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Over the past 40 years, neurobiology and computational neuroscience has proved that deeper 
understanding of visual processes in humans and non-human primates can lead to important 
advancements in computational perception theories and systems. One of the main difficulties 
that arises when designing automatic vision systems is developing a mechanism that can recog-
nize - or simply find - an object when faced with all the possible variations that may occur in a 
natural scene, with the ease of the primate visual system. The area of the brain in primates that 
is dedicated at analyzing visual information is the visual cortex. The visual cortex performs a 
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wide variety of complex tasks by means of simple operations. These seemingly simple opera-
tions are applied to several layers of neurons organized into a hierarchy, the layers representing 
increasingly complex, abstract intermediate processing stages.  

In this Research Topic we propose to bring together current efforts in neurophysiology and computer 
vision in order 1) To understand how the visual cortex encodes an object from a starting point where 
neurons respond to lines, bars or edges to the representation of an object at the top of the hierarchy 
that is invariant to illumination, size, location, viewpoint, rotation and robust to occlusions and 
clutter; and 2) How the design of automatic vision systems benefit from that knowledge to get closer 
to human accuracy, efficiency and robustness to variations.

Citation: Rodríguez-Sánchez, A., Fallah, M., Leonardis, A., eds. (2016). Hierarchical Object 
Representations in the Visual Cortex and Computer Vision. Lausanne: Frontiers Media. 
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Over the past 40 years, Neurobiology and Computational Neuroscience have proved that deeper
understanding of visual processes in humans and non-human primates can lead to important
advancements in computational perception theories and systems. One of the main difficulties that
arises when designing automatic vision systems is developing a mechanism that can recognize—or
simply find—an object when faced with all the possible variations that may occur in a natural scene,
and with the ease of the primate visual system. The area of the brain in primates that is dedicated
to analyzing visual information is the visual cortex. The visual cortex performs a wide variety of
complex tasks by means of seemingly simple operations. These operations are applied to several
layers of neurons organized into a hierarchy, the layers representing increasingly complex, abstract
intermediate processing stages.

In this research topic we propose to bring together current efforts in Neurophysiology and
Computer Vision in order to better understand (1) How the visual cortex encodes an object from
a starting point where neurons respond to lines, bars or edges to the representation of an object at
the top of the hierarchy that is invariant to illumination, size, location, viewpoint, rotation and
robust to occlusions and clutter; and (2) How the design of automatic vision systems benefits
from that knowledge to get closer to human accuracy, efficiency and robustness to variations.
In fact, the primate visual system has influenced computer vision systems for decades now since
Hubel and Wiesel (1968) simple and complex cells inspired the Neocognitron (Fukushima, 1980).
Since then, studies about the primate and human visual systems led the way to many more works
on biologically-inspired computational vision, such as Tsotsos et al. (1995); Olshausen and Field
(1996); Booth and Rolls (1998); Riesenhuber and Poggio (1999); Rodríguez-Sánchez and Tsotsos
(2011), to name a few.

The answers to these issues bring hypotheses that are partially addressed in this research topic,
raising additional new questions:

1. What are the mechanisms involved in these visual architectures? What are the limitations of
feedforward connections? When is feedback and top-down priming necessary? The classical
way of seeing feedback connections is for the enhancement of neural responses through top-
down attentive processes (Moran and Desimone, 1985; Rodríguez-Sánchez et al., 2006; Perry
et al., 2015). But lately, other studies support a role of feedback connections related to cell
selectivity through recurrent networks (Neumann and Sepp, 1999; Angelucci and Bressloff,
2006).

2. The ventral stream areas (V1, V2, V4, inferotemporal cortex) have usually been considered
to be the ones involved in object recogntion and the subject of several existing models
(Serre et al., 2006; Rodríguez-Sánchez and Tsotsos, 2012). But, also recently, there are
new findings that relate the dorsal stream with that same task (Konen and Kastner, 2008;
Perry and Fallah, 2012). What are the differences between how objects are processed in
the ventral and the dorsal streams? Which areas are involved in recognition and which in
localization?
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3. And finally, how much is learned and how much is genetically
implemented (Rodríguez-Sánchez and Piater, 2014)? Even
more, what is the relation between learning, sparse coding,
selectivity and diversity (Olshausen and Field, 1996; Xiong
et al., 2015) and how different learning strategies compare?

We present a total of 19 papers related to those questions.
The following five papers deal with the questions related to
visual architectures and their mechanisms. Ghodrati et al. (2014)
studied whether recent relative successes in object recognition
on various image datasets based on sparse representations
applied in a feedforward fashion represented a breakthrough in
invariant object recognition. In their study they showed, using
a carefully designed parametrically controlled image database
consisting of several object categories, that these approaches fail
when the complexity of image variations is high and that their
performance is still poor compared to humans. This suggests
that learning sparse informative visual features may be one
of the necessary components but definitely not a complete
solution for a human-like object recognition system. A classical
feedforward filtering approach is also challenged in the paper
by Herzog and Clarke (2014), where the authors provided
ample evidence, stemming from experiments from crowding
research, to support their arguments that the computations
are not purely local and feedforward, but rather global and
iterative. On the same topic, Tal and Bar (2014) explored the
role of top-down mechanisms which bias the processing of
the incoming visual information and facilitate fast and robust
recognition. This work specifically addresses the question of what
happens to initial predictions that eventually get rejected in a
competitive selection process. The work by Marfil et al. (2014)
brings into focus another important aspect of biological visual
sytems, namely attention. The authors studied a bidirectional
relationship between segmentation and attention processes. They
presented a bottom-up foveal attention model that demonstrates
how the attention process influences the selection of the next
position of the fovea and how segmentation, in turn, guides the
extraction of units of attention. In Han and Vasconcelos (2014)
the authors also researched the role of attention models, but this
time in connection to object recognition. Using their recognition
model, hierarchical discriminant saliency network (HDSN), they
clearly demonstrated the benefits of integrating attention and
recognition.

We provide an interesting discussion on the role of ventral
and dorsal streams with a total of 10 articles. Kubilius et al.
(2014) discusses the importance of surface representation and
reviews recent work on mid-level visual areas in the ventral
stream. We include here two models of shape related to those
intermediate visual areas. The first approach is a recurrent
network that achieves figure-ground segregation by assigning
border ownership through the interaction between feedforward
and feedback inputs (Tschechne and Neumann, 2014). The
second approach is a trainable set of shape detectors that can
be applied as a filter bank to recognize letters and keywords as
well finding objects in complex scenes (Azzopardi and Petkov,
2014). The question that arises regarding computational models
is of course, how faithful they are? This is what Ramakrishnan

et al. (2015) answers by comparing the fMRI responses from
20 subjects to two different types of computer vision models:
the classical bag of words and the biologically-inspired HMAX.
HMAX is also the subject of study in Zeman et al. (2014), here
the authors use that model to compare the robustness of complex
cells to simple cells in the Müller-Lyer illusion. The final stage in
the object recognition pathway is the inferotemporal cortex (IT),
Leeds et al. (2014) present an fMRI study that tries to answers
the problem of how starting from simple edge-like features in
V1 we obtain neurons at the top of the hierarchy that respond
to complex features as parts, textures or shapes. Using feed-
forward object detection and classificationmodeling, Khosla et al.
(2014) developed a neuromorphic system that also efficiently
produces automated video object recognition. However, the
visual system is not limited to only detecting objects, but can
also detect the spatial relationships between objects and even
between parts of the same object. The dorsal stream areas are
thus also important for object representation with a focus on
action via effectors such as the eyes or the hand. Theys et al.
(2014) reviews how 3D shape for grasping is processed along the
dorsal stream, focusing on the representations in the anterior
intraparietal area (AIP) and ventral premotor cortex (PMv).
Rezai et al. (2014) advances this by modeling the curvature
and gradient input from the caudal intraparietal area (CIP)
to visual neurons in AIP, using superquadric fits—used in
robotics for grasp planning—or Isomap dimension reductions
of object surface distances. They found that both models fit
responses from primate AIP neurons. However, Isomaps better
approximated the feedforward input from CIP making it the
more promising model of how the dorsal stream produces shape
representations for grasping. Yet the features used for grasping
are only a subset of an object’s features. While the integration of
features along the ventral stream to form object representations
is well-known, Perry and Fallah (2014) review recent findings
supporting dorsal stream object representations and propose
a framework for the integration of features along the dorsal
stream.

Finally, four papers address the problem of learning and
sparse coding. Rinkus (2014) shows that a hierarchical sparse
distributed code network provides the foundation for the storage
and retrieval of associative memory on top of building up an
object representation. The end point of object processing is
recognition, which the human visual system is very efficient at
and many computational models are based upon. Webb and
Rolls (2014) investigated how recognition of the identity of
individuals and their poses can be separated. They showed that
a model of the ventral visual system using temporal continuity,
VisNet, can through learning develop pose-specific and identity-
specific representations that are invariant to the other factor. In
their biologically inspired study, Kermani Kolankeh et al. (2015)
researched different computational principles (sparse coding,
biased competition, Hebbian learning) capable of developing
receptive fields comparable to those of V1 simple-cells and
discovered that methods which employ competitive mechanisms
achieve higher levels of robustness against loss of information
which may be important to achieve better performance on
classification tasks. While these studies have focused on using
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biologically-inspired visual processing in computational models,
Bertalmío (2014) worked in reverse by taking an image
processing technique used for local histogram equalization
and applying it to a neural activity model. The resultant
model predicts spectrum whitening, contrast enhancement and
lightness induction, all behavioral aspects of visual processing.
Time will tell if neuronal studies bear out this process.

We are bringing together two seemingly different disciplines:
Neuroscience and Computer Vision. We show in this research
topic that each one can benefit from the other. The latter can
aid Neuroscience for testing hypotheses regarding the visual
cortex in a non-invasive way, or otherwise when we reach
technical limitations, e.g., how the information flows along the
visual architectures (see Rodríguez-Sánchez, 2010 for a recent
example). On the other hand, Computer Vision can benefit from
Neuroscience in order to develop better, more robust, efficient

and general systems than the ones present to date (Krüger et al.,
2013).

Due to the complexity of vision (Tsotsos, 1987),
objects/locations are considered to compete for the visual
system’s resources. The studies presented here show that—
among other aspects—feedforward hierarchies are insufficient,
supporting the need for top-down priming or attention. The
interaction between feedforward and feedback inputs have an
impact in neural encoding as shown in the models presented
in this research topic. Not only competition, sparsity is another
important mechanism. The aim is achieving efficient codes that
represent and store object classes efficiently into memory since
not every possible combination of features/parameters is feasible
to be stored. Finally, a number of studies stress on the importance
of the dorsal stream in shape and identity-object representation
in order to interact with specific objects, e.g., grasping.
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Invariant object recognition is a remarkable ability of primates’ visual system that its
underlying mechanism has constantly been under intense investigations. Computational
modeling is a valuable tool toward understanding the processes involved in invariant
object recognition. Although recent computational models have shown outstanding
performances on challenging image databases, they fail to perform well in image
categorization under more complex image variations. Studies have shown that making
sparse representation of objects by extracting more informative visual features through a
feedforward sweep can lead to higher recognition performances. Here, however, we show
that when the complexity of image variations is high, even this approach results in poor
performance compared to humans. To assess the performance of models and humans
in invariant object recognition tasks, we built a parametrically controlled image database
consisting of several object categories varied in different dimensions and levels, rendered
from 3D planes. Comparing the performance of several object recognition models with
human observers shows that only in low-level image variations the models perform
similar to humans in categorization tasks. Furthermore, the results of our behavioral
experiments demonstrate that, even under difficult experimental conditions (i.e., briefly
presented masked stimuli with complex image variations), human observers performed
outstandingly well, suggesting that the models are still far from resembling humans in
invariant object recognition. Taken together, we suggest that learning sparse informative
visual features, although desirable, is not a complete solution for future progresses in
object-vision modeling. We show that this approach is not of significant help in solving
the computational crux of object recognition (i.e., invariant object recognition) when the
identity-preserving image variations become more complex.

Keywords: computational model, invariant object recognition, reaction time, object variation, visual system,

feedforward models

INTRODUCTION
The beams of light reflecting from visual objects in the three-
dimensional natural environment provide two-dimensional
images onto the retinal photoreceptors. While the object is the
same, an infinite number of light patterns can be mirrored in the
retinal photoreceptors depending on object’s distance (size), posi-
tion, lightening condition, viewing angle (in-depth or in plane),
and background. Therefore, the probability of having the same
image on retina generated by an identical object in two different
times, even in successive frames that are temporally close, is quite
close to zero (DiCarlo and Cox, 2007; Cox, 2014). However, the
visual system outstandingly performs object recognition, accu-
rately and swiftly, despite substantial transformations.

The human brain can recognize the identity and category
membership of objects within a fraction of a second (∼100 ms)

after stimulus onset (Thorpe et al., 1996; Carlson et al., 2011;
Baldassi et al., 2013; Isik et al., 2013; Cichy et al., 2014). The
mechanism of this remarkable performance in the unremitting
changes of visual conditions in the natural world has constantly
been under intense investigations, both experimentally and com-
putationally (reviewed in Peissig and Tarr, 2007; DiCarlo et al.,
2012; Cox, 2014). Our visual system can discriminate two highly
similar objects within the same category (e.g., face identifica-
tion) in various viewing conditions (e.g., changes in size, pose,
clutter, etc.—invariance). However, this task is a very complex
computational problem (Poggio and Ullman, 2013).

It is thought that the trade-off between selectivity and invari-
ance is evolved through hierarchical ventral visual stages starting
from the retinal to the lateral geniculate nucleus (LGN), then
through V1, V2, V4, and finally IT cortex (Kreiman et al., 2006;
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Zoccolan et al., 2007; Rust and DiCarlo, 2010, 2012; Sharpee et al.,
2013). Decades of investigations on the visual hierarchy have shed
light on several fundamental properties of neurons in the ven-
tral visual stream (Felleman and Van Essen, 1991; Logothetis and
Sheinberg, 1996; Tanaka, 1996; Cox, 2014; Markov et al., 2014).
We now know that neurons in the higher level visual areas, such
as IT, have larger receptive fields (RFs) compared to the lower lev-
els in the hierarchy (e.g., V1). Each higher level neuron receives
inputs from several neurons in the lower layer. Therefore, up-
stream neurons in the hierarchy are expected to respond to more
complex patterns such as curvature for V4 neurons (reviewed in
Roe et al., 2012) and objects for IT neurons compared to the early
visual areas, which are responsive to bars and edges (Carandini
et al., 2005; Freeman et al., 2013).

Using a linear read-out method, Hung et al. (2005) were able
to decode the identity of objects from neural activities in primate
IT cortex while the size and position of objects varied. This shows
that representations of objects in IT are invariant to changes in
size and position. Moreover, recent studies have reported intrigu-
ing results about object recognition in various stages and times
in the ventral visual stream using different recording modalities
in different species (e.g., Haxby et al., 2001; Hung et al., 2005;
Kiani et al., 2007; Kriegeskorte et al., 2008b; Freiwald and Tsao,
2010; Cichy et al., 2014). Nevertheless, the mechanism of invari-
ant object recognition has remained unknown to a certain extent.
Most studies that have attempted to address invariant object
recognition have used objects with gray backgrounds while either
frontal views of objects were presented or only simple objects with
limited variations were used (e.g., Alemi-Neissi et al., 2013; Isik
et al., 2013; Wood, 2013). Studying the underlying computational
principles of invariant object recognition is a very complicated
problem with many confounding factors such as complex vari-
ations in real-world objects that makes it even more abstruse.
This may explain why in most studies more attention is paid to
understanding object recognition under restricted conditions by
disregarding these complex variations from the stimulus set.

Recent recording studies have evidenced that representations
of objects in IT are more invariant to changes in object appear-
ance than intermediate levels of the visual ventral stream, such
as V4 (Yamins et al., 2014). This shows that invariant represen-
tations are evolving across the visual hierarchy. Modeling results,
inspired by biology, have also demonstrated that a great level of
invariance is achievable using several processing modules built
upon one another in a hierarchy from simple to complex units
(e.g., Wallis and Rolls, 1997; Riesenhuber and Poggio, 1999; Rolls,
2012; Anselmi et al., 2013; Liao et al., 2013).

Computational modeling is a valuable tool for understanding
the processes involved in biological object vision. Although recent
computational models have shown outstanding performances on
challenging natural image databases (e.g., Mutch and Lowe, 2006;
Serre et al., 2007b; Ghodrati et al., 2012; Rajaei et al., 2012) and
compared to human (Serre et al., 2007a), they fail to perform well
when they are presented with object images under more com-
plex variations (Pinto et al., 2008). It has also been shown that
the representations of object categories in object-vision mod-
els are weakly correlated with human and monkey IT cortex
(Kriegeskorte, 2009; Kriegeskorte and Mur, 2012; Khaligh-Razavi

and Kriegeskorte, 2013). This may explain why models do not yet
achieve human level of categorization performance. Some stud-
ies have suggested that instead of a random sampling of visual
features (Serre et al., 2007a), extracting a handful of informa-
tive features can lead to higher recognition performances (Ullman
et al., 2002; Ghodrati et al., 2012; Rajaei et al., 2012). Having
said that, we show in this study that when image variations are
high, yet this approach results in poor performances compared
to humans. Furthermore, we also show that the models do not
form a strong categorical representation when the image varia-
tion exceeds a threshold (i.e., objects in the same category do not
form a cluster in higher levels of variations).

Here we compare the performance of several object recogni-
tion models (Mutch and Lowe, 2006; Serre et al., 2007a; Pinto
et al., 2008; Ghodrati et al., 2012; Rajaei et al., 2012) in invari-
ant object recognition. Using psychophysical experiments, we also
compare the performance of the models to human observers.
All models are based on the theory of feedforward hierarchi-
cal processing in the visual system. Therefore, to account for
the feedforward visual processing, images in our psychophysical
experiments were rapidly presented to human observers (25 ms)
followed by a mask image. As a benchmark test we also evalu-
ated the performance of one of the best known feedforward object
recognition models (Krizhevsky et al., 2012) against humans
to see how far the best performing object-vision models go in
explaining profiles of human categorization performance.

We employed representational similarity analysis (RSA), which
provides a useful framework for measuring the dissimilarity
distance between two representational spaces independent of
their modalities (e.g., human fMRI activities and models’ inter-
nal representations—see Kriegeskorte et al., 2008a; Kriegeskorte,
2009). In this study we used RSA to compare the representa-
tional geometry of the models with that of the human observers
in invariant object recognition tasks.

To evaluate the categorization performance of the models and
humans we built a parametrically controlled image database con-
sisting of different object categories, considering various object
variations, rendered from 3D planes (O’Reilly et al., 2013).
Generating such controlled variations in object images helps us
to gain better insights about the ability of models and humans
in invariant object recognition. It also helps experimentalists to
study invariant object recognition in human and monkey by
taking advantage of having controlled variations over several
identity-preserving changes of an object.

Our results show that human observers have remarkable per-
formances over different levels of image variations while the
performances of the models were only comparable to humans
in the very first levels of image variations. We further show that
although learning informative visual features improves catego-
rization performance in less complex images (i.e., images with
fewer confounding variations), it does not help when the level
of confounding variations (e.g., variations in size, position, and
view) increases. The results of our behavioral experiments also
demonstrate that models are still far from resembling humans in
invariant object recognition. Moreover, as the complexity level
of object variations increases (from low to intermediate and
high levels of variations), models’ internal representation become
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worse in disentangling the representation of objects that fall in
different categories.

MATERIALS AND METHODS
IMAGE GENERATION PROCESS
One of the foremost aspects of the evaluation procedure described
in this study is the utilization of controlled variations applied to
naturalistic objects. To construct various two-dimensional object
images with controlled variations, we used three-dimensional
meshes (O’Reilly et al., 2013). It allowed us to parametrically con-
trol different variations, background, number of objects in each
class, etc. Therefore, we were able to parametrically introduce
real-world variations in objects.

For each object category (car, motorcycle, animal, ship, air-
plane), we had on average sixteen 3D meshes (showing different
exemplars for each category) in which 2D object images were
rendered using rendering software with a uniform gray back-
ground for all images. Throughout the paper we call them objects
on plain backgrounds. These images were superimposed on ran-
domly selected backgrounds from a set of more than 4000 images
(see Figure S1 for image samples with natural backgrounds).
The set included images from natural environments (e.g., forest,
mountain, desert, etc.) as well as man-made environments (e.g.,
urban areas, streets, buildings, etc.). To preserve a high variabil-
ity in our background images, we obtained all background images
using the internet.

Naturalistic object images were varied in four different dimen-
sions: position (across x and y axes), scale, in-depth rotation, and
in-plane rotation (Figure 1). To alter the difficulty of the images
and tasks, we used seven levels of variation to span a broad range
of diversity in the image dataset (starting from no particular vari-
ations, Figure 1-left, to the intermediate and complex image vari-
ations, Figure 1-right). The amount of object transformations in
each level and dimension was selected by random sampling from

a uniform distribution. For example, to generate images with
second level of variation (i.e., Level 1), we randomly sampled dif-
ferent degrees for in-depth rotation (or in-plane rotation) from a
range of 0–15◦ using a uniform random distribution. The same
sampling procedure was applied to other dimensions (e.g., size
and position). Then, these values were applied to a 3D mesh and a
2D image was subsequently generated from the 3D mesh. A sim-
ilar approach was taken for generating images in other levels of
variation.

PSYCHOPHYSICAL EXPERIMENT
Two experiments were designed to investigate the performance
of human subjects in invariant object recognition: tow- and
multiclass invariant object categorization task.

Two-class invariant object categorization
In total, 41 subjects (24 male, age between 21–32, mean age 26)
participated in the first experiment. We used 560 object images
(300 × 400 pixels, grayscale images) selected from seven levels
of variation and two different object categories (80 images for
each level with 40 images from each category) for each session.
Images were presented on a 21′′ CRT monitor with a resolution
of 1024 × 724 pixels and a frame rate of 80 Hz. We used Matlab
with the Psychophysics Toolbox to present the images (Brainard,
1997; Pelli, 1997). The viewing distance was 60 cm.

Following a fixation cross, which was presented for 500 ms, an
image was randomly selected from the dataset (considering lev-
els and categories) and presented at the center of the screen for
the duration of 25 ms. Subsequently, a blank screen was presented
for the duration of 20 ± 2 ms (interstimulus interval-ISI) and a
mask image was presented after the blank screen and stayed on
for 100 ms (Figure 2). The mask image was a (1/f) random noise.

Subjects were instructed to complete four sessions (cars vs.
animals, cars vs. motors, with plain and natural background).

FIGURE 1 | Sample images in different levels of variation with Plain

Background. The Object images, rendered from 3D planes, vary in four
dimensions: size, position (x, y), rotation in-depth, and rotation in plane. To
alter the complexity of the images, we constructed images in seven levels of
variations starting from zero level variation, which no variation is applied to 3D
object planes (first column at left), to seventh level of variation, which

substantial variations are applied to images (last column at right). In each level
of variation, we randomly sample different values for each dimension (e.g.,
size, rotation, and position) from a uniform distribution and finally selected
values are applied to a 3D plane. As the level of variation increases, the range
of values increases. There are several sample object images with natural
background in the supplementary materials (Figure S1).
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FIGURE 2 | Psychophysical experiment. A fixation cross is presented for
500 ms. Then, an image is randomly selected from the dataset and
presented at the center of the screen for the duration of 25ms.
Subsequently, a blank screen is presented on the screen for the duration of
20 ± 2 ms (interstimulus interval—ISI) followed by a mask image that stays
on the screen for 100ms. Finally, subjects have to decide whether the
image belongs to category 1 or 2.

Some subjects completed all four sessions and some only finished
some sessions. In each session, 560 images (e.g., 280 cars and
280 motors) were presented in a random order and were divided
into 4 blocks of 140 images each. There was a time interval of
5 min between blocks for each subject to take a rest. The reaction
times (RTs) of participants were recorded to investigate whether
there is any time difference in categorization between levels and
categories.

The subjects’ task was to determine whether the presented
image was a car or a/an motor/animal by pressing “C” or “M” on
a computer keyboard, respectively. Keys were labeled on the key-
board with the name of corresponding categories. Subjects per-
formed several training trials, with different images, to become
familiar with the task prior to the actual experiment. In train-
ing trials (30 images), a sentence was presented on the monitor
showing whether the answers were correct or not. During the
main procedure, the participants had to declare their decision
by pressing the keys; but no feedback was given to them regard-
ing the correctness or incorrectness of the choices. The next trial
was instantly started after getting subject’s response. Subjects were
instructed to respond as fast and accurate as possible to the pre-
sented image. All subjects voluntarily accepted to participate in
the task and gave their written consent.

Multiclass invariant object categorization
In total, 26 subjects participated in the second behavioral exper-
iment (17 male, age between 21–32, mean age of 26 years).
Object images were selected from five categories (i.e., car, ani-
mal, motorcycle, ship, and airplane) in seven levels of variation.
The procedure was the same as the first experiment: an image
was randomly selected and presented on the center of the screen

for 25 ms after a fixation cross (500 ms). Subsequently, a blank
screen (ISI) of 20 ± 2 ms was presented followed by a mask image,
which stayed on for 100 ms (Figure 2). Subjects were instructed
to indicate the image category by pressing one of the five keys on
the computer keyboard, each labeled with a name representing
a specific category (“C,” “Z,” “M,” “N,” and “/” for car, animal,
motorcycle, ship, and airplane, respectively). The next trial was
started by pressing the space-bar. The RTs of subjects were not
evaluated in this task, so subjects had time to state their deci-
sions. However, subjects were instructed to respond as fast and
accurately as possible.

This task was designed to have two sessions (images with plain
and natural background). In each session, 700 images (100 images
per level, 20 images from each object class in each level) were pre-
sented in a random order, divided into 4 blocks of 175 images
each. There was a gap of 5 min between blocks for subjects to
take a rest. Some subjects completed all sessions and some only
finished some of them. Subjects performed a few example tri-
als before starting the actual experiment (none of the images in
these trials were presented in the main experiment). In training
trials (30 images), a sentence was presented on the monitor as
a feedback showing the correctness/incorrectness of the answers.
In the main procedure, participants had to declare their deci-
sion by pressing one of the keys; but no feedback was given to
them regarding the correctness of choices. All subjects voluntarily
accepted to participate in the task and gave their written consent.

HUMAN REPRESENTATIONAL DISSIMILARITY MATRIX (RDM)
In the multiclass psychophysical experiment, subjects’ responses
to the presented stimuli were recorded. Subjects had five choices
for each presented stimulus: 1–5 for five categories. We con-
structed a matrix, R, based on the subjects’ responses. The rows of
R were labels assigned to an image by different subjects (each row
corresponds to one image) and each column contained responses
of one subject to all images in the task. Therefore, the size of
this matrix was: images × subjects (e.g., for the multiclass exper-
iment the size was 700 × 17 for each task, plain and natural
background). Afterwards, we calculated the categorization score
for each row of the matrix. To do this, for example, out of 17 par-
ticipants (e.g., responses in row one), 11 selected category one for
the presented image, five responses showed category two, and one
classified the image as category three, and no subject classified the
image as category four and five. This gives us a response pattern
(R1,1:5) for the first image (e.g., the image in the first row):

R1,1:5 = [11 5 1 0 0]

Finally, we normalized each row by dividing it to the number of
responses:

R1,1: 5 = [11 5 1 0 0]

17
= [0.6471 0.2941 0.0588 0 0]

To calculate the RDMs, we used the RSA toolbox developed by
Nili et al. (2014). Each element in a given RDM shows the pair-
wise dissimilarity between the response patterns elicited by two
images. RDM is a useful tool to visualize patterns of dissimilar-
ities between all images in a representational space (e.g., brain
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or model). The dissimilarity between two response patterns is
measured by correlation distance (i.e., 1-correlation—here we
used Spearman’s rank correlation). RDMs are directly compa-
rable to each other and they provide a useful framework for
comparing the representational geometry of the models with
that of the human independent of the type of modalities and
represented features (e.g., human behavioral scores and models’
internal representations).

COMPUTATIONAL MODELS
V1-like
This model is a population of simple and complex cells fed by
luminance images as input. We used Gabor filters at four differ-
ent orientations (0, 45, 90, and −45◦) and 12 sizes (7–29 pixels
with steps of two pixels) to model simple cell RFs. Complex cells
were made by performing the MAX operation on the neighboring
simple cells with similar orientations. The outputs of all sim-
ple and complex cells were concatenated in a vector as the V1
representational pattern of each image.

HMAX
The HMAX model, developed by Serre et al. (2007a), has a hierar-
chical architecture inspired by the well-known simple to complex
cells model of Hubel and Wiesel (1962, 1968). The HMAX model
that is used here adds two more layers (S2, C2) on the top
of the complex cell outputs of the V1 model described above.
The model has alternating S and C layers. S layers perform a
Gaussian-like operation on their inputs, and C layers perform a
max-like operation, which makes the output invariant to small
shifts in scale and position. We used the freely available version of
the HMAX model (http://cbcl.mit.edu/software-datasets/pnas07/
index.html). The HMAX C2 features were used as the HMAX
representation.

GMAX
GMAX is an extension of the HMAX model for which in the
training phase, instead of selecting a pool of random patches,
patches that are more informative for the classification task are
selected. The model uses an optimization algorithm (i.e., genetic
algorithm) to select informative patches from a very large pool
of random patches (Ghodrati et al., 2012). In the training phase
of the GMAX model the classification performance is used as the
fitness function for the genetic algorithm. A linear SVM classi-
fier was used to measure the classification performance. To run
this model we used the same set of model parameters suggested
in Ghodrati et al. (2012).

Stable
Stable model is a bio-inspired model with a hierarchy of simple
to complex cells. The model uses the adaptive resonance theory
(ART-Grossberg, 1976) for extracting informative intermediate
level visual features. This has made the model stable against for-
getting previously learned patterns (Rajaei et al., 2012). Similar to
the HMAX model it extracts C2-like features, except that in the
training phase it only selects the highest active C2 units as proto-
types that represent the input image. This is done using top-down
connections from C2 layer to C1 layer. The connections match
the C1-like features of the input image to the prototypes of the

C2 layer. The matching degree is controlled by a vigilance param-
eter that is fixed separately on a validation set. We set the model
parameters the same as were suggested in Rajaei et al. (2012).

SLF
This is a bio-inspired model based on the HMAX C2-features.
The model introduces sparsified and localized intermediate-
level visual features (Mutch and Lowe, 2008). We used the
Matlab code freely available for these feature (http://www.mit.
edu/∼jmutch/fhlib); and the default model parameters were
used.

Pixel
The pixel representation is simply a feature vector containing all
pixels of an input image. Each image was converted to grayscale
and then unrolled as a feature vector. We used pixel representation
as our baseline model.

Convolutional neural networks
Convolutional neural networks (CNNs) are bio-inspired hierar-
chical models of object-vision that are made of several convo-
lutional layers (Jarrett et al., 2009). Convolutional layers scan
the input image inside their RFs. RFs of convolutional layers
get their input from various places in the input image, and
RFs with identical weights make a unit. The outputs of each
unit make a feature map. Convolutional layers are usually fol-
lowed by subsampling layers that perform a local averaging and
subsampling, which make the feature maps invariant to small
shifts (LeCun and Bengio, 1998). In this study we used the deep
supervised convolutional network by Krizhevsky et al. (2012;
Donahue et al., 2013). The network is trained with 1.2 mil-
lion labeled images from ImageNet (1000 category labels), and
has eight layers: five convolutional layers, followed by three fully
connected layers. The output of the last layer is a distribu-
tion over the 1000 class labels. This is the result of applying
a 1000-way softmax on the output of the last fully connected
layer. The model has 60 million parameters and 650,000 neu-
rons. The parameters are learnt with stochastic gradient descent.
The results for the deep ConvNet are discussed in Supplementary
Material.

MODEL EVALUATION
To evaluate the performance of the models, we first randomly
selected 300 images from each object category and level (e.g., 300
car images with level one variation). Images were then randomly
divided to test and train images. We selected 150 images for the
training set and 150 for the test set. All images were converted
into grayscale and resized to 200 pixels in height while aspect
ratio was preserved. For the case of natural background, we ran-
domly selected equal number of natural images (i.e., 300 images)
and superimposed the objects images on these backgrounds. We
then fed each model with the images and the performance of
each model was obtained for various levels of variation sepa-
rately. The feature vectors of each model were fed to a linear SVM
classifier. The reported results are the average of 15 independent
random runs and the error bars are standard deviation of the
mean (SD-Figures 3,4,6).
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FIGURE 3 | Performances of models and human in two-class

(car/animal) invariant object categorization task. (A) Performance
comparison when objects were presented on natural backgrounds
(performances are the ratio of correct responses). The dashed, horizontal line
shows the chance level and each curve represents the performance of a
model in different levels of variation, specified with different colors at the
right inset. The bold, black curve illustrates human performance. The
color-coded circle points at the top of each plot, inside the rectangular box,
exhibits the p-values for comparisons between human and each model
obtained by Wilcoxon signed-rank test (for example the performance of the
HMAX model was compared to the human in each level of variation
separately. The result of comparison for each model in each level provides us

with a p-value. P-values are reported with different colors). The color-coded
circle points at the right insets, inside the square boxes, show the p-values
for all possible comparisons between human responses in different levels of
variation (with plain and natural background). Here, the p-values show
whether human categorization performances are significantly different at
different levels of variation. For example, we compared the performance of
human in Level 0, with Level 1, Level 2, and so on and reported a p-value for
each comparison. These comparisons resulted in a symmetric p-value matrix
with the size of 7∗7 (i.e., 7 levels of variations). (B) Performance comparison
when objects were presented on plain backgrounds. In both panels (A,B), the
results are the average of 15 independent random runs and the error bars
show the standard deviation of the mean.

Furthermore, the confusion matrices for all models as well
as humans were computed in all levels for both plain and natu-
ral backgrounds (for multiclass object classification). To obtain a
confusion matrix, we first trained a classifier for each category.
Then, using these trained classifiers, we computed multiclass per-
formances as well as errors made in classification. To construct a
confusion matrix for a given level, we calculated the percentage
of classification performance (predicted labels) obtained by each
classifier which was trained on a particular category. Confusion
matrices can help us to examine which categories are more mis-
takenly classified. We can also see whether errors increase in high
levels of variation.

RESULTS
TWO-CLASS INVARIANT OBJECT CATEGORIZATION
In this experiment, we compared the categorization performance
of different models in invariant object recognition tasks with
each other and with the categorization performance of human
observers. The categorization performance of human observers
was measured in psychophysical experiments where subjects were
presented with images in different levels of variation. To evaluate
the performance of models, we ran similar categorization tasks in
which two groups of object categories were selected to perform

a two-class object categorization. In the first group, motorcycle
and car images were selected, which are both vehicles. For the
second group, we selected more dissimilar categories, car and ani-
mal images. There were two different types of animal images in
this category (i.e., elephant and dinosaur) with variety of exam-
ples for each type. We selected 150 images for the training set and
150 for the testing set (see Materials and Methods). The catego-
rization performance of each model was obtained for all levels
of variation separately (i.e., seven levels of variation). Figures 3,
4 show the performances of different models as well as human
observers in the seven levels of object variation. The results for
the deep ConvNet are shown in Figure S3, and are explained in
Supplementary Material.

Figure 3 shows the results of animal vs. car classification
with natural (Figure 3A) and plain (Figure 3B) backgrounds. In
the case of plain background, models performed as accurate as
humans in the first two or three levels of variation. Even the Pixel
model, which gray values of images were directly fed into the
classifier, performed very close to humans in the first two lev-
els of variation. From the level three onward, the performance
of the two null models (i.e., V1-like and Pixel) decreased sharply
down to 60% in the last level of variation (note that chance level
is 50%). Likewise, from the third level up to the sixth level, the
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FIGURE 4 | Performances of models and human in two-class

(motorcycle/car) invariant object categorization task. (A) Performance
comparison when objects were presented on natural backgrounds
(performances are the ratio of correct responses). The dashed, horizontal line
shows the chance level and each curve represents the performance of a
model at different levels of variation, specified with different colors in the
right inset. The bold black curve illustrates human performance. The
color-coded circle points at the top of each plot, inside the rectangular box,
exhibits the p-values for comparisons between human and each model
obtained by Wilcoxon signed-rank test (for example the performance of the
HMAX model was compared to the human in each level of variation
separately. The result of comparison for each model in each level provides us

with a p-value. P-values are reported with different colors). The color-coded
circle points at the right insets, inside the square boxes, show the p-values
for all possible comparisons for human responses in different levels of
variation (with plain and natural background). Here, the p-values show
whether human categorization performances are significantly different at
different levels of variation. For example, we compared the performance of
human in Level 0, with Level 1, Level 2, and so on and reported a p-value for
each comparison. These comparisons resulted in a symmetric p-value matrix
with the size of 7∗7 (i.e., 7 levels of variations). (B) Performance comparison
when objects were presented on plain backgrounds. In both panels (A,B), the
results are the average of 15 independent random runs and the error bars
show the standard deviation of the mean.

performances of other models diminished significantly compared
to humans. This shows that the models fail to solve the prob-
lem of invariant object recognition when the level of variation
grows up. Comparing the performances of the V1-like model
and the Pixel model shows that the V1-like model has slightly
better invariant responses than the Pixel model. In more com-
plex variations, four other hierarchical models, which implement
the hierarchical processing from V1 to V4 and aIT, exhibited
higher performances, compared to the null models. Nevertheless,
in high levels of variation, even the cortex-like hierarchical models
performed significantly lower than human subjects.

Interestingly, when objects are presented on plain back-
grounds, the categorization performance of humans in any level
of image variation is not significantly different from other lev-
els (see p-values in Figure 3 bottom right inset). This means that
human observers, as opposed to the models, were able to pro-
duce equally well invariant representations in response to objects
under different levels of image variation. Indeed, the models
are still far below the performance of humans in solving the
problem of invariant object recognition (see p-values for all com-
parisons between the models and human observers at the top
inset in Figure 3, specified with color-coded circle points inside
the rectangular box).

We also compared the performance of the models with
humans in a more difficult task, in which objects were presented
on randomly selected natural backgrounds instead of plain back-
grounds (Figure 3A). A natural background makes the task more
difficult for models as well as for humans. In this case, overall,
there is a significant difference between the categorization per-
formance of the models and human, even in zero level variation
(i.e., no variation, Level 0). In the last three levels of variation
(i.e., Levels 4–6), we can see a decrease in human categoriza-
tion performance (see the p-values at the bottom right inset
in Figure 3). Although adding natural backgrounds diminished
the performance of human in invariant object recognition, the
human responses are still robust to different levels of variations
and still significantly higher than the models (see p-values for all
comparisons between the models and human at the top inset in
Figure 3).

The lower performances of models in the case of natural
backgrounds in comparison to the plain backgrounds show that
the feedforward models have difficulties in distinguishing a tar-
get object from a natural background. Natural backgrounds
impose more complexity to object images and the process of
figure-ground segregation becomes more difficult. Studies have
suggested that recurrent processing is involved in figure-ground
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segregation (Roelfsema et al., 2002; Raudies and Neumann,
2010). This may explain why we observe a dramatic decrease
in the categorization performance of feedforward models in the
natural background condition. They lack a figure-ground segre-
gation step that seems to arise from feedback signals.

Figure 3 shows the categorization performances for car vs. ani-
mal images, which are two dissimilar categories, across different
levels of variations. To evaluate the performances of human and
models in categorizing two similar categories, we used car and
motorcycle images, which are both vehicles with similar prop-
erties (e.g., wheels). The results are shown in Figure 4A (with
natural background) and Figure 4B (with plain background).
Overall, the results in both experiments are similar, except that
the performances are lower in car vs. motorcycle categorization
task.

As the level of variation increases the complexity of images
grows in both plain and natural backgrounds and the perfor-
mance decreases. We asked whether the complexity of images
affects human RTs in high level of variations. RT is considered
as a measure of uncertainty that seems to be associated with the
amount of accumulated information required for making a deci-
sion about an image in the brain. Figure 5 reports the average RTs
across subjects in all seven levels of image variation and the two
rapid categorization tasks (animal/car and motorcycle/car) for
both plain and natural background conditions. In the case of plain
background (green curves), the mean RTs are approximately the
same for low and middle levels of variations. On the other hand,
when objects are presented with natural backgrounds, human
RTs increases more sharply as the complexity of object variations
increases. This indicates that the visual system requires more time,
in higher levels of variation, to accumulate enough information to
reach a reliable decision. This suggests that the brain responds dif-
ferently to different levels of object variation and the time course
of responses depends on the strength of variation. Furthermore,
having higher RTs in the natural background condition compared
with the plain background condition, suggests that some further
processes are going on in the first condition, probably to separate
the target object from a distracting natural background.

MULTICLASS INVARIANT OBJECT CATEGORIZATION
We also compared the models with each other and with human
observers in multiclass invariant object categorization tasks (five
classes of objects). The confusion matrices for all models as well
as humans were computed in all seven levels of object variation in
both plain and natural background conditions. Overall, the con-
fusion matrices show that the null models make many more errors
while categorizing object classes with intermediate and high level
of variations compared to the hierarchical cortex-like models.
Moreover, they show that humans accurately categorized object
images with only a handful of errors even in higher levels of vari-
ation in which the complexity of image variation is higher and it
is more likely to perceive two different object images as similar.

Figure 6 reports the performances of multiclass object catego-
rization for plain and natural background conditions in all seven
levels of object variation. As shown in Figure 6B, when objects
were presented on plain backgrounds, all models performed as
accurate as humans in zero level variation (no variation-Level 0).

FIGURE 5 | Human reaction times (RTs) for different levels of variation

in two-class invariant object categorization tasks with plain and

natural backgrounds. The RTs were almost equal across all levels of
variation when objects were presented on plain backgrounds (except for
the higher levels of variation, see p-values for all comparisons at the right
insets. We made all possible comparisons between RTs across different
levels to find out whether the differences between the RTs are statistically
significant. Here we only showed matrices for motorcycle vs. car. Animal
vs. car gives similar p-value matrices). In contrast, when objects were
presented on natural backgrounds, the RTs in all levels of variation
increased significantly compared to the plain background condition. Error
bars are s.e.m. See p-values on the top of the figure show comparisons
between natural and plain background conditions.

In the next level, the performance of the V1-like model was still
similar to humans, but it sharply decreased when object images
had stronger variations. The performance of the Pixel model
dropped dramatically after the zero level variation. This shows
that the actual values of pixels do not exhibit an invariant repre-
sentation. The performances of other models also decreased as the
level of image variation increased (from the first level to the last
level). In the last level, the performances of the Pixel and V1-like
model were very close to the chance level. However, biologically
inspired hierarchical models converged on performances higher
than chance, although the performances were still much lower
than the human performance. Human performances did not sig-
nificantly differ across different levels of variations, indicating the
remarkable ability of human brain in generating invariant rep-
resentation despite the increasing level of the difficulty in image
variations (see p-values at the bottom right inset in Figure 6 for
all possible comparisons, specified with color-coded circle points
inside the square box).

In the case of natural backgrounds (Figure 6A), the perfor-
mance of the models, even in zero level variation, is significantly
lower than the human performance. Interestingly, the V1-like and
the Pixel model performed better than other models in zero level
variation. This is almost similar to the results reported in Pinto
et al. (2008), in which a V1-like model that does not contain any
special machinery for tolerating difficult image variations per-
forms better than state-of-the-art models when images have no
or very small variations. On the other hand, the representation of
these two null models was not informative enough in higher levels
of variation and the performance of these models rapidly falls off
as the variation gets more difficult (Figure 6A).
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FIGURE 6 | Performance comparisons between different models and

human in multiclass invariant object categorization task. (A)

Performance comparison when objects were presented on natural
backgrounds. The dashed, horizontal line shows the chance level (20%) and
each curve represents the performance of a model in different levels of
variation, specified with different colors in the top right inset. The bold black
curve illustrates human performance. The color-coded circle points at the top
of each plot, inside the rectangular box, exhibits the p-values for comparisons
between human and each of the models obtained by Wilcoxon signed-rank
test. The color-coded circle points at the right insets, inside the square boxes,

show the p-values for all possible comparisons for human responses in
different levels of variation (with plain and natural background). Here, the
p-values show whether human categorization performances are significantly
different at different levels of variation. For example, we compared the
performance of human in Level 0, with Level 1, Level 2, and so on and
reported a p-value for each comparison. These comparisons resulted in a
symmetric p-value matrix with the size of 7∗7 (i.e., 7 levels of variations). (B)

Performance comparisons when objects were presented on plain
backgrounds. In both panels (A,B) error bars are STD and the performances
are the average of 15 runs.

To have a closer look at the performance of humans and mod-
els in categorizing each object category and complexity level,
we used confusion matrices. Figures 7, 8 show confusion matri-
ces for plain and natural backgrounds, respectively. In the plain
background condition, confusion matrices for humans in all lev-
els are completely diagonal that shows the ability of humans in
discriminating objects without difficulty, even in higher levels
of image variation. The confusion matrices of models are also
diagonal in the first two levels of variation. However, models
made more errors in higher levels of variation. The Pixel and
V1-like models, for example, made many errors in classification
of different objects in last levels of variations. This shows that
the internal representation of these null models does not toler-
ate identity-preserving variations beyond a very limited extent.
Furthermore, we do not expect responses of V1 neurons to be
clustered based on semantic categories (e.g., Kriegeskorte et al.,
2008b; Cichy et al., 2014). So a linear readout would not be able
to readily decode from V1 responses. This is similar to what we
see in the V1 model. Although the representation of V1 neurons
are not clustered according to object categories, during recurrent
interactions between higher and lower visual areas, early visual
areas contribute in categorization and perception happening in
higher levels of visual hierarchy (Koivisto et al., 2011). Feedback
signals, from higher visual areas toward early visual areas, such
as V1, have also been shown to play a role in figure-ground

segregation (Heinen et al., 2005; Scholte et al., 2008), which is a
useful mechanism in discriminating target objects from cluttered
background.

Models made more errors when objects were presented on nat-
ural backgrounds (Figure 8). Incorporating object images with
randomly selected natural scenes have made the task more diffi-
cult for human observers as well. However, the human observers
only made a few errors in the last two levels of variation and the
confusion matrices for all levels are still close to diagonal. In the
models, there are more errors in high and even moderate levels of
image variation. As can be seen, the confusion matrices for mod-
els are not strongly diagonal in the last two levels of variation.
This indicates that models were unable to discriminate objects in
higher variations.

In zero level variation, the Pixel and V1-like models achieved
performances comparable to human in both cases, plain and
natural background (Figures 6A,B). Comparing the internal rep-
resentation of models gives us further insights about the ability
of models in generating identity-preserving invariant representa-
tions. To this end, we used RSA (Kriegeskorte et al., 2008a,b) and
compared the dissimilarity-patterns of models with each other
and with human observers. Figure 9 represents RDMs for differ-
ent models, calculated directly from feature vectors of each model
in seven levels of variation when objects were presented on plain
backgrounds. The RDMs for humans are based on the behavioral
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FIGURE 7 | Confusion matrices for the multiclass invariant object

categorization task with plain background. Each color-coded matrix shows
the performance of a model in categorizing different object categories, as
specified in the first matrix at the top-left corner. Matrices in each column
show confusion matrices for a particular level of variation (from 0 to 6) and

each row shows confusion matrices for one model (model name is written at
the right end of each row). The first row illustrates the performance of
humans in psychophysical experiments. The color bar at the top-right color
codes the percentage of the subject responses (labels) assigned to each
category. The chance level is specified with a dashed line on the color bar.

results, using the labels assigned to each image by human subjects
(see Materials and Methods). As can be seen, the dissimilarity rep-
resentation of models, even in the first levels of variation, does
not provide a strong categorical representation for different object
classes. However, the RDMs of human show clear clustered repre-
sentations for different object categories across all levels (first row
in Figure 9).

As described earlier, the human RDMs were built based on the
labels given to the presented images while the RDMs of the mod-
els calculated using model features. For further comparisons and
to make human RDMs more comparable to models’ RDMs, we
similarly constructed RDMs for models based on the classifier
outputs. Figure 10 illustrates the RDMs of the models based on

the SVM responses for the case of objects presented on plain
backgrounds. Visual inspection shows that the representations
of several models are comparable to humans in different levels
of variation. This simply indicates that classifier performs well
in categorizing different object categories with high and inter-
mediate levels of variation. However, this similarity structure
significantly reduces when models were presented with objects on
natural backgrounds (Figure S2 in Supplementary Materials).

As can be seen from RDMs in Figures 9, 10, some object
categories (i.e., ship and airplane) have more similar repre-
sentations in the model space compared to other categories.
Interestingly, this can also be seen in the confusion matrices
of the models as well as the confusion matrices of human
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FIGURE 8 | Confusion matrices for the multiclass invariant object

categorization task with natural background. Each color-coded matrix
shows the confusion matrix for a model or for humans in categorizing different
object categories presented on natural backgrounds. Matrices in each column
show confusion matrices for a particular level of variation (from 0 to 6) and

each column shows confusion matrices for one model (model name is written
at the right end of each row). The first row illustrates the performance of
humans in psychophysical experiments. The color bar at the top-right color
codes the percentage of the subject responses (labels) assigned to each
category. The chance level is specified with a dashed line on the color bar.

observers (Figures 7, 8). This effect is clearer in Figure 8.
These results suggest that the observed similarities are mainly
driven by the shape similarly of objects (both ship and air-
plane share similar shape properties such as body, sail, and
wing, etc.). This result was expected for the models since the
models were all unsupervised models, and therefore by defini-
tion the extracted features were only aware of the shape sim-
ilarity between the objects and had no additional cue about
their category labels. But, human observers similarly made more
errors in categorization of these two categories indicating the
role of shape similarity in object recognition (Baldassi et al.,
2013).

To provide a quantitative measure for better comparisons
between human and models, we computed the correlation
between each model RDM and human RDM in different lev-
els of variation (Kendall tau-a rank correlation). Figure 11 shows
the correlation between the models and human in different com-
plexity levels and conditions (i.e., plain and natural background).
The highest correlation among all is close to 0.5. The correlation
between the human RDMs and model RDMs, calculated based on
model features, is lower compared to RDMs obtained based on
the classification responses (Figure 11C). After classification, the
responses of several models in different levels are more correlated
with human responses, Figures 11A,B.
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FIGURE 9 | Representational Dissimilarity Matrices (RDM) for

multiclass invariant object categorization with plain background

across different levels of variation, calculated based on models’

features vector. Each element in a matrix shows the pairwise
dissimilarities between the internal representations of a model for pairs
of objects (see Materials and Methods). Each column in the figure
shows the RDMs for a particular level of variation (from 0 to 6) and each

row shows the RDMs of a model in different levels of variation. The first
row illustrates the RDMs for human calculated based on responses in
psychophysical experiments. The color bar at the top-right corner shows
the degree of dissimilarity (measured as: 1-correlation— Spearman’s rank
correlation). The size of each matrix is 75∗75. For visualization, we
selected a subset of responses to images in each category (15 images
from each category).

DISCUSSION
HUMANS PERFORM SIGNIFICANTLY BETTER THAN MODELS IN
DISCRIMINATING OBJECTS WITH HIGH LEVEL OF VARIATIONS
Humans are very fast in categorizing natural images and dif-
ferent object categories (e.g., Potter and Levy, 1969; Thorpe
et al., 1996; Vanrullen and Thorpe, 2001; Fabre-Thorpe, 2011).
Behavioral studies have demonstrated that humans are able to
identify ultra-rapidly presented images from different object cat-
egories (Kirchner and Thorpe, 2006; Mack and Palmeri, 2011;
Potter et al., 2014). These studies indicate that feedforward
visual processing is able to perform a great deal of different

visual tasks, although limited to a certain extent (Kreiman et al.,
2007; Fabre-Thorpe, 2011). Using psychophysical experiments,
we showed that humans are able to remarkably perform invariant
object recognition with high performance and minimum time.
Although the similarity between two different views of the same
object is much lower than the similarity between two differ-
ent objects (Cox, 2014), human observers could accurately and
quickly discriminate different objects categories in different com-
plexity levels (both in two- and multiclass rapid categorization
tasks). This task is of immense difficulty for models with many
false alarms due to lack of selectivity-invariance trade-off and
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FIGURE 10 | Representational Dissimilarity Matrices (RDM) for

multiclass invariant object recognition with plain background across

different levels of variation, obtained based on classifier responses.

Each element in a matrix shows the pairwise dissimilarities between
the internal representations of a model for pairs of objects (see
Materials and Methods). Each column in the figure shows the RDMs
for a particular level of variation (from 0 to 6) and each row shows the

RDMs of a model in different levels of variation. The first row
illustrates the RDMs for human calculated based on responses in
psychophysical experiments. The color bar at the top-right corner shows
the degree of dissimilarity (measured as: 1-correlation—Spearman’s rank
correlation). The size of each matrix is 75∗75. For visualization, we
selected a subset of responses to images in each category (15 images
from each category).

some other mechanisms, such as figure-ground segregation in
cluttered images. Considering the RTs and categorization per-
formances of human observers in the two-class rapid object
categorization experiments, we saw that humans were able to
respond accurately and swiftly to rapidly presented images with
different levels of complexity either when objects were presented
on plain backgrounds or on natural backgrounds. This con-
trasts with the categorization performance of models where they
performed weakly in high and intermediate levels of image vari-
ation. Further explorations of the errors made in multiclass
invariant object recognition, analyzed using confusion matrices,

demonstrated that the error rate of the models in categorization
was increased in accordance with the complexity of image varia-
tions. However, human accuracy remained high even in complex
image variations; and humans performed significantly better than
the models in categorizing different objects in all seven levels of
image variation while objects were only presented for 25 ms.

NOT ALL IMAGE VARIATIONS YIELD THE SAME DIFFICULTY FOR THE
VISUAL SYSTEM
Brain responds differently to different types of object variations.
For example, size invariant representation appears earlier than
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FIGURE 11 | Correlation between human and model RDMs in different

background conditions and complexity levels. (A) Correlation between
human RDMs and model RDMs across different levels of variation, calculated
based on classifier responses, when objects were presented on natural
backgrounds. (B) Correlation between human RDMs and model RDMs
across different levels of variation, obtained based on classifier responses,
when objects were presented on plain backgrounds. (C) Correlation between
human RDMs and model RDMs across different levels of variation, obtained

based on models’ feature vector, when objects were presented on plain
backgrounds. The p-values for correlation between human and each of the
models are shown at the top of each plot, specified with different colors for
different models (ns, means not significant; ∗p < 0.05; ∗∗p < 0.005;
∗∗∗∗p < 10−4; and ∗∗∗∗∗p < 10−6). Error bars are standard deviations of the
mean. Correlation results are the average over 10,000 bootstrap resamples
(we used Kendall tau-a rank correlation). The RSA tool box was used for
correlation calculation (Nili et al., 2014).

position (Isik et al., 2013). This invariant representation of objects
is evolved across the ventral visual hierarchy (e.g., Isik et al., 2013;
Yamins et al., 2014). An important, yet unanswered, question
is whether different types of variations need different process-
ing times and which one is more difficult to solve? From a
modeling viewpoint, 3D variations (i.e., rotation in-depth and
in-plane) are thought to be more difficult than others (Pinto
et al., 2011). However, there are very few studies addressing this
problem using real-world naturalistic objects with systematically
controlled variations (e.g., see Pinto et al., 2008; Yamins et al.,
2014). To reach this goal, we need to explore the behavioral
and neural responses to different types of variations applied to
real-world objects.

Another question is whether the time course of responses
depend on the strength of the variations, the lower the vari-
ation, the faster the responses? Here we behaviorally showed
that as the complexity level of image variation increases, the
performance decreases and the RT increases. This suggests that
the responses depend on the strength of variations. One poten-
tial future research would be measuring the neural responses
to the strength of variations using different recording tools
(e.g., EEG/MEG, fMRI and electrophysiology—e.g., Yamins et al.,
2014) in different species. It would also be interesting to look
at the extent to which feedforward pathway can solve invariant
object recognition and whether the visual system requires pro-
longed exposure of object images and a supervised learning to
learn invariance.

MODELS ARE MISSING A FIGURE-GROUND SEGREGATION STEP
We observed a significant increase in human RTs when objects
were presented on natural backgrounds compared to plain back-
grounds (Figure 5, pink curves compared to green curves). This
suggests that some further ongoing processes occur when objects

have cluttered natural backgrounds. To detect a target in a clut-
tered background, visual system needs to extract the boarder of
the target object (object contours). This process is performed by
the mechanism of figure-ground segregation in the visual cortex
(Lamme, 1995). Grouping a set of collinear contour segments into
a spatially extended object requires sufficient time (Roelfsema
et al., 1999), even in plain background. This task is more diffi-
cult and time consuming when objects are presented in cluttered
natural backgrounds. Therefore, the increase in RTs in the case of
natural backgrounds could be due to the time needed for figure-
ground segregation (Lamme et al., 1999; Lamme and Roelfsema,
2000).

Studies also suggest that recurrent processing is involved in
figure-ground segregation (Roelfsema et al., 2002; Raudies and
Neumann, 2010). This may explain why we observe a dramatic
decrease in the categorization performance of the feedforward
models in the natural background condition. The models are
missing a figure-ground segregation step that seems to arise from
interlayer and between layers feedback signals.

THE ROLE OF FEEDBACK AND FUTURE MODELING INSIGHTS
As studies show, if models can represent object categories sim-
ilar to IT, they can achieve higher performances in object cat-
egorization (Khaligh-Razavi and Kriegeskorte, 2013). Moreover,
the timing of several studies indicates that feedback projec-
tions may strengthen the semantic categorical clustering in IT
neural representations–where objects from the same category,
regardless of their variations, are clustered together (Kiani et al.,
2007; Kriegeskorte et al., 2008b; Carlson et al., 2013). Therefore,
considering the role of feedback in models may lead to better
categorization performances when image variation is high.

Recurrent processing can play a pivotal role in object recog-
nition and can help the visual system to make responses that
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are more robust to noise and variations (Lamme and Roelfsema,
2000; Wyatte et al., 2012; O’Reilly et al., 2013). Having said
that, the results of our behavioral experiments demonstrated that
even with very fast presentation of images with different lev-
els of variations, human observers perform considerably well.
One explanation is that the high categorization performances
are not simply the results of initial responses in higher visual
areas due to the feedforward sweep. Indeed early category-related
responses, which emerge at about 150 ms after stimulus onset,
may already involve recurrent activity between higher and lower
areas (Koivisto et al., 2011). Another explanation could be that
the IT representational geometry in this condition is not strongly
categorical—this can be tested with fMRI in future studies—and
so object categories are not linearly separable, but perhaps in
later stages of the hierarchy (i.e., in PFC) the categorical repre-
sentation gets stronger, which allows subjects to perform well. It
would be interesting to investigate whether a linear read-out can
decode the presented objects from the IT representation when
recurrent processing is disrupted. Understanding the role of feed-
forward vs. recurrent processing in invariant object recognition
opens a new avenue toward solving the computational crux of
object recognition.

FUTURE DIRECTIONS FOR UNDERSTANDING HOW/WHEN/WHERE THE
INVARIANT REPRESENTATION EMERGES ACROSS THE HIERARCHY OF
HUMAN VISUAL SYSTEM
It is of great importance to investigate not only where the
categorical information emerges in the ventral visual pathway
(Henriksson et al., 2013), but also when the representations
of stimuli in the brain reaches to a level that shows cate-
gorical information clearly (Cichy et al., 2014). Having accu-
rate temporal and spatial information of object representation
in the brain can help us to know where the invariant rep-
resentations emerge and how long it takes to have sufficient
information about them. This can help us to understand how
neural representations evolve over time and different stages in the
ventral visual system that finally result in this remarkable perfor-
mance in invariant object recognition without losing specificity
to distinguish between similar exemplars. Moreover, it opens
new ways for developing models that have similar representa-
tions and performance to the primates’ brain (Yamins et al.,
2014).

We need to exploit new recording technologies, such as high-
resolution fMRI, MEG, and cutting-edge cell recording, to simul-
taneously record large population of neurons throughout the
hierarchy, and advanced computational analyses (Kriegeskorte
et al., 2008b; Naselaris et al., 2011; Haxby et al., 2014) in order to
understand the mechanisms of invariant object recognition. This
would help us to understand when and where invariant responses
emerge in response to naturalistic object images with controlled
image variations such as our database.
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DEEP SUPERVISED CONVOLUTIONAL NEURAL NETWORK vs.
HUMANS
In addition to the models we discussed in the paper, we also tested
a recent deep supervised convolutional network (Krizhevsky
et al., 2012) that has been shown to be successful in different
object classification tasks. The model is trained with extensive
supervision (over a million labeled training images).

Given that all the feedforward models discussed so far failed
to reach human level performance in higher levels of image vari-
ation, we were interested to see how a deeper feedforward model
that is supervised with more training images will perform in our
invariant object recognition task. Similar to other experiments,
we compared the model performance against humans in two
binary (animal vs. car and motorcycle vs. car) and one multiclass
invariant object categorization tasks, both with plain and natu-
ral background. The results show that in high image variations
humans perform significantly better than the model (Figure S3).
Particularly, in all tasks, when the image variation is 4 or higher,
humans are always better.

Figure S1 | Sample images in different levels of variation with natural

backgrounds. Object images, rendered from 3D planes, vary in four

dimensions: size, position (x, y), rotation in-depth, and rotation in plane,

superimposed on randomly selected natural background.

Figure S2 | Representational Dissimilarity Matrices (RDM) for multiclass

invariant object categorization task with natural background across

different levels of variations, obtained based on classifier responses. Each

element in a matrix shows the pairwise dissimilarities between the

internal representations of a model for pairs of objects (see Materials and

Methods). Each column in the figure shows the RDMs for a particular

level of variation (from 0 to 6) and each row shows the RDMs of a model

in different levels of variation. The first row illustrates the RDMs for

human calculated based on responses in psychophysical experiments.

The color bar at the top-right corner shows the degree of dissimilarity

(measured as: 1-correlation- Spearman’s rank correlation). The size of each

matrix is 75∗75. For visualization, we selected a subset of responses to

images in each category (15 images from each category).

Figure S3 | The performance of the Deep Convolutional Neural Network

(DCNN) in invariant object categorization tasks. (A) Performances in

animal vs. car categorization task across different levels of variation. Black

curve shows human performance and green curve shows the

performance of DCNN. The top plot illustrates the performances when

objects were presented on plain backgrounds and the bottom plot shows

the performances when objects were presented on natural backgrounds.

P-values for comparisons between human and the model across different

levels of variation are depicted at the top of each plot (Wilcoxon

signed-rank test). (B) Performances in motorcycle vs. car invariant

categorization task across different levels of variation. The top plot

illustrates the performances when objects were presented on plain

backgrounds and the bottom plot shows the performances when objects

were presented on natural backgrounds. P-values for comparisons
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between human and the model across different levels of variation are

depicted at the top of each plot (Wilcoxon signed-rank test). The results

are the average of 15 independent random runs and the error bars show

the standard deviation of the mean. (C) Performance comparisons

between DCNN and human in a multiclass invariant object recognition

task. Left plot shows the performance comparison when objects were

presented on plain backgrounds while the right plot shows the

performances when objects were presented on natural backgrounds. (D)

Representational Dissimilarity Matrices (RDM) for DCNN in multiclass

invariant object recognition with plain (left column) and natural (right

column) background across different levels of variation, calculated based

on models’ feature vector. Each element in a matrix shows pairwise

dissimilarities between the internal representations of the model for pairs

of objects. The color bar at the top-right shows the degree of dissimilarity

(measured as: 1-correlation- Spearman’s rank correlation). For visualization,

we selected a subset of responses to images in each category (15 images

from each category), meaning that the size of each matrix is 75∗75. (E)

Correlation between human and DCNN RDMs (based on DCNN model

features from the last layer of the model) in different background

conditions and complexity levels. Correlations across all levels are

significant (∗∗∗∗∗p < 10−6). Error bars are standard deviations of the mean.

P-values are obtained by bootstrap resampling the images. The correlation

results are the average over 10,000 bootstrap resamples (we used Kendall

tau-a rank correlation).
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In classical models of object recognition, first, basic features (e.g., edges and lines) are
analyzed by independent filters that mimic the receptive field profiles of V1 neurons. In a
feedforward fashion, the outputs of these filters are fed to filters at the next processing
stage, pooling information across several filters from the previous level, and so forth at
subsequent processing stages. Low-level processing determines high-level processing.
Information lost on lower stages is irretrievably lost. Models of this type have proven to
be very successful in many fields of vision, but have failed to explain object recognition
in general. Here, we present experiments that, first, show that, similar to demonstrations
from the Gestaltists, figural aspects determine low-level processing (as much as the other
way around). Second, performance on a single element depends on all the other elements
in the visual scene. Small changes in the overall configuration can lead to large changes
in performance. Third, grouping of elements is key. Only if we know how elements group
across the entire visual field, can we determine performance on individual elements, i.e.,
challenging the classical stereotypical filtering approach, which is at the very heart of most
vision models.

Keywords: feedback, object recognition, crowding, Verniers, Gestalt

Object recognition traditionally proceeds from the analysis of
simple to complex features. The Gestaltists proposed a number
of basic rules, such as spatial proximity and good continuation,
that underlie the grouping of elements into objects. Whereas the
Gestalt rules work well for very basic stimuli, they grossly fail for
slightly more complex stimuli. For this reason, research on Gestalt
principles almost disappeared after the 1930’s. After world war
II, the discovery of the receptive field advanced vision science by
revealing fundamental principles of retinal and cortical process-
ing, which has led to a core scenario that is often, explicitly or
implicitly, behind most models in visual neuroscience and the
psychology of perception, and provides the basis for most models
in computer vision.

The model is characterized by its hierarchical and feedforward
organization (Figure 1). Neurons in lower visual areas, with small
receptive fields, are sensitive to basic visual features. For example,
neurons in V1 respond predominantly to edges and lines. These
neurons project to neurons at the next stage of the hierarchy,
which code for more complex features. By V4, the neurons are
selective for basic shapes, and by IT they respond in a viewpoint-
invariant manner to full objects. Decisions making happens in the
frontal cortex. This basic scenario has a well-defined set of char-
acteristics. Processing is hierarchical, feedforward, and local on
each level, i.e., only neighboring neurons, coding for neighboring
parts in the visual field, project to a common higher-level neuron
(Figure 1). In addition, processing at one stage is fully determined
by processing at the previous stage. Information lost at previ-
ous stages is irretrievably lost. Processing follows an atomistic,
Lego® building block type of encoding. For example, a hypo-
thetical “square neuron” is created by feedforward projections
from “lower” neurons coding for vertical and horizontal lines

(Figure 1; Riesenhuber and Poggio, 1999; Hung et al., 2005; Serre
et al., 2005, 2007a,b). Finally, there is an isomorphism between
objects of the outer world (e.g., a blue line), basic neural circuitry
(analyzing the blue line), and the corresponding percept (“blue
line”). And this is exactly the beauty of these models: naturaliz-
ing the subjectivity of perception by identifying the basic neural
circuits of perception.

Evidence for fast, hierarchical feedforward processing comes
from experiments showing that humans can detect animals in
a scene in less than 150 ms. Calculations based on neural con-
duction velocity show that there are only one or two spikes per
cortical area before a decision is made, arguing strongly against
feedback processing (Thorpe et al., 2001).

Computer vision models often follow closely the philosophy of
neurobiological feedforward hierarchies. In these, as in neurobi-
ological models, first, basic features are extracted, for example,
through V1-style Gabor filtering or Haar wavelets. Often, the
downstream hierarchical stages (V2, V4) are collapsed into one
processing stage, where a classifier is trained to detect special-
ized objects such as faces or cars. Similar to IT neurons, these
detectors are often scale- and viewpoint-invariant (Biederman,
1987; Ullman et al., 2002; Fink and Perona, 2003; Torralba,
2003; Schneiderman and Kanade, 2004; Viola and Jones, 2004;
Felzenszwalb and Huttenlocher, 2005; Fei-Fei et al., 2006; Amit
and Trouvé, 2007; Fergus et al., 2007; Heisele et al., 2007; Hoiem
et al., 2008; Wu et al., 2010).

Here, we will present experiments from crowding research
that challenge classical feedforward hierarchy models. In crowd-
ing, target discriminability strongly deteriorates when neigh-
boring elements are presented (Figure 2). Crowding is often
seen as a breakdown of object recognition and most models
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FIGURE 1 | Left: A typical hierarchical, feedforward model, where
information processing starts at the retina, proceeds to the LGN, then to V1,
V2, V4, and IT. Decisions about stimuli are made in the frontal cortex. Center:

Lower visual areas have smaller receptive fields, while neurons in higher
areas have gradually increasing receptive field sizes, integrating information

over larger and larger regions of the visual field. Right: Lower visual areas,
such as V1, code for basic features such as edges and lines. Higher-level
neurons pool information over multiple low-level neurons with smaller
receptive fields and code for more complex features. There is thus a
hierarchy of features. Figure adapted from Manassi et al. (2013).

FIGURE 2 | Vernier offset discrimination as a function of stimulus

configuration. (A). The reference stimulus is the un-flanked vernier shown
in a. Enclosing the vernier in a square deteriorates performance. Adding
additional squares leads to increasingly better performance. (B). We
replicated the results with the squares (b,c). In addition, rotating the
flanking squares to form diamonds (d) undoes the effect of grouping and
reinstates the crowding effect. From Manassi et al. (2013).

of crowding are very much in the spirit of object recognition
models. In pooling models, information from lower-level neu-
rons is pooled by higher-level neurons, to see wholes at the
cost of more poorly perceiving the parts. Indeed, observers can

clearly detect a crowded target, it is only its features and spa-
tial relationships that are jumbled with flanker features (e.g.,
Pelli et al., 2004). Target-feature perception is lost because tar-
get and distracter features are pooled. A prediction made by
pooling models is that, because spatial integration is local at
each stage, only nearby elements deteriorate target discrim-
inability (Bouma’s law). In addition, if more flankers are added
within Bouma’s window, performance should deteriorate (or at
least not improve) because the signal-to-noise ratio decreases. A
third prediction is that adding more flankers should deteriorate
performance.

In previous experiments, we presented a vernier stimulus,
which consists of two vertical lines, offset slightly to the left
or right (Manassi et al., 2012, 2013). Observers indicated the
offset direction. Verniers were presented in the periphery, 9
degrees (of visual angle) to the right of fixation. Performance
strongly deteriorated when the vernier was surrounded by
a square (Figures 2Aa, b). This is a classic crowding effect
and is well-explained by traditional crowding models. Next,
Manassi et al. (2012, 2013) presented 2 × 3 neighboring squares
(Figure 2Ae). According to pooling models, and most object
recognition models, more flankers should deteriorate perfor-
mance. However, the opposite was the case. Crowding almost dis-
appeared. Interestingly, this uncrowding effect increased with the
number of squares that were presented (Figure 2A). Importantly,
the fixation dot was only 0.5 degrees apart from the left-most
square, i.e., the stimulus configuration extended over large parts
of the right visual field. Hence, vernier offset discrimination is
influenced by elements far outside the integration region pre-
dicted by Bouma’s law. Second, and more importantly, vernier
offset discrimination is influenced by the overall stimulus config-
uration. This becomes evident when turning the flanking squares
by 90◦ creating diamonds, resulting in the return of the crowding
effect (Figure 2B). Hence, figural aspects determine basic feature
processing (Wolford and Chambers, 1983; Livne and Sagi, 2007;
Malania et al., 2007; Sayim et al., 2010).

Frontiers in Computational Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 135 | 28

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Herzog and Clarke Why vision is not both hierarchical and feedforward

Our results clearly show that simple pooling models can-
not explain crowding and the same seems to be true for most
basic models of object recognition. Figural processing determines
low-level processing as much as low-level processing determines
figural processing. It seems that first the squares are computed
from their constituting lines. Next square representations interact
with each other and the outputs of this processing determine the
vernier offset discriminability. This is reminiscent of the famous
quote by Wertheimer that “the whole determines the appear-
ance of the parts” (Wertheimer, 1938). In our example, the whole
determines even low-level processing. It also agrees with more
modern sentiments suggesting that feedback is crucial for normal
vision at all levels of the processing hierarchy (Krüger et al., 2013).
We propose that it is only when we know how elements group
together that we will be able to accurately predict performance on
even the simplest tasks, i.e., without understand grouping across
the entire visual field, it is impossible to understand human object
recognition.

Note here, that we are not claiming that the visual system is
not hierarchical. Nor are we claiming that there is no feedforward
sweep through the cortex. We are arguing against models that are
both feedforward and contain a strict feature hierarchy. For exam-
ple, classic models posit that low-level features (such as verniers)
are encoded at an early cortical level and that shapes (such as
squares) are encoded at a later cortical level. Square-square inter-
actions are crucial, as we have shown. However, since there are
no feedback connections, the classic models cannot explain how
square-square interactions change low-level processing of the
vernier. One solution is to give up feedforward processing and
have recurrent interactions between lower and higher levels of
processing.

Evidence for recurrent processing comes from timing exper-
iments on the dynamics of grouping in crowding (Manassi and
Herzog, 2013; Manassi, 2014). A vernier target was flanked by
either two vertical lines, or by two vertical lines that formed
the edges of two cuboids. In both cases, the vertical lines were
identical and only the surrounding context differed—the lines
grouped with the vernier, but when they were part of the
cuboids, the lines segmented from the vernier. Vernier offset
discrimination thresholds were measured as a function of stim-
ulus presentation time for seven fixed durations ranging from
20 ms to 640 ms. Under brief presentation times (≤120 ms) per-
formance in the two stimulus conditions did not significantly
differ. Beyond 160 ms, however, performance with the cuboids
was significantly better than with the lines. These results indi-
cate that perceptual grouping evolves with time, even for such
basic stimuli as verniers. Current models of vernier offset dis-
crimination show that this task can be achieved in a feedforward
way by reading out the responses of orientation-tuned V1 neu-
rons (Wilson, 1986)—a process that takes on the order of 50 ms
(Cottaris and De Valois, 1998; Gershon et al., 1998). Sending
spikes to additional synapses requires at least 10 ms per spike.
Thus, the long time required for vernier discrimination in the
cuboid flanker condition to be differentiated from line flanker
condition (≥160 ms, i.e., more than double the arrival time of
the stimulus at V1) indicates significant additional cortical pro-
cessing for perceptual grouping. Since 160 ms −50 ms = 110 ms,

at least 11 additional synaptic connections could be activated.
Recent electrophysiological evidence suggests that the additional
time can be accounted for by feedback connections from the
lateral occipital cortex to earlier cortical areas, the result of
which is the promotion of perceptual grouping (Shpaner et al.,
2013).

Our results are not restricted to crowding but occur in many
other visual paradigms including overlay masking (Saarela and
Herzog, 2008, 2009), backward masking (Herzog, 2007; Hermens
and Herzog, 2007; Dombrowe et al., 2009), letter recognition
(Saarela et al., 2010), in haptics (Overvliet and Sayim, 2013), and
in audition (Oberfeld et al., 2012).

Why does the processing of an element’s basic features depend
on remote elements? Vision is ill-posed. For example, the light
(luminance) that arrives at the retina is a product of the light
shining on an object (illuminance) and the material properties
of the object (reflectance). Hence, on the photoreceptor level,
it is impossible to determine whether or not a banana is yel-
low and ready to eat. The brain tries to solve this problem by
discounting the illuminance, taking contextual information into
account. This becomes obvious in the case of computing mate-
rial properties. Glossy objects, for example, reflect bright spots
(specularities) in regions of high curvature. Removal or addi-
tion of an object’s specularities completely changes the object’s
perceived material, in spite of the fact that the rest of the
object remains the same. To compute the material properties,
integrating information across the visual field is crucial: where
is the illuminance coming from? What is the shape of the
object?

Key then, is that without knowing the whole one cannot know
the parts. To the best of our knowledge, very few models adopt
this approach of including recurrent processing and effectively
integrating information over large parts of the visual field. Not
surprisingly, these models are highly effective at modeling human
data, not only from crowding, but also from many other areas
of cognitive science, hinting at their general ability to explain
cortical processing. For example, they effectively explain data per-
taining to attention (Tsotsos, 1995; Tsotsos et al., 1995; Cutzu
and Tsotsos, 2003; Bruce and Tsotsos, 2005, 2009; Rodriguez-
Sanchez et al., 2007), and visual object learning (Bengio et al.,
2013; Goodfellow et al., 2013; Salakhutdinov et al., 2013). They
also do well at scene-segmentation, where successful models typi-
cally use a global approach, such as coarse-to-fine image pyramids
(Estrada and Elder, 2006) or normalized cuts over extended
graphs (Malik et al., 1999, 2001; Shi and Malik, 2000; Ren and
Malik, 2002; Martin et al., 2004), which are leveraged to pro-
duce human-like scene segmentations. Here, again, computations
are not purely local and feedforward, but rather global and iter-
ative. Grossberg has also produced similar models in terms of
their ability to do grouping that extends over a scene (Grossberg
and Mignolla, 1985; Dresp and Grossberg, 1997), as has Francis
(Francis et al., 1994; Francis and Grossberg, 1995). Future work
will show whether these models can explain our particular crowd-
ing results.

In summary, there is a wealth of evidence suggesting that
cortical processing is not purely hierarchical and feed-forward.
In order to know how the visual system processes fine-grained
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information at a particular location it is necessary to integrate
information about the surrounding context over the entire visual
field. Grouping and segmentation are crucial to understanding
vision, and must be understood on a global scale.
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A substantial portion of information flow in the brain is directed top-down, from high
processing areas downwards. Signals of this sort are regarded as conveying prior
expectations, biasing the processing and eventual perception of incoming stimuli. In this
perspective we describe a framework of top-down processing in the visual system in which
predictions on the identity of objects in sight aid in their recognition. Focus is placed,
in particular, on a relatively uncharted ramification of this framework, that of the fate of
initial predictions that are eventually rejected during the process of selection. We propose
that such predictions are rapidly inhibited in the brain after a competing option has been
selected. Empirical support, along with behavioral, neuronal and computational aspects of
this proposal are discussed, and future directions for related research are offered.

Keywords: visual processing, object recognition, predictions, competition suppression, negative priming, top-
down, ambiguity resolution

INTRODUCTION
The hierarchical nature of information processing in the brain,
particularly that of the visual system, has long been acknowl-
edged. Originally, work focused on the accumulating complexity
and sophistication added by each level of the hierarchy to the
one preceding it, as information propagates upstream (Hubel
and Wiesel, 1962). In recent years, however, a growing body of
research has established the opposite direction of processing as
well, from higher cortical areas downwards.

Top-down influences on perception are ubiquitous. From
context (Biederman et al., 1982) and mood (Basso et al., 1996),
to esthetic preference (Chen and Scholl, 2014) and inherent
perceptual biases (Ramachandran, 1988), numerous factors inter-
mix and contribute in shaping the subjective percept of a single
objective stimulus. Many of these influences may be regarded
as “predictions”, in the sense that they express prior expecta-
tions concerning the incoming stimulus. In Bar (2003), such
a framework for top-down visual processing was offered, in
which rapid implicit predictions are formed and utilized to facil-
itate object recognition. In this paper we shall first present this
framework, and then discuss one aspect of it in particular—
the fate of alternative, competing predictions that are not
chosen.

A FRAMEWORK FOR TOP-DOWN FACILITATION OF VISUAL
PROCESSING
Visual information is distributed across a range of spatial fre-
quencies. Low spatial frequency (LSF) information carries gross
outlines and object contours, while information of high spatial
frequency (HSF) encodes edges and finer details of an image.
LSFs of visual stimuli have been found to elicit early synchro-
nized activity between primary visual areas and the orbitofrontal
cortex (OFC), followed by a synchronized coupling of the OFC
and object recognition regions of the inferior temporal (IT)
cortex (Bar et al., 2006). This pattern of activation therefore

seems to bypass the ventral bottom-up visual processing chain
in reaching the prefrontal cortex (PFC), affording it early access
to coarse general aspects of visual stimuli. It has been offered
that this bypass pathway is enabled by magnocellular projec-
tions (Bar et al., 2006), which are quicker conductors and more
attuned to LSF information compared with their parvocellu-
lar counterparts (Tootell et al., 1988; Merigan and Maunsell,
1993). Indeed, stimuli biasing magnocellular processing prefer-
ably activate the OFC and evoke a pattern of functional coupling
between visual, OFC and IT regions (Kveraga et al., 2007).
Robust afferent projections connect early visual areas and the
OFC, both directly and indirectly (Barbas, 1995; Fuster, 2008),
and several possible routes have been proposed to account for
the rapid flow of activation in this pathway (Kveraga et al.,
2007).

According to the proposed framework, the OFC uses rudi-
mentary versions of an input to rapidly activate familiar object
categories resembling it. These activations act as hypotheses of
the input’s identity, subsequently combined with HSF bottom-
up processing in temporal regions to facilitate recognition (Bar
et al., 2006; Figure 1). LSF-based “initial guesses” assist, therefore,
in narrowing down the search space of identity matching. An
image of a tennis racket, by this account, will evoke a cursory
image in the OFC, which will cause a signal corresponding to a
racket, a guitar, a spoon and other object prototypes sharing a
relatively similar outline, to be subsequently passed downwards.
Finding the best match between these options and additional
bottom-up incoming information will constitute recognition.
Combining bottom-up with top-down signals in this manner
has indeed been demonstrated to yield optimal efficiency in a
computational model of visual recognition (Graboi and Lisman,
2003). Bottom-up information confines the hypothesis space to a
selected subset of options, which are then passed back downwards
to subsequently confine the breadth of lower-level processing
required.
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FIGURE 1 | Framework for top-down visual processing. LSF information is
rapidly projected from preliminary occipital visual areas to the OFC. Based on
this rudimentary display, predictions are formed and projected downwards to

IT regions, where they coincide with the slower ventral visual stream of
processing and facilitate recognition. In this illustration, an image of hairdryer
supposedly prompts predictions of a drill, a gun, a hairdryer and a boomerang.

Due to its cursory nature, LSF information is highly suit-
able for forming visual predictions of the sort described above.
Hypotheses derived from it may be sufficiently guiding and at
the same time not too specific or constrained. Such LSF-based
hypotheses may be seen as object categories in that a blurred
representation of an object typically encapsulates most of its
category members. Indeed, LSF information facilitates object
recognition that is flexible and resilient to changes in exem-
plars and viewpoints (Cheung and Bar, 2014). In this light, all
LSF-based images are at least somewhat ambiguous. However,
although some outlines are more informative and distinguishable
than others (consider, for example, the outline of a bicycle),
most LSF-based images would be expected to resemble and
therefore prime not only different versions of the same object,
but more than one object as well. A recognition process using
LSF-based predictions foretells substantial constant ambiguity
dealt with in the visual system. In this perspective we would
like to extend our top-down visual processing framework by
addressing a relatively overlooked ramification of it: the fate
of the initial guesses that first compete but are eventually not
chosen.

PASSIVE DECAY OR ACTIVE SUPPRESSION
LSFs of objects in our visual environment typically evoke mul-
tiple possible interpretations of their identity. One of these
guesses will ultimately be selected as the correct one as more
details are conveyed by the HSFs and combined in analysis to
constitute recognition. But what happens to the other alter-
native representations that have also been activated? Do these
obsolete hypotheses gradually decay and die-out, neglected in
the background while processing is concentrated elsewhere?
Or is there rather active effort exerted for suppressing them
rapidly? This question may provide promising new testing
grounds for studying the strategy employed in the brain for
conscious perception. Although no compelling evidence exists

so far to support either possible account, in this perspective
we would like to advocate as our hypothesis the latter, perhaps
less intuitive, option of active suppression based on functional
considerations.

At first glance, a mechanism in the brain for actively extin-
guishing activity that has been found irrelevant seems wasteful.
Being irrelevant, such activity should lack encouragement and
autonomously decay, so there is no apparent need in investing
additional energy in putting it out quickly. In the next section
we shall describe why we believe this mechanism is plausible
and in fact necessary in the brain, by considering the possible
benefits it might hold from a system point of view. Next, we shall
support our claim by describing various findings of such a strategy
employed in the brain in other domains. In the last section of
this perspective we shall put forward our prediction regarding the
mechanism of visual initial-guess competition suppression, and
its testable manifestations.

BENEFITS OF SUPPRESSING UN-CHOSEN PREDICTIONS
Visual predictions as suggested by our framework are helpful
in parsing a visual scene. However, once one of the predictions
had been chosen, the remaining alternatives become a potential
interference to network dynamics. Unless quickly extinguished,
such activations may, presumably, distort processing of new infor-
mation in light of some ambiguity that had already been settled.
Their efficient and abrupt dismissal seems therefore important
for ongoing performance. This is potentially true regarding any
predictive system in the brain. In the case of visual recognition,
however, chosen predictions become conscious perceptions, and
so the potential threat of distracting activations may be most
pronounced.

An elementary characteristic of conscious experience is its
unequivocal explicitness. Despite the bombardment of informa-
tion we are constantly confronted with, which is both noisy and
partial, our personal sensation is typically unitary, coherent and
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unambiguous. This is rather striking considering the breadth of
subliminal activity we know is evoked and processed simultane-
ously in the brain at any given time. Indeed, consciousness is por-
trayed in many cases as an all-or-nothing mechanism, compared
with subliminal workings that are statistical and inconclusive
(Charles et al., 2013). To achieve this task, the nervous system
must therefore be quick and decisive regarding interpretation of
the world, selecting only a single percept to dominate conscious-
ness at any given time. To this end, inhibition of the un-chosen
options seems cardinal.

Current theories portray consciousness as the product of a
large-scale connected component in neural network dynamics
(Dehaene et al., 2003; Dehaene and Changeux, 2011). A mecha-
nism for focusing activity on one selected option by suppressing
irrelevant surroundings is important for the stability of such
a component. Strong surrounding activations could otherwise
potentially sway dynamics, even to the point of joining the locus
of activation, which would result in a different conscious percept
according to this theory. Therefore, efficient inhibition should
take effect, and materialize rather immediately after selection
when competition is highest and stability most fragile. This
would be crucial for keeping our perception coherent. An extreme
illustration of this idea may be found in the case of binocular
rivalry, where strong and evenly matched competing activations
are artificially created. The result is a non-stable perception
alternating between the two of them (Blake and Logothetis, 2002).

The mechanism we propose in this perspective, therefore,
is one aimed at “conscious decisiveness” and not ambiguity
resolution per se. In our opinion, inhibition does not accentuate a
single option over all others and thus helps in choosing between
them, but rather it swiftly removes activations once such a choice
has been made. The role ascribed to it is in “protecting” an
implicit decision from interference once one is taken, by teasing
out the to-be-explicit from the pool of implicit activations as
quickly as possible to eliminate competition. Our argument is
therefore for a post-selection and not a pre-selection mechanism,
in agreement with most findings of competition suppression in
the brain (May et al., 1995). In the next section we will overview
several such findings, describing existing empirical evidence that
provide initial support to our proposal.

EVIDENCE OF ACTIVE COMPETITION SUPPRESSION
In the realm of linguistics, ambiguity resolution has drawn con-
siderable interest over the years, and has been studied as a cog-
nitive phenomenon to the greatest extent. It therefore provides
good grounds from which to build our argument dealing with
LSF-based ambiguity resolution.

SUPPRESSION OF COMPETING INTERPRETATIONS
Numerous studies have shown that when an ambiguous word
is encountered, several possible meanings of that word are
immediately primed (Simpson, 1994), but access to all but the
correct meaning of the word is significantly degraded within
under a second of stimulus onset (Seidenberg et al., 1982;
Gernsbacher and Faust, 1991b). Such decline in activation seems
neither due to natural signal decay nor to competitive mutual
inhibition between concepts (Gernsbacher and Faust, 1991b).

Access to incorrect meanings may even become slower than
access to neutral meanings that were not activated to begin with,
providing further challenge to a mere decay account. This was
shown in a lexical ambiguity experiment in which stimuli did not
repeat, suggesting it is also not due to a prevalent memory-based
explanation of such phenomena (Nievas and Marí-Beffa, 2002).
It is interesting to note that the extent of suppression had been
found in that study to be modulated by the strategy employed by
subjects. Mirroring similar findings from selective attention (Neill
and Westberry, 1987), suppression was exerted mostly when
emphasis was placed on accuracy over speed, possibly indicating
that it is mostly recruited when distractors are most harmful
(Nievas and Marí-Beffa, 2002). Active inhibition, in any case,
seems to take part in suppression of ambiguous word meanings,
and its effect develops within a certain limited delay of selection.

Suppression in a linguistic task had been found when response
was probed close to, but not immediately after, ambiguous
primes. This was tested and shown as close as 467 ms from prime
onset (Gernsbacher and Faust, 1991b), and analogous effects were
also found under other modalities and tasks, within 1 s or less
(Gernsbacher and Faust, 1991a). In one visual experiment, for
example, subjects were presented with arrays of objects on screen
for 250 ms, and then later shown a target and asked whether it
was present in that array or not (Gernsbacher and Faust, 1991a).
As expected, it was found that when targets were not part of
the preceding array it took longer to reject them if they were
contextually related to the array than if they were not (following
an array of farm-related objects it took longer to reject the target
“tractor” than it did to reject the target “kettle”). An interesting
difference, however, emerged within subjects between “less-
skilled comprehenders” and “more-skilled comprehenders” when
targets were shown not immediately after the array display, but 1
s later. After a 1 s delay, the prolonged response times incurred by
contextual relatedness remained in less-skilled comprehenders,
while they had completely disappeared in skilled comprehenders.
Successful comprehension of a visual scene seems to rely to some
extent on the efficient suppression of potential distractors. This
paradigm has proven so fruitful that suppression of inappropriate
options was argued to be an overarching pivotal skill in
comprehension in general (Gernsbacher and Faust, 1991a).

SUBLIMINALLY INDUCED COMPETITION
In the studies discussed above, competing alternatives stemmed
from conscious perception of an ambiguous stimulus. Their sup-
pression may therefore be seen as a form of cognitive inhibition,
known to be a major factor in a wide array of decision-making
tasks, supposedly controlled by executive functions in the PFC
(Miyake et al., 2000; Aron et al., 2004). LSF of visual objects, how-
ever, are presumed to elicit a fleeting subliminal perception. Here
we present findings from motor control research that support our
proposal of predictive activation and subsequent inhibition that
are triggered subliminally.

In Eimer and Schlaghecken (1998), subjects were to press
either a left or a right key, as fast and accurately as possible,
according to given cues. Each cue was preceded by an additional
masked prime cue that was not consciously perceived. It was
found that primes harmed performance when the subsequent
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task was congruent with them, and on the other hand improved
performance when the responses associated with the prime and
the task were incongruent. Researchers called this phenomenon
the “negative compatibility effect” (NCE), and offered that it is a
result of inhibition acting on responses which were only partially
activated (Eimer and Schlaghecken, 1998, 2003). A key insight
from this study is that performance in this type of task depends
not only on prime-target compatibility, but also on their relative
timing. Event-related potential recordings of motor cortex during
this task revealed that primes elicit activation corresponding
with the movement they denote within roughly 200 ms of their
presentation, but this activity reverses polarity 100 ms later and
dwells below baseline for around 100 ms (between 300–400 ms
of prime onset). The researchers found that when a motor choice
is made in this latter time frame, performance is impaired if
a compatible cue was given before the target, and conversely
enhanced by a “misleading cue”. If timed right, the primed
alternative will in fact be suppressed beneath threshold.

This effect had been replicated and proven rather robust in the
motor system. Importantly, when varying time intervals between
primes and targets, NCE was only observed following longer
delays (96–192 ms), while short delays of up to 32 ms generated
positive priming, in compliance with a rise-and-fall activation
pattern (Schlaghecken and Eimer, 2000). Eimer and Schlaghecken
(2003) propose stimulus-driven inhibition as a faculty compli-
mentary to conscious cognitive control. They call it “exogenous”
inhibition, in contrast to the conscious cognitive inhibition of
responses, which is “endogenous” (Eimer and Schlaghecken,
2003). Competition suppression of the NCE phenomenon vali-
dates the possibility of competing elements subliminally activated
and then inhibited in brain functioning, and demonstrates such
inhibition acting fast (within 100 ms).

EXPERIMENTAL PREDICTIONS OF INITIAL-GUESS
SUPPRESSION
Building on the two paradigms described above, the support-
ing evidence for multiple-alternative activation and suppres-
sion in ambiguity resolution, and the possible evocation of
them subliminally, we now turn to describe the testable man-
ifestations we expect suppression of visual initial-guesses will
have.

TIME FRAME
Active suppression of a concept in memory will cause an increased
difficulty in accessing that concept for a certain amount of time
thereafter. This is termed negative priming, as it is the exact oppo-
site of classic positive priming in which recently activated concepts
enjoy advantageous processing. Initial-guess suppression, as we
propose, should therefore join the varied multitude of cognitive
tasks that behaviorally manifest as negative priming for a certain
amount of time. Because the speed of visual object recognition
depends on numerous aspects of the stimulus (image complexity,
display duration, contextual information, familiarity, and so on)
we align the temporal description of our model to the time point
of recognition.

We expect concepts activated by visual LSF information to be
subsequently suppressed when additional information arrives and

confirms one of the competing hypotheses. Visual LSF informa-
tion creates enhanced activity in OFC areas around 50 ms before
major activation of object-recognition areas of the IT begins
(peaking at 130 and 180 ms, respectively, in the paradigm used
in Bar et al. (2006)). This is the time window LSF-based gen-
eration of initial guesses happens, according to our proposition,
so at this time interval multiple concepts should be activated
and positively primed (Figure 2, between “OFC activation” and
“recognition”).

Next, following strong coupling between the OFC and IT
regions, recognition is achieved. It is this moment, or slightly
earlier, that deems all but one activated guesses irrelevant, and
so presumably ignites inhibition. Based on findings from the
linguistic domain and others, we expect activation levels to drop
below baseline level within less than 500 ms of this moment. The
duration in which excitation should persist below baseline is hard
to estimate. Various different negative priming paradigms have
found an effect lasting between 0 and 8 s (May et al., 1995).
Persistence would be particularly interesting to examine in the
domain of vision, because visual context is typically rather stable
over time, and so a mechanism for longer lasting suppression of
irrelevant guesses might be desirable. A significant negative level
of activation, in any case, is reasonable to expect for at least 100 ms
(see Figure 2B for a summary of the predicted activation timeline
of an un-chosen initial-guess).

INHIBITORY MECHANISM
Inhibition of un-chosen initial guesses, as hypothesized in this
perspective, would operate only on the highest mode of visual
processing and not trickle down to earlier regions of the visual
pathway. Since selection is made between visually similar concepts
(sharing major LSF features) activity patterns corresponding
to them in low-level visual regions would be more similar than
not. Inhibiting a low-level region for one concept and not
the other would therefore be difficult, but mainly negligible.
Behaviorally, as stated earlier, inhibition would manifest as
negative priming between LSF-similar representations. However,
alternative interpretations of such a finding exist and would have
to be accounted for.

Whether negative priming indicates underlying inhibition has
been the subject of a long and rich debate (May et al., 1995), but
modern accounts tend to agree that both forward-acting inhibi-
tion and backward-acting memory mechanisms may give rise to
negative priming under different experimental settings (Tipper,
2001; Mayr and Buchner, 2007). According to memory-based
accounts, negative priming occurs when a task evokes previous
processing episodes from memory and these episodes conflict
with current settings. The conflict may lay in the response associ-
ated with the target of the task (previously ignored but currently
requiring a response) (Neill et al., 1992) or in the different features
the target object had in both episodes (Park and Kanwisher, 1994).
A prerequisite for these accounts, in either case, is that the target
serves as a good retrieval cue to a previous prime. This would
seem less probable in an experiment examining suppression of
LSF-based predictions. Unlike most negative priming paradigms,
primes and targets of our framework would be dissimilar (a guitar
and a tennis racket, for example). The supposed activation and
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FIGURE 2 | Proposed activation patterns of LSF-induced hypotheses.
When presented an object (a hairdryer in this example), an LSF version of it is
extracted and projected to the OFC. This cursory image activates resembling
objects in memory, acting as hypotheses for recognition. In this case three
such hypotheses are depicted. (A) The correct hypothesis is activated when
an image reaches the OFC, like any other hypothesis. When additional
information combines with it for recognition, it receives additional
encouragment and will therefore display a classic positive priming affect for
substantial time. (B) Competing initial hypotheses (a drill in this example), will

initially be activated, but once recognition of a competing option will be made,
our model proposes they will go under inhibition. Activation of an obsolete
hypothesis of this sort should begin dropping and cross baseline activity.
Undershooting the baseline will manifest as negative priming for a certain
short period of time. (C) An example of an especially weak hypotheses,
bearning minimal resemblance to the original image. According to several
findings of threshold-dependent behavior of inhibition, a weak activation of
this sort may not be inhibited at all, despite it being an un-chosen hypothesis
like (B).

rejection of the target in the prime episode, moreover, is implicit
and not encoded in memory. Therefore, under experimental
settings in which targets are fully visible and processed, it is
unlikely that a reliance on memory retrieval would be promoted
(May et al., 1995), and negative priming in these cases would be
better explained by neuronal inhibition. Settings examining our
framework would therefore favor an inhibition explanation, in
our opinion, but careful design would nevertheless have to regard
the alternative accounts.

Lastly, an additional research path, considering associative
strength, may shed light on the characteristics of the inhibition we
propose. In several studies, neural inhibition behaves in a seem-
ingly threshold-dependent manner. In such cases, surprisingly no
inhibition is applied when activation strength is particularly low.
It has been found that activations that are especially weak are
allowed to linger, spared the neural inhibition their counterparts
receive, as if going “beneath the radar” of neural inhibition (Eimer
and Schlaghecken, 2003; Tsushima et al., 2006). This aspect allows
postulating that certain guesses may not be inhibited if their
activation was particularly small to begin with. In our case,
activations would be weak if the outline of the display and the
outline of the guess are only remotely similar, analogous to a guess
that is less probable (Figure 2C). This could be an interesting
research path to follow, one that could yield firm evidence that the

processes supporting this type of inhibition are similar to the ones
supporting resembling phenomena mentioned here from selective
attention and motor control.

SUMMARY
In this perspective we have overviewed our framework for top-
down processing in the visual system, and focused on a partic-
ularly intriguing and understudied implication of it: the fate of
un-chosen predictions. Albeit counter-intuitive, we believe that
irrelevant activations of this sort undergo active inhibition in the
brain. Such conduct seems important for maintaining stability
and coherence in ongoing conscious perception. Reviewing evi-
dence from different research areas of neuroscience, it seems that
activation of numerous options, followed by coincided facilitation
of one and inhibition of the rest, is characteristic of normal
brain functioning. We hope future research will build on this
proposal and elaborate it, as we believe further scientific study
of this phenomenon will improve our understanding of efficient
strategies for visual and non-visual information processing, and
of human perception in general.
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Artificial vision systems cannot process all the information that they receive from the
world in real time because it is highly expensive and inefficient in terms of computational
cost. Inspired by biological perception systems, artificial attention models pursuit to select
only the relevant part of the scene. On human vision, it is also well established that
these units of attention are not merely spatial but closely related to perceptual objects
(proto-objects). This implies a strong bidirectional relationship between segmentation and
attention processes. While the segmentation process is the responsible to extract the
proto-objects from the scene, attention can guide segmentation, arising the concept of
foveal attention. When the focus of attention is deployed from one visual unit to another,
the rest of the scene is perceived but at a lower resolution that the focused object. The
result is a multi-resolution visual perception in which the fovea, a dimple on the central
retina, provides the highest resolution vision. In this paper, a bottom-up foveal attention
model is presented. In this model the input image is a foveal image represented using
a Cartesian Foveal Geometry (CFG), which encodes the field of view of the sensor as
a fovea (placed in the focus of attention) surrounded by a set of concentric rings with
decreasing resolution. Then multi-resolution perceptual segmentation is performed by
building a foveal polygon using the Bounded Irregular Pyramid (BIP). Bottom-up attention
is enclosed in the same structure, allowing to set the fovea over the most salient image
proto-object. Saliency is computed as a linear combination of multiple low level features
such as color and intensity contrast, symmetry, orientation and roundness. Obtained
results from natural images show that the performance of the combination of hierarchical
foveal segmentation and saliency estimation is good in terms of accuracy and speed.

Keywords: artificial attention, foveal images, foveal segmentation, saliency computation, irregular pyramids

1. INTRODUCTION
Human vision system presents an interesting set of features of
adaptability and robustness that allows it to analyse and process
the visual information of a complex scene in a very efficient man-
ner. Research in Psychology and Physiology demonstrates that the
efficiency of natural vision has foundations in visual attention,
which is a process that filters out irrelevant information and limits
processing to salient items (Duncan, 1984). It has been demon-
strated by psychophysics studies that, when a human observes a
scene, she does not do so as a whole, but rather will make a series
of visual fixations at salient locations in the scene using eye sac-
cade movements (Martinez-Conde et al., 2004). These voluntary
movements have the main purpose of capturing salient locations
using the central region of the retina (fovea), which is the place
where the human retina has a high concentration of cones and
the image is captured with fine resolution. Psychophysics studies
suggest other important role of fixations in how humans per-
ceive a scene (Martinez-Conde et al., 2004). Experiments show
that subjects are not able to detect scene changes when they occur
at a location away from the fixation, unless they modify the gist
of the scene. Because the scene is captured with less resolution
in the periphery than in the fovea. In contrast, the changes are

detected quickly when they occur in the fixation area or close to
it. Then, it is clear that there is a relationship between visual fix-
ation and attention in the human vision system. Attention allows
to select salient locations that using a visual fixation are centered
in the fovea to be acquired with fine resolution, while the rest of
the scene is captured with less resolution. This multi-resolution
encoding allows the human visual system to perceive a large field
of view, bounding the data flow coming from the retina.

In the Computer Vision community, the non-uniform encod-
ing of images has been emulated through methods such as
the Reciprocal Wedge Transform (RWT), or the log-polar or
Cartesian Foveal Geometries (CFG) (Traver and Bernardino,
2010). Also the selection of salient regions from an image has
been widely studied, appearing different artificial attention mod-
els (Frintrop et al., 2010). However, the combination of attention
and foveal image representation has been very little studied. This
combination implies a close bidirectional relationship between
foveal image segmentation and attention. This relationship comes
from the fact that the location of human fixation is closely related
to perceptual objects or proto-objects instead of disembodied
spatial locations of the image (Rensink, 2000). Proto-objects can
be defined as units of visual information that can be bounded into
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a coherent and stable object and they can be extracted using a
perceptual segmentation algorithm. So, it seems logical to place
the fovea in the location of the most salient proto-object in each
moment. The saliency of each proto-object is obtained using
an artificial attention model. Therefore the relationship between
foveal segmentation and attention in one direction is clear: foveal
segmentation provides the proto-objects to attention. But also the
reverse relationship is very important. Segmentation essentially
refers to a process that divides up a scene into non-overlapping,
compact regions. Each region encloses a set of pixels that are
bound together on the basis of some similarity or dissimilarity
measure. A large variety of approaches for image segmentation
has been proposed by the Computer Vision community in the last
decades. And simultaneously, this community has been asked for
a definition of what a correct segmentation is. As several authors
have argued, the conclusion about this problem definition is that
it is not well posed (Lin et al., 2007; Singaraju et al., 2008; Mishra
et al., 2012). For example, if we see the original image and the
segmentations provided by two human subjects in Figure 1, a
major question arises: which is the correct segmentation? The
answer to this question depends on what object we want to seg-
ment in the image: the two people (Figure 1 middle) or certain
image details such as faces or hands (Figure 1 right). As Mishra
et al. (2012) pointed out, the answer to this question depends
on another question: what is the object of interest on the scene?
Attention can be used to provide segmentation with the object
of interest, fitting the correct input parameters and making seg-
mentation well-defined (Jung and Kim, 2012; Mishra et al., 2012).
These methods make use of the influence of attention in segmen-
tation, but they do not take into account the reverse relation: how
segmentation can influence attention.

In this paper, we propose a foveal attention mechanism which
illustrates the bidirectional relation among attention and foveal
segmentation. It uses a hierarchical image encoding where foveal
segmentation and bottom-up attention processes can be simulta-
neously performed. As other approaches, this structure resembles
the one of the human retina: it will only capture a small region of
the scene in high resolution (fovea), while the rest of the scene will
be captured in lower resolution on the periphery. Specifically, we
use an adaptive CFG where the fovea can be located in any place of
the scene and its size can be dynamically modified. The structure
of the CFG is very suitable for hierarchical processing, allowing
to encode the multi-resolution image within a foveal polygon. The

foveal polygon represents the image at different resolution levels
and is built using the irregular decimation process of the Bounded
Irregular Pyramid (BIP) (Marfil et al., 2007) applied to percep-
tual segmentation. The saliency of each proto-object is computed
following the Feature Integration Theory (Treisman and Gelade,
1980) as a linear combination of a set of low level features which
clearly influences attention. While the computation of the low
level features is independent of the task, being a pure bottom-
up process, the linear combination of features is computed as
a weighted summation where the weights can be set depending
on the task in a top-down way. This attention mechanism is able
to manage dynamic scenarios by adding an Inhibition of Return
(IOR) mechanism which keeps permanently updated the position
of each already attended proto-object and avoids revisiting an
already attended one.

1.1. RELATED WORK
According to the taxonomy of computational models of visual
attention proposed by Tsotsos and Rothenstein (2011), the
method proposed in this paper can be considered as a saliency-
based one. From the psychological point of view, the development
of saliency-based computational models of visual attention is
mainly based on the so-called early-selection theories. These theo-
ries postulate that the selection of a relevant region precedes pat-
tern recognition. Therefore, attention is drawn by simple features
(such as color, location, shape or size) and attended entities do
not have full perceptive meaning, i.e., they could not correspond
to real objects. Two complementary biological theories or descrip-
tive models are the most influential ones regarding saliency-based
computational models of visual attention: Treisman’s Feature
Integration Theory (FIT) (Treisman and Gelade, 1980) and Wolfe’s
Guided Search (Wolfe et al., 1989; Wolfe, 1994). FIT suggests that
the human vision system detects separable features in parallel in
an early step of the attention process. According to this model,
methods compute image features in a number of parallel chan-
nels in a pre-attentive task-independent stage. Then, the extracted
features are integrated through a bottom-up process into a sin-
gle saliency map which codes the relevance of each image entity.
The first saliency-based computational models mainly followed
these guidelines. For example, the models proposed by Itti et al.
(1998) or Koch and Ullman (1985) compute the saliency of each
pixel based on a set of basic features. They were pure bottom-up,
static models. Several years later, Wolfe proposed that a top-down

FIGURE 1 | (Left) Test image #157055 from the Berkeley Segmentation Data Set (BSDS300) (Martin et al., 2001), (Middle) segmentation by user #1109 (8
segments), and (Right) segmentation by user #1123 (61 segments).
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component in attention can increase the speed of the process
giving more relevance to those parts of the image correspond-
ing to the current task. These two approaches are not mutually
exclusive and, nowadays, several efforts in computational atten-
tion are being conducted to develop models which combine a
bottom-up processing stage with a top-down selection process.
Thus, Navalpakkam and Itti (2005) modified Itti’s original model
in order to add a multi-scale object representation in a long-term
memory. The multi-scale object’s features stored in this mem-
ory determine the relevance of the scene features depending on
the current executed task, implementing, therefore, a top-down
behavior. As an alternative to space-based models, where attention
deploys on an unstructured region of the scene rather than on
an object, object-based models of visual attention provide a more
efficient visual search. These models are based on the assump-
tion that the boundaries of segmented objects, and not just spatial
position, determine what is selected and how attention is drawn
(Scholl, 2001). Therefore, these models reflect the fact that per-
ception abilities must be optimized to interact with objects and
not just with disembodied spatial locations. Orabona et al. (2007)
propose a model of visual attention based on the concept of proto-
objects (Rensink, 2000) as units of visual information that can
be bound into a coherent and stable object. They compute these
proto-objects by employing the watershed transform to segment
the input image using edge and color features in a pre-attentive
stage. The saliency of each proto-object is computed taking into
account top-down information about the object to perform a
task-driven search. Yu et al. (2010) propose a model of attention
that segments the scene into proto-objects in a bottom-up strat-
egy based on Gestalt theories. After that, in a top-down way, the
saliency of the proto-objects is computed taking into account the
current task to accomplish by using models of objects which are
relevant to this task. These models are stored in a long-term mem-
ory. These proto-object based models compute in a firs step the
set of proto-objects from the scene and then they compute their
saliency. There exist other type of methods that first compute the
saliency map from the scene and then, the most salient proto-
object is computed from the saliency map (Walther and Koch,
2006).

Attention theories introduce another important concept: the
Inhibition of Return (IOR) (Posner et al., 1985). Human visual
psychophysics studies have demonstrated that a local inhibition
is activated in the saliency map to avoid attention being directed
immediately to a previously attended region. In the context of
computational models of visual attention, this IOR has been
usually implemented using a 2D inhibition map that contains
suppression factors for one or more focuses of attention that were
recently attended (Itti et al., 1998; Frintrop, 2006). However, this
2D inhibition map is not able to handle the situations where
inhibited objects are in motion or when the vision system itself
is in motion. In this situation, establishing a correspondence
between regions of the previous frame with those of the succes-
sive frame becomes a significant issue. In order to allow that the
inhibition can track an object while it changes its location, the
model proposed by Backer et al. (2001) relates the inhibitions to
features of activity clusters. However, the scope of dynamic inhibi-
tion becomes very limited as it is related to activity clusters rather

than objects themselves (Aziz and Mertsching, 2007). Thus, it is a
better option to attach the inhibition to moving objects (Tipper,
1991). Aziz and Mertsching (2007) utilizes a queue of inhibited
region features to maintain object inhibition in dynamic scenes.

Finally, Psychophysics studies also refer to how many elements
can be attended at the same time. Bundesen establishes in his
Theory of Visual Attention (Bundesen et al., 2011) that there
exists a short-term memory where recently attended elements are
stored. This memory has a fixed capacity usually reduced up to 3
or 5 elements.

All the attention models presented in this section have focused
in different aspects such as e.g., the identification of features
which influence attention, the combination of these features to
generate the saliency map or how an specific task drives atten-
tion. But they neglect the foveal nature of the human attention
system. The methods following a multi-resolution strategy usu-
ally employ two images of different resolution (Meger et al.,
2008): A low-resolution image for computing the saliency map
of the scene and a high resolution one for studying in detail the
most salient region. Foveation has been typically proposed as an
efficient way for image encoding (Geisler and Perry, 1998; Guo
and Zhang, 2010). Built over the foveal encoding by Geisler and
Perry (1998), the Gaze Attentive Fixation Finding Framework
(GAFFE) (Rajashekar et al., 2008) employs four low-level local
image saliency features (luminance, contrast, and bandpass out-
puts of both luminance and contrast) to build saliency maps and
predict gaze fixations. It works on a sequential process in which
the stimulus is foveated at the current fixation point and saliency
features are obtained from circular patches from this foveated
image to predict the next fixation point. This strategy has been
recently evaluated by Gide and Karam (2012), replacing these
saliency features with features from other models such as AIM
(Attentive Information Maximization) (Bruce and Tsotsos, 2009)
or SUN (Saliency Using Natural Image Statistics) (Zhang et al.,
2008). Evaluated under a quality assessment task for different
types of distortions (Gaussian blur, white noise and JPEG com-
pression), Gide and Karam (2012) showed that the performance
of all saliency models significantly improved with foveation over
all distortion types. It should be noted that Rajashekar et al.
(2008) and Gide and Karam (2012) do not obtain the fixation
points from a saliency model, but from features extracted of
the foveated images. Following a different strategy, Advani et al.
(2013) propose to encode the image as a three level Gaussian
pyramid. The higher level represents the whole field-of-view at a
lower resolution, meanwhile the lower one only encodes the 50%
of the field-of-view at the resolution of the original image. The
AIM model is run at these three levels, which returns correspond-
ing information maps. These maps represent the salient regions at
different resolutions and are fused within an unique saliency map
using weighted summation.

1.2. OVERVIEW OF THE PROPOSED ATTENTION MODEL
In this paper, a bottom-up foveal attention model is presented.
The input of this model is a foveal image represented in an adap-
tive CFG where the focus of attention, or Region of Interest
(ROI), is located at the fovea which is surrounded by a set of
concentric rings with decreasing resolution. In this model the
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attention is deployed to proto-objects instead of disembodied
spatial locations. These proto-objects are defined as the blobs of
uniform color and disparity of the image which are bounded by
the edges obtained using a Canny detector. They are extracted
using a perceptual segmentation algorithm which is conducted
using an extension of the BIP (Marfil et al., 2007). The saliency
of each proto-object is computed in a bottom-up framework in
order to obtain the ROI for the next frame. This saliency value
is the combination of a set of low level features that according
to psychological studies clearly influences saliency computation
(Treisman and Souther, 1985; Wolfe et al., 1992). Specifically, it
is computed in terms of the following features: color contrast,
intensity contrast, proximity, symmetry, roundness, orientation
and similarity to skin color. To have an homogenized calculus, all
features values are normalized in the range [0 . . . 255].

Hence, contrary to all previous approaches to foveal attention,
our approach merges within the same hierarchical framework the
segmentation and saliency estimation processes. The levels of the
hierarchy are not obtained by blurring and downsampling the
content on the level below and adding additional information
to increase the field-of-view. In our approach, each level of the
hierarchy is able to provide a segmentation of the encoded field-
of-view. Then, the highest level of the hierarchy, that encodes
the full field-of-view, provides a segmentation St where the fovea
details are present but those at the peripheral regions are not.
This segmentation St depends on the fovea location provided by
the attention process at t − 1 and drives the next location of the
fovea. Once the saliency of each proto-object is computed, the
ROI at t + 1 is extracted as the location of the most salient proto-
object in the current frame. In order to compute this ROI and to
avoid revisiting or ignoring proto-objects, it is necessary to imple-
ment an Inhibition of Return mechanism (IOR). This IOR is very
important in the case of dynamic environments where there are
moving objects. It is typically implemented using a 2D inhibi-
tion map which contains suppression factors for one or more

recently attended focuses of attention. This approach is valid to
manage static scenarios, but it is not able to handle dynamic
environments where inhibited proto-objects or the vision system
itself are in motion. In the proposed system, a tracker mod-
ule keeps permanently updated the position of recently attended
proto-objects or focuses of attention. The features and location
of these already attended proto-objects are stored in a Working
Memory. Thereby, it is avoided to attend an already selected
proto-object even if the proto-object changes its location in the
image. Specifically, the tracker is based on the Comaniciu mean-
shift approach (Comaniciu et al., 2003) , a method which allows
to track non-uniform color regions in an image.

Figure 2 shows the main stages involved in the proposed atten-
tional model and Figure 3 shows an example. First, a foveal image
is captured with the fovea located in the Region of Interest (ROI)
computed in the previous frame. In frame t of Figure 3 the fovea
is located in the woman’s face, in t + 1 the fovea is located in the
man’s face. It must be noted that in the first frame the fovea is
located at the image center. After that, the foveal image is seg-
mented by building the Foveal Polygon using the BIP. In this stage
the set of proto-objects is extracted from the foveal image and the
fovea could be processed by further attentional stages (that are out
of the scope of this paper). Then, saliency of each obtained proto-
object is computed. These saliency values are used to compute the
ROI of the next frame taking into account the output of the track-
ing module. This tracker computes the locations of the previously
attended proto-objects in the current frame. These locations and
the location of the current ROI are inhibited in order to extract
the new ROI (black squares in Figure 3).

1.3. CONTRIBUTIONS
The main contributions of this work are:

• The use of foveal images as inputs of the attentional
mechanism.

FIGURE 2 | Overview of the proposed foveal attention model.
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• The hierarchical representation of the foveal image that allows
to simultaneously built the foveal polygon and perceptually
segment the input image extracting the proto-objects.

• The combination of foveal segmentation and attention: the
attention process allows to select the next position of the fovea
and segmentation allows to extract the units of attention.

1.4. ORGANIZATION OF THE PAPER
After providing a brief overview of the proposed approach in this
Section 1, the rest of the paper is organized as follows: Sections
2, 3 provide a more detailed description of the two main pro-
cesses (perceptual foveal segmentation and bottom-up attention)
tied within our framework. Section 2 introduces the Cartesian
Foveal Geometries and the concept of the Foveal Polygon. Then,
it describes the data structure and decimation strategy that define
the foveal Bounded Irregular Pyramid (foveal BIP). Section 3
describes how the saliency is computed and the ROI is cho-
sen, including a description of our implementation of the IOR.
Section 4 evaluates the performance of the foveal attention sys-
tem. Three kinds of tests have been conducted: a comparison of
the uniform and foveated models of attention, an evaluation of
the ability of our approach for actively driving an image explo-
ration process, and a quantitative evaluation of the attention and
fixation prediction models.

2. PERCEPTUAL FOVEAL SEGMENTATION
In this paper, we propose an artificial attentional system which
uses a hierarchical image encoding where segmentation and
bottom-up attention processes are simultaneously performed.
This image encoding resembles the one of the human retina by
using a foveal representation: only a small region of the scene is
captured with high resolution (fovea), while the rest of the scene
is captured in lower resolution on the periphery. Specifically, an
adaptive Cartesian Foveal Geometry is used to capture the input
image which is hierarchically encoded by means of a Perceptual
Segmentation approach. It allows to extract the proto-objects

from the visual scene and it is conducted using the Bounded
Irregular Pyramid (BIP) (Marfil et al., 2007).

2.1. CARTESIAN FOVEAL GEOMETRIES (CFG) AND FOVEAL POLYGONS
Cartesian Foveal geometries (CFG) encode the field of view of the
sensor as a fovea surrounded by a set of concentric rings with
decreasing resolution (Arrebola et al., 1997). In the majority of
the Cartesian proposals, this fovea is centered on the geometry
and the rings present the same parameters. Thus, the geometry
is characterized by the number of rings surrounding the fovea
(m) and the number of subrings of resolution cells (rexels) found
in the directions of the Cartesian axes within any of the rings.
Figure 4 shows an example of a fovea-centered CFG.

Among other advantages, there are CFGs that are able to pro-
vide a shiftable fovea of adaptive size (Arrebola et al., 1997)
(adaptive CFGs). Vision systems which use the fovea-centered
CFG require to place the region of interest in the center of
the image. That is usually achieved by moving the cameras. A
shiftable fovea can be very useful to avoid these camera move-
ments. Furthermore, the adaptation of the fovea to the size of the

FIGURE 4 | Cartesian Foveal Geometries (CFG).

FIGURE 3 | Example of the operation of the system in two consecutive frames.
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region of interest can help to optimize the consumption of com-
putational resources. Figure 4 shows the rectangular structure of
an adaptive fovea. The geometry is now characterized by the sub-
division factors at each side of the fovea. It should be noted that
the foveal geometry is not adequate for processing planar images.
On the contrary, the aim is to use it for hierarchical processing.
Thus, a hierarchical representation of the foveal image (the foveal
polygon) is built like Figure 5 shows. This foveal polygon has a
first set of levels of abstraction built from the fovea to the waist
(the first level where the complete field of view is encoded). In the
figure, levels 1 and 2 on this hierarchy are built by decimating the
information from the level below and adding the data from the
corresponding ring of the multi-resolution image. Over the waist,
there are a second set of levels. All these levels encode the whole
field of view and are built by decimating the level below.

Typically, the decimation process inside the CFGs have been
conducted using regular approximations (Arrebola et al., 1997).
Then, all levels of the foveal polygon can be encoded as images.
The problems of regular decimation processes were early reported
(Antonisse, 1982; Bister et al., 1990), but here, these processes
were justified due to the simplicity for processing (Traver and
Bernardino, 2010).

In this work, we propose to build the foveal polygon using the
irregular decimation process provided by the Bounded Irregular
Pyramid (BIP) (Marfil et al., 2007).

2.2. PERCEPTUAL FOVEAL SEGMENTATION USING BIP
The BIP is an irregular pyramid which is defined by a data
structure and an irregular decimation process. This irregular dec-
imation is applied to build the foveal polygon by segmenting
the foveal input image using a perceptual segmentation approach
which allows to extract the proto-objects from the visual scene.

FIGURE 5 | Foveal Polygon associated to an adaptive CFG with two

rings.

2.2.1. Data structure of the BIP
The data structure of the BIP is a mixture of regular and irregu-
lar data structures: a 2 × 2/4 “incomplete” regular structure and a
simple graph. The regular structure of the BIP is said to be incom-
plete because, although the whole storage structure is built, only
the homogeneous regular nodes (see subsection 2.2.2) are set in it.
Therefore, the neighborhood relationships of these nodes can be
easily computed. The mixture of both regular and irregular struc-
tures generates an irregular configuration which is described as a
graph hierarchy. In this hierarchy, there are two types of nodes:
nodes belonging to the 2 × 2/4 structure, named regular nodes
and irregular nodes or nodes belonging to the irregular structure.
Therefore, a level l of the hierarchy can be expressed as a graph
Gl = (Nl, El), where Nl stands for the set of regular and irreg-
ular nodes and El for the set of arcs between nodes (intra-level
arcs). Each node ni ∈ Nl is linked with a set of nodes {nk} of Nl−1

using inter-level arcs, being {nk} the reduction window of ni. A
node ni ∈ Nl is neighbor of other node nj ∈ Nl if their reduction
windows wni and wnj are connected. Two reduction windows are
connected if there are at least two nodes at level l-1, np ∈ wni and
nq ∈ wnj , which are neighbors.

2.2.2. Decimation process of the foveal BIP
Two nodes x and y which are neighbors at level l are connected by
an intra-level arc (x, y) ∈ El. Let ε

xy
l be equal to 1 if (x, y) ∈ El and

equal to 0 otherwise. Then, the neighborhood of the node x (ξx)
can be defined as ξx = {

y ∈ Nl : εxy
l

}
. It can be noted that a given

node x is not a member of its neighborhood, which can be com-
posed by regular and irregular nodes. Each node x has associated
a vx value. Besides, each regular node has associated a boolean
value hx: the homogeneity (Marfil et al., 2007). At the base level
of the hierarchy G0, the fovea, all nodes are regular, and they
have hx equal to 1 (they are homogeneous). Only regular nodes
which have hx equal to 1 are considered to be part of the regular
structure. Regular nodes with an homogeneity value equal to 0
are not considered for further processing. The proposed decima-
tion process transforms the graph Gl in Gl + 1 using the pairwise
comparison of neighbor nodes. Then, a pairwise comparison
function, g(vx1 , vx2 ) is defined. This function is true if the vx1 and
vx2 values associated to the x1 and x2 nodes are similar according
to some criteria and false otherwise. When Gl + 1 is obtained from
Gl, being l < waist, this graph is completed with the regular nodes
associated to the ring l + 1. This process will require to compute
the neighborhood relationships among the regular nodes coming
from the ring and the rest of nodes at Gl + 1. Over the waist level,
Gl + 1 is built by decimating the level below Gl.

The building process of the foveal BIP consists of the following
steps:

1. Regular decimation process. The hx value of a regular node
x at level l + 1 is set to 1 if the four regular nodes immedi-
ately underneath {yi} are similar according to some criteria
and their h{yi} values are equal to 1. That is, hx is set to 1 if

{ ⋂
∀yj,yk ∈ {yi}

g
(

vyj , vyk

) }
∩
{ ⋂

yj ∈ {yi}
hyj

}
(1)
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Besides, at this step, inter-level arcs among homogeneous reg-
ular nodes at levels l and l + 1 are established. If x is an
homogeneous regular node at level l + 1 (hx == 1), then the
set of four nodes immediately underneath {yi} are linked to x
and the vx value is computed.

2. Irregular decimation process. Each irregular or regular node
x ∈ Nl without parent at level l + 1 chooses the closest neigh-
bor y according to the vx value. Besides, this node y must be
similar to x. That is, the node y must satisfy

{||vx − vy|| = min (||vx − vz|| : z ∈ ξx)
} ∩ {g

(
vx, vy

) }
(2)

If this condition is not satisfied by any node, then a new node
x′ is generated at level l + 1. This node will be the parent node
of x and it will constitute a root node. Its vx′ value is computed.
On the other hand, if y exists and it has a parent z at level l + 1,
then x is also linked to z. If y exists but it does not have a parent
at level l + 1, a new irregular node z′ is generated at level l + 1
and vz′ is computed. In this case, the nodes x and y are linked
to z′.
This process is sequentially performed and, when it finishes,
each node of Gl is linked to its parent node in Gl + 1. That is,
a partition of Nl is defined. It must be noted that this process
constitutes an implementation of the union-find strategy.

3. Definition of intra-level arcs. The set of edges El + 1 is obtained
by defining the neighborhood relationships between the nodes
Nl + 1. As aforementioned, two nodes at level l + 1 are neigh-
bors if their reduction windows are connected at level l.

4. For l < waist

• The set of nodes Nl + 1 is completed with the rexels of the
ring l + 1. These rexels are added as homogeneous regular

nodes, N
ring
l + 1.

• The intra-level arcs between nodes of N
ring
l + 1 and the rest of

nodes of Nl + 1 are computed as in step 3. Nodes of N
ring
l + 1 do

not have a real reduction window at level l, they present a
virtual reduction window. The virtual reduction window of
a node x ∈ N

ring
l + 1 is computed by quadrupling this node at

level l . Therefore, the reduction window of x is formed by
the four nodes immediately underneath at level l.

In Figure 6 the whole process to build the structure of the
BIP associated to a foveal image with one ring is shown.
Homogeneous regular nodes are represented by squares or cubes
and irregular ones by spheres. In the first row, the process to build
the first level is shown. From left to right: original image, nodes
of the first level generated after the regular and irregular decima-
tion processes (only some inter-level arcs are shown), structure of
the first level after the definition of the intra-level arcs and final
structure of the first level after adding the nodes of the ring (the
virtual reduction window of one node of the ring is shown). In
the second row of the figure, the rest of levels are shown.

2.2.3. Perceptual segmentation
As the process to group image pixels into higher-level struc-
tures can be computationally complex, perceptual segmentation

approaches typically combine a pre-segmentation step with a
subsequent perceptual grouping step. The pre-segmentation step
performs the low-level definition of segmentation. It groups pix-
els into homogeneous clusters. Thereby, pixels in input image
are grouped into blobs of uniform color, replacing the pixel-
based image representation. Besides, these regions preserve the
image geometric structure because each significant feature con-
tains at least one region. The perceptual grouping step conducts a
domain-independent grouping which is mainly based on prop-
erties such as proximity, closure or continuity. Both steps are
conducted using the aforementioned decimation process but
employing different similarity criteria between nodes.

In order to compute the pre-segmentation stage, a basic color
segmentation is applied. In this case, a distance based on the HSV
color space is used. Two nodes ni and nj are similar (they share a
similar color) if their HSV values are less or equal than a similarity
threshold τcolor:

g(vni , vnj ) = (d(ni, nj)) ≤ τcolor) (3)

being vni and vnj the HSV color of nodes ni and nj in cylindrical
coordinates, and d(ni, nj) is the color distance between them.

d(ni, nj) =
√

dv(ni, nj) + dc(ni, nj) (4)

where

dv(ni, nj) = |Vi − Vj| (5)

dc(ni, nj) =
√

Si + Sj + 2 · Si · Sj · cos θ (6)

with θ = |Hi − Hj|.
In the perceptual grouping step, the roots of the pre-segmented

blobs are considered the first level of a new segmentation process.
In this case, two constraints are taken into account for an efficient
grouping process: first, although all groupings are tested, only the
best groupings are locally retained; and second, all the group-
ings must be spread on the image so no part of the image takes
advantage. As segmentation criterion, a more complex distance is
employed instead of a simple color threshold. This distance has
three main components: the color contrast between blobs, the
edges of the original image, obtained using a Canny detector, and
the depth information of the image blobs in form of disparity. To
avoid working at pixel resolution, which decreases the computa-
tional speed, a global contrast measurement is used instead of a
local one. Then, the distance φ(ni, nj) between two nodes ni and
nj is defined as:

φ(ni, nj) =
√
ω1

[
d(ni, nj) · bi

α · Cij + β(bij − cij)

]2

+ ω2
[
δ(ni) − δ(nj)

]2
(7)

where d(ni, nj) is the HSV color distance between ni and nj, δ(x)
is the mean disparity associated to the base image region rep-
resented by node x, bi is the perimeter of ni, bij is the number
of pixels in the common boundary between ni and nj and cij is
the set of pixels in this common boundary which corresponds
to pixels of the boundary obtained using the Canny detector. α
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and β are two constant values used to control the influence of the
Canny edges in the grouping process.ω1 andω2 are two constants
which weight the terms associated with color and disparity. These
parameters should be manually tuned depending on the applica-
tion and the environment. Two nodes are similar if the distance
φ(ni, nj) between them is equal or less than a threshold τpercep:

g(vni , vnj ) = (
φ(ni, nj)

) ≤ τpercep) (8)

The grouping process is iterated until the number of nodes
remains constant among two consecutive levels, because it is not
possible to group together more nodes because they are not sim-
ilar. After the perceptual grouping, the nodes of the BIP with
no parents are the roots of the proto-objects. Figure 7 shows an
example of the result of a perceptual segmentation.

3. SALIENCY COMPUTATION AND ROI SELECTION
Once the scene is divided into proto-objects, the next step is the
selection of the most relevant one. According to Treisman and
Gelade (1980), this process is based on the computation of a
set of low-level features. But, what features must be taken into
consideration? What features really guide attention?

According to psychological studies, some features, such as
color (Treisman and Souther, 1985), motion (McLeod et al., 1988)
or orientation (Wolfe et al., 1992), clearly influence in saliency
computation. These three features, plus size, are cataloged by
Wolfe and Horowitz (2004) as the only undoubted attributes
that can guide attention. Wolfe also offers in his work a com-
plete list of features that might guide the deployment of attention,
grouped by their likelihood to be an effective source of attentional

guiding. He differentiates among the aforementioned undoubted
attributes, probable attributes, possible attributes, doubtful cases
and probable non-attributes.

Another important issue when selecting features to develop
an artificial attention system is concerned with computational
cost. Computing a large number of features provides a richer
description about elements in the scene. However, the associated
computing time could be unacceptable. Hence, it is necessary a
trade-off between computational efficiency and the number and
type of the selected features.

Following the previous guidelines, seven different features
have been selected to compute saliency in the proposed system.
From the undoubted attributes, orientation and color have been
chosen. Because there is no background subtraction in the per-
ceptual segmentation, larger proto-objects usually correspond to
non-relevance parts of the image (e.g., walls, floor or empty
tables). Therefore, size feature is not employed to avoid an erro-
neous highlighting of irrelevant elements. Motion is discarded

FIGURE 7 | (A) Foveal image; (B) Perceptual segmentation associated to
(A) (τcolor = 50, τpercep = 100).

FIGURE 6 | Foveal image with one ring and how the structure of the

Bounded Irregular Pyramid associated to it is built. (A) Building the
central part of Level 1 from the fovea (Level 0), (B) definition of the intra-level

edges at this part and adding new nodes from Ring 1, (C) Building Level 2,
and (D) Building Level 3. Regular nodes are drawn as 3d cubes and irregular
ones as spheres (see text).
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due to computational cost restriction. Although intensity con-
trast is not considered an undoubted feature, it has also been
included as a special case of color contrast (intensity deals with
gray, black, and white elements). From the remainder of avail-
able possible attributes, those describing shape and location have
been considered as more suitable for a complete description of
the objects in scene. Location is calculated in terms of proximity
to the visual sensor. Regarding the shape, two features are taken
into account: symmetry, which allows to discriminate between
symmetric and non-symmetric elements, and roundness, a mea-
sure about the closure and the contour of an object. Finally, in
order to reach a social interaction with humans, it seems to be rea-
sonable to include features able to pop out people from a scene.
Although some works directly consider faces as a feature (Judd
et al., 2009), experimental studies differ (Nothdurft, 1993; Suzuki
and Cavanagh, 1995). Faces themselves do not guide attention but
they can be separated into basic features that really achieve the
guidance (Wolfe and Horowitz, 2004). In general, global prop-
erties are correlated with low-level features that explain search
efficiency (Greene and Wolfe, 2011). Consequently, the proposed
model uses similarity with skin color as an undoubted feature
to guide attention to human faces in combination with other
features as roundness.

To summarize, saliency is computed in terms of the following
features: color contrast, intensity contrast, proximity, symmetry,
roundness, orientation and similarity to skin color. All features
values are normalized in the range [0 . . . 255] in order to have an
homogenized calculus. As most of the artificial attention systems

following Treisman’s Feature Integration Theory (Treisman and
Gelade, 1980), the total saliency of an element in an image is the
result of a linear combination of its low-level features. Figure 8
shows an example of foveal image and its associated feature
maps. These feature maps represent the value of the correspond-
ing feature for each proto-object. The final saliency map is also
shown.

In the proposed attention system, the final saliency value, sali,
for each proto-object, Pi, is obtained as a weighted sum of all the
previously described features:

sali = �λ · �f (9)

where �λ is a set of weights, verifying
∑

i
λi = 1, and �f is the feature

vector formed by the different features computed as explained in
the following subsections. As it was previously commented in the
Introduction section the weights can be set depending on the task
in a top-down way. For example, in Figure 9 two saliency maps
obtained with a different set of weights are shown. While, in the
left saliency map all the weights are set to the same value, in the
right map the weight associated to the proximity feature is higher
than the rest, and therefore, the proto-objects closer to the cam-
era have a bigger saliency value than those who are far away. This
variation in the saliency values causes a modification in the loca-
tion of the next fovea (blue boxes in a). Therefore, the sequence of
fixations of a scene can be modified by varying the values of the
weights.

FIGURE 8 | Foveal image and its associated feature maps.
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FIGURE 9 | (A) First frames of two very similar sequences where the red
box corresponds with the current fovea and the blue box corresponds with
the next ROI; (B) Saliency maps obtained with all the weights set to 1/7
(left image) and with the weight corresponding to proximity equal to 0.5
and the rest to 0.5/6 (right image).

3.1. COLOR CONTRAST AND INTENSITY CONTRAST
These features measure how different a proto-object is with
respect to its surrounding in terms of color and luminosity. The
color contrast, (ColCON), of a specific proto-object, Pi, can be
computed as the mean color gradient along its boundary to the
neighbors in the segmentation hierarchy:

ColCONi = Si

bi

∑
j ∈ Ni

bij · d
(
< Ci >,< Cj >

)
(10)

where bi is the perimeter of Pi, Ni is the set of proto-objects
that are neighbors of Pi, bij is the length of the perimeter of
Pi in contact with proto-object Pj, d

[
< Ci >,< Cj >

]
is the

HSV color distance between the color mean values < C > of
proto-objects Pi and Pj and Si is the mean saturation value of
proto-object Pi.

Because of the use of Si in the color contrast equation, white,
black and gray proto-objects are suppressed. Thus, a feature
about intensity contrast is also introduced. The intensity con-
trast, (IntCON), of a proto-object, Pi, is computed as the mean
luminosity gradient along its boundary to the neighbors:

IntCONi = 1

bi

∑
j ∈ Ni

bij · d
(
< Ii >,< Ij >

)
(11)

being< Ii > the mean luminosity value of the proto-object Pi.

3.2. PROXIMITY
Another important parameter in order to characterize a proto-
object is to determine its distance to the vision system. Nowadays,
not only stereo pairs of cameras but also cheaper devices like

Microsoft Kinect or ASUS Xtion provide accurate depth infor-
mation of the captured image.

When using a sensor able to directly provide depth informa-
tion (e.g., a RGBD camera or similar), the proximity, (PROX),
of a proto-object, Pi, is directly obtained as the inverse of the
mean of the depth values provided by the sensor in the area of
the proto-object depthi:

PROXi = 1

depthi
(12)

In the case of using a stereo pair of cameras as depth sensor, the
proximity can be obtained directly from disparity information.

3.3. ROUNDNESS
Roundness measurement reflects how similar to a circle a proto-
object is. This feature provides information about convexity,
closure and dispersion. Roundness is obtained employing a tra-
ditional technique based on image moments. Concretely, three
different central moments are used:

μi
1,1 =

∑
(x − x)(y − y) ∀(x, y) ∈ Pi (13)

μi
2,0 =

∑
(x − x)2 ∀(x, y) ∈ Pi (14)

μi
0,2 =

∑
(y − y)2 ∀(x, y) ∈ Pi (15)

being (x, y) the center of the proto-object Pi.
From the combination of the equations above, it is possible

to measure the difference between a region and a perfect circle.
This measure is known as eccentricity and can be calculated as
follows:

ecci =
(
μi

2,0 − μi
0,2

)2 +
(

2μi
1,1

)2

(
μi

2,0 + μi
0,2

)2
(16)

being the result in the range [0 . . . 1].
Finally, the roundness, (ROUNDi), for a proto-object, Pi, is

obtained from the definition of eccentricity as:

ROUNDi = 1 − ecci (17)

3.4. ORIENTATION
The orientation of a region in a image can also be obtained from
central moments computed in (13–15):

ϕi = 1

2
arctan

(
2μi

1,1

μi
2,0 − μi

0,2

)
(18)

But the orientation of a proto-object, by itself, does not provide
any useful information about its relevance. Only when comparing
its orientation with the orientation of the rest of proto-objects
in the image, a feasible measure of relevance is obtained. Thus,
in fact, it is more interesting to compute saliency in terms of
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contrast with the surrounding elements. The orientation contrast,
(OriCON), of a proto-object, Pi, is obtained as:

OriCONi =
∑
j ∈ Ni

|ϕi − ϕj| (19)

where Ni is the set of proto-objects that are neighbors of Pi.
Although pure orientation information is not employed to cal-

culate relevance, it is saved as a descriptor of the proto-object for
further use (for example, to compute symmetry).

3.5. SYMMETRY
To compute the symmetry of a proto-object, an approach sim-
ilar to Aziz and Mertsching (2008) is followed. They propose a
method to obtain symmetry using a scanning function ψ(L, Ps)
that counts the symmetric points around a point Ps along a line L.
This procedure is repeated employing different lines of reference.
For each line, the measure of symmetry is computed as:

Sθ =
l∑

s = 1

ψ(L, Ps)

α(Ri)
(20)

where l and θ are the length and the angle of the line of reference
and α(Ri) is the area of the region in order to normalize the result
between 0 and 1.

Only an approximation of symmetry is needed in terms of
attention systems. Thus, only 4 different angles for symmetry axes
are considered: 0, 45, 90, and 135◦ respect to the orientation, ϕi,
of the image [obtained in (18)]. In Aziz and Mertsching (2008),
the total measure of symmetry is computed as an average of the
symmetry values in the different lines of reference. Nevertheless,
such strategy can define a region with only one axis of symme-
try as asymmetric, because non-symmetric axes cancel out the
contribution of the symmetric one.

As relevance is given to symmetry independently of the axis of
symmetry, the maximum symmetry, (SYMM), for a proto-object,
Pi, is computed as:

SYMM = maxθ (Sθ ) (21)

3.6. SKIN COLOR
The computation is based on the skin color chrominance model
proposed by Terrillon and Akamatsu (1999). First, the image is
transformed into the TSL color space. Then, the Mahalanobis dis-
tance between the color of the proto-object and the mean vector
of the skin chrominance model is computed. If this distance is
less than a threshold �skin, the skin color feature is marked with
a value of 255. Otherwise, it is set to 0.

SKNi =
{

255 if dM

(
< CTSL

i >,< CTSL
yellow >

)
≤ �skin

0 otherwise
(22)

3.7. INHIBITION OF RETURN AND ROI SELECTION
Once the saliency of each proto-object has been computed, the
most salient one is selected as the next ROI where the fovea will be

located in the next frame. In this process it is necessary to take into
account that revisiting already attended proto-objects and ignor-
ing not attended ones must be avoided. To do that an inhibition
of return algorithm should be implemented.

Psychophysics studies about human visual attention have
established that a local inhibition is activated in the saliency map
when a region is already attended. This mechanism avoids direct-
ing focus of attention to a region immediately visited and it is
normally called inhibition of return (IOR) (Posner et al., 1985).
In order to handle dynamic environments, this IOR mecha-
nism needs to establish a correspondence between regions among
consecutive frames. In order to associate this inhibition to the
computed proto-objects and not only to activity clusters as in
Backer et al. (2001) or to object features as in Aziz and Mertsching
(2007), an object-based inhibition of return applying image
tracking is employed instead in the proposed work. To do that,
recently attended proto-objects are stored in a Working Memory
(WM). When the vision system moves, the proto-objects stored
in the WM are kept tracked. In the next frame, a new set of
proto-objects is obtained from the image and the positions of the
previously stored ones are updated. Then, from the new set of
proto-objects, those occupying the same region than the already
attended ones are suppressed. Discarded proto-objects are not
taken into account in the selection of the most salient one.

A tracker based on Dorin Comaniciu’s mean-shift approach
(Comaniciu et al., 2003) is employed to achieve the inhibition
of return. Mean-shift algorithm is a non-parametric density esti-
mator that optimizes a smooth similarity function to find the
direction of movement of a target. A mean-shift based tracker
is specially interesting because of its simplicity, efficiency, effec-
tiveness, adaptability and robustness. Moreover, its low computa-
tional cost allows to track several objects in a scene maintaining
a reasonable frame rate (real-time tracking of multiple objects).
In the proposed system, the target model is represented by a 16-
bin color histogram masked with an isotropic kernel in the spatial
domain. Specifically, the Epanechnikov kernel is employed.

4. EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed foveal atten-
tion system, the experiments have been divided into three parts:
the comparison between uniform and foveal attention models;
the evaluation of the ability of the approach for actively driving an
image exploration process; and finally the evaluation of the atten-
tion and fixation prediction model. All tests have been conducted
on an Intel(R) Core(TM)2 Duo CPU T8100 2.10 GHz.

4.1. UNIFORM vs. FOVEAL ATTENTION
One of the main reasons for using a foveal strategy is the reduc-
tion of the computational costs. In our tests, running the system
within different platforms, the foveal attention approach demon-
strated to be approximately 4 times faster than its uniform
counterpart. All tests were conducted using a Microsoft Kinect
as input and working with images of 640 × 480 pixels. Within
this framework, the algorithm is able to run at 10–12 frames
per second (fps). The reduction on computational cost is signif-
icant, specially if we consider that the foveal image generation
(the Kinect sensor provides an uniform image) is included in
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the computational costs associated to the foveal approach. If we
remove these costs, the foveal approach is approximately 6 times
faster.

Then, the question is: what is the cost to pay for being faster?
Figure 10 assesses the sequence of fixations obtained by an atten-
tion model that uses (top) uniform images and (bottom) foveal
images. It must be noted that they are not the same video
sequence, and although the scenario is the same for both trials
(with the same relevant items), some differences can be presented
due to light variations or slightly motions. In both cases the same
set of weights has been employed for the saliency computation
and the results are then very similar. There are significant differ-
ences on the peripheral part of the image, but the fovea is in both
cases at the same resolution. And the fovea includes the object to
attend.

On the contrary, the drawbacks of being slow are clear when
dealing with real scenarios. Thus, Figure 11 shows how the use
of foveal images is not sufficient to attend on time to a region
marked as relevant (on the second frame of the sequence). When
the fovea moves to this position (third frame), it does not find the
searched region. The active exploration continues and the fovea
will move to a new coherent position (the blue cup) on the next
frame.

4.2. ACTIVE EXPLORATION USING THE FOVEAL ATTENTION APPROACH
As it has been illustrated in the previous section, due to its
foveal nature, the proposed approach does not provide a sin-
gle saliency map for a given scenario but a sequence of saliency
maps. Thus, there is an iterative flow whose steps imply (a) to
move the fovea to a new location, (b) to obtain a new saliency
map, and (c) to determine the new location of the fovea accord-
ing to this map. The foveal approach should then be understood
within the framework of video processing, i.e., scenarios where
visual information constantly changes due to ego-centric move-
ments or dynamics of the world (Borji and Itti, 2013b). When
we use this approach for exploring a static scene, the result will
be the same: it is necessary more than one iteration to explore it
(unless this has only one relevant object). Figure 12 shows scan-
path results for three images from the Saliency ToolBox (http://
www.saliencytoolbox.net/). The left column shows the results
obtained using the approach by Walther and Koch (2006). The
right one the set of proto-objects obtained using our approach.
Gaze ordering is drawn over the images. Each iteration provides
a foveal region to be analyzed in detail. This exploration is an
active process which is completed in a finite number of iterations
(when all the relevant parts of the image have been located at the
fovea). This behavior is due to the existence of an IOR mechanism

FIGURE 10 | Active exploration of a video sequence. (Top) uniform images, and (Bottom) foveal images. In both cases the used color parameters have
been τcolor = 50 and τpercep = 100.

FIGURE 11 | Active exploration of a video sequence (see text for details) (τcolor = 50, τpercep = 100).
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FIGURE 12 | Scanpath results for three images from the Saliency ToolBox. (Left) Results obtained using the approach by Walther and Koch (2006), and
(Right) sets of proto-objects obtained using our approach. Gaze ordering is drawn over the images.

but also to the existing differences among foveal segmentations
results depending on the location of the fovea. The foveal region
is segmented in detail while the level of detail decreases with the
distance to the fovea. That is, the segmentation of the same region
can be very different between iterations. This is illustrated in
Figures 13, 14.

Figure 13 shows that the approach outcomes a fixation region
in each iteration. This fixation region is the most salient proto-
object inside the fovea. These proto-objects are usually among
the set of segments in which the people divides up the image
(face, one hand, one leg. . . ). The top-middle image of the fig-
ure represent the first seven fixation regions. At the bottom
(left and middle), the figure shows the first two segmentations.
Although there is certain constancy on the boundaries, they are
not identical. Segmentations will be more different when fixation
regions are more distant on the image. For instance, this occurs
in Figure 14. From top-left to bottom-middle, this figure shows
a sequence of fixations. The current fovea is marked within a red
rectangle and the next within a blue one. The first fovea is over the
face of the man, then it moves to a salient flower on the top-left
corner, then to the hand of the man. . . Sometimes, this scan-path

does not follow the path we could desire: from the hand it now
moves to the elbow of the man and, from here, to the dress of
the woman. But we are dealing with an active process, and it will
return to “relevant” (from our point-of-view) regions quickly.
Finally, this image also shows how the IOR works. After some
frames, the fovea returns to previously visited regions (the face of
the man, his hand...). Results are similar to the ones provided by
the approach by Walther and Koch (2006) (see the bottom-right
images at Figures 13, 14).

The effectiveness of our approach has been verified with exper-
iments performed on human eye gaze data. As ground truth
scan-paths, we use the JUDD publicly available eye tracking
dataset (Judd et al., 2009). This dataset records human gaze in a
free viewing setting (1003 images with scan-paths of 15 subjects).
Our estimated scan-paths are obtained as an ordered sequence of
region’s centroids. The comparison between an estimated scan-
path and one of these ground truth scan-paths is performed using
the similarity index described by Liu et al. (2013). In this measur-
ing metric, there is a parameter (gap), which is the penalty value
employed when it is necessary to add a gap (deletion or insertion
operation) in any of the scan-paths during local alignment. It is
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FIGURE 13 | Active exploration of the image #376043 of the Berkeley

Segmentation Dataset. (Top left) original image, (Top middle) set of seven
first fixation regions, (Top right) human segmentations, (Bottom

left-middle) first two segmentations from the proposed approach and
(Bottom right) scanpath result using the approach by Walther and Koch
(2006).

set to -1/2 in our tests. Finally, for each image at the JUDD dataset,
we have 15 ground truth scan-paths (one from each users). Then,
we compare each scan-path with all these ground truth ones, pro-
viding the average similarity value. Our result is close to 1.05. It
can be noted that our approach provides a better result in this
framework than the approaches by Itti et al. (1998) and Walther
and Koch (2006) (both under 0.9). On the other hand, this result
is under the Liu et al. (2013)’s scores (close to 1.15). However, it
should be appreciated that the Liu et al. (2013)’s approach does
not only use low-level feature saliency, but also spatial position
and semantic content. Our approach does not take into account
these factors.

4.3. EXPERIMENTS WITH ATTENTION AND FIXATION PREDICTION
The approach has been evaluated using the Toronto
database (Bruce and Tsotsos, 2009). This dataset was recently
defined as the most widely used image data set in the review
paper by Borji and Itti (2013b). The dataset contains 120 images
(681 × 511 px) with eye-tracking data from 20 people. The sub-
jects saw the images for four seconds, and they had no assigned
task (i.e., free-viewing). Figure 15 shows four images of the data
set. Fixations are drawn over the images. A fixation density map

is generated for each image based on these fixation points (Bruce
and Tsotsos, 2009). They are also shown at Figure 15 under each
original image.

Contrary to the most attention approaches, our saliency maps
should be also estimated from a set of fixations. However, con-
trary to the density maps obtained from experimental human eye
tracking data, our fixations cannot be associated to points, but to
regions. The fixation density maps shown at the bottom row of
the Figure 15 were built by the sum of the most saliency regions
on n fixations. The number n was equal to the mean of the num-
ber of human fixations recorded for this image in the original
data set.

Then, we use the well-known receiver operating characteristic
(ROC) area under curve (AUC) measure to assess the perfor-
mance of the approach. Each saliency map can be thresholded
and then considered to be a binary classifier that separates positive
samples (fixation points of all subjects on that image) from neg-
ative samples (fixation points of all subjects on all other images
in the database). This process avoids the center-bias effect (Borji
and Itti, 2013b). Then, we can sweep over all thresholds to esti-
mate the ROC curve for each saliency map and calculated the area
beneath the ROC curve. This area provides a good measure to
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FIGURE 14 | Active exploration of the image #157055 of the Berkeley

Segmentation Dataset. From (Top left) to (Bottom middle), the figure
shows a sequence of fixations (each image shows the current fovea,

marked with a red rectangle, and the next one, within a blue rectangle).
(Bottom right) Scanpath result using the approach by Walther and Koch
(2006).

FIGURE 15 | Toronto Database. (Top) original images and fixation points, (Middle) fixation density maps obtained from the human fixations, and (Bottom)

fixation density maps obtained by the proposed foveal attention approach.
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assess how accurately the saliency map predicts the eye fixations
on the image. An AUC value greater than 0.5 indicates positive
correlation. As a performance baseline we can estimate an ideal
AUC measuring how well the fixations of one subject can be pre-
dicted by the fixations of the rest of subjects. The ideal AUC for
the data set is 0.878 (Borji and Itti, 2013b). In our experiments,
the obtained score was 0.669. This value is similar to the ones
provided by other methods. In the ranking documented by Borji
and Itti (2013a), it will be the fifth best value of 28 evaluated
models.

5. CONCLUSIONS AND FUTURE WORK
We proposed in this paper a foveal model of attention which com-
bines static cues with depth and tracking to deal with dynamic
scenarios. The framework was developed for an active observer,
but this paper shows that it can also be applied to image databases.
These static images were preferably employed to compare or eval-
uate the approach. Contrary to other approaches (such as the
recently proposed by Mishra et al., 2012), we do not pursuit
here a novel formulation of segmentation. Thus, in Section 4.2,
we prefer to speak about active exploration and not segmen-
tation. Active segmentation will probably require an additional
(and better) algorithm that will try to extract the whole object
from the fixation region. We refer the reader to the excellent work
by Mishra et al. (2012) to understand the whole problem of active
segmentation.

With respect to previous approaches to object-based attention,
this work must be classified with those methods that compute the
saliency of scene regions and not of isolated pixels. For this end,
these approaches segment the input image before to evaluate and
obtain the saliency map. As a main difference with previous works
such as the ones by Orabona et al. (2007) and Yu et al. (2010),
our approach performs this segmentation as a multi-resolution
process, where only the fovea is processed with details. Thus, this
segmentation depends on the position of the last fovea or ROI.
Furthermore, our framework provides a complete approxima-
tion for closing the loop that involves segmentation and saliency
estimation, including an inhibition of return mechanism. We
consider that analyzing this loop closing is basic to understand
an object-based attention mechanism working on a real, dynamic
scenario.

This approach should be extended in several ways. Launched
as a system to endow into a mobile robot, the foveal approach
needs to be faster and to take into consideration top-down fac-
tors. We are working on both research direction. The speed will
be improved by implementing the approach in a Zedboard plat-
form. This is allowing to move part of the code to a FPGA,
meanwhile the main function continues running on a proces-
sor. Top-down component of attention will initially come from
the adjustment of the weights used to bias the saliency maps.
Further work should be addressed to add object models on this
process.
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The benefits of integrating attention and object recognition are investigated. While
attention is frequently modeled as a pre-processor for recognition, we investigate the
hypothesis that attention is an intrinsic component of recognition and vice-versa. This
hypothesis is tested with a recognition model, the hierarchical discriminant saliency
network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class
according to the principles of discriminant saliency. As a model of neural computation,
the HDSN has two possible implementations. In a biologically plausible implementation,
all layers comply with the standard neurophysiological model of visual cortex, with
sub-layers of simple and complex units that implement a combination of filtering,
divisive normalization, pooling, and non-linearities. In a convolutional neural network
implementation, all layers are convolutional and implement a combination of filtering,
rectification, and pooling. The rectification is performed with a parametric extension of
the now popular rectified linear units (ReLUs), whose parameters can be tuned for the
detection of target object classes. This enables a number of functional enhancements
over neural network models that lack a connection to saliency, including optimal
feature denoising mechanisms for recognition, modulation of saliency responses by the
discriminant power of the underlying features, and the ability to detect both feature
presence and absence. In either implementation, each layer has a precise statistical
interpretation, and all parameters are tuned by statistical learning. Each saliency detection
layer learns more discriminant saliency templates than its predecessors and higher
layers have larger pooling fields. This enables the HDSN to simultaneously achieve high
selectivity to target object classes and invariance. The performance of the network
in saliency and object recognition tasks is compared to those of models from the
biological and computer vision literatures. This demonstrates benefits for all the functional
enhancements of the HDSN, the class tuning inherent to discriminant saliency, and
saliency layers based on templates of increasing target selectivity and invariance.
Altogether, these experiments suggest that there are non-trivial benefits in integrating
attention and recognition.

Keywords: object recognition, object detection, top-down saliency, discriminant saliency, hierarchical network

1. INTRODUCTION
Recent research in computational neuroscience has enabled sig-
nificant advances in the modeling of object recognition in visual
cortex. These advances are encoded in recent object recogni-
tion models, such as HMAX (Riesenhuber and Poggio, 1999;
Serre et al., 2007; Mutch and Lowe, 2008) the convolutional net-
works of Pinto et al. (2008); Jarrett et al. (2009) and a number
of deep learning models (Hinton et al., 2006; Krizhevsky et al.,
2012). When compared to classical sigmoid networks (LeCun
et al., 1990, 1998), these models reflect an improved under-
standing of the neurophysiology of visual cortex (Graham, 2011),
recently summarized by the standard neurophysiological model
of Carandini et al. (2005). This consists of hierarchical layers of
simple and complex cells (Hubel and Wiesel, 1962). Simple cells

implement a combination of filtering, rectification, divisive con-
trast normalization, and sigmoidal non-linearity, which makes
them selective to certain visual features, e.g., orientation. Complex
cells pool information from multiple simple cells, producing an
invariant representation. While the receptive fields of cells at the
lower hierarchical levels resemble Gabor filters of limited spa-
tial extent, cells at the higher layers have much more complex
receptive fields, and pool information from larger regions of sup-
port (Poggio and Edelman, 1990; Perrett and Oram, 1993). This
makes them more selective and invariant than their low-level
counterparts. Extensive experiments have shown that accounting
for simple and complex cells (Serre et al., 2007), using nor-
malization and rectification (Jarrett et al., 2009), optimizing the
sequence of these operations (Pinto et al., 2009), or learning deep
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networks with multiple layers (Krizhevsky et al., 2012) can be
highly beneficial in terms of recognition performance.

There are, nevertheless many aspects of cortical processing
that remain poorly understood. In this work, we consider the
role of attention in object recognition, namely how attention
and recognition can be integrated in a shared computational
architecture. We consider, in particular, the saliency circuits
that drive the attention system. These circuits are usually clas-
sified as either bottom-up or top-down. Bottom-up mecha-
nisms are stimulus driven, driving attention to image regions
of conspicuous stimuli. Many computational models of bottom-
up saliency have been proposed in the literature. They equate
saliency to center-surround operations (Itti et al., 1998; Gao and
Vasconcelos, 2009), frequency analysis (Hou and Zhang, 2007;
Guo et al., 2008), or stimuli with specific properties, e.g., low-
probability (Rosenholtz, 1999; Bruce and Tsotsos, 2006; Zhang
et al., 2008), high entropy (Kadir and Brady, 2001), or high
complexity (Sebe and Lew, 2003). An extensive review of bottom-
saliency models is available in Borji and Itti (2013) and an experi-
mental comparison of their ability to predict human eye fixations
in Borji et al. (2013). While these mechanisms can speed up
object recognition (Miau and Schmid, 2001; Walther and Koch,
2006), by avoiding an exhaustive scan of the visual scene, they
are not intrinsically connected to any recognition task. Instead,
bottom-up saliency is mostly a pre-processor of the visual stim-
ulus, driving attention to regions that are likely to be of general
vision interest. On the other hand, top-down saliency mecha-
nism are task-dependent, and emphasize the visual features that
are most informative for a given visual task. These mechanisms
assign different degrees of saliency to different components of a
scene, depending on the recognition task to be performed. For
example, it is well known since the early studies of Yarbus (1967)
that, when subjects are asked to search for different objects in a
scene, their eye fixation patterns can vary significantly. It has also
long been known that attention has a feature based component.
More precisely, human saliency judgments can be manipulated by
enhancement or inhibition of the feature channels of early vision,
e.g., color or orientation (Maunsell and Treue, 2006). This type of
feature selection should, in principle, be useful for recognition.

Overall, there are several reasons to study the integration of
recognition and top-down saliency. First, the ability to simulta-
neously achieve selectivity and invariance is a critical requirement
of robust image representations for recognition. By increasing the
selectivity of neural circuits to certain classes of stimuli, the addi-
tion of top-down saliency, which increases selectivity to the object
classes of interest, could potentially improve recognition perfor-
mance. Second, there is some evidence that adding an attention
mechanism to computational models of object recognition can
improve their performance. For example, spatially selective units
are known to substantially improve HMAX performance (Mutch
and Lowe, 2008). In fact, as we will show later in this work, some
of the recent object recognition advances in computer vision, such
as the now widely used SIFT descriptor, can be interpreted as
saliency mechanisms. Although these are purely stimulus driven,
i.e., bottom-up, the gains with which they are credited again
suggest that saliency has a role to play in recognition. Third,
the connection to saliency provides the intermediate layers of a

recognition network with a functional justification. Rather than
a side effect of a holistic network optimization with respect to
a global recognition criterion, they become individual saliency
detectors, each attempting to improve on the saliency detection
performance of their predecessors. This has a simpler evolution-
ary justification, under which (1) visual systems would evolve one
layer at a time and (2) the search for improved performance in
attention tasks leads naturally to object recognition networks.

All these observations suggest the hypothesis that, rather than
a simple bottom-up pre-processor that determines conspicuous
locations to be sequentially analyzed by the visual system, saliency
could be embedded in object recognition circuits. Our previous
work has also shown that, under the discriminant saliency princi-
ple, the computations of saliency can be mapped to the standard
neurophysiological model (Gao et al., 2008; Gao and Vasconcelos,
2009). While we have exploited this mapping extensively for mod-
eling bottom-up saliency, the underlying computations can be
naturally extended to top-down saliency. In fact, under this exten-
sion, the saliency operation boils down to the discrimination
between an object class and the class of natural images. This is
intrinsically connected to object recognition. It, thus, appears that
biology could have chosen to embed saliency in the recognition
circuitry, if this had an evolutionary benefit, i.e., if embedding
saliency in object recognition networks improves recognition per-
formance. One of the goals of this work is to investigate this
question. For this, we propose a family of hierarchical discriminant
saliency networks (HDSNs), which jointly implement attention
and recognition. More precisely, HDSNs are networks whose lay-
ers implement top-down saliency detection, based on features
of increasing selectivity and invariance. These layers are stacked,
so as to enhance the saliency detection of their predecessors.
Since higher layers become more selective for the target objects,
object recognition should be enhanced as a by-product of the
saliency computation. All saliency detectors are derived from the
discriminant saliency principle of Gao and Vasconcelos (2009)
and explicitly minimize recognition error, using the top-down
saliency measure of Gao et al. (2009). This is implemented with
the biologically plausible computations of Gao and Vasconcelos
(2009). In this way, HDSNs are consistent with the standard neu-
rophysiological model (Carandini et al., 2005), but have a precise
computational justification, and a statistical interpretation for all
network computations. All parameters can thus be tuned by sta-
tistical learning, enabling the explicit optimization of the network
for recognition.

A number of properties of HDSNs are investigated in this
work. We start by showing that HSDNs can be implemented in
multiple ways. In addition to the biologically plausible implemen-
tation, they can be interpreted as an extension of convolutional
neural network models commonly used for recognition. This
extension consists of a new type of rectifier function, which
is a generalization of the recently popular rectified linear unit
(ReLU) (Nair and Hinton, 2010; Krizhevsky et al., 2012). The gen-
eralization is parametric and can be tuned according to the statis-
tics of the object classes of interest. This tuning enables the
network to implement behaviors, such as switching from selec-
tivity to feature presence to selectivity to feature absence, that are
not possible with the units in common use. The computation
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of saliency also enables the network to learn more discrim-
inant receptive fields. In result, receptive fields at the higher
network layers become tuned for configurations of salient low-
level features, improving both saliency and object recognition
performance. Overall, HDSNs are shown to exhibit the ability to
model both salient features and their configurations, to replicate
the human ability to identify objects due to both feature pres-
ence and absence, to modulate saliency responses according to
the discriminant power of the underlying features, and to imple-
ment optimal feature denoising for recognition. The introduction
of HDSNs is complemented by the analysis of several recogni-
tion methods from computer vision (Vasconcelos and Lippman,
2000; Lazebnik et al., 2006; Zhang et al., 2007; Boiman et al.,
2008; Yang et al., 2009; Zhou et al., 2009), which are mapped to
a canonical architecture with many of the attributes of the bio-
logical models. This enables a clear comparison of methods from
the two literatures. A rigorously controlled investigation, involv-
ing models from both computational neuroscience and computer
vision, shows that there are recognition benefits to both the
class-tuning inherent to discriminant saliency and the hierarchi-
cal organization of the HDSN into saliency layers of increased
target selectivity and invariance. Experiments on standard visual
recognition datasets, as well as a challenging dataset for saliency,
involving the detection of panda bears in a cluttered habitat, show
that these advantages can translate into significant gains for object
detection, localization, recognition, and scene classification.

2. METHODS
We start with a brief review of discriminant saliency.

2.1. DISCRIMINANT SALIENCY
Discriminant saliency is derived from two main principles: that
(1) neurons are optimal decision-making devices and (2) opti-
mality is tuned to the statistics of natural visual stimuli. The
visual stimulus is first projected into the receptive field of a neu-
ron, through a linear transformation T , which produces a feature
response X. The neuron then attempts to classify the stimulus as
either belonging to a target or background (also denoted null)
class. The definitions of target and background class define the
saliency operation. For bottom-up saliency, they are the feature
responses in a pair of center (target) and surround (background)
windows co-located with the receptive field (Gao et al., 2008; Gao
and Vasconcelos, 2009). In this work we consider the problem of
top-down saliency, where the target class is defined by the fea-
ture responses to a stimulus class of interest and the background
class by the feature responses to the class of natural images (Gao
et al., 2009). In the object recognition context, the stimulus class
of interest is a class of objects. Neurons implement the optimal
decision rule for stimulus classification in the minimum probabil-
ity of error (MPE) sense (Duda et al., 2001; Vasconcelos, 2004a).
Saliency is then formulated as the discriminability of the visual
stimulus with respect to this classification. Stimuli that can be eas-
ily assigned to the target class are denoted salient, otherwise they
are not salient. The discriminability score used to measure stimu-
lus saliency is computed in two steps, implemented by two classes
of neurons that comply with the classical grouping into simple
and complex cells. Simple cells first compute the optimal decision

rule for stimulus classification into target and background, at each
location of the visual field. Complex cells then combine simple
cell outputs to produce a discriminability score.

2.1.1. Statistical model
Consider a simple cell, whose receptive field is centered at loca-
tion l of the visual field. The visual stimulus at l is drawn from
class Y(l), where Y(l) = 1 for target and Y(l) = 0 for background.
The goal of the cell is to determine Y(l). For this, it applies a
linear transformation T to the stimulus in a neighborhood of
l (the receptive field of the cell) , producing a feature response
X(l) at that location. The details of the transformation are not
critical, the only constraint is that it is a bandpass transforma-
tion. Using the well know-fact that bandpass feature responses
to natural images follow the generalized Gaussian distribution
(GGD) (Buccigrossi and Simoncelli, 1999; Huang and Mumford,
1999; Do and Vetterli, 2002), the feature distributions for target
and background are

PX|Y (x(l)|i) = β

2α�(1/β)
e
−
( |x(l)|

αi

)β
i ∈ {0, 1}. (1)

The parameters αi are the scales (variances) of the two distri-
butions, while β is a parameter that determines their shape.
For natural imagery, β is remarkably consistent, taking values
around 0.5 (Srivastava et al., 2003). This value is assumed in
the remainder of this work. The scales αi are learned from two
training samples R1,Ro of examples from target and null class,
respectively, by maximum a posteriori (MAP) estimation, using
a conjugate Gamma prior of hyper-parameters η, ν. As described
in Gao and Vasconcelos (2009) the MAP estimates of α1 and α0

are

α
β

i = 1

κ

∑
xj ∈ Ri

|xj|β + ν, i ∈ {0, 1}, κ = n + η

β
. (2)

The values of the prior parameters are not critical. They are used
mostly to guarantee that the estimates of αi are non-zero. In this
work, we use η = 1 and ν = 10−3.

2.1.2. Saliency measure
A simple cell uses the above model of natural image statistics to
compute the posterior probability of the target class, given the
observed feature response X(l)

PY |X (1|x(l)) = σ
(
g[x(l)]) , (3)

where σ (x) = 1/(1 + e−x) is the sigmoid function and g(x) the
log-likelihood ratio (LLR)

g(x) = log
PX|Y (x|1)

PX|Y (x|0)
=
( |x|
α0

)β
−
( |x|
α1

)β
+ T, (4)

with T = log
(
α0
α1

)
. Simple cells are organized into convolutional

layers, which repeat the simple cell computation at each loca-
tion of the visual field. Each layer produces a retinotopic map
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of posterior probabilities PY |X (1|x(l)) given the feature responses
derived from a common transformation T . The computation is
repeated for various transformations Ti, producing several chan-
nels of simple cell response. As illustrated in the left of Figure 1,
these channels are computed at multiple resolutions, by applying
each transformation to re-scaled replicas of the visual stimulus. In
our implementation, we use 10 scales, with subsampling factors of
2i/4, i ∈ {0, . . . , 9}.

The saliency of the stimulus at location l is evaluated by a
complex cell that combines the responses of afferent simple cell
responses in a neighborhood N(l) (its pooling neighborhood)
into the discriminability score

S(l) = EX(l)
(�g(X)�+

)
, (5)

where EX(l) denotes the expectation with respect to the dis-
tribution of X in N(l) and �x�+ = max (x, 0) is the half-wave
rectification function. This rectification assures that the score is
non-negative, by zeroing the LLR g(x) at all locations where the
outcome of the Bayes decision rule for MPE classification

Ŷ(l) =
{

1, if g[x(l)] ≥ 0
0, if g[x(l)] < 0

(6)

assigns the response to the background class (i.e., chooses
Ŷ(l) = 0). Large values of the score S(l) indicate that the feature

response X(l) can be clearly assigned to the target class, i.e., the
LLR g(x) is both positive and large. For such stimuli, the posterior
probability of (3) is close to one. In this case, the visual stimulus
is salient. Small scores indicate that this is not the case. The com-
putation of the saliency score of (5) is implemented by replacing
the expectation with a sample average over N(l)

S(l) = 1

|N(l)|
∑

j ∈ N(l)

�g[x(j)]�+. (7)

This is computed as a combination of the responses of simple cells
in N(l), since (7) can be written as Han and Vasconcelos (2010)

S(l) = 1

|N(l)|
∑

j ∈ N(l)

ξ{PY |X[1|x(j)]} (8)

with

ξ(x) =
{

1
2 log x

1−x , x ≥ .5

0, x < .5.

Hence, a complex cell applies the non-linear transformation
ξ(x) to the responses of the afferent simple cells and pools the
transformed responses into the saliency measure S(l). The neigh-
borhood N(l) is thus denoted as the pooling neighborhood of the
complex cell. Like simple cells, the complex cell computation is

FIGURE 1 | Left: saliency is computed by a pair of layers of simple and
complex cells. In the simple cell layer, the visual stimulus is first subject to a
number of linear transformations, which are repeated at various image
scales, illustrated by chopped pyramids. In the example of the figure, the set
of transformations consist of four oriented filters Ti . Each simple cell
computes the optimal decision rule for the classification of the filter response
at one scale and location of a simple cell grid GS . A channel consists of all
retinotopic maps of simple cell response derived from a common
transformation (4 channels in the figure). A complex cell computes the
saliency score of (7), using a pooling neighborhood N(l) that spans locations
and scales. The retinotopic maps of complex cell response are in one to one
correspondence to those of simple cell response, but the grid GC of complex
cell locations is a subsampled replica of its simple cell counterpart. The
simple and complex cell computations can be implemented in two ways. In a

biologically plausible implementation, simple cells compute the posterior
probabilities of (3), while complex cells implement the pooling operator of (8).
In an artificial neural network implementation, simple cells implement the
parametric ReLU units of (11), while complex cells perform simple averaging.
Right: the top inset shows the histogram of responses of a bandpass filter to
the natural image on the left. The scale parameter α characterizes the spread
of the distribution and is large (small) for filters that match (do not match)
structures in the image, i.e., features that are “present” (“absent”). The plot
in the bottom shows the function of (11) for different values of αi . The
behavior of the parametric ReLU can change from the detection of feature
presence to the detection of feature absence, depending on the scales of the
target and background GGD distributions. The curve in red (blue) corresponds
to a feature present (absent) in the target but absent (present) in the null
class.
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replicated at a grid of locations GC (usually a subset of the sim-
ple cell grid GS) to produce a retinotopic channel of saliency
response. Each channel is associated with a common feature
transformation T , i.e., complex cells only combine the responses
of simple cells of common transformation T . As illustrated in the
left of Figure 1, the number of channels of complex cell response
is identical to that of simple cell response.

2.2. SALIENCY DETECTOR IMPLEMENTATIONS
The saliency measure of (5) can be implemented in three different
ways, which are of interest for different applications of the saliency
model.

2.2.1. Biologically plausible implementation
The saliency computations can be mapped into a network that
replicates the standard neurophysiological model of visual cor-
tex (Carandini et al., 2005). In biology, rather than the static
analysis of a single image, recognition is usually combined with
object tracking or some other dynamic visual process. In this case,
saliency is not strictly a feedforward computation. In particular,
the training sets Ri of (2), used to learn the GGD parameters
of a cell, are composed by responses of other cells, i.e., the tar-
get and background classes are defined by the lateral connections
of a simple cell. An implementation of object tracking, by con-
tinuously adaptive recognition of the objects to track, using this
type of mechanism is presented in Mahadevan and Vasconcelos
(2013). In this implementation, the lateral connections are orga-
nized in a center surround manner, defining (1) the target class
as the visual stimulus in a window containing the object to track
and (2) the background class as the stimulus in a surrounding
window. Under this type of implementation, a simple cell com-
putes the LLR g[x(l)] by combining (4) and (2) into the divisive
normalization operation

g[x(l)] = |x(l)|β
1
κ

∑
j ∈ R0

|x(j)|β + ν
− |x(l)|β

1
κ

∑
j ∈ R1

|x(j)|β + ν
+ T, (9)

characteristic of simple cell computations (Heeger, 1992;
Carandini et al., 1997, 2005). The LLR is then transformed

into the posterior probability of (3) by application of a sig-
moid transformation to the divisively normalized responses.
An illustration of the simple cell computations is given in
Figure 2A. Complex cells then implement the computations
of (8), as illustrated in Figure 2B. When equipped with these
units, the network of Figure 1 has a one to one mapping
with the standard neurophysiologic model of the visual cortex
(Carandini et al., 2005).

2.2.2. Neural network implementation
Neural networks are commonly used to solve the computer vision
problem of object recognition. In this setting, network parame-
ters are learned during a training stage, after which the network
operates in a feedforward manner. For these type of applications,
the GGD parameters of (4) can be learned from a training set,
using (2), and kept constant during the recognition process. This
allows the simplification of the saliency operations. Namely, by
combining (7) and (4) it follows that

S(l) = 1

N(l)

∑
j ∈ N(l)

�γ |x(j)|β + T�+ (10)

where γ =
(

1

α
β
0

− 1

α
β
1

)
, and T = log α1

α0
. This can again be

mapped to the two layer network of Figure 1, but simple cells now
simply rectify feature responses, according to

ψ(x) = �γ |x|β − T�+, (11)

while complex cells perform a simple average pooling operation.
The resulting network is similar to the stages of rectifier linear
units (ReLU) that have recently become popular in the deep learn-
ing literature (Nair and Hinton, 2010; Krizhevsky et al., 2012).
When compared to the ReLU computation, f (x) = �x�+, the
parametric rectifier of (11) replaces static rectification by an adap-
tive rectification, tuned to the scales αi of the feature distributions
under target and background hypotheses.

FIGURE 2 | Discriminant saliency computations. (A) Simple cell (S
unit). A unit of receptive field centered at location l computes a feature
response x(l). This is then rectified, differentially divisively normalized by
feature responses from areas R0 and R1, and fed to a sigmoid. The
responses from the two areas act as training sets for the binary
classification of x(l). More precisely, responses in R0 (R1) act as
training examples for the negative (positive) class. The output g[x(l)] of
the differential divisive normalization operator is the log-likelihood ration

for the classification of x(l) with respect to the two classes (under the
assumption of GGD statistics), as in (9). The sigmoid finally transforms
this ratio into the posterior probability of the positive class, as in (3).
(B) Complex cell (C unit). The bottom plane symbolizes the output of a
layer of S-units, the top one the output of a layer of C-units. S-unit
responses within a neighborhood N(l) are passed through non-linearity
ξ (x) and pooled additively, to produce the response of a C unit. This
implements the saliency measure of (8).
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This adaptation is illustrated in the right side of Figure 1.
When α1 = α0, target and null distributions are identical and
ψ(x) = 0 for all x. Hence, non-informative features for target
detection are totally inhibited. When α1 > α0, the target distri-
bution has heavier tails than the null distribution, i.e., the feature
is present in the target. In this case (blue curve), the rectifier
enhances large responses and inhibits small ones, acting as a
detector of feature presence. Conversely, the null hypothesis has
heavier tails when α1 < α0, i.e., when the feature is absent from
the target. In this case (red dashed curve), the rectifier enhances
small responses and inhibits large ones, acting as a detector of
feature absence. In summary, the rectification introduced by the
simple cells of (11) varies with a measure of discrimination of
the feature X, based on the parameters γ and T. In result, the
cell responses adapt to the feature distributions under the two
hypotheses, allowing simple cells to have very diverse responses
for different features. This is beyond the reach of the conventional
ReLU rectifier. The adaptive behavior of ψ(x) is also reminis-
cent of optimal rules for image denoising (Chang et al., 2000).
Like these rules, it thresholds the feature response, exhibiting a
dead-zone (region of zero output) which depends on the feature
type. Note that this results from (8), which is the Bayes decision
rule for classification of the response x(l) into target and back-
ground. Hence, ψ(x) can be seen as an optimal feature denoising
operator for the detection of targets embedded in clutter. The
dead-zone depends on the relative scales of target and background
distribution, according to

|x|β ≤ T/γ when α1 > α0

|x|β ≥ T/γ when α1 < α0.
(12)

2.2.3. Algorithmic implementation
It is also possible to compute the discriminant saliency measure
with an algorithm that has little resemblance to any biological
computation but provides insight into the saliency score. This
follows from rewriting (5) as

S(l) =
1∑

i = 0

EX(l)|Y(l)
(�g(X)�+|i) PY(l)(i)

= EX(l)|Y(l)
(�g(X)�+|1) PY(l)(1) ∝ EX(l)|Y(l)

(
g(X)|1)

=
∫

N(l)
PX|Y (x|1) log

PX|Y (x|1)

PX|Y (x|0)
dx,

where we have used the fact that �g(x(l))�+ = 0 whenever
Y(l) = 0 and g(x(l)) ≥ 0 otherwise. Hence, the saliency score can
be interpreted as the computation, over the neighborhood N(l),
of the Kullback-Leibler (KL) divergence between the probability
distributions of the feature responses under the target and back-
ground distributions. Since the KL divergence is a well-known
measure of distance between probability distributions, this con-
firms the discriminant nature of the saliency measure. Using (4),
the KL divergence can be written as

S(l) ∝ EX(l)|Y(l)[|x|β |1]
(

1

α
β
0

− 1

α
β
1

)
+ T (13)

∝ γ

β
α
β
1 (l) + T, (14)

where αβ1 (l) is the scale parameter of a GGD distribution with the
responses observed in N(l). This enables a very simple computa-
tion of the saliency measure, using the following procedure.

(1) From the feature responses xi(j) in the neighborhood N(l)

estimate αβ1 (l), using (2).

(2) Use (14) with αβ1 (l) and the model parameters αβi learned
from the training samples Ri to compute the saliency
score S(l).

2.2.4. Discussion on different implementations
The three implementations above are equivalent, in the sense that
they produce similar results on a given saliency task. They are suit-
able for different applications of the saliency measure of (5). In
general, any model of biological computation has several imple-
mentations. For example, the convolution y(l) of a visual stimulus
x(l) with a linear filter h(l) can be computed in at least two ways:
(1) the classical convolution formula

y(l) =
∑

k

x(k)h(k − l) (15)

or (2) the response to the stimulus x(l) of a convolutional neu-
ral network layer (Fukushima, 1980; LeCun et al., 1998) of linear
units with identical weights, derived from the filter h(l). In this
case, each network unit computes the output y(l) for a particular
value of l. We refer to the first as the mathematical implementa-
tion and to the second as the biological implementation. While
any biologically plausible network has an equivalent mathemati-
cal implementation, it is generally not true that all mathematical
formulas can be implemented with biological circuits. Even when
this is possible, the implementation may occur at different levels
of abstraction. In general, an algorithm is considered biologically
plausible if it can be mapped to a realistic model of neural com-
putations (mapping from neuron stimuli to responses). This does
not mean that it actually simulates neurons at the molecular level.
It should, however, be able to predict the behavior of the neuron
in neuroscience experiments.

In the discussion above, the algorithmic implementation of
Section 2.2.3 is a mathematical implementation of the proposed
saliency measure. It does not explicitly define units or neurons
and is most suitable for the implementation of the measure as
a computer vision algorithm, in a standard sequential proces-
sor. On the other hand, because it does not make explicit the
input-output relationship of any particular neuron, it is not of
great interest as a model of neuroscience. The biologically plausi-
ble implementation of Section 2.2.1 has the reverse role. Because
it is fully compliant with the standard neurophysiological model
of the visual cortex (Carandini et al., 2005), it predicts a large
set of non-linear neuron behaviors which this model has been
documented to capture (Carandini and Heeger, 2011). It could,
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thus, be used to study the role of these behaviors in object recog-
nition. On the other hand, because it explicitly implements the
computations of each neuron, its implementation on a sequential
processor is much slower than the mathematical implementation
of Section 2.2.3. Hence, it makes little sense to adopt it if the goal
is simply to produce an efficient computer vision system. Finally,
the neural network implementation of Section 2.2.2 is somewhere
in between. It is a more abstract implementation than that of
Section 2.2.1, in the sense that it does not explicitly include oper-
ations like divisive normalization. This makes it faster to compute
and establishes a connection to recent models in the deep learn-
ing literature (Krizhevsky et al., 2012), which have been shown
to achieve impressive object recognition results. These models
can also be efficiently implemented in a GPU computer archi-
tecture, but are much slower on a traditional processor. Since
this implementation achieves the best trade-off between fidelity
to the neural computations and speed, we adopt it in the remain-
der of the paper. In particular, a CPU-based implementation of
the neural network of Section 2.2.2 was used in all experiments of
Section 4.

2.3. HIERARCHICAL DISCRIMINANT SALIENCY NETWORKS
A hierarchical discriminant saliency network (HDSN) is a neural
network whose layers are implemented by the saliency detector of
Figure 1.

2.3.1. HDSN architecture
The architecture of the HDSN is illustrated in Figure 3, for a two
layer network. In general, a HDSN has M layers. As in Figure 1,
layer m has two sub-layers: S(m) of S units (simple cells) and C(m)

of C units (complex cells). S-units are located in a coordinate grid

G(m)
S , C-units in a coordinate grid G(m)

C . Each sub-layer is orga-
nized into C channels. Channel c is based on the convolution of

the layer input with a template, T (m)
c , shared by all its units. The

processing of each channel is repeated at R(m) image resolutions.
The network of Figure 3, has C(1) = 4 channels in layer 1 and
C(2) = N in layer 2.

Let y(0) be the network input, and y(m−1)
c the output of

cth channel of layer m − 1. At layer m, y(m−1) is first contrast
normalized

yc(l) = y(m − 1)
c (l)∑

j ∈ Z(l)

∑
i y(m − 1)

i (j)
(16)

where Z(l) is a window, centered at l, with the size of template

T (m)
c . The normalized input is then processed by the sub-layer of

S-units, which first convolves it with the filters T (m)
c . This pro-

duces feature responses x(m)
c (l), which are then sampled at S-unit

locations G(m)
s , and rectified by the parametric ReLU of (11),

ψ (m)
c (x) =

⌊
γ (m)

c |x|β − T(m)
c ,

⌋
+ , (17)

with parameters

γ (m)
c =

⎛
⎜⎝ 1(

α
(m)
c,0

)β − 1(
α

(m)
c,1

)β
⎞
⎟⎠ T(m)

c = log
α

(m)
c,1

α
(m)
c,0

. (18)

The rectified filter responses are then fed to the sub-layer of C-
units. Each C-unit computes the saliency score of (7) by simple
averaging over its pooling window, i.e.,

y(m)
c (l′) = S(m)

c (l′) = 1

|N(m)(l′)|
∑

l∈N(m)(l′)
ψ (m)

c

(
x(m)

c (l)
)

(19)

FIGURE 3 | Left: HDSN with two layers. Each layer consists of a DSN, as in
Figure 1. Layer i contains a sub-layer of simple (S(i) ) and a sub-layer of
complex (C (i) ) units. The network has 4 channels in layer 1 and N in layer 2.
Channel c is obtained by convolving the input of a layer with a template Tc , at
several resolutions. Templates T (1)

c of layer 1 are Gabor filters, templates T (2)
c

of layer 2 are learned during training. Center: Gabor channels x (1)
c derived

from the input image, corresponding saliency channels y (1)
c at the output of

the first network layer, and example saliency templates T (2)
c learned by the

second layer. Right: most discriminant template learned for each of four
classes of Caltech101 (an example image is also shown for each class). Note
that each template is composed of four image patches, derived from the four
channels of the image representation in the first network layer.
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The cth channel of this representation is the saliency map with

respect to template T (m)
c and the cth channel of the output of

layer m. The locations l′ are defined by the C-unit grid G(m)
C . The

pooling neighborhood N(l′) is usually smaller than the output of
the afferent S sub-layer. Hence, both S and C-units have limited
spatial support. However, N(m)(l′) can be location adaptive, i.e.,
depend on l′.

2.3.2. Learning
The training of a HDSN consists of learning the templates T (m)

c

and the GGD scales α(m)
c,0 , α

(m)
c,1 per layer m. Many approaches

are possible to learn the templates T (2)
c , including the back-

propagation algorithm (LeCun et al., 1998), restricted Boltzmann
machines (Hinton et al., 2006), clustering (Coates et al., 2011),
multi-level sparse decompositions (Kavukcuoglu et al., 2010),
etc. In this work, we adopt the simple procedure proposed for
training the HMAX network in Serre et al. (2007); Mutch and

Lowe (2008), where the templates T (m)
c of layer m are randomly

sampled patches from the responses y(m−1)
c of layer m − 1, nor-

malized to zero mean and unit norm. Given T (m)
c , the network is

exposed to images from class i ∈ {0, 1}, and training samples R(m)
c,i

collected. These consist of the responses x(m)
c (l) across locations l

and training images from class i. The scale parameters are then
computed with (2).

2.3.3. Object recognition
The HDSN is a hierarchical feature extractor, which maps the
input image into a vector of responses of layer C(M). For
object recognition, this vector is fed to a linear classifier. In our
implementation this is a support vector machine (SVM). The
network topology is characterized by the parameters �(m) =
{R(m),G(m)

S ,GC
(m),T (m),N(m)},m ∈ {1, . . . ,M}. As is usual in

the hierarchical network literature, a good trade-off between
object selectivity and invariance can be achieved by using (1)

sparser grids G(m)
S ,GC

(m), (2) filters T (m) of larger spatial sup-
port, and (3) larger pooling neighborhoods N(m), as m increases.
This results in higher layer templates that are more selective
for the target objects than those of the lower layers, with-
out compromise of invariance. Since the selectivity-invariance
trade-off of deep networks has been demonstrated by many
prior works (Riesenhuber and Poggio, 1999; Serre et al., 2007;

Krizhevsky et al., 2012), we do not discuss it here. In fact, the
goal of this work was not to test the benefits of deep learning
per se, which have now been amply demonstrated in the literature,
but to investigate the benefits of augmenting the network with
the saliency computations. Since, as we will see in the next sec-
tion, many of the computer vision methods for object recognition
can be mapped into two-layer networks, our study was limited to
the network of Figure 3. This also had the advantage of enabling
training from much smaller training sets.

In our implementation, S(1) units use the 11 × 11 Gabor filters
proposed in Mutch and Lowe (2008),

T (1)
c (x, y) = exp

(
−X2 + γ 2Y2

2σ 2

)
cos

(
2π

λ
x

)
(20)

where X = x cos θc − y sin θc, Y = x sin θc + y cos θc, θc ∈
{0, π/4, π/2, 3π/4}, and γ , σ , and λ are set to 0.3, 4.5, and 5.6,
respectively. This makes the first layer a detector of characteristic

edges of the target. The training samples R(1)
c,i for learning the

scale parameters α(1)
c,i are the set of Gabor responses x(1)

c to
images of class i over the entire channel c. On the other hand,

the templates of S(2), T (2)
c = {T (2)

c,1 , . . . ,T (2)
c,C(1)}, span the C(1)

channels of the first layer, and are learned by random sampling,
as discussed above. Since these templates are saliency patterns
produced by layer 1 in response to the target, they are usually
more complex features. The different complexity of the templates
of the two layers warrants different pooling neighborhoods for
C-units. Since simple features are homogeneous, layer 1 relies on
a fixed neighborhood N(1). On the other hand, to accommodate
the diversity of its complex features, layer 2 uses template

specific pooling neighborhoods N(2)
c . Templates T (2) have

dimension n × n × 4, for n ∈ {4, 8, 12, 16}, and are normalized
to zero mean and unit norm (over the 4 channels). Pooling
neighborhoods have area S ∈ {10, 20, 30%} of the size of layer 2
channels, and span d ∈ {3, 5, 7} scales. Like the templates, they
are sampled randomly. These neighborhoods are also used to

collect the training samples R(2)
c,i for learning the scale parameters

associated with each of the templates. The network configuration
is summarized in Table 1.

Figure 3 illustrates the computations of the HDSN. It shows an

image and the corresponding responses x(1)
c of the layer 1 Gabor

Table 1 | Configuration of the network used in all our experiments.

R(m) G
(m)
S

GC
(m) T(m) N(m)

m = 1 10 resolutions 1 × 1 × 1 3 × 3 × 1 Gabor filters of (20) 5 × 5 × 2 window

r ∈ {2i/4|i = 0, . . . ,9} subsampling

m = 2 same 1 × 1 × 1 Location and scale Randomly selected S% of image area

from which template n × n × 4 templates, and depth d in scale,

is originally sampled n ∈ {4, 8, 12, 16}, where S ∈ {10, 20, 30},
with zero mean d ∈ {3, 5, 7}
and unit norm

Unless otherwise noted, n × m × l means a spatial step of n × m and a step of l across scales.
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filters, and y(1)
c of the layer 1 C-units. Note that, due to the class

adaptive rectification of (17), the saliency responses y(1)
c amplify

the filter responses x(1)
c of certain channels and inhibit the remain-

ing. This allows the layer to produce a response that is more
finely tuned to the discriminant features of the target class (in this
example, the Caltech class “accordion”). Or, in other words, the
layer highlights the features that are most distinctive of the tar-
get class. This, in turn, allows layer 2 to learn templates that are
more discriminant of the target class than would be possible in
the absence of the saliency computation. Note how the example
templates T (2) are selective for some of the feature channels. The
inset on right of the figure presents the most discriminant tem-
plate learned for four classes of Caltech101 (an example image
of each of the classes is also shown). Note how the network has
learned templates that are highly selective for the target objects.
These templates are complex features (Vidal-Naquet and Ullman,
2003; Gao and Vasconcelos, 2005), which capture the spatial
configuration of low-level features in target objects, resembling
the receptive fields of cells in area IT (Riesenhuber and Poggio,
1999; Brincat and Connor, 2004; Yamane et al., 2008). Overall,
while layer 1 processes edges, layer 2 captures shape information.
When combined with the ability of the parametric ReLU recti-
fiers of (17) to behave as detectors of both feature presence and
absence, this hierarchical learning of increasingly more selective
templates enables the HDSN to compute saliency in challeng-
ing scenes. This is illustrated in Figure 4, using the pandaCam
dataset, where background textures can be much more complex

than the target object (panda bear). To be successful, the net-
work must learn that the distinctive panda property is the absence
of many of the features present in the background. The figure
compares saliency maps produced by a HDSN with a single-layer
(center column) and two layers (right column). Note how the lat-
ter produces saliency maps with less false positives and a much
more precise localization of the target bears. The combination of
(1) hierarchical learning of discriminant templates, and (2) detec-
tion of feature absence by parametric ReLUs, is critical for the
network’s effectiveness as a saliency detector.

3. RELATIONSHIPS TO RECOGNITION MODELS
In this section we compare HDSNs to previous object recognition
models. We start by considering saliency models, then neural net-
works proposed for object recognition, and finally models from
the computer vision literature.

3.1. SALIENCY MODELS
Many stimulus driven, bottom-up, saliency models have been
proposed in the literature. They implement center-surround
operations (Itti et al., 1998; Gao and Vasconcelos, 2009),
frequency analysis (Hou and Zhang, 2007; Guo et al.,
2008), or detect stimuli with specific properties, e.g., low-
probability (Rosenholtz, 1999; Bruce and Tsotsos, 2006; Zhang
et al., 2008), high entropy (Kadir and Brady, 2001), or high
complexity (Sebe and Lew, 2003). These models cannot account
for the well-known fact that, beyond the stimulus, saliency is

FIGURE 4 | Localization of panda bears in a complex environment. Left:
bear images. Note the highly variable pose of the bears and the strongly
textured backgrounds. Center: saliency maps produced by a single layer

HSDN. Right: saliency maps produced by a two-layer HDSN. The ability of
the second network layer to learn discriminant saliency patterns reduces the
number of false positives and enables significantly superior target localization.
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influenced by the task to be performed. For example, knowl-
edge of target features increases the efficiency of visual search
for a target among distractors (Tsotsos, 1991; Wolfe, 1998). This
top-down component of saliency is classically modeled by modu-
lating features responses (Treisman, 1985; Wolfe, 1994; Desimone
and Duncan, 1995; Navalpakkam and Itti, 2007), i.e., global fea-
ture selection. This, however limits the ability to localize targets,
since the selected filters respond to stimuli across the visual
field. More recent top-down saliency models estimate distribu-
tions of feature response to target and background, and use them
to derive optimal decision rules. These rules modulate feature
responses spatially, according to the stimuli at different loca-
tions. A top-down saliency detector of this type is that of Elazary
and Itti (2010). It differs from discriminant saliency through two
simplifications: (1) assumption of Gaussian instead of general-
ized Gaussian responses (β = 2), and (2) use of the target log
likelihood

S′(l) = log P
X(1)

c |Y (x(1)
c (l)|1) (21)

instead of (5), as saliency criterion (Elazary and Itti, 2010). In
terms of the biological implementation discussed above, this
corresponds to eliminating (1) C units, (2) the sigmoid σ (x),
and (3) the top divisive normalization branch (see Figure 2A)
of S units. We refer to such S units as target likelihood
(TL) units, and the resulting network as likelihood saliency
network (LSN).

3.2. NEURAL NETWORKS FOR RECOGNITION
HDSNs have commonalities with many neural network models
proposed for object recognition.

3.2.1. HMAX
Like the HDSN, the HMAX network follows the general architec-
ture of Figure 3 (Serre et al., 2007). S(1) units are Gabor filters,
whose responses are pooled by C(1) units, using a maximum
operator

y(1)
c (l) = max

j ∈ N(1)(l)
x(1)

c (j), (22)

where we again denote filter responses by x(m)
c (l) and pooling win-

dow by N(m). The S(2) sub-layer is a radial basis function (RBF)
network with outputs

s(2)
c (l) = exp

(
−β

∑
i

||y(1)
i (l) − T (2)

c,i ||2
)

(23)

where β determines the sharpness of the RBF-unit tuning and

T (2)
c is a template. Similarly to the proposed implementation of

the HDSN, these templates are randomly selected during train-

ing, and have as many components T (2)
c,i as the number of layer 1

channels. C(2) units are again max-pooling operators

y(2)
c (l) = max

j ∈ M(2)
s(2)
c (j), (24)

where M(2) is the whole visual field. A number of improvements
to the HMAX architecture have been proposed in Mutch and
Lowe (2008): a lateral inhibition that emulates divisive normaliza-
tion, the restriction of M(2) to template-specific neighborhoods
[to increase localization of C(2) units], a single set of templates
shared by all object classes, and a support vector-machine (SVM)-
based feature selection mechanism to select the most discriminant
subset.

3.2.2. Convolutional neural networks
Both the HDSN and the HMAX networks are members of the
broader family of convolutional neural networks. These are again
networks with the hierarchical structure of Figure 3, which date
back to Fukushima’s neocognitron (Fukushima, 1980). While
early models lacked an explicit optimality criterion for train-
ing, convolutional networks trained by backpropagation became
popular in the 1980s (LeCun et al., 1998). Classical models had
no C units and their S units were composed uniquely of fil-
tering and the sigmoid of (3). Recent extensions introduced S
and C-like units per network layer (Pinto et al., 2008; Jarrett
et al., 2009). While many variations are possible, modern S-units
tend to include filtering, rectification, and contrast normaliza-
tion. C-units then pool their responses. These extensions have
significantly improved performance, sometimes producing stag-
gering improvements. For example, Jarrett et al. (2009) reports
that simply rectifying the output of each convolutional network
unit drastically improves recognition accuracy. In fact, a network
with random filters, but whose S-units include rectification and
normalization, performs close to a network with extensively opti-
mized filters. More recently, it has been shown that replacing
the sigmoid of (3) by the ReLU nonlinearity f (x) = �x�+ can
significantly speed-up network training (Krizhevsky et al., 2012).

In this work, we consider in greater detail the network of Jarrett
et al. (2009), which implements the most sophisticated S-units.

The input of layer m is first convolved with a set of filters T (m)
c ,

producing feature responses x(m)
c . These are then passed through a

squashing non-linearity, absolute value rectification, subtractive,
and divisive normalization, according to

a(m)
c (l) = |gc tanh x(m)

c (l)| (25)

v(m)
c (l) = a(m)

c (l)−
C∑

c = 1

∑
j ∈ M(l)

w(j)a(m)
c (j)

∑
j ∈ M(l)

w(j) = 1/C (26)

u(m)
c (l) = v(m)

c (l)

max

(
ε,
∑C

c = 1

∑
j ∈ M(l) w(j)

(
v(m)

c

)2
(j)

) , (27)

where M(l) is a 9 × 9 window. The normalized responses are
finally fed to a layer of C-units, which implement spatial pooling

y(m)
c (l) =

∑
j∈N(l)

u(m)
c (j) (28)

and subsampling. It is shown that unsupervised learning of the

filters T (m)
c is marginally better than adopting a random filter

set, and relatively small gains result from global filter learning.
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More recently, Krizhevsky et al. (2012) have shown that state of
the art results on large scale recognition problems can be obtained
with a deep network, whose layers are slightly simpler than those
of Jarrett et al. (2009). This is a network of five convolutional
and three fully connected layers. Its convolutional stages consist
of a sub-layer of S-units, which implement a sequence of filtering,
divisive normalization with (27) and ReLU rectification, and a
sub-layer of C-units, which implement the max pooling operation

of (22). The filters T (m)
c are learned by back-propagation.

3.3. COMPUTER VISION MODELS
Many object recognition methods have been proposed in the
computer vision literature. Over the last decade, there has been
a convergence to a canonical architecture, consisting of three
stages: descriptor extraction, descriptor encoding, and classifi-
cation. While the classification stage is usually a linear SVM,
many of the recent object recognition methods differ on the
details of the first two stages (Chatfield et al., 2011). We next
show that this architecture can be mapped to the network of
Figure 3.

3.3.1. Canonical recognition architecture
Figure 5 shows the two-stage canonical architecture for object
recognition in computer vision. The first stage transforms an
image into a collection of descriptors, usually denoted a bag-of-
features. The descriptors y(1)(l) are calculated at image locations
l, e.g., per pixel, in a regular pixel grid (dense sampling), or
at keypoint locations (Lowe, 1999). We assume dense sampling,
which produces best results (Zhang et al., 2007) and is more
widely used. Descriptors are high-dimensional vectors, obtained
by application of spatially localized operators at each image loca-

tion. If each descriptor dimension y(1)
c is used to define a channel

of this representation, descriptor channels can be interpreted
as the channels of C(1) output in Figure 3. The second stage
computes an encoding of the descriptors extracted by the first.

This is based on a set of descriptor templates, T (2)
c , learned

from a training dataset. Descriptor templates can be the com-
ponents of a model of the descriptor probability distribution,
e.g., a Gaussian mixture model (GMM), kernel density, vector
quantizer, or RBF network (Duda et al., 2001) or the basis func-
tions of a sparse representation of descriptor space. When the
former are used, we denote the encoding as probabilistic, while
the term sparse encoding is used for the latter. Examples of prob-
abilistic encodings include the minimum probability of error
(MPE) architecture of Vasconcelos and Lippman (1997, 2000);
Vasconcelos (2004a); Carneiro et al. (2007), the spatial pyramid
matching kernel (SPMK) of Lazebnik et al. (2006), the naive-
Bayes nearest neighbor (NBNN) classifier of Boiman et al. (2008),
the hierarchical Gaussianization (HGMM) of Zhou et al. (2009),
and many variants on these methods. Sparse encodings include,
among others, the sparse SPMK method of Yang et al. (2009)
and the locality-constrained linear (LLC) encoding of Wang et al.
(2010).

The most popular encoding is probabilistic, namely a GMM
with templates learned by either k-means or the expectation-
maximization algorithm. In this case, the descriptor encoding
reduces to computing a measure of descriptor-template similarity

s(y(1)(l),T (2)
c ) and assigning the descriptor the closest template.

It is also possible to rely on a soft assignment, where a descriptor
is assigned to multiple templates with different weights. This is,
for example, the case of sparse encodings. In all cases, the map

of descriptor assignments to the cth template, T (2)
c , is the cth

channel of the stage 2 representation. Assignment channels are
then pooled spatially, to produce the final image representation.

FIGURE 5 | Canonical architecture implemented by various popular

object recognition methods. Images are represented by sets of
descriptors. A set of representative descriptors {T (2)

c } is learned from an
image training set. The descriptors y (1)(l) extracted from the image to classify
are then encoded, with respect to this set of representatives. The encoding

consists of assigning each descriptor to a subset of the representatives,
using a similarity function s

(
y (1)(l),T (2)

c

)
. This could be a probabilistic

function, e.g., probability under a Gaussian mixture model, or a sparse
encoding. The assignments are finally pooled spatially to produce assignment
histograms, which are fed to a classifier, e.g., a support vector machine.
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For hard assignments, this is equivalent to representing the
input image as a histogram of stage 2 assignments. The pooling
operation can be performed over the entire image, sub-areas, or
both. We next discuss how different computer vision methods
map into this architecture.

3.3.2. Stage 1: descriptors
Popular descriptors, e.g., SIFT (Lowe, 1999) or HoG (Dalal and
Triggs, 2005), are measures of orientation dominance. While we
discuss SIFT in detail, a similar analysis applies to others. The
SIFT descriptor y ∈ R

128 is a set of 8-bin histograms of ori-
entation response computed from intensity gradients. Location
l contributes to histogram bin k with ak(l) = r(l)g(l)bk[θ(l)],
where r(l), θ(l) are the gradient magnitude and orientation at l,
g(l) a Gaussian that penalizes locations farther from the descrip-
tor center, and bk(θ) a trilinear interpolator, based on the distance
between θ and the orientation of bin k. The kth histogram
entry is

hk =
∑
l ∈ B

ak(l), (29)

where B is a 4 × 4 pixel cell. The descriptor concatenates
histograms of 4 × 4 cells into a 128-dimensional vec-
tor, which is normalized, fed to a saturating nonlinearity
τ (x) = max (x, 0.2) and normalized again to unit length.
Using superscripts q ∈ {1, . . . , 16} for cells, and subscripts
k ∈ {1, . . . , 8} for orientation bins, this is the sequence of
computations

h
q
k = τ

[
h

q
k∑

q,k h
q
k

]
= τ

[∑
l ∈ Bq

ak(l)∑
q,k

∑
l ∈ Bq ak(l)

]
(30)

s
q
k = h

q
k∑

q,k h
q
k

2
y = (s1, . . . , s16)T . (31)

Note that (31) is a combination of divisive normalization (of
ak(l) by responses in all cells Bq), average pooling, and squash-
ing non-linearity, similar to the sequence of (27) and (28). The
main difference is the application of the non-linearity after pool-
ing vs. after filtering, as in (25). (31) can be seen as pre-processing
for stage 2, contrast normalizing stage 1 responses. This is identi-
cal to (16), the normalization of HDSN layer inputs. In summary,
the SIFT computations can be mapped to a network layer similar
to those discussed above.

In fact, the descriptor can be interpreted as a saliency measure,

if ak(l) is replaced by the response magnitude |x(1)
k (l)| of a Gabor

filter with the kth orientation, a conceptually equivalent measure
of oriented image energy. Defining

α =
∑
q,j

∑
l ∈ Bq

|x(1)
j (l)| =

∑
q,l ∈ Bq

|x(1)
k (l)| +

∑
j 	= k

∑
q,l ∈ Bq

|x(1)
j (l)|

=
∑

q,l ∈ Bq

|x(1)
k (l)| + ν

(31) reduces to h
q
k = τ [εq

k ] where

ε
q
k =

∑
l ∈ Bq

|x(1)
k (l)|
α

(32)

∝ −
∑
l ∈ Bq

log P
X(1)

k
(x(1)

k (l);α, 1) (33)

≈ −
∫

Bq
PXk (x;αq, 1) log PXk (x;α, 1)dx (34)

with PX(x;α, 1) as given in (1), and αq = ∑
l∈Bq |x(1)

k (l)|. Hence,

up to constants, ε
q
k is the cross-entropy between the responses of

filter X(1)
k within cell Bq and across the support of the descriptor.

Assuming that the distributions are identical, this is the response
entropy, a common saliency measure (Rosenholtz, 1999; Kadir
and Brady, 2001; Bruce and Tsotsos, 2006; Zhang et al., 2008) that
equates salient to rare (low-probability) events. Hence, SIFT can
be interpreted as a saliency measure, which identifies as salient
stimuli of rare orientation within a local image neighborhood.

3.3.3. Stage 2: descriptor assignments
Under this interpretation, the templates T (2)

c are saliency
templates1. For probabilistic models, the descriptor-to-template
assignment of stage 2 is always a variation on layer 2 of the

HMAX network. The likelihoods s(2)
c (l) of the descriptor y(1)(l)

under the components of a Gaussian mixture whose means are

the templates T (2)
c , c ∈ {1, . . . ,N} are first computed with (23).

These likelihoods are then mapped into posterior probabilities of
component given descriptor, by a divisive normalization across
channels

p(2)
c (l) = s(2)

c (l)∑N
c = 1 s(2)

c (l)
. (35)

The RBF precision parameter β of (23) controls the softness of the
assignments. When β → 0 the mixture model becomes a vector

quantizer (Vasconcelos, 2004b) and p(2)
c (l) = 1 for the template

closest to y(1)(l), and zero for all others, i.e., assignments are hard.
When β > 0 descriptors are assigned to multiple components,

according to the posteriors p(2)
c (l), i.e., assignments are soft. Some

methods, e.g., MPE, HGMM, or NN, learn descriptor templates
per object class and compute the posterior class probability

PY |X(c|y(1)(l)) =
∑
j ∈ Ic

p(2)
j (l) (36)

where Ic is the set of indices of templates from class c. In summary,
for probabilistic models, the second stage of the canonical archi-
tecture consists of the RBF network of HMAX plus the divisive
normalization of (35), and can be complemented by (36). Overall,

1This is a terminology for descriptor templates alternative to visual
words (Sivic and Zisserman, 2003; Csurka et al., 2004), textons (Leung and
Malik, 2001), visemes (Ezzat and Poggio, 2000), or others used in the litera-
ture.
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there are three types of layer 2 units: HMAX uses the likelihood
units (LU) of (23), while the remaining approaches rely on the
posterior units (PU) of (35), or the class-posterior units (CPU)
of (36).

For sparse models, the assignments p(2)
c (l) are obtained by

minimizing a sparseness inducing assignment cost. For example,
the assignments of SPMK are the solution of

p(2)(l) = arg min
p

||y(1)(l) − T(2)p||2 + λ||p||1 (37)

where T(2) is a dictionary with templates T (2)
c as columns, ||p||1

the �1 norm of p, and λ a regularization parameter. This produces
a soft assignment, of sparsity (number of non-zero entries) con-
trolled by λ. While sparse assignments can improve recognition
performance, they have increased computational cost, since the
optimization of (37) has to be repeated for each descriptor of the
image to classify. This is frequently done with greedy optimization
by matching pursuits (Mallat and Zhang, 1993), which involve
multiple iterations over all templates in T(2). We denote the units
of sparse representation as projection pursuit (PP) units.

For both probabilistic and sparse models, the final step of stage
2 is an assignment histogram, computed by either average

y(2)
c (l) = 1

|N(2)(l)|
∑

m∈N(2)(l)

p(2)
c (m), (38)

or maximum

y(2)
c (l) = max

m ∈ N(2)(l)
p(2)

c (m), (39)

pooling. The neighborhood N(2)(l) can be the entire image, in
which case there are as many pooling units as descriptor tem-
plates, i.e., N, but is usually repeated for a number of subregions,
using the pyramid structure introduced by SPMK and shown in
Figure 5. This is usually a three-layer pyramid, containing the full
image at level 0, and its partition into 2 × 2, and 4 × 4 equal sized

cells at levels 1 and 2, respectively. In this case, there are a total of
21N pooling units.

3.4. DISCUSSION
Table 2 summarizes the operations of various popular recogni-
tion methods. The table is organized by the type of saliency (none,
bottom-up, or top-down) implemented by each of the methods.
It should be noted that the template learning procedures are not
necessarily tied to the network architecture. For example, HMAX
could use k-means, and SPMK could use codebooks of ran-
domly collected examples. In fact, many alternative methods have
been proposed for codebook learning (Sivic and Zisserman, 2003;
Csurka et al., 2004; Fei-Fei and Perona, 2005; Winn et al., 2005;
Moosmann et al., 2007) or sparse representation (Mairal et al.,
2008; Wang et al., 2010). It is, nevertheless, clear that the differ-
ent methods perform similar sequences of operations. In all cases,
these operations can be mapped into the network architecture of
Figure 1 and implement at least some aspects of the standard neu-
rophysiologic model (Carandini et al., 2005). However, the basic
operations can differ in substantive details, such as the types of
non-linearities, the order in which they are applied, etc. Since
any combinations are in principle possible, the space of possible
object recognition networks is combinatorial. This is amplified
by the combinatorial possibilities for the number of parameters
of any particular network configuration, e.g., receptive field sizes,
subsampling factors, size of pooling regions, normalizing connec-
tions, etc. In result, it is nearly impossible to search for the best
configuration for any particular recognition problem.

From a theoretical point of view, the main benefit of the HDSN
is the statistical interpretation (e.g., computation of target proba-
bilities) and functional justification (e.g., saliency detection) that
it provides for all network computations. This results in clear
guidelines for the sequence of network operations to be imple-
mented, namely the S and C-units of Figure 2, clear semantics for
normalizing connections (training feature responses under the
target and background classes), and an abstract characterization
of the unit computations, as in the algorithmic implementation
of Section 2.2.3. It is thus possible to design network architectures

Table 2 | Mapping of various popular recognition algorithms to the canonical architecture of Figure 5.

Method Stage 1 Stage 2

Units Saliency Templates Units Assignment Pooling

HMAX Filter responses – Random LU Soft Max

MPE Filter responses – GMM CPU Soft Sum

NBNN SIFT Bottom-up Training set CPU Hard Sum

SPMK SIFT Bottom-up Codebook PU Hard Sum

HGMM SIFT Bottom-up GMM CPU soft sum

Sparse SPMK SIFT Bottom-up Sparse dictionary PP Soft Max

LSN SL Top-down –

HDSN DS Top-down Random DS – Sum

HMAX: (Serre et al., 2007), MPE: (Carneiro et al., 2007), NBNN: (Boiman et al., 2008), SPMK: (Lazebnik et al., 2006), HGMM: (Zhou et al., 2009), sparse SPMK: (Yang

et al., 2009), LSN: (Elazary and Itti, 2010).
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for specific tasks, without the need for exhaustive search. In fact,
the statistical nature of the underlying computations could be
used to expand network functionality, e.g., by resorting to model
adaptation techniques (Saenko et al., 2010; Dixit et al., 2011;
Kulis et al., 2011) in order to reduce training set sizes, or belief
propagation to enable more sophisticated forms of statistical
inference, such as Markov or conditional random fields (Geman
and Geman, 1984; He et al., 2004). For object recognition, some
form of model adaptation is already enabled by the divisive nor-
malization connections of Figure 2A) or, equivalently, the scale
parameters αi of the target and background distributions. As
mentioned in Section 2.2.2, these enable the interpretation of S-
units as the parametric rectification units ψ(x) of (11), which
support a much richer set of network behaviors (e.g., sensitivity to
feature absence) than commonly used non-linearities (such as the
sigmoid or ReLU operations). By changing its scale parameters,
the network can adapt to new recognition tasks without having to
relearn new filters. This adaptation is also quite simple: it reduces
to collecting samples of filter response to the target classes of
interest and using (2) to estimate the scales αi. None of the other
networks (or even computer vision algorithms) discussed above
has this property.

Of all the recognition architectures discussed above, the HDSN
is also unique in its explicit modeling of discriminant saliency,
based on statistical modeling of the target and background dis-
tributions. In most other models, the saliency computation does
not even involve the notions of target and background class,
and the GGD scale is simply estimated from a neighborhood of
the image to classify, as in (27) or (32). This strictly bottom-
up definition of saliency cannot be tuned for recognition. On
the other hand, the saliency maps of the HDSN identify fea-
ture responses discriminant for target detection, with all the
advantages previously discussed: optimal feature denoising, mod-
ulation of saliency responses by the discriminant power of the
underlying features, and ability to detect both feature presence
and absence. These differences in turn have a non-trivial impact

in the saliency templates T (2)
c of stage 2. SIFT templates are usu-

ally much less discriminant than those of Figure 3. By implement-
ing saliency in layer 2, the HDSN complements this advantage
with the identification of saliency configurations discriminant for
target recognition. We next show that these properties make the
HDSN more efficient in terms of image representation than all
other models, achieving higher accuracies with fewer layer 2 units
and a fairly simple training procedure.

4. RESULTS
An extensive set of experiments was conducted to evaluate HDSN
performance on saliency, object recognition, and localization
tasks. All experiments were performed on datasets available in
the literature, including Caltech101 (C101) (Fei-Fei et al., 2005),
15 scenes (N15) (Lazebnik et al., 2006), ALOI (Geusebroek et al.,
2005), and the pandaCam dataset of Han and Vasconcelos (2011).
Details of these datasets are given in the Supplementary Material.

4.1. OBJECT RECOGNITION EXPERIMENTS
We start with object recognition. While, as shown in Table 2
the different approaches can be mapped to a common network

form, the standard configurations of the different methods dis-
agree even in the most elementary parameters, e.g., number of
layer 2 units. For example, SPMK usually relies on a dictionary
of size 1024 and a pyramid of 21 pooling regions. While this
should be compared to an HMAX model of 21K units, only 4K
are usually adopted in the HMAX literature. Methods that learn a
codebook per class increase the number of units by a few orders
of magnitude. In the worst case of Boiman et al. (2008) (as many
units as training examples), the layer 2 RBF has 10 million units.
This lack of uniformity makes it difficult to compare the dif-
ferent approaches. To overcome this problem, we implemented
all units discussed in the previous sections and used them to
build networks that are otherwise identical, i.e., have the same
configuration, use the same learning procedure, etc. We then
compared network performance on C101 and N15. A first experi-
ment measured the impact of each unit of Table 2 on recognition
accuracy. This experiment used a relatively small network, with
fixed (Gabor) templates in the bottom layer and randomly sam-
pled (from the first layer responses) templates in the second layer.
In a second experiment, we built a larger HDSN and compared its
performance to the results reported for the various recognition
algorithms in the literature. This was mostly a sanity check, to
ensure that the HDSN could achieve the results reported for these
methods, using the parameters with which they were proposed.
It is assumed that these parameters were optimized to guaran-
tee the best results per method, of the network components, but
allowing an unbiased estimate of the best possible performance
per architecture.

4.1.1. Impact of network units on recognition performance
To test the impact of network units on recognition accuracy, we
started from a base network with the configuration of Table 1 and
the following operations:

(1) Local normalization of image intensities, according to (16);
(2) S(1) units: Gabor filters, no saliency;
(3) C(1) units: average pooling;

(4) S(2) units: 40 LUs with randomly selected templates T (2)
c per

class, for a total of C(2) = 600 channels for N15 and C(2) =
4040 channels for C101.

(5) C(2) units: average pooling.

In a first experiment, we compared the impact of layer 1 units on
network performance. This was done, by replacing the S(1) and
C(1) units with those on the left of Table 3. The same Gabor chan-
nels were used across settings, the convolutional network layer
(CN) was implemented with (25)–(28), SIFT with (31)–(31), and
discriminant saliency (DS) with (17) and (2). The pooling oper-
ator was that which performed best for each network. Note that
the type II network is identical to HMAX (Serre et al., 2007), and
the first layer of the networks of type III, IV, and V is, respec-
tively, layer 1 of the convolutional network of Jarrett et al. (2009),
the first stage (SIFT) of the computer vision methods of Lazebnik
et al. (2006); Boiman et al. (2008); Yang et al. (2009); Zhou et al.
(2009), and layer 1 of the HDSN.

The table supports several conclusions. First, pooling signifi-
cantly enhances recognition performance, as all methods with C
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Table 3 | Recognition accuracy of a 2-layer network with different units.

Type Simple unit Pooling L2 N15 C101 Type L1 L2 N15 C101

I Filter – LU 58.7 ± 0.3 40.5 ± 0.8 I DS CPU 67.4 ± 1 61 ± 0.8

II Filter Max LU 65.6 ± 1.3 52.8 ± 1 II DS PU 68.1 ± 1 62.1 ± 1.1

III CN Max LU 67.1 ± 1.5 58.8 ± 1.3 III DS LU 68.3 ± 0.6 64.2 ± 1.3

IV SIFT Average LU 67.5 ± 0.6 62.8 ± 0.9 IV DS DS 80 ± 0.6 69.2 ± 1.3

V DS Average LU 68.3 ± 0.6 64.2 ± 1.3 V DS* DS 82.2 ± 0.7 69.9 ± 1.7

Left: impact of layer 1 units on recognition performance. Starting from a network (type I) with Gabor filters and no pooling in layer 1 and LU units with average

pooling in layer 2, several enhancements were added to layer 1. These consisted of convolutional network (CN), SIFT, or discriminant saliency (DS) units. Max and

average pooling operators were also tested, results are reported for the most effective. Right: impact of layer 2 units on recognition performance. In all cases, layer

1 consists of DS units. Layer 2 is implemented with CPU, PU, LU, or DS units. DS* reports to an enhanced layer 1, including feature selection.

units substantially outperformed the type I network. This find-
ing confirms the importance of the spatial invariance attributed
to this operation, and of C units in general. However, we did
not find an advantage for either average or max pooling. Second,
the addition of divisive normalization across features (bottom-
up orientation saliency) implemented by both the CN and SIFT
layers, further improved recognition accuracy. The gains of this
operation were particularly significant on C101. This can be
explained by the fact that shape is a more important cue for recog-
nition in C101 (an object database) than in N15 (a database of
scenes). Since this type of divisive normalization enhances edges
with a dominant orientation, it produces crisper layer 2 templates,
which are more informative about object shape. This enables large
gains in C101 (from 52.8 to 62.8% for SIFT) but is also beneficial
on N15 (from 65.6 to 67.5%). Third, for both datasets, the perfor-
mance of the SIFT layer was superior to that of the convolutional
network layer. This suggests that the sequence of S-unit opera-
tions of (31)–(31) is more effective than that of (25)–(28), but it
is difficult to ascertain why. Finally, DS units had the best over-
all performance. It is worth noting that, while the SIFT and CN
layers perform normalization both within (spatially) and across
channels, DS units only require within channel normalization.
This enables independent channel processing, considerably sim-
plifying the implementation of this network. In fact, the HDSN
layer has very little computational overhead with respect to the
HMAX layer of the type II network. As discussed in Section 2.2.2,
the only difference is the addition of the parametric ReLU units
of (11). On C101, this boosts recognition accuracy from 52.8 to
64.2%. Overall, the HDSN layer has the lowest complexity among
the top performing networks (types III to V).

To test the impact of the configuration of layer 2, we used
a network with a layer 1 of DS units. Besides likelihood units
(LU), layer 2 was implemented with posterior units (PU), class-
posterior units (CPU), and DS units. Since the number of layer
2 channels is drastically reduced when CPU units are used (from
the number of templates to the number of classes, e.g., 600 to 15 in
N15 and 4040 to 101 in C101), and this reduces the effectiveness
of the SVM that follows the network, we tried alternative CPU
configurations. Best results were obtained, in preliminary exper-
iments, by weighing PU units according to the posterior class
probability, i.e., multiplying (35) by (36). The resulting accura-
cies are summarized in the right of Table 3, network types I–IV.
Interestingly, neither PU nor CPU improved the performance of

LU. Unlike layer 1, cross-channel normalization did not show
any benefits in the second layer. Again, DS units achieved the
best performance, substantially improving the recognition of LUs
(68.3 to 80% on N15 and 64.2 to 69.2% on C101). In summary,
both the adoption of DS units and the hierarchical computation
of saliency produced substantial recognition gains. Note that the
HDSN (type IV of right column of Table 3) is a fairly simple
extension of HMAX (type II of the left column), both concep-
tually (addition of saliency) and algorithmically [addition of the
parametric ReLU units of (11)]. A comparison to the HMAX per-
formance, or even to an HMAX network with a DSN in the first
layer (type V, left column) shows very significant improvements:
from 66–68 to 80% on N15 and 53–64 to 69% on C101.

4.1.2. Large network
The previous experiments were based on a relatively small net-
work. We next compared the performance of a larger HDSN to the
results reported in the literature for the methods of Section 3.3.
We note that, when compared to these approaches, the features
implemented by the HDSN (Gabor filters and randomly selected
saliency templates) are fairly simple. The published results for
the other algorithms are frequently based on much more com-
plex features and feature selection. Examples include independent
component analysis (ICA) (Kanan and Cottrell, 2010), sparse
decompositions (Yang et al., 2009), or very large sets of random
features (Jarrett et al., 2009). Pinto et al. (2008) has shown that
a single layer network with many channels can outperform hier-
archical networks with few channels per layer. We considered a
limited set of enhancements of this type. The filter pool of the
first layer was first augmented with 63 discrete cosine transform
(DCT) filters of size 8 × 8 (the DCT set minus the average -DC-
filter). This is a proxy for the expansion of Jarrett et al. (2009),
who showed that a set of random projections can outperform a
Gabor decomposition. Feature selection was then implemented
by pooling the saliency measure of (7) across the visual field, per
feature X. The 4 channels of largest saliency were selected, main-
taining the dimensionality of layer 1 identical to HMAX (Mutch
and Lowe, 2008). The resulting recognition accuracy is shown as
type V in the right of Table 3, where DS∗ means “DS with feature
selection.” The more elaborate feature set had gains of 2.2% in
N15 and 0.7% in C101. No further extensions were considered.

Table 4 compares these results to the literature, where different
methods have very different numbers of layer 2 units. These are
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Table 4 | Comparison of a 2-layer HDSN to various methods from the literature, on the 15 scenes and Caltech101 Datasets.

Method # Layer 2 units Recognition rate # Layer 2 units Recognition rate

N15 C101 N15 C101 N15 C101 N15 C101

SPMK(L = 0) 400 200 74.8 ± 0.3 41.2 – – – –

SPMK (L = 2) – 4200 – 64.6 8400 – 81.4 ± 0.5 –

kNN-SVM – 3030 – 66.2 ± 0.5 – – – –

V1 model – 4000 – 42 ± 0.5 – 86,000 – 65

HMAX – 4075 – 56 – – – –

NBNN – – – – – 10 M – 70.4

Sparse SPMK 450 5120 75.3 ± 0.5 64.8 ± 0.7 21,504 21,504 80.28 ± 0.9 73.2 ± 0.5

convNN – 4096 – 65.5 – – – –

HGMM – – – – 46,080 310,272 85.2 73.1

HDSN 450 4040 82 ± 0.5 70 ± 0.5 22,500 20,200 85.4 ± 0.3 73.1 ± 0.6

Results are presented for different numbers of layer 2 units, and grouped into small (left) and large (right) networks. The comparison includes SPMK (Lazebnik et al.,

2006), kNN-SVM (Zhang et al., 2006), V1 model (Pinto et al., 2008), HMAX (Mutch and Lowe, 2008), NBNN (Boiman et al., 2008), sparse SPMK (Yang et al., 2009),

convNN (Jarrett et al., 2009), and HGMM (Zhou et al., 2009).

A B C

FIGURE 6 | (A) classification accuracy vs. training set size on ALOI. (B) Precision-recall curves for object localization on pandaCam. (C) Detection rate vs.
number of false positives per image for panda detection.

also shown in the table, which we organized by network dimen-
sionality. The left half reports to “small” networks (≈400 units
for N15, 4000 for C101), the right to “large” (≈20 K for both).
The HDSN performs well in both regimes. The most interesting
observation is, however, its performance among small networks,
where it is far superior to the next best methods (82 vs. 75%
on N15, 70 vs. 66% on C101). In fact, in N15, the small ver-
sion of HDSN outperforms the large versions of SPMK, NBNN,
and sparse SPMK. In C101, it is only outperformed by the large
versions of HGMM, and sparse SPMK. It should be pointed
that these are not the best results reported on these datasets.
Better performance can usually be obtained using SVM classi-
fiers with non-linear kernels, which we have not considered in
our implementation. For example, on C101, the accuracy of a
4000 unit SPMK classifier can be boosted to 74.4% by addition
of a chi-square kernel (Chatfield et al., 2011). This is slightly
superior to the results reported in Table 4 for the combination
of a 20,200 HDSN with a linear SVM. In summary, the HDSN
of 20,000 units has learned a high-dimensional embedding sim-
ilar to that of the kernel-SVM, which has orders of magnitude
higher implementation complexity. This is particularly impres-
sive given the simplicity of the random sampling procedure used

to learn the HDSN templates. Again, the comparison to an equiv-
alent network with no saliency computation (HMAX) shows very
large gains (from 56 to 70% recognition rate on C101 with 4000
units).

4.2. COMPARISON TO SALIENCY MEASURES
These results show that the HDSN outperforms architectures that
use no saliency, or bottom-up saliency measures such as SIFT. The
next comparison was to the top-down measure (LSN) of Elazary
and Itti (2010). Since no software is available for this network,
we compared the two approaches on ALOI, where LSN was orig-
inally evaluated. In addition to the HDSN (1000 units) and the
methods evaluated in (Elazary and Itti, 2010)—LSN, HMAX
(1000 units), and SIFT-based image matching (Lowe, 1999)—we
also considered a single layer HDSN (denoted DSN) and sparse
SPMK (1024 units). Figure 6A) compares the recognition rates
of all methods, showing that the HDSN has the best perfor-
mance. For example, with 27 training images per class, it has
a recognition rate of 95.6%, while sparse SPMK achieves 91%,
DSN 85.8%, LSN 83.8%, HMAX 83.4%, and SIFT 72.7%. These
results confirm that both the addition of discriminant saliency
(HDSN vs. HMAX) and its hierarchical computation (single-layer
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FIGURE 7 | Object localization on the pandaCam dataset. Top row:
example images. Second row: saliency maps produced by the
combination of SIFT descriptors (layer 1) and discriminant visual words
(layer 2). Third row: same for a combination of SIFT descriptors (layer 1)

and discriminant saliency (layer 2). Fourth row: saliency maps produced
by a single layer HDSN. Fifth row: same for a two-layer HDSN. In all
cases, the saliency map is obtained by summing simple unit outputs
across all channels.

DSN vs. two-layer HDSN) lead to substantial gains in recognition
performance.

4.3. OBJECT LOCALIZATION AND DETECTION
We next considered the problem of object localization, on the
pandaCam dataset, where we compared the performance of the
HDSN to those of a saliency method based on SIFT in layer 1
and discriminant visual words in layer 2 (Dorko and Schmid,
2005) (SIFT+DVW), a HDSN with layer 1 replaced by SIFT
units (SIFT+DS), and a single layer HDSN. SIFT+DVW is an
intermediate between an RBF and a layer of DS units: it is
based on visual words but emphasizes those that are discrimi-
nant for each class. Figure 7 shows saliency maps produced by
the four methods, by simply summing the S(2)-unit responses
across all feature channels. SIFT+DVW produces very noisy
maps, with many false positives on the background, and few
strong responses at target locations. The replacement of the DVW
by the DS layer (SIFT+DS) suppresses most of this noise, but
mostly produces edge maps, illustrating the limitations of SIFT:
detection of simple features, failure to respond to the object inte-
rior, and poor selectivity for the target. While improving on
DVW, the use of DS units in layer 2 cannot compensate for all
these limitations. In fact, the single-layer HDSN produces bet-
ter saliency maps than SIFT+DSN. Its maps are more selective
for the target, have greater response toward the object interior,
and respond more strongly to complex features such as the panda
face. Finally, HDSN achieves the best performance, with saliency
maps that are active in the target interior and have few false pos-
itives. These observations are confirmed by the precision recall
curves of Figure 6B). The average precision is 0.31 for HDSN,

0.22 for single layer HDSN, 0.22 for SIFT+DS, and 0.16 for
SIFT+DVW.

A final set of experiments was performed on object detection.
An object detector was implemented by applying a box filter and
non-maximum suppression to the saliency map of an HDSN with
200 layer 2 units. This was compared to a 6 component part
model (partModel) of Felzenszwalb et al. (2009), sparse SPMK,
SPMK, and the Viola-Jones (VJ) detector (Viola and Jones, 2004).
Sparse SPMK, SPMK, and VJ used a sliding window, with win-
dows of seven scales, and step size of 10 pixels. Non-maximum
suppression was implemented as in Felzenszwalb et al. (2009),
and applied to all approaches. SPMK and sparse SPMK used a
spatial pyramid of 2 levels, and a codebook of 1000 visual words.
Curves of detection rate vs false positives per image (fppi) are
shown in Figure 6C). The partModel was unable to model pandas
with the finite set of poses available, achieving the worst per-
formance. Both sparse SPMK and SPMK produced a significant
improvement, with sparse SPMK achieving slightly better per-
formance. Another performance boost was achieved with the VJ
detector. Finally, HDSN had the overall best performance. The
detection rates at 0.3 fppi were 71.5% for HDSN, 66% for VJ,
58.6% for sparse SPMK, 56.8% for SPMK, and 43.8% for the
partModel.

5. CONCLUSIONS
In this work, we have investigated the evolutionary benefits of
integrating attention and object recognition, by introducing a
joint model, the HDSN, for saliency and recognition. HDSNs are
networks whose layers implement top-down saliency detectors
based on features of increasing selectivity and invariance. This
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is accomplished by (1) learning saliency templates of increasing
complexity and (2) adopting pooling operators of increasing sup-
port, in higher network layers. It was shown that HDSNs are
consistent with the standard neurophysiologic model of the visual
cortex but have a precise computational justification, and a statis-
tical interpretation for all network computations. This enables the
statistical learning of all network parameters and the explicit opti-
mization of the network for recognition. The learning of HDSN
parameters requires very simple mechanisms and has minimal
computational cost over previous models, such as HMAX or con-
volutional neural networks, that lack an explicit connection to
saliency. When compared to these models, HDSNs have a more
precise mapping to the cortical neurophysiology, and explicitly
account for both target and background hypotheses in the com-
putation of all network layers. This results in saliency templates
that are highly selective for the object classes of interest. The
HDSN also introduces a new type of non-linearity, the paramet-
ric ReLU, whose parameters can be tuned for the detection of
object classes of interest. This enables a number of functional
enhancements, including optimal feature denoising mechanisms
for recognition, modulation of saliency responses by the discrim-
inant power of the underlying features, and ability to detect both
feature presence and absence. A detailed experimental evaluation
has provided evidence for the advantages of all these functional
enhancements, as well as for the class-specific tuning inherent
to discriminant saliency, and the gains of saliency layers using
templates of increasing complexity, target selectivity, and invari-
ance. It was also shown that normalization across orientation
channels does not necessarily benefit recognition. This is an inter-
esting finding, which enables much simpler networks and justifies
the known cortical organization into orientation selective hyper-
columns. Perhaps more importantly, the experiments presented
suggest that there are non-trivial benefits in integrating atten-
tion and recognition. While attention is frequently modeled as
a pre-processor (selector of regions), e.g., the classical dichotomy
between pre-attentive and attentive vision, HDSNs assume that
recognition is a component of attention and vice-versa. This was
shown to substantially improve performance in core attention
tasks, such as object localization, and core recognition tasks, such
as object detection. In fact, it was shown that a single network
can perform effectively in the problems of object localization,
recognition, and detection, by a simple rearrangement of how
the saliency maps produced by the different templates are pro-
cessed: in parallel for recognition, and additively for localization
and detection.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fncom.
2014.00109/abstract
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If a picture is worth a thousand words, as an English idiom goes, what should those
words—or, rather, descriptors—capture? What format of image representation would be
sufficiently rich if we were to reconstruct the essence of images from their descriptors?
In this paper, we set out to develop a conceptual framework that would be: (i) biologically
plausible in order to provide a better mechanistic understanding of our visual system;
(ii) sufficiently robust to apply in practice on realistic images; and (iii) able to tap into
underlying structure of our visual world. We bring forward three key ideas. First, we argue
that surface-based representations are constructed based on feature inference from the
input in the intermediate processing layers of the visual system. Such representations
are computed in a largely pre-semantic (prior to categorization) and pre-attentive manner
using multiple cues (orientation, color, polarity, variation in orientation, and so on), and
explicitly retain configural relations between features. The constructed surfaces may be
partially overlapping to compensate for occlusions and are ordered in depth (figure-ground
organization). Second, we propose that such intermediate representations could be
formed by a hierarchical computation of similarity between features in local image patches
and pooling of highly-similar units, and reestimated via recurrent loops according to the
task demands. Finally, we suggest to use datasets composed of realistically rendered
artificial objects and surfaces in order to better understand a model’s behavior and its
limitations.

Keywords: mid-level vision, similarity, pooling, perceptual organization, summary statistics

VISION AS AN IMAGE UNDERSTANDING SYSTEM
The visual system of primates processes visual inputs incredibly
rapidly. Within 100 ms observers are capable of reliably report-
ing and remembering contents of natural scenes (e.g., Potter,
1976; Thorpe et al., 1996; Li et al., 2002; Quiroga et al., 2008).
Such fast processing puts tight constraints on models of vision as
most computations should be done roughly within the first feed-
forward wave of information. Efforts to understand how this is
possible have led to the so-called standard view of the primate
visual system where objects are rapidly extracted from images by
a hierarchy of linear and non-linear processing stages, where sim-
ple and specific features are combined in a non-linear fashion,
resulting in increasingly more complex and more transformation-
tolerant features (Fukushima, 1980; Marr, 1982; Ullman and
Basri, 1991; Riesenhuber and Poggio, 1999; DiCarlo and Cox,
2007; DiCarlo et al., 2012; see Kreiman, 2013, for a review).

In particular, in primate visual cortex the earliest stages of
visual processing are thought to act as simple local feature detec-
tors. For example, retinal ganglion and lateral geniculate nucleus
cells preferentially respond to blobs with center-surround organi-
zation (Kuffler, 1953; Hubel and Wiesel, 1961), while neurons in
primary visual area V1 respond to oriented edges and bars (Hubel
and Wiesel, 1962; see Carandini et al., 2005, for a review). These
detectors act locally (within their receptive field) and thus are very

sensitive to changes in position or size. In contrast, neurons in
the final stages of visual processing in the inferior temporal cor-
tex respond to complex stimuli, including whole objects (Tanaka,
1996; Kourtzi and Kanwisher, 2001; Op de Beeck et al., 2001;
Huth et al., 2012), faces (Desimone et al., 1984; Kanwisher et al.,
1997; Tsao et al., 2006), scenes (Epstein and Kanwisher, 1998;
Kornblith et al., 2013), bodies (Downing et al., 2001; Peelen and
Downing, 2005) and other categories. At this stage, neurons have
large receptive fields and thus are tolerant to changes in position,
size, orientation, lighting, and clutter (DiCarlo and Cox, 2007).
While the exact details of the properties of neurons at the low and
high visual areas remain an area of active research, in our view
the most puzzling question is the following: What computations
are performed at the intermediate steps of information process-
ing in order to bridge simple local early representations to highly
multidimensional representations of objects and scenes?

In primates, inspired by Hubel and Wiesel’s (1965) proposal of
the hierarchical processing in the visual cortex, a number of stud-
ies focused on demonstrating sensitivity to the increasing com-
plexity of features along the visual hierarchy. For example, in V2
angle or curvature detectors have been reported (Dobbins et al.,
1987; Ito and Komatsu, 2004). In V4, neurons are sensitive to even
more complex curved fragments and three-dimensional parts of
surfaces (Pasupathy and Connor, 1999, 2001, 2002; Yamane et al.,
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2008). Thus, the idea is that intermediate layers are responsible
for gradually combining simpler features into more complex ones
(Riesenhuber and Poggio, 1999; Rodríguez-Sánchez and Tsotsos,
2012).

However, building a system that could robustly utilize such
a connection scheme on natural images is difficult. On the one
hand, combining simpler features into more complex ones is
complicated due to the presence of clutter. Robust mechanisms
are necessary to combine the “correct” features and leave out the
noise. Similarly, in order to detect complex features, enormous
dictionaries must be built since the number of possible feature
combinations is huge, so this process is highly resource-intensive
(but see Fidler et al., 2009, for an inspiring approach to the issue).
On the other hand, focusing solely on edges and their combi-
nations into shapes misses a number of other useful cues in the
images—such as differences in color, texture, motion and so on—
and thus may lack the necessary power both to process object
shapes and to be useful for other tasks that the visual system is
performing (e.g., interaction with objects in a scene, navigation,
or recovering spatial layout; Regan, 2000).

Thus, in computer vision, partially due to the described limi-
tations of the standard view of primate visual system and partially
due to the development of robust algorithms for dealing with
large numbers of features, the actually implemented models of
vision have bypassed thinking about intermediate representa-
tions altogether in their implementations. Instead, such models
rely solely on the established features of V1 (namely, oriented
edge detection) and directly apply sophisticated machine learn-
ing techniques (such as support vector machines) to detect what
object categories are likely to occur in the given image. Somewhat
surprisingly, this idea works very well for a number of com-
plex tasks. For example, in the famous algorithm by Viola and
Jones (2001), faces are detected using several simplistic feature
detectors, reminiscent of the odd and even filters of V1. In Oliva
and Torralba’s GIST framework (2001, 2006; Torralba and Oliva,
2003), scene categorization is achieved by computing global his-
togram statistics of oriented filter outputs. Flat architectures of
SIFT (Lowe, 2004) or HoG (Dalal and Triggs, 2005) that largely
rely on oriented feature detection have seen a wide adoption
for a variety of visual tasks in computer vision, and, in com-
bination with multi-scale processing (Bosch et al., 2007), for a
long time these models that have no hierarchies have been the
state-of-the-art approach.

However, eventually hierarchical models that contain inter-
mediate representations ultimately proved superior in many
complex visual tasks. While such deep networks have been pro-
posed several decades ago, (Fukushima, 1980; LeCun et al., 1989;
Schmidhuber, 1992), only recently upon development of more
robust procedures for learning from large pools of data (Hinton
and Salakhutdinov, 2006; Boureau et al., 2010) such networks
managed to achieve state-of-the-art object identification perfor-
mance on demanding datasets that contain millions of exemplars,
such as the Large Scale Visual Recognition Challenge (Deng et al.,
2009; Krizhevsky et al., 2012; Sermanet et al., 2013; Szegedy
et al., 2014), or that demand fine-grain discrimination as in the
case of face recognition (Lu and Tang, 2014; Taigman et al.,
2014). Moreover, these networks have been reported to perform

extremely well on a number of visual tasks (Razavian et al., 2014).
While many challenges remain (Russakovsky et al., 2013), the fact
that base-level object categorization and localization have been
very successful and in some cases even approaching or supersed-
ing human-level performance (Serre et al., 2007; Lu and Tang,
2014; Taigman et al., 2014) is greatly encouraging. Importantly,
representations learned by such deep networks have been shown
to match well the representations in the primate V4 and IT
(Yamins et al., 2014), demonstrating the relevance of these models
to understanding biological vision.

Naturally, the success of these object recognition models begs
the question whether we now understand how the visual system
processes images. It is tempting to conclude that weakly organized
collections of features are sufficient for object and scene catego-
rization, and, by extension, scene understanding. However, it is
important to realize that, engineering advances aside, each layer in
these architectures is based on the same principles characterized
in the early visual processing of the primate brain. Is there really
nothing more going on in the intermediate stages of processing?

In the following section, we consider what the computational
goal of mid-level vision might be (cf. Marr, 1982). Based on these
insights, in Section “Intermediate Computations” we propose
basic computational mechanisms that we hypothesize to be suf-
ficient to account for processes occurring at intermediate stages.
Finally, we discuss what model evaluation procedures could help
in guiding the implementation of such a system.

WHAT DO MID-LEVEL VISUAL AREAS DO?
FEATURE INTERPOLATION
Typically, a model of vision is operationalized as a feature extrac-
tion system. Features that are present in the input image need
to be detected, so that a veridical (or at least useful) representa-
tion of the world (or objects in it) can be reconstructed. However,
visual inputs are necessarily impoverished (e.g., due to collapsing
of the third dimension as the image is projected on the retina),
incomplete (e.g., due to some objects partially occluding others),
ambiguous (e.g., due to shadows), and noisy. As a consequence,
the problem of vision is not only feature detection but also feature
inference (Purves et al., 2014).

A number of studies have shown that mid-level vision is
heavily involved in feature inference. Consider, for example, the
seminal series of studies by von der Heydt et al. (1984), von der
Heydt and Peterhans (1989), who compared neural responses to
the typical luminance-defined stimuli and the neural responses to
the same stimuli defined by cues other than luminance. In one of
their conditions, a stimulus was composed of two regions con-
taining line segments but with one region shifted with respect
to the other, forming an offset-defined discontinuity in the tex-
ture, which we refer to as a second-order edge (Figure 1A).
Importantly, a simple edge-detecting V1 model would not be able
to find such edges, so if some neurons in the visual cortex were
responding to such stimuli, it would mean that a higher-order
computation is at work that somehow is capable of integrating
information across the two regions in the image.

Consistent with the known properties of early visual areas,
the researchers observed a robust response to the luminance-
defined edges. However, in addition they also demonstrated that
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FIGURE 1 | Feature interpolation. (A) A second-order boundary
stimulus as used by von der Heydt et al. (1984). (B) A stimulus with
an illusory contour is perceived in the white gap between the two
parts of the white rectangle, as used by von der Heydt et al. (1984).

The arrow indicates that the white rectangle was moving. (C) A
stimulus where a shape is defined entirely by second-order cues (that
is, a difference in orientation), used in many figure-ground
segmentation studies (e.g., Lamme, 1995).

some neurons in V2 responded to the second-order edges, and, in
fact, often with the same orientation preference as to luminance-
defined edges. Moreover, Lamme et al. (1999) reported that V1
neurons were also responding to this boundary roughly 60 ms
after stimulus onset and suggested iso-orientation suppression
as a mechanism behind such fast second-order edge detections.
These findings have since been replicated in V2 and V4 (Ramsden
et al., 2001; Song and Baker, 2007; El-Shamayleh and Movshon,
2011; Pan et al., 2012) and also reported for discontinuities in ori-
entation (Larsson et al., 2006; Allen et al., 2009; Schmid et al.,
2014), motion (Marcar et al., 2000), and contrast (Mareschal
and Baker, 1998; Song and Baker, 2007; Li et al., 2014). Taken
together, these findings demonstrate that even in the absence of
luminance-defined borders in the inputs, mid-level areas infer
potential borders from differences in other cues. Importantly, this
operation is different from the typical feature detection and com-
bination scheme because in this case a feature is computed that is
not present in the input (that is, a second-order border).

An even more extreme example of such feature inference has
been demonstrated by another condition in von der Heydt and
colleagues’ experiments where they used a stimulus inspired by
the Kanizsa triangle (Kanizsa, 1955). The stimulus was defined
as a white bar moving over two black bars, separated by a white
gap (Figure 1B)—thus, although physically there were no edges
connecting the two halves of the white bar, subjectively observers
would nonetheless report seeing the complete white bar, effec-
tively interpolating its borders or surface across the white gap. We
refer to such borders as illusory contours. Surprisingly, for this
condition, von der Heydt et al. (1984) also reported neurons in
V2 responding to these illusory contours, and, in fact, nearly as
vigorously as to the luminance-defined ones.

If these examples appear only as curious cases of feature infer-
ence in artificial setups, imagine a typical cluttered image where
multiple objects are partially occluded. Just like in the two pre-
vious cases, the visual system appears to interpolate occluded
parts of objects at the early stages of visual information pro-
cessing (a process known as amodal completion; van Lier et al.,
1994; Ban et al., 2013). For example, Figure 2A is interpreted
as a gray blobby shape partially occluded by the black blobby
shape, both on a dotted background, as in Figure 2C. In fact,
we cannot help but perceive the gray shape inferred behind the
black occluder and our phenomenology is most certainly not

captured by segmentation into separate non-overlapping regions
as in Figure 2B.

Similarly, the background appears to continue behind the two
shapes even though there is no physical connection between the
left and the right portion of it, demonstrating that filling-in is
not confined to objects but applies in a more generic manner
to any occluded region in the input. Moreover, at least phe-
nomenologically, this filling-in appears to involve not only surface
interpolation but also the spread of feature statistics. In our
example, observers would report that the occluded part of the
background is likely to continue the pattern of polka dots (van
Lier, 1999).

Moreover, just like in the other two cases (second-order bor-
ders and illusory contours), the amodal interpolation has been
reported to be established relatively fast, already in 75–200 ms
(Sekuler and Palmer, 1992; Ringach and Shapley, 1996; Murray
et al., 2001; Rauschenberger et al., 2006), and has also been
observed in the early modulation of the occluded parts of shapes
in monkey V4 (Bushnell et al., 2011; Kosai et al., 2014).

Taken together, we see that the visual system actively performs
feature inference and it is an early process that may be initiated
already with the first wave of information. It is important to note
that in all of these cases, the inference does not necessarily pro-
duce a complete feature or a shape. Rather, it may reflect a rough
estimate of statistical properties of the shape (cf. “fuzzy comple-
tions,” van Lier, 1999) or the probability of possible completions
where the missing part of the shape may occur (D’Antona et al.,
2013).

RELATIONAL INFORMATION AND SURFACE CONSTRUCTION
But what is the purpose of feature extraction or interpolation?
In many object recognition models, for example, the extracted
features are used directly to perform categorization. Notice that
such an output lacks the explicit assignment of the features to
one object or another, that is, object shapes are not explicitly
represented. Such model behavior is strikingly at odds with our
phenomenology dominated by explicit object shapes or surfaces.
This idea has been nicely illustrated by Lamme (1995) who inves-
tigated neural responses to a shape entirely defined by a second-
order boundary. His stimulus consisted of a field of oriented noisy
elements embedded in a background of an opposite orientation
(Figure 1C). In order to perceive this shape, the visual system
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FIGURE 2 | Seeing is not the same as perceiving. Observers report
perceiving the configuration in (A) to be composed of full shapes as depicted
in (C) rather than as in (B) which reflects the physical inputs where shapes
are fragmented and two portions of background are separate. In (C), the gray
shape has been interpolated behind the black shape (depicted in green),
indicating that mapping of a two-dimensional surface in a three-dimensional
space is already necessary to represent depth relations. Furthermore, the

background is also a single surface rather than two separate regions and also
with its statistical properties (polka dot pattern) filled in. Some observers will
also see the black shape interpolated behind the gray one (depicted in red),
but this percept is much less consistent among observers than the
completion of the gray shape behind the black one, indicating that surface
inference might not be precise and rather indicate probabilities of possible
contour and surface properties.

must be able to (i) infer second-order borders and (ii) com-
bine them into the shape as a whole. Lamme (1995) showed that
neurons in monkey V1 with receptive fields inside that shape
reliably respond more than those outside, that is, the visual
system explicitly represents where the figure is. Moreover, the
observed enhancement was not instantaneous but rather devel-
oped in three stages (as described in Lamme et al., 1999). Early on,
only responses to local features were observed. Within a 100 ms,
responses to the second-order boundary emerged. Finally, neu-
rons in V1 corresponding to the figural region of the display
started responding more than the background. This effect was
later shown to be the effect of feedback from higher visual areas
such as V4, where such figure-ground assignments are thought to
emerge (Poort et al., 2012). Taken together, this example demon-
strates that the visual system gradually extracts not only the
contour of a shape but also its inside, resulting in a full surface
reconstruction.

More broadly, it has been argued that surface-based repre-
sentations form a critical link between early- and high-level
computations (Nakayama et al., 1995; see also Pylyshyn, 2001).
Moreover, the presence of a surface strongly influences even the
earliest computations of the visual information processing such as
the iso-orientation suppression (Joo and Murray, 2014). Finally,
surface-based representations can also be beneficial for object
identification tasks because surfaces are topologically stable struc-
tures and thus largely invariant to affine transformations (Chen,
1982, 2005). For example, a hole in a surface remains present
despite drastic changes in its position, orientation or rotation in
depth, or to the changes in surface structure (Chen, 1982; Todd
et al., 2014).

In general, we argue that encoding spatial relations—whether
between features, or deciding which features belong to the same
object or surface, or ordering the surfaces in space—provides a
tremendous wealth of information (Biederman, 1987; Barenholtz
and Tarr, 2007; Oliva and Torralba, 2007): Knowing that a car
is on the road or above the road makes a big difference, but
using only features without relations between them might fail
to capture these differences (Choi et al., 2012). One influen-
cial account of the power of spatial relations has been provided
by Biederman (1987), who noticed that certain spatial relations

between features, known as non-accidental properties, remain
largely invariant to affine transformations in space. For example,
short parallel lines nearly always remain parallel despite changes
in viewpoint. He proposed that these relations might be used
to encode different object categories, and later Hummel and
Biederman (1992) developed a model illustrating how such a
system might work. While the exact purpose of such structural
representations in recognition has been heavily debated since
(Barenholtz and Tarr, 2007), consistent with this idea a number of
studies demonstrated that observers are very sensitive to changes
in these invariant features of a shape (Wagemans et al., 1997, 2000;
Vogels et al., 2001; Kayaert et al., 2005a,b; Lescroart et al., 2010;
Amir et al., 2012).

Similarly, Feldman (1997, 2003) and van Lier et al. (1994)
argued that configural regularities of the inputs are used to orga-
nize features into objects, and human visual system has been
shown to be sensitive to such configural relations (Kubilius et al.,
2014). Moreover, Blum (1973) proposed that the configuration of
shapes is encoded in the visual system by representing their skele-
tal, or medial axis, structure, and Hung et al. (2012) showed that
neurons in monkey IT indeed respond both to the contour of a
shape and its medial axis structure. Taken together, these studies
highlight the fact that the visual system utilizes configural rela-
tions between features and surfaces in the higher visual areas,
and therefore an explicit encoding of these relations should be
supported by mid-level computations.

REPRESENTATIONS FOR MULTIPLE TASKS, NOT ONLY OBJECT
RECOGNITION
We argued that mid-level vision was involved in feature detec-
tion and surface construction, such that in the end the shape of
an object could be reliably extracted from the image. However,
the long quest for superior object identification algorithms has
somehow overshadowed the fact that visual cortex can achieve
more than just object identification. Vision is our means to under-
standing the world, whereas a mere object-based representation
provides only a tiny fraction of information needed for successful
behavior in the world. This point is particularly pertinent in lower
species such as rodents for whom navigation is a more imme-
diate task than object identification (Cox, 2014). In fact, much
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of our visual input is not composed of well-defined objects and
thus trying to parse them into objects makes little sense. A richer
description is thus needed if we were to capture the essence of
information about the world (Gibson, 1979).

To stress the point of the inadequacy of object-based repre-
sentations, let us consider a series of images in Figure 3. In some
cases, like Figure 3A, where the object (“a car”) is clearly sepa-
rate (self-contained) from the rest (the road), object identification
and localization provides the most important information about
the scene (“there is a car”). But consider a row of buildings, for
example (Figure 3B). While one still clearly describes each house
as a distinct object, they are impossible to detach from other
items (other houses and the ground). A more extreme example
is depicted in Figure 3C, where even though a mountain is stick-
ing out from the ground surface, it is no longer very clear where
the mountain ends and the ground begins. Is the visual system
really concerned about finding objects in such images then? In
fact, as we go further away from close-up views into panoramic
scenes, identifying objects does not appear to be the default mode
any longer. In Figure 3D, we know that the image is composed of
individual trees, grass and other stuff but we no longer can count
them. Rather, a percept of various textures and layouts appears to
dominate. Thus, talking about individual objects is largely irrele-
vant in these scenarios and instead describing texture properties
and characteristics that allow navigation through the terrain, or a
global level semantic labeling of “a forest” or “a lawn” often seems
to be the more immediate task for vision (Oliva and Torralba,
2001; Torralba and Oliva, 2003).

Therefore, we point out that surfaces that mid-level areas con-
struct are not only meant to represent the outline of objects in
images but also (or primarily) to summarize the properties of
textures and surfaces in the environment.

REPRESENTATIONS PRIOR TO IDENTIFICATION
Finally, we point out that intermediate representations do not
have to rely on being able to identify the contents, consistent with
the idea that they are computed early on. We do not need to know
what we are looking at to be able to describe its three-dimensional
shape, texture, and spatial relations to other items in an image.
For example, notice that in Figure 2 surface interpolation occurs
despite us never having seen these particular shapes before and
having no categorical label for them, indicating that this phe-
nomenon could be performed by mid-level computations prior

to categorization. This observation also holds for a more realistic
image depicted in Figure 4, where we can easily agree that five
objects situated in different depth planes are depicted. We can
describe their shape and imagine acting upon them despite partial
occlusions present in the image. This is clearly a more advanced
representation of the image contents than a mere V1 filter output,
yet not so advanced as to require any categorization, recognition
or identification (naming) of the objects in it.

The idea of intermediate representations being established
without recognition of contents is well-known in psychology
(Witkin and Tenenbaum, 1983; Nakayama et al., 1995). To pro-
vide an illustrative example, the famous visual agnosia patient DF
cannot report the identity or even orientation of most objects, yet
her ability to act on these objects remains intact, a finding that has
led Goodale and Milner (1992) to propose the vision-for-action
and vision-for-perception division in the visual information pro-
cessing in the brain. It thus appears that our visual system is adept
in processing inputs even lacking knowledge about what they are,
pointing to the idea that scene segmentation into objects might be
more basic or more immediately performed than recognition. We
do not claim that recognition is irrelevant for segmentation, as it
has been shown that recognition can bias figure-ground assign-
ment (Peterson, 1994), but our point is that it can largely be
done successfully without any knowledge about the identity of
objects.

CONCLUSION
Taken together, we claim that the goal of mid-level areas is
the construction of surface-based representations that segment
the input images into objects, background surfaces, and so on,
together with their textural properties, because such format of
representations is sufficiently rich for the variety of high-level
tasks, including three-dimensional reconstruction of the scene,
navigation in it, interaction with objects or restricting attention to
them. The idea of the primacy of the surface-based representation
is also supported by empirical studies showing that some form of
figure-ground organization would be established already shortly
after feedforward inputs reach higher visual areas and is con-
sistent with the observation that segmentation does not require
knowledge of the identity of the objects involved. Importantly,
given the computational complexity, this organization is proba-
bly not computed globally but rather is restricted to parts of visual
inputs that fall at fixation or where an observer is attending.

FIGURE 3 | The hierarchy of objecthood. Objects are not the most
important piece of information in every image. While (A) has a well-defined
object, it is already less clear in (B) what should count as one: The row of
houses? Or each house separately? Or each of the windows? In (C), there
are three mountains but where each of them begins and ends is neither clear

nor very important, and in (D) layout rather than object identity dominates
perception, although one can see trees, trunks, etc. (Image credits from left
to right: bengt-re, 2009, Snowdog, 2005, Reza, 2009, �64, 2012. All images
are available under the Creative Commons Attribution License or are in the
public domain.).
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FIGURE 4 | Recognition is not crucial for scene or object understanding. In this artificially generated scene we see five novel objects, we can describe
their three-dimensional shape despite partial occlusions, and navigate around them without having to know the identity of those objects.

It is also important to understand that the segmentation we
describe here is not the same as what is commonly meant by this
term. Many algorithms of segmentation only divide the image
into a mosaic of non-overlapping regions without any informa-
tion about the depth, that is, which region is in front of another
one (see also Section “Current Approaches”). However, whenever
something is occluded, that is a cue for depth ordering. Therefore,
we consider a process that not only divides the image into sepa-
rate regions but also infers figure-ground relations between these
regions. Since this process often involves the inference of occluded
parts, we refer to such interpolated regions as a surfaces.

Finally, such depth ordering is necessarily an oversimplifica-
tion. For example, observe in Figure 2C that we do not perceive
the whole of the black shape in front of the gray one. In fact, at
least for some observers, part of the black shape (shown in red
in Figure 2C) appears to be behind the gray shape, suggesting a
three-dimensional form of the two shapes (Tse, 1999). This exam-
ple demonstrates that the resulting representations cannot be
captured by splitting an image into several depth planes, and thus
require more flexibility. Such representation presumably would
be followed by a full rectification of a three-dimensional volume
at the later stages of visual information processing.

INTERMEDIATE COMPUTATIONS
We proposed that intermediate processing stages produce surface-
based representations from two-dimensional static images. What
computations could produce such representations?

CURRENT APPROACHES
In computer vision, many early image segmentation approaches
considered segmentation as a global optimization problem of
finding the best boundaries, grouped regions, or both. For
example, Mumford and Shah (1989) proposed a functional that
estimates the difference between the original image and its

segmentation with constraints for smoothness and discontinu-
ity at region boundaries (see also Lee et al., 1992). Finding
the best segmentation amounts to finding the global mini-
mum of this functional. Similarly, in a boundary-based contour
extraction model, Elder and Zucker (1996) considered find-
ing the shortest-path cycles in the graph containing boundary
elements.

However, solving for a global optimum deemed to be a compli-
cated task, often leading to unsatisfactory results. In 2000, Shi and
Malik proposed a reconceptualization of the image segmentation
problem as a graph cut problem. When features in an image are
represented in a graph, finding the best segmentation amounts to
finding groups of features in this graph that are maximally similar
within a group and maximally dissimilar from other groups. Shi
and Malik (2000) showed that their normalized cuts algorithm
could provide a good optimization of this criterion and, based on
this approach, they later developed one of the best-known image
segmentation models (Arbeláez et al., 2011; see also Felzenszwalb
and Huttenlocher, 2004 and Sharon et al., 2006, for much faster
implementations of this idea).

Partitioning a graph in a fixed way, however, cannot capture
the inherently hierarchical structure of images (a part can be
part of another part; see the windows of houses in Figure 3B),
nor can it adapt to the task demands. Therefore, in recent years
much effort in image segmentation research has been devoted to
the development of methods for the probabilistic generation of
region proposals (Arbeláez et al., 2014) that could then be refined
using a higher-level task such as categorization (Leibe et al., 2008;
Girshick et al., 2014; Hariharan et al., 2014) or would be flexibly
reconfigured based on Gestalt principles (Ion et al., 2013).

How could such partitioning of an image graph into high-
similarity clusters be implemented in a biologically-plausible
architecture? Based on behavioral and neural evidence, Nothdurft
(1994) hypothesized that image segmentation involves (i)
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suppression of responses in homogenous feature fields, and (ii)
local pooling of features for boundary detection. Unlike the
global optimization approaches considered above, this idea is
based on completely local computations that are attractive due
to their low complexity and biological plausibility. The imple-
mentation of this idea can be found in models by Grossberg
(1994) and Thielscher and Neumann (2003), where texture seg-
mentation is performed by enhancing edges that group together
by the good continuation cue (using the “bipole cell” idea), and
suppressing other locations in the image. Repeated over several
iterations, this computation leads to the formation of the out-
line of the shape. This idea accounts well for Nothdurft’s (1994)
observations, and also provides an integrated framework of using
both texture and boundary information to perform segmenta-
tion. Moreover, Thielscher and Neumann (2005) also demon-
strated that this approach produces differences in convex and
concave boundary appearance, in line with Nothdurft’s (1994)
observations.

Segmentation into distinct regions is only the first step though.
As discussed in the previous section, this is not sufficient because
an explicit surface construction and figure-ground relation com-
putation need to occur as well. Some approaches (Roelfsema
et al., 2002) attempted to explain figure-ground segmentation
simply as an effect of increasing receptive field sizes (thus,
decreasing spatial resolution) in higher visual areas. The model
operates by initially detecting boundaries in the inputs and then
pooling them together in higher visual areas as a result of increas-
ing receptive-field sizes. Eventually, the whole shape is represented
by a unit with a sufficiently large receptive field. Then, the figure-
ground assignment can be propagated down via feedback to the
early visual areas, as observed in the experiments by Lamme
(1995).

However, it is unlikely that such scheme would work in more
complex displays with more overlapping shapes and more vari-
ation in texture. Moreover, smaller shapes always produce higher
responses in higher-level areas because their boundaries are closer
together. Since these responses represent the figure-ground signal,
smaller shapes are always bound to be on top of larger shapes that
produce a weaker figure-ground signal. One possibility to resolve
some of these issues is to use corners as indicators of the figural
side. Since figures tend to be convex, the inside of a corner reli-
ably indicates the boundary of a figure. Based on this observation,
Jehee et al. (2007) proposed an extended version of the model by
Roelfsema et al. (2002) that could produce more reliable border
assignments.

The idea of using convexity can be applied more generally
across the entire shape outline and not only at its corners. To illus-
trate how that could work, consider the two shapes in Figure 5A.
The two edges shown in red can either be the boundary of the
gray surface or the boundary of the white one, as indicated by the
green arrows pointing to both directions. Of course, in this case
it is clear that these edges must belong to the gray surface because
the white one is just the background. But how would a model
know? If we assume that objects tend to be convex, edges that
are in agreement (the green arrows that are pointing toward each
other) might belong to the same surface (Figure 5B). This simple
computation in the local neighborhood followed by pooling into

curved segments (Figures 5C,D) results in a largely correct border
ownership. If it is further computed globally over a few iterations,
local inconsistencies (e.g., a concavity of the lighter gray object)
can be resolved (Figure 5E; see Figure 5B in Craft et al., 2007, for
a working example), resulting in the proper assignment of edges
to one of the two objects (Figure 5F), which is the desired initial
image division into surfaces.

Importantly, because of border-ownership, we also learn
which parts of objects are occluded. If a certain surface is partially
bounded by a boundary that it does not own, it is a sign of an
occlusion. For example, in Figure 5F, the yellow object is partially
occluding the blue one, and border-ownership assignment indi-
cates that edges along the yellow object belong to it. That leaves
the blue object lacking a closed contour, meaning that part of it
is occluded. An interpolation of surface results in a more percep-
tually compelling segmentation into whole shapes (van Lier et al.,
1994), and consequently provides an ordering of surfaces in depth
(Figure 5G).

The existence of such border-ownership cells has been
reported in the visual area V2 (Zhou et al., 2000; see Zucker,
2014, for a good overview) and a number of models based on
this idea have been proposed since (Zhaoping, 2005; Craft et al.,
2007; Layton et al., 2012). Kogo et al. (2010) extended this frame-
work by also using L- and T-junctions to determine not only
figure-ground assignment for luminance-defined figures but also
to produce the correct output in the case of illusory contours
(Kanizsa’s figures). Importantly, unlike earlier proposals (e.g.,
Grossberg, 1994), their approach is capable of yielding the correct
representations of comparable yet non-illusory displays without
ad hoc deletion of interpolated contours (see Figure 1B in Kogo
et al., 2010).

Similarly, extending their work on bipole cells, Thielscher and
Neumann (2008) showed that T-junctions could be used to infer
figure-ground relations for multiple figures (not just figure and
ground) in their architecture, and more recently, Tschechne and
Neumann (2014) extended their earlier work to a full model
of figure-ground segmentation. Initially, bipole cells, curvature
and corner detectors are used to produce the consistent out-
line of a shape. Then, contextual cues are used to compute
border-ownership.

Taken together, current biologically-inspired approaches to
image segmentation largely concentrate on discovering bound-
aries in an input image and resolving figure-ground assign-
ment by computing border-ownership of the boundaries in an
image. However, unlike purely computer vision algorithms, these
approaches are typically not tested with realistic inputs, thus
their applicability and robustness on the wide variety of natu-
ral images remains unclear. Moreover, some models are better
at segmentation but do not perform feature interpolation and
figure-ground relation computations, and vice versa, while oth-
ers focus on using second-order features but are not robust for
segmentation using multiple cues, and so on. In other words,
each of them only implements several aspects of processes in
mid-level vision but the proposed mechanisms are not mutually
compatible to build a unified architecture. Could there be sev-
eral basic mechanisms that could account for the majority of the
available data?

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 158 | 81

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kubilius et al. Computations in mid-level vision

FIGURE 5 | An illustration of border-ownership assignment. (A) Initially,
each edge in the image (red arrows) can belong to one of two sides (green
arrows): either the gray surface or the white surface. The goal of border
ownership computation is to figure out which side is the figural side. In this
case, the edges should belong to the gray surface. (B) Using the convexity
assumption (objects tend to be convex), we can easily determine border
ownership in the local neighborhood. Edges that “agree” (green arrows are
“looking” at each other) are preferred. (C) Pooling these edges together
results in a curved segment with the correct border-ownership assignment.

(D) After this computation is carried out in the local neighborhood, border
ownership is largely but not fully correct. We can improve it by using the
same convexity assumption over larger areas (e.g., over the entire image). (E)

Global border-ownership computation results in a correct assignment of all
segments. (F) With pooling, two separate surfaces emerge. Note that the
blue one is missing a boundary at the intersection with the yellow object.
This implies that the blue object is partially occluded by the yellow one. (G)

Using this information, a correct local depth ordering is established and the
missing piece of the blue object is interpolated.

OUR APPROACH
In a nutshell, we are interested in understanding conceptually
what computations could suffice to account for the following
biologically-plausible image processing strategy:

1. Region property and boundary extraction.
2. Clustering of boundary and region features into separate sur-

faces (segmentation).
3. Surface interpolation and depth ordering (figure-ground orga-

nization).
4. Representation refinement via recurrent loops.

Moreover, we want these computations to be sufficiently robust
such that they would apply across various features in the images
and could therefore be used in the typical computer vision setups
such as deep networks.

To implement steps 1 and 2, we propose two basic mechanisms
for intermediate computations, generalizing the vast majority

of approaches discussed in Section “Current Approaches”
(Figure 6):

• similarity statistics that compute correlations between local
patches of the input, and

• pooling that combines together highly similar (well-correlated)
patches.

These two computations are implemented hierarchically, pro-
cessing over increasingly larger patches of the input image and
resulting in a coarse mid-level representation of surfaces and
their properties upon the first roughly feedforward processing
wave. As a result of feature inference at multiple layers, the
constructed surfaces are partially overlapping, providing infor-
mation for depth ordering at the highest stages of this architecture
(step 3). The resulting representations will be very coarse and
probably inconsistent, so an iterative refinement of these repre-
sentations by reapplying similarity and pooling operations over
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FIGURE 6 | Computation of intermediate representations in the visual

hierarchy. In each layer, various features are extracted first at each
location, forming a feature vector. Next, correlations are computed in the
local neighborhood between each pair of a weighted feature pair, leading
to similarity statistics (red arrows). (The optimal weights need to be
learned by training the model.) Finally, these patches are pooled together
into clusters that contain similar statistics. These new clusters are used in
the next layers for the same similarity and pooling over increasingly larger
neighborhoods. Note how the resulting intermediate representations are

interpolated behind occlusions and are ordered in depth (e.g., the tree is in
front of the forest). These representations can now be used for higher-
level tasks such as categorization, attention to specific objects or
interaction with them, or for navigation. They are also rather coarse initially
(e.g., trees on the right are incorrectly lumped together), and can further
be refined iteratively via feedback loops (if attention is directed to that
region). Moreover, notice that not all steps must necessarily be carried out
as certain shortcut routes (e.g., the gist computation) using simpler
statistics can occur.
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smaller parts of an input image is important as well (step 4;
see also Wagemans et al., 2012b). We briefly discuss the role
of feedback in Section “The Dynamic Nature of Intermediate
Representations.”

SIMILARITY ESTIMATION AND POOLING
Let us start by considering the output of a typical low-level com-
putation such as edge detection, as illustrated in Figure 5A. The
red arrows in this figure show the locations and orientations of
salient edges in the image. While this is a useful description of
potential boundary positions in the image, this information does
not suffice to understand the organization of the image contents.
In particular, it does not indicate which edges are likely to define
the same surface, as shown in Figure 5B. At this stage the system
only knows about separate salient edge positions, and further pro-
cessing is needed to group both boundary and textural elements
into coherent surfaces.

Finding which edges might group together can be achieved
with a simple similarity measure, such as a correlation between
two locations in an image. If the similarity is high, the two edges
might belong to the same smooth contour (since edges at nearby
locations of a smooth curve have similar orientation) or the
same surface composed of similarly oriented elements (e.g., the
wood texture in Figure 4). In contrast, a low similarity indicates a
potential discontinuity in an image, or a second-order edge, just
like the one between the ground and the object in Figure 1C.

Of course, similarity computation need not be restricted to
oriented edges only and can be applied across other proper-
ties (e.g., spatial frequency, phase bands, color) and even across
summary statistics within a local patch (e.g., mean and variance
of orientation). Notice that by incorporating multiple cues, this
single computation of similarity among the adjacent locations
provides a natural approach to dealing with both boundary and
textural cues in images. In particular, wherever there is suffi-
cient dissimilarity, textural properties are actively used to generate
boundary elements that are further used to construct full surface
boundaries.

Freeman et al. (2013) provided evidence that such similar-
ity measures are indeed computed early in the visual system.
They constructed synthetic textures with specific higher-order
statistical dependencies, such as marginal statistics, local cross-
position, orientation, scale and adjacent-phase correlations, and
demonstrated that such neurons in primate V2 (but not V1)
were particularly sensitive to these built-in statistics, suggest-
ing that V2 computes similarity between features. When used
in textures, such summary statistics apparently are sufficient for
the synthetic generation of similar-looking textures (Portilla and
Simoncelli, 2000). When used on natural images, these statistics
appear compatible with percept in peripheral vision (Freeman
and Simoncelli, 2011; Freeman et al., 2013) and can also account
for certain effects in crowding (Balas et al., 2009) and visual search
(Rosenholtz et al., 2012).

Similarity statistics alone are not sufficient, however. While
they are clearly useful in providing rich descriptions of the inputs,
the number of parameters in the system increases dramatically
since these statistics are computed pairwise between many small
patches. Maintaining all these parameters does not appear to

match our phenomenology where integrated shapes or regions
dominate over local fragmented interpretations. Moreover, natu-
ral scenes contain substantial redundancy and the visual system
appears to take advantage of it via efficient coding strategies
(Attneave, 1954; Barlow, 1961; Simoncelli and Olshausen, 2001;
Olshausen and Field, 2004; DiCarlo and Cox, 2007). For instance,
Vinje and Gallant (2000) demonstrated that V1 neurons use a
sparse encoding scheme that matches the sparse structure of nat-
ural scenes. Other researchers have demonstrated that sparsity
constraint leads to the development of simple and complex cells
in computational models (Olshausen and Field, 1996; Hyvärinen
and Hoyer, 2000, 2001).

It thus appears that a higher-order statistic, one that would
summarize similarity statistics, is necessary. We call this com-
putation pooling to reflect the idea that separate units are now
pooled together according to the strength of the previously
computed pairwise correlations. Computationally, such pooling
operation is very simple, for example, a single-link agglomera-
tive clustering of patches that correlate above a certain threshold
(Coates et al., 2012) or mean-shift (Paris and Durand, 2007;
Rosenholtz et al., 2009). The threshold can be flexible (i.e., a free
parameter in the model) reflecting individual differences between
participants.

While either similarity or pooling have been utilized in various
formats separately by many models, exploring the power of their
combination is rare. Geisler and Super (2000) showed that a sim-
ilar similarity and pooling scheme could account for a number
of typical perceptual grouping displays. One successful demon-
stration of this combination on real images was reported by Yu
et al. (2014) who found that a super-pixel segmentation followed
by mean-shift clustering accounted surprisingly well for visual
clutter perception. In a notable example that such scheme can be
both powerful and efficient even for practical applications (due to
parallelization), Coates et al. (2012), using K-means and agglom-
erative clustering, achieved robust unsupervised learning of face
features using tens of millions of natural images.

HIERARCHICAL SIMILARITY ESTIMATION AND POOLING
While it would be possible to perform similarity and pooling
globally across the whole image, such strategy would be very inef-
ficient and probably not very accurate. Instead, we propose that
these computations are performed hierarchically, such that first
similarity and pooling are done locally, then over somewhat larger
neighborhood using the newly inferred features, and finally glob-
ally using few but rather complex features that result from these
computations at earlier stages.

The initial computation of a similarity and pooling would
yield longer straight or curved segments (Figure 7A, right). A
low correlation, on the other hand, would indicate the presence
of second-order edges that are formed between adjacent surfaces
with differently oriented elements. For example, in Figure 7B,
left, there is no clear edge separating the object from the ground
since their overall luminance is quite similar, and thus segmen-
tation could not be done with a simple V1-like edge detection
model. The desired segmentation becomes trivial when the dif-
ference in orientation content is observed. The dominant ori-
entation of the object is different from that of the ground and
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FIGURE 7 | Examples of feature inference. (A) Pooling similarly-oriented
features (red) result in the inference of curved fragments (yellow). (B) In
contrast, a dissimilarity between oriented features (red) result in the
inference of second-order edges (yellow) between textures.

can therefore be used to determine a boundary between the
two textures, which is indicated by the low similarity measure
(Figure 7B, right).

Of course, detecting second-order edges in this fashion can
also yield spurious results. Boundary element orientation can
change significantly at inflection points (i.e., junctions) leading
to low similarity measures, and yet these do not imply the pres-
ence of a second-order edge. One solution to the problem could
be to use only sharp edges for defining boundaries, and other-
wise assume that edges define textures (the insides of a surface).
Consistent with this idea, Vilankar et al. (2014) reported that
edges defining an occlusion tend to have steeper changes in con-
trast than non-occlusion edges (reflectance difference, surface
change, cast shadows) and that a maximum likelihood classi-
fier could predict the type of edge with 83% accuracy in their
database. Another possibility is that junctions are not detected
during the initial processing and only computed later when the
global estimate of the shape is already available from the higher-
level areas. Consistent with this idea, McDermott (2004) reported
that participants were unable to report T-junctions using local
natural image information (small patches of image) only (but
see Hansen and Neumann, 2004; Weidenbacher and Neumann,
2009).

However, in general, the visual system is not so much inter-
ested in the features as such but in the surfaces they define. Other
cues than boundaries can therefore be important in the local
computations of which features should be combined into a sin-
gle surface. As discussed above, convexity is an important cue
for border-ownership assignment. Measuring consistency in edge
polarity (where the brighter side is) can also provide informa-
tion if they are likely to belong together (Kogo and Froyen, 2014).

In fact, Geisler and Perry (2009) observed that edges with an
inconsistent polarity are less likely to belong to the same contour.
Recently, it has been reported that even low-level cues, such as the
sharpness of an edge or local anisotropies in spectral power can
be informative about figure-ground organization (Ramenahalli
et al., 2014; Vilankar et al., 2014).

So, at each location where a boundary element has been
found or inferred, we can list all these cues as a long vector
and then compute the similarity between these vectors in the
local neighborhood. Sufficiently similar locations are then pooled
together, resulting in new, more complex features at a higher layer
of this hierarchy. Now again, the similarity of these new features
over larger scales can be computed, and similar features pooled
together into even more complex features, such as parts of bound-
ary (Brincat and Connor, 2006) or surface patches (Yamane et al.,
2008) with a complex geometry. Finally, these features are pooled
again over the entire image, producing the initial segmentation of
an image into proto-surfaces.

NEURAL REPRESENTATION OF POOLED UNITS
By definition, a pooling operation combines outputs of several
units and treats them as belonging to the same group (same
contour, shape, or surface). Several alternatives have been pro-
posed how such groups could be represented in the visual system.
Perhaps the most straightforward way to implement this repre-
sentation is by having dedicated grouping cells. Such idea has
been used in a computational model of border-ownership assign-
ment by Craft et al. (2007). They implemented neurons with
donut-shaped receptive fields that can pool together units lying
on that donut. However, such grouping cells have yet to be found
in the visual system. It is possible however that cells with large
curved receptive fields that exist in V4 might suffice to perform
the border-ownership computation (as the authors themselves
suggest on p. 4320 of their paper).

Another simple strategy is an increase of the mean neural
response of units belonging to the same group (Roelfsema et al.,
2004). However, this strategy also implies that only a single
group can be maintained at a time. If another group needs to
be processed, such as when shifting attention from one object
to another, the integration computation would have to be per-
formed again. While it may appear somewhat limiting, it should
also be noted that in many tasks, such as multiple object tracking,
observers show a rather poor ability to maintain representations
of multiple groups at the same time.

A very different idea has been proposed by von der Malsburg
(1981). He hypothesized that representations are held together by
synchrony in neuronal firing. Such idea, if true, would in theory
allow for multiple stable representations to co-exist in the visual
system. While such synchrony has been observed in the visual cor-
tex (Singer and Gray, 1995), its functional role is heavily debated,
questioning whether it indeed plays a causal role in representing
groups (Roskies, 1999; Roelfsema et al., 2004).

Finally, a similar idea has been put forward by Wehr and
Laurent (1996). They provided evidence that locust’s olfactory
neurons fire in a certain unique temporal patterns to various
combinations of scents. For example, while an overall response
to an apple and to a mint and an apple scents might appear
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comparable, at a finer temporal scale differences emerge in the
number and timing of these higher frequency peaks (three peaks
for the apple scent but only two for mint and apple). In other
words, each stimulus receives a unique code of neural firing which
can serve as a tag for belonging to a certain group. Importantly,
just like binary code in computers, this code can accommodate a
large number of stimuli without running into the combinatorial
explosion.

THE DYNAMIC NATURE OF INTERMEDIATE REPRESENTATIONS
The visual processing need not stop with the feedforward for-
mation of the intermediate representations. Probably the best we
can expect at this first pass of processing is a very coarse rep-
resentation capturing the most salient aspects of the input. For
example, the initial representations may lack global consistency:
it is likely that not all parts of an object will be bound into a single
entity, and there can also be errors of the bounding of parts. For
instance, the legs, body, and arms of a human body might be sep-
arate initially if there is not enough similarity between them. As a
result, these parts may also have conflicting figure-ground assign-
ments, such that the body is computed to be behind a chair but
the legs are in front. If necessary for the task, a reconfiguration
of these components could be formed iteratively until a global
minimum is found, resulting in a stable percept of the configu-
ration. For instance, the border-ownership model by Zhaoping
(2005) resolves the direction of border-ownership by iteratively
computing which side is more likely to be the figural side. The
iterations are necessary because, for example, borders in concave
parts of a shape might initially have the wrong border-ownership
(toward the convex side) but over several iterations the assign-
ment is gradually reversed since other parts of the global shape
influence the decision that the concavity should be part of the
whole shape. There are also cases where several interpretations
are similarly plausible (e.g., the Necker cube or the vase-face fig-
ure; see Wagemans et al., 2012a), and thus iterative computations
will lead to continuous switches between these interpretations.

In many cases, the refinement of representations will also be
necessary. In particular, the initial representation formed in mid-
level areas might only capture the gist of the input. Details will
be necessarily lost due to agglomerative pooling operations. In
order to extract finer details, representations in earlier layers can
be reaccessed via feedback loops (indicated by backward arrows
in Figure 6), as conceptualized by the Reverse Hierarchy Theory
(Hochstein and Ahissar, 2002). Such feedback connections are
abundant in the primate visual cortex and have been implicated
to be important for various purposes (Felleman and Van Essen,
1991; Angelucci et al., 2002; Roelfsema et al., 2010; Arall et al.,
2012). For example, intermediate representations could be used as
saliency maps to direct attention to a particular part of an image
or a particular feature (Walther and Koch, 2006; Russell et al.,
2014). Then irrelevant inputs would be inhibited while the rele-
vant ones would receive an enhanced weight (Mihalas et al., 2011;
Arall et al., 2012; Wyatte et al., 2012), and the whole similarity and
pooling computation would be repeated again. Such approach
could be particularly important for resolving complicated parts
of images that require high spatial resolution (Bullier, 2001),
serial (or incremental) grouping of image features (Roelfsema,

2006), and could play a major role in learning features from input
statistics (Roelfsema et al., 2010).

Iterative computations also provide the necessary flexibility for
dealing with the inherently hierarchical composition of scenes.
Consider, for example, Figure 3B, where all buildings could be
represented by a single surface, or could be further divided into
separate surfaces for each building, or even further for each win-
dow or any other detail in the image. Task demands, the mental
state of an observer, and other factors can have a strong influ-
ence to the percept at any given moment. Utilizing the recurrent
connections, the dynamics of the percept could be modeled in
our framework by updating the pooling threshold (Sharon et al.,
2006; Ion et al., 2013).

Of course, the proposed system need not be strictly hierarchi-
cal. For certain computations, it makes sense to have fast bypass
routes (indicated by the dashed arrow at the top of Figure 6)
whenever construction of intermediate representations is too slow
or unnecessary, as could be the case for face detection where Viola
and Jones’ (2001) approach proves sufficient, or for a rapid scene
categorization using the gist computation (Torralba and Oliva,
2003). Moreover, including such bypass routes naturally provides
the visual system with the flexibility to both build detailed repre-
sentations gradually and also to produce global impressions of the
input statistics rapidly (Bar, 2004). The gist of the scene can pro-
vide informative priors (category, context, memory associations,
and so on) that could guide processing and segmentation at inter-
mediate layers (Peterson, 1994; Rao and Ballard, 1999; Oliva and
Torralba, 2007).

Finally, we want to stress that although recurrent process-
ing can improve surface representations and help in task per-
formance, figure-ground segmentation does not require it. For
example, Supèr and Lamme (2007) observed that removing
most of feedback connections from higher visual areas to V1
reduced but did not abolish figure-ground perception. In fact,
Qiu et al. (2007) reported that border-ownership signals emerge
pre-attentively, and a purely feedforward model of figure-ground
segmentation has been proposed by Supèr et al. (2010), consistent
with a limited role of feedback in figure-ground assignment pro-
cess (also see Arall et al., 2012, and Kogo and van Ee, 2014, for a
discussion).

EVALUATING PERFORMANCE
The proposed architecture is meant to simulate the representa-
tions residing in mid-level vision. Given that this is not the final
stage of the visual processing, evaluating the model’s performance
is not trivial. Often, models of vision are evaluated using stan-
dard object identification or scene segmentation datasets such as
the ImageNet (Deng et al., 2009) or the Berkeley Segmentation
Dataset (BSDS500; Arbeláez et al., 2011), where the goal for a
model is to produce labels or segmentations as close as possible to
the correct answers defined in that dataset. So, one simple solu-
tion for testing our architecture could be to extend it to perform
one of these tasks. In this section, however, we discuss how blindly
applying standard benchmarks can be misleading and highlight
the need for good, carefully constructed tests and datasets that
would help to detect shortcomings in the model and guide its
development (Pinto et al., 2008).
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FIGURE 8 | Several potential problems with image datasets. (A) Lack
of ground truth (photo credits: Sheila in Moonducks, 2010, and Camera
Eye Photography, 2013). (B) Misleading influence of semantic knowledge
(image from the dataset described in Arbeláez et al., 2011). (C) What

counts as correct? (photo credit: bengt-re, 2009). (D) Black box models
(photo credit: Berbezier, 2008; inspired by Landecker et al., 2013). (E)

Contextual influence. All photos are available under the Creative
Commons Attribution License.

First of all, there is always the question of the “ground truth.”
For example, which of the two segmentations in Figure 8A, left,
is the ground truth? Both seem reasonable to a human observer
and, in fact, they have been annotated by hand, making them,
by definition, not objective. For example, smaller objects might
be missing, subordinate categories might remain not annotated,
and there may even be a disagreement among raters as to what
constitutes an object and what is only a part of an object. While
it is possible to step away from human raters altogether by
obtaining ground-truth data using motion and depth informa-
tion (Scharstein and Szeliski, 2002), only obtaining more precise
measurements is not solving the major issue. In particular, the

differences in ratings are largely driven not by imprecise anno-
tation of boundaries but rather reflect individual differences
in how people perceive images and what task they think they
need to do. In other words, there is no ground truth to nat-
ural images because, as we have repeatedly pointed out in this
paper, perception (and thus the definition of objects) is observer-
and task-dependent. Another pertinent example to illustrate this
point are images that contain occlusions (Figure 8A, right): What
sense does it make to ask about the ground truth if it could be
anything behind this occlusion, and we will never be able to tell
from the incomplete data in the image? It only makes sense to ask
what it looks like to a particular observer, so by forcing models
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to match the “ground truth,” we may in fact be pushing them to
solve the wrong problem.

Similarly, raters are subject to their semantic knowledge. A
human figure in a yellow skirt (Figure 8B) might be annotated
as a human figure rather a body and a skirt separately. But for
a model lacking extensive semantic knowledge (or statistical co-
occurrences of higher-level entities), there is no reason why that
yellow blob that happens to be a skirt could not be an occluder,
unrelated to the human (like a flying broomstick). Regardless of
whether or not the model combines the two into a single object,
it does not mean that the model performed an incorrect initial
segmentation. Thus, one needs to be very careful when defining
what a correct segmentation is for a given model. A ground truth
for one model might not be a ground truth for another.

Perhaps due to the lack of the ground truth, object local-
ization is usually treated as accurate if at least 50% of the box
containing the object overlaps with the box proposed by the
model (Russakovsky et al., 2013). While finding the bounding
box can often provide a good first guess of an object’s location,
as discussed in Section “Feature Interpolation,” it is clear that
this measure is far from the explicit human knowledge of the
precise boundary and location of an object (Figure 8C). As a
result, a model that is performing well according to this bench-
mark might be doing so in a completely different way than we
expect or want. For example, an interesting study by Landecker
et al. (2013) attempted to track down which parts of an image
end up being most important for classification in hierarchical
networks. Curiously, they found that sometimes object classifi-
cation decision was based on completely irrelevant information,
such as a background whose statistics happened to match certain
object characteristics (Figure 8D). Szegedy et al. (2013) provided
another striking example where they showed that in a standard
deep learning setup for every image it was possible to construct
another perceptually indistinguishable image that would never-
theless be categorized incorrectly by the same network. Similarly,
analyzing top-performing models in the Image Net Large Scale
Visual Recognition Challenge 2012, Russakovsky et al. (2013)
observed that while such models tend to provide rather accu-
rate locations of detected objects, their performance deteriorates
significantly with more objects or clutter. If object shapes were
explicitly represented, clutter would play a much smaller role in
localization errors. Finally, Torralba and Efros (2011) showed that
models trained on one dataset often perform poorly on another
dataset for the same categories of objects. What these models are
learning then remains rather questionable. (However, note that
there are also examples of models that are capable of generalizing
across datasets; see Razavian et al., 2014.)

Finally, a model’s output is extremely context dependent. For
example, imagine that you are presented with a screen with one
stimulus at a top and three below, as in Figure 8E, left. You are
asked to indicate which item at the bottom matches best the one
at the top. Most people would probably choose “Q.” But now
imagine the stimuli were slightly changed (Figure 8E, right). Most
people would now go for “X.” But how would a model know
that? It should somehow take it into account that the colors of
“O” and “X” match while “T” and “Q” have some other colors
and it should also know that color is more important to the

visual system than shape. In other words, it needs a lot of basic
knowledge, or basic reasoning skills, that are arguably even harder
to build in the system than vision itself.

To avoid some of the listed problems, we suggest using artifi-
cially generated scenes, such as the one in Figure 4. They can be
rendered to contain many difficult features that are abundant in
natural images, including shadows, occlusions, clutter, and realis-
tic textures. However, unlike natural images, such scenes do have
a well-defined ground truth because they are rendered from three
dimensional models. Moreover, since they lack known objects, a
good model should be completely capable of dividing an image
into surfaces all on its own with little or no mistakes. If the model
fails, it is a clear indication that intermediate representations are
not being constructed properly yet.

Another possibility to evaluate model’s performance is to use
the extracted statistics to synthesize new images. This approach
was taken by Portilla and Simoncelli (2000) who convincingly
showed that their texture synthesis model was accurate by pre-
senting an original texture and synthetically generated ones using
the computed statistics. Arguably, such approach would be much
trickier to implement for a synthesis of objects (Portilla and
Simoncelli’s procedure fails to produce coherent objects) but
then the model’s performance would be more directly observ-
able and would point to issues where the algorithm needs an
improvement.

LIMITATIONS AND CONCLUSION
In this paper, we provided a synthesis of the classical works in psy-
chology and recent advances in visual neuroscience and computer
vision into a single unified framework of mid-level computations.
We hypothesized that two basic mechanisms, namely, similarity
estimation and pooling, implemented hierarchically and reiter-
ated via recurrent processing, appear to be sufficient to account
for the computational goals of mid-level vision and the available
empirical data.

Admittedly, many details in the proposed framework remain
speculative at this point. While we provided the sketch of each
processing stage (including the initial feature extraction, junction
and curvature computation, region growing, border-ownership
assignment, and figure-ground organization), it remains to be
seen to what extent these computations are robust in natural
image processing. Similarly, while the framework can flexibly
operate in various feature spaces, we do not propose which fea-
tures in particular should be included and how different cues
could be combined. Learning the weights of these cues is crucial
if we want the proposed framework to apply for real images. One
possibility is that the proposed computations can be implemented
in the standard deep learning networks (by replacing non-
linearity and normalization steps with similarity estimation, and
also performing feature inference instead of a simple filtering).

Another possibility, given that, unlike deep networks, the pro-
posed architecture does not require semantic knowledge to be
trained, observing certain feature co-occurrences (see Geisler,
2008, for a review) would be a simpler way to learn and adjust
these weights. Even more powerful cues would be available from
dynamic or stereo-defined inputs, given their tremendous role in
bootstrapping the visual system (Ostrovsky et al., 2006, 2009)
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Furthermore, we restricted the scope of our discussions to the
construction of the initial figure-ground organization briefly after
stimulus onset. This choice has been motivated by our interest
to advance the idea that image segmentation and figure-ground
organization might be rapid, nearly feedforward computations.
However, recurrent processing loops are undoubtedly necessary
to improve the constructed surfaces and meet task demands. We
considered several alternatives for such computations in Section
“Evaluating Performance,” but the details of such top-down
refinement remain to be worked out.

More than anything, this paper is our manifesto on the
importance of intermediate computations. We are calling for a
reconsideration of the role of mid-level vision and propose that
implementing several basic mechanisms might provide an signif-
icant step forward in understanding the functioning of primate
visual system.
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Visual structures in the environment are segmented into image regions and those
combined to a representation of surfaces and prototypical objects. Such a perceptual
organization is performed by complex neural mechanisms in the visual cortex of primates.
Multiple mutually connected areas in the ventral cortical pathway receive visual input and
extract local form features that are subsequently grouped into increasingly complex, more
meaningful image elements. Such a distributed network of processing must be capable
to make accessible highly articulated changes in shape boundary as well as very subtle
curvature changes that contribute to the perception of an object. We propose a recurrent
computational network architecture that utilizes hierarchical distributed representations of
shape features to encode surface and object boundary over different scales of resolution.
Our model makes use of neural mechanisms that model the processing capabilities of
early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest
that multiple specialized component representations interact by feedforward hierarchical
processing that is combined with feedback signals driven by representations generated
at higher stages. Based on this, global configurational as well as local information is
made available to distinguish changes in the object’s contour. Once the outline of a
shape has been established, contextual contour configurations are used to assign border
ownership directions and thus achieve segregation of figure and ground. The model, thus,
proposes how separate mechanisms contribute to distributed hierarchical cortical shape
representation and combine with processes of figure-ground segregation. Our model is
probed with a selection of stimuli to illustrate processing results at different processing
stages. We especially highlight how modulatory feedback connections contribute to the
processing of visual input at various stages in the processing hierarchy.

Keywords: ventral pathway, distributed representation, figure-ground segregation, modulatory feedback,

computational model

1. INTRODUCTION
We visually perceive our environment as a stable and compre-
hensive combination of objects, where we can easily identify
objects and persons and we efficently analyse geometrical cues
that allow a precise navigation and interaction. This happens so
effortlessy and accurately that it is absolutely counterintuitive that
this is an extraordinary achievement of our brain. The visual
system of mammals achieves this result from input that is cap-
tured at the retinal level after light has been projected through
the eye and hits light-sensitive neurons. The perception of our
environment starts at this local level where our position, the
direction of our gaze, the current illumination, an object’s sur-
face properties and its location relative to others causes a set
of neurons in the retina to respond with increased activation
that is a function of received light intensity. How the visual sys-
tem transforms this concert of local visual inputs into a stable
and informative perception of surfaces and objects is subject to
intense research. Since the pioneering works on neural principles
by Hubel and Wiesel (1959) many insights into cortical process-
ing of visual input has been discovered. Neurophysiologists agree

that the processing in the mammalian brain is performed in a
hierarchical way and processing is organized into various spe-
cialized brain areas (Felleman and Van Essen, 1991). Those brain
areas receive connections from preceding processing stages, but
also from regions later in the processing stream (Markov et al.,
2013). Early areas in visual cortex are retinotopically arranged
(Hubel and Wiesel, 1962), which means that juxtaposed retinal
locations are mapped to juxtaposed locations in visual cortex,
with foveal positions being represented at a higher resolution.
Individual assemblies of neurons become activated when their
preferred stimulus is presented in their receptive field (Hubel
and Wiesel, 1962). With progression in the visual pathway, the
size of those RFs increase from sizes smaller than one degree
of visual angle to sizes covering a good part of the visual field.
In parallel, the tuning toward the preferred stimulus changes
from simple features like oriented contrasts (Hubel and Wiesel,
1962) to complex ones like image features, figure-ground-related
cues, object categories or faces. Processing along the visual path-
way is organized into two streams (Ungerleider and Haxby,
1994), the ventral stream that exhibits a tuning toward movement
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and position, whereas the dorsal stream processes shapes and
objects.

However, most of the achievements that the visual system
exhibits, like the abilities to generalize and its robustness and
adaptability, most probably stem from connections that con-
nect higher cortical areas with lower ones (Hupé et al., 1998;
Markov et al., 2013). Those feedback connections are believed
to play an important role in visual processing, as they enrich
local activations with contextual information that is represented
at higher visual areas. We propose that on the way from generaliz-
ing early local features to higher meaningful representations, the
role of object boundaries plays an essential part. Contrasts indi-
cate spatial changes in local illumination which might coincide
with object boundaries that allow segregation from background.
However, contrasts indicating a real transition from one object
to another or from the object to the background must be sep-
arated from those indicating an illumination change and those
caused by textured regions. This must be accomplished using con-
textual information. The region delimited by such a boundary is
a surface with locally constant parameters, and a set of surfaces
forms objects, scenes and eventually our complete visual envi-
ronment. We believe that the processing capabilities of early and
intermediate stages of visual cortex are used to transform local
representation into an intermediate, more meaningful represen-
tation of contours, shapes and surfaces. Following those ideas,
we propose that a stable representation of shape may be estab-
lished by interacting assemblies that are each devoted to specific
features properties. We thus propose a hierarchical model of 2-
dimensional shape representation that incorporates processing
at low and intermediate areas of visual cortex. Each model area
consists of a three-stage processing cascade of initial filtering,
application of modulatory feedback effects and center-surround
interactions leading to an activity normalization (Carandini and
Heeger, 1994; Carandini et al., 1999; Kouh and Poggio, 2008;
Carandini and Heeger, 2012). The functional effects of this
columnar cascade can roughly be mapped onto compartments of
cortical area subdivisions [as suggested in (Self et al., 2012)].

Our model combines the representation of visual shapes with
mechanisms for figure-ground segregation on the basis of assign-
ing border ownership and incorporates a distributed represen-
tation of local contour curvature over different cortical areas.
In our model we emphasize the computational role of feed-
forward and feedback mechanisms (Grossberg, 1980; Edelman,
1993) to generate a hierarchical distributed representation of
shape information. The feedback amplifies the sensory signal
such that the subsequent competition between neurons builds a
competitive advantage (Tsotsos, 1988; Girard and Bullier, 1989;
Desimone, 1998; Roelfsema et al., 2002; Reynolds and Heeger,
2009). Boundaries and their orientation are represented after
intial processing in model area V1 and a grouping stage in model
area V2. Contextual boundary configurations are also represented
at a coarser spatial level at model V2 and V4 to achieve selectivities
toward contour curvature. With the influence of feedback, those
cells are enhanced at lower stages that contribute to a matching
bottom-up signal.

The output of our model is a representation of shapes
and shape segments where contextually compatible boundary

information benefits from recurrent feedback connections. Such
a representation could provide input to subsequent processing
stages for e.g., object classification tasks, which would clearly
benefit from the enhanced representation.

This model extends previous own works (Neumann and
Mingolla, 2001; Hansen and Neumann, 2004; Weidenbacher and
Neumann, 2009) but introduces functional properties that have
been inspired by the works of other groups. A model of curva-
ture representation can also be found in Cadieu et al. (2007).
The authors modeled physiological findings of the same group
(Pasupathy and Connor, 1999; Connor et al., 2007) that has
focussed on the dynamics of contour processing (Yau et al., 2013).
Cell representations from early visual areas are combined to
intermediate-level shape descriptors are used in a computational
model by Rodríguez-Sánchez and Tsotsos (2012). Riesenhuber
and Poggio (1999, 2000); Mutch and Lowe (2008) released very
powerful models of object and object class categorization in a
hierarchical modeling approach. The physiological (Zhou et al.,
2000; O’Herron and von der Heydt, 2011) as well as the com-
putational (Layton et al., 2012) aspects of border ownership are
subject to intense research. Models of contour integration and
perceptual grouping also exist from Zhaoping (1998) and Jehee
et al. (2006); Roelfsema (2006). The role of feedback and physio-
logical investigations are elaborated in Hupé et al. (1998); Markov
et al. (2013) and very recently (De Pasquale and Murray Sherman,
2013) found evidence for the modulatory properties of feedback
in the visual cortices of mice.

2. MODEL DEFINITION
We propose a biologically inspired model of two-dimensional
shape representation that consists of a hierarchical structure of
interconnected model areas (see Figure 1). These model areas
resemble the mechanisms of early and intermediate stages of
visual processing in the ventral pathway of visual cortex. Each
of the model areas is represented by a staged columnar cas-
caded model (see Figure 1). This cascade consists of (i) ini-
tial filtering, (ii) activity modulation, and (iii) center-surround
interaction.

2.1. NOMENCLATURE
The following list familiarizes the reader with the nomenclature
that is used in our manuscript:

• Names of model areas are written in superscripts to indicate
the affiliation to parameters or responses. A response for cells
in area V1 thus would read RV1.

• Greek symbols (like α, β, σ )are used for parameters of
dynamic functions or shapes of receptive fields.

• N and M are constants indicated the number of orientations
and directions used in our model.

• An instance of an orientation is indicated using the step width θ̂
between discretely sampled orientations. The variable i is used
as index. A specific orientation in a population is indicatd with
iθ̂ with i ∈ 0..N − 1.

• N stands for a normal (Gaussian) distribution that can
be isotropic or anisotropic, rotated and spatially shifted, as
defined by subscripted parameters.
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FIGURE 1 | Overall model architecture. Visual input enters the model at the
bottom and is subsequently processed by interconnected functional areas with
increasingly large receptive field sizes. Solid arrows indicate feedforward,
dashed arrows indicate feedback, or modulatory, connections. Each area
implements a generic architecture of building blocks that consists of (i) filtering
(∗) of the input, (ii) modulation by feedback, and (iii) response normalization.
Model V1 consists of image filters that resemble properties of early processing
in LGN and V1, namely simple and complex cells that are tuned to circular or
elongated image contrasts. Model V2 integrates responses of model V1 with
long-range integration cells. A multiplicative combination of subcells responds
best to elongated contrasts of one dominant orientation. Also at V2, a population

of cells represents border ownership directions. At population of long-range
curved integration cells help represent different boundary curvatures. The
Models V2, V3 complex hosts representations of corners by integrating V1
responses from orthogonal configurations over a small spatial surround. Model
V4 consists of cells that asymmetrically integrate responses from V1 and V2 to
become curvature selective at an increased spatial scale. In Model IT, cells with
large receptive fields integrate responses from V1, V2 and V4 at local figure
convexities to achieve a contextual segregation into figure and ground. Area V4
allows a description of a shape by means of cues that are represented on
distributed areas in the model. Those cues exist at different spatial scales and
their mutual interaction generates dynamic processes in the model.

• Spatial positions are denoted in bold latin letters like x or p.
• To indicate an angle between two vectors we use �(v1, v2).
• The convolution operation is abbreviated using the asterix (∗).
• A rectification operation is indicated by �...�+.

2.2. PROCESSING CASCADE
In our model, neural activations or response levels are modeled
using a scalar representation of the neural firing rate. For ease of

writing, we will in the following refer to the response of a cell,
keeping in mind that this represents the activation level of a large
number of real cells. The first model stage of the cascade is the
initial filtering of available input I. To model the response for the
preferred stimulus in the visual field, we employ a 2-dimensional
convolution operation with the preferred stimulus as the convo-
lution kernel Kpref . The response of model cells R = I ∗ Kpref is
defined as
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R(x, y) =
∞∑

u =−∞

∞∑
v =−∞

Kpref (u, v)I(x − u, y − v) ∀x, y ∈ DI (1)

A frequently used kernel in our model serves as elementary building
block and is a 2-dimensional Gaussian distribution that is elon-
gated along one axis and rotated around its center. We refer to this
distribution by N with parameters for orientation θ , deviation
along the axes σ1, σ2 and the center of the distribution μ.

Nθ,σ1,σ−2,μ(x, y) = 1

2πσ1σ2
exp

(
−
(

(x̂ − μx)2

2σ 2
1

+ (ŷ − μy)2

2σ 2
2

))

with (2)(
x̂

ŷ

)
=
(

x

y

)(
cos θ −sin θ

sin θ cos θ

)
(3)

If parameters are not specified they are considered having the
following default values: θ = 0, μ = (0, 0)T, σ1 = 1, σ2 = σ1. In
the following, functional filter kernels will often be designed as a
combination of multiple such elementary components.

The coefficients of the kernel that models the preferred stim-
ulus might incorporate negative weights to account for the
inhibitory connections a cell may receive. This could lead to
overall responses that are numerically negative. We thus use a rec-
tification operator after convolution and feedback stages to ensure
that numerically the response rate of a population is not negative:

�R�+ = max(0,R). (4)

At the second stage of the cascade, response levels are modu-
lated by recurring input from higher visual areas. We propose
a feedback mechanism that excerpts a purely modulatory gain
control on the input. That means that feedback alone cannot gen-
erate activities without activation by the initial filtering step (see
Figure 2). With R being the unmodulated driving signal and netFB

being the strength of the feedback, the modulated response is

RFB ∝ R · (1 + netFB). (5)

Using this approach, given R = 0 no signal is generated as output
irresponsible of the strength of the feedback netFB. On the other
hand, if no feedback signal is available, the right part of the equa-
tion leaves the input signal R unchanged (Salin and Bullier, 1995;
Hupé et al., 1998; Eckhorn, 1999; Gilbert and Li, 2013).

Before normalization at the final stage of the cascade, we apply
a non-linear transfer function to map the computed responses to
a cell activation level. In our model, we use a function of type

f (R) = Rk (6)

with k the non-linearity parameter. At the final stage, we incorpo-
rate a mechanism that keeps the response level limited by using a
shunting inhibition that leads to a non-linear compression of high
amplitude activities resembling the Weber-Fechner-Law of percep-
tual thresholds. In its dynamic formulation, the rate of change of

FIGURE 2 | Effects of feedback on the signal flow. The four table cells
illustrate the effects when a feedback signal and/or an input signal is
available. Please note that a feedback signal alone cannot elicit any cell
response in the modeled area. It only enhances the response level when
the filtering of the input signal generates some output.

the signal ∂tRnorm
θ depends on the current activation level as well

as the amount of input Inet :

∂tR
norm
iθ̂

= −αRnorm
iθ̂

+ βRiθ̂ − Rnorm
iθ̂

· Inet (7)

Inet = 1

N

N − 1∑
i = 0

Riθ̂ . (8)

With N the size of the used population, respective orientations.
When this equation is solved at equilibrium, i.e., when ∂tRiθ̂ = 0,
the activation becomes

Rnorm
iθ̂

= β
Riθ̂

α + Inet
(9)

The constants influence the steepness of the non-linearity (α)
and the scale of the normalized signal (β). This model archi-
tecture has previously been used in various approaches touching
different domains, such as the disambiguation of local motion
(Bayerl and Neumann, 2004; Beck and Neumann, 2011), the pro-
cessing of transparent motion (Raudies and Neumann, 2010)
the detection of texture boundaries (Thielscher and Neumann,
2003), the extraction of object boundaries using texture com-
pression (Weidenbacher and Neumann, 2009), and the analysis
and representation of biological motion sequences (Layher et al.,
2014).

In the following, we describe the forward sweep of our model,
from early toward intermediate processing stages. After all areas
have been described in detail, we will elaborate on the feedback
connections that build the recurrent model structure.

2.3. MODEL AREA V1
The processing starts at early stages of visual cortex where
we model the functionality of LGN and V1 cells where LGN
cell responses provide feedforward input to V1 cells. Here, the
visual input is intially processed to generate a representation of
local image contrasts and local contrast orientations (Hubel and
Wiesel, 1962).
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In general, model cell responses follow first-order dynamics
and represent the changes of membrane potentials. Such dynam-
ics are influenced by excitatory and inhibitory inputs and a passive
decay of activity. In order to simplify the computations in our
large-scale simulations we use steady-state equations in calcu-
lations of feedforward filtering stages. Others are numerically
integrated using a Euler one-step scheme. The response of LGN
cells is calculated using the following linear equation,

∂tR
LGN = −RLGN + (I ∗ Nσ ) − (I ∗ Nk) (10)

As pointed above, we assume that such linear feedforward filter-
ing operations quickly relax at their equilibrium state. Therefore,
we utilize the steady-state equation

RLGN = �I ∗ (Nσ − Nκ )�+ , (11)

with σ and κ denoting the width of center and surround kernel,
respectively. To model cells that are tuned to oriented contrasts,
we use elongated gaussian kernels that are combined into odd-
symmetric simple cell profiles using anisotropic σ1 and σ2 and
a radius ω1 for the spatial shift of the integration kernels. The
responses of such cells are denoted by the steady-state equation

RV1
iθ =

⌈
RLGN ∗ (Niθ̂ ,σ1,σ2,x+p − Nθ,σ1,σ2,x−p)

⌉+
(12)

with

p = ω1(cos(θ + π), sin(θ + π))T (13)

The filter kernel that is defined that way yields high response acti-
vations at positions with local luminance contrasts that match the
layout of the filter kernel. To achieve insensitivity against the sign
of contrast, pairs of equally oriented filters with opposite sen-
sitivity to contrast polarity are used. Such filters populate a set
with evenly distributed orientation tunings that represent possi-
ble contrast orientations. The locally dominant orientation can
be derived by selecting the orientation channel with maximum
response, imax = argmaxiR

V1
iθ̂

.

2.4. MODEL AREA V2/V3 COMPLEX
At the stage of V2 we model cells sensitive to contextual influences
of contour segments that are arranged in larger spatial extent
compared to V1 receptive fields. The integration of elongated
contours in V2 makes use of a mechanism that links cells of like
orientations over larger spatial distances. The filters are modeled
using elongated Gaussian kernels positioned at p with offset ωV2

ex
to the center of the cell. The parameters of the elongated Gaussian
kernels are set to build a combined kernel of an elongated inte-
gration field, which reflects the highly significant anisotropies of
long-range connections in visual cortex (Bosking et al., 1997).
The subfields sample the activations generated by V1 complex
cells (Grossberg and Mingolla, 1985; Neumann and Sepp, 1999).

The subfields are combined in a multiplicatively. This
resembles a logical and-operation for the individual subfield acti-
vations. Modeled V2 cells only become activated when both
subfields receive sufficient input. The response is thus able to
bridge local gaps in contours. This is in line with physiological

findings, as V2 neurons respond to elongated luminance contrasts
as well as to illusory contours (von der Heydt et al., 1984; Heitger
et al., 1998) like in the Kanisza square.

This integration mechanism is enhanced by local inhibitory
effects. Smaller and isotropic integration fields are positioned
along an orthogonal axis from the cell’s center with distance ωV2

inh,
building a cross-like zone of excitatory and inhibitory integra-
tion, compare (Piëch et al., 2013). At those positions p⊥, activity
from all orientations is integrated and has an inhibitory effect on
the total response. This has a strong suppressive effect on con-
tour fragments that are positioned within a cluttered surround,
while isolated boundary segments are not affected. The complete
response for an elongated V2 cell is calculated by the steady state
equation:

RV2
iθ̂

=
⌈

RV1 ∗ Niθ̂ ,σ1,σ2,x + p · RV1

∗ Niθ̂ ,σ1,σ2,x − p − γ · RV1

∗ Nσ3,x + p⊥ − γ · RV1 ∗ Nσ3,x − p⊥
⌉+

iθ̂ (14)

with

p = ωV2
ex (cos(iθ̂), sin(iθ̂))T (15)

p⊥ = ωV2
inh(cos(iθ̂ + π), sin(iθ̂ + π))T (16)

We also model V2 neurons that respond to more complex stimuli
like in curved or angular shape outlines. We propose a popu-
lation of V2 cells tuned to curved contour outlines that allows
integration of smooth and even fragmented boundary configu-
rations (Field et al., 1993). We propose a population of V2 cells
tuned to a curved contour outline, see Figure 4. They resemble
the functionality of elongated V2 cells but their integration fields
are designed such that they are curved. A curvature direction is
defined either to the left or the right of the tangent orientation
at the target location. the center of curvature defines an oscu-
lating circle with given curvature-radius. The integration weight
is modeled by a function wdist that decreases with distance from
the cell’s center. A second tuning function wori in the orientation
domain specifies the weights for the orientation population. Here,
the weight decreases with distance to the main tuning direction
which is perpendicular to the dominant orientation. Basically,
only those orientations are integrated with maximum that are
tangential to the curvature trace at their relative positions. This
yields a sharp tuning of the cell for a certain curvature level. The
complete response for an curved V2 cell is calculated by the steady
state equation:

RV2Curv
iθ̂

=
∑

x

w(ωC, x) · RV1
x,iθ̂

with (17)

w = wdist · wori (18)

wdist = exp( − (x − x0)2

σ 2
1

) (19)

wori = sin(�(−→x0x,−→xc)) · exp

(
− (‖−→xc‖ − ωc)2

σ 2
2

)
(20)
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c = x0 + ωc
(

cos(iθ̂), sin(iθ̂)
)T

(21)

In this equation w denotes a weighting function for responses in
the currently integrated position x. The reference point of the
integrating cell is x0. The weighting functions depends of the
curvature radius being integrated wc. wdist produces a weight
depending on the distance from the curvature cell’s center x0.
wori returns a weight given the current angle between integrating
position and center of curvature xc, depending on the reference
position x0. In simple words, orientations orthogonal to the imag-
inary line between integration position and imaginary curvature
center c receive highest weight. wori is extended with a func-
tion that drops with increased distance of integrating position to
imaginary center of curvature.

Cells in visual cortex V2 also show selectivity to the figure-
ground arrangement of the scene in the visual field (Williford and
von der Heydt, 2013). So-called border ownership cell responses
are elicited when figure of arbitrary shape is presented on their
preferred side with respect to the center of their receptive field.
From the same group, O’Herron and von der Heydt (2013) have
also shown that during visual motion caused by eye motion or
object motion, these border ownership signals are remapped to
different neurons. The visual system uses this information to
resolve depth arrangements in the stimulus (Qiu and von der
Heydt, 2005). The pointing of border ownership cells indicates
the direction of the frontal surface at every image location. This
reflects to commonly known Gestalt rule that a boundary is
owned by the frontal figure.

We model border ownership cells by a retinotopically arranged
population representing four potential directions where the figure
can be positioned relative to the cell’s center. Border ownership
responses are initially isotropic and only occur together with local
contrast activations. Cells indicating opponent border owner-
ship direction are mutually rivaling in our model. The complete
response for an border ownership V2 cell is calculated by the
steady state equation:

RV2Bown
λ =

{
f (RV2

iθ̂
) when λ ⊥ iθ̂

0 when λ ‖ iθ̂
(22)

The mutual competition between activations indicating opposing
border ownership directions RBown

a and RBown
b is calculated by

∂tRBown
a = −α · RBown

a + A(1 − RBown
a ) − β · RBown

b (23)

∂tRBown
b = −α · RBown

b + A(1 − RBown
b ) − β · RBown

a (24)

Based on empirical evidence of neural representations gener-
ated by cells selective to multiple orientations (Felleman and
Van Essen, 1987; Ito and Komatsu, 2004; Anzai et al., 2007)
we incorporate model representations of corners in a dedicated
model area V2/V3 complex. We build upon the proposal devel-
oped in Weidenbacher and Neumann (2009) that corner and
junction configurations can be made explicit by specific read-
out mechanisms. Here, we employ a simplified version as of
Hansen and Neumann (2004) to generate corner representations

by grouping V1 responses of orthogonal orientation fields. In a
steady-state formalism the response reads

RV2/V3

iθ̂
=
⌈

RV1
iθ̂

· RV1
iθ̂+π

⌉+
(25)

2.5. MODEL AREA V4
Inspired by experimental evidence cells in model V4 integrate
responses of V1,V2, and V2/V3 to achieve a selectivity that con-
siders large-scale boundary fragments as well as local variations
in curvature and a selectivity for corners (Pasupathy and Connor,
1999; Yau et al., 2013). Curvature selective cells are modeled in
a two-stage cascade of mechanisms. The first level integrates V2
contour responses and is selective to curvature directions, left or
right (relative to the cell’s orientation preference). The second
level combines opposite curvature directions into one response,
like in V1 complex cells. This model mechanism differs from the
one proposed by Rodríguez-Sánchez and Tsotsos (2012). which
utilizes single stage filter computations. In this approach specific
subfield mechanisms sensitive to orientation, tangential contour
outline and scale are combined in a non-linear fashion to selec-
tively respond to contour fragments of different curvatures. We
develop a mechanism that is distributed over different stages to
first group responses to extended contour outlines in V1 and V2
suppressing non-contour clutter. In the case of sharply localized
corners and junctions the dedicated representations of localized
multi-orientation responses will be activated. Those responses of
grouping cells (or the junction representations) are integrated at
the subsequent stage. Here, curvature selectivity is made explicit
that distinguishes left and right curvatures. Different integration
scales generate selectivity to curvature. This distribution allows
to associate regions of high contour curvature at an intermedi-
ate scale with localized outline details at the finer scale which
enhances the selectivity of the model developed by Rodríguez-
Sánchez and Tsotsos (2012).

The model cell responses in our model are described by the
following equations:

∂tR
V4,left

iθ̂
= −α4R

V4,left

iθ̂
+
(

1 − R
V4,left

iθ̂

)
· Aiθ̂

−
(

1 + R
V4,left

iθ̂

)
· Biθ̂ (26)

∂tR
V4,right

iθ̂
= −α4R

V4,right

iθ̂
+
(

1 − R
V4,right

iθ̂

)
· Aiθ̂

−
(

1 + R
V4,right

iθ̂

)
· Biθ̂ (27)

with

Aiθ̂ = {
RV2 ∗ Nσ4,σ4b,x+p

}
iθ̂ (28)

Biθ̂ = {
RV2 ∗ Nσ4,σ4b,x−p

}
iθ̂ (29)

p = ωV4(cos(iθ̂), sin(iθ̂))T (30)

These responses are calculated at equilibrium and averaged
subsequently, leading to the model V4 filter response
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RV4
iθ̂

= 1

2

⌈
(Aiθ̂ − Biθ̂ )

⌉+ + ⌈
Biθ̂ − Aiθ̂

⌉+

α4 + Aiθ̂ + Biθ̂

(31)

This integration mechanism yields a response for locally curved
boundary segments at a larger spatial scale. For elongated contour
segments that show no curvature, the response of individual cells
will be equal and the combined response very low.

2.6. MODEL AREA IT
So far, we have described how our model integrated local features
from model V1 into elongated, potentially curved boundaries
at model V2–V4. Model area IT performs contextual integra-
tion that allows a segregation into figure and ground and a
representation of prototypical objects at a large spatial scale. As
discussed above, a population of V2 cells responds selectively to
the direction of figure-ground direction. The local representation
of border ownership at model V2 represents a set of available local
hypotheses that cannot locally be resolved, as this step requires
contextual influence from a larger spatial surround. Cells in IT
cortex have been shown to be shape selective with properties gen-
eralizing over contrast polarity and mirror reversal (Baylis and
Driver, 2001). The authors demonstrate that such cells do not,
however, generalize over the assignments of figure-ground direc-
tion. The investigation supports the view that the population of
probed IT cells is mainly driven by the sidedness of contours
and less so by the contour itself. Given the rapidness of own-
ership selectivity observed in V2, we propose that ownership
computation relies on a network of V2–V4–IT cell interaction.
Our model uses local shape configuration in the outline of an
object to collect confidence about the direction of figure and
ground. We adopt an approach of Zhou et al. (2000) and model
an integration cell at model IT that integrates border-ownership
hypotheses from a larger spatial extent from model V2 input.
For each location in the image, border ownership activations in
a local neighborhood that point toward the inside of the respec-
tive receptive field contribute to the activation of an IT cell.
This results in strong responses in model IT where local image
regions are surrounded by contour convexities. Local activities
of border ownership cells in model V2 then receive a positive
enhancement if they contributed to such an integration pro-
cess. This recurrent architecture resolves the initially ambiguous
assignment of border ownership. Taken together, this makes the
model belong to the class of feedback architectures according to
the categorization in Williford and von der Heydt (2013). The
response of cells and their interaction is denoted by the following
equations:

RIT
x0

=
N−1∑

i

∑
p

f (x0, p, iθ̂) · RV2
iθ̂ ,x0 + p

·exp

(
− (ωIT − ‖−−−−−−→

xo; x0 + p‖)2

σ 2
IT

)
(32)

with

f = cos
(
�
(−−−−−−→

x0; x0 + p, iθ̂
))

(33)

Such an IT cell at position x0 integrates responses of V2 cells in
its proximity p. The integration weight f depends on the angle
between x0 and x0 + p and the currently integrated orientation
iθ̂ . This grants orientations parallel to an imaginary line toward x0

high weights, while orthogonal orientations receive low weights.
This model area receives connections from the early as well as

from the intermediate functional stages V1 and V2 where cur-
vature is represented. This means that high-resolution local cues
as well as contextual cues like corners from a larger region are
available. A shape can thus be described as a set of contributing
prototypical elements that contribute to the local configuration
at every image location. Those elements are not solely generated
through integration of lower areas, but exist as a distributed repre-
sentation in all modeled areas and profit from mutual interaction
through feedback and exhibit dynamic processes when a stimulus
is presented.

2.7. FEEDBACK FOR CONTOUR ENHANCEMENT
The mechanisms so far presented contributed to the feedforward
sweep of the model. We stated earlier that in visual cortex (and in
neural processing in general), the input of cortical areas of higher
stages highly contribute to the performance of individual earlier
areas. By such recurring connections, contextual information is
introduced in lower regions. We are thus now going to focus on
the recurrent connections that are incorporated in our model.

Let’s briefly recall that we model feedback connections that
have a modulatory effect (Girard and Bullier, 1989) as outlined in
Section 2, Equation 5. In Figure 2 we illustrate how a feedback sig-
nal alone cannot elicit responses as long as no input activation is
present. On the other hand, feedback that matches input configu-
rations will increase those activations. We stick to this convention
throughout our following elaborations.

V2 long-range and curved cells represent continuous straight
or curved contours. Their multiplicative combination of receptive
field subcomponents caused the cells to elicit responses whenever
a contour of matching orientation was presented in their receptive
fields. Now, those cells in V1 that contributed to the integration
process will receive feedback and be thus increased in activity. The
following non-linear transformation stage increases the difference
in response strength with respect to other oriented contour cells
that did not receive feedback. At the subsequent normalization
stage, local response levels are now slightly increased by the recur-
rent input. Now, surrounding activations without feedback have
a competitive disadvantage and receive a higher divisive normal-
ization relative to their activation due to the increase response in
their neighborhood that contributed to the sum. The dynamics
of these interactions are denoted in formal terms. The enhance-
ment of filter responses (Equation 12) via modulating feedback is
defined by

∂tP
V1
iθ̂

= −α1PV1
iθ̂

+ β1RV1
iθ̂

· (1 + λ1 · {RV2 ∗ N FB
σ

}
iθ̂

)
− PV1

iθ̂
· QV1

iθ̂
(34)

The subsequent competition to accomplish activity
normalization is defined as

∂tQ
V1
iθ̂

= −QV1
iθ̂

+
{

PV1 ∗ N pool
σ

}
iθ̂

(35)
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with TODO parameters. Figure 3 shows an illustrated version of
the mechanism with a small numerical model.

2.8. FEEDBACK FOR CURVATURE REPRESENTATION
As stated earlier, the modeled V4 cell do not at all or only
marginally respond to straight elongated contours. Responses of
V2 cells to curved boundaries are integrated in model V4, where
integration cells sensitive to opposite sign of curvature mutually
compete for equal orientations. These cells respond at positions
with a local curved contour configuration, but are silent at elon-
gated straight contours. Feedback is generated for those V2 cells
that contribute to those curved boundary segments the corre-
sponding model V4 cells respond to maximally. Regions with
curved boundary segments thus elicit a strong response of V4
cells while regions with mostly straight contours do not elicit
such a strong response. This signal can thus be used to differenti-
ate regions of many straight contour segments from regions with
many curved contours.

In formal terms, the V2–V4 cell interactions are defined by

RV2curv = −αRV2curv
iθ̂

+ (1 − RV2curv
iθ̂

) · A(1 + Riθ̂ ) (36)

A = {RV2curv ∗ Nσ } (37)

2.9. FEEDBACK FOR FIGURE-GROUND SEGREGATION
The contribution of feedback to figure-ground segregation is
twofold in our model. First, local hypotheses of border ownership

are generated by intra-area recurrent connections from long-
range grouping cells. Contextual feedback from model IT resolves
the remaining ambiguities. Initially, all directions of border own-
ership are equally likely at boundaries. With increasing confidence
about local contrast orientations generated by V1 and V2, two
options for border ownership directions are discarded and only
two orthogonal border ownership directions remain. Activations
of long-range V2 cells that indicate elongated surface boundaries
and their orientation locally increase activities of those border
ownership cells that are directed perpendicularly to the orien-
tation of the boundary. Activity normalization for V2 border
ownership cells then leads to a suppression of activities for owner-
ship directions orthogonal to the boundary orientation. Formally,
this is accomplished by the dynamics

∂tR
BOwn
iφ̂

= −RBOwn
iφ̂

+ β(RV2
iθ̂

+ htonic)

− RBOwn
iφ̂

·
∑
γ

RBOwn
iφ̂

(38)

with

θ = φ + 1

2
mod π. (39)

Second, V2 border ownership cells receive feedback from cells in
model IT. Here, border ownership as well as figural cues, e.g.,
from local junctions, or curvature maxima, were integrated by

FIGURE 3 | Step-by-step illustration of how feedback modulation is

dynamically incorporated in the model. At t = 1, visual input is filtered and
elicits responses in Area 1. Initially, no feedback signal is available which
leaves the signal unchanged. Responses are finally normalized. Those
responses now become integrated at Area 2 to elongated contours and a

feedback signal is generated, which enters Area 1 at t = 2. Now, some
responses are accentuated, resulting in a higher cumulated response level
that is used for normalization (which is further intensified by a stage of
non-linear transformation). Unmodulated responses are damped in relation
to t = 0.
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FIGURE 4 | Illustration of how V2 long range and V2 curvature cells are

designed and where parameters are used. V2 cells integrate from two
larger excitatory and two smaller inhibitory regions. V2 curvature cells
integrate responses of oriented cell along a curvilinear path that forms
around an imaginary central point c. Integration weights additionally depend

on the distance from the cell’s reference point x0, angular difference to the
tangential trajectory and a function of local radius, indicated here by a
gaussian profile. Correctly aligned orientations that result in a large
integration weight are shown in the right side of the arc, while some that
result in weights close to zero are shown along the left arc in this illustration.

IT cells. For the correct inference of figure and ground, feed-
back from IT to V2 is essential. Figure-Ground cells at IT level
integrate border ownership activations from V2 in a circular fash-
ion to integrate the coherence of directions indicating a convex
pattern of figure outline. In the feedback sweep, this contextual
information is now fed back to these border ownership cells com-
patible with the configuration using recurrent connections. In
formal terms, this extends the dynamics presented in Equation 38
above by incorporating a modulating feedback signal from model
IT cells, namely

∂tR
BOwn
iθ̂

= −RBOwn
iθ̂

+ β(RV2
iθ̂

+ htonic) · (1 + λ2 · RIT
iθ̂

)

− RBOwn
iθ̂

·
∑
γ

RBOwn
iθ̂

(40)

This also concludes the feedback sweep of our recurrent model. In
the following section, we will show the performance of the model
and its individual areas in the Results Section.

3. RESULTS
In this section we illustrate the capabilities of our model in a
number of simulations. To demonstrate how the model pro-
cesses shapes, we use some artificial images to show working
principles of various subcomponents of our model. These simple
shapes were taken from the Webdings font freely available with a
Microsoft® Windows™ 8.1 operating system. We also include also
a depiction of a Kanisza square (Kanizsa, 1955). This is a special
stimulus because it elicits the perception of illusory contours at
the outline of the occluding square, a sensation our model is also
capable to represent.

To demonstrate the abilities of our model to process real
world images we acquires the dataset of Fowlkes et al. (2007)
and selected a few examples that we included in our Results
Sections. These images have a resolution of 321 × 481 pixels
in landscape or portrait orientation. They were converted to
grayscale images using the Mathworks® Matlab® rgb2gray

function which performs a perceptionally weighted combination
of the red, green and blue channel. We used 8–12 iteration steps
to allow recurrent feedback signals to build up. The angular reso-
lution of cell populations is defined by selecting eight π8 steps to
encode orientation. Border ownership is represented by a popula-
tion representing 4 directions. Model V2 curvature cells also used
8 orientations for tangential orientations, but due to two possi-
ble curvature directions, our model contains a population of 16
curvature cells. A list of parameters used is given in Table 1.

3.1. EARLY PROCESSING STAGES
To begin with, we show how the processing at early stages achieves
a representation of the stimulus concerning contrasts and elon-
gated contours. Local contrasts are represented in the early stages
by model V1 and V2 cells. However, as can be seen in Figure 5
the responses rapidly change in the first few iteration steps.
The contained contour as well as the added noise signal both
elicit responses at the V1 level (second column) and cause the
shapes outline to be not clearly separated from the background.
However, those responses are grouped into elongated contour
representations in model V2 (4th column). Elongated contour
segments are clearly emphasized. From these V2 activations, a
recurrent feedback signal is generated that modulates V1 activa-
tions. After a few iterations, the representation at V1 dramatically
changed, with the outline of the figure now clearly visible.

The effect of the feedback signal is also measurable in a quan-
titative way, see Figure 5, right. Along the boundary of an object
we plotted the activation levels of the population of V1 neurons
that represent the orientation. Initially, the neuron with preferred
orientation responds best, but also those with orientation tunings
close to the real contour (first plot). The situation changes when
feedback is added (second plot). Now, representations of unde-
sired orientations are attenuated and the activation of the cell
representing the contextually valid orientation is highly increased.

Also in Figure 5, the representation of illusory contours at
V2 stage is depicted. This is illustrated using an input depicting
a Kanisza square (last row). A complete square is highly salient
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Table 1 | General model parameters used for simulations.

Description See equation Value

Number of orientations used 8

Number of feedback iterations 6

Number of BOwn directions 4

MODEL AREA V1

Network size 321 × 481

LGN σ 10 1.00

LGN κ 1.50

LGN normalization α (9 applied) 2.17e-03

LGN normalization β (9 applied) 2.17e-03

V1 contrast σ1 12 0.23

V1 contrast σ2 0.12

for p: Excentricity ω1 3.00

V1 normalization α (9 applied) 2.16e-06

Non-linearity of V1 responses (6 applied) 4.00

MODEL AREA V2/V3

V1:V2 subsampling 14 1: 3

Network size 107 × 161

Filter size of V2 complex 41.00

V2 complex cell σ1, σ2, σ3 0.21,0.02,0.10

in p: ωV 2
ex 3.70

in p: ωV 2
inh 2.50

V2 inhibition strength γ 0.10

V2 nonlinearity k (6 applied) 1.00

Strength of V2–V1 feedback 0.11

Non-linearity of BOwn 1.00

In c: curvature radius ωc 19 15.00

in wdist : σ1 40.00

in wori : σ2 2.00

Strength of RV 2Curv feedback 0.15

MODEL AREA V4

V1:V4 subsampling 1: 4

Network size 81 × 121

V4 filter size 31.00

α4 26 0.01

σ4,σ4b 28 0.43,1.35

ωV 4 28 −1.00

MODEL AREA IT

σIT 32 0.43

σ 29.00

ωIT 17.00

IT Non-linearity 3.00

α (9 applied) 5.49e-05

Strength of BOwn feedback 50.00

for human observers despite the fact that only a series of circles
with cut-out corners are depicted. This is reflected in the group-
ing responses of V2 neurons, they also show activity in the gap
between the real contour fragments. Figure 5 shows V2 responses
for the same parameter set and for a parameter set with changed
receptive field sizes, to illustrate the effect even stronger (framed
part). Figure 6 shows a result of the corner representation in the
model.

3.2. CURVATURE TUNING
Figure 7 illustrates the tuning functions we defined for model
V2 curved cells. A curved cell with distinct radius tuning was
selected and we presented arcs of different curvature to this cell
and simulated the response. We performed this for four cells
with curvature tuning to 10, 15, 20, and 25 pixels radius. This
curvature definition happens in V2, where the initial resolution
of the image had been subsampled. For this reason, the value
here correspond to values 40, 60, 80, and 100 in V1 resolu-
tion. In each plot, the peak response occured when the stimulus
with the matching radius was presented. In this simulation,
subsampling artifacts cause the first two plots to elicit some
discontinuities.

3.3. SHAPE REPRESENTATION
In the final setup, we show how our model independently rep-
resents different elements of a shape, and how this depends on
the recurrent feedback connections. Figure 8 illustrates the results
we achieved for an artifical image. Initially, we configured the
model to only use feedforward connections from V1 to V2. The
model only achieves an representation at model V1 and a repre-
sentation at V2 where the elongated boundaries are visible, but
surrounded by many spurious activations. When recurrent feed-
back from V2 is added, the representation at V1 improves in the
first few iterations before a steady representation is reached. In
parallel, elongated boundaries at V2 are integrated and noise is
highly reduced.

To represent prototypical objects at an intermediate level of
detail, we stated that the model needs to represent different con-
tour properties. In the second row of Figure 8 we show how the
model achieves to emphasize V1 responses when they contribute
to a certain contour fragment with desired properties. We delib-
erately exaggerated the effect and chose a very narrow tuning so
that all other responses become almost completely suppressed.
On the left side, we let the model emphasize contour parts that
are oriented almost vertical but in a curved context of a matching
radius. As can be seen, the model highlights that parts on the left
side of the stimulus that matches and leaves others suppressed,
even if their local orientation would match. On the right side of
Figure 8, we perform the same for a different part of the shape
outline.

In Figure 9 we perform the same selection for a realistic photo-
graph depicting an elephant. On the left side, we show interaction
of model V1–V2 causes an appealing representation of the ani-
mal at stages V1–V2. On the right side, we configured the model
using model area V4 to emphasize parts of the outline of the ani-
mal that match a certain context and configuration, here, a part
of the outline.

3.4. BORDER OWNERSHIP AND FIGURE-GROUND ASSIGNMENT
In the segregation of a scene into figure and ground the mod-
eled border ownership cells participate by indicating the direction
where the frontal surface is positioned at a boundary (Zhou
et al., 2000). Our model incorporates a mechanism using such
border-ownership cells to resolve the direction of a frontal sur-
face from local boundary cues (Zhou et al., 2000). We performed
such a assignment for our sample images, see Figure 10 for an
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FIGURE 5 | Results of early processing stages V1 and V2. Left column:
Initial input images. Second and Third column: Cumulated responses of
model V1 neurons at the initial processing iteration and a few iterations
steps, respectively. Fourth column: Responses of model V2 neurons.
Elongated edges formed by like-oriented contrasts are grouped as reflected
by responses at respective locations. This stage also shows activations for
illusory contours contours (third row) at the gaps between contrasts. Upper

right box: The two plots indicate time courses for V1 activations. Initially,
multiple V1 neurons are activated due to a broad tuning width (first plot).
Without feedback, this effect prevails through iterations. With feedback, the
correct orientation (blue) receives feedback and gradually reduces activations
of other orientations (second plot). Lower right box: Example how model V2
neurons show responses at positions formed by illusory contours (in green
circle) due to contextual integration.

illustration of the result. The output of model area V1 and of
V2 long-range integration cells are acquired to generate initial
hypotheses of border ownership direction at image regions where
local contrasts are situated. Initially, all four border ownership
directions show equal responses at a boundary location. After
stimulus onset, three dynamic effects occur and their contribu-
tion to the resolution of border ownership is reflected in the time
course of cell activation, see Figure 10 for an illustration.

First, local feedback from V2 cells enhances two hypotheses
of border ownership for the directions orthogonal to the local
boundary orientations.

A local normalization causes an attenuation of the other two
representations Figure 10, second row; Timestep 0 and 1). Second,
shape-level integration at model area IT contributes positive feed-
back to those border ownership cells that are directed toward the
inside of the figural depiction. Again, normalization leaves the
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FIGURE 6 | Corner representation in model V2/V3. For each group of
three pictures: Initially, responses of model V1 did not yet benefit from
contextual feedback of model V2 neurons. Corner representation is thus

distorted by noise (second row, middle). After a few iterations, when V1
responses have been modulated V2 feedback, the corner representation
is much clearer.

net response of the cells constant (timesteps 2–4). Finally, mutual
inhibition among border ownership cells with opposite direction
selectivity causes the dominant direction to gain all available net
energy (timestep 5–8). At this point, a stable point is reached and
the local ambiguity for border ownership direction is resolved
using feedback from higher cortical areas. The interpretation of
the final representation would be that the frontal surface is to the
inside of the curved boundary.

4. DISCUSSION
4.1. SUMMARY OF CONTRIBUTIONS
In this contribution we emphasized the role hierarchical repre-
sentations have in the organization of shape features and their
combinations into a coherent form. Like some previous model
developments (Cadieu et al., 2007; Hatori and Sakai, 2012;
Rodríguez-Sánchez and Tsotsos, 2012) our model is based on
low and intermediate representations of shape features. These
proposals are all based on a strictly hierarchical feedforward
processing sequence. We propose here that such shape encod-
ing mechanisms may be based on distributed representations
that are established by interacting assemblies each devoted to
specific feature properties. Such interactions in the model are
organized by recurrent interactions of feedforward and feedback
signals. The underlying structural principles are based on the
cortical architecture of the ventral pathway with mutual inter-
actions between such distributed representations (Markov et al.,
2013). The model architecture incorporates principles that have
been predicted to minimize the computational efforts of visual
systems to successfully deal with the complexity problem of per-
ception (Tsotsos, 1988) [compare also (Tsotsos, 2005)]. Among
those, the hierarchical organization of representations in model
areas, the specific receptive field properties of model columnar

mechanisms, hierarchical pooling of spatially separated input
representations, and top-down (modulatory) feedback are pro-
posed here to account for the functional properties of cortical
shape processing. We did not discuss complexity advantages in
this contribution. However, given the theoretical predictions by
such earlier work our proposal of a model architecture provides
a evidence how distributed intermediate-level mechanisms may
help to shape our understanding of modeling complex visual
machinery that captures key cortical principles.

The main contributions of the work presented in the
manuscript are twofold. First, we propose a computational net-
work architecture that utilizes a hierarchical distributed repre-
sentation of shape features. Contour features play a major role
to track moving shape in which their strength parametrically
change as a function of their saliency (Caplovitz and Tse, 2007).
This necessitates global configurational as well as local infor-
mation to distinguish rather tiny differences in the outline of
a 2-dimensional form [such as curved boundaries vs. localized
corners (Pasupathy and Connor, 1999; Ito and Komatsu, 2004)].
In order to generate a representation with sufficient spatial res-
olution combined with spatial context we suggest that multiple
specialized component representations interact by feedforward
hierarchical processing that is combined with feedback from rep-
resentations generated at higher stages in the hierarchy. Second,
we incorporate grouping mechanisms to integrate like-oriented
contour responses that are integrated if they form a smooth
outline fragment of a surface boundary (e.g., Grossberg and
Mingolla, 1985; Neumann and Sepp, 1999; Ben-Shahar and
Zucker, 2004). Such grouping mechanisms operate at the stage
of area V2 and are, thus, involved in the hierarchical processing
of shape. Given the hierarchical processing and representation of
boundary information in the ventral pathway (see the overview
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FIGURE 7 | Tunings of different curvature cells. The x-axis show the
curvature of the presented stimulus, the y-axis the response strength of a
curvature cell tuned for 10, 15, 20, and 25 pixels curvature radius in model V2,

which correlates for a curvature of 40, 60, 80, and 100 pixels in model V1. For
the smaller curvature radii, subsampling artifacts cause the tuning function to
be less smooth.

in Neumann et al., 2007) the shape processing observed in area
V4 is mainly driven by the output of grouping responses. It
may be supplemented by input from simple/complex cells in
V1, a principle of convergent signal streams also used in the
models described in Thielscher and Neumann (2003); Rodríguez-
Sánchez and Tsotsos (2012). In addition, we suggest that the
shape representation built at the stages of V4 and IT influ-
ences the assignment of border ownership in surface represen-
tation (Zhou et al., 2000) (see overview in Neumann et al.,
2007). Model IT cells send modulatory feedback to those V4
cells that provide relevant input (in V4 and V2) such that the
net sum of convex corners/curvatures determines the owner-
ship direction. The proposed model thus combines separate
findings about the generation of cortical shape representation
with figure-ground segregation mechanisms by assigning border
ownership.

4.2. RELATION TO PREVIOUS MODELS OF SHAPE REPRESENTATIONS
IN CORTEX

Visual shape recognition has already been investigated inten-
sively by considering the 3-dimensional (3D) surface appear-
ance for object recognition (Riesenhuber and Poggio, 1999;
Serre et al., 2007; Mutch and Lowe, 2008; Yamane et al., 2008;
Serre and Poggio, 2010) as well as 2-dimensional (2D) shape
recognition (Schwartz et al., 1983; Mokhtarian and Mackworth,
1986; Mokhtarian, 1995; Rodríguez-Sánchez and Tsotsos, 2012).

In the context of view-based models of object recognition sta-
ble views (Logothetis et al., 1995) are associated with 2D shapes
so that their analysis can be considered as an intermediate stage
of object processing (Cadieu et al., 2007). The computational
model approaches of 2D shape representation can be subdivided
into flat and hierarchical schemes. Examples of flat process-
ing schemes, e.g., utilize Fourier descriptors (Schwartz et al.,
1983), multi-scale representations of curvature features in the
shape outline (Mokhtarian and Mackworth, 1986; Mokhtarian,
1995), or global schemes for integrating oriented line features
(Wilson and Wilkinson, 1998). Hierarchical multi-layer process-
ing schemes are based on different stages to generate an increas-
ingly coarse-grained representation of shape features utilizing
repetitive application of local filtering operations (Riesenhuber
and Poggio, 1999; Cadieu et al., 2007; Rodríguez-Sánchez and
Tsotsos, 2012). In order to resemble the feature selectivity
of V4 cells in monkey cortex such cells build coarse-grained
orientation-curvature representation of the shape under inspec-
tion. The hierarchical organization of a sequence of process-
ing stages follows the idea of the Neocognitron (Fukushima,
1980, 1988) by developing low and intermediate representa-
tions of richer shape feature compositions (LeCun et al., 1998;
Riesenhuber and Poggio, 1999; Mutch and Lowe, 2008; Tabernik
et al., 2014). The orientation-curvature representation of V4 cells
reported by Pasupathy and Connor (1999); Connor et al. (2007)
has been investigated in the models reported in Cadieu et al.
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FIGURE 8 | Representation of curved boundary segments and effect of

feedback. Top left: Model setup without feedback connections. The initial
representation at model V1 and V2 undergo no change. Top right: Feedback
from V2 causes a refinement of elongated structure within a few iterations.
Bottom left: Feedback from V4 allows the accentuation of boundary

segments with distinct curvature strength and direction. Here, a curvature
segment as found on the left part of the shape is highly emphasized by
feedback. Bottom right: Same as left, but with selectivity for another segment
of the shape. Note that while boundaries with the same orientation are
present in the stimulus, only the one with matching curvature is emphasized.

(2007); Rodríguez-Sánchez and Tsotsos (2012); Hatori and Sakai
(2012). We share the principles of the hierarchical organization
of processing and the emergence of rich orientation-curvature
sensitivity in our proposal. Initial processing utilizes orienta-
tion sensitive filters to extract local oriented contrast. Unlike the
previous models we incorporate a stage of boundary grouping
at the interface between low and intermediate levels of repre-
sentation. Such grouping operations integrate oriented contrast
responses that are arranged in the local neighborhood of a tar-
get location. The local responses are enhanced by evaluating a
support function that measures feature compatibility [(Neumann
and Mingolla, 2001) for an overview and taxonomy of grouping
schemes]. The measure of compatibility, or relatability, depends
on the lateral integration that utilizes oriented weighting func-
tions for contrast features arranged along a model shape outline,
e.g., circular arcs with different radii (Parent and Zucker, 1989).
Such a scheme thus implicitly incorporates curvature as a local
contour feature. In order to make this explicit, different con-
tour radii and signs of curvature (for individual orientations)
have been considered in Rodríguez-Sánchez and Tsotsos (2012).
Rather then implementing this curvature selectivity in a hard-
wired scheme of local oriented filter conjunctions, we propose
that this selectivity is generated via bottom-up and top-down
filter mechanisms organized in a hierarchy. In this architecture

the responses from model V2 contour groupings (based on dif-
ferent radii) are integrated by model V4 curvature sensitive cells
with coarse bipartite odd-symmetric receptive fields (similar to
simple cell profiles, but at much larger spatial scale). The sign of
curvature is distinguished by cells of opposite polarity that mutu-
ally compete for each orientation. As a consequence responses
are generated preferentially in cases where a single dominant
curvature is present while responses are suppressed for straight
contours which feed curvature cells symmetrically. The curva-
ture radius is represented through a family of differently scaled
integration sizes of such model V4 cells. Each of these cells have
a specific peak selectivity. In the simulations we used three dif-
ferent sizes for each curvature sign. In order to make those cell
responses selective to the feature specificity but mainly invariant
to luminance contrast we suggested that each V4 cell response
competes against the responses of other curvature selective cells
in a local pool that interact via a mechanism of shunting inhibi-
tion. This leads to normalization of responses just like in those
mechanisms proposed to account for various non-linearities at
different stages in cortical processing, e.g., for context related con-
tour responses in V1 (Carandini and Heeger, 1994; Carandini
et al., 1999), attention selection (Carandini and Heeger, 2012),
and higher level cognitive functions (Louie et al., 2011). Since
the curvature sensitive model V4 cells, in turn, send feedback
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FIGURE 9 | Refinement and modulation of shape contours in a

real world example. Left: Within 5 iterations, the outline of the
animal is very well visible at V1 and at V2 stage. Right: With

modulatory feedback from model V4, various parts of the animal
like those contours with a certain curvature and orientation can be
emphasized.

to their input contour representations in model V2 and filter
response in model V1 those corresponding input activations will
be enhanced. The amplitude of responses in distributed bound-
ary representations will be amplified as an emergent net effect
such that local salient curvature features in a shape outline will be
amplified to yield distributed component feature representations
of figural shapes.

These local boundary and curvature representations also feed
mechanisms of border ownership assignment at the level of
the model V4/IT complex. Such mechanisms have been investi-
gated before in e.g., Zhou et al. (2000); O’Herron and von der
Heydt (2011). Our computational framework belongs to the
group of feedback models for border ownership encoding (see
the overview of the current state in Williford and von der Heydt,
2013, see discussion below). We adopted this generic scheme
by integrating responses from curvature selective cells with the
compatible sign of curvature. In such a way the ownership con-
figuration favors contributions from coarsely presented convex
components. If a shape with multiple convex and concave seg-
ments is present then the ownership cells with opponent direc-
tion selectivities compete in order to arrive at a disambiguated
assignment of surface belongingness. This makes the testable
prediction that bumpy outlines should lead to slightly longer
ownership disambiguation than for smooth convex shapes since
the disambiguation will take more time when initially opposite
assignment hypotheses coexist.

An additional investigation was argued to be of importance
in the work proposed here. Several experimental investigations
have reported that cells in extra-striate cortex selectively respond
to corner junctions. For example, Ito and Komatsu (2004)
(compare also Hegdé and Van Essen, 2000) reported that cells
in area V2 selectively respond as to generate representations
of sharp corners, or angles, selective for a particular opening
angle. Similarly, Pasupathy and Connor (1999); Yau et al. (2013)
show that area V4 cells respond to sharp shape corners with a
sub-population of cells preferring sharp corners with different
orientation and opening angles while another sub-population
prefers smooth rounded corners. While the previous hierar-
chical models can account for the response selectivity for any
of these generic corner types the perceptual representation of
sharp localized features that allow, e.g., to distinguish between
sharp and rounded corners remain unanswered. Sharp corners of
any opening angle would be indistinguishable from the smooth
variants of these corners given the increasing smoothing and
subsampling of the visual representation while proceeding in
the hierarchy. Our model argues in favor of a distributed rep-
resentation: While shape sensitive cells at an intermediate level
represent the salient shape protrusions (as in V4) the localized
detail of an outline is represented at a higher spatial resolu-
tion in lower-level representations, e.g., in V1, V2, V3. In our
model we suggest representations of smooth boundaries with dif-
ferent curvatures represented by groupings in model V2 while
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FIGURE 10 | Results for border ownership assignment. First two rows: Cells
at model V2 indicate the direction of figure side at positions where boundaries
exist. Initially, four hypotheses exist for possible figure direction. These are
refined in model V2, where only two hypotheses remain after the orientation of
the boundary is represented. Contextual integration in model V4 then provides

correct estimates with modulatory feedback. Subsequent normalization and
mutual competition leaves only one hypotheses for border ownership direction.
See text for details on the time phases of border ownership assignment. Third
row: Demonstration of the boundary assignment for a natural image. The initial
responses are improved after a few iteration steps.

sharp corners are implicitly represented by convergent V1 input in
local representations in model V2/V3. We assume that responses
of cells in the model V2/V3 complex mutually compete such
that their energy provides a measure to normalize individual
responses. These provide convergent input to curvature selec-
tive contour cells in model V4 which, in turn, send feedback
signals to their input sites at preceding stages. Since they are
driven by either smooth or sharp contour arrangements the
interaction of bottom-up sensory and top-down context-driven
signals leads to selective enhancement of the particular cor-
ner configuration in the present stimulus. The specific details
of the interaction between such counter-stream signal flows are
discussed below.

4.3. FEEDBACK AS PREDICTION MECHANISM TO LINK SHAPE
COMPONENTS

The hierarchical model architecture proposed here is composed
of multiple model areas each of which is represented by a three-
stage columnar cascade model. In a nutshell, the model cascade
consists of (i) an initial stage of input filtering, (ii) a stage of activ-
ity modulation of filter outputs by top-down or lateral re-entrant
signals, and (iii) a stage of center-surround interaction of target
cells against an inhibitory pool of cells leading to activity nor-
malization to generate the net output response of the model area.
These three stages can be roughly mapped onto compartments of
cortical area subdivisions (as suggested in Self et al., 2012). The
filtering stage of the driving feedforward input signals is specific
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to the particular (model) area under consideration. At the output
stage, the activity normalization is computed by a mechanism of
shunting inhibition, like the non-linear divisive mechanisms pro-
posed in Carandini and Heeger (1994); Carandini et al. (1999);
Kouh and Poggio (2008); Carandini and Heeger (2012). The feed-
back signal is generated at higher-level cortical stages or parallel
processing pathways and is thought to provide context infor-
mation that is re-entered at the stage earlier in the processing
hierarchy (Grossberg, 1980; Edelman, 1993).

The functional role feedback signals play still remains con-
troversial. Different proposals how feedback signals interact and
combine with the driving feedforward stream have been dis-
cussed in the literature which have received different support
from the experimental literature (Markov et al., 2013). One such
framework proposes that the goal of computation is to reduce
the residual error between the different signal streams in order
to approach the sensory prediction generated by higher stages
of processing (Ullman, 1995; Bastos et al., 2012). This idea is
rooted in the Bayesian theory of predictor-corrector mechanisms
which yields to the Kalman optimal filter realization under some
restricting assumptions (Rao and Ballard, 1999). We follow an
alternative route in which the feedback mechanism is modu-
latory in nature. Unlike predictive coding which tried to drive
the difference between driving signals and the prediction to
zero bottom-up input signals are amplified by matching feed-
back signals. This leads to a gain enhancement for those cell
responses where a matching top-down predictive signal template
has been generated. This feedback signal amplifies the sensory
signal such that the subsequent competition between neurons
yields a competitive advantage for the enhanced response pat-
terns [biased competition; (Girard and Bullier, 1989; Desimone,
1998; Roelfsema et al., 2002; Reynolds and Heeger, 2009)]. The
modulation mechanism is reminiscent of the linking mechanism
suggested by Eckhorn et al. (1990); Eckhorn (1999) to account for
activity synchronization in networks of spiking neurons. We have
recently demonstrated (Brosch and Neumann, 2014) that such
mechanism of convergent bottom-up feedforward and top-down
feedback signal correlation accounts for the signal amplification
as measured at the level of cortical pyramidal cells (Larkum,
2013).

In the shape processing architecture described here the mod-
ulatory feedback serves the role of a predictor (Spratling, 2008).
For example, bottom-up input in oriented contrast is integrated
by mechanisms of contour grouping and integration to generate
continuous boundary representations. This is similar in spirit as
the recent investigation of Piëch et al. (2013) who emphasized
how context information at higher cortical stages influence more
local feature representation at lower levels. Here, the same princi-
ple is replicated over different stages of model cortical processing.
Contour representations after grouping in model V2 and junc-
tion configurations in model V3 send their output activations to
curvature sensitive cells in model V4 where the activities are inte-
grated. These cells, in turn, send their feedback to the input pop-
ulations of neurons that have generated their input. The compu-
tational logic is that the curvature responses provide a template of
context-related information about the local presence of oriented
shape features. The modulatory feedback amplifies those inputs

that are consistent with the curvature feature representation. The
mutual competition of responses in a pool of cells at the lower
level leads to a suppression of inputs that do not contribute to
the present curvature feature. In all, a distributed representa-
tion of shape information is created that contains coarse-grained
configurational information about stimulus shape and, at the
same time, the spatially localized detail needed to distinguish
between sharp and smooth corners. Similarly, the action of feed-
back sent from ownership sensitive cells (in the V4/IT complex of
the model) to curvature sensitive and grouping cells in model V2
and V4 also provides context information for the assignment of
configurational information. Here, the ownership assignment is
based on the consolidation of evidence which convex shape ele-
ments make to establish a closed shape region in the visual field.
This context is delivered via feedback to their input that represents
fragments of shape components (irrespective of the sign of curva-
ture) and also to the grouping representations. Those shapes that
finally receive assigned direction of border ownership, and thus
figure-ground direction, will enhance the associated inputs at the
intermediate level orientation-curvature representations.

In all, the hierarchical processing scheme proposed here relies
on extensive bidirectional flow of information in which the feed-
back signals that represent context-sensitive templates are gated
by feedforward driving input signals. Such a modulating feed-
back driven gain control mechanism relates to mechanisms pro-
posed by Roelfsema and colleagues (Lamme and Roelfsema, 2000;
Roelfsema et al., 2002; Roelfsema, 2006) in which spatial detail
is generated by feature-driven low-level processes and represen-
tations and subsequently associated with coarse-grained context
information provided by intermediate and higher-levels of corti-
cal computation. The mechanisms implemented in the proposed
model are consistent with theoretical predictions from compu-
tational constraints visual perception imposes on the underlying
architecture (Tsotsos, 1988). The advantages in computational
complexity have been calculated for principles such as hierar-
chical organization, localized receptive field computations, and
dedicated (distributed) maps of feature representation and their
combination. Feedback has been suggested to steer an atten-
tional beam by selecting a spatial region and their computational
resources (Tsotsos, 2005). In the proposed architecture feedback
also selectively enhances representations of features by increas-
ing their gain which are coherent with the predictions generated
at higher-level stages with more condensed coding of shape and
figural properties. Also we emphasize that this provides a key to
enhance (and make accessible) localized shape features, such as
sharp edges, as part of a shape configuration that is represented
on a coarser scale.

4.4. MODEL LIMITATIONS AND FURTHER EXTENSIONS
The proposed model architecture emphasized the computational
role of feedforward and feedback mechanisms in order to gen-
erate a hierarchical distributed representation of shape informa-
tion. For that reason, we focused on the representational aspects
as steady-state solutions of an otherwise dynamic interaction
between neuronal populations and representations distributed
over several model areas. We did not, so far, investigate the tem-
poral response phases observed for shape sensitive cells in V4
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(Yau et al., 2013). The work of Roelfsema and colleagues has
shown that different response phases exist that can be reli-
ably assigned to different mechanisms in processing, namely
for feature detection, figure-ground segregation, and attention
(Roelfsema et al., 2007). We have demonstrated that such sep-
arate but temporally overlapping phases can be accounted for
by a recurrent network of mutually interacting neuronal sites.
The network model has been composed of the same compo-
nents like the present model architecture (Raudies and Neumann,
2010). It would thus be interesting to reveal whether similar
temporal phases can be identified for model V4 cells that may
give rise to identify different signatures indicative of contribu-
tions from delayed neuronal mechanisms that are involved in the
computation of figural shape information.

Different signal streams (particularly in the feedforward sweep
of feature processing) operate on different temporal scales.
Several lines of evidence suggest that the dorsal and the ventral
streams of processing do not operate entirely in isolation but
mutually interact at different levels (Felleman and Van Essen,
1991; Markov et al., 2013). Also different response character-
istics of cells may define different temporal routes of fast and
slow processing (Born, 2001) that may help fusing information
from different pathways. Here, we did not take into account such
interactions based on different temporal effectivenesses. However,
other model investigations capitalized on combining information
from different channels to improve the selectivity of representa-
tion. For example, edge detection and grouping (in the ventral
pathway) could be enhanced through mutually inhibitory gain
control (which is similar as the normalization stage described
here) generated by representations in the dorsal pathway. Since
the dorsal representation is created by magno-cellular responses,
such inhibition arrives already early to shape the selectivity of
shape representations in the ventral path that is mainly driven by
parvo-cellular responses (Shi et al., 2013). Similarly, interactions
between the motion and form pathway have been suggested to
help disambiguating localized features that give rise to occlusion
cues which, in turn, support the disambiguation of object rep-
resentation in the motion representation (Bayerl and Neumann,
2007; Beck and Neumann, 2010). Such detailed mechanisms
would further enhance the proposed model architecture in refin-
ing the selectivities at different levels of low and intermediate
representation.

As already pointed out above, the focus here is on the pro-
cessing of 2D shape representations. In Cadieu et al. (2007) the
authors have highlighted that their specific model investigation
on shape representation in V4 is part of a larger hierarchi-
cally organized architecture for object recognition (Riesenhuber
and Poggio, 1999; Serre and Poggio, 2010). Since their model
principles relied on purely feedforward processing the insights
provided in the work presented here might also shed some light
on the mutual interactions between different processes on an
even larger scale of object recognition processes. In addition, it
would be interesting to find out how the representation of 3D
surface patches (Yamane et al., 2008) seamlessly fit into a model
computational architecture of recurrent shape computation.

In the presented coverage our model does not respond to con-
tours elicited by contrasts of spatial luminance statistics caused

by differently textured regions. However, the core mechanisms,
including initial filtering, modulatory feedback and competitive
interaction for normalization, are like those proposed in the cur-
rent contribution. A model that focuses on the processing of
such boundaries has been developed in Thielscher and Neumann
(2003). It is thus very likely that the recent model architecture
proposed here can be extended with processing stages capable
to process texture define boundaries as well without changing
the basic architecture and computational principles. Also not
considered in the current version is a multi-scale approach. We
acknowledge the theoretical justification of hierarchical multi-
stage processing to build up a pyramid-like structure (Tsotsos,
2005). Incorporating this representational diversity would allow
the processing of a wider range of curvature configurations in
shape outlines. In addition, this would support a more robust seg-
regation of border ownership on the basis of convexities in the
figural outline. We have focused our efforts on the specification
of a hierarchically organized network architecture that utilized
bottom-up and top-down convergent processing flows. In order
to keep the computational efforts and the simulation times within
reasonable bounds we restricted our description to single scale
components at the different model stages within the hierarchy. A
more extended realization of components is certainly desired but
left for future investigations.

Intermediate level representations involve cells with recep-
tive fields that recruit multiple sub-field components (Mineault
et al., 2012; Yau et al., 2013). The model of Cadieu et al. (2007)
accounts for this by sequentially fitting the subunits of interme-
diate level receptive field models to match the response profiles
of V4 responses measured experimentally. This yields a sampling
structure of statistically significant inputs in a feature space that
contributes a significant amount of feature input to generate the
final response of a shape selective cell. So far, in our modeling
we sampled the spatial and the feature domains regularly. This of
course demands high representational as well as computational
resources. Consequently, it would be of interest to see how an
irregularly sampled 4D space-feature domain (with orientation
and curvature features) can be embedded into the scheme of
shape representation proposed here.
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The remarkable abilities of the primate visual system have inspired the construction of
computational models of some visual neurons. We propose a trainable hierarchical object
recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands
for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects
of interests embedded in complex scenes. It is inspired by the visual processing in the
ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded
in complex scenes is important for many computer vision applications. Most existing
methods require prior segmentation of the objects from the background which on its
turn requires recognition. An S-COSFIRE filter is automatically configured to be selective
for an arrangement of contour-based features that belong to a prototype shape specified
by an example. The configuration comprises selecting relevant vertex detectors and
determining certain blur and shift parameters. The response is computed as the weighted
geometric mean of the blurred and shifted responses of the selected vertex detectors.
S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex,
which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE
filters in two applications: letter and keyword spotting in handwritten manuscripts and
object spotting in complex scenes for the computer vision system of a domestic robot.
S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of
complex scenes without requiring prior segmentation. They are versatile trainable shape
detectors, conceptually simple and easy to implement. The presented hierarchical shape
representation contributes to a better understanding of the brain and to more robust
computer vision algorithms.

Keywords: hierarchical representation, object recognition, shape, ventral stream, vision and scene understanding,

robotics, handwriting analysis

1. INTRODUCTION
Shape is perceptually the most important visual characteristic
of an object. Although there is no formal definition—as with
most perceptual related concepts—it is understood that the two-
dimensional shape of an object is characterized by the relative
spatial positions of a collection of contour-based features.

Let us consider, for instance, the square in Figure 1A, which
we refer to as a reference or prototype object. From the point
of view of visual perception the incomplete object in Figure 1B
is very similar to the prototype even though it is composed of
only 25% of the contour pixels of the reference object. On the
contrary, the closed polygon in Figure 1C, which has the bot-
tom half equivalent to that of the prototype is perceptually less
similar to it. Furthermore, there is little perceptual similarity
between the prototype and its scrambled contour parts shown in
Figure 1D.

As a matter of fact, there is neurophysiological evidence that
objects, such as faces, are recognized by detecting certain features
that are spatially arranged in a certain way (Kobatake and Tanaka,

1994). By means of single-cell recordings in adult monkeys it was,
for instance, found that a neuron in inferotemporal cortex gives
similar responses for the two images shown in Figures 2A,B. The
icon presented in Figure 2B is a simplified version of the mon-
key’s face shown in Figure 2A. It only consists of a circle that
surrounds a horizontally-aligned pair of spots on top of a hori-
zontal bar. Removing one of these features, Figures 2C,D, causes
the concerned cell to give very small response.

Another neurophysiological study (Brincat and Connor, 2004)
reveals that some neurons in inferotemporal cortex integrate
information about the curvatures, orientations, and positions of
multiple (typically 2–4) simple contour elements, such as angles
or curved contour segments. In that study the authors argue that
their findings are in line with other studies that support parts-
based shape representation theories (Marr and Nishihara, 1978;
Riesenhuber and Poggio, 1999; Mel and Fiser, 2000; Edelman and
Intrator, 2003), and suggest that non-linear integration in the
inferotemporal cortex might help to extend sparseness of shape
representation along the ventral stream.
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FIGURE 1 | (A) A prototype shape. (B) A test pattern that has only 25%
similarity (computed by template matching) to the prototype is perceptually
more similar to the prototype than the polygon in (C) and the set of contour
parts in (D), both of which have 50% similarity (computed by template
matching) to the prototype.

FIGURE 2 | (A–D) A set of stimuli used in an electrophysiological study
Kobatake and Tanaka (1994) to test the selectivity of a neuron in
inferotemporal cortex. (Bottom) The activity of the concerned neuron for
the corresponding stimuli. The neuron gives high response only when the
stimulus contains a detailed or simplified representation of the face
boundary that surrounds a pair of eyes on top of a mouth. If any of these
features is missing, the neuron gives negligible response.

Tsotsos (1990) showed that hierarchical architectures are more
appropriate for object detection in contrast to unbounded visual
search which is known to be NP-complete. This has led to the
proposal of a number of hierarchical models (Mel and Fiser,
2000; Scalzo and Piater, 2005; DiCarlo and Cox, 2007; Rodríguez-
Sánchez and Tsotsos, 2012). Existing approaches that consider
the spatial relationship of features include the so-called standard
model (Serre et al., 2007), some probabilistic techniques, such
as the generative constellation model (Fergus et al., 2003; Fei-Fei
et al., 2007) and a hierarchical model of object categories (Fidler
and Leonardis, 2007; Fidler et al., 2008). These approaches rely on
summation of the responses of elementary feature detectors and
may find the images in Figures 1C,D quite similar to the proto-
type in Figure 1A. For instance, such a technique may consider
a circle with a horizontal line within it as a face even though the
representations of the eyes are missing, Figures 2C,D.

We introduce a hierarchical object detection technique which
is motivated by the shape selectivity of some neurons in
inferotemporal cortex. The principal idea is to construct a
shape-selective filter that combines the responses of some sim-
pler filters that detect some partial features of the concerned
shape in specific positions that are characteristic of that shape.
We call this approach to the construction of filters Combination
Of Shifted Filter REsponses (COSFIRE). We successfully applied
this approach to the construction of line and edge detectors

(Azzopardi and Petkov, 2012; Azzopardi et al., 2014) and simple
contour-related features, such as vascular bifurcations (Azzopardi
and Petkov, 2013b). In Azzopardi and Petkov (2013b) we demon-
strated how the collective responses of multiple COSFIRE filters
to segmented patterns, such as handwritten digits, can be used
to form a shape descriptor with high discrimination ability. That
descriptor, however, does not take into account the relative spa-
tial arrangement of the concerned features. Similar to other shape
descriptors (Belongie et al., 2002; Grigorescu and Petkov, 2003;
Ghosh and Petkov, 2005; Latecki et al., 2005; Lauer et al., 2007;
Ling and Jacobs, 2007; Goh, 2008; Almazan et al., 2012) that
approach works well with segmented objects, but it is not effec-
tive for the detection of objects embedded in complex scenes.
In order to distinguish the two types of filter, we refer to the
composite shape-selective filter that we propose in this paper as
S-COSFIRE and to the filter proposed in Azzopardi and Petkov
(2013b) as V-COSFIRE (S and V stand for shape and vertex,
respectively).

There are three aspects in which the S-COSFIRE filters that
we propose differ from other hierarchical models that also con-
sider the spatial geometric arrangement of parts. First, our model
is implemented in a filter that gives a scalar response (between
0 and 1) for each position in the image. The higher the value
the more similar the shape around the concerned location is to
the prototype shape. An S-COSFIRE filter can be thought of a
model of a shape-selective neuron in inferotemporal cortex of the
type studied in Kobatake and Tanaka (1994); Brincat and Connor
(2004), which fires only when a specific arrangement of contour-
based features is present in its receptive field. It addresses object
recognition and localization as a joint problem, which is in line
with how Marr (1982) defined the sense of seeing: “... to know
what is where by looking.” In contrast, the other methods referred
to above use multiple prototypes and consider several responses
from different feature detectors to form a mixture of probability
distributions or a vector of responses. For these methods, the geo-
metrical spatial arrangement of the concerned prototype defining
parts is achieved by training a supervised classifier and subse-
quently the similarity between a test pattern and a prototype is
computed by a distance metric. Moreover, they suffer from insuf-
ficient robustness to localization because they treat this matter at
a region level (sliding window) rather than at a pixel level.

Second, since the omission of an object part can radically
change shape perception, we regard every feature (and its rela-
tive position) that forms part of a prototype shape as essential.
This aspect is implemented as an AND-type operation of an S-
COSFIRE filter. It is in contrast to other models that rely on
summation, and therefore achieve a response even when any of
the prototype-defining features is missing. These models may
thus match objects that are perceptually different.

Third, while the S-COSFIRE approach that we present achieves
invariance to rotation, scaling, and reflection by simply manip-
ulating some model parameters, the other techniques can only
achieve invariance to such geometric transformations by extend-
ing the training set with example objects that are rotated, scaled
and/or reflected versions of a prototype.

The rest of the paper is organized as follows: in section
2 we present the proposed hierarchical S-COSFIRE model. In
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section 3, we demonstrate its effectiveness in two applications:
keyword spotting in handwritten manuscripts and vision for
a home tidying pickup robot. Section 4 contains a discussion
on the properties of the S-COSFIRE filters and finally we draw
conclusions in section 5.

2. METHODS
The following example illustrates the main idea of the proposed
method. We consider the triangle, shown in Figure 3A, as a shape
of interest and we call it prototype. We use this prototype to
automatically configure an S-COSFIRE filter that will respond to
shapes that are identical with or similar to this prototype.

A shape-selective S-COSFIRE filter takes input from simpler
filters; here filters that are selective for vertices. We use vertex-
selective COSFIRE filters of the type proposed in Azzopardi and
Petkov (2013b) to detect the vertices of the prototype shape.
Such a filter, which we refer to it as V-COSFIRE, combines the
responses of line detectors, the areas of support of which are
indicated by the small ellipses in Figure 3A.

The response of an S-COSFIRE filter is computed by com-
bining the responses of the concerned V-COSFIRE filters in the
centers of the corresponding circles by weighted geometric mean.
The preferred orientations and the preferred apertures of these
filters together with the locations at which we take their responses
are determined by analysing the responses of a set of V-COSFIRE
filters to the prototype shape. Consequently, the S-COSFIRE fil-
ter will be selective for the given spatial arrangement of vertices
of specific orientations and apertures. Taking the responses of
V-COSFIRE filters at different locations around a point can be
implemented by shifting the responses appropriately before using
them for the pixel-wise evaluation of a multivariate function
which gives the S-COSFIRE filter output.

2.1. DETECTION OF VERTEX FEATURES BY V -COSFIRE FILTERS
We denote by rVfi

(x, y) the response of a V-COSFIRE filter Vfi
that is selective for a vertex fi. We threshold these responses
at a given fraction t1 (0 ≤ t1 ≤ 1) of the maximum response
across all image coordinates (x, y) and denote these thresholded
responses by |rVfi

(x, y)|t1 . We use the publicly available Matlab

implementation1 of V-COSFIRE filters. Such a filter uses as input
the responses of given channels of a bank2of Gabor filters. For fur-
ther technical details about the properties of V-COSFIRE filters
we refer to Azzopardi and Petkov (2013b).

We use a bank of V-COSFIRE filters that are selective for ver-
tices of different orientations (in intervals of π/6 radians) and
different apertures (in intervals of π/6 radians), Figure 3B. For
the considered prototype the strongest responses are obtained by
three V-COSFIRE filters that are selective for vertices of the types
f13, f17, and f21, shown in Figure 3B. The corresponding locations,
(x1, y1), (x2, y2), (x3, y3), at which they obtain the maximum
responses are indicated in Figure 3C.

2.2. CONFIGURATION OF AN S-COSFIRE FILTER
An S-COSFIRE filter uses as input the responses of selected V-
COSFIRE filters Vfji

, i = 1 . . . n, each selective for some vertex
fji , around a certain position (ρi, φi) with respect to the center
of the S-COSFIRE filter. A 3-tuple (Vfji

, ρi, φi) that consists of a
V-COSFIRE filter specification Vfji

and two scalar values (ρi, φi)
characterizes the properties of a vertex that is present in the given
prototype shape: Vfji

represents a V-COSFIRE filter that is selec-
tive for a vertex fji and (ρi, φi) are the polar coordinates of the
location at which its response is taken with respect to the cen-
ter of the S-COSFIRE filter. In the following we explain how we
obtain the parameter values of such vertices around a given point
of interest.

For each location in the input image of the prototype shape
we take the maximum value of all responses achieved by the bank
of V-COSFIRE filters mentioned above. The positions that have
values greater than those of their corresponding 8-neighbors are
chosen as the points that have local maximum responses. For each
such point (xi, yi) we determine the polar coordinates (ρi, φi)
with respect to the center of the S-COSFIRE filter, Figure 3C.

1The Matlab implementation of a V-COSFIRE filter can be downloaded from
http://matlabserver.cs.rug.nl/
2Here we use a bank of Gabor filters with five wavelengths
λ = {4, 4

√
2, 8, 8

√
2, 16} and six equidistant orientations θ ∈{

0, π6 ,
π
3 ,

π
2 ,

2π
3 ,

5π
6

}

FIGURE 3 | (A) The triangle is the prototype shape of interest and the “+”
marker indicates the center of the user-specified large circle. The small
circles indicate the supports of three vertex detectors that are identified as
relevant for the concerned prototype shape. The small ellipses represent the
supports of line detectors that are selective for the contour parts of the
corresponding vertices. (B) A data set of 60 synthetic vertices, f1, . . . , f60

(left-to-right, top-to-bottom). A V -COSFIRE filter Vfk is selective for a vertex

fk . (C) Configuration of an S-COSFIRE filter. The “×” markers indicate the
locations, (x1, y1), (x2, y2), (x3, y3), where the corresponding three
V -COSFIRE filters, Vf13 , Vf17 , Vf21 , achieve the maximum responses. These
locations correspond to the three vertices of the prototype shape, which is
rendered here with low contrast. The Cartesian coordinates of each point
(xi , yi ) are converted into the polar coordinates (ρi , φi ) with respect to the
given point of interest (x ′, y ′), indicated by the “+” marker.
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Then we determine the V-COSFIRE filters, the responses of
which are greater than a fraction t2 = 0.75 of the maximum
response rVfi

(x, y) for all i ∈ {1, . . . nf } where nf is the num-
ber of V-COSFIRE filters used across all locations in the input
image. Thus, multiple V-COSFIRE filters can be significantly
activated for the same location (ρi, φi). The selected points char-
acterize the dominant vertices in the given prototype shape of
interest.

We denote by SS = {
(Vfji

, ρi, φi) | i = 1 . . . nf
}

the set of
parameter value combinations, which describes the proper-
ties and locations of a number of vertices. The subscript S
stands for the prototype shape of interest. Every tuple in set
SS specifies the parameters of some vertex in prototype S.
For the prototype shape of interest in Figure 3A, the selec-
tion method described above results in three vertices with
parameter values specified by the tuples in the following
set: SS = {

(Vfj1=21 , ρ1 = 50, φ1 = π/2), (Vfj2=13 , ρ2 = 50, φ2 =
7π/6), (Vfj3=17 , ρ3 = 50, φ3 = 5π/3)

}
.

2.3. BLURRING AND SHIFTING V -COSFIRE RESPONSES
The above configuration results in an S-COSFIRE filter that is
selective for a preferred spatial arrangement of three vertices
forming an equilateral triangle. Next, we use the responses of
the V-COSFIRE filters that are selective for the correspond-
ing vertices to compute the output of the S-COSFIRE filter as
follows.

First, we blur the responses of the V-COSFIRE filters in order
to allow for some tolerance in the position of the respective ver-
tices. This increases the generalization ability of the S-COSFIRE
filter under construction. We define the blurring operation as
the computation of maximum value of the weighted thresholded
responses of a V-COSFIRE filter. For weighting we use a Gaussian
function Gσ (x, y), the standard deviation σ of which is a linear
function of the distance ρ from the center of the S-COSFIRE fil-
ter: σ = σ0 + αρ where σ0 and α are constants. The choice of
this linear function is inspired by the visual system of the brain
for which we provide more detail in section 4. For α > 0, which
we use, the tolerance to the position of the respective vertices
increases with an increasing distance ρ from the support center
of the concerned S-COSFIRE filter.

Second, we shift the blurred responses of each V-COSFIRE
filter by a distance ρi in the direction opposite to φi. With this
shifting the concerned V-COSFIRE filter responses, which are
located at different positions (ρi, φi) meet at the support cen-
ter of the S-COSFIRE filter. The output of the S-COSFIRE filter
can then be evaluated as a pixel-wise multivariate function of the
shifted and blurred responses of V-COSFIRE filter responses. In
polar coordinates, the shift vector is specified by (ρi, φi + π), and
in Cartesian coordinates, it is (	xi,	yi) where 	xi =−ρi cosφi,
and 	yi =−ρi sinφi. We denote by sVfji

,ρi,φi (x, y), the blurred

and shifted thresholded response of a V-COSFIRE filter that is
specified by the i-th tuple (Vfji

, ρi, φi) in the set SS:

sVfji
,ρi,φi (x, y)

def= max
x′,y′

{∣∣∣rVfji
(x−x′−	xi, y−y′−	yi)

∣∣∣
t1

Gσ (x′, y′)
}
,

where − 3σ ≤ x′, y′ ≤ 3σ (1)

Figure 4 illustrates the blurring and shifting operations
for this S-COSFIRE filter, applied to the image shown in
Figure 3A.

We define the response rSS (x, y) of an S-COSFIRE filter as the
weighted geometric mean of the blurred and shifted thresholded
responses of the selected V-COSFIRE filters sVfji

,ρi,φi (x, y):

rSS (x, y)
def=

∣∣∣∣∣∣∣∣
( |SS|∏

i = 1

(
sVfji

,ρi,φi (x, y)
)ωi

)1/
∑|SS |

i = 1 ωi

∣∣∣∣∣∣∣∣
t3

,

ωi = exp
− ρ2

i
2σ ′2 , 0 ≤ t3 ≤ 1 (2)

where |.|t3
stands for thresholding the response at a fraction t3

of its maximum across all image coordinates (x, y). For 1/σ ′ =0,
the computation of the S-COSFIRE filter is equivalent to the
standard geometric mean, where the s-quantities have the same
contribution. Otherwise, for 1/σ ′> 0, the input contribution of
s-quantities decreases with an increasing value of the correspond-
ing parameter ρ. In our experiments we use a value of the stan-
dard deviation σ ′ that is computed as a function of the maximum
value of the given set of ρ values: σ ′ = ( − ρmax

2/2 ln 0.5)1/2,
where ρmax = maxi∈{1...|SS|}{ρi}. We make this choice in order
to achieve a maximum value ω = 1 of the weights in the center
(for ρ = 0), and a minimum value ω = 0.5 in the periphery (for
ρ = ρmax).

Figure 4D shows the output of an S-COSFIRE filter which is
defined as the weighted geometric mean of three blurred and
shifted response images obtained by the three concerned V-
COSFIRE filters. Note that this filter responds in the middle of
a spatial arrangement of three vertices that is identical with or
similar to that of the prototype shape S, which was used for
the configuration of the S-COSFIRE filter. In this example, the
S-COSFIRE filter reacts strongly in a given point that is sur-
rounded by three vertices each having an aperture of π/3 radians:
one northward-pointing, another one south-west-pointing and a
south-east-pointing vertex to the north, south-west, and south-
east of that point, respectively. Besides the complete triangle that
was used for configuration, the concerned filter also detects the
Kanizsa-type illusory triangle. This is in line with neurophysio-
logical and psychophysical evidence, in that the visual system is
capable of detecting a shape with illusory contours, based on its
visible salient parts. A thorough review of this phenomenon is
provided in Roelfsema (2006).

2.4. TOLERANCE TO GEOMETRIC TRANSFORMATIONS
The proposed S-COSFIRE filters are tolerant to rotations, scales
and reflections. Similar to a V-COSFIRE filter, such a toler-
ance is achieved by manipulating the values of some parameters
rather than by configuring separate filters by rotated, scaled, and
reflected versions of the prototype shape of interest.

2.5. TOLERANCE TO ROTATION
Using the set SS that defines the concerned S-COSFIRE filter,
we form a new set �ψ (SS) that defines a new filter, which is
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A B C

D

FIGURE 4 | (A) Input image (of size 512×512 pixels). The enframed inlay
images show (top) the enlarged prototype shape of interest, which is
identical to the equilateral triangle in the input image and (bottom) the
structure of the S-COSFIRE filter that is configured by this prototype. The
ellipses illustrate the wavelengths and orientations of the Gabor filters that
are used by the V -COSFIRE filters, and the dark blobs are intensity maps
for blurring (Gaussian) functions. The blurred responses are then shifted by
the corresponding vectors. (B) The V -COSFIRE filters that are
automatically identified from the prototype shape and the corresponding
response images to the input image. (C) We then blur (here we use
σ0 =0.1 and α=0.0853 to compute σi ) the thresholded (here at t1 =0)

response |rVfi
(x, y )|t1 of each concerned V -COSFIRE filter and

subsequently shift the resulting blurred response images by corresponding
polar-coordinate vectors (ρi , φi +π ). (D) We use weighted geometric mean
(here σ ′ =91.44) of all the blurred and shifted V -COSFIRE filters to
compute (top) the output of the S-COSFIRE filter and show (bottom) the
reconstruction of the detected features. The reconstruction is achieved by
superimposing the Gabor filter responses that give input to the S-COSFIRE
filter. The two local maxima in the output of the S-COSFIRE filter
correspond to the triangle and to the perceived one in the input image.
For better clarity we use inverted gray-level rendering to show the images
in the right of the columns (B–D).

selective for a version of the prototype shape S that is rotated by
an angle ψ :

�ψ (SS)
def=
{

(�ψ (Vfji
), ρi, φi+ψ) | ∀ (Vfji

, ρi, φi)∈SS

}
(3)

For each tuple (Vfji
, ρi, φi) in the original filter SS that describes

a certain vertex of the prototype shape, we provide a counter-
part tuple (�ψ (Vfji

), ρi, φi + ψ) in the new set �ψ (SS). The set

�ψ (Vfji
) defines3 a V-COSFIRE filter that is selective for vertex

fji that is also rotated by an angle ψ . The orientation of the con-
cerned vertex and its polar angle position φi with respect to the
support center of the S-COSFIRE filter are off-set by an angle
ψ relative to the values of the corresponding parameters of the
original vertex.

A rotation-invariant response is achieved by taking the max-
imum value of the responses of filters that are obtained with
different values of the parameter ψ :

r̂SS (x, y)
def= max

ψ ∈�
{

r�ψ (SS)(x, y)
}

(4)

3We refer to Azzopardi and Petkov (2013b) for the technical details about the
invariance that is achieved by a V-COSFIRE filter.

where � is a set of nψ equidistant orientations defined as � ={ 2π
nψ

i | 0 ≤ i<nψ
}

.

2.6. TOLERANCE TO SCALING
Tolerance to scaling is achieved in a similar way. Using the set SS
that defines the concerned S-COSFIRE filter, we form a new set
Tυ(SS) that defines a new filter, which is selective for a version of
the prototype shape S that is scaled in size by a factor υ:

Tυ(SS)
def=
{

(Tυ(Vfji
), υρi, φi) | ∀ (Vfji

, ρi, φi)∈SS

}
(5)

For each tuple (Vfji
, ρi, φi) in the original S-COSFIRE filter SS

that describes a certain vertex of the prototype shape, we pro-
vide a counterpart tuple (Tυ(Vfji

), υρi, φi) in the new set Tυ(SS).

The set Tυ(Vfji
) defines1 a V-COSFIRE filter that responds to a

version of the vertex fji scaled by the factor υ. The size of the con-
cerned vertex and its distance to the center of the filter are scaled
by the factor υ relative to the original values of the corresponding
parameters.

A scale-invariant response is achieved by taking the maximum
value of the responses of filters that are obtained with different
values of the parameter υ:
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r̃SS (x, y)
def= max

υ∈ϒ {rTυ (SS)(x, y)} (6)

where ϒ is a set of υ values equidistant on a logarithmic scale

defined as ϒ = {2
i
2 | i ∈ Z}.

2.7. REFLECTION INVARIANCE
As to reflection invariance we first form a new set ŚS from the set
SS as follows:

ŚS
def= {(V́fji

, ρi, π−φi) | ∀ (Vfji
, ρi, φi) ∈ SS} (7)

The set V́fji
defines1 a new V-COSFIRE filter that is selective for

the corresponding vertex fji reflected about the y–axis. Similarly,

the new S-COSFIRE filter ŚS is selective for a reflected version
of the prototype shape S also about the y−axis. A reflection-
invariant response is achieved by taking the maximum value of
the responses of the filters SS and ŚS:

ŕSS (x, y)
def= max {rSS (x, y), rŚS

(x, y)} (8)

2.8. COMBINED TOLERANCE TO ROTATION, SCALING, AND
REFLECTION

An S-COSFIRE filter achieves tolerance to all the above geometric
transformations by taking the maximum value of the rotation-
and scale-tolerant responses of the filters SS and ŚS that are
obtained with different values of the parameters ψ and υ:

r̄SS (x, y)
def= max

ψ∈�,υ∈ϒ

{
r̂�ψ (Tυ (SS))(x, y), r̂�ψ (Tυ (ŚS))(x, y)

}
(9)

3. APPLICATIONS
In the following we demonstrate the effectiveness of the proposed
S-COSFIRE filters by applying them in two practical applications:
the spotting of keywords in handwritten manuscripts and the

spotting of objects in complex scenes for the computer vision
system of a domestic robot.

3.1. SPOTTING KEYWORDS IN HANDWRITTEN MANUSCRIPTS
The automatic recognition of keywords in handwritten
manuscripts is an application that has been extensively investi-
gated for several decades (Plamondon and Srihari, 2000; Frinken
et al., 2012). Despite this effort the problem has not been
solved yet.

As a demonstration, in Figure 5 we show how to detect the
keyword “Germany” in two handwritten manuscripts. We use
the keyword prototype “Germany” that is shown enframed in
Figure 5A to configure an S-COSFIRE filter that receives input
from 13 V-COSFIRE filters, Figure 5E. Figures 5C,D show the
responses of the concerned S-COSFIRE filter (t1 = 0.1, t2 = 0.75,
t3 =0.1, σ0 =0.67, and α=0.1.) to the two manuscript images4

in Figures 5A,B. It spots all the six instances of the keyword
“Germany” and does not produce any false positives.

The S-COSFIRE filters that are selective for specific words may
correspond to neurons or networks of neurons in a certain area
in the posterior lateral-occipital cortex. This area receives input
from V4 and is selective for combinations of vertices. It has been
shown to play a role in the recognition of words and has been
named Visual Word Form Area (Szwed et al., 2011).

3.2. VISION FOR A HOME TIDYING PICKUP ROBOT
Daily service robots that perform routine tasks are becoming pop-
ular as household appliances. Such tedious tasks include, but are
not limited to, vacuum cleaning, setting up and cleaning up a din-
ner table, tidying up toys, and organizing closets. The design of
domestic robots is a growing research area (Bandera et al., 2012;
Jiang et al., 2012).

4The images in Figures 5A,B are extracted from the files named b01-049.png
and b01-044.png, respectively, in the IAM offline database.

A B C D

E

FIGURE 5 | An example of spotting the keyword “Germany” in (A,B) two

handwritten manuscripts taken from the IAM offline database (Marti

and Bunke, 2002). The indicated keyword “Germany” in (A) is used as a
prototype to configure an S-COSFIRE filter. (E) The circles indicate the
support areas of 13 V -COSFIRE filters that are used to provide input to the

concerned S-COSFIRE filter with the “+” marker indicating its support
center. (C,D) Normalized responses of this filter to the images in (A,B)

rendered by shading of the spotted words. All six instances are detected. The
strongest response is achieved for the word that was used for the
configuration of the S-COSFIRE filter.
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We demonstrate how the S-COSFIRE filters that we propose
can be used by a personal robot to visually recognize objects of
interest in indoor environments. As an illustration we consider
a task for a tidying pickup robot to detect shoes in differ-
ent rooms of a home that match the prototype shoe shown in
Figure 6A.

We use a segmented prototype image of the shoe to config-
ure an S-COSFIRE filter. The concerned S-COSFIRE filter receives
input from three V-COSFIRE filters that are selective for different
parts of the shoe. These parts are automatically chosen by the sys-
tem from a circular local neighborhood of a point of interest that
is indicated by a “+” marker. In practice, the concerned point of
interest and the radius of the corresponding local neighborhood
are manually specified by the user. The radii of the three circles are
automatically computed in such a way that the circles touch each
other. For the configuration of the concerned V-COSFIRE filters
we use a bank of Gabor energy filters5 with one wavelength (λ =
4) and 16 equidistant orientations

(
θ = {

π
8 i | 0 . . . 15

})
, and we

threshold the responses with t1 = 0.3. Within each of the three
circles, we consider a number of concentric circles, the radii of
which increment in intervals of 4 pixels starting from 0. For the
concerned three V-COSFIRE filters as well as the S-COSFIRE fil-
ter we use the same values of parameters α (α = 0.67) and σ0

(σ0 = 0.1) in order to allow the same tolerance in the position of
the involved edges and curvatures.

We created a data set that we call RUG-Shoes of 60 color
images (of size 256 × 342 pixels) by taking pictures in differ-
ent rooms of the same house. Of these images, 39 contain a
pair of shoes of interest, another nine contain a single shoe
and the remaining 12 do not contain any shoes. The distance
above ground of the digital camera was varied between 50 cm
and 1 m. All pictures of shoes were taken from the side view of

5The response of a Gabor energy filter is computed as the L2-norm of the
responses of a symmetric and anti-symmetric Gabor filters.

the corresponding shoes. The shoes were, however, arranged in
different orientations and their distances from the camera varied
by at most 25% as compared to the distance which we used to
take the image of the prototype shoe. We made the RUG-Shoes
data set publicly available6.

We use the configured S-COSFIRE filter to detect shoes in
the data set of 60 images. We first convert every color image
to grayscale and subsequently apply the concerned S-COSFIRE
filter in reflection-, scale-

(
υ ∈ { 3

4 , 1, 5
4

})
and partially rotation-

invariant
(
ψ ∈{− π

8 , 0, π8
})

mode. The Gabor energy filters that
we use to provide inputs to the V-COSFIRE filters are applied
with isotropic suppression (Grigorescu et al., 2004) in order to
reduce responses to texture. We threshold the responses of the
concerned S-COSFIRE filter with t3=0.1 and for each image we
consider only the highest two responses. We obtain a perfect
detection and recognition performance for all the 60 images in
the RUG-Shoes data set. This means that we detect all the shoes
in the given images with no false positives. Figure 6B illustrates
the detection of some shoes in two of the images.

4. DISCUSSION
The trainable S-COSFIRE filters that we propose are part of a hier-
archical object recognition approach that shares similarity with
the ventral stream of visual cortex. In the first layer we detect lines
and edges by Gabor filters, which are inspired by the function
of orientation-selective cells in primary visual cortex (Daugman,
1985). Their responses are projected to a second layer and used
by V-COSFIRE filters that detect vertices and curved contour
segments. In our previous work (Azzopardi and Petkov, 2013b),
we showed that such filters give responses that are qualitatively
similar to a class of cells in area V4 in visual cortex. Finally,
in a third layer we have S-COSFIRE filters that combine the

6The RUG-Shoes data set can be downloaded from http://matlabserver.cs.
rug.nl/

FIGURE 6 | Detection of shoes in complex scenes. (A) A protoype shoe
used for the configuration of an S-COSFIRE filter. The circles represent the
non-overlapping supports of three V -COSFIRE filters, and the “+” marker
indicates the center of support of the concerned S-COSFIRE filter. (Top right)
The superimposed (inverted) thresholded responses (t1 = 0.3) of a bank of

Gabor energy filters with one wavelength (λ = 4) and 16 orientations in intervals
of π/8. (Bottom) Reconstructions of the local patterns for which the three
resulting V -COSFIRE filters are selective. (B) Detection results to two input
images (of size 256 × 342 pixels) from the RUG-Shoes data set with filenames
(a) Shoes03_1.jpg, (c) Shoes17_2.jpg, (e) Shoes58_2.jpg, and (g) Shoes38_1.jpg.
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responses of certain V-COSFIRE filters. Such a filter is selective
for a given spatial configuration of vertices and curved contour
segments that defines a simple to moderately complex shape.
S-COSFIRE filters share similar properties with shape-selective
neurons in inferotemporal cortex, which provided inspiration for
this work.

This hierarchical object recognition approach is, however, not
restricted to three layers. The addition of further layers may be
more appropriate for prototype objects of higher deformation
complexity. For instance, let us consider a prototype shape of a
simplistic human-body figure that is composed of a head, a pair of
eyes, a nose, a mouth, two arms, two hands, a torso, two legs, and
two feet. We may configure an S-COSFIRE filter to be selective for
the entire body with its center being at the center of mass of the
body. Such a filter receives input from V-COSFIRE filters that are
selective for distinct body parts. With this type of configuration
the tolerance in the position of the body parts is computed with
the same function that depends on the distance from the center of
the S-COSFIRE filter. However, we know that certain body parts
may require more tolerance or may be more correlated than oth-
ers. For instance, the positions of the eyes, the nose and the mouth
depend more on the position of the head than on the position of
the legs. By taking this aspect in consideration it would be better
to construct a hierarchical filter in the following way: configure
an S-COSFIRE filter to be selective for the spatial arrangement of
the head components (eyes, nose, and mouth), an S-COSFIRE fil-
ter for a hand and an arm, another one for a foot and a leg and
a fourth one for the torso. Then, the responses of these four S-
COSFIRE filters may be used as inputs to another, more complex
S-COSFIRE filter.

The configuration of an S-COSFIRE filter determines which
responses of which V-COSFIRE filters need to be multiplied
in order to obtain the output of the filter. The number of V-
COSFIRE filters used is a model parameter that is specified by
the user. This value depends on the shape complexity of the
concerned prototype (as represented by the number of vertex
features). The selectivity of an S-COSFIRE filter increases with
an increasing number of V-COSFIRE filters. The sizes of the
V-COSFIRE supports and their position are automatically deter-
mined in such a way that they do not overlap each other. In future
work, we will incorporate a learning mechanism in the configu-
ration stage. It will use multiple prototype examples of the object
of interest (instead of only one prototype that we use here) and
negative examples (e.g., other objects and scenes). It will learn
the optimal number of V-COSFIRE filters as well as the size and
position of their support in order to maximize selectivity and
generalization abilities.

An S-COSFIRE filter achieves a response when all parts of
a shape of interest are present in a specific spatial arrangement
around a given point in an image. The rigidity of this geometri-
cal configuration may vary according to the application at hand.
The standard deviation of a blurring (Gaussian) function that we
use to allow for some tolerance depend on the distance from the
center of the concerned S-COSFIRE filter: it grows linearly with a
rate that is defined by the parameter α. Small values of α are more
appropriate for the selectivity of rigid objects. Generalization abil-
ity increases with an increasing value of α. This mechanism is

inspired by neurophysiological evidence that the average diameter
of receptive fields of some neurons in visual cortex increases with
the eccentricity (Gattass et al., 1988).

The specific type of function that we use to combine the
responses of costituent (V-COSFIRE) filters for the considered
applications is a weighted geometric mean. This output func-
tion, which is also used to compute a V-COSFIRE filter response,
proved to give better results than various forms of addition.
Furthermore, there is psychophysical evidence that human visual
processing of shape is likely performed by a non-linear neu-
ral operation that multiplies afferent responses (Gheorghiu and
Kingdom, 2009). In future work, we plan to experiment with
functions other than (weighted) geometric mean.

The application of the home tidying robot in section 3.2
demonstrates the benefits of the rotation, scale and reflection
invariances that we use. With one S-COSFIRE filter that is con-
figured by a single prototype, the filter is able to achieve responses
to different views of the object used for training. While this ability
implies more operations, the computational cost does not grow
linearly with the number of considered views. This is attributable
to the fact that the responses of the bank of Gabor filters at the
bottom layer can be shared among the involved V-COSFIRE fil-
ters, irrespective of the view. We refer the reader to Azzopardi and
Petkov (2013a,b) for the technical details. The majority of the new
operations required due to the invariances are shifting computa-
tions, which have very low computational cost. In practice, the
shoe-selective filter used in section 3.2 takes 3.5 s to process an
image (256 × 342 pixels) with no invariances, and less than 5 s
with rotation-, scale-, and reflection-invariance.

The proposed S-COSFIRE filters are particularly useful due to
their versatility and selectivity, in that an S-COSFIRE filter can
be configured to be selective for any given deformable object and
used to detect other objects embedded in complex scenes that
are perceptually similar to it. This effectiveness is attributable to
taking into account the mutual spatial positions of the responses
of certain V-COSFIRE filters that are selective for simpler object
parts.

5. CONCLUSIONS
The S-COSFIRE filters that we propose are highly effective to
detect and recognize deformable objects that are embedded in
complex scenes without prior segmentation. This effectiveness is
due to the deployment of both the presence of certain object-
characteristic features and their mutual spatial arrangement. They
are versatile shape detectors as they can be trained to be selective
for any given visual pattern of interest.

An S-COSFIRE filter is conceptually simple and easy to imple-
ment: the filter output is computed as the weighted geometric
mean of blurred and shifted responses of simpler V-COSFIRE
filters.
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The human visual system is assumed to transform low level visual features to object
and scene representations via features of intermediate complexity. How the brain
computationally represents intermediate features is still unclear. To further elucidate this,
we compared the biologically plausible HMAX model and Bag of Words (BoW) model
from computer vision. Both these computational models use visual dictionaries, candidate
features of intermediate complexity, to represent visual scenes, and the models have
been proven effective in automatic object and scene recognition. These models however
differ in the computation of visual dictionaries and pooling techniques. We investigated
where in the brain and to what extent human fMRI responses to short video can be
accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity
of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using
a distance-based variation partitioning method. Results revealed that both HMAX and
BoW explain a significant amount of brain activity in early visual regions V1, V2, and
V3. However, BoW exhibits more consistency across subjects in accounting for brain
activity compared to HMAX. Furthermore, visual dictionary representations by HMAX
and BoW explain significantly some brain activity in higher areas which are believed to
process intermediate features. Overall our results indicate that, although both HMAX and
BoW account for activity in the human visual system, the BoW seems to more faithfully
represent neural responses in low and intermediate level visual areas of the brain.

Keywords: visual perception, fMRI, low and intermediate features, HMAX, bag of words, representation similarity

analysis

1. INTRODUCTION
The human visual system transforms low-level features in the
visual input into high-level concepts such as objects and scene cat-
egories. Visual recognition has been typically viewed as a bottom-
up hierarchy in which information is processed sequentially with
increasing complexities, where lower-level cortical processors,
such as the primary visual cortex, are at the bottom of the pro-
cessing hierarchy and higher-level cortical processors, such as the
inferotemporal cortex (IT), are at the top, where recognition is
facilitated (Bar, 2003). Much is known about the computation
in the earliest processing stages, which involve the retina, lateral
geniculate nucleus (LGN) and primary visual cortex (V1). These
areas extract simple local features such as blobs, oriented lines,
edges and color from the visual input. However, there remain
many questions on how such low-level features are transformed
into high-level object and scene percepts.

One possibility is that the human visual system transforms
low-level features into object and scene representations via an
intermediate step (Riesenhuber and Poggio, 1999). After extrac-
tion of low-level features in areas such as V1, moderately complex
features are created in areas V4 and the adjacent region TO.
Then partial or complete object views are represented in anterior
regions of inferotemporal (IT) cortex (Tanaka, 1997). It has

been suggested that such intermediate features along the ventral
visual pathway are important for object and scene representation
(Logothetis and Sheinberg, 1996).

Previous studies have provided some evidence of what inter-
mediate features might entail. In Tanaka (1996) it has been shown
that cells in the V4/IT region respond selectively to complex fea-
tures such as simple patterns and shapes. Similarly, Hung et al.
(2012) identified contour selectivity for individual neurons in the
primate visual cortex and found that most contour-selective neu-
rons in V4 and IT each encoded some subset of the parameter
space and that a small collection of the contour-selective units
were sufficient to capture the overall appearance of an object.
Together these findings suggest that intermediate features capture
object information encoded within the human ventral pathway.

In an attempt to answer the question of intermediate fea-
tures underlying neural object representation, Leeds et al. (2013)
compared five different computational models of visual represen-
tation against human brain activity to object stimuli. They found
that the Bag of Words (BoW) model was most strongly correlated
with brain activity associated with midlevel perception. These
results were based on fMRI data from 5 subjects. Recently Yamins
et al. (2014) used a wider set of models including HMAX and
BoW against neural responses from two monkeys in IT and V4.
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HMAX (Riesenhuber and Poggio, 1999) and BoW (Csurka
et al., 2004) models represent scenes in a hierarchical manner
transforming low level features to high level concepts. HMAX is a
model for the initial feedforward stage of object recognition in the
ventral visual pathway. It extends the idea of simple cells (detect-
ing oriented edges) and complex cells (detecting oriented edges
with spatial invariance) by forming a hierarchy in which alter-
nate template matching and max pooling operations progressively
build up feature selectivity and invariance to position and scale.
HMAX is thus a simple and elegant model used by many neuro-
scientists to describe feedforward visual processing. In computer
vision, different algorithms are used for object and scene repre-
sentation. The commonly used model in computer vision is BoW
which performs very well on large TRECvid (Smeaton et al., 2006)
and PASCAL (Everingham et al., 2010) datasets, in some cases
even approaching human classification performance (Parikh and
Zitnick, 2010). The key idea behind this model is to quantize local
Scale Invariant Feature Transform (SIFT) features (Lowe, 2004)
into visual words (Jurie and Bill, 2005), features of intermedi-
ate complexity, and then to represent an image by a histogram
of visual words. To further understand the nature of intermediate
features underlying scene perception, we test these two computa-
tional models against human brain activity while subjects view a
movie of natural scenes.

Although HMAX and BoW are different models they both
rely on the concept of visual dictionaries to represent scenes. In
HMAX after the initial convolution and pooling stage, template
patches are learnt from responses of the pooling layer (from a
dataset of images) which are used as visual dictionaries. In the
BoW model, clustering of SIFT features forms the visual dictio-
nary. In both the models, visual dictionaries are medium size
image patches that are informative and at the same time distinc-
tive. They can be thought of, as features of intermediate com-
plexity. This comparison of different computational approaches
to visual dictionaries might provide further insight about the
representation of intermediate features in the human brain.

In this work we test two layers of the HMAX and BoW mod-
els against human brain activity. We show 20 subjects a 11-min
video of dynamic natural scenes and record their fMRI activ-
ity while watching the video. We use dynamic scenes instead of
static scenes because they are more realistic, and because they may
evoke brain responses that allow for a better acquisition of neu-
ral processes in the visual areas of the brain (Hasson et al., 2004).
Furthermore, the use of a relatively large pool of subjects allows
us to compare computational models in terms of their consistency
in explaining brain activity. The fMRI data is compared to HMAX
and BoW models. For the HMAX model we test how Gabor and
visual dictionary representation of an image explain brain activ-
ity. Similarly for BoW, we test how SIFT and visual dictionary
explain brain activity. If the models are good representations of
intermediate features in the human brain, they should account
for brain activity across multiple subjects.

Testing hierarchical models of vision against brain activity
is challenging for two reasons. First, computational and neu-
ral representations of visual stimuli are of different nature but
both very high-dimensional. Second the different hierarchical
levels of the models need to be dissociated properly in order

to determine how brain activity is accounted by each of the
individual hiearchical levels of the model. This cannot be done
easily in standard multivariate neuroimaging analysis. We address
the first challenge by using dissimilarity matrices (Kriegeskorte
et al., 2008) that capture computational and neural distances
between any pair of stimuli. The second is resolved by apply-
ing a novel technique, variation partitioning (Peres-Neto et al.,
2006) on the dissimilarity matrices. This enables us to compute
the unique contributions of the hierarchical layers of HMAX and
BoW models in explaining neural activity. Distance based vari-
ation partitioning has been successfully used in ecological and
evolutionary studies, and will be applied here to fMRI data. This
will enable us to establish correspondence between computational
vision models, their different hierarchical layers and fMRI brain
activity.

2. MATERIALS AND METHODS
2.1. COMPUTATIONAL MODELS
We use HMAX and BoW computational models to represent
images at the different hierarchical levels. For the HMAX model
we compute the Gabor representation at the first level and the
visual dictionary representation at the second level (Figure 1).
Similarly for the BoW model we compute the SIFT representation
and visual dictionary representation. It is important to note that
HMAX and BoW models refer to the entire hierarchical model
combining low level feature and visual dictionary.

2.1.1. HMAX model
We use the HMAX model (Mutch and Lowe, 2008), where fea-
tures are computed hierarchically in layers: an initial image layer
and four subsequent layers, each built from the previous layer
by alternating template matching and max pooling operations as
seen in Figure 1. In the first step, the greyscale version of an image
is downsampled and a image pyramid of 10 scales is created.
Gabor filters of four orientations are convolved over the image at
different positions and scales in the next step, the S1 layer. Then
in the C1 layer, the Gabor responses are maximally pooled over
10 × 10 × 2 regions of the responses from the previous layer (the
max filter is a pyramid). The Gabor representation of an image I
is denoted by the vector fgabor .

In the next step, template matching is performed between the
patch of C1 units centered at every position/scale and each of P
prototype patches. These P = 4096 prototype patches are learned
as done in Mutch and Lowe (2008) by randomly sampling patches
from the C1 layer. We use images from the PASCAL VOC 2007
dataset (Smeaton et al., 2006) to sample the prototypes for the
dictionary. In the last layer, a P dimensional feature is created
by maximally pooling over all scales and orientations to one of
the models P patches from the visual dictionary. This results in a
visual dictionary representation of image I denoted by the vector
fvdhmax = [h1 . . . hP] where each dimension hp represents the max
response of the dictionary elements convolved over the output of
the C1 layer.

2.1.2. BoW model
The first step in the BoW model (Figure 1) is extraction of SIFT
descriptors (Lowe, 2004) from the image. SIFT combines a scale
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FIGURE 1 | Computational models. HMAX model: Gabor filters of 4
orientations and 10 different scales are convolved in the S1 Layer. The
responses are pooled to form the C1 Layer. For the S2 Layer random samples
of the pooled responses from the C1 layer to the PASCAL dataset of images
is used to form the visual dictionary of dimension 4096. These template
patches are detected from the responses to form the S2 Layer. A global max

pooling operation is done for the final C2 Layer which is of dimension 4096.
BoW model: SIFT features are extracted densely over the image. Visual
dictionary of dimension 4000 is learnt by kmeans clustering on SIFT features
extracted PASCAL dataset images. Each SIFT descriptor from an image is
encoded to the nearest element of visual dictionary. Average pooling is done
to form the 4000 dimension visual dictionary representation.

invariant region detector and a descriptor based on the gradient
distribution in the detected regions. The descriptor is repre-
sented by a 3D histogram of gradient locations and orientations
weighted by the gradient magnitude. The quantization of gra-
dient locations and orientations makes the descriptor robust to
small geometric distortions and small errors in the region detec-
tion. SIFT feature is a 128 dimensional vector which is computed
densely over the image. Here the SIFT representation of an image
I is obtained by concatenating all the SIFT features over the image.
It is denoted by the vector fsift .

Secondly, a dictionary of visual words (Csurka et al., 2004) is
learned from a set of scenes independent of the scenes in the stim-
uli video. We use k-means clustering to identify cluster centers
cm = c1, . . . , cM in SIFT space, where m = 1, . . . ,M denotes the
number of visual words. We use the PASCAL VOC 2007 (Smeaton
et al., 2006) dataset to create a codebook of dimension M = 4000.

The SIFT features of a new image are quantized (assigned to
the nearest visual word) to a element in the visual dictionary
and the image is represented by counting the occurrences of all
words. This results for image I in the visual dictionary repre-
sentation fvdbow = [h1 . . . hM] where each bin hm indicates the

frequency(number of times) the visual word cm is present in the
image.

2.2. REPRESENTATIONAL DISSIMILARITY MATRICES
A representational dissimilarity matrix (Kriegeskorte et al., 2008)
(RDM) F is computed separately for each of the image represen-
tations. The elements in this matrix are the Euclidean distance
between the representations of pairs of images. Thus, Fgabor ,
Fvdhmax, Fsift , and Fvdbow are dissimilarity matrices for the differ-
ent representations respectively. Figure 2A shows the 290 × 290
dissimilarity matrices for 290 images (frames) from the video
stimulus used in this study.

2.3. STIMULI
An 11-min video track consisting of about 20 different dynamic
scenes was used for this study. The scenes were taken from the
movie Koyaanisqatsi: Life Out of Balance and consisted primarily
of slow motion and time-lapse footage of cities and many natural
landscapes across the United States as in Figure 2B.

The movie Life Out of Balance was chosen as a stimulus
because it contained all kinds of scenes we encounter in our daily
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FIGURE 2 | Data and representations (A) Dissimilarity matrices

computed for the different hierarchical levels of HMAX and BoW

using pairwise distance between all the scenes from the stimuli

resulting in a 290 × 290 matrix. Similarly the dissimilarity matrix
computed for the fMRI brain responses where each element is the

distance in multivariate voxel responses to any image pair resulting in a
290 × 290 matrix. (B) Example images (frames) from the 11 min video
stimuli that was used in the fMRI study. There are totally 290 scenes
representing a wide variety of scenes, ranging from natural to
man-made.

live with no human emotional content or specific storyline, from
natural (e.g., forest) to more man made scenes (e.g., streets). In
addition the movie exhibits different motion elements such as
zooming, scaling, luminance etc. In this respect, the movie is rich
in its underlying low-level properties such as spatial frequency
and color.

2.4. SUBJECTS
The fMRI data of the video stimuli was collected for over 500
subjects, from which 20 were randomly sampled for this study.
Subjects were not assigned with any specific tasks when watching.
They watched the video track passively one time each. The exper-
iment was approved by the ethical committee of the University
of Amsterdam and all participants gave written informed consent
prior to participation. They were rewarded for participation with
either study credits or financial compensation.

2.5. fMRI
We recorded 290 volumes of BOLD-MRI (GE-EPI, 1922 mm, 42
slices, voxel size of 3 × 3 × 3.3, TR 2200 ms, TE 27.63 ms, SENSE
2, FA 90◦C) using a 3T Philips Achieve scanner with a 32 channel
headcoil. A high-resolution T1-weighted image (TR, 8.141 ms;
TE, 3.74 ms; FOV, 256 × 256 × 160 mm) was collected for regis-
tration purposes. Stimuli were backward-projected onto a screen
that was viewed through a mirror attached to the head-coil.

2.6. fMRI PREPROCESSING
FEAT (fMRI Expert Analysis Tool) version 5.0, part of FSL
(Jenkinson et al., 2012) was used to analyze the fMRI data.
Preprocessing steps included slice-time correction, motion cor-
rection, high-pass filtering in the temporal domain (σ = 100 s),
spatially filtered with a FWHM of 5 mm and prewhitened

(Woolrich et al., 2001). Data was transformed using an ICA and
we subsequently, automatically identified artifacts using the FIX
algorithm (Salimi-Khorshidi et al., 2014). Structural images were
coregistered to the functional images and transformed to MNI
standard space (Montreal Neurological Institute) using FLIRT
(FMRIB’s Linear Image Registration Tool; FSL). The result-
ing normalization parameters were applied to the functional
images. The data was transformed into standard space for cross-
participant analyses, so that the same voxels and features were
used across subjects.

These 290 image frames and volumes were used to estab-
lish a relation between the two computational models and
BOLD responses. Although in this approach the haemodynamic
response might be influenced by other image frames, we expect
this influence to be limited because the video is slowly changing
without any abrupt variations. In addition, BOLD responses are
intrinsically slow and develop over a period of up to 20 s. Still
they summate linearly reasonably well (Buckner, 1998) and also
match the timecourse in typical scenes which develop over multi-
ple seconds. This also probably explains the power of BOLD-MRI
in decoding the content of movies (Nishimoto et al., 2011) and
indicates it is possible to compare different models of information
processing on the basis of MRI volumes.

2.7. VARIATION PARTITIONING
A 3 × 3 × 3 searchlight cube is centered at each voxel in the brain
and BOLD responses within the cube to each of the 290 still
images compared against each other. This results for each subject
and for each voxel in a 290 × 290 dissimilarity matrix Y . Each
element in the Y matrix is the pairwise distance of the 27 dimen-
sional (from the searchlight cube) multivariate voxel responses to
any image pair. As a distance measure Cityblock is taken. We now
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perform variation partitioning voxel-wise (each voxel described
by its searchlight cube) for all the voxels across all subjects.

Variation partitioning (Peres-Neto et al., 2006) for the HMAX
model is done by a series of multiple regression, producing
fractions of explained variation R2

gabor (unique to gabor rep-

resentation), R2
gaborvdhmax (common to both gabor and visual

dictionary representation) and R2
vdhmax (unique to visual dic-

tionary). First the multiple regression of Y against Fgabor and
Fvdhmax together is computed, where Y denotes the fMRI dis-
similarity matrix, and Fgabor and Fvdhmax the Gabor and visual
dictionary dissimilarity matrices respectively. The corresponding
R2

hmax measures the total fraction of explained variation, which
is the sum of the fractions of variation R2

gabor , R2
gaborvdhmax, and

R2
vdhmax. Then the multiple regression of Y against Fgabor is com-

puted. The corresponding R2
gabor+gaborvdhmax measure is the sum

of the fractions R2
gabor and R2

gaborvdhmax. In the next step, the
multiple regression of Y against Fvdhmax is obtained, with cor-
responding R2

vdhmax+gaborvdhmax being the sum of the fractions

of variation R2
gaborvdhmax and R2

vdhmax. The fraction of variation
uniquely explained by the Gabor dissimilarity matrix is computed
by substraction: R2

gabor = R2
hmax - R2

vdhmax+gaborvdhmax. Similarly,
variation uniquely explained by visual dictionary dissimilarity
matrix is: R2

vdhmax = R2
hmax - R2

gabor+gaborvdhmax. The residual frac-

tion may be computed by: 1 − (R2
gabor + R2

gaborvdhmax + R2
vdhmax).

Exactly the same steps of computation are taken to determine
the fraction of variation uniquely explained by the SIFT dissim-
ilarity matrix, the fraction explained by BoW visual dictionary
dissimilarity matrix, and by the combination of both the SIFT and
visual dictionary dissimilarity matrices as shown in Figure 3.

We also compare the models at their respective hierarchical
levels. At the first level, Gabor and SIFT dissimilarity matrices are
used to explain brain activity Y . Similarly at the level of visual
dictionaries, we compare how HMAX and BoW visual dictionary
dissimilarity matrices explain Y .

Note that these R2 statistics are the canonical equivalent of
the regression coefficient of determination, R2 (Peres-Neto et al.,
2006). They can interpreted as the proportion of the variance in
the dependent variable that is predictable from the independent
variable.

A permutation test (1000 times) determines the statistical sig-
nificance (p value) of the fractions that we obtain for each voxel
by variation partitioning. To account for the multiple comparison
problem, we perform cluster size correction and only report here
clusters of voxels that survive the statistical thresholding at p <
0.05 and have a minimum cluster size of 25 voxels. We determine
the minimum cluster size by calculating the probability of a false
positive from the frequency count of cluster sizes within the entire
volume, using a Monte Carlo simulation (Ward, 2000).

3. RESULTS
3.1. COMPARING FULL MODELS : INTERSUBJECT CONSISTENCY
Using distance-based variation partitioning for each subject we
dissociate the explained variation of the HMAX model into
unique contributions of Gabor R2

gabor and visual dictionary repre-

sentation R2
vdhmax. The total explained variation by HMAX model

FIGURE 3 | Visualization of the variation partitioning on the RDMs

obtained from the 290 images of the ID1000 stimuli. For the HMAX
model we obtain a 290 × 290 Gabor dissimilarity matrix(Fgabor ) and visual
dictionary dissimilarity matrix(Fvdhmax ) using pairwise image distances.
Similarly for BoW, we obtain 290 × 290 SIFT dissimilarity matrix(Fsift ) and
visual dictionary matrix(Fvdbow ). Then variation partitioning is applied at each
of the hierarchical level and across the hierarchical levels on the 290 × 290
fMRI dissimilarity matrix(Y).

is given by the combination of R2
gabor and R2

vdhmax. We do the same

for the BoW model, based on SIFT R2
sift and visual dictionary rep-

resentation R2
vdbow. HMAX and BoW models refer to the entire

hierarchical model combining low level feature and visual dictio-
nary. Cluster size correction (p < 0.05 and minimal cluster size
of 25 voxels) was performed to solve for the multiple comparison
problem.

To test whether our results are consistent across subjects, for
each voxel we counted the number subjects for which brain activ-
ity was explained significantly by the HMAX and BoW models.
A spatial version of the chi-square statistic (Rogerson, 1999)
was subsequently applied to determine whether the observed
frequency at a particular voxel deviated significantly from the
expected value (the average number of subjects across all
voxels).

Figure 4A shows how consistently across subjects, HMAX
and BoW models account for brain activity. We observe that
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FIGURE 4 | Visualization of across subject consistency at each voxel for

the complete HMAX and BoW models and their individual components.

To find consistency across subjects, first significant voxel clusters are
determined subject wise and then a spatial frequency count is performed on
detected clusters across subjects. (A) Across subjects consistency for

HMAX and BoW model based on voxel clusters and the spatial chi-square
statistic (Analysis 1 in Figure 3). (B) Across subjects consistency for visual
dictionaries from HMAX (VD HMAX), BoW (VD BoW) and their combination
(Analysis 2 in Figure 3). (C) Across subjects consistency for Gabor, SIFT and
their combination (Analysis 3 in Figure 3).

the HMAX model explains brain activity in areas V2 and V3
consistently across subjects. In these areas the HMAX model
explains brain activity in overlapping voxels for 16 out of 20
subjects. In contrast, the BoW model accounts for brain activ-
ity across wider and bilateral regions including V1, V2 and V3.
Most consistency is found at the left V3 and V4 regions, where for
14 out of 20 subjects, the BoW model was relevant in explaining
brain activity. This difference in the number of subjects is not sig-
nificant however the extent of the voxels is much more for BoW
than HMAX.

Both HMAX and BoW models use low level features (Gabor
filters and histogram of orientations) as their first step of com-
putation. This is explicitly modeled and tested in our study
(low-level feature representation in Figure 1). This explains why
low level visual regions such as V1 and V2 emerge in our results.
Interestingly, however, the BoW model also accounts for brain
activity in regions higher up in the visual system such as V4 and
LO (lateral occipital cortex). These regions are hypothesized to
process intermediate features. This suggests that while both mod-
els appropriately represent low-level features, the transformation
of these features to intermediate features is better modeled by
BoW. Figure 1 in Supplementary section shows for each indi-
vidual subject the explained variation of the two representational
levels in both the models.

We observe that for the HMAX model the combination of
hierarchies provide 5% of additional explanation compared to
the maximum explaining hierarchical level. The two levels of
the BoW together additionally account for 8% of the variation
in brain activity. A t-test on the two distributions of additional
explained variations show a significant difference (p < 0.0001).
Thus, in both models, but more strongly in BoW, the aggrega-
tion of low level features into visual dictionaries describes brain
activity, not captured by individual hierarchical levels. Thus, the
aggregation of low level features into visual dictionaries provide
additional value to account for brain activity. The hierarchical lev-
els in BoW contribute slightly more to the explained brain activity
as compared to the hierarchical levels from HMAX.

3.2. COMPARING VISUAL DICTIONARIES : INTERSUBJECT
CONSISTENCY

We tested the two visual dictionary representations against each
other. As before, we use variation partitioning on the visual dic-
tionary dissimilarity matrices from HMAX and BoW to explain
Y . For each voxel we counted the number of subjects for which
brain activity was explained significantly by the visual dictio-
nary from HMAX and BoW models. A spatial version of the
chi-square statistic (Rogerson, 1999) was applied to determine
whether the observed frequency at a particular voxel deviated
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significantly from the expected value (the average count across all
voxels).

Figure 4B shows the across subject consistency of visual dic-
tionaries from HMAX and BoW models (p < 0.05, cluster size
correction). We observe for the HMAX visual dictionary repre-
sentation that consistency across subjects occurs in few voxels in
area V4. In contrast the visual dictionary representation of the
BoW model explains brain activity in areas V3 and V4 for 14 out
of 20 subjects. The combination of visual dictionary representa-
tion explain brain activity for 14 out of 20 subjects in areas V3
and V4.

The visual dictionary representation from the BoW model has
a much higher across subject consistency than the HMAX model.
In addition the results of the combined model are similar to those
of the BoW visual dictionary representations, suggesting that the
HMAX visual word representation adds little to the BoW repre-
sentation in terms of accounting for brain activity. Moreover, the
BoW visual dictionary representation is localized in an area V4
that is hypothesized to compute intermediate features. Altogether,
these results suggest that the BoW model provides a better repre-
sentation for visual dictionaries, compared to the HMAX model.
Single subject results confirming consistency across subjects can
be found in the Supplementary section.

3.3. COMPARING LOW-LEVEL FEATURE REPRESENTATIONS :
INTERSUBJECT CONSISTENCY

We tested Gabor and SIFT representation against each other. As
before, we use variation partitioning on Gabor and SIFT repre-
sentations to explain Y . For each voxel we counted the number
subjects for which brain activity was explained significantly. The
spatial version of the chi-square statistic was applied to determine
whether the observed frequency at a particular voxel deviated sig-
nificantly from the expected value (the average count across all
voxels).

Figure 4C shows the across subject consistency of Gabor
and SIFT representations (p < 0.05, cluster size correction).
We observe that the Gabor representation explains brain activ-
ity in early visual areas for a large number of voxels such as
V1, V2, and V3. The Gabor representation also explains brain
activity consistently across subjects in the higher brain areas
such as LO and precentral gyrus for 10 out of the 20 subjects.
Similarly for the SIFT representation we observe that it explains
brain activity in the lower visual areas such as V1, V2 and also
higher areas of the brain such as LO across 9 out of 20 sub-
jects. Overall Gabor and SIFT representations account for brain
activity in similar areas of the brain. It is expected that Gabor
and SIFT explain brain responses in early visual areas since
both rely on edge filters. However, it is interesting to observe
that they also explain brain activity in the higher areas of the
brain.

We also observe areas where Gabor and SIFT together explain
neural response consistently across subjects. The combination of
Gabor and SIFT representations explain brain activity in 14 out
of 20 subjects in the early visual area V1. The combination also
explains brain activity in higher areas of the brain such as V4
and LO. This suggests that Gabor and SIFT representation have
complementary low-level gradient information. Taken together,

FIGURE 5 | Visualization of brain activity explained by HMAX and BoW

model across all subjects in the selected ROIs. The explained variation of
the significant voxels (p < 0.05 and cluster size correction) are averaged
across subjects over all voxels in a ROI.

Gabor and SIFT provide a better computational basis for V1
representation.

3.4. CROSS SUBJECT ROI ANALYSIS
A region of interest analysis was conducted to explicitly test the
sensitivity of different brain regions to the models and their
individual components. Figure 5 shows how HMAX and BoW
explain brain activity in 6 brain regions (out of the 25 brain
areas analyzed). These ROIs are obtained based on the Jülich
MNI 2 mm atlas. We show the explained variation for each model
averaged across subjects and the voxels within each ROI (Note
that this doesn’t show single subject variation across ROIs). We
observe that there is significant explained variation in areas TO
(temporal occipital), LO, explained variationV123 and V4. The
representations do not account for brain activity in areas such
as LGN (lateral geniculate nucleus) and AT (anterior temporal).
In all the regions the BoW model has a higher average explained
variation than the HMAX model The difference in explained vari-
ation is significant (p < 0.0001). Table 1 shows the number of
voxels in each ROI obtained across subjects that exhibited signif-
icant brain activity and the maximum explained variation across
subjects. We observe that the HMAX and BoW models explain
more brain activity in early visual areas compared to the other
areas.

Figure 6 shows how visual dictionaries from HMAX and BoW
explain brain activity in the 6 brain regions (out of the 25 brain
areas analyzed). It can be seen that there is significant explained
variation in areas TO (temporal occipital), LO, V123 and V4. The
average explained variation is slightly higher in the TO regions
compared to V123. In all the regions the visual dictionary from
BoW model has a higher average explained variation compared to
the visual dictionary from the HMAX model (p < 0.0001). Also
the combination of visual dictionaries from HMAX and BoW
do not significantly increase the explained variation and is simi-
lar to the explained variation from BoW. Table 2 shows that the
visual dictionary from both the models explains a large num-
ber of voxels in LO and V4, however the visual dictionary from
BoW has highest explained variations in LO and TO compared to
HMAX. Also, we do not notice any brain activity in brain regions
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Table 1 | Number of significant voxels and maximum explained

variation for HMAX and Bow models in each ROI.

No of significant voxels Max explained variation

HMAX BoW HMAX BoW

AT 0 0 0 0

LGN 0 0 0 0

LO 43 387 2 4

TO 0 31 0 4

V123 701 3671 3 5

V4 53 1141 2 5

The significant voxels (p < 0.05 and cluster size correction) are averaged across

subjects over all voxels in a ROI.

FIGURE 6 | Visualization of brain activity explained uniquely and the

combination of visual dictionaries from HMAX, BoW across all

subjects in the selected ROIs. The explained variation of the significant
voxels (p < 0.05 and cluster size correction) are averaged across subjects
over all voxels in a ROI.

such as parahippocampal gyrus, retrosplenial corted and medial
temporal lobe for either HMAX and BoW models.

Figure 7 and Table 3 show how Gabor and SIFT explain brain
activity in the 6 brain regions (out of the 25 brain areas analyzed).
We observe that there is significant explained variation in areas
TO (temporal occipital), LO, V123 and V4. For Gabor, the average
explained variation is slightly higher in the V123 region compared
to the other areas. Here we also observe that the Gabor and SIFT
representations are not significantly different from each other and
also the combination explains brain acitivity to the same extent.

Overall these results suggest that individually, the BoW visual
dictionary is a better computational representation of neural
responses (as measured by percent explained variation and con-
sistency across subjects) than the visual dictionary from HMAX,
which provides little additional information over the BoW visual
dictionary.

4. DISCUSSION
The success of models such as HMAX and BoW can be attributed
to their use of features of intermediate complexity. The BoW
model in particular has proven capable of learning to distin-
guish visual objects from only five hundred labeled examples (for
each category of twenty different categories) in a fully automatic
fashion and with good recognition rates (Salimi-Khorshidi et al.,

Table 2 | Number of significant voxels and maximum explained

variation for visual dictionaries from each ROI.

No of significant voxels Max explained variation

VD VD Combined VD VD Combined

HMAX BoW HMAX BoW

AT 0 0 0 0 0 0

LGN 0 0 0 0 0 0

LO 1427 1255 1402 3 9 10

TO 178 143 164 2 11 8

V123 4818 5705 5716 3 6 6

V4 1682 1878 1910 2 6 6

The significant voxels (p < 0.05 and cluster size correction) are averaged across

subjects over all voxels in a ROI.

FIGURE 7 | Visualization of brain activity explained uniquely and the

combination of Gabor and SIFT across all subjects in the selected

ROIs. The explained variation of the significant voxels (p < 0.05 and cluster
size correction) are averaged across subjects over all voxels in a ROI.

Table 3 | Number of significant voxels and maximum explained

variation for each ROI.

No of significant voxels Max explained variation

Gabor SIFT Combined Gabor SIFT Combined

AT 0 0 0 0 0 0

LGN 0 0 0 0 0 0

LO 1394 1283 1427 2 2 2

TO 183 152 186 2 2 2

V123 5531 4418 5718 3 2 3

V4 1850 1535 1912 2 2 3

The significant voxels (p < 0.05 and cluster size correction) are averaged across

subjects over all voxels in a ROI.

2014). Many variations of this model exists (Jégou et al., 2012),
and the recognition performance on a wide range of visual scenes
and objects, improves steadily year by year (Salimi-Khorshidi
et al., 2014). The HMAX model is a biologically plausible model
for object recognition in the visual cortex which follows the hier-
archical feedforward nature of the human brain. Both the models
are candidate computational models of intermediate visual pro-
cessing in the brain.
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Our results show that in early visual brain areas such as V1,
V2, and V3 there are regions in which brain activity is explained
consistently across subjects by both the HMAX and BoW models.
These models rely on gradient information. In the HMAX model,
Gabor filters similar to the receptive fields in the V1 region of
the brain are at the basis of visual representation. Similarly in the
BoW model, the Scale Invariant Feature Transform (SIFT) fea-
tures are the low level representation based on multi-scale and
multi-orientation gradient features (Lowe, 2004). Although SIFT
features originate from computer vision, their inspiration goes
back to Hubel and Wiesel’s (1962) simple and complex recep-
tive fields, and Fukushima’s (1980) Neocognitron model. SIFT
features thus have an embedding in the visual system, much like
Gabor filters have. In light of this, the sensitivity in brain areas
V1, V2, and V3 to representations of the HMAX and BoW mod-
els is natural and in part due to low-level features. Interestingly we
also observe that SIFT and Gabor representations explain brain
activity in higher regions of the brain. This indicates that neurons
in higher level visual areas process low level features pooled over
local patches of the image for feedforward or feedback processing
within visual cortex.

Brain areas higher up in the processing hierarchy appear to be
particularly sensitive to visual dictionaries. Visual dictionaries are
medium size image patches that are informative and distinctive at
the same time, allowing for sparse and intermediate representa-
tions of objects and scenes. In computer vision visual dictionaries
have proven to be very effective for object and scene classification
(Jégou et al., 2012). The brain may compute visual dictionar-
ies as higher-level visual building blocks composed of slightly
larger receptive fields, and use visual dictionaries as intermedi-
ate features to arrive at a higher-level representation of visual
input. We observe that both HMAX and BoW visual dictionar-
ies explain some brain activity in higher level visual regions,
with the BoW visual dictionary representation outperforming
the HMAX model both in terms of explained variance and
consistency.

HMAX and BoW both use low level features that are pooled
differently in the various stages of processing. First HMAX pools
Gabor features by a local max operator whereas BoW creates
a histogram of orientations (SIFT). Then, BoW uses a learning
technique (k-means clustering) on all the SIFT features from the
image to form the visual dictionary. On the other hand HMAX
uses random samples of Gabor features pooled over patches as
its visual dictionary. This difference in aggregating low level fea-
tures might explain why BoW provides a better computational
representation of images.

BoW visual dictionaries may facilitate scene gist perception,
which occurs rapidly and early in visual processing. While there
is evidence that simple low-level regularities such as spatial fre-
quency (Schyns and Oliva, 1994), color (Oliva, 2000) and local
edge aligment (Loschky and Larson, 2008) underly scene gist rep-
resentation, it is hitherto unknown whether and how mid-level
features facilitate scene gist perception. BoW summarizes SIFT
features computed over the entire image. It has been observed
that such patterns of orientations and scales are believed to be
used by V4 and IT (Oliva and Torralba, 2006). This is in accor-
dance with our observation that the localization of BoW visual

dictionary representations occur in V4 and areas anterior to V4
in the brain.

Our findings are in line with a recent study by Leeds et al.
(2013). They compared multiple vision models against MRI brain
activity in response to image stimuli. Leeds et al. conclude that
the BoW model explains most brain activity in intermediate areas
of the brain. For this model, they report that the correlation of
the BoW model varies from 0.1 to 0.15 across the 5 subjects.
In our study, we obtain similar results for the BoW model, and
with an average explained variation across subjects of around 5%
(with explained variations varying across subjects). Similarities
and consistencies between our results and results in Leeds et al.
(2013) further suggest that BoW computation might provide a
suitable basis for intermediate features in the brain. Yamins et al.
(2014) observe explained variance of up 25% for both HMAX
and BoW models, and up to 50% for their HMO model (4-
layer Convolutional neural network model) in brain areas IT and
V4. The discrepancy between these results and our findings in
terms of the magnitude of explained brain activity can be in part
attributed to the use of high signal-to-noise ratio measurements
in Yamins et al. (2014), such as electrophysiological data from
monkeys. The neural sensitivity to convolutional neural network
model is nevertheless promising. We will include deep neural net-
works in future work to understand how it performs on video
stimuli.

Our study aims to understand if intermediate features used in
the brain are connected to how computational models of vision
use such intermediate features. Our findings suggest that visual
dictionaries used in HMAX and BoW account for brain activ-
ity consistently across subjects. The result does not imply that
visual dictionaries as computed by HMAX or BoW are actually
used by the brain to represent scenes but it does suggest visual
dictionaries might capture aspects of intermediate features. The
results from this work are similar to previous work and provides
new interesting insights into the nature of intermediate features
in the brain. We have also provided a novel framework which
allows us to dissociate the different levels of a hierarchical model,
and individually understand their contribution to explain brain
activity.
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To improve robustness in object recognition, many artificial visual systems imitate the
way in which the human visual cortex encodes object information as a hierarchical set
of features. These systems are usually evaluated in terms of their ability to accurately
categorize well-defined, unambiguous objects and scenes. In the real world, however, not
all objects and scenes are presented clearly, with well-defined labels and interpretations.
Visual illusions demonstrate a disparity between perception and objective reality, allowing
psychophysicists to methodically manipulate stimuli and study our interpretation of the
environment. One prominent effect, the Müller-Lyer illusion, is demonstrated when the
perceived length of a line is contracted (or expanded) by the addition of arrowheads
(or arrow-tails) to its ends. HMAX, a benchmark object recognition system, consistently
produces a bias when classifying Müller-Lyer images. HMAX is a hierarchical, artificial
neural network that imitates the “simple” and “complex” cell layers found in the visual
ventral stream. In this study, we perform two experiments to explore the Müller-Lyer
illusion in HMAX, asking: (1) How do simple vs. complex cell operations within HMAX
affect illusory bias and precision? (2) How does varying the position of the figures in
the input image affect classification using HMAX? In our first experiment, we assessed
classification after traversing each layer of HMAX and found that in general, kernel
operations performed by simple cells increase bias and uncertainty while max-pooling
operations executed by complex cells decrease bias and uncertainty. In our second
experiment, we increased variation in the positions of figures in the input images that
reduced bias and uncertainty in HMAX. Our findings suggest that the Müller-Lyer illusion
is exacerbated by the vulnerability of simple cell operations to positional fluctuations, but
ameliorated by the robustness of complex cell responses to such variance.

Keywords: Müller-Lyer, illusion, HMAX, hierarchical, computational, model, visual, cortex

1. INTRODUCTION
Much of what is known today about our visual perception has
been discovered through visual illusions. Visual illusions allow us
to study the difference between objective reality and our inter-
pretation of the visual information that we receive. Recently it
has been shown that computational vision models that imitate
neural mechanisms found in the ventral visual stream can exhibit
human-like illusory biases (Zeman et al., 2013) . To the extent
that the models are accurate reflections of human physiology,
these results can be used to further elucidate some of the neural
mechanisms behind particular illusions.

In this paper, we focus on the Müller-Lyer Illusion (MLI),
which is a geometrical size illusion where a line with arrow-
heads appears contracted and a line with arrow-tails appears
elongated (Müller-Lyer, 1889) (see Figure 1). The strength of the
illusion can be affected by the fin angle (Dewar, 1967), shaft
length (Fellows, 1967; Brigell and Uhlarik, 1979), inspection time
(Coren and Porac, 1984; Predebon, 1997), observer age (Restle

and Decker, 1977), the distance between the fins and the shaft
(Fellows, 1967) and many other factors. The illusion classically
appears in a four-wing form but can also manifest with other
shapes, such as circles or squares, replacing the fins at the shaft
ends. Even with the shafts completely removed, the MLI is still
evident.

Here, we employ an underused method to explore the Müller-
Lyer illusion and its potential causes using an Artificial Neural
Network (ANN). To date, few studies have used ANNs to explore
visual illusions (Ogawa et al., 1999; Bertulis and Bulatov, 2001;
Corney and Lotto, 2007). In some cases, these artificial neural
networks were not built to emulate their biological counterparts,
but rather to demonstrate statistical correlations in the input. One
such example is the model used by Corney and Lotto (2007), con-
sisting of only one hidden layer with four homogenous neurons,
which few would consider to be even a crude representation of
visual cortex. The work presented by Ogawa et al. (1999) used
a network with three hidden layers of “orientational neurons,”
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FIGURE 1 | The ML illusion in classical four-wing form. Horizontal lines
are the same length in all cases. The ML effect is stronger for more acute
angles (Left) and weaker for more obtuse angles (Right).

“rotational neurons” and “line unifying neurons.” This network
could roughly correspond to one layer of simple cells that provide
orientation filters and one layer of complex cells that combine
their output. However, this study presented no quantitative data
and lacked a detailed description of the model, such as the size
or connectivity of their network. Bertulis and Bulatov (2001)
created a computer model to replicate the spatial filtering prop-
erties of simple cells and the combination of these units’ outputs
by complex cells in visual cortical area V1. Although they com-
pared human and model data for the Müller-Lyer Illusion, their
model centered only on the filtering properties of early visual neu-
rons. These models do not adequately represent the multi-layered
system that would best describe the relevant neural structures.
Neuroimaging studies have shown areas V1, V2, V4, and IT
are recruited when viewing the MLI (Weidner and Fink, 2007;
Weidner et al., 2010) and hence the inclusion of operations from
such visual ventral stream subdivisions is desirable. Therefore,
studying the MLI in a computational model known to mimic
these areas would provide a more biologically representative
result.

In a previous report, we studied the MLI in a benchmark
model of the ventral visual stream that imitates these cortical areas
(Zeman et al., 2013). Following from our hypothesis that the MLI
could occur in a model that imitates the structure and function of
visual ventral areas, we demonstrated its manifestation in a bio-
logically plausible artificial neural network. Although the models
listed above are capable of reproducing the MLI, we believe our
work provides a significant advance, being one of the first stud-
ies to model a visual illusion in a simulated replica of the ventral
visual stream. In addition, our study contrasts with those above
by employing techniques to train the model on multiple images
before running a classification task and comparing the task of
interest to a control. This allows us to separate the inner workings
of the model from the input in the form of training images.

The model we recruit, HMAX (Serre et al., 2005), is a feed-
forward, multi-layer, artificial neural network with layers corre-
sponding to simple and complex cells found in visual cortex. Like
visual cortex, the layers of HMAX alternate between simple and
complex cells, creating a hierarchy of representations that cor-
respond to increasing levels of abstraction as you traverse each
layer. The simple and complex cells in the model are designed to
match their physiological counterparts, as established by single
cell recordings in visual cortex (Hubel and Wiesel, 1959). Here,
we briefly describe single and complex cell functions and pro-
vide further detail on these later in Section 2.1. In short, simple
cells extract low-level features, such as edges, an example of which

would be Gabor filters that are often used to model V1 operations.
The outputs of simple cells are pooled together by complex cells
that extract combined or high-level features, such as lines of one
particular orientation that cover a variety of positions within a
visual field. Within HMAX, the max pooling function is used to
imitate complex cell operations, giving the model its trademark
name. In general, low-level features extracted by simple cells are
shared across a variety of input images. High-level features are less
common across image categories. The high-level features output
by complex cells are more stable, invariant and robust to slight
changes in the input.

HMAX has been extensively studied in its ability to match and
predict physiological and psychological data (Serre and Poggio,
2010). Like many object recognition models, HMAX has been
frequently tested using well-defined, unambiguous objects and
scenes but has not been thoroughly assessed in its ability to
handle visual illusions. Our previous demonstration of the MLI
within HMAX showed not only a general illusory bias, but also
a greater effect with more acute fin angles, corresponding to
the pattern of errors shown by humans. Our replication of the
MLI in this model allowed us to rule out some of the neces-
sary causes for the illusion. There are a number of theories that
attempt to explain the MLI (Gregory, 1963; Segall et al., 1966;
Ginsburg, 1978; Coren and Porac, 1984; Müller-Lyer, 1896a,b;
Bertulis and Bulatov, 2001; Howe and Purves, 2005; Brown and
Friston, 2012) and here we discuss two. One common hypothesis
is the “carpentered-world” theory—that images in our environ-
ment influence our perception of the MLI (Gregory, 1963; Segall
et al., 1966). To interpret and maneuver within our visual envi-
ronment, we apply a size-constancy scaling rule that allows us to
infer the actual size of objects from the image that falls on our
retina. While arrowhead images usually correspond to the near,
exterior corners of cuboids, arrow-tail configurations are associ-
ated with more distant features, such as the right-angled corners
of a room. If the expected distance of the features is used to
scale our perception of size, when a line with arrowheads is com-
pared to a line with arrow-tails that is physically equal in length,
the more proximal arrowhead line is perceived as being smaller.
Another common theory is based upon visual filtering mecha-
nisms (Ginsburg, 1978). By applying a low spatial frequency filter
to a Müller-Lyer image, the overall object (shaft plus fins) will
appear elongated or contracted. Therefore, it could simply be
a reliance on low spatial frequency information that causes the
MLI. In our previous study, we were able to replicate the MLI in
HMAX, allowing us to establish that exposure to 3-dimensional
“carpentered world” scenes (Gregory, 1963) is not necessary to
explain the MLI, as the model had no representation of distance
and hence involved no size constancy scaling for depth. We also
demonstrated that the illusion was not a result of reliance upon
low spatial frequency filters, as information from a broad range
of spatial frequency filters was used for classification.

In the current study, we set out to investigate the condi-
tions under which the Müller-Lyer illusion manifests in HMAX
and what factors influence the magnitude and precision of the
effect. In particular, we address the following questions: (1) How
do simple vs. complex cell operations within HMAX affect illu-
sory bias and precision? (2) How would increasing the positional
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variance of the input affect classification in HMAX? Our princi-
pal motivation is to discover how HMAX processes Müller-Lyer
images and transforms them layer to layer. Following from this,
we aim to find ways to reduce errors associated with classify-
ing Müller-Lyer images, leading to improvements in biologically
inspired computational models. We are particularly interested
in how hierarchical feature representation could potentially
lead to improvements in the fidelity of visual perception
both in terms of accuracy (bias) and precision (discrimination
thresholds).

2. MATERIALS AND METHODS
2.1. COMPUTATIONAL MODEL : HMAX
To explore where and how the illusion manifests, we first exam-
ined the architecture of HMAX: a multi-layer, feed-forward, arti-
ficial neural network (Serre et al., 2005; Mutch and Lowe, 2008;
Mutch et al., 2010). Input is fed into an image layer that forms
a multi-scale representation of the original image. Processing
then flows sequentially through four more stages, where alter-
nate layers perform either template matching or max pooling
(defined below). HMAX operations approximate the process-
ing of neurons in cat striate cortex, as established by single
cell recordings (Hubel and Wiesel, 1959). Simple cells are mod-
eled using template matching, responding with higher intensity
to specific stimuli, while complex cell properties are simulated
using max pooling, where the maximum response is taken from
a pool of cells that share common features, such as size or
shape.

Image information travels unidirectionally through four layers
of alternating simple (“S”) and complex (“C”) layers of HMAX
that are labeled S1, C1, S2, and C2. When the final C2 level is
reached, output is compressed into a 1D vector representation
that is sent to a linear classifier for final categorization. While
previous versions of HMAX employed a support vector machine
(SVM), in this paper we used the GPU-based version of HMAX
(Mutch et al., 2010) that uses a linear classifier to perform final
classification. The task for the classifier was to distinguish Long
(i.e., top shaft longer) from Short (top shaft shorter) stimulus
categories under a range of conditions, where the top or bottom
line length varied by a known positive or negative extent. Figure 2
summarizes the layers and operations in the model. Precise details
are included in the original papers (Serre et al., 2005; Mutch and
Lowe, 2008; Mutch et al., 2010).

2.2. STIMULI: TRAINING AND TEST SETS(CONTROL AND
MÜLLER-LYER)

To carry out our procedure, we generated three separate image
sets: a training (cross fin) set, a control test set (CTL) and an
illusion test set (ML). All images were 256 × 256 pixels in size,
with black 2 × 2 pixel lines drawn onto a white background (see
Figure 3). Each image contained two horizontal lines (“shafts”)
with various fins appended. Each different image set was defined
by the type of fins appended to the ends of the shafts. The fin type
determines whether an illusory bias will be induced or not. Unlike
the ML set, the cross fin and control test sets do not induce any
illusions of line length in humans (Glazebrook et al., 2005; Zeman
et al., 2013).

Within each two-line stimulus, the length of the top line was
either “long” (L), or “short” (S), compared to the bottom line.
The horizontal shaft length of the longest line was independently
randomized between 120 and 240 pixels. The shorter line was
varied by a negative extent randomly between 2 and 62 pixels
for the training set, or by a known negative extent between 10
and 60 pixels for the test sets. The positions of each unified fig-
ure (shaft plus fins) were independently randomly jittered in the
vertical direction between 0 and 30 pixels and in the horizontal
direction between −30 and 30 pixels from center. The vertical
position of the top line was randomized between 58 and 88 pixels
from the top of the image while the bottom line’s vertical posi-
tion was randomized between 168 and 198 pixels. Top and bottom
fin lengths randomized independently between 15 and 40 pixels.
Fin lengths, line lengths and line positions remained consistent
across all image sets. The parameters that varied between sets
were fin angle, the direction of fins and the set size. If an image
was generated that had any overlapping lines, for example, arrow-
heads touching or intersecting, these images were excluded from
the sets.

Training images contained two horizontal lines with cross fins
appended to the ends of the shafts (see Row 1, Figure 3). Fin
angles were randomized independently for the top and bottom
lines between 10 and 90◦. Five hundred images per category (long
and short) were used for training.

Two sets of test images were used, one as a control test set
(CTL) and one as an illusion test set (ML). The CTL set used
for parameterization contained left facing arrows for the top line
and right facing arrows for the bottom line (see Row 2, Figure 3).
CTL fin angles were randomized between 10 and 80◦ (the angles
between top and bottom lines was the same). For parameteriza-
tion, we used 200 images per category (totaling 400 images for
both long and short) to test for overall accuracy levels with a
randomized line length difference between 2 and 62 pixels. To
establish performance levels for the control set, we tested 200
images per pixel condition for each category i.e., 200 images at 10,
20, 30, 40, 50, and 60 pixel increment differences for both short
and long.

The ML set was used to infer performance levels for images
known to induce an illusory bias in humans. In this ML set, all
top lines contained arrow-tails and all bottom lines contained
arrowheads (see Row 3, Figure 3). Fin angles for ML images were
fixed at 20 and at 40◦ in two separate conditions. At the C2 layer,
we tested 200 images for each pixel condition within each cate-
gory (totaling 1200 images for the short category at 10, 20, 30,
40, 50, and 60 pixel length increments and 1200 for the long
category). For all other layers (Input, S1, C1, and S2), we tested
100 images per pixel condition within each category. In each case
we took the average of 10 runs, randomizing the order of train-
ing images. Classification results for the input, S1 and C1 levels
are based on deterministic operations, without dependence on
the weights developed during training. In these cases, random-
izing the order of training images has no effect on classification
results. To produce variation for these conditions, we generated
additional test images that were randomized within the parame-
ters specified above (with identical position ranges, fin angles, fin
lengths, etc).
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FIGURE 2 | HMAX architecture. The input to the system is a 256 × 256 pixel image. The output is a binary classification. HMAX consists of alternating
template matching (S layers) and feature pooling (C layers). The neural substrate approximations are taken from Serre et al. (2005).

2.3. PROCEDURE: LEARNING, PARAMETERIZATION, ILLUSION
CLASSIFICATION

Our method, established in Zeman et al. (2013), was carried out
in three stages:

1. Training. Given a set of training images, a fixed-size net-
work adjusted its internal weights to find the most informative
features using unsupervised learning.

2. Test Phase 1: Parameterization. Using the CTL set, we ensured
that the classifier was able to distinguish long from short
images at an acceptable level of classification performance
(above 85% correct), before testing with illusory stimuli. If
performance fell below this level, we increased the size of the
network and retrained (step 1).

3. Test Phase 2: Illusion classification. Using the ML set, we estab-
lished the discrimination thresholds and the magnitude of the
illusion that manifested in the model.
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FIGURE 3 | Representative sample of images categorized as LONG or

SHORT. The Cross fin set (Top row) was used for training. The Control
CTL set (Middle row) and Illusory ML set were both used for testing.

Images are grouped into those that were jittered both horizontally and
vertically (Left group) and those that were jittered only vertically (Right
group).

3. RESULTS
3.1. EXPERIMENT I: CLASSIFICATION OF ML IMAGES AFTER EACH

LEVEL OF HMAX
The aim of this experiment was to assess how simple and complex
cell operations contribute toward bringing about the MLI. To
this end, we examined the inner workings of HMAX, looking at
classification performance for illusory images at each level of the
architecture. We used a linear classifier to perform classification
after each subsequent layer of HMAX, (which included process-
ing of all previous layers required to reach that stage). Therefore,
we ran classification on the Input only, on S1 (after information
arrived from Input), on C1 (after information traversed through
Input and S1 layers) and so on.

We first tested classification performance on our control
images, which exceeded 85% when the size of the S2 layer was
1000 nodes. Using this network configuration, we tested classifi-
cation on 20 and 40◦ ML images at the C2 level. We then tested
classification at each layer of HMAX using the same illusory set.

When plotted in terms of the percentage of stimuli classified
as “long” as a function of the difference in line length (top–
bottom) for each separate data set (i.e., control images, illusory
images with 20◦ fins and with 40◦ fins), we observed a sigmoidal
psychometric function, characteristic of human performance in

equivalent psychophysical tasks. The data were characterized by
a cumulative Gaussian, with the parameters of the best-fitting
function determined using a least-squares procedure. Figure 4
illustrates an example data set. When Gaussian curves did not
fit significantly better than a horizontal line at 50% (chance
responding) in an extra sum of squares F-test, the results were dis-
carded (2 runs out of a total of 52). This allowed us to determine
the Point of Subjective Equality (PSE) the line length difference
for which stimuli were equally likely to be classified as long or
short (50%), represented by the mean of the cumulative Gaussian.
Here, PSEs are taken as a measure of accuracy, representing the
magnitude of the Müller-Lyer Illusion manifested in the model.
We also established the Just Noticeable Difference (JND) for each
data set. The JND represents perceptual precision—the level of
certainty of judgments for a stimulus type, and is indicated by the
semi-interquartile difference of the Gaussian curve (the standard
deviation multiplied by 0.6745). A higher JND represents greater
uncertainty, and hence lower precision.

As can be seen in our results (see Figure 5A), the model pro-
duces a pattern of PSEs for illusory images consistent with human
bias. We see a larger bias for more acute angles (20◦) vs. less acute
angles (40◦), a pattern that is also consistent with human per-
ception. This constitutes a replication of our previous findings
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FIGURE 4 | Example data sets from (A) CTL and (B) ML (40◦) conditions. The best fitting curve (blue) allows derivation of the point of subjective equality
(PSE) where classification is at 50%, and the just noticeable difference (JND), corresponding to the semi-interquartile difference.

FIGURE 5 | Experiment I results as a function of the HMAX layer for

images with 20◦ and 40◦ fins. Error bars represent ± 1 s.e.m. across
multiple runs. (A) Accuracy (PSEs). (B) Precision (JNDs).

(Zeman et al., 2013) using a linear classifier, as opposed to a sup-
port vector machine (SVM), confirming that these findings are
robust to the specific method of classification. These two trends
are observable not only at the final C2 layer but at all levels of the
architecture.

We observe that the illusion is present at the input level, sug-
gesting that underlying statistical information may be present in
our training images, despite careful design to remove bounding
box cues and low spatial frequency information. The influence
of image-source statistics on the Müller-Lyer illusion has already
been studied using real-world environmental images and an input
layer bias is to be expected (Howe and Purves, 2005). Because the
aim of our study is to explore the Müller-Lyer within a biolog-
ically plausible model of the visual ventral stream, we are more
interested in how the network would process the input. Our novel
contribution, therefore, is to focus on how such information is
transformed in terms of changes in accuracy and precision layer
to layer as we traverse the cortical hierarchy within the HMAX
network.

Observing the PSE for each HMAX layer after a linear classifier
is applied, this experiment demonstrates three key findings:

1. Running a linear classifier on the raw images revealed a bias at
the input level that would represent statistical influences such
as those proposed by Howe and Purves (2005). However, each
layer of the HMAX architecture counteracts this bias produc-
ing a reduction in PSE magnitude after every S and C layer is
traversed, when compared to the input layer.

2. In the majority of cases (87.5% of the time), illusory bias and
uncertainty is reduced after complex cell operations have been
applied. A reduction in uncertainty and bias can be seen when
comparing the PSE and JND for S1 vs. C1 layers, for both 20
and 40◦ fin angles in the illusion set. Going from S2 to C2, PSE
is reduced for 40◦ angles but not for 20◦ angles in the ML set,
whereas JND is reduced for all cases.

3. When simple cell operations follow complex, illusory bias and
uncertainty is increased. At the S2 layer, we see an increase in
PSE and in JND for both 20◦ and 40◦ ML images.

The observations concerning accuracy data are echoed for pre-
cision. In Figure 5B, we see a higher JND (lower precision) for
images with more acute fin angles at all levels of HMAX archi-
tecture. Looking at each layer of the architecture, we see lower
JNDs (higher precision) at each level of HMAX compared to the
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input alone. We also observe higher precision (smaller JNDs) fol-
lowing processing by complex cells, but lower precision when the
output from these layers is passed through a simple cell layer. In
the case of results for precision, these observations held without
exception.

The contrast between results following processing by sim-
ple cell and complex cell layers encourages examination of the
principal differences between the operations performed by these
cells. The major distinction between S-layer and C-layer oper-
ations concerns the response to variance in the image. Unlike
simple cells, whose outputs are susceptible to image variations
such as fluctuations in the locations of features, complex cells’
filtering properties allow them to respond similarly to stimuli
despite considerable positional variance. When initially design-
ing the training stimuli for HMAX, we wanted the system to
build higher-level representations of short and long indepen-
dent of line position, exact line length and of features appended
to the shaft ends. This would require an engagement of com-
plex cell functionality and less reliance on simple cell properties.
To this end, we varied these parameters randomly in a con-
trolled fashion to reduce reliance on trivial image details. If
one of our training parameters were to be restricted, the archi-
tecture would be less able to build such robust concepts of
short and long. Given that complex cells are designed to pool
information across simple cells with similar response properties
and fire regardless of small changes in the afferent informa-
tion, decreasing the variance in one of our training param-
eters would underutilize C cell properties and the short and
long concepts within HMAX would become less flexible. This
is likely to reduce the overall categorization performance of
the computational model. More specifically, we hypothesize that
restricting positional jitter to only one dimension would decrease
accuracy and precision with which HMAX categorizes Müller-
Lyer images. If this hypothesis holds true, we would demon-
strate that greater positional variance reduces illusory bias and
uncertainty. To seek further support for this proposition, we
remove horizontal positional jitter from all stimuli in our second
experiment.

3.2. EXPERIMENT II: HMAX CLASSIFICATION OF ML IMAGES WITH
REDUCED VARIANCE

In our previous experiment, we observed a reduction in the
level of bias after complex cell operations and hypothesized
that introducing greater variance in the input would further
reduce bias levels. To test this, we measured classification per-
formance for HMAX layer C2 under two conditions: (1) Using
our default horizontal and vertical jitter (HV) and (2) Under
conditions of decreased positional jitter (V). We reduced the
positional jitter in our training and test images from two-
dimensional jitter in both the horizontal and vertical dimen-
sions to one-dimensional, vertical jitter. While the top and
bottom lines and their attached fins in our training and test
sets remained independently jittered vertically (between 0 and
60 pixels), we removed all horizontal jitter, instead center-
ing each stimulus. The vertical position of the top line was
randomized between 48 and 108 pixels from the top of the
image while the bottom line’s vertical position was randomized

between 148 and 208 pixels. We thus maintained a maximal 60
pixel jitter difference per line while limiting jitter to only one
dimension.

In an initial parameterization stage, we first tested perfor-
mance using the CTL set, and found an overall classification score
of 91.5% with an S2 size of 1000 nodes. The results of control
and illusion image classification for our default jitter condition
and for reduced positional jitter is shown in Figure 6. In terms
of accuracy measurements (Figure 6A), it can be seen that for
ML images PSEs are more extreme for V jitter only, compared
to HV jitter. These results provide support for our hypothesis,
demonstrating an increase in the magnitude of the Müller-Lyer
effect for both 20 and 40◦ illusory conditions when reducing posi-
tional jitter, and hence image variance. As in before, the pattern of
results for accuracy is echoed in terms of precision measurements
(Figure 6B). Following the trend from our previous experiment,
we see lower JND values for more obtuse angles compared to
more acute angles. Comparing JND results for HV jitter with
those for V jitter, we see that the classifier has higher precision
when distinguishing short from long lines in the HV condition.
In summary, decreasing the amount of positional variance in our
stimuli increases bias and reduces the level of certainty in making
decisions.

FIGURE 6 | Experiment II results as a function of jitter type for control

images, and Müller-Lyer images with 20◦ and 40◦ fins. (A) Accuracy
(PSEs). (B) Precision (JNDs).
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4. DISCUSSION
Our aim for this study was to investigate the conditions under
which the Müller-Lyer illusion manifests in HMAX and the
factors that could influence the magnitude of the effect. Our
primary motivation was to explore how hierarchical feature rep-
resentation within HMAX affects classification performance. We
ran two experiments performing binary image classification using
HMAX. Images contained two horizontal lines that were jittered
independently. Various configurations of fins were appended to
the line shafts to create separate training and test images. Our first
experiment compared the effects of operations performed by sim-
ple vs. complex cells by applying a linear classifier after each layer
of HMAX when distinguishing long from short MLI images. Our
second experiment examined HMAX classification of MLI images
with decreased positional jitter.

The main finding from our first experiment is that the addi-
tion of any simple or complex cell layers reduces bias, compared
to classification directly made on the input images. Illusory bias
changes from layer to layer within a simple-complex cell archi-
tecture, with increases in MLI magnitude as information passes
through simple layers. In most cases, the effect decreases as infor-
mation passes through complex layers. The pattern of results for
accuracy is replicated when measurements of precision are con-
sidered. All levels of HMAX show improved precision compared
to classified input images, with further JND reductions caused
by complex cell layers, and increases caused by simple cell lay-
ers. Proposing that the C layers’ property of invariant responding
may underlie their ability to increase accuracy and precision, we
hypothesized that decreasing variance in the input images and
re-training the network would increase the MLI. We chose to
decrease the positional variance by removing horizontal jitter and
including only vertical jitter for the stimuli in our second exper-
iment. Consistent with our hypothesis, experiment 2 showed an
increase in illusion magnitude for both 20 and 40◦ angles.

In this paper and in our previous study, we focused solely
on the ML illusion in its classical four-wing form. It would
also be possible to study other variants of the Müller-Lyer and
other illusory figures to test more generally for the susceptibil-
ity of hierarchical artificial neural networks. Some variants of the
Müller-Lyer to be tested could include changing the fins to cir-
cles (the “dumbbell” version) or ovals (the “spectacle” version)
(Parker and Newbigging, 1963). Other monocular line length or
distance judgment illusions occurring within the visual ventral
stream may also manifest in similar hierarchical architectures,
for example, the Oppel-Kundt illusion (Oppel, 1854/1855; Kundt,
1863).

Some illusions are moderated by the angle at which the stim-
ulus is presented (de Lafuente and Ruiz, 2004). This raises the
question whether illusory bias and uncertainty changes in classi-
fying Müller-Lyer images that are presented diagonally, rotated by
a number degrees to the left or to the right. Simple cells in HMAX
consist of linear oriented filters, and are present in multiple ori-
entations. The max pooling operations combine input from these
and provide an output that is invariant to rotation. As a result, we
would predict no difference in results when processing versions of
the Müller-Lyer illusion in HMAX rotated at any arbitrary angle.
This prediction is also consistent with human studies. While a

number of illusions demonstrate an increase in magnitude when
presented in a tilted condition, there is no difference in magnitude
for the MLI (Prinzmetal and Beck, 2001).

In our last study, we recruited a previous version of HMAX
known as FHLib, a Multi-scale Feature Hierarchy Library (Mutch
and Lowe, 2008). In the current study, a more recent, GPU-based
version of HMAX, known as CNS: Cortical Network Simulator
(Mutch et al., 2010) was used. The main difference between these
architectures was a linear classifier replacing the SVM in the final
layer of the more recent code. The network setup between archi-
tectures was identical: one image layer followed by four layers of
alternating S and C layers. Both had the same levels of inhibi-
tion (50% of cells in S1 and C1). The image layer contained 10
scales, each level 21/4 smaller than the previous. Compared to
our previous study, we were able to replicate similar levels of bias
despite a change in the classifier, demonstrating that our result
is robust and dependent upon properties of the HMAX hierar-
chical architecture, rather than the small differences between the
implementation of these two related models.

Reflecting upon the implication of our results for other mod-
els, we would predict that those that have a similar hierarchical
architecture would exhibit similar trends. That is, compara-
ble networks would demonstrate increased bias with decreased
precision when categorizing MLI images with less variance.
Considering models that only contain filtering operations (akin
to layers of simple cells) we would observe an illusory effect that
may also be exacerbated compared to those with more complex
operations, with low accuracy and precision. Examples of would
include the model of Bertulis and Bulatov (2001).

The reduction of bias in computer vision systems has signif-
icant ramifications for applications such as automated driving,
flight control and landing, target detection and camera surveil-
lance. Correct judgment of distances and object dimensions in
these systems could affect target accuracy and reduce the potential
for crashes and errors. Our hypothesis that increasing positional
variance in the stimuli would reduce the magnitude of illusory
bias could be extended to include other forms of variance, such as
image rotation, articulation or deformation, hence examining the
generality of this proposal. Furthermore, it would be informative
to test the generality of the results presented in this study in other
computational models. If a general effect could be confirmed,
then we would advise the implementation of many forms of input
variance during training to improve their judgment capabilities,
providing more accurate and precise information.

Our work not only has implications for the field of computer
science, but also for psychology. Computational models allow
manipulations of parameters that are impossible or impracticable
to perform in human subjects, such as isolating the contributions
of different neural structures to the effect. Artificial architectures
allow us to make predictions about overall human performance
as well as how performance changes from layer to layer within
the visual system. Considering that this model not only provides
an overall system performance (C2 output), but also supplies
information at multiple levels of the architecture that correspond
approximately to identifiable neural substrates, it may be possi-
ble to test the model’s predictions with neuroimaging data. Using
functional magnetic resonance imaging (fMRI), we could obtain
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blood-oxygen-level dependent (BOLD) signals at different levels
of the visual cortices of observers viewing the MLI compared to
a control condition (using a similar method to that described by
Weidner and Fink, 2007). Then by applying a classifier to these
signals, we could map this information to changes in model bias
and quantify how well the model matches human brain data. This
forms a possible direction for future research.
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The mid- and high-level visual properties supporting object perception in the ventral visual
pathway are poorly understood. In the absence of well-specified theory, many groups
have adopted a data-driven approach in which they progressively interrogate neural units
to establish each unit’s selectivity. Such methods are challenging in that they require
search through a wide space of feature models and stimuli using a limited number of
samples. To more rapidly identify higher-level features underlying human cortical object
perception, we implemented a novel functional magnetic resonance imaging method
in which visual stimuli are selected in real-time based on BOLD responses to recently
shown stimuli. This work was inspired by earlier primate physiology work, in which
neural selectivity for mid-level features in IT was characterized using a simple parametric
approach (Hung et al., 2012). To extend such work to human neuroimaging, we used
natural and synthetic object stimuli embedded in feature spaces constructed on the basis
of the complex visual properties of the objects themselves. During fMRI scanning, we
employed a real-time search method to control continuous stimulus selection within each
image space. This search was designed to maximize neural responses across a pre-
determined 1 cm3 brain region within ventral cortex. To assess the value of this method
for understanding object encoding, we examined both the behavior of the method itself
and the complex visual properties the method identified as reliably activating selected
brain regions. We observed: (1) Regions selective for both holistic and component object
features and for a variety of surface properties; (2) Object stimulus pairs near one another
in feature space that produce responses at the opposite extremes of the measured activity
range. Together, these results suggest that real-time fMRI methods may yield more widely
informative measures of selectivity within the broad classes of visual features associated
with cortical object representation.

Keywords: neuroimaging, object recognition, computational modeling, intermediate feature representation,

real-time stimulus selection

1. INTRODUCTION
Object recognition associates visual inputs—beginning with an
array of light intensities falling on our retinas—with seman-
tic categories, for example, “cow,” “car,” or “face.” Inspired by
the architecture of the ventral occipito-temporal pathway of the
human brain, models that attempt to implement or account for
this process assume a feedforward architecture in which the fea-
tures of representation progressively increase in complexity as
information moves up the hierarchy (Riesenhuber and Poggio,
1999). The top layers of such a hierarchy are typically con-
strued as high-level object representations that correspond to and
allow the assignment of category-level labels. Critically, within
such models, there is the presupposition of one or more lev-
els of intermediate features that, while less complex than entire
objects, nonetheless capture important—and compositional—
object-level visual properties (Ullman et al., 2002). Yet, despite
significant interest and study of biological vision, the nature of

such putative intermediate features remains frustratingly elusive.
To begin to address this gap, we explored the intermediate visual
properties encoded within human visual cortex along the ventral
pathway.

The majority of what we have learned about intermediate
representation within the ventral cortex has come from primate
neurophysiology studies. In a pioneering study, Tanaka (1996)
explored the minimal visual stimulus sufficient to drive a given
cortical neuron at a level equivalent to the complete object. He
found that individual neurons in area TE were selective for a
wide variety of simple patterns and that these patterns bore some
resemblance to image features embedded within the objects ini-
tially used to elicit a response. Tanaka hypothesized that this
pattern-specific selectivity has a columnar structure that maps out
a high-dimensional feature space for representing visual objects.
In more recent neurophysiological work, Yamane et al. (2008) and
Hung et al. (2012) used a somewhat different search procedure to
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identify the contour selectivity of individual neurons in primate
inferotemporal cortex (IT). Using a highly-constrained, param-
eterized stimulus space based on 2D contours, they found that
most contour-selective neurons in IT encoded a subset of that
parameter space. Importantly, each 2D contour within this space
mapped to specific 3D surface properties—thus, collections of
these contour-selective units should be sufficient to capture the
3D appearance of an object or part. At the same time, recent pri-
mate physiology and human fMRI studies have begun to address
the issue of intermediate representations. For example, op de
Beeck et al. (2001) and op de Beeck et al. (2008) demonstrated
that the pattern of responses to complex synthetic stimuli in
object-selective cortex is associated with perceived shape similar-
ity and, in particular, that this intermediate region of visual cortex
is sensitive to shape features such as curved vs. straight.

Also within the domain of human neuroscience, Kay et al.
(2008) explored how responses—as measured by fMRI—of vox-
els coarsely coding for orientation and scale within human V1,
V2, and V3 can be combined to reconstruct complex images.
Although this work offers a demonstration of how human neu-
roimaging methods may support more fine-grained analyses
(and inspiration for further investigation), it does not inform us
regarding the nature of intermediate features. In particular, mod-
els of the featural properties of V1 and V2 are common, so Kay
et al.’s study largely demonstrates that such models hold even at
the voxel/millions-of-neurons level without explicating any new
properties or principles for these visual areas. Put another way,
Kay et al. decoded features within a well-understood parame-
ter space in which it is already agreed that the particular brain
regions in question encode information about the orientations
and scales of local edges. In contrast, the core problem in iden-
tifying the features of intermediate-level object representation is
that the parameter space is extremely large and highly underspec-
ified, therefore it is difficult to find effective prior models that
will fit the data. In this context, the proposal of Ullman et al.
(2002) that intermediate features can be construed as image frag-
ments of varying scale and location—leaving the contents of said
fragments entirely unspecified—is still one of the strongest mod-
els of intermediate-level representation. In particular, this model
predicts which task-relevant object information is likely to be
encoded within the human ventral pathway (Harel et al., 2007).

Note that the large majority of models applied to biologi-
cal object recognition have made weak assumptions regarding
the nature of intermediate features (with the notable excep-
tion being Hummel and Biederman (1992) who made very
strong assumptions as to the core features used in object
representation; unfortunately, such strong assumptions worked
against the generality of the model). For example, many mod-
els employ variants of Gabor filterbanks, detecting local edges
in visual stimuli, to explain selectivities in primary visual cor-
tex (V1) (Hubel and Wiesel, 1968). Extending this approach,
both Kay et al. (2008) and Serre et al. (2007) propose hier-
archies of linear and non-linear spatial pooling computations,
with Gabor filters at the base, to model higher-level vision. In
this vein, perhaps the most well-specified hierarchical model is
“HMAX” (Cadieu et al., 2007) and its variants (Serre et al.,
2007). While these models partially predict neural selectivity

in the mid-level ventral stream (V4) for simple synthetic stim-
uli (Cadieu et al., 2007), HMAX imperfectly clusters images
of real-world objects relative to the clusterings obtained from
primate neurophysiology or human fMRI (Kriegeskorte et al.,
2008).

To address the question of the intermediate-level features
underlying neural object processing, we adopted two different
models of visual representation. First, we explored a visual param-
eter space defined by “SIFT” (Lowe, 2004)—a method drawn
from computer vision that we have, previously, established as
effective in explaining some of the variance observed in the
neural processing of objects (Leeds et al., 2013). Second, we
explored a novel visual parameter space defined by collections
of 3D components—akin to Biederman’s approach (Hummel
and Biederman, 1992)—“Fribble” objects (Williams and Simons,
2000). Both of these representational choices arise from a diverse
set of linear and non-linear operations across image properties
and, as such, can be thought of as proxies for more detailed mod-
els of visual representation within biological systems (see Leeds
et al., 2013).

Using these two models, we collected fMRI data from human
observers performing a simple object processing task using real-
world objects characterized by coordinates in SIFT space or syn-
thetic objects characterized by coordinates in Fribble space. That
is, stimuli were projected onto one of two types of feature spaces,
constructed to reflect the SIFT and Fribble models of object rep-
resentation. During scanning, specific stimuli from these spaces
were sequentially selected in real-time based on an algorithmic
search of each feature space for images (and their corresponding
image features) that produced maximal BOLD activity in a pre-
selected brain region of interest (ROI) within the ventral visual
pathway.

These novel methods allowed us to evaluate principles of
object representation within human visual cortex. In particu-
lar, beyond the specifically-observed organizational structure of
cortex, we found some evidence for “local inhibition,” in which
cortical activity was reduced for viewing object images that var-
ied slightly from preferred images for a given brain region. This
finding expands on similar observations seen for earlier stages of
visual processing (Hubel and Wiesel, 1968; Wang et al., 2012).
With respect to topographic organization for objects, we observed
that the object images producing the highest responses for a given
ROI were often distributed across multiple areas of the visual fea-
ture space, potentially reflecting multiple neural populations with
distinct selectivities encoded within small regions of visual cortex.
Finally, across both real-world objects and Fribbles, we obtained
some evidence for selectivity to local contours and textural surface
properties.

Next we describe the novel methods that were integral to the
execution of our study. In particular, we addressed two chal-
lenges. First, the potential space of object images, even given
the reductions afforded by adopting SIFT or Fribble space, is
massive. It was incumbent on us to implement a computationally-
efficient image search strategy for stimulus selection. Second,
because our goal was the real-time selection of stimuli, we devel-
oped a time-efficient means for measuring and processing BOLD
signals.
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2. METHODS
2.1. STIMULUS SELECTION METHOD
We developed methods for the dynamic selection of stimuli,
choosing new images to display based on the BOLD response to
previous images within a given pre-selected brain region. This
search chooses each new stimulus by considering a space of visual
properties and probing locations in this space (corresponding to
stimuli with particular visual properties) in order to efficiently
identify those locations that are likely to elicit maximal activity
from the brain region under study (Figure 1). Each stimulus i
that could be displayed is assigned a point in space pi based on
its visual properties. The measured response of the brain region
to this stimulus ri is understood as:

ri = f (pi) + η (1)

That is, a function f of the stimulus’ visual properties as encoded
by its location in the representational space plus a noise term
η, drawn from a zero-centered Gaussian distribution. The pro-
cess of displaying an image, recording the ensuing cortical activity
via fMRI, and isolating the response of the brain region of inter-
est using the preprocessing program we model as performing an
evaluation under noise of the function describing the region’s
response. For simplicity’s sake, we perform stimulus selection
assuming our chosen brain region has a selectivity function f
that reaches a maximum at a certain point in the visual space
and falls off with increasing Euclidean distance from this point.
Under these assumptions, we use a modified version of the sim-
plex simulated annealing Matlab code available from Donckels
(2012), implementing the algorithm from Cardoso et al. (1996).
An idealized example of what a search run might look like based
on this algorithm is shown in Figure 1B. For each group, we per-
formed searches in each of two scan sessions, starting at distinct
points in the feature space for each session to probe the con-
sistency of search results across different initial simplex settings.
Further details are provided by Leeds (2013) and Cardoso et al.
(1996).

2.2. STIMULUS DISPLAY
All stimuli were presented using MATLAB (2012) and the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) con-
trolled by an Apple Macintosh and were displayed on a BOLD
screen (Cambridge Research, Inc.) 24 inch MR compatible
LCD display placed at the head end of the bore. Subjects
viewed the images through a mirror attached to the head coil
with object stimuli subtending a visual angle of approximately
8.3◦ × 8.3◦.

2.3. fMRI PROCEDURES
Subjects were scanned using a 3 T Siemens Verio MRI scanner
with a 32-channel head coil. Functional images were acquired
with a T2∗-weighted echo-planar imaging (EPI) pulse sequence
(31 oblique axial slices, in-plane resolution 2 × 2 mm, 3 mm slice
thickness, no gap, sequential descending acquisition, repetition
time TR = 2000 ms, echo time TE = 29 ms, flip angle = 72◦,
GRAPPA = 2, matrix size = 96 × 96, field of view FOV =
192 mm). An MP-RAGE sequence (1 × 1 × 1 mm, 176 sagittal
slices, TR = 1870, TI = 1100, FA = 8◦, GRAPPA = 2) was used
for anatomical imaging.

2.4. EXPERIMENTAL DESIGN
For each subject, our study was divided into an initial “ref-
erence” scanning session and two “real-time” scanning ses-
sions (Figure 2A). In the reference session we gathered cortical
responses to four classes of object stimuli to identify cortical
regions selective for each separate stimulus class. As described in
Sections 2.6 and 2.7, two different stimulus sets, comprised of
four visually-similar object classes, were used to explore visual
feature selectivity: real-world objects and synthetic “Fribble”
objects; each subject viewed stimuli from only one set. In the
real-time scan sessions we searched for stimuli producing the
maximal response from each of the four brain regions, dynam-
ically choosing new stimuli based on each region’s responses to
recently shown stimuli.

Runs in the reference scan session followed a slow event-
related design. Each stimulus was displayed in the center of the

FIGURE 1 | (A) Schematic of loop from stimulus display to measurement and
extraction of cortical region response to selection of next stimulus. (B)

Example progression of desired stimulus search. Cortical response is highest
toward the center of the space (red contours) and lowest toward the edges

of the space (blue contours). Stimuli displayed in order listed. Cortical
responses to initial stimuli, e.g., those numbered 1, 2, and 3, influence
selection of further stimuli closer to maximal response region in visual space,
e.g., those numbered 4 and 5.
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FIGURE 2 | (A) Structure of the three scanning sessions performed for
each subject. First row depicts the three sessions, second row depicts
the runs for the reference session, and third row depicts the runs for
each real-time session. (B) An example of the alternation among four

stimulus class searches in a real-time search run. These four classes are
comprised of mammals, human-forms, cars, and containers, and
correspond to four colored brain regions shown on the upper-right of the
figure.

screen for 2 s followed by a blank 53% gray screen shown for a
time period randomly selected to be between 500 and 3000 ms,
followed by a centered fixation cross that remained displayed until
the end of each 10 s trial, at which point the next trial began. As
such, the SOA between consecutive stimulus displays was fixed
at 10 s. Subjects were instructed to press a button when the fix-
ation cross appeared. The fixation onset detection task was used
to engage subject attention throughout the experiment. No other
task was required of subjects, meaning that the scan assessed
object perception under passive viewing conditions.

The stimuli were presented in four 3-min runs, spread across
the 1-h scanning sessions and arranged to minimize potential
adaptation and priming effects. Each run contained 36 object pic-
tures, 9 objects from each of the four classes, ordered to alternate
among the four classes. Stimulus order was randomized across
runs. Over the course of the experiment, each subject viewed each
picture four times; averaging across multiple repetitions was per-
formed for each stimulus, described below, to reduce trial-by-trial
noise. We determined from data gathered in Leeds et al. (2013)
that relatively little information is gained by averaging over more
than four repetitions.

To provide anatomical information, a T1-weighted structural
MRI was performed between runs within the reference scan
session.

In each of the two 1.5-h real-time scan sessions, the image
selectivities of four distinct brain regions within ventral cor-
tex were explored. For each brain region, a distinct search was
performed using stimuli drawn from a single class of visual
objects. Stimuli were presented for each search in 8.5-min
“search” runs (4–8 runs were used per subject depending on
other factors). Each stimulus was selected by the real-time search
program based on responses of a pre-selected region of inter-
est (ROI) to stimuli previously shown from the same object
category. Each run contained 60 object pictures, 15 objects
from each object class, ordered to alternate through the four
classes—that is, search 1 → search 2 → search 3 →
search 4 → search 1 · · · —as illustrated in Figure 2B.
Alternation among distinct searches employing visually-distinct
classes was advantageous in decreasing the risk of cortical

adaptation that would have been present if multiple similar
stimuli had been shown in direct succession. The focus of each
search within an object class also limited visual variability across
stimuli within that search. This also enabled the remaining
sources of variability to be more intuitively identified and more
readily associated with their influence on the magnitude of cor-
tical activity. Note that the overt task during search runs varied
depending on the stimuli shown. Task details are provided in
Sections 2.6.4 and 2.7.4.

Each real-time session began with a 318-s functional scan per-
formed with a viewing task to engage subject attention. The first
functional volume scanned for this task was used to align the ROI
masks (defined in Sections 2.6.5 and 2.7.5) selected from the ref-
erence session for a given subject to the subject’s brain’s position
in the current session. This alignment corrects for changes in head
position between the reference and the real-time scan sessions
that might result in the brain, and its associated ROIs, moving
to different locations in the scan volume. The remaining data vol-
umes from this beginning task were ignored in that this task was
designed simple to occupy the attention of the subject while com-
puting inter-session brain alignment to be used for the remainder
of the session.

2.5. PREPROCESSING
During analyses of the reference scan session, functional scans
were coregistered to the anatomical image and motion corrected
using AFNI (Pittman, 2011). Highpass filtering was implemented
in AFNI by removing sinusoidal trends with periods of half and
full length of each run (338 s) as well as polynomial trends of
orders one through three. The data then were normalized so that
each voxel’s time course was zero-mean and unit variance (Just
et al., 2010). To allow multivariate analysis to exploit information
present at high spatial frequencies, no spatial smoothing was
performed (Swisher et al., 2010).

During real-time scan sessions, functional volumes were
motion corrected using AFNI. Polynomial trends of orders one
through three were removed. The data then were normalized for
each voxel by subtracting the average and dividing by the stan-
dard deviation, obtained from the currently analyzed response
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and from the previous “reference” scan session, respectively, to
approximate zero-mean and unit variance (Just et al., 2010). The
standard deviation was determined from 1 h of recorded signal
from the reference scan session to gain a more reliable estimate
of signal variability in each voxel. Due to variations in baseline
signal magnitude across and within scans, each voxel’s mean sig-
nal value required updating based on activity in each block (the
time covering the responses for two consecutive trials). To allow
multivariate analysis to exploit information present at high spatial
frequencies, no spatial smoothing was performed (Swisher et al.,
2010).

Matlab was used to perform further processing on the fMRI
time courses for the voxels in the cortical region of interest for
the associated search. For each stimulus presentation, the mea-
sured response of each voxel consisted of five data samples starting
2 s/1 TR after onset. Each five-sample response was consoli-
dated into a weighted sum by computing the dot product of the
response and the average hemodynamic response function (HRF)
for the associated region. The HRF was determined based on data
from the reference scan session. The pattern of voxel responses
across the region was consolidated further into a single scalar
response value by computing a similar weighted sum. Like the
HRF, the voxel weights were determined from reference scan data.
The weights corresponded to the most common multi-voxel pat-
tern observed in the region during the earlier scan; that is, the
first principal component of the set of multi-voxel patterns. This
projection of recorded real-time responses onto the first princi-
pal component treats the activity across the region of interest as
a single locally-distributed code, emphasizing voxels whose con-
tributions to this code are most significant and de-emphasizing
those voxels with typically weak contributions to the average
pattern.

During the alignment run of each real-time session, AFNI was
used to compute an alignment transformation between the initial
functional volume of the localizer and the first functional volume
recorded during the reference scan session. The transformation
computed between the first real-time volume and the first refer-
ence volume was applied in reverse to each voxel in the four ROIs
determined from the reference scan.

2.6. REAL-WORLD OBJECTS EMBEDDED IN SIFT SPACE
We pursued two methods to search for visual feature selectivity.
In our first method, we focused on the perception of real-world
objects with visual features represented by the scale invariant
feature transform (SIFT, Lowe, 2004).

2.6.1. Subjects
Ten subjects (four female, age range 19–31) from the Carnegie
Mellon University community participated, provided written
informed consent, and were monetarily compensated for their
participation. All procedures were approved by the Institutional
Review Board of Carnegie Mellon University.

2.6.2. Stimuli
Stimulus images were drawn from a picture set comprised of 400
distinct color object photos displayed on 53% gray backgrounds
(Figure 3A). The photographic images were taken from the
Hemera Photo Objects dataset from Hemera Technologies (2000–
2003). The number of distinct exemplars in each object class
varied from 68 to 150 object images. Note that our use of real-
world images of objects rather than the hand-drawn or computer-
generated stimuli employed in past studies of intermediate-level
visual coding (e.g., Cadieu et al., 2007; Yamane et al., 2008) was
intended to more accurately capture a broad set of naturally-
occurring visual features.

2.6.3. Defining SIFT space
Our real-world stimuli were organized into a Euclidean space
(Figure 3B) that was constructed to reflect a scale invariant fea-
ture transform (SIFT) representation of object images (Lowe,
2004). Leeds et al. (2013) found that a SIFT-based representa-
tion of visual objects was the best match among several machine
vision models in accounting for the neural encoding of objects
in mid-level visual areas along the ventral visual pathway. The
SIFT measure groups stimuli according to a distance matrix for
object pairs (Leeds et al., 2013). In our present work, we defined
a Euclidean space based on the distance matrix using Matlab’s
implementation of metric multidimensional scaling (MDS, Seber,
1984). MDS finds a space in which the original pairwise distances

FIGURE 3 | Example real-world objects (A) and corresponding SIFT

feature space (B). Real-world object images were selected from four object
classes—mammals, human-forms, cars, and containers. Feature space

shows example stimuli projected onto first two dimensions of space. (C)

Percent variance explained using first n dimensions of MDS feature space
for SIFT.
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between data points—that is, SIFT distances between stimuli—
are maximally preserved for any given n dimensions. This focus
on maintaining the SIFT-defined visual similarity groupings
among stimuli—using MDS—was motivated by the observations
of Kriegeskorte et al. (2008) and Edelman and Shahbazi (2012),
both of whom argued for the value of studying representational
similarities to understand cortical vision.

The specific Euclidean space used in our study was derived
from a SIFT-based distance matrix for 1600 Hemera photo
objects, containing the 500 stimuli available for display across
the real-time searches, as well as 1100 additional stimuli included
to further capture visual diversity across the appearances of
real-world objects (nb. ideally, the object space would be better
covered by many more than 1600 objects, however, we necessar-
ily had to restrict the total number of objects in order to limit
the computation time required to generate large distance matri-
ces). This distance matrix was computed using a “bag of words”
method (Nowak et al., 2006; Leeds et al., 2013):

(1) Several SIFT feature vectors were computed for each stimulus
(2) 128 visual words were defined to describe typical feature

vectors appearing in the 1600 photo objects
(3) Each vector for each stimulus was assigned to its closest

“word”
(4) Each stimulus was represented by a histogram counting the

number of times each word occurs in the image
(5) Stimulus pairs were compared using the Kullback-Leibler

divergence (Kullback and Leibler, 1951) between their cor-
responding histograms

MDS was then used to generate a Euclidean space into which
all stimulus images were projected. The real-time searches
for each object class operated within the same MDS space.
This method produced an MDS space containing over 600
dimensions. Unfortunately, as the number of dimensions in
a search space increases, the sparsity of data in the space
will increase exponentially. As such, any conclusions regard-
ing the underlying selectivity function will become increasingly
more uncertain absent further search constraints. To address
this challenge, we constrained our real-time searches to use
only the four most-representative dimensions from the MDS
space.

2.6.4. Experimental design
Search runs in the real-time scan sessions employed a one-back
location task to engage subject attention throughout the exper-
iment. Each stimulus was displayed centered on one of nine
locations on the screen for 1 s followed by a centered fixation cross
that remained until the end of each 8 s trial, at which point the
next trial began. Subjects were instructed to press a button when
the image shown in this subsequent trial was centered on the same
location as the image shown in the previous trial. The specific
nine locations were defined by centering the stimulus at +2.5, 0,
or −2.5◦ horizontally and/or vertically displaced from the screen
center. From one trial to the next, the stimulus center shifted with
a 30% probability.

2.6.5. Selection of regions of interest (ROIs)
Reference scan data was used to select ROIs for further study in
real-time scan sessions.

Class localizer: For each stimulus class S, selectivity sc was
assessed for each voxel by computing:

sc = 〈rc〉 − 〈rc̄〉
σ (rc)

(2)

where 〈rc〉 is the mean response for stimuli within the given class
c, 〈rc̄〉 is the mean response for stimuli outside of the class c̄, and
σ (rc) is the standard deviation of responses within the class1. We
identified clusters of voxels with the highest relative responses for
the given class using a manually-selected threshold and clustering
through AFNI.

SIFT localizer: The representational dissimilarity matrix-
searchlight method described in Leeds et al. (2013) was used to
determine brain regions with neural representations of objects
similar to the representation of the same objects by SIFT.
Thresholds were adjusted by hand to find contiguous clusters with
high voxel sphere z values.

Selection of ROIs: Visual inspection was used to find overlaps
between the class-selective and SIFT-representational regions. For
each class, a 125 voxel cube ROI was selected based on the
observed overlap in a location in the ventral visual stream. The
use of relatively small—one cubic centimeter—cortical regions
enables exploration of local selectivities for complex visual prop-
erties. Analyses were successfully pursued on similar spatial scales
in Leeds et al. (2013), using 123-voxel searchlights.

2.7. FRIBBLE OBJECTS EMBEDDED IN FRIBBLE SPACE
Our second attempt to search for visual feature selectivity focused
on the perception of synthetic novel objects—Fribbles—in which
visual features were parameterized as interchangeable 3D compo-
nents (Williams and Simons, 2000).

2.7.1. Subjects
Ten subjects (six female, age range 21–43) from the Carnegie
Mellon University community participated, provided written
informed consent, and were monitarily compensated for their
participation. All procedures were approved by the Institutional
Review Board of Carnegie Mellon University.

2.7.2. Stimuli
Stimulus images were generated based on a library of synthetic
Fribbles (Williams and Simons, 2000; Tarr, 2013), and were dis-
played on 54% gray backgrounds as in Section 2.6.2. Fribbles
are animal-like objects composed of colored, textured geometric
shapes. They are divided into classes, each defined by a specific
body form and a set of four locations for attached appendages.
In the library, each appendage has three potential shapes, e.g., a
circle, star, or square head for the first class in Figure 4A, with

1The measured response of each voxel for each stimulus repetition consisted
of five data samples starting 2 s after stimulus onset, corresponding to the
10 s between stimuli. Each five-sample response was consolidated into a sin-
gle value—the average of the middle three samples of the response (Just et al.,
2010)—intended to estimate the peak response.
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potentially variable corresponding textures. These stimuli provide
a careful control on the varying properties displayed to subjects,
in contrast to the more natural, but less parameterized real-world
objects.

2.7.3. Defining Fribble space
We organized our Fribble stimuli into Euclidean spaces. In the
space for a given Fribble class, movement along an axis cor-
responded to morphing the shape of an associated appendage.
For example, for the purple-bodied Fribble class, the axes were
assigned to (1) the tan head, (2) the green tail tip, and (3) the
brown legs, with the legs grouped and morphed together as
a single appendage type. Valid locations on each axis spanned
from −1 to 1 representing two end-point shapes for the associated
appendage, (e.g., a circle head or a star head). Appendage appear-
ance at intermediate locations was computed through the mor-
phing program Norrkross MorphX (Wennerberg, 2009) based on
the two end-point shapes. Example morphs can be seen in the
Fribble space visualization in Figure 4B.

For each Fribble class, stimuli were generated for each
of 7 locations—the end-points −1 and 1 as well as coordi-
nates −0.66, −0.33, 0, 0.33, and 0.66—on each of 3 axes, i.e.,
73 = 343 locations. A separate space was searched for each class
of Fribble objects.

2.7.4. Experimental design
Search runs in the real-time scan sessions employed a dimness
detection task to engage subject attention throughout the exper-
iment. Each stimulus was displayed in the center of the screen
for 1 s followed by a centered fixation cross that remained dis-
played until the end of each 8 s trial, at which point the next trial
began. On any trial there was a 10% chance the stimulus would
be displayed as a darker version of itself—namely, the stimulus’
red, green, and blue color values each would be decreased by 50
(max intensity 256). Subjects were instructed to press a button
when the image appeared to be “dim or dark.” For the Fribble
stimuli, the dimness detection task was used to address concerns
we had regarding the one-back location task used with real-world
object stimuli. In particular, the fact that subjects necessarily had
to hold two objects in memory simultaneously in order to per-
form the one-back location task may have “blurred” our ability
to assess the neural representation of single objects on any given

trial. This confound may have limited the strength of real-world
object search results. Thus, our change to the dimness detection
task.

2.7.5. Selection of Fribble class regions of interest
We employed the representational dissimilarity matrix-
searchlight procedure of Leeds et al. (2013) to identify cortical
areas whose visual representations are well characterized by
each simple Fribble space. ROIs were selected manually from
these areas for study during the real-time scan sessions. In
these regions, we could search effectively for complex featural
selectivities using the associated Fribble space.

3. RESULTS
Our study was designed to explore complex visual properties uti-
lized for object perception by the ventral pathway of the brain.
We studied the distribution of recorded ROI responses in our
novel visual feature spaces, defined and explored separately for
real-world objects and for Fribble objects.

3.1. VISUALIZING FEATURE SPACES
To search for those visual properties selectively activating different
cortical regions within the ventral pathway we constructed two
types of visual feature spaces. Each of these spaces—Euclidean
in nature—represented an array of complex visual properties
through the spatial grouping of image stimuli that were con-
sidered similar according to the defining visual metric, as in
Sections 2.6.3 and 2.7.3.

Of note, each space contains a low number of dimensions—
four dimensions for SIFT and three dimensions for each Fribble
class—to allow the searches for visual selectivity to converge in
the limited number of simplex steps that can be evaluated in
real-time over the course of a scanning session. These low dimen-
sional spaces also permit visualization of search activity over each
scan session and visualization of general ROI response intensities
across the continuum of visual properties represented by a given
space. We display this information through colored scatter plots.
For example, representing each stimulus as a point in feature
space, Figure 5 shows the locations in SIFT-based space selected,
or “visited,” by the search for human-form images evoking high
activity in the pre-selected SIFT/“human-form” region of sub-
ject S3, and shows the regional response to each of the displayed

FIGURE 4 | Example Fribble objects (A) and example corresponding Fribble feature space (B). Fribble images were selected from four synthesized
classes, shown in rows 1/2, 3/4, 5/6, and 7/8, respectively. Feature space shows stimuli projected onto first two dimensions of space.
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stimuli. The four dimensions of SIFT-based space are projected
onto its first two and second two dimensions in Figures 5A,B,
respectively. Stimuli visited during the first and second real-time
sessions are shown as circles and diamonds, respectively, centered
at the stimuli’s corresponding coordinates in the space. (Black
dots correspond to the locations of all stimuli in the human-form
class that were available for selection by the search program.) The
magnitude of the average ROI response to a given visited stimu-
lus is reflected in the color of its corresponding shape. For stimuli
visited three or more times, colors span dark blue–blue–dark red–
red for low through high average responses.

3.2. REAL-TIME SEARCH BEHAVIOR
In real-time scanning sessions, dynamic stimulus selection was
pursued to more effectively explore each space of visual prop-
erties in limited scan time and to quickly identify visual prop-
erties producing the strongest activity from cortical regions in
the ventral object perception pathway. Because the methods for
real-time search are novel, we assess and confirm their expected
performance in addition to studying the visual properties discov-
ered by these methods. In particular, we expected each search in
visual feature space to show the following two properties:

1. Convergence onto one, or a few, location(s) in the associated
visual space producing greatest cortical response, correspond-
ing to the regional selectivity.

2. Consistency in stimuli found to be preferred by the ROI,
despite differing search starting points in visual feature space
in the two scanning sessions for each subject.

However, because of the novelty of our methods—and thus
our limited knowledge about optimal search parameters—and
because of the limited number of stimulus display trials avail-
able, convergence occurred for only 10% of searches of real-world
objects and 25% of searches of Fribble objects, as judged by
a measure of convergence significance devised for our study

(Section S1). We focus our ensuing analyses on the convergent
and consistent searches. We anticipate further methodological
development stemming from our present study will improve
search convergence in future studies.

3.3. SELECTION OF BRAIN REGIONS OF INTEREST
Both for subjects viewing real-world objects and subjects viewing
Fribble objects, ROIs containing cubes of 125 voxels were manu-
ally selected for each of four stimulus classes searched (Figure 6).
Beyond incorporating voxels most highlighted by reference scan
analyses reviewed above, the four regions for each subject were
selected to be non-overlapping and to lie within the ventral
pathway, with a preference for more anterior voxels, presumably
involved in higher levels of object perception. With this selection
approach in mind, consideration of the anatomical locations of
the chosen ROIs provides perspective on the span of areas using
SIFT-like and “Fribble-morph-like” representational structures
across subjects, and the distribution of areas most strongly encod-
ing each of the four studied object classes across subjects. We also
gain perspective on the range of brain areas across subjects and
searches studied for complex visual selectivities.

ROIs used for real-world object searches are distributed
around and adjacent to the fusiform cortex, while ROIs used for
Fribble object searches are distributed more broadly across the
ventral pathway.

3.4. COMPLEX VISUAL SELECTIVITIES
We examine cortical responses observed for stimuli displayed
in searches, selected for convergence and consistency, to deter-
mine visual properties significant to ROI representations of visual
objects. In particular, we study the frequently-visited stimuli,
ranked by ROI responses, to intuit important visual properties
for each ROI and use the scatter plot introduced in Section 3.1 to
visualize cortical activity across visual space, as well as to observe
search behavior. The adaptive trajectory of each real-time search
further reflects ROI selectivities. In the following two sections,

FIGURE 5 | Search results for S3, class 2 (human-forms), shown in (A)

first and second SIFT space dimensions and (B) third and fourth

dimensions. Location of all potential stimuli in space shown as black
dots. Results from real-time scan session 1 are circles, results from
real-time scan session 2 are diamonds. For stimuli “visited” (i.e.,
selected by the search) three or more times, colors span
dark blue–blue–red–dark red for low through high responses. First and

second clusters of points visited in second search session are highlighted
by green and pink circles, respectively. Note axes for (A) are from −1 to
1 and for (B) are from −0.5 to 0.5. (C,D) Stimuli visited three or more
times in search session 1 (C) and search session 2 (D), sorted in order
of decreasing ROI response, averaged across all trials for each image.
Stimuli from second search are labeled in white according to location in
cluster 1 or 2.
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FIGURE 6 | Class-selective regions for 10 subjects in (A) real-world

objects search and (B) Fribble objects search, projected onto the

Talairach brain. Colors are associated as follows (listed as real-world/Fribble,
respectively): blue for mammals/purple curved tube object, green for

human-forms/blue-bodied–yellow-winged object, orange for
cars/bipedal–metal-tipped-tail object, red for containers/wheelbarrow object,
overlaps shown as single color. Each subject is assigned a shade of each of
the four colors.

we use the feature space for real world objects and then the
feature spaces for Fribble objects as powerful new tools for char-
acterizing and understanding cortical responses to complex visual
properties.

3.4.1. Real-world objects search
Examination of points frequently visited by each search and
the responses of the corresponding brain regions revealed (1)
multiple distinct selectivities within search of single ROIs, (2)
marked change in cortical response resulting from slight devi-
ations in visual properties/slight changes in location in visual
space, and (3) several intuitive classes of visual properties used
by the ventral pathway—including surface texture as well as two-
and three-dimensional shape.

We examine the results of the two “most-converged” searches
in detail below, and summarize results for all other searches with
above-threshold convergence.

The class 2/human-forms search in the second session for
subject S3 was one of the most convergent. Projecting the vis-
ited stimuli along the first two dimensions in SIFT-based space
in Figure 5A, and focusing on frequently-visited stimuli, we see
two clusters, circled in green and pink. The images visually are
split into two groups2 : one group containing light/generally-
narrow-shapes and the second group containing less-light/wide-
shapes, as shown in Figure 5D. Notably, stimuli evoking high
and low responses appear in both clusters, and similar-looking
images can elicit opposite ROI activities—e.g., the two red
characters. We consider this as potential evidence of local
inhibition.

2For the interpretation of real-world objects results, grouping was done by
visual inspection of a single linkage dendrogram constructed in the four-
dimensional SIFT-based space.

The class 2 search in the first session for S3 shows a quite weak
convergence measure. Unlike results for the second session, there
is no concentration of focus around one (or two) spatial locations.
Despite a very low consistency measure, there is evidence for a
degree of consistency between session results. The stimuli evok-
ing the strongest and weakest responses in the first session appear
in the lower cluster of visited points in the second session. The
red wingless character, again, elicits high response while the pur-
ple winged character in the first session and the red-green winged
character in the second session, nearby in visual SIFT-based space,
elicit low responses. The winged character in the first session is
projected as a very small blue circle at (−0.05, 0.02, 0.15, 0.10) in
the SIFT space in Figures 5A,B. By starting from a separate loca-
tion, the second search finds two ROI response maxima in SIFT
space.

The class 2 search in the first session for S6 showed the
greatest convergence measure across all searches. Projecting the
visited stimuli along the SIFT dimensions in Figure 7, we see
one cluster (of red and blue circles) around the coordinates
(−0.1, −0.15, 0, −0.15) and several outliers for the first session.
The three stimuli in the cluster producing the highest responses
(Figure 7C) may be linked by their wide circular head/halo, while
the smallest-response stimulus is notably thin—potentially indi-
cating response intensity as a wide/thin indicator. Notably, stimuli
evoking high and low responses, coming from the two ends of
the wide/thin spectrum, are nearby one another in the part of the
SIFT space under study by the search—a potential example of the
limits of four SIFT dimensions to capture magnitudes of all visual
differences among real-world objects.

The class 2 search in the second session for S6 shows a
quite weak convergence measure. Similarly, as the consistency
measure is low, the stimuli frequently visited in the second
session fail to overlap with similar feature space locations and
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FIGURE 7 | Search results for S6, class 2 (human-forms), shown in (A)

first and second SIFT space dimensions and (B) third and fourth

dimensions. Colors and shapes used as in Figure 5. The stimuli visited three

or more times in the first (C) and second (D) search sessions are shown
sorted in order of decreasing ROI response, averaged across all trials for each
image. Stimuli from first search are labeled in white if located in cluster 1.

“similar-looking”3 stimuli frequently visited in the first session.
Although a red character produces the minimum responses in
each of the two searches (Figure 7), the two characters are located
in distinct corners of the SIFT space (dark red diamond and blue
circle in Figure 7).

Comparison of searches for S3 and S6, in Figures 5, 7, respec-
tively, shows a similar pattern of visited stimuli in the feature
space. For both subjects, there is a focus close to the first dimen-
sional axis, i.e., a vertical line of red and blue circles and diamonds
along the first two dimensions; visited stimuli follow a V pat-
tern in the second two dimensions. Furthermore, some of the
highest ROI response stimuli appear (in red) at high locations
along the second and third dimensions. Similarly, frequently-
visited stimuli for S6 session 1 (dark blue circles) appear close to
the the observed lower cluster for S3 session 2, though the cor-
tical responses for the two subjects appear to differ. Comparing
Figures 5, 7, we also can confirm a degree of overlap between
the images frequently shown for each subject. In both subjects,
frequently visited stimuli seemed to show regional selectivity, and
potentially differentiation, for narrow-versus-wide shapes.

Study of frequently visited stimuli in search sessions showing
lower degrees of convergence reveals a mix of results, summarized
in Table 1. Most searches identify one potential cluster producing
marked high, and possibly marked low, responses from the ROI.
A variety of visual properties are identified for different regions
under study, from surface details to shapes of object parts. In
one of the searches considered in the table, for subject S6, we
note stimuli producing high and low cortical responses are close
together in visual space.

Looking more broadly for evidence of local inhibition across
both convergent and non-convergent searches, we measure the
distance in feature space between stimuli producing the highest
and lowest ROI responses, and compare it with the typical dis-
tribution of inter-stimulus distances in feature space in Figure 8.

3Similarity in appearance is not well-defined, as explored by our past work
in Leeds et al. (2013). Generally, we limit our similarity judgements to identi-
fication of identical pictures, e.g., in Figure 5. Here, we occasionally use more
rough intuition.

Table 1 | Summary of results for additional convergent and consistent

searches.

Subject/Class/ Local # Cluster Visual

Session inhibition centers properties

S1/2/1 No 1, many
outliers

Metallic surfaces, rectangular
base

(uncertain)

S5/2/2 No 1, many
outliers

Sharp local angles defining
internal holes or feathers

S7/2/1 No 1 High spatial frequencies on
surface, shiny spots

S7/2/2 No 1 (uncertain)

S1/4/1 No 1 (uncertain)

S6/4/1 No 2 Cluster 1: same object in
different colors;

Cluster 2: multiple long
edges (uncertain)

S6/4/2 Yes 1 Top handles, horizontal and
vertical lines (uncertain)

“Local inhibition” marks the observation that stimuli close to one another in

visual space evoke particularly high and low ROI responses. “(uncertain)” notes

uncertainty about visual properties of frequently-visited stimuli clustered in

feature space.

Stimuli were deemed to be close in space if their distance was
more than a standard deviation below the average inter-stimulus
pairwise distance among the stimuli in the class. Out of 80
searches performed, we observed nine in which nearby stimuli
produced extremely different cortical responses.

A comparison of class 2 searches for S1, S3, and S6
reveals a similar pattern of stimulus responses in feature space.
Qualitatively, the stimuli are arranged roughly linearly along the
first two dimensions and show a more complex “V” pattern in the
second two dimensions. Some of the highest ROI response stimuli
appear at high locations along the second and third dimensions
for S1 session 2, S3 session 2, and S6 session 2. Notably, the 4
human figures with largely-uniform white surfaces (Figure 5D)
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constituting the first cluster for S2 from session 2, were also fre-
quently displayed to S1 in session 2; 3 of the 4 figures are sorted
in the same order based on ROI response size.

In contrast, comparison of class 2 searches for S5 with those of
the subjects reported above, S1, S3, and S6, shows a great degree
of difference in the pattern of frequently visited stimuli in feature
space and in the pattern of cortical responses across space. This
finding reflects the expected diversity of selectivities employed in
perception of a given object class, e.g., human-forms.

3.4.2. Fribble objects search
Among subjects viewing Fribble objects, 20 selectivity searches
converged and 7 searches showed consistency across search ses-
sions. As in real-world object searches, examination of stimuli
frequently visited by each search and the responses of the cor-
responding brain regions revealed (1) multiple distinct selec-
tivities within search of single ROIs, (2) marked change in
cortical response resulting from slight deviations in visual prop-
erties/slight changes in location in visual space, and (3) several
perception approaches used by the ventral pathway—including
focus on the form of one or multiple component “appendages”
for a given Fribble object.

We examine in detail the results of two of the most convergent
searches as well as the results of the two most inter-session con-
sistent searches. We also summarize results for all other searches
with above-threshold convergence and consistency.

The class 1/curved tube object search in the second session
for S11 showed high convergence. Projecting the visited stimuli
along the three Fribble-specific morph dimensions in Figure 9A,

noting the third dimension is indicated by diagonal displacement,
we see one cluster4 (of red and blue diamonds) centered around
(0,−0.33, 0.66). The cluster contains three of the four stimuli
visited three or more times in the second session, as shown in
Figure 9C. These stimuli show similar appearances in their three
appendages. The outlying stimulus, while deviating in its more
circular head and more flat-topped tail tip, retains the round leg
shape of the three in-cluster stimuli. We observe Fribble ROIs
sometimes are most selective for the shape of a subset of the com-
ponent appendages, although clustering appears to indicate the
head and tail-tip shape remain important for S11’s ROI as well, as
does cross-session comparison of results below.

The class 1 search in the first session for S11 shows quite
weak convergence. Projecting the visited stimuli along the three
Fribble-space dimensions (red and blue circles) shows the search
spreading across the space. In several locations, pairs of near-
adjacent stimuli were visited, as in the lower left, upper right, and
center of Figure 9A. In each location, the stimuli evoked opposite
strength responses from the ROI—the second and seventh highest
responses are coupled, as are the first and sixth, and the third and
seventh. Sensitivity to slight changes in visual features—potential
local inhibition—thus is seen both for Fribble and real-world
object perception.

The class 3/bipedal, metal-tipped tail object searches for S17
showed high cross-session consistency. Projecting the visited
stimuli along the three Fribble-specific morph dimensions in

4For the interpretation of Fribble results, grouping was done by visual
inspection of the three-dimensional scatter plots, e.g., Figure 9A.

FIGURE 8 | Distance in feature space between stimulus pair evoking

greatest difference in cortical responses or second greatest difference in

cortical responses. Feature space distance color coded from red (high) to blue

(low). For each class, number in parentheses indicates distance one standard
deviation below average distance between randomly-selected stimuli. Search
session 1 is represented by letter “a” and session 2 by letter “b.”

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 106 | 152

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Leeds et al. Exploring complex visual feature spaces

Figure 10A, we see the first session focuses on the axis of dimen-
sion 1, the second session focuses on the axis of dimension 2,
and both emphasize stimuli with dim2 ≈ 0. The visited points
for each session spread widely, albeit roughly confined to a sin-
gle axis. Visually, in Figures 10B,C, these stimuli are grouped for
their spiked feet (dim2 = 0), as well as for their tails appearing
half-way between a circle and a cog shape (see Figure 4A) and
their yellow “plumes” half-way between a round, patterned and
angled, uniformly-shaded shape. The importance of spike-shaped
feet indicated in both searches, even beyond the (0, 0, 0.66) clus-
ter focus, may relate to prominance of edge detection in biological
vision, expanding to the detection of sharp angles. As seen for
other Fribble and real-world objects searches above, stimuli evok-
ing the lowest and highest responses are notably clustered in the
search space.

Visual comparison of searches and of regional responses for
different subjects cannot be made across classes, as each Fribble
space is defined by a different set of morph operations. Within
class comparisons do not reveal strong consistent patterns across
ROIs.

The class 4/wheelbarrow object search for S19 showed high
convergence in both sessions. Furthermore, the two searches

together showed the highest cross-session consistency across all
subjects and object classes. Projecting the visited stimuli along the
three Fribble-specific morph dimensions in Figure 11A, we see
clustering along dim1 = 0 and dim3 = −0.33 for the first session
(red and blue circles); dimension 2 location of the stimuli is more
broadly-distributed, but limited to dim2 ≤ 0. The stimuli at the
center of the first session cluster, shown in Figure 11B, are linked
by their purple tongue and green ear shapes. The ROI appears to
be selective for the shape of a subset of component appendages,
without regard for other elements of the object (i.e., the green
nose). As observed throughout our search results, stimuli evok-
ing high and low responses appear in the same cluster, sometimes
adjacent to one another in space and appearing rather similar by
visual inspection, indicating ROI sensitivity to slight changes in
appearance.

Projecting the visited stimuli for the second session along the
three Fribble dimensions (as red and blue diamonds) shows two
clusters. The presence of multiple selectivity centers is consis-
tent with observed ROI response properties for subjects viewing
real-world objects, as well as Fribble subject S11 discussed above.
The stimuli at the center of the larger second session cluster
show a similar green ear and similar mid-extremes nose but a

FIGURE 9 | Search results for S11, class 1, shown in three-dimensional

Fribble space (A), with third dimension represented as diagonal offset.

Positive third dimension results in displacement up and to the right. Location
of all potential stimuli in space shown as black dots. Results from real-time
scan session 1 are circles, results from real-time scan session 2 are
diamonds. For stimuli visited three or more times, colors span

dark blue–blue–red–dark red for low through high responses. Cluster of
points visited in second search session is highlighted by green circle. The
stimuli visited three or more times in the first (B) and second (C) search
sessions are shown sorted in order of decreasing ROI response, averaged
across all trials for each image. Stimuli from second search is labeled white if
located in cluster 1.

FIGURE 10 | Search results for S17, class 3, shown in three-dimensional

Fribble space (A). Colors and shapes used as in Figure 9. The stimuli visited
three or more times in the first (B) and second (C) search sessions are

shown sorted in order of decreasing ROI response, averaged across all trials
for each image. Stimuli from each search are labeled in white if located in
cluster 1 for their respective searches.
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FIGURE 11 | Search results for S19, class 4, shown in three-dimensional

Fribble space. Colors and shapes used as in Figure 9. The stimuli visited
three or more times in the first (B) and second (C) search sessions are

shown sorted in order of decreasing ROI response, averaged across all trials
for each image. Stimuli from each search are labeled in white if located in a
cluster for their respective search.

more star-shaped purple tongue. The two stimuli with the most-
circular tongues form the second cluster. This second cluster has
the highest consistency with two of the cluster outliers from the
first session, i.e., the second and third most active stimuli for the
first session. Stimuli evoking high and low responses appear in
the same cluster, sometimes adjacent to one another in space and
appearing rather similar by visual inspection.

Study of frequently visited stimuli in search sessions showing
lower degrees of convergence reveals a mix of results, summarized
in Table 2. Most searches identify one potential cluster produc-
ing marked high and low responses from the ROI. Most searches
also show ROI selectivity for shapes of all three object appendages,
each corresponding to a feature space dimension, though several
searches indicate selectivity for only two appendages. In almost
all the searches considered in the table, we note stimuli producing
high and low cortical responses are close together in visual space.

Looking more broadly for evidence of local inhibition across
both convergent and non-convergent searches, we measure the
distance in feature space between stimuli producing the highest
and lowest ROI responses, and compare it with the typical
distribution of inter-stimulus distances in feature space in
Figure 12. Stimuli were deemed to be close in space if their dis-
tance was less than 0.87. Notably, the minimum distance between
a pair of stimulus points was 0.3. Out of eighty searches per-
formed, we observed over 75% of searches in which nearby
stimuli produced extremely different cortical responses. 50% of
searches showed extremely different cortical responses for stimuli
at most two minimum edit steps away in visual space, step-
ping between neighboring black dots in the scatter plots shown
above.

In sum, searches in most ROIs discussed above cluster around
a single location, indicating a single selectivity in visual space
specific for all three component appendages in a given Fribble,
though several searches find multiple clusters and some results
show Fribble location along certain dimensions does not affect
ROI response. Locations of clusters, and of high ROI responses,
are roughly equally likely to be in the middle of the space (morph-
ing between clear end-point shapes) or close to the extreme ends
(showing clear end-point shapes like star heads or sharp-toed
feet). For several (but not all) ROIs, stimuli close to one another in

Table 2 | Summary of results for additional convergent and consistent

searches.

Subject/Class/ Local # Cluster # Selectivity

Session inhibition centers dims

S13/1/2 Yes 1 3
S16/1/2 Yes 1 3
S17/1/2 Yes 2 3
S16/2/1 Yes 1 3
S17/2/2 No 1 3
S16/3/1 Yes 2 2, 3
S18/3/1 Yes 1 2
S11/4/1 Yes 1 3
S18/4/1 Yes 1 3
S20/4/1 Yes 1 3

“Local inhibition” marks the observation that stimuli close to one another in

visual space evoke particularly high and low ROI repsonses. “# selectivity dims”

indicates whether clustering occurs in all dimensions (entry is 3) or only along a

few dimension (entry can be 1 or 2).

visual space evoked high and low cortical responses—indicating
sensitivity to slight changes in visual properties.

3.5. LIMITATIONS OF USING SIFT MULTI-DIMENSIONAL SCALING
SPACE

The use of a SIFT-based Euclidean space yielded relatively poor
search performance across subjects and ROIs, despite the abili-
ties of SIFT to capture representations of groups of visual objects
in cortical regions associated with “intermediate-level” visual
processing, discussed by Leeds et al. (2013). Significant conver-
gence and consistency was observed more rarely than expected—
certainly compared to those statistics in Fribble spaces—and
visual inspection of frequently-visited stimuli frequently failed to
provide intuition about visual properties of importance to the
brain region under study.

Confining the SIFT representation to four dimensions, found
through multi-dimensional scaling as discussed in Section 2.6.3,
limited SIFT space’s descriptive power over the broad span of
visual properties encompassed by real-world objects. Use of
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FIGURE 12 | Distance in feature space between stimulus pair evoking

greatest difference in cortical responses or second greatest difference in

cortical responses. Feature space distance color coded from red to blue.

Distance one standard deviation below average distance between
randomly-selected stimuli is 0.87. Search session 1 is represented by letter
“a” and session 2 by letter “b.”

a small number of dimensions was required to enable effec-
tive search over a limited number of scan trials. However,
Figure 3C shows that at least 50 dimensions would be required
to explain 50% of the variance in a SIFT-based pairwise dis-
tance matrix for 1600 images. Even among the 100 stimuli
employed for each object class, the four dimensions used account
for less than 50% of variance. The missing dimensions account
for grouping pairwise distance patterns across large sets of
images—therefore, more-careful selection of stimuli included in
a given object class still renders four-dimensional SIFT space
insufficiently-descriptive.

Intuitively, it is not surprising that there are more than four
axes required to describe the visual world, even in the non-
linear pooling space of SIFT. Indeed, the method employed in
our present study employs 128 descriptors and 128 visual words
(Leeds et al., 2013). Further study shows that tailoring SIFT space
for each of the four object classes used in our sessions still requires
over 10 dimensions each to account for 50% of variance. The
exploration of selectivities for real-world objects using Euclidean
space may well require more dimensions, and thus more trials
or a more efficient real-time analysis approach. The number of
dimensions may be kept small by identification of a better-fitted
feature set, or by limitations on the stimuli. We pursue the latter
through Fribble spaces, with notable improvement.

For the real-world object searches, our use of multi-
dimensional scaling to define SIFT space may also have obscured
observations of unifying properties for the stimuli producing high
cortical activation. In particular, MDS identifies dimensions max-
imizing the preservation of pairwise distances between images.

Within the first few dimensions, MDS allows groups of objects
deemed similar within SIFT to be clustered together—such clus-
tering of visually-similar objects is one of the key assumptions
we rely on in our stimulus selection methods. However, this rep-
resentation of the stimulus images may not capture more subtle
variations within a cluster of visually-similar objects. For example,
within the mammal class, dogs may form a cluster clearly distinct
from cows, but this method does not guarantee that two sitting
dogs will be closer together within the dog cluster than a sitting
dog and a standing dog. Similarly, we would not expect dogs to
be sorted according to ear length (or many other intuitive proper-
ties) along any vector in SIFT space, even though we would expect
all dogs to be spatially far from rhinoceroses. In contrast, Fribble
space is defined to better capture such nuanced and graded visual
variability, and, perhaps as a consequence, reveals ROIs invariant
to changes in some dimensions but selective to changes in others.

Looking forward, we note that there exist a wide range of
alternative feature spaces that might be explored in future stud-
ies. For example, real-world objects might be rated on a large
number of visual properties (or properties could be automati-
cally extracted using unsupervised statistical learning over a large
number of images, e.g., Chen et al., 2013), and PCA could then
be used to determine a smaller number of dimensions capturing
common patterns among these properties—an approach that
is somewhat of a compromise between SIFT space and Fribble
space. At the same time, acknowledging the limitations of the
SIFT-based space, we feel that our experimental findings provide
some insight into visual selectivity within selected cortical regions
across multiple subjects.
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4. DISCUSSION
Our overall goal was to better elucidate the complex visual
properties used in visual object perception. In contrast to the
field’s understanding of early visual processing (e.g., edge detec-
tion in primary visual cortex), the intermediate-level visual fea-
tures encoded in the ventral pathway are poorly understood.
To address this gap, we relied on computational models of
vision to build low-dimensional feature spaces as a frame-
work in which to characterize neural activity across the high-
dimensional world of visual objects. Whereas Hubel and Wiesel
explored varying orientations and locations of edges to exam-
ine single neuron selectivity in primate V1 (Hubel and Wiesel,
1968), we explored these visual feature spaces to examine neu-
ral selectivity across 10 mm3 brain regions in the human ventral
pathway.

Uniquely, we employed real-time fMRI to determine neu-
ral selectivity—rapidly identifying those visual properties that
evoked maximal responses within brain regions of interest in the
context of limited scanning time. These real-time searches across
visual feature space(s) provide new understanding of the complex
visual properties encoded in mid- and high-level brain regions in
the ventral pathway. First, we found that individual brain regions
produced high responses for several sets of visual properties,
that is, for two or three locations within a given feature space.
Second, we found that many brain regions show a suppressed
response for stimuli adjacent in feature space—and slightly var-
ied in visual appearance—to those stimuli evoking strong neural
responses. This observation indicates a form of a high-level
“local inhibition”—a phenomenon often seen for simpler features
encoded in earlier visual areas. Finally, a visual inspection of the
stimulus images corresponding to the spatial selectivity centers of
positive responses offers some intuition regarding what higher-
level visual properties—for example, holistic object shape, part
shape, and surface texture—are encoded in these specific areas of
the brain.

Critically, an examination of the distribution of cortical
responses for both visual feature spaces indicates repeating pat-
terns across subjects and ROIs. In particular, for both the SIFT
and Fribble spaces, a subset of searches show that stimuli elicit-
ing extreme high or low responses cluster together, while stimuli
eliciting responses more in the middle are spread further from
cluster centers. This pattern of slightly differing stimuli pro-
ducing extremely different neural responses is consistent with
known visual coding principles within earlier stages of the ventral
pathway. At the same time, this observation is not universal—
within both the SIFT and Fribble spaces, some searches pro-
duce cortical response maxima that are distributed broadly
across a given feature space, rather than concentrated in one
location.

4.1. PROXIMITY OF DIFFERENTIAL RESPONSES
The proximity of stimuli evoking ROI responses of opposite
extremes can be seen in the scatter plots in Figures 9, 115. Similar
structure is apparent in the sorted stimulus images illustrated as

5Scatter plot examples only are given here in Fribble spaces as they are more
easily evaluated visually in one two-dimensional plot.

the red figures in Figure 5D6. As mentioned earlier, these find-
ings are consistent with the principle of local inhibition often
observed within earlier processing stages of the visual system.
For example, Hubel and Wiesel (1968) observed spatially adjacent
“on” and “off” edge regions in visual stimuli exciting or inhibit-
ing, respectively, the spiking of neurons in mammialian V1. In
modern hierarchical models of the primate visual system, the
first stage of processing is often held to reflect such early find-
ings as realized as a series of Gabor filters (Serre et al., 2007; Kay
et al., 2008). Even earlier within the visual system, prior to cor-
tical coding, retinal ganglion cells are similarly known to have
receptive fields characterized by concentric “on” and “off” rings in
the image plane of any given stimulus (Rodiek and Stone, 1965).
More broadly, multiple stages of alternating patterns of excitation
and suppression are consistent with principles of successful neu-
ral coding models, in which lateral inhibition of representational
units “located” adjacent to or nearby one another are found to
be advantageous to a variety of visual tasks (Rolls and Milward,
2000; Jarrett et al., 2009). The sort of local competition observed
in our study—that is, in alternative feature spaces—is conceptu-
ally plausible based on such models. Our findings indicate that
local inhibition does indeed seem to occur in the complex repre-
sentational spaces employed at more advanced stages of cortical
visual object perception.

4.2. VISUAL INTUITIONS ABOUT FEATURE SELECTIVITY
Analysis of cortical activities over visual space provides further
understanding of the presence of one or more selectivities for
a given brain region and the presence of local inhibition within
the defined visual space. However, intuition about the nature of
preferred stimuli, and their underlying visual properties, is per-
haps better obtained through visual inspection of those stimuli
frequently visited by each search and evoking extreme corti-
cal responses. For many real-world objects searches, it was not
possible to identify unifying visual patterns of preferred stimuli.
For some searches we did observe potentially consistent selected
shape and surface properties. In particular, for Fribble object
searches, executed in constrained visual spaces, unifying visual
patterns for stimuli producing high cortical activity largely were
holistic Fribble shapes. At the same time, there were no clear
patterns across subjects regarding the preferred types of holis-
tic shapes (which are dependent upon the shapes of the three
component appendages of each Fribble class).

For both real-world and Fribble objects searches, visual inspec-
tion of the ordering of stimuli by ROI response, that is, as
shown in Figures 5, 9, fails to yield any specific insights. A
priori, we would expect shape properties to smoothly transi-
tion as measured responses decreased. That we did not observe
this transition may stem from the fact that our measurements
reflect a mix of multiple coding units or noise in our fMRI
data (despite averaging). For real-world objects, note that the
construction of our four-dimensional search space using MDS

6Stimulus examples only are given here for SIFT searches as similarities of the
real-world object stimulus set are easier to see than they are for Fribbles that
all look predominantly similar within a given class to the uninitiated reader.
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may also limit our ability to detect the fine-grained organiza-
tion of the stimuli, yet maintain the broader similarity group-
ings of these same images. At the same time—in light of our
finding of evidence for local inhibition—we might alternatively
expect that that similar-looking stimuli would appear at oppo-
site ends of the line of sorted stimuli. Interestingly, such a
visual disconnect between top-ranked stimuli for single ven-
tral pathway neurons was observed by Woloszyn and Sheinberg
(2012).

More broadly, frequently visited stimuli clustered together
in SIFT space—evoking both extreme high and low responses,
consistent with the observations above—can be united by
coarse shape (e.g., width in Figures 5D, 7C), surface prop-
erties (e.g., brightness in Figure 5D or texture for S1 class
2 in Table 1), and fine internal contours (e.g., sharp-edged
holes for S5 class 2 in Table 1). This observed selectivity for
shapes is consistent with the findings of Yamane et al. (2008)
and Hung et al. (2012), who successfully identified two- and
three-dimensional contour preferences for neurons in V4 and
IT using uniform-gray blob stimuli. Unlike these prior stud-
ies, our work employs real-world stimuli and thus identifies
classes of preferred shapes likely to be encountered in normal
life experience. Observed selectivity for surface properties is a
more novel finding, though Tanaka et al. (1991) observed such
selectivities in primate IT neurons in the context of percep-
tion of object drawings. While some searches provided insights
about cortically relevant visual properties, many searches per-
formed for real-world objects revealed no clear patterns among
stimuli evoking extreme cortical region responses, clustered
together in SIFT-based space. This lack of clear patterns likely
reflects the difficulty of capturing the diversity of real-world
visual properties in a four dimensional space, as discussed in
Section 3.5.

We also note that changes in the cortical representation of
the stimuli due to repeated exposures across the three study ses-
sions may have made interpretation of our results more difficult
across our entire study. However, arguing against this possibil-
ity, our observation of stronger search performance for subjects
viewing Fribble stimuli—novel images with significant similarity
in appearance within each class (thereby increasing the like-
lihood of overlap in the neural representations of individual
stimuli)—suggests that potential adaptation or learning effects
did not constitute a significant problem.

4.3. SELECTIVITY TO VISUAL PARTS
Fribble objects, and corresponding “Fribble spaces,” were more
controlled in their span of visual properties than were the real-
world stimuli. Frequently visited stimuli in each Fribble space can
cluster around a three-dimensional coordinate. Each dimension
corresponds to variations of a single component shape morphed
between two options, such as a star/circle head or flat/curved feet,
as in Figure 4A. Thus, clustering around a point indicates slight
variations on three component shapes, with focus around a fixed
holistic shape. However, across subjects, there was no clear pat-
tern of preferred holistic Fribble shapes, nor of preferred shapes
for any of the three varying component “appendages.” For some
searches, frequently visited Fribble stimuli evoking strong cortical

responses varied along one axis or two axes while staying constant
on the remaining one(s). Depending on the brain region being
interrogated, one to three component shapes were able to account
for such selectivity.

In interpreting this result, we note that it is possible that the
appendage-based construction and variations of Fribble stim-
uli may have biased subjects to rely on perceptual strategies
focused on object parts. Nonetheless, observations on cortical
responses in these subjects may be supported by evidence for
parts-based neural representations observed in subjects view-
ing less-structured real-world objects—for example, ROIs selec-
tive for rectangular statue bases or for bag handles in Table 1.
One possibility is that more local selectivity for parts of an
object, rather than the whole, may be associated with cortical
areas particularly earlier in the ventral pathway—an organi-
zation that would be consistent with the focus of early and
intermediate stages of vision on spatially-distinct parts of a
viewed image, pooled together over increasingly broader parts
of the image at higher stages of vision (Riesenhuber and Poggio,
1999).

5. CONCLUSIONS
Our study is one of the first to address head on the chal-
lenge of identifying intermediate-level feature representation
in human ventral cortex. That is, although there is a great
deal known about early visual coding and increasing knowl-
edge regarding high-level visual representation (Huth et al.,
2012), the field has been relatively silent (with the exception
of Tanaka, 1996, Yamane et al., 2008, Hung et al., 2012) on
how simple edge-like features are combined to encode more
complex features such as parts, textures, and complex shapes.
Here we explored this question in two ways. First, by advanc-
ing the application of a novel research methodology—real-time
methods for rapidly measuring and processing the BOLD sig-
nal on a trial-by-trial basis. Second, by introducing a new
research approach as applied to human neuroimaging—search
methods for efficiently seeking the image or images that are
most effective in driving specific brain regions. Although our
overall findings are somewhat mixed regarding what we have
learned about intermediate-level neural coding, we observed suf-
ficient consistency—in particular, with respect to apparent high-
level local inhibition—to suggest that as these methods mature,
they offer a promising new direction for exploring the fine-
grained neural representation of visual stimuli within the human
brain.
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Automated video object recognition is a topic of emerging importance in both defense
and civilian applications. This work describes an accurate and low-power neuromorphic
architecture and system for real-time automated video object recognition. Our system,
Neuormorphic Visual Understanding of Scenes (NEOVUS), is inspired by computational
neuroscience models of feed-forward object detection and classification pipelines for
processing visual data. The NEOVUS architecture is inspired by the ventral (what)
and dorsal (where) streams of the mammalian visual pathway and integrates retinal
processing, object detection based on form and motion modeling, and object classification
based on convolutional neural networks. The object recognition performance and energy
use of the NEOVUS was evaluated by the Defense Advanced Research Projects Agency
(DARPA) under the Neovision2 program using three urban area video datasets collected
from a mix of stationary and moving platforms. These datasets are challenging and include
a large number of objects of different types in cluttered scenes, with varying illumination
and occlusion conditions. In a systematic evaluation of five different teams by DARPA
on these datasets, the NEOVUS demonstrated the best performance with high object
recognition accuracy and the lowest energy consumption. Its energy use was three
orders of magnitude lower than two independent state of the art baseline computer
vision systems. The dynamic power requirement for the complete system mapped to
commercial off-the-shelf (COTS) hardware that includes a 5.6 Megapixel color camera
processed by object detection and classification algorithms at 30 frames per second was
measured at 21.7 Watts (W), for an effective energy consumption of 5.45 nanoJoules (nJ)
per bit of incoming video. These unprecedented results show that the NEOVUS has the
potential to revolutionize automated video object recognition toward enabling practical
low-power and mobile video processing applications.

Keywords: object detection, object classification, airborne, video image processing, neuromorphic, bio-inspired,

low-power, real-time processing

INTRODUCTION
Unmanned platforms are becoming one of the major sources of
data for intelligence and surveillance both on and off the battle-
field. High resolution and wide field-of-view sensors are resulting
in large volume of images and videos that then need to be pro-
cessed and analyzed. Two problems arise from these emerging
trends: (1) High bandwidth is required to send data from the
platform to ground stations even with good compression and (2)
High workload is imposed on analysts and end-users to process
the data. One solution to these problems is to perform on-board
automated image and video analysis (e.g., detect, recognize and
track objects of interest) to enable better and timely situational
awareness, reduce the amount of data to be streamed, and thus
reduce the end-user workload. However, rapid and accurate sit-
uational awareness is virtually impossible on-board size- and
power-constrained mobile platforms using current state of the
art video-processing methods. Video data from these platforms
typically includes a large number of objects with few pixels on tar-
get and occur under changing illumination, occlusion and clutter
conditions. Conventional computer vision methods are gener-
ally engineered for specific and limited domains, lack robustness

and are computationally expensive, making them unsuitable for
onboard processing.

This work presents a real-time video object recognition sys-
tem that is suitable for onboard processing, for example, on
unmanned intelligence, surveillance and reconnaissance (ISR)
platforms. This work was partially performed under the DARPA
Neovision2 program (DARPA, 2011) whose goal was to enable
an unattended visual object-recognition capability on unmanned
reconnaissance platforms. Our system NEOVUS departs from
traditional, domain-specific engineered video-processing capa-
bilities and is instead inspired by neuromorphic algorithms that
model visual information processing (Mishkin et al., 1983; Huang
and Grossberg, 2010; LeCun et al., 2010). The goal of NEOVUS is
to detect and classify objects of interest (e.g., car, truck, person
and boat) in videos in real-time, while consuming significantly
lower power than state of the art computer vision.

The NEOVUS combines two key capabilities: (1) Object detec-
tion that finds potential objects in the image and outlines a
bounding box around them. It combines form-based detection
using attention approaches to detect entities based on form (e.g.,
shape, color, intensity) and motion-based detection mediated
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by spatial attention. (2) Object classification that then classifies
the detected objects based on a feed-forward multi-layered con-
volutional neural network approach (ConvNet) (LeCun et al.,
2010; Farabet et al., 2011). The combination of detection fol-
lowed by classification provides object recognition results. The
NEOVUS is implemented in COTS hardware to achieve real-
time performance at low size, weight, and power (SWaP). Several
components and capabilities of NEOVUS have been previously
described by us Chen et al. (2011), Khosla et al. (2013a), Khosla
et al. (2013b), Honda et al. (2013). This paper describes the
complete system end-to-end, provides additional details of com-
ponents and key capabilities, and describes in detail the results of
DARPA evaluation on urban datasets.

The rest of the paper is organized as follows. Section
Architecture describes the NEOVUS architecture. Section
Algorithms describes the underlying algorithms for object detec-
tion and classification. Section Hardware Mapping describes
mapping of the NEOVUS to COTS hardware. Section Results and
Discussion describes object recognition performance and energy
consumption results from evaluation of the NEOVUS. Finally,
Section Conclusions provides conclusions and discusses some
future directions of our work.

ARCHITECTURE
The NEOVUS is a neuromorphic object-recognition architec-
ture and system that is inspired by the ventral (what) and dorsal
(where) streams of the mammalian visual pathway (Mishkin et al.,
1983). It is based on and consistent with neuroscience theories
and models of mammalian pathways implicated in visual pro-
cessing (Mishkin et al., 1983; Huang and Grossberg, 2010). The
NEOVUS consists of three primary functions: retinal processing,
object detection and object classification, and five components (I–
V). Figure 1 shows the architecture that combines retinal process-
ing (I), object detection (II–IV) and object classification (V) for
fast and accurate object recognition. Table 1 below summarizes
these functional components (I–V).

Data flow description and interaction between the compo-
nents have been previously described (Khosla et al., 2013a).
Unlike traditional computer vision approaches (e.g., Felzenszwalb
et al., 2010; Kembhavi et al., 2011) that use engineered fea-
tures and raster-scan processing, this architecture first detects
objects and then classifies them based on a set of learned fea-
tures. The object recognition results are then displayed to the
end user for operation and decision-making. In an automated
processing application, such results can be used to determine
what data are to be transmitted to the end-user, fulfilling the
requirements of bandwidth and workload reduction as outlined
in the Introduction section. For example, one may wish to trans-
mit sample images of only certain classes of objects (e.g., red
car) when the system achieves certain confidence level in its
classification results.

ALGORITHMS
OBJECT DETECTION
The purpose of object detection is to locate potential object
regions in the video and pass them on to the object classification
stage. This module detects motion and form by modeling inter-
acting dorsal and ventral pathways based on the two stream

FIGURE 1 | NEOVUS is an integrated, visual cognition architecture that

emulates mammalian dorsal and ventral visual functions. Five
functional components I–V unify the state of the art in retinal processing,
object detection and classification. (LGN, Lateral Geniculate Nucleus;
V1-V4, Visual Cortex areas; MT, Middle Temporal; MST, Medial Superior
Temporal; SC, Superior Colliculus; PPC, Posterior Parietal Cortex; IT,
Infero-Temporal Cortex).

models proposed by neuroscientists (Mishkin et al., 1983; Huang
and Grossberg, 2010). It needs to operate with a high probability
of detection even at reasonably high probability of false positives
so as not to miss potential true objects. The false positives are
then discarded during the classification stage as background or
irrelevant objects. We now describe details of the object detection
algorithm.

Static object detection
Static object detection emulates the attentional pathways that
detect objects based on their form saliency with respect to the
background. The algorithm is motivated by research on using
spectral analysis for visual saliency (Hou and Zhang, 2007).
Figure 2 shows the block diagram of the major steps in our
approach to detecting static objects using the RS method (Honda
et al., 2013).

Targeted contrast enhancement (TCE). The original RS approach
works only on gray-scale images. This works well on bright
objects, but not on dark objects. TCE enhances gray-scale images
for specified colors (e.g., black) which then enables us to eas-
ily detect objects with these colors. This idea can be extended to
any arbitrary color for a potential object of interest. TCE is per-
formed by using an un-normalized Gaussian function with mean
value of the target color and variance incorporated into a sin-
gle user-specified sensitivity parameter β. The color response for
pixel value V(c) and a select set of M target colors T = {Ti(c) :
i ∈ . . .M} is:

R(V,Ti) = exp

(
−βi

∑
c

(V(c) − Ti(c))2
)
,
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Table 1 | Summary of the five functional components (I–V) in the NEOVUS architecture, their hypothesized brain structures, and functions.

Functional component Brain structures Function description

I. Light adaptation
(Luminance and
Contrast)

Retina-LGN Light adaptation and contrast enhancement (Werblin and Dowling, 2010). This
component was developed under a separate retinal camera hardware effort and
is not described in this paper

II. Boundary processing (P-retinal cells)—(LGN Parvo)-(V1
Interblob)-(V2 Interstripe)-V4;
(M-retinal cells)—(LGN Parvo)-(V1
Blob)-(V2 Thin Stripe)-V4

Perceptual boundaries and surfaces (lightness and color) are hypothesized to
form; complementary edge and surface processes define boundaries across
noise occlusions, fill-in featural properties and aid in figure-ground separation
(Mishkin et al., 1983; Elder and Zucker, 1998; Huang and Grossberg, 2010)

III. Motion processing Toward posterior parietal cortex via
V1, MT, and MST with feedback to V4

Computing object direction and speed further aids figure-ground separation and
provides ability to detect objects even under occlusion (Sigala et al., 2005)

IV. Spatial attention SC, LIP, and PPC Core of the where stream; hypothesized formation of attention shrouds and final
fused object detections (Mishkin et al., 1983; Huang and Grossberg, 2010)

V. Classification and
learning

ITa, ITp, and PFC Core of the what stream; hypothesized learning and recognizing object classes
(Mishkin et al., 1983; Tanaka, 2000; Ranganath, 2006)

FIGURE 2 | Workflow of static target detection using form-based attention.

where c indexes the color channel and β is a sensitivity param-
eter for the similarity between that color channel and the target
color. Usually β is set to 1.0, but can be a varying value for dif-
ferent colors depending on the application. The response R is
1 when the image matches the target color and falls off based
on deviation from the target color values. Thus, TCE results
in multiple gray-scale response maps, one for each target color.
Figure 3 illustrates the effect of TCE for a dark vehicle against
dark background.

Anti-aliasing and down-sampling. In order to efficiently deal
with large images, we down sample the response maps from
previous step. Down-sampling can significantly reduce the com-
putational load for subsequent processing. In addition, humans
often fixate their attention to a specific scale when look-
ing for objects. Down-sampling can achieve a similar effect
by setting the scale for object detection. It effectively cre-
ates a pyramid of scales for each image from the previous
step.

Saliency calculation. Each image from the previous step is now
processed by the saliency algorithm. The resulting saliency map
can be thought of as an approximate representation of human
pre-attentive visual response in a bitmap format. We use Spectral
Residual Saliency (RS) approach (Hou and Zhang, 2007) due to
its speed and efficiency. The RS method exploits the inverse power
law of natural images with the observation that the average of
log-spectrums is locally smooth. This enables detecting salient

objects based on the log-spectrum of individual images rather
than ensemble of images. The key steps of this algorithm include:

• Convert the image into the Fourier domain;
• Calculate its phase and amplitude;
• Apply a high pass filter to the log amplitude;
• Transform back into the spatial domain using the modified

amplitude and original phase.

These processing steps highlight the modes in the frequency
domain, the idea being that objects are defined by boundaries
constructed from ridges in the Fourier domain. The output is a set
of saliency maps that are further processed to produce individual
blobs bracketing objects.

Region detection. This step converts each saliency map into
detections represented by their attributes (e.g., position, size,
orientation, and score). A score is associated with each blob
that indicates the confidence score based on its peak saliency
value.

Post-processing and fusion. This final step uses various param-
eters, such as, object size, aspect ratio, and score to filter out
false positives. In more general situation where there are multi-
ple saliency maps or saliency maps of multiple scales, detections
from these multiple maps are fused together with the results from
motion to produce a final set of object detections, which will be
discussed in Section Detection Fusion.
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FIGURE 3 | An illustration of targeted contrast enhancement for color black ([0, 0, 0]) and β = 55. The low contrast vehicle in the shade of the tree is
enhanced so that it clearly stands out from the shadows.

Moving object detection
Stationary platform. This module is used to detect foreground
(moving) objects from a stationary platform, e.g., tower-mounted
camera. The implementation in this work adopts our previous
motion-based saliency technique that detects motion by model-
ing the background and comparing it to the input image (Kim
et al., 2005). Key steps in our implementation are described
below:

Codebook generation. The background model is constructed and
updated by adopting our previous work on a codebook-based
method (Kim et al., 2005). A codebook consists of one or more
codewords that are formed by using samples from each pixel
and clustering them based on a color distortion metric and a
brightness ratio. A codeword typically contains an RGB-vector
and other features such as the minimum and maximum bright-
ness, occurrence frequency, the maximum negative run-length
(MNRL) (Kim et al., 2005), and the first and last access times.
These values are effectively used to evaluate feature differences,
filter out non-background pixels, and recycle unused codewords.

Color model and filtering. The color model separates the color
and brightness distortion evaluations to handle the problem of
illumination changes, for example, shading and highlights. The
color and brightness conditions are satisfied only when both the
pure colors and brightness lie within acceptable bounds of the
codeword. During training, a fat codebook encodes every incom-
ing pixel in the training set. This fat codebook is then filtered
to remove codewords that might contain moving foreground
objects. We define MNRL as the maximum interval in time that
the codeword has not recurred during the training period (Kim
et al., 2005). A codeword with a large MNRL is eliminated from
the codebook.

Foreground detection. To detect foreground in an incoming image
frame, each sample pixel is matched against the correspond-
ing background model. Unlike other Gaussian or kernel based
methods, this step does not require probability calculations. The
codebook method is fast as it only calculates the distance between
the sample and the nearest cluster’s mean in the codebook. The
pixel is classified as foreground if no matching codeword is found;
otherwise it is a background. This is followed by region extraction
similar to that described in Section Static object detection.

Moving platform. When the sensor platform is moving, we lever-
age motion information in the video for object detection (Chen
et al., 2011; Khosla et al., 2013a). Our approach illustrated in
Figure 4 works well even in the presence of jitter and vibration.

Feature extraction and matching. Our approach uses Scale
Invariant Feature Transform (SIFT) (Lowe, 1999) features due
to its attractive properties of invariance to scale, orientation, and
affine distortions. SIFT descriptors represent the gradient orienta-
tion histograms and can be used to determine similarity between
key points. The matching step matches the key points between a
pair of images based on Euclidean distance between their SIFT
descriptors and outputs a candidate set of matching points.

Ground-plane homography estimation. Some of the candidate
matches from the previous step may be incorrect due to noise and
inherent limitations of SIFT. To remove these false matches, we
apply RANSAC (Fischler and Bolles, 1981) which is an iterative
method to estimate parameters of a mathematical model from
a set of observed data that contains outliers. We use RANSAC
to find a ground-plane homography transform that best fits the
candidate matches. This provides accurate matches and transfor-
mation (i.e., homography) between a pair of images.

Frame-to-reference registration. This step warps the frames into a
global coordinate reference. Our approach uses a time window
size of N frames, with the middle frame being the reference. Each
frame is warped to the reference frame in the window based on
the homography transformation. This enables all frames in a time
window to be stabilized with respect to the center reference frame.

Difference accumulation. This step first computes the difference
image between the reference frame and each frame registered to
it. The difference image corresponds to independently moving
objects against the ground plane. This moving pixel detection
process accumulates the differences from several registered frames
to increase confidence of detection. For example, with window
size N = 3, the reference frame Fi, its previous frame Fi − 1 and
next frame Fi + 1 are used to compute the frame differences.

Region extraction. The previous step effectively produces a motion
saliency map, where higher values indicate more prominent
motion due to object motion. We then apply the same region
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FIGURE 4 | Block diagram of moving object detection algorithm for airborne motion imagery.

extraction method as described in Section Static Object Detection
to obtain a set of candidate detections.

Detection fusion
The final step in object detection is to combine the form and
motion processing detections into a single detection set prior to
object classification. Our approach performs fusion within the
static object detection followed by its fusion with motion detec-
tion. Detections are all represented simply by the detection boxes
in terms of their location, size, and score.

For fusion of detections from different saliency channels (e.g.,
intensity and TCE) and scales, we use several fusion stages. The
first stage called “modal” fusion is motivated by observing that
different saliency channels carry different importance in a partic-
ular application. For example, intensity channel is usually more
important than any single channel from TCE, unless the applica-
tion has a specific goal of finding objects of specific color (e.g.,
finding all red cars on the road). To account for this we shift
the “mode” of detection scores (distribution) by adding an off-
set to the scores of detections from intensity channel such that
detections from intensity channel have higher scores in general
than detections from other channels, e.g., a dark channel. After
that, fusion of the detections is accomplished by the unions of
the detections from different channels, which are prioritized by
their scores and will be further filtered in a resource-limited sys-
tem before they reached the classification stage. The second fusion

stage deals with overlapping detections. Detections in different
scale can overlap or objects can split split-up in higher resolutions
maps. In our implementation, we keep the enclosing and overlap-
ping detections from lower-resolution. In case of detections from
different color channels, we keep the detection with the higher
score.

The next step is to merge motion detections with the results
from fused detections from static object detection as described
above. Here we use a variant of the second fusion scheme
described above based on detection overlapping. Our experience
is that motion detection is much more reliable than saliency based
detection, therefore we keep all detections from motion detec-
tion. For the fused detections from static object detection, we only
keep them if they do not have significant overlap with any detec-
tions from motion detection since such overlap indicates they are
the same object. A typical example of the detection process from
NEOVUS is shown in Figure 5.

OBJECT CLASSIFICATION
Convolutional neural networks (ConvNets) (LeCun et al., 2010) is
a supervised deep-learning neural network with multiple layers of
similarly structured convolutional feature extraction operations
followed by a linear neural network (NN) classifier. ConvNets
are an excellent model for image recognition because the struc-
ture allows automatic learning of image features as opposed to
engineered ones used in traditional computer vision approaches
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FIGURE 5 | NEOVUS object detection example by fusion of form and motion pathways. Input image (top left) is processed by separate and parallel
pathways for form (top right) and motion (bottom left). The detections for each pathway are fused (bottom right) and sent to the classification module.

(Felzenszwalb et al., 2010; Kembhavi et al., 2011). ConvNets typ-
ically consist of alternating layers of simple and complex cells as
found in mammalian visual cortex. Simple cells perform template
matching and complex cells pool these results to achieve invari-
ance. A typical ConvNet has several of 3-layer convolution stages
followed by a classifier stage which is a linear NN with one or
more hidden layers. Each convolution stage has three layers: (1) a
filter bank layer (convolutions) to simulate simple cells (2) non-
linearity activation layer, and (3) feature pooling layer to simulate
complex cells. The entire network can be trained using backprop-
agation with stochastic gradient descent (LeCun et al., 2010). Due
to its feedforward nature (non-recursive) and uniform computa-
tion within each convolution stage, ConvNets are computation-
ally very efficient. It has been implemented in NeuFlow data-flow
processor (Farabet et al., 2011) on COTS field programmable
gate arrays (FPGAs) to enable low-power, real-time operation.
Our prototype hardware evaluation system described in Section
Hardware Mapping used the NeuFlow approach.

Our ConvNet implementation follows the traditional architec-
ture outlined above (LeCun et al., 2010) and has three stages. We
first resize input RGB color images of candidate target region to
86 by 86 pixels regardless of their original aspect ratio. Then we
convert the image to YUV color space, and further process the
Y channel by local subtractive and divisive normalization (LeCun
et al., 2010). The convolution layer of first stage has eight convolu-
tion filter kernels of 7 by 7 pixels, followed by point-wise sigmoid
activation function (tanh()) and max-pooling in 4 by 4 pixels
neighborhood and subsampling with a stride of 4 pixels, result-
ing in eight feature maps of 20 by 20 pixels each at the end of
stage 1. The remaining stages are detailed in Figure 6. The output

of the convolution layer at stage 3 is a 128-D vector, which is
then fed to the tanh() non-linear activation layer followed by
a fully-connected linear NN classifier. We chose the network
parameters based on prior experience with similar datasets and
validation.

To train our ConvNet, we use training videos provided by
DARPA. Manually annotated video clips were used to train and a
separate test set was used to quantify their performance (Section
Results and Discussion). These videos contain hand-annotated
ground truth for objects of interest in each dataset. The anno-
tated image regions and their class labels are extracted and used
to train the ConvNet. Depending on data sets and type of objects,
we end up with a few hundreds to a few hundreds of thousands
samples for the training step.

HARDWARE MAPPING
The NEOVUS hardware prototype was implemented on commer-
cial COTS hardware (Figure 7) and can process both recorded
and live video. For energy evaluation purposes, we processed
live video from a 5.6 Megapixel RGB color camera at 30
frames per second. The camera connects to a frame grab-
ber (via CameraLink) and a laptop computer (PCI-Express).
The computer runs the object detection algorithm and sends
image region corresponding to each detected object to a COTS
FPGA board (Xilinx ML605 Virtex-6) for object classification.
The FPGA board runs NeuFlow implementation of a trained
ConvNet and sends the results to the laptop for subsequent dis-
play. The dynamic power of the complete system that includes
the 5.6 Mpixel camera, object detection, and object classification
components running at 30 frames per second was measured by
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FIGURE 6 | ConvNet structure implemented in the NEOVUS.

FIGURE 7 | Block Diagram of the NEOVUS hardware system. Video
frames are captured from the sensor using a frame grabber card and sent to
a laptop computer for buffering, display, and initial processing. Classification

algorithms are executed on a COTS FPGA board that implements NeuFlow
running a pre-trained ConvNet, which accepts image regions and returns a
class label to the laptop computer for each region.

DARPA during a formal evaluation at 21.7 Watts (W). This trans-
lates to effective energy consumption of 5.45 nanoJoules (nJ) per
bit of incoming video.

RESULTS AND DISCUSSION
In this section, we describe results of NEOVUS evaluation by
DARPA on three urban area video datasets (Tower, Helicopter and
TAILWIND, Figure 8) during summative testing conducted at the
end of the Neovision2 program. The Tower dataset is filmed from
a fixed camera on top of the Stanford University Hoover tower
and the Helicopter dataset is filmed from a helicopter flying over
Los Angeles. In both cases, the 1080p video imagery is converted
to 8 bit PNG frames for analysis. A third dataset from DARPA
TAILWIND (Tactical Aircraft to Increase Long Wave Infrared
Nighttime Detection) program is captured from an airplane oper-
ating at two different altitudes. The Tower and Helicopter datasets
are now available for download (iLab Neovision2 annotated video
datasets, 2013a1). Each video dataset consists of variable number
of object classes (Figure 9). The video frames typically have mul-
tiple objects per frame that may be occluded or even overlapping
in some cases. The videos are processed through NEOVUS and
its outputs in the form of object locations, bounding boxes, and
class labels is logged for every frame. The NEOVUS logged results

1Available online at: http://ilab.usc.edu/neo2/dataset/

are evaluated using ground-truth and evaluation software. The
ground-truth is created by human annotators at VideoMining
Corporation who labeled 10 object classes (Boat, Car, Container,
Cyclist, Helicopter, Person, Plane, Tractor-Trailer, Bus, and Truck)
in these datasets. Each object is enclosed in an oriented rectan-
gle that best encompasses the object. Ten percent of the datasets
are annotated by two independent annotators and their outputs
are compared to assess quality and consistency of annotations;
significant differences between the two sets trigger a review of
the annotation process to assure annotation quality. The ground-
truth was created under DARPA supervision and no performer
in the program had any control of that process. The evalu-
ation software uses Normalized Multiple Object Thresholded
Detection Accuracy (NMOTDA) score (Kasturi et al., 2009; iLab
Neovision2 Performance Evaluation Protocol, 2013b2) to evaluate
performance per sequence:

NMOTDA = 1 −
∑Nframes

i = 1

(
cmm(t)+cf mf (t)

)
∑Nframes

i = 1

(
N(t)

G

)

2Available online at: http://ilab.usc.edu/neo2/dataset/neovision2-perfor
mance-evaluation-protocol.pdf
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FIGURE 8 | Three video datasets (Tower, Helicopter, and TAILWIND) were used for the summative tests.

where m(t) = number of missed detections, f (t) = number of

false positives, and N(t)
G = number of ground-truth objects in

the tth frame. The summations are carried out over all evalu-
ated frames. In Neovision2 evaluations, the cost functions cm and
cf for missed detects and false positives, respectively were set to
identity. This is a sequence-based measure which penalizes false
detections, missed detections and object fragmentation. Note that
maximizing NMOTDA for the sequence is the same as finding the
optimal assignment of ground truth boxes to system output boxes
at each frame image.

Figure 10 gives an example of NEOVUS results superimposed
on a frame of Tower dataset. By aggregating the results, one
can plot the ROC curves as Pd (probability of correct recogni-
tion) vs. FPPI (False Positives Per Image). Figure 11 shows the
NEOVUS results for four object classes on the Tower dataset.
Overall, NEOVUS achieved excellent object recognition at about
90% per-frame accuracy and 0.1 FPPI.

In each data domain, multiple sequences are used for evalu-
ation. The summary of the performance over the entire dataset,
i.e., over all the video clips, is calculated using Weighted
NMOTDA (WNMOTDA). WNMOTDA is calculated for each
class separately and is given by,

WNMOTDAi =
∑NVC

j = 1 NMOTDAij ∗ NGTij∑NVC
j = 1 NGTij

where WNMOTDAi is the NMOTDA for class i calculated
over all the video clips, NMOTDAij is the NMOTDA mea-
sure calculated for class i in video clip j, NVC is the total
number of video clips, and NGTij is the number of ground
truth objects of class i in video clip j. Finally an average
WNMOTDA score is generated for all object classes for each
domain by ignoring the class labels. Before scoring, identical
boxes are merged into one. Overlapped boxes (if Overlap_Ratio
is over 20%) are merged into one and their union is used
instead. All of these above calculations are part of the evaluation
software.

The recognition performance and energy consumption results
of summative testing were formally released by DARPA and
are presented in Figure 12 (DARPA, 2011). Five teams par-
ticipated in the program and evaluation. Three neuromorphic
teams (C, D, E) developed neuromorphic vision algorithms.
Two baseline algorithms, based on the Deformable Part Model
algorithm (Felzenszwalb et al., 2010), representing typical com-
puter vision methods were implemented to serve as a bench-
mark for comparing against the neuromorphic algorithms. HRL’s
NEOVUS (Team C) was the best performer with high recogni-
tion accuracy (WNOMTDA) and the lowest energy use (nJ/bit)
amongst all five teams. Particularly noteworthy is that the
NEOVUS energy use was at least three orders of magnitude
lower than the computer vision systems (Teams A and B,
Figure 12). These unprecedented results show that neuromorphic
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FIGURE 9 | A maximum of N = 10 object classes were to be recognized in the summative tests.

FIGURE 10 | Sample NEOVUS object classification results on one frame of Tower video dataset (object set: car, cyclist, person, bus, truck).

algorithms and hardware have the potential to revolutionize low-
power situational awareness applications, e.g., on-board small
unmanned aerial vehicles (UAV).

Our current low-power NEOVUS implementation is
mature enough to be deployed on mobile platforms toward
onboard processing. Figure 13 supports this claim by ana-
lyzing platform payload available SWaP and extrapolating

our measured energy use (5.45 nanoJoules per bit) to
other camera resolutions. For example, NEOVUS could run
onboard small UAV’s, such as the AeroVironment Raven
(Raven RQ-11, 20143), in real-time for a 1-Megapixel cam-
era. Larger UAVs, such as the Boeing-Insitu ScanEagle

3Available online at: http://www.avinc.com/uas/adc/raven/.

Frontiers in Computational Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 147 | 167

http://www.avinc.com/uas/adc/raven/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Khosla et al. A neuromorphic system for video object recognition

(Boeing Insitu ScanEagle, 20144 ), can hold up to a
6-Megapixel camera and still support NEOVUS processing
in real-time.

4Available online at: http://www.insitu.com/systems/scaneagle

FIGURE 11 | Performance of the NEOVUS shown as ROCs in terms of

Pd (probability of correct recognition) vs. False Positives Per Image

(FPPI). The blue curve “Detection” corresponds to the overall detection
performance of all objects regardless of class.

CONCLUSIONS
This work described a neuromorphic object recognition system
inspired by neuroscience findings of object recognition pathways
in the mammalian visual system. From a practical perspective,
the NEOVUS is a proven collection of neuromorphic algorithms,
software, and architecture for automated and accurate video
object recognition at significantly lower power than state of the
art computer vision. It processes video based on human-like
search and classification models that are significantly differ-
ent from computer vision brute-force raster-scan approaches.
The NEOVUS was successfully evaluated on real-world urban
video datasets and proven to accurately recognize objects at low-
power. The successful hardware design and mapping of NEOVUS
to COTS hardware can help enable potential autonomous and
mobile applications. This onboard processing can reduce both the
requirements for data bandwidth and analyst man power. While
the NEOVUS hardware was geared for autonomous on-board
processing, it is just as applicable to off-board processing of live or
recorded images and videos. For off-board processing, the highly
efficient algorithms used in NEOVUS can enable video analysis in
faster than real-time even with COTS computer hardware.

The NEOVUS described in this work is a feed-forward,
bottom-up object recognition architecture. However, models and
algorithms for top-down attention and processing can be added
to the current architecture with little modifications. For exam-
ple, goal-directed search and classification, e.g., find and track
all white trucks) can be added to our framework. Future work

FIGURE 12 | Results of summative testing released by DARPA. Y-axis
is object recognition performance expressed as WNMOTDA (higher is
better). X-axis is energy use expressed as nJ/bit (lower is better).
Teams A,B are baseline computer vision teams and teams C–E are

neuromorphic teams. HRL’s NEOVUS (Team C) was the best performer
with high recognition accuracy and at least three orders of magnitude
lower energy consumption than state of the art computer vision
systems (A,B). (DARPA, 2011)
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FIGURE 13 | Projected power consumption and bandwidth of the NEOVUS hardware system. The power consumption of the NEOVUS hardware system
is low enough to even fit onto small UAVs. The bandwidth requirement of the system is far lower than that of a standard UAV surveillance system.

will include these top-down aspects and onboard evaluation of
this capability. This is expected to yield the greatest level of
improvement toward enabling practical systems.
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Neurochirurgie en Neuroanatomie, Katholieke Universiteit Leuven, Leuven, Belgium

The primate visual system extracts object shape information for object recognition in

the ventral visual stream. Recent research has demonstrated that object shape is also

processed in the dorsal visual stream, which is specialized for spatial vision and the

planning of actions. A number of studies have investigated the coding of 2D shape in the

anterior intraparietal area (AIP), one of the end-stage areas of the dorsal stream which

has been implicated in the extraction of affordances for the purpose of grasping. These

findings challenge the current understanding of area AIP as a critical stage in the dorsal

stream for the extraction of object affordances. The representation of three-dimensional

(3D) shape has been studied in two interconnected areas known to be critical for object

grasping: area AIP and area F5a in the ventral premotor cortex (PMv), to which AIP

projects. In both areas neurons respond selectively to 3D shape defined by binocular

disparity, but the latency of the neural selectivity is approximately 10ms longer in F5a

compared to AIP, consistent with its higher position in the hierarchy of cortical areas.

Furthermore, F5a neurons were more sensitive to small amplitudes of 3D curvature

and could detect subtle differences in 3D structure more reliably than AIP neurons.

In both areas, 3D-shape selective neurons were co-localized with neurons showing

motor-related activity during object grasping in the dark, indicating a close convergence

of visual and motor information on the same clusters of neurons.

Keywords: object, shape, visual cortex, macaque, depth, parietal cortex, dorsal stream

Introduction

Visual object analysis in natural conditions is computationally demanding but critical for sur-
vival, hence the primate brain devotes considerable computing power to solve this problem. Lesion
studies in monkeys (Ungerleider and Mishkin, 1982) and patients (Goodale et al., 1991) have
demonstrated that the visual system beyond primary visual cortex consists of two subdivisions,
a ventral stream directed toward the temporal cortex for object recognition and categorization,
and a dorsal stream directed to the parietal cortex for spatial vision and the planning of actions
(Figure 1A). Since primates not only recognize and categorize objects, but also grasp and manip-
ulate those objects, it comes as no surprise that objects are processed in both the ventral and the
dorsal visual stream.

The first recording experiments in the ventral stream, which is critical for object recognition,
were published more than four decades ago (Gross et al., 1969), and the accumulated knowl-
edge about the properties of individual neurons has spurred the development of a large number
of computational models on object and shape analysis for object recognition (Riesenhuber and
Poggio, 1999; Poggio and Ullman, 2013). However, neurophysiological evidence for the visual
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FIGURE 1 | Cortical areas processing object shape. (A) Overview of the

macaque brain illustrating the locations of the areas involved in processing

object shape, and the most important connections between these areas.

Unidirectional arrows indicate the presumed flow of visual information along the

dorsal stream, the bidirectional arrow between AIP and TEs indicates that the

direction of information flow is unclear at present. Note that most connections in

extrastriate cortex are bidirectional. CIP, caudal intraparietal area; LIP, lateral

intraparietal area; AIP, anterior intraparietal area; F5a, anterior subsector of area

F5; TEs, subsector of area TE in the anterior Superior Temporal Sulcus. (B)

Schematic flow chart of visual 3D information. Dark boxes indicate areas of the

dorsal visual stream, open boxes indicate ventral stream areas, hatched boxes

indicate areas selective for higher-order disparity. Boxes with question marks

indicate unknown areas.

analysis of objects in the dorsal stream has only recently emerged,
and biologically-plausible models for the dorsal stream are scarce
(Fagg and Arbib, 1998; Molina-Vilaplana et al., 2007). Robots
have to interact with objects in an unpredictable environment,
and artificial vision systems that operate based on principles used
by the primate dorsal stream areas could undoubtedly advance
the fields of computer vision and robotics (Kruger et al., 2013).
To stimulate the interaction between neurophysiology and com-
putational modeling, it is important to review recent progress in
our understanding of the neural representation of object shape in
the primate dorsal visual stream.

Objects contain both two-dimensional (2D: e.g., contour,
color, texture) and three-dimensional (3D: e.g., orientation in
depth and depth structure) information. Originating in pri-
mary visual cortex, at least three different pathways are sensi-
tive to depth information (Figure 1B). The MT/V5–MST/FST
pathway is primarily involved in the visual analysis of mov-
ing stimuli and ego-motion, and FST neurons are selective
for three-dimensional shape defined by structure-from-motion
(Mysore et al., 2010). The ventral pathway V4–TEO–TEs
builds a very detailed representation of the depth structure
of objects, and finally the V3A–CIP–AIP–F5a pathway analy-
ses object shape for grasping and manipulation. These path-
ways should not be regarded as entirely separate entities,
since numerous interactions between them exist at different
levels in the hierarchy. Rather, each pathway has its own
specialization and can function independently of the other
pathways.

In this review we will focus on the properties of individual
neurons in the parietal and frontal cortex, the hierarchy of cor-
tical areas that links early visual areas to the motor system, and
the relation between neuronal firing and behavior. Neurons in
other parietal areas, such as area 5 in the medial bank of the
IPS (Gardner et al., 2007) and area V6A in the medial parieto-
occipital cortex (Fattori et al., 2012) also respond selectively to
objects of different sizes and orientations. However, the role of
these neurons in computing object shape to guide the preshap-
ing of the hand during grasping is less clear at present. We will
first discuss the coding of two-dimensional (2D) shape in areas
LIP and AIP, the network of areas involved in processing three-
dimensional (3D) shape investigated with fMRI, and finally the
single-cell properties of neurons involved in 3D shape coding in
the dorsal stream.

Two-Dimensional Shape Selectivity in the
Dorsal Visual Stream

The first report of shape selectivity in the dorsal stream was
a study by Sereno et al. (Sereno and Maunsell, 1998) in the
lateral intraparietal area (LIP), an area in posterior parietal cortex
(Figure 1) traditionally associated with eye movement planning
and visual attention (Colby and Goldberg, 1999; Andersen and
Buneo, 2002). In this study, many LIP neurons showed clear
selectivity for simple two-dimensional (2D) shapes appearing
in the receptive field (RF) in the absence of any eye move-
ments. However, size and position invariance—two properties
that are believed to be essential for genuine shape selectivity—
were only tested in a small number of neurons. A more recent
study (Janssen et al., 2008) confirmed the presence of shape-
selective responses in LIP. However, a more systematic test of size
and position invariance revealed that LIP neurons rarely exhibit
these properties. In many cases shape-selective responses arose
because of accidental interactions between the shape and the RF,
such as a partial overlap. The RF structure of these LIP neurons
was frequently inhomogeneous with multiple local maxima, and
could even depend on the stimulus and the task: for example
the RF tested with small shapes could be different from the RF
tested with saccades. The lack of tolerance to changes in stimu-
lus position in LIP neurons represented the first evidence that the
shape representation in the dorsal stream is fundamentally dis-
tinct from the shape representation in the ventral visual stream,
which is characterized by shape selectivity and tolerance of the
shape preference to changes in stimulus position.

Just anterior to LIP lies area AIP (Figure 1), an area known to
be critical for object grasping (Gallese et al., 1994; Murata et al.,
2000; Baumann et al., 2009). Romero et al. (2012), recorded in
area AIP using 2D images of familiar (e.g., fruits) and unfamil-
iar (tools) objects. Almost all AIP neurons showed significant
selectivity to these images of objects, but subsequent testing with
silhouettes and outline stimuli revealed that this selectivity was
primarily based on the contours of the images. A follow-up study
(Romero et al., 2013), demonstrated that for most AIP neurons,
the presence of binocular disparity in these images was not neces-
sary, and that a population of AIP neurons represents primarily
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relatively simple stimulus features present in images of objects,
such as aspect ratio and orientation.

The observation of neural selectivity for shape contours in
AIP does not allow determining which shape features are being
extracted by AIP neurons. For example, is the entire contour
necessary or are parts of the shape contour (possibly correspond-
ing to grasping affordances) sufficient to evoke AIP responses?
Romero et al. (2014) used a systematic stimulus reduction
approach, in which outline stimuli were fragmented into 4, 8, or
16 parts, the latter measuring merely 1–1.5◦. Following previous
studies in the ventral visual stream (Tanaka, 1996), the authors
determined the minimal effective shape feature as the smallest
fragment to which the neural response was at least 70% of the
response to the intact outline. The example AIP neuron illus-
trated in Figure 2 responded strongly to the outline of a key
but not to the outline of a monkey hand. However, some of the
smallest fragments in the test still elicited robust responses in this
neuron. Hence although AIP is thought to be involved in extract-
ing grasping affordances, the AIP responses were mainly driven

by very simple shape features, but not by object parts that can
be grasped (Figure 2). Similar to previous observations in neigh-
boring area LIP, the fragment selectivity depended strongly on
the spatial position of the stimulus, since even small position
shifts (2.5◦) evoked radically different responses and therefore
a very different shape selectivity. Basic orientation selectivity
or differences in eye movements could not explain the frag-
ment responses. These results suggest that AIP neurons may not
extract grasp affordances. Future studies should determine how
the 2D-shape representation changes in ventral premotor areas.

A Network of Cortical Areas Sensitive to
the Depth Structure of Objects

The depth structure of objects (i.e., flat, convex, or concave) can
be specified by a large number of depth cues such as motion
parallax, texture gradients, and shading. Many studies investigat-
ing the neural basis of 3D object vision have used random dot

FIGURE 2 | Coding of shape features in AIP. Example AIP neuron

responding to an image of an object and to fragments of image contours. In

each box the stimulus is illustrated, the color of each box represents the

normalized firing rate of the neuron to that stimulus (maximum response was

29 spikes/s). Top row: intact object contour, second row: the four fragments

derived from subdividing the object contour into four fragments along the

main axes of the shape (four-fragment stimuli). Third and fourth row: eight-

and 16-fragment stimuli. Each contour fragment is connected to the stimulus

from which it was derived. The original object images from which the

contours were derived are illustrated on the left side (arrows pointing to their

respective contour stimuli). All stimuli were presented at the center of the RF.

Reproduced with permission from (Romero et al., 2014).
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stereograms (Figure 3), in which depth information is exclusively
defined by the gradients of binocular disparity, for obvious rea-
sons. First of all, binocular disparity is the most powerful depth
cue (Howard and Rogers, 1995): even when present in isolation,
disparity evokes a very vivid percept of depth that is—in contrast
to motion parallax or shading—unambiguous with respect to the
sign of depth (near or far, convex or concave). Moreover, physi-
ologists are particularly keen on this type of stimuli because one
can easily determine whether a neuron (or even a cortical area
in the case of fMRI) is responding to the depth from disparity
in the stimulus and not to other stimulus features: simply pre-
senting the stimulus to one eye only removes all depth informa-
tion in the stimulus while preserving shape and texture (Janssen
et al., 1999; Durand et al., 2007). In contrast, for other depth cues
such as texture gradients, determining which aspect of the stim-
ulus the neuron responds to requires numerous control stimuli.
Finally, stereograms also allow precise behavioral control: mon-
keys and humans can be trained to discriminate depth in stere-
ograms, and varying the percentage of correlation between the
dots in the images presented to the left and the right eye (disparity
coherence) furnishes a parametric manipulation of the strength
of the depth stimulus which can then be related to behaviorial
performance.

A series of functional imaging and single-cell studies in mon-
keys (Janssen et al., 2000a; Durand et al., 2007; Joly et al., 2009) as
well as imaging experiments in humans (Georgieva et al., 2009)
have suggested that many cortical areas located in both the dorsal
and the ventral visual stream are sensitive to the depth struc-
ture of objects (Figure 1A). This network contains AIP which, as
mentioned earlier, is known to be critical for grasping (Gallese
et al., 1994; Murata et al., 2000), a region (TEs) in the infe-
rior temporal cortex (ITC), the end-stage of the ventral visual
stream and critical for object recognition, and a subsector of
the ventral premotor cortex (area F5a, Joly et al., 2009). The
observation that not only ventral stream but also dorsal stream
areas are processing 3D object information came as no surprise,
since many years before these imaging studies, investigations in
a patient with a ventral stream lesion had already indicated that
object grasping can be intact while object recognition is severely
impaired (Goodale et al., 1991; Murata et al., 2000). The object
analysis required for object grasping was presumably performed
by her intact dorsal stream areas (Murata et al., 2000; James et al.,
2003).

Single-Cell Studies in the Dorsal Visual
Stream on the Visual Analysis of 3D
Structure

fMRI can identify regions that are activated more by curved
surfaces than by flat surfaces, but a detailed understanding of
the neuronal selectivity in these areas requires invasive electro-
physiological recordings of single neurons. Early in the hierar-
chy of the dorsal visual stream, the Caudal Intraparietal area
(CIP) has been studied using inclined planar surfaces in which
depth was defined by binocular disparity and/or texture gradients
(Tsutsui et al., 2002). CIP neurons can signal the 3D-orientation

FIGURE 3 | Example random dot stereograms. The monocular images

are illustrated below a 3D rendering of two depth stimuli (Gaussian depth

profile and Inclined depth profile).

(the tilt) of large planar surfaces when either disparity or texture
gradients are used as a depth cue (i.e., cue invariance). A more
recent report suggests that CIP neurons can also be selective for
disparity-defined concave and convex surfaces (Katsuyama et al.,
2010). Rosenberg et al. (2013) showed that individual CIP neu-
rons jointly encode the tilt and slant of large planar surfaces.
In view of the anatomical connections of CIP, which run along
the lateral bank of the IPS toward area AIP (Nakamura et al.,
2001), and more recent preliminary monkey fMRI findings (Van
Dromme and Janssen, unpublished observations), CIP could be
an important—but not the only (Borra et al., 2008)—input area
for AIP. However, since reversible inactivation of area CIP does
not cause a grasping deficit (Tsutsui et al., 2001) but sometimes a
perceptual deficit in the discrimination of tilt and slant, the role
of area CIP in computing 3D object shape for object grasping
remains largely unknown.

Previous studies in area AIP had reported object-selective
responses in this area (Murata et al., 2000) but it was unclear
whether these neurons encoded differences in 3D structure, 2D
contour, orientation or any other feature that differed between
the objects used in those experiments. Srivastava et al. (2009)
recorded single-cell activity in the AIP of awake fixating rhesus
monkeys using disparity-defined curved surfaces. A large propor-
tion of AIP neurons responded selectively to concave and convex
surfaces that had identical contours, as illustrated by the example
neuron in Figure 4. This neuron fired vigorously when a con-
vex surface was presented, but not at all when the surface was
concave, a selectivity which could not be accounted for by the
responses to the monocular presentations. Since this neuron pre-
served its selectivity across positions in depth (data not shown),
the neuron must have responded to a change in binocular dispar-
ity along the surface of the stimulus, i.e., higher-order disparity
selectivity. The same study observed that the neuronal properties
in AIP were markedly different from the ones in TEs: AIP neu-
rons fired much faster to the presentation of curved surfaces (a
population latency of 60–70ms in AIP compared to 90–100ms
in TEs), but appeared less sensitive to small differences in 3D
structure, including the sign of curvature: while TEs neurons fre-
quently showed similar responses to curved surfaces with differ-
ent degrees of curvedness (provided they had the same sign, i.e.,
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FIGURE 4 | Example neuron recorded in area AIP responding

selectively to the depth structure of surfaces. The top row

shows the peristimulus-time histograms (PSTHs) of the responses to

a convex depth profile, the bottom row the responses to a

concave depth profile. Stereo: binocular presentation with disparity.

Left eye: monocular presentation to the left eye. Right eye:

monocular presentation to the right eye. The horizontal line below

the PSTHs indicates the duration of stimulus presentation (800ms).

This neuron preserved its selectivity across positions in depth (data

not shown).

either convex or concave) and large response differences when
the sign of curvature changed (even for very slightly curved sur-
faces), the response of AIP neurons declined monotonically as
the degree of curvedness was decreased. These observations were
the first demonstration that a distinct representation of the depth
structure of objects exists in the dorsal visual stream. A follow-
up study (Theys et al., 2012b), showed that the large majority of
the AIP neurons are primarily sensitive to the disparity gradi-
ents on the boundary of the stimulus but largely ignore the depth
structure information on the surface, which represents another
difference with TEs neurons.

The ventral premotor cortex (PMv) represents the main target
of area AIP (Borra et al., 2008). Reversible inactivation of PMv
produces a grasping deficit that is highly similar to the one seen
after AIP inactivation (Gallese et al., 1994; Fogassi et al., 2001).
However, recent studies have provided functional and anatom-
ical evidence suggesting that PMv is not a homogeneous area.
A monkey fMRI study (Joly et al., 2009) showed that a subsec-
tor of PMv, area F5a, is more activated by curved surfaces than
by flat surfaces at different positions in depth, similar to AIP.
This activation was located in the depth of the more anterior
part of the inferior ramus of the arcuate sulcus. Recent anatomi-
cal studies (Belmalih et al., 2009; Gerbella et al., 2011) described
differences in the cytoarchitectonics and anatomical connectivity
between area F5a and the surrounding subsectors of PMv: F5a
does not project directly to primary motor cortex, but does so
through its connections with F5p.Moreover, F5a is more strongly
connected to the parietal (AIP) and prefrontal (areas 46 and 12)
cortex. Based on the anatomical connectivity of F5a, Gerbella
et al. (2011) coined the term “pre-premotor cortex” for area F5a,
indicating that this subsector of PMv could represent a stage
upstream from the more widely studied F5p and F5c sectors of
PMv.

Guided by a monkey fMRI study (Joly et al., 2009), Theys et al.
(2012a) targeted the F5a subsector with microelectrode record-
ings to investigate in detail to what extent this region differs
functionally from the other subsectors of PMv. Accurately pre-
dicted by fMRI, neurons selective for disparity-defined curved
surfaces were located in F5a but not in surrounding regions
of PMv. The example neuron in Figure 5 responded to a con-
vex depth profile but not to a concave depth profile irrespec-
tive of the position in depth of the stimulus, and monocular
responses could not account for the selectivity (data not shown).
Remarkably in view of its anatomical location in the premo-
tor cortex, the responses of these F5a neurons appeared very
“visual,” with robust increases in firing rate when visual stimuli
(that the monkey could not grasp) appeared on a display, and
with relatively short response latencies (70–80ms) compared to
50–60ms for AIP, which is consistent with the higher position
in the cortical hierarchy of F5a compared to AIP. These strong
visual responses to images presented on a display were unex-
pected, since previous studies (Graziano et al., 1997; Graziano
and Gross, 1998) did not observe responses to images of objects
presented on a display in PMv neurons with bimodal visuo-
tactile responses. i.e., responses to tactile stimulation of the face
or hand and to visual presentation of objects near the face or
hand.

These observations raised the question whether F5a could still
be considered part of PMv. To that end, (Theys et al., 2012a)—
after having established higher-order disparity selectivity in a
cluster of F5a neurons—recorded from the same neurons while
the animal was grasping objects in the light (i.e., visually-guided
grasping) and in the dark (i.e., memory-guided grasping). Sur-
prisingly, almost all F5a neurons selective for disparity-defined
depth structure were also active in the light when the mon-
key was grasping objects that did not resemble the random-dot
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FIGURE 5 | Higher-order disparity selective F5a neuron. The PSTHs in

the top row illustrate the responses of a single F5a neuron to a convex depth

profile at five different positions in depth, the bottom row the responses to a

concave depth profile at the same positions in depth. Below the PSTHs is a

schematic illustration of the stimulus presentation indicating the positions in

depth. Reproduced with permission from (Theys et al., 2012a).

stereograms. However, most of these F5a neurons were virtu-
ally silent when the animal was grasping the same objects in the
dark. Hence, in contrast to earlier reports stating that all PMv
neurons remain active during grasping in the dark (Raos et al.,
2006), F5a neurons selective for the depth structure of objects are
mostly visual-dominant. These results do not imply that all F5a
neurons are visual-dominant, sincemulti-unit recordings of clus-
ters of 3D-structure selective neurons revealed strong grasping-
related activity in the dark. The implication of these findings is
that (visual-dominant) 3D-structure selective F5a neurons are
co-localized and strongly connected with visuomotor andmotor-
dominant neurons that remain active in the absence of visual
information. Such functional clusters may form neural modules
in which visual object information is mapped onto motor com-
mands. The presence of activity during grasping in the dark
implies that F5a is effectively a subsector of PMv, which differs
from the other subsectors of PMv by the presence of visual-
dominant responses during grasping and selectivity to the depth
structure of objects.

The previous studies suggest that the hierarchy of dorsal
stream cortical areas involved in 3D-shape processing is largely
serial. Although most likely an oversimplification (e.g., the role
of feedback connections is unknown and ignored here), the CIP–
AIP–F5a serial chain of areas provides a unique opportunity to
investigate how the 3D-shape representation changes along the
dorsal pathway so that the underlying computations might be
revealed. In a first attempt to address this question, Theys et al.
(2013) recorded in F5a and AIP in the same animals during visual
presentation of 3D surfaces, various approximations of these
surfaces and during object grasping. The sensitivity for depth

structure was measured by plotting the average responses of a
population of neurons to curved surfaces with varying degrees of
the disparity variation (from very convex, over almost flat to very
concave surfaces). Although interindividual differences between
the two animals were present, the sensitivity functions were vir-
tually identical in F5a and AIP. Furthermore, testing F5a neu-
rons with planar (i.e., least-square) and discrete approximations
of the smoothly curved surfaces showed again strong similari-
ties between AIP and F5a (Figure 6): the majority of neurons in
AIP and F5a was also selective for discrete approximations of the
convex and concave surfaces consisting of three separate planes
in depth, but in F5a, the linear approximation evoked signifi-
cantly less responses compared to the smoothly curved surfaces.
Finally, AIP neurons encoding depth structure from disparity
were also tested during object grasping, and similar to F5a, most
of these AIP neurons were also strongly active during grasping.
The only difference between the AIP and the F5amulti-unit activ-
ity consisted of stronger and faster responses in AIP during object
fixation and higher activity in F5a during the hand movement
epoch before object lift, suggesting that AIP neurons are mainly
active during the visual analysis of the object whereas F5a neu-
rons remain active throughout the trial. Overall, the representa-
tion of depth structure in premotor area F5a was highly similar to
that in parietal areas AIP, which makes it difficult to identify the
computations that take place between these two different stages
in the dorsal stream shape hierarchy. Future studies may be able
to document the differences in the object representation between
F5a and AIP using different stimuli or tasks.

The strong correspondence between depth structure selectiv-
ity and grasping responses in AIP and F5a is consistent with
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FIGURE 6 | Comparison between AIP and F5a. (A) Average

responses of a population of F5a neurons to various approximations

of the smoothly curved surfaces (on the left). White bars indicate the

responses to the preferred depth profile, filled bars the responses to

the non-preferred depth profile. Below the bar graph are schematic

illustrations of the various approximations: linear, three different discrete

approximations, and first-order (tilted plane). The asterisks indicate

significant differences in response. (B) Average responses of a

population of AIP neurons to the same stimuli. Same conventions as

in (A). Adapted with permission from (Srivastava et al., 2009).

the hypothesis that the pre-shaping of the hand during visually-
guided object grasping relies on 3D-object information in these
two areas. The question still remains why the primate brain
would maintain two highly similar areas that communicate by
means of (metabolically expensive) long-range connections. At
this point the data suggest that the neural object representation
in AIP does not have to become much more elaborate to guide
the hand during grasping. Furthermore, F5a can directly inter-
act with other premotor areas such as F5p, which AIP can also
access directly or indirectly through either parietal area PFG or
F5a. The interpretation of “motor” activity, i.e., activity during
grasping in the dark, may be crucial in this respect. Both F5a
and AIP contain large numbers of neurons that are active in
the dark, in the absence of visual information, which are typi-
cally not selective for disparity-defined depth structure. Tradi-
tionally, this “motor” type of activity has been interpreted as
related to action planning, since the activity remains high in
the delay period when the animal is waiting for the go-signal to
execute the grasping action. However, the activity in the dark
in AIP may have a different status: AIP neurons may receive
corollary information from premotor areas about the movement
planning which can be integrated with visual information dur-
ing visually-guided grasping (Rizzolatti and Luppino, 2001), an
idea that has never been tested. Under this hypothesis, F5a motor
activity is genuinely sub-serving action planning, whereas AIP
motor activity is simply a corollary discharge reflecting premotor
signals.

Conclusions

More than four decades of research have been devoted to inves-
tigations of the object representation in the ITC (for review, see
Tanaka, 1996). ITC neurons respond selectively to shapes, and
at the same time achieve selectivity invariance, i.e., these neu-
rons exhibit tolerance of shape preference for stimulus trans-
formations such as changes in retinal position, size, the visual

cue defining the shape and occlusion. These neuronal proper-
ties are believed to be essential to support robust object recog-
nition in an ever changing environment. Single-cell studies have
demonstrated that neurons in TEs, a subsector of the ITC
located anteriorly and therefore one of the end-stage areas of
the ventral visual stream, also encode the 3D structure of sur-
faces (Janssen et al., 2000a,b) defined by binocular disparity
and 3D orientation defined by disparity and texture (Liu et al.,
2004), and TEs activity is causally related to the categorization
of depth structure (Verhoef et al., 2012). Undoubtedly, a com-
plex hierarchy of visual areas along the ventral visual stream
supports the high-level 3D object representation culminating in
TEs.

In the dorsal visual stream, the neural representations of depth
structure can be traced from mid-level visual area CIP, which
presumably receives input from early visual area V3A, until the
motor system (F5a). Somewhere along this dorsal pathway, visual
object representations are transformed into motor commands
(grip type representations) that control the preshaping of the
hand during object grasping. As outline above, inactivation stud-
ies have demonstrated that at least AIP and F5 are both important
for motor control during grasping, but the role of other pari-
etal areas such as PFG (Bonini et al., 2012) and V6A (Fattori
et al., 2010) in grasping requires further study. Investigating the
neural representation of object shape demands systematic stim-
ulus manipulations (e.g., stimulus reduction), therefore visual
object representations can be primarily studied in neurons that
respond to images of objects (either 3D or 2D), as in AIP
and F5a. Neurons in F5p and F5c, in contrast, respond selec-
tively to real-world objects (Raos et al., 2006) but not to 3D
images of objects (Theys et al., 2012a), most likely because these
areas represent grip types, which are not activated by images of
objects.

Numerous very basic questions remain to be addressed in
future studies: for example, how do the RFs change along the dor-
sal pathway, which computations take place at different stages,
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what is the role of feedback projections? As outlined earlier, it
is also unclear at present how the ventral stream division of
this 3D-shape network is organized. Our comprehension of this
network will only increase when studies combine electrophysi-
ological recordings, imaging and ultimately also computational
modeling.
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The monkey anterior intraparietal area (AIP) encodes visual information about
three-dimensional object shape that is used to shape the hand for grasping. We
modeled shape tuning in visual AIP neurons and its relationship with curvature and
gradient information from the caudal intraparietal area (CIP). The main goal was to gain
insight into the kinds of shape parameterizations that can account for AIP tuning and
that are consistent with both the inputs to AIP and the role of AIP in grasping. We
first experimented with superquadric shape parameters. We considered superquadrics
because they occupy a role in robotics that is similar to AIP, in that superquadric fits are
derived from visual input and used for grasp planning. We also experimented with an
alternative shape parameterization that was based on an Isomap dimension reduction
of spatial derivatives of depth (i.e., distance from the observer to the object surface).
We considered an Isomap-based model because its parameters lacked discontinuities
between similar shapes. When we matched the dimension of the Isomap to the number
of superquadric parameters, the superquadric model fit the AIP data somewhat more
closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that
the Isomap parameters could be approximated much more accurately than superquadric
parameters by feedforward neural networks with CIP-like inputs. We conclude that
Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP, provide a
promising model of AIP electrophysiology data. Further work is needed to test whether
such shape parameterizations actually provide an effective basis for grasp control.

Keywords: AIP, CIP, grasping, 3D shape, cosine tuning, superquadrics, Isomap

1. INTRODUCTION
The macaque anterior intraparietal area (AIP) receives input from
the visual cortex, and is involved in visually guided grasping. A
large fraction of neurons in this area encode information about
three-dimensional object shapes from visual input (Murata et al.,
2000; Sakaguchi et al., 2010). Responses are typically relatively
invariant to object position in depth (Srivastava et al., 2009).
The responses of some neurons are also invariant to other prop-
erties. For example, some are orientation-tuned but not highly
sensitive to object shape (Murata et al., 2000). AIP has a strong
recurrent connection with premotor area F5, which is involved
in hand shaping for grasping (Rizzolatti et al., 1990; Luppino
et al., 1999; Borra et al., 2008). Reversible inactivation of AIP
leads to grasping impairment, specifically a mismatch between
object shape and hand preshape (Gallese et al., 1994; Fogassi
et al., 2001). AIP is therefore thought to provide visual informa-
tion for grasp control (Jeannerod et al., 1995; Fagg and Arbib,
1998).

The focus of this paper is the pathway from V3 and V3A, to
the caudal intraparietal area (CIP), to visual-dominant neurons
in AIP (Nakamura et al., 2001; Tsutsui et al., 2002). This pathway
makes binocular disparity information available for grasp con-
trol. Most V3 neurons are selective for binocular disparity (Adams

and Zeki, 2001). V3 sends a major projection to V3A (Felleman
et al., 1997), which is also strongly activated during binocular dis-
parity processing (Tsao et al., 2003). Both V3 and V3A project
to CIP (Katsuyama et al., 2010). CIP neurons are selective for
depth gradients (Taira et al., 2000; Tsutsui et al., 2002; Rosenberg
et al., 2013) and curvature (Katsuyama et al., 2010). Neurons in
AIP receive disynaptic input from V3A via CIP (Nakamura et al.,
2001; Borra et al., 2008). Visual-dominant AIP neurons are selec-
tive for 3D object shape (Srivastava et al., 2009; Sakaguchi et al.,
2010) cued by binocular disparity, consistent with input from this
pathway.

AIP also receives many other inputs that we do not model
in the present study. The first of these is the premotor area
F5, which together with AIP forms a circuit for grasp-related
visuomotor transformations. AIP also receives input from the sec-
ond somatosensory (SII) cortical region (Krubitzer et al., 1995;
Fitzgerald et al., 2004; Gregoriou et al., 2006), which may provide
tactile feedback and memory-based somatosensory expectations
for grasping. Strong connections with other parietal areas are
also identified, as well as with prefrontal areas 46 and 12. Area
12 is implicated in high level non-spatial processing includ-
ing encoding of objects in working memory, suggesting that
AIP may be influenced by visual memory of object features
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(Borra et al., 2008). AIP also contains other neurons that fire in
conjunction with motor plans in addition to or instead of visual
input (Sakata et al., 1997; Murata et al., 2000; Taira et al., 2000).
Interestingly, AIP also receives subcortical input (via the thala-
mus) from both the cerebellum and basal ganglia (Clower et al.,
2005). Finally, AIP receives input from the inferotemporal cor-
tex (IT), which is likely to provide additional visual information
about shapes. Our present focus however is the visual input
from CIP.

The main goal of this study is to model the neural spike code
of object-selective visual-dominant AIP neurons. In particular, we
wanted to know whether there are certain sets of shape parameters
that are consistent with the responses of visual AIP neurons, and
which can furthermore be estimated in a physiologically plausible
way from the information available in CIP.

We therefore compared two ways of parameterizing shapes.
First we considered the superquadric family of shapes, a con-
tinuum that includes cuboids, ellipsoids, spheres, octahedra,
and cylinders, and which can also be extended in various ways
to model more complex shapes (Solina and Bajcsy, 1990). We
considered superquadrics because they play a role in robotic
grasp control (Duncan et al., 2013) that seems to be similar
to the role of AIP in primate grasp control, i.e., they represent
shapes compactly as a basis for grasp planning. We also con-
sidered an alternative shape parameterization that is based on
non-linear dimension reduction of the depth field. In particu-
lar, we used an Isomap (Tenenbaum et al., 2000). We considered
Isomap parameters partly because they are continuous, i.e., simi-
lar shapes have similar parameters. This is consistent with datasets
in which similar 3D stimuli elicit similar spike rate patterns
in AIP (Theys et al., 2012, Figure 10; Srivastava et al., 2009,
Figure 11C).

This study is one of the first to model the mapping from CIP to
AIP. Oztop et al. (2006) modeled AIP as a hidden layer in a multi-
layer perceptron network that mapped visual depth onto hand
configuration. The output layer of this model (corresponding to
F5) was a self-organizing map of subnetworks that corresponded
to different hand configurations. Prevete et al. (2011) developed a
mixed neural and Gaussian-mixture model in which AIP received
monocular infero-temporal input. This model did not include
stereoscopic input from CIP. The FARS grasping model (Fagg and
Arbib, 1998) did not address in detail how AIP activity arises from
visual input. While past AIP models have been relatively abstract,
here our goal is to fit published tuning curves from AIP record-
ings, and furthermore to do so using depth-related input from a
model of CIP. As far as we are aware, there have not been previ-
ous attempts to model AIP tuning in terms of either superquadric
parameters or non-linear dimension reduction of depth features.

2. MATERIALS AND METHODS
This study consists of three main parts. The first is a model of
tuning for depth features in the caudal intraparietal area (CIP,
see Section 2.1.1). The second is a model of tuning for three-
dimensional shape features in the anterior intraparietal area (AIP,
see Section 2.1.2). Finally, the third is an investigation of physi-
ologically plausible feedforward mappings between CIP and AIP
(see Section 2.5).

2.1. COSINE-TUNING MODELS OF NEUROPHYSIOLOGICAL DATA
We tested how well various tuning curves from the CIP and
AIP electrophysiology literature could be approximated by
cosine-tuned neuron models. In particular, given a vector x of
stimulus variables, we modeled the net current, I, driving spiking
activity in each neuron as

I = φ̃Tx + b, (1)

where b is a bias term and φ̃ is parallel to the neuron’s preferred
direction in the space of stimulus parameters. Longer φ̃ corre-
sponds to higher sensitivity of the neuron to variations along its
preferred direction.

We used a normalized version of the leaky-integrate-and-fire
(LIF) spiking model. In this model, the membrane potential V has
subthreshold dynamics τRCV̇ = −V + I, where τRC is the mem-
brane time constant and I is the driving current. The neuron
spikes when V >= 1, after which V is held at 0 for a post-spike
refractory time τref before subthreshold integration begins again.
These neurons have spike rate

r = 1

τref − τRC · ln (1 − 1
I )
. (2)

Except where noted, τRC was included among the optimization
parameters and constrained to the range [0.02s, 0.2s]. In some
cases (where noted), when the basic cosine-LIF model (above)
produced poor fits, we also added Gaussian background noise to
I. Such background noise more realistically reflects the input to
neurons in vivo (Carandini, 2004) and causes the LIF model to
emit more realistic, irregular spike trains. It also has the potential
to produce better tuning curve fits. The reason is that depend-
ing on the amplitude of the noise, the spike-rate function may
be compressive [as in Equation (2)], sigmoidal, or nearly linear.
In these cases we fixed τref = 0.005s and τRC = 0.02s, included
the noise variance as an optimization parameter, and interpo-
lated the spike rate from a lookup table based on simulations.
Given a tuning curve from the electrophysiology literature and
a list of hypothesized tuning variables, we found least-squares
optimal parameters φ̃ and b mainly, and either τRC or σnoise (as
noted in the corresponding sections), using Matlab’s lsqcurvefit
function. This function uses Matlab’s trust-region-reflective algo-
rithm, which is based partly on Coleman and Li (1994), to solve a
non-linear curve-fitting problem in the sense of least-squares. We
retried each optimization with at least 1000 random initial points
in order to increase the probability of finding a global optimum.

We preferred cosine tuning models over more complex non-
linear models for a number of reasons, including that they are
simple and that cosine tuning is widespread in the cortex and else-
where (Zhang and Sejnowski, 1999). (See more detailed rationale
in the Discussion).

2.1.1. CIP Tuning
We approximated CIP responses in terms of depth and its first
and second spatial derivatives. CIP has been proposed to encode
these variables (Orban et al., 2006), and they have been the basis
for several experimental studies of CIP responses (Sakata et al.,
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1998; Taira et al., 2000; Tsutsui et al., 2001; Katsuyama et al., 2010;
Rosenberg et al., 2013).

We fit cosine-tuned LIF neuron models to tuning curves from
Tsutsui et al. (2002) and Rosenberg et al. (2013), and from
Katsuyama et al. (2010), in which the stimuli varied in terms of
first and second derivatives of depth, respectively. The stimuli in
Katsuyama et al. (2010) consisted of curved surfaces with depth

z = 1

2

(
K1x2 + K2y2) . (3)

K1 and K2 were varied to produce two levels of “curvedness,”

C =
√

K2
max + K2

min

2

and a range of “shape indices”

SI = 2

π
arctan

Kmax + Kmin

Kmax − Kmin
,

where Kmax and Kmin are the larger and smaller curvatures along
the x and y axes, respectively.

In terms of the depth z, the principal curvature along the x
axis is

Kx = ∂2z/∂x2(
1 + (∂z/∂x)2

)3/2
(4)

(de Vries et al., 1993). For these stimuli ∂z/∂x = 0 at the center,
and so Kx = ∂2z/∂x2.

2.1.2. AIP Tuning
Following Sakata et al. (1998) and Murata et al. (2000) and con-
sistent with the role of AIP in grasping (Fagg and Arbib, 1998),
we took the visual-dominant neurons in AIP to be responsive
to three-dimensional shape. Available tuning curves (e.g., Murata
et al., 2000) span small numbers of data points relative to the large
space of shape variations that are relevant to hand pre-shaping.
For this reason we fit models to various “augmented” tuning
curves that matched published tuning curves for some shapes,
and made assumptions about how these neurons might respond
to other shapes (see Figure 2). These assumptions were based on
additional data for separate AIP neurons (see below). Our aug-
mented tuning curves spanned four of the shapes in Murata et al.
(2000), specifically a sphere, cylinder, cube, and plate. Two other
shapes (ring and cone) were omitted for simplicity, because they
require additional superquadric shape parameters (see Section
2.2). The augmented tuning curves spanned four sizes and four
orientations for each of the four shapes. Due to symmetries in the
shapes, there were a total of 36 points in these tuning curves (see
Figure 1). Four of these points corresponded to AIP data, and the
rest (the augmented points) were extrapolated from the data.

We based the augmented points on additional data from other
AIP neurons, including aggregate data. Murata et al. (2000)
provide shape-tuning curves for six different object-type visual-
dominant AIP neurons. We tested different augmented versions
of these curves with various combinations of size and orientation

FIGURE 1 | The complete set of 36 shapes used in the augmented tuning

curves. Four basic shapes (sphere, cube, plate, and cylinder) were adapted
from Murata et al. (2000). In order to constrain the models more fully, and in
particular to ensure that tuning curves included more points than there were
parameters in our models, we augmented these basic shapes by adding
copies with different sizes (shown with 4 different colors) and orientations
(i.e., horizontal, vertical, tilted forward 45◦, tilted backward 45◦). Note that due
to the symmetry of the basic shapes, some orientations are redundant (e.g.,
rotating a sphere does not create a distinguishable shape).

tuning (see Figure 2). Murata et al. (2000) reported (without
plotting shape tuning for these neurons) that most object-type
neurons were orientation selective, and that 16/26 were size-
selective. Therefore, we created two augmented tuning curves
for each of the six shape-tuning curves. Both were orientation-
selective; one was size-selective and the other was size-invariant.
For the size-selective tuning curves we assumed that spike rate
increased monotonically with size (consistent with Murata et al.,
2000, Figure 19; note that preference for intermediate sizes was
reported only for motor-dominant neurons). We assumed that
orientation tuning was roughly Gaussian and fairly narrow (con-
sistent with Murata et al., 2000, Figure 18). Some AIP neurons
are orientation selective with only mild selectivity across vari-
ous elongated shapes (Sakata et al., 1998). Therefore, we created
a final augmented tuning curve that was orientation selective
but responded equally to cylinders and plates. Figure 1 shows
an example of an augmented tuning curve and its relationship
to the data. This procedure made the tuning curve optimization
more challenging. This was important because even our simple
cosine-tuned neuron models had more parameters than the num-
ber of points in the published tuning curves (see Section 3). It also
allowed us to make use of additional AIP data.

2.2. SUPERQUADRICS
We modeled AIP shape tuning both on the parameters of the
superquadric family of shapes, and on an Isomap dimension
reduction of depth features. The superquadric family is a con-
tinuum that includes cuboids, ellipsoids, spheres, octahedra, and
cylinders as examples. Superquadrics are often used to approx-
imate observed shapes as an intermediate step in robotic grasp
control (Ikeuchi and Hebert, 1996; Biegelbauer and Vincze, 2007;
Goldfeder et al., 2007; Huebner et al., 2008; Duncan et al., 2013).
In this context, superquadric shape parameters are typically
estimated from 3D point-cloud data using iterative non-linear
optimization methods (Huebner et al., 2008).

Their role in robotics suggests that superquadrics are a
plausible model of AIP shape tuning. Specifically, they can
be parameterized from visual information and they contain
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A

C

B

FIGURE 2 | An example of an augmented AIP tuning curve. (A) Tuning
curve adapted from Murata et al. (2000), Selectivity for the shape, size,
and orientation of objects for grasping in neurons of monkey parietal area
AIP, 2580-2601, with permission. (See their Figure 11.) (B) The four points
from the same tuning curve that belong to the basic superquadric family (a
ring and cone are excluded from the current study). The spike rates are

plotted as 3D bars. (C) An augmented tuning curve that includes the
points in (B), as well as other rotations and scales. This augmented tuning
curve is both size-tuned and orientation-tuned, as were the majority of
object-type visual neurons in Murata et al. (2000). Another large minority
were orientation-tuned but not size-tuned. As in Figure 1, the colors
correspond to different sizes.

information about an object that is useful as a basis for grasp
planning. One goal of the present study was to examine their
physiological plausibility more closely, by fitting superquadric-
tuned neuron models to AIP tuning curves. The surface of a
superquadric shape is defined in x-y-z space as

(
x

A1

)1/ε1

+
(

y

A2

)1/ε2

+
(

z

A3

)1/ε3

= 0,

where A > 0 are scale parameters and ε > 0 are curvature param-
eters. Values of ε close to zero correspond to squared corners,
while values close to one correspond to rounded corners. For
example a sphere has A1 = A2 = A3 and ε1 = ε2 = ε3 = 1. We
also used another parameter, θ , that described the orientation
of the superquadric. θ was composed of three angles, one per
coordinate. The rotation of the superquadric is done applying the
rotation matrix described in Equation 5.

R(θ1, θ2, θ3) =
⎡
⎣ cos (θ2) · cos (θ3) cos (θ1) · sin (θ3) + sin (θ1) · sin (θ2) · cos (θ3) sin (θ1) · sin (θ3) − cos (θ1) · sin (θ2) · cos (θ3)

− cos (θ2) · sin (θ3) cos (θ1) · cos (θ3) − sin (θ1) · sin (θ2) · sin (θ3) sin (θ1) · cos (θ3) + cos (θ1) · sin (θ2) · sin (θ3)
sin (θ2) − sin (θ1) · cos (θ2) cos (θ1) · cos (θ2)

⎤
⎦ (5)

We generated a database of 40,000 shapes that included spheres,
cylinders, plates, and cubes as well as variations on these shapes
with different scales in each dimension, and rotated versions of
them. Our database contained roughly equal numbers of box-
like, sphere-like, and cylinder-like shapes. For round edges we
set ε = 1. For squared edges we drew ε from an exponential dis-
tribution that was shifted slightly away from zero, p = 10H(ε −
η) exp (−(ε − η)/0.1) with η = 0.01, where H is the Heaviside
step function. The shift away from 0 (perfectly sharp corners)
helped to avoid numerical problems. The objects had widths
between 0.02 m and 0.12 m. We also allowed arbitrary rotations
in three dimensions (except where symmetry made rotations
redundant), so that each shape had a total of nine parameters.

This study considers only the basic superquadric family, which
does not include all the shapes for which AIP responses have
been reported. However, the basic family can also be extended
in various ways to deal with more complex shapes. For exam-
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ple, hyperquadrics introduce asymmetry (Kumar et al., 1995),
and trees of superquadrics can be used to approximate complex
shapes with arbitrary precision (Goldfeder et al., 2007).

2.3. CREATION OF DEPTH MAPS
CIP receives input from V3 and V3A, which encode binocular
disparity information (Anzai et al., 2011). Disparity is monotoni-
cally related to visual depth, or distance from observer to surface.
As a simplified model of this input we created depth maps, i.e.,
grids of distances from a viewpoint to object surfaces. We cre-
ated depth maps from the shapes in our superquadric database
by finding intersections of the surfaces with rays at various visual
angles from the view point. We used a 16 × 16 grid of visual
angles. Grid spacing was closer near the center than in the periph-
ery, in order to reflect higher visual acuity near the fovea and
also to ensure that a few rays intersected with the smallest shapes
(specifically, distances from the center were a1.5, where a were
evenly-spaced points). The grid covered ± 10◦ of visual angle in
each direction. The object centers were at a depth of 0.75 m from
the viewpoint. Depth at each grid point was found as the intersec-
tion of the superquadric surface with a line from the observation
point (Figure 3).

2.4. ISOMAP SHAPE PARAMETERS
Within the superquadric family there is typically more than one
set of parameters that can describe a given shape. For example, a
tall box can either be parameterized as a tall box or a wide box
on its end. This is not very problematic in robotics, because an
iterative search for matching parameters finds one of these solu-
tions. However, our goal was to model a feedforward mapping
from depth (V3A) to shape parameters (AIP). In order to use the
superquadric parameters as the basis for an AIP tuning we there-
fore needed the superquadric-to-depth function to be invertible.

FIGURE 3 | Illustration of the depth map construction process. Each
superquadric was centered at (0, 0, 0.75) relative to an observer at (0, 0, 0).
Rays were traced between the observation point and a grid of points in the
frontoparallel plane at z = 0.75, and intersections (red dots) were found
with the superquadric surface. The depth map consisted of a grid of
distances from (0, 0, 0) to these intersections.

We achieved this by restricting the ranges of angles. For exam-
ple, for box-like shapes we restricted all angles to within ±π/4.
This resulted in a unique set of superquadric parameters for
each shape. However, large discontinuities remained, in that some
very similar shapes sometimes had very different parameters.
For example, a tall box at an angle slightly less than π/4 has
a depth map that is very similar to a wide box at angle just
greater than −π/4 radians. Similar discontinuities seem to exist
regardless of the angle convention. We anticipated that these
discontinuities would impair feedforward mapping in a neu-
ral network, so we also explored an alternative low-dimensional
shape parameterization.

In the alternative model, neurons were tuned to an Isomap
(Tenenbaum et al., 2000) derived from depth data. Isomap is a
non-linear dimension-reduction method in which samples are
embedded in a lower-dimensional space in such a way that
geodesic distances (i.e., distances along the shortest paths through
edges between neighboring points) are maintained as well as pos-
sible. This method ensured that similar depth maps would be
close together in the shape-parameter space, minimizing param-
eter discontinuities like those of the superquadric parameters. We
constructed an Isomap of the first and second spatial derivatives
of the depth maps in the horizontal and vertical directions.

We tested whether our augmented AIP tuning curves (above)
were consistent with cosine tuning for these shape parameters.
We also tested how well these shape parameters could be approx-
imated by a neural network with CIP parameters as input.

2.5. NEURAL NETWORK MODELS OF CIP-TO-AIP MAP
In addition to fitting cosine-LIF models to neural tuning curves
in CIP and AIP, we also developed feedforward networks to map
from CIP variables to AIP variables. Our general approach was to
decode shape parameters from the spike rates of CIP models.

We experimented with several different networks includ-
ing neural engineering framework networks (Eliasmith and
Anderson, 2003; Eliasmith et al., 2012), multilayer perceptrons
trained with the back-propagation algorithm (Haykin, 1999) and
convolutional networks (LeCun et al., 1998).

In each case the output units were linear. Linear decoding of
the tuning parameters was of interest because decoding weights
can be multiplied with preferred directions to give synaptic
weights for any cosine tuning curve over the decoded variables
(Eliasmith and Anderson, 2003). Specifically, suppose we have
presynaptic rates rpre and linearly decoded estimates p̂ = 
rpre

of shape parameters p, where 
 is a matrix of decoding weights.
In this case the family of cosine tuning curves over p̂ is

rpost = G
(
φ̃T p̂ + b

)
, (6)

where φ̃T p̂ + b is the driving current, φ̃ is the neuron’s preferred
direction, G is a physiological model of the current-spike rate rela-
tionship, and b is a bias current. Such a tuning curve can then be
obtained with synaptic weights (from all presynaptic neurons to a
single postsynaptic neuron)

wT = φ̃T
. (7)
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This allows us to draw general conclusions about how well our
various models can account for AIP tuning, and how they would
relate to future data.

Equations 6 and 7 are important components of the
Neural Engineering Framework (Eliasmith and Anderson, 2003;
Eliasmith et al., 2012), a method of developing large-scale neural
circuit models.

3. RESULTS
3.1. CIP TUNING
Figure 4 shows an optimal fit of a cosine-tuned LIF model to a
tuning curve from Katsuyama et al. (2010). Following their con-
vention the spike rates are shown as a function of shape index,
separately for the two curvedness levels. Inspection of the tuning
curve revealed that it contained an expansive non-linearity, so we
included Gaussian background noise in the model (as described
in Section 2). To improve the fit further, in addition to tun-
ing variables X = ∂2z/∂x2 and Y = ∂2z/∂y2 we introduced new
tuning variables 1

2

(
3(X)2 − 1

)
and 1

2

(
3(Y)2 − 1

)
. The rationale

for their inclusion was that these are the non-linear functions
for which linear reconstruction is (with reasonable assump-
tions) most accurate from populations of LIF neurons tuned to
X and Y (Eliasmith and Anderson, 2003). However, the fit to
the Katsuyama et al. (2010) data remained poor despite these
measures.

We considered whether a linear-nonlinear receptive field
model with depth inputs might produce a better fit. Such models
are essentially cosine tuning models with multiple input variables
on a grid. However, the depth stimuli in this case (see Equation
3) consisted of linear combinations of x2 and y2, so any receptive-
field model over the depth field has an equivalent cosine tuning
model over K1 and K2. Therefore, the neuron is not cosine tuned
to either depth or the curvature parameters.

Figure 5 shows an example of a more complex non-linear neu-
ron model that fits the data. This model is based on non-linear

interactions between nearby inputs on the same dendrite, which
suggest that pyramidal cells may function similarly to multilayer
perceptrons (Polsky et al., 2004). The input to this model was a
3 × 3 depth grid. The model contained 50 dendritic branches,
each of which was cosine tuned to the depths. The linear kernels
(analogous to preferred directions) were random. The output of
each branch was a sigmoid function of the point-wise product
of the depth stimulus and the linear kernel. The spike rate was
a least-squares optimal weighted sum of the branch outputs. This
was found using a matrix pseudoinverse that used 14 singular val-
ues. We also created another version of this model (not shown) in
which the tuning curve was augmented with additional stimuli
(completing the outer circle of points in Figure 5B) and it was
assumed that the neuron would respond to these stimuli at the
background spike rate. This version of the model therefore fit 26
points, and we used 20 singular values in the pseudoinverse. The
fit was similar in this case.

We also constructed another alternative model of this cell that
was based on a more detailed model of V3A activity. Specifically,
instead of a 3 × 3 depth grid, this model received input from
seven non-linear functions of depth at each point. Five of these
were Gaussian functions based on “tuned near,” “tuned zero,” and
“tuned far” neurons (Poggio et al., 1988). Two were sigmoidal
functions based on “near” and “far” tuning (Poggio et al., 1988).
This model (not shown) reproduced the tuning curve somewhat
less accurately than the non-linear cell model above. This was
the case regardless of minor variations in the set of input tuning
functions and their parameters.

Figure 6 shows a cosine-tuning fit of data from Tsutsui et al.
(2002). This tuning curve is an average over multiple cells that
were tuned to depth gradients of visual stimuli. The best fitting
cosine-tuning model has a notably different shape than the aggre-
gate data. In particular, the actual spike rates are fairly constant
far away from the preferred stimulus, while the model spike rates
continue to decrease farther from the preferred stimulus.

FIGURE 4 | Fit of CIP model (squares) to tuning curve (circles) of an

example neuron (0.04 ± 5.22 spikes/s; mean error ± SD). The tuning
curve is replotted from Katsuyama et al. (2010), with permission from
Elsevier. In our model of CIP, neurons are cosine-tuned to five
dimensions: depth, horizontal and vertical first spatial derivatives of

depth, and horizontal and vertical second spatial derivatives of depth.
The stimuli in Katsuyama et al. (2010) varied only in terms of the
second derivatives. We also added non-linear tuning functions to
improve the fit (see text). The left and right tuning curves are for
two different levels of curvedness.
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Rosenberg et al. (2013) provide several additional CIP tun-
ing curves over 49 different plane stimuli. Some of these tuning
curves are clearly not consistent with cosine tuning for first
derivatives of depth or disparity, e.g., with multimodal responses
to surface tilt. We fit the non-linear model of Figure 5 to seven of
these tuning curves (their Figures 4, 5B). Using 20 singular val-
ues, the correlations between data and our best model fits were
r = 0.98 ± 0.01 SD for the four tuning curves in their Figure
4, and r = 0.78 ± 0.09 SD for the three tuning curves in their
Figure 5B. (These fits are somewhat closer than fits reported by
Rosenberg et al. to Bingham functions, which is unsurprising
as our model has more parameters.) Using 40 singular values,
our correlations improved to r = 0.91 ± 0.02 SD for the tuning
curves in their Figure 5B.

FIGURE 5 | (A) Non-linear model (squares) of same neuron as in Figure 4

(circles). (B) The same spike rates as (A) (black circles), re-plotted as a
function of ∂2z/∂x2 and ∂2z/∂y2, and the best model fit (mesh)
(0.00 ± 1.82 spikes/s; mean error ± SD). The data plots (black circles) are
adapted from Katsuyama et al. (2010), with permission from Elsevier.

In summary, the spike rates of these CIP neurons varied
with the first and second spatial derivatives of depth, but not
in a way that is consistent with cosine tuning to either the
depth map, its first and second derivatives, or low-order poly-
nomial functions of these derivatives. Other models, which are
physiologically plausible but more complex, fit the data more
closely.

3.2. AIP TUNING
Figure 7 shows an example cosine-tuning fit of an augmented
tuning curve in superquadric space. This fit is based on a noise-
free LIF neuron. For this dataset the shapes were rotated only in
one dimension, so we avoided angle discontinuities by using a
2D direction vector in place of the angle. The optimized param-
eters were the 8-dimensional preferred direction vector φ̃, the
bias b, and the membrane time constant τRC . Across the 36
points in the augmented tuning curve, the spike rate error (differ-
ence between augmented and model spike rates) was 0.70 ± 1.57
(mean ± SD).

Figure 8 shows the means and standard deviations of spike-
rate errors for each of the augmented tuning curves. Good fits
were obtained for some of the neurons (#1 and #3 in Murata
et al., 2000, Figure 10, and the second in Figure 11, which we
label #5). This was true for both size-invariant and size-selective
augmented tuning curves. Neuron #1 had low spike rates for
the stimuli that we studied. Neurons #3 was highly selective for
cylinders, and #5 was more broadly tuned but also preferred
cylinders. The worst fits were obtained for neuron #6 which
responded strongly to plates and cylinders but not to cubes or
spheres.

Figure 9A shows the means and standard deviations of
spike-rate errors for each of the augmented tuning curves
in an 8-dimensional Isomap space. We plot the results for
the 8-dimensional Isomap in order to match the number of
superquadric parameters. The cosine tuning errors (−0.88 ±
10.68 spikes/s; mean ± SD) were larger than those in the
superquadric space (−0.53 ± 6.75 spikes/s). The difference
between these variances was significant according to Levene’s test
[W(1, 910) = 41.3; p < 0.001].

Figure 9B shows how the error declined with higher-
dimensional Isomaps. Error variance with the 16-dimensional

FIGURE 6 | Cosine tuning model (left) of spike rate data aggregated across neurons (right) (0.03 ± 3.00 spikes/s; mean error ± SD). The right panel is
from Tsutsui et al. (2002). Reprinted with permission from AAAS. In which N is the number of neurons and r is the regression coefficient.
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FIGURE 7 | Best fit of a model neuron that is cosine-tuned

over superquadric parameters to an augmented tuning curve.

This augmented tuning curve is size-invariant. Color corresponds to
the size of object (see Figure 1) Left: Augmented tuning curve.

This includes data replotted with permission from Murata et al.
(2000). Center: Best fit of a cosine-tuned neuron to the
augmented tuning curve. Right: Error (ideal minus model
augmented tuning curve).

FIGURE 8 | Quality of fit of cosine tuning model over superquadric

parameters with various augmented tuning curves. The plots
shows, for each tuning curve, the mean ± SD of the errors over the
grid of shapes, sizes, and orientations shown in Figure 7. Note that
in this model we can trivially achieve invariance to any superquadric
parameter by setting the corresponding component of the preferred
direction to zero.

Isomap (−1.77 ± 6.35) was not significantly different from that
of the 8-parameter superquadric [Levene’s Test; W(1, 910) = 1.83;
p = 0.18]. (Recalculating the variances around 0 instead
of −1.77 and −0.89 did not make the difference signifi-
cant; p = 0.058). The cosine-tuning fits were excellent in the
32-dimensional Isomap space, with significantly lower vari-
ance [−0.17 ± 1.29 spikes/s; W(1, 910) = 316.2; p < 0.001].
This higher-dimensional shape representation is therefore
consistent with the data and with the augmented tuning
curves.

3.3. MAPPING FROM CIP TO AIP
We trained multi-layer perceptrons in order to understand
whether the superquadric or Isomap models of AIP were more
consistent with mapping from CIP input. Because CIP neurons
are sensitive to depth and to first and second spatial derivatives
of depth, we used these as inputs to the networks. Specifically

the inputs consisted of 16 × 16 depth maps, their 16 × 16 hor-
izontal and vertical derivatives, and their 16 × 16 horizontal and
vertical second derivatives. The derivatives were approximated
by convolving with 3 × 3 kernels (e.g., [ 1 1 1 ]T[ 1 0 −1 ] and

[ 1 1 1 ]T[ 0.5 −1 0.5 ]). The total number of inputs was therefore
16 × 16 × 5 = 1280. The hidden layers had logistic activa-
tion functions. The weights and biases were trained with the
backpropagation algorithm in Matlab’s Neural Network Toolbox.
The output layer had a linear activation function in order to
model the input to cosine-tuned neurons, as described in the
Methods. A dataset of 40000 rotated superquadric objects was
generated, from which depth and curvature images were derived.
This dataset was divided into 28000 objects for training the net-
work and 12000 objects to validate the results obtained in the
training.

Figure 10 shows results from networks with two hidden lay-
ers, the first with 600 units and the second with 300 units. The
scatter plots show the network’s output vs. the actual values of
the validation dataset. In Figure 10A is the network’s result for
the superquadric shape parameter ε1. The other scatterplots in
Figures 10C,E illustrate the network’s approximation of the scale
and orientation parameters A1 and θ1. Approximation of the
other six parameters was similar (e.g., the scatterplots for ε2 and
ε3 resemble that for ε1). The scatterplots Figures 10B,D,F illus-
trate the network’s approximation of Isomap parameters. The
first, fourth, and seventh dimensions are shown as illustrative
examples.

Approximation of the Isomap parameters was much more
accurate than approximation of the superquadric parameters.
This outcome was very consistent across a variety of networks of
different sizes, with one or two hidden layers, with pre-training
of hidden layers as autoencoders, etc. We also experimented with
networks that contained a hidden layer of LIF neurons with ran-
dom preferred directions over various local kernels, and optimal
linear estimates of the shape parameters from the hidden-layer
activity (Eliasmith and Anderson, 2003). The results were also
similar in this case, although (as expected) more neurons were
required to achieve performance like that of the more fully-
optimized multilayer perceptrons.
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FIGURE 9 | Quality of fit of cosine tuning model over Isomap parameters

with the same augmented tuning curves. (A), Mean ± SD of errors with
8-dimensional Isomap (the same number of parameters as the superquadric

family used in Figure 8). Across tuning curves the error is 0.89 ± 10.68. (B),
Standard deviation of error over all augmented tuning curves vs. dimension of
the Isomap. The error declines sharply with increasing dimension.

Figure 11 compares the distribution of the network’s Isomap
approximation errors with the distribution of pairwise distances
between shape examples in our database. The errors were much
smaller than typical distances between examples.

We also experimented with a wide variety of larger networks,
including convolutional networks, using the cuda-convnet pack-
age (Krizhevsky et al., 2012). These networks did not substantially
outperform the multilayer perceptron of Figures 10, 11 (lowest
mean Euclidean error 0.066 as opposed to 0.081 in Figure 11).
We also trained some convolutional networks with only the depth
map as input, and with a 3 × 3 kernel in the first convolutional
layer. Interestingly, some of the resulting kernels resembled the
kernels that we created manually to approximate the first and
second derivatives.

4. DISCUSSION
This study examined the neural code for three-dimensional shape
in visual-dominant AIP neurons. AIP is critical for hand pre-
shaping in grasping, and these neurons encode properties that are
relevant to grasping including object shape, size, and orientation.

Our motivation for testing superquadric parameters as a
model of AIP tuning was that superquadrics have been used in
robotics, in a role that we take to be similar to the role of AIP
in the primate brain. Specifically, they have been used as com-
pact approximate representations of point clouds on which to
base grasp planning. Such a representation is useful because it
allows generalization from training examples to unseen examples,
e.g., by interpolating between known solutions for known sets of
parameters. An alternative approach in robotics is to cluster point
clouds into discrete shape categories (Detry et al., 2013). We see
the Isomap as an intermediate approach with some of the advan-
tages of both superquadric fitting and clustering. The Isomap
is data-driven and adapts to the statistics of the environment
(like clustering), but its parameters make up a low-dimensional
and continuous space (like those of superquadrics). Furthermore,
unlike the superquadric representation, the Isomap representa-
tion does not have large discontinuities between very similar
shapes.

We found that cosine tuning on a 32-dimensional Isomap
accounted well for the tuning curves of object-selective AIP neu-
rons. We also found that, in contrast with superquadric parame-
ters, the Isomap parameters could be approximated fairly well by
various neural networks with CIP-like input.

4.1. AUGMENTED TUNING CURVES
Available AIP data includes the responses of individual neu-
rons to only a few different shapes, in fact fewer shapes than
there are parameters in even the simplest superquadric model.
To more vigorously test the different shape parameterizations
as a basis for plausible neural tuning, and to incorporate addi-
tional aggregate information on shape tuning (e.g., the fact that
most visual-dominant AIP neurons are orientation selective), we
created “augmented” tuning curves that included both data and
extrapolations of the data. It is likely that some of these aug-
mented tuning curves were unrealistic. While the general trends
in our AIP fitting results are informative (e.g., that Isomap fits
improve and outperform superquadrics as dimensions increase),
the details depend on our augmentation assumptions. For exam-
ple, we found that the Isomap error declined more rapidly when
we excluded orientation-selective/shape-invariant tuning curves
from the analysis. This limitation does not affect interpretation of
our other main result, i.e., that superquadrics were poorly approx-
imated by feedforward neural networks while Isomaps were well
approximated.

Future modeling would be facilitated by tuning curves with
greater numbers of data points. For example, the dataset in Lehky
et al. (2011) includes responses of 674 inferotemporal neurons to
a common set of 806 images. A relatively extensive AIP dataset
was recently collected (Schaffelhofer and Scherberger, 2014), but
no tuning curves from this dataset have yet been published.

4.2. COSINE TUNING
We were primarily interested in cosine-tuning models for sev-
eral reasons, not least because cosine tuning is widespread in
the brain (see many examples in Zhang and Sejnowski, 1999).
Linear-nonlinear receptive field models of the early visual system
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FIGURE 10 | Regression plot comparison between neural network

approximations of superquadrics parameters and Isomap parameters.

(A) superquadric epsilon parameter, (B) Isomap dimension 1 parameter, (C)

superquadric scale parameter, (D) Isomap dimension 4 parameter, (E)

superquadric rotation angle parameter and (F) Isomap dimension 7
parameter.

are another kind of cosine tuning, with multiple tuning variables
on a 2D grid. Furthermore, a practical advantage of cosine tun-
ing models is that they require only n + 1 tuning parameters for
n stimulus variables (in contrast a full n-dimensional Gaussian
tuning curve has n + n2 parameters). This is important because

published tuning curves in CIP and AIP consist of relatively
few points, so models with large numbers of parameters may be
underconstrained. Cosine tuning is also physiologically realistic
in that it can arise from linear synaptic integration. For example,
if a matrix W of synaptic weights has n large singular values, then
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FIGURE 11 | Histogram of Euclidian distances in Isomap space vs. the

root sum square error.

the post-synaptic neurons are tuned to a n-dimensional space
(if W = U�VT then the preferred directions are in the first n
columns of U). Cosine tuning curves are also optimal for lin-
ear decoding (Salinas and Abbott, 1994). There are also many
neurons that do not appear to be cosine tuned, for example
speed-tuned neurons in the middle temporal area (Nover et al.,
2005). However, where applicable, cosine tuning models provide
rich insight into neural activity. We therefore attempted to fit
such models to the data where possible. Many AIP tuning curves
over similar stimuli with different curvatures vary smoothly and
monotonically (Srivastava et al., 2009), consistent with cosine
tuning.

Cosine tuning to modest numbers of Isomap parameters (rel-
ative to the 256-element depth maps on which they were based)
accounted for the AIP data and for our augmented AIP tuning
curves.

In contrast, we concluded that the CIP neurons we mod-
eled were not cosine tuned to the stimulus variables with which
they have been examined. CIP has been proposed to encode first
and second derivatives of depth (Orban et al., 2006). Various
neurons in CIP respond to disparity gradient (Shikata et al.,
1996; Sakata et al., 1998), texture gradient (Tsutsui et al., 2001),
and/or perspective cues for oriented surfaces (Tsutsui et al.,
2001). (Accordingly, visual-dominant AIP neurons also respond
to monocular visual cues as well as disparity cues, and respond
most strongly when disparity and other depth cues are congruent
(Romero et al., 2013). Sakata et al. (1998) describe various neu-
rons in CIP as axis-orientation-selective and surface-orientation-
selective. The former were sensitive to the orientation of a long
cylinder, consistent with two-dimensional tuning for horizontal
and vertical curvature. The latter were selective for the orientation
of a flat plate, consistent with two-dimensional tuning for depth
gradient. Furthermore, Sakata et al. (1998) also recorded a neu-
ron that preferred a cylinder of certain diameter which was tilted
back and to the right, but did not respond strongly to a square
column of similar dimensions. This suggests selectivity for both
first and second derivatives within the same neuron. Katsuyama
et al. (2010) recorded CIP responses to curved surfaces that varied
in terms of their second derivatives. Tuning to the first and sec-
ond derivatives of depth is physiologically plausible in that these

quantities are linear functions of the depth field, which is available
from V3A. We therefore attempted to fit models that were cosine
tuned over these variables, but we obtained poor fits.

While CIP neurons are certainly responsive to these vari-
ables (and more complex non-linear models of tuning to these
variables fit the data closely) it is possible that there are other
related variables that provide a more elegant account of these neu-
rons’ responses. Notably, some CIP neurons prefer intermediate
cylinder diameters (Sakata et al., 1998), whereas cosine tuning
for curvature would be constrained to monotonic changes with
respect to curvature. Also, some of the neurons in Rosenberg et al.
(2013) are clearly non-cosine-tuned for depth slope.

Some CIP tuning curves (see e.g., Figure 6) seem to be fairly
similar to rectified cosine functions (Salinas and Abbott, 1994)
with a negative offset, except that their baseline rates are not
zero. In general, spike sorting limitations, which cannot be com-
pletely avoided in extracellular recordings (Harris et al., 2000),
are a potential source of uncertainty in tuning curves. However,
if misclassification rates had been substantial then multi-peaked
tuning curves might have been expected, and none were reported
in these studies.

4.3. RELATIONSHIP TO SHAPE REPRESENTATION IN IT
Area IT has been shown to represent medial axes and surfaces of
objects (Yamane et al., 2008; Hung et al., 2012). AIP has signif-
icant connections with IT areas including the lower bank of the
superior temporal sulcus (STS), specifically areas TEa and TEm
(Borra et al., 2008). These areas partially correspond to func-
tional area TEs, which encodes curvature of depth (Janssen et al.,
2000) similarly to CIP. However, AIP responds to depth differ-
ences much earlier than TEs (Srivastava et al., 2009). It is possible
that a shape representation in IT, with some similarities to that in
CIP, provides longer latency reinforcement and/or correction of
shape representation in AIP.

4.4. FUTURE WORK
A key direction for future work is to test how well the Isomap
shape representation works for robotic grasp planning. This
would provide important information about the functional plau-
sibility of this representation. For example, if Isomap-based shape
parameters cannot be used to shape a hand for effective grasp-
ing, this will strongly suggest that there are critical differences
between AIP tuning parameters and Isomap parameters. On the
other hand, if the Isomap representation performs well, it may
suggest a new biologically-inspired approach for robotic grasping.

An apparent advantage of the Isomap approach is that it is
data-driven and makes no prior assumptions about shapes. It
would be informative to build Isomaps for less idealized shapes
that monkeys might grasp in nature.

Other non-linear dimension-reduction methods (e.g., Yan
et al., 2007) could also be compared with the Isomap in terms
of fitting AIP data and providing an effective basis for grasp plan-
ning. We would expect differences relative to Isomap tuning to be
subtle relative to available AIP data, but perhaps distinct advan-
tages would appear in a grasp control system. One interesting
possibility would be to emphasize features that are related to
reward or performance (Bar-Gad et al., 2003).
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Another important direction for future work is to extend
the model to include motor-dominant AIP neurons and to F5
neurons as in e.g., Theys et al. (2012, 2013) and Raos et al. (2006).

Finally, our models produced constant spike rates in response
to static inputs. A more sophisticated future model would account
for response timing and dynamics (Sakaguchi et al., 2010). The
Neural Engineering Framework (Eliasmith and Anderson, 2003)
provides a principled approach to modeling dynamics in systems
of spiking neurons.
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The visual system is split into two processing streams: a ventral stream that receives color
and form information and a dorsal stream that receives motion information. Each stream
processes that information hierarchically, with each stage building upon the previous. In
the ventral stream this leads to the formation of object representations that ultimately
allow for object recognition regardless of changes in the surrounding environment. In
the dorsal stream, this hierarchical processing has classically been thought to lead to
the computation of complex motion in three dimensions. However, there is evidence to
suggest that there is integration of both dorsal and ventral stream information into motion
computation processes, giving rise to intermediate object representations, which facilitate
object selection and decision making mechanisms in the dorsal stream. First we review
the hierarchical processing of motion along the dorsal stream and the building up of object
representations along the ventral stream. Then we discuss recent work on the integration
of ventral and dorsal stream features that lead to intermediate object representations in the
dorsal stream. Finally we propose a framework describing how and at what stage different
features are integrated into dorsal visual stream object representations. Determining the
integration of features along the dorsal stream is necessary to understand not only how
the dorsal stream builds up an object representation but also which computations are
performed on object representations instead of local features.

Keywords: feature integration, dorsal pathway, object representation, motion processing, decision making

INTRODUCTION
Classically, visual processing from the retina onwards is described
as following two general principles. One, the processing of differ-
ent types of visual information is anatomically segregated into two
visual streams, and two, each stream is comprised of hierarchical
processing where each stage builds upon the previous stage,
becoming increasingly more complex. In the ventral pathway this
ultimately results in an ability to recognize objects in spite of
changes in the surrounding environment or changes in certain
object features (i.e., position, orientation, viewing angle, size,
etc). In the dorsal pathway this hierarchical processing produces
computations of complex motion of objects within the environ-
ment around us, either as we are stationary or moving through
that environment. Because of this functional separation, there
are many models of object representation in the ventral stream
(see Peissig and Tarr, 2007 for a review) and many models of
motion processing in the dorsal stream (for reviews see Burr and
Thompson, 2011; Nishida, 2011), but motion processing research
has been mostly devoid of investigations as to the nature or
existence of object representations in the dorsal stream. In fact,
the vision for action theory of dorsal stream function (Goodale
and Milner, 1992; Goodale, 2008, 2013) would suggest that even

though there might not be an internal representation of the
object as a whole (see Farivar, 2009 for an alternative view),
there are representations of features of an object that are relevant
for action in real time. Evidence for this comes from spared
functions in visual agnosia wherein damage to the ventral pathway
eliminates the ability to recognize objects but spares scaling and
orientation of the hand when grasping objects (Goodale et al.,
1991, 1994; Milner et al., 2012). In addition, parietal regions
of the dorsal pathway involved in reaching and grasping show
selectivities for the orientation, shape and size of objects (Taira
et al., 1990; Gallese et al., 1994; Murata et al., 2000; Fattori et al.,
2005).

More recently, investigations into cross-talk between the two
visual streams suggest that there are object representations in
the dorsal stream (Schiller, 1993; Sereno and Maunsell, 1998;
Tsutsui et al., 2001; Sereno et al., 2002; Peuskens et al., 2004;
Durand et al., 2007; Lehky and Sereno, 2007; Wannig et al.,
2007; Konen and Kastner, 2008; Tchernikov and Fallah, 2010;
Perry and Fallah, 2012). It is important to note however, that
this object representation would not necessarily be one that gives
rise to object recognition, as in the ventral stream. For exam-
ple, it has been shown that recognition of objects constructed
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from coherently moving dots (structure-from-motion) is severely
impaired in visual agnosiacs (Huberle et al., 2012). These cross-
talk studies suggest however, that the motion computations that
occur within the dorsal stream can benefit from an intermediate
object representation that includes different features of the object.
This intermediate object representation would allow for selection
of one moving object over others contained within the visual field
as seen with flankers and crowding (Livne and Sagi, 2007; Malania
et al., 2007; Sayim et al., 2008; Manassi et al., 2012; Chicherov
et al., 2014), and superimposed surfaces (Valdes-Sosa et al., 1998;
Rodríguez et al., 2002; Mitchell et al., 2003; Reynolds et al., 2003;
Stoner et al., 2005; Fallah et al., 2007; Wannig et al., 2007).

In this review we will first give a brief overview of the hier-
archical nature of feature processing in both the ventral and
dorsal pathways. Various models of the ventral stream have been
proposed wherein each integrates features to build up an object
representation (scale invariant feature transform (SIFT): Lowe,
1987; Neocognitron: Fukushima, 1975; hierarchical model and X
(HMAX): Riesenhuber and Poggio, 1999, and others. For review
see Poggio and Ullman, 2013), often based on behavioral and neu-
rophysiological studies (Cowey and Weiskrantz, 1967; Gross et al.,
1971, 1972; Dean, 1976; Marr and Nishihara, 1978; Biederman,
1987; Biederman and Cooper, 1991). However, the dorsal stream
has generally been relegated to models and algorithms that build
up more complex motion representations, from the prior stage’s
processing (Marr and Ullman, 1981; Adelson and Bergen, 1985;
Cavanagh and Mather, 1989; Taub et al., 1997; Krekelberg and
Albright, 2005; Pack et al., 2006; Tsui and Pack, 2011; Mineault
et al., 2012; Krekelberg and van Wezel, 2013; Patterson et al., 2014;
for review see Burr and Thompson, 2011). This may be due to the
fact that many behavioral and neurophysiological studies of the
dorsal stream have used paradigms that are focused on individual

motion features instead of object representations. While feature
integration and object representations that lead to object based
selection are fairly well understood concepts within the context
of the ventral pathway, less is known about how and where these
processes occur in the dorsal pathway. We will systematically
review the studies that do shed light into which stages of the
dorsal stream use object representations vs. motion features. Our
aims are to provide a framework for object representations within
the dorsal stream and propose where the anatomical locations
of these representations may be. We find that motion features
but not object representations are used up to global motion
processing, as is found in area middle temporal (MT). The next
stage of processing, area medial superior temporal (MST), relies
on intermediate object representations based on smooth pursuit
and glass pattern studies. Finally, intermediate object representa-
tions can be used by the decision making circuitry further down
the dorsal stream (e.g., area lateral intraparietal (LIP)), which
results in faster decisions. It should be noted that the review of
literature presented here is strictly limited to those processes that
are pertinent to the current discussion and thus is not by any
means exhaustive.

HIERARCHICAL VISUAL PROCESSING
DORSAL PATHWAY
The dorsal visual pathway is specialized for motion processing.
Much research has determined the hierarchical nature of motion
processing wherein each stage builds upon the previous stage’s
output leading to understanding of the algorithms and connectiv-
ity to produce models of the different stages of motion processing
(Marr and Ullman, 1981; Adelson and Bergen, 1985; Cavanagh
and Mather, 1989; Taub et al., 1997; Krekelberg and Albright,
2005; Pack et al., 2006; Tsui and Pack, 2011; Mineault et al., 2012;

FIGURE 1 | Hierarchy of visual processing in ventral and dorsal streams. Gray boxes, from V2 on, depict select features processed at each region along the
dorsal pathway. Black boxes, from V2 on, represent features processed along the ventral pathway.
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Krekelberg and van Wezel, 2013; Patterson et al., 2014; for review
see Burr and Thompson, 2011). It is important to note that these
models focus on the transformation of motion information and
not its integration into object representations. Although motion
can produce form cues to be used in representing objects in
the ventral stream, e.g., structure-from-motion (Johansson, 1973,
1976; Siegel and Andersen, 1988; Bradley et al., 1998; Grunewald
et al., 2002; Jordan et al., 2006), object representation in the
dorsal stream has not been historically focussed upon. This sec-
tion briefly reviews the anatomical and functional hierarchy for
motion processing (see Figure 1 for an overview).

V1
Magnocellular cells in the retina and lateral geniculate nucleus
(LGN) provide the input to motion processing in the dorsal
pathway. These cells are sensitive to low luminance and also
to lower spatial and higher temporal frequencies, but are not
sensitive to color. They project to layer 4Cα in the primary visual
cortex (V1). In V1complex cells are sensitive to the motion of
oriented moving edges, bars or gratings (Hubel and Wiesel, 1968;
Hubel et al., 1978; Adelson and Bergen, 1985) and show direction
selectivity (Orban et al., 1986; Movshon and Newsome, 1996).
Complex cells also show the combined spatiotemporal frequency
tuning necessary for early speed selectivity (Orban et al., 1986;
Priebe et al., 2006). In addition, it has been shown that V1 cells
respond only to the local (or component) motion contained in
complex patterns (Movshon and Newsome, 1996).

V2
Motion information, from layer 4B in V1, projects to the thick
stripes in V2 (Hubel and Livingstone, 1987; Levitt et al., 1994).
Although not traditionally thought to play a central role in
motion processing, the thick stripes in V2 provide the second
largest input to area MT (DeYoe and Van Essen, 1985; Shipp
and Zeki, 1985; Born and Bradley, 2005) and it has recently been
suggested that directional maps could first emerge in V2 (Lu et al.,
2010; however, see Gegenfurtner et al., 1997 for an alternative
view).

MT
While MT is the next stage of motion processing after V2, it
also receives significant input directly from V1 (Felleman and
Van Essen, 1991; Born and Bradley, 2005). MT cells are sensitive
to many features associated with 2D motion such as direction
(Maunsell and Van Essen, 1983; Albright, 1984; Lagae et al., 1993),
speed (Maunsell and Van Essen, 1983; Lagae et al., 1993; Perrone
and Thiele, 2001; Priebe et al., 2003; Brooks et al., 2011), and
spatial frequency (Priebe et al., 2003; Brooks et al., 2011). The
increase in receptive field size and the unique characteristics of
MT cells allow for the processing of both local (component)
and global (pattern/random dot kinetograms) motion (Pack and
Born, 2001; gratings: Adelson and Movshon, 1982; Rodman and
Albright, 1989; random dot kinetograms (RDKs): Britten et al.,
1992; Snowden et al., 1992). This allows MT to both integrate the
motion of multiple dots or incongruent motions created by edges
within the same object, and also to separate multiple moving
objects from each other. It is important to note that neurons in

area MT have been shown to not be color selective (Maunsell and
Van Essen, 1983; Shipp and Zeki, 1985; Zeki et al., 1991; Dobkins
and Albright, 1994; Gegenfurtner et al., 1994).

MST
With the local and global 2D motion information from area MT,
area MST has been implicated in processing complex, 3D motion
and in the start of computations of optic flow and self-motion
which are dependent on the analysis of 3D motion. Area MST
has been anatomically divided into lateral (MSTl) and dorsal
(MSTd) regions, where MSTl is thought to be intricately involved
in computing the velocity signals of object trajectories used in the
maintenance of pursuit eye movements (Tanaka et al., 1993; Ilg,
2008). In comparison, neurons in MSTd are selective for rotations
and expansion/contraction motion (Saito et al., 1986), or their
combination, aka spiral motion (Graziano et al., 1994; Mineault
et al., 2012). MSTd neurons are also selective for optic flow (Duffy
and Wurtz, 1991a,b). In fact MSTd neurons can take optic flow
and compute the heading or direction of self-motion (Duffy and
Wurtz, 1995; Gu et al., 2006).

Beyond MST
After MST, the dorsal pathway continues into the posterior pari-
etal cortex. Motion processing therein involves more complicated
optic flow and self-motion patterns, including the motion of
objects while the viewer is also moving (Phinney and Siegel, 2000;
Raffi and Siegel, 2007; Raffi et al., 2010; Chen et al., 2013; Raffi
et al., 2014;). For example, cells in area 7a are tuned to distinguish
between types of optic flow (Siegel and Read, 1997), and neurons
in caudal pole of the superior parietal lobule (Brodmann area 5)
(PEc) can combine optic flow information with signals regarding
the position of the head and eye (Raffi et al., 2014).

VENTRAL PATHWAY
The ventral visual pathway processes form and color information
in a hierarchical stream that builds up separately and then inte-
grates into intermediate and full object representations (Marr and
Nishihara, 1978; Biederman, 1987; Biederman and Cooper, 1991)
ending with object recognition (Cowey and Weiskrantz, 1967;
Gross et al., 1971, 1972; Dean, 1976). Thus, hierarchical models
of the object representation and recognition focus on feature
integration in the ventral stream (SIFT: Lowe, 1987; Neocogni-
tron: Fukushima, 1975; HMAX: Riesenhuber and Poggio, 1999,
and others. For review see Poggio and Ullman, 2013). This sec-
tion briefly reviews the anatomical and functional hierarchy for
building up an object in the ventral pathway (see Figure 1 for an
overview).

V1
Input to V1 in the ventral pathway comes mainly from the par-
vocellular layers of the LGN with additional magnocellular input
(Ferrera et al., 1992, 1994). Parvocellular cells, sensitive to color,
high contrasts, and high spatial and low temporal frequencies,
project to layer 4Cβ of V1 which is subsequently divided into color
blobs and form interblobs. Blobs are color selective but contrast
and size invariant (Solomon et al., 2004; Solomon and Lennie,
2005), and untuned for orientation (Livingstone and Hubel, 1987;
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Ts’o and Gilbert, 1988; Roe and Ts’o, 1999; Landisman and Ts’o,
2002; Shipp and Zeki, 2002). Interblobs are orientation selective
for multiple stimulus types, i.e., edges, bars, gratings (Hubel
and Wiesel, 1968; Hubel et al., 1978). Both blobs and interblobs
process features without regard to objects, although feedback can
produce object-based modulation (Roelfsema et al., 1998) and
may be involved in representing objects (Fallah and Reynolds,
2001; Roelfsema and Spekreijse, 2001).

V2
While color processing (interstripes) changes little from that seen
in V1, there is notable progression in form processing (thin
stripes). V2 neurons are sensitive to the orientation of edges that
are defined either by illusory contours or texture (von der Heydt
et al., 1984; Peterhans and von der Heydt, 1989; von der Heydt and
Peterhans, 1989). V2 cells also encode border ownership (Zhou
et al., 2000) which is the first stage of assigning an oriented edge
to an object representation. Thus contour-based object represen-
tation starts in V2.

V4
Neurons in V4 are tuned for hue that is unaffected by lumi-
nance and not limited to a set of colors along the cardinal
color axes (red-green, blue-yellow) as seen in V1 (Conway and
Livingstone, 2006; Conway et al., 2007). Center-surround inter-
actions produce encoding of perceived color instead of physical
color (Schein and Desimone, 1990). Thus, V4 is the first repre-
sentation of perceived color which is the earliest stage at which
color should be incorporated into an ecologically valid object
representation.

Form processing in V4 combines multiple, spatially-adjacent,
orientation responses seen in V1 and V2 to encode angles and cur-
vatures (Pasupathy and Connor, 1999). These responses advance
the nascent object representation from border ownership (Orban,
2008) to responses that are dependent on the placement of the
curvature with respect to the center of the shape (Pasupathy and
Connor, 2001).

Selection for the orientation of contours created between mov-
ing objects (kinetic contours) emerges in V4 (Mysore et al., 2006).
Accordingly, a subset of V4 neurons are directionally selective
(Ferrera et al., 1992, 1994; Li et al., 2013). Therefore, it should
be noted that the intermediate object representations in area V4
can include motion features as well as color and shape.

IT cortex
Inferior temporal (IT) cortex has a range of object property
complexity starting with simpler features posteriorly (PIT or
TEO: Tanaka et al., 1991; Kobatake and Tanaka, 1994) that
increase in complexity as processing moves anteriorly (AIT
or TE) to represent objects and perform object recognition
(Cowey and Weiskrantz, 1967; Gross et al., 1971, 1972; Dean,
1976). This includes complex shapes, combinations of color
or texture with shape (Gross et al., 1972; Desimone et al.,
1984; Tanaka et al., 1991), and body parts (faces or hands: see
Gross, 2008 for a review). In addition, responses in IT cor-
tex are position and size invariant (Sato et al., 1980; Schwartz
et al., 1983; Rolls and Baylis, 1986; Ito et al., 1995; Logothetis

and Pauls, 1995) and also invariant to changes in luminance,
texture, and relative motion (Sáry et al., 1993). Combined,
these characteristics make IT ideal for representing objects
despite changes in the surrounding environment and retinal
image.

FEATURE INTEGRATION IN THE DORSAL STREAM
Classically, as presented above, it is thought that the ven-
tral pathway is involved in the creation of object represen-
tations and categorizations that allow for recognition, object-
based selection and decision making processes. Comparatively,
the early dorsal stream is most often thought to be special-
ized for motion processing. Growing evidence suggests however,
that processing in the dorsal stream may also allow for object
based selection and decision making, which is consistent with
later dorsal stream involvement in visumotor guidance, e.g.,
vision for action (Goodale and Milner, 1992; Goodale, 2008,
2013). In the ventral stream, the object-file theory (Kahneman
et al., 1992) has been supported by growing empirical evidence
(Mitroff et al., 2005, 2007, 2009; Noles et al., 2005). Object-
files collect, store and update information regarding specific
objects over time. They are considered to be mid-level repre-
sentations of objects that do not rely on higher-level object
categorizations.

While motion processing studies have focused on individual
motion features like direction or speed discriminations of a single
moving stimulus, these motion computations could instead be
working on intermediate object representations. We hypothe-
size that later dorsal stream processing occurs on intermedi-
ate object representations formed by feature integration instead
of on independent motion features. Further we propose that
the intermediate object representations also integrate ventral
stream information such as color or form. Here we present
evidence that support the presence of intermediate (or mid-
level) object representations in the dorsal stream, resulting from
both ventral and dorsal stream features being integrated into an
object-file.

There are multiple ways to investigate the mechanism and
timing of feature integration (Cavanagh et al., 1984; Kahneman
et al., 1992; Croner and Albright, 1997; Mitroff et al., 2005;
Bodelón et al., 2007; Perry and Fallah, 2012 among others). To
study feature integration in the dorsal pathway, it is practical to
utilize stimuli that activate motion processing regions. Area MT
is well known to be involved in direction computations of moving
stimuli including the global motion of RDKs (Britten et al., 1992;
Snowden et al., 1992). The use of coherently moving, superim-
posed RDK’s that produce the perception of two superimposed
objects moving in different directions controls for spatial location,
allowing for investigation of object properties (Valdes-Sosa et al.,
1998; Rodríguez et al., 2002; Mitchell et al., 2003; Reynolds et al.,
2003; Stoner et al., 2005; Fallah et al., 2007; Wannig et al., 2007). In
addition, direction discrimination of two superimposed surfaces
becomes more difficult as the presentation time decreases (Valdes-
Sosa et al., 1998), suggesting that there is a limitation in speed of
processing.

Using two superimposed RDKs does, however, create a per-
ceptual illusion known as direction repulsion. Instead of the
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directions of the two superimposed surfaces being integrated,
the directions are perceived as being repulsed away from the
real directions of motion (Marshak and Sekuler, 1979; Mather
and Moulden, 1980; Hiris and Blake, 1996; Braddick et al.,
2002; Curran and Benton, 2003). This phenomenon can also
be observed with superimposed gratings under conditions that
produce motion transparency (Kim and Wilson, 1996). Direc-
tion repulsion is the result of inhibitory, repulsive interac-
tions (Marshak and Sekuler, 1979; Mather and Moulden, 1980;
Wilson and Kim, 1994; Kim and Wilson, 1996; Perry et al.,
2014) between the directions of motion at the level of global
motion processing in area MT (Wilson and Kim, 1994; Kim
and Wilson, 1996; Benton and Curran, 2003). We will present
studies on the integration of features into the dorsal stream
wherein the direction repulsion paradigm is used to distinguish
between perceptual alterations in the magnitude of direction
repulsion and processing speeds needed to make the percep-
tual decisions (Perry and Fallah, 2012; Perry et al., 2014).
The results provide insight into where features are integrated
and when an intermediate object representation is likely to
occur.

INTEGRATION OF COLOR
Color is a feature that is processed in the ventral stream through
input from parvocellular cells.

Many neuronal studies have found that neurons in the dorsal
pathway are not sensitive to color (Maunsell and Van Essen, 1983;
Shipp and Zeki, 1985; Zeki et al., 1991; Dobkins and Albright,
1994; Gegenfurtner et al., 1994). In fact, ecologically speaking,
color is an irrelevant feature when it comes to processing motion,
as in the color of a ball should not matter when attempting to
catch it. In spite of this, a number of studies have found that
color does in fact alter different aspects of motion processing
(Croner and Albright, 1997, 1999; Tchernikov and Fallah, 2010).
This would suggest that there is integration of color with motion
information in the dorsal stream.

We investigated the effects of color on direction repulsion
(Figure 2) to determine whether cross-stream feature integration
affects direction discrimination, which would support the use of
intermediate object representations in motion processing. Two
superimposed, coherently moving RDK’s were presented, initially
for 2000 ms. Each surface could move in one of 12 directions
relative to either the vertical or horizontal axes, and both direc-
tions created angle differences between the two surfaces ranging
between 70◦ and 110◦. If participants correctly determined the
directions of both surfaces ≥7/8 times, the presentation time
decreased, if participants failed to meet this criterion, the time
increased. This process continued until participants completed
a double reversal. The time needed to process both surfaces
correctly (Presentation Time) was estimated to within ±50 ms.
Direction repulsion was calculated as being the angle difference
between the perceived directions of motion and the actual direc-
tions of the surfaces.

If segmenting the two superimposed surfaces by color
(Figure 2B) reduced direction repulsion, compared to when both
surfaces were the same color (Figure 2A), this would suggest
that color information from the ventral stream is integrated into

motion processing in the dorsal stream prior to or at the time
that global motion processing is computed, e.g., the stage where
mutual inhibition gives rise to repulsion.

Previous work found that when segmenting coherently
moving dots of one color from distractor dots of a different color
in the same RDK, color acts as a filter that allows for improve-
ments in direction discriminations, behaviorally in humans and
animals (Croner and Albright, 1997) and in the responses of
area MT neurons (Croner and Albright, 1999). In this case, color
would be gated earlier (in V2) allowing for the suppression of
distractor colored input to MT. This effectively allows MT to
process the coherently moving dots as if they were appearing
alone and in turn improves direction computation. Thus when
the distractor color is known, color filters can suppress input to
motion processing, a finding that has been replicated in super-
imposed surfaces (Wannig et al., 2007). Based on these findings,
we hypothesized that integrating the color with the motion of
the two superimposed surfaces might also allow for the surfaces
to be individually filtered by color and in turn reduce direction
repulsion.

Surprisingly, when selecting between multiple moving surfaces
that are different colors, direction discrimination is unchanged
from that seen when both surfaces are the same color (Figure 3A).
Therefore, the global motion processing of a moving RDK is not
performed on intermediate object representations, but instead
relies on processing the individual motion features. There is
however, a large decrease (43% reduction) in the processing time
needed to correctly determine both directions of motion. When
both surfaces are the same color, processing both directions took
almost 1500 ms, but when the surfaces were different colors,
processing time was reduced to ∼840 ms (Figure 3B; Perry and
Fallah, 2012). We have suggested previously (Perry and Fallah,
2012; Perry et al., 2014) that it is most likely processing time
is reduced through increasing the speed of the decision making
process. Figure 4A depicts the steps necessary to perform the task
of judging the directions of two superimposed surfaces, and the
time needed for each step (Perry and Fallah, 2012). The super-
imposed dot fields are first segmented (SG) into two surfaces,
and then the direction of one surface is processed (D1). This
would include (Figure 4B) sequential recruitment (Nakayama
and Silverman, 1984; McKee and Welch, 1985; Mikami et al.,
1986), global motion processing, mutual inhibition (repulsion),
and information accumulation for decision making (Shadlen and
Newsome, 1996; Huk and Shadlen, 2005; Palmer et al., 2005; Zak-
sas and Pasternak, 2006; Hussar and Pasternak, 2013). Attention
is switched (SW) to the second surface, and then the direction
of the other surface is processed (D2). When both surfaces are
the same color, correctly processing the direction of both surfaces
takes more than 1000 ms (Figure 4A), but when the surfaces are
segmented by color, the direction of both surfaces is correctly
processed in under 1000 ms (Figure 4C; Perry and Fallah, 2012),
a ∼650 ms decrease in processing time. It could be that the time
needed to segment (SG) the two surfaces is reduced when each
surface is a different color. However, as segmentation is speeded
by not more than 25 ms in texture-defined objects (Caputo
and Casco, 1999) this is unlikely the sole mechanism underlying
such a large decrease in processing time. Alternatively, switching
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FIGURE 2 | Direction repulsion staircase paradigm. Each trial commences
with the appearance of a centrally located fixation point. Once fixation is
maintained for 200 ms, the visual stimulus, two superimposed, coherently
moving in different directions, random dot kinetograms (RDK’s), are
presented in the lower right quadrant. In (A) the two surfaces are the same
color and move at the same speed. In (B) the surfaces are the same speed
but are different colors, and in (C) the surfaces are the same colors but
different speeds. The two surfaces are presented for a variable amount of
time (staircase procedure). Once they are removed, participants use a mouse
to indicate the two directions of motion by clicking on the response circle,

once for each direction. In (B) participants are required to give the direction
for the indicated colored surface in order; the order is randomly assigned
between trials. Initially the visual stimulus is presented for 2000 ms, and
based on participant’s ability to correctly determine both directions of motion,
this time will either increase or decrease in successive blocks of trials. Once
participants reach a double reversal of presentation times, the time needed to
process both directions of motion can be estimated to within ±50 ms.
Direction repulsion is calculated as the difference between the angle created
by the two clicks on the response circle and the angle created by the two real
directions of motion.

attention (SW) between the two surfaces may be speeded when
each surface is a different color. Switching attention between
serially presented objects in the same location (as in attentional
blink) requires only a few hundred milliseconds (Raymond et al.,
1992)—but can be attenuated by around 100 ms when targets
and probes are less similar (Raymond et al., 1995). Again this
mechanism is not sufficient by itself to produce the decrease in
processing time. Therefore, there must be a reduction in the time
needed to process each direction for such a large decrease in
processing time to occur.

In order for color to reduce direction processing time
(Figure 4C), color input would likely have to affect either the
sequential recruitment or decision-making mechanisms includ-
ing information accumulation (Figure 4B) since it does not affect
global motion processing (the mutual inhibition circuit). First,
MT needs to associate individual dots across two frames (sequen-
tial recruitment: Mikami et al., 1986) and pool that information
across enough dots (Britten et al., 1992; Snowden et al., 1992) to
determine the global motions of the two surfaces. If color worked
on sequential recruitment processes, each dot would only need to
be compared to dots of the same color across frames, reducing
the possibilities by half, speeding up the process immensely.
However, by acting as a color filter on sequential recruitment,
this color filtering would also be expected to reduce the direction
repulsion illusion as each set of colored dots would be processed
individually as described earlier (Croner and Albright, 1997,
1999). Instead, there was no change in direction discrimination
when two moving surfaces were superimposed (Perry and Fallah,
2012) which indicates that color could not be used to filter out
the second surface and reduce the possibilities during sequential
recruitment. Alternatively, the integration of color with motion

could affect decision-making. Direction discriminations take the
information from motion processing in area MT (Albright, 1984;
Mikami et al., 1986; Newsome and Paré, 1988; Salzman et al.,
1992), and pass it downstream, to areas like LIP, where it is
accumulated and a decision threshold reached (Shadlen and
Newsome, 1996; Huk and Shadlen, 2005; Zaksas and Pasternak,
2006; Hussar and Pasternak, 2013). If the two surfaces are iden-
tical except for their direction of motion, the direction of each
surface interferes with the accumulation of direction information
for the other surface (Figure 5A—Palmer et al., 2005). This
interference results in a noisy walk to the decision threshold
(accumulator model—Palmer et al., 2005). That is, a decision-
making neuron accumulating information to make a decision
of rightward motion, would treat input from directional cells
preferring rightward motion as positive evidence towards reach-
ing threshold, but input from cells preferring downward motion
interferes reducing the accumulated evidence. This produces a
noisy walk to threshold. More positive evidence would need to
be accumulated before threshold is reached, which means more
processing time is needed. With a second feature (color) added
to each surface, the two sources of input can be distinguished
and selected between. This selection can reduce or eliminate the
input from the interfering surface, which reduces the noise in the
walk towards the decision threshold, increasing the slope and thus
reducing processing time (Figure 5B). Therefore, this requires
that the accumulation of information for direction discrimination
works on intermediate object representations in which color
is integrated with motion. This intermediate object representa-
tion gives the advantage of allowing for competitive selection
of objects (e.g., biased competition: Desimone and Duncan,
1995; Desimone, 1998; Reynolds et al., 2003; Fallah et al., 2007)
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FIGURE 3 | Direction repulsion and processing time results (from Perry
and Fallah, 2012; Perry et al., 2014). (A) There was no significant
modulation of direction repulsion with the addition of color (Different
Color/Same Speed: 13.79◦

± 1.54 SEM) when compared to the Same
color/Same speed (14.02◦

± 1.39 SEM) condition. However, direction
repulsion in the Same color/Different speed condition (10.47◦

± 0.74 SEM)
was significantly less than in the Same color/Same speed condition. (B)
Processing time in both the Different color/Same speed (842 ms ± 209
SEM) and Same color/Different speed (483 ms ± 81 SEM) conditions was
significantly less than in the Same color/Same speed (1488 ms ± 208 SEM)
condition.

at later stages of dorsal stream computations such as decision
making.

In summary, changes in processing time, due to speeded
decision making processes (as proposed above), with no alteration
in direction discrimination, suggest that color is integrated into
dorsal stream intermediate object representations after global
motion processing. This allows for decision-making processes
to use those object representations to reach decision thresholds
faster.

FIGURE 4 | Stages required for direction judgments of two
superimposed objects. Based on the task described in Figure 3. SG =
time needed for Segmentation of the two fields of dots into two surfaces,
based on different directions of motion, SW = time needed to Switch
processing from one surface to the other, D1 and D2 = the time needed to
process the Directions of each superimposed surface (includes sequential
recruitment, global motion computation, information accumulation and
decision making; shown in detail in (B). (A) When the two surfaces differ
only in direction, the time needed to complete all the stages involved in the
task takes more than 1000 ms on average (Perry and Fallah, 2012).
(B) Depicts the processes needed to determine the direction of motion of
one surface (D1). (C) When the surfaces differ in color as well as direction,
processing time significantly decreases to less than 1000 ms (Perry and
Fallah, 2012). (D) When the surfaces differ in speed as well as direction, the
time needed to process both directions is reduced further. As the initial
segmentation (SG) and attentional switch time (SW) do not appreciably
decrease with additional distinguishing features, we propose that the time
needed to complete the task decreases as a result of speeded decision
making processes (D1 and D2—see text for details) and correspondingly, in
(B) and (C) D1 and D2 are depicted as requiring less time than in (A)
(adapted from Perry and Fallah, 2012).

INTEGRATION OF SPEED
Unlike with color, previous investigations of direction repulsion
have shown that when two superimposed surfaces are of different
speeds (Marshak and Sekuler, 1979; Curran and Benton, 2003;
Perry et al., 2014) or different spatial frequencies (Kim and Wil-
son, 1996), direction discrimination improves; direction repul-
sion is attenuated. Given that spatial frequency, speed and direc-
tion are all co-processed within MT (Maunsell and Van Essen,
1983; Albright, 1984; Lagae et al., 1993; Perrone and Thiele, 2001),
this is perhaps not surprising. Comparison of movement between
two frames give us all three of these features. The spatial location
of an object from one frame to the next can be used to calculate
direction and speed, while spatial frequency can be extracted from
the number of times an object appeared over a given distance.
So this information comes in together as a single input and does
not require integration; it is inherent based on the movement
of the stimulus. Consistent with this, neurons in MT are simul-
taneously selective for multiple motion features, such as speed
and direction. Consequently, a neurons response to one feature
(direction for example) can be altered by the response of that same
neuron to a different motion feature (such as speed), and as a
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FIGURE 5 | Information accumulation and decision threshold.
Hypothesized stage at which processing time is reduced. Areas
downstream of MT accumulate motion information in order to arrive at a
decision. The figure depicts information accumulation for the rightward
direction. When accumulating evidence in support of the rightward
direction (+), the evidence is reduced by noise created by the presence of
the other surface (–). (A) When only direction (one feature) differs between
the surfaces, interference between the directions of each surface creates a
noisy walk: i.e., incongruent input that reduces the accumulated evidence
for the rightward direction. This extends the time needed to reach the
decision threshold. (B) When direction and a second feature such as color
or speed differs between the surfaces, the second feature can be used to
reduce the interference caused by the other surface (by allowing
competitive selection to override the influence of the second surface) in the
walk to threshold, thus reducing the time needed to reach a decision
threshold.

result can be considered to be conjoined, i.e., the processing of one
feature affects processing of a different feature (Maunsell and Van
Essen, 1983; Albright, 1984; Lagae et al., 1993; Perrone and Thiele,
2001). Based on co-processing, motion processing is reflective
then of the presented combination of conjoined features. This
occurs without the need for a bound object representation. For
example, perception of speed can be distorted under a number
of different viewing conditions (Krekelberg et al., 2006a,b). A
reduction in contrast reduces perceived speed in slow moving
stimuli (Thompson, 1982) and increases perceived speed of fast
moving stimuli (Thompson et al., 2006). Perceived speed is also
dependent upon spatial frequency (Priebe et al., 2003). And finally
the perception of direction is sensitive to motion processing
conjunctions: direction discrimination becomes more accurate
when superimposed surfaces are different speeds (Marshak and
Sekuler, 1979; Curran and Benton, 2003; Perry et al., 2014) or
different spatial frequencies (Kim and Wilson, 1996).

These examples suggest that direction computation occurs on
conjoined dorsal stream features such as direction and speed
or direction and spatial frequency information. Using the same
paradigm as described in section Integration of color, but with

surfaces that are segmented by differences in speed (Figure 2C),
we tested whether speed, while conjoined with direction for
discrimination, could also be used as a distinguishing feature
in intermediate object representations like color is (Section
Integration of color) and similarly speed up decision mak-
ing circuitry (Perry et al., 2014). As with color (Perry and
Fallah, 2012), we found that differences in the speeds of two
superimposed surfaces decreased processing time (Figure 3B).
In fact, processing time was lower than that seen when the
surfaces were segmented by color (Speed-segmented: 483 ms
vs. Color-segmented: 841 ms). It could be that velocity, con-
joined speed and direction, is the signal that becomes a part
of the object representation. If that were the case however,
processing time would not be altered as velocity would com-
prise a single object feature and there would be no other inde-
pendent feature for use by selection mechanisms to reduce
the noise in the walk to threshold (Figure 5) and reach a
decision threshold more quickly. Instead these results suggest
that speed information is treated as an independent feature
in an intermediate object representation that is used by deci-
sion making circuitry to speed processing times (Figure 4D;
Perry et al., 2014) similar to the effect of color (Perry and
Fallah, 2012). Independent in this case simply means that
in spite of the fact that speed is co-processed with direc-
tion, and their conjunction attenuates direction repulsion dur-
ing direction computations, speed alone can be utilized as
a distinguishing feature to select between the object repre-
sentations when accumulating information for the perceptual
decision.

Unlike the effects of color integration, speed differences
reduced direction repulsion which further supports that direction
discrimination is modulated by other motion features that are
conjoined (processed together) in the dorsal pathway. However,
ventral stream features, such as color, do not affect motion
until after global motion processing occurs. It has been sug-
gested (Marshak and Sekuler, 1979; Mather and Moulden, 1980)
that direction repulsion arises due to inhibitory interactions
between populations of neurons, a theory recently formalized
(Figure 6—adapted from Perry et al., 2014). In mutual inhibi-
tion, the responses of neurons to one direction are inhibited by
the responses of neurons to a second direction (Figures 6A,B)
and the amount of inhibition determines the magnitude of
direction repulsion. As the angle between the two directions
increases, direction repulsion diminishes (Marshak and Sekuler,
1979; Mather and Moulden, 1980) which suggests that mutual
inhibition is dependent upon the overlap in tuning between the
neurons responding to the two directions (Figures 6A,B). When
the surfaces are identical except for direction (Figure 7A) mutual
inhibition and direction repulsion is based solely on the overlap
between the tuning curves. Since color is not integrated into
motion until after this computation, differences in color do not
change the overlap between the two populations and direction
repulsion is unaffected (Figure 7B). However, when the surfaces
are segmented by dorsal stream features such as speed (Figure 7C)
or spatial frequency (Figure 7D) the overlap is reduced due to
tuning in multi-dimensional feature space and direction repul-
sion is decreased. Dorsal stream features are conjoined to produce
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FIGURE 6 | How mutual inhibition produces direction repulsion.
(A) Individual tuning curves of neurons preferring the direction of motion
(0◦) and nearby directions (±15◦) are presented in the polar plot. The
population tuning curve that arises from their responses to rightward
motion is also depicted. (B) The addition of a second surface moving
downwards produces inhibition of other directional neurons. This inhibition
drops off as the difference in preferred directions increases. Hence, the
−15◦ neuron is more strongly inhibited (gray dashes) than the 0◦ neuron
(solid gray), while the +15◦ neuron (black dashes) is not inhibited. This
produces a population tuning curve that is shifted away (solid black) from
the real direction of motion (dotted line). As the inhibition is mutual, a
similar shift would occur for neurons responding to downward motion.

multi-dimensional tuning and thus do not require integration
into an object representation. This is supported by the fact that
color, which is part of the object, does not affect this circuitry
(Figure 7B). Overall, as direction repulsion is thought to arise
from a local circuit in area MT governing global motion process-
ing, the formation of an intermediate object representation that
includes speed and color information likely occurs after that stage.

INTEGRATION OF FORM
Artists have long known how to depict motion in still images
using features such as speed-lines (the “wake” of a moving object).
These non-moving streaks have been shown to affect human
perception of motion (Geisler, 1999; Burr and Ross, 2002) by
providing a direction input along the orientation of the streak
which can either enhance discrimination of a congruently moving
stimulus or interfere with incongruent or orthogonal direction
discrimination. This motion streak effect is thought to occur
as early as V1, supported by computational (Geisler, 1999) and

FIGURE 7 | How additional features affect mutual inhibition and
direction repulsion. (A) Two surfaces that only differ in direction produce
direction repulsion whose magnitude is dependent on the area of overlap
between their tuning curves (directional tuning curves—top, and two
dimensional tuning curves—circles, overlap depicted in solid black).
(B) When the surfaces are different colors, there is no change in the
direction tuning curve overlap which is consistent with color not affecting
direction repulsion. However, when a second motion feature that is
co-processed with direction, such as speed (C) or spatial frequency (D), the
population of neurons responding to each direction is segregated based on
both features and as a result there is a reduction in the two-dimensional
tuning curve overlap (solid black overlap in circles) which results in
attenuated direction repulsion (overlaps in (C) and (D) are smaller than in
(A) and (B). (A–D) The circular plots represent multi-dimensional tuning,
while the curves above and to the right of each plot represent the tuning in
each dimension respectively (adapted from Perry et al., 2014).

neurophysiological (Geisler et al., 2001) studies. Thus, speed-lines
affect the perception of direction by, in effect, producing motion
input for use along the dorsal stream. Similarly, glass patterns,
paired dots that appear and disappear randomly on a display, give
rise to the perception of bistable directions of motion along the
contour of the pattern in the absence of underlying motion signals
(Glass, 1969; Ross et al., 2000). These spatial patterns produce
motion signals that are represented along with magnocellular
motion signals in area MT and ST (Krekelberg et al., 2003), and
integrate with real motion signals in perceiving direction (Burr
and Ross, 2002).

In essence, these form inputs to the dorsal stream provide the
equivalent of motion input to mid-level areas in the dorsal stream
starting in area MT (Krekelberg et al., 2003). It is likely that the
motion produced by these form inputs is then integrated into the
object file as motion features (speed, direction) instead of form
features. These effects differ from color which is integrated as its
own feature into an intermediate object representation later in
the dorsal stream hierarchy. That still leaves an open question
as to whether other ventral stream features that do not give rise
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to the perception of motion could also be integrated into dorsal
stream object files. Other features could be tested with the same
direction repulsion paradigm as described earlier. For example,
direction repulsion and processing time could be determined for
surfaces distinguished by different contrast levels. As the dorsal
stream saturates at much lower contrast than the ventral stream
(Heuer and Britten, 2002), if decision-making processing time is
affected by contrast differences that are above the saturation point
for the dorsal stream, then the dorsal stream object file integrates
ventral stream contrast information. Additionally, would a size
difference between the dots of the two surfaces result in speeded
perceptual decision-making similar to the effects of color? The
effects of shape (varying the form of the RDK elements, i.e., dots
vs. squares vs. triangles) also needs to be tested.

INTERMEDIATE OBJECT REPRESENTATIONS
IN THE DORSAL STREAM
Thus far, the evidence presented suggests two main concepts.
First, global direction computations are based on the co-
processing of dorsal stream motion information. Surfaces seg-
mented by speed or spatial frequency (but not color) result in
an improvement in direction computations and thus an attenu-
ation of direction repulsion. Secondly, both speed and color are
integrated into a dorsal stream intermediate object representa-
tion (or object file) which in turn is used by decision making
processes to speed processing times. Speed and direction would
need to be independent features in a dorsal stream object file,
because this allows for awareness of changes in one dimension
independent of the other velocity feature. For example, a moving
ball provides velocity information (conjoined speed and direc-
tion). If it changes speed but continues to move in the same
direction, the population of MT cells that would respond to
the conjoined speed/direction selectivity changes. Without inde-
pendence of these motion features in the object representation,
switching underlying MT populations would mark a change in all
of the conjoined features. Instead, with independence observers
are aware of the speed changing while the direction does not. Thus
a dorsal stream object file can denote changes in speed or changes
in direction independently. We propose that the dorsal stream
object file would also include ventral stream information such
as color. Decision-making then works on object files instead of
direction information alone, and therefore distinguishing features
in the object files can be used to selectively focus decision-making
on the relevant direction information.

The features that are placed in the object file are dependent
upon which features are important to completing the specified
task (Harel et al., 2014). Theoretically then, using the direction
repulsion paradigm as an example, task relevant would mean
that any feature that distinguished the two superimposed surfaces
from each other would be a feature added to the object file. This is
what occurred with both speed and color, and therefore it would
be logical to extrapolate that other task relevant features would
also be included in an object file. We have previously suggested
(Section Integration of form) how other form features, such as
size, shape and contrast, could be tested for integration into a
dorsal stream object file.

We propose that global motion processing occurs on conjoined
motion features such as speed and direction, whereas the accumu-
lation of perceptual information to reach a decision is performed
on intermediate object representations. While these hypotheses
are yet to be directly tested at the neurophysiological level (e.g.,
in animal models), in the next section we propose the likely
neural substrates and dorsal stream areas subserving each of these
processes, based on known properties of these areas.

POSSIBLE LOCATION OF OBJECT REPRESENTATIONS
IN THE DORSAL STREAM
Figure 8 provides an overview of processing along both the
ventral and dorsal pathways with known object representations
in the ventral stream and hypothesized object representations in
the dorsal stream. Given that object files are considered to be
mid-level representations, and are found at intermediate stages
of ventral stream processing, they should similarly be found in
and around area MT in the dorsal stream. Perceived color is
processed in area V4, and thus color processing would need
to reach this stage before being incorporated into an object
representation in either the ventral or dorsal stream. Color is
not integrated with direction prior to direction computation
circuits in MT as the addition of color did not reduce direc-
tion repulsion. However, color and speed did reduce the time
needed to fully process both directions of motion. Therefore
while global motion direction computations which are computed
in area MT are not performed on object files, color and speed
are integrated into an object file after direction computation in
MT.

Evidence of motion computations relying on object represen-
tations comes from smooth pursuit. Color is known to affect
smooth pursuit eye movements to moving surfaces (Tchernikov
and Fallah, 2010) which are dependent upon the processing of
velocity signals for both the surface and the background in area
MST (Dürsteler and Wurtz, 1988; Komatsu and Wurtz, 1988,
1989; Thier and Erickson, 1992; Ilg, 2008). Intuitively, eye move-
ments should be color blind. Instead color biases selection of one
superimposed surface over the other based on a color hierarchy,
and the competition between the two colored surfaces modulates
the speed of pursuit (Tchernikov and Fallah, 2010). This suggests
that it is not only the reaching and grasping systems later in the
dorsal stream that work on object features, but as part of the
vision for action pathway, smooth pursuit computations are based
on object files. Thus the integration of color into the dorsal stream
object file may occur as early as area MST, or at least before the
frontal eye fields (FEF) generate the motor plan.

After MST in the dorsal stream, area LIP in the parietal lobe has
been shown to be involved in the accumulation of motion infor-
mation for perceptual decision-making (Shadlen and Newsome,
1996; Huk and Shadlen, 2005; Palmer et al., 2005). This stage of
processing works on object files as color and speed differences
reduce the time needed to reach the decision threshold. Beyond
this stage, a number of areas in the posterior parietal cortex are
selective for objects, a function necessary for visuomotor guidance
of grasping. Such object selectivity has been found in areas ante-
rior intraparietal (AIP) and 7a (Taira et al., 1990; Murata et al.,
2000; Phinney and Siegel, 2000).
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This hypothetical framework for object representations in the
dorsal stream (Figure 8) can be tested in future neurophysiologi-
cal studies. Specifically, global motion processing in area MT neu-
rons and the concomitant direction repulsion of the population
tuning should not be affected by the addition of color differences.
Whereas responses of neurons in area MST that give rise to
pursuit motion should be modulated by the color differences in
superimposed surfaces (Tchernikov and Fallah, 2010). Finally,
decision-making neurons in area LIP should show steeper slopes
and reach decision thresholds faster when a second distinguishing
feature such as color or speed is present.

OTHER EVIDENCE FOR DORSAL STREAM OBJECT REPRESENTATIONS
Other studies have shown selection of objects in the dorsal
stream that upon reflection would support intermediate object
representations. For example, judging the direction of a brief
translation of one of two counter-rotating superimposed surfaces
is improved when that surface is selected by color (Valdes-Sosa
et al., 2000), an effect the authors attributed to the use of object
files by the dorsal stream. The different motions between the
two surfaces provides noise in accumulating direction infor-
mation, but reducing noise through selection of that object
file would speed processing such that the decision threshold
could be reached during the brief translation period. Similarly,

if the object file is selected by a transient motion feature
capturing attention, selection of that object file is maintained
and again improves the discrimination of a subsequent brief
translation (Reynolds et al., 2003) along with modulating the
visually evoked N1 component, a marker of selective attention
(Pinilla et al., 2001; Khoe et al., 2005). In fact, when one of
two superimposed surfaces is selected by a color segmenta-
tion cue, the selective advantage for processing brief transla-
tions of that surface survives the removal of color differences
(Mitchell et al., 2003), once again showing that selection is
maintained via an object file. In fact, concurrent judgments of
simple form (square or circle) and motion are impaired when
made across two superimposed surfaces compared to when they
are made for the same surface (Rodríguez et al., 2002). This
is similar to Duncan (1984), which showed that attending to
an object representation allows judgments of multiple ventral
stream form features “for free” but that there was a cost asso-
ciated with having to make judgments across two superim-
posed objects. Together, these studies suggest that there are also
object representations in the later stages of the dorsal stream.
Furthermore, competitive selection processes work not only on
objects in the ventral stream (Desimone, 1998; Reynolds et al.,
2003; Fallah et al., 2007), but also on objects in the dorsal
stream.

FIGURE 8 | Intermediate object representation model. Visual processing
along the ventral stream is depicted along with known object
representations starting in area V2. We also depict visual processing along
the dorsal stream with the hypothetical stages which process dorsal
stream object files. As visual processing progresses along the dorsal
pathway stimulus parameters are calculated and this information is
provided to area MT. In MT, information regarding speed, direction and

spatial frequency are co-processed forming multidimensional selectivity.
After local and global motion processing circuits in MT, an intermediate
object representation is formed that incorporates independent motion
features (such as speed and direction) and ventral stream features (such as
color, with other features such as shape and size to be determined). This
intermediate object representation is in place prior to decision making
circuitry that represents motion or guides action.
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VISION FOR ACTION
The dorsal stream object representation would not need to
progress to the level of object recognition however. As already
discussed, the vision for action theory states that the dorsal
pathway’s reaching and grasping system uses object features as
a means of guiding action in real time. With damage to the
ventral stream, patients can still orient their hand and scale their
grip according to the orientation and shape of the item to be
grasped. This does not require that the object is fully processed
through to recognition, just that a list of features associated with
a specific object be available for selection (Freiwald, 2007). An
object file would provide such a list from which different features
could be used to select the correct object among multiple, even
superimposed, objects (Valdes-Sosa et al., 1998, 2000; Pinilla
et al., 2001; Wannig et al., 2007; Perry and Fallah, 2012; Perry
et al., 2014).

DORSAL TO VENTRAL INTEGRATION
Our proposal is that the dorsal stream integrates features,
from both the dorsal and ventral pathways, into an object
representation that can be used by decision making circuitry
(contained within the dorsal stream) for selection purposes. A
similar process occurs in the ventral stream, and it is not only
features processed within the ventral stream that are integrated
to form object representations used in object recognition and
decision making. As early as V4, motion information from the
dorsal pathway is used to define stationary edges that occur
between moving stimuli (kinetic boundaries—Mysore et al.,
2006). However, MT also plays a role in segmentation mech-
anisms (Born and Bradley, 2005) as a necessary component
of surface reconstruction (Andersen and Bradley, 1998). This
is what allows MT to separate the motion of multiple mov-
ing stimuli from each other (Snowden et al., 1991; Stoner and
Albright, 1996), even under conditions of occlusion (Nowlan
and Sejnowski, 1995), and to separate moving objects from
background (Bradley and Andersen, 1998; Born and Bradley,
2005). Similarly, superimposed dots patterns, moving in opposite
directions and moving at variable speeds can be integrated to
create a percept of a rotating cylinder. This indicates that pro-
cessing along the dorsal pathway also allows for perception of
3D structures (Bradley et al., 1998; Dodd et al., 2001). Mov-
ing dots are also known to give rise to human shape percepts.
Moreover, this perception of biological motion goes beyond
shape and form processing. Higher order features, such as gen-
der, are also derived from biological motion (Barclay et al.,
1978; Mather and Murdoch, 1994; Jordan et al., 2006). As gen-
der is derived from the global, not local motion, and gender
adapts with prolonged exposure to biological motion (Jordan
et al., 2006), this occurs at a stage beyond area MT. Biological
motion is represented in the superior temporal polysensory area
(STP: Perrett et al., 1989) and as such is an object representa-
tion later along the dorsal stream, which gives rise to gender
representation.

ALTERNATIVE LOCATION FOR THE OBJECT REPRESENTATION
While evidence supports the dorsal stream decision-making
processes working on object representations, the site for

these representations are unknown. We have suggested that
intermediate object representations are built up at later stages
in the dorsal stream (Figure 8). However, these decision making
circuits in the dorsal stream could instead be modulated by object
representations contained in the ventral pathway.

For this to occur, motion information would have to be
a tag (e.g., Finger of INSTantiation (FINST): Pylyshyn, 1989,
1994) associated with object processing in the ventral stream,
which would then have to be passed back to the dorsal stream in
time for direction decisions to be made. While this is possible,
Occam’s razor suggests the more parsimonious explanation of
dorsal stream object files is likely the correct one. There is a
means of testing whether intermediate object representations
occur in the dorsal stream. As visual agnosiacs have damage
to the ventral stream but retain certain form information used
to guide grasps, they could be tested to see whether motion
decision-making could be sped up without ventral stream
object representations. If so, then there must be dorsal stream
intermediate object representations separate from those in the
ventral stream. Such intermediate object representations would
not give rise to recognition but would incorporate the form
features maintained in the dorsal stream to provide real-time
visual guidance for actions such as hand orientation, grip scaling,
and pincer grip locations (Goodale et al., 1991, 1994; Milner et al.,
2012). Note that even if the intermediate object representation
was to be created in the ventral stream, it would still be used by
decision-making areas in the dorsal stream. The areas that give
rise to the object representation would change, but the later stages
of dorsal stream processing would still be dependent on object
representations, not just motion information.

CONCLUSIONS
We have provided a framework for not only how the dor-
sal stream extracts motion information but also builds up an
object representation that is used in decision making pro-
cesses. The hierarchical nature of visual processing, in both the
ventral and dorsal pathways, provides the basis for where an
object representation in the dorsal pathway would exist. Both
color and speed information, as independent object features,
are integrated into motion processing circuits beyond direc-
tion computations (such as in area MT) and prior to deci-
sion making and attentional selection (such as in area LIP). In
fact, color-dependent smooth pursuit may indicate an interme-
diate object representation occurs as early as area MST. It is
also likely that later parietal areas that guide grasping, such as
AIP, may also contain the requisite circuitry for intermediate
object representations in the dorsal stream. We have suggested
that this object representation would not give rise to object
recognition as in the ventral stream but instead would con-
tain a list of object features upon which decisions could be
made and actions performed. Object files are a possible mech-
anism through which information necessary for dorsal stream
decision making and selection could be collected and updated
as needed. The use of dorsal stream information for the cre-
ation of objects in the ventral pathway supports our proposal
of parallel mechanisms existing in the dorsal stream. Testing
visual agnosiacs on dorsal stream decision making, requiring the
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use of object representations, would be a way to determine if
the dorsal pathway alone can support these intermediate object
representations.
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The visual cortex’s hierarchical, multi-level organization is captured in many biologically
inspired computational vision models, the general idea being that progressively larger
scale (spatially/temporally) and more complex visual features are represented in
progressively higher areas. However, most earlier models use localist representations
(codes) in each representational field (which we equate with the cortical macrocolumn,
“mac”), at each level. In localism, each represented feature/concept/event (hereinafter
“item”) is coded by a single unit. The model we describe, Sparsey, is hierarchical as
well but crucially, it uses sparse distributed coding (SDC) in every mac in all levels. In
SDC, each represented item is coded by a small subset of the mac’s units. The SDCs
of different items can overlap and the size of overlap between items can be used to
represent their similarity. The difference between localism and SDC is crucial because
SDC allows the two essential operations of associative memory, storing a new item and
retrieving the best-matching stored item, to be done in fixed time for the life of the model.
Since the model’s core algorithm, which does both storage and retrieval (inference),
makes a single pass over all macs on each time step, the overall model’s storage/retrieval
operation is also fixed-time, a criterion we consider essential for scalability to the huge
(“Big Data”) problems. A 2010 paper described a nonhierarchical version of this model
in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical
model (arbitrary numbers of levels and macs per level), describing novel model principles
like progressive critical periods, dynamic modulation of principal cells’ activation functions
based on a mac-level familiarity measure, representation of multiple simultaneously active
hypotheses, a novel method of time warp invariant recognition, and we report results
showing learning/recognition of spatiotemporal patterns.

Keywords: sparse distributed codes, cortical hierarchy, sequence recognition, event recognition, deep learning,

critical periods, time warp invariance

INTRODUCTION
In this paper, we provide the hierarchical elaboration of the
macro/mini-column model of cortical computation described in
Rinkus (1996, 2010) which is now named Sparsey. We report
results of initial experiments involving multi-level models with
multiple macrocolumns (“macs”) per level, processing spatiotem-
poral patterns, i.e., “events.” In particular, we show: (a) single-
trial unsupervised learning of sequences where this learning
results in the formation of hierarchical spatiotemporal memory
traces; and (b) recognition of training sequences, i.e., exact or
nearly exact reactivation of complete hierarchical traces over all
frames of a sequence. The canonical macrocolumnar algorithm—
which probabilistically chooses a sparse distributed code (SDC)
as a function of a mac’s entire input, i.e., its bottom-up (U), hori-
zontal (H), and top-down (D) input vectors, at a given moment—
operates similarly, modulo parameters, in both learning and
recognition, in all macs at all levels. Computationally, Sparsey’s
most important property is that a mac both stores (learns) new
input items—which in general are temporal-context-dependent
inputs, i.e., particular spatiotemporal moments—and retrieves

the spatiotemporally closest-matching stored item in time that
remains fixed as the number of items stored in the mac increases.
This property depends critically on the use of SDCs, is essential
for scalability to “Big Data” problems, and has not been shown for
any other computational model, biologically inspired or not!

The model has a number of other interesting neurally plau-
sible properties, including the following. (1) A “critical period”
concept wherein learning is frozen in a mac’s afferent synaptic
projections when those projections reach a threshold saturation.
In a hierarchical setting, freezing will occur beginning with the
lowest level macs (analogous to primary sensory cortex) and
progress upward over the course of experience. (2) A “progressive
persistence” property wherein the activation duration (persis-
tence) of the “neurons” (and thus of the SDCs which are sets
of co-active neurons) increases with level; there is some evidence
for increasing persistence along the ventral visual path (Rolls and
Tovee, 1994; Uusitalo et al., 1997; Gauthier et al., 2012). This
allows an SDC in a mac at level J to associate with sequences of
SDCs in Level J-1 macs with which it is connected, i.e., a chunking
(compression) mechanism. In particular, this provides a means to
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learn in unsupervised fashion perceptual invariances produced by
continuous transforms occurring in the environment (e.g., rota-
tion, translation, etc.). Rolls’ VisNet model, introduced in Rolls
(1992) and reviewed in Rolls (2012), uses a similar concept to
explain learning of naturally-experienced transforms, although
his trace-learning-rule-based implementation differs markedly
from ours. (3) During learning, an SDC is chosen on the basis of
signals arriving from all active afferent neurons in the mac’s total
(U, H, and D) receptive field (RF). However, during retrieval, if
the highest-order match, i.e., involving all three (U, H, and D)
input sources, falls below a threshold, the mac considers a pro-
gression of lower-order matches, e.g., involving only its U and D
inputs, but ignoring its H inputs, and if that also falls below a
threshold, a match involving only its U inputs. This “back-off”
protocol, in conjunction with progressive persistence, allows a
protocol by which the model can rapidly—crucially, the protocol
does not increase the time complexity of closest-match retrieval—
compare a test sequence (e.g., video snippet) not only to the set
of all sequences actually experienced and stored, but to a much
larger space of nonlinearly time-warped variants of the actually-
experienced sequences. (4) During retrieval, multiple competing
hypotheses can momentarily (i.e., for one or several frames) be
co-active in any given mac and resolve to a single hypothesis as
subsequent disambiguating information enters.

While the results reported herein are specifically for the unsu-
pervised learning case, Sparsey also implements supervised learn-
ing in the form of cross-modal unsupervised learning, where one
of the input modalities is treated as a label modality. That is,
if the same label is co-presented with multiple (arbitrarily dif-
ferent) inputs in another (raw sensory) modality, then a single
internal representation of that label can be associated with the
multiple (arbitrarily different) internal representations of the sen-
sory inputs. That internal representation of the label then de facto
constitutes a representation of the class that includes all those sen-
sory inputs regardless of how different they are, providing the
model a means to learn essentially arbitrarily nonlinear categories
(invariances), i.e., instances of what Bengio terms “AI Set” prob-
lems (Bengio, 2007). Although we describe this principle in this
paper, its full elaboration and demonstration in the context of
supervised learning will be treated in a future paper.

Regarding the model’s possible neural realization, our pri-
mary concern is that all of the model’s formal structural and
dynamic properties/mechanisms be plausibly realizable by known
neural principles. For example, we do not give a detailed neural
model of the winner-take-all (WTA) competition that we hypoth-
esize to take place in the model’s minicolumns, but rather rely
on the plausibility of any of the many detailed models of WTA
competition in the literature, (e.g., Grossberg, 1973; Yu et al.,
2002; Knoblich et al., 2007; Oster et al., 2009; Jitsev, 2010). Nor
do we give a detailed neural model for the mac’s computation
of the overall spatiotemporal familiarity of its input (the “G”
measure), or for the G-contingent modulation of neurons’ acti-
vation functions. Furthermore, the model relies only upon binary
neurons and a simple synaptic learning model. This paper is
really most centrally an explanation of why and how the use
of SDC in conjunction with hierarchy provides a computation-
ally efficient, scalable, and neurally plausible solution to event

(i.e., single- or multimodal spatiotemporal pattern) learning and
recognition.

OVERALL MODEL CONCEPT
The remarkable structural homogeneity across the neocortical
sheet suggests a canonical circuit/algorithm, i.e., a core com-
putational module, operating similarly in all regions (Douglas
et al., 1989; Douglas and Martin, 2004). In addition, DiCarlo
et al. (2012) present compelling first-principles arguments based
on computational efficiency and evolution for a macrocolumn-
sized canonical functional module whose goal they describe as
“cortically local subspace untangling.” We also identify the canon-
ical functional module with the cortical “macrocolumn” (a.k.a.
“hypercolumn” in V1, or “barrel”-related volumes in rat/mouse
primary somatosensory cortex), i.e., a volume of cortex, ∼200–
500 um in diameter, and will refer to it as a “mac.” In our view,
the mac’s essential function, or “meta job description,” in the
terms of DiCarlo et al. (2012), is to operate as a semi-autonomous
content-addressable memory. That is, the mac:

(a) assigns (stores, learns) neural codes, specifically sparse dis-
tributed codes (SDCs), representing its global (i.e., combined
U, H, and D) input patterns; and

(b) retrieves (reactivates) stored codes, i.e., memories, on sub-
sequent occasions when the global input pattern matches a
stored code sufficiently closely.

If the mac’s learning process ensures that similar inputs map to
similar codes (SISC), as Sparsey’s does, then operating as a content
addressable memory is functionally equivalent to local subspace
untangling.

Although the majority of neurophysiological studies through
the decades have formalized the responses of cortical neurons in
terms of purely spatial receptive fields (RFs), evidence revealing
the truly spatiotemporal nature of neuronal RFs is accumulat-
ing (DeAngelis et al., 1993, 1999; Rust et al., 2005; Gavornik and
Bear, 2014; Ramirez et al., 2014). In our mac model, time is dis-
crete: U signals arrive from neurons active on the current time
step while H and D signals arrive from neurons active on the pre-
vious time step. We can view the combined U, H, and D inputs as a
“context-dependent U input” (where the H and D signals are con-
sidered the “context”) or more holistically, as an overall particular
spatiotemporal moment (as suggested earlier).

As will be described in detail, the first step of the mac’s canon-
ical algorithm, during both learning and retrieval, is to combine
its U, H, and D inputs to yield a (scalar) judgment, G, as to the
spatiotemporal familiarity of the current moment. Provided the
number of codes stored in the mac is small enough, G measures
the spatiotemporal similarity of the best matching stored moment,
x, to the current moment, I.

G = arg max
x

(sim(I, x))

Figure I-1 shows the envisioned correspondence of Sparsey to
the cortical macrocolumn. In particular, we view the mac’s sub-
population of L2/3 pyramidals as the actual repository of SDCs.
And even more specifically, we postulate that the ∼20 L2/3

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 160 | 211

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rinkus Sparse deep hierarchical vision model

FIGURE I-1 | Proposed correspondence between the cortical

macrocolumn and Sparsey’s mac. Left: schematic of a cortical
macrocolumn composed of ∼70 minicolumns (green cylinder). SDCs
representing context-dependent inputs reside in mac’s L2/3 population. An
SDC is a set composed of one active L2/3 pyramidal cell per minicolumn.
Upper Right: 2-photon calcium image of activity in a mac-sized area of cat
V1 given a left-moving vertical bar in the mac’s RF; we have added dashed

hexagonal boundary to suggest the boundary of macrocolumn/
hypercolumn module (adapted from Ohki et al., 2005). Lower Right: two
formats that we use to depict macs; they show only the L2/3 cells. The
hexagonal format mac has 10 minicolumns each with seven cells. The
rectangular format mac has nine minicolumns each with nine cells. Note
that in these formats, active cells are black (or red as in many subsequent
figures); inactive cells are white.

pyramidals in each of the mac’s ∼70 minicolumns function in
WTA fashion. Thus, a single SDC code will consist of 70 L2/3
pyramidals, one per minicolumn. Note: we also refer to mini-
columns as competitive modules (CMs). Two-photon calcium
imaging movies, e.g., Ohki et al. (2005), Sadovsky and MacLean
(2014), provide some support for the existence of such macro-
columnar SDCs as they show numerous instances of ensembles,
consisting of from several to hundreds of neurons, often span-
ning several 100 um, turning on and off as tightly synchronized
wholes. We anticipate that the recently developed super-fast volt-
age sensor ASAP1 (St-Pierre et al., 2014) may allow much higher
fidelity testing of SDCs and Sparsey in general.

Figure I-2 (left) illustrates the three afferent projections to a
particular mac at level L1 (analog of cortical V1), M1

i (i.e., the ith
mac at level L1). The red hexagon at L0 indicates M1

i ’s aperture
onto the thalamic representation of the visual space, i.e., its clas-
sical receptive field (RF), which we can refer to more specifically as
M1

i ’s U-RF. This aperture consists of about 40 binary pixels con-
nected all-to-all with M1

i ’s cells; black arrows show representative
U-weights (U-wts) from two active pixels. Note that we assume
that visual inputs to the model are filtered to single-pixel-wide
edges and binarized. The blue semi-transparent prism represents
the full bundle of U-wts comprising M1

i ’s U-RF.
The all-to-all U-connectivity within the blue prism is essen-

tial because the concept of the RF of a mac as a whole, not of
an individual cell, is central to our theory. This is because the

“atomic coding unit,” or equivalently, the “atomic unit of mean-
ing” in this theory is the SDC, i.e., a set of cells. The activation
of a mac, during both learning and recognition, consists in the
activation of an entire SDC, i.e., simultaneous activation of one
cell in every minicolumn. Similarly, deactivation of a mac con-
sists in the simultaneous deactivation of all cells comprising the
SDC (though in general, some of the cells contained in a mac’s
currently active SDC might also be contained in the next SDC to
become active in that mac). Thus, in order to be able to view an
SDC as collectively (or atomically) representing the input to a mac
as a whole, all cells in a mac must have the same RF (the same set
of afferent cells). This scenario is assumed throughout this report.

In Figure I-2, magenta lines represent the D-wts comprising
M1

i ’s afferent D projection, or D-RF. In this case, M1
i ’s D-RF con-

sists of only one L2 (analog of V2) mac, M2
j , which is all-to-all

connected to M1
i (representative D-wts from just two of M2

j ’s cells
are shown). Any given mac also receives complete H-projections
from all nearby macs in its own level (including itself) whose cen-
ters fall within a parameter-specifiable radius of its own center.
Signals propagating via H-wts are defined to take one time step
(one sequence item) to propagate. Green arrows show a small rep-
resentative sample of H-wts mediating signals arriving form cells
active on the prior time step (gray). Red indicates cells active on
current time step. At right of Figure I-2, we zoom in on one of
M1

i ’s minicolumns (CMs) to emphasize that every cell in a CM
has the same H-, U-, and D-RFs. Figure I-3 further illustrates
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FIGURE I-2 | Detail of afferent projections to a mac. See text for description.

(using the rectangular format for depicting macs) the concept that
all cells in a given mac have the same U-, H-, and D-RFs and that
those RFs respect the borders of the source macs. Each cell in the
L1 mac, M1

(2,2) (here we use an alternate (x,y) coordinate indexing
convention for the macs), receives a D-wt from all cells in all five
L2 macs indicated, an H-wt from all cells in M1

(2,2) and its N, S, E,
and W neighboring macs (green shading), and a U-wt from all 36
cells in the indicated aperture.

The hierarchical organization of visual cortex is captured in
many biologically inspired computational vision models with the
general idea being that progressively larger scale (both spatially
and temporally) and more complex visual features are repre-
sented in progressively higher areas (Riesenhuber and Poggio,
1999; Serre et al., 2005). Our cortical model, Sparsey, is hierar-
chical as well, but as noted above, a crucial, in fact, the most
crucial difference between Sparsey and most other biologically
inspired vision models is that Sparsey encodes information at
all levels of the hierarchy, and in every mac at every level, with
SDCs. This stands in contrast to models that use localist repre-
sentations, e.g., all published versions of the HMAX family of
models, (e.g., Murray and Kreutz-Delgado, 2007; Serre et al.,
2007) and other cortically-inspired hierarchical models (Kouh
and Poggio, 2008; Litvak and Ullman, 2009; Jitsev, 2010) and
the majority of graphical probability-based models (e.g., hidden
Markov models, Bayesian nets, dynamic Bayesian nets). There
are several other models for which SDC is central, e.g., SDM
(Kanerva, 1988, 1994, 2009; Jockel, 2009), Convergence-Zone

Memory (Moll and Miikkulainen, 1997), Associative-Projective
Neural Networks (Rachkovskij, 2001; Rachkovskij and Kussul,
2001), Cogent Confabulation (Hecht-Nielsen, 2005), Valiant’s
“positive shared” representations (Valiant, 2006; Feldman and
Valiant, 2009), and Numenta’s Grok (described in Numenta white
papers). However, none of these models has been substantially
elaborated or demonstrated in an explicitly hierarchical archi-
tecture and most have not been substantially elaborated for the
spatiotemporal case.

Figure I-4 illustrates the difference between a localist, e.g., an
HMAX-like, model and the SDC-based Sparsey model. The input
level (analogous to thalamus) is the same in both cases: each small
gray/red hexagon in the input level represents the aperture (U-
RF) of a single V1 mac (gray/red hexagon). In Figure I-4A, the
representation used in each mac (at all levels) is localist, i.e., each
feature is represented by a single cell and at any one time, only
one cell (feature) is active (red) in any given mac (here the cell is
depicted with an icon representing the feature it represents). In
contrast, in Figure I-4B, any particular feature is represented by
a set of co-active cells (red), one in each of a mac’s minicolumns:
compare the two macs at lower left of Figure I-4A with the cor-
responding macs in Figure I-4B (blue and brown arrows). Any
given cell will generally participate in the codes of many different
features. A yellow call-out shows codes for other features stored
in the mac, besides the feature that is currently active. If you look
closely, you can see that for some macs, some cells are active in
more than one of the codes.
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FIGURE I-3 | Connectivity scheme. Within each of the three afferent
projections, H, U, and D, to a mac, M1

(2,2) (where the mac index is now in
terms of (x,y) coordinates in the level, and we have switched to the
rectangular mac topology), the connectivity is full and respects mac borders.

L1 is a 5 × 4 sheet of macs (blue borders), each consisting of 36 minicolumns
(pink borders), but the scale is too small to see the individual cells within
minicolumns. L2 is a 4 × 3 sheet of macs, each consisting of nine CMs, each
consisting of nine cells.

Looking at Figure I-4A, adapted from Serre et al. (2005),
one can see the basic principle of hierarchical compositionality
in action. The two neighboring apertures (pink) over the dog’s
nose lead to activation of cells representing a vertical and a
horizontal feature in neighboring V1 macs. Due to the con-
vergence/divergence of U-projections to V2, both of these cells
project to the cells in the left-hand V2 mac. Each of these cells
projects to multiple cells in that V2 mac, however, only the red
(active) cell representing an “upper left corner” feature, is max-
imally activated by the conjunction of these two V1 features.
Similarly, the U-signals from the cell representing the “diagonal”
feature active in the right-hand V1 mac will combine with signals
representing features in nearby apertures to activate the appropri-
ate higher-level feature in the V2 mac whose U-RF includes these
apertures (small dashed circles in the input level). Note that some
notion of competition (e.g., the “max” operation in HMAX mod-
els) operates amongst the cells of a mac such that at any one time,
only one cell (one feature) can be active.

We underscore that in Figure I-4, we depict simple (solid bor-
der) and complex (dashed border) features within individual

macs, implying that complex and simple features can compete
with each other. We believe that the distinction between simple
and complex features may be largely due to coarseness of older
experimental methods (e.g., using synthetic low-dimensional
stimuli): newer studies are revealing far more precise tuning func-
tions (Nandy et al., 2013), including temporal context specificity,
even as early as V1 (DeAngelis et al., 1993, 1999), and in other
modalities, somatosensory (Ramirez et al., 2014) and auditory
(Theunissen and Elie, 2014).

The same hierarchical compositional scheme as between V1
and V2 continues up the hierarchy (some levels not shown),
causing activation of progressively higher-level features. At higher
levels, we typically call them concepts, e.g., the visual concept of
“Jennifer Aniston,” the visual concept of the class of dogs, the
visual concept of a particular dog, etc. We show most of the fea-
tures at higher levels with dashed outlines to indicate that they
are complex features, i.e., features with particular, perhaps many,
dimensions of invariance, most of which are learned through
experience. In Sparsey, the particular invariances are learned
from scratch and will generally vary from one feature/concept to

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 160 | 214

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rinkus Sparse deep hierarchical vision model

FIGURE I-4 | Comparison of a localist (A) and an SDC-based (B) hierarchical vision model. See text.

another, including within the same mac. The particular features
shown in the different macs in this example are purely notional:
it is the overall hierarchical compositionality principle that is
important, not the particular features shown, nor the particular
cortical regions in which they are shown.

The hierarchical compositional process described above in the
context of the localist model of Figure I-4A applies to the SDC-
based model in Figure I-4B as well. However, features/concepts
are now represented by sets of cells rather than single cells. Thus,
the vertical and horizontal features forming part of the dog’s nose
are represented with SDCs in their respective V1 macs (blue and
brown arrows, respectively), rather than with single cells. The U-
signals propagating from these two V1 macs converge on the cells
of the left-hand V2 mac and combine, via Sparsey’s code selection
algorithm (CSA) (described in Section Sparsey’s Core Algorithm),

to activate the SDC representing the “corner” feature, and simi-
larly on up the hierarchy. Each of the orange outlined insets at V2
shows the input level aperture of the corresponding mac, empha-
sizing the idea that the precise input pattern is mapped into the
closest-matching stored feature, in this example, a “upper left 90◦
corner” at left and a “NNE-pointing 135◦ angle” at right. The
inset at bottom of Figure I-4B zooms in to show that the U-
signals to V1 arise from individual pixels of the apertures (which
would correspond to individual LGN projection cells).

In the past, IT cells have generally been depicted as being
narrowly selective to particular objects (Desimone et al., 1984;
Kreiman et al., 2006; Kiani et al., 2007; Rust and DiCarlo, 2010).
However, as DiCarlo et al. (2012) point out, the data overwhelm-
ingly support the view of individual IT cells as having a “diversity
of selectivity”; that is, individual IT cells generally respond to
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FIGURE I-5 | Notional mapping of Sparsey to brain.

many different objects and in that sense are much more broadly
tuned. This diversity is notionally suggested in Figures I-4B, I-5
in that individual cells are seen to participate in multiple SDCs
representing different images/concepts. However, the particular
input (stimulus) dimensions for which any given cell ultimately
demonstrates some degree of invariance is not prescribed a priori.
Rather they emerge essentially idiosyncratically over the history
of a cell’s inclusions in SDCs of particular experienced moments.
Thus, the dimensions of invariance in the tuning functions of
even immediately neighboring cells may generally end up quite
different.

Figure I-5 embellishes the scheme shown in Figure I-4B and
(turning it sideways) casts it onto the physical brain. We add
paths from V1 and V2 to an MT representation as well. We add
a notional PFC representation in which a higher-level concept
involving the dog, i.e., the fact that it is being walked, is active. We
show a more complete tiling of macs at V1 than in Figure I-4B
to emphasize that only V1 macs that have a sufficient fraction
of active pixels, e.g., an edge contour, in their aperture become
active (pink). In general, we expect the fraction of active macs to

decrease with level. As this and prior figures suggest, we currently
model the macs as having no overlap with each other (i.e., they
tile the local region), though their RFs [as well as their projec-
tive fields (PFs)] can overlap. However, we expect that in the real
brain, macs can physically overlap. That is, any given minicolumn
could be contained in multiple overlapping macs, where only one
of those macs can be active at any given moment. The degree of
overlap could vary by region, possibly generally increasing anteri-
orly. If so, then this would partially explain (in conjunction with
the extremely limited view of population activity that single/few-
unit electrophysiology has provided through most of the history
of neuroscience) why there has been little evidence thus far for
macs in more frontal regions.

SPARSE DISTRIBUTED CODES vs. LOCALIST CODES
One important difference between SDC and localist representa-
tion is that the space of representations (codes) for a mac using
SDC is exponentially larger than for a mac using a localist repre-
sentation. Specifically, if Q is the number of CMs in a mac and
K is the number of cells per CM, then there are KQ unique SDC
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codes for that mac. A localist mac of the same size only has Q × K
unique codes. Note that it is not the case that an SDC-based mac
can use that entire code space, i.e., store KQ features. Rather, the
limiting factor on the number of codes storable in an SDC-based
mac is the fraction of the mac’s afferent synaptic weights that are
set high (our model uses effectively binary weights), i.e., degree
of saturation. In fact, the number of codes storable such that
all stored codes can be retrieved with some prescribed average
retrieval accuracy (error), is probably a vanishingly small frac-
tion of the entire code space. However, real macrocolumns have
Q ≈ 70 minicolumns, each with K ≈ 20 L2/3 principal cells: a
“vanishingly small fraction” of 2070 can of course still be a large
absolute number of codes.

While the difference in code space size between localist and
SDC models is important, it is the distributed nature of the SDC
codes per se that is most important. Many have pointed out a key
property of SDC which is that since codes overlap, the number of
cells in common between two codes can be used to represent their
similarity. For example, if a given mac has Q = 100 CMs, then
there are 101 possible degrees of intersection between codes, and
thus 101 degrees of similarity, which can be represented between
concepts stored in that mac. The details of the process/algorithm
that assigns codes to inputs determines the specific definition
of similarity implemented. We will discuss the similarity met-
ric(s) implemented and implementable in Sparsey throughout the
sequel.

However, as stated earlier, the most important distinction
between localism and SDC is that SDC allows the two essential
operations of associative (content-addressable) memory, storing
new inputs and retrieving the best-matching stored input, to be
done in fixed time for the life of the model. That is, given a model
of a fixed size (dominated by the number of weights), and which
therefore has a particular limit on the amount, C, of informa-
tion that it can store and retrieve subject to a prescribed average
retrieval accuracy (error), the time it takes to either store (learn)
a new input or retrieve the best-matching stored input (mem-
ory) remains constant regardless of how much information has
been stored, so long as that amount remains less than C. There
is no other extant model, including all HMAX models, all convo-
lutional network (CN) models, all Deep Learning (DL) models, all
other models in the class of graphical probability models (GPMs),
and the locality-sensitive hashing models, for which this capability—
constant storage and best-match retrieval time over the life of the
system—has been demonstrated. All these other classes of mod-
els realize the benefits of hierarchy per se, i.e., the principle of
hierarchical compositionality which is critical for rapidly learn-
ing highly nonlinear category boundaries, as described in Bengio
et al. (2012), but only Sparsey also realizes the speed benefit, and
therefore ultimately, the scalability benefit, of SDC. We state the
algorithm in Section Sparsey’s Core Algorithm. The reader can see
by inspection of the CSA (Table I-1) that it has a fixed number of
steps; in particular, it does not iterate over stored items.

Another way of understanding the computational power of
SDC compared to localism is as follows. We stated above that in a
localist representation such as in Figure I-4A, only one cell, rep-
resenting one hypothesis can be active at a time. The other cells
in the mac might, at some point prior to the choice of a final

winner, have a distribution of sub-threshold voltages that reflects
the likelihood distribution over all represented hypotheses. But
ultimately, only one cell will win, i.e., go supra-threshold and
spike. Consequently, only that one cell, and thus that one hypoth-
esis, will materially influence the next time step’s decision process
in the same mac (via the recurrent H matrix) and in any other
downstream macs.

In contrast, because SDCs physically overlap, if one particular
SDC (and thus, the hypothesis that it represents) is fully active in
a mac, i.e., if all Q of that code’s cells are active, then all other codes
(and thus, their associated hypotheses) stored in that mac are also
simultaneously physically partially active in proportion to the size
of their intersections with the single fully active code. Furthermore,
if the process/algorithm that assigns the codes to inputs has
enforced the similar-inputs-to-similar-codes (SISC) property, then
all stored inputs (hypotheses) are active with strength in descend-
ing order of similarity to the fully active hypothesis. We assume
that more similar inputs generally reflect more similar world
states and that world state similarity correlates with likelihood.
In this case, the single fully active code also physically functions
as the full likelihood distribution over all SDCs (hypotheses) stored
in a mac. Figure I-6 illustrates this concept. We show five hypo-
thetical SDCs, denoted with φ(), for five input items, A-E (the
actual input items are not shown here), which have been stored
in the mac shown. At right, we show the decreasing intersections
of the codes with φ(A). Thus, when code φ(A) is (fully) active,
φ(B) is 4/7 active, φ(C) is 3/7 active, etc. Since cells represent-
ing all of these hypotheses, not just the most likely hypothesis,
A, actually spike, it follows that all of these hypotheses physically
influence the next time step’s decision processes, i.e., the resulting
likelihood distributions, active on the next time step in the same
and all downstream macs.

We believe this difference to be fundamentally important.
In particular, it means that performing a single execution of
the fixed-time CSA transmits the influence of every represented
hypothesis, regardless of how strongly active a hypothesis is, to
every hypothesis represented in downstream macs. We emphasize
that the representation of a hypothesis’s probability (or likeli-
hood) in our model—i.e., as the fraction of a given hypothesis’s
full code (of Q cells) that is active—differs fundamentally from
existing representations in which single neurons encode such
probabilities in their strengths of activation (e.g., firing rates) as
described in the recent review of Pouget et al. (2013).

SPARSEY’S CORE ALGORITHM
During learning, Sparsey’s core algorithm, the code selection
algorithm (CSA), operates on every time step (frame) in every
mac of every level, resulting in activation of a set of cells (an SDC)
in the mac. The CSA can also be used, with one major variation,
during retrieval (recognition). However, there is a much simpler
retrieval algorithm, essentially just the first few steps of the CSA,
which is preferable if the system “knows” that it is in retrieval
mode. Note that this is not the natural condition for autonomous
systems: in general, the system must be able to decide for itself,
on a frame-by-frame basis, whether it needs to be in learning
mode (if, and to what extent, the input is novel) or retrieval mode
(if the input is completely familiar). We first describe the CSA’s
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Table I-1 | The CSA during learning.

Equation Short description

1 Active(m) =

⎧⎪⎪⎨
⎪⎪⎩

true ϒ (m) < δ(m)

true π−
U ≤ πU (m) ≤ π+

U

false otherwise

Determine if mac m will become active

2 u(i) =
∑

j ∈ RFU

x(j, t) × F (ζ (j, t)) × w (j, i)

h(i) = ∑
j ∈ RFH

x(j, t − 1) × F (ζ (j, t − 1)) × w (j, i)

d (i) = ∑
j ∈ RFD

x(j, t − 1) × F (ζ (j, t − 1)) × w (j, i)

Compute the raw U, H, and D input summations

3 U(i) =
⎧⎨
⎩max

(
1,u(i)/π−

U × wmax
)

L = 1

max
(
1,u(i) min

(
π−

U , π
∗
U

)× Q × wmax
)

L > 1
.

H(i) = max
(
1,h(i)/min

(
π−

H , π
∗
H

)× Q × wmax
)

D(i) = max
(
1,d (i) min

(
π−

D , π
∗
D

)× Q × wmax
)

Compute normalized, filtered input summations

4 V (i) =
⎧⎨
⎩H(i)λH × U(i)λU (t) × D(i)λD t ≥ 1

U(i)λU (0) t = 0
Compute local evidential support for each cell

5a

5b

ζq =
K∑

i = 0

[
V (i) > Vζ

]
ζ = ∑Q − 1

j = 0 ζq/Q

(a) Compute #cells representing a maximally competing
hypothesis in each CM. (b) Compute # of maximally active
hypotheses, ζ , in the mac

6 F (ζ ) =
⎧⎨
⎩ζ

A 1 ≤ ζ ≤ B

0 ζ > B
Compute the multiple competing hypotheses (MCH)
correction factor, F (ζ ), for the mac

7 V̂j = max
i ∈ Cj

{
V (i)

}
Find the max V, V̂j , in each CM, Cj

8 G =
Q∑

q = 1

V̂k/Q Compute G as the average V̂ -value over the Q CMs

9 η = 1 +
([

G − G−
1 − G−

]+)γ
× χ × K Determine the expansivity of the sigmoid activation

function

10 ψ (i) = (η − 1)(
1 + σ1e−σ2(V (i ) − σ3)

)σ4
+ 1 Apply sigmoid activation function (which collapses to the

constant function when G < G−) to each cell

11 ρ(i) = ψ (i)∑
k ∈ CM ψ (k)

In each CM, normalize the relative probabilities of winning
(ψ ) to final probabilities (ρ) of winning

12 Select a final winner in each CM according to the ρ distribution in that CM, i.e., soft max

learning mode, then its variation for retrieval, then its much sim-
pler retrieval mode. See Table I-2 for definitions of symbols used
in equations and throughout the paper.

CSA: LEARNING MODE
The overall goal of the CSA when in learning mode is to assign
codes to a mac’s inputs in adherence with the SISC property,
i.e., more similar overall inputs to a mac are mapped to more
highly intersecting SDCs. With respect to each of a mac’s individ-
ual afferent RFs, U, H, and D, the similarity metric is extremely
primitive: the similarity of two patterns in an afferent RF is sim-
ply an increasing function of the number of features in common
between the two patterns, thus embodying only what Bengio

et al. (2012) refer to as the weakest of priors, the smoothness
prior. However, the CSA multiplicatively combines these com-
ponent similarity measures and, because the H and D signals
carry temporal information reflecting the history of the sequence
being processed, the CSA implements a spatiotemporal similar-
ity metric. Nevertheless, the ability to learn arbitrarily complex
nonlinear similarity metrics (i.e., category boundaries, or invari-
ances), requires a hierarchical network of macs and the ability
for an individual SDC, e.g., active in one mac, to associate with
multiple (perhaps arbitrarily different) SDCs in one or more
other macs. We elaborate more on Sparsey’s implementation of
this capability in Section Learning arbitrarily complex nonlinear
similarity metrics.
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FIGURE I-6 | If the process that assigns SDCs to inputs enforces the

similar-input-to-similar-codes (SISC) property, then the currently active

code in a mac simultaneously physically functions as the entire

likelihood distribution over all hypotheses stored in the mac. At bottom,

we show the activation strength distribution over all five codes (stored
hypotheses), when each of the five codes is fully active. If SISC was enforced
when these codes were assigned (learned), then these distributions are
interpretable as likelihood distributions. See text for further discussion.

The CSA has 12 steps which can be broken into two phases.
Phase 1 (Steps 1–7) culminates in computation of the familiar-
ity, G (normalized to [0,1]), of the overall (H, U, and D) input
to the mac as a whole, i.e., G is a function of the global state
of the mac. To first approximation, G is the similarity of the
current overall input to the closest-matching previously stored
(learned) overall input. As we will see, computing G involves
a round of deterministic (hard max) competition resulting in
one winning cell in each of the Q CMs. In Phase 2 (Steps

8–12), the activation function of the cells is modified based
on G and a second round of competition occurs, resulting in
the final set of Q winners, i.e., the activated code in the mac
on the current time step. The second round of competition is
probabilistic (soft max), i.e., the winner in each CM is cho-
sen as a draw from a probability distribution over the CM’s
K cells.

In neural terms, each of the CSA’s two competitive rounds
entail the principal cells in each CM integrating their inputs,
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engaging the local inhibitory circuitry, resulting in a single
spiking winner. The difference is that the cell activation func-
tions (F/I-curves) used during the second round of integration
will generally be very different from those used during the
first round. Broadly, the goal is as follows: as G approaches 1,
make cells with larger inputs compared to others in the CM
increasingly likely to win in the second round, whereas as G
approaches 0, make all cells in a CM equally likely to win in
the second round. We discuss this further in Section Neural
implementation of CSA.

We now describe the steps of the CSA in learning mode.
We will refer to the generic “circuit model” in Figure II-1 in
describing some of the steps. The figure has two internal levels

with one small mac at each level, but the focus, in describing
the algorithm, will be on the L1 mac, M1

j , highlighted in yellow.

M1
j consists of Q = 4 CMs, each with K = 3 cells. Gray arrows

represent the U-wts from the input level, L0, consisting of 12
binary pixels. Magenta arrows represent the D-wts from the L2
mac. Green lines depict a subset of the H-wts. The represen-
tation of where the different afferents arrive on the cells is not
intended to be veridical. The depicted “Max” operations are the
hard max operations of CSA Step 7. The blue arrows portray
the mac-global G-based modulation of the cellular V-to-ψ map
(essentially, the F/I curve). The probabilistic draw operation is not
explicitly depicted in this circuit model.

FIGURE II-1 | Generic “circuit model” for reference in describing the some steps of the CSA.
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Rinkus Sparse deep hierarchical vision model

Step 1: Determine if the mac will become active
As shown in Equation (1), during learning, a mac, m, becomes
active if either of two conditions hold: (a) if the number of active
features in its U-RF, πU (m), is between π−

U and π+
U ; or (b) if

it is already active but the number of frames that it has been
on for, i.e., its code age, ϒ(m), is less than its persistence, δ(m).
That is, during learning, we want to ensure that codes remain
on for their entire prescribed persistence durations. We currently
have no conditions on the number of active features in the H
and D RFs.

Active(m) =

⎧⎪⎨
⎪⎩

true ϒ(m) < δ(m)

true π−
U ≤ πU (m) ≤ π+

U

false otherwise

(1)

Step 2: Compute raw U, H, and D-summations for each cell, i, in the
mac
Every cell, i, in the mac computes its three weighted input
summations, u(i), as in Equation (2a). RFU is a synonym for U-
RF. a(j, t) is pre-synaptic cell j’s activation, which is binary, on
the current frame. Note that the synapses are effectively binary.
Although the weight range is [0,127], pre-post correlation causes
a weight to increase immediately to wmax = 127 and the asymp-
totic weight distribution will have a tight cluster around 0 (for
weights that are effectively “0”) and around 127 (for weights
that are effectively “1”). The learning policy and mechanics are
described in Section Learning policy and mechanics. F(ζ (j, t)) is
a term needed to adjust the weights of afferent signals from cells in
macs in which multiple competing hypotheses (MCHs) are active.
If the number of MCHs (ζ ) is small then we want to boost the
weights of those signals, but if it gets too high, in which case we
refer to the source mac as being muddled, those signals will gener-
ally only serve to decrease SNR in target macs and so we disregard
them. Computing and dealing with MCHs is described in Steps 5
and 6. h(i) and d(i) are computed in analogous fashion Equations
(2b) and (2c), with the slight change that H and D signals are
modeled as originating from codes active on the previous time
step (t − 1).

u(i) =
∑

j ∈ RFU

a(j, t) × F(ζ (j, t)) × w(j, i) (2a)

h(i) =
∑

j ∈ RFH

a(j, t − 1) × F(ζ (j, t − 1)) × w(j, i) (2b)

d(i) =
∑

j ∈ RFD

a(j, t − 1) × F(ζ (j, t − 1)) × w(j, i) (2c)

Step 3: Normalize and filter the raw summations
The summations, u(i), h(i), and d(i), are normalized to [0,1]
interval, yielding U(i), H(i), and D(i). We explained above that
a mac m only becomes active if the number of active features
in its U-RF, πU (m), is between π−

U and π+
U , referred to as the

lower and upper mac activation bounds. Given our assumption
that visual inputs to the model are filtered to single-pixel-wide
edges and binarized, we expect relatively straight or low-curvature
edges roughly spanning the diameter of an L0 aperture to occur

rather frequently in natural imagery. Figure II-2 shows two exam-
ples of such inputs, as frames of sequences, involving either only
a single L0 aperture (panel A) or a region consisting of three L0
apertures, i.e., as might comprise the U-RFs of an L2 mac (e.g.,
as in Figure I-4B). The general problem, treated in this figure, is
that the number of features present in a mac’s U-RF, πU (m), may
vary from one frame to the next. Note that for macs at L2 and
higher, the number of features present in an RF is the number
of active macs in that RF, not the total number of active cells in
that RF. The policy implemented in Sparsey is that inputs with
different numbers of active features compete with each other on
an equal footing. Thus, normalizers (denominators) in Equations
(3a–c) use the lower mac activation bound, π−

U , π−
H , and π−

D .
This necessitates hard limiting the maximum possible normalized
value to 1, so that inputs with between π−

U and π+
U active features

yield normalized values confined to [0,1]. There is one additional
nuance. As noted above, if a mac in m’s U-RF is muddled, then
we disregard all signals from it, i.e., they are not included in the
u-summations of m’s cells. However, since that mac is active, it
will be included in the number of active features, πU (m). Thus,
we should normalize by the number of active, nonmuddled macs
in m’s U-RF (not simply the number of active macs): we denote
this value asπ∗

U . Finally, note that when the afferent feature is rep-
resented by a mac, that feature is actually being represented by the
simultaneous activation of, and thus, inputs from, Q cells; thus
the denominator must be adjusted accordingly, i.e., multiplied by
Q and by the maximum weight of a synapse, wmax.

U(i) =
{

max (1, u(i)/π−
U × wmax) L = 1

max (1, u(i)/min (π−
U , π

∗
U ) × Q × wmax) L > 1

(3a)

H(i) = max
(
1, h(i)/min

(
π−

H , π
∗
H

)× Q × wmax
)

(3b)

D(i) = max
(
1, d(i)/min

(
π−

D , π
∗
D

)× Q × wmax
)

(3c)

Step 4: Compute overall local support for each cell in the mac
The overall local (to the individual cell) measure, V(i), of evi-
dence/support that cell i should be activated is computed by mul-
tiplying filtered versions of the normalized inputs as in Equation
(4). V(i) can also be viewed as the normalized degree of match
of cell i’s total afferent (including U, H, and D) synaptic weight
vector to its total input pattern. We emphasize that the V measure
is not a measure of support for a single hypothesis, since an indi-
vidual cell does not represent a single hypothesis. Rather, in terms
of hypotheses, V(i) can be viewed as the local support for the
set of hypotheses whose representations (codes) include cell i.
The individual normalized summations are raised to powers (λ),
which allows control of the relative sensitivities of V to the dif-
ferent input sources (U, H, and D). Currently, the U-sensitivity
parameter, λU , varies with time (index of frame with respect to
beginning of sequence). We will add time-dependence to the H
and D sensitivity parameters as well and explore the space of
policies regarding these schedules in the future. In general terms,
these parameters (along with many others) influence the shapes
of the boundaries of the categories learned by a mac.

V(i) =
{

H(i)λH × U(i)λU (t) × D(i)λD t ≥ 1

U(i)λU (0) t = 0
(4)
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Rinkus Sparse deep hierarchical vision model

FIGURE II-2 | The mac’s normalization policy must be able to deal

with inputs of different sizes, i.e., inputs having different numbers

of active features. (A) An edge rotates through the aperture over
three time steps, but the number of active features (in this case,
pixels) varies from one time step (moment) to the next. In order for
the mac to be able to recognize the 5-pixel input (T = 1) just as
strongly as the 6 or 7-pixel inputs, the u-summations must be divided

by 5. (B) The U-RFs of macs at L2 and higher consist of an integer
number of subjacent level macs, e.g., here, M2

i ’s U-RF consists of
three L1 macs (blue border). Each active mac in M2

i ’s U-RF represents
one feature. As for panel a, the number of active features varies across
moments, but in this case, the variation is in increments/decrements of
Q synaptic inputs. Grayed-out apertures have too few active pixels for
their associated L1 macs to become active.

As described in Section CSA: Retrieval Mode, during retrieval,
this step is significantly generalized to provide an extremely pow-
erful, general, and efficient mechanism for dealing with arbitrary,
nonlinear invariances, most notably, nonlinear time-warping of
sequences.

Step 5: Compute the number of competing hypotheses that will be
active in the mac once the final code for this frame is activated
To motivate the need for keeping track of the number of compet-
ing hypotheses active in a mac, we consider the case of complex
sequences, in which the same input item occurs multiple times
and in multiple contexts. Figure II-3 portrays a minimal exam-
ple in which item B occurs as the middle state of sequences
[ABC] and [DBE]. Here, the model’s single internal level, L1,

consists of just one mac, with Q = 4 CMs, each with K = 4
cell. Figure II-3A shows notional codes (SDCs) chosen on the
three time steps of [ABC]. The code name convention here is
that φ denotes a code, the superscript “1” indicates the model
level at which code resides. The subscript indicates the specific
moment of the sequence that the code represents; thus, it is
necessary for the subscript to specify the full temporal context,
from start of sequence, leading up to the current input item.
Successively active codes are chained together, resulting in spa-
tiotemporal memory traces that represent sequences. Green lines
indicate the H-wts that are increased from one code to the next.
Black lines indicate the U-wts that are increased from currently
active pixels to currently active L1 cells (red). Thus, as described
earlier, e.g., in Figure I-2, individual cells learn spatiotemporal
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Rinkus Sparse deep hierarchical vision model

FIGURE II-3 | Portrayal of reason why macs need to know how many

multiple competing hypotheses (MCHs) are/were active in their afferent

macs. (A) Memory trace of 3-item sequence, [ABC]. This model has a single
internal level with one mac consisting of Q = 4 CMs, each with K = 4 cells. We
show notional SDCs (sets of red cells) for each of the three items. The green
lines represent increased H-wts in the recurrent H-matrix: the trace is shown
unrolled in time in time. (B) A notional memory trace of sequence [DBE]. The
SDC chosen for item B differs from that in [ABC] because of the different

temporal context signals, i.e., from the code for item D rather than the code
for item A. (C) We prompt with item B, the model enters a state that has
equal measures of both of B’s previously assigned SDCs. Thus multiple (here,
two) hypotheses are equally active. (D) If the model can detect that multiple
hypotheses are active in this mac, then it can boost its efferent H-signals
(multiplying them by the number of MCHs), in which case the combined H
and U signals when the next item, here “C”, is presents, causing the SDC for
the moment [ABC] to become fully active. See text for more details.

inputs in correlated fashion, as whole SDCs. Learning is
described more thoroughly in Section Learning Policy and
Mechanics.

As portrayed in Figure II-3B, if [ABC] has been previously
learned, then when item B of another sequence, [DBC], is
encountered, the CSA will generally cause a different SDC, here,
φ1

DB, to be chosen. φ1
DB will be H-associated with whatever

code is activated for the next item, in this case φ1
DBE for item

E. This choosing of codes in a context-dependent way (where
the dependency has no fixed Markov order and in practice can
be extremely long), enables subsequent recognition of complex
sequences without confusion.

However, what if in some future recognition test instance, we
prompt the network with item B, i.e., as the first item of the
sequence, as shown in Figure II-3C? In this case, there are no
active H-wts and so the computation of local support Equation
(4) depends only on the U-wts. But, the pixels comprising item
B have been fully associated with the two codes, φ1

AB and φ1
DB,

which have been assigned to the two moments when item B was
presented, [AB] and [DB]. We show the two maximally impli-
cated (more specifically, maximally U-implicated) cells in each
CM as orange to indicate that a choice between them in each
CM has not yet been made. However, by the time the CSA com-
pletes for the frame when item B is presented, one winner must

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 160 | 223

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rinkus Sparse deep hierarchical vision model

be chosen in each CM (as will become clear as we continue to
explain the CSA throughout the remainder of section Sparsey’s
Core Algorithm). And, because it is the case in each CM, that both
orange cells are equally implicated, we choose winners randomly
between them, resulting in a code that is an equal mix of the win-
ners from φ1

AB and φ1
DB. In this case, we refer to the mac as having

multiple competing hypotheses active (MCHs), where we specif-
ically mean that all the active hypotheses (in this case, just two)
are approximately equally strongly active.

The problem can now be seen at the right of Figure II-3C when
C is presented. Clearly, once C is presented, the model has enough
information to know which of the two learned sequences, or more
specifically, which particular moment is intended, [ABC] rather
than [DBE]. However, the cells comprising the code representing
that learned moment, φ1

ABC, will, at the current test moment
(lower inset in Figure II-3C), have only half the active H-inputs
that they had during the original learning instance (i.e., upper
inset in Figure II-3C). This leads, once processed through steps
2b, 3b, and 4, to V-values that will be far below V = 1, for sim-
plicity, let’s say V = 0.5, for the cells comprising φ1

ABC. As will
be explained in the remaining CSA steps, this ultimately leads to
the model not recognizing the current test trial moment [BC] as
equivalent to the learning trial moment [ABC], and consequently,
to activation of a new code that could in general be arbitrarily
different from φ1

ABC.
However, there is a fairly general solution to this problem

where multiple competing hypotheses are present in an active
mac code, e.g., in the code for B indicated by the yellow call-
out. The mac can easily detect when an MCH condition exists.
Specifically, it can tally the number cells with V = 1—or, allow-
ing some slight tolerance for considering a cell to be maximally
implicated, cells with V(i) > Vζ , where Vζ is close to 1, e.g.,
Vζ = 0.95—in each of its Q CMs, as in Equation (5a). It can
then sum ζq over all Q CMs and divide by Q (and round to the
nearest integer, “rni”), resulting in the number of MCHs active
in the mac, ζ , as in Equation (5b). In this example, ζ = 2, and
the principle by which the H-input conditions, specifically the
h-summations, for the cells in φ1

ABC on this test trial moment
[BC] can be made the same as they were during the learning trial
moment [ABC], is simply to multiply all outgoing H-signals from
φ1

B by ζ = 2. We indicate the inflated H-signals by the thicker
green lines in the lower inset at right of Figure II-3D. This ulti-
mately leads to V = 1 for all four cells comprising φ1

ABC and,
via the remaining steps of the CSA, reinstatement of 1φABC with
very high probability (or with certainty, in the simple retrieval
mode described in Section CSA: Simple Retrieval Mode), i.e.,
with recognition of test trial moment [BC] as equivalent to
learning trial moment [ABC]. The model has successfully gotten
through an ambiguous moment based on presentation of further,
disambiguating inputs.

We note here that uniformly boosting the efferent H-signals
from φ1

B also causes the h-summations for the four cells compris-
ing the code φ1

DBE to be the same as they were in the learning
trial moment [DBE]. However, by Equation (4), the V-values
depend on the U-inputs as well. In this case, the four cells of φ1

DBE
have u-summations of zero, which leads to V = 0, and ultimately
to essentially zero probability of any of these cells winning the

competitions in their respective CMs. Though we don’t show the
example here, if on the test trial, we present E instead of C after
B, the situation is reversed; the u-summations of cells compris-
ing the code φ1

DBE are the same as they were in the learning trial
moment [DBE] whereas those of the cells comprising the code
φ1

ABC are zero, resulting with high probability (or certainty) in
reinstatement of φ1

DBE.

ζq =
K∑

i = 0

[
V(i) > Vζ

]
(5a)

ζ = rni

⎛
⎝Q − 1∑

j = 0

ζq/Q

⎞
⎠ (5b)

Step 6: Compute correction factor for multiple competing
hypotheses to be applied to efferent signals from this mac
The example in Figure II-3 was rather clean in that it involved
only two sequences having been learned, containing a total of six
moments, [A], [AB], [ABC], [D], [DB], and [DBE], and very lit-
tle pixel-wise overlap between the items. Thus, cross-talk between
the stored codes was minimized. However, in general, macs will
store far more codes. If for example, the mac of Figure II-3 was
asked to store 10 moments where B was presented, then, if we
prompted the network with B as the first sequence item, we would
expect almost all cells in all CMs to have V = 1. As discussed in
Step 2, when the number of MCHs (ζ ) in a mac gets too high,
i.e., when the mac is muddled, its efferent signals will generally
only serve to decrease SNR in target macs (including itself on the
next time step via the recurrent H-wts) and so we disregard them.
Specifically, when ζ is small, e.g., two or three, we want to boost
the value of the signals coming from all active cells in that mac
by multiplying by ζ (as in Figure II-3D). However, as ζ grows
beyond that range, the expected overlap between the competing
codes increases and to approximately account for that, we begin
to diminish the boost factor as in Equation (6), where A is an
exponent less than 1, e.g., 0.7. Further, once ζ reaches a thresh-
old, B, typically set to 3 or 4, we multiply the outgoing weights by
0, thus effectively disregarding the mac completely in downstream
computations. We denote the correction factor for MCHs as F(ζ ),
defined as in Equation (6). We also use the notation,F(ζ (j, t)), as
in Equation (2), where ζ (j, t) is the number of hypotheses tied for
maximal activation strength in the owning mac of a pre-synaptic
cell, j, at time (frame) t.

F(ζ ) =
{
ζA 1 ≤ ζ ≤ B
0 ζ > B

(6)

Step 7: Determine the maximum local support in each of the mac’s
CMs
Operationally, this step is quite simple: simply find the cell with
the highest V-value, V̂j, in each CM, Cj, as in Equation (7).

V̂j = max
i ∈ Cj

{V(i)} (7)
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Conceptually, the cell with V̂j in a CM is the cell most implicated

by the mac’s total input (multiple cells can be tied for V̂j), or in
other words, the most likely winner in the CM. In fact, in the sim-
ple retrieval mode (Section CSA: Simple Retrieval Mode), the cell
with V̂j in each CM is chosen winner.

Step 8: Compute the familiarity of the mac’s overall input
The average, G, of the maximum V ’s across the mac’s Q CMs is
computed as in Equation (8): G is a measure of the familiarity of
the macs overall input. This is done on every time step (frame),
so we sometimes denote G as a function of time, G(t). And, G is
computed independently for each activated mac, so we may also
use more general notation that indicates mac as well.

G =
Q∑

q = 1

V̂k/Q (8)

The main intuition motivating the definition and use of G is as
follows. If the mac’s current input moment has been experienced
in the past, then all active afferent weights (U, H, and D) to the
code activated in that instance would have been increased. Thus,
in the current moment, all Q cells comprising that code will have
V = 1. Thus, G = 1. Thus, a familiar moment must always result
in G = 1 (assuming that MCHs are accounted for as described
above). On the other hand, suppose that the current overall input
moment is novel, even if sub-components of the current overall
input have been experienced exactly before. In this case, pro-
vided that few enough codes have been stored in the mac (so that
crosstalk remains sufficiently small), there will be at least some
CMs, Cj, for which V̂j is significantly less than 1. Thus, G < 1.
Moreover, as the examples in the Results section will show, G
correlates with the familiarity of the overall mac input. Thus, G
measures the familiarity, or inverse novelty, of the global input to
the mac.

Note that in the brain, this step requires that the Q cells with
V = V̂j become active (i.e., spike) so that their outputs can be
summed and averaged. This constitutes the first of two rounds of
competition that occurs within the mac’s CMs on each execution
of the CSA. However, as explained herein, this set of Q cells will,
in general, not be identical to (and can often be substantially dif-
ferent from, especially when G ≈ 0) the finally chosen code for
this execution of the CSA (i.e., the code chosen in Step 12).

Step 9: Determine the expansivity/compressivity of the I/O function
to be used for the second and final round of competition within the
mac’s CMs
Determine the range, η, of the sigmoid activation function, which
transforms a cell’s V-value into its relative (within its own CM)
probability of winning, ψ . We refer to that transform as the
V-to-ψ map. We refer to χ as the sigmoid expansion factor and
γ as the sigmoid expansion exponent.

η = 1 +
([

G − G−

1 − G−

]+)γ
× χ × K (9)

As noted several times earlier, the overall goal of the CSA when
in learning mode is to assign codes to a mac’s inputs in adher-
ence with the SISC property, i.e., more similar overall inputs
to a mac are mapped to more highly intersecting SDCs. Given
that G represents, to first approximation, the similarity of the
closest-matching stored input to the current input, we can restate
the goal as follows.

1. as G goes to 1, meaning the input X is completely familiar,
we want the probability of reinstating the code φX that was
originally assigned to represent X, to go to 1. It is the cells com-
prising φX , which are causing the high G-value. But these are
the cells with the maximal V ’s (V = V̂j = 1) in their respec-
tive CMs. Thus, within each CM, Cj, we want to increase the

probability of picking the cell with V = V̂j relative to cells with

V < V̂j, i.e., we want to transform the V’s via an expansive
nonlinearity

2. as G goes to 0 (completely novel input), we want the set of win-
ners chosen to have the minimum average intersection with
all stored codes. We can achieve that by choosing the winner
in each CM from the uniform distribution, i.e., by making all
cells in a CM equally likely to win, i.e., transform the V ’s via a
maximally compressive nonlinearity.

The first goal is met by making the activation function a very
expansive nonlinearity. Figure II-4 shows how the expansivity
of the V-to-ψ map affects cell win probability, and indirectly,
whole-code reinstatement probability. All nine panels concern a
small example mac with Q = 6 CMs each comprised of K = 7
cells. Each panel shows hypothetical V and ρ vectors over the
cells of the CMs, across two parametrically varying conditions:
model “age” (across columns), which we can take as a correlate of
the number of stored codes and thus, of the amount of interfer-
ence (crosstalk) between codes during retrieval, and expansivity
(η) (across rows) of the V-to-ψ map. As described shortly, the
V-values are first transformed to relative probabilities (ψ) (Step
10), which are then normalized to absolute probabilities (ρ) (Step
11). In all panels, the example V vector in each CM has one cell
with V = 1 (pink bars). Thus, by Step 8, all panels correspond
to a G = 1 condition. The other six cells (black bars) in each
CM are assigned uniformly randomly chosen values in defined
intervals that depend on the age of the model. The intervals for
“Early,” “Middle,” and “Late,” are [0.0, 0.1], [0.1, 0.5], and [0.2,
0.8], respectively, simulating the increasing crosstalk with age.

For each age condition, we show the effects of using a V-to-ψ
map with three different η-values. Note that in actual operation
(specifically, Step 9), all panels would be processed with a V-to-ψ
map with the maximal η-value (again, because G = 1 in all pan-
els). But our purpose here is just to show the consequences on
the final ρ distribution for a given V distribution (the V distri-
bution is the same for all three rows in any given column) as a
function of η. And, note that the minimum ψ-value in all cases
is 1. Thus, for the “Early” column, the highly expansive V-to-ψ
map (η = 300) (top row) results in a 300/306 ≈ 98% probability
of selecting the cell with V = 1 (pink) in each CM. This results
in a (300/306)6 ≈ 89% probability of choosing the pink cell in
all Q = 6 CMs, i.e., of reinstating the entire correct code. In the
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FIGURE II-4 | G-based sigmoid transform characteristics. All panels
show hypothetical V and ρ vectors over the K = 7 cells in each of the
Q = 6 CMs comprising the mac. In all nine panels, the V vector in
each CM has one cell prescribed to have V = 1 (pink bars). The V’s of
the other six cells (black bars) in each CM are drawn randomly from
defined intervals that depend on the age (amount of inputs

experienced) of the model. For each age condition, we show the
effects of using a V -to-ψ map with three different η-values. But our
purpose here is just to show the consequences on the final ρ
distribution for a given V distribution (the V distribution is the same for
all three rows in any given column) as a function of the
expansivity/compressivity (η) of the V -to-ψ map. See text for details.

second row, η is reduced to 30. Each of the six black cells ulti-
mately ends up with a 1/36 probability of winning and the pink
cell, with a 30/36 = 5/6 win probability. In this case the likeli-
hood of reinstating the entire correct code, is (5/6)6 ≈ 33%. In
the bottom row, η = 1, i.e., the V-to-ψ map has been collapsed
to the constant function,ψ = 1. As can be seen, all cells, including
the cell with V = 1 become equally likely to be chosen winner in
their respective CMs.

Greater crosstalk can clearly be seen in the “Middle” con-
dition. Consequently, even for η = 300, several of the cells
with nonmaximal V end up with significant final probability
ρ of being chosen winner in their respective CMs. The ρ-
distributions are slightly further compressed (flatter) when η =
30, and completely compressed when η = 1 (bottom row). The
“Late” condition is intended to model a later period of the life
of the model, after many memories (codes) have been stored
in this mac. Thus, when the input pattern associated with any
of those stored codes is presented again, many of the cells in
each CM will have an appreciable V-value (again, here they
are drawn uniformly from [0.2, 0.8]). In this condition, even
if η = 300, the probability of selecting the correct cell (pink)
in each CMs is close to chance, as is the chance of reinstating
the entire correct code. And the situation only gets worse for
lower η-values.

Note that for any particular V distribution in a CM, the rel-
ative increase to the final probability of being chosen winner is
a smoothly and faster-than-linearly increasing (typically, γ ≥ 2)

function of G. Thus, in each CM, the probability that the most
highly implicated (by the mac’s total input) cell (those corre-
sponding to the pink bars in Figure II-4) wins increases smoothly
as G goes to 1. (Strictly, this is true only for the portion of
the sigmoid nonlinearity with slope > 1). The initial (left) and
final (right) portions of the sigmoid are compressive ranges.)
And since the overall code is just the result of the Q indepen-
dent draws, it follows that the expected intersection of the code
consisting of the Q most highly implicated cells, i.e., the code
of the closest-matching stored input, with the finally chosen
code is also an increasing function of G, i.e., thus realizing the
“SISC” property.

Step 10: Apply the modulated activation function to all the mac’s
cells, resulting in a relative probability distribution of winning over
the cells of each CM
Apply sigmoid activation function to each cell. Note: the sig-
moid collapses to a constant function, ψ(i) = 1, when η = 1
(i.e., when G < G−).

ψ(i) = (η − 1)

(1 + σ1e−σ2(V(i)−σ3 ))σ4
+ 1 (10)

In a more general development, the CSA could include additional
prior steps for setting any of the other sigmoid parameters, σ1, σ2,
σ3, and σ4, all of which interact to control overall sigmoid expan-
sivity and shape. In particular, in the current implementation,
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FIGURE II-5 | Moving the inflection point of the sigmoidal V -to-ψ map to the right greatly increases the probability of selecting the correct cell

despite mounting crosstalk due to a growing number of codes stored in superposition.

the horizontal position of the sigmoid’s inflection point is moved
rightward as additional codes are stored in a mac. Figure II-5
shows that doing so greatly increases the probability of choosing
the correct cell in each CM and thus, of reinstating the entire cor-
rect code, even when many codes have been stored in the mac. In
the “Middle” condition, even if η = 30, the probability of choos-
ing the pink cell in each CM is very close to 1. For the “Late”
condition, setting η = 30 significantly improves the situation rel-
ative to the top right panel of Figure II-4 and setting η = 300
makes the probability of choosing the correct cell close to 1 in four
of the six CMs. Thus, we have a mechanism for keeping memories
accessible for longer lifetimes.

Step 11: Convert relative win probability distributions to absolute
distributions
In each of the mac’s CMs, the ψ-values of the cells are converted
to true probabilities of winning (ρ) and the winner is selected by
drawing from the ρ distribution, resulting in a final SDC, φ, for
the mac, as in Equation (11).

ρ(i) = ψ(i)∑
k ∈ CM ψ(k)

(11)

Step 12: Pick winners in the mac’s CMs, i.e., activate the SDC
The last step of the CSA is just selecting a final winner in each CM
according to the ρ distribution in that CM, i.e., soft max. This is
the second round of competition. Our hypothesis that the canon-
ical cortical computation involves two rounds of competition is
a strong and falsifiable prediction of the model with respect to
actual neural dynamics, which we would like to explore further.

The CSA is given in Table I-1.

Learning policy and mechanics
Broadly, Sparsey’s learning policy can be described as Hebbian
with passive weight decay. As noted earlier, the model’s synapses
are effectively binary. By this we mean that although the weight
range is [0,127], the several learning related properties conspire
to cause the asymptotic weight distribution to tend toward having
two spikes, one at 0 and the other at wmax = 127, thus effectively
being binary.

In actuality, a synapse’s weight, w(j, i), where j and i index the
pre- and postsynaptic cells, respectively, is determined by two pri-
mary variables, its age, σ (j, i), which is the number of time steps
(e.g., video frames) since it was last increased, and its perma-
nence, θ(j, i), which measures how resistant to decrease the weight
is (i.e., the passive decay rate). The learning law is implemented
as follows. Whenever a synapse’s pre- and postsynaptic cells are
coactive [i.e., a “pre-post correlation,” a(j) = 1 ∧ a(i) = 1], its
age is set to zero, as in Equation (12a), which has the effect of
setting its weight to wmax (as can be seen in the “weight table”
of Figure II-6, an age of zero always maps to wmax). Otherwise,
σ (j, i) increases by one on each successive time step (across all
frames of all sequences presented) on which there is no pre-post
correlation Equation (12c), stopping when it gets to the maxi-
mum age, σmax Equation (12d). Also note that once a synapse has
reached maximum permanence, θmax, its age stays at zero, i.e., its
weight stays at wmax Equation (12b). At any point, the synapse’s
weight, w(j,i), is gotten by dereferencing σ (j, i) and θ(j, i) from
the weight table shown in Figure II-6.

The intent of the decay schedule (for any permanence value)
is to keep the weight at or near wmax for some initial window of
time (number of time steps), Tσ (θ), and then allow it to decay
increasingly rapidly toward zero. Thus, the model “assumes” that
a pre-post correlation reflects an important / meaningful event
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FIGURE II-6 | The “weight table”: Indexed by age (columns) and permanence (rows). A synapse’s weight is gotten by dereferencing its age, σ (j, i ), and its
permanence, θ (j, i ). See text for details.

in the input space and therefore strongly embeds it in memory
(consistent with the notion of episodic memory). If the synapse
experiences a second pre-post correlations within the window
Tσ (θ), its permanence is incremented as in Equation (13) and
σ (j, i) is set back to 0 (i.e., its weight is set back to wmax); other-
wise the age, σ (j, i), increases by one with each time step and the
weight decreases according to the decay schedule in effect. Thus,
pre-post correlations due to noise or spurious events, which will
have a much longer expected time to recurrence, will tend to fade
from memory. Sparsey’s permanence property is closely related to
the notion of synaptic tagging (Frey and Morris, 1997; Morris and
Frey, 1999; Sajikumar and Frey, 2004; Moncada and Viola, 2007;
Barrett et al., 2009).

σ (j, i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , a(j) = 1 ∧ a(i) = 1 (12a)

0 , θ(j, i) = θmax (12b)

σ (j, i) + 1 , a(j) = 0 ∨ a(i) = 0 (12c)

σ (j, i) , σ (j, i) = σmax (12d)

θ(j, i) =
{
θ(j, i) + 1 , a(j) = 1 ∧ a(i) = 1 ∧ σ (j, i) ≤ Tσ (θ(j, i))
θ(j, i) , otherwise

(13)
The exact parametric details are less important, but as can be
seen in the weight table, the decay rate decreases with θ(j, i) and
the window, Tσ (θ), within which a second pre-post correlation
will cause an increase in permanence, increases with θ(j, i) (three
example values shown). Permanence can only increase and in our
investigations thus far, we typically make a synaptic weight com-
pletely permanent on the second or third within-window pre-post
correlation [θmax = 1 or θmax = 2, respectively]. The justification
of this policy derives from two facts: (a) a mac’s input is a sizable

set of co-active cells; and (b) due to the SISC property, the prob-
ability that a weight will be increased correlates with the strength
of the statistical regularity of the input (i.e., the structural per-
manence of the input feature) causing that increase. These two
facts conspire to make the expected time of recurrence of a pre-
post correlation exponentially longer for spurious/noisy events
than for meaningful (i.e., due to structural regularities of the
environment) events.

If we run the model indefinitely, then eventually every synapse
will experience two successive pre-post correlations occurring
within any predefined window, Tσ . Thus, without some addi-
tional mechanism in place, eventually all afferent synapses into a
mac will be permanently increased to wmax = 127 at which point
(total saturation of the afferent weight matrices) all information
will be lost from the afferent matrices. Therefore, Sparsey imple-
ments a “critical period” concept, in which all weights leading
to a mac are “frozen” (no further learning) once the fraction of
weights that have been increased in any one of its afferent matri-
ces crosses a threshold. This may seem a rather drastic solution to
the classic trade-off that Grossberg termed the “stability-plasticity
dilemma” (Grossberg, 1980). However, note that: (a) “critical
periods” have been demonstrated in the real brain in vision and
other modalities (Wiesel and Hubel, 1963; Barkat et al., 2011;
Pandipati and Schoppa, 2012); (b) model parameter settings can
readily be found such that in general, all synaptic matrices afferent
to a mac approach their respective saturation thresholds roughly
at the same time (so that the above rule for freezing a mac
does not result in significantly underutilized synaptic matrices);
and (c) in Sparsey, freezing of learning is applied on a mac-by-
mac basis. We anticipate that in actual operation, the statistics
of natural visual input domains (filtered as described earlier,
i.e., to binary 1-pixel wide edges) in conjunction with model
principles/parameters will result in the tendency for the lowest
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level macs to freeze earliest, and progressively higher macs to
freeze progressively later, i.e., a “progressive critical periods” con-
cept. Though clearly, if the model as a whole is to be able to learn
new inputs throughout its entire “life,” parameters must be set so
that some macs, logically those at the highest levels, never freeze.
We are still in the earliest stages of exploring the vast space of
model parameters that influence the pattern of freezing across
levels.

The ultimate test of whether the use of critical periods as
described above is too drastic or not is how well a model can con-
tinue to perform recognition/retrieval (or perform the specific
recognition/retrieval-contingent tasks with which it is charged)
over its operational lifetime (which will in general entail large
numbers of novel inputs), in particular, after many of its lower
levels have been frozen.

Learning arbitrarily complex nonlinear similarity metrics
The essential property needed to allow learning of arbitrarily
complex nonlinear similarity metrics (i.e., category boundaries,
or invariances) is the ability for an individual SDC in one mac
to associate with multiple, perhaps arbitrarily different, SDCs in
one or more other macs. This ability is present a priori in Sparsey
in the form of the progressive persistence property wherein code
duration, or persistence (δ), (measured in frames) increases with
hierarchical level (in most experiments so far, δ doubles with

level). For example, the V2 code φ
2,j
X in Figure II-7A becomes

associated with the V1 code φ1, i
Y at time t, and because it per-

sists for two time steps, it also becomes associated with φ
1, i
Z

at t + 1. By construction of this example, φ
2,j
X represents (a

particular instance of) the spatiotemporal concept, “rightward-
moving vertical edge.” However, if for the moment, we ignore the
fact that these two associations occurred on successive time steps,

then we can view φ
2,j
X as representing XOR

(
φ

1, i
Y , φ

1, i
Z

)
, i.e., just

two different (in fact, pixel-wise disjoint) instances of a vertical
edge falling within the U-RF of M2

j . That is, the U-signals from

either of these two input patterns alone (but not together1) can

cause reinstatement of φ
2,j
X . This provides an unsupervised means

by which arbitrarily different, but temporally contiguous, input
images, which may in principle portray any transformation that
can be carried out over a two-time-step period and over the spa-
tial extent of the RF in question, can be associated with the same
object or class (the identity of which is carried by the persisting

code, φ
2,j
X ).

Figure II-7B shows two more instances in which φ
2,j
X is active,

denoted t and t’ to suggest that they may occur at arbitrary times.

If there is a supervisory signal by which φ
2,j
X can be activated

whenever desired, then φ
2,j
X will associate with whatever codes are

active in its RF (in this example, specifically, its U-RF) at such

times. In this case, the two inputs associated with φ
2,j
X are just

two different instances of a vertical edge falling within φ
2,j
X ’s RF.

Furthermore, note that the number of active codes (features) in

the RF can vary across association events. Thus, φ
2,j
X can serve as

a code representing any invariances present in the set of codes with
which it has been associated.

1Indeed, the two codes, φ1, i
Y and φ1, i

Z , cannot occur together since they occur
in the same L1 mac, M1

i .

FIGURE II-7 | (A) The basic model property, progressive persistence,
allows SDCs in higher level macs to associate with sequences of
temporally contiguous SDCs active in macs in their U-RFs. (B) More
generally, any mechanism which allows a particular code, e.g., φ2,j

X , to

be activated under the control of a supervisory signal can cause φ
2,j
X to

associate with two or more arbitrarily different codes presented at
arbitrarily different times, thus allowing φ

2,j
X to represent arbitrary

invariances (classes, similarity metrics).
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This is in fact how supervised learning is implemented in
Sparsey. That is, the supervised learning signal (label) is essen-
tially just another input modality and supervised learning is
therefore treated as a special case of cross-modal unsupervised
learning. We have conducted preliminary supervised learning
studies involving the MNIST digit recognition database (LeCun
et al., 1998) using a model architecture like that in Figure II-8.
However, to adequately describe the supervised learning archi-
tecture, protocol, and theory, would add too much length to this
paper and so we save that work for a separate paper. Nevertheless,
we are confident that the general framework described here
will allow arbitrarily complex nonlinear similarity metrics, e.g.,
functions described as comprising the “AI Set,” by Bengio et al.
(2012), to be efficiently learned as unions, where each element
of the union is a hierarchical spatiotemporal composition of the
locally primitive (i.e., smoothness prior only) similarity metrics
embedded in individual macs.

Neural implementation of CSA
Though we identify the broad correspondence of model struc-
tures and principles to biological counterparts throughout the
paper, we have thus far been less concerned with determining

precise neural realizations. Our goal has been to elucidate com-
putationally efficient and biologically plausible mechanisms for
generic functions, e.g., the ability to form large numbers of
permanent memory traces of arbitrary spatiotemporal events on-
the-fly and based on single trials, the ability to subsequently
directly (i.e., without any serial search) retrieve the best-matching
or most relevant memories, invariance to nonlinear time warp-
ing, coherent handling of simultaneous activation of multiple
hypotheses, etc. We believe that Sparsey meets these criterion
so far. For one thing, it does not require computing any gra-
dients or sampling of distributions, as do the Deep Learning
models (Hinton et al., 2006; Salakhutdinov and Hinton, 2012).
Nevertheless, we do want to make a few points concerning
Sparsey’s relation to the brain.

First, we believe it is quite important, both for distinguishing
Sparsey from other canonical cortical microcircuit models and
for falsifiability, that the CSA really does entail two rounds, in
quick succession, in which the mac’s principal cells integrate their
inputs, resulting in at least one of the cells in each CM reaching
threshold and sending action potentials to the local inhibitory cir-
cuitry, which then fires, thus keeping all other cells in the CM
from spiking (according to any number of detailed biophysical

FIGURE II-8 | The 4-level model used in preliminary supervised learning

studies involving the MNIST digit recognition task. This shows the
recognition test trial in which the “8” was presented, giving rise to a flow of

U-signals activating codes in macs throughout the hierarchy, and finally a
top-down flow from the activated V3 code to the Label field, where the unit
with maximal D-summation, the “8” unit, wins.
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mechanisms, e.g., Jitsev, 2010). The first round winners’ out-
puts (in addition to engaging the local inhibitory circuitry to
suppress the other cells in their respective CMs) are averaged to
yield G. And G then drives a modulation of the cell activation
functions (as described in Sections Step 9: Determine the expan-
sivity/compressivity of the I/O function to be used for the second
and final round of competition within the mac’s CMs and Step
10: Apply the modulated activation function to all the mac’s cells,
resulting in a relative probability distribution of winning over the
cells of each CM) in preparation for the second round of competi-
tion. Due to the modulated activation functions, the second (and
final) round winners will generally differ from the first round
winners. Specifically, the intersection of the set of second round
winners with the first round winners increases with G. In Rinkus
(2010), we speculated that some combination of neuromodula-
tors could underlie this behavior, but we have not yet refined that
hypothesis.

Second, we note that Sparsey is a highly simplified/reduced
model of cortical processing. It lacks analogs of layers 4, 5, or
6, and does not explicitly model inhibitory cells. In addition,
it uses binary (nonspiking) neurons, effectively binary weights
with variable permanence, and a simple Hebbian learning scheme
with passive decay. The general consensus is that L4 is the main
recipient of feedforward signals (from thalamus or from earlier
cortical stages), whereas L2/3 receives horizontal (intrinsic) and
top-down inputs. And, L5 and L6 project to earlier cortical stages
and to subcortical structures and are involved in local feedback
loops with L2/3. While numerous studies provide more detailed
specifications fitting the above supra/infra-granular canonical cir-
cuit motif (Douglas and Martin, 2004), numerous details are
yet to be understood and various new studies force significant
modification/clarification of the canonical view, e.g., that L5/6
cells are also activated directly by U (specifically, thalamic) input
Constantinople and Bruno (2013) and that thalamic input to L1 is
much more substantial than previously thought (Rubio-Garrido
et al., 2009).

In any case, while realizing the generic functionalities noted
above has thus far required only a single population (layer)
of principal cells, which best matches the L2/3 pyramidals, we
anticipate incorporating modeling of other layers as needed. In
particular, in its current “1-layer” form, Sparsey can be viewed
as carrying out spatiotemporal processing underlying percep-
tion/recognition of spatiotemporal patterns and thinking, but
without the accompanying motor output. Incorporating a “motor
side” to the model will surely minimally force a move to a
“2-layer” concept, i.e., supragranular (L2/3 and L4) and infra-
granular (L5 and L6).

CSA: RETRIEVAL MODE
In this section, we will first motivate the need for introducing
some complexity to the computation of G when in retrieval mode
and then describe the modification. We begin by thinking about
how the model should respond to test trials involving previously
learned sequences corrupted in particular ways. For example, if
the model has learned the sequence S1 = [BOUNDARY] in the
past and is now presented with S2 = [BOUNDRY], should it
decide that S2 is functionally equivalent to S1? That is, should

it respond equivalently to S2 and S1? More precisely, should
its internal state at the end of processing S2 be the same as it
was at the end of processing S1? The reader will probably agree
that it should. We all encounter spelling errors like this all the
time and read right through them. Similarly, if one encoun-
tered S3 = [BBOUNDARY], S4 = [BBOOUUNNDDAARRYY],
S5 = [BOUNNNNNNDARY], or any of numerous other vari-
ations, he/she would likely decide it was an instance of S1. We
could think of all these variations (corruptions) simply as omis-
sions/repetitions. However, we prefer to think of this class of
corruptions as instances of the class of nonlinearly time-warped
instances of (discrete) sequences. Thus, S2 can be thought of as
an instance of S1 that is presented at the same speed as during
learning up until item “D” is reached, at which time the pro-
cess presenting the items momentarily speeds up (e.g., doubles
its speed) so that “A” is presented but then replaced by “R” before
the model’s next sampling period. Then the process slows back
down to its original speed and item “Y” is sampled. Thus, S2 is a
nonlinearly time-warped instance of S1. We can construct simi-
lar explanations, involving the underlying process producing the
sequences undergoing a schedule of speedups and slowdowns rel-
ative to the original learning speed, for S3, S4, etc. In fact, S4 is
even simpler; it’s just a uniform slowing down, to half speed, of
the whole process.

Of course, there are limits to how much we want a system
to generalize regarding these warpings. And the final equivalence
classes, in particular for processing language, must be experience-
dependent and idiosyncratic. For example, should a model think
that S6 = [COD] is just an instance of S7 = [CLOUDS], produced
twice as fast as during the learning instance? In general, probably
not. Furthermore, we have not even considered in these exam-
ples the fact that the individual sequence items are actually pixel
patterns which can themselves be noisy, partially occluded, etc.,
which would of course influence the normative category deci-
sions. Nevertheless, the ubiquity of instances such as described
above, not just in the realm of language, but in lower-level raw
sensory inputs, suggests that a model have some mechanism for
dealing with them, i.e., some mechanism for treating moments
produced by nonlinearly time-warping as equivalent.

Our explanation of the modified G computation in retrieval
mode uses an example involving a 3-level model that has only one
mac at each level. Figure II-9 shows representative samples of the
U, H, and D learning that occurs as the model is presented with
the sequence, [BOTH]. Note that the model is unrolled in time
here, i.e., the model is pictured at four successive time steps and
in particular, the origin and destination cell populations of the
increased H synapses (green) are the same. This figure illustrates
several key concepts. First, learning a sequence involves increas-
ing the H-wts from the previously active code to the currently
active code. The D-wts (magenta) are also increased from the pre-
viously active code (in this case, in the L2 mac) to the currently
active destination code in the L1 mac. Note however that the U-
wts (blue) are increased from the currently active input (L0 code)
to the currently active L1 code. We show the full set of afferent
U, H, and D wts that are increased for one cell—the winner in
the upper left CM of the L1 mac—at each time step. Thus, this
figure emphasizes that, on each moment, individual cells become
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FIGURE II-9 | The formation of a hierarchical spatiotemporal

memory trace, unrolled in time, of the input sequence, [BOTH].

We only show representative samples of the increased weights on
each frame. The model has one L1 mac with Q1 = 9 CMs, each with
K = 4 cells and one L2 mac with Q2 = 6 CMs, each with K = 4

cells. The resulting trace can be said to have been produced using
both chaining (increasing H-wts between successively active codes at
the same level) and chunking increasing U and D wts between single
higher-level (L2) codes and multiple lower-level (L1) codes. See text for
detailed explanation.

associated with their entire afferent input (spatiotemporal con-
text) in one fell swoop. Though we only show this occurring for
one cell on each frame, all winners in a mac code will receive the
same weight increases simultaneously. Thus, we can say not only
that individual cells become associated with the mac’s entire spa-
tiotemporal contexts but that whole mac codes become associated
with the mac’s entire spatiotemporal contexts.

The second key concept illustrated is progressive persistence,
in this case, that L2 codes persist for twice as long as L1 codes.
Cell color in this figure is used to make persistence clear. Thus, the
first L2 code that becomes active D-associates with two L1 codes.
And, because of the modeling decision that D-wts are increased
from previously active to currently active codes, the two L1 codes
are those at t = 2 and t = 3. The second L2 code to become
active (orange) D-associates with the L2 code at t = 3 and would
associate with a t = 4 L1 code if one occurred.

Having illustrated (in Figure II-9) the nature of the hierar-
chical spatiotemporal memory trace that the model forms for
[BOTH], Figure II-10 compares model conditions when process-
ing one particular moment—the second moment—of a test trial
that is identical to the learning trial (Figure II-10A) to conditions
when processing the second moment of a time-warped instance
of the learning trial—specifically, a moment at which the item
that originally appeared as the third item of the learning trial,
“T,” now appears as the second item immediately after “B,” i.e.,
“O” has been omitted (Figure II-10B). We can represent the two
test trial moments as [BO] and [BT], respectively, where bolding
indicates the frame currently being processed and the nonbolded
letters indicate the context leading up to the current moment.

The first thing to say is that the second moment of the time-
warped instance is simply a novel moment. Thus, the caveat we
mentioned above applies. That is, deciding whether a particu-
lar novel input moment should be considered a time-warped
instance of a known moment or as a new moment altogether
cannot be done absolutely.

Figure II-10A shows the case where the test trial moment [BO]
is identical to the learning trial moment [BO]. The main point to
see here is that, given the weight increases that will have occurred
on the learning trial, all three input vectors, U, H, and D, will be
maximal (equal to 1) for the red cell (which is in φ1

2) in each L1
CM. At right (yellow), we zoom in on the conditions only for the
upper left L1 CM, but the conditions are statistically similar for all
L1 CMs. We show that for the red cell, U = 1, H = 1, and D = 1.
The blue cell (which is in φ1

3) also has maximal D-support and the
blue, green, and black cells have nonzero U inputs (their U-inputs
are not shown in the main figure to minimize clutter), due to the
pixel overlap amongst the four input patterns, but they all have
H = 0. Thus, according to Equation (4) of the CSA (Table II-1),
the red cell has V = U × H × D = 1, whereas the others have
V = 0. We refer to red cell as having a “3-way match” in that all
three evidence vectors are maximal and agree. Also, we refer to
the G version computed using all three input vectors as GHUD.
Thus, in this case, where the test moment is identical to a learned
moment, CSA Equation (4) is sufficient as is.

However, as shown in Figure II-10B, when an item (“O”) has
been omitted with respect to the learning trial, the H and D
vectors to the red cell will no longer agree with its U vector.
Various policies could be imagined for handling this situation.
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FIGURE II-10 | Motivation for the Back-off Strategy for computing G in

retrieval mode. (A) Detail of conditions that exist at L1 when processing the
second moment [BO] of a test trial that is identical to the learning trial (in
Figure II-8). (B) Detail of conditions that exist at L1 when processing the

second moment [BT] of a test trial that is a time-warped version of the
learning trial, specifically, a sequence that is sped up by 2x at t = 1, causing
the “O” to be missed and the “T” to occur immediately after the “B.” See
text for detailed discussion.

The model could simply consider such a case as being a novel
moment, [BT]. This would require no modification to the CSA.
Or, as discussed earlier, the model could check to see whether
the current moment could have resulted from a nonlinear time-
warping process, and should therefore be judged identical to some
previously learned moment. In this case, the current moment
[BT] is identical to the learning trial moment [BOT] if we assume
that the process presenting the sequence to the model sped up by
2x at t = 1, causing the “O” to be missed.

So, how does the model check this possibility? It is quite sim-
ple. All it needs to do is disregard the H signals when computing
the V’s (CSA Step 4). In other words, it “backs off” from the
more stringent 3-way GHUD match criterion to the more per-
missive 2-way GUD criterion. Note that the model begins by

computing the highest-order G available at the current moment,
in this case, using all three input vectors. Only if that highest-
order G falls below a threshold, which we typically set rather
high, e.g., GHUD = 0.9, does it bother to compute the next lower
order version(s) of G, i.e., GUD, GHU , and GHD. Similarly, only if
whichever 2-way version has been considered falls below another
threshold, which is typically set even higher than the first, e.g.,
G+

UD = 0.95, does the model back-off to the next lower order
match criterion.

In this example, GUD = 1, meaning that there is a code stored
in the L1 mac—specifically, the set of blue cells assigned as the
L1 code at t = 3 of the learning trial (Figure II-9)—which yields
a perfect 2-way match. Thus, there is no need to back-off to the
“1-way” match criterion, GU . However, there are many naturally

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 160 | 233

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rinkus Sparse deep hierarchical vision model

occurring instances in which backing all the way off to the lowest-
order criterion (i.e., basing the V-values and thus, the G, on only
the U signals, ignoring the H and D signals) is appropriate. There
are myriad policy considerations regarding possible precedence
orders of the different G versions and whether or not and under
what conditions the various versions should be considered. We
are actively exploring these issues, but cannot delve into this topic
in this paper.

Figure II-11 completes this example by showing that the
back-off policy allows the model to keep pace with nonlinearly
time-warped instances of previously learned sequences. That is,
the model’s internal state (i.e., the codes active in the macs) can
either advance more quickly (as in this example) or slow down

(not demonstrated herein) to stay in sync with the sequence
being presented. Figure II-11A is given for comparison, show-
ing the full memory trace that becomes active during a retrieval
trial for an exact duplicate of the training trial, [BOTH]. In this
case, no back-off would be required because all signals at all
times would be the same during retrieval as they were during
learning. Figure II-11B shows the trace that obtains, using the
back-off protocol, throughout presentation of the nonlinearly
time-warped instance of the training trial, [BTH].

The back-off from GHUD to GUD occurs in the L1 mac at
t = 2 (as was described in Figure II-10B). Since GUD = 1, the
V-to-ψ map is made very expansive, resulting in activation, at
t = 2 of the test trial, of the code, φ1

3 (blue cells), which was

FIGURE II-11 | This figure shows the complete test trial traces for: (A) an

exact duplicate of the training trial, [BOTH]; and (B) the nonlinearly

time-warped instance of the training trial, [BTH]. In (B), back-off from
GHUD to GUD occurs in the L1 mac at t = 2 (as was described in

Figure II-10B), which allows entire internal state of the model (i.e., at L1 and
L2) to “catch up” with the momentary speed up of the sequence. The
remainder of the sequence and the associated internal trace then obtains the
same as during learning. See text for detailed description.
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originally activated at t = 3 in the learning trial. Thus, the back-
off has allowed the model’s internal state (in L1) to “catch up”
to the momentarily sped up process that is producing the input
sequence. Once φ1

3 is activated, it sends U-signals to L2 (blue sig-
nals converging on orange cell in rose highlight box). This results
in the L2 code, φ2

3 (orange cells), being activated without requir-
ing any back-off. That’s because the L2 code from which H signals
arrive at t = 2, φ2

1 (purple cells) increased its weights not only
onto itself (at t = 2 of the learning trial) but also onto φ2

3 at t = 3
of the learning trial. Thus, the six cells comprising φ2

3 (orange)
yield GHU = 1 (note that GHU is the highest order G version
available at L2 since there is no higher level). Consequently, a
maximally expansive V-to-ψ map is used in the L2 mac, resulting
in reinstatement of φ2

3 . At this point—t = 2 of the test trial—the
entire internal state of the model (i.e., at L1 and L2) is identical
to its state at t = 3 of the learning trial (two central dashed boxes
connected by double-headed black arrow): the model, as a whole,
has “caught up” with the momentary speed up of the sequence.
The remainder of the sequence proceeds the same as it did during
learning, i.e., state at t = 3 of retrieval trial equals state at t = 4 of
learning trial.

The final, and really the most important, point of this section is
that Sparsey’s back-off policy does not change the time complexity
of the CSA: it still runs with fixed time complexity, which is essen-
tial in terms of scalability to real-world problems. True, expanding
the logic to compute multiple versions of G increases the absolute
number of computer operations required by a single execution of
the CSA. However, the number of possible G versions is small and
more to the point, fixed. Thus, adding the back-off logic adds only
a fixed number of operations to the CSA and so does not change
the CSA’s time complexity.

During each execution of the CSA, all stored codes compete
with each other. In general, the set of stored codes will correspond
to moments spanning a large range of Markov orders. For exam-
ple, in Figure II-9, the four moments, [B], [BO], [BOT], and
[BOTH], are stored, which are of progressively greater Markov
order. During each moment of retrieval, they all compete. More
specifically, they all compete first using the highest-order G, and
then if necessary, using progressively lower-order G’s. However,
it is crucial to see that with back-off, not only are the explic-
itly stored (i.e., actually experienced) moments compared, but
so are a far larger number of time-warped versions of the
actually-experienced moments. For example in Figures II-10B,
II-11B, the moment [BT], which never actually occurred com-
petes and wins (by virtue of back-off) over the moment [BO],
which did occur. And crucially, as noted above, all these com-
parisons take place with fixed time complexity! Space does not
permit here, but the above mechanism and reasoning gener-
alizes to arbitrarily deep hierarchies. As the number of levels
increases, with persistence doubling at each level, the space of
hypothetical nonlinearly time-warped versions of actually expe-
rienced moments, which will materially compete with the actual
moments (on every frame and in every mac) grows exponentially.
And, we emphasize that these exponentially increasing spaces of
never-actually-experienced hypotheses are envelopes around the
actually-experienced moments: thus, the invariances implicitly
represented by these envelopes are (a) learned and (b) idiosyn-
cratic to the specific experience of the model.

CSA: SIMPLE RETRIEVAL MODE
Both the learning mode CSA and the retrieval mode CSA
described above, which is just the learning mode CSA augmented
by the back-off protocol, involve the G-based modification of
the cell activation functions and the second, probabilistic round
of competition for choosing the final code (CSA Steps 8–12,
Table I-1). If the model is operating as a truly autonomous agent,
then it, or rather any of its constituent macs, may be presented
with a truly novel input pattern at every moment experienced.
Thus, a mac must be prepared to learn, i.e., assign a new SDC,
at every moment2 . As described in earlier sections, the CSA’s
two competitive stages, with the second, probabilistic stage using
the G-modulated cell activation functions, satisfies the require-
ments for autonomous operation. That is, as G decreases, the
expected intersection of the final code (for the current frame)
chosen with the closest matching stored code decreases to chance,
which results in the occurrence of novel pre-post correlations, and
thus new learning. On the other hand, as G increases toward 1, the
expected intersection of the finally chosen code with the closest
matching stored code increases to complete, which results in no
(or at least, statistically, very few) novel pre-post correlations and
thus no new learning.

However, if the model “knows” that is operating in pure
retrieval mode, i.e., that at each moment each mac should sim-
ply activate the code of the learned moment that most closely
matches its current input moment, then there is no advantage
to having the second G-dependent probabilistic stage of com-
petition. In fact, the optimal strategy in this case is simply to
choose the cell with the highest V-value in each CM. The trans-
fer of global information (G) back into the local (within each
CM) winner selection processes, which occurs in steps 8–12,
does not help and in fact, can only hurt (i.e., it can only reduce
the probability of the maximally likely cell in a given CM win-
ning). Thus, in this “simple retrieval mode,” in which the model
knows that it will not be asked to learn anything new, the opti-
mal algorithm is just the first seven steps of the CSA given in
Table I-1, but augmented with the back-off protocol described in
the previous section. Thus, we do not state the simple retrieval
mode of the CSA separately. We will clearly indicate which of the
two retrieval modes is used in the studies reported in the next
section.

We emphasize that the deterministic “simple retrieval mode”
algorithm cannot be used during learning because it would result
in essentially mapping all of the mac’s input patterns to one
or a very small number of codes, vastly over-utilizing only a
tiny fraction of the mac’s cells and vastly decreasing the num-
ber of codes (amount of information) that can be stored in
the mac.

However, based on first principles, it seems plausible that for
the vast majority of Sparsey’s envisioned operational regime,
i.e., the regime in which the number of codes stored in the
macs (or more specifically, the fraction of synapses that have

2Actually, in a hierarchical model faced with the prospect of possibly hav-
ing to learn something new on every moment of its operational lifetime, it’s
sufficient only that at least one mac (which would typically be at the highest
level) be prepared to learn at every moment (cf. earlier discussion of critical
periods).
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been increased) remains below a threshold, the simple retrieval
mode should always do better (on average) than the probabilistic
retrieval mode Specifically, recall that in probabilistic retrieval
mode, the winner in a CM is chosen as a draw from the V
distribution. Depending on the particular shape/statistics of the
V distribution, the cell with the maximum V might therefore be
chosen winner only a small fraction of the time. Yet, that max-V
cell is the most likely cell given the total evidence (from the U,
H, and D signals) arriving at the mac. In simple retrieval mode,
the max-V cell always wins. Again, provided that the fraction of
the mac’s afferent synapses that have been increased remains low
enough, simply choosing the max-V cell as winner yields higher
expected accuracy.

DEFINITIONS OF SYMBOLS USED HEREIN

Table I-2 | Major symbols in CSA equations.

Symbol Definition Symbol Definition

Active(m) Whether mac m is active
or not

λU(t) Power to which U is
raised prior to being
multiplied with H and D
signals. It can vary as a
function of time from
beginning of the
sequence (snippet) being
processed

ϒ (m) Age, in number of time
steps (frames), of the
currently active code in
mac m

λH , λD Analogous to λU(t) except
that for now they are not
functions of time

Q,Qi Number of CMs per mac;
same but for a specific
level, i

δ(m) Persistence, in number
of time steps, of mac m.
Currently, all macs of a
given level have the
same persistence

K ,Ki Number of cells per CM;;
same but for a specific
level, i

M2,3

M3
4

The mac at coordinates
(2,3) (when the level is
unambiguous). Alternate
notation: Mac with index
“4” at level “3.”

u(i),
h(i),d (i)

Raw sum of weighted
signals from cells
comprising cell i’s U-RF.
h(i),d (i) are analogous

U(i),
H(i), D(i)

U(i) is the normalized
u(i), to [0,1] range.
H(i),D(i) are analogous

U− Lower threshold below
which a cell’s U-value is
considered
0.H−,D−analogous

U+ Upper threshold above
which a cell’s U-value is
considered 1. H+,D+
analogous

πU The # of active features
in a mac’s U-RF

π∗
U Number of active

features in a mac’s U-RF,
which are active in macs
with ζ ≤ B

(Continued)

Table I-2 | Continued

Symbol Definition Symbol Definition

π−
U , π+

U Lower and upper bounds
on the number of active
features that must be
present in a mac’s U-RF for
that mac to activate

V (i) Overall local evidence
that cell i should become
active. Product of
functions of U(i), H(i),
and D(i)

V̂j Maximum V (i) in CM, Cj . Vζ Threshold for a cell to be
considered as part of an
active hypothesis

G
G(t)

Average V̂ -value over a
mac’s Q CMs. It is a
measure of the familiarity
of a mac’s total input,
normalized to [0,1]

G− Threshold below which
the mac’s G-value is
considered effectively
zero

χ The sigmoid expansion
factor

γ The sigmoid expansion
exponent

η Range of the V -to-ψ map,
which transforms a cell’s
V -value into its relative
(within its own CM)
probability of winning, ψ

σ1, σ2

σ3, σ4

Parameters that interact
to control overall sigmoid
expansivity and shape,
e.g., horizontal position
of inflection pt., etc

a(j, t) Activation (0,1) of cell j at
time t

Mj Number of macs in
Level j

ζq # of cells in CM q with
V (i) > Vζ . Typically, Vζ is
set close to 1, e.g., 0.95

ζ The number of maximally
active hypotheses, ζ , in a
mac

F (ζ ) The correction factor for
increasing the weights of
outgoing signals from cells
in macs that have multiple
competing hypotheses
(MCHs), i.e., ζ > 1

F (ζ (j, t)) The MCH correction
factor F (ζ ) at time t for
mac that contains cell j

A Exponent (<1.0) for
discounting MCH
correction factor when
ζ > 1

B Threshold on ζ above
which we ignore
completely signals from
the source mac

ψ (i) The relative probability of
activating cell i in a mac

ρ(i) The absolute probability
of activating cell i in a
mac

GU G computed based only on the U signals to a mac. Similarly,
GHUD is G computed based on all three input vectors, U, H, and
D. Similarly, for GHU , GUD , GHD , GH

G +
HU (t) Threshold below which we back off to the next lower-order (or

more generally, the next-considered) version of G. Here, we
suggest that this threshold can be a function of time (frame)

U-RF,
H-RF,
D-RF

U-RF is a bottom-up receptive field. Can be applied to single
cells or to whole macs. For cells/macs at L1 the U-RF is a set
(or array) of individual binary cells (e.g., pixels). For cells/macs at
higher levels, the U-RF is a set (array) of macs. H-RF and D-RF
are analogous, but they always consist of a set (array) of macs
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RESULTS
STUDY 1: SPATIOTEMPORAL SISC PROPERTY
Study 1 is an unsupervised learning study that demonstrates
that Sparsey maps spatiotemporally more similar inputs to more
highly intersecting SDCs, i.e., the similar-inputs-to-similar-codes
(SISC) property. This is an instance of what others have referred
to as the “smoothness prior” (Bengio et al., 2012). The model
instance used here has a 12 × 12-pixel input level (L0) and one
internal level (L1) consisting of one mac with Q = 25 CMs, each
with K = 9 cells, as in Figure III-1B. The set of six 2-frame
sequences (S0–S5) used in this study are shown in Figure III-1A.
All sequences have the same second item, X, while the pixel-wise
overlap of the sequence-initial item with S0’s first item, A,
decreases across sequences, S1 = [BX], S2 = [CX], etc. Thus, the

spatiotemporal similarity of the second frame of each sequence
with the second frame of S0 drops across sequences (even though
the purely spatial similarity of the second frame remains the same
at 100%). We will show that the codes assigned to the second
frame of the progressively spatiotemporally less similar sequences
have progressively smaller intersection with the code assigned to
the second frame of S0.

During learning, on each frame of an input sequence, an L1
code is chosen using the learning mode CSA (Table I-1). Then,
associative learning occurs from active L0 units (active pixels)
to active L1 units: these U-wts are set high, i.e., they are effec-
tively binary. Also, on the second frame (T = 1), H wts from L1
units active at T = 0 to currently active L1 units are set high.
Figure III-1C shows the memory trace assigned to S0. The trace

FIGURE III-1 | (A) The six 2-frame sequences used in Study 1. (B) The model
whose internal level consists of one mac comprised of Q = 25 CMs, each
with K = 9 cells. A subset of the U-wts (blue) increased at T = 0 of
sequence S0 = [AX] from the active pixels to the cells comprising the
winning SDC. (C) The memory trace assigned to S0 to which we will

compare (in Figure III-2) the memory traces assigned to the other five
sequences in this figure. The green arrow represents the learning that occurs
in the recurrent H-matrix from the 25 winners at T = 0, when A is presented,
to the 25 winners at T = 1, when X is presented. The blue (magenta) arrows
represent the learning in the U (D) matrix on each of the two time steps.
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FIGURE III-2 | Memory traces assigned to specific instances of the six

sequences of Study 1. The basic SISC property can be seen (across
panels A–F) in the decreasing intersection size of the L1 codes assigned
to the second moment of each sequence (highlighted in yellow) to the
L1 code assigned to the second moment of (S0) (in Figure III-1C), [AX]
(black units are those that do intersect, red are those that do not). The

G-values are the model’s estimates of spatiotemporal similarity of the
current moment. Note that the same trend of intersection size
decreasing with similarity can be seen in comparing the first moments
of each sequence, (S1–S5), with the first moment of (S0). However,
strictly that is a purely spatial similarity measure since no temporal
context signals present on the first moment of a sequence.

consists of two SDCs. One might also refer to the set of weight
increases made during presentation of S0 as the “memory trace,”
however, it is the sequence of SDCs across time steps which,
unless otherwise stated, we refer to as the memory trace of a
sequence. Note that because [AX] is the first sequence presented
to the model, the particular units chosen on both frames of S0 are
chosen at random.

Figure III-2 shows, in panels B–F, the memory traces assigned
to five sequences, [BX], [CX], [DX], [EX], and [FX], which are
progressively less spatiotemporally similar to [AX]. In addition,
Figure III-2A shows the memory trace reactivated in response
to a second presentation of [AX]. For each of the experiments
represented by the six panels of Figure III-2, the sequence shown
is presented as the second sequence experienced by the model.

For example, when S4 = [EX] is presented, it is presented to the
model after the model has only learned [AX], not the rest of the
intervening sequences, S1–S3.

The main result visible in Figure III-2 is that in comparing
the L1 codes assigned to frame 2 of each sequence, S1–S5, to
the L1 code assigned to frame 2 of S0 (in Figure III-1C), we
see progressively smaller intersection. These five L1 codes are
highlighted in yellow. Black units are units which are the same
as for frame 2 of sequence [AX] (Figure III-1C); red units are
different3. Thus, on the second moment, [BX], of sequence S1,

3If we viewed the presentations of S1–S5 as recognition trials in which we
were presenting progressively more perturbed variants of [AX], then these red
units would be considered errors. However, in this case, we are viewing these
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Table II-1 | Code similarity decreases with spatiotemporal similarity

of moments.

Decreasing similarity of 1st

moment

Decreasing similarity of 2nd

moment∣∣∣S0φ
1
[A] ∩S0 φ

1
[A]
∣∣∣ = 22 (88%)

∣∣∣S0φ
1
[AX] ∩S0 φ

1
[AX]

∣∣∣ = 23 (92%)∣∣∣S1φ
1
[B] ∩S0 φ

1
[A]
∣∣∣ = 22 (88%)

∣∣∣S1φ
1
[BX] ∩S0 φ

1
[AX]

∣∣∣ = 21 (84%)∣∣∣S2φ
1
[C] ∩S0 φ

1
[A]
∣∣∣ = 23 (92%)

∣∣∣S2φ
1
[CX] ∩S0 φ

1
[AX]

∣∣∣ = 23 (92%)∣∣∣S3φ
1
[D] ∩S0 φ

1
[A]
∣∣∣ = 18 (72%)

∣∣∣S3φ
1
[DX] ∩S0 φ

1
[AX]

∣∣∣ = 16 (64%)∣∣∣S4φ
1
[E] ∩S0 φ

1
[A]
∣∣∣ = 16 (64%)

∣∣∣S4φ
1
[EX] ∩S0 φ

1
[AX]

∣∣∣ = 13 (52%)∣∣∣S5φ
1
[F] ∩S0 φ

1
[A]
∣∣∣ = 4 (16%)

∣∣∣S5φ
1
[FX] ∩S0 φ

1
[AX]

∣∣∣ = 3 (12%)
(∼chance)

the code assigned, S1φ
1[BX], has 21 out of the maximum possi-

ble 25 units in common with the code, S0φ
1[AX], assigned to the

second moment, [AX], of S0, i.e.,
∣∣∣S1φ

1[BX] ∩S0 φ
1[AX]

∣∣∣ = 21. Note

that we have slightly generalized the code name convention: the
lead subscript indicates the sequence in which the code occurs.
As the spatiotemporal similarity of the second sequence moment
with [AX] decreases further across panels c-f, the intersection
of the assigned code with S0φ

1[AX] trends downward, despite the

fact that in this particular instance,
∣∣∣S2φ

1[CX] ∩S0 φ
1[AX]

∣∣∣ = 23 even

though [CX] must clearly be considered less similar to [AX]
than [BX] is to [AX]. Despite this statistical blip, the codes
assigned for the remaining progressively less spatiotemporally
similar moments, [DX], [EX], and [FX], have monotonically
decreasing intersection with S0φ

1[AX] as summarized in the right
column of Table II-1. In fact, the same trend obtains with respect
to the first sequence moment as well (left column). However, note
that in the latter case, it is purely spatial similarity in the input
space that is relevant (since no temporal context information is
present on the first moment of a sequence).

We emphasize that each of the memory traces shown in
Figure III-2 is a particular instance. The winner in a CM is
chosen as a draw from a likelihood distribution over the CM’s
units, i.e., “softmax” (CSA Step 12), not by simply choosing
the max likelihood unit, i.e., plain (“hard”) max. Thus, we
will generally see some variation in the chosen codes across
instances of the same experiment and the amount of vari-
ation will increase as the similarity of the test sequence to
the learned sequence, [AX], decreases. This statistical varia-
tion, for example, is why the memory trace in Figure III-2A
is not perfect. Due to the statistical nature of Sparsey’s CSA,
demonstration of the SISC property requires running many
instances of each of the experiments shown in Figure III-2
and reporting average results. Such a protocol was followed in
Study 2.

as presentations of similar but not identical sequences to S0, in which case it is
appropriate for the model to assign unique codes. In this case, the red units are
not errors, but simply just different from the unit chosen in the corresponding
CM in frame 2 of S0.

STUDY 2: SINGLE-TRIAL LEARNING OF SETS OF LONGER SEQUENCES
Study 2 demonstrates single-trial learning of longer and more
complex sequences, derived from natural video, by a model with
multiple internal levels. We presented eight 20-frame 24 × 24-
pixel, natural-derived, snippets (movies), produced from the
KTH Video data set (Schuldt et al., 2004). All 160 frames of the
eight snippets are shown in Figure III-3. These are taken from
instances of people waving their arms. See example video. The
snippets were presented once each.

The model in Study 2 had 4 levels, a total of 21 macs, 3285 cells
(“neurons”), and 1,880,568 synapses4. As shown in Figure III-4,
the first internal level (L1) had 16 macs, each consisting of Q1 = 9
CMs, each having K1 = 16 cells. L2 had 4 macs, each having of
Q2 = 9 CMs, each having of K2 = 9 cells. The top level (L3) con-
sisted of one mac, consisting of Q3 = 9 CMs, each with K3 = 9
cells. The semi-transparent blue prisms indicate the bottom-up
(U) wiring scheme. Each 6 × 6-pixel aperture of the input level,
L0, U-connects to all 9 × 16 = 144 cells in the corresponding L1
mac. Each L1 mac U-connects to all 9 × 9 = 81 cells in the over-
lying L2 mac. All four L1 macs forming one quadrant of level L1
U-connect to the same overlying L2 mac (i.e., convergence). All
four L2 macs U-connect to all 9 × 9 = 81 L3 cells (more conver-
gence). The figure is a snapshot of the model while processing
frame 15 of Snippet 1. L1 mac activation criteria were set in this
study so that an L1 mac would only become active if between 5
and 7 (of the 36) pixels in its aperture were active: apertures with
too few or too many active pixels are grayed out. Criteria were
set to allow an L2 mac to become active if between 1 and 4 of
its four afferent L1 macs were active, and to allow the L3 mac
to become active if between 1 and 4 of its four afferent L2 macs
were active.

Before discussing the features learned by several of the model’s
macs, we first report the recognition accuracy. The core accuracy
measure, �(x, x′), is the similarity (normalized intersection) of

the codes (SDCs) active in a given mac M
j
i on a given frame t

during the learning and test presentations of a snippet x as in
Equation (14), where we normalize by the fixed size Qj of codes
in macs at level j. Note that the test presentation of x is denoted as
x′. We can then average over all macs at all levels to get the recog-
nition accuracy for the whole network on frame t of the test trial
for x′, Rt(x′), as in Equation (15). (Note that since these studies
involve exact-match recognition, where the test and training snip-
pets are identical, we can drop x from the notation.) We can then
average over all T frames of the test trial to get the recognition
accuracy of the entire hierarchical spatiotemporal memory trace
for snippet x′, R∗(x′), as in Equation (16). We also report the full
network accuracy on just the last frame of the test snippet, R�(x′),
which is just Equation (15) with t equal to the final frame of the
snippet.

�
j,i
t

(
x, x′) =

∣∣∣xφj,i
t ∩x′ φj,i

t

∣∣∣ /Qj (14)

4The model included an additional 82,944 top-down (D) synapses from cells
at the first internal level (L1) to cells at the input level (L0). However, these
synapses are neither required for nor used during recognition and thus, are
not counted in computation of information storage capacity in bits/synapse.
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FIGURE III-3 | The frames of the eight snippets used in Study 2.

Rt (x′) =
J∑

j = 1

Mj∑
i = 1

�
j,i
t

(
x, x′) (15)

R∗(x′) =
∑

t

Rt
(
x′) /T (16)

Table II-2 reports R∗(x′) and R�(x′) for all snippets (and broken
down by level as well) and averaged across all snippets (bottom
row). It provides these results using the two CSA retrieval modes
described in Section Sparsey’s Core Algorithm, the probabilis-
tic mode (columns 5 and 6), which is identical to the learning
mode except that it uses the back-off protocol, and the simple
mode (columns 3 and 4), which simply chooses the cell with
the maximum V in each CM as winner (i.e., without using the
mac-global information, G). The first point to make regard-
ing Sparsey’s performance on this set is that using the simple
retrieval mode, it achieves an overall accuracy across all frames
of all episodes of 85% and across all final frames of 91%. One
can readily see that the simple retrieval mode does far better
than the probabilistic mode. But again, the simple mode pre-
sumes that the model “knows” that it is operating purely in
retrieval mode.

As noted above, these are exact-match recognition tests: the
test sequences are identical to the training sequences. One might
therefore be underwhelmed by anything less than 100% recogni-
tion. After all, in classification experiments, perfect classification
of all training inputs is typically considered a basic sanity test.
However, our R measures are not reporting the class of the test
sequences: they are reporting the detailed comparison of the hier-
archical, spatiotemporal patterns of activation that occur during

the test and training trials. (Note: we refer to the activation
pattern that transpires on the test trial as a memory trace and to
the one that transpires on the training trial as the learning trace.)
In this study, these traces span four levels, 20 time steps, involve
precisely ordered activation of 1–2 thousand neurons, and are
formed with one trial. Figure III-5 gives some idea of this com-
plexity: it shows the full 4-level learning trace for the first four
frames of Sequence (Snippet) 1.

Thus, despite being less than perfect on this exact-match
recognition experiment, we consider this performance (in the
simple retrieval mode) to be good. Bear in mind that these
experiments reflect very little in the way of parameter optimiza-
tion: the model parameter space is very large and its exploration
will be ongoing for quite some time. Moreover, we anticipate
that there are many possible straightforward model modifica-
tions that would likely boost performance without increasing
the model’s time complexity for either learning or retrieval.
For example, many of the static parameters in the CSA equa-
tions could be made dynamic, e.g., to depend on temporal
offset from start of sequence, or on degrees of saturation of
weight matrices, etc. There is a very large landscape to explore
here. Furthermore, as noted, this study involved only unsu-
pervised learning. As discussed in Section Learning arbitrarily
complex nonlinear similarity metrics, the addition of super-
vised learning to the model greatly increases its capabilities,
i.e., to learning arbitrarily nonlinear (spatiotemporal) cate-
gories. However, we do not report supervised learning studies in
this paper.

While the simple mode performance is good, we note that
the model in this case has almost 1.9 million weights. Thus,
the information storage capacity here is rather low, ∼0.018
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FIGURE III-4 | The 4-level model used in Study 2. Blue
semi-transparent prisms show the U-RFs of the macs at the prism
tops, i.e., the L3 mac M3

(0,0)’s U-RF contains all four L2 macs, each L2
mac’s U-RF contains the four underlying L1 macs, and each L1 mac’s
U-RF is the underlying 6 × 6-pixel L0 aperture. At left, we show plan

views of individual macs showing their active codes at the particular
spatiotemporal moment depicted (T = 15 of Snippet 1). The four gray
L0 apertures have too few/many active pixels for their associated L1
macs to activate. Subsets of the U (black), H (green), and D (magenta)
wts are shown.

bits/synapse. However, in the course of our investigations, we
were routinely able to achieve the same or better performance on
this data set with much smaller networks, e.g., 4-level networks
with a total of 331,000 weights5 , yielding a storage capacity of
∼0.1 bits/synapse, which is within an order of magnitude of the
theoretical maximum for associative memory, ∼0.69 bits/synapse
(Willshaw et al., 1969). Those results are given in the last two
columns Table II-2.

While this unsupervised learning study involves only the exact-
match condition (the test inputs are identical to the training
inputs), the more typical goal of an unsupervised learning study is
to show that the model learns the higher-order statistical structure
of the input space, or in terms we used earlier, that the model
maps similar inputs to similar codes (SISC). Study 3 involves

5The smaller model had 4 levels, a total of 21 macrocolumns (macs), 1692 cells
(“neurons”), and 343,116 synapses. It had an additional 32,256 D synapses
from L1 cells to L0 cells. However, these synapses are neither required for
nor used during recognition and thus, are not counted in the computation
of information storage capacity in bits/synapse. L1 consisted of 16 macs, each
with of Q1 = 4 CMs, and each CM consisting of K1 = 14 cells. L2 had 4 macs,
each having of Q2 = 4 CMs, each having of K2 = 12 cells. The top level (L3)
consisted of one mac, consisting of Q3 = 4 CMs, each with K3 = 7 cells.

the nonexact-match condition (the test inputs differ from the
training inputs) and directly demonstrates that the model
retrieves the spatiotemporally best matching stored input given
a novel input.

The effect of the lower and upper mac activation bounds on
the number of active features needed for a mac to activate (see
Section Step 3: Normalize and filter the raw summations) can also
be seen in Figure III-5. For L1, π1,−

U = 5 and π1,+
U = 7 (we’ve

added the level index to the superscript since these parameters can
vary by level): thus only a few of the 16 L1 macs become active
on each frame, e.g., five on Frame 0, six on Frame 1, etc. One
such criterion-meeting L1 mac, M1

12, and its L0 aperture (with
six active pixels) are highlighted in yellow in Frame 0. As noted
in Section Normalize and filter the raw summations, for L2 and
higher, the number of active features equals the number of active
macs in a mac’s U-RF. In this simulation, the bounds for L2 macs
were π2,−

U = 1 and π2,+
U = 4 and the bounds for the L3 mac were

π
3,−
U = 1 and π3,+

U = 3. Thus, on Frame 1, we can see that L2
mac M2

2 (yellow) is active because the number of active features

in its U-RF, π2,2
U (1) = 1, meets the criteria:

π
2,−
U = 1 ≤ π

2,2
U (1) = 1 ≤ π

2,+
U = 4
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Table II-2 | Recognition accuracy for Study 2.

Snippet Level Larger model Smaller model

Simple mode Probabilistic mode Simple mode

Rd∗(x ′) R�(x ′) R∗(x ′) R�(x ′) R∗(x ′) R�(x ′)

1 L3 0.56 0.78 0.46 0.67 0.53 1.00
L2 0.90 1.00 0.73 0.50 0.77 1.00
L1 0.95 0.97 0.71 0.53 0.82 0.88

2 L3 0.53 0.33 0.29 0 0.39 0.50
L2 0.84 1.00 0.39 0 0.55 0.50
L1 0.86 1.00 0.55 0.37 0.72 0.75

3 L3 0.57 0.56 0.26 0.67 0.69 0.75
L2 0.92 1.00 0.65 1.00 0.92 1.00
L1 0.98 1.00 0.74 0.89 0.98 1.00

4 L3 0.85 0.78 0.86 0.78 0.90 1.00
L2 0.94 1.00 0.86 1.00 0.91 1.00
L1 0.94 1.00 0.83 0.95 0.93 1.00

5 L3 0.63 0.89 0.46 0.56 0.84 1.00
L2 0.91 1.00 0.86 1.00 0.90 1.00
L1 0.94 1.00 0.85 0.93 0.93 1.00

6 L3 0.86 1.00 0.69 1.00 0.81 1.00
L2 0.97 1.00 0.82 0.83 0.92 1.00
L1 0.96 1.00 0.82 0.93 0.95 1.00

7 L3 0.64 0.78 0.55 0.44 0.84 0.75
L2 0.95 1.00 0.91 0.33 0.99 0.88
L1 0.98 1.00 0.84 0.41 1.00 1.00

8 L3 0.79 0.78 0.55 0.78 0.93 1.00
L2 0.95 1.00 0.85 0.89 0.94 1.00
L1 0.94 1.00 0.84 0.81 0.93 1.00

All
Snippets

All
Levels

85.0 91.0 0.68 0.68 0.84 0.92

All accuracies expressed as decimal (between 0 and 1). R∗(x ′ ) is averaged over

all 20 frames of snippet, x′, where in this case (the exact-match test case), x′ is
identical to the training snippet, x. R�(x ′ ) is the accuracy only on the final frame

of snippet x ′ .

M2
1 (rose) and M2

3 (no color) also activate because they also meet
the criteria:

π
2,−
U = 1 ≤ π

2,1
U (1) = 2 ≤ π

2,+
U = 4

π
2,−
U = 1 ≤ π

2,3
U (1) = 3 ≤ π

2,+
U = 4

The blue boxes indicate that L3 mac M3
0 ’s U-RF is the entire L2

level; M3
0 is active on all four frames because it meets its mac

activation bound criteria on all for frames.
The progressive persistence property can also be seen in

Figure III-5. The persistence at L2 is two frames, i.e., δ2 = 2.
Thus, the L2 code (the set of 9 black cells) that becomes active
in M2

2 on Frame 0 remains active on Frame 1. That same L2 code,

which (following earlier notation) we can denote, φ2,2
0 , becomes

D-associated with the L1 codes active in its U-RF on Frames 0
and 1, denoted φ1,12

1 and φ1,9
2 , respectively. Magenta lines show

the increased D-wts from one of the cells in φ2,2
0 to the L1 codes,

φ
1,12
1 and φ1,9

2 , though the same increases would occur from the

other eight cells comprising φ2,2
0 (= φ

2,2
1 ) as well. Similarly, the

code that becomes active in M2
2 on Frame 2 remains active on

Frame 3. L3 persistence is δ3 = 4, thus the code activated in M3
0

on Frame 0 remains active until Frame 3.
The reader may note a discrepancy at L3 between the pro-

gressive persistence policy, which says that (during learning) once
active, an L3 code will remain active for 4 frames, and the acti-
vation bounds, which in this simulation says that an L3 mac will
only become active if it has between 1 and 3 active features in its
U-RF, whereas on Frames 3 and 4, there are four active features in
M3

0 ‘s U-RF. The resolution is that persistence trumps the activa-
tion criteria: that is, the policy, during learning, is to allow a mac
that has already become active to remain active for its full persis-
tence regardless of how the number of active features in its U-RF
changes throughout its persistence.

We also note that though not shown in Figure III-5, large
numbers of (U, H, and D) synapses are increased within/between
macs on each of these frames. This is especially true early in
the system’s life, when most input patterns that occur will be
novel. In general, as more and more frames are experienced,
fewer and fewer synapses are increased with each new frame.
However, as described in Section Learning policy and mechanics,
the model has a “freezing” policy wherein, once a critical frac-
tion of the weights of any of a mac’s three afferent projections (U,
H, or D) have been increased, all of that mac’s afferent projec-
tions are frozen, preventing any further codes (i.e., features) from
being stored in its basis. Freezing is necessary in order to avoid
oversaturating the weight matrices, which would lead to infor-
mation (memory) loss. Once a mac’s learning is frozen, the set
of features that has been stored in it, remains its permanent lex-
icon, or basis, for perceiving/recognizing all future inputs to it.
Note that even if a mac’s afferent matrices are frozen, its effer-
ent matrices are not, meaning that previously stored codes in
a frozen mac can still be efferently-associated with other codes
following freezing.

Although none of the macs in the model in this study became
frozen, the codes that were stored in the various macs across
the 160 frames of the input set still constitute their learned fea-
ture bases. Figure III-6 shows the complete set of criteria-meeting
inputs, i.e., having between π1,−

U = 5 and π1,+
U = 7 active pixels,

which present to L0 Aperture 0 across all 160 frames. These 45
inputs constitute the learned feature basis of L1 mac M1

0 . Note
the near-canonical nature of many of the patterns, e.g., perfect, or
near-perfect vertical, horizontal, diagonal edges.

As another example, Figure III-7 shows the complete set of
unique, criteria-meeting patterns that occurred in Aperture 8,
and were stored in M1

8 over the course of the training set. Here,
we manually ordered them so as to emphasize the “canonical-
ness” of the resulting features. In this case, seven of these features
(blue underbars) occurred at least twice during the 160 frames.
It is perhaps surprising that given such a small number of frames
derived from natural video, the resulting basis can be so canon-
ical. Moreover, several of these features are already beginning to
recur in the input stream even within the first 160 frames of this
model’s experience. These phenomena are due to the conjunc-
tion of the preprocessing (1-pixel wide edges and binarization),
the small aperture size, and the L1 mac activation criteria. Similar
bases were learned in the other 14 L1 macs as well. These findings
give us confidence that freezing L1 macs even very early in the
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FIGURE III-5 | The inputs (L0) and codes that become active at all

three internal levels on the first four frames of Snippet 1 (panels

A–D). Note that the mac codes that become active at L2 persist for
two time steps. Thus, the code active in mac, M2

2 , on frames 0 and 1

can be referenced by two names, φ2,2
0 and φ

2,2
1 . The magenta lines

show the D-wts from one of the cells comprising φ
2,2
0 , which are

increased onto φ
1,12
1 on frame 1 and onto φ

1,9
2 on frame 2. See text

for further discussion.

“life” of the model, e.g., after a few hundred features have been
stored, will allow the macs to parse/recognize all future inputs
with quite sufficient fidelity. We feel these results provide an illu-
minating framework for understanding the various critical period
phenomena observed in the visual and other modalities of biolog-
ical brains (Wiesel and Hubel, 1963; Barkat et al., 2011; Pandipati
and Schoppa, 2012).

We used the same protocol as above to catalog the input pat-
terns learned by, and stored in, the L2 macs and in the L3 mac.
Figure III-8 shows 78 of the 112 unique, criteria-meeting patterns
that occurred in the 12 × 12-pixel region comprising the U-RF of
L2 mac M2

0 , throughout the 160 frames of the training set (the
thich-outlined green and red pairs are duplicates). This region is
the union of the U-RFs of the four L1 macs, M1

0 , M1
1 , M1

4 , and
M1

5 . The gray/yellow 6 × 6 quadrants are L0 apertures in which

too many (> π
1,+
U = 7)/too few (< π

1,−
U = 5) pixels were active

for the L1 mac to activate. Thus, when any of the 12 × 12 patterns
in the figure occurs, the actual input passed up to M2

0 will be from

codes active only in the L1 macs whose 6 × 6 RFs are not gray or
yellow.

As can be seen in Figure III-8, the spatial extent of the L2 RF
has doubled in width and height compared to L1 RF. Thus, the
space of possible inputs in such an RF is exponentially larger.
Nevertheless, most of these larger features still have low intrin-
sic dimensionality, e.g., an essentially straight or low-curvature
edge across the whole 12 × 12 RF. Even the more complex features
such as the angle features in the bottom row, i.e., two straight/low-
curvature segments with a single “elbow” point (thick pink out-
line), have rather low intrinsic dimensionality (i.e., we can give
short verbal descriptions of them). Again, these are canonical-
looking features, and they end up in the basis of M2

0 , but they
were not hand-engineered. The number of active features (quad-
rants that are neither gray nor yellow) in each 12 × 12 pattern
varies from 0 (in which case, M2

0 will not become active on
that frame, thick blue outline) to 4. Thus, M2

0 learns input pat-
terns having varying numbers of features (varying complexities).
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FIGURE III-6 | The set of all unique patterns with between π
1,−
U

= 5 and π
1,+
U

= 7 active pixels that occurred in L0 Aperture 0 (and are stored in mac

M1
0

) throughout the 160 frames of the training set.

FIGURE III-7 | The set of all unique patterns with between π
1,−
U

= 5 and π
1,+
U

= 7 active pixels that occur in L0 Aperture 8 (and are stored in mac M1
8

)

throughout the 160 frames of the training.

Thus, it is also the case that during retrievals, all these fea-
tures, of varying complexities, formally compete with each other.
In general, this argues for narrower mac activation ranges,
[π−

U , π
+
U ], because narrower ranges make normalization easier.

Exploration of the interaction of mac activation ranges across
levels and with other parameters is another ongoing effort of
our research.

Note that since L2 codes persist for two frames, these input
patterns, or to be more precise the SDCs in the correspond-
ing L1 macs, will be associated to only roughly half as many
codes in M2

0 . Thus, each consecutive pair of two 12 × 12 panels

(in row-major order) would become associated with the same
M2

0 code. Figure III-9 illustrates this concept for the first pair of
12 × 12 panels of Figure III-8 (thick black outline). Thus, the L2
codes formally represent spatiotemporal patterns. Given the dis-
crete nature of our overall framework, i.e., discrete frames, binary
pixels, constrained wiring schemes, these larger-scale (both spa-
tially and temporally) spatiotemporal patterns, i.e., L2 features,
can be viewed as spatiotemporal compositions of lower-level fea-
tures. A detailed development and analysis of this spatiotemporal
compositional aspect is one major focus of current and future
studies.
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FIGURE III-8 | 78 of the 112 unique patterns with between π
2,−
U

= 1 and π
2,+
U

= 4 active features that occurred in the U-RF of L2 mac M2
0

throughout

the 160 frames of the training set. Gray/yellow quadrants are ones in which too many/few pixels were active for the corresponding L1 mac to activate.

The concept of operation during learning and also during
recognition, is one in which all of the macs across all lev-
els operate, in parallel, on the particular spatiotemporal frag-
ments of the input that they receive, dealing with variation
on a fragment-by-fragment basis. Support for this view comes
from recent experimental work (Bart and Hegdé, 2012). In
subsequent work, we will be quantitatively assessing the sim-
ilarity of features that occur, over the long time frame of
experience, following the initial period in which many of the
lower-level macs become frozen, within apertures of the dif-
ferent scales corresponding to the model’s different levels, to
the (frozen) bases of those macs. The goal will be to assess
how well the model is able to represent (and if novel, learn)
future inputs using the fixed lexicon of features stored in its
lower levels.

Finally, before leaving this section, we want to underscore the
very different concept of feature basis present in Sparsey than that
present in localist models such as Olshausen and Field (1997).

This difference is summarized in terms of four characteristics in
Table II-3.

STUDY 3: SPATIOTEMPORAL BEST-MATCH RETRIEVAL
In this study, we demonstrate spatiotemporal best-match retrieval
as follows. In this case, we are again using a model with one inter-
nal level (L1) consisting of one mac with Q = 9 CMs; K varies
across experiments. In each experimental run, we train the model
on a set of random sequences. We then create a noisy version
of each training sequence by randomly changing some fraction
of the pixels in each of its frames. Figure III-10 (middle) shows
a typical training sequence. Figure III-10 (top) shows the cor-
responding randomly produced noisy version of that sequence:
one pixel was randomly changed in each frame, which actually
yields two pixel-level differences between the original and the
noisy frame. Each frame in the training set had between 9 and 12
active pixels, which yields noise levels from 2/9 = 22.2% to 2/12 =
16.7%. Figure III-10 (bottom) shows a sequence produced from
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FIGURE III-9 | All L1 codes that become active in M2
0

’s U-RF on the two

frames depicted will associate with the same M2
0

code. Notice that that
same code is active for both frames. Thus, a total of four unique L1
codes—the two active in M1

1 on Frames 2 and 3 and the two active in M1
5 on

Frames 2 and 3—will associate with the M2
0 code shown. There will in

addition be H-association from the L1 codes active on Frame 2 to those
active on Frame 3 and also from the L2 code recurrently to itself (since it is
on for two consecutive frames), and D-associations as well.

the middle one by randomly changing two pixels in each frame,
which yields four pixel-level differences and thus noise levels,
from 4/9 = 44.4% to 4/12 = 33.3%. In this study, we ran one series
of experiments testing with the 1-pixel-changed frames (columns
5–7 of Table II-4) and one series testing with the 2-pixels-changed
frames (columns 8–10 of Table II-4).

Given the random method of creating individual frames of
the training set and the high input dimension involved (144),
if the fraction of changed pixels is small enough, e.g., <10–
20%, then the probability that a changed frame, x′ will end up
closer to (having higher intersection with) any other frame in the
training set than to the frame, x, from which it was created, is
extremely small. Moreover, remember that Sparsey actually “sees”
each input frame in the context of the sequence frames leading up
to it, i.e., it computes the spatiotemporal similarity of particular
moments in time (by virtue of its combining of U and H signals on
each time step), not simply the spatial similarity between isolated
snapshots. Thus, the relevant point is that the probability that
a changed moment, e.g., [x′,y′,z′], with its exponentially higher
dimensionality (1443), will end up closer to any other moment
in the training set than to the moment, [x,y,z], from which it

was created, is vanishingly small6 . This condition is required
to validate the testing protocol/criterion described above, which
compares the L1 code on each test frame to the L1 code on the cor-
responding training frame. Thus, if we can show that the model
activates the exact same sequence of L1 codes in response to the
noisy sequence, then we will have shown that the model is doing
spatiotemporal best-match retrieval.

Columns 5–7 of Table II-4 show that the model is able to rec-
ognize a set of training sequences despite significant noise on
every frame. The absolute capacity increases with network size.
For example, the network of Row 1 had 6336 weights and showed
good recognition of two 10-frame random sequences despite
16.7–22.2% noise on each frame, while the larger network of Row
4 had 39,168 weights and showed very good recognition for 10,
similarly noisy, 10-frame sequences, and so on. Columns 8–10 of
Table II-4 show that the model still performs well even for much

6The notation [x,y,z], with z bolded, indicates the moment on which frame
z is being presented as the third frame of a sequence after x and y have been
presented as the first and second frames of the sequence.
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Table II-3 | Comparison of the concept of “feature basis” present in

Sparsey and localist models.

1. ORIGIN OF ANY SINGLE BASIS FEATURE

Sparsey A single input pattern experienced, even with a single trial

Localist An average of many inputs experienced
2. CONTENT OF ANY SINGLE FEATURE

Sparsey Multiple spatial phases (i.e., multiple edge segments at
different locations in the aperture), as apparent, e.g. in
Figure III-8, multiple spatial frequencies, multiple orientations
(i.e., each of the multiple possible edge segments in the
aperture can have a different orientation), and multiple temporal
frequencies. Because each Sparsey feature is derived from a
single event (and not an average over multiple events), it’s not
really appropriate to speak of a Sparsey feature as having
multiple modes on each of the encoded stimulus dimensions

Localist A single spatial phase, a single spatial frequency, a single
orientation, and a single temporal frequency. In general, a
localist feature such as these is unimodal (e.g., Gaussian,
Gabor) on each of the encoded stimulus dimensions

3. NUMBER OF UNITS IN THE CODE OF ANY SINGLE FEATURE

Sparsey Many. Q, where, in real macrocolumns, Q is order 100

Localist One
4. NUMBER OF BASIS FEATURES PARTICIPATING IN THE

REPRESENTATION OF ANY SINGLE INPUT (MOMENT)

Sparsey One. But again, that one active feature is represented by Q
active units. Thus, this type of representation is called
“sparse” specifically because the number of physical units
active in representing any one input is small compared to the
total number of physical units. But, these representations can
also be sparse in the senses typically used for localist models
(below). As noted above, any single active SDC represents the
presence of multiple (but, for most natural inputs, a smallish
number of ) spatial phases, spatial frequencies, orientations,
and temporal frequencies

Localist Few, several. These representations are called “sparse” for
two reasons
• The number of features in a sufficient basis is small

compared to the number of all possible features definable
on the input space

• The number of features active in the representation of any
one input is small compared to the number of features in
the basis

larger per-frame noise levels. In these tests, which involved ran-
domly changing two pixels on every frame, the frame-wise noise
levels varied from 33.3% (on frames which had 12 active pixels)
to 44.4% (on frames with 9 active pixels). A key point to note
in Table II-4 is that while the absolute capacities (the number
of sequences that are can be stored) are lower for the 2-pixel-
changed series compared to the 1-pixel-chaged series, capacity
still remains large. The primary reason for lower storage capacity
in the 2-pixel-changed case is that because the test input frames
are less similar to the training input frames (than in the 1-pixel-
changed case), the ρ distributions from which winners in the CMs
are chosen [Equation (11) and Step 12 of the CSA] will be flatter,
yielding more single-unit errors, thus reducing R∗(x′).

Table II-5 gives the detailed (frame-by-frame) accuracies for
all sequences for individual runs of Experiments 1 and 4. The
top two rows are for Experiment 1 in which the small network
could store only two sequences while maintaining reasonably
high recognition accuracy. The bottom 10 rows are for a run of
Experiment 4 in which the network had Z = 144 L1 units and
39,168 weights. The rightmost column, R∗(x′), is the average over
all 10 frames of a given sequence presentation. It is important to
note how the model fails as it is stressed by having to store addi-
tional sequences. Specifically, even as accuracy averaged over all
sequences falls, a subset of the stored sequences is still recognized
perfectly. This can be seen even in the small network example:
Seq. 1 is retrieved virtually perfectly. Only a single unit-level error
is made on frame 6. Seq. 2 starts out being recalled perfectly for
the first few frames but then begins picking up errors in frame
4 and hobbles along for the rest of the sequence. Nevertheless,
note that even on the last frame of Seq. 2, the L1 code is still
correct in 5 of the 9 CMs. In Experiment 4, we see that 9 of
the 10 sequences are recalled virtually perfectly, while one (Seq.
9) begins perfectly but then picks up some errors on frame 5
and then degrades to 0% accuracy by the last frame. It is also
important to realize that while the model occasionally makes
mistakes, it generally recovers by the next frame. In other exam-
ples (not shown here), the model can often recover from more
significant errors.

Figure III-11 shows the pair-wise L1 code intersections over
the full set of frames experienced over all training and test frames
(moments) of the experimental run described in the top two lines
of Table II-5. Since there were two 10-frame sequences, this is a
total of 40 frames. The upper yellow triangle shows the intersec-
tions between all codes assigned on the 10 frames of the training
presentation of Seq. 1. Similarly for the other triangles down the
main diagonal. The top value the green triangle (row 20, col. 1)
shows that L1 code “20,” i.e., the code activated on the first frame
of the test presentation of Seq.1 intersects completely (in all Q = 9
CMs) with L1 code 0, i.e., the code activated on the first frame of
the training presentation of Seq. 1. Similarly, for codes, 21 and
1, 22 and 2, etc. Reading down the minor diagonal (between
the red lines) tells how well the model does: perfect recogni-
tion of all noisy frames of all sequences would yield “9”s all the
way down.

Constant-time retrieval
When each frame is presented during a recognition test trial
the likelihoods of all codes stored during the learning trial
are formally evaluated. They are evaluated in parallel by the
constant-time code selection algorithm (CSA). However, at no
point does the model produce explicit representations of the like-
lihoods of the individual codes (hypotheses) stored. Such an
explicit representation, e.g., a list, of likelihoods would consti-
tute a localist representation of those likelihoods. What the model
actually does is make Q draws, one in each CM. However, the
net effect of making these Q draws (soft-max operations) is that
a hard-max over all stored hypotheses is evaluated. This is true
whether the model has stored a single 5-frame sequence, or a sin-
gle 500-frame sequence, or 100 5-frame sequences. And crucially,
because the numbers of CMs, and thus units, and weights, are

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 160 | 247

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rinkus Sparse deep hierarchical vision model

FIGURE III-10 | (Middle row) An example 10-frame training sequence

used in Study 3. (Top row) A noisy version of the training sequence
in which one pixel was randomly changed in each frame. The resulting

frame has two pixel-level differences from the original. (Bottom Row)

A noisy version of the training sequence in which two pixels were
randomly changed in each frame.

Table II-4 | Best-match recognition testing.

Exp K Z W 16.7% (1-pixel-) 33.3% (2-pixels-)

changed) changed)

S R∗(x ′) R�(x ′) S Rd∗(x ′) R�(x ′)

1 4 36 6336 2 83.0 67.0 2 83.0 76.0

2 8 72 14,976 5 91.0 86.0 4 98.0 97.0

3 12 108 25,920 8 96.0 96.0 7 94.0 93.0

4 16 144 39,168 10 95.0 94.0 8 92.0 89.0

5 20 180 54,720 11 87.0 84.0 9 90.0 84.0

6 24 216 72,576 12 88.0 84.0 10 86.0 79.0

7 28 252 92,736 13 88.0 84.0 10 89.0 82.0

8 32 288 115,200 15 88.0 86.0 10 91.0 83.0

The R measures (defined in the text) are in %. Z = Q × K is the total number

of L1 units. W is the total number of U and H weights in the model. S is the

number of sequences in the training set. All sequences were 10 frames long.

R∗ (x ′) and R�(x ′) are averages over the 10 runs of an experiment.

fixed, the time it takes to make those Q draws remains constant as
additional codes (hypotheses) are stored.

What the results in this report say is that that hard-max, i.e.,
the max-likelihood hypothesis, is returned with probability that
can be very close to 1 if the amount of information (i.e., number
of hypotheses) stored remains below a soft threshold, and which
decreases as we move beyond that threshold. For example, look-
ing at Table II-5, we see that for the second experiment (bottom
10 rows), the model chooses the correct, i.e., maximum likeli-
hood, hypothesis on almost all of the 100 frames (moments) of
test phase. These are 100 independent decisions, in each of which,
all 100 stored hypotheses competed and had some non-zero pos-
sibility of being activated. Yet, almost all 100 whole-code-level
decisions were correct. And, at the finer scale of the individual
CMs, where the actual decision process, albeit a soft decision

Table II-5 | Detailed frame-by-frame accuracies.

Seq 0 1 2 3 4 5 6 7 8 9 R∗(x ′)

1 100 100 100 100 100 100 88.9 100 100 100 99

2 100 100 100 100 55.6 66.7 66.7 66.7 55.6 55.6 77

1 88.9 100 100 100 100 100 100 100 88.9 100 98

2 100 100 100 100 100 100 100 100 100 88.9 99

3 100 100 100 100 100 100 100 100 100 100 100

4 88.9 100 88.9 88.9 100 100 100 100 100 100 97

5 100 100 100 100 100 100 100 100 100 100 100

6 100 88.9 100 100 100 100 100 88.9 100 100 98

7 100 100 100 100 100 100 88.9 100 100 100 99

8 88.9 100 100 100 100 100 100 100 100 100 99

9 100 100 100 100 100 77.8 66.6 22.2 11.1 0 68

10 100 100 100 100 100 100 100 100 100 100 100

All table cells give accuracies as percent. Last column is average of columns

indexed 0–9.

process, takes place, almost all (861) of the 900 decisions were
correct.

Table II-6 shows what happens when we move past or perhaps
through, the aforementioned soft threshold. In these two exper-
iments, we again used the network with 36,198 weights and the
1-pixel-changed test, but the training set contained 11 sequences
(upper 11 rows) and 12 sequences (lower 12 rows), compared
to only 10 in the experiment reported in Table II-5. For the 11-
sequence case, the model still performs very well on six of the
sequences, but adding another sequence degrades performance
substantially more.

SUMMARY AND CONCLUSION
In this paper, we described the hierarchical and spatiotemporal
elaboration of the SDC-based macro/mini-column model of cor-
tical computation described in Rinkus (2010), named Sparsey.
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FIGURE III-11 | Pair-wise intersections of all L1 codes assigned in one run of the 1-pixel-changed testing condition for the smallest model tested,

which had Q = 9, K = 4, and 6336 weights.

The notion that hierarchical representation is essential to event
recognition and intelligence more generally, has been present in
models for decades (Fukushima, 1984; Damasio, 1989; Edelman
and Poggio, 1991; Riesenhuber and Poggio, 1999; Lucke, 2004;
George and Hawkins, 2005; Dean, 2006; Jitsev, 2010) including
in the recent “Deep Learning” motif (LeCun and Bengio, 1995;
Hinton et al., 2006; Hinton, 2007; Taylor et al., 2010; Le et al.,
2011). The representational and processing economy/efficiency of
learning and recognition (inference) that is afforded by hierar-
chical decomposition of concepts/events has been understood (at
least implicitly) for thousands of years, e.g., the game of “Twenty
Questions,” which works because of hierarchical way in which
information is organized in our brains.

The hierarchical models noted above and many more all real-
ize the benefit of compositional representation. However, most of
those models use localist representations in which, in any given
cortical patch, each feature/concept/event is represented by a sin-
gle unit. In contrast, Sparsey uses sparse distributed codes (SDCs)
in every cortical patch. As stated at the outset, the most important
distinction between localism and SDC is that SDC allows the two

essential operations of associative (content-addressable) memory,
storing new inputs and retrieving the best-matching stored input,
to be done in fixed time for the life of the model, which is essential
for scalability to the huge problem sizes increasingly associated
with label, “Big Data.” The basis for this fixed-time capability
was explained in Section Sparse Distributed Codes vs. Localist
Codes.

(1) Because SDCs physically overlap, if one particular SDC, φ
(and thus, the hypothesis that it represents), stored in a mac
is fully active, i.e., if all Q of φ’s cells are active, then all other
codes (and thus, their associated hypotheses) stored in that mac
are also simultaneously physically partially active in proportion
to the size of their intersections with φ7.

7There is a nuance here. Although we say “all” stored hypotheses physically
influence the next time step’s decision processes, there may generally be a sig-
nificant number of hypotheses stored in a mac, which have zero intersection
with the current fully active code, φ. One might therefore assert that these
hypotheses do not physically influence the next time step’s decision processes.
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Table II-6 | Detailed frame-by-frame accuracies. overloaded case.

Seq 0 1 2 3 4 5 6 7 8 9 R∗(x ′)

1 88.9 88.9 100 100 88.9 100 100 100 100 100 97

2 66.7 77.8 88.9 100 77.8 55.6 22.2 22.2 11.1 0 52

3 100 88.9 100 100 88.9 100 100 100 100 100 99

4 66.7 77.8 77.8 66.7 44.4 33.3 11.1 44.4 0 0 42

5 88.9 100 100 100 100 88.9 77.8 66.7 33.3 33.3 79

6 88.9 100 100 100 100 100 100 100 100 88.9 98

7 66.7 55.6 22.2 22.2 11.1 11.1 33.3 22.2 0 11.1 26

8 66.7 33.3 11.1 11.1 22.2 0 11.1 11.1 22.2 33.3 22

9 100 100 100 100 88.9 100 100 88.9 88.9 88.9 96

10 88.9 100 88.9 88.9 88.9 100 100 100 88.9 66.7 91

11 88.9 100 100 100 100 100 100 100 88.9 88.9 97

1 66.7 66.7 44.4 44.4 11.1 44.4 44.4 11.1 22.2 11.1 37

2 88.9 100 100 100 100 88.9 88.9 77.8 77.8 66.7 89

3 88.9 88.9 100 100 100 100 88.9 100 88.9 66.7 92

4 100 100 88.9 100 88.9 88.9 88.9 88.9 88.9 100 93

5 77.8 77.8 66.7 55.6 44.4 44.4 44.4 22.2 0 0 43

6 100 77.8 88.9 77.8 66.7 66.7 22.2 33.3 44.4 33.3 61

7 88.9 77.8 88.9 88.9 88.9 100 88.9 100 88.9 100 91

8 55.6 100 100 100 88.9 66.7 66.7 44.4 33.3 11.1 67

9 88.9 77.8 100 88.9 77.8 66.7 66.7 44.4 22.2 22.2 66

10 66.7 88.9 77.8 88.9 77.8 77.8 66.7 33.3 55.6 66.7 70

11 100 100 88.9 77.8 55.6 55.6 33.3 11.1 11.1 11.1 54

12 88.9 77.8 77.8 77.8 77.8 77.8 66.7 55.6 88.9 77.8 77

All table cells give accuracies as percent. Last column is average of columns

indexed 0–9.

(2) Because the process/algorithm that assigns the codes to
inputs (the code selection algorithm, CSA) enforces the
similar-inputs-to-similar-codes (SISC) property, it follows
that all stored inputs (hypotheses) are active with strength in
descending order of similarity to (likelihood of) the hypoth-
esis represented by φ.

Crucially, since the Q active (spiking) cells represent all stored
hypotheses (with varying strengths), not just the single most likely
hypothesis, φ, it follows that all of these hypotheses physically influ-
ence the next time step’s decision processes. Specifically, any stored
hypothesis whose code has even one cell in common with φ, will
physically influence:

(a) the V distributions (and ultimately the ρ distributions) in all
CMs of all downstream macs on the next time step, and thus

(b) the resulting likelihood distributions over all the stored
hypotheses in each of the downstream macs on the next time
step.

While this is true, it still makes sense to say that all stored hypotheses are
physically influencing subsequent decisions; it’s just that the hypotheses hav-
ing zero intersection with φ are so different from φ that they are appropriately
viewed as having zero likelihood and thus as having no causal influence on
subsequent decisions.

We emphasize that the representation of a hypothesis’s likelihood
(or probability) in our model—i.e., as the fraction of the its code
(of Q cells) that is active—differs fundamentally from existing
representations in which single neurons encode such probabili-
ties in their (typically real-valued) scalar strengths of activation
(e.g., firing rates) as described in the recent review of Pouget et al.
(2013).

Another way of understanding the advantage of SDC over
localism is that an individual machine operation on a single unit
(cell), and moreover, on a single synapse—e.g., the addition of
a synapse’s weight into the input summation of a postsynap-
tic cell—transmits information about multiple items (hypothe-
ses) represented in the synapse’s presynaptic cell’s mac. In stark
contrast, in a localist model in which the presynaptic cell rep-
resents only one hypothesis, adding the synapse’s weight into
the input summation of a postsynaptic cell necessarily trans-
mits information only about that one hypothesis. We believe this
aspect of SDC—which qualifies as an instance of what has been
termed algorithmic, or representational, parallelism—to be at the
core of the biological brain’s remarkable efficiency at processing
information.

We also described several other important computational
principles/mechanisms used in Sparsey:

1. How a single SDC code active in a mac can simultaneously
represent two or more equally likely hypotheses and how
information entering that mac on subsequent time steps can
pare down the set of equally likely hypotheses (Section Step
5: Compute the number of competing hypotheses that will
be active in the mac once the final code for this frame is
activated).

2. How an important type of invariance, nonlinear time invari-
ance, can be computed via a “back-off” policy that does
not increase the time complexity of recognition (inference)
(Section CSA: Retrieval Mode). Essentially, on each frame,
a mac computes a series of estimates of the match of the
current temporal-context-dependent input (i.e., the current
spatiotemporal moment) not just to the set of actual moments
it experienced during learning (which constitute its explicit
spatiotemporal basis), but to a much larger (encompass-
ing) space of variants of the basis moments that were not
actually experienced. This is similar in spirit to dynamic
time warping (DTW) (Sakoe and Chiba, 1978), but is far
more efficient, again because of the underlying algorithmic
parallelism.

3. How Sparsey can learn arbitrarily nonlinear and intertwined,
i.e., “tangled,” classes via supervised learning of associations
between codes in different macs (Section Learning arbitrar-
ily complex nonlinear similarity metrics). That categories in
the physical world are smooth in the neighborhood around
any single exemplar but possibly very nonlinear and inter-
twined, i.e., “tangled,” with other classes at the global scale
has been pointed out by many, (e.g., Saul and Roweis, 2002;
Bengio, 2007; Bengio et al., 2012). In particular, DiCarlo
et al. (2012) state as a next step the need to formally specify
what is meant by “untangling local” subspace. We believe that
Sparsey addresses this need. First, the CSA’s two functions of
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storing (learning) and (best-match) retrieval of stored mem-
ories, can be viewed as a SISC-respecting content-addressable
memory. Thus, individual macs handle the smooth category
structure around individual exemplars: i.e., a novel input that
is sufficiently similar to a known exemplar should activate
an SDC with high intersection with the known exemplar’s
code and therefore exert similar downstream influence to
that which would be produced by the familiar exemplar’s
code. The global highly nonlinear category structure is untan-
gled by the hierarchy of macs, and specifically, by the ability
(strongly subserved by progressive persistence) for multiple
arbitrarily different codes in one cortical patch (e.g., one
mac or set of macs) to be associated with a single code in
another patch.

4. That, during learning, the CSA formally involves two rounds
of competition amongst the mac’s cells. In the first round,
CSA Step 8, the Q cells with the maximal V-values in their
respective CMs are determined and must activate (i.e., spike)
so that their outputs can be summed and averaged to yield G.
In the second round, CSA Step 12, a final winner is chosen in
each CM according to the ρ distribution in that CM, i.e., soft
max. In general, the second round winners may differ (perhaps
substantially, especially when G ≈ 0) from the first round win-
ners. This hypothesis that the canonical cortical computation
involves two rounds of competition is a strong and falsifiable
prediction.

5. And, that the concept of feature basis present in Sparsey dif-
fers markedly from that present in localist models such as
Olshausen and Field (1997), summarized in in Table II-3.

A great deal of work remains, particularly in understanding and
mechanistically explaining the learning and usage (as in on-
line rapid recognition/inference) of a hierarchy of spatiotemporal
features. Even though Sparsey centers around a single canoni-
cal algorithm/circuit, the CSA [much of which was described
(Rinkus, 1996)], the ultimate algorithmic solution of cortex lives
in what DiCarlo et al. (2012) term a “very, very large space of
details,” which will take quite some time to explore, as suggested
by Study II (Sections Study 2: Single-trial Learning of Sets of
Longer Sequences), which itself only begins to scratch the sur-
face of the myriad parameter interactions that we would like to
understand.
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When we see a human sitting down, standing up, or walking, we can recognize one of
these poses independently of the individual, or we can recognize the individual person,
independently of the pose. The same issues arise for deforming objects. For example, if
we see a flag deformed by the wind, either blowing out or hanging languidly, we can
usually recognize the flag, independently of its deformation; or we can recognize the
deformation independently of the identity of the flag. We hypothesize that these types
of recognition can be implemented by the primate visual system using temporo-spatial
continuity as objects transform as a learning principle. In particular, we hypothesize that
pose or deformation can be learned under conditions in which large numbers of different
people are successively seen in the same pose, or objects in the same deformation. We
also hypothesize that person-specific representations that are independent of pose, and
object-specific representations that are independent of deformation and view, could be
built, when individual people or objects are observed successively transforming from one
pose or deformation and view to another. These hypotheses were tested in a simulation
of the ventral visual system, VisNet, that uses temporal continuity, implemented in a
synaptic learning rule with a short-term memory trace of previous neuronal activity, to
learn invariant representations. It was found that depending on the statistics of the visual
input, either pose-specific or deformation-specific representations could be built that were
invariant with respect to individual and view; or that identity-specific representations
could be built that were invariant with respect to pose or deformation and view. We
propose that this is how pose-specific and pose-invariant, and deformation-specific and
deformation-invariant, perceptual representations are built in the brain.

Keywords: VisNet, invariance, object recognition, deformation, pose, inferior temporal visual cortex, trace

learning rule

1. INTRODUCTION
When we see a human sitting down, standing up, or walking, we
can recognize one of these poses independently of the individ-
ual, or we can recognize the individual person, independently of
the pose. How might this be achieved in the visual system? Might
both types of encoding of visual stimuli be present simultane-
ously, in different cortical areas? What mechanisms in the visual
cortex might be involved?

The same issues arise for deforming objects. If we see a flag
deformed by the wind, either blowing out or hanging languidly,
we can usually recognize the flag, independently of its deforma-
tion. Similarly, we can describe the deformation of an object, for
example the flag blowing out or hanging loosely, independently
of the identity (e.g., nationality) of the flag.

In general, dealing with deformation in images is difficult for
object recognition systems. For example, one approach has used
part-based representations to recognize human poses (Yang et al.,
2010), but this is unlikely to work for many objects, such as a
deforming flag, and relies on accurate recognition of every part,

and processing of how the parts are related to each other (Rolls,
2008).

Here we formulate a hypothesis about how the primate
including human visual system may be able to implement pose
recognition independently with respect to identity; and identity
independently of pose, and then test the hypotheses by simula-
tions of a model of the ventral visual cortical pathways, VisNet
(Wallis and Rolls, 1997; Rolls and Milward, 2000; Rolls, 2008,
2012).

The hypothesis is that these types of recognition can be imple-
mented by the primate visual system using the temporo-spatial
continuity that we hypothesize enables transform invariant repre-
sentations of objects to be learned. In particular, one hypothesis
is that pose identification could be learned under conditions in
which large numbers of different people are seen in the same
pose, for example sitting down. As different individuals in a sit-
ting crowd are successively fixated and used as input to the ventral
visual system, the temporal continuity will be for the pose and not
for the individual person, allowing pose-specific representations
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to be built that are independent (invariant with respect to) person
identity. On another occasion, most of the people successively
viewed might be standing up, for example waiting in a bus queue.
On another occasion, all the individuals successively fixated might
be walking to work. The second hypothesis is that person-specific
representations that are independent of pose could be built, in
another part of the ventral cortical visual system, when we watch
one individual change posture, for example sitting down, then
standing up, and then walking. The representation of the iden-
tity of another person that is invariant with respect to pose and
view could be built using the temporal continuity inherent is see-
ing another particular person transform through a set of poses
and views, etc.

These hypotheses were tested in a simulation of the ven-
tral visual system, VisNet, that uses temporal continuity, imple-
mented in a synaptic learning rule with a short-term memory
trace of previous neuronal activity, to learn invariant represen-
tations (Rolls, 2012).

2. METHODS
2.1. EXPERIMENTAL DESIGN
The stimuli for the human pose experiment consisted of three
individuals (man, woman, and soldier), shown in each of three
different poses (standing, sitting, and walking). Each image was
shown in 12 different rotational views each 30◦ apart. To train for
pose identification, during training all 36 images had the same
pose in succession but with the 36 images otherwise presented
in random permuted sequence. One training epoch consisted of
showing successively all people and views of one pose, then all
people and views of another pose, and then all identities and
views of the third pose. This enabled us to test whether VisNet
under these circumstances would allocate some neurons to one
pose independently of individual and view, other neurons invari-
antly to the second pose, and other neurons invariantly to the
third pose.

To train for recognition of each individual, a training epoch
consisted of showing all poses and all views of one individual in
a random sequence, then all poses and all views of the second
individual in a random sequence, and then all poses and all views
of the third individual in a random sequence. This enabled us
to test whether VisNet under these circumstances would allocate
some neurons to one individual person independently of pose,
other neurons to the second individual independently of pose,
and other neurons to the third individual. It may be emphasized
that the images shown in each of these experiments were identical,
and only the order in which they were presented differed.

After training, the trained networks were then tested to deter-
mine whether the poses could be identified independently of the
person and view transforms; or whether the individual people
could be identified independently of the pose and view transforms.

For the flag deformation experiment, there were flags of four
individual countries (Holland, Spain, UK, and USA) each shown
with five different deformations produced by equally spaced wind
values, with each condition shown in two views, from one side,
and from the other side. To train to identify the country of the
flag, all the deformations and views of the flag of one country were
shown in random sequence, then all the transforms of the flag of

the second country, etc. To train to identify the deformation (how
much the flag drooped because of different wind strengths), one
deformation was trained with all images of that deformation, then
all images of the second deformation, etc.

After training, the trained networks were then tested to deter-
mine whether the particular deformations of the flags produced
by each wind speed could be identified independently of the
country and view transforms of the flags; or whether the individ-
ual countries of each flag image could be identified independently
of the deformation produced by the different wind speeds and
views.

2.2. STIMULUS CREATION
The images of humans used for training were rendered using
Blender software (www.blender.org) to ensure uniform light-
ing conditions. The models used for rendering were generated
from the MakeHuman software (www.makehuman.org). Each
model was posed in three variations (standing, sitting, and walk-
ing) inside Blender. The camera position in Blender was rotated
around each model in 30◦ increments to produce 12 views of each
model in each pose, as illustrated in Figure 1. After rendering,
each image was converted and scaled to an 8-bit (range: 0–255)
grayscale representation, and the pixel intensities were controlled
so that the mean value of each model in the front facing standing
position was 127. Rendered images were placed on uniform 127
grayscale backgrounds.

The images of flags for different countries (Holland, Spain,
UK, and USA) were also created in Blender using its cloth simula-
tion. A force field was placed laterally from the position of the flag
to give it a fluttering motion from wind. The wind force was set
to five different equally spaced values in the range 0–200 Blender
units, chosen so to give a wind effect varying from no wind

FIGURE 1 | Different views of human stimuli used to train the VisNet

model. Each row shows each stimuli in one of three different poses (sitting,
standing, and walking) varying across view rotation. The 12 rotations are
shown, starting with 0◦ on the left and proceeding in 30◦ increments.
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to strong wind. Images were rendered with the camera looking
straight on to the flag and on the opposite side, as illustrated in
Figure 2. Rendered images were placed on uniform 127 grayscale
backgrounds.

2.3. TRAINING
Training images were presented at the center of the VisNet retina
in one of two modes, object or deformation recognition mode.
These modes were made distinct so that we could measure either
how well the VisNet architecture performs in recognizing stimu-
lus identity (i.e., which person it was) invariantly with respect to
deformation and view; and deformation (i.e., which pose it was)
invariantly with respect to stimulus identity and view.

In object recognition mode each of the images was grouped
depending on the model (man, woman, and soldier for the
human objects; or country for the flag objects). Each of the image
groups then had each model shown in the 3 different deforma-
tions, with 12 rotational views of each deformation. During each
epoch of training, using the trace synaptic learning rule, a ran-
domly ordered permutation of the set of all images corresponding
to different deformations and views was presented to VisNet.
After each group of deformations and views was presented for a
single model, the trace values reflecting for each neuron its recent
firing rate was reset to 0 before moving on to the next model.
(Trace reset speeds learning in VisNet, but is not essential for its
operation Rolls and Milward, 2000; Rolls, 2012).

In deformation learning mode the images were grouped based
on the different deformations (sitting, standing, and walking
poses as the groups for the human objects; or wind speed defor-
mation for the flag objects). For the pose learning of people, each
training group consisted of the images of the 3 people in 12 dif-
ferent rotations in the same deformation. Trace learning operated
in a similar fashion as above with the trace being reset after each
set of a particular pose or deformation.

Simulations were run using 50 training epochs, which was
sufficient to enable convergence of the synaptic weights.

FIGURE 2 | The flag stimuli used to train VisNet. Each flag is shown with
different wind forces and rotations. Starting on the left the first pair, both
the 0◦ and 180◦ views are shown for windspeed 0, and each successive
pair is shown for wind force increased by 50 blender units.

2.4. OVERVIEW OF THE VisNet ARCHITECTURE
Fundamental elements of Rolls’ 1992 theory for how corti-
cal networks might implement invariant object recognition are
described in detail elsewhere (Rolls, 2008, 2012). They provide the
basis for the design of VisNet, which is described in the Appendix,
and can be summarized as:

• A series of competitive networks, organized in hierarchical lay-
ers, exhibiting mutual inhibition over a short range within each
layer. These networks allow combinations of features or inputs
occurring in a given spatial arrangement to be learned by neu-
rons using competitive learning (Rolls, 2008), ensuring that
higher order spatial properties of the input stimuli are repre-
sented in the network. In VisNet, layer 1 corresponds to V2,
layer 2 to V4, layer 3 to posterior inferior temporal visual cor-
tex, and layer 4 to anterior inferior temporal cortex. Layer one
is preceded by a simulation of the Gabor-like receptive fields
of V1 neurons produced by each image presented to VisNet
(Rolls, 2012).

• A convergent series of connections from a localized popula-
tion of neurons in the preceding layer to each neuron of the
following layer, thus allowing the receptive field size of neu-
rons to increase through the visual processing areas or layers,
as illustrated in Figure 3.

• A modified associative (Hebb-like) learning rule incorporating
a temporal trace of each neuron’s previous activity, which, it is
suggested (Földiák, 1991; Rolls, 1992, 2012; Wallis et al., 1993;
Wallis and Rolls, 1997; Rolls and Milward, 2000), will enable
the neurons to learn transform invariances.

2.5. INFORMATION MEASURES OF PERFORMANCE
The performance of VisNet was measured by Shannon
information-theoretic measures that are essentially identical
to those used to quantify the specificity and selectiveness of the
representations provided by neurons in the brain (Rolls and
Milward, 2000; Rolls and Treves, 2011; Rolls, 2012). A single
cell information measure indicated how much information
was conveyed by a single neuron about the most effective
stimulus. A multiple cell information measure indicated how
much information about every stimulus was conveyed by small
populations of neurons, and was used to ensure that all stimuli
had some neurons conveying information about them. In the
pose or deformation recognition experiments, each stimulus
was defined as a particular pose or deformation with all of its
identity and view transforms. In the person or object recognition
experiments, each stimulus was defined as a particular person
or flag with all of its pose or deformation and view transforms.
Details are provided in the Appendix.

3. RESULTS
3.1. HUMANS
3.1.1. Recognition of individuals independently of pose
Figure 4 shows the information measured from a network trained
in object recognition mode (in this case, recognition of the indi-
vidual person) using three human individuals in three different
poses (deformations). There were 12 views of each individual in
each of the three poses or deformations. Figure 4A shows how a
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FIGURE 3 | Convergence in the visual system. Right—as it occurs in
the brain. V1, visual cortex area V1; TEO, posterior inferior temporal
cortex; TE, inferior temporal cortex (IT). Left—as implemented in

VisNet. Convergence through the network is designed to provide
fourth layer neurons with information from across the entire input
retina.

FIGURE 4 | Information analysis of the network trained to recognize

human stimuli. (A) Firing rate response of the best single cell responding to
an individual, the soldier, independently of poses and views. The transforms
vary fastest over views. Thus transforms 1–12 are all views of pose 1,
followed by all views of pose 2, etc. (B) Firing rate response of another single

cell responding to an individual, the woman, across most poses and views,
and not responding to most poses and views of the two other individuals. (C)

A sorted ranking of the information for the set of 25 single cells with the
highest information for each stimulus. (D) The multiple cell information of the
network using the set of five best cells for each stimuli.

typical well trained neuron, as measured by the single cell infor-
mation analysis, responded to one individual in all the different
poses (deformations) at different views. The neuron responded
to all views of all poses of the Soldier, and to no images of the

other two individuals. The single cell information was 1.59 bits,
which indicates perfect selectivity with responses to all transforms
of one individual, and no responses to any other individual. (1.59
bits is log2 of the number of stimuli, in this case the three different
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people). Figure 4B shows another neuron that responded to most
views of the Woman, but to some views of the Man. The sin-
gle cell information for this neuron was 1.5 bits. The single cell
information for the 75 most selective cells was high, as shown in
Figure 4C. The multiple cell information was measured at 1.55
bits (as shown in Figure 4D), and corresponded to 96% correct.
VisNet had thus learned to recognize the individual people inde-
pendently of their pose and view transforms when trained for
identity. The trace rule was important in achieving this result, for
when training was with a purely associative (Hebbian) learning
rule (Rolls, 2012), the multiple cell information was measured at
0.42 bits and corresponded to 52% correct.

3.1.2. Recognition of pose independently of individual
Figure 5 shows the performance of VisNet when trained in defor-
mation recognition mode to identify the pose independently of
the individual person (object) and its view. Figure 5A shows how
a typical well-trained neuron, as measured by the single cell infor-
mation analysis, which responded to almost all views and all
individuals in one pose (sitting). The single cell information was
1.59 bits. Figure 5B shows how another neuron responded to the
majority of views and individuals in another pose (standing). The
single cell information was 1.5 bits. The single cell information for

the 75 most selective cells was high, as shown in Figure 5C. The
multiple cell information was measured at 1.55 bits (as shown in
Figure 5D), and corresponded to 96% correct. VisNet had thus
learned to recognize the pose independently of the identity of
the person or the view when trained for pose. The trace rule was
important in achieving this result, for when training was with a
purely associative (Hebbian) learning rule (Rolls, 2012), the mul-
tiple cell information was measured at 0.41 bits and corresponded
to 56% correct.

3.2. FLAG OBJECTS
3.2.1. Recognition of flag country independently of deformation

(windspeed)
Figure 6 shows the information measured from a network trained
in object recognition mode to recognize four different flags inde-
pendently of five deformations and two views. Figure 6A shows
how a typical well-trained neuron, as measured by the single cell
information analysis, responded to one flag (USA) in all the dif-
ferent deformations in the different views, and to none of the
other flags. The single cell information was 2.0 bits (i.e., log2 of
the number of flag countries). The single cell information for the
100 most selective cells was 2.0 bits (perfect discrimination), as
shown in Figure 6B. The multiple cell information was measured

FIGURE 5 | Information analysis of the network trained to recognize

human poses invariantly with respect to individual and view. (A)

Firing rate response of a single cell with responses to the pose of
sitting almost invariantly with respect to the 3 individuals and 12 views.
Transforms vary fastest over views. (B) Firing rate response of a single

cell with responses to the pose of standing almost invariantly with
respect to the 3 individuals and 12 views. (C) A sorted ranking of the
information for the set of 25 single cells with the highest information
for each pose. (D) The multiple cell information of the network using
the set of five best cells for each pose.
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FIGURE 6 | Information analysis of the network trained to recognize flag

countries invariantly with respect to deformation produced by different

windspeeds and views. (A) Firing rate response of a single cell with
responses to the USA flag invariantly with respect to the five windspeed

deformations and two views. Transforms vary fastest over views. (B) A
sorted ranking of the information for the set of 25 single cells with the
highest information for the flag of each country. (C) The multiple cell
information of the network using the set of five best cells for each pose.

at 2.0 bits (as shown in Figure 6C), and corresponded to 100%
correct. VisNet had thus learned to recognize the individual flags
for each country independently of their deformation and view
transforms when trained for identity.

3.2.2. Recognition of windspeed (deformation) independently of
flag country

Figure 7 shows the analysis for a network trained in deformation
recognition mode to recognize five deformations each produced
by a different windspeed, but independently of flag country and
view. Figure 7A shows how a typical well trained neuron, as mea-
sured by the single cell information analysis, responded to one
deformation (windspeed parameter 150) in the flags of all four
countries and two views, and almost not at all to any other defor-
mation across all countries and views. The single cell information
was 2.32 bits (i.e., log2 of the number of deformation types). The
single cell information for many of the 125 most selective cells
was 2.32 bits (perfect discrimination), as shown in Figure 7B. The
multiple cell information was measured at 2.32 bits (as shown in
Figure 7C), and corresponded to 100% correct. VisNet had thus
learned to recognize the deformation independently of the iden-
tity of the flag or the view when trained for deformation. In this
case, VisNet had learned to recognize effectively the wind speed by

the deformation it produced, independently of the country and
view of each flag.

3.3. FLAG CAPACITY
The deformation invariant recognition of flags described above
was obtained with a set of four flags (each with five deforma-
tions each with two views, as illustrated in Figure 2). On that
task, performance was 100% correct. We tested how well VisNet
would perform when the number of different flags in the set on
which VisNet was trained and tested was increased. To perform
this investigation, 24 more flags were constructed (of the NATO
countries, and the NATO flag), each with the same set of defor-
mations and views illustrated in Figure 2. Four of this further set
of flags are illustrated in Figure 8. For training and testing with a
given number of flags, random subsets of the flags and 60 training
epochs were used. As shown in Figure 9, it was found that per-
formance remained close to 100% correct for up to eight flags.
The performance with higher numbers of flags was as follows:
10 flags = 92%; 15 flags = 86%; 20 flags = 79%.

3.4. POSE GENERALIZATION TO NEW HUMAN STIMULI
We tested the ability of VisNet to identify human poses invari-
antly with respect to person and with respect to view using stimuli
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FIGURE 7 | Information analysis of the network trained to

recognize flag deformation invariantly with respect to flag

country (four) and views (two). (A) Firing rate response of a
single cell with responses to the windspeed with deformation
parameter 150 invariantly with respect to the four country flags and

two views. Transforms vary fastest over views. (B) A sorted ranking
of the information for the set of 25 single cells with the highest
information for each of the five deformations (windspeeds). (C) The
multiple cell information of the network using the set of five best
cells for each deformation (windspeed).

it had not been trained with. This was thus a cross-validation
assessment of pose identification. To perform the cross-validation
training and testing, three more human characters were created
using the same methods as described in section 2.2, so that we
could perform cross-validation training and testing on the net-
work using six different individuals. The network was set up in
deformation recognition mode as described above, that is, one of
the poses formed a group the images of which were presented in
a permuted sequence so that the trace rule could learn about a
single pose. The group of images contained all 5 training individ-
uals in all 12 views, and these images were permuted. After one
pose group had been trained within an epoch, each of the other
two pose groups was trained, to complete an epoch. The three
poses were, as before, sitting, standing, and walking. Trace learn-
ing operated in a similar fashion as above with the trace being
reset after every group. The network was then tested with all of
the views and poses of the remaining individual person, and the
output of layer 4 of the network was classified using a pattern
associator that had been trained with the five training poses, see
section A.1.5 . The 15 single cells comprised of the 5 cells with the
highest single cell information for each of the three poses were
used as the input for training the pattern associator, which was
then tested using the firing of the same 15 cells to the poses and

views of the sixth, untrained, individual, to test how well the pose
of that untrained individual was identified. The cross-validation
training was perform in this leave-one-out protocol, training with
five objects and testing with one.

In this cross-validation investigation, VisNet was able to cor-
rectly classify a pose with 76% accuracy, where chance was 33%
accuracy. These results were found to be highly significantly dif-
ferent from chance with p < 10−37 using a standard binomial test.
The correct classification rate for the pose of different individuals
was between 30% and 92%, with a standard deviation of 26%.

In a control comparison, the performance on the same task
using an untrained network was 19% correct. Thus the good per-
formance indicating pose recognition invariant with respect to
the individual and view described above was only obtained when
VisNet was trained to perform the pose-recognition task.

4. DISCUSSION
The new hypothesis about how pose is learned is that spatio-
temporal continuity in the synaptic training rule in a network
architecture designed to incorporate many of the properties of
the hierarchy of ventral visual cortical areas can allow neurons
specific to a pose and invariant with respect to individual and
view to be learned, when there is continuity during training in
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FIGURE 8 | Four more of the set of 24 more flag stimuli used to train

VisNet to test how many flags could be recognized independently of

deformation (see text). Each flag is shown with different wind forces and
rotations. Starting on the left the first pair, both the 0◦ and 180◦ views are
shown for windspeed 0, and each successive pair is shown for wind force
increased by 50 blender units.

FIGURE 9 | Performance of the network when trained and tested in

deformation invariant object recognition for different numbers of

objects, in this case flags each in five deformations and two views. The
set of neurons used were the five cells with the highest single cell
information for each country. The mean and standard deviation of the
percent correct are shown, taken from 20 trials, with each trial using a
different random subset of the 28 NATO flags. In all trials, the network was
trained with 60 epochs in each layer.

pose. This hypothesis was confirmed by the simulation results.
A similar hypothesis about how deformation-specific recognition
of objects invariantly with respect to the identity and view of
the object could be learned using temporal continuity was also
confirmed by the simulation results.

The new hypothesis about how person identity can be learned
is that spatio-temporal continuity in the synaptic training rule in
the same network architecture can allow neurons specific to an
individual person and invariant with respect to pose and view
to be learned, when there is continuity during training in the

individual person being seen. This hypothesis was confirmed by
the simulation results. A similar hypothesis about how individ-
ual recognition of specific objects invariantly with respect to the
deformation and view of the object can be learned using temporal
continuity was also confirmed by the simulation results.

In addition, it was found that the capacity of the system
allowed for more objects to be recognized independently of defor-
mation. In addition, we found that the functional architecture
of VisNet allowed pose recognition to occur for untrained indi-
vidual people in a cross-validation experiment, showing domain
generality of pose recognition across people.

This research provides a mechanism for leaning both pose-
specific and pose invariant representations in the visual cortical
areas. Some evidence for pose-specific representations are the face
expression selective neurons in the cortex in the anterior part
of the superior temporal sulcus, which can respond to a par-
ticular face expression, independently of the individual person
(Hasselmo et al., 1989a). Some evidence for individual-specific
representations are the individual-selective neurons in the cor-
tex in the gyrus of the inferior temporal visual cortex, which
can respond to a particular individual, independently of the face
expression (Hasselmo et al., 1989a). Further evidence for pose-
specific neurons is that some neurons in the temporal visual
cortical areas respond to face view (e.g., the right profile) rela-
tively independently of the individual person (Perrett et al., 1985;
Hasselmo et al., 1989b); and that other neurons respond for
example to people walking (Barraclough et al., 2006).

The learning described here is made possible by use of a
learning rule with a trace of previous neuronal activity, allowing
neurons to learn from the temporal statistics of objects in the nat-
ural world as they transform continuously in time. We developed
this hypothesis (Földiák, 1991; Rolls, 1992, 1995, 2012; Wallis
et al., 1993) into a model of the ventral visual system that can
account for translation, size, view, lighting, and rotation invari-
ance (Wallis and Rolls, 1997; Rolls and Milward, 2000; Stringer
and Rolls, 2000, 2002, 2008; Rolls and Stringer, 2001, 2006, 2007;
Elliffe et al., 2002; Perry et al., 2006, 2010; Stringer et al., 2006,
2007; Rolls, 2008, 2012). Consistent with the hypothesis, we have
demonstrated these types of invariance (and spatial frequency
invariance) in the responses of neurons in the macaque inferior
temporal visual cortex (Rolls et al., 1985, 1987, 2003; Rolls and
Baylis, 1986; Hasselmo et al., 1989b; Tovee et al., 1994; Booth and
Rolls, 1998). Moreover, we have tested the hypothesis by plac-
ing small 3D objects in the macaque’s home environment, and
showing that in the absence of any specific rewards being deliv-
ered, this type of visual experience in which objects can be seen
from different views as they transform continuously in time to
reveal different views leads to single neurons in the inferior tem-
poral visual cortex that respond to individual objects from any
one of several different views, demonstrating the development
of view-invariance learning (Booth and Rolls, 1998). (In control
experiments, view invariant representations were not found for
objects that had not been viewed in this way). The learning shown
by neurons in the inferior temporal visual cortex can take just a
small number of trials (Rolls et al., 1989). The finding that tempo-
ral contiguity in the absence of reward is sufficient to lead to view
invariant object representations in the inferior temporal visual
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cortex has been confirmed (Li and DiCarlo, 2008, 2010, 2012).
The importance of temporal continuity in learning invariant rep-
resentations has also been demonstrated in human psychophysics
experiments (Perry et al., 2006; Wallis, 2013). Some other sim-
ulation models are also adopting the use of temporal continuity
as a guiding principle for developing invariant representations by
learning (Wiskott and Sejnowski, 2002; Wiskott, 2003; Wyss et al.,
2006; Franzius et al., 2007), and the temporal trace learning prin-
ciple has also been applied recently (Isik et al., 2012) to HMAX
(Riesenhuber and Poggio, 2000; Serre et al., 2007), which never-
theless does not produce representations similar to those found in
the inferior temporal visual cortex (Rolls, 2012).

The findings described in this paper demonstrate a mechanism
by which neurons that respond to pose independently of individ-
ual person identity could be formed, and also how neurons that
respond to identity independently of pose could be formed. The
natural world conditions that could provide the appropriate con-
ditions for these two types of representation to be formed include
the following. To learn pose independently of identity the nat-
ural world might consist of large numbers of individuals all in
the same pose, for example all standing up (perhaps in a queue),
or all sitting down (for example in a theatre or stadium). As the
eyes moved over scenes of this type, the natural environment
would provide the conditions of temporal continuity for pose
to be learned independently of identity. To learn identity inde-
pendently of pose, appropriate environmental conditions might
include looking at a single person while that person alters pose,
from perhaps lying down, then sitting, and then standing up. This
leads to the interesting prediction that neurons that encode pose
independently of identity might be more likely to be close to parts
of the temporal lobe visual cortex where the representations are of
large-scale, such as scenes; whereas neurons sensitive to identity
independently of pose might be more likely to be found close to
cortical areas where single objects are represented, such as faces.
In any case, self-organizing topological maps would be likely to
be formed so that these two types of representation would be
somewhat separated into different cortical regions or neuronal
clusters (Rolls, 2008). Further segregation might occur because
some poses such as walking are associated with movement, and
thus representations of such poses might be close to the temporal
lobe visual cotical areas with movement-related neurons (Baylis
et al., 1987; Hasselmo et al., 1989b; Barraclough et al., 2006).
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APPENDIX
A.1 THE ARCHITECTURE OF VisNet
Fundamental elements of Rolls’ 1992 theory for how corti-
cal networks might implement invariant object recognition are
described in detail elsewhere (Rolls, 2008, 2012). They provide
the basis for the design of VisNet, and can be summarized as:

• A series of competitive networks, organized in hierarchical lay-
ers, exhibiting mutual inhibition over a short range within each
layer. These networks allow combinations of features or inputs
occurring in a given spatial arrangement to be learned by neu-
rons, ensuring that higher order spatial properties of the input
stimuli are represented in the network.

• A convergent series of connections from a localized population
of cells in preceding layers to each cell of the following layer,
thus allowing the receptive field size of cells to increase through
the visual processing areas or layers.

• A modified Hebb-like learning rule incorporating a tempo-
ral trace of each cell’s previous activity, which, it is suggested
(Földiák, 1991; Rolls, 1992, 2012; Wallis et al., 1993; Wallis
and Rolls, 1997), will enable the neurons to learn transform
invariances.

A.1.1 The trace rule
The learning rule implemented in the VisNet simulations uti-
lizes the spatio-temporal constraints placed upon the behavior
of “real-world” objects to learn about natural object transforma-
tions. By presenting consistent sequences of transforming objects
the cells in the network can learn to respond to the same object
through all of its naturally transformed states, as described by
Földiák (1991), Rolls (1992), Wallis et al. (1993), Wallis and
Rolls (1997), and Rolls (2012). The learning rule incorporates a
decaying trace of previous cell activity and is henceforth referred
to simply as the “trace” learning rule. The learning paradigm
we describe here is intended in principle to enable learning of
any of the transforms tolerated by inferior temporal cortex neu-
rons, including position, size, view, lighting, and spatial frequency
(Rolls, 1992, 2000, 2008, 2012; Rolls and Deco, 2002).

Various biological bases for this temporal trace have been
advanced as follows: (The precise mechanisms involved may alter
the precise form of the trace rule which should be used. Földiák,
1992 describes an alternative trace rule which models individual
NMDA channels. Equally, a trace implemented by extended cell
firing should be reflected in representing the trace as an external
firing rate, rather than an internal signal).

• The persistent firing of neurons for as long as 100–400 ms
observed after presentations of stimuli for 16 ms (Rolls and
Tovee, 1994) could provide a time window within which to
associate subsequent images. Maintained activity may poten-
tially be implemented by recurrent connections between as well
as within cortical areas (Rolls and Treves, 1998; Rolls and Deco,
2002; Rolls, 2008). [The prolonged firing of inferior temporal
cortex neurons during memory delay periods of several sec-
onds, and associative links reported to develop between stimuli
presented several seconds apart (Miyashita, 1988) are on too
long a time scale to be immediately relevant to the present

theory. In fact, associations between visual events occurring
several seconds apart would, under normal environmental con-
ditions, be detrimental to the operation of a network of the
type described here, because they would probably arise from
different objects. In contrast, the system described benefits
from associations between visual events that occur close in time
(typically within 1 s), as they are likely to be from the same
object].

• The binding period of glutamate in the NMDA channels, which
may last for 100 ms or more, may implement a trace rule by
producing a narrow time window over which the average activ-
ity at each presynaptic site affects learning (Hestrin et al., 1990;
Földiák, 1992; Rhodes, 1992; Rolls, 1992; Spruston et al., 1995).

• Chemicals such as nitric oxide may be released during high
neural activity and gradually decay in concentration over a
short time window during which learning could be enhanced
(Montague et al., 1991; Földiák, 1992; Garthwaite, 2008).

The trace update rule used in the baseline simulations of VisNet
(Wallis and Rolls, 1997) is equivalent to both Földiák’s used in the
context of translation invariance (Wallis et al., 1993) and to the
earlier rule of Sutton and Barto (1981) explored in the context of
modeling the temporal properties of classical conditioning, and
can be summarized as follows:

δwj = αyτ xj (1)

where

yτ = (1 − η) yτ + ηyτ − 1 (2)

and

xj: jth input to the neuron. y: Output from the neuron.
yτ : Trace value of the out-

put of the neuron at time
step τ .

α: Learning rate.

wj: Synaptic weight between
jth input and the neuron.

η: Trace value. The optimal
value varies with
presentation sequence
length.

At the start of a series of investigations of different forms of the
trace learning rule, Rolls and Milward (2000) demonstrated that
VisNet’s performance could be greatly enhanced with a modified
Hebbian trace learning rule (Equation 3) that incorporated a trace
of activity from the preceding time steps, with no contribution
from the activity being produced by the stimulus at the current
time step. This rule took the form

δwj = αyτ − 1xτj . (3)

The trace shown in Equation (3) is in the postsynaptic term. The
crucial difference from the earlier rule (see Equation 1) was that
the trace should be calculated up to only the preceding timestep,
with no contribution to the trace from the firing on the cur-
rent trial to the current stimulus. This has the effect of updating
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the weights based on the preceding activity of the neuron, which
is likely given the spatio-temporal statistics of the visual world
to be from previous transforms of the same object (Rolls and
Milward, 2000; Rolls and Stringer, 2001). This is biologically not
at all implausible, as considered in more detail elsewhere (Rolls,
2008, 2012), and this version of the trace rule was used in this
investigation.

The optimal value of η in the trace rule is likely to be different
for different layers of VisNet. For early layers with small recep-
tive fields, few successive transforms are likely to contain similar
information within the receptive field, so the value for η might
be low to produce a short trace. In later layers of VisNet, suc-
cessive transforms may be in the receptive field for longer, and
invariance may be developing in earlier layers, so a longer trace
may be beneficial. In practice, after exploration we used η val-
ues of 0.6 for layer 2, and 0.8 for layers 3 and 4. In addition,
it is important to form feature combinations with high spatial
precision before invariance learning supported by a temporal
trace starts, in order that the feature combinations and not the
individual features have invariant representations (Rolls, 2008,
2012). For this reason, purely associative learning with no tem-
poral trace was used in layer 1 of VisNet (Rolls and Milward,
2000).

The following principled method was introduced to choose
the value of the learning rate α for each layer. The mean weight
change from all the neurons in that layer for each epoch of
training was measured, and was set so that with slow learning
over 15–50 trials, the weight changes per epoch would gradually
decrease and asymptote with that number of epochs, reflecting
convergence. Slow learning rates are useful in competitive nets,
for if the learning rates are too high, previous learning in the
synaptic weights will be overwritten by large weight changes later
within the same epoch produced if a neuron starts to respond to
another stimulus (Rolls, 2008). If the learning rates are too low,
then no useful learning or convergence will occur. It was found
that the following learning rates enabled good operation with the
100 transforms of each of 4 stimuli used in each epoch in the
present investigation: Layer 1 α = 0.05; Layer 2 α = 0.03 (this is
relatively high to allow for the sparse representations in layer 1);
Layer 3 α = 0.005; Layer 4 α = 0.005.

To bound the growth of each neuron’s synaptic weight vec-
tor, wi for the ith neuron, its length is explicitly normalized (a
method similarly employed by Malsburg (1973) which is com-
monly used in competitive networks Rolls, 2008). An alternative,
more biologically relevant implementation, using a local weight
bounding operation which utilizes a form of heterosynaptic long-
term depression (Rolls, 2008), has in part been explored using a
version of the Oja (1982) rule (see Wallis and Rolls, 1997).

A.1.2 The network implemented in VisNet
The network itself is designed as a series of hierarchical, con-
vergent, competitive networks, in accordance with the hypothe-
ses advanced above. The actual network consists of a series of
four layers, constructed such that the convergence of informa-
tion from the most disparate parts of the network’s input layer
can potentially influence firing in a single neuron in the final
layer—see Figure 3. This corresponds to the scheme described by

many researchers (Rolls, 1992, 2008; Van Essen et al., 1992, for
example) as present in the primate visual system—see Figure 3.
The forward connections to a cell in one layer are derived from a
topologically related and confined region of the preceding layer.
The choice of whether a connection between neurons in adja-
cent layers exists or not is based upon a Gaussian distribution
of connection probabilities which roll off radially from the focal
point of connections for each neuron. (A minor extra constraint
precludes the repeated connection of any pair of cells). In partic-
ular, the forward connections to a cell in one layer come from
a small region of the preceding layer defined by the radius in
Table A1 which will contain approximately 67% of the connec-
tions from the preceding layer. Table A1 shows the dimensions
for the research described here, a (16x) larger version than the ver-
sion of VisNet used in most of our previous investigations, which
utilized 32 × 32 neurons per layer. For the research on view and
translation invariance learning described here, we decreased the
number of connections to layer 1 neurons to 100 (from 272), in
order to increase the selectivity of the network between objects.
We increased the number of connections to each neuron in lay-
ers 2–4 to 400 (from 100), because this helped layer 4 neurons to
reflect evidence from neurons in previous layers about the large
number of transforms (typically 100 transforms, from 4 views of
each object and 25 locations) each of which corresponded to a
particular object.

Figure 3 shows the general convergent network architecture
used. Localization and limitation of connectivity in the network
is intended to mimic cortical connectivity, partially because of the
clear retention of retinal topology through regions of visual cor-
tex. This architecture also encourages the gradual combination of
features from layer to layer which has relevance to the binding
problem, as described elsewhere (Rolls, 2008, 2012).

A.1.3 Competition and lateral inhibition
In order to act as a competitive network some form of mutual
inhibition is required within each layer, which should help to
ensure that all stimuli presented are evenly represented by the
neurons in each layer. This is implemented in VisNet by a form
of lateral inhibition. The idea behind the lateral inhibition, apart
from this being a property of cortical architecture in the brain,
was to prevent too many neurons that received inputs from a
similar part of the preceding layer responding to the same activ-
ity patterns. The purpose of the lateral inhibition was to ensure
that different receiving neurons coded for different inputs. This is
important in reducing redundancy (Rolls, 2008). The lateral inhi-
bition is conceived as operating within a radius that was similar
to that of the region within which a neuron received converging

Table A1 | VisNet dimensions.

Dimensions # Connections Radius

Layer 4 128 × 128 400 48

Layer 3 128 × 128 400 36

Layer 2 128 × 128 400 24

Layer 1 128 × 128 100 24

Input layer 256 × 256 × 16 – –
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inputs from the preceding layer (because activity in one zone
of topologically organized processing within a layer should not
inhibit processing in another zone in the same layer, concerned
perhaps with another part of the image). The lateral inhibition
used in this investigation used the parameters for σ shown in
Table A3.

The lateral inhibition and contrast enhancement just described
are actually implemented in VisNet2 (Rolls and Milward, 2000)
and VisNetL (Perry et al., 2010) in two stages, to produce filtering
of the type illustrated elsewhere (Rolls, 2008, 2012). The lateral
inhibition was implemented by convolving the activation of the
neurons in a layer with a spatial filter, I, where δ controls the con-
trast and σ controls the width, and a and b index the distance
away from the center of the filter

Ia,b =

⎧⎪⎨
⎪⎩

−δe
− a2+b2

σ2 if a �= 0 or b �= 0,

1 − ∑
a �= 0,b �= 0

Ia,b if a = 0 and b = 0.
(4)

This is a filter that leaves the average activity unchanged.
The second stage involves contrast enhancement. A sigmoid

activation function was used in the way described previously
(Rolls and Milward, 2000):

y = f sigmoid(r) = 1

1 + e−2β(r−α) (5)

where r is the activation (or firing rate) of the neuron after the
lateral inhibition, y is the firing rate after the contrast enhance-
ment produced by the activation function, and β is the slope
or gain and α is the threshold or bias of the activation func-
tion. The sigmoid bounds the firing rate between 0 and 1 so
global normalization is not required. The slope and threshold are
held constant within each layer. The slope is constant throughout
training, whereas the threshold is used to control the sparseness
of firing rates within each layer. The (population) sparseness of
the firing within a layer is defined (Rolls and Treves, 1998; Franco
et al., 2007; Rolls, 2008; Rolls and Treves, 2011) as:

a =
(∑

i yi/n
)2∑

i y2
i /n

(6)

where n is the number of neurons in the layer. To set the sparse-
ness to a given value, e.g., 5%, the threshold is set to the value of
the 95th percentile point of the activations within the layer.

The sigmoid activation function was used with parameters
(selected after a number of optimization runs) as shown in
Table A2.

Table A2 | Sigmoid parameters for the runs with 25 locations by Rolls

and Milward (2000).

Layer 1 2 3 4

Percentile 99.2 98 88 95

Slope β 190 40 75 26

In addition, the lateral inhibition parameters are as shown in
Table A3.

A.1.4 The input to VisNet
VisNet is provided with a set of input filters which can be applied
to an image to produce inputs to the network which correspond
to those provided by simple cells in visual cortical area 1 (V1).
The purpose of this is to enable within VisNet the more com-
plicated response properties of cells between V1 and the inferior
temporal cortex (IT) to be investigated, using as inputs natural
stimuli such as those that could be applied to the retina of the
real visual system. This is to facilitate comparisons between the
activity of neurons in VisNet and those in the real visual system,
to the same stimuli. In VisNet no attempt is made to train the
response properties of simple cells in V1, but instead we start
with a defined series of filters to perform fixed feature extrac-
tion to a level equivalent to that of simple cells in V1, as have
other researchers in the field (Fukushima, 1980; Buhmann et al.,
1991; Hummel and Biederman, 1992), because we wish to simu-
late the more complicated response properties of cells between V1
and the inferior temporal cortex (IT). The elongated orientation-
tuned input filters used accord with the general tuning profiles
of simple cells in V1 (Hawken and Parker, 1987) were computed
by Gabor filters. Each individual filter is tuned to spatial fre-
quency (0.0626–0.5 cycles/pixel over four octaves); orientation
(0◦–135◦ in steps of 45◦); and sign (±1). Of the 100 layer 1 con-
nections, the number to each group in VisNetL is as shown in
Table A4. Any zero D.C. filter can of course produce a negative
as well as positive output, which would mean that this simula-
tion of a simple cell would permit negative as well as positive
firing. The response of each filter is zero thresholded and the
negative results used to form a separate anti-phase input to the
network. The filter outputs are also normalized across scales to
compensate for the low frequency bias in the images of natural
objects.

The Gabor filters used were similar to those used previously
(Deco and Rolls, 2004). Following Daugman (1988) the receptive
fields of the simple cell-like input neurons are modeled by 2D-
Gabor functions. The Gabor receptive fields have five degrees of
freedom given essentially by the product of an elliptical Gaussian
and a complex plane wave. The first two degrees of freedom are
the 2D-locations of the receptive field’s center; the third is the
size of the receptive field; the fourth is the orientation of the

Table A3 | Lateral inhibition parameters for the 25-location runs.

Layer 1 2 3 4

Radius, σ 1.38 2.7 4.0 6.0

Contrast, δ 1.5 1.5 1.6 1.4

Table A4 | VisNet layer 1 connectivity.

Frequency 0.5 0.25 0.125 0.0625

# Connections 74 19 5 2

The frequency is in cycles per pixel.
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boundaries separating excitatory and inhibitory regions; and the
fifth is the symmetry. This fifth degree of freedom is given in the
standard Gabor transform by the real and imaginary part, i.e.,
by the phase of the complex function representing it, whereas
in a biological context this can be done by combining pairs of
neurons with even and odd receptive fields. This design is sup-
ported by the experimental work of Pollen and Ronner (1981),
who found simple cells in quadrature-phase pairs. Even more,
Daugman (1988) proposed that an ensemble of simple cells is
best modeled as a family of 2D-Gabor wavelets sampling the
frequency domain in a log-polar manner as a function of eccen-
tricity. Experimental neurophysiological evidence constrains the
relation between the free parameters that define a 2D-Gabor
receptive field (De Valois and De Valois, 1988). There are three
constraints fixing the relation between the width, height, orienta-
tion, and spatial frequency (Lee, 1996). The first constraint posits
that the aspect ratio of the elliptical Gaussian envelope is 2:1.
The second constraint postulates that the plane wave tends to
have its propagating direction along the short axis of the elliptical
Gaussian. The third constraint assumes that the half-amplitude
bandwidth of the frequency response is about 1–1.5 octaves along
the optimal orientation. Further, we assume that the mean is zero
in order to have an admissible wavelet basis (Lee, 1996).

In more detail, the Gabor filters are constructed as follows
(Deco and Rolls, 2004). We consider a pixelized gray-scale image

given by a N × N matrix �
orig
ij . The subindices ij denote the spa-

tial position of the pixel. Each pixel value is given a gray level
brightness value coded in a scale between 0 (black) and 255
(white). The first step in the preprocessing consists of remov-
ing the DC component of the image (i.e., the mean value of
the gray-scale intensity of the pixels). (The equivalent in the
brain is the low-pass filtering performed by the retinal ganglion
cells and lateral geniculate cells. The visual representation in the
LGN is essentially a contrast invariant pixel representation of
the image, i.e., each neuron encodes the relative brightness value
at one location in visual space referred to the mean value of
the image brightness). We denote this contrast-invariant LGN
representation by the N × N matrix �ij defined by the equation

�ij = �
orig
ij − 1

N2

N∑
i = 1

N∑
j = 1

�
orig
ij . (7)

Feedforward connections to a layer of V1 neurons perform the
extraction of simple features like bars at different locations, ori-
entations and sizes. Realistic receptive fields for V1 neurons that
extract these simple features can be represented by 2D-Gabor
wavelets. Lee (1996) derived a family of discretized 2D-Gabor
wavelets that satisfy the wavelet theory and the neurophysiolog-
ical constraints for simple cells mentioned above. They are given
by an expression of the form

Gpqkl(x, y) = a−k	
l

(
a−k (x − 2p

)
, a−k (y − 2q

))
(8)

where

	
l = 	
(
x cos (l
0)+ y sin (l
0) ,−x sin (l
0)+ y cos (l
0)

)
,(9)

and the mother wavelet is given by

	
(
x, y

) = 1√
2π

e− 1
8 (4x2+y2)

[
eiκx − e− κ2

2

]
. (10)

In the above equations 
0 = π/L denotes the step size of each
angular rotation; l the index of rotation corresponding to the
preferred orientation 
l = lπ/L; k denotes the octave; and the
indices pq the position of the receptive field center at cx = p
and cy = q. In this form, the receptive fields at all levels cover
the spatial domain in the same way, i.e., by always overlapping
the receptive fields in the same fashion. In the model we use
a = 2, b = 1, and κ = π corresponding to a spatial frequency
bandwidth of one octave. We used symmetric filters with the
angular spacing between the different orientations set to 45◦;
and with four filter frequencies spaced one octave apart starting
with 0.5 cycles per pixel, and with the sampling from the spatial
frequencies set as shown in Table A4.

Cells of layer 1 receive a topologically consistent, localized, ran-
dom selection of the filter responses in the input layer, under the
constraint that each cell samples every filter spatial frequency and
receives a constant number of inputs.

A.1.5 Measures for network performance
Information theory measures. A neuron can be said to have
learned an invariant representation if it discriminates one set of
stimuli from another set, across all transforms. For example, a
neuron’s response is translation invariant if its response to one
set of stimuli irrespective of presentation is consistently higher
than for all other stimuli irrespective of presentation location.
Note that we state “set of stimuli” since neurons in the inferior
temporal cortex are not generally selective for a single stimu-
lus but rather a subpopulation of stimuli (Baylis et al., 1985;
Abbott et al., 1996; Rolls et al., 1997a; Rolls and Treves, 1998,
2011; Rolls and Deco, 2002; Franco et al., 2007; Rolls, 2007, 2008).
We used measures of network performance (Rolls and Milward,
2000) based on information theory and similar to those used
in the analysis of the firing of real neurons in the brain (Rolls,
2008; Rolls and Treves, 2011). A single cell information measure
was introduced which is the maximum amount of information
the cell has about any one object independently of which trans-
form (here position on the retina and view) is shown. Because
the competitive algorithm used in VisNet tends to produce local
representations (in which single cells become tuned to one stim-
ulus or object), this information measure can approach log2 NS

bits, where NS is the number of different stimuli. Indeed, it is an
advantage of this measure that it has a defined maximal value,
which enables how well the network is performing to be quan-
tified. Rolls and Milward (2000) also introduced a multiple cell
information measure used here, which has the advantage that it
provides a measure of whether all stimuli are encoded by differ-
ent neurons in the network. Again, a high value of this measure
indicates good performance.

For completeness, we provide further specification of the two
information theoretic measures, which are described in detail by
Rolls and Milward (2000) (see Rolls, 2008 and Rolls and Treves,
2011 for an introduction to the concepts). The measures assess
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the extent to which either a single cell, or a population of cells,
responds to the same stimulus invariantly with respect to its loca-
tion, yet responds differently to different stimuli. The measures
effectively show what one learns about which stimulus was pre-
sented from a single presentation of the stimulus at any randomly
chosen location. Results for top (4th) layer cells are shown. High
information measures thus show that cells fire similarly to the dif-
ferent transforms of a given stimulus (object), and differently to
the other stimuli. The single cell stimulus-specific information,
I(s,R), is the amount of information the set of responses, R, has
about a specific stimulus, s (see Rolls et al., 1997b and Rolls and
Milward, 2000). I(s,R) is given by

I(s,R) =
∑
r∈R

P(r|s) log2
P(r|s)
P(r)

(11)

where r is an individual response from the set of responses R
of the neuron. For each cell the performance measure used was
the maximum amount of information a cell conveyed about
any one stimulus. This (rather than the mutual information,
I(S,R) where S is the whole set of stimuli s), is appropriate
for a competitive network in which the cells tend to become
tuned to one stimulus. (I(s,R) has more recently been called the
stimulus-specific surprise (DeWeese and Meister, 1999; Rolls and
Treves, 2011). Its average across stimuli is the mutual information
I(S,R)).

If all the output cells of VisNet learned to respond to the
same stimulus, then the information about the set of stimuli
S would be very poor, and would not reach its maximal value
of log2 of the number of stimuli (in bits). The second mea-
sure that is used here is the information provided by a set of
cells about the stimulus set, using the procedures described by
Rolls et al. (1997a) and Rolls and Milward (2000). The multiple
cell information is the mutual information between the whole
set of stimuli S and of responses R calculated using a decod-
ing procedure in which the stimulus s′ that gave rise to the
particular firing rate response vector on each trial is estimated.
(The decoding step is needed because the high dimensionality of
the response space would lead to an inaccurate estimate of the
information if the responses were used directly, as described by
Rolls et al. (1997a) and Rolls and Treves (1998)). A probability
table is then constructed of the real stimuli s and the decoded
stimuli s′. From this probability table, the mutual information
between the set of actual stimuli S and the decoded estimates S′ is
calculated as

I(S, S′) =
∑
s,s′

P(s, s′) log2
P(s, s′)

P(s)P(s′)
(12)

This was calculated for the subset of cells which had as single
cells the most information about which stimulus was shown.
In particular, in Rolls and Milward (2000) and subsequent
papers, the multiple cell information was calculated from the
first five cells for each stimulus that had maximal single cell
information about that stimulus, that is from a population

of 35 cells if there were seven stimuli (each of which might
have been shown in for example 9 or 25 positions on the
retina).

Pattern association decoding. The output of the inferior tem-
poral visual cortex reaches structures such as the orbitofrontal
cortex and amygdala, where associations to other stimuli are
learned by a pattern association network with an associa-
tive (Hebbian) learning rule (Rolls, 2008, 2014). We there-
fore used a one-layer pattern association network (Rolls, 2008)
to measure how well the output of VisNet could be classi-
fied into one of the objects. The pattern association network
had four output neurons, one for each object. The inputs
were the ten neurons from layer 4 of VisNet for each of the
four objects with the best single cell information, making 40
inputs to each neuron. The network was trained with the Hebb
rule:

δwij = αyixj (13)

where δwij is the change of the synaptic weight wij that
results from the simultaneous (or conjunctive) pres-
ence of presynaptic firing xj and postsynaptic firing or
activation yi, and α is a learning rate constant that spec-
ifies how much the synapses alter on any one pairing.
The pattern associator was trained for one trial on the
output of VisNet produced by every transform of each
object.

Performance on the test images extracted from the scenes was
tested by presenting an image to VisNet, and then measuring
the classification produced by the pattern associator. Performance
was measured by the percentage of the correct classifications of an
image as the correct object.

This approach to measuring the performance is very biolog-
ically appropriate, for it models the type of learning thought to
be implemented in structures that receive information from the
inferior temporal visual cortex such as the orbitofrontal cortex
and amygdala (Rolls, 2008, 2014). The small number of neu-
rons selected from layer 4 of VisNet might correspond to the
most selective for this stimulus set in a sparse distributed rep-
resentation (Rolls, 2008; Rolls and Treves, 2011). The method
would measure whether neurons of the type recorded in the
inferior temporal visual with good view and position invari-
ance are developed in VisNet. In fact, an appropriate neuron
for an input to such a decoding mechanism might have high
firing rates to all or most of the view and position transforms
of one of the stimuli, and smaller or no responses to any of
the transforms of other objects, as found in the inferior tem-
poral cortex for some neurons (Hasselmo et al., 1989b; Perrett
et al., 1991; Booth and Rolls, 1998). Moreover, it would be inap-
propriate to train a device such as a support vector machine
of even an error correction perceptron on the outputs of all
the neurons in layer 4 of VisNet to produce four classifica-
tions, for such learning procedures, not biologically plausible
(Rolls, 2008), could map the responses produced by a multi-
layer network with untrained random weights to obtain good
classifications.
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Competition improves robustness
against loss of information
Arash Kermani Kolankeh, Michael Teichmann and Fred H. Hamker *

Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany

A substantial number of works have aimed at modeling the receptive field properties

of the primary visual cortex (V1). Their evaluation criterion is usually the similarity of

the model response properties to the recorded responses from biological organisms.

However, as several algorithms were able to demonstrate some degree of similarity to

biological data based on the existing criteria, we focus on the robustness against loss of

information in the form of occlusions as an additional constraint for better understanding

the algorithmic level of early vision in the brain. We try to investigate the influence of

competition mechanisms on the robustness. Therefore, we compared four methods

employing different competition mechanisms, namely, independent component analysis,

non-negative matrix factorization with sparseness constraint, predictive coding/biased

competition, and a Hebbian neural network with lateral inhibitory connections. Each of

those methods is known to be capable of developing receptive fields comparable to

those of V1 simple-cells. Since measuring the robustness of methods having simple-cell

like receptive fields against occlusion is difficult, we measure the robustness using the

classification accuracy on the MNIST hand written digit dataset. For this we trained all

methods on the training set of the MNIST hand written digits dataset and tested them on

a MNIST test set with different levels of occlusions. We observe that methods which

employ competitive mechanisms have higher robustness against loss of information.

Also the kind of the competition mechanisms plays an important role in robustness.

Global feedback inhibition as employed in predictive coding/biased competition has an

advantage compared to local lateral inhibition learned by an anti-Hebb rule.

Keywords: competition, lateral inhibition, Hebbian learning, independent component analysis, non-negativematrix

factorization, predictive coding/biased competition, occlusion, information loss

1. Introduction

Several different learning approaches have been developed to model early vision, particularly
at the level of V1 (Olshausen and Field, 1996; Bell and Sejnowski, 1997; Hoyer and Hyväri-
nen, 2000; Falconbridge et al., 2006; Rehn and Sommer, 2007; Wiltschut and Hamker, 2009;
Spratling, 2010; Zylberberg et al., 2011). In many of the works, the proposed characteris-
tics of the visual system have been considered as optimization objectives and thus as cri-
teria for measuring the efficiency of coding. Several kinds of optimization objectives, like
sparseness of activity (Olshausen and Field, 1996; Hoyer, 2004) or independence (Bell and
Sejnowski, 1997; van Hateren and van der Schaaf, 1998) have been used for this purpose.
One major criterion for evaluation of those models is their ability to develop oriented, band-
pass receptive fields and the similarity of the distribution of receptive fields to observed ones
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in the macaque (Ringach, 2002). Although the match to biolog-
ical data can be considered as one important criterion, further
criteria are required to evaluate different approaches.

The visual system has the remarkable capability of robust-
ness, or invariance, against different kinds of variances like, shift,
rotation, scaling, occlusion, etc. of objects. This invariance is
likely gradually achieved over different hierarchical levels, but
robustness can be explained also in the form of information
coding on the level of a single layer. This means, also units
like V1 simple-cells show robustness against typical deforma-
tions of their preferred stimuli. In this work we have focused
on the robustness under loss of information in the form of
occlusion. Since typical forms of perturbations locally effect-
ing V1-cells can be different lightning conditions—like reflec-
tions or flares; unclear media like soiled glasses, windows,
heated air; or covered objects like the view through a fence—
we define occlusion here as the random removal of visual
information.

To investigate the role of different interactions, in fact
competition, we compare four methods implementing differ-
ent competition and learning strategies: Fast independent com-
ponent analysis (FastICA) (Hyvärinen and Oja, 1997; Hoyer
and Hyvärinen, 2000), non-negative matrix factorization with
sparseness constraint (NMFSC) (Hoyer, 2004), predictive cod-
ing/biased competition (PC/BC) (Spratling, 2010), and a Heb-
bian neural network (further called HNN) with lateral inhibition
based on Teichmann et al. (2012). Each method is capable
of learning V1 simple-cell like receptive fields from natural
images. FastICA was chosen as a method which tries to find
new representations of data with minimal dependency between
components without employing any kind of competition in the
neural dynamics, but it enforces independent components via
the learning rule. NMFSC uses a top-down, subtractive inhibi-
tion of the inputs to compute the outputs. NMFSC also keeps
the output activity sparse on a desired, predefined level leading to
unspecific competitive dynamics. PC/BC (Spratling, 2010) tries
to find components minimizing the reconstruction error by a
global error minimization employing inhibitory feedback con-
nections. All of the above algorithms minimize a reconstruction
error. While ICA minimizes a substractive reconstruction error,
NMFSC (Hoyer, 2004) and PC/BC (Spratling, 2010) use divi-
sive updating rules for the weight matrix that are derived from
minimizing the Kullback-Leibler divergence (Lee and Seung,
1999). HNN uses Hebbian learning to learn the feedforward
weights and anti-Hebbian learning to learn lateral inhibitory
connections. The units compete via these lateral connections
and suppress competing neurons locally based on the learned
relations.

To evaluate the different algorithms trained all methods on
the train set of the MNIST hand written digit dataset and mea-
sured their recognition accuracy on the occluded MNIST test set.
The recognition accuracy was measured by feeding the activity
patterns to a linear classifier. Here, the interesting aspect of each
methodwas not its best accuracy in recognizing the classes, but its
robustness in recognizing objects when the input was distorted,
that is the change of the performance dependent on the level of
occlusion.

2. Materials and Methods

2.1. Dataset and Preprocessing
We use the MNIST handwritten digit dataset1 to evaluate all
methods. The dataset consists of 60,000 training images and
10,000 test images. All are centered, size normalized (28 × 28
pixel), and have black (i.e., zero) background. We downscale the
images to 12 × 12 using the MATLAB (2013a) function imre-
size() by the factor of 0.40 with default parameters (i.e., bicu-
bic interpolation). This matches the original configuration of the
HNN input for learning V1 like receptive fields (Wiltschut and
Hamker, 2009). In order to simulate the function of the early
visual system up to the Lateral Geniculate Nucleus (LGN), which
transfers signals from the eyes to V1, we whitened the images
using the same method as in Olshausen and Field (1997). The
whitened image contains positive and negative values. The pos-
itive part and the absolute values of the negative part of each
whitened image were reshaped to vectors and concatenated to
form a 288-dimensional input vector. The positive part resembles
the on-center receptive fields of the Lateral Geniculate Nucleus
(LGN) cells and the negative part the off-center receptive fields
(Wiltschut and Hamker, 2009).

We used a partially occluded test set to study the effect of
loss of information on classification: the original non-occluded of
MNIST and different occluded versions of it. A test set is formed
by applying a particular occlusion level on all images in the origi-
nal MNIST test set. That is, in each version, the level of occlusion
was the same for all digits, although the position of the occluded
pixels was generated randomly for each digit. The occluded test
sets had an amount of 5–60%, in steps of 5%, occluded pix-
els. Only digit pixel and no background pixels were occluded.
Occlusions were produced by randomly setting non-zero pixel
values to zero before whitening an image (Figure 1). Since we are
testing on all test sets we will further use the term “test set” to
denote all of these test images. No occlusion was applied to the
train set.

2.2. Models and Training
In this section we will give a short introduction in the main prin-
ciples and the training of the used methods. To facilitate compar-
ison all methods are using 288 units. For our simulations we used
software provided by the respective authors.

2.2.1. Fast Independent Component Analysis
In fast independent component analysis (FastICA; Hyvärinen
and Oja, 1997), the goal is finding statistically independent com-
ponents of the data by maximizing neg-entropy. Neg-entropy is
a measure of non-gaussianity and non-gaussianity is in direct
relation with independence; the more non-Gaussian the activ-
ity distributions, the more independent are the components. The
problem can be stated as

x = Vy

or

y =Wx

1http://yann.lecun.com/exdb/mnist/
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where V is the mixing matrix and W its inverse, x is the input
vector and y is the vector of sources or components which should
be independent. ICA, as a generative method, tries to generate
the inputs as a sum of components y weighted by the weights of
the mixing matrix V . In FastICA matrices V and W are found
in an optimization process which maximizes neg-entropy of the
activities.

AfterW was determined on the (non-occluded) MNIST train
set, we used W to calculate the output on the occluded test set
by calculating yo = Wxo, where xo stands for the occluded input
and yo for the corresponding output activities. Thus, the FastICA
method has no competitive mechanism effecting the output, its
just applying a linear transformation matrix on the input.

2.2.2. Non-Negative Matrix Factorization with

Sparseness Constraint
In non-negative matrix factorization with sparseness constraint
(NMFSC; Hoyer, 2004), the goal is to factorize the matrix of the
input data in non-negative components and non-negative source
matrices, imposing more biological plausibility in comparison
to FastICA, as neuron responses are non-negative. NMFSC
approaches the matrix of components V to satisfy X ≈ V ⊗ Y .
Where Y is the matrix of output vectors and X the matrix of cor-
responding input vectors.Y andV are calculated while approach-
ing the objective of reducing the difference between the input X
and its reconstruction V ⊗ Y :

V ← V ⊗ (XYT) ⊘ (VYYT) (1)

FIGURE 1 | An example of the input digits under 0-95% occlusions.

Where ⊗ means element-wise multiplication and ⊘ element-
wise division. One could say that the term (XYT) ⊘ (VYYT)
is actually the modulated input which is used to update V . In
some literature it is interpreted as a divisive form of feedback
inhibition (Kompass, 2007; Spratling et al., 2009). This method,
introduced by Lee and Seung (1999), tries to minimize the differ-
ence between the distributions of the input and its reconstruction
based on Kullback-Leibler divergence.

In some other works this process is done by adding the sub-
tractive difference between the input and its reconstruction to
V . One could call both subtractive different and the divisive
modulated input the inhibited input which is used for learning
(Spratling et al., 2009).

The advantage of NMFSC to pure non-negative matrix factor-
ization (NMF; Lee and Seung, 1999) is that the sparseness of the
computed activities Y can be set to a desired level. An increase in
the sparseness shifts the code from global to more local features
(Hoyer, 2004). However, NMFSC deviates from a multiplicative
update of the output Y and uses a subtractive one

Y ← Y − µVT(VY − X)

Thus, the nodes compete with each other using a top-down, sub-
tractive inhibition of their input. In order to obtain the desired
level of sparseness a projection step is applied by keeping V fixed
and looking for the closest Y which could both optimally cause
to low reconstruction error and satisfy the sparseness constraint
(for details see Hoyer, 2004, pp. 1462–1463). NMFSC also allows
to control the sparseness of V , but this feature is not used by us.

To obtain the best classification accuracy, we tested four dif-
ferent sparseness levels (0, meaning no constraint; 0.75; 0.85;
and 0.95). We found that 0.85 sparseness gives the best results

FIGURE 2 | Effect of different sparseness levels on the robustness of

NMFSC, using the occluded MNIST test set. A sparseness of 0.85 shows

the best robustness. Very high or no sparseness reduces the performance.
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(Figure 2). The same sparseness level was found by Hoyer (2004)
as the best level to learn Gabor-like filters from natural images.
Hoyer defines the sparseness level as the relation of the L1 norm
to the L2 norm. Where a sparseness of zero denotes the densest
output vector, this is when all outputs are equally active, and of
one denotes the sparsest vector, when just one output is active.
For equation and an illustration of different degrees of sparseness
please see (Hoyer, 2004, pp. 1460–1461). After we have trained
NMFSC on the train set, we used V to calculate the output on
the occluded test set. For this, we kept the obtained V fixed and
ran the optimization process for Y , approaching the predefined
sparseness level forY while trying to reduce the reconstruct error.

2.2.3. Predictive Coding/Biased Competition
In predictive coding/biased competition (PC/BC; Spratling,
2010), like in the two other generative models, the goal is finding
components so that the output can resemble the input with min-
imal error. This method uses divisive input modulation (DIM),
introduced in Spratling et al. (2009), which is in turn based on
NMF. The modifications, in comparison to NMF, are mainly two.
First, it is on-line, while NMF is a batch method. Second, in con-
trast to NMF which uses the component weight matrix both for
computing the output and reconstructing the input, DIM con-
siders two sets of weight matrices; feedforward for producing
the output and feedback for producing the reconstruction of the
input. The two weight matrices differ just in the form of normal-
ization, whichmakes themethodmore powerful thanNMF in the
case of overlap and occlusion (Spratling et al., 2009). In PC/BC,
the inputs are inhibited by being divided by their reconstruction.
This is done explicitly in the units called error units. The error
units basically do the same job as the term (XYT) ⊘ (WYYT) in
(Equation 1) in NMF. Their activity is described as following:

e = x⊘ (ǫ1 + VTy)

where x is the input vector, y is the output vector, V is the feed-
back weight matrix, and ǫ1 is a small value to avoid division by
zero. The inhibited input from the error units is used for both
producing the output and updating the weights. Thus, PC/BC
uses in both cases a multiplicative updating, whereas NMFSC
uses a subtractive one for the output.

To calculate the output the inhibited input is used:

y← (ǫ2 + y) ⊗ We

where ǫ2 is a random small number which prevents the output
from being zero,W is the feedforward weight matrix and e is the
activity vector of the error units. Based on the output activities y
and the error units e the weights are adopted as following:

W ←W ⊗ {(1+ βy)[eT − 1]}

where β is the learning rate. If the input and its reconstruction
are equal, the error will be equal to unity and, thus, the weights
will not change.

The input inhibition of PC/BC affects, besides the weight
development, the output. Strong units suppressing weaker ones
by removing their representation from the input. This is done in

several iteration of updating the error units by the received recon-
struction of the output units. This iterative process leads to a low
reconstruction error and provides the competitive mechanism of
PC/BC.

We trained PC/BC on 100,000 randomly, and potentially
repeatedly, chosen digits from the 60,000 images of the MNIST
train set and saved the weights for later calculating the outputs
on the test set. Therefore, each image of the test set was presented
for 200 iterations to the final network to achieve convergence of
the outputs.

2.2.4. The Hebbian Neural Network
Finally, we use a Hebbian neural network (HNN), employing the
well accepted mechanisms of rate based threshold linear neurons
and Hebbian learning. A set of neurons in one layer receive feed-
forward input and lateral inhibitory connections being the source
of competition between the neurons. The connection strengths
are learned using a Hebbian learning rule for the feedforward
connections and an anti-Hebbian one for the lateral connec-
tions (Földiák, 1990; Wiltschut and Hamker, 2009; Teichmann
et al., 2012). For simulation, we use a slightly modified version
of the one previously published by Teichmann et al. (2012). To
learn the feedforward weights, the model employs a set of differ-
ent mechanisms like covariance learning with Oja normalization
(Oja, 1982), regulated by an activity dependent homeostatic term
(Teichmann et al., 2012). It uses calcium traces of the neuron
activity instead of activities for learning. However, we use a fast
trace so the model works similar to an activity based model (see
Appendix for further model details).

Since Teichmann et al. (2012) demonstrated the model to
learn V1 complex-cell properties we verified that the model used
here, if trained on natural images, learns simple-cell receptive
fields (Figure 3) to fulfill our main criteria for model selection.

In this kind of network, inhibitory lateral connections are the
source of competition between units. During the learning process
the lateral weights develop proportional to the correlated firing
between units, leading to strong inhibition between units that are
often coactive. Hence, units in the HNN tend to reduce coactivity
in the training phase and thus build a sparse representation of the
input. Consequently, each unit uses the stored knowledge in the
lateral weights to suppress potentially competing units.

We trained the network on 200,000 randomly chosen digits
from the train set. During training each image is been presented
to the network for 100 time steps (ms) to allow for a convergence
of the dynamics. After learning, we keep the weights fixed and use
this network to obtain the responses on the images of the test set.

2.3. Classification
As a criterion for robustness, we considered the accuracy of a
classifier on the top of each method. The idea behind was that the
classifier would indicate by its performance drop to classify the
digits if some information is lost. Thus, a method with a more
stable representation should have less accuracy decrease under
increasing levels of occlusion. We have decided to use a simple
linear classifier as it is assumed that also the neural processing in
the brain should facilitate linear classification (DiCarlo and Cox,
2007). To measure the accuracy of classification we use Linear
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FIGURE 3 | Gabor-like receptive fields learned from natural images by

the Hebbian neural network.

Discriminant Analysis (LDA) on the output of the methods on
the test set. That is, we used the MATLAB (2013a) function clas-
sify() with default parameters (linear discriminant function). The
classifier is trained using the output of the respective method on
the train set.

2.4. Visualization of Weights and Receptive Fields
Obviously, if a method is able to learn a superior representation
of the data, it will have a better robustness to the other ones.
We visualize the weight matrices of all methods to get an insight
into how the data are processed. If the methods share a simi-
lar character in their weight organization it can be assumed that
this feedforward part of the processing shares similarities. Hence,
the differences in the robustness of the methods have to come
from the competitive mechanisms. Further, we can look at the
receptive field shapes2 of the units, as the competition is typically
not changing their overall shapes, indeed the inhibitory effects
between units are considered.

Hence, we used two approaches for visualizing the receptive
fields. One was representing the weight matrix of a unit as gray-
scale images. As the weight matrices correspond to the on-center
and off-center inputs, we subtract this two parts from each other
(Wiltschut and Hamker, 2009). The strength of each of these
weights was shown as the intensity of a pixel in the image, where
white denotes the maximumweight, gray denotes zero, and black
the minimum weight. As an alternative, to visualize the recep-
tive fields, we used reverse correlation. In order to obtain the
optimal stimulus of a unit, we weighted images containing 90

2Receptive fields are here defined as a map of regions in the image where a unit is

excited or inhibited if a stimulus is there (cf. Hubel and Wiesel, 1962).

random dots in front of black (zero) background with their cor-
responding outputs from a single unit. The average of the result
was shown as the receptive field. This way we could observe to
which input parts each unit is sensitive, regarding the compe-
tition between the units. In other words the resulting matrices
visualize the correlation between the input and output values of
each unit.

3. Results

3.1. Learned Receptive Fields
In order to verify if the models represent the input data in a
comparable way, we visualize the weight vectors and receptive
fields of 100 units for each model (cf. Section 2.4). To visual-
ize the weight vectors of the Hebbian neural network (HNN),
we have used the feedforward weight matrices showing the driv-
ing stimulus of the neurons (Figure 4A). For FastICA, we visu-
alize the mixing matrix V (Figure 4C). The V matrix of basis
vectors is visualized for NMFSC (Figure 4E). In PC/BC, we
show the feedforward matrices (Figure 4G). For each method we
also show the receptive fields estimated by reverse correlation
(Figures 4B,D,F,H), being not much different from the visual-
ization of the weight matrices. All methods develop receptive
fields with holistic forms of digits. Indeed, in NMFSC not all units
show digit like shapes which may result from the chosen level of
sparseness as mentioned in the methods.

3.2. Classification Accuracy Under Occlusion
To investigate the differences in robustness to increasing levels
of occlusions in the input, we have measured the classification
accuracy of all methods and the raw data on the test set. We
repeated the experiments 10 times with each algorithm under
different starting conditions, i.e., randomly initialized weights.
We do not show the error bars as they are zero for FastICA
and NMFSC as they are deterministic and have been low for
PC/BC and the HNN. We observed (Figure 5) that FastICA does
not improve the classification accuracy to that of the raw data.
NMFSC causes a super-linear decrease of classification accuracy
with respect to the linear increase of occlusion. PC/BC shows
the highest robustness against occlusion. The robustness of the
HNN is higher than NMFSC and lower than PC/BC. The meth-
ods having more “advanced” competitive mechanisms perform
better under increasing occlusions.

To further investigate the influence of the competitive mecha-
nisms we turn them off for PC/BC and the HNN. This is, setting
the lateral inhibitory connections to zero for the HNN, and using
only the first iteration step of PC/BC. The training of the classifier
is repeated for these modifiedmodels. Both HNN and PC/BCwill
cause a very low performance even worse than the raw data when
their competitive mechanisms are not used (Figure 6). Meaning
that the competitivemechanism has a substantial influence on the
accuracy under occlusion and the pure feedforward processing is
not enough have robust recognition results.

3.3. Effect of Occlusion on Activity Pattern
It is obvious that the activity pattern as a function of the input
changes by increasing the occlusion in the input. The question is
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FIGURE 4 | Visualization of the feedforward weights and the receptive

fields of 100 units, after training. Off-weights where subtracted from

on-weights and each plot is scaled so that white denotes the maximum value

and black the minimum. (A) The feedforward weight matrices of the HNN

and (B) its reverse correlation. (C) The component matrices of FastICA and

(D) its reverse correlation. (E) The component matrices of NMFSC and (F) its

reverse correlation. (G) The feedforward weights of PC/BC and (H) its

reverse correlation.
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FIGURE 5 | Classification accuracy on the output of FastICA, NMFSC,

HNN, and PC/BC, using the occluded MNIST test set. Methods using

competitive mechanisms show better robustness.

FIGURE 6 | Robustness of the HNN and PC/BC with and without

inhibition, using the occluded MNIST test set. Without the inhibitory

connections the models show a sharp drop in performance against loss of

information (occlusion).

how stable the activity patterns of a method are when the occlu-
sion in the input is increased. This is basically the same question
as how much the classification accuracy is robust under loss of
information. In Figures 7–10 the activity patterns corresponding
to three random inputs under 0, 20, and 40% occlusion are

illustrated. As one can see in NMFSC, HNN, and PC/BC the
activity patterns corresponding to non-occluded input and low
occluded (20%) are comparable. In FastICA, though, the activ-
ity patterns are not easily comparable as ICA by nature produces
very dense activity patterns. The activity pattern of FastICA on
the (non-occluded) train set have a mean sparseness (Hoyer,
2004) of 0.41, which is, in comparison with NMFSC with 0.89,
HNN with 0.80, and PC/BC with 0.89 sparseness, quite dense.
However, in all methods the activity pattern loses its original form
when occlusion is increased.

To measure how stable the activity patterns of a method are,
for different levels of occlusion, we used the cosine of the angle
between the non-occluded and the occluded activity vector. We
calculate the cosine on the test set with 20 and 40% occlusion
(Table 1) and found that methods showing a more robust recog-
nition accuracy also having a lesser turn in their activity vector.
Exceptionally, the HNN shows a more stable code than PC/BC
based on this measure.

3.4. Selective Inhibition in the Hebbian Neural
Network
To investigate the selectivity of inhibition in the HNN, we study
the relation between the strength of the lateral connections and
the similarity of the feedforward weights of a neuron to its lat-
erally connected neurons by visualizing the feedforward weights
of the laterally connected neurons sorted by the strength of the
outgoing lateral connections. Therefore, we randomly select 10
neurons (left side) and plot the weights of the laterally connected
neuron (Figure 11). As one can see, the shape of the feedfor-
ward weights of neurons being strongly inhibited are more simi-
lar to the weights of the inhibiting neuron than the ones which
are lesser inhibited. This is, neurons have the strongest inhi-
bition to neurons representing similar digits, mostly from the
same class, followed by other classes sharing many similarities.
Being expected as the strength of the inhibition is relative to the
correlation of the neurons.

4. Discussion

We observed that the competitive mechanisms in the considered
methods, FastICA, NMFSC, PC/BC, and HNN, have direct effect
on their robustness under loss of information. Results showed
that all methods have developed receptive fields similar to digit
shapes and so the methods should be comparable. Apparently,
this similarity itself cannot be used as a criterion for robust-
ness against loss of information (occlusion). We observe that
the receptive fields of FastICA are more similar to digits than
the most of NMFSC, although, NMFSC shows a better accuracy
under occlusion. However, without using its competition mecha-
nism it behaves worser than FastICA. Further, HNN and PC/BC
have the most clear receptive fields and the highest performances,
indeed, without the competitive mechanism their accuracy drops
lower than FastICA and NMFSC. Also the recognition accura-
cies of PC/BC and HNN with and without competition can not
be explained by differences in the receptive field shapes. Without
competition HNN behaves slightly better than PC/BC, whereas
with competition PC/BC shows better accuracy. This means, the
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FIGURE 7 | Three examples (row) how the activity pattern vary, under 0, 20, and 40% of occlusion (column) in FastICA.

FIGURE 8 | Three examples (row) how the activity pattern varies, under 0, 20, and 40% of occlusion (column) in NMFSC.

receptive field quality alone does not cause the observed higher
robustness.

Without occlusions no method shows a strong superiority
in the accuracy, indeed, they show clear differences when the

input is distorted. Some models are more stable when the input
is occluded. This stability is in line with the results of the clas-
sification accuracy. While the HNN shows the least change in
the cosine between its population responses with and without
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FIGURE 9 | Three examples (row) how the activity pattern varies, under 0, 20, and 40% of occlusion (column) in HNN.

FIGURE 10 | Three examples (row) how the activity pattern varies, under 0, 20, and 40% of occlusion (column) in PC/BC.

occlusion, its classification accuracy is a bit weaker than the
one of PC/BC for larger occlusions. The two dominant methods
in this study, the HNN and PC/BC, employ different mecha-
nisms for competition. These mechanisms help the systems to

selectively inhibit the output of other units or respectively their
input. In order to observe how much competition enhances
robustness under occlusion, we have evaluated the classification
performance when the competitive mechanisms were turned
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FIGURE 11 | Selective inhibition in the HNN. On the left side the

feedforward weights of 10 randomly chosen neurons are illustrated. Right of

each neuron, the weights of 10 neurons receiving inhibition from this neuron

are plotted, sorted from left to right by descending lateral weight strength

(inhibition). The illustration shows that neurons having more similar feedforward

weights are more inhibited than neurons having less similar weights.

TABLE 1 | Cosine between non-occluded and occluded activity patterns,

calculated on the test set with having particular occlusion levels.

20% Occlusion 40% Occlusion

FastICA 0.65 0.46

NMFSC 0.71 0.61

PC/BC 0.78 0.61

HNN 0.87 0.76

A cosine of 1 denotes an equal direction and 0 denotes an orthogonal one. The stability

of the activity patterns conform the results for the recognition accuracy, except the HNN

shows a higher stability.

off. When the mechanisms are off, PC/BC and the HNN show
a very low performance in the robustness to occlusions, as
NMFSC without using the sparseness constraint. So obviously,
the feedforward processing is not enough to obtain a suffi-
ciently differentiated output and it can be assumed that com-
petition is playing an essential role in the robustness of these
systems.

We also observed that methods benefiting from a competi-
tive mechanism are superior to FastICA, having no competitive
mechanism on the output computation. FastICA linearly trans-
fers the input space into a new space with least dependent com-
ponents. When facing an image, FastICA produces a dense set
of activities to describe the image in the new space. NMFSC
without sparseness constraint acts as FastICA. However, when a

reasonable level of sparseness is set for the activities of NMFSC
it outperforms FastICA. The reason is that the sparseness con-
straint omits the appearance of redundant information to some
extent. Indeed, a too sparse representation can remove some
useful information and resulting in reduced accuracy. How-
ever, NMFSC acts weaker than the Hebbian neural network and
PC/BC which may depend on the subtractive updating rule for
output competition. Moreover, the optimal sparseness level is
practically impossible, since a priori knowledge about the num-
ber features for an optimal representation is needed (Spratling,
2006). Also having this knowledge does not have to lead to an
optimal result as different classes often need different amounts of
features.

Among the three generative models FastICA, NMFSC, and
PC/BC, PC/BC has been the superior model in this experiment. It
uses amultiplicative updating rule to calculate the output activity.
It finds the best matching units and removes their representations
from the input of the other units, producing a sparse output while
approaching a minimal reconstruction error. This online error
minimization is realized by iteratively updating the error units
representing the local elements of the reconstruction error and
driving the output units. The HNN also has a competitive mech-
anism according to which the best matching units suppress other
ones. In contrast to PC/BC, which tries to minimize the recon-
struction error, the Hebbian Neural Network, as a whole, does
not approach any explicit objective. It only exploits the knowl-
edge from the training phase about the coactivity of units in
order to suppress them. Thus, stronger units suppress potentially
confusing weaker ones. That is, in HNN each unit is competing
with other units based on its learned, local inhibitory weights,
whereas PC/BC is actively using its distributed representation of
the reconstruction error to minimize a global error signal. This
may be the reason for the slight advantage of PC/BC against HNN
for larger occlusions.

We conclude, that in order to achieve high robustness against
loss of information in object recognition, one should focus on
improving the competitive mechanism. Competition between
units seems to play an important role in preventing the system
from producing redundant activities. The experiments give also
evidence that the cortical mechanisms of competition, as lateral
inhibition, are the source of its robust recognition performance,
even on single layer level. Similar effects to our V1 based eval-
uation can be found in deeper models of the visual cortex ven-
tral stream, where even inhibitory lateral connections play an
important role in robustness to occlusions (O’Reilly et al., 2013).
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Appendix

Computing Neural Activity in the HNN
As in Teichmann et al. (2012), the membrane potential mj of a
neuron j is calculated as the sum of each neuron’s pre-synaptic

input values r
Input
i weighted by the corresponding synaptic

strengths wij. The resulting sum was decreased by the amount
of inhibition from other layer neurons rk, weighted by the corre-
sponding synaptic strengths of the lateral connections ckj (Equa-
tionA1) and a non-linearity function f (EquationA2). In contrast
to Teichmann et al. (2012), we add an additional decay term r̄j
which mimic the intrinsic adaption of the firing threshold (Tur-
rigiano and Nelson, 2004) based on the temporal activity of the
neuron (Equation A3). The resulting activation rj of a neuron j is
calculated using the top half rectified membrane potential (mj)

+.
Further, we apply a saturation term for highmembrane potentials
to avoid unrealistic high activations (Equation A4).

The change of the activity is described by

τm
∂mj

∂t
=

∑
i

wijr
Input
i −

∑
k,k /= j

f
(
ckjrk

)
− r̄j − mj (A1)

with τm = 10 and the non-linearity function

f (x) = dnl · log

(
1+ x

1 − x

)
(A2)

and the temporal activity

τr̄
∂ r̄j

∂t
= rj − r̄j (A3)

with τr̄ = 10000 and the transfer function

rj =

{
0.5+ 1

1+e
−3.5(mj−1)

ifmj > 1

(mj)
+ else

(A4)

Changes in Neural Learning of the HNN
As in Teichmann et al. (2012), we use Oja’s constraint (Oja, 1982)
for normalizing the length of the weight vector, preventing an
infinite increase of weights. In contrast to Oja, each neuron can
have an individual weight vector length. Differently to our pre-
vious work, we calculate the factor α, determining the length, so
that its change is based only on the squared membrane poten-
tial minus a fixed average membrane potential β = 1

288 . The
value β is defined as 1 divided by amount of neurons in the layer
(Equation A5).

τα

∂αj

∂t
= m2

j − β (A5)

Since the learning rule was originally proposed for learning com-
plex cells, the learning is based on calcium traces, following the
activity of a neuron, to allow exploiting the temporal structure
of the input. As this is not needed for learning simple cells or
handwritten digits, we are using here a short time constant of
τCa = 10 for the calcium trace. The time constant is chosen that
short to turn off the influence of previous stimuli on the learn-
ing result. Besides, we have shown in Teichmann et al. (2012)
that using this time constant in a setup for learning complex cells,
causes a huge amount of the cells with simple cell properties. All
other parameters in this model are chosen as in Teichmann et al.
(2012).
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There are many ways in which the human visual system works to reduce the inherent
redundancy of the visual information in natural scenes, coding it in an efficient way.
The non-linear response curves of photoreceptors and the spatial organization of the
receptive fields of visual neurons both work toward this goal of efficient coding. A related,
very important aspect is that of the existence of post-retinal mechanisms for contrast
enhancement that compensate for the blurring produced in early stages of the visual
process. And alongside mechanisms for coding and wiring efficiency, there is neural
activity in the human visual cortex that correlates with the perceptual phenomenon of
lightness induction. In this paper we propose a neural model that is derived from an
image processing technique for histogram equalization, and that is able to deal with all the
aspects just mentioned: this new model is able to predict lightness induction phenomena,
and improves the efficiency of the representation by flattening both the histogram and the
power spectrum of the image signal.

Keywords: neural model, Wilson-Cowan equation, efficient coding, redundancy reduction, contrast enhancement,

lightness induction

1. INTRODUCTION
The human visual system works in many ways in order to
efficiently encode the visual information coming from natural
environments, reducing its inherent redundancy, as proposed in
the seminal work of Barlow (1961) (see Olshausen and Field,
2000 for a review). For instance, while natural scenes have lumi-
nance distributions which are very lopsided, with a high peak
and a very rapid fall-off, photoreceptors encode this information
with signals that have a much more even distribution: indeed,
photoreceptors perform histogram equalization, as demonstrated
by Laughlin (1981). And the receptive fields of visual neurons,
both retinal and post-retinal, compensate the 1/f 2 decay of the
power spectrum of natural images, whitening the spectrum of
the resulting signal and thus minimizing interpixel redundancies
and increasing coding efficiency (see Atick, 1992; Dan et al., 1996
where the existence of whitening at the local geniculate nucleus is
demonstrated for natural images).

Apart from efficiency in coding, another very important aspect
is that of biological efficiency in terms of wiring. The resolution
of retinal mosaics is limited by the number of axons that can pass
through the optic nerve, which acts as a bottleneck (Olshausen,
2003). But the visual system is able to achieve a visual acuity
beyond the limit imposed by the number of photoreceptors at the
retina: in their classical paper on contrast constancy, Georgeson
and Sullivan (1975) suggest that there are cortical mechanisms for
contrast enhancement that compensate for the blurring produced
in early stages of the visual process. Very recently Martinez et al.
(2014) have confirmed that contrast enhancement takes place at
the lateral geniculate nucleus (LGN) and, remarkably, the authors
point out that this contrast enhancement procedure is very much
alike the common techniques used in image processing.

Alongside mechanisms for coding and wiring efficiency, there
is neural activity in region V1 of the human visual cortex that
correlates with the perceptual phenomenon of lightness induc-
tion, as proven by Pereverzeva and Murray (2008). The term
lightness induction or achromatic induction designates the visual
phenomenon by which the perceived reflectance of an object
depends on its surround. It can take the form of lightness contrast,
when the object’s lightness shifts away from that of its surround-
ings: a dark object on a light background appears even darker,
or a light object in a dark surround becomes even lighter. The
reverse is called lightness assimilation, in which case the appear-
ance of the object shifts in the direction of the lightness of its
surround. As pointed out by Shevell (2003), lightness assimila-
tion occurs in situations of high spatial frequency while lightness
contrast is associated with relatively lower spatial frequencies.

Our contribution in this paper is to propose a neural activ-
ity model, a partial differential equation (PDE) in the form of
a Wilson-Cowan equation (Wilson and Cowan, 1972), which
takes care simultaneously of the four aspects mentioned above: it
performs histogram equalization, spectrum whitening, contrast
enhancement, and it also predicts lightness induction. The pro-
posed model is based on a state of the art method for color and
contrast enhancement from the image processing literature, so we
start the following section reviewing some key image processing
concepts.

2. IMAGE PROCESSING FOR CONTRAST ENHANCEMENT
2.1. HISTOGRAM EQUALIZATION
Histogram equalization is a classical, very basic image process-
ing technique dating at least to the early 1970s (see Pratt, 2007
and references therein), aiming at enhancing the contrast and
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improving the appearance of images by way of re-distributing
their levels uniformly accross the available range. In this sense, an
image would be optimal if its histogram were flat or “equalized,”
meaning that all the range is used and all levels are represented
by the same amount of pixels. Therefore, when an image has a
flat histogram its cumulative histogram is simply a ramp, and this
allows for a very straightforward computation for the histogram
equalization procedure: assuming we are working on a graylevel
image in the range [0,1], we have to substitute each level g in
the original image by the value of its normalized cumulative his-
togram, H(g). The solution is computed very fast using a look-up
table (LUT). An example result can be seen in Figure 1 (notice
that, while the range has been expanded and the resulting image
has a more even histogram, it’s not actually uniform).

While in Figure 1 histogram equalization improves the visual
appearance of the image, Figure 2 shows an example where the
image is actually made worse, which Pratt (2007) points out is
often the case when the image is overexposed, as it is here. This
is aggravated by the fact that the equalization procedure is a one-
shot technique, that only produces a final result, without any “in-
between,” so if the resulting image shows any type of unpleasant
artifact there is nothing to do about it. This issue was addressed
by Sapiro and Caselles (1997), who proved that the minimization
of the energy functional

E(I) = 2
∑

x

(
I(x) − 1

2

)2

− 1

AB

∑
x

∑
y

|I(x) − I(y)| (1)

produces an image I with a flat histogram. The range of I is [0, 1],
x, y are pixels and A,B are the image dimensions. While the result
of histogram equalization is very often unsatisfactory and can’t be
altered, Sapiro and Caselles (1997) propose to start with an input
image I0 and apply to it step after step of the minimization of
Equation 1, letting the user decide when to stop. If the user lets

FIGURE 1 | Left: image and associated histogram. Right: after histogram
equalization.

FIGURE 2 | Left: original image. Right: after histogram equalization.

the minimization run to convergence, she’ll get the same result
as with a LUT, but otherwise a better result can be obtained if
the iterative procedure stops before the appearance of severe arti-
facts. The squared differences in the first term of Equation 1 and
the absolute differences in the second one are required to ensure
that the minimization yields an image with equalized histogram,
see Sapiro and Caselles (1997) for details. The energy in Equation
1 can be interpreted as the difference between two positive and
competing terms,

E(I) = D(I) − C(I). (2)

The first term measures the dispersion around the average value
of 1

2 , as in the gray world hypothesis for color constancy, stating
that our visual system estimates the illuminant as one half the
average of the colors of the scene, an observation made by Judd
(1940, 1979a) and formalized by Buchsbaum (1980). The second
term measures the contrast as the sum of the absolute value of the
pixel differences.

2.2. PERCEPTUALLY-BASED CONTRAST ENHANCEMENT
The abovementioned measure of contrast is global, not local, i.e.,
the differences are computed regardless of the spatial locations of
the pixels. This is not consistent with how we perceive contrast,
which is in a localized manner, at each point having neighbors
exert a higher influence than far-away points. Using the concepts
introduced by the popular perceptually-based color correction
method ACE of Rizzi et al. (2003), the authors of Bertalmío et al.
(2007) propose an adapted version of the functional of Equation
1 that complies with some very basic visual perception principles,
namely those of locality, color constancy and white patch (the
latter stating that the brightest spot in the image is perceived as
white, an observation that is often attributed, incorrectly, to the
Retinex theory of Land (1977), but which has a long history that
dates back at least to the works of Helmholtz, as explained by Judd
(1979b,c)):

E(I) = α

2

∑
x

(
I(x) − 1

2

)2

− γ
∑

x

∑
y

w(x, y)|I(x)

−I(y)| + β

2

∑
x

(I(x) − I0(x))2, (3)

where w is a distance function such that its value decreases as
the distance between x and y increases, I0 is the original image
and α, β and γ are positive weights (which can be chosen so as
to guarantee the white patch property, see Bertalmío et al., 2007
for details). The gradient descent equation for the functional in
Equation 3 is the following, and its numerical implementation is
essentially equivalent to the method of Rizzi et al. (2003):

It(x) = −α
(

I(x) − 1

2

)
+ γ

∑
y

w(x, y)sgn(I(x) − I(y))

−β(I(x) − I0(x)). (4)

Starting from I = I0, we iterate Equation 4 until we reach a steady
state, which will be the result of this algorithm.
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By minimizing the energy in Equation 3 we are locally enhanc-
ing contrast (second term) and promoting color constancy by
discounting the illuminant (first term), while preventing the
image from departing too much from its original values (third
term). We could also say that the minimization of Equation 3
approximates local histogram equalization.

The method of Bertalmío et al. (2007) has several good
properties:

1. It yields very good color constancy results, being able to
remove strong color casts and to deal with non-uniform illu-
mination (a challenging scenario for most color constancy
algorithms, see Bertalmío, 2014).

2. It increases the dynamic range of the image (i.e., it tends to
“flatten” its histogram).

3. It has a very good local contrast enhancement performance,
producing results without halos, spurious colors or any other
kind of visual artifact.

4. It can deal with both underexposed and overexposed pictures.
5. It reproduces visual perception phenomena such as simultane-

ous contrast and the Mach Band effect.

But regarding color constancy, there is also a very interesting and
close connection with the classical approach of Retinex. In their
kernel-based Retinex (KBR) formulation, Bertalmío et al. (2009)
take all the essential elements of the Retinex theory of Land (1977)
(channel independence, the ratio reset mechanism, local averages,
non-linear correction) and propose an implementation that is
intrinsically 2D, and therefore free of the issues associated with
the 1D paths used in the original Retinex algorithm. The results
obtained with this algorithm comply with all the expected prop-
erties of Retinex (such as performing color constancy while being
unable to deal with overexposed images) but don’t suffer from
the usual shortcomings such as sensitivity to noise, appearance of
halos, etc. In Bertalmío et al. (2009) it is proven that there isn’t
any energy that is minimized by the iterative application of the
KBR algorithm, and this fact is linked to its limitations regard-
ing overxposed pictures. Using the analysis of contrast performed
by Palma-Amestoy et al. (2009), Bertalmío et al. (2009) are able
to determine how to modify the basic KBR equation so that it
can also handle overexposed images, and the resulting, modified
KBR equation turns out to be essentially the gradient descent of
the energy given by Equation 3. In other words, the method of
Bertalmío et al. (2007) can be seen as an iterative application of

Retinex, although in a modified version that allows to produce
good results also in the case of overexposed images.

3. A NEW NEURAL MODEL
3.1. CONNECTION WITH NEUROSCIENCE
The activity of a population of neurons in the region V1 of the
visual cortex evolves in time according to the Wilson-Cowan
equations (see Wilson and Cowan, 1972, 1973; Bressloff et al.,
2002). Treating V1 as a planar sheet of nervous tissue, the state
a(r, φ, t) of a population of cells with cortical space coordenates
r ∈ R

2 and orientation preference φ ∈ [0, π) can be modeled
with the following PDE (Bressloff et al., 2002):

∂a(r, φ, t)

∂t
= −αa(r, φ, t)

+μ
∫ π

0

∫
R2
ω(r, φ‖r′, φ′)σ (a(r′, φ′, t))dr′dφ′

+h(r, φ, t), (5)

where α,μ are coupling coefficients, h(r, φ, t) is the external
input (visual stimuli), ω(r, φ‖r′, φ′) is a kernel that decays with
the differences |r − r′|, |φ − φ′| and σ is a sigmoid function. If
we ignore the orientation φ and assume that the input h is con-
stant in time, it can be shown that Equation 5 is closely related to
the gradient descent Equation 3, where neural activity a plays the
role of image value I, sigmoid function σ behaves as the derivative
of the absolute value function, and the visual input h is the initial
image I0. This connection was already pointed out by Bertalmío
et al. (2007), and Bertalmío and Cowan (2009) use it to argue
that the Wilson-Cowan equations could therefore be the gradient
descent of a certain energy, and also that there would appear to be
a physical substrate at the cortex for the Retinex theory.

3.2. LIGHTNESS INDUCTION
Looking closely at Equation 4, we can see that the spatial arrange-
ment of the image data plays no role in it. Therefore, we
can expect that the local contrast enhancement procedure of
Bertalmío et al. (2007) will always produce lightness contrast,
not assimilation, since as we mentioned earlier assimilation is
linked to high spatial frequencies (Shevell, 2003). Figure 3 con-
firms this: (Figure 3A) produces lightness assimilation, because
all gray bars have the same value but they are perceived darker
when surrounded by black and lighter when surrounded by white;
on the other hand, the result produced by Bertalmío et al. (2007)

FIGURE 3 | (A) Original image, example of lightness assimilation: the gray
bars have all the same value but appear different over black and white
backgrounds. (B) Result of applying the model of Bertalmío et al. (2007) to

image (A). (C) Profile of a line from image (A). (D) Profile of a line from image
(B): notice how the model of Bertalmío et al. (2007) actually emulates
lightness contrast rather than assimilation.
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in Figure 3B actually emulates lightness contrast rather than
assimilation, as the line profiles in Figures 3C,D show.

Rudd (2010) studies lightness induction using a disk-and-ring
(DAR) display for matching experiments, see Figure 4 (left). The
intensity of the background B, of the left ring RM and of the disk
on the right DT is kept constant; the intensity of the right ring
RT is modified, and the observer has to adjust the intensity of the
left disk DM so as to match the appearance of the right disk DT .
Using the model of Bertalmío et al. (2007), the predicted value
of DM as a function of the varying RT can be computed, and it
is shown in Figure 4 (right). We can see that as RT increases DM

always decreases, so according to this model we should only have
lightness contrast in this situation. But the data from the percep-
tual experiments of Rudd (2010) says otherwise, see Figure 5: as
RT increases DM also increases (lightness assimilation) until RT

reaches some value, beyond which DM decreases (lightness con-
trast). These plots are well approximated by parabolas and, as the
ring widths become larger, the resulting parabolas have their cur-
vature decrease, implying that “assimilation is more likely to be
observed with narrow surrounds” (Rudd, 2010).

3.3. PROPOSED MODEL
In order to overcome the intrinsic limitations of Bertalmío et al.
(2007) with respect to lightness induction, we should introduce
spatial frequency in the energy functional. We propose a new
model consisting in the following PDE, a modification of the
gradient descent Equation (4):

It(x) = −α(I(x) − μ(x)) + γ (1 + (σ (x))c)
∑

y

w(x, y)sgn(I(x)

−I(y)) − β(I(x) − I0(x)), (6)

where μ(x) is the mean average of the original image data com-
puted over a neighborhood of x, σ (x) is the standard deviation
of the image data computed over a small neighborhood of x, and
the exponent c is a positive constant. The differences with respect
to Equation 4 are that now the average in the first term is no
longer global (the 1/2 value of Equation 4) but local, and that
the weight for the second term is no longer a constant, but it
changes both spatially and with each iteration, according to the
local standard deviation σ : if the neighborhood over which it is

computed is sufficiently small, standard deviation can provide a
simple estimate of spatial frequency. But also, the standard devi-
ation is commonly used in the vision literature as an estimate of
local contrast. We have this contrast σ (x) raised to a power c, and
this is also the case with other neural models where a power law
is applied to the contrast, as we will briefly discuss later.

Again, this is a Wilson-Cowan type of neural activity model,
where I0 is the visual input. We take I0 as a non-linear mod-
ification of the radiance stimulus, e.g., I0 could be the result
of applying the Naka-Rushton equation, which models photore-
ceptor responses (see Shapley and Enroth-Cugell, 1984), to the
radiance stimuli. As we did with Equation 4, we start with an
image I = I0 and iterate Equation 6 until convergence, obtaining
a result which we’ll see is able to predict perceptual phenomena as
well as improve the efficiency of the representation.

4. THE PROPOSED MODEL PREDICTS INDUCTION AND
IMPROVES EFFICIENCY

4.1. PREDICTING LIGHTNESS INDUCTION
Using this new model, now we can qualitatively predict the results
of Rudd (2010). We fix B,DT,RM and for each value of RT we

FIGURE 5 | Value of DM as a function of RT : results of perceptual

matches for different ring widths, from Rudd (2010).

FIGURE 4 | Left: diagram of the disk-and-ring display used by Rudd (2010), taken from that paper. Right: value of DM as a function of RT , predicted with the
model of Bertalmío et al. (2007).
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find the steady state of Equation 6 at the center of the right disk,
at the middle of the right ring and at the middle of the left ring:
these would be our model’s predictions of the perceived values for
DT,RT and RM . Next, we compute the difference between the first
two values and add it to the third, yielding the prediction of the
perceived (lightness) value for DM , from which we can recover the
actual luminance value DM using again Equation 6 (see Appendix
for implementation details). From these results we can derive
the following conclusions, that corroborate the findings of the
perceptual experiments of Rudd (2010):

• As shown in Figure 6 (left), the predicted match luminance
plots are no longer linear but quadratic, with an initial lightness
assimilation regime for low values of RT followed by a lightness
contrast part.

• The curvature of these parabolas decreases with increasing ring
width.

• The previous experiments were for a double-decrement dis-
play: B > RT > DT . If we now make the ring have a value in
between disk and background, B > RT < DT , the plot cur-
vature remains negative as in the double-decrement case, see
Figure 6 (right). As reported by Rudd (2010), this behavior can
not be predicted with some other neural models, like that of
Rudd and Arrington (2001), with which the curvature changes
sign in this situation.

We can also predict lightness assimilation in the previous exam-
ple of the alternating gray bars of Figure 3, as we now show in
Figure 7.

It is interesting to note that the shape of the curves in Figure 6
does vary with extent of the neighborhood over which the stan-
dard deviation is computed, as Figure 8 shows: when the neigh-
borhood covers disk, ring and some background we have an
inverted parabola as before (red curve), but if we decrease the
neighborhood size so that it only covers disk and ring but no
background then the parabola concavity is reversed (green curve),
and if the neighborhood is further reduced so that it only covers
the disk then the curve is no longer parabolic but linear.

Finally, we may point out that some recent models which also
predict lightness induction based on neural attributes of the visual
system can be found in Otazu et al. (2008) and Penacchio et al.
(2013).

4.2. EFFICIENCY: REDUNDANCY REDUCTION AND CONTRAST
ENHANCEMENT

In this section we argue that the proposed model of Equation 6,
which as we have seen has the form of a Wilson-Cowan equa-
tion, performs local contrast enhancement and is closely related
to basic image processing techniques, is a good candidate for a
neural model providing the contrast constancy effects described
by Georgeson and Sullivan (1975) and Martinez et al. (2014). But
furthermore we will now see how this new neural model, applied
to signals already encoded by photoreceptors, further improves
efficiency by reducing redundancy: flattening the histogram and
whitening the power spectrum.

Figure 9A shows a high dynamic range (HDR) image or radi-
ance map, linearly scaled to the range [0, 1]. Clearly this kind of

FIGURE 6 | Left: predicted value of DM as a function of RT , using the
proposed model, for different ring widths; the plots are well
approximated by parabolas, whose curvature decreases as the ring

width increases. Right: prediction when the disk is a luminance
increment with respect to the ring; the sign of the curvature remains
negative.

FIGURE 7 | (A) Original image, example of lightness assimilation: the gray
bars have all the same value but appear different over black and white
backgrounds. (B) Result of applying the proposed model to image (A).

(C) Profile of a line from image (A). (D) Profile of a line from image (B):
notice how the proposed model is capable of emulating lightness
assimilation.
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mapping is useless, which is a way to explain the need for light
adaptation and gain control mechanisms in our photoreceptors.
Figure 9B shows the result of applying the Naka-Rushton equa-
tion to the previous HDR image. Figure 9C shows the result of
applying our proposed model to Figure 9B. As we can see, the
original radiance image has a very lopsided histogram, which is
made considerably more uniform by applying the Naka-Rushton
equation and even more flat if we apply our proposed method to

FIGURE 8 | The shape of the curves that predict the value of DM as a

function of RT , using the proposed model, depend on the extent of the

neighborhood over which the standard deviation is computed. In red:
the neighborhood covers disk, ring and some background. In green: the
neighborhood covers disk and ring but no background. In blue: the
neighborhood covers just the disk.

the Naka-Rushton output. Local contrast is clearly enhanced as
well, see for instance the window frames, the book cases behind
the windows, etc. For the implementation details we refer the
reader to the Appendix.

Figure 10A shows the result of applying the Naka-Rushton
equation to a high dynamic range image. Figure 10B shows
the result of applying the model of Bertalmío et al. (2007)
to Figure 10A (this is roughly equivalent to the tone mapping
approach proposed by Ferradans et al. (2011) in an image pro-
cessing/computer graphics context). Figure 10C shows the result
of applying our proposed model to Figure 10A. Figure 10D com-
pares the power spectrum of the three previous images. We can
see that our model improves spectrum whitening over the other
two results. In this image the contrast enhancement is more sub-
tle but still noticeable, especially in the interior of the tree-trunk
and on the leaves and grass in the foreground.

An interesting aspect is given by the constant c in Equation
6 and its relationship to the whitening of the power spectrum.
Given a Naka-Rushton output, we compute the rotational aver-
age of its power spectrum which, in log-log coordinates, can be fit
by a line with a certain slope. We do the same for the output of our
model, that has been applied to the Naka-Rushton output using
some value for c, and obtain a new linear fit with a new slope. Let
us estimate the “increase in whitening” provided by our model as
the difference between these two slopes, call it W . The value of W
is a function of the constant c used in our model. If we now vary
c in the interval [0, 1] we can plot the resulting function W(c),
as shown in Figure 11. Disregarding the spikes for low values of c,
we can see that there is an optimum value for c, with which we can
obtain the maximum power spectrum whitening that our model
can provide. In our model c is the power to which we raise the
local standard deviation σ (x), and this standard deviation is one
of the possible measures that are commonly used to estimate local

FIGURE 9 | (A) High dynamic range (HDR) image, linearly scaled. (B) Result of applying the Naka-Rushton equation to the HDR image. (C) Result of applying
proposed model to image (B). (D) Histogram of (A). (E) Histogram of (B). (F) Histogram of (C). Original image courtesy of Max Planck Institute.
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FIGURE 10 | (A) Result of applying the Naka-Rushton equation to a high dynamic range image. (B) Result of applying the model of Bertalmío et al. (2007) to
image (A). (C) Result of applying proposed model to image (A). (D) Power spectrum of images (A–C). Original image property of Industrial Light and Magic.

FIGURE 11 | Increase in spectrum whitening as a function of the

constant c in Equation 6, for the image in Figure 10.

contrast. Because of this reason we are currently investigating the
possible connections of our model with the works of Mante et al.
(2008) and Kay et al. (2013), since both of them apply a static
power-law non-linearity to the contrast. In particular, Kay et al.
(2013) computed the value of the exponent of this power law and
found that while it varies accross the visual cortex, it is in the
range [0, 0.35] with a value of around 1/3 in the case of V1: this is
all consistent with the tests we have performed so far for different
high dynamic range images.

5. CONCLUSION AND FUTURE WORK
In this paper we have proposed a neural model, in the form of a
Wilson-Cowan equation, that is derived from an image process-
ing technique for local histogram equalization. This new model is
able to predict lightness induction phenomena, and improves the
efficiency of the representation by flattening both the histogram
and the power spectrum of the image signal and increasing local
contrast.

We are very much interested in finding evidence of neural
responses following our proposed model. Our method performs
contrast enhancement, so we would like to explore whether there

is any relationship with the work of Martinez et al. (2014), who
have very recently confirmed that contrast enhancement takes
place at the LGN and is much alike the common techniques used
in image processing. Our model has a term where a power law is
applied to the contrast, and we can optimize the exponent of this
power law so as to maximize the whitening of the spectrum; for
the limited tests that we have performed so far, our results appear
to be in agreement with what is reported by Mante et al. (2008)
and Kay et al. (2013), so we also want to investigate possible con-
nections with those works. And as immediate future work, we will
extend our formulation to the color case in order to predict color
induction as well.

Last but not least, we believe we can use our proposed
model to go back to some image processing and computer
vision applications, which could benefit from the insights gained
in the visual neuroscience domain. In particular, we are cur-
rently working in extending this new model for problems such
as tone mapping, gamut mapping and computational color
constancy.
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APPENDIX
In this section we give the implementation details for the results
reported in the paper.

For the examples in Figure 6 we computed explicitly the steady
state solution of Equation 6, with α = β = γ = 1, the second
term of the equation with a weight γ (1 + 5σ c), and a compres-
sion constant of c = 1/3 (Figure 6, left) or c = 0.75 (Figure 6,
right).

For the example in Figure 7 we have adapted the fast numeri-
cal implementation of Bertalmío et al. (2007), with a polynomial
approximation of degree 7 for the sign function, time step 
t =
0.15 and the stopping condition being fulfilled when the differ-
ence between the images of the current and the previous iteration
falls below 0.1%. The original image is of size 100 × 200 and the

parameter values were: α = β = γ = 1, c = 1/3, stencil size for
the computation of the standard deviation σ (x) : 21 × 21, effec-
tive radius of the locality kernel w(x, y) : 75, and of the neighbor-
hood over which we compute the mean average μ(x) : 19.

For the examples in Figures 9, 10 we have also used the
same fast numerical implementation of Bertalmío et al. (2007),
where now the stopping condition is fulfilled when the differ-
ence between the images of the current and the previous iteration
falls below 0.5%. The parameter values were: α = β = γ = 1,
c = 1/3, stencil size for the computation of the standard deviation
σ (x) : 3 × 3, effective radius of the locality kernel w(x, y), effec-
tive radius of the neighborhood over which we compute the mean
average μ(x): 1/3 of the numbers of rows or columns, whichever
is larger.

Frontiers in Computational Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 71 | 290

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


EPFL Innovation Park · Building I · 1015 Lausanne · Switzerland

T +41 21 510 17 00 · info@frontiersin.org · frontiersin.org

ADVANTAGES OF PUBLISHING IN FRONTIERS

TRANSPARENT

Editors and reviewers 
acknowledged by name  

on published articles

OPEN ACCESS

Articles are free to read,  
for greatest visibility 

GLOBAL SPREAD

Six million monthly  
page views worldwide

SUPPORT

By our Swiss-based   
editorial team

COPYRIGHT TO AUTHORS

No limit to  
article  distribution  

and re-use

IMPACT METRICS

Advanced metrics  
track your  

article’s impact

RESEARCH NETWORK

Our network  
increases readership  

for your article

COLLABORATIVE  
PEER-REVIEW

Designed to be rigorous –  
yet also collaborative, fair and 

constructive

FAST PUBLICATION

Average 90 days  
from submission  

to publication

http://www.frontiersin.org/

	Cover
	Frontiers Copyright Statement
	Hierarchical ObjectRepresentations in the Visual Cortex and Computer Vision.
	Table of Contents
	Editorial: Hierarchical Object Representations in the Visual Cortex and Computer Vision
	References

	Feedforward object-vision models only tolerate small image variations compared to human
	Introduction
	Materials and Methods
	Image Generation Process
	Psychophysical Experiment
	Two-class invariant object categorization
	Multiclass invariant object categorization

	Human Representational Dissimilarity Matrix (RDM)
	Computational Models
	V1-like
	HMAX
	GMAX
	Stable
	SLF
	Pixel
	Convolutional neural networks

	Model Evaluation

	Results
	Two-Class Invariant Object Categorization
	Multiclass Invariant Object Categorization

	Discussion
	Humans Perform Significantly Better than Models in Discriminating Objects with High Level of Variations
	Not all Image Variations Yield the Same Difficulty for the Visual System
	Models are Missing a Figure-Ground Segregation Step
	The Role of Feedback and Future Modeling Insights
	Future Directions for Understanding how/when/where the Invariant Representation Emerges Across the Hierarchy of Human Visual System

	Acknowledgments
	Supplementary Material
	Deep Supervised Convolutional Neural Network vs. Humans

	References

	Why vision is not both hierarchical and feedforward
	Funding
	Acknowledgments
	References

	The proactive brain and the fate of dead hypotheses
	Introduction
	A framework for top-down facilitation of visual processing
	Passive decay or active suppression
	Benefits of suppressing un-chosen predictions
	Evidence of active competition suppression
	Suppression of competing interpretations
	Subliminally induced competition

	Experimental predictions of initial-guess suppression
	Time frame
	Inhibitory mechanism

	Summary
	Acknowledgments
	References

	Combining segmentation and attention: a new foveal attention model
	Introduction
	Related Work
	Overview of the Proposed Attention Model
	Contributions
	Organization of the Paper

	Perceptual Foveal Segmentation
	Cartesian Foveal Geometries (CFG) and Foveal Polygons
	Perceptual Foveal Segmentation using BIP
	Data structure of the BIP
	Decimation process of the foveal BIP
	Perceptual segmentation


	Saliency Computation and ROI Selection
	Color Contrast and Intensity Contrast
	Proximity
	Roundness
	Orientation
	Symmetry
	Skin Color
	Inhibition of Return and ROI selection

	Experimental Results
	Uniform vs. Foveal Attention
	Active Exploration Using the Foveal Attention Approach
	Experiments with Attention and Fixation Prediction

	Conclusions and Future Work
	Acknowledgement
	References

	Object recognition with hierarchical discriminant saliency networks
	Introduction
	Methods
	Discriminant Saliency
	Statistical model
	Saliency measure

	Saliency Detector Implementations
	Biologically plausible implementation
	Neural network implementation
	Algorithmic implementation
	Discussion on different implementations

	Hierarchical Discriminant Saliency Networks
	HDSN architecture
	Learning
	Object recognition


	Relationships to Recognition Models
	Saliency Models
	Neural Networks for Recognition
	HMAX
	Convolutional neural networks

	Computer Vision Models
	Canonical recognition architecture
	Stage 1: descriptors
	Stage 2: descriptor assignments

	Discussion

	Results
	Object Recognition Experiments
	Impact of network units on recognition performance
	Large network

	Comparison to Saliency Measures
	Object Localization and Detection

	Conclusions
	Supplementary Material
	References

	A conceptual framework of computations in mid-level vision
	Vision as an Image Understanding System
	What do Mid-Level Visual Areas do?
	Feature Interpolation
	Relational Information and Surface Construction
	Representations for Multiple Tasks, not only Object Recognition
	Representations prior to identification
	Conclusion

	Intermediate Computations
	Current Approaches
	Our approach
	Similarity Estimation and Pooling
	Hierarchical Similarity Estimation and Pooling
	Neural Representation of Pooled Units
	The Dynamic Nature of Intermediate Representations

	Evaluating Performance
	Limitations and Conclusion
	Acknowledgments
	References

	Hierarchical representation of shapes in visual cortex—from localized features to figural shape segregation
	Introduction
	Model Definition
	Nomenclature
	Processing Cascade
	Model Area V1
	Model Area V2/V3 Complex
	Model Area V4
	Model Area IT
	Feedback for Contour Enhancement
	Feedback for Curvature Representation
	Feedback for Figure-Ground Segregation

	Results
	Early Processing Stages
	Curvature Tuning
	Shape Representation
	Border Ownership and Figure-Ground Assignment

	Discussion
	Summary of Contributions
	Relation to Previous Models of Shape Representations in Cortex
	Feedback as Prediction Mechanism to Link Shape Components
	Model Limitations and Further Extensions

	Acknowledgments
	References

	Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models
	Introduction
	Methods
	Detection of Vertex Features by V-COSFIRE Filters
	Configuration of an S-COSFIRE Filter
	Blurring and Shifting V-COSFIRE Responses
	Tolerance to Geometric Transformations
	Tolerance to Rotation
	Tolerance to Scaling
	Reflection Invariance
	Combined Tolerance to Rotation, Scaling, and Reflection

	Applications
	Spotting Keywords in Handwritten Manuscripts
	Vision for a Home Tidying Pickup Robot

	Discussion
	Conclusions
	References

	Visual dictionaries as intermediate features in the human brain
	Introduction
	Materials and Methods
	Computational Models
	HMAX model
	BoW model

	Representational Dissimilarity Matrices
	Stimuli
	Subjects
	fMRI
	fMRI Preprocessing
	Variation Partitioning

	Results
	Comparing Full Models : Intersubject Consistency
	Comparing Visual Dictionaries : Intersubject Consistency
	Comparing Low-level Feature Representations : Intersubject Consistency
	Cross Subject ROI Analysis

	Discussion
	Acknowledgment
	Supplementary Material
	References

	Complex cells decrease errors for the Müller-Lyer illusion in a model of the visual ventral stream
	Introduction
	Materials and Methods
	Computational Model: HMAX
	Stimuli: Training and Test Sets(Control and Müller-Lyer)
	Procedure: Learning, Parameterization, Illusion Classification

	Results
	Experiment I: Classification of ML images after each Level of HMAX
	Experiment II: HMAX Classification of ML Images with Reduced Variance

	Discussion
	Funding
	Acknowledgments
	References

	Exploration of complex visual feature spaces for object perception
	Introduction
	Methods
	Stimulus Selection Method
	Stimulus Display
	fMRI Procedures
	Experimental Design
	Preprocessing
	Real-World Objects Embedded in SIFT Space
	Subjects
	Stimuli
	Defining SIFT space
	Experimental design
	Selection of regions of interest (ROIs)

	Fribble Objects Embedded in Fribble Space
	Subjects
	Stimuli
	Defining Fribble space
	Experimental design
	Selection of Fribble class regions of interest


	Results
	Visualizing Feature Spaces
	Real-Time Search Behavior
	Selection of Brain Regions of Interest
	Complex Visual Selectivities
	Real-world objects search
	Fribble objects search

	Limitations of Using SIFT Multi-Dimensional Scaling Space

	Discussion
	Proximity of Differential Responses
	Visual Intuitions about Feature Selectivity
	Selectivity to Visual Parts

	Conclusions
	Acknowledgments
	Supplementary Material
	References

	A neuromorphic system for video object recognition
	Introduction
	Architecture
	Algorithms
	Object Detection
	Static object detection
	Targeted contrast enhancement (TCE)
	Anti-aliasing and down-sampling
	Saliency calculation
	Region detection
	Post-processing and fusion

	Moving object detection
	Stationary platform
	Moving platform

	Detection fusion

	Object Classification

	Hardware Mapping
	Results and Discussion
	Conclusions
	Acknowledgments
	References

	Shape representations in the primate dorsal visual stream
	Introduction
	Two-Dimensional Shape Selectivity in the Dorsal Visual Stream
	A Network of Cortical Areas Sensitive to the Depth Structure of Objects
	Single-Cell Studies in the Dorsal Visual Stream on the Visual Analysis of 3D Structure
	Conclusions
	Acknowledgments
	References

	Modeling the shape hierarchy for visually guided grasping
	Introduction
	Materials and Methods
	Cosine-Tuning Models of Neurophysiological Data
	CIP Tuning
	AIP Tuning

	Superquadrics
	Creation of Depth Maps
	Isomap shape parameters
	Neural Network Models of CIP-to-AIP Map

	Results
	CIP Tuning
	AIP Tuning 
	Mapping from CIP to AIP

	Discussion
	Augmented Tuning Curves
	Cosine Tuning
	Relationship to Shape Representation in IT
	Future Work

	Acknowledgments
	References

	Feature integration and object representations along the dorsal stream visual hierarchy
	Introduction
	Hierarchical visual processing
	Dorsal pathway
	V1
	V2
	MT
	MST
	Beyond MST

	Ventral pathway
	V1
	V2
	V4
	IT cortex


	Feature Integration in the Dorsal Stream
	Integration of color
	Integration of speed
	Integration of form

	Intermediate object representationsin the dorsal stream
	Possible location of object representationsin the dorsal stream
	Other evidence for dorsal stream object representations
	Vision for action
	Dorsal to ventral integration
	Alternative location for the object representation

	Conclusions
	Acknowledgments
	References

	Sparsey™: event recognition via deep hierarchical sparse distributed codes
	Introduction
	Overall Model Concept
	Sparse Distributed Codes vs. Localist Codes

	Sparsey's Core Algorithm
	CSA: Learning Mode
	Step 1: Determine if the mac will become active
	Step 2: Compute raw U, H, and D-summations for each cell, i, in the mac
	Step 3: Normalize and filter the raw summations
	Step 4: Compute overall local support for each cell in the mac
	Step 5: Compute the number of competing hypotheses that will be active in the mac once the final code for this frame is activated
	Step 6: Compute correction factor for multiple competing hypotheses to be applied to efferent signals from this mac
	Step 7: Determine the maximum local support in each of the mac's CMs
	Step 8: Compute the familiarity of the mac's overall input
	Step 9: Determine the expansivity/compressivity of the I/O function to be used for the second and final round of competition within the mac's CMs
	Step 10: Apply the modulated activation function to all the mac's cells, resulting in a relative probability distribution of winning over the cells of each CM
	Step 11: Convert relative win probability distributions to absolute distributions
	Step 12: Pick winners in the mac's CMs, i.e., activate the SDC
	Learning policy and mechanics
	Learning arbitrarily complex nonlinear similarity metrics
	Neural implementation of CSA

	CSA: Retrieval Mode
	CSA: Simple Retrieval Mode
	Definitions of Symbols Used Herein

	Results
	Study 1: Spatiotemporal SISC Property
	Study 2: Single-Trial Learning of Sets of Longer Sequences
	Study 3: Spatiotemporal Best-Match Retrieval
	Constant-time retrieval


	Summary and Conclusion
	Acknowledgment
	Supplementary Material
	References

	Deformation-specific and deformation-invariant visual object recognition: pose vs. identity recognition of people and deforming objects
	Introduction
	Methods
	Experimental Design
	Stimulus Creation
	Training
	Overview of the VisNet Architecture
	Information Measures of Performance

	Results
	Humans
	Recognition of individuals independently of pose
	Recognition of pose independently of individual

	Flag Objects
	Recognition of flag country independently of deformation (windspeed)
	Recognition of windspeed (deformation) independently of flag country

	Flag Capacity
	Pose Generalization to New Human Stimuli

	Discussion
	Acknowledgments
	References
	Appendix
	The Architecture of VisNet
	The trace rule
	The network implemented in VisNet
	Competition and lateral inhibition
	The input to VisNet
	Measures for network performance
	Information theory measures
	Pattern association decoding




	Competition improves robustness against loss of information
	1. Introduction
	2. Materials and Methods
	2.1. Dataset and Preprocessing
	2.2. Models and Training
	2.2.1. Fast Independent Component Analysis
	2.2.2. Non-Negative Matrix Factorization with Sparseness Constraint
	2.2.3. Predictive Coding/Biased Competition
	2.2.4. The Hebbian Neural Network

	2.3. Classification
	2.4. Visualization of Weights and Receptive Fields

	3. Results
	3.1. Learned Receptive Fields
	3.2. Classification Accuracy Under Occlusion
	3.3. Effect of Occlusion on Activity Pattern
	3.4. Selective Inhibition in the Hebbian Neural Network

	4. Discussion
	Funding
	References
	Appendix
	Computing Neural Activity in the HNN
	Changes in Neural Learning of the HNN


	From image processing to computational neuroscience: a neural model based on histogram equalization
	Introduction
	Image Processing for Contrast Enhancement
	Histogram Equalization
	Perceptually-Based Contrast Enhancement

	A New Neural Model
	Connection with Neuroscience
	Lightness Induction
	Proposed Model

	The Proposed Model Predicts Induction and Improves Efficiency
	Predicting Lightness Induction
	Efficiency: Redundancy Reduction and Contrast Enhancement

	Conclusion and Future Work
	Acknowledgments
	References
	Appendix

	Back Cover



