was assigned a

hydraulic conductivity value that represented the mean value for

that category, transforming the heterogeneity realizations to

hydraulic conductivity field realizations. Note that the cross-

borehole flow observations are dependent on the relative

hydraulic parameter values, rather than absolute hydraulic

parameter values, and in this case the OFGs have a

FIGURE 4
Modelled vertical transition probabilities (black line), and calculated transition probabilities from the lithological data (black dots) at the Kyle site
for two statistically valid TPmodels are shown in the left and right columns. The left and right-hand columns correspond to suffix ‘b’, and ‘i’ in Table 1.
Below the transiograms are three heterogeneity realizations relating to the TP models shown in the transiograms.
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conductivity value that is three orders of magnitude higher than

the other three textural classes.

Each hydraulic conductivity realization was used in a series of

flow model simulations, implemented using the USGS software

MODFLOW (Harbaugh et al., 2000), where cross-borehole

connectivity observations derived from the smoke tracer test

were modelled as being analogous to groundwater flow. The

relative connectivity derived from the smoke tracer tests, was

simulated using a steady-state flow field. In this flow field the

boreholes were represented as constant head cells. For each of the

smoke tracer experiments, the smoke injection borehole was

assigned a positive head and remaining boreholes were assigned a

zero head. No-flow boundaries were assigned around the edge of

the model domain. The resulting pattern of cross-borehole flows

was evaluated. This approach was possible because it was not

necessary to simulate the smoke particle movement, as only the

cross-borehole connectivity observations are used to screen out

improbable heterogeneity structures in this study.

Using MODFLOW to simulate the flow of fluids other than

groundwater, such as vapor transport in the unsaturated zone, relies

on the analogies between these two flow problems (USEPA, 1995),

and is appropriate where differential pressures are low, as

demonstrated in Massmann (1989). This approach has also been

used when simulating oil flows (Hsieh, 2011), when simulating

multiphase flow in coal seam gas problems (Herckenrath et al.,

2015), and can be used in advection-dispersion contexts (Rubbab

et al., 2016).

Using this approach, three flow simulations were undertaken,

representing each of the smoke injection bore tests depicted in

Figure 2. This approach was both sufficient for simulation of the

cross-borehole flow connectivity observations and provided a

convenient and rapid-to-deploy surrogate for smoke transport

simulation. Individual realizations were considered ‘plausible’ if the

sumof the simulated head dependent discharges corresponding to the

three most dominant connections, depicted in Figure 2, comprised

50% or more of the total discharge. The approximate and categorical

nature of this acceptance criteria implicitly accounted for

measurement and conceptual uncertainty that would impact on

the precision of model to measurement fits and resembles Dorn

et al. (2012) who used observations of the degree of fracture

connectivity with similarly approximate acceptance criteria.

3.6 Assessment of prediction uncertainty
using single and multiple plausible TP
models

The implications of adopting a single geostatistical

model are explored for simulations of groundwater

transit times. The transit time prediction was simulated

with a particle moving through a saturated steady-state flow

field, with fixed head boundaries at opposite west and east

sides of the model domain, and no flow boundaries at the

north and south sides. The flow field was derived from a

hydraulic property field relating to the aquifer

heterogeneity realizations generated in the same manner

as Step 9 above. These predictions were generated for

10 hyperparameter realizations which spanned the range

of mean length hyperparameters identified with low to high

acceptance criteria in the rejection sampling step. A total of

1,000 heterogeneity realizations were generated for each of

the ten selected hyperparameter sets.

The groundwater model domain and hydraulic property

values were the same as those used to simulate the cross-

borehole connectivity observations described above. Constant

head cells were placed at the upstream and downstream extent

of the model domain. MODFLOW (Harbaugh et al., 2000) was

used to simulate this groundwater flow field, and the transit

time of the particle was simulated using the MODFLOW ADV

package (Anderman & Hill, 2001). Transit time probability

distributions for selected geostatistical model hyperparameter

realizations were then explored.

4 Results and discussion

We examine and discuss the results of the numerical

experiments from this study within a contaminant transport

predictive context. Contaminant transport is very sensitive to the

disposition of highly permeable pathways in aquifer systems (Lee

et al., 2007; Fiori, & Jankovic, 2012; Soltanian & Ritzi, 2014; De

Barros et al., 2016; Sanchez-Vila & Fernàndez-Garcia, 2016;

Theel et al., 2020). This is particularly so for pathogen

transport where risks are largely related to the fastest transit

times through an aquifer, as pathogen numbers reduce over time

at a rate governed by the half-life of the pathogen of concern

(Hunt & Johnson, 2017).

Specifically, this section discusses the performance of the

methodology used to condition the geostatistical model of OFG

rapid transport pathways. The stochastic exploration of the ill-

posed geostatistical model discussed in this section has similarities

to the approaches described in Zhu et al. (2016), and Harp &

Vesselinov (2012). This section also discusses the implications of

the remaining geostatistical model uncertainty for pathogen transport

predictions. The OFG lithological category controls how much and

how quickly groundwater flows in our case study (Dann et al., 2009),

and the geostatisticalmodel hyperparameters correspond to themean

lengths of this category in the paleoflow direction (y or dip direction),

transverse to this direction (x or strike direction), and the z-direction.

4.1 Sequential conditioning: Performance
of initial stochastic inversion step

A total of 130 TP model hyperparameter realizations were

generated from the stochastic inversion process, with the mean
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and standard deviations of the initial conditioning of the

hyperparameter distribution having stabilized with this

number of conditioned realizations. Each of the conditioned

hyperparameter realizations resulted in modelled-to-measured

transition probability fits with correlation coefficients of

approximately 0.8. The standard deviations of the TP model

hyperparameters (mean lengths of OFG in the paleoflow,

transverse and vertical directions) were significantly reduced

in this initial conditioning step from the reasonably

unconstrained prior in the log domain of three log(m) in the

x and y directions and one log(m) in the z-direction to

0.14 log(m) in the x-direction, 0.2 log(m) in the y-direction

and 0.22 log(m) in the z-direction.

Despite the substantial reduction in the uncertainty achieved

through the initial conditioning step, the remaining hyperparameter

uncertainty can result in very different heterogeneity structures

(Figure 4). For example, Figure 4 (upper part of Figure 4), shows

two modelled-to-measured transiogram fits, where OFG mean

lengths in the paleoflow y-direction (Ly) were 0.99 m for the left-

hand side of the figure and 2.37 m on the right-hand side. A

comparison of the heterogeneity realizations corresponding to

these two hyperparameter sets (lower part of Figure 4) shows

more elongated connected OFGs in the right-hand side of the

plot, than those on the left.

The non-uniqueness of the TP model hyperparameters, as

depicted in Figure 4, reflects the lack of information regarding the

OFG category mean lengths in the lateral direction (Lx). Non-

uniqueness of geostatistical models is acknowledged and

discussed in several studies (Harp & Vessilinov, 2012; Koch,

2013; He et al., 2014; Siena & Riva, 2020). Despite this, the impact

of geostatistical model equifinality on the quantification of the

uncertainty of groundwater model predictions of interest is

seldom considered by practitioners in decision support models

(Sanchez-Villa & Fernandez-Garcia, 2016). A component of the

barrier to the uptake of stochastic methods relates to the

computational burden of their implementation (Linde et al.,

2015).

4.2 Sequential conditioning: Performance
of rejection sampling step

A selection of 21 hyperparameter sets were selected so

that they spanned the OFG hyperparameter range identified

in the first conditioning step. Details of these

21 hyperparameter sets are listed in Table 1.

Heterogeneity realizations were then generated, with more

than 17,000 heterogeneity realizations being generated for

each of the selected hyperparameter sets. Each realization

was then used in a flow simulation of cross-borehole

connectivity. The proportion of flow simulations,

associated with each heterogeneity realization, that met

the cross-borehole connectivity acceptance criteria ranged

from 0 to 81%. This approach of ranking the plausibility of

TP model hyperparameter sets using a system response-

based acceptance criteria was also used by Harp &

FIGURE 5
Relationship between the proportion of realizations meeting the smoke tracer plausibility test (Acceptance probability) and a ratio Ly

2/Lx, which
is the squared OFG category mean length in the paleoflow direction (Ly) and perpendicular to the paleoflow direction (Lx). This relationship is shown
for 21 TP models examined for the Kyle case study as summarized in Table 1.
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Vesselinov (2010) and Dorn et al. (2012), when conditioning

geostatistical facies and fracture network models

respectively.

Examination of the relationship between acceptance

probabilities and the disposition of the OFG provided

important information. The range of the mean vertical

thickness (Lz) of the OFG category was reasonably well

constrained on the basis of the lithological data, and varied

from 0.13 m to 0.43 m, with an average of 0.23 m. These

small variations in these OFG thicknesses did not impact on

the plausibility of hyperparameter sets, whereas the lateral (Ly)

and transverse (Lx) OFG dimensions did.

Figure 5 shows the relationship between OFG category mean

lengths and acceptance probabilities, expressed using a ratio of

the squared mean length in the paleoflow y-direction (Ly) and the

x-direction (Lx). The ratio between Ly and Lx can convey the

relationship between the relative mean lengths in the x and

y-directions, whereas the absolute magnitude of the mean length

is incorporated into the ratio by squaring the Ly term. By ranking

the mean OFG dimensions by their propensity to produce

realizations which generate model outputs that are consistent

with the indirect observations, additional information is

provided about the spatial disposition of the OFGs.

Various relationships between acceptance probability and

the mean length hyperparameters were analyzed to explore this

information. The absolute magnitude of these ratios was found to

be important when simulating the cross-borehole flows,

correlating strongly with acceptance probabilities. Long and

narrow OFGs, elongated in the paleoflow direction, were

found to be positively correlated with higher acceptance

probabilities (Figure 5; Table 1). In contrast, small OFG

lengths in the paleoflow direction, or large OFG widths

(direction orthogonal to paleoflow), had very low acceptance

probabilities.

Table 1 lists the OFGmean lengths in the paleoflow direction,

(Ly), and orthogonal to this direction, (Lx), for the 21 selected

hyperparameter sets. It also lists the Ly
2/Lx ratio and acceptance

probabilities, (P̂A ) for the 21 selected hyperparameter sets, which

are also depicted in Figure 5. Of the realizations summarized in

Table 1, two different geostatistical models achieved the highest

acceptance probability of 80%; these occurred for the models

which had a Ly
2/Lx ratio of 178 and 158.6. These ratios

corresponded to mean lengths between 2.37 m and 6.47 m in

the paleoflow y-direction (Ly) and mean widths of 0.03 m–0.26 m

in the x-direction (Lx). These acceptance probability figures

indicate that the lack of OFG connectivity in the direction

orthogonal to paleoflow (x-direction) was as important as the

connectivity in the paleoflow y-direction when reproducing the

cross-borehole connectivity observations. This strongly

directional dependent nature of the OFG connectivity was not

indicated by the lithological logs alone. Some of the other TP

models listed in Table 1, while not producing such high

acceptance probabilities, still provided some realizations which

meet the acceptance criteria. Therefore, those geostatistical

model hyperparameter sets cannot be discounted as valid.

The overall greater connectivity of the OFG in the paleoflow

direction across the range of hyperparameters explored is

depicted in probability plots as shown in Figure 6. Figure 6A

shows the probability of OFGs occurring for all selected TP

models, denoted ‘a’ to ‘i’ in Table 1, spanning the range of

acceptance probabilities from 0 to 80%. A probability of one

occurs where OFGs were observed directly in the lithological

logs, as depicted in Figures 6A and 6B, with probabilities

approaching one clustered around borehole locations. With

greater distance from the boreholes, these probabilities

gradually reduce to background levels of 0.14, representing

the bulk proportion of OFGs at this site.

Figure 6B depicts the probability of OFGs occurring in any

model cell, for a single TP model (denoted as ‘a’ in Table 1) which

corresponds to an acceptance probability of zero. Figure 6B depicts

wider OFGs in the direction orthogonal to the paleoflow direction.

These wider OFG’s would tend to allow greater cross-bore

connectivity orthogonal to the paleoflow direction, which is

inconsistent with the smoke tracer test observations.

Harter (2005), Fogg et al. (2000), and Fogg & Zhang (2016)

discuss how the upper 12–28% of a hydraulic conductivity

distribution will tend to be fully connected in 3-D created

random fields. This proportional range of high conductivity

facies encompasses the bulk proportion of OFGs in this study.

Fogg & Zhang (2016) assert that this connectivity will lead to

laterally and vertically extensive rapid transport pathways. The

OFG probabilities shown in Figure 6A provide an indication of

the disposition of such connected pathways.

4.3 Sequential conditioning summary
The sequential conditioning approach adopted, combining

stochastic inversion and rejection sampling was able to support

the conditioning to direct and indirect geological observations.

Rejection sampling revealed the anisotropy of the OFGs more

fully and was required only when conditioning to the cross-bore

flow observations, to adhere to the conceptual model for geologic

heterogeneity. Many more model runs would have been required if

rejection sampling had been applied as part of a joint inversion

approach. This study provides a demonstration of using a sequential

conditioning approach comprised of two history matching methods

to successfully negotiate the pitfalls of numerical inefficiency on one

hand and degradation of the geological model on the other.

4.4 Implications of geostatistical model
equifinality for contaminant risk assessments

Particle tracking simulations are often used to assess the risks

associated with rapid transport rates of pathogens in

groundwater (Hunt & Johnson, 2017). We adopted this

approach when assessing the impact on transit time

predictions incurred by adopting a single geostatistical model.

In total, 1,000 realizations were used from selected geostatistical
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models (identified as (a) to (i) in Table 1). This subset of nine out

of 21 hyperparameters sets explored were selected to span the

range of acceptance probabilities identified.

The distribution of particle paths simulated on the basis of

each realization, that were generated from the nine selected TP

model hyperparameter sets, are mapped in plan-view in Figure 7.

The corresponding acceptance probability listed in Table 1 is also

noted in Figure 7 for each model, with model (i) having the

highest acceptance probability of 80%. Blue particle paths

correspond to all realizations generated for each

hyperparameter set, while red particle paths correspond to

only those realizations which met the cross-borehole

acceptance criteria. Figure 7 shows particle tracks have less

lateral spread and are more closely aligned with the

groundwater flow direction for those models associated with

higher acceptance probabilities. This is consistent with the

narrow and longer disposition of OFG pathways identified

through conditioning to the cross-borehole connectivity

observations.

The transit times corresponding to the particle tracks shown

in Figure 7 were collated and are summarized in the box and

whisker plot of Figure 8. Note that these times are normalized by

using a porosity value that scales the maximum travel times for

hyperparameter set (i) to be approximately 1 day, allowing the

relativity of these travel times to be depicted rather than their

absolute magnitude. For example, the hyperparameter set (c)

results in a maximum travel time that is 500% greater than that of

the hyperparameter set (i). The hyperparameter set (i) in the

FIGURE 6
OFG probability models showing the spatial probability of OFGs occurring at a probability of greater than 0.25: (A) for combined realizations
from TP models labelled ‘a’ to ‘I’ in Table 1; and (B) for realizations from a single TP model labelled a0 in Table 1.
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bottom right of Figure 8 provides the fastest particle travel times,

and also provides the highest acceptance probability.

A comparison of the results from the other eight

hyperparameter sets (a to h), is illuminating. It shows that

particle transit times which met the cross-borehole acceptance

criteria can fall well outside the range defined by the

hyperparameter set (i) which had the highest acceptance

probability. This has implications for analysis of predictive

uncertainty. An analysis of transit time based on a single

geostatistical model hyperparameter set with the highest

acceptance probability, could significantly under-estimate

the transit time uncertainty. Instead, a robust uncertainty

analysis may need to consider predictions simulated from

realizations generated from TP model hyperparameter sets

with lower and higher acceptance probabilities. Therefore,

while conditioning can reduce geostatistical model

uncertainty, the results indicate that multiple plausible

geostatistical models need to be considered for a prediction

of concern in decision support modelling. This issue was also

raised in Harp & Vessilinov (2012) when examining the

quantification of the uncertainty of aquifer drawdown

predictions.

This has practical implications for model-based risk

assessments, and highlights the importance of considering the

specific prediction being made when selecting geostatistical

models. For this case study, when simulating pathogen

contamination risks, the greatest risks would be exposed using

model hyperparameter set (i), and would not have been exposed

using model (b). If instead the concern had been related to

inefficient use of land, due to over estimation of source protection

zone areas, the greatest risk would be exposed by adopting model

hyperparameter sets (b) or (f).

4.5 Additional considerations

In other prediction uncertainty studies based on TP

geostatistical models, it may be important to also represent

the variability of hydraulic properties within a defined

category. Riva et al. (2006) found that representing hydraulic

conductivity variability within a category could led to elongated

capture zones, where this variability was being used to represent

small-scale preferred flow paths. In contrast, Copty & Findikakis

(2002) found that internal variability of hydraulic conductivity

within defined categories had no significant impact on the

predictions of a solute particle transport.

Those two studies exemplify the fact that any requirements

for representing inter-category variability are context specific.

Where realizations have been generated at significantly larger

scales than the hydraulic property variability occurs, the

FIGURE 7
Particle tracks for selected TP models (a–i) are shown in blue. Particle tracks for plausible realizations for each model are shown in red. The
acceptance probability for each of the figures are shown alongside the relevant model label.

Frontiers in Earth Science frontiersin.org14

Moore et al. 10.3389/feart.2022.979823

179

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.979823


geostatistical model is upscaled, and hence inter-category

variability may be required if the prediction is sensitive to this

variability. The study reported here sought to represent the fine

scale detail of the permeable connected OFG category,

populating a very fine model grid to explicitly represent

preferred pathways. Therefore, the need to represent inter

category variability was avoided in this study.

The 1 m by 1 m grid discretization used in this study required

only slight upscaling of the transition probabilities in the

x-direction, perpendicular to the paleoflow direction. The

stochastic nature of prediction specific heterogeneity at field

scales was not addressed in this study and remains a research

challenge (Fogg et al., 2000; Fogg & Zhang, 2016; Doherty &

Moore, 2019). Initial explorations into this field of research

include hierarchical nested model frameworks (Li et al., 2006;

Sreekanth & Moore, 2018), or the hybrid multiscale methods

outlined in Scheibe et al. (2015). Local and global upscaling

approaches can be used to derive the field scale versions of these

stochastic models of aquifer heterogeneity if a robust fine-scale

characterization of the heterogeneity exists (Fengjun et al., 2003;

Chen, 2009; Zhou et al., 2010; Li et al., 2015; Soltanian et al., 2015;

Li & Durlofsky, 2016).

5 Conclusion

Groundwater model predictions of contaminant transport,

particularly pathogen contaminants, are sensitive to small-scale

high permeability pathways. The ability to improve the

characterization of geostatistical models that are used to

describe these rapid transport pathway distributions is central

to improving models used for water management decision

support. However, the extent to which uncertainties in

geostatistical models can influence the outcomes of a

contaminant transport risk assessment is not well understood

and is typically neglected in modelling practice.

In this study we have put considerable effort into conditioning

geostatistical model hyperparameters and exploring their uncertainty,

but it is common practice to adopt a single geostatistical model

parameterization. We demonstrate that the selection of a single

FIGURE 8
Box andwhisker plots showing relative particle exit-times for TPmodels (a–i) together with their combined times (all). The ‘suffix represents the
exit-times derived from the plausible realizations for each TP model. Box and whiskers represent the minimum, maximum and lower and upper
quartile of the particle exit-times.
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geostatistical model, without consideration of its relevance to the

predictions that matter, may prevent the simulation of real predictive

possibilities, undermining the quantification of risks. Risk based

assessments may need to consider alternative geostatistical models

in the context of particular types of predictions (e.g. predictions

dependent on time of travel) to guarantee robust decision support.

Conditioning with both direct and indirect aquifer

information can mitigate the impact of sparse geological data,

allowing the uncertainty of geostatistical models to be

significantly reduced. In this study the detailed lithological

study documented in Burbery et al. (2017) supplemented by

the observations of cross-borehole connectivity from smoke

tracer tests, enabled geostatistical models of the risk salient

aspects of OFG pathways in alluvial gravels to be defined i.e.

the connectivity of the OFG rapid transport pathways. To the

best of our knowledge, no studies combining fine detailed

lithological logs from alluvial deposits with in-situ

measurements of the connectivity of rapid transport pathways,

have previously been used to derive a geostatistical model of

small-scale high permeability groundwater pathways. The fine-

scale characterization of highly permeable OFG pathway

structure, made accessible by this study, provides a much-

needed basis for the assessments of risk in these contexts.

The significant computational burden involved when

conditioning geostatistical models with direct and indirect data is

made more challenging if efficient conditioning methods risk

degrading the geological realism of the geostatistical model. To

address this, we developed a sequential conditioning approach

that combines alternative history matching methods. This

approach enables each dataset to be conditioned with the history

matchingmethod best suited to that data. Datasets that involvemore

processing are scheduled for processing in later steps, thereby

supporting better management of the computational load.

This work also provides a basis for future research. The fine-scale

characterization made accessible by this study provides a much-

needed basis for the analysis of upscaled hydraulic parameters to

field scales that account for the presence of OFG pathways when

assessing the risk of early arrival times of pathogen contaminants.

With better characterization of geostatistical models of rapid

transport pathways, we can more reliably model groundwater

flow and contaminant transport and provide improved

environmental decision support at a range of scales.

The particle tracking predictive scenario discussed in this

paper demonstrates the implications of the geostatistical model

uncertainty in one specific predictive context. Future research

may also explore an advection-dispersion transport predictive

simulation to assess the implications of geostatistical model

uncertainty for transport predictions that are more affected by

factors such as dispersion or chemical reactions.

In summary, the results of this study illustrate the importance of

considering geostatistical uncertainty, in the context of specific

predictions. Adoption of a single geostatistical model can result

in realistic predictions being overlooked. Prediction specific

geostatistical models need to be selected, such as those of rapid

transport pathways explored in this study, to ensure robust

assessments of risk. Combining acceptable realizations from

multiple credible geostatistical models, to ensure that the true

predictive uncertainty range is conveyed, may be required.

Alternatively, selection of a worse-case geostatistical model for a

particular prediction could be adopted. This has important practical

implications for uncertainty quantification and history matching

when using ensemble-based methods, which are based on

geostatistical models to generate prior parameter distributions.
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Scalable deep learning for
watershed model calibration

Maruti K. Mudunuru*, Kyongho Son, Peishi Jiang,
Glenn Hammond and Xingyuan Chen

Pacific Northwest National Laboratory, Richland, WA, United States

Watershed models such as the Soil and Water Assessment Tool (SWAT)

consist of high-dimensional physical and empirical parameters. These

parameters often need to be estimated/calibrated through inverse

modeling to produce reliable predictions on hydrological fluxes and

states. Existing parameter estimation methods can be time consuming,

inefficient, and computationally expensive for high-dimensional

problems. In this paper, we present an accurate and robust method to

calibrate the SWAT model (i.e., 20 parameters) using scalable deep

learning (DL). We developed inverse models based on convolutional

neural networks (CNN) to assimilate observed streamflow data and

estimate the SWAT model parameters. Scalable hyperparameter tuning is

performed using high-performance computing resources to identify the top

50 optimal neural network architectures. We used ensemble SWAT

simulations to train, validate, and test the CNN models. We estimated the

parameters of the SWAT model using observed streamflow data and

assessed the impact of measurement errors on SWAT model calibration. We

tested and validated the proposed scalable DLmethodology on the American River

Watershed, located in the Pacific Northwest-based Yakima River basin. Our results

show that the CNN-based calibration is better than two popular parameter

estimation methods (i.e., the generalized likelihood uncertainty estimation

[GLUE] and the dynamically dimensioned search [DDS], which is a global

optimization algorithm). For the set of parameters that are sensitive to the

observations, our proposed method yields narrower ranges than the GLUE

method but broader ranges than values produced using the DDS method

within the sampling range even under high relative observational errors. The

SWAT model calibration performance using the CNNs, GLUE, and DDS

methods are compared using R2 and a set of efficiency metrics, including

Nash-Sutcliffe, logarithmic Nash-Sutcliffe, Kling-Gupta, modified Kling-Gupta,

and non-parametric Kling-Gupta scores, computed on the observed and

simulated watershed responses. The best CNN-based calibrated set has scores

of 0.71, 0.75, 0.85, 0.85, 0.86, and 0.91. The best DDS-based calibrated set has

scores of 0.62, 0.69, 0.8, 0.77, 0.79, and 0.82. The best GLUE-based calibrated set

has scores of 0.56, 0.58, 0.71, 0.7, 0.71, and 0.8. The scores above show that the

CNN-based calibration leads to more accurate low and high streamflow

predictions than the GLUE and DDS sets. Our research demonstrates that the

proposed method has high potential to improve our current practice in calibrating

large-scale integrated hydrologic models.
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1 Highlights

• We developed a scalable deep learning (DL) methodology

to estimate SWAT model parameters.

• Our DL methodology is based on convolutional neural

networks (CNN).

• Our CNN-enabled SWAT model calibration shows higher

streamflow prediction accuracy than traditional parameter

estimation methods such as the Generalized Likelihood

Uncertainty Estimation (GLUE) and the Dynamically

Dimensioned Search (DDS) algorithms.

• Estimated SWAT model parameters from observed

discharges are within the sampling range of ensemble

simulations even when high-observational errors exist.

• An added benefit is that CNN-enabled parameter

estimation after training is at least O(103) times faster

than GLUE- and DDS-based methods.

• However, the hyperparameter tuning to discover

reasonably accurate CNN models is computationally

expensive, which is in O(105) processor hours.

2 Introduction

Watershed models frequently are used to predict streamflow

and other components in the terrestrial water cycle. These

components are affected by a wide range of anthropogenic

activities (e.g., agricultural intensification), climate

perturbations (e.g., rain-on-snow, rising temperatures and

increasing precipitation, earlier occurrence of snow melt in

mountainous regions), and disturbances (e.g., wildfire) (Singh

and Frevert, 2003; Singh and Frevert, 2010; Daniel et al., 2011).

Watershed models also have been used to assess the sustainability

of the water supply for effective water resource management.

Some popular and open-source watershed modeling software

that can accurately simulate various components of water cycling

in intensively managed watersheds include the Soil and Water

Assessment Tool (SWAT) and its variants (e.g., SWAT-MRMT-

R) (Mankin et al., 2010; Neitsch et al., 2011; Fang et al., 2020), the

Advanced Terrestrial Simulator (ATS) (Coon et al., 2020), the

Precipitation Runoff Modeling System (PRMS) (Leavesley et al.,

1983; Markstrom et al., 2015), the Weather Research and

Forecasting Model Hydrological modeling system (WRF-

Hydro) (Sampson and Gochis, 2018; Wu et al., 2021), etc

(Donigian et al., 1995; Tague and Band, 2004; Graham and

Butts, 2005; Cuo et al., 2008; Hamman et al., 2018).

Watershed models adopt physical laws (e.g., mass and energy

balance) or known empirical relationships to simulate the

watersheds’ different hydrological components (e.g.,

infiltration, evapotranspiration, groundwater flow, streamflow).

These models feature two types of parameters (Johnston and

Pilgrim, 1976; Mein and Brown, 1978; Nakshatrala and

Joshaghani, 2019). The first type includes parameters with

physical characteristics (e.g., permeability, porosity). The

second type includes conceptual or empirical parameters,

which are currently impossible or difficult to measure directly.

Most watershed simulators (e.g., SWAT, PRMS) consist of

parameters that fall in the second category (Singh and Frevert,

2010). As a result, observed data, such as streamflow collected at

the watershed outlet, are used to estimate the conceptual

parameters through model calibration. Many semi-distributed

or bucket models can only achieve adequately accurate

predictions after calibrating their parameters with available

observations, making them less ideal for ungauged watersheds.

On the other hand, advanced fully integrated watershed models

(e.g., ATS) can predict watershed responses with reasonable

accuracy without undergoing intensive model calibration;

however, running those models is computationally expensive

(Chen et al., 2021; Cromwell et al., 2021). Certain parameters in

these mechanistic models (e.g., ATS) are measurable and

physically significant while others are empirically similar to

the SWAT.

Various techniques and software tools for calibrating

watershed models have been reported in the literature (Duan

et al., 2004). Popular methods include generalized likelihood

uncertainty estimation (GLUE) (Blasone et al., 2008; Nott et al.,

2012), the dynamically dimensioned search (DDS), maximum

likelihood estimation (Myung, 2003), the shuffled complex

evolution method developed at the University of Arizona

(SCE-UA) (Duan et al., 1994), Bayesian parameter estimation

methods (Thiemann et al., 2001; Gupta et al., 2003; Misirli et al.,

2003), ensemble-based data assimilation methods (e.g., ensemble

Kalman filter, ensemble smoother) (Evensen, 1994; Van Leeuwen

and Evensen, 1996; Evensen, 2003; Chen et al., 2013; Evensen,

2018; Jiang et al., 2021), and adjoint-based methods (Tarantola,

2005; Aster et al., 2018). These techniques underpin popular

software packages such as PEST (Doherty and Hunt, 2010),

DAKOTA (Adams et al., 2009), SWAT-CUP (Abbaspour,

2013), MATK (Model Analysis ToolKit, 2021), MADS

(MADS, 2021), and DART (Anderson et al., 2009), which are

developed to facilitate model calibration. Using these existing

calibration methods and tools can be time consuming (e.g., slow

convergence), require good initial guesses, and can be

computationally intensive (e.g., may require many forward

model runs or runs using high-performance computing

clusters) (Rouholahnejad et al., 2012; Zhang et al., 2016; Bacu

et al., 2017). Moreover, calibration using such tools can

potentially result in reduced accuracy when estimating high-
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dimensional parameters (> 10) (Duan et al., 2004; Eckhardt

et al., 2005). New PEST tools have been developed to handle high

dimensional inverse modeling like PESTPP-ies and PESTPP-DA.

However, many of the methods mentioned above have challenges

(see Supplementary Text S1) in properly capturing the strong

nonlinear relationships between parameters and observed

responses (Franco and Bonumá, 2017). Recent advances in

deep learning (DL) (e.g., deep neural networks [DNNs],

convolutional neural networks [CNNs]) show promise for

developing reliable model calibration methods that overcome

the challenges described above (Gabrielli et al., 2017; Cromwell

et al., 2021).

Deep learning shows promise in aiding inverse modeling

associated with highly nonlinear relationships (Zhang et al., 2009;

Gabrielli et al., 2017; Marçais and de Dreuzy, 2017; Afzaal et al.,

2020; Sit et al., 2020; Nearing et al., 2021). It uses multiple neural

layers to extract features that are representative of inputs, and

DL-enabled inverse models for parameter estimation are known

to be robust even when observed errors or noise exist (Rolnick

et al., 2017; Edwards, 2018; Gupta and Gupta, 2019; Rudi et al.,

2020). In hydrology, neural networks (e.g., deep, convolutional,

recurrent) have been used to model and predict streamflow,

water quality, and precipitation (Shen, 2018; Khandelwal et al.,

2020; Bhasme et al., 2021). Recently Tsai and co-workers (Tsai

et al., 2021) developed a novel differentiable parameter learning

framework that efficiently learns a global mapping between

inputs and process model parameters. They applied this

framework to estimate Variable Infiltration Capacity (VIC)

land surface hydrologic model. The trained DL models

produced parameters which allow VIC to best match surface

soil moisture observations from NASA’s Soil Moisture Active

Passive satellite mission. In this paper, we present a scalable,

DL methodology that uses observed streamflow data to

estimate high-dimensional SWAT model parameters

efficiently and reliably with reasonable accuracy. By

scalable, we mean that the CNNs can be trained and tuned

at any scale (e.g., from laptop computers to high-performance

computers at leadership-class computing facilities) without

any changes in the proposed method or developed code. This

study uses CNNs, which are frequently used in hydrological

applications (Sadeghi et al., 2019; Van et al., 2020; Jagtap

et al., 2021).

CNNs offer many advantages over DNNs (Read et al., 2019;

Dagon et al., 2020; Jia et al., 2021; Rahmani et al., 2021; Willard

et al., 2022). A significant advantage of CNNs is that they

explicitly learn local representations (or patterns). As a result,

CNNs are best suited to produce image or time series data where

the neighboring dependencies are important. This superior

performance of CNNs can be attributed to the multiple

convolutional layers that learn hierarchical patterns from the

inputs. The resulting broader set of abstract patterns are used to

develop nonlinear mappings between streamflow and the SWAT

model parameters. Another benefit of CNN-enabled inverse

models is their low inference time for parameter estimation

compared to traditional methods; however, data requirements

and associated training time (e.g., hyperparameter tuning)

needed to develop such inverse models can be substantial.

Once the CNN-enabled inverse model is trained, it can allow

assimilation of observed data, thereby significantly reducing the

time required to estimate parameters in high-dimensional space

(Cromwell et al., 2021).

2.1 Main contributions

The main contribution of this study is development of an

accurate parameter estimation methodology using CNNs that

calibrates watershed models better than traditional methods (e.g.,

GLUE, DDS). The CNN-enabled inverse mappings are built on

ensemble simulations generated by the SWAT model. Scalable

hyperparameter tuning is performed to identify the top

50 architectures based on mean squared error and other

performance metrics1. Further, we test the influence of errors

in observed streamflow on parameter estimation and streamflow

prediction accuracy. A significant advantage of the proposed DL

method is that it estimates sensitive parameters with reasonably

good accuracy even at high observation error levels (e.g., 100%

relative observational errors). Moreover, these estimated

parameters are within the prior sampling range, showing the

proposed methodology’s robustness to observational errors.

Compared to the GLUE and DDS optimization methods,

parameters estimated by the CNN-enabled inverse model

provide more accurate streamflow predictions within and

beyond the calibration period. The GLUE method identified a

set of behavioral parameters within the ensemble parameter

combinations. By “behavioral” parameters, we mean to signify

parameter sets for which SWAT model simulations are deemed

to be “acceptable” upon satisfying certain user-defined

performance metrics (e.g., KGE greater than 0.5) on observed

data (Blasone et al., 2008). Based on a cutoff threshold that uses

metrics such as the KGE, the entire set of simulations then is split

into behavioral and non-behavioral parameter combinations.

The behavioral parameter set provides better accurate

predictions than the non-behavioral set. Our analysis also

showed that the CNN estimated parameter sets are narrower

than the GLUE-based behavioral sets but wider than estimations

obtained using the DDS method. As the DDS method is a global

optimization, it searches for a best parameter value based on a

performance metric (e.g., KGE). Hence, the obtained parameter

ranges from the DDS method can be narrower than those

1 Popular objective functions such as R2-score, Nash-Sutcliffe efficiency
(NSE), Kling-Gupta efficiency (KGE), and their modifications (e.g.,
logNSE, mKGE, and npKGE) are used to evaluate the fit between
observed and simulated streamflow time series.
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obtained from the CNN and GLUE methods. Another advantage

of the proposed CNN-based inverse models is that it is at least

O(103) times faster than the GLUE and DDS methods. From a

computational cost perspective, traditional parameter estimation

using local and global optimization algorithms (e.g., using PEST,

DAKOTA) requires multiple forward model runs. As a result,

inverse modelingmay require source code modifications and also

high-performance computational resources, which can be

prohibitively expensive. We acknowledge that hyperparameter

tuning can be expensive. However, such tuning is needed for

finding optimal CNN architectures. Once CNNs are trained, the

savings in computational cost enable our DL-enabled parameter

estimation to be inclusive [i.e., easy to adapt using transfer

learning (Zhuang et al., 2020; Song and Tartakovsky, 2021)]

and ideal for calibrating multi-fidelity models (e.g., ATS,

PFLOTRAN, WRF-Hydro, PRMS) at spatial scales of

watersheds and basins.

2.2 Outline of the paper

The paper is organized as follows: Section 2 discusses

state-of-the-art methods for parameter estimation and their

limitations. We also demonstrate the need for developing DL

method to better calibrate hydrological models, such as

SWAT. Section 3 describes the study site and SWAT model

developed using a National Hydrography Dataset PLUS

(NHDPLUS v2)-based watershed delineation (Moore and

Dewald, 2016). We discuss data generation to develop

CNN-enabled inverse models. We also compared observed

data with the SWAT model ensemble simulations. Section 4

introduces the proposed scalable DL methodology for

estimating SWAT parameters. We performed sensitivity

analysis to rank the sensitivities of SWAT model

parameters. We performed scalable hyperparameter tuning

to identify the optimal CNN architectures and described the

associated computational costs for training the DL models and

generating inferences (e.g., on test and observational data).

Section 5 presents the training, validation, and testing results

of the CNNs. We compared the performance of CNN-

estimated parameters with those of the GLUE and DDS

methods. Performance of the calibration model within and

beyond calibration period is provided. Sections 6 and 7

present our future work and conclusion.

3 Study site and data generation

This section first describes the study site, the American

River Watershed (ARW) in the Yakima River Basin (YRB),

before discussing the SWAT model, its parameters, and

specifics on ensemble runs needed to develop CNN-enabled

inverse models. We also compare the observed streamflow

data used to calibrate the SWAT model with the ensemble

runs within the calibration period (i.e., from water years

[WYs] 2014 to 2016 [1 October 2013, through

30 September 2016]). Each SWAT model run produces

daily simulated streamflow values.

3.1 Study site

The YRB (see Figure 1), situated in Eastern Washington

State, has a drainage area of about 16,057 km2 (Mastin and

Vaccaro, 2002; Qiu et al., 2019). The daily averaged flow for

the YRB is about 95 m3s−1 over a period of 40 years. This averaged

flow is computed using the data collected from 1/1/1980 to 12/

31/2021 at the Kiona gauge station, which is the closest to the

outlet of the YRB. A major tributary of the Yakima River is

the American River, which is a third-order stream, with a

watershed of about 205 km2. According to 30-year

normalized PRISM data, the mean annual precipitation

and temperature within the ARW range from 978 to

2,164 mm and 2.8–4.9°C, respectively (Daly et al., 2000;

Daly and Bryant, 2013; PRISM, 2021). The climate within

the ARW exhibits strong seasonal patterns, including cold,

wet winters and hot, dry summers. About 60% of

precipitation occurs in the winter as snow, with snowmelt

occurring from April to June the following year. Peak

snow accumulation and flow occur in April and May,

respectively. This prior site-specific knowledge shows

that the snow process parameters in the SWAT model

are essential. Guided by the information mentioned above

and sensitivity analysis, our results demonstrate that we

can better estimate such important process model

parameters using our DL method rather than DDS and

GLUE methods.

The slope of the ARW varies from 0° to 83°, with a mean

slope of 23°. The major surface geology types are andesitev

(72%), granodiorite (20%), and alluvium (8%). The primary

soil texture is gravelly loamy sand with a maximum soil

depth of 1,524 mm based on U.S. Department of Agriculture

State Soil Geographic Data (STATSGO) (Schwarz and

Alexander, 1995). This soil is classified as hydrologic

group B with moderate runoff potential and infiltration

rates. Evergreen trees (83%) and shrub (11%) dominate

the land cover. Other types of land cover include urban,

grass, and wetlands. The ARW has a U.S. Geological Survey

(USGS) gauging station (USGS 12488500) located in the

watershed outlet. This station has been recording the

daily observed streamflow from 16 July 1988, to the

present. A snow telemetry (SNOTEL) station (site name:

Morse lake) is located northwest of the watershed. This

SNOTEL station has measured the snow water, daily

precipitation, and air maximum/mean/minimum temperatures

from 1 October1979, to the present.
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3.2 Brief description of the SWAT model

SWAT is a semi-distributed eco-hydrological model. It

can simulate both subsurface and surface hydrological

processes, soil or plant bio-geochemistry, and in-stream

processes (Arnold et al., 2012). The SWAT model requires

various spatial Geographic Information System data to

represent the different watershed characteristics (e.g.,

topography, land cover, and soil). The USGS 10-m digital

elevation model (DEM) is used to compute the topographic

parameters (e.g., drainage area, slope, slope length) with the

ARW basin and sub-basin boundaries and stream networks

defined by the National Hydrography Dataset Plus

(NHDPlus) catchment/streams. Previous studies (Chiang

and Yuan, 2015; Moore and Dewald, 2016) have

demonstrated that NHDPlus-based catchment/streams

outperformed modeled streamflows that did not account

for such delineation.

Figure 1 shows the location of the ARW, and key inputs of

NHDPlus-based SWATmodel used to simulate streamflow at the

ARW study site. This model is composed of 87 sub-basins with

five slope classes (percent rise of the slope): 1) 0–26, 2) 26–51, 3)

51–80, 4) 80–129, and 5) 129–999. Data from the USGS National

Landcover Database 2016 (30-m resolution) and the Department

of Agriculture STATSGO database are used to estimate the land

cover/use and soil parameters, respectively. Hydrologic response

unit (HRU) maps are developed by fully combining unique slope

class, land cover/use, and soil type, resulting in a total of

2,421 HRUs for the ARW (see Figure 1). Supplementary Text

S1 provides additional details on SWAT model development for

our study site. Daily precipitation, maximum and minimum air

temperatures, radiation, and relative humidity from a daily

Daymet (Daymet, 2021) with 1-km spatial resolution are used

to prepare the climate input data for the SWAT model

simulations. Wind speed data are generated using weather

generators in the SWAT.

3.3 Data for the SWAT model calibration

Table 1 summarizes the 20 parameters and their associated

sample ranges (e.g., minimum and maximum values) we

calibrated in the SWAT model to generate simulation data.

The table clearly shows seven groups/types of SWAT model

parameters: 1) landscape, 2) soil, 3) groundwater, 4) channel, 5)

snow, 6) plant, and 7) climate. Each parameter in a specified

group is calibrated at different spatial scales. For example, snow

group parameters such as SFTMP and SMTMP represent basin-

scale snow processes. Channel group parameters are at the sub-

basin level, and soil/groundwater/plant/climate group

parameters represent HRU level spatial variation. Even though

some parameters differ at the HRU level, we calibrate basin-scale

scaling coefficients that vary within [−0.3, 0.3] and are the same

for all HRUs.

FIGURE 1
NHDPlus-based SWATmodel for ARW: This figure shows thewatershed delineation and data products used to develop the SWATmodel for our
study site. The top left figures show the delineation of the YRB into different watersheds, including our ARW study site. It also shows the DEM used for
modeling the ARW and the associated stream gauge at thewatershed outlet. The top right figures show the spatially varying slope and soil data within
the study site. The bottom left figure shows the delineation of third-order streams in the ARW. The bottom right figures show the spatially
varying land cover (primarily evergreen) and the number of HRU employed in the SWAT model.
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Using a Sobol quasi-random2 sequence sampling method

(Herman and Usher, 2017), we generated 1,000 sets of these

20 parameters to develop CNN-enabled inverse models. Sobol

sequence is quasi-random low-discrepancy sequences (Sobol’,

1967; Herman and Usher, 2017). Compared with random

sampling from a uniform distribution, Sobol sequence

guarantee better uniform coverage of the samples. We

adopted Sobol sequences to generate the ensemble realizations

of standardized parameters within [0,1], which were then scaled

back to the parameter ranges shown in Table 1 The daily

streamflow data and flow duration curves simulated using the

SWAT model for these 1,000 realizations are shown in Figure 2.

The simulation time for the SWAT model calibration is between

the beginning of WY 2014 to the end of WY 2016 (i.e., 1 October

2013—30 September 2016), which is referred to as the calibration

TABLE 1 This table provides a list of 20 different SWAT model parameters that are calibrated using the proposed scalable DL methodology. The
associated lower and upper limits of parameter values also are specified. Boldfaced descriptors are mutual information (MI)-identified sensitive
parameters (Jiang et al., 2022b).

Parameter
group/type

Parameter2 Lower
limit

Upper
limit

Brief description
(units)

Parameter
modification3

Spatial
variability

Landscape CN2 −0.3 0.3 % change in SCS runoff curve number R Varying across
HRUs

Groundwater RCHRG_DP 0 1 Deep aquifer percolation fraction V Constant across
HRUs

Groundwater GWQMN 0 5,000 Threshold depth of water in the shallow aquifer
required for return flow to occur (mm)

V Constant across
HRUs

Groundwater GW_REVAP 0 0.2 Groundwater “revap” coefficient V Constant across
HRUs

Groundwater REVAPMN 1 500 Threshold depth of water in the shallow aquifer for
“revap” to occur (mm)

V Constant across
HRUs

Groundwater GW_DELAY 1 100 Groundwater delay (days) V Constant across
HRUs

Groundwater ALPHA_BF 0.01 0.99 Baseflow alpha factor V Constant across
HRUs

Soil SOL_K −0.3 0.3 % change in saturated hydraulic conductivity
(mm h−1)

R Varying across
HRUs

Soil SOL_AWC −0.3 0.3 % change in available water change in capacity of the
soil layer (mm H2O mm soil−1)

R Varying across
HRUs

Soil ESCO 0.01 1 Soil evaporation compensation factor V Constant across
HRUs

Soil OV_N −0.3 0.3 % change in Manning’s “n” value for overland flow R Varying across
HRUs

Channel CH_K2 0 200 Effective hydraulic conductivity in main channel
alluvium (mm h−1)

V Constant across
sub-basins

Channel CH_N2 0.02 0.15 Manning’s “n” value for the main channel V Constant across
sub-basins

Snow SFTMP −5 5 Snowfall temperature (oC) V Constant in the
basin

Snow SMTMP −5 5 Snow melt base temperature (oC) V Constant in the
basin

Snow SMFMX 1.4 6.9 Maximum melt rate for snow during the year (mm
H2O

oC day−1)
V Constant in the

basin

Snow TIMP 0.01 1 Snowpack temperature lag factor V Constant in the
basin

Plant EPCO 0.01 1 Plant uptake compensation factor V Constant in the
basin

Climate PLAPS 343.3 964 Precipitation lapse rate (mm km−1) V Constant in the
basin

Climate TLAPS -4.86 3.353 Temperature lapse rate (oC km−1) V Constant in the
basin

2 Table 1: Note that the sensitive parameters are identified using the MI
method. These sensitive parameters are presented in boldface in this
parameter column.
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period. The validation period is from3 WY 2000 through WY

2013 (i.e., 1 October 1999—30 September 2013). The calibrated

SWAT model is run during the validation period, and its

performance is then compared with the observed data.

Figure 2 compares the ensemble mean of simulated discharge

(i.e., 1,000 realizations) with the observational data. The grey

color represents each of the 1,000 simulated discharge

realizations. This streamflow time-series and flow duration

curve qualitatively shows the similarities of the trends in the

simulated discharge and observed data. However, the

comparison against observations also show the over/under

predictions of peak/low flows that can be due to structural

deficiencies of the model. The SWAT model fidelity may need

to be enhanced to overcome these structural deficiencies. The

generated data are used to estimate SWAT parameters by the

CNN-based calibration, GLUE, and DDS methods. The GLUE-

and DDS-based SWAT model calibrations also are compared

with the observed data for both periods. The behavioral model

parameter sets (i.e., from the GLUE method) are selected based

on KGE metrics. We also use the other accuracy measures (e.g.,

NSE, logNSE, R2-score) to evaluate the calibrated SWAT model

performance, which are described in Section 4.4.

4 Proposed methodology

This section presents the overall methodology consisting

of data pre-processing, scalable hyperparameter tuning

(Mudunuru et al., 2022), and computational cost of

constructing the CNN-enabled inverse models. We also

briefly describe the GLUE and DDS optimization methods

that are used to compare the performance of CNNs. The

comparison of the DL method performance against the

most commonly applied algorithms for calibration of

FIGURE 2
SWATmodel simulations vs. observational data (within calibration period): This figure compares themodeled streamflow data generated based
on NHDPlus-based SWAT model with observed flow for the ARW study site. The top figure (A) shows the streamflow time-series and the bottom
figure (B) shows the flow duration curves. The dark brown color dashed line represents the ensemble mean of 1000 SWAT model simulations. The
grey color lines represents the modeled streamflow ensembles. The black-colored line corresponds to the observed streamflow data.

3 In Table 1, the parameter modification column indicates how SWAT
model parameters aremodified during calibration and the training data
generation for CNN-enabled inverse modeling. The term “V” indicates
that existing SWATmodel parameter values are replaced with values in
the provided range. The term “R” indicates relative changes in
parameters by multiplying existing values with 1+ calibrated
parameter values in the range (Qiu et al., 2019). The CN2, SOL_K,
and SOL_AWC parameter modifications are “R,”whose absolute values
as (Eckhardt et al., 2005; Rouholahnejad et al., 2012), [0.001, 1,000],
and [0.01, 0.35], respectively.
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FIGURE 3
Proposed scalable deep learning workflow for the SWATmodel calibration: A pictorial description of the proposed DLmethodology to estimate
parameters and calibrate the SWAT model using observational discharge. Ensemble simulations generated by the SWAT model are used to train,
validate, and test the CNN-enabled inverse models, as shown in the top figure (A). The observed streamflow is then provided as an input to the
developed DL models to estimate site-specific parameters. These parameters are then used by the SWAT model to simulate discharge for
comparison with observational data. The bottom figure (B) shows a scalable hyperparameter tuning approach to identify optimal CNN architectures
using high-performance computing resources at NERSC. Each explored CNN architecture is trained on one/two CPU physical cores and its
performance is estimated using validation loss and streamflow prediction metrics (e.g., R2-score, NSE, logNSE, KGE and its variants). From the
explored space, top 50 CNNs are chosen for inverse modeling and analysis.
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watershed simulation models (i.e., DDS and GLUE) gives

better insight into CNN’s capability in providing accurate

parameter estimations and uncertainty on streamflow

predictions.

4.1 Proposed scalable deep learning
methodology

Figure 3 summarizes our proposed DL method for training

the inverse models and then inferring the SWAT parameters. We

train, validate, and test CNN-enabled inverse models

(Schmidhuber, 2015; Goodfellow et al., 2016; Chollet, 2017)

using SWAT model ensemble runs. The proposed DL

methodology can be divided into multiple steps, which is

described below in a step-by-step approach.

1) The inputs to the CNNs are the modeled daily streamflow

time-series data and outputs are the SWAT parameters.

Both the inputs and outputs are normalized for

training CNNs.

2) The CNN-enabled inverse models are developed to estimate

all 20 of the SWAT process model parameters. We used the

Keras API in Tensorflow package (Keras API, 2021) to build

our CNN-enabled inverse models.

3) The simulated streamflow and parameter sets are assembled

into a data matrix and then partitioned into training (80%),

validation (10%), and testing (10%) sets, of which each SWAT

run contains 1,096 daily data points. The training and

validation sets are jointly used in hyperparameter tuning to

find the optimal CNN architecture.

4) The dataset is normalized, which is necessary for CNNmodel

development as CNNs are filter/kernel-based methods that

benefit from normalization of their inputs to make accurate

predictions (Anysz et al., 2016; Gu et al., 2018). The

normalization is done by first removing the mean and

scaling the training dataset to unit variance and then

applying the same pre-processing normalizer to transform

the validation and testing sets.

5) Hyperparameter tuning is performed to identify the

optimal CNN architectures whose performances were

evaluated against validation dataset during model

training. By CNN architecture, we mean convolutional

and pooling layers that needs to be tuned for optimal

performance.

6) The testing step includes performance evaluation (e.g., mean-

squared error) of the tuned CNNs on test data.

7) The observed data are standardized using the pre-processing

normalizer (Pedregosa et al., 2011) that we trained on

simulation data. This normalized data is input to the tuned

FIGURE 4
A top-50 CNN-enabled inverse model architecture: This figure shows a pictorial description of a deep CNN for estimating SWAT model
parameters. This CNN model inversely maps simulated discharge to 20 different conceptual parameters. Hyperparameter tuning is then performed
to arrive at this CNN architecture. This CNN-enabled inversemodel is amulti-task learningmodel that accounts for the correlation between different
SWAT parameters during training.
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CNN-enabled inverse model to estimate the study site SWAT

model parameters. We also add errors to observed streamflow

data and assess the performance of CNNs for SWAT model

calibration.

8) Finally, these calibrated parameter sets are given to the SWAT

model to obtain daily streamflow values in the calibration and

validation periods. The predicted discharge is then compared

with the observed data to evaluate the performance of the

CNN-calibrated SWAT model in both calibration (WY

2014–2016) and validation time periods (WY 2000–2013).

Hyperparameter tuning is a crucial step in obtaining reliable

and accurate CNN-enabled inverse models. The search for

hyperparameters is performed in parallel at the National

Energy Research Scientific Center (NERSC) (NERSC, 2021), a

high performance computing user facility operated by Lawrence

Berkeley National Laboratory for the U.S. Department of Energy

Office of Science. Scalable hyperparameter tuning is achieved by

combining mpi4py (MPI for Python) package with Tensorflow

package and parallel HDF5 modules to train each CNN

architecture on at least one physical central processing unit

(CPU) (see Figure 3B). As tuning is embarrassingly parallel,

the CNN architectural search space is distributed across the

processes employed and run simultaneously on one to two cores

each. All trained CNNmodels and their inferences are written to

their individual HDF5 files. This tuning is necessary as the

training process and predictions of the CNN-enabled inverse

model are controlled by the parameters and topology of the CNN

architecture. We tested two types of hyperparameters: 1) model

hyperparameters and 2) algorithm hyperparameters. Model

hyperparameters define the neural network architecture. For

instance, the selection of CNN topology is influenced by

model hyperparameters such as the number and width of

hidden layers. Algorithm hyperparameters influence the

training process after the architecture is established. The

values of the trainable weights of a CNN architecture are

controlled by algorithm hyperparameters such as learning rate

and the number of epochs. Table 2 shows the search space that we

explored. Supplementary Table S1 shows the model and

algorithm hyperparameters for the top 50 CNN architectures

identified through this scalable approach. During the tuning

process, we used ReLU as the activation function, and max

pooling is taken to be equal to 2. The optimal hyperparameter

set is chosen based on the validation mean squared error along

with streamflow prediction metrics using the grid search tuning

method4. In addition to identifying the optimal hyperparameter

set, we also identified the next 50 best candidates. In Section 5, we

show the predictions of these 50 best models and the associated

uncertainty in their streamflow predictions5.

Figure 4 shows a pictorial description of a tuned CNN

architecture from the grid search. The CNN filters are

initialized with the Glorot uniform initializer (Gu et al., 2018;

Keras API, 2021). This Glorot uniform allows us to initialize the

weights so the variance of the activations are the same across

every neural layer. Moreover, this constant variance initialization

helps prevent the gradient from exploding or vanishing. After

each convolution, a max-pooling operation is applied, and the

final convolutional layer is flattened. After the dropout layer, the

remaining features are mapped to the SWAT parameters. The

entire CNN is compiled using an Adam optimizer, with the loss

being the mean squared error. The resulting tuned CNN

architectures (each of the top 50 models) have approximately

1 M trainable weights.

4.2 Dynamically dimensioned search
method

The DDS method is a global optimization algorithm

developed to automatically calibrate highly parameterized

TABLE 2 This table provides the hyperparameter space used to explore CNN architectures for developing reliable DL-enabled inverse mappings for
the SWAT model calibration.

Hyperparameter type Description Explored options

Layers Number of 1D convolutional layers [1, 2, 3, 4, 5]

Filters The number of output filters in the 1D convolution [16, 32, 64, 128, 256]

Kernel size An integer to specify the length of the 1D convolution window [2, 4, 8, 16, 32]

Dropout rate Applies dropout to the input5 [0.0, 0.1, 0.2, 0.3, 0.4]

Learning rate The value of the optimizer in the Adam algorithm [10–6, 10–5, 10–4, 10–3, 10–2]

Batch size The number of training samples seen by CNN per gradient update [4, 8, 16, 32, 64]

Epochs The number of times the algorithm sees the training data [50, 100, 200, 300, 400, 500]

4 Grid search is an exhaustive search technique performed on a specific
hyperparameter values of the CNN architecture.

5 Table 2: To reduce model over-fitting, we randomly set the last
convolutional layer units that connect to the output to 0 at each
step during training time. The rate value controls the frequency of
dropping the units.
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hydrologic models. Typically, the total number of evaluations

available for SWAT model calibration is always limited and is

also case-study dependent because of the curse of

dimensionality. The DDS method is designed from this

calibration perspective to find practical or high-quality

parameter sets. It is well known that the DDS method

outperforms methods such as SCE-UA (available in PEST

package) when the number of calibrated parameters is high

(i.e., 10 or more) (Tolson and Shoemaker, 2007). Below, we

summarize the steps involved in executing the DDS method to

calibrate the SWAT model.

First, we define DDS algorithm inputs such as neighborhood

perturbation size parameter (0.2 as the default value), maximum

number of function evaluations (a total of 500 for each random

seed), number of random seeds (a total of 10), bounds on all the

SWAT model parameters (as mentioned in Table 1), and initial

guesses/solutions for these parameters. Second, for the initial

guess, we construct and evaluate an objective function (e.g., KGE)

that minimizes differences between the simulated and observed

data. Third, we perturb the initial guess by using a vector sampled

from a standard normal random distribution with zero mean and

unit standard deviation. We ensure that the perturbed values are

within the physical bounds, which is the SWAT parameter range.

Fourth, we evaluate the objective function and update the best

solution until all user-defined evaluations are exhausted or a

stopping criterion is met. We executed these steps for 10 different

random seeds, which resulted in a total of 5,000 DDS calibration

sets (i.e., 10 × 500). Then, we selected the top-50 from this total of

5,000 DDS calibration sets.

4.3 Generalized likelihood uncertainty
estimation method

The GLUE method (Beven and Binley, 2014) used in

hydrology provides a framework for evaluating model

performance and quantifying the impact of various

uncertainty sources on predictive uncertainty. For its

simplicity and flexibility, the GLUE method (Beven and

Binley, 2014) has been applied to various watershed models.

The method uses a Monte Carlo approach to evaluate different

model structure/parameter sets by comparing observed data with

modeled values. In many cases, the different models or parameter

sets show similar model performance (e.g., NSE), which is called

as an equifinality. Thus, instead of searching for an optimum

model, searching for a behavioral parameter and model structure

is a general practice. In this study, we use the GLUE method to

select the behavioral parameter sets for the SWAT model by

comparing the observed streamflow and modeled value. Because

of the lack of prior knowledge of the distribution of each

parameter, the 20 parameters used in the SWAT model are

assumed to follow uniform distributions, and we use a Sobol

sequence method to efficiently sample the parameters values. The

behavioral parameter sets are the top-50 sets selected from a total

of 1,000 simulations based on the accuracy of the KGE metric.

The selected KGE values of the behavioral parameter sets range

from 0.5 to 0.7. They are shown in Section 5 and also in

Supplementary Table S2. Also, to evaluate the impact of total

number of model simulations on model performance, we also

increased the number of model simulations from 1,000 to 5,000,

and the results obtained from 5,000 simulations remain very

similar to the results from 1,000 simulations.

4.4 Performance metrics

The evaluation criteria for SWATmodel calibration using the

CNN, DDS, and GLUE estimated sets include R2-score, NSE,

logNSE, KGE, and its variants (i.e., mKGE and npKGE)

(Hydroeval, 2021). For instance, NSE, logNSE, and KGE are

evaluated as follows:

NSE q, q̂( ) � 1 −
∑n
i�1

qi − q̂i( )2
∑n
i�1

qi − μq( )2 where μq �
1
n
∑n
i�1

qi (1)

logNSE q, q̂( ) � 1 −
∑n
i�1

log qi[ ] − log q̂i[ ]( )2
∑n
i�1

log qi[ ] − log �q[ ]( )2 (2)

KGE q, q̂( ) � 1 −

���������������������������
r − 1( )2 + σ q̂

σq
− 1( )2

+ μq̂
μq

− 1( )2

√√
(3)

Where q̂i ∈ q̂ is the SWAT model prediction and qi ∈ q is the

observational streamflow. n is the dimension of q̂ and q, which is

the total number of time-steps. r is the Pearson product-moment

correlation coefficient. σ q̂ and σq are the standard deviations in

the SWAT model predictions and observations, respectively. μq̂
and μq are the mean values in the SWAT model predictions and

observations, respectively. The objective functions for computing

mKGE and npKGE metrics are described in References (Kling

et al., 2012; Pool et al., 2018).

Eachmetric takes into account different aspects of calibration

performance (Liu, 2020). The R2-score indicates the goodness of

fit, which measures how close the streamflow predictions from

the CNN-enabled calibration are to observed data. NSE evaluates

how well the calibrated SWAT model predictions capture high

flows. Complementary to NSE, logNSE determines the accuracy

of model predictions for low flows. KGE combines these three

different components of NSE (i.e., 1) correlation, 2) bias, and 3) a

ratio of variances or coefficients of variation) in a more balanced

way (e.g., more weight on low flows and less weight on extreme

flows) to assess the SWAT model calibration. mKGE makes sure

the bias and variability ratios are not cross-correlated, which

otherwise may occur when (for instance the precipitation) inputs

are biased. npKGE provides the variability and the correlation

term in KGE in a non-parametric form. This reformulation of
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KGE as npKGE allows us to estimate non-parametric

components (i.e., the Spearman rank correlation and the

normalized flow–duration curve), which are necessary for

watershed model calibrations aiming at multiple hydrograph

aspects. Hence, including multiple accuracy metrics when

evaluating a calibrated model has obvious advantages. In

addition to the above metrics, we quantify the uncertainty of

the modeled streamflow for each method. Uncertainty is

measured by the averaged width of maximum and minimum

modeled streamflow results over the simulation periods and how

well the modeled uncertainty boundary contains the observed

streamflow. We evaluate this predictive uncertainty and

associated probability that streamflow is contained within this

boundary for the top-50 sets estimated by the CNN, DDS, and

GLUE methods.

4.5 Computational cost

The wall clock time to run the WY 2014 to 2016 SWAT

model simulation (each realization) is approximately an hour on

a four-core processor (Intel(R) i7-8650U CPU at 1.90 GHz),

which is a standard desktop computer. The ensemble run

simulations for training the CNN-enabled inverse models

were developed using a cluster of 56 cores (Intel(R) Xeon(R)

Gold 5120 CPU at 2.20 GHz) and 256 GB DDR4 RAM. We

trained a total of 26,250 CNN architectures by using 400 Cori’s

KNL CPU nodes at NERSC. Each KNL node comprises of

68 physical 1.40 GHz Intel Xeon Phi Processor 7,250 (Knights

Landing) with four threads per core, 96 GB DDR4, and 16 GB

MCDRAM memory. The scalable hyperparameter tuning to

identify top-50 CNN architectures led to the use of

approximately 520,000 processor hours. This is the total

computational cost to calibrate the SWAT process model

using CNNs. The time to calibrate SWAT process model

using DDS and GLUE is equal to 20,000 processor hours

(5,000 realizations × 4 cores). Even though model calibration

using CNN is expensive (≈ 18 hours/architecture), it is

embarrassingly parallel, allowing us to efficiently use

supercomputing resources. The DDS method is generally

sequential, as the parameter update depends on the previous

estimation. Also, the DDS-based estimations depend on initial

random guesses similar to CNN training. Hence, the algorithm

needs to be run multiple times to remove the effect of

randomness. Like the GLUE method, DDS allowed us to

calibrate parameters in approximately 10 h.

From this training time, it is evident that a thorough

hyperparameter tuning can be computationally expensive and

requires high-performance computing resources. This high

training time is mainly due to the slow training of CNN

models on CPUs, which can be accelerated by using graphic

processing units (GPUs). Despite the expensive computational

cost to develop the proposed CNN-enabled inverse models, the

inference cost to estimate the SWAT model parameters takes

only 0.16 s. Moreover, hyperparameter tuning allows us to find

CNNs that are highly accurate. The tuned CNNs allow us to

make ensemble estimations quickly without the need to retrain

the model. The GLUE and DDS algorithms need to be re-run on

each discharge input to estimate SWAT parameters, which

makes the trained CNNs attractive for inference. This low

inference time is attractive for estimating the SWAT model

parameters using streamflow data (with and without

observational errors/noise). The wall clock time for making a

prediction/inference shows that our CNN-enabled parameter

estimation is at least O(103) times faster than the GLUE and

DDS-based methods (e.g., may require thousands of forward

model runs for each observational time series), in addition to its

predictive capability.

5 Results

This section presents results on the overall accuracy and

efficiency of the proposed DL methodology. First, we provide

results from sensitivity analysis performed using a mutual

information theory on the SWAT ensembles (Jiang et al.,

2022b). Second, we describe the CNN-enabled inverse

modeling results from the ensemble runs. Third, we show the

SWAT model parameters estimated from observed discharges

and compare the performance of CNN-enabled parameter

estimation with the results from application of the GLUE and

DDSmethods.We also compare the streamflow predictions from

the calibrated SWAT model with observed discharges for both

the calibration and validation periods for all three methods.

Finally, we give the performance metrics and calibration

uncertainties for CNN-enabled, DDS, and GLUE estimated

parameters.

5.1 Sensitivity analysis results

Table 1 identifies sensitive parameters that influence

simulated discharge at the ARW study site. Figure 5 shows

that the simulated discharge is sensitive to 11 out of the

20 parameters: 1) SFTMP, 2) CH_K2, 3) ALPHA_BF, 4)

RCHRG_DP, 5) CH_N2, 6) SMTMP, 7) TIMP, 8) CN, 9)

SMFMX, 10) GW_DELAY, and 11) EPCO. These

11 parameters correspond to landscape, groundwater, channel,

plant, and snow groups. The important parameters mentioned

above are identified using the MI methodology as described in

(Cover and Thomas, 2006; Jiang et al., 2022b). Mutual

information is a non-negative value that measures the

dependency between the SWAT model parameters and its

outputs. Zero MI means that streamflow is not affected by

that parameter, and higher values of MI mean higher

dependency. We note that discharge is primarily influenced
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by the snowfall temperature (SFTMP; the most sensitive), whose

sensitivity shows the seasonality pattern consistent with the site

description in Section 3.1. The importance of SFTMP in

determining streamflow verifies the critical role of the snow

process in this watershed.

5.2 Training, validation, and testing results

Figure 6A shows the training and validation loss of the best

CNN-enabled inverse model in estimating the SWAT parameters.

Validation loss plateaus even as the training loss decreases due to the

lack of valuable information in the streamflow data to constrain the

lesser and insensitive parameters (e.g., soil, climate, and other

groundwater variables such as GW_REVAP). Figures 6B–D

shows the prediction of the tuned CNN-enabled inverse model

for estimating SFTMP. Supplementary Figures S1–S3 provide one-

to-one plots for the remaining 10 sensitive parameters. Some one-to-

one plots between the estimated and true parameters are closely

distributed along the one-to-one line, which shows that the most

sensitive parameters (e.g., SFTMP, CH_K2, ALPHA_BF) are

predicted with reasonably good accuracy. The accuracy of the

training predictions is lower for other less sensitive parameters

(e.g., RCHRG_DP, EPCO). This reduced accuracy is evident

from the more scattered drift away from the one-to-one straight

line, seen in Supplementary Figure S3. The reduced accuracy is

comparable to the training results where we see an increased

deviation of data scatters from the one-to-one straight line.

Similar results are obtained for other tuned CNN architectures.

This scattered deviation indicates that these less-sensitive parameters

are hard to predict using the discharge time series.

5.3 Sensitivity of estimated SWAT
parameters to observation noise

We selected all test realizations to evaluate the parameter

estimation sensitivity of the CNN-enabled inverse models to

observed errors. We added random observation errors to the

synthetic observed discharge time series for each test realization.

We then generated 100 different observation realizations for

parameter estimation, qn, which is given by (Cromwell et al., 2021)

qn � q + ϵ × q × r (4)

where ϵ is the standard deviation of the noise, usually taken as 13 of
the observation error, and r is a random vector of the same size as

q. The elements of the random vector contain samples drawn

from a standard normal distribution with a mean of 0 and a

standard deviation of 1. We tested different levels of observation

errors (i.e., 5%, 10%, 25%, 50%, and 100%) relative to the

observed values. These noisy discharge data (both synthetic

and observations) are provided as input to the best CNN-

enabled inverse models to estimate the SWATmodel parameters.

Figure 7 shows the variability in estimated SFTMP results

from the CNNs results as box plots. It also shows CNN model

predictions for all noisy test realizations (Figure 7A) as well as

FIGURE 5
MI analysis on the SWAT model simulations: This figure shows the ranking of the SWAT model parameters based on MI. The analysis is
performed for 1,000 realizations generated using a Sobol sequence. Among the sensitive parameters, it is evident that SFTMP is the dominant
parameter and OV_N is the least important parameter for this ARW study site. In addition to snow parameters, we also see channel and groundwater
parameter types are sensitive to streamflow.
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observed data (Figure 7B). Supplementary Figures S4–S8 provide

estimates for the other sensitive parameters. We note that the

parameter estimates are within the prior sampling range even

after adding high relative noise levels (i.e., 100%), which

instills confidence in the predictive capabilities of CNN

models. From Figure 7A, it is evident that CNN-enabled

inverse models are reasonably robust to noise in

estimating the most sensitive parameter. This shows that

the SFTMP predictions are not that sensitive to noise, as

the performance of CNNs is stable even after adding high

errors to data. This predictive capability when noise is applied

to discharge time series also provides the insight that CNNs

can effectively learn underlying representations in the

streamflow data rather than noise in the observed data.

Similar assessments can be made for the other sensitive

parameters (e.g., CH_K2, ALPHA_BF). However, as model

parameter sensitivity decreases, the CNN predictions are

more prone to be influenced by noise. The performance of

CNN estimation for EPCO, which is the least sensitive

parameter among the top 11 parameters, is lower than that

of sensitive parameters such as SFTMP. As discussed in

Section 5.2 and from MI analysis, it is evident that

streamflow provides little information to estimate this

parameter. This reduced performance is the result of less

valuable information being available in the streamflow data to

accurately estimate less sensitive parameters, such as EPCO.

5.4 Calibrated SWAT model based on
observed discharge

Trained CNN-enabled inverse models are used to estimate

the SWAT parameters at the ARW study site based on observed

discharge data. We provide streamflow predictions of the

calibrated SWAT model based on the best CNN architecture

and the following 49 best candidates. We also compare the

FIGURE 6
Loss metrics of the best CNN-enabled inverse model and its predictions for the SFTMP: The top left figure (A) figure shows the overall training
and validation loss of the best CNN architecture. The top right (B), lower left (C), and lower right (D) figures show one-to-one plots for the most
sensitive parameter, SFTMP (units in oC). It compares the CNN estimation with the ground truth for the training, validation, and test datasets. We did
not use test data for finding the tuned CNN architectures. Only the validation set is used for hyperparameter tuning. Each blue dot represents a
realization from the corresponding train/validation/test set of ensembles. The red line is the one-to-one line.
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performance of CNN predictions against predictions provided by

the DDS and GLUE methods. Figure 8 shows the estimated

SFTMP parameter range for CNN, DDS, and GLUE for the

observed data.We see that the DDSmethod has a narrower range

than the CNN and GLUE methods. The reason for this narrower

range is DDS uses a global optimization algorithm that iteratively

searches for a parameter set that produces a unique value. On the

other hand, the loss function in the CNN method is non-convex,

meaning that in all likelihood, gradient descent converges to sub-

optimal valleys or local minima. Hence, the CNN method has a

slightly broader range compared to the DDS method but a

narrower range than the GLUE method. Similar inferences

can be made on other parameters as shown in Supplementary

Figure S9 provided in the supplementary information (e.g.,

ALPHA_BF, CH_K2, RCHRG_DP).

Figure 9 shows the calibration performance of top-50 CNN,

DDS, and GLUE calibration set predictions using six different

metrics. It is clear that CNN-enabled parameter estimation is

better than behavioral parameter sets estimated by the GLUE and

DDS methods for all six studied metrics. Additionally, in

FIGURE 7
Top-50 CNNmodel estimation under influence of noise (SFTMP): The top figure (A) shows the sensitivities of the CNN-enabled inverse models
to 100% noise added to the test realizations. The bottom figure (B) shows the CNN estimations on the observational discharge represented by the
colors filling the box plots. Both of these figures show the variation in SFTMP (units in oC) with different noise levels. Moreover, the CNN estimations
are closer to ground truth for all synthetic predictions as shown in the top figure. From the bottom figure, we observe that even under high
relative observational errors, the estimations of the most sensitive parameter SFTMP are narrower compared to GLUE as seen in Figure 8.

FIGURE 8
Comparison of top-50 CNN, DDS, and GLUE estimated sets
(SFTMP): This figure compares the estimations of CNN, DDS, and
GLUE on observational discharge for SFTMP (units in oC). From this
figure, it is evident that DDS has the narrower range than CNN
and GLUE.
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Supplementary Figure S15, we show one-to-one scatter plots for

the best CNN, DDS, and GLUE streamflow predictions with

observed data both in calibration and validation periods. In

Supplementary Figure S15, each dot corresponds to daily

streamflow. The predictions are based on the best sets

calibrated by the CNN, GLUE, or DDS methods. The best

CNN-based calibrated set has R2, NSE, logNSE, KGE, mKGE,

and npKGE scores of 0.71, 0.75, 0.85, 0.85, 0.86, and 0.91,

respectively. The best DDS-based calibrated set has scores of

0.62, 0.69, 0.8, 0.77, 0.79, and 0.82. The best GLUE-based

calibrated set has scores of 0.56, 0.58, 0.71, 0.7, 0.71, and 0.8.

Supplementary Table S2 also provides the metric values for the

CNN, GLUE, and DDS sets. From these values, it is clear that the

CNN-enabled inverse model estimations are more accurate for

SWAT model calibration than the GLUE and DDS estimations.

Therefore, CNNs show promise for parameter estimation,

especially in nonlinearly relating streamflow data to

conceptual parameters.

Figure 10 shows smaller uncertainty ranges for CNN sets in

both calibration and validation periods than the GLUE and DDS

estimations. The probability that the prediction intervals

estimated by the CNN sets contain the observed streamflow

also is lower than the GLUE and DDS sets. This shows that top-

50 CNN sets are not sufficient to capture the predictive boundary

of streamflow variations. If we include all the CNN sets (as shown

in Supplementary Figures S12–S15G,H), the probability that

FIGURE 9
Performancemetrics of top-50 estimated sets using CNN, DDS, and GLUEmethods: This figure compares different performancemetrics of the
CNN, DDS, and GLUE calibrated sets. The left (A) and right (B) figures show the performances in calibration and validation periods, respectively. The
green, blue, and red whiskers represent the CNN estimation, DDS, and GLUE. Top-50 best performance sets are identified and evaluated for each
method within and beyond calibration period. The performance metrics (e.g., NSE, logNSE, npKGE) focus on the predictive capability of CNN-,
DDS-, and GLUE-based calibrated SWAT models in both low and high flow scenarios. Across all performance metrics, it is evident that estimation
using the CNN-enabled inverse models outperforms DDS and GLUE.

FIGURE 10
Comparison of top-50 CNN, DDS, and GLUE’s streamflow variations: The left figure (A) shows the size of the mean modeled streamflow
variation (i.e., a representation of predictive uncertainty). The right figure (B) provides the probability that the observed flow is contained within the
predicted bounds of the streamflow (e.g., the light blue colored region in Figure 11) estimated by the calibrated SWAT model. The uncertainty in the
GLUE-based calibration sets prediction, and associated probability is higher than DDS and CNN.
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observational data is contained within the prediction bounds is

greater than 0.95. However, the mean variation size of the

streamflow increases fourfold to accommodate this increase in

probability. One of our next steps is to improve this top-50 CNN

estimation probability while keeping predictive uncertainty low.

This can be achieved through ensemble DL, knowledge-guided

DL, and probabilistic BNNs (Lu et al., 2021; Jiang et al., 2022a).

These types of networks can account for uncertainty so that

CNN-enabled inverse models can assign lower confidence levels

to incorrect predictions. Figure 11 compares the streamflow

predictions from the calibrated SWAT with the observed data

using the top-50 CNN model sets. Supplementary Figures S10,

S11 shows the predictions from both the top-50 GLUE and DDS

methods. The CNN estimations capture the various high and low

streamflows better than the GLUE and DDS methods during

both the calibration and validation periods. However, the

calibrated SWAT model over predicts in certain parts of WY

2014 (e.g., 9 January 2014) and WY 2015. This lower predictive

performance may imply potential deficiencies (i.e., structural

errors) in the underlying SWAT model representation of

FIGURE 11
Comparison of the calibrated SWAT model (top-50 CNN) with observation data: This figure (A) and (B) compares the predictions of the
calibrated SWATmodel with observational data within and beyond the calibration period. The solid black line represents the observational data. The
dashed colored (blue) line represents the predictions based on the best calibrated set using CNN. The light colored region in the streamflow plots
represents the prediction uncertainty. This region is calculated by running the SWAT model using the calibration sets obtained using CNN. The
bottom figures (C) and (D) show the flow duration curves in both calibration and validation period. It is clear that CNN estimation sets produce curves
that are reasonably closer to observational data.
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watershed processes. Additional investigations are necessary to

identify other processes and parameters that reduce structural

errors and discrepancies in streamflow predictions.

6 Possible extensions of current work

Our results demonstrate the applicability of using scalable

deep learning to calibrate the SWAT model. We note that the

proposed methodology is general and can be used to calibrate

other watershed models such as ATS and PRMS. This

extensibility for calibrating other models and study sites can

be achieved using transfer learning methods (Zhuang et al.,

2020), which will allow us to reuse the CNNs developed in

this study and leverage them for new, similar problems. Minimal

re-training is necessary to fine tune the trained CNNs (Song and

Tartakovsky, 2021) and apply them to calibrate watershed

models for other study sites. Such a transfer of knowledge

across study sites usually is performed when generating the

large amount of training data needed to develop a full-scale

CNN and tuning its trainable weights from the start is too

computationally expensive (e.g., when using ATS).

Additionally, we can improve our DL methodology to

calibrate the SWAT model by incorporating other multi-

source data streams (e.g., evapotranspiration (ET), and snow

water equivalent (SWE)) along with streamflow. Our next step is

to use such data streams to further investigate the deficiency of

the model structure or processes in the SWATmodel by ingesting

streamflow, ET, and SWE into CNNs.

Figure 10B shows the DL method’s probability that

observational data contained within the prediction bounds are

lower than probabilities provided by the DDS and GLUE

methods. There are multiple ways in which we can improve

our CNN-based parameter estimation and predictive

uncertainty. A possible approach involves accelerating the

training process using GPUs available at leadership class

supercomputing resources (e.g., NERSC, Oak Ridge

Leadership Computing Facility, and Argonne Leadership

Computing Facility user facilities) (ALCF, 2021; NERSC, 2021;

OLCF, 2021). This accelerated CNN training allows us to

developed ensemble learning models through bootstrapping,

which are known to provide better generalization performance

than a final CNN.

As discussed in Section 5.4, improved uncertainty

intervals can be achieved through ensemble learning (e.g.,

combining predictions of different types of neural networks

such as DNNs and BNNs). Additionally, developing CNNs

tailored to estimate the SWAT model parameters under

different hydrological seasons (McMillan, 2020) (e.g.,

winter vs. summer) may enhance the calibration process.

For example, comparing CNN-estimated sets from wet and

dry periods of the year can provide better insights into the

SWAT model parameters that control streamflow predictions

across different seasons. When making such comparisons

between real data and model predictions, hydrological

signatures and their associated metrics (Westerberg and

McMillan, 2015; McMillan et al., 2017; Fatehifar et al.,

2021; Gnann et al., 2021; McMillan, 2021) can be used to

elucidate the structural deficiencies of the SWAT model.

Hydrological signatures on which we can evaluate

performance metrics include the slope of the flow duration

curve, rising limb density, recession shape, and baseflow index

of streamflow time-series data (McMillan, 2021).

In addition to the data-driven methodology presented in

this paper6, the efficacy of the proposed DL methodology also

can be improved by embedding domain knowledge into DNNs

(Read et al., 2019; Khandelwal et al., 2020; Bhasme et al., 2021;

Jia et al., 2021). Recent advances in knowledge-guided

machine learning (Jiang et al., 2022a) provide a way to

incorporate model states/fluxes and water balances as part

of recurrent neural network architectures (Khandelwal et al.,

2020). The papers mentioned above used such neural

architectures to develop forward emulators for watershed

models. One can extend the methods presented in those

works to incorporate process model knowledge into our

proposed CNNs to improve SWAT model calibration. Also,

Explainable AI (XAI) methods such as deep Taylor

decomposition (Kindermans et al., 2016), SHAPley values

(Messalas et al., 2019), and integrated gradients

(Sundararajan et al., 2017) can be used to explain the CNN

predictions. These XAI methods not only allow us to explain

why CNNs provide results that are understandable for the

domain experts (Leduc et al., 2020) but also extract

informative signals (e.g., precursors) from the streamflow

time-series data (McMillan et al., 2017; McMillan, 2020;

McMillan, 2021).

7 Conclusion

In this paper, we describe an accurate and reliable DL

methodology that we developed to calibrate the SWAT model.

We used CNN-enabled inverse models to estimate the SWAT

parameters for the ARW study site in the YRB. Our approach

leverages recent advances in CNNs to extract representations

from streamflow data and then map them to the SWAT model

parameters. Scalable hyperparameter tuning was performed to

identify optimal CNN architectures. Ensemble runs from the

SWAT model were used to train, validate, and test the CNN-

enabled inverse models. We performed sensitivity analyses to

identify the dominant parameters that influence streamflow. Our

results show that CNN models are able to estimate the sensitive

6 Or by combining Markov chain Monte Carlo methods with forward
emulators (Dagon et al., 2020) for model calibration.
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parameters reasonably well. The parameters estimated from the

trained CNNs were robust to high observed errors. We then

compared the SWAT parameters estimated by our DL method

with parameters generated by the GLUE and DDS optimization

algorithms. We found that all the methods estimated SWAT

parameters within the sampling range of the ensemble runs. As

DDS is a global optimization method, its estimated range of

parameters are narrower compared to parameters estimated by

the GLUE and DL methods. Furthermore, this comparison also

showed that predictions of the calibrated SWAT model based on

CNNs performs better than the GLUE and DDS methods. Key

performance metrics (e.g., R2-score, NSE, logNSE, KGE, and its

variants) showed that the best CNN-based calibration sets

capture low and high flows better than the GLUE and DDS

methods. This improvement in predictive performance is

probably because CNNs can more effectively use the

information (e.g., learning representative features from

streamflow) provided in ensemble runs than the GLUE and

DDS methods. By capturing the nonlinear relationships

between SWAT model inputs and outputs through multiple

convolutional neural layers, CNNs yielded more realistic

predictions for the ARW and a better calibrated SWAT

model. This improvement resulted in a closer match between

model-predicted and observed stream discharges. Our results

showed that the probability that the observed data are contained

within the prediction bounds estimated by top-50 CNN sets is

lower than that of DDS and GLUE sets. This lower probability

shows that the top-50 CNN sets alone are insufficient to capture

the variations in streamflow. If all the CNN estimations are

included, we are able to capture the observed data within the

prediction bounds. However, including all the CNN estimations

resulted in higher mean variation of streamflow (i.e., fourfold

increase when compared to the top-50 CNN sets). Our future

work involves further improving the accuracy the CNN method

while keeping the predictive uncertainty (i.e., size of streamflow

variation) lower.

From a computational cost perspective, the time needed to infer

parameters based on the DL method is at least O(103) faster than
that of the GLUE and DDS methods, which makes extending this

method to complex watershed models (e.g., ATS) attractive.

However, the computational cost of identifying optimal CNN

architectures is high compared to the GLUE and DDS methods.

The training time needed to develop CNNmodels can be improved

further by using GPUs and TPUs (Bisong, 2019). Reducing the

computational cost of developing CNN-enabled inverse models is

one of our next steps, with a focus on using the distributed deep

learning training framework (e.g., using Horovod (Sergeev and Del

Balso, 2018) or DeepHyper (Balaprakash et al., 2018)) that already

shows promise in the training speedup. This improves the efficiency

during training process by using asynchronous distributed Bayesian

optimization algorithms, which are known to be much more

efficient than the grid search that has to exhaust all the

hyperparameter space.

Our methodology is general and can be used to calibrate

complex watershed models (i.e., through transfer learning

methods (Zhuang et al., 2020)) with minimal re-training. For

example, using transfer learning. Transfer learning consists

of using pre-trained deep learning models such as CNNs on

one watershed and leveraging them on a new and similar

watershed. Specifically, transfer learning (Oruche et al.,

2021) allows us to transfer knowledge from gauged (e.g.,

ARW) to ungauged basins (e.g., YRB) or watersheds

(Westerberg et al., 2016; Guo et al., 2021). This knowledge

transfer is usually done when training a full-scale CNN from

scratch is challenging due to the availability of limited

simulation data or when regions are data sparse,

observationally. In such scenarios, a watershed

classification scheme is first used to identify a new

watershed with characteristics similar to ARW. Then, the

neural features from the pre-trained CNN that has learned to

extract patterns from ARW’s streamflow data can be adapted

to that new paired watershed. Finally, fine-tuning is

performed to achieve meaningful improvements by

incrementally adapting the pre-trained CNN’s features to

the new simulation data. For fine-tuning to be successful,

minimal simulation data on the newly selected watershed is

needed. Additional future work involves modifying the

proposed method to incorporate multi-source datasets

(e.g., by combining streamflow, ET, and SWE) to further

enhance SWAT model calibration (Moriasi et al., 2007;

Samimi et al., 2020), and transfer the knowledge gained

on ARW to the entire Yakima river basin (i.e., by transfer

learning).
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Nomenclature

ARW American River Watershed

ATS Advanced Terrestrial Simulator

BNN Bayesian Neural Networks

CN Curve Number

CNN Convolutional Neural Network

DART The Data Assimilation Research Testbed

DHSVM The Distributed Hydrology Soil Vegetation Model

DDS Dynamically Dimensioned Search

DEM Digital Elevation Model

DNN Deep Neural Network

DL Deep Learning

ET Evapotranspiration

FAIR Findable Accessible Interoperable and Reusable

GIS Geographic Information System

GLUE Generalized Likelihood Uncertainty Estimation

GSA Global Sensitivity Analysis

GPU Graphical Processing Unit

HRU Hydrologic Response Unit

HSPF Hydrological Simulation Program-Fortran

MADS Model Analysis & Decision Support

KGE Kling-Gupta Efficiency

MATK Model Analysis ToolKit

mKGE Modified Kling-Gupta Efficiency

MI Mutual Information

ModEx Model-Experimentation

MTL Multi-Task Learning

NLCD National Land cover Database

NHDPlus National Hydrography Dataset Plus

npKGE Non-Parametric Kling-Gupta Efficiency

NSE Nash-Sutcliffe efficiency

logNSE Logarithmic Nash-Sutcliffe Efficiency

NWM The National Water Model

PET Potential Evapotranspiration

PEST Parameter Estimation Software

PRISM Parameter Elevation Regression on Independent Slopes

Model

PRMS Precipitation Runoff Modeling System

RHESSys Regional Hydro-Ecologic Simulation System

SCE-UA Shuffled Complex Evolution Method developed at The

University of Arizona

SWAT Soil and Water Assessment Tool

SWAT-CUP SWAT Calibration and Uncertainty Programs

SNOTEL Snow Telemetry

STATSGO Soil Maps for the State Soil Geographic

STL Single-Task Learning

TPU Tensor Processing Unit

USGS United States Geological Survey

WRF-Hydro The Weather Research and Forecasting Model

Hydrological Modeling System

VIC The Variable Infiltration Capacity model

XAI Explainable AI

YRB Yakima River Basin
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Model structure and ensemble
size: Implications for predictions
of groundwater age

Wesley Kitlasten1*, Catherine R. Moore2 and Brioch Hemmings1

1Wairakei Research Centre, GNS Science, Taupō, New Zealand, 2GNS Science, Lower Hutt,
New Zealand

This paper examines the influence of simplified vertical discretization using 50-

to four- layer models and ensemble size on history matching and predictions of

groundwater age for a national scale model of New Zealand (approximately

265,000 km2). A reproducible workflow using a combination of opensource

tools and custom python scripts is used to generate three models that use the

same model domain and underlying data with only the vertical discretization

changing between the models. The iterative ensemble smoother approach is

used for historymatching eachmodel to the same synthetic dataset. The results

show that: 1) the ensemble based mean objective function is not a good

indicator of model predictive ability, 2) predictive failure from model

structural errors in the simplified models are compounded by history

matching, especially when small (<100 member) ensembles are used, 3)

predictive failure rates increase with iteration, 4) predictive failure rates for

the simplified model reach 30–65% using 50-member ensembles, but stabilize

at relatively low values (<10%) using the 300 member ensemble, 5) small

(50 member) ensembles contribute to predictive failure of 22–30% after six

iterations even in structurally “perfect”models, 6) correlation-based localization

methods can help reduce prediction failure associated with small ensembles by

up to 45%, 7) the deleterious effects of model simplification and ensemble size

are problem specific. Systematic investigation of these issues is an important

part of the model design, and this investigation process benefits greatly from a

scripted, reproducible workflow using flexible, opensource tools.

KEYWORDS

groundwater age, discretization, predictive uncertainty, model structure, iterative
ensemble smoother, particle tracking, MODFLOW, PEST++

1 Introduction

Groundwater accounts for approximately 97% of all accessible fresh water, supplies

drinking water for nearly half the world’s population, and accounts for 43% of the global

water consumption for agriculture (Siebert et al., 2010; Guppy et al., 2018). Physically

based numerical models (as opposed to data-driven models such as are used in Ruidas

et al., 2021. or Jaydhar et al., 2022), combined with subsurface properties inferred from

sparse observations can help extend our understanding of groundwater systems (e.g.,

Singh, 2014), providing an essential tool to help inform resource management decisions
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(Jakeman et al., 2016). However, all models require simplification

of real-world properties and processes. Identifying the

appropriate level of simplification for modelling groundwater

systems remains challenging. Appropriate simplification

depends on the intended use of the model (Watson et al.,

2013; Guthke, 2017; White, 2017). We explore this important

issue in the context of simulating groundwater age at a national

scale across Aotearoa/New Zealand, to inform national water

management policy. Note, the objective of the study presented

here is not to provide definitive maps for groundwater age across

Aotearoa/New Zealand, but rather to explore and highlight the

implications of model and methodological simplification on

groundwater age predictions at large scale.

Groundwater age provides a convenient method for

evaluating the potential for groundwater recharge and hence

contamination from recent sources (Sanford 2011; Morgenstern

et al., 2015). The utility of decision support models based on

groundwater age, where “young” groundwater suggests a

potential groundwater contamination risk and “old”

groundwater suggests a smaller component of modern

recharge, would clearly be compromised by the presence of

model structural errors that bias simulated groundwater age

(e.g., Knowling et al., 2020). This study reveals that

predictions of groundwater age can be biased by the inability

to represent parameter complexity with simplified (upscaled)

layering. Due to the relationship between flow depth and

groundwater age, where deeply circulating water is generally

older, the range of ages impacted depends on the depth of these

structural simplifications.

Increased and wide-spread human impacts on climate and

natural resources can warrant national government

consideration and oversight of environmental processes and

resource management activities over larger spatial extents,

often in data-scarce areas (e.g., Regan et al., 2019).

Maintaining national oversite of the effectiveness of policy

requires an understanding of the broad range of natural

processes and resource management activities that affect water

resources extending from the mountains to the sea. This

understanding also includes consideration of interactions

between climate, ecosystems, lakes, rivers, aquifers, land use,

land management, and water allocation.

However, the desire for models with continuous coverage

over large spatial scales presents several modelling challenges: 1)

trade-offs between model resolution and computational burden,

2) upscaling of hydraulic properties to a representative elemental

volume (REV; the volume within which properties are assumed

to be constant to facilitate numerical modelling), 3)

representation of local processes over a large REV (e.g.,

upscaling stream-aquifer interactions), 4) representation of

high variations in permeability (e.g., bedrock–aquifer contacts

which typically form model boundaries in “traditional”

groundwater models), 5) large changes in topography (e.g.,

Southern Alps rising 3,700 km from sea level over 30 km and/

or deeply incised streams), and 6) limited subsurface data makes

characterization of the groundwater system difficult, especially in

areas with complex topography and geology like Aotearoa/

New Zealand. We explore these modelling challenges within

this paper.

2 Background

2.1 Model structure and parameterization
challenges

One of the most fundamental techniques for simplifying

processes and properties in numerical groundwater models is the

subdivision of the model domain into discrete volumes with

representative properties (REV). This requires heterogeneous

and potentially scale dependent properties (e.g., hydraulic

conductivity, porosity) within each REV to be represented by

a single value in each cell. Also, complex processes (e.g., stream-

aquifer interactions) need to be conceptualized and simplified in

a way that allows them to be effectively represented over the

entire cell.

The choice of model discretization provides the underlying

structure to support the parameter representation

(parameterization) of hydraulic properties. It also imposes a

limit on the level of parameterization a numerical

groundwater model can accommodate for history matching

and predictions. Coarse discretization can reduce the

computational burden and may ease the parameter estimation

and inversion process, but it also increases the potential for

structural deficiencies caused by homogenising processes and

properties over larger areas which can bias model results (e.g.,

Wildemeersch et al., 2014; Knowling et al., 2019).

Doherty and Moore (2021) discuss how the model structure,

and the accompanying parameterization approach, need not be

more detailed than is required to make the prediction of interest,

despite resulting in a more abstract (less “realistic”)

representation of hydraulic properties. On the other hand,

parameter compensation resulting from deficiencies in

structural and/or parameterization detail may impose bias in

predictions, especially if those predictions are significantly

different than data used for history matching (Doherty and

Welter, 2010; Doherty and Christensen, 2011; White et al.,

2014; Doherty, 2015). White et al. (2019a) explored the

impact of truncating the vertical representation of a regional

groundwater system, by comparing a 7-layer representation of a

regional aquifer system, with truncated 2- and 4-layer

representations. Knowling et al. (2020), showed that the

inappropriate vertical truncation limited the ability of that

model to assimilate information in tritium data, imposing a

history matching induced parameter and predictive bias.

None of the previous work investigating the impact of model

discretization on prediction uncertainty has specifically isolated
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the influence of vertical discretization/layering while keeping all

other factors the same (e.g., aquifer thickness). This research

specifically focusses on issues associated with using simplified

vertical discretisation approaches to represent complex

parameter fields and its impact on the uncertainty of

groundwater age model predictions after history matching.

We use a paired complex-simple model methodology to

explore the propensity for bias using various vertical

discretisation structures (Doherty and Christensen, 2011;

White et al., 2019a; Gosses and Wöhling, 2019; Knowling

et al., 2019).

In this study groundwater flow is simulated using

MODFLOW and advective transport, used as a surrogate for

age, is simulated using MODPATH (particle tracking). We show

that the inability of the coarse discretization to represent the

appropriate level of heterogeneity during the history matching

process results in model bias when compared to more refined

discretization schemes.

2.2 History matching challenges

Highly parameterized approaches to model inversion can

provide the flexibility to match observations but can also incur a

large computational cost when using finite difference methods,

which require one model run per adjustable parameter to fill a

sensitivity matrix (Jacobian). Here instead we use the iterative

ensemble smoother (IES; Chen and Oliver, 2013) method as

implemented in the PEST++ suite (White, 2018). The IES

method calculates an empirical Jacobian based on an

ensemble of stochastic realizations. The number of realizations

in the ensemble is generally much less than the number of

adjustable parameters, resulting in significant gains in

computational efficiency (e.g., Hunt et al., 2021).

The size of the IES ensemble should reflect the

dimensionality of the solution space (i.e., the extent to which

history matching targets inform various parameters), and

therefore it is problem dependent. Spurious correlations can

compromise parameter upgrade calculations when the

ensemble size is small compared to the number of

independent observations that span the solution space.

Determining the appropriate ensemble size is challenging in

that it depends on the relationship between the history

matching dataset, and the representation of relevant real-

world detail in the model (e.g., discretization or resolution of

the computational grid), the predictions of interest, and the scale

of the processes being simulated. Systematic explorations of this

issue appear to be absent in the literature.

This research explores the size of the stochastic ensembles

used for history matching in IES. Smaller ensembles combined

with simplified model structures compromise the predictive

ability of the calibrated model, despite a simple, synthetic

dataset used for history matching. In some cases, this

compromise is exacerbated as a better fit to the calibration

dataset is sought through more iterations. The automatic

adaptive localization (Luo et al., 2018) option implemented in

PEST++ is shown to improve history matching and prediction.

2.3 Research objectives

In Aotearoa/New Zealand groundwater accounts for nearly

70% of consented freshwater takes and supplies approximately

30% of the population with drinking water (White, 2001;

Rajanayaka et al., 2010). Land use changes over the last 40-

year have resulted in increased groundwater contamination (e.g.,

nitrogen, pathogens, etc) prompting a national scale evaluation

of groundwater resources and threats (Ministry for the

Environment and Stats, 2021). In responses to these changes

the National Policy Statement for Freshwater Management in

New Zealand (NPSFWM) calls for the management of freshwater

in a way that gives effect to Te Mana o te Wai (“the fundamental

importance of water and the recognition that protecting the

health of freshwater protects the health and well-being of the

wider environment”; Ministry for the Environment, 2020).

We present a series of national scale models (approximately

268,000 km2) that simulate groundwater flow and groundwater

age (derived from particle tracking), embracing the extensive

nature of New Zealand’s NPSFWM. These models use the best

available nationwide data and estimates of uncertainty for

groundwater recharge, hydrogeology, and the location of

stream networks. This model represents the spatially

continuous groundwater system in Aotearoa/New Zealand and

a consistent starting point for the development of regional or

local scale models that may include more detailed representation

of the processes of interest. However, the complexity of the

natural world and the spatial extent of this model require

significant abstraction and simplification of many processes.

This simplification is necessary to ensure numerical stability

and reasonable simulation times that enable history matching

and inversion. This study specifically investigates the uncertainty

and bias imposed by simplification of model layering on

predictions of groundwater age.

3 Methods

The models presented herein are designed to evaluate: 1) the

effects of different vertical discretization approaches on

simulations of particle travel times in large scale groundwater

models and 2) the effects of ensemble size on the ability of the

model to match predictions. The model calculates particle travel

times from a surface water source (i.e., stream or rainfall

recharge) to an observation location via backward particle

tracking. We use these particle travel times as an estimate of

groundwater age, which in turn can be used to infer the potential
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susceptibility of groundwater to contamination from recent

surface sources (Stauffer et al., 2005) and estimate sustainable

groundwater recharge rates (McMahon et al., 2011). Vertical

discretization is explored using three layering schemes: up to

50 evenly spaced layers (“complex”model), up to four layers with

fine discretization in the upper layers and a single layer at depth

(“fine”model), and up to four layers with evenly spaced layers at

depth (“even” model). See below for detailed descriptions.

The IES method is used to match model outputs to a

synthetic dataset (i.e., “truth”) using models with alternative

vertical discretization. One realization is chosen from a 300-

member ensemble of the complex model to serve as the truth,

based on the minimum sum of squared differences between the

realization age at each location (agei) and the simulated mean

age at each observation location (agei):

min∑n

i
agei − agei( )2 (1)

where n is the number of observation locations in gravel and

sand. The realization chosen to represent the truth is removed

from the parameter ensembles used for history matching.

We consider a failure or conflict to occur if the true value of

an observation (plus or minus a representative measurement

noise) falls outside the range of the simulated observation

ensemble. The percentage of locations for which the model

fails to capture the truth (Pf) is the ratio of the number of

observation (parameter) values that fail to total number of

observations (parameters), times 100. This is the same

approach used to identify prior data conflict (PDC) in

PEST++ and requires no assumptions about the shape of the

posterior probability density function (PDF). More thorough

analysis of the PDFs and more precise statistical tests are

warranted to determine criteria for model failure in real world

applications with specific management objectives.

Simulating groundwater age older than the true age

(“overestimation”) represents a failure of the model in a

management context when groundwater age is used as a

proxy for potential contamination from recent sources.

Conversely, simulating groundwater age younger than the true

age (“underestimation”) represents a failure of the model in a

management context when groundwater age is used as an

indicator for the presence of modern recharge, leading to an

overestimate of sustainable aquifer yield and potential for

groundwater contamination. Underestimation and

overestimation Pf generally follow the same trend (see

Supplementary Material; “SM”). We report total Pf for

observations used in history matching, predictions, and

parameters for each model structure–ensemble size

combination. Details for observations, predictions, and

parameters are described below.

3.1 Models

Groundwater models often have finer discretization near the

surface and coarser discretization at depth, reflecting the

availability of data and the desire to represent important

surface boundary conditions (e.g., surface water-groundwater

interactions, recharge, etc) while still meeting reasonable

computation requirements. Coarse discretization reduces the

ability of the model to represent heterogeneity and more

complex flow paths, potentially affecting simulated

groundwater ages. We isolate the influence of vertical

discretization on mean age by presenting a series of equivalent

models where only the vertical discretization, and the

parameterization supported by that discretization, is changed.

As noted above, three versions of a steady-state

groundwater flow and particle tracking model of developed

using MODFLOW v6.2.2 (Langevin et al., 2021) are presented

in this study. MODPATH v7.2.002 (provisional at the time of

writing) was used for all particle tracking simulations. Each

version of the model is produced with the same scripts and

TABLE 1 List of characteristics resulting from the layering approach and parameterization for eachmodel, including simulation times and times for parameter
upgrades using automatic adaptive localization (AAL).

Description Complex Fine Even

North Island Active cells 218,426 111,592 111,068

Number of Parameters 37,087 16,769 16,753

Simulation (minutes) 7.2 3.7 3.9

AAL upgrade (minutes) 27.2 5.4 5

South Island Active cells 321,271 148,597 148,048

Number of Parameters 61,442 25,433 25,379

Simulation (minutes) 14.8 7.0 7.5

AAL upgrade (minutes) 81.5 17.8 17.1
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underlying data. The number of active cells in the

MODFLOW domain and the number of parameters for

each model are reported in Table 1. The model domain and

underlying data are based on Aotearoa/New Zealand.

However this study is designed to explore the trade-offs

between model simplification and predictive ability in the

context of history matching large scale models to age tracer

data, rather than reproduce real-world observations. We use

synthetic data generated by the complex model in order to

isolate vertical discretisation simplification errors from other

sources of error inherent in real-world data (e.g., model

conceptualization, measurement). The high number of

parameters, wide prior parameter distributions, and flexible

boundary conditions ensure a statistically feasible

representation of the real-world system. The results

presented in this study reveal important considerations for

future history matching efforts using real-world data.

The open-source python package FloPy 3.3.5 (Bakker et al.,

2021) was used to construct most of the MODFLOW input files.

The Surface Water Network tool (SWN; Toews and Hemmings,

2019) was used to generate inputs for the Streamflow Routing

Package (SFR2; Niswonger and Prudic, 2005) in MODFLOW.

The PstFrom class (White et al., 2021) in the python package

pyEMU (White et al., 2016) was used to ensure a consistent

approach to representing adjustable parameters, observations,

and predictions between the various models (see

“Parameterization” section below and Supplementary

Material). Additional python package libraries including

NumPy, Pandas, and SciPy were used to pre-process data and

post-process model results.

FIGURE 1
Map of the North Island (A) and South Island (B) of Aotearoa/
New Zealand showing Strahler order four streams and above,
regional boundaries, and hydrogeologic units of interest in this
study (silt, sand, and gravel). Regional boundaries are used for
manual localization in the IES method. Hydrogeologic units of
interest are used to determine locations for history matching
observations and predictions. See Figure 2 for a plan view ofmodel
specifics in the area shown by the red box.

FIGURE 2
Detailed portion of the Aotearoa/New Zealand national
groundwater model showing regional boundaries, hydrogeologic
units, and observation locations (circles) used for history matching
(black boarder) and predictions (no boarder). Observation
depths are show by the colour bar. The red line (A,A9) shows the
location of the cross section shown in Figure 3.
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3.2 Discretization

Each of the model vertical structures explored in this study

represents the same subsurface domain (horizontal and

vertical extents) with a horizontal discretization of 2 km

(Figures 1, 2). The specific depth and thickness of each

layer is dependent on the spatially distributed depth to

hydrogeologic basement (DHGB) as described in

Westerhoff et al. (2019) and the layering scheme (Figure 3).

A minimum layer thickness of 10 m and a minimum model

thickness of 50 m is enforced for all models. The bottom of the

top layer in all models is nominally 10 m below the surface.

Routines in the SWN package that ensure stream reach

elevations progress downstream from high elevation to low

elevation can result in stream bed elevation being significantly

lower than surface elevation, especially in steep terrain. While

this is reflective of the often deep incision of streams in many

parts of Aotearoa/New Zealand, it may require that the

bottom of the surface layer is shifted down to

accommodate the stream. The top of the model is

unchanged to honour the elevation data, resulting in a

thicker upper layer where streams are deeply incised

(Figure 3).

The vertical model structure with a constant vertical

discretization of 10 m and up to 50 layers is used as the

complex version of the system (Figure 3A; “complex”

model). The actual number of layers depends on the depth

of the model (DHGB) and any adjustments to the top layer

needed to accommodate incised channels. Two additional

layering approaches are investigated: 1) a four-layer model

with three thin (nominally 10 m) upper layers and one

deeper layer (Figure 3B; “fine” model), and 2) a four-layer

model with three evenly distributed deeper layers (Figure 3C;

“even” model).

3.3 Boundary conditions

Surface water sources in our models are either distributed

recharge along the top surface of the model representing rainfall

recharge or losing streams. In this study we use the Streamflow

Routing Package (SFR2) which provides a more realistic and

flexible way to simulate streamflow than other packages. For

example, in the RIV package cells with a river boundary

condition essentially act as a general head boundary when the

groundwater head falls below the bottom of the streambed. This

can lead to higher groundwater recharge compared to SFR2 (e.g.,

Foglia et al., 2018), creating higher gradients near streams, and

incorrect simulation of streams as sources. The input data for the

SFR2 package is generated for Strahler order four and above

streams contained in the River Environment Classification

database from the National Institute of Water and

Atmospheric Research (National Institute of Water and

Atmospheric Research, 2019) using the Surface Water

Network (SWN) tool developed by the Institute of Geological

and Nuclear Sciences (GNS; Toews and Hemmings, 2019).

Spatially distributed recharge from the nationwide model of

groundwater recharge for Aotearoa/New Zealand (NGRM;

Westerhoff et al., 2018) is added to the model using the

RCHA package. The NGRM model considers the effects of

precipitation, evapotranspiration, vegetation, topography, soils,

and geology on groundwater recharge. However, overland flow

due to saturation from below (i.e., Dunnian flow) is not

considered in the NGRM model because the groundwater

flow system is not well represented. Dunnian flow is

simulated in our models by applying a head dependent flux

boundary condition to the upper surface of the model using the

drain package (DRN) and routing groundwater discharge to the

surface or rejected recharge in cells where groundwater reaches

the surface to the nearest SFR segment using the mover package

FIGURE 3
Cross-sections of A-A′ shown in Figure 2 illustrating discretization and upscaled hydraulic conductivity values (log(K)) for the (A) complex
model, (B) fine model, (C) even model.
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(MVR). This also prevents unrealistically high groundwater

heads in areas of high recharge and low conductivity. The

general head boundary package (GHB) is used to represent

the edge of the active model domain at the coast. See the

MODFLOW documentation (Langevin et al., 2021) for a

detailed description of these packages.

3.4 Age simulations

Locations of history matching targets and predictions

(i.e., weighted and unweighted observations, respectively) in this

study are limited to areas mapped as sand or gravel in the model,

the materials that make up the most extensive and productive

aquifers in Aotearoa/New Zealand (White P. A. et al., 2019). To

avoid potential boundary effects, coastal boundary cells were

excluded from the observation dataset. A total of

6,970 locations mapped as sand or gravel are randomly selected

as observation locations: 2,056 for the North Island and 4,914 for

the South Island, reflecting the relative abundance of sand and

gravel aquifers on each island (Figure 1). The distribution of

observations also reflects the relative abundance of these aquifer

materials within each region. The mean depth of each observation

is selected from a random distribution between the bottom of the

top layer and either 80 m below the surface or 10 m above the

bottom of the model, whichever is shallower. Observation

locations were limited to 10 m above the bottom of the model

to avoid potential stagnant conditions along the bottom of the

model. The distribution of observation locations per layer for each

model is listed in Supplementary Material. Each observation point

is populated with 100 particles evenly distributed along the surface

of a cylinder with a radius of 10 m and a height of 2 m. Particles are

tracked from the observation location to the source, as determined

by the steady-state flow field and the IFACE parameter in

MODPATH (Pollock, 2012; see below).

Mean age is calculated from the travel times of particles

originating from each location described above. The IFACE

parameter in MODPATH specifies which cell face is

considered the source for each boundary cell. For upper

boundary cells in the RCH package the IFACE parameter is

set to six indicating the source (i.e., zero age) is at the top of the

cell. Abrams et al. (2013) showed that travel times to weak sink

streams in a simple 1-layer model can be accurately simulated if

the bottom of the stream channel is aligned with the top of the

model and IFACE is set to 6 (i.e., the top face of the cell).

However, in the current models where a stream may be incised

hundreds of meters below the surface elevation, using the top of

an SFR cell as the source can result in ages over 100 years higher

than if the bottom of the cell is used (i.e., 0.5 m below the stream

bed). Therefore, we set the IFACE parameter to 0 for all cells with

SFR segment, indicating the source (i.e., zero age) is along the

face of the boundary cell that is first intersected by the particle

path during the backward particle tracking simulation.

3.5 Parameterization

The prior values of horizontal hydraulic conductivity (Kh),

vertical hydraulic conductivity (K33), streambed hydraulic

conductivity (Ksb), drain conductance (Cd), GHB

conductance (Cghb), and porosity (ɸ) for all models are

assigned consistently based on the main rock type in QMAP

(GNS Science, 2012) and representative values found in the

literature. The surface geology is assumed to extend to the

DHGB (Westerhoff et al., 2019), except for units mapped as

silt. Silt deposits are assumed to be 10 m thick and overly gravels

with thickness determined by adjacent deposits. The hydraulic

conductivity and porosity of the gravels overlain by silt is reduced

by 10%. The hydraulic conductivity and porosity of all materials

decrease as an exponential function of depth following

Westerhoff et al. (2018).

Uncertainty for all parameters is addressed using parameter

multipliers over four spatial scales (two scales geostatisical

interpolation, zone multipliers, and layer multipliers; see

Supplementary Material). Model inputs are the product of the

multipliers and the “native” values. The initial value of all

multipliers is one. The limits of each multiplier are reported

in Table 2. The large range in parameter values accommodates: 1)

the potential for inaccuracies in the mapping QMAP hydrofacies

to the model grid, 2) the large uncertainty in hydraulic

conductivity values for geologic materials (e.g., Domenico and

Schwartz, 1998), and 3) the potential for parameters taking on

physically unrealistic values to accommodate structural defects in

the model, including due to averaging properties to

accommodate different discretization approaches. Further

details of model parameterization can be found in

the Supplementary Material.

The PstFrom utility in the pyEMU package is used to create

the interface and input files for the PEST++ suite and generate

the initial parameter ensemble. The parameter ranges are used to

define a wide prior parameter distribution, representing ±3σ. The
PstFrom.draw() method in pyEMU is used to draw an ensemble

of stochastic parameter vectors (realizations) assuming multi-

variate Gaussian distributions. We limit parameter values to

physically realistic and numerically stable values by enforcing

an “ultimate” upper and lower bound for “native” parameter

values via the PstFrom utility (Table 2).

3.6 History matching

Simulated ages from a single stochastic realization of the

complex model is used to define a set of observations

representing the target values (i.e., “truth”). This dataset is free

from real-world complication such as measurement noise and

transience. Since the data were generated by the complex model,

the complex model is endowed with precisely the appropriate

parameter complexity to reproduce the results. This end-member
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case is compared to the simplified models to isolate the impacts of

coarse vertical discretization. History matching to this data using the

complex model shows how small ensembles can bias predictions,

despite using a structurally perfect model.

A random sample of approximately 10% of the

observations on each island are assigned a weight of one

during the history matching process (204 out of 2,056 for

the North Island, 504 out of 4,914 for the South Island). The

other 90% (1,852 and 4,410, respectively) are retained as

predictions with zero weights. This allows us to evaluate

the implications of model simplification and the associated

parameterization on model predictions following history

matching. The number observations used for history

matching in each layer of each model is listed

in Supplementary Material.

The IES method, as implemented in the PEST++ suite, is

used for history matching (White 2018;White et al., 2020;Welter

et al., 2015). The IES method uses an empirical Jacobian matrix

calculated using cross-covariances between ensembles of

stochastic realizations of parameter vectors and simulated

equivalents of historical observations constituting the history

matching dataset. Too few realizations in the ensemble,

compared to the span of the observations which determine

the dimensions of the solution space, can cause spurious

correlations. These spurious correlations for infeasible or

impossible parameter-observation relationships can be “zeroed

out” using localization (see below). The history matching process

in IES can be further improved by using more realizations than

the dimensionality of the calibration solution space to increase

the rank of the empirical Jacobian.

Methods exist for estimating the dimensionality of the

solution space using a high-fidelity, perturbation-based

Jacobian (e.g., Doherty and Hunt, 2009). However, we are not

aware of a similar method for estimating the solution space using

an empirical Jacobian. Practitioners typically use ensembles of

50–150 realizations for parameter estimation. Hunt et al. (2021)

use 300 realizations for a parameter estimation problem with

1,777 adjustable parameters and a diverse set of approximately

30,000 history matching targets to “ensure the solution space was

fully represented and results were free from adverse effects of

ensemble collapse.”Here we test the effects of using ensembles of

50, 100, 150, 200, and 300 realizations for history matching to a

relatively simple dataset using each of the three model variations.

By default, PEST++ identifies prior data conflict (PDC) for

weighted observation when the ensemble of observation values

plus noise does not cover the ensemble of simulated values using

the prior parameter ensemble. Observations with PDC are likely

to cause bias as the history matching process seeks extreme

parameter values to satisfy those observations. In this study, we

retain observations with PDC in order to explore the potential

impact on model predictions.

3.7 Localization

Localization masks spurious correlations between

parameters and observations that can result from the use of a

low-order ensemble. In this study, localization is initially based

on groups defined by the 16 regions in Aotearoa/New Zealand,

the boundaries of which typically follow major watershed

boundaries. This groupwise localization scheme breaks

correlations established between parameters in one region and

observations in another. Zone and layer multiplier parameters

are not included in this level of localization, meaning

observations on a given island can influence zone and layer

multipliers anywhere on that island. This groupwise localisation

is very efficiently defined and implemented within PEST++

(White et al., 2021).

Localization also has the effect of increasing the rank of the

empirical Jacobian used in the IES scheme, beyond that set by the

size of the ensemble. Hence localization can mitigate the effects of

truncation of the solution space if the ensemble size is too small. An

alternative and automated localisation scheme can also be

implemented in PEST++ using “automatic adaptive localization”

(AAL; Luo, et al., 2018; White et al., 2021). AAL attempts to identify

andmask spurious parameter-observation correlations generated by

the stochastic nature of the ensembles for every parameter and

observation pair. This process of localization results in a highly

disjointed Jacobian matrix requiring numerous “local” parameter

upgrade solves, which can become numerically expensive (Table 1).

We explore the effectiveness of AAL using the lowest order ensemble

(50 realizations).

TABLE 2 Values of multiplier parameters, potential for combined multipliers, and native value bounds enforced for each parameter group.

Multipliers Potential Combined Native value Bounds

Name Parameters Initial Max Min Max Min Max Min Units

Conductivity Kh, Ksb, K33 1 10 0.1 10,000 1.0E-04 2000 1.E-10 m d-1

Conductance Cd, Cghb 1 10 0.1 10,000 1.0E-04 2000 1.E-10 m2 d-1

Porosity ɸ 1 3 0.3 81 0.012 0.3 1.E-10 -

Recharge Rp 1 1.5 0.5 2.3 0.25 0.008 1.E-10 m d-1
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4 Results

4.1 Mean phi

In general, model to measurement fits, as summarised by the

mean objective function (phi or the L2-norm), decrease rapidly

within the first three iterations (Figure 4). All three model vertical

discretisation approaches display significant reductions in mean

phi for all ensemble sizes, with all reducing to the same order of

magnitude over six IES iterations. Generally, the simplified

models of the North Island (Figures 4B, C) do not achieve the

same reduction in phi as the complex model (Figure 4A) after six

IES iterations. The simplified models of the South Island (Figures

4E, F) achieve similar values of mean phi as the complex model

(Figure 4D) after six IES iterations. Interestingly the lower order

ensembles often achieve the lowest values of mean phi for all

models. Other than this, there is no apparent relationship

between the rate of decrease and the level of model

simplification or the size of the ensemble. Instead, the

ensemble size and the number of iterations needed to attain a

particular value of mean phi depends on the system being

modelled (e.g., North Island vs. South Island) and the size of

the ensemble. This seems particularly true for the structurally

‘perfect’ complex models (i.e., iteration 2 in Figure 4A and

iterations 2 and 3 in 4D).

The complex models contain the appropriate level of

structural complexity and parameterization to adequately

reproduce the calibration targets and predictions, since this

50-layer model was used to generate the ‘truth’ target

observations using a single parameter vector chosen from the

prior probability distribution. History matching using the

complex models of the North Island results in a mean phi

value that is lower than the simplified models after the third

iteration, regardless of ensemble size (Figures 4A–C). However,

this is not the case for the South Island. History matching of the

South Island model using the 4-layer models produces mean phi

values similar to, and occasionally lower than, the complex model

after six iterations, depending on ensemble size (Figures 4D–F).

The ensembles with 50 realizations and AAL result in the

highest mean phi (worst fit) after six iterations for all models. The

ensemble with 300 realizations also results in a relatively high

mean phi after six iterations for most of the models. Conversely,

the ensemble with 50 realizations results in a relatively low mean

phi after six iterations for most of the models.

4.2 History matching observations

The history matching targets are captured by the prior parameter

ensemble for more than 92% of the weighted observation locations,

for all ensemble sizes and all models (Pf < 8%; Figure 5 iteration 0).

The complexmodel with 300 realizations performed the best in terms

of history matching, with less than 0.5% failure for all iterations

(Figures 5A, D). The highest prior failure (PDC) occurs with the 50-

realization ensembles (2% < Pf < 8%; Figure 5, iteration 0), except for

the complex model of the South Island (Pf = 0.2%; Figure 5D). The

history matching process with 50 realizations and no AAL

significantly increases the percentage of history matching

FIGURE 4
Plots of mean phi with iteration for the complex models (A,D), simplified fine models (B,E), and simplified even models (C,F) of the North Island
(A–C) shown in Figure 3 (columns). Different ensemble sizes used in the IES history matching are shown by the colours.
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FIGURE 5
Percent failure (Pf) by iteration, ensemble size, and model structure for history matching targets (weighted observations) for the complex
models (A,D), simplified fine models (B,E), and simplified even models (C,F) of the North Island (A–C) and South Island (D–F). Ensemble sizes are
indicated by colours.

FIGURE 6
Percent failure (Pf) by iteration, ensemble size, and model structure for predictions (unweighted observations) for the complex models (A,D),
simplified fine models (B,E), and simplified even models (C,F) of the North Island (A–C) and South Island (D–F). Ensemble sizes are indicated by
colours.
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observation locations for which the model fails to capture the truth

(Pf >15%), except for the structurally perfect complex models.

We can isolate the influence of structural errors from the history

matching process by examining the percent failure at iteration 0 in

Figure 5 for all model structures. This corresponds to prior data

conflict (PDC) reported by PEST++. The PDC suggests structural

defects in the fine model affect the North Island (Figure 5B) more

than the even model (Figure 5C), while the opposite is true for the

South Island (Figures 5E, 6F, respectively). The structural defects in

the simplified models implied by the PDC are compounded through

the history matching process, resulting in higher model failure rates

with more iterations. This is particularly true using 50 realizations

without AAL. The simplified models of the South Island with

50 realizations and no AAL have higher percentage of failure than

the simplified models of the North Island for any given iteration,

reaching 37.6% and 24.7% failure, respectively.

The ability to capture the true value of the history matching

dataset is improved with AAL. The failure rate of the predictions

after six iterations using the structurally perfect complex models

using 50 realizations with no AAL is 7.6% for the North Island

and 8.6% for the South Island; this is reduced to 3.2% and 2.4%,

respectively, using AAL.

4.3 Predictions

The predictions are captured by the prior parameter

ensemble for more than 86% of the locations, for all ensemble

sizes and all models (Pf < 14%; Figure 6 iteration 0). The complex

model with 300 realizations performed the best in terms of

prediction (Figures 6A, D), with less than 0.7% failure for all

iterations, with no systematic change in prediction failure rates

over iterations. The history matching process significantly

increases prediction failure for all other models, particularly

when using 50 realizations without AAL. Similar to the

history matching targets, the simplified models of the South

Island (Figures 6E, F) with 50 realizations and no AAL tend to

have a higher percentage of failure for predictions than the North

Island (Figures 6B, C), reaching 43.6% and 63.3%, respectively.

The ability to capture the true value of predictions is

improved with AAL. The failure rate of the predictions after

six iterations using the structurally perfect complex models and

50 realizations with no AAL is 28.8% for the North Island and

23.3% for the South Island; this is reduced to 10.4% and 6.1%,

respectively, using AAL.

4.4 Parameter estimation: Prior and
posterior distributions

The three model structures presented here support

different levels of parameterization at depth, making it

difficult to make direct comparisons of individual

parameter adjustments for each model during the history

matching process. However, for a single model structure we

can examine how parameter ensembles of different sizes

FIGURE 7
Probability density functions for hydraulic conductivity multipliers for the (A) complex model and (B) fine model of the South Island. The prior
PDF for 50 realizations is shown in light blue with stipples. The mean of the posterior PDF for 50 realizations (blue), 50 realizations with AAL (red), and
300 realizations (yellow) ensembles are shown by vertical lines.
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morph from prior to posterior through history matching in

different ways.

Figure 7 provides an example of this for hydraulic

conductivity multipliers from the complex (A) and fine

(B) models of the South Island. After six iterations the

history matching process with the complex model

maintains a broad PDF using 300 realizations (Figure 7A

yellow, 10-0.38–100.4) and 50 realizations with AAL

(Figure 7A red, 10-0.12–100.28). These PDFs encompass

the initial value of unity and hence still represent the

initial value of hydraulic conductivity in native parameter

space. However, using 50 realizations without AAL

(Figure 7A solid blue) shows a narrower PDF that does

not encompass the initial value of unity (100.11–100.24)

despite achieving a lower value of phi. The posterior PDF

does still fall within the prior PDF (Figure 7A, blue with

stipples).

After six iterations the history matching process with the

fine model shows similar behaviour using 300 realizations

and 50 realizations with AAL (Figure 7B). However, the even

the structurally complex model with a small ensemble

without AAL shows a much narrower PDF that falls

outside the prior PDF. This example illustrates how small

parameter ensembles can result in collapse of the posterior

parameter PDF. It also demonstrates the role of large

ensembles and localization to prevent ensemble collapse.

Figure 7 also shows how structural defects can corrupt the

posterior PDF as parameters take on surrogate roles that

accommodate for the missing parameters as model output to

measurement matches are sought.

5 Discussion and conclusions

The numerical experiments described in this paper focus

on the predictive performance implications of adopting

structurally simple models and history matching with

reduced ensemble sizes. The implications of the results of

these experiments are considered in a decision support

modelling context that relies on groundwater age

simulations at a national scale. For this specific decision

support context, we adopted a similar paired complex and

simple model approach as documented in Doherty and

Christensen (2011), Knowling et al. (2019), White et al.

(2019a) and others. This method assesses the performance

of simpler model structures in relation to a complex model

structure. In synthetic experiments such as are documented

in this paper, this complex model structure can represent the

nominal “truth”, for the purposes of the study.

5.1 Model to measurement fits and
predictive performance

On the basis of model to measurement fits, as summarised by

the mean objective function (phi), one might consider in some

cases that the simplified models is as effective as the complex

model for simulating the system, e.g., the South Island simplified

models examples. At first glance it may also appear that low

realisation numbers are more than sufficient for conditioning

parameters to system observations. However, the higher

prediction failure rates (Pf) of the simplified models are not

consistent with how well the model was able to fit the data (as

reflected by the associated mean phi values). Many of the

configurations that produce the best fits, or lowest mean phi,

also produce the highest prediction failure rate.

The implications of good fits being a poor indicator of good

predictive performance are not well understood in the larger

modelling community. The demonstration of this issue in this

paper is consistent with the recent discussions in Hunt et al.

(2021) and Doherty and Moore (2021) in a numerical physically

basedmodelling context, and Ruidas et al. (2021) in a data-driven

modelling context. The interplay of predictive performance with

model structural errors and ensemble size is discussed below.

5.2 Model structural errors and predictive
performance

The predictive failure results relating to the 4-layer models

conflate structural deficiencies with those arising from

inadequate ensemble size. However, because the 300-

realisation ensemble can be inferred to span the solution

space (Hunt et al., 2021; Doherty and Moore 2019), the

predictive impact from structural deficiencies can be isolated

when exploring the 300-realisation ensemble results. Prediction

failure occurs because the simplified (coarse) vertical

discretization inhibits the ability of the model to represent the

hydraulic property heterogeneity that occurs with depth; this

heterogeneity places controls on groundwater flow paths and

hence groundwater age. This simpler structure therefore

compromises the ability of the model to process information

from the history matching observations to the model parameters

in a way that adequately informs the predictions, as evidenced by

the higher prediction failure rate of the simplified models

compared to the complex model.

The predictive performance of simplified models and smaller

ensemble sizes is problem specific, as illustrated by differences in

the geological contexts of the two models; the North and South

Island models. In general, the South Island has more extensive
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and deeper gravel aquifers than the North Island. As such,

parameters in the simplified models of the South Island

represent parameters lumped over a greater depth interval.

We observe that the greater the extent of parameter lumping

(or upscaling), the greater structural related prediction errors will

be, wherever predictions are sensitive to the hydraulic property

detail that has been obscured by the lumping process.

5.3 Ensemble size, number of history
matching iterations and predictive
performance

History matching using smaller ensembles (particularly those

without AAL) significantly increases failure for both history

matching targets (phi) and predictions (Pf). This is evident for all

versions of vertical model structures examined. These results again

emphasise that good model to measurement fits are an insufficient

criterion for predictive model efficacy, as described above.

The results also show that there is an increase in model

predictive failure rate through history matching iterations for all

discretisation versions, and across all ensemble sizes, except for

the complex models with the 300 realizations ensemble, which

remains below 1% over all iterations. This trend is especially

evident in the simplified models and where the ensemble size is

small. The 300-realization ensembles consistently provide the

minimum predictive failure trend in all models, reaching a fairly

constant value of 10% in the simplified models after the first few

iterations. This indicates that the history matching process

involving simpler models and/or inadequately sized

ensembles, is forcing parameters to take on surrogate roles

that can lead to parameter and predictive bias (Doherty and

Moore 2019; Knowling et al., 2019).

This becomes clearer when examining the complex model

with 300 realizations, for which we can assume that there is no

structural model error, as the structure is the same as the ‘truth

model’. For this complex model, because history matching does

not appear to incur any increase in predictive failure, we can also

assume that the 300 realizations sufficiently span the solution

space. Therefore, the history matching and predictive ability of

the complex model presented is compromised only by rank

deficient Jacobian matrices associated with smaller ensembles.

This effectively allows us to isolate the impact of deficiencies in

model structure from those resulting from the history matching

implementation with a rank deficient Jacobian. These rank

deficiency related errors result from the smaller ensembles

and hence insufficient dimensions in parameter space to

realistically convey predictive error, i.e., some parameter

combinations that the observations and predictions are

sensitive to are not well represented in the smaller ensembles.

Localisation methods can address this to varying extents by

increasing the rank of the Jacobian matrices. The automatic

adaptive localization (AAL) was demonstrated to reduce

model failure, which becomes more extreme with smaller

ensembles. This is as it should be as AAL provides a method

for mitigating the impacts of adopting small ensembles to some

extent, which is a compromise that is often made when model

run times are larger as discussed in Chen and Oliver 2017. This

mitigation is achieved by removing spurious correlations from

the parameter update calculations. It is this process that helps to

guard against failure to capture the true values of both history

matching targets and predictions. However, it should be noted

that using AAL can incur a significant computational cost due to

the potentially disjointed Jacobian.

5.4 Implications for design of large-scale
groundwater age models

Results in this study suggest simplified layering schemes

appropriate for large, national scale models may produce

adequate results, provided large enough ensembles are used.

However, history matching with simplified models and small

ensembles is likely to produce unacceptably high failure rates.

Acceptable model simplifications and adequate ensemble size is

problem specific, as illustrated by the difference between the

North and South Island models. This study suggests a reasonable

combination of model simplification and ensemble size may be

identified by a stable failure rate of weighted observations with

iteration, as seen with the 300-realization ensemble for all models

presented. In contrast, increasing failure rate of weighted

observations with iteration, as seen in the lower order

ensembles and simplified models, suggests a concomitant

increase in prediction failure rate.

Finally, we note that while other national groundwater

models exist (Döll and Fiedler, 2008; De Lange et al., 2014),

the development of a national groundwater age model, which to

the authors knowledge is a world first in terms of scale, represents

an extensive modelling effort. This type of development includes

the running of numerous numerical experiments as part of the

model design process, one of which is documented in this paper.

The number of moving parts is enormous, and the cognitive load

of a modeller is limited, and hence we believe that this effort

would likely not be possible without adopting a scripted

modelling workflow that spans task ranging from model

discretization to highly parameterized inversion (Leaf and

Fienen 2022). This workflow benefits enormously from the

existence of opensource software packages and the community

that contributes to their development and maintenance (Bakker

et al., 2021; White et al., 2016; White et al., 2021).
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Spatial averaging implied in
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Processing of aquifer test drawdowns to obtain estimates of transmissivity, and

sometimes storativity, is an integral part of hydrogeological site investigations.

Analysis of these data often relies on an assumption of hydraulic property

uniformity. Aquifer properties are often estimated by fitting a Theis curve to

measured drawdowns. Where an aquifer exhibits heterogeneity, quantities that

are forthcoming from such analyses are assumed to represent spatially-

averaged properties. However the nature of the averaging process, and the

area over which averaging takes place are unknown. In this study we derive

spatial averaging functions that link inferred hydraulic properties to real-world

hydraulic properties. These functions employ Fréchet integrals derived by

previous investigators that link observation well drawdowns to aquifer

properties under an assumption of mild aquifer heterogeneity. It is shown

that these hydraulic property spatial averaging functions are complex,

especially at times that immediately follow the commencement of pumping.

Furthermore, they cross hydraulic property boundaries, so that estimates of

storativity can be contaminated by heterogeneities in real-world transmissivity,

and vice versa. Because of its greater averaging area at later times, estimates of

transmissivity are generally more immune to the effects of local hydraulic

property heterogeneity than are those of storativity. They are therefore more

reflective of broadscale real-world hydraulic properties, particularly those that

prevail in areas that are removed from the immediate vicinity of the pumping

and observation wells.

KEYWORDS

pumping tests, resolution matrix, sensitivity coefficient, Fréchet kernel, inversion,
Theis equation, spatial averaging function

1 Introduction

Aquifer tests comprise an essential component of site characterisation studies. A well

is pumped, often at a constant rate, for a certain amount of time. Drawdowns are

measured in the pumped well and possibly in one or a number of observation wells. Local

hydraulic properties are inferred from these drawdowns.
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Interpretation of aquifer test data is generally based on a

number of simplifying assumptions. In the simplest case, the

pumping well is assumed to fully penetrate a confined aquifer.

The aquifer is imagined to be homogeneous; groundwater

flow that is induced by pumping is therefore presumed to

be radial.

Under these circumstances, drawdown can be calculated

using the Theis equation (Theis 1935). Back-calculation of

aquifer transmissivity (T) and storativity (S) can therefore be

achieved by finding values of T and S for which the Theis curve

provides the best fit with observed drawdowns. This can be done

manually, or it can be automated. Where drawdowns are

measured in a number of observation wells, it is

commonplace to subject each set of well-specific drawdowns

to this kind of analysis. While values inferred for T and S may

differ between wells, all of them are reported. Differences

between them are taken as a measure of local hydraulic

property heterogeneity.

The Theis assumption of hydraulic property homogeneity

over the entire drawdown-affected area can rarely be justified.

It is made in order to attain uniqueness of an inverse problem,

and to permit use of a simplified forward model for

computation of drawdown. It is presumed that solution of

this simplified inverse problem yields values of T and S that are

“representative” of the area in which drawdown has been

induced.

A number of authors have inquired into the nature of the

relationship between real and inferred hydraulic properties.

These include Butler (1988), Butler (1990), Oliver (1990),

Oliver (1993), Sánchez-Vila, et al. (1999), Leven and

Dietrich (2006) and Copty et al. (2011). Most of these

studies focussed on the relationship between drawdown in a

pumped or observation well and hydraulic properties that

characterise pumping-affected areas. Linearization of this

relationship enables rapid evaluation of drawdown-to-

parameter sensitivities. It is argued that greater sensitivity

of drawdown to hydraulic properties that prevail in one area

over those that prevail in another area implies that values of T

and S that are inferred from these drawdowns are more

reflective of properties in the former area than those in the

latter area.

In this paper we extend the utility of linear analysis in order

to derive equations that directly relate values for T and S that are

forthcoming from Theis-based analysis of drawdowns to values

of T and S that characterise an aquifer; the former are referred to

as “apparent values” by Sanchez-Vila et al. (2006). The

methodology that we employ can be readily extended to other

aquifer test contexts where forward modelling of pumping-

induced drawdown relies on fewer assumptions than those

that are required by the Theis equation. However, linear

analysis under Theis assumptions is rendered particularly easy

by the availability of analytical formulae for calculation of

drawdown-to-parameter sensitivities.

2 Theory

2.1 Fréchet kernels

Consider a pumping well situated at (−a/2, 0) and an

observation well at (a/2, 0); they are separated by a distance

a. At time zero, extraction of water begins at a rate of q0. The

situation is depicted in Figure 1.

Suppose that the medium which these wells penetrate is

homogeneous, with a pervasive transmissivity of T0 and a

pervasive storativity of S0. Under these circumstances,

drawdown s at the observation well can be calculated using

the Theis equation:

s
a

2
, t( ) � q0

4πT0
E1

S0a2

4T0t
( ) (1)

where E1 is the exponential integral function.

Now suppose that the aquifer test host medium is not

homogeneous, and that transmissivity and storativity are

functions of location x i.e. (x, y). We further suppose that

heterogeneities in transmissivity and storativity can be viewed

as perturbations of background To and So. We denote differences

between actual and background transmissivity and storativity by

T and S. That is:

T x( ) � Ta x( ) − T0 (2a)
S x( ) � Sa x( ) − S0 (2b)

where Ta(x) and Sa(x) are the actual values of transmissivity and

storativity at location x. If T(x) and S(x) are small, then the

drawdown perturbation h(t) at the pumping well arising from

these hydraulic property perturbations can be formulated as a

convolution integral as follows:

h t( ) � ∫
A
T x( )FT x, t( )dx + ∫

A
S x( )FS x, t( )dx (3)

The functions FT(x,t) and FS(x,t) comprise so-called Fréchet

kernels for transmissivity and storativity respectively. Knight and

Kluitenberg (2005) derived the following analytical expressions

for them:

FT x, t( ) � −q0 r2 − a2/4( )
8π2DT2

0r1r2t
K1

r1r2
2Dt

( ) exp −r
2 + a2/4
2Dt

( ) (4a)

FS x, t( ) � − q0
8π2T2

0t
K0

r1r2
2Dt

( ) exp −r
2 + a2/4
2Dt

( ) (4b)

In these equations K0 and K1 are modified Bessel functions of

order 0 and 1, while:

r �









x2 + y2( )√

(5)
and

D � T0

S0
(6)

Frontiers in Earth Science frontiersin.org02

Manewell et al. 10.3389/feart.2022.1079287

224

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1079287


r1 and r2 are depicted in Figure 1. Similar equations were derived

by Zha et al. (2020).

The sensitivities of observation well drawdown to domain-

wide transmissivity and storativity are obtained by areal

integration of the respective Fréchet kernels. From Knight and

Kluitenberg:

MT t( ) � ∫∞

−∞
∫∞

−∞
FT x, t( )dx

� − q0
4πT2

0

E1
S0a2

4T0t
( ) − exp −S0a

2

4T0t
( )[ ] (7a)

Ms t( ) � ∫∞

−∞
∫∞

−∞
FS x, t( )dx � − q0

4πS0T0
exp −S0a

2

4T0t
( ) (7b)

In the Supplementary Material we show how Knight and

Kluitenberg’s Fréchet kernels can be extended to accommodate

the Tx and Ty components of directional transmissivity. The

extended kernels are:

FTx x, t( ) � −q0 x + a/2( ) x − a/2( )
8π2DT2

0r1r2t
K1

r1r2
2Dt

( ) exp −r
2 + a2/4
2Dt

( )
(8a)

FTy x, t( ) � − q0y2

8π2DT2
0r1r2t

K1
r1r2
2Dt

( ) exp −r
2 + a2/4
2Dt

( ) (8b)

Note that these sum to FT(x,t). With Tx and Ty treated

separately, Eq. 3 becomes:

h t( ) � ∫
A
Tx x( )FTx x, t( )dx + ∫

A
Ty x( )FTy x, t( )dx

+ ∫
A
S x( )FS x, t( )dx (9)

2.2 Parameter estimation

Suppose that we wish to back-calculate transmissivity and

storativity from drawdowns measured in an observation well.

This comprises an ill-posed inverse problem as it is impossible to

assign unique values of transmissivity and storativity to all

drawdown-affected points within a heterogeneous aquifer. If

uniqueness is sought, it must be attained through regularisation.

In aquifer test analysis, regularisation is usually achieved by

assuming hydraulic property uniformity. In the present case, this

reduces inverse problem complexity to that of estimating just two

parameters, namely those that represent the transmissivity and

storativity of the entire medium. This simplifies the analysis

considerably. Meanwhile, it is hoped that the values of domain-

wide transmissivity and storativity that emerge from this process are

not too different from the “average” transmissivity and storativity of

the porous medium which hosts the pumping test. Shortly, we

examine whether this hope is well-placed.

We continue to assume a linear relationship between drawdown

and aquifer hydraulic properties. This is in accordance with the

FIGURE 1
A pumping and observation well. Also shown is a general point in two-dimensional space. The hydraulic properties at this point are functions of
location (x, y).
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theory on which most parameter estimation methods are based. In

practical parameter estimation, non-linearities in this relationship

are accommodated through iterative updating of sensitivities as

estimated parameter values change.

The matrix-vector equation on which linearized parameter

estimation is based can be written as follows:

h � Mp + ε (10)

In Eq. 10 the h vector contains differences between measured

drawdowns in the observation well and those that are calculated

using the domain-wide background values T0 and S0. Let us suppose

that there are n such drawdown measurements. The vector p

contains adjustments T and S to T0 and S0 (Eqs 2a, 2b). That is:

p � T
S

[ ] (11)

ε (another n-dimensional vector) encapsulates random noise

that is associated with measurements of drawdown. The n ×

2 matrix M can be written as follows:

M �
MT t1( ) MS t1( )
MT t2( ) MS t2( )

. .
MT tn( ) MS tn( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

where MT(ti) and MS(ti) are Eqs 7a, 7b calculated at time ti.

The least squares solution to the inverse problem posed by

Eq. 10 [see, for example, Draper and Smith (1998)] is:

p- � (MtQM)−1MtQh (13)

whereQ is an observationweightmatrix. IdeallyQ is proportional to

the inverse of the covariancematrix of measurement noise C(ε). The

latter is normally assumed to be diagonal; so too is Q.

The elements of h can be calculated from distributed

transmissivity and storativity using Eq. 3 or Eq. 9. The choice

depends on whether or not we wish to characterise transmissivity

using T alone, or Tx and Ty separately. To reduce complexity of

the following equations, we first consider T on its own.

Equation 3 can be written in vector form as:

h � Fk. (14)

where k is the vector:

k �

T1

.
Tm

S1
.
Sm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15)

The subscripts that accompany T and S in the k vector of Eq.

15 signify discretisation of x-y space intom elements (wherem is

a large number) for the purpose of numerical integration. In the

present study we employ equal-sized, square cells and apply the

midpoint rule.

To specify the F matrix, we write the integrals in Eq. 3 as

summations:

hi � ∑
A
FT
i,jTj +∑

A
FS
i,jSj (16)

where i denotes the i’th time at which drawdown

measurements were made, and j denotes the j’th cell that is

used for spatial integration. With k defined by Eq. 15, F

becomes:

F �
FT
1,1 FT

1,m FS
1,1 FS

1,m

FT
n,1 FT

n,m FS
n,1 FS

n,m

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ (17)

We now substitute Eq. 14 into Eq. 13 to obtain:

p- � (MtQM)−1MtFk (18)

FIGURE 2
(A) Drawdown in the observation well. (B) The derivative of drawdown with respect to the natural logs of global T and S.
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This can be re-written as:

p- � R′k (19)

where R′ is defined through this equation.

The matrix R′ has two rows and 2m columns. Each row of

this matrix depicts the manner in which elements of k are

summed (i.e., spatially integrated) in order to calculate the

pertinent element of p. That is, each row of R′ shows how an

estimated, global (or apparent) parameter (T or S) is related

to spatially-distributed, real-world hydraulic properties T

and S. We make this relationship explicit by re-writing R′
as follows:

R′ � RT−T1
′ RT−Tm

′ RT−S1
′ RT−Sm

′

RS−T1
′ RS−Tm

′ RS−S1
′ RS−Sm

′[ ] (20)

It is apparent from Eq. 20 that part of the estimated value of

global T is inherited from real-world values of S, and vice versa.

We refer to this phenomenon as “parameter contamination”

herein. The mapping of real-world, spatially-distributed T and

S to estimated T and estimated S can be visualized by plotting

respective elements of the R′matrix at the locations in space to

which they pertain. Four such maps are implied in the R′

matrix - two for the mapping of real-world T and S to T, and

two for the mapping of real-world T and S to S. To allow easier

identification of maps that are presented in the next section, we

re-write R′ as a composite matrix in which each sub-matrix

pertains to such a map.

R′ � RT−T′ RT−S′

RS−T′ RS−S′[ ] (21)

Each of the submatrices R′X-Y that appear in Eq. 21 has one

row and m columns. In the discussion that follows, we refer to

the contents of these columns as a “spatial averaging

function.”

Where transmissivity is considered to be directional, Eq. 15

becomes:

k �

Tx1

.
Txm

Ty1

.
Tym

S1
.
Sm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

FIGURE 3
R′T−T for separated wells at five different times.
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so that Eq. 21 becomes:

R′ � RT−Tx
′ RT−Ty

′ RT−S′

RS−Tx
′ RS−Ty

′ RS−S′[ ] (23)

2.3 A note on regularisation

The matrix R′ that is defined above bears some relationship

to the so-called “resolution matrix” that plays a prominent role in

the theory of regularised inversion; see, for example, Menke

(2018) and Aster, et al. (2019). However, a true resolution matrix

is square and generally rank-deficient; it relates fine-scale

parameter estimates to fine-scale, real-world hydraulic

properties. The name of our R′ matrix includes a prime in

order to distinguish it from the conventional resolution matrix.

Inversion theory makes it clear that an inevitable

consequence of inverse problem ill-posedness is that the

value that is estimated for a parameter at one particular

location is a spatial integral of parameter values over many

locations, and that this integration process can cross

parameter boundaries where parameters of more than one

type are simultaneously estimated. This is a “cost of

uniqueness” (Moore & Doherty, 2006). It is incurred

regardless of the adopted regularisation strategy.

Regularisation that is based on an assumption of hydraulic

property uniformity cannot evade this cost. Nor is hydraulic

property uniformity necessarily the best regularisation

strategy to use, if “best” is defined as a proclivity to yield

predictions whose error variance is minimized (Doherty,

2015). However, it is generally the most convenient strategy

to use for aquifer test analysis.

It is important to understand that the averaging function that

relates estimated to real-world parameters is an outcome of the

adopted regularisation strategy. It is not a foregone conclusion

that this averaging function is either “clean” or desirable, or yields

hydraulic property estimates that are immediately useful for

other purposes (for example, parameterization of a

groundwater model).

Conceptually, it is possible to design an inversion process

that specifically seeks estimates of hydraulic properties that are

averaged over space in a user-specified manner. However, this

process is somewhat cumbersome. It requires pre-inversion

construction of a matrix that characterizes “structural noise”

incurred by departures of real-world hydraulic properties from

uniformity. This, in turn, requires prior statistical

characterization of hydraulic property heterogeneity. For

details see Cooley (2004) and Cooley and Christensen (2006).

FIGURE 4
R′T−Tx for separated wells at five different times.
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In most cases we have no option but to pose an inverse problem

in a way that is amenable to rapid solution, and then to “take

what we can get” as far as hydraulic property averaging is

concerned.

The theory that is outlined above is linear. It is presented in

terms of departures from uniformity of real-world hydraulic

properties. Each element of R′ can therefore be viewed as a

derivative; as such, it specifies the change in the estimated value

of T or S incurred by a change in real-world T or S at a specified

subsurface location. In actual fact, the value of this derivative is

dependent on the spatially variable values of T and S; however in

practice, the elements of R′ are computed using To and So in

accordance with the above theory. Despite these limitations,

maps based on the submatrices that appear in Eqs 21, 23 can be

loosely viewed as depicting contributions to estimated T and S by

real-world, spatially-distributed T and S. Thus they address the

question of what estimated values of T and S really mean. The

linearity assumption yields an approximate answer to this question

that would be difficult to obtain in any other way.

2.4 A note on the methodology

It can be argued that the introduction of heterogeneity to amodel

domain erodes the applicability of Theis-type aquifer test analysis.

Evidence of its invalidity may be visible in time-correlated misfit

between measured drawdowns and best-fit Theis-evaluated

drawdowns.

Nevertheless, most aquifer tests are undertaken in heterogeneous

media. Furthermore, for many aquifer tests, at least some drawdown

misfit can be attributed to the heterogeneous nature of the medium

in which the test is undertaken. This is mostly ignored in real-world

aquifer test data interpretation. For convenience, misfit is generally

attributed to “measurement noise;” uncertainties in estimated T and

S that are incurred by this misfit are calculated accordingly. (We do

not address these uncertainties in this paper).We note that the above

derivations of spatial averaging functions are not invalidated by

heterogeneity-incurred misfit, for these derivations require no

assumptions pertaining to misfit sources or misfit statistics; they

only require that a least-squares objective function be minimized.

FIGURE 5
R′T−Ty for separated wells at five different times.
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3 An example

3.1 Specifications

We put the above theory to use by examining spatial

averaging functions for two configurations of a pumping well

and an observation well. In both cases, water is pumped at a rate

of 5,000 m3/day from an aquifer whose transmissivity is 100 m2/

day and whose storativity is 0.0001. (As stated above, because of

the linearity assumption on which the above theory is based, the

effects of aquifer heterogeneity on estimated T and S can be

studied without actually introducing heterogeneity to the

synthetic aquifer.) In the first case, the well separation is set

to 100 m. In the second case it is set to 1 m. We refer to these as

the “separated well case” and the “near-coincident well case”

respectively. Non-integrable singularities in some Fréchet kernels

prevent us from placing the pumping and observation wells at the

same place, so we employ a small well separation as a proxy for

coincident wells.

Drawdowns are sampled at a rate of 20 measurements per

decade in time, starting at 0.001 days and finishing at 10 days.

Drawdown measurement error is assumed to be random and

independent, with a standard deviation of 0.05 m. The diagonal

elements of theQmatrix of Eq. 13 are set to the inverse square of

this, namely 400.0. (Note that the results presented below are

invariant with multiplication of all elements of Q by a constant

factor.)

Integration of spatial averaging kernels is undertaken using

the midpoint rule over a uniform grid comprised of 2 m × 2 m

square cells. Integration is required over only one quadrant of the

x-y plane because of symmetry. The integration grid extends for

40 km in the x and y directions.

Note that the symmetry of this problem has another

important implication. All of the results presented below

remain the same if the pumping and observation wells are

interchanged.

In the present study Tx, Ty, T and S are log-transformed.

Hence relationships are sought between the logs of estimated T

and S and the logs of real-world hydraulic properties; Fréchet

integrals appearing in the previous section are modified

accordingly. Log-transformation enhances linearity at the

same time as it accommodates the wide range of values that

these hydraulic properties can adopt. To simplify the following

discussion, we mostly omit any reference to log transformation

when describing spatial averaging functions; however the reader

should keep their log-transformed status in mind.

FIGURE 6
R′T−S for separated wells at five different times.
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Figure 2A shows drawdown plotted against the log (to base

10) of time for the separated and near-coincident well cases.

Figure 2B plots the derivative of drawdown with respect to the

natural log of global T and the natural log of global S for these

same cases. The derivative of drawdown with respect to log T

for separated wells changes from positive to negative after

about 0.006 days (about 8 min). At very early times, an

increase in transmissivity accelerates the propagation of

drawdown from the extraction well to the observation well.

However after that time, an increase in aquifer transmissivity

induces less drawdown at the observation well for a given

amount of flow. No such reversal occurs for the near-

coincident well case.

3.2 Spatially integrated kernels

At any time during an aquifer test, the submatrices appearing

in Eqs 21 and 23 can be computed in the manner described

above. As such, they pertain to aquifer test interpretation that is

based on drawdowns that are sampled up until that time. Each

row of these submatrices comprises an integration kernel. In

accordance with Eq. 19 each element in each row is multiplied by

the corresponding element of k; that is, it is multiplied by T, Tx,

Ty or S pertaining to a point within the aquifer. These values are

then summed as a proxy for spatial integration.

Numerical integration of these kernels on their own yields

the following results at all times.∫
A
RT−T′ x( )dx � 1.0 (24a)

∫
A
RT−Tx
′ x( )dx � 0.5 (24b)

∫
A
RT−Ty
′ x( )dx � 0.5 (24c)

∫
A
RT−S′ x( )dx � 0.0 (24d)

∫
A
RS−T′ x( )dx � 0.0 (24e)

∫
A
RS−Tx
′ x( )dx � −0.5 (24f )

∫
A
RS−Ty
′ x( )dx � 0.5 (24g)

∫
A
RS−S′ x( )dx � 1.0 (24h)

Collectively, Eqs 24a, 24d, 24e, 24h imply that the inverse

problem is well-posed, for if the aquifer is homogeneous, values

of T and S calculated using Eq. 18 are estimates of the true, global

values of T and S.

FIGURE 7
R′S−S for separated wells at five different times.
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Equations 24b, 24c, 24f, 24g are noteworthy. Suppose that

Tx is multiplied by a factor c and that Ty is divided by this

same factor. (Note that multiplication becomes addition in

the log domain). This introduces horizontal anisotropy to the

aquifer. According to the above equations, the estimated T is

unchanged; it is therefore equal to the geometric mean of Tx

and Ty. In contrast, estimated S is altered because the right

sides of Eqs 24f and 24g have opposite signs; its value is

decreased by a factor of c. However, if the real value of S

throughout the aquifer is then multiplied by c, estimated S

returns to its original value. Use of a variant of the Theis

equation that accommodates aquifer anisotropy

(Papadopulos, 1965) verifies that drawdowns at the

observation well are unchanged under these conditions.

The integrals that are presented in Eqs 24a to 24h can assist in

interpreting the kernel maps that are discussed below. For

example, early-time values of R′T−T for the separated-well case

are significantly negative in some areas. These must be balanced

by areas of R′T−T positivity so that the negative contribution to

the total integral is not only cancelled, but integrates to 1.0. These

positive values may be spread out over large areas, and so may

not be as obvious as intensely negative values when plotted in

space. Similarly, areas of negative R′S–Tmust be balanced by areas

of positive R′S−T so that R′S−T spatially integrates to zero.

3.3 Maps of spatial averaging function for
separated wells

This section provides maps of R′X−Y where X is either T or

S and Y is either T, Tx, Ty or S. Maps are presented for five

different times. In each case, the map pertains to Theis-based

interpretation of observation well drawdowns acquired up

until that time. In all of these figures, red is indicative of

positive values while blue indicates negative values. Shading

is linear; the zero contour is highlighted. When viewing these

plots, keep in mind that it is their spatial integral that

matters, for this is what determines an estimated value of

T or S.

The Supplementary Material presents these same maps, but

with logarithmic shading. This reveals the spatial characteristics

of these functions in low-intensity areas that are distant from the

pumping and observation wells. Because these areas are large,

they make significant contributions to the spatial integrals

though which T and S are calculated.

R′T−T is mapped in Figure 3. Unsurprisingly,

contributions of real T to estimated T expand outward

from the pumping and observation wells with time,

diminishing in magnitude, but covering a broader area. At

larger times, contours of equal R′T−T form ellipses with foci at

FIGURE 8
R′S−T for separated wells at five different times.
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the pumping and observation wells. In contrast, the early-time

pattern is complex, with high values between the wells, and

within lobes that extend beyond the wells. Small negative

cusps lie to the north and south of the line that joins the wells.

These negative cusps diminish in intensity with increasing

time, but never completely disappear.

Figures 4, 5 show that contributions made by real-world

Tx and Ty to Theis-estimated T are more complex than that

made by T alone. (See also the plots in the Supplementary

Material where logarithmic shading is employed.) Local T

anisotropy close to and between the wells can strongly affect

estimated T at very early times. However, contributions

from these areas fade with time as smoother R’T−Tx and

R′T−Ty kernels expand beyond the wells. At large times,

estimated T reflects true Tx that prevails at large

distances along the x axis and true Ty that prevails at

large distances along the y axis. Reciprocally, Ty at large

distances along the x axis and Tx at large distances along the

y axis have little effect on estimated T. That is to say,

estimated T reflects components of directional real-world

T that point towards the wells.

Figure 6 depicts the potential for contamination of estimated

T by real-world S. At early times, real-world S between the

extraction and observation wells can exert a considerable

influence on estimated T. Positive and negative contributions

of S to T are strong, but collectively integrate to zero as outlined

above.

The presence of a significant band of negatively-valued

R′T-S joining the pumping well to the observation well at

early times is easily explained. Low storativity in this area

hastens propagation of drawdown to the observation well; it

therefore “looks like” high local T. This affects estimated T

shortly after the commencement of pumping when the

derivative of drawdown with respect to global S and

global T are both positive; see Figure 2B. At later times,

contributions of real-world S to estimated T become

more diffuse. However an area of anomalous S between

the pumping and observation wells is never quite

“forgotten” by the Theis-based parameter estimation

process.

Figure 7 maps the contribution to estimated S by real-

world S. In contrast to spatial averaging functions that affect

estimated T, areas that contribute to estimated S tend to

remain close to the pumping and observation wells even at

late times. At very early times the pattern is complex; the wells

are joined by a sliver of intensely negative S contribution to S;

this is surrounded by areas of intensely positive contributions

of S to S.

FIGURE 9
R′S−Tx for separated wells at five different times.
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The limited expansion of R′S−S with time (and of other R′S-X
maps shown below) implies that estimates of S forthcoming from

aquifer test analysis pertain to a smaller area than do estimates of

T. Furthermore, this disparity in area grows with the length of the

test. These maps also imply that information pertaining to

aquifer storativity ceases to be acquired after a relatively short

time during a pumping test. This accords with identification by

authors such as Kruseman and de Ridder (1990) of a pseudo-

steady-state phase of drawdown development as time proceeds.

Figures 8–10 suggest a high potential for contamination of

estimated S by between-well T, especially Tx. High values of Tx in

this area can hasten propagation of drawdown from the pumping

well to the observation well, thereby replicating the impact of low

S. This effect is strong, and does not dissipate with time. In

hydrogeological contexts where the natural variability of T is

much greater than that of S, the potential for contamination of

estimated S by between-well anomalies in T may be very high.

The impact of real-world Ty on estimated S is complex.

Like that of T, it persists to late times. The near-well cusps of

positive influence suggest that strategically-located areas of

high Ty can gather water from distant areas that can slow the

growth of drawdown in the observation well. This appears as

high global S where these drawdowns are subjected to Theis

interpretation.

3.4 Maps of spatial averaging function for
near-coincident wells

As stated above, calculations for coincident wells are

complicated by non-integrable singularities in Fréchet kernels.

To avoid this problem, wells are placed 1 m apart. Furthermore,

we do not provide maps of R’S-X for the near-coincident case

because S cannot be estimated unless a dedicated observation

well is employed.

From Figures 11–14 it is apparent that maps of R′T−T and

R′T−S are radially symmetric, while those of R′T−Tx and R′T−Ty are
not. This is because anisotropy is the only thing that distinguishes

one direction from another when the pumping and observation

wells are coincident.

Figure 11 demonstrates that R′T−T expands continuously

with time, and is ubiquitously positive. Its rate of expansion is

not quite as fast as for separated wells. R′T−Tx and R′T−Ty also
maintain positivity over time and space. Their lobate shapes

indicate that estimated T is influenced by Ty that prevails in the

positive and negative y directions from the pumping well and by

Tx that prevails in the positive and negative x directions from this

well. These are the directions from which water flows towards the

pumped well. Because x and y directions are arbitrary for

coincident wells, a more general (but unsurprising) conclusion

FIGURE 10
R′S−Ty for separated wells at five different times.
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follows. It is that estimated T reflects the component of real-

world T that points in the direction of the pumped well.

Figure 14 shows that near-well, real-world S can have a

strong negative influence on estimated T at early times. Its

influence is somewhat subdued at later times, but is never

completely forgotten.

3.5 Radius of investigation

The radius of investigation of an aquifer test is discussed by a

number of the authors that are cited in the introduction to this

paper; see Bresciani et al. (2020) for a review. Different

definitions highlight different aspects of drawdown

propagation, and of responsiveness of drawdown to the

presence of a distant barrier. The subject matter of the present

paper suggests an additional definition, this being based on the

area of aquifer that contributes to Theis-estimated T.

As stated above, for separated wells contours of R′T−T at large
distances from the pumping and observation wells form ellipses

with foci at these wells. These ellipses collapse to circles for

coincident wells. We (somewhat arbitrarily) define the radius of

investigation of an aquifer test as the length of the major semi-

axis of an ellipse that encloses an area that contributes all but 10%

to the estimated value of T. Thus R′T−T within the ellipse

integrates to 0.9. (Note that the lengths of the semi-major and

semi-minor axes of this ellipse are almost equal at large distances

from the wells).

In Figure 15 the radius of investigation is plotted against time

for both separated and near-coincident wells. It is apparent from

this figure that T inferred from drawdowns that are measured in a

separate observation well “feels” more of the surrounding real-

world T than T that is inferred from drawdowns in a pumping

well. Supposedly, this increased area of spatial averaging provides

greater immunity from the effects of near-well anomalies in real-

world S and T. However it renders estimated T more susceptible

to the effects of system boundaries. It is of interest to note that the

difference in radius of influence between the separated and near-

coincident cases grows with time. For the parameters we chose

for this example it is roughly equal to the well separation after

0.5 days, and grows to more than double this after 10 days.

4 Discussion

Work that is documented herein extends previous

investigations into the relationship between aquifer-test-

inferred hydraulic properties and real-world hydraulic

FIGURE 11
R′T−T for near-coincident wells at five different times.
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FIGURE 12
R′T−Tx for near-coincident wells at five different times.

FIGURE 13
R′T−Ty for near-coincident wells at five different times.
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properties. We have formulated spatial averaging functions that

map real-world T, Tx, Ty and S to estimated T and S under the

assumption that the latter are estimated by fitting a Theis curve to

drawdown measurements. The analysis can be readily extended

to accommodate the fitting of other types of curves to raw or

processed drawdowns. These averaging functions are

approximate, for their formulation assumes only small

departures from hydraulic property uniformity. Nevertheless,

the insights that they provide are highly instructive.

Values of T and S that emerge from interpretation of

aquifer test data can be viewed as complex spatial averages of

real-world T and S over an area that expands with time. These

averaging functions cross parameter boundaries. Hence local

anomalies in real-world T can influence the estimated value

of S and vice versa.

The area over which real-world hydraulic properties are

averaged to estimate T is greater than that over which they are

averaged to estimate S. The difference between these two areas

grows with pumping time. Hence aquifer-test-estimated S

FIGURE 14
R′T−S for near-coincident wells at five different times.

FIGURE 15
Radius of semi-major axis of ellipse of influence for separated
and near-coincident wells.
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tends to reflect real-world S in closer proximity to the pumping

and observation wells than estimates of T reflect real-world T.

At the same time, estimates of S are vulnerable to corruption

by near-well anomalies in T. The reverse applies for pumping

tests of short duration; that is, estimates of T can be corrupted

by near-well anomalies in S. Importantly however, as the time

over which drawdown data are acquired increases and the area

over which T is averaged expands, opportunities for

contamination of estimated T by S decrease. During this

period the relationship between drawdown and the log of

time approaches linearity, and direct estimates of T are

available through Cooper-Jacob (1946) analysis of the slope

of the drawdown line. It follows that estimates of S

forthcoming from aquifer test analysis are often less reliable

than those of T, and may be somewhat dependent on the

disposition of T between the pumping and observation wells.

This is not a new conclusion; see, for example, Sanchez-Vila

et al. (1999) and Trinchero et al. (2008).

Intuition may suggest that separation of pumping and

observation wells yields insights into between-well T. Analyses

that are presented herein show that this applies for only a very

short time. Thereafter, significant contributions to interpreted T

are made by material that is beyond both of the extraction and

measurement wells. The longer an aquifer test proceeds, the less

does the separation of the wells, or the material between them

matter, and the more does the zone of expanding contribution of

real T to inferred T expand into an area that surrounds both of

these wells.

At no time during an aquifer test does estimated T reflect

real-world Tx more than real-world Ty regardless of the offset

direction of the observation well with respect to the pumping

well. However, the manner in which distributed Tx and Ty are

spatially averaged is very different. At very early times,

estimated T is positively influenced by Tx along the line

that joins the wells. However, it is also negatively

influenced by both Tx and Ty to the north and south of this

line. As time goes on, estimated T is much more reflective of

the component of real-world T that points towards the

midpoint of the wells than it is of the component of T in

any other direction.

Once a certain amount of time has elapsed, the radius of

investigation of a separated-well aquifer test becomes greater

than that of a coincident-well aquifer test. The ratio of the two

investigation radii continues to grow thereafter. The greater

averaging area for separated wells protects estimated T from

contamination by anomalies in near-well T and S. However, it

renders it more vulnerable to the effects of hydrogeological

boundaries.

We close the discussion by noting that this paper does not

address uncertainties of estimated T and S. It would not be a

difficult matter to derive expressions for these uncertainties

using the theory presented above. However this would require

statistical characterisation of the spatial heterogeneity of

subsurface T and S, including the scale of this

heterogeneity. This is beyond the scope of the present

paper. Furthermore, it can be argued that characterisation

of the uncertainties of the complex spatial averages of T and S

that are depicted herein may be of limited use to managers of a

groundwater system. Of greater use are the uncertainties of

arithmetic or geometric averages of system properties over

user-specified areas, for example, circles or ellipses that

circumscribe the pumping test wells, or the cells of a

groundwater model grid that spans the area affected by

pumping-induced drawdowns. These too can be calculated

through a simple extension of the theory provided herein; this

will be addressed in future work.

5 Conclusion

The relationships between aquifer-test-inferred

transmissivity and storativity and those that prevail in a

heterogeneous real world are complex, and sometimes non-

intuitive, particularly at early pumping times.

Insights into these relationships provided by the present

study can inform the design of an aquifer test. A matter of

particular interest at some sites may be whether observation wells

should be specially drilled so that pumping-induced drawdowns

can be measured at one or a number of distances and directions

from the pumped well. The incentive for such a designmay be the

gathering of information on near-well hydraulic property

heterogeneity.

Results presented herein suggest that if insights into

near-well hydraulic property heterogeneity are sought,

then there is no need to pump for a long time, for this

information emerges early in an aquifer test. They also

suggest that considerable sophistication is required in

interpreting multi-well drawdown data if this information

is to be retrieved. This sophistication extends well beyond

Theis-based analysis of drawdown in individual wells; the

complex averaging functions that link real-world hydraulic

properties to Theis-estimated T and S hide more than they

reveal.

An issue of considerable importance is how estimates of

transmissivity made through historical interpretation of aquifer

test data should be used in parameterisation of a groundwater

model. Before construction of a groundwater model, the

outcomes of previous hydrogeological investigations that have

been undertaken within its domain are generally reviewed. They

often reveal that many aquifer tests have been conducted in the

study area, some involving a single well, and some involving one

or multiple observation wells. In most cases, drawdowns have

been interpreted using Theis of Jacob-Cooper analysis.

The present study suggests that estimates of local

transmissivity and storativity (particularly the latter) obtained

in this way should be treated with caution. The spatial averaging
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of local hydraulic properties that is implied in these estimates

may preclude their direct transferral to proximal cells of a

groundwater model. At the same time, these estimates should

not be ignored. An advantage of using linear analysis to establish

the relationship between estimated and real-world hydraulic

properties, is that an extension of this analysis can provide

estimates of error variance between hydraulic properties

averaged over model cells and those obtained through aquifer

test interpretation. Probabilistic parameterisation of proximal

groundwater model cells can then follow. This is the subject of an

ensuing paper.
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Data assimilation, sensitivity
analysis and uncertainty
quantification in semi-arid terminal
catchments subject to long-term
rainfall decline
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Quantification of long-term hydrologic change in groundwater often requires the
comparison of states pre- and post-change. The assessment of these changes in
ungauged catchments using numerical models and other quantitative methods is
particularly difficult from a conceptual point of view and due to parameter non-
uniqueness and associated uncertainty of quantitative frameworks. In these contexts,
the use of data assimilation, sensitivity analysis and uncertainty quantification
techniques are critical to maximize the use of available data both in terms of
conceptualization and quantification. This paper summarizes findings of a study
undertaken in the Lake Muir-Unicup Natural Diversity Recovery Catchment
(MUNDRC), a small-scale endorheic basin located in southwestern Australia that
has been subject to a systematic decline in rainfall rates since 1970s. A combination
of data assimilation techniqueswas applied to conceptual and numerical frameworks
in order to understand and quantify impacts of rainfall decline on the catchment
using a variety of metrics involving groundwater and lake levels, as well as fluxes
between these compartments and mass balance components. Conceptualization
was facilitated with the use of a novel data-driven method relating rainfall and
groundwater responses running backwards in time, allowing the establishment of the
likely baseline conditions prior to rainfall decline, estimation of net recharge rates and
providing initial heads for the forward numerical modelling. Numerical model
parameter and predictive uncertainties associated with data gaps were then
minimized and quantified utilizing an Iterative Ensemble Smoother algorithm,
while further refinement of conceptual model was made possible following
results from sensitivity analysis, where major parameter controls on groundwater
levels and other predictions of interest were quantified. The combination ofmethods
can be considered as a template for other long-term catchment modelling studies
that seek to constrain uncertainty in situations with sparse data availability.

KEYWORDS

groundwater modelling, data assimilation (DA), sensitivity analysis (SA), uncertainty
quantification (UQ), endorheic basins
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1 Introduction

Endorheic basins, also known as terminal catchments of internally
drained basins, comprise a variety of geomorphic environments
widely distributed across the globe. These environments with often
distinct attributes are characterized by the lack of surface and
groundwater discharge across their borders and have evaporation
as the dominant outflow. Despite many of them being currently under
pressure from climate change and anthropogenic activities, these
basins are understudied when compared to traditional hillslope
catchments. The unique surface and groundwater attributes (De
Sousa, 2021) of these environments makes extrapolations and
inferences from better studied hillslope catchments difficult. From
a quantitative perspective, modelling efforts in these areas are not only
difficult given the lack of numerical frameworks designed for surface-
groundwater interactions in semi-arid settings (Jolly et al., 2008), but
they also suffer from a lack of site-specific monitoring data.

The issue of data sparsity is a common theme in endorheic basins,
evidenced by the fact that current literature relies heavily on indirect
measurements and remote-sensing data (De Sousa, 2021). Data
sparsity hinders the ability to establish a robust conceptualization
and incurs large predictive uncertainty which is inherent to surface
and groundwater models. The need to maximize the extraction of
information from largely incomplete datasets and its use in
conceptualization and numerical modelling is critical for the
development of quantitative frameworks that are capable of
accounting for hydrogeological/hydrological uncertainty and the
ability of available data to constrain it.

The use of Data Assimilation (DA), Uncertainty Quantification
(UQ) and Sensitivity Analysis (SA) techniques in hydrological
modelling is an emerging field with great potential to support
decision-making in catchments experiencing hydrological change,
but to date many of these techniques have not yet been applied to
endorheic basin studies. Challenges remain on how to apply them
appropriately in situations where the observation data is less than
ideal, such that they can output useful information relevant to inform
our conceptualization and strategies for management (Thompson
et al., 2015).

Research into DA was initially developed for the purpose of
numerical weather prediction, and is often related to Kalman filter
contexts, where the states of variables from numerical models are
updated incrementally through time as new observation data becomes
available. In this paper, we adopt a broader definition of DA, which
relates to optimally combine observations with theory (usually as
numerical models) to improve model integrity and the accuracy of
predictions of interest (Asch et al., 2016). In this regard, DA
techniques are used for several purposes, such as history matching
and parameter optimization based on observed data, determination of
initial conditions for a numerical forecast model, interpolation of
sparse observation datasets using the physical knowledge of the system
(i.e., numerical models), and reduction of predictive uncertainty of
numerical models.

The use of UQ and SA techniques is often interrelated with DA
techniques. While UQ tends to focus on quantifying and reducing
parameter and predictive uncertainty due to lack of data or model
defects, SA looks at the effect that model parameters have on outputs
of interest (Pianosi et al., 2016). These techniques have the potential to
support many of the questions that arise from investigation efforts in
endorheic basins, from conceptualization to quantification, predictive

modeling, and adaptive management (Figure 1), which are
explored next.

1.1 Finding evidence of long-term
groundwater trends and reconstruction of
baseline conditions

The use of signal analysis techniques for processing of time series
and extraction of useful information is an import area of signal
processing and well-established techniques such as Fourier
Transforms and Wavelets have been applied for decades
(Maheshwari and Kumar, 2014). Studies focused on groundwater
level time series analysis include works by Lafare et al. (2016) and
Seeboonruang (2014).

In situations where long-term stressors are intermixed with short-
term signals (such as seasonality), time decomposition techniques
have the potential to untangle them. The Empirical Model
Decomposition method developed by Huang et al. (1998) is a
technique for processing of non-linear and non-stationary signals
and/or time series, decomposing them into a number of zero-mean
signals called Intrinsic Mode Functions (IMF) in an adaptive and fully
data-driven way, from the assumption that any signal is composed by
different IMF’s and that each IMF represents a characteristic
oscillation on a separated time scale. The EMD technique have
been used in the hydrology field for identification of trends in lake
levels (Wang et al., 2020) and groundwater forecasting (Gong et al.,
2018).

Another challenge in the study of endorheic basins under long-
term impacts is the establishment of pre-impact baseline conditions.
For impact assessment in general, the definition of impacts often
involves comparison of current and past hydrologic states. The
absence of baseline data in these circumstances makes the
definition of these impacts difficult both in terms of
conceptualization and quantification. The Backward Water Table
Fluctuation (BWTF) developed by De Sousa (2021) is a data-driven
hindcasting technique based on rainfall and groundwater level
fluctuations, enabling the reconstruction of baseline groundwater
levels for periods where no monitoring data was available.

1.2 Data sparsity and uncertainty

Data sparsity in the endorheic basins reduces the reliability of
investigation efforts, both in terms of identification of dominant
processes (conceptualization) and predictive ability of quantitative
frameworks.

More conventional applications of data assimilation involve the
use of history-matching techniques to attempt the reduction of
parameter uncertainty (and possibly predictive uncertainty).
Excellent discussions on history-matching, data assimilation and
their value in the reduction of uncertainty are presented by Nicols
and Doherty (2020) and Gallagher and Doherty (2020). In these
discussions, history matching is defined as the “act of tuning model
parameters so that a model can reproduce past system behavior.”
Predictive uncertainty in hydrologic models is often expressed from a
conceptual point of view using Bayes equation, where imposition of
constraints on parameter values is obtained through history-
matching. Where approximations of prior distributions are derived
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from the conceptual understanding and expert-knowledge of a system
(also known as soft-data), history-matching against field
measurements (hard-data) induce alterations to the prior
parameter probability distributions and, consequently, predictive
uncertainty. The resulting probability distribution from parameter
sets that both conform with expert-knowledge and reproduce
historical behavior approximates the posterior probability
distribution.

As discussed in Nicols and Doherty (2020), mathematical
expressions for posterior parameter and predictive probability
distribution cannot be derived, however, they can be defined by
sampling them. The PESTPP-IES iterative ensemble smoother
(White, 2018) was designed to this end. Based on the algorithm
described by Chen and Oliver (2013), PESTPP-IES uses ensemble
realizations derived from an approximation of the prior parameter
probability distribution and attempt to adjust them by the minimum
amount required to match field observations and achieve history-
matching as well as reduction in parameter uncertainty.

1.3 Maximizing the use of available data sets
with derived metrics

In the “Concept-State-Process-System” (CSPS) framework
introduced for the hierarchical assessment of aquatic ecosystem
models, Hipsey et al. (2020) divides metrics used for history
matching of model states into 3 major groups: 1—Direct
comparison, where model results are compared with measured data
at specific points in time and space; 2—Derived metrics describing
model state, which do not involve a direct assessment of a state
variable, but are derived from them (such as head differences, or ratios
between variables); and 3—Metrics describing multi-scale variability
in model state, used to describe how well the various scales of spatial or
temporal variability are described in models.

The use of derived metrics involving groundwater head differences
in space and time is not new in hydrogeology studies and is
recommended by several authors (Hill and Tiedeman, 2007;
Doherty et al., 2010). Nevertheless, studies demonstrating and

FIGURE 1
Example of DA, UQ and SA techniques, and their potential to support research in endorheic basins.
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evaluating the value of derived metrics and how they contribute to
reducing uncertainty is not often seen in literature.

1.4 Informing conceptualization and controls
on catchment dynamics

Thompson et al. (2015) states that numerical models are
important in understanding how complex catchment systems are
responding to uncertain changes and while conceptual models
usually guide the development of numerical models, iterative cycles
between conceptualization and modelling results may be beneficial to
refine conceptual understanding.

Saltelli et al. (2004) defines sensitivity analysis as “The study of
how uncertainty in the output of a model (numerical or otherwise) can
be apportioned to different sources of uncertainty in the model input.”
In groundwater modelling practice, the sensitivity analysis is usually
performed at the end of the modelling exercise, or as a by-product of
parameter optimization methods used for history matching such as
PEST (Doherty, 2015) and PESTPP (Welter et al., 2015). However,
much can be gained from sensitivity analysis in terms of
conceptualization if these techniques are employed in earlier stages
of model development. Despite the fact that sensitivity can be
anticipated to some extent by experienced modelers, rigorous
analysis is useful to corroborate, indicate the need for new
conceptualization, or diagnose non-linear behavior of models and/
or numerical instabilities.

Algorithms based on the Gauss-Levemberg-Marquadt method
such as PEST (Doherty, 2015, 2020), PESTPP (Welter et al., 2015)
often require a tangent linear operator, also known as Jacobian matrix.
These matrices contain partial derivatives of model outputs in respect
to model parameters and are often required for history matching
methods, sensitivity, and linear uncertainty analysis. Detailed analysis
of these sensitive matrices can provide valuable insights on system
functioning and dominant controls on catchment dynamics (as
explored in the following sections). However, they are not often
“dissected” and interpreted in context of model conceptualization.

While point-source sensitivities obtained from perturbation
methods (such as those obtained by PEST and PESTPP) provide
valuable insights on system and model behavior, there are situations
where more robust sensitivity estimates are required. For these
purposes, the use of global sensitivity analysis (GSA) may be
useful. GSA methods characterize the effect of model parameter
onto model outputs over a wide range of acceptable parameter
values, covering larger portions of parameter space as opposed to
point-source sensitivity. As a result, the behavior of model outputs that
are non-linear and dependent on the combination of many parameters
can be unraveled. Several methods for global sensitivity analysis with
different degrees of computational effort and output results, as
discussed in Saltelli et al. (2004, 2008).

1.5 Optimizing site investigation efforts

In data-scarce areas and resource-constrained investigations, it is
important to collect data where it really matters. From a quantitative
perspective, that means where and when an observation will promote
the maximum reduction of predictive uncertainty. When a Jacobian
sensitivity matrix is calculated for a parameter set that reasonably

conforms with expert-knowledge and historical system behavior, it
can be used for linear uncertainty analysis, also known as first-order
second moment (FOSM) analysis. The theory behind linear
uncertainty analysis is widely discussed in the literature (Moore
and Doherty, 2006; James et al., 2009; Dausman et al., 2010; White
et al., 2014) and it has been implemented in a number of model-
independent software packages, including PEST, PESTPP and PyEMU
(White et al., 2016).

This method provides an approximate mathematical
characterization of prior and posterior probability distributions for
parameters and predictions of interest (Nicols and Doherty, 2020).
Furthermore, it can be used to demonstrate the value of history
matching data (existing or not) in the reduction of parameter and
predictive uncertainty. This enables the assessment of data worth not
only for different data metrics, but also optimizing data acquisition
efforts, by pre-empting its ability to constrain parameter and
predictive uncertainty.

1.6 Study objectives and structure

The objective of this study is to apply and demonstrate the use of
DA, UQ and SA techniques in the context of endorheic basins
research, evaluating the ability of these methods to facilitate and
enable conceptualization, quantification, and adaptive management
measures. These techniques were applied during research undertaken
at the Lake Muir-Unicup Natural Diversity Recovery Catchment
(MUNDRC), a small scale semi-arid basin located in southwestern
Australia, and subject to a systematic decline in rainfall rates over the
past 50 years.

The application of the different techniques presented in this
paper was not linear, in the sense they were not necessarily applied in
the order they are presented. Multiple feedback loops between
assessment of model results and conceptualization were
undertaken, evolving the understanding of the site and robustness
of quantitative assessments to the final form. The last part of this
paper integrates the findings of all techniques and how they
contributed to the research development.

2 Study site, conceptual and numerical
framework

The area of investigation employed in this study is the Lake Muir-
Unicup Natural Diversity Recovery Catchment (MUNDRC), located
in southwestern Australia and listed under the Ramsar Convention as
a Wetland of International Importance. This area consists of a
complex system of lakes, swamps and flood plains, encompassing
an area of 630 km2 and is located 65 km from the coastline (Figure 2).

The conceptual model for the area, main hydrological drivers and
effects from rainfall decline on surface and groundwater
compartments are discussed in De Sousa (2021). Four
hydrogeological units are associated with unconsolidated sediments
and weathered portions of the crystalline basement. The combination
of low relief, high specific yield, and flat lake bathymetry results in a
relatively stagnant groundwater system with respect to horizontal
flows along the lower plains surrounding Lake Muir. The flat
topography also results in poor development of surface drainage
lines, favoring infiltration processes over runoff, as well as the
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development of shallow groundwater tables with high correlation to
the topography and significant seasonal oscillations.

Lake Muir is positioned in the lowest topographical area of the
catchment and constitutes the largest groundwater discharge area,
where water is constantly removed from the lake through evaporation.
Water exchanges between the lake and adjacent aquifers is dynamic
given the highly variable lake-aquifer interface areas resulting from the
flat lakebed geometry.

Long-term rainfall records for the catchment show a systematic
decrease in rainfall rates, particularly during the wet seasons. Hope
and Foster (2005) analyzed winter rainfall rates in Western Australia
for the period of 1925–2005 and identified an abrupt change in rainfall
rates since 1970s.

Cumulative rainfall reductions for the MUNDRC have been
undertaken using Accumulation Monthly Residual Rainfall
(Ferdowsian et al., 2001) and are displayed in Figure 3, showing
relatively small departures for the period from 1920–1970, with a

pronounced negative departure from 1970 to present, showing a total
deficit of 5,500 mm over 46 years. This reduction in rainfall results in
smaller groundwater recharge and, consequently, reductions in
groundwater levels and discharge volumes.

2.1 Numerical framework

A numerical framework for quantification of long-term impacts
associated with rainfall decline on MUNDRC have been developed
and described by De Sousa (2021). Aiming at representing the main
hydrologic controls in the area and encapsulating both
conceptualization and monitoring data, the framework consisted of
a dynamically-coupled lake and groundwater model, accompanied by
a rainfall-based groundwater recharge formulation.

The three-dimensional groundwater model was built using the
finite element code FEFLOW (Diersch, 2014), coupled with a lake

FIGURE 2
Location of study site, Lake Muir and nearby surface water compartments.

FIGURE 3
Cumulative rainfall departure for Station 9,506 and average southwestern Australia, using rainfall averages for the period of 1900–1970.
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model component developed using FEFLOW’s API. The model was
defined based on catchment boundaries and geometry of the main
hydrogeological units in the area (Figure 4).

The model was initially calibrated against lake and groundwater
levels, as well as additional derived metrics discussed later in the
section below, using piecewise-constant parameter zones, where
hydrogeological parameters of the different aquifers were assumed
to be homogeneous over their extent.

This numerical framework was upgraded in this paper by adopting
a highly-parameterized approach using pilot points (Doherty et al.,
2010). The use of pilot points not only allows for heterogeneity within
the aquifers, but also builds the foundation for the DA, UQ and SA
workflows presented in this paper. Pilot points were assigned covering
the extent of each of the aquifer and recharge zones, using a
predominantly regular grid with 1,500 m spacing (Figure 5). Each
aquifer pilot point was assigned four parameters and two parameters
were assigned for each recharge pilot point. Three additional
parameters were also implemented to define initial lake level and
multipliers for lake evaporation and rainfall, resulting in
3,295 parameters adjusted during history matching and analyzed in
the uncertainty quantification and sensitivity analyses (Table 1). In
order to facilitate the discussion, the following convention was used
for parameter naming:

Ptype _Pzone _PPID
where Ptype is the type of parameter, Pzone relates to the original

parameter zones defined De Sousa (2021) and PPID correspond to the
pilot point number for the spatially distributed parameter groups.
Parameters related to the lake model have the prefix “Lk_” and
descriptor for parameter types and zones are presented in Tables 1,
2, respectively. Corresponding parent groups for each of the
parameters are named with Ptype followed by Pzone.

2.2 History matching data, derived metrics,
and predictions of interest

The DA, UQ and SA techniques employed in this study were based
on historical lake and groundwater levels. These levels have been

measured in LakeMuir and groundwater monitoring boreholes drilled
as part of hydrogeological investigations by the former Western
Australia Department of Land Management (New et al., 2004), and
further expanded by former Department of Environment and
Conservation (Grelet and Smith, 2009). These groundwater
monitoring boreholes have been screened to target the different
hydrogeological units in the area and are displayed in Figure 6,
along with selected locations from which model results are
presented and discussed.

The majority of the data have been collected on a monthly basis
from early 2000s, while historical level measurements on Lake Muir
have been conducted since 1980s, mostly during the wet seasons. In
the context of impacts related to rainfall decline, the dataset coverage is
relatively small, since the decline period started in the early 1970s.

The MUNDRC model used several direct and derived history-
matching and predictive metrics, as summarized in Table 3. Direct
metrics are defined here as values related to direct model outputs that
do not require further post-processing (or in other words, raw output),
while derived metrics are based on post-processing of model outputs
(such as head-differences). The use of different metrics was three-fold:
attempt to improve history matching, reduce parameter and predictive
uncertainty, and to understand how they respond to parameter
changes and contribute to the reduction of uncertainty.

Horizontal head differences between boreholes were added as
observations, based on a Delaunay triangulation generated from the
borehole locations. Head differences between borehole pairs defining
each of the triangulation edges were use as observations, with quarterly
snapshots generated for the period from 2000–2014. Seasonal head
differences within each borehole were also included, in an attempt to
inform the optimization process of groundwater level differences
between wet and dry seasons. Groundwater level estimates for
1970 presented in De Sousa (2021) were included, together with
the difference between these levels and the first record of each
borehole, in an attempt to inform long-term changes.

In addition, predictive metrics have been added in for the
sensitivity analysis workflows in the form of “virtual observations”
(i.e., fake observations at prescribed locations in space-time), for
sensitivity analysis. Virtual monthly groundwater level observations
have been added for all boreholes, covering the period from 1970 to

FIGURE 4
Groundwater model mesh and main surface water compartments (A), and fence diagram illustrating the distribution of the main hydrogeological
units (B).
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2010 to observe whether sensitivity to groundwater levels vary over
time. Virtual observations for lake levels were also included, in
addition to monthly net recharge rates and exchange fluxes
between Lake Muir and adjacent aquifers.

3 Data assimilation in conceptualization

3.1 Identifying rainfall decline trends in
groundwater monitoring data

Given the strong correlation between rainfall rates and groundwater
levels, it was expected that drawdown trends associated to rainfall decline

would be strongly present in the historical data, however, the
identification of long-term drawdowns in the available monitoring
data is very subtle and difficult to undertake. Reasons for that include
the relatively short monitoring period (15-year against 40–50 years of
rainfall decline) and also that the consistent rainfall decline for such a long
period may lead the catchment towards a new equilibrium state, with
groundwater levels “adapting” to the lower recharge regime. Lastly, the
high seasonality observed in groundwater levels add short-term variations
in monitoring records masking subtler long-term drawdown trends.

Here, the EMD method have been applied to the groundwater
time series from monitoring boreholes to isolate long-term drawdown
terms from seasonal and higher frequency changes in groundwater
levels.

FIGURE 5
Distribution of pilot points for the different hydrogeological units.
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Groundwater time series from all monitoring boreholes were
processed using the Python implementation of the EMD algorithm
developed by Laszuk (2017). The original data and resulting IMF’s for
monitoring boreholes MU22A, MU45S and MU65S are presented in
Figure 7. The EMD results show long-term decline terms in the last
IMF of all three boreholes (IMF_6 for MU22A, IMF_5 for boreholes
MU45S andMU65S), while seasonal signals for the three boreholes are
clearly identified in IMF’s 3, 1 and 2, respectively.

Another important aspect is that the magnitude of the long-term
variations found by the EMD are much smaller than seasonal
variations in the groundwater levels and higher-frequency IMF’s,
demonstrating the ability of the method to identify subtle
drawdown patterns in areas under high seasonality effects.

3.2 Establishment of baseline groundwater
levels and conceptual drawdown estimates

The assessment of environmental impacts often involves the
comparison of current and/or past hydrologic states against states
prior to the impact development. The absence of baseline data in these
situations makes the assessment of these impacts extremely
challenging, both on conceptual and quantitative levels.

In the MUNDRC, while groundwater monitoring data was
available for a large number of boreholes spread across the
catchment, the majority of groundwater level data was collected
from the early 2000s approximately 30 years from the beginning of
the rainfall decline. From that perspective, besides subtle drawdown
trends observed in the EMD analyses, the premise that rainfall decline

promoted groundwater drawdown in the catchment was merely
conceptual.

Based on relationships between rainfall and groundwater responses,
the Backwards Water Table Fluctuation (BWTF) method was developed.
This technique enabled the reconstruction of groundwater levels in the
MUNDRC prior to rainfall decline by running the calculations backwards
in time and providing reverse hindcasts. Historical groundwater levels
were estimated for each borehole in the catchment, utilizing a starting
head (equating to the latest observation of each monitoring time series),
rainfall fraction applied to rainfall historical time series, specific yield, and
a constant outflow term. These parameters were calibrated against
available data and ran backwards until 1970, prior to rainfall decline.

The pre-rainfall decline hindcasts obtained from this method
provided not only preliminary drawdown estimates across the
catchment, but also estimates on net recharge rates. Furthermore,
the estimated groundwater levels were incorporated in the forward
numerical framework (as discussed in history matching metrics),
therefore enabling the history matching to reach for reasonable
groundwater levels pre-rainfall decline and provide more robust
estimates for groundwater level changes since 1970.

4 Uncertainty quantification and the role
of history matching

4.1 Reducing uncertainty

The Iterative Ensemble Smoother implementation in PESTPP-IES
have been utilized for history-matching aiming at 1)—reasonably

TABLE 1 Parameter type descriptors used in parameter name definition.

Parameter symbol Description Spatially distributed Units

Kh Horizontal hydraulic conductivity Yes m/d

Va Vertical anisotropy Yes (-)

Ss Specific storage Yes m−1

Sy Specific yield Yes (-)

Ra Rainfall fraction for recharge formulation Yes (-)

Ev Constant outflow term for recharge formulation Yes (mm/day)

Lk_strt Lake Muir starting level (1960) No mAHD

Lk_evap Lake Muir evaporation multiplier No (-)

Lk_rain Lake Muir rainfall multiplier No (-)

TABLE 2 Parameter group descriptors used in parameter name definitions.

Parameter group Aquifer/recharge zone Description

1 Aquifer Quaternary sediments

2 Aquifer Pallinup Formation

3 Aquifer Werillup Formation

4 Aquifer Weathered Basement

8 Recharge Sedimentary aquifer outcrop zone

9 Recharge Weathered basement outcrop zone
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representing historical behavior of the catchment, 2)—reduce
parameter uncertainty, 3)—provide an ensemble of conceptually
feasible parameter sets that are a reasonable approximation of
posterior parameter distributions and 4)—enable the quantification
of uncertainty of the different metrics and predictions of interest.

PESTPP-IES was used in conjunction with the numerical model
described in the previous section and upgraded here with pilot-point
parameterization. An ensemble of 150 realizations was constructed
based on conceptual information of the site, which included likely
parameter values, upper and lower bounds, and conceptual estimates
of spatial correlation. The prior ensemble included a base realization,
which served as a parameter means for the remaining realizations.

This realization was based on the piecewise-zone calibration presented
in De Sousa (2021).

Prior information was applied in the generation of the parameter sets
through the definition of parametermeans and boundaries as well as their
spatial correlations. Upper and lower boundaries for aquifer parameter
values were based on lithological descriptions and literature values
(Reynolds and Marimuthu, 2007) of each of the aquifers. Parameter
bounds for recharge outflow terms were set .7 to 1.2 while values between
.5–.9 were assigned to rainfall fraction. The spatial correlation of
parameters of the same type and group was defined using covariance
matrices based on variograms defined for the area, under the assumption
that spatial correlation is lost beyond the distance of 6 km.

FIGURE 6
Location of groundwater monitoring boreholes screened in the different hydrogeological units.
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Details from the PESTPP-IES settings used in this calibration,
including regularization settings and use of localization, are discussed
in De Sousa (2021). The results from the history matching showed a
reduction in the mean objective function value from 484,555 to
28,936 at the end of iteration 6. The standard deviation of the
objective function values also reduces throughout the iterations,
from a prior value of 583,308 to 641 at the end of optimization.
Furthermore, the total number of runs required for the entire
procedure (prior plus 6 iterations) was 1842, which is about half
the number of adjustable parameters and demonstrates the efficiency
of the algorithm. Despite similar objective functions obtained at the
end of the IES optimization, the distribution of parameters from the
different ensemble sets can be quite distinct, as illustrated by
horizontal conductivity values in layer one displayed in Figure 8.
Although the differences between realizations in this figure are not
always apparent (since the color-scale span 4 orders of magnitude), the
histograms for hydraulic conductivity displayed in Figure 10 show
clearly that ranges often span over one order of magnitude.

To illustrate the reduction in uncertainty, simulated hydrographs
from the prior and posterior ensemble were plotted against observed
data and the results from the piecewise-constant zone calibration
presented in De Sousa (2021) for selected monitoring locations and
Lake Muir (Figure 9). When compared to the prior ensemble, the
posterior realizations not only present a better fit with observed data,
but also have a much narrower spread (therefore demonstrating the
reduction of parameter uncertainty). In relation to the piecewise-
constant calibration, posterior runs also present a significantly better
fit, which is expected as the highly-parameterized form allows for
heterogeneity within the parameter zones and adjust locally to each
monitoring location. Lastly it can be observed that prior realizations
are predominantly centered around the hydrographs from the

piecewise-constant calibration run, which is expected as the
parameters from this run were used as means for the generation of
the prior ensemble set.

The reduction of uncertainty can also be observed when
comparing parameter distributions from prior and posterior
ensembles (Figure 10). In this figure, most sensitive parameters to
groundwater level observations from selected hydrographs have been
selected for plotting of histograms with prior and posterior
distributions. It can be observed that there is an overall reduction
in the spread of parameter values, and these reductions are particularly
pronounced in highly sensitive parameters, such as those related to
groundwater recharge. Parameters with low sensitivity such as vertical
anisotropy shows little to no reduction in parameter uncertainty.

4.2 Quantification of predictive uncertainty

If the ensemble size utilized by the iterative ensemble smoother is
of sufficient size, the execution of model runs using the posterior
ensemble sets can be utilized collectively to define posterior probability
distributions for predictions of interest.

The results from the posterior ensemble sets obtained using
PESTPP-IES were used to assess uncertainty of predicted
groundwater levels and other metrics as illustrated in Figures 11
and 12.

Despite the large number of locations and metrics, some common
uncertainty patterns can be observed across different model results.
For instance, uncertainty of simulated groundwater levels shows an
increase during the period from 1980 to 1988 in many borehole
locations such as MU68S and PM03. For these boreholes the
maximum simulated drawdown occurs in this period, which

TABLE 3 System observation metrics used in history matching, and predictive metrics used in the UQ and SA workflows.

Name Description Derived/
direct

History matching/
Sensitivity analysis

Temporal
coverage

Number of
sites

Number of
observations

Heads Historical groundwater levels at monitoring
boreholes

Direct History matching 1997–2017 103 17,735

BWTF_Heads 1970 Groundwater level estimates using the
BWTF method

Derived History matching 1970 57 57

HGrads Horizontal historical head differences
between boreholes

Derived History matching 2000–2014 31a 17,272

BWTF_TGrads Head differences between 1970 BWTF
estimates and first observation of each
borehole

Derived History matching 1970–2008 57 57

T_Grads Seasonal head differences in boreholes Derived History matching 2000–2018 107 1,655

Lake levels Historical Lake Muir levels Direct History matching 1980–2010 1 58

Historical heads Virtual monthly groundwater levels at
monitoring bores

Direct Sensitivity analysis 1970–2010 103 49,543

Historical lake
levels

Virtual monthly levels for Lake Muir Direct Sensitivity analysis 1970–2017 1 576

Net recharge Monthly net recharge rates for the entire
model domain

Direct Sensitivity analysis 1970–2017 2b 576

Lake Muir/GW
fluxes

Exchange fluxes between Lake Muir and
adjacent aquifers

Direct Sensitivity analysis 1970–2017 1 576

aNumber of quarterly time snapshots.
bNet recharge over the entire zones 8 (sedimentary aquifers) and 9 (weathered basement).
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suggest the degree of uncertainty is related to the magnitude of stresses
being imposed in the catchment. The distribution of mean and
standard deviation of simulated groundwater levels corroborates
this hypothesis, with areas of larger standard deviation
predominantly overlapping areas of larger mean drawdown.

The uncertainty around groundwater levels is relatively small
when considering the absolute groundwater levels, with 95%
confidence intervals under ±1 m from mean levels for the majority
of monitoring boreholes. Nevertheless, when looked in terms of
drawdown, these uncertainties can equate to 50%–100% of
maximum simulated drawdown in some boreholes (PM-03, MU65S).

Uncertainty around the LakeMuir levels is relatively small, probably
due to the fact the dominant fluxes in the lake are controlled by
historical rainfall and evaporation time series (prescribed in the
model) and only two parameters with corresponding multipliers, as
relative contributions from groundwater into the lake inputs only
account for approximately 30% (Figure 12).

Uncertainty of mass balance quantities displayed in the same
figure provide some important insights. It can be noted that
uncertainty over cumulative groundwater storage changes increase
progressively through the entire simulated period, where uncertainty
around rates such as net recharge and groundwater contributions to
lake inflow remain relatively stable. Uncertainties around the period of
1970–1974 are slightly higher for net groundwater recharge, net
balance for Lake Muir and relative contributions, as well as lake
levels. This is the period where rainfall decline starts and it is possible
that the sudden shift in rainfall rates produced larger stresses in the
initial years and, consequently larger uncertainty.

5 Sensitivity analysis

We explored different sensitivity analysis techniques and their
ability to contribute to the understanding of hydrologic processes

FIGURE 7
Historical groundwater levels and Intrinsic Mode Functions obtained from the EMD analysis for boreholes MU22A (A), MU45S (B) and MU65S (C).
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occurring in the MUNDRC and terminal catchments in general. Local
sensitivity analysis was employed to quantify point-source sensitivities
(i.e., at a single location in parameter space) to understand spatial and
temporal relationships, and global sensitivity methods were used to
provide more robust sensitivity estimates and investigate broader
controls on history matching and predictions of interest.

5.1 Improving understanding and
conceptualization

A Jacobianmatrix for theMUNDRCmodel has been generated for
the parameter set with lowest residuals from the posterior ensemble
obtained for the PESTPP-IES history matching work, using PEST-HP.
The matrix was constructed considering all parameters (3,295) using a
3-point derivative approximation, in a total of 6,591 model runs.
Analyzed inputs included observation and derived metrics used in the

history-matching process, as well as virtual observations described in
Section 2.2.

The comparison of groundwater level sensitivities to model
parameters against the distance between monitoring point and
pilot-point location is useful to establish distance-sensitivity
relationships and estimate the “radius of influence” of certain
parameters. Figure 13 shows plots of absolute sensitivity of
groundwater levels in selected monitoring locations, where average
sensitivity values for all groundwater levels in each location were
calculated for all spatially distributed parameters (i.e., parameters from
the pilot points). These plots show that in general, all parameters
beyond 2–4 km from observation points show very low to no
sensitivity, despite the maximum sensitivity of each parameter
group (for example, recharge parameters show very high sensitivity
for pilot points within 2–4 km, but the sensitivity is lost in parameters
beyond that distance in the same way that storage parameters, which
have much lower sensitivities).

FIGURE 8
Calibrated horizontal conductivity values for layer 1 on selected posterior ensemble realizations.
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The distance-sensitivity plots also unravel relationships between
maximum sensitivity on a parameter group basis, and their sensitivity
noise, defined here as average groundwater level sensitivities to
parameters located beyond the threshold distance. Ratios between
maximum sensitivity and sensitivity noise are very high in parameter
groups with high maximum sensitivity (such as Ev and Ra), but this
ratio tends to degrade for parameter groups with low maximum
sensitivity (for example, for groups Ss_3 and Sy_3 in monitoring
borehole PM-03).

The use of virtual observations over the entire period between
1970 and 2010 showed that groundwater level sensitivity varies
considerably over the simulated period. The assessment of

sensitivities over time shows that sensitivity to recharge parameters
increase over time (particularly in monitoring bores located away from
lakes and other surface water compartments), suggesting that changes
in net recharge rates have a cumulative effect on groundwater levels. In
monitoring sites near lakes, this cumulative behavior is likely
dampened by the model boundary conditions, as groundwater
fluxes into these compartments adjust to the different recharge rates.

It can be observed that the sensitivities have a large influence from
the rainfall signal, as sensitivity peaks from different parameters and
location often align in periods of high or very low rainfall (such as
years 2001 and 2006). This also demonstrates that sensitivity is
influenced by the magnitude of hydrologic stress throughout the

FIGURE 9
Simulated lake and groundwater levels prior and post-calibration at selected locations.
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simulated period. Lastly the temporal behavior of storage parameter
sensitivities is largely cyclical over the entire simulated period. To
investigate whether these oscillations were associated with the
seasonality observed in the catchment, groundwater level
sensitivities to the parameters were grouped monthly and displayed

as box and whiskers plots in Figure 14. These plots show that the
groundwater level sensitivity is not only seasonal for storage
parameters but, to a lesser degree, all other parameter types. High
sensitivity peaks in these plots are normally in April-May, at the end of
dry season, and low peaks are observed in September-October, at the

FIGURE 10
Parameter histograms of prior (orange) and posterior (blue) distributions of most sensitive parameters to observations in selected monitoring boreholes.
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end of wet season. This reflects not only the seasonality, but also
suggest that the sensitivity is dependent on the hydrological state of the
system, with sensitivities varying largely from periods of water surplus
(wet season) and water deficit (dry season).

5.2 Assessing the value of history matching
metrics and prioritizing site investigation
efforts with linear uncertainty methods

Doherty and Hunt (2009) describe two statistics referred to as
Identifiability and Relative Parameter Uncertainty Variance
Reduction (RUVR). These statistics can be obtained from the
Jacobian Matrix of a calibrated parameter set for any adjustable
parameter and vary between 0 and 1, where the value of 0 means

no reduction of uncertainty has been achieved through the history-
matching process and the value of 1 indicates small parameter
uncertainty in relation to the prior.

These analyses can be obtained considering history-matching
observations that exist or not, and when applying different settings
for observations (through weighting) and parameters (by fixing them
or not) they can provide useful insights on the value of different
observation groups, aggregate value of raw and derived metrics, and
also inform site investigation efforts.

The several history-matching groups employed in the calibration
of the MUNDRC model allowed a significant reduction in parameter
uncertainties and also reasonable replication of past system behavior.
However, the contribution of the different metrics to reduction in the
uncertainty of different parameter groups was not clear. To investigate
that, different linear analysis runs were done considering the entire

FIGURE 11
Simulated lake and groundwater level ensemble percentiles at selected locations.
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history-matching data set and different observation groups
individually as displayed in Figure 15, where values for
identifiability and RUVR were averaged for the different parameter
groups.

These results shows that 1) the sum of the values from individual
observation groups is different from the values for the entire dataset,
given the fact the these metrics are to some extent correlated in terms
of sensitivity, 2) groundwater level observations shown overall the
largest identifiability values as an individual group, 3) contributions
from the derivedmetrics of horizontal and seasonal head differences to
reduction of parameter uncertainty are most effective in the
identification of storage parameters and 4) identifiability and
RUVR values for lake values are predominantly controlled by lake
observations, with subordinate contributions of groundwater levels. In
the case of horizontal head differences, it also shows slightly higher
values than the raw groundwater levels, showing that they have the
same ability, if not more, of reducing parameter uncertainty.

In order to inform further investigation efforts in the area,
additional linear analysis runs were undertaken by fixing the
different parameter groups to understand what the reductions in
the uncertainty of the remaining parameters would be if the fixed
parameters were known. These results show clearly that largest
benefits in terms of reducing parameter uncertainty would be from

investigating recharge attributes (either infiltration rates, Ra, or
evapotranspiration, Ev) as they would result in a minimum of 10%
increase in identifiability values (with exception of lake parameters).
The determination of unconfined storage (i.e., specific yield) would
also be beneficial, as it controls the effective size of groundwater
reservoir and the magnitude of head change associated with net
recharge.

6 Discussion

6.1 The use of DA, UQ and SA techniques
throughout the model development

While the DA, UQ and SA techniques are mostly used as
accessories in conventional modelling practice, they have proven
pivotal to the development of the numerical model and evolution
of conceptual understanding of the MUNDRC.Where in earlier stages
of model development the definition of aquifer geometry, boundary
conditions and coupling with the lake model were reasonably
straightforward, the initial iterations of history matching and
conceptualization were hindered by the lack of baseline
groundwater level data. At that stage, despite the clear reduction of

FIGURE 12
Simulated ensemble percentiles for different water balance predictive metrics.
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rainfall volumes, groundwater and lake level declines could not be
clearly demonstrated.

The application of EMD on historical groundwater levels
provided some evidence of longer-term drawdowns, by
removing noise introduced by seasonal and higher-frequency

variations, supporting the hypothesis that groundwater levels
dropped as result of rainfall decline. While not employed in
this study, the EMD’s ability to decompose time series in
different frequencies could enable new derived metrics for
history matching by comparing simulated and observed IMF’s,

FIGURE 13
Scatter plots of absolute sensitivity values versus distance to pilot point for selected monitoring locations.
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similar to the “data transformation methods” described in
Bennett et al. (2013) and the “Metrics describing multi-scale
variability in model state” from Hipsey et al. (2020). These
metrics potentially can contribute to history matching and

robustness of models by highlighting aspects of model
behavior that are not clear in the original time domain.

The high correlation between seasonality of groundwater levels
and rainfall led to attempts of establishing relationships between

FIGURE 14
Monthly-grouped absolute sensitivity values for vertical anisotropy, specific yield and specific storage at selected locations.
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rainfall rates, net groundwater recharge and groundwater levels. These
attempts culminated in the development of the BWTF, which
provided coarse estimates on net recharge but, most importantly,
provided hindcast estimates of groundwater levels in 1970, prior to
rainfall decline. The baseline groundwater level estimates from the
BWTF analysis allowed for: 1—Reconstruction of groundwater levels
prior to the rainfall decline (from a conceptual perspective),
2—Inclusion of these estimates in the history matching process,
3—Improvement of recharge implementation in the groundwater
model by using a similar formulation and 4—Simulation of the
whole trajectory from pre-rainfall decline towards present day.

Once the final model form was in place (1960–2018 simulated
period with BWTF estimates in history matching, coupled lake model
and improved recharge formulation), the history matching techniques
assisted in reducing the uncertainty around aquifer parameters, which
was particularly important since no aquifer test data was available. The
piecewise-zone calibration presented in De Sousa (2021) provided
reasonable average values for the entire catchment, and the highly-
parameterized form presented in this paper allowed better

representation of historical system behavior, representation of
heterogeneity within each of the hydrogeological units and
implemented the foundation for the UQ workflows.

The IES technique employed in history matching provided a
quantitative assessment of parameter and predictive uncertainty
constrained solely by conceptual expert-knowledge (i.e., prior) and
allowed data assimilation in its more classic form, where prior model
uncertainty has been reduced through the assimilation of site
observations (i.e., history matching).

This paper has presented the final results of sensitivity analysis;
nevertheless, several iterations have been undertaken throughout the
development of the model, many of which contributed to the final
form of conceptual and numerical model. The investigation of
distance-sensitivity relationships provided insights on the area of
influence of each parameter and this information can be helpful in
the use of localization in iterative ensemble smoothers (Chen and
Oliver, 2013). These relationships can also be used to prioritise site
investigations, particularly if used in conjunction with linear
uncertainty analysis.

FIGURE 15
Average identifiability and RUVR values considering the entire history matching data set and individual metrics for (A) Recharge outflow term, (B)
Horizontal hydraulic conductivity, (C) Recharge rainfall fraction, (D) Specific storage, (E) Specific yield, (F) Vertical anisotropy, and (G) Lake parameters.
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Transient and seasonal trends of groundwater level sensitivity
identified in the model demonstrate the value of using virtual
observations over the entire simulated periods, even when
corresponding field measurements are not available. Although these
sensitivities cannot be used in the history matching process, they were
useful to establish relationships between seasonality, aquifer net
balance state (surplus, deficit or neutral) and sensitivity.

6.2 Distinct attributes of terminal catchments
unveiled by these techniques

The results from the DA, UQ and SA techniques corroborated
several attributes of the MUNDRC that are distinct of low-relief
terminal catchments and unveiled new attributes that were
expected by early conceptualization.

The sensitivity analysis of the Jacobian matrix showed the
dominance of recharge parameters in terms of sensitivity and
confirm the high influence of the interplay between rainfall
infiltration and evapotranspiration in groundwater levels and
catchment dynamics. Regarding groundwater levels, the
conceptualization postulated that their response to rainfall events
was rapid given the shallow groundwater table depths and
relatively high hydraulic conductivity of sedimentary aquifers. The
results from the BWTF and FEFLOW models agree with this
hypothesis, as a good fit between simulated and groundwater levels
was obtained for absolute values and seasonal oscillations without the
use of a delay term in the recharge formulations. Furthermore, cluster
analysis also demonstrated the relationships between land use and
groundwater recharge, as well as its influence in associated
groundwater level signatures.

The analysis of model results also led to some insights that were
counter-intuitive and in disagreement with our early
conceptualization. For instance, groundwater inflows into Lake
Muir were expected to be higher during the dry season as the lake
levels were at their lowest. Mass balance analysis of FEFLOW showed
that while that is true in terms of relative contributions, the highest
groundwater discharge rates occur during the wet season, where
highest recharge rates replenish the aquifers increasing hydraulic
gradients and consequently discharge rates. In another example, it
was expected that groundwater discharge would occur predominantly
through the base of the lake (assuming density effects on groundwater
head distribution were negligible). Mass balance results at the lake
nodes suggest that fluxes from lake to the aquifers occur through the
base of the lake, groundwater discharge into Lake Muir occurs
predominantly along the perimeter of the lake (De Sousa, 2021).
Lastly, groundwater levels near surface water compartments are less
sensitive to recharge and are to some extent regularized, in the sense
that changes in recharge rates and groundwater level are compensated
by adjusted flux rates between surface water bodies and adjacent
aquifers.

Another new concept unveiled by the SA was the transient
sensitivity of groundwater levels with regards to time. While this
concept seems straight forward after the analysis of results, the concept
of transient sensitivities has not, to the authors’ knowledge, been
demonstrated in literature.

The discussion presented in De Sousa (2021) suggests that Lake
Muir is more resilient to rainfall decline the originally thought. The
UQ works presented in this paper corroborate that and sensitivity

analysis hinted at the underlying reasons. It was observed that
sensitivity to rainfall multiplier (Lk_rain) was in general higher
than sensitivity to the evaporation multiplier (Lk_evap), leading to
the conclusion while evaporation rates are directly related to the lake
area, rainfall rates are less susceptible to that as rainwater infiltrates the
dry portions of the lake and ultimately is discharged there. The direct
relation between lake area and evaporation volumes can be translated
to lake level and evaporation volumes, therefore decline in lake levels
caused by rainfall decline (both as direct rainfall and groundwater
discharge) incur reduced evaporation rates, dampening the net lake
losses. This is a mechanism that can be extrapolated to all lakes with
shallow and flat bathymetry, but less likely to occur in lakes with
steeper lake beds, as reductions in lake area (and evaporation) due to
decline in lake level will be somewhat smaller.

6.3 Computational costs and limitations of the
different techniques

The results presented in the previous sections demonstrate the
value of DA, UQ and SA techniques in improving conceptual
understanding and facilitating the quantification of impacts and
catchment hydrologic processes. On the other hand, computation
costs of each of these techniques may lead to a prioritization of
efforts and cost/benefit assessment in a resource-constrained study.
Furthermore, the use of these techniques needs to be undertaken
cognizant of their limitations and computational costs, some of
which are discussed here.

The use of the EMD method is computationally inexpensive and
can be used in a batch fashion to process time series from multiple
observation time series simultaneously, but the interpretation of the
Intrinsic Mode Functions obtained from the EMDmust be conducted
with caution as they can be highly sensitive to the time series sampling
frequency and are potentially problematic when time series have
irregular observation intervals. This can be noticed on the analysis
for borehole MU22A (Figure 7) which has a higher monitoring
frequency and display an additional high frequency IMF when
compared to the time series from boreholes MU45S and MU65S. It
is possible that this issue could be minimized by resampling at regular
intervals using interpolation methods and, despite not being tested,
the application of EMD on the regular time series generated by the
BWTF method may prove to be a better option than the raw
monitoring data.

The IES method is an extremely powerful approach that allows
history matching of highly-parameterized models with a very small
number of runs, compared to number of parameters, enabling DA and
UQ of large models that would previously be too expensive in terms of
computational effort. While the IES method has shown good history
matching results with small ensemble sizes (in particularly if
localization is employed), questions remains whether these
ensembles are sufficiently large to characterize the uncertainty,
particularly in terms of probability distributions. A possible
solution for that could potentially be to increase the ensemble size
with parameter sets derived from the sampling of a posterior
covariance matrix created based on the original ensemble
parameter values. This procedure would continue to require a
small number of runs for the history matching process and provide
a larger ensemble size for UQ. Furthermore, the application of
ensemble methods in groundwater modelling is relatively new and
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more testing and use of this tool is required for definition of optimized
settings such as ensemble size, localization matrices and so forth.

The DA and UQ applied in the MUNDRC model resulted in
simulated groundwater and lake levels with relatively small
uncertainty. It is important to emphasize, however, that the rainfall
time series for the simulated period were actual values from historical
records and “hard-wired” in the model lake and recharge components.
Given that there is a strong relationship between groundwater level,
sensitivity, and rainfall rates/events (as seen in the transient sensitivity
plots), groundwater predictions in the future should account for
uncertainty of rainfall time series inputs, and these can potentially
promote larger predictive uncertainty.

7 Conclusion

The research presented in this paper illustrates the use of DA, UQ
and SA in the study of terminal catchments, their value in the
identification of particularities of hydrologic behavior in these
settings and provide a blueprint for assessment of impacts
associated to long-term rainfall decline in terminal catchments. On
a conceptual level, main drivers of the groundwater and surface-
groundwater interactions have been identified and corroborated by
sensitivity analysis results. In terms of quantification and prediction,
the developed numerical model coupling approaches and data
assimilation tools used in the study provide a framework to
estimate environmental impacts considering inherent
hydrogeological and hydrological uncertainty, as well as the ability
of monitoring data to constrain it. From a broader perspective,
practicalities and lessons learned from the application of these
techniques are lacking in literature, which is predominantly
focused on theory and development of new techniques, and the
paper also contributes to that regard.

Although several techniques have been explored in this study, it by
no means exhaust the number of techniques available in the literature.
Notable examples include the time-series analysis using transfer
function noise modelling (Collenteur et al., 2019), evolutionary
algorithms (Maier et al., 2014), time series clustering methods
(Aghabozorgi et al., 2015) and ensemble machine learning
techniques (Zounermat-Kermani et al., 2021).

This study has also shown that much can be gained through
feedback loops between the application of these techniques (in
particular SA) and conceptualization, as opposed to conventional
use of UQ and SA at the end of model development. The
conceptual model of MUNDRC have evolved substantially from its
early inception through the multiple sensitivity analysis rounds until
the final conceptual and numerical model form was achieved.
Counter-intuitive findings from this process such as higher
groundwater inflows to Lake Muir during the wet season,
dominance of vertical dynamics of recharge and evapotranspiration
over horizontal flows and potential surface runoff flows into the lake
challenged the assumptions from initial conceptualization and
resulted in a more robust final model form which conforms to
expert-knowledge and was able to replicate historical system behavior.

The DA, UQ and SA techniques applied in the MUNDRC were
undertaken with open-source software freely available on web which
facilitated the model development significantly. Nevertheless, the
implementation these techniques still remains an onerous task,

particularly with regards to post-processing workflows. The
adoption of these techniques in the broader modelling community
will depend much on the development of tools to streamline these
workflows and availability of educational resources, and initiatives
such as the Groundwater Modelling Decision Support Initiative
(GMDSI, https://gmdsi.org) are making a big impact in that direction.
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Over the next century, coastal regions are under threat from projected rising sea levels
and the potential emergence of groundwater at the land surface (groundwater
inundation). The potential economic and social damages of this largely unseen, and
oftenpoorly characterisednatural hazardare substantial. To support risk-baseddecision
making in response to this emerging hazard, we present a Bayesian modelling
framework (or workflow), which maps the spatial distribution of groundwater level
uncertainty and inundation under Intergovernmental Panel on Climate Change (IPCC)
projections of Sea Level Rise (SLR). Such probabilistic mapping assessments, which
explicitly acknowledge the spatial uncertainty of groundwater flow model predictions,
and the deep uncertainty of the IPCC-SLR projections themselves, remains challenging
for coastal groundwater systems. Our study, therefore, presents a generalisable
workflow to support decision makers, that we demonstrate for a case study of a
low-lying coastal region in Aotearoa New Zealand. Our results provide posterior
predictive distributions of groundwater levels to map susceptibility to the
groundwater inundation hazard, according to exceedance of specified model top
elevations. We also explore the value of history matching (model calibration) in the
context of reducing predictive uncertainty, and the benefits of predicting changes
(rather than absolute values) in relation to a decision threshold. The latter may have
profound implications for themany at-risk coastal communities andecosystems,which
are typically data poor. We conclude that history matching can indeed increase the
spatial confidence of posterior groundwater inundation predictions for the 2030-2050
timeframe.

KEYWORDS

sea level rise, groundwater inundation, MODFLOW, predictive uncertainty, iterative
ensemble smoother, PEST++, data-assimilation

1 Introduction

Sea level observations (Jevrejeva et al., 2009; Vermeer and Rahmstorf, 2009) and
projections (Kopp et al., 2014; Hall et al., 2016; IPCC, 2021) indicate alarming decade-
to-century rises in global mean sea levels. Under high emissions scenarios, mean sea levels
could exceed 1.0 m above 2000 levels by 2100 (IPCC, 2021). Globally, it now appears that we
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are committed to 274 ± 68 mm of eustatic SLR, regardless of
mitigation measures or climate change pathway (Box et al.,
2022). Currently, mean sea levels are rising at rates of ~
3–4 mm/year (Watson et al., 2015), and continued ocean
warming, land-based ice melt (Yi et al., 2015; IPCC, 2021), and
coastal subsidence (Nicholls et al., 2021) are expected to increase
relative-SLR further.

SLR will have severe impacts on low-lying coastal regions. It is
estimated that 267 million people live on coastal land <2 m above
mean sea level (Hooijer and Verminnen, 2021). This number is
projected to increase to ~1 billion by 2050 (Befus et al., 2020;
Neumann et al., 2015). In these regions, SLR endangers coastal
communities by increasing the frequency and severity of natural
hazards, such as high-tide sea-water inundation (e.g., Cooper et al.,
2013; Paulik et al., 2019), coastal erosion (e.g., Anderson et al., 2015)
and surface water flooding (e.g., Sweet et al., 2014), whilst
contributing to the permanent loss of land (e.g., Ramm et al.,
2017; Ramm et al., 2018) and eventual displacement of
communities (e.g., Nicholls et al., 2021).

Profound and often overlooked impacts of SLR include rising
groundwater levels and the potential emergence of groundwater at
the surface (that is, groundwater inundation). As sea levels rise,
groundwater that is hydraulically connected to the sea will rise and
eventually break out at the land surface. This could lead to
groundwater inundation far inland, even before any sea-water
inundation or surface water flooding occurs, potentially
compounding such surface flooding (e.g., McCobb and Weiskel,
2003; Nicholls et al., 2007; Bjerklie et al., 2012; Goldsmith et al., 2015;
Hoover et al., 2016; Befus et al., 2020).

These rising groundwater level and inundation projections
represent additional and largely unseen natural hazards (e.g., Rotzoll
and Fletcher, 2013) that are difficult to identify (e.g., McKenzie et al.,
2010) and largely unrecognized by the general public (e.g., May, 2020).
Typical flood defences may be prohibitively expensive or inappropriate
(e.g., Yu et al., 2019), and may actually exacerbate rising groundwater
levels and inundation (e.g., Cox et al., 2020).

Potential economic and social damages are substantial and
include (but not limited to): road and property flooding (e.g.,
Abboud et al., 2018), reduced agricultural productivity (e.g.,
Barlow et al., 1996), reduced service life of roads and pavements
(e.g., Knott et al., 2017), reduced capacity of waste and stormwater
networks (e.g., Morris et al., 2018), wastewater treatment failure
(e.g., Cox et al., 2020), and increased exposure of underground civil
infrastructure (e.g., Macdonald et al., 2012), leading to foundation
failures and corrosion (e.g., Colombo et al., 2018).

Given these potential impacts, groundwater inundation
mapping will be an essential tool for supporting decisions on
how to manage and communicate the impacts of SLR on coastal
aquifer systems (e.g., Hoover et al., 2016; Merchán-Rivera et al.,
2022). However, the subsurface is highly complex, and our ability to
characterise this complexity is limited (e.g., Doherty and Moore,
2017). Furthermore, this hydrogeological uncertainty is confounded
by the inherent “deep uncertainty” attached to the IPCC-SLR
projections, themselves (e.g., IPCC, 2021). It is, therefore,
impossible to reduce the uncertainty of SLR-related predictions
to negligible levels.

However, through using numerical modelling techniques, it is
possible to quantify spatial and temporal groundwater inundation

susceptibility/risk, and to reduce this uncertainty to the extent that
data allows. Such approaches should acknowledge the inherent
spatial and temporal uncertainty of the simulated system (e.g.,
Merchán-Rivera et al., 2022), as well as the uncertainty of the
aquifer stresses that may prevail in the future (e.g., SLR and/or
climate variability). By characterising these system property and
stresses probabilistically, we are then able to quantify the uncertainty
of predictions in groundwater level rise and inundation. This is
essential for facilitating risk-based decision-making (e.g., Freeze
et al., 1990). Although some recent examples of groundwater
inundation mapping exist (e.g., Hoover et al., 2016; Storlazzi
et al., 2018; Habel et al., 2019; Befus et al., 2020; Merchán-Rivera
et al., 2022), formal uncertainty quantification remains rare.

In this regard, Bayesian methods are considered some of the
most rigorous approaches for decision-making under uncertainty
(e.g., Caers, 2018). Industry standard tools for history matching
(PEST and PEST++) can efficiently implement inversion-based
algorithms for “highly-parametrised” models (e.g., 1000s of
adjustable parameters) within a Bayesian framework (e.g.,
Doherty, 2015; White et al., 2020). This supports enhanced
expression of uncertainty in system properties (e.g.,
heterogeneity), whilst providing greater potential for data
assimilation from historical observations, and robust assessments
of prediction uncertainty (e.g., Knowling et al., 2019).

This research adopts a Bayesian framework (or workflow),
which is applied to estimate the spatial and temporal probability
of groundwater inundation, under IPCC projections of relative-SLR.
Specifically, the predictions of interest are a description of: 1) the
transient progression of annual groundwater levels (heads) at
specified times in the future as sea level changes, and 2) the total
groundwater flux to the surface/wastewater drainage networks as sea
level changes. Uncertainty accompanies all of these predictions, and
this enables spatial mapping of the probability of groundwater
inundation (groundwater emerging at the land surface).

This approach is novel in several ways. Firstly, a highly
distributed parametrisation scheme allows the spatial detail
and uncertainty of the predictions of interest to be estimated,
and supports prediction uncertainty reduction, to the extent that
the flow of information from available data allows. To our
knowledge, the explicit application of temporal uncertainties
in SLR projections, combined with spatially explicit
uncertainty in groundwater flow model predictions, remains
unexplored in the coastal groundwater modelling literature.
Secondly, spatial and temporal estimates of drainage volumes
provide an indication of what SLR mitigation measures may be
required, for a range of SLR projections.

We demonstrate our approach for a real-world example to
support the management of a low-lying coastal region (South
Dunedin, Aotearoa New Zealand). Although local in scale, the
framework is widely applicable and can be upscaled, or further
developed for larger coastal regions where decision-support models
are needed.

The paper is organised as follows. Section 2 introduces the case
study problem, predictions of interest and the basis for the
conceptual and numerical model. Section 3 describes the
methodological detail required to implement our approach.
Section 4 presents the results and discussion with conclusions
following in Section 5. Reference is made to Supplementary
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Information (SI) throughout for further detail on the numerical
model and our workflow.

2 Case study area

South Dunedin is approximately 6 km2 and located behind sand
dunes in the isthmus between the Dunedin hills in the west and the
Otago Peninsula to the east (Figure 1). The coastal plain is
typically <3 m above mean sea level and is now one of the most
densely populated coastal urban centres in New Zealand, hosting
many assets and critical infrastructure. Because of rising sea levels,
the region is under threat from rising groundwater levels and
inundation.

2.1 The groundwater emergence hazard

A shallow unconfined coastal groundwater system underlies
South Dunedin. Groundwater levels are typically found <1 m
below the ground surface and there is evidence of some
hydraulic connection with the Pacific Ocean (Cox et al., 2020).
The expected rise in groundwater levels resulting from SLR must be
considered in future land-use and infrastructure planning in South
Dunedin.

In the near term, SLR will compound interrelated hazards
resulting from the complex interaction between shallow
groundwater, buried civil infrastructure and surface waters (e.g.,
Bell et al., 2017). In the long term, SLR is expected to lead to the
emergence of groundwater at the surface (groundwater inundation
for the purpose of our research). Hence, central and local
government, planners, engineers, and residents are amongst the
many concerned by the extent of rising groundwater levels, and the
inundation hazard (e.g., PCE, 2015).

2.2 Conceptual model

The latest geological and hydrogeological understanding of
South Dunedin is described in detail by Glassey et al. (2003) and
Cox et al. (2020) respectively. The current conceptual model of the
groundwater system was based on these descriptions.

The topographically flat area represents a valley infilled with
Quaternary sediments. The groundwater system flows within two
sediment depositional units: 1) a younger Holocene unit comprising
soft silt and clay of marine to estuarine origin, locally deposited
during the post-glacial marine transgressions resulting from
Holocene sealevel rise, overlying 2) a Pleistocene depositional
unit comprising sands, silts, and some gravels, interpreted as
alluvial deposits with hillslope deposits at the valley margins

FIGURE 1
Groundwater monitoring sites located within groundwater model extent of South Dunedin. The piezometers used in this study (coloured by
installation campaign) are shownwith interpolated piezometric surface (updated fromCox et al., 2020). The star indicates the location of the Forbury Park
“Example site,” referenced in Section 4 of this paper. The blue shaded area is the interpreted extent of a perched aquifer in the sand dunes. The Otago
Metric Datum (OMD) used in this study is equivalent to New Zealand Vertical Datum 2016 (NZVD2016) + 100.377 m.
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(colluvium). These highly heterogeneous Pleistocene and Holocene
sediments have a maximum depth of approximately 60 m. The
contact between the Quaternary sediments and the underlying
bedrock is relatively flat beneath most of South Dunedin, but has
some (<40 m relief) paleo-topography (Glassey et al., 2003). Bedrock
comprises either weak marine sedimentary rock (Caversham
sandstone), or a variety of local interbedded igneous rocks
(Dunedin Volcanic Group).

The groundwater system was treated conceptually as a single
groundwater system for the purposes of this study, being bounded
by basement rocks of the Dunedin Hills and Otago Peninsula, and
the Pacific Ocean and Otago Harbour (Figure 1). The bedrock
contact was treated as a no-flow boundary because recent
investigations indicated negligible vertical hydraulic gradients
(Cox et al., 2020), and limited vertical groundwater flow at the
basin scale (Rekker, 2021).

In contrast to the underlying shallow unconfined groundwater
system, a minor perched dune aquifer system to the south (Figure 1)
demonstrates low electrical conductivity (i.e., relatively fresh
composition) and the absence of a tidal signal (Cox et al., 2020).
Unlike many other coastal areas in eastern New Zealand (e.g.,
Christchurch), there is no evidence to date which suggests any
compartmentalisation by distinct inter-glacial aquitards, and the
groundwater system lacks any deep groundwater at artesian
pressures (e.g., Cox et al., 2021). Our conceptual model therefore
assumes minimal “cross-boundary” interaction with other aquifers
(e.g., the minor perched dune system to the south) and limited
surface inflows from the surrounding catchments.

A streamline no-flow boundary was added along the northern
boundary, separating the South Dunedin groundwater system from
that of Harbourside, along a catchment and stormwater runoff
boundary across the coastal plain (Figure 1). This assumption
was justified because groundwater appears to flow approximately
parallel to the boundary within coastal sediments.

2.2.1 Groundwater mass flow balance
As is typical of urban centres, surface hydrology is heavily

modified and groundwater recharge is highly variable. The
impervious land surface within the region causes
approximately 60% of precipitation to be captured and routed
via the stormwater network, mainly discharging to the Otago
Harbour via the pumping station (Goldsmith and Hornblow,
2016). The remainder is available for groundwater recharge via
pervious surfaces.

Potential groundwater recharge is relatively well constrained. A
weather station within the modelled domain indicates an annual-
average precipitation rate of 674 mm/yr between 1997 and 2021. The
available stormwater pumping and precipitation data, combined
with the imperviousness index for South Dunedin, indirectly leads to
a recharge estimate of ~4,000 m3/day.

Some of this groundwater then exits the system via infiltration to
the ageing waste and stormwater networks, which is estimated at
2,000 m3/day (Opus and URS, 2011a; Opus and URS, 2011b; Rekker,
2012; Fordyce, 2013; Cox et al., 2020). The spatial and temporal
distribution of groundwater infiltration to the networks remains
highly uncertain (Cox et al., 2020). The remainder leaves the system
as submarine groundwater discharge. Offshore groundwater
discharge and the geology which controls it, remains largely

unknown. However, it is constrained by the difference in these
mass balance recharge and drainage network estimates.

2.3 Groundwater level monitoring

There is a recent and extensive record of piezometric levels
across South Dunedin (Figure 1). Automated meters currently
record groundwater levels in 28 piezometers every 15 min within
the modelled domain. These were installed over various field
campaigns from 2010 to 2021 (see Cox et al., 2020 for a detailed
description of the groundwater monitoring network and data
coverage).

The interpolated median groundwater piezometric contours
suggest that groundwater flows to the Pacific Ocean and Otago
Harbour, as shown in Figure 1 (updated from Cox et al., 2020).
Median groundwater levels are on average above mean sea-level,
with the highest levels occurring in the north-western corner of the
system.

Fluctuations in groundwater levels are nearly all restricted
to <1 m in range, and dominated by short term variability linked
to frontal rain systems, with some cyclicity at a 90–100 day period
that reflects cumulative rainfall and recharge caused by the
frequency of cyclonic storms (Cox et al., 2020). Any seasonal
(e.g., summer vs. winter, or autumn vs. spring) cyclicity, or
interannual variability over the decadal period of monitoring to
date has been limited, making it relatively robust to use average
levels for the steady-state approximation used for history matching
(see Section 3).

The tidal range at the harbour/coast is approximately 1.7 m (see
Supplementary Figure S1-1). Tidal fluctuations are recorded at some
monitoring locations. For example, the groundwater level time series
for piezometer I44/0007 (location shown in Figure 1) demonstrates
a characteristic diminished amplitude and delayed arrival of the tidal
signal (see Supplementary Figure S1-1). The groundwater time
series at I44/0007 demonstrates a tidal range of approximately
0.3 m (a difference of 1.4 m at a distance of 120 m from the
coast) with a lag in the peak of the tidal cycle of 131 min. This
site is one of a few with a relatively strong tidal signal (Cox et al.,
2020), but elsewhere hydraulic connection with the Pacific Ocean is
still evident >1 km from the shore (see hydrographs for I44/
0007 and CE17/0105 in Supplementary Figure S1-1, these
piezometer locations are shown in Figure 1). Groundwater
electrical conductivity and geochemistry suggest most of the
groundwater is fresh and there is limited saline intrusion (<10%
at 1 km from the shoreline, see Cox et al., 2020; Rekker, 2021).

2.4 Groundwater model

2.4.1 Model structure
The original numerical groundwater flow model was

constructed by Rekker (2012) and modified for the purpose of
this research (as described below). MODFLOW-NWT
(Niswonger et al., 2011) was used to simulate constant-density
groundwater flow under both steady-state and transient
conditions. The finite-difference grid is a single-layer
(representing Holocene and Pleistocene sediments) comprising
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90 rows and 80 columns of uniform 40 × 40 m horizontal
discretization. The boundary conditions and recharge array for
the model are depicted in Figure 2.

The distribution of hydraulic properties was informed by
Glassey et al. (2003). The model surface elevations were based on
a digital elevation model informed by LiDAR data (1 m digital
surface model pixels at specified vertical accuracy <0.2 m, 95%
confidence) for South Dunedin (LINZ, 2021). We resampled the
LiDAR data to obtain a regridded 40 × 40 m average for the model
top elevation of the MODFLOWmodel domain. The original model
bottom elevations estimated by Rekker (2012) from geophysical
data, were maintained.

Recharge to the saturated zone is simulated using the
MODFLOW recharge (RCH) package. The Otago Harbour and
Pacific Ocean were simulated via the General-Head Boundary
(GHB) package, and groundwater interaction with the
stormwater and wastewater networks is simulated via the
MODFLOW Drain (DRN) package (both head-dependent flux
packages). The model bottom and other lateral boundaries are
“no-flow” boundaries.

Hence, groundwater leaves the model domain as storm/
wastewater flow (DRN package), or as submarine groundwater
discharge (GHB package). The locations and invert elevations of
the stormwater and wastewater networks was informed by city
council GIS records. The stormwater network overlies the
wastewater network. The surveyed sump elevations for the

stormwater network were used in preference over the wastewater
network to generate a network of drain locations and elevations
within the model domain. That is, the storm and wastewater
networks are not separated in our modelling approach. This
representation of the storm and wastewater networks is adopted
to account for the uncertainty in the conductance and elevation of
both drainage networks in our modelling approach (see Section 3).

2.4.2 Temporal discretization
Simulations are divided into a steady-state “history” matching

period, with stresses represented by long term average conditions for
the period 2010–2020, and a transient “projection” period which
simulates system response to IPCC-SLR projections for the period
January 2010–January 2110. The density-corrected GHB stage for
the history period is specified according to time-averaged tidal data
for Port Otago obtained from the New Zealand Hydrographic
Authority (Land Information New Zealand, LINZ).

Initial conditions for the transient projection period are
established by the steady-state history matching period. The 100-
year projection period that follows is discretised into annual stress-
periods, and both simulation periods use the same time-invariant
(static) properties of hydraulic conductivity, storage, GHB
conductance, DRN conductance and DRN elevation. Time-
variant properties of recharge and GHB stage are expressed for
the projection period. Our approach then focuses on predicting
groundwater levels and drain flows under changing GHB (rising sea

FIGURE 2
South Dunedin model extent showing model grid, boundary conditions and inactive model cells.
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levels) and recharge (climate variability) model boundary
conditions, defined for the projection period.

3 Methodology

This section describes the methodological detail required to
implement our approach, including the prediction specification,
the development of the parameterisation scheme, history
matching and uncertainty quantification. The scripted
workflow is provided as a Jupyter Notebook to ensure
transparency and reproducibility of the decision-support
modelling described herein (Kluyver et al., 2016).

The workflow involves four main components: 1) early
uncertainty quantification to assess prior parameter uncertainty
and corresponding prediction uncertainty, to identify and resolve
inadequacies in the conceptual model or numerical
implementation, 2) history matching to condition model
parameters that are pertinent to the predictions of interest, 3)

Monte Carlo sampling of climate change and SLR parameters in
the projection period to explore history matching informed
predictive distributions of groundwater levels and, 4) the
production of maps assessing the susceptibility to groundwater
inundation, and quantification of drain flows under different SLR
scenarios. We now describe our approach in detail.

3.1 Model parameterization

Model parameters were defined for both the history and the
projection periods. During history matching the following
parameters were adjusted: horizontal hydraulic conductivity,
history period recharge, GHB conductance, drain conductance,
and drain elevation. The additional parameters defined for the
projection period comprised: specific yield, specific storage,
temporal GHB stage, and temporal recharge (Table 1).
Parameters added to the projection period remained
unconditioned.

TABLE 1 Parameters and their distribution bounds. “Initial model value” refers to the native model parameter value (units also provided) to which the multiplier
(or additive) parameter is applied.

Unit Parameterisation Count Style Transform Initial model Lower bound Upper bound

Method Value

Steady-state “history” matching period

Horizontal K m/day Grid-based 3,610 mult log aZonal 0.01 100

Horizontal K m/day Global 1 mult log aZonal 0.01 100

Recharge m/day Grid-based 3,610 mult log 1.47 × 10−3 0.5 2

Recharge m/day Global 1 mult log 1.47 × 10−3 0.5 2

GHB cond. (South coast) m2/day Grid-based 110 mult log 800 0.01 100

GHB cond. (Harbourside) m2/day Grid-based mult log 800 0.001 1,000

GHB cond m2/day Global 1 mult log 800 0.01 100

Drain elevation m Grid-based 1,259 add none b100.18 −0.5 0.5

Drain elevation m Global 1 add none b100.18 −0.5 0.5

Drain conductance m2/day Grid-based 1,259 mult log 2.6 0.1 10

Drain conductance m2/day Global 1 mult log 2.6 0.1 10

Transient “projection” period

Specific yield — Grid-based 3,610 mult log 1.46 × 10−1 0.5 2

Specific yield — Global 1 mult log 1.46 × 10-a 0.5 2

Specific storage — Grid-based 3,610 mult log 1 × 10−3 0.01 100

Specific storage — Global 1 mult log 1 × 10−3 0.01 100

GHB stage m Global 1 mult log cScenario 0.41 2.47

Temporal GHB m Global 100 mult log cScenario 0.925 1.075

Temporal Recharge m/day Global 100 mult log 1.47 × 10−3 0.8 1.25

aHydraulic conductivity is separated into four zones according to the identified lithology (Glassey et al., 2003).
bDrain invert elevations vary within the model domain. The estimated average invert elevation for the entire network is presented.
cTemporal GHB stage is dependent on the IPCC-SSP scenario.
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3.1.1 History matching parameters
The distribution of groundwater model hydraulic parameters,

flux and head boundary conditions and recharge stresses are
expressed through 9855 adjustable parameters for the steady-state
history matching period (Table 1). Parameters are generally
implemented as multi-scale multipliers which act upon initial
model parameter values. Drain elevation parameters are
represented as additive, rather than multiplier, parameters. For
these, the parameters are applied as an addition or subtraction to
the model drain invert elevation estimate.

Parameter operating scales reflect the expected scales of
heterogeneity and uncertainty of model input values and are
applied at the scale of geological model (global-scale) and the
model cell (grid-scale) (e.g., White et al., 2020; Hemmings et al.,
2020; McKenna et al., 2020). Initial parameter values, and the mean
of their prior distributions, are one and zero, for multiplier and
addition parameters, respectively (Table 1).

The prior parameter covariance matrix, from which the prior
parameter realisations are drawn, is defined as a block-diagonal
matrix. Diagonal elements of the prior parameter covariance matrix
represent individual parameter variances, informed by prior, or
“expert” knowledge of these model inputs (Table 1). Off-diagonal
elements of the covariance matrix, were defined by geostructures
built on exponential variograms with sills proportional to the prior
parameter variances.

Upper and lower parameter bounds represent a six standard
deviation envelope (±3 σ) around the mean of the distributions,
equating to approximately a 99% confidence interval. An
exponential variogram range of 1,200 m (range a = 400 m) was
defined for spatially distributed parameters. However, to account for
the anticipated high spatial variance in the (wastewater and
stormwater) drainage infrastructure, the exponential variogram
range for drain parameters (DRN package invert elevation and
conductance) were reduced to 300 m (a = 100 m). Additionally,
conservative prior uncertainties were assigned to abstract
parameters representing boundary conditions of the structurally
simple model (i.e., DRN and GHB conductance). This strategy was
employed for uninformed prior uncertainties to avoid under-
estimation of predictive uncertainty (e.g., Hugman and Doherty,
2022).

3.1.2 Projection period parameters
An additional 7,423 adjustable parameters were defined for the

transient projection period (i.e., 17,276 parameters in total) to
represent IPCC projection uncertainty (Table 1). IPCC
projections for South Dunedin indicate minimal changes to
annual average rainfall rates (e.g., Mourot et al., 2022). However,
to represent interannual recharge variability and its uncertainty over
the projection period, additional, independent (i.e., no temporal
covariance) annual recharge multipliers were included in the
analysis.

The initial model input recharge parameter values were
estimated from long-term, annual average conditions for the
steady-state history period (i.e., a 10-year timeframe). Upper and
lower bounds for the temporal recharge multiplier (projection
period) were informed by the variance of the 10-year moving
average of historic annual rainfall rates. This was based on local
long-term New Zealand MetService data for the period 1960–2021

(Table 1). As a consequence, the model is focussed towards
predicting the transient progression of long-term annual
conditions of groundwater levels, but not short-term (events-
based) fluctuations that may be important for managing
individual rain-event flood risk.

In contrast to groundwater recharge, projected rises in sea levels
are significant, but also highly uncertain during the 21st century and
beyond. The modelling workflow uses improved, location specific
SLR projections provided by the NZ SeaRise: Te Tai Pari O Aotearoa
Endeavour programme. These projections, which can be accessed
through https://searise.takiwa.co/, include the effects of vertical land
movement for every 2 km of the coast of Aotearoa New Zealand to
the year 2,300. Here, to follow coastal planning recommendations
specific to New Zealand (MfE, 2017), we focus on SLR projections
associated with the IPCC Shared Socioeconomic Pathway (SSP)
medium confidence, high emmissions scenario SSP5-8.5. However,
the workflow is rapid and easily adaptable to explore any of the SLR
scenarios, so we present an additional scenario in the Supplementary
Information.

SLR projection uncertainty was propagated through the
groundwater model to the predictions of interest according to the
defined uncertainty interval for the IPCC-SSP scenario (SSP5-
8.5 medium confidence; inferred from Table 2, where p17-p83 is
assumed to encompass 2 σ). This SLR scenario uncertainty is
represented through the variance on a global (spatially and
temporally constant) multiplier, which acts on the median SLR
projection timeseries (implemented through the GHB stage) applied
across all stress periods. For SSP5-8.5 (Table 2), the variance of this
global multiplier, with a mean of 1.0, was defined as 0.12 (standard
deviation of 0.34). Also note, the potential range of the forcing
applied to the GHB stage increases into the future as the uncertainty
of the SLR scenario increases (i.e., heteroscedasticity). The resulting
sampled projection period realisations of SLR for the SSP5-8.5
(medium confidence) scenario are illustrated in Figure 3.

Inter-annual variability and uncertainty for each individual SLR
realization is defined through annual multipliers sampled within
a ±3 σ range of 0.925–1.075, and covariance defined through a
temporal exponential variogram with a range of 15 years (range a =
5 years). This choice was informed by a variogram analysis of the
detrended annual average sea level recorded at the Green Island tide
gauge (Bell et al., 2022).

Appending SLR parameters to the model parameter covariances
supports drawing realisations for the projection period, thus
allowing the ensemble of realisations to characterise the
embedded deep uncertainty of future SLR projections (e.g., Kopp

TABLE 2 Relative-SLR projections for South Dunedin (https://searise.takiwa.co/)
showing median (p50), 17th percentile (p17) and 83rd percentile projections for
the SSP-8.5 (medium confidence) scenario. The realized ensemble of SLR
projections drawn from this scenario are shown in Figure 3.

Scenario Year p17 (m) p50 (m) p83 (m)

SSP5-8.5 (medium confidence) 2030 0.08 0.11 0.14

SSP5-8.5 (medium confidence) 2050 0.20 0.25 0.32

SSP5-8.5 (medium confidence) 2070 0.34 0.43 0.56

SSP5-8.5 (medium confidence) 2100 0.64 0.81 1.06
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et al., 2019), and their impact on the decision-critical prediction. To
the best of the authors’ knowledge, the explicit application of IPCC-
SSP SLR scenario uncertainty to probabilistic groundwater flow
model predictions, remains unexplored.

3.2 History matching, uncertainty
quantification, and predictions

A prior-based Monte-Carlo uncertainty analysis was used to
assess the credibility of the model structure and the prior parameter
probability distributions, via observations of prior-data conflict (e.g.,
Egidi et al., 2022). History matching was then used to derive the
posterior parameter ensemble, based on observations from the
“history” period, using the iterative Ensemble Smoother (iES) in
PEST++ (White, 2018). We then analysed the extent to which
history matching (to the available data) was able to refine the
distributions of parameter values, their combinations, and the
corresponding predictions of interest.

Predictive scenarios, which include additional SLR and recharge
uncertainty in the 2010–2110 projection period, were then simulated.
This was achieved by combining the posterior parameter ensemble
(for the history period) with additional unconditioned parameters
relating only to the 100-year projection period (i.e., temporal GHB
stage and recharge parameters, see Table 1). The resulting history
matching informed parameter ensemble represents the conditioned
uncertainty of groundwater levels in response to IPCC-SSP scenarios.
These spatially distributed groundwater level predictions can
then be used to map the potential SLR-driven groundwater
inundation hazard in South Dunedin, supporting risk-based
decision making.

3.2.1 Geostatistical draws, observations, and
weights

An ensemble of 300 parameter realisations, providing a
representation of prior parameter uncertainty, were drawn by
Monte-Carlo multi-variate Gaussian sampling of the prior
parameter covariance matrix, and then conditioned through
history matching. These 300 parameter realizations were
ultimately propagated through to the SLR scenario projection
period.

The choice of the number of realisations (to propagate through
the analysis) is a trade-off between minimising computational
burden of the history matching process, whilst endeavouring to
sufficiently capture prediction uncertainty, and accommodate the
dimensionality of the solution space (e.g., Knowling et al., 2019;
White et al., 2020; Hunt et al., 2021). To ensure that 300 realisations
appropriately captured the prediction uncertainty, we preformed a
convergence analysis, focussing on four prediciton locations of
interest. The results of this convergence analysis are shown in
Supplementary Figure S3-5. The converenge analysis indicates
that 300 realisations effectively captures the prior prediction

FIGURE 3
Realizations of sea level rise attached to the GHB stage of the 100-year projection model (2010–2110). The plot shows 300 realizations of sea level
rise for the IPCC SSP5-8.5 (medium confidence) scenario.

TABLE 3 Measurement error (standard deviation, σm).

Observation group Count σm
Less-than inequality constraints 3,525 0.4

Waste/stormwater exchange flux 1 500

Groundwater levels Long-term measurements (>2 years) 16 0.15

Short-term measurements (<2 years) 12 0.25
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distribution behaviour (ensemble mean, standard deviation and
95th percentile) represented by 1,000 realisations.

The history matching dataset comprised of long-term averages
of system observations. Groundwater level observations were
separated into two groups relating to the duration of the
piezometer dataset (Table 3). An additional estimate of the
annual average total groundwater-waste/stormwater exchange
flux of 2,000 m3/day was included as a target observation for
history matching (Opus and URS, 2011a; Opus and URS, 2011b;
Rekker, 2012; Fordyce, 2014).

Given the spatial sparsity of groundwater level
measurements, it was beneficial to include observations which
represent physically “realistic” constraints on simulated
groundwater levels for the history matching period. This was
implemented through the “less-than” inequality constraint
(White, 2018). Less-than inequality observations contribute to
the objective function only when the simulated value exceeds the
observation value.

For our purposes, less-than observations were defined for
simulated heads in every model cell. The observation value was
set according to the model top elevation in the corresponding cell.
This effectively implements a history matching constraint, which
enforces the condition that long-term average groundwater levels
should fall below the model top elevation (e.g., White, 2018; White
et al., 2019; Fienen et al., 2021).

Initial observation weights were defined to reflect the estimated
observation error. Weights were then re-adjusted to direct
parameter upgrades towards objective function components that
were considered most relevant to the decision-support objective
(e.g., Doherty and Welter, 2010; Fienen et al., 2022). In particular,
because groundwater level observations used for history matching
are well “aligned” with the decision-critical prediction, these were
assigned a greater weight (e.g., Dausman et al., 2010; Knowling et al.,
2019; Fienen et al., 2020). This was achieved by scaling the inequality
and groundwater-waste/stormwater flux observation group weights
by 1 × 10−1.

4 Results and discussion

The main outputs of this research are hazard informed maps
for decision support. We therefore begin our examination of the
results with this aspect of the study. We then discuss projected
drainage volumes. This is followed by examining the value of
history matching (e.g., Doherty and Moore, 2017), and the use of
‘difference from a baseline,’ or comparative outcomes of model
predictions as an alternative approach, when investigating the
SLR-driven groundwater hazard (e.g., Sepúlveda and Doherty,
2015).

The IPCC AR6 report introduced the SSP scenarios, which
are representative of a broad range of plausible societal and
climatic futures (IPCC, 2021). As detailed above, the focus of
this research is the presented framework/workflow, so we mainly
discuss results for the recommended SSP5-8.5 (medium
confidence) high emissions scenario (MfE, 2017; see Table 2;
Figure 3). However, we also briefly discuss and compare results
for the SSP2-4.5 (medium confidence) scenario, which is
included in the Supplementary Information.

4.1 Projected probability of groundwater
inundation

To explore predictive uncertainty under IPCC projections of
SLR, the estimated probability (and thus susceptibility) to
groundwater inundation was based on a history matched
(posterior) parameter ensemble. This posterior was derived using
a Monte-Carlo representation of parameter uncertainty, that was
propagated to the SLR projection period. The resulting probability of
groundwater inundation was estimated from the posterior
groundwater level distributions at every model cell, and collating
the number of occasions that groundwater levels exceeded the model
top elevation (i.e., exceedance probability, Figure 5). For the
purposes of our research, susceptibility to inundation and
probability are on the same general scale: highly susceptible areas
correspond to the highest probabilities of groundwater levels
exceeding the model top, and vice versa.

Using the SSP5-8.5 projection, the model simulated
groundwater levels prior to 2030, indicate that the simulated
probability of groundwater inundation is generally low across the
South Dunedin model domain. This is likely associated with the low
to moderate SLR projection and relatively constrained SLR
uncertainty for this timeframe (Figure 3). By 2030, regions of
higher groundwater inundation probability begin to emerge
(Figure 4A). These regions become more defined by 2050
(Figure 4B) and are broadly constrained to three zones, in low-
lying areas, surrounding the example site, I44/0006 and I44/1113
(Figure 1). This is consistent with reports of depths to groundwater
of <0.5 m below the ground surface in these areas (Cox et al., 2020).
It is not surprising, therefore, that these low-lying regions would be
susceptible to inundation for low to moderate rises in sea level.

Under increasing (and accelerating) SLR for the
2070–2100 timeframe, the spatial extent of the more susceptible
areas continues to increase (Figures 4C, D). As expected, the regions
with the highest inundation probabilities are dominated by the same
low-lying open areas, especially where there is an absence of
drainage in the model (e.g., in the region of I44/0006, Figure 4).
However, many additional zones do appear susceptible to the
inundation hazard, despite being >1 m above sea level and a
considerable distance inshore (e.g., in the region of I44/0005,
Figure 4).

These same broad trends are apparent for the SSP2-4.5 (medium
confidence) scenario. Although, the simulated probability and
spatial extent of groundwater inundation is slightly diminished
for the 2070–2100 timeframe (see Supplementary Figure S4-1).
We attribute this reduction in susceptibility to the lower SLR
projection attached to the model boundary condition for the
SSP2-4.5 (medium confidence) scenario (see Supplementary
Figure S4-2). Importantly, the lower likelihood high SLR
realisations captured by our modelling approach leads to elevated
probabilities of groundwater inundation for this timeframe. Our
results suggest that even for the more optimistic SSP2-4.5 emissions
pathway, significant susceptibility to the groundwater indundation
hazard remains.

The zones most prone to groundwater inundation are not
correlated with the distance from the Pacific Ocean or Otago
Harbour boundary conditions (Figure 4). We hypothesize that
this may be related to the increased hydraulic conductivity of the
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sediments and low topographic relief of these areas. Our results
imply that groundwater emergence at a considerable distance
inshore may occur before, or even compound overland flooding
(e.g., Befus et al., 2020; Plane et al., 2019). This has implications for
adaptation strategies that focus solely on overland flooding. Ignoring
the effects of SLR-driven groundwater level rises may significantly
underestimate the spatial extent and timing of surface water flooding
(e.g., Anderson et al., 2018).

The presented inundation probabilities are all relative to the
model top elevation (Figure 4), estimated from a mean aggregation
of the LiDAR data (Section 2). It is acknowledged that the
uncertainty of the LiDAR data, and how it is aggregated to the
model top, has not been explicitly addressed in this study. A strong
correlation is likely to exist between model surface elevation and
simulated water levels. We believe that our framing of water level
predictions as relative to the model top will help mitigate potential
elevation and aggregation errors. However, caution should be
exercised when attempting to assess inundation probabilities at
scales less than the model grid resolution. Small-scale
topographic features within a model cell may be characterised by

higher (or lower) inundation probabilities than those predicted, at
the model grid scale relative to the model top. The impact of
elevation and aggregation uncertainty on predictions of
groundwater inundation at a finer scale could be addressed in
future work.

4.2 Simulated drain flows

The projected SLR-driven probability and spatial extent of
inundation (Figure 4) is mitigated by the interaction between
rising groundwater levels and the waste/stormwater drainage
networks. This mitigating effect is controlled by the relative
elevation of groundwater levels as sea levels rise, and also the
spatial conductance of the drainage networks (an abstract
numerical representation of the complex interaction between
groundwater and the drainage networks, Table 1).

This effect is demonstrated by the total flux of groundwater
discharging to the drainage networks represented in the model of
South Dunedin, which is projected to increase substantially

FIGURE 4
The projected SLR-driven probability of groundwater inundation for 2030, 2050, 2070 and 2100 based on the IPCC SSP5-8.5 (medium confidence)
scenario (see Figure 3 for realizations of relative-SLR attached to GHB stage in the model). The model top elevation is based on a Digital Elevation Model
(DEM) informed by recent LiDAR data (LINZ, 2021).
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(Figure 5). As with the groundwater level predictions, the
uncertainty of the total drain flux prediction also increases over
the duration of the projection scenario (Figure 5). For example, in
2030, the mean and standard deviation of drainage flows are
2,150 and 494 m3/day, respectively. In 2100, this increases to
2,835 and 718 m3/day, respectively (a 32% increase in projected
mean drainage flows).

Drain conductance and elevation are expressed as (nested)
uncertain parameters in the numerical modelling workflow
presented herein, but the history matching results indicate
that the available data provides little information for
condition of these parameters, especially in a spatial sense (see
Supplementary Figure S3-7). Significant uncertainty persists for
these posterior predictions. Additional monitoring, data
collection and refinement of the estimated spatial (and
temporal) fluxes to the existing drainage network may help
reduce the uncertainty of these (and other) parameters, and
thereby help to reduce the uncertainty of both drain flux and
groundwater inundation predictions.

Notwithstanding the large uncertainty of these predictions, our
results are consistent with other recent studies (e.g., Habel et al.,
2017; Befus et al., 2020), which suggest that drainage may offset the
impacts of SLR and emergent groundwaters. However, the planned
renewal of the waste and stormwater networks in the
2020–2050 timeframe (Goldsmith and Hornblow, 2016) may
limit, or even reduce the capacity of the drainage networks to
accept infiltrating groundwater.

This has profound implications for decision-makers in South
Dunedin, since our approach conservatively assumes that the
drainage system will be available to accommodate SLR-driven
groundwater level rises (Figure 5). This tenuous (linear)
assumption may significantly overestimate the hydraulic response
of the waste/stormwater networks for conditions that may prevail in
the future. Decision-makers should therefore consider potential
future limitations, or reductions of drainage flows in future
management scenarios, to avoid underestimation of the potential
groundwater inundation hazard.

The projected SLR-driven increase in the base flux to the waste/
stormwater networks (Figure 5) will also be an important
consideration. Increased “dry condition” flows to the drainage
networks might limit their capacity for their primary function
(removal of wastewater and stormwater, e.g., Morris et al., 2018).
This has significant implications for managing event flows, since
increases in the base flux may compound rises in groundwater levels
in response to these events. Where the flows to these networks
requires treatment and pumping to discharge, as is the case in South
Dunedin, treatment facilities will likely receive higher loads at
significant extra cost with ramifications for facility downtime and
failure (e.g., Cox et al., 2020).

4.3 The value of history matching

The simulated outputs from the prior-based Monte Carlo
uncertainty quantification displayed minimal prior-data conflict
(PDC) in relation to the predictions of interest (groundwater
levels; see Supplementary Figure S3-9). That is, prior simulated
output distributions generally encompass the values of system
observations. However, the prior uncertainty of simulated
outputs was significant and contributed to predictions of
relatively high probability of inundation (during the history
period), across the model domain (Supplementary Figure S3-1).
This high uncertainty in simulated outputs of management interest,
the availability of aligned observations, and the general lack of PDC
provided a defensible basis for undertaking history matching.

Six iterations using the iES algorithm were used to history match
simulated outputs to historical observations (Section 3.2). This
required a total of 3,240 model runs. The match to long-term
average groundwater levels and total drain flux improved
significantly in the first two iterations and levelled off following
the fourth (Supplementary Table S3-1). After history matching, the
posterior simulated groundwater level distributions generally
encompass their respective observation within the defined
observation error. The prior and posterior Probability Density

FIGURE 5
Plots showing (A) time-series of individual realizations of total drain fluxes, and (B) Probability Density Functions (PDFs) of projected total drain fluxes
as groundwater levels change [IPCC SSP5-8.5 (medium confidence) scenario]. These plots show the estimated total groundwater flux to the waste/
stormwater networks represented in the model of South Dunedin.
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Functions (PDFs) for three observation locations, and an additional
example site, are provided in Figure 6 (distributions for all
observations are shown in Supplementary Figure S3-9).

As expected, history matching to several thousand observations
(groundwater levels, inequality constraints and total groundwater
flux) significantly reduced the uncertainty of simulated groundwater

FIGURE 6
Histograms (PDFs) for selected observations showing prior Monte Carlo, posterior and observation plus noise iES distributions. Blue histograms
show the distribution of model outputs and red histograms show the realizations of the observation value, which is based on the observed long-term
(mean) groundwater level and supplied standard deviation (i.e., σm). Note, the unweighted example site for which no observation exists (Example Site).
Note also, the x-range is truncated to focus on the posterior model outputs (history period).

FIGURE 7
Percent uncertainty change for posterior versus prior distributions of groundwater level predictions for (A) 2030, (B) 2050, (C) 2070 and (D) 2100.
Observation locations used for history matching are also shown (i.e., non-zero weighted groundwater level observations).
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level predictions, as indicated by the widths of the respective prior
and posteriors PDFs in Figure 6 and Supplementary Figure S3-9.
Through history matching, the simulated probability of
groundwater inundation for the history period, was reduced to
0% across most of the model domain (see Supplementary Figure
S3-8). We mainly attribute this improvement to the conditioning of
horizontal hydraulic conductivity and drain conductance
parameters through the assimilation of the information contained
within the observation dataset (Supplementary Figure S3-4).

The history matching process outcome, i.e., the posterior
parameter ensemble, can be considered to be effective, since the
parameter ensemble was updated by the assimilation of information
from observation data. It can also be concluded that these data were
suitable for reducing the uncertainty of parameters to which the
predictions were sensitive (Supplementary Figure S3-6).

However, results from both the history and projection periods,
depict a high spatial and temporal variation in the uncertainty
reduction of the groundwater level simulated output that results
from history matching (Figure 7 and Supplementary Figure S3-6).
The spatial distribution of observation data, the updated impervious
surface recharge model (Supplementary Figure S2-1), and simulated
drainage clearly plays an important role in the spatial distribution of
uncertainty reduction. For example, generally, the largest
uncertainty reductions occur over pervious surfaces where the
observation density is high, and where there is absence of
drainage in the model (e.g., to the southwest of the model domain).

Uncertainty reductions are generally high (>60%) for the history
period (Supplementary Figure S3-6) and for the projected
2030–2050 timeframe (Figures 7A, B). As discussed, the
conditioning of parameters to historical observations propagated
this uncertainty reduction to the projection period groundwater
level predictions. Before 2050, our results suggest that steady-state
only history matching can indeed reduce the uncertainty of
groundwater level predictions, despite the intractable nature of
the uncertainty inherited from the IPCC projections of SLR (e.g.,
Kopp et al., 2019).

Generally, however, posterior prediction uncertainty increases
substantially for the 2070–2100 timeframe (Figures 7C, D). Spatially,
the history matching constrained uncertainty increases are mainly
isolated to locations where drainage is represented in the model, and
to the northeast of the model domain where groundwater level
observation data is sparse (i.e., near the harbour boundary
condition). For the groundwater level prediction, we mainly
attribute this loss in spatial confidence to the large uncertainty of
the drainage parameters, and the uncertainty inherited from the
IPCC-SLR projection, which increases precipitously for the
2070–2100 timeframe (see, e.g., Figure 3).

In this context, groundwater inundation assessments
typically rely on the use of a single deterministic realisation of
SLR (e.g., median or p83 scenario, see Table 2). Unfortunately,
these approaches eschew the deep uncertainty attached to the
IPCC-SLR projections themselves (e.g., Kopp et al., 2019), and do
not allow expert knowledge to be considered through weighting
the likelihood of SLR over the full range of scenario projections
(e.g., Purvis et al., 2008). We have therefore presented a
consistent methodology to explore the full range of SLR
projections and their impact on the decision-critical
predictions (see, e.g., Figure 7).

4.4 Predictions of relative change
(i.e., differences)

The availability of appropriate groundwater monitoring
datasets, particularly at the spatial density and duration of the
results presented herein, is relatively rare, especially compared to
the global number of at-risk, coastal communities and ecosytems
(e.g., Neumann et al., 2015; Hooijer and Verminnen, 2021). For
predictions of absolute groundwater levels and inundation, a lack of
monitoring data may limit the potential for history matching to
condition (and reduce) model parameter and corresponding
prediction uncertainty. Our results suggest that the prior
uncertainty of these absolute predictions may be too high to
provide any meaningful information in terms of robust decision-
support (see Supplementary Figure S4-2).

A considered reframing of the projection simulations, to predict
the relative changes of model predictions (i.e., differences in
projected groundwater levels, Figure 8) may, in practice, be a
better approach for communities that do not have dense
monitoring networks. Such an approach should reduce the
impact of model structural errors on predictive uncertainty, and
may also help to mitigate the contribution to uncertainty inherited
from the prior parameter distributions and structural defects of the
groundwater model (e.g., Sepúlveda and Doherty, 2015).

The results presented in Figure 4 display the distribution of
changes in groundwater levels relative to an arbitrary “decision
threshold” (e.g., Knowling et al., 2019; White et al., 2019), which in
this instance is emergence over the model top (or land surface)
estimated from LiDAR data. Clearly, for relative-type predictions,
such a decision threshold is not available. An alternative is to define a
threshold based on an anticipated impactful change in groundwater
levels. For example, Figure 8 uses a decision threshold of a 0.25 m
increase in groundwater levels (for the same sites presented in
Figure 6). Probabilistic mapping of simulated outputs against this
(or multiple) relative decision thresholds is also possible.

For predictions of relative change, the projected prior versus
posterior probability of groundwater levels exceeding the decision
threshold appears relatively low for the 2030–2050 timeframe
(Figure 8). Similar to the predictions of absolute values, there is
then a marked increase in the probability of groundwater levels
exceeding the difference threshold for the 2070–2100 timeframe.

However, in contrast to predictions of absolute values, there is a
surprising lack of discrepancy between the prior and posterior
difference projections (Figure 8). This is consistent with the
accepted logic that models are more suitable predictors of relative
change, rather than absolutes (e.g., Sepúlveda and Doherty, 2015),
which also aligns with conclusions drawn from a number of other
recent studies (e.g., Knowling et al., 2019; White et al., 2020).

Our results indicate that the workflow deployed here for South
Dunedin could be modified and deployed with reasonable utility,
even in settings with limited (or unreliable data), by curtailing, or
forgoing the history matching step, and exploring predictions in a
relative sense. It may then be possible to delineate areas that are
more susceptible to SLR-driven groundwater level rises, or
demonstrate the merits of one management strategy versus
another. This has implications for the way in which a numerical
model is used for decision-support, and the type of information that
decision makers may wish to obtain from numerical models.
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4.5 Further considerations and
recommendations

The history matching informed predictive distributions of
groundwater levels presented herein supports quantification of
the uncertainties in groundwater level rise and inundation, for
stresses that may prevail in the future. It is acknowledged that
the modelling workflow does not capture all of the potential
contributing sources to predictive uncertainty. We therefore
adopted a highly parameterised approach and defined broad
prior parameter uncertainties to provide some protection against
prediction uncertainty underestimation. Although, some

uncertainties relating to error in model structure and
conceptualisation (e.g., Wagener et al., 2021) may persist,
unaccounted for.

Consequently, caution should be exercised in the application of
these results. As discussed in Section 4.1, it may be inappropriate to
apply these results at spatial scales finer than the model grid
resolution. Similarly, for temporal scales, the model projections
represent the long-term progression of annual conditions to
estimate a general “annual” exposure to a hazard, or change in
exposure to a hazard. Detailed hazard, vulnerability and damage
thresholds also commonly encompass short-term fluctuations and
events (e.g., Paulik et al., 2019). The direct application of these

FIGURE 8
Prior (grey) versus posterior (blue) distributions for the projected change in groundwater levels (m) at the selected sites for the SSP5-8.5 (medium
confidence) scenario. An arbitrary decision threshold of 0.25 m is also illustrated (red dashed line). The projected change in groundwater levels is
calculated from the difference between year 0 and the given year of the projection model (for each individual realization).
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results to temporal scales that are finer than the model temporal
resolution is also likely to be inappropriate. Nevertheless, the
modelling workflow and results presented herein may serve as a
basis for making downscaled (both temporally and spatially)
predicitions.

A real strength is the scripted nature of our workflow, which
facilitates such (follow up) investigations, whilst supporting the
incorporation of model revisions and exploration of alternative
management (e.g., SSP or drainage) scenarios, in a way that is
rapid, reproducible and transparent. The workflow could easily be
extended to implement dataworth analyses to establish the value of
existing and yet to be collected monitoring data. Or, for example, the
cost of exploring (or foregoing) transient history matching in terms
of reducing predictive uncertainty at finer temporal scale, in an
events based models (e.g., Moore and Doherty, 2005).

In this context, it is recommended that future research should
explore predictions of an episodic nature, such as improving model-
based predictions of groundwater levels in response to individual
storm-surge or rainfall events (e.g., a rainfall event with a return
period of 10 years). It would then be possible to begin to address the
fundamental question of how these events interact with rising sea
levels and a changing climate.

5 Conclusion

The potential for a spatial and temporal detailed map of
groundwater inundation probabilities, and corresponding drainage
volumes that may be required tomitigate SLR, was investigated in this
study. While the mapping of groundwater inundation is discussed in
Morris et al. (2018) and others, projecting this mapping into a risk
framework has been missing from the literature. The distributed
properties that support the risk maps of groundwater inundation
in response to SLR extends the recent work of Merchán-Rivera et al.
(2022), which also applied a Bayesian framework to the creation of
risk maps, but used spatially lumped hydraulic properties. The
spatially distributed hydraulic properties adopted in this work
enabled a detailed delineation of areas that is not possible using a
spatially lumped parameterisation scheme. The Bayesian
methodology adopted supports a regional scale delineation of the
distribution of groundwater inundation projections.

Our approach has attempted to equip decision-makers with all
the necessary information to distinguish where the probability for
groundwater inundation is relatively high, and where it is relatively
low. This approach also includes providing a level of confidence that
a proposed decision threshold will be exceeded, which may
necessitate the implementation of a (potentially costly)
management strategy. However, knowledge of actual thresholds
for damage, and therefore asset vulnerability, appears to be
missing from the literature. In this regard, the tolerable
probability of groundwater inundation, and how this translates
more broadly into risk, remains for decision-makers to determine.

Previous studies on groundwater responses to SLR have focussed
on groundwater flooding areas, or the movement of the fresh-salt
water interface. However, the mitigation of groundwater flooding, at
least initially, is likely to involve consideration of the additional flows
that drainage networks may be required to accomodate. This study
extends previous work by explicitly focussing on the likelihood of

relative increases in drainage flows, given its importance as a
management consideration.

The uncertainty of the SLR projections represents a small
contribution to the uncertainty of the groundwater flooding
probabilities for predictions within the next few decades. As the
projections extend further into the future, however, the SLR
uncertainty begins to dominate the uncertainty of the
groundwater flooding predictions. This highlights the necessity of
exploring model uncertainty in the context of the prediction being
made (Doherty, 2015). For near-time predictions, history matching
appears to reduce the uncertainty of groundwater level rises, whereas
the same cannot be said for predictions in the distant future.

Also demonstrated was the relative value of history matching
when formulating predictions as a difference from a baseline, rather
than the absolute value of a prediction. For the specific predictions and
history matching dataset combination explored, the worth of history
matching was doubtful when casting the prediction as a difference
from a baseline. Whereas history matching was useful if the absolute
magnitude of the groundwater level was of concern. This issue was
also explored in different contexts in Knowling et al. (2019),
Hemmings et al. (2021), Moore and Doherty (2005) and others.

Finally, we note that the analysis described in this paper was
supported by a scripted workflow (e.g., White et al., 2020). The
combination of a spatially and temporally distributed
parameterisation scheme, history matching and uncertainty
quantification over a regional scale is complex. This scripted
workflow provides a transparent record of the many (unavoidable
subjective) decisions made during our modelling process, whilst
supporting similar analyses that could easily extend the scripted
workflow provided in the Supplementary Information.
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A probabilistic assessment of
surface water-groundwater
exchange flux at a PCE
contaminated site using
groundwater modelling
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Rui Hugman2
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Polluted groundwater discharge at a chlorinated solvent contaminated site in
Hagfors, Sweden, is affecting a nearby stream flowing through a sparsely
populated area. Because of difficulties related to source zone remediation,
decision makers recently changed the short-term site management objective
to mitigating discharge of polluted groundwater to the stream. To help
formulating targeted remediation strategies pertaining to the new objective,
we developed a groundwater numerical decision-support model. To facilitate
reproducibility, the modelling workflow was scripted. The model was designed to
quantify and reduce the uncertainty of surface water-groundwater (SW-GW)
exchange fluxes for the studied period (2016–2020) through the use of
history-matching. In addition to classical observations, thermal anomalies
detected in fiber optic distributed temperature sensing (FO-DTS)
measurements were used to inform the model of groundwater discharge. After
assessing SW-GW exchange fluxes, we used measurements of surface water
chemistry to provide a probabilistic estimation of mass influx and spatio-temporal
distributions of contaminated groundwater discharge. Results show 1) SW-GW
exchange fluxes are likely to be significantly larger than previously estimated, and
2) prior estimations of mass influx are located near the center of the posterior
probability distribution. Based on this, we recommend decision makers to focus
remediation action on specific segments of the stream.

KEYWORDS

groundwater modelling, surface water-groundwater interaction, uncertainty
quantification, groundwater contamination, tetrachloroethylene, PCE, distributed
temperature sensing

1 Introduction

High quality freshwater is not an endless resource, and for that reason, we have a
responsibility to limit the effects of past and current human actions on future water quality
and quantity. Old sins of industrial malpractice and alike lurk in the underground and
contaminated sites constitutes a global problem at a local scale (Schmoll et al., 2006).

As groundwater move through the subsurface, nearby surface waters are at risk of
contamination through transport and discharge of polluted groundwater, ultimately putting
public health at risk through exposure. Exploring surface water-groundwater (SW-GW)
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exchange behavior at these sites is essential to discover locations of
polluted discharge and formulate targeted remediation strategies to
ensure good enough water quality for future needs at a
reasonable cost.

There are several methods available for estimating SW-GW
exchange flux, and their suitability typically vary depending on the
scale of the investigation. For small scale estimations, direct
measurements using seepage meters can be utilized (e.g.,
Rosenberry, 2008). For larger scales, groundwater and surface-
water stage monitoring networks can be interpreted to estimate
SW-GW exchange using Darcy’s Law (Woessner, 2020). Indirect
methods for inferring exchange fluxes include inference from
temperature measurements (Andersson, 2005), and other
geophysical and geochemical tracers, such as electrical
conductivity (EC) and stable and radioactive isotopes (Cook,
2013). For characterization in high detail at small to medium
scale (up to 30 km of cable length), fiber optic distributed
temperature sensing (FO-DTS) (Selker et al., 2006) has shown to
be a promising method (Briggs et al., 2012).

Numerical models can be used in a variety of contexts where
SW-GW exchange affect a prediction of interest. Lately, the use of
groundwater numerical models as a means to quantify SW-GW
exchange fluxes has gained prominence (Ntona et al., 2022).
However, to be useful in a decision-making context, models
should be able to quantify (and ideally reduce) the uncertainty of
simulated predictions (Caers, 2011). This is typically done by
assimilating measurements of field data (also known as
observations), such as hydraulic head and streamflow rates, into
the model in a process known as history-matching (Doherty and
Simmons, 2013). In a review of the different types of observations
frequently occurring in groundwater and surface-water modelling
literature, Schilling et al. (2019) found that including at least one
unconventional observation type is typically beneficial in terms of
reducing predictive uncertainty. This is because classical
observations can sometimes be poor in information pertaining to
SW-GW exchange behavior (Schilling et al., 2019). Doherty and
Moore (2020) recommend developers of decision support models to
focus on the ability of a model to provide receptacles for decision
critical information, rather than on its ability to simulate
environmental processes. This can typically be achieved by
adopting a highly parameterized approach to modelling (White
et al., 2020). Wöhling et al. (2018) and Partington et al. (2020)
constitute recent examples where highly parameterized models were
used to assimilate unconventional observation types for assessing
SW-GW exchange fluxes. Wöhling et al. (2018) found that
integrating field observations with “soft” information in site-
specific expert knowledge could enhance the plausibility of the
calibrated model. Partington et al. (2020) examined the worth of
classical and unconventional observation data (Radon-222, Carbon-
14 and EC) in terms of reducing SW-GW exchange flux predictive
uncertainty, and found Radon-222 and EC to be of particular value
during low- and regular streamflow conditions.

Tetrachloroethylene (also known as perchloroethylene,
henceforth referred to as PCE) is a chlorinated solvent (a volatile
organic compound, VOC) primarily used in dry cleaning and metal
degreasing and exposure is highly suspected to cause cancer in
humans (Guha et al., 2012; Barul et al., 2017). Chlorinated solvents
are denser than water, and are often referred to as dense non-

aqueous phase liquids (DNAPLs) and a common groundwater
contaminant that typically form large plumes (up to several
kilometers in length) when dissolved in flowing groundwater
(Pankow and Cherry, 1996). Methods for estimating mass flux
and discharge of VOCs from groundwater to surface water
typically rely on some variation of control plane (i.e., cross
section multi-level sampling orthogonal to the direction of
groundwater flow), where plume discharge is defined as the
amount of contaminant mass migrating through the control
plane per unit of time (Pankow and Cherry., 1996; Guilbeault
et al., 2005; Chapman et al., 2007). In a recent study, Nickels
et al. (2023) used point-scale streambed measurements of
hydraulic parameters and VOC concentration to quantify VOC
discharge from groundwater to surface water in high detail at small
scale.

In this study, we develop a highly parameterized groundwater
numerical model to characterize and assess the SW-GW exchange
fluxes of an ecologically sensitive stream, affected by PCE-polluted
groundwater outflowing from a nearby chlorinated solvent
contaminated site. The aim is to locate and quantify the amount
and seasonal variation of groundwater discharge that occur adjacent
and downstream of the site. Using surface-water chemistry samples,
we then calculate probabilistic estimates of PCE mass influx to the
stream, thereby providing decision makers with suggestions for
targeted remediation. In order to reduce and quantify predictive
uncertainties, we assimilate a combination of classical and
unconventional observation types, including FO-DTS thermal
anomalies and site-specific knowledge during history-matching.
To increase transparency and facilitate reproducibility, model
development is performed and documented using open source
tools and environments.

2 The Hagfors contaminated site

Hagfors is a town in Värmland Province, southwestern Sweden.
South of the town center, an industrial scale dry-cleaning facility
(Figure 1) was in operation from the 1970s to the early 1990s,
providing dry-cleaning services for the Swedish Armed Forces
(Nilsen and Jepsen, 2005; SEPA, 2007). During this period, a
large but unknown amount (estimated to 50 tonnes or perhaps
more) of PCE was spilled and leaked into the ground, forming at
least two point sources (Nilsen, 2013). Because the former dry-
cleaning facility (the site) was operating on behalf of the Swedish
state, responsibility for remediating the contamination was first
designated to the county administrative board and later transferred
to the Geological Survey of Sweden (SGU).

The site is situated on Geijersholmsåsen, a glaciofluvial deposit
superposing crystalline bedrock extending in the NE-SW direction.
It mainly consists of sand and varies between 10 and 30 m in
thickness (Gustafsson, 2017). Depth to the water table varies
from approximately 12 m near the source zones, to less than 1 m
south of the site where a ravine cuts through the sediment. The
aquifer is considered unconfined in the study area and transitioning
into partially confined near Lake Värmullen where silt and clay
covers coarser sediment. Creek Örbäcken, approximately 4 m wide
and half a meter deep, flows through a drainage canal around the site
from the north to east, before flowing into the ravine south of the

Frontiers in Earth Science frontiersin.org02

Benavides Höglund et al. 10.3389/feart.2023.1168609

281

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1168609


site. Here, in the transition zone between two vertically stacked
hydrogeological units, a natural degradation zone is located
(Åkesson et al., 2021). The creek eventually feeds into Lake
Värmullen c. one and a half kilometers west of the site. Earlier
investigations have shown PCE concentrations exceeding Swedish
drinking water guidelines values (of 10 μg/L, Swedish National Food
Agency, 2001) in samples collected from the creek adjacent to the
site and down towards the mouth of the lake (Nilsen, 2013).

Since the contaminant was discovered in the 1990s, multiple
remediation campaigns of different scale have been undertaken. In
1996, the site was treated using soil vapor extraction, resulting in the
removal of 1.5–2 tonnes of PCE from the primary source zone
(Nilsen, 2003). Between 2003 and 2004, the site was treated using
thermal remediation (steam injection treatment), resulting in the
removal of an additional 5 tonnes of PCE from the primary source
zone (Nilsen, 2003; Nilsen and Jepsen, 2005). Although large
quantities had by then been removed, Nilsen (2013) estimated
that there still remained between 20 and 30 tonnes of PCE in the

primary source zone, and an additional 10 tonnes of PCE in the
secondary source zone.

Creek Örbäcken (the creek) is the primary source of exposure to
PCE for people in the area, as it flows through a sparsely populated
area. It is also a conduit for rapid transport of PCE to Lake
Värmullen. No drinking water wells are known within the area.
In 2015, SGU changed the strategic objective from primary source
zone treatment to mitigating influx of PCE to the creek (Larsson,
2020a). Yearly PCE mass influx to the creek has previously been
estimated to 130 kg using control plane based calculation (Nilsen,
2013) and to 121 kg by computing the arithmetic mean of surface
water concentrations multiplied by streamflow rates sampled and
measured from December 2018 to February 2020 (Larsson, 2020b).
In 2018 and 2019, in situ pilot nano zero-valent iron (nZVI)
injection tests were performed in the plume emanating from the
primary source zone, approximately 300 m southwest of its source
(Larsson, 2021). The purpose was to evaluate the potential of a
permeable reactive barrier solution for mitigating groundwater

FIGURE 1
Map of the study area showing contamination source zone locations, creek Örbäcken and the extent of the model domain (units are in meters
according to the Swedish national reference system, SWEREF99TM). The general direction of groundwater flow (and the direction of flow in the creek) is
from the northeast towards the southwest.
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influx to the stream. Unfortunately, results of the campaign
indicated no reduction of PCE.

2.1 Previous modelling work of the site

Prior to the remediation efforts presented above, a number of
site investigations were performed. As part of the investigative work,
to date three different environmental models have been developed.

Andersson (2012), developed a three-dimensional steady-state
model in order to ‘study flow patterns within different parts of the
groundwater reservoir and to get a better idea of flows and transport
times to the surface water recipient’ (creek Örbäcken). The model
was developed using Visual Modflow 2011.1, a graphical user
interface (GUI) to MODFLOW, and consisted of thirteen
hydraulic conductivity (K) zones across four layers. The river
(RIV) package was used to calculate SW-GW exchange fluxes in
seven zones along the creek, and particle tracking was used to
estimate advective transport times from both source zones to the
creek. The results indicated a loss of c. 262 m3 per day in
groundwater recharge in the upstream section of the creek, and a
gain of c. 879 m3 per day in groundwater discharge in the
downstream section. Transport times were estimated to between
250–400 days from the primary source zone and c. 60 days from the
secondary source zone. The model was history matched using
manual regularization (i.e., “trial and error”) by means of
adjusting K in the thirteen zones. However, at least five history-
matching targets were omitted due to poor fit with field-data in
locations of complex geology (Andersson, 2012). Andersson (2012)
noted that the model suffered from numerical instability and
suggested that a smaller model with higher resolution could
improve the fit to data around the area of complex geology.
Predictive uncertainties were not explored.

Havn (2018) developed two steady-state MODFLOWmodels of
the site; a ‘homogenous’ and a ‘heterogeneous’ version, using the
GMS 10.3 GUI. The reason for developing a homogeneous model
was to ‘understand the overall picture of the catchment’ (Havn,
2018). To facilitate visualization in three dimensions, it was
constructed using eight homogenous layers. The heterogeneous
model consisted of sixteen layers and was developed to ‘simulate
and estimate pollution’ from the site. It consisted of five adjustable
parameters, including hydraulic conductivity (assigned on a layer-
by-layer basis) and stream conductance. Both versions of the model
were subject to history matching using two approaches; manual
regularization and ‘automated calibration’ (Havn, 2018) using the
PEST software. Both approaches, however, lead to large residuals
(hydraulic head error exceeding 1.5 m) considering the size of the
study area and density of available data. Nevertheless, a solute
transport model was developed to run using results from the
flow model. Havn (2018) concluded that the model was not able
to quantify the scale of pollution and suggested that a higher model
resolution could lead to improvements in model capability. A
parameter sensitivity analysis was conducted, but predictive
uncertainties were not explored.

Korsgaard (2018) developed a 2-dimensional steady-state model
using the GUI Visual Modflow Premium 4.6 Classic. The numerical
model was discretized as a 100-m-long cross section along the plume
emanating from the secondary source zone, reaching across the

creek. The primary purpose of the model was to test different
remediation scenarios for reducing flux of contaminated
groundwater into the creek, including “dig-and-dump” and
“pump-and-treat”. A secondary purpose was to estimate the daily
volume of contaminated groundwater expected to be collected for
remediation treatment. The model consisted of 26 layers with local
refinement near the creek. The layers were divided into five K-zones
subject to manual parameter adjustment. Seven remediation
scenarios were evaluated using groundwater flow-, particle
tracking and solute transport simulation. However, no history-
matching was performed, and predictive uncertainties were not
explored.

3 Model scope

To provide decision makers with information relevant to the
current CSM-objective (mitigation of contaminated discharge to the
creek), a numerical model was developed to explore SW-GW
exchange behavior in the study area (Figure 1). After considering
available observation data and computing power, a subjective
decision was made to limit the studied period to between the
years 2016–2020. To capture seasonal variability in SW-GW
exchange fluxes, we choose to history-match field data and
simulate SW-GW exchange fluxes under transient conditions. To
provide decision makers with as much detail as the selected
approach is capable of delivering, the prediction of interest is
cell-by-cell SW-GW exchange fluxes on a weekly temporal
resolution during the studied period. To increase data
assimilation capability, and to reduce risk of numerical
instability, we opt for a single-layer model designed around
parametrical complexity rather than around structural
complexity. This way, parametrical heterogeneity may form as
needed, and the model run-time is kept low, which is desirable
in a history-matching context (Doherty and Moore, 2020; Hugman
andDoherty, 2021). To reduce and quantify predictive uncertainties,
we leverage tools of the PEST (Doherty, 2020a) and PEST++ (White,
2018) software suites.

The model architecture and workflow is described in further
detail below.

4 Materials and methods

The data used in this study was collected on site as well as
downloaded from Swedish authority databases. Streamflow
measurements, stream stage measurements, fiber-optic distributed
temperature sensing (FO-DTS) and the bulk of hydraulic head
measurements were collected by environmental consultant firms
Nirás AB (Sebök, 2016; Larsson, 2017; Larsson, 2020b) and Sweco
AB (Nilsen, 2013) and supplied to the MIRACHL research group on
behalf of SGU. Complementary measurements were collected by the
MIRACHL research group during two fieldwork campaigns in the
springs of 2017 (see Åkesson et al., 2021) and 2019. Where needed,
previously georeferenced data was converted to conform to the
Swedish national reference system SWEREF99TM.

Preprocessing of data and model development was performed
using the Jupyter Notebook interactive computing platform
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(Kluyver et al., 2016), following a recent example by White et al.
(2020b) on facilitating model reproducibility. The notebooks, which
include the work up until the point of history-matching, can be
accessed from a Github repository (see Data Availability Statement).

The datasets used in the study are now presented below,
followed by a description of the model architecture, model
development and history-matching process.

4.1 Datasets and data preparation

Geospatial point cloud data of two types; Lidar and borehole
logs, were used to define the spatial extent and topography of the
upper and lower model boundary. Because the Lidar data
(Lantmäteriet, 2016) was sampled using a relatively high
resolution (2x2 m cell size), the dataset was curated to avoid
propagating misleading altitudes at bridge crossings before being
interpolated to the model grid.

Borehole data collected at the site (Nilsen, 2013; Larsson, 2017)
with confirmed or assumed contact with crystalline bedrock, as well
as regional borehole data downloaded from the SGU Wells Archive
(SGU, 2015) was used to interpolate the extent of the lower model
surface.

Daily precipitation data for the Gustavsfors A weather station,
located approximately 15 km northeast of Hagfors, was downloaded
from the SMHI Open Data Database (SMHI, 2021). Monthly
computed evapotranspiration was downloaded for SMHI
catchment area 64808 (eastern Hagfors) using the S-HYPE
application (Strömqvist et al., 2012), and curated into mean daily
evapotranspiration.

Hydraulic head measurements were collected from 63 single-
and multilevel wells across the site using both piezometers and
manual level meters (Larsson, 2020b). Measurements sampled using
piezometers were typically recorded every fourth hour and was
resampled into daily averages.

Stream stage, as well as the difference between groundwater head
and stream stage (head-stage differences), were measured at five
locations along the creek. Measurements were collected using a dual
piezometer system where a primary piezometer was installed inside
a monitoring well recording the groundwater level, and a secondary
piezometer was installed on the outside of the monitoring well
recording surface water hydraulic pressure (Larsson, 2017; Larsson,
2020b).

Streamflow was recorded in two different gages located
approximately 40 m apart. Data collected with Gage-1 spans the
full studied period (2016–2020). However, because streamflow
recorded by Gage-1 was suspected to be affected by uncertainties
inherent in the sampling methodology, a second gage (Gage-2) was
installed in 2018 (Larsson, 2020b).

Fiber-optic distributed temperature sensing (FO-DTS) was used
to measure surface water temperatures along three sections of the
creek in December 2015 (Sebök, 2016). The discrepancy between
surface water-groundwater temperatures were approximately 5 °C,
and three warm-water anomalies were detected, indicating influx of
groundwater at these positions.

Locations were hydraulic head, stream stage, streamflow and
FO-DTS measurements were collected are shown on Figure 2.

4.2 Model architecture and development

The model employed in this study is a composite model (the
model), consisting of preprocessing software, numerical solvers and
postprocessing software open to the public domain. In addition,
complementary preprocessing scripts were developed (see 4.2.1) in
order to improve site-specific history-matching capability. Model
settings, input files and scripts were written and prepared using the
Jupyter Notebook environment.

Groundwater flow is simulated with MODFLOW6 (MF6)
(Langevin et al., 2022). The MF6 model has a single layer with
local refinement around streams and monitoring wells. The model
has two stress periods. The first stress period is a steady-state period
implemented to acquire representative heads, stream stages and
streamflow rates for the beginning of the second stress period; a
transient period ranging from December 2015 to December 2019.
General head boundaries (GHB) are placed along the boundary of
the model domain representing inflows (NW), outflows (SW) and
lateral boundaries (SE and NW) of the glaciofluvial aquifer
(Figure 3). The Streamflow Routing (SFR) package of MF6 was
used to simulate streamflow, stream stage and surface water-
groundwater exchange flux in the creek. Setup and configuration
of MF6 and its input packages was performed using the python
package Flopy (Bakker et al., 2016).

Five instances of the lumped parameter recharge model,
LUMPREM2 (Doherty J., 2021), were prepared using the python
package Lumpyrem (Hugman, 2021), based on daily rainfall and
evapotranspiration data presented above (4.1). One instance was
used to compute groundwater recharge for use as input by the

FIGURE 2
Map showing numerical model grid and type and location of
history-matching targets. The model grid is refined near monitoring
wells and the creek (units are in meters according to the Swedish
national reference system, SWEREF99TM).
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MF6 Recharge package (RCH). The remaining instances were used
to compute time-varying boundary head elevation to the GHBs.

The model architecture is illustrated in Figure 4.

4.2.1 Model parameterization
The model is parameterized using 1709 adjustable parameter

values. Pilot points were used to allow spatial variation of physical
parameters (Figure 3), including hydraulic conductivity, specific
yield, boundary conductance, and spatial variables of the SFR
package representing the creek. Hydraulic conductivity pilot
points were placed with higher density near the creek and

around monitoring wells where the model grid is refined.
Covariance matrices taking pilot point density into consideration
were created using the PPCOV_SVA and MKPPSTAT utilities
(Doherty, 2020b) of the PEST suite. They were applied to
constrain parameter covariance and encourage PEST to spread
parameter heterogeneity. A temporal covariance matrix was also
created for constraining upstream inflow into the starting cell of the
SFR package.

During history-matching, writing of parameter values to model
input files was done using the model preprocessing software
PLPROC (Doherty, 2021c) and three scripts written in the

FIGURE 3
Maps showing pilot-point locations of (A) the general head boundaries (GHB) and hydraulic conductivity (HK) and (B), parameters associated with
the streamflow routing (SFR) package, specific yield (SY) and groundwater recharge (RCH) multiplier. Units are in meters according to the Swedish
national reference system, SWEREF99TM.

FIGURE 4
Flowchart showing the composite model architecture and flow of information during history-matching (* and uncertainty quantification using
PESTPP-IES). The acronyms GHB, SFR, NPF, RCH and STO refer to the MF6 packages General-Head Boundary, Streamflow Routing, Node Property Flow,
Recharge, and Storage.
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Python language. The three scripts (PP-Scripts in Figure 4) were
developed to complement functionality difficult to implement
through PLPROC for writing parameter values to the SFR and
GHB package of MF6.

4.2.2 Observation targets and feature engineering
History-matching targets include measurements of hydraulic

head, streamflow and stream stage collected during the studied
period. OLPROC (Doherty, 2021b) was used to time-interpolate
model outputs to field measurement time. In addition, OLPROC
was also used to feature-engineer existing datasets into datasets of
temporal measurement differences for use as observations.
Inequality observations (also known as “one-way observations”)
(Doherty, 2020a; White et al., 2020a) were used in this study to
inform PEST of groundwater influx into the creek at four locations
indicated by thermal anomalies in FO-DTS data. Inequality
observations were also used to inform PEST that all cells
belonging to the SFR-package (which is used to represent the
creek) should have an outflow between each cell and its
downstream neighbor cell (i.e., the creek should never dry out).

In total 172,059 observations, divided into 15 groups, were used
as history-matching targets. Weights were assigned with equal
importance to each type of observation during calibration with
PEST_HP (Doherty, 2020a). For uncertainty quantification with
PESTPP-IES (White, 2018), realizations of measurement noise were
generated by changing observation weights to reflect the inverse of
the standard deviation of measurement noise for each observation
group.

4.2.3 History-matching and uncertainty
quantification

History-matching was performed in a three-stage process. First,
a standalone instance of the LUMPREM2 model was matched
against historical groundwater measurements in a single
monitoring well (NI15-O48) using PEST (Doherty, 2018) with
Tikhonov (preferred value) regularization. The parameter values
that emerged through this process was selected as the initial
parameter values of the five LUMPREM2 instances used in the
composite model. Secondly, the composite model was history-
matched using PEST_HP on Lunarc Aurora, Lund University’s
high performance computing (HPC) cluster. After eight iterations
PEST_HP was terminated using early stopping to reduce risk of
overfitting. Finally, the model was redeployed to the HPC to
undergo history-matching and uncertainty quantification using
PESTPP-IES. The available computing power allowed for a large
ensemble (500 realizations) to be generated and used in the
uncertainty quantification process. After five iterations no further
meaningful reduction of the objective function was recorded. To
reduce risk of underestimating predictive uncertainty, model output
obtained from the third iteration of history-matching and
uncertainty quantification are presented as the results of this study.

4.3 Estimating groundwater PCE discharge

Because the model is instructed to compute streamflow in
addition to SW-GW exchange fluxes, we can use measurements
of surface water chemistry collected during the studied period to

provide estimations of contaminant mass (PCE) influx. In order to
estimate the PCE mass influx required for a given sample, we make
the following assumptions; 1) groundwater discharge in the study
area is the only source of measured PCE in the creek, 2) the
difference in streamflow at the sample location between the
sample date and model output date is negligible (the temporal
discrepancy between model output dates and sample dates vary
between 0–4 days), 3) there is no intra-day variability in PCE
concentration at the sample location (i.e., the measured
concentration is representative for the full sample date), and 4)
the sampled surface water in a cell, from which we obtain
measurements of concentration, will be composed of an
unknown ratio of groundwater discharge to surface water from
upstream of the sample location.

Streamflow through a model cell representing a sample location
in the creek can be described as:

QT � Qgw + Qsw

where QT is the total streamflow, Qgw is streamflow fed by
groundwater discharge and Qsw is non-groundwater fed
streamflow (all flows are in [m3/d]). Upstream groundwater
discharge contributing to the total streamflow through a cell can
be calculated as:

Qgw � ∑n
i�0
Qi

gw Qi
gw > 0[ ]

where n is the number of upstream cells and Qi
gw is groundwater

discharge [m3/d] in upstream cells with positive discharge. The
index begins at zero to include discharge occurring in the cell
representing the sample location. The ratio of groundwater
discharge to total streamflow is given by:

Qr
gw � Qgw

QT

As groundwater is discharged into the creek, the groundwater
PCE concentrations are diluted by surface water. Using the ratio of
groundwater discharge to total streamflow (Qr

gw), we can infer the
concentration of PCE in upstream groundwater discharge required
for a given surface water sample:

Cgw � CM

Qr
gw

where Cgw is the concentration of the upstream groundwater
discharge and CM is the measured concentration of the water
sample (concentrations are in [kg/m3]). Using the concentration
of the upstream groundwater discharge (Cgw), we can infer the mass
of PCE [kg] discharged into the stream for a given surface water
sample:

PCEm � Qgw · Cgw

By calculating PCEm for each member of the model ensemble,
the prior and posterior uncertainty in streamflow and SW-GW
exchange fluxes is taken into consideration and a probabilistic
estimation of the PCE influx is provided. There are 631 surface
water chemistry samples collected from different locations in the
creek during the studied period for which a PCE-influx estimation is
provided.
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5 Results

5.1 Simulated SW-GW exchange fluxes

The model was instructed to calculate SW-GW exchange
fluxes once per week during the studied period (2016–2020).
Of the 500 initial realizations, 485 realizations resulted in
convergence. History-matching reduced uncertainties in
simulated SW-GW exchange fluxes in all sections of the creek.
Upon inspecting a posteriori model results, we have divided the
creek into twelve reaches (segments), based on their SW-GW
exchange behavior, as shown in Figure 5. Predictive uncertainties
remain fairly high in the first reach, but decrease significantly in
the second reach, which is located adjacent to monitoring wells
from which data was included as history-matching targets.
Predictive uncertainties also remain fairly high in reaches
eight and nine, which represents the final part of a small
meander bend.

In general, the creek is contributing to groundwater recharge
in the first four reaches. Mean simulated recharge in this section
is calculated to c. 7204 m3/d but is associated with a considerable
variability during the studied period (σ ≈ 3070 m3/d). Reaches
five through seven represent three segments where groundwater
is discharged to the creek. Mean simulated discharge in this
section is calculated to c. 3102 m3/d (σ ≈ 1679 m3/d). In reaches
seven through nine, which represent a relatively small
meandering section of the creek, the posterior uncertainty
remain relatively high. Considered at the mean of the
posterior ensemble, this section contribute with a slight mean

groundwater discharge of c. 224 m3/d (σ ≈ 608 m3/d). Simulated
SW-GW exchange behavior in reach ten is considered neutral
with a very small mean groundwater recharge of c. 5 m3/d (σ ≈
427 m3/d). The final two reaches, reach eleven and twelve,
contribute with a mean groundwater discharge of c. 5328 m3/
d (σ ≈ 2574 m3/d).

Temporal variability in simulated SW-GW exchange fluxes is
shown in Figure 6. Locations where groundwater is recharged from
the creek is described as losing conditions, and vice versa. As shown,
temporal variability in SW-GW exchange behavior remain fairly
static for the studied period. The most pronounced variability can be
observed during the months of April and May of 2018 and 2019 in
reaches five through twelve, indicating less discharge to the creek
compared to the same period of the two preceding years. This is also,
in general, the periods where predictive uncertainties pertaining to
temporal variability are the highest.

5.2 PCE mass influx estimation

Using equations 1 to 4, measured concentrations of surface-
water PCE was used to infer the groundwater discharge PCE
concentrations, for each of the 631 samples. Eq. (5) was then used
to compute PCE mass influx by multiplying simulated
groundwater discharge with inferred groundwater PCE
concentrations. This was done for each member of the model
ensembles, resulting in 293,789 computations of prior and
posterior daily PCE mass influx estimations respectively. The
results are shown in Figure 7, and is color coded by surface water

FIGURE 5
Prior and posterior SW-GW exchange flux uncertainty. The creek is divided into reaches (segments) based on SW-GWexchange behavior. Map units
are in meters according to the Swedish national reference system, SWEREF99TM.
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flow regime, which we categorized as low flow (<25th percentile),
regular flow (between 25th and 75th percentile) and high flow
(>75th percentile). In general, computed upstream PCE influx
increase in the downstream direction and is highest during
periods of high flow, which can be observed in the upper plot
of Figure 7. Locations of influx (groundwater discharge) for the
three flow regimes, and their respective uncertainty, is shown on
the bottom plot. The computed upstream PCE influx follow a
log-normal distribution, with a log10 geometric mean of c.
0.55 kg/d. Uncertainties in computed mass influx are
described using the 5th and 95th percentiles and are based on
posterior uncertainties in SW-GW exchange fluxes and
streamflow, as well as laboratory measurement uncertainties
pertaining to the chemistry samples.

6 Discussion

6.1 Model workflow challenges and
opportunities

Challenges arising during construction of the model were
mainly associated with the SFR package of MF6. Implementing
the SFR package in a history-matching context require extra careful
consideration in comparison to many of the commonly used
MODFLOW packages. This is because SFR does not allow a
parameter known as reach streambed top elevation (rtp) to
increase in the downstream direction. If this requirement is not
met MODFLOW will return an error and history-matching will be
terminated prematurely. In our case, which will likely also be the

FIGURE 6
Heatmaps showing temporal variability in SW-GW exchange flux during the studied period in weekly output. The upper row (colorized) showmean
of the posterior ensemble and the lower (grayscale) row show posterior ensemble standard deviation of the mean.
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case for many others utilizing the SFR package, initial rtp values were
obtained by sampling a digital elevation map (DEM). However,
undulating topography in the DEM yielded invalid input for a
portion of the SFR cells. Leaf et al. (2021) created SFRmaker, a
Python package designed to automate the workflow of
implementing the SFR package and curate valid input. However,
at the time of writing this paper, SFRmaker only supports structured
grids. Because the model in this study utilizes an unstructured grid,
we implemented a solution inspired by SFRmaker to ensure that the
requirement described above is met:

rtpi

∣∣∣∣ ∣∣∣∣ � xi, if i � 1
xi, if xi <xi−1
xi−1, if xi ≥ xi−1

⎧⎪⎨⎪⎩
where xi is the sampled elevation at the center point of the i-th cell of
the SFR package.

Another potential issue related to the SFR package in the context
of history-matching is the drying out of streamflow cells. During
early iterations, we discovered that PEST_HP sought solutions of
minimum error variance that included dry streamflow cells for small
parts of the creek. Because we know from extensive site
investigation, as well as from measured data, that the creek does
not dry out, this presented a problem. In order to address this issue,
we implemented inequality observations to instruct PEST_HP and
PESTPP-IES to seek solutions where the streamflow between a cell
and its downstream neighbor was positive.

Fiber-optic distributed temperature sensing (FO-DTS) data
presents an interesting opportunity in terms of data assimilation.
To the best of our knowledge, this is the first time FO-DTS thermal
anomalies are used in the context of history-matching. In order for
groundwater discharge to be detected as a thermal anomaly in FO-

DTS data, groundwater and surface water must be of different
temperatures. Because of this, usability of FO-DTS may vary
according to site and season. In addition, length of the FO cable
presents a practical constraint on its usability, making it better suited
for use in models representing smaller sites. In this study, thermal
anomalies were implemented in the form of inequality observations
of groundwater discharge, meaning that PEST considers the residual
of an observation as zero when discharge is greater than 0 m3/d.
Future work where thermal anomalies are assimilated during
history-matching could explore the use of less conservative
inequality constraints, or, even the use of thermal anomalies as
regular, numerical observations. Longer time series would also
facilitate studies on data worth under a variety of predictions
where SW-GW interaction play a role.

6.2 Simulated SW-GW exchange fluxes and
estimations of PCE mass influx

Predictive uncertainties pertaining to SW-GW exchange fluxes
were reduced significantly as a result of history-matching, enabling
high resolution spatiotemporal characterization as shown in
Figure 6. Predictive uncertainties remain relatively high in the
first and last (12th) reach, as well as in reach eight and nine,
located centrally in the study area. Uncertainties pertaining to
the first and last reach can likely be explained by the absence of
history-matching targets in these sections of the creek. Reaches eight
and nine represent the final part of a small meander bend. As shown
in the bottom plot of Figure 7, uncertainty in this section is
particularly sensitive to variability in streamflow compared to
other sections of the creek. One possible cause for this could be

FIGURE 7
Upper plot showing estimated PCEmass influx per sample under regular, high and low streamflow. The geometric mean is 0.55 kg/d. High peaks in
mass influx tend to occur in areas characterized by groundwater discharge. Bottom plot showing upper and lower uncertainty bounds of posterior SW-
GW exchange fluxes under different flow regimes. Notable differences in predictive uncertainty can be observed in reaches one, eight and nine.
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the model’s inability to allow for temporal variability of spatial
parameters pertaining to the creek. For example, during times of
heavy rains and melting snow (conditions that cause high
streamflow rates), the stream width is expected to widen as water
levels rise and progressively cover the point bar deposits. Although
stream width is considered adjustable parameters in this study, it is
not configured to allow for temporal variability.

Seasonal variability in SW-GW exchange fluxes is relatively low,
with the exception of reaches five through eleven in April andMay of
2018 and 2019 (Figure 6). In 2018, northern Europe was affected by
an extreme drought that persisted into 2019 (Bakke et al., 2020). This
is a plausible explanation for the anomalous behavior in SW-GW
exchange fluxes observed in the creek during this period, which
indicate greater groundwater recharge and lesser groundwater
discharge than normal.

As shown in the upper plot of Figure 7, uncertainty in PCE mass
influx is greater during times of low flow. This is because posterior
uncertainties in streamflow are greater during periods of low flow
(mean coefficient of variation, mCV ≈0.23), compared to periods of
regular flow (mCV ≈0.15) or high flow (mCV ≈0.08).

The estimations of PCE mass influx were based on a list of
assumptions (4.3). Although we can be fairly certain that the first
assumption holds true (no alternative sources to measured PCE
other than groundwater discharge in the studied area), the second
and third assumptions require discussion. The second assumption,
namely, that difference in streamflow between sample date and
model output date (varying between zero to 4 days) is negligible is a
simplified assumption, as, for example, bursts of heavy rainfall may
momentarily impact streamflow rates and levels. The third
assumption, that there is no intra-day variability in PCE

FIGURE 8
Comparisons between results in this study (represented as prior and posterior probability distributions in gray and blue) and results obtained in earlier
studies of the Hagfors contaminated site. Upper row showing comparisons with results in Andersson (2012) of (A) simulated SW-GW exchange flux of the
upstream section of the creek characterized by recharge (approximately corresponding to reaches two to four), and (B) SW-GWexchange flux of reaches
five to eleven characterized by discharge. Bottom row showing comparisons with previous estimates of PCE mass influx where (C) show yearly PCE
mass influx using a truncated x-axis to enhance visibility of the posterior probability distribution, and (D) yearly PCEmass influxwith a logarithmic y-axis to
highlight reduction of predictive uncertainty achieved during history-matching.
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concentration at the sample locations, also represent a simplified
assumption. PCE is a dense non-aqueous phase liquid (DNAPL), a
hydrophobic compound known to generate extensive variability in
mass discharge (Guilbeault et al., 2005) not only temporally, but also
spatially. Larsson (2020b) suggest that incomplete mixing of the
surface water in the creek may lead to great variability in measured
concentrations depending on whether the sample was collected
centrally or near the banks. Both assumptions discussed above
are associated with uncertainties that are unquantified pertaining
to the mass influx estimations. However, because the samples on
which the estimations are based, were collected during periods of
varying streamflow, as well as spatially varying along both axes of the
creek, it could be argued that the estimations of mass influx, when
looked at as a distribution, take this uncertainty somewhat into
consideration.

6.3 Earlier studies and new findings

As discussed earlier (2.1), three models were previously
developed of this site. Because particle tracking and solute
transport modelling was outside the scope of this study, direct
comparisons with Havn (2018) and Korsgaard (2018) are difficult
to make at this point.

Andersson (2012) discretized the creek into seven zones and
calculated total SW-GW exchange fluxes for each zone. Anderson
(2012) found that groundwater recharge was occurring in the first
zone, and discharge was occurring in the remaining six zones. As we
have shown (Figures 5–7), SW-GW exchange behavior in the creek
is complex, especially in the meandering sections where
spatiotemporal variations can be expected to be large. Therefore,
we cannot exclude the possibility of groundwater recharge occurring
further downstream if we are to consider the distribution of
posterior uncertainty. By selecting a subsection of the creek
overlapping the two studies, we found the section of upstream
recharge to be significantly longer (c. 28 percent), and more
importantly, that SW-GW exchange fluxes were significantly
larger than previously estimated (Figure 8, upper row).

Unfortunately, the model was not equally successful in reducing
predictive uncertainties pertaining to PCE mass influx. By
multiplying results obtained through Equation (5) by 365, we can
compare our estimates with prior estimations (Nilsen, 2013;
Larsson, 2020b) of mass influx (Figure 8, bottom row) per year.
As shown, both prior estimations are located near the center of the
posterior probability distribution. Interestingly, we find two peaks in
the posterior probability distribution. To determine whether the
bimodal distribution was caused by themodel or the chemistry input
dataset, we tracked each realization (thereby also tracking each set of
model parameters) contributing to the results of the left and right
peak respectively. However, we found no meaningful variability in
model contribution between the two peaks (i.e., all realizations
contributed to both peaks). Measured concentrations in the
creek, however, appear with a bimodal distribution, and is
therefore the only logical contributing factor for the shape of the
mass influx estimations as shown on Figure 8. As Larsson (2020b)
suggested, incomplete mixing of surface water is a likely explanation
for why the surface water chemistry dataset appear bimodal.

Uncertainty in PCE mass influx, as estimated in this study, can
originate from uncertainty in streamflow, uncertainty in SW-GW
exchange fluxes and in uncertainties related to surface water
chemistry measurements. Uncertainties pertaining to the first two
origins were reduced significantly during history-matching, but
uncertainties related to surface water chemistry persist.
Nevertheless, an uncertainty range has been quantified.

7 Conclusion

With the current CSM objective being set on mitigating influx of
PCE to creek Örbäcken, a prediction relevant to the objective
(characterization of SW-GW exchange fluxes) was selected for
this study. The ensuing model workflow and architecture was
designed to facilitate data assimilation of prediction pertinent
information in historical measurements through history-
matching. By adopting a single-layer approach with local
refinement near the creek and around monitoring wells for
which historical measurements were available, the model run
time could be constrained. This was important, because history-
matching requires many model runs. We used a highly
parameterized model, which allowed for parametrical
heterogeneity to evolve where needed during history-matching.
In addition to classical types of observations, we also assimilated
thermal anomalies in FO-DTS measurements as locations of
groundwater discharge, through the use of inequality
observations. Challenges pertaining to implementing the SFR
package in a history-matching context and suggestions for how
to overcome them was discussed. Predictive uncertainties were
reduced and explored using the iterative ensemble smoother of
the PEST++ suite.

As a result, we were able to characterize SW-GW exchange
fluxes in the creek in high spatiotemporal resolution, showing
locations of (and quantifying) contaminated groundwater
discharge. Seasonal variability pertaining to SW-GW exchange
fluxes was found to be low, with the exception of an unusual
drought event that occurred during 2018–2019. We also found
that SW-GW exchange fluxes are likely to be significantly larger
than previously estimated. Using surface water chemistry
measurements, we estimated PCE mass influx and found
estimations in two earlier studies to be located near the center of
the posterior probability distribution. The uncertainty pertaining to
PCE mass influx was only reduced slightly, but has now been
quantified.

Our recommendation for decision makers, with regards to the
current CSM objective, is to focus remediation action toward
reaches 5–7, 9, 11 and 12, according to modelling results.
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