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Editorial on the Research Topic

Emerging engineering approaches in cancer immunotherapy
Asanunprecedentedapproach, cancer immunotherapyhas transformedcancer treatment.

However, only aminorityofpatientsbenefits fromcancer immunotherapy. Inorder to improve

the efficacy of cancer immunotherapy and reduce the occurrence of immune-related adverse

reactions, emerging engineering approaches have been explored for cancer immunotherapy.

This invited Research Topic is composed of 16 articles, including 4 original research papers, 8

review articles, 1 minireview article, 1 opinion article, 1 perspective article and 1 case report,

contributed by a total of 109 researchers from all over the world (Total views: 53,987; as of July

26, 2022). This Research Topic covers a range of novel engineering approaches for cancer

immunotherapy, including engineered T cells therapy (Xu et al.), bacteria-based synergistic

therapy (Bao et al.), bioinspired membrane-coated nanoplatform (Mu et al.), and injectable

hydrogel delivery system (Liu et al.), and so on.

Cancer has been threatening human beings with incurable, high mortality and high

recurrence rate. Compared with non-tumor patients, tumor patients are more susceptible to

SARA-Cov-2 andhave poor prognosis (Huang et al.). Traditional therapeutic includes surgery,

chemotherapy, radiotherapy, etc. To seek better treatment strategies, it is crucial to understand

themechanismof tumoroccurrence anddevelopment.OverexpressedNPM1promotes tumor

growth. Liu et al. analyzed TCGA and GEO data and found that NPM1 is a prognostic

biomarker related to immune infiltration in lung adenocarcinoma (LUAD), and is related to

m6A modification and glycolysis. As an effective target for the diagnosis and treatment of

LUAD, this provides anew strategy for the therapyofLUAD.Histone acetylationplays a role in

regulating tumorigenicity, tumor progression, and tumor microenvironment. Xu et al.

comprehensively analyzed 36 histone acetylation regulators in hepatocellular carcinoma
frontiersin.org
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(HCC) for the first time, and found a close correlation between

histone acetylation patterns and tumor malignant pathways and

tumor microenvironment, which is an important indicator for

hepatocytes and provides new strategies for personalized and

precise immunotherapy and prognosis of cancer.

So far, immunotherapy has a place in cancer treatment, such as

the applicationof immune checkpoint inhibitors forHCC(Liu et al.).

Combining traditional therapies with immunotherapy plays an

important role in breast cancer (Zhang et al.). A case report has

confirmed that combination of penpulimab and anlotinib can

successfully treat extensive-stage small-cell lung cancer (ES-SCLC)

(Zhang et al.). Engineered T-cell therapy includes adoptive T-cell

therapy (ACT) (Xu et al.), amongwhich chimeric antigen receptor T

Cells (CAR-T) therapy has received extensive attention, especially in

hematological tumors. Nonetheless, engineered T-cell therapy faces

many challenges that hinder its clinical application. To accelerate the

development of ACT, suitable experimental models and test

platforms can be selected. Xiao et al. demonstrated that

immunocompetent microphysiological system (iMPS) could triple-

culture three-dimensional (3D) colorectal tumor microtissues, 3D

cardiac microtissues, and human-derived natural killer cells in the

samemicrofluidic network, andwas able to simulate the in vivo state

for corresponding tests. This provides new approaches for efficacy

and early safety testing of new candidate for ACTs. For a more

economically desirable effect, regenerable human induced

pluripotent stem cells (iPSCs) were genetically engineered to

differentiate into immune cells with enhanced antitumor

cytotoxicity, increased persistence and decreased immunogenicity.

CAR-T cells derived from iPSCs can be pre-prepared as off-the-shelf

products and applied in a large number of patients, offering great

promise for the next generation of ACT (Netsrithong et al.). CAR-T

therapy can create new complications such as cytokine release

syndrome, neurotoxicity, and even fatal cerebral edema. CD28-

CAR heterodimerization may be an important cause of severe

neurotoxicity (Ferreira et al.). To reduce its systemic toxicity, in

vivoCAR-T cell therapy induced by gene editing tools can serve as a

new generation of CAR-T cell therapy (Xin et al.). The development

of CAR-T therapy in solid tumors is still in its infancy. By adopting

some nanotechnology, such as nanozymes, RNA vaccines, etc., to

help CAR-T cells target and accumulate in solid tumors, or to

s t imu la t e CAR-T ce l l s by remode l ing the tumor

microenvironment, improve the survival rate and proliferation rate

of CAR-T cells, and provide new ideas for the application of CAR-T

cells in solid tumors (Mi et al.). Tissue resident memory CD8+ T

(Trm) lymphocytes exist in various digestive tract cancers. CD8+

Trm cells own strong cytotoxicity, have ability to directly kill

epithelial-derived tumor cells, and are important for maintaining

the homeostasis of digestive tract mucosa and anti-tumor. But the

application of CD8+ Trm cells in gastrointestinal cancers is still in its

early stages. Specific drug therapy and cancer vaccine therapy

targeting tumor-associated CD8+ Trm cells may become an

important direction for precision cancer therapy (Mei et al.).
Frontiers in Oncology
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In addition to engineered T-cell therapy, other approaches

have also been used to combat the challenges of cancer

immunotherapy. Injectable hydrogel as a unique platform that

can target the immunosuppressive tumor microenvironment

have the advantages of good biocompatibility, good

biodegradability and low toxicity (Liu et al.). Bioinspired

membrane-coated nanoplatform have opened up novel

research directions for cancer immunotherapy due to superior

immune regulation and excellent tumor targeting (Mu et al.).

The advantage of bacteria targeting tumor makes them an

excellent platform for combination with immunotherapy.

Optimizing bacteria-based therapy through strategies such as

bioengineering or chemical modification can avoid the safety

issues posed by this therapy (Bao et al.).

In general, this Research Topic reports the application of

novel engineering approaches in cancer immunotherapy, which

provides new ideas and strategies for cancer immunotherapy.

Solving the challenges faced in cancer immunotherapy by

various means has made an essential contribution to clinical

translation and provides new hope for cancer patients.
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Lung Adenocarcinoma and
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Background: Overexpression of NPM1 can promote the growth and proliferation of
various tumor cells. However, there are few studies on the comprehensive analysis of
NPM1 in lung adenocarcinoma (LUAD).

Methods: TCGA and GEO data sets were used to analyze the expression of NPM1 in
LUAD and clinicopathological analysis. The GO/KEGG enrichment analysis of NPM1 co-
expression and gene set enrichment analysis (GSEA) were performed using R software
package. The relationship between NPM1 expression and LUAD immune infiltration was
analyzed using TIMER, GEPIA database and TCGA data sets, and the relationship
between NPM1 expression level and LUAD m6A modification and glycolysis was
analyzed using TCGA and GEO data sets.

Results: NPM1 was overexpressed in a variety of tumors including LUAD, and the ROC
curve showed that NPM1 had a certain accuracy in predicting the outcome of tumors and
normal samples. The expression level of NPM1 in LUAD is significantly related to tumor
stage and prognosis. The GO/KEGG enrichment analysis indicated that NPM1 was
closely related to translational initiation, ribosome, structural constituent of ribosome,
ribosome, Parkinson disease, and RNA transport. GSEA showed that the main
enrichment pathway of NPM1-related differential genes was mainly related to mTORC1
mediated signaling, p53 hypoxia pathway, signaling by EGFR in cancer, antigen activates
B cell receptor BCR leading to generation of second messengers, aerobic glycolysis and
methylation pathways. The analysis of TIMER, GEPIA database and TCGA data sets
showed that the expression level of NPM1 was negatively correlated with B cells and NK
cells. The TCGA and GEO data sets analysis indicated that the NPM1 expression was
significantly correlated with one m6A modifier related gene (HNRNPC) and five glycolysis
related genes (ENO1, HK2, LDHA, LDHB and SLC2A1).
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Conclusion: NPM1 is a prognostic biomarker involved in immune infiltration of LUAD and
associated with m6Amodification and glycolysis. NPM1 can be used as an effective target
for diagnosis and treatment of LUAD.
Keywords: NPM1, lung adenocarcinoma, immune infiltration, m6A modification, glycolysis
INTRODUCTION

Recent studies show that lung adenocarcinoma (LUAD) is the
second most diagnosed cancer and the leading cause of cancer
death worldwide (1). Despite improved diagnosis and treatment
strategies for lung disease, LUAD patients still have a high
mortality rate and poor prognosis (2). The development of
LUAD is a complex multi-step process, which may be closely
related to the abnormal expression of some genes. Therefore, a
better understanding of the molecular mechanisms of LUAD
could provide more accurate biomarkers for tumor diagnosis
and treatment.

Nucleophosmin 1 (NPM1) is a multifunctional protein that is
mainly localized in nucleoli and shuttles between the nucleus and
cytoplasm (3). In recent years, the focus of NPM1 research has
gradually shifted from hematological diseases to solid tumors (4,
5). Previous studies have demonstrated that NPM1 is
overexpressed in several types of tumors and promotes the
occurrence and progression of tumors (6–8). Our previous
studies found high expression of NPM1 in LUAD, but failed to
investigate the biological function of NPM1 more broadly (9).

Tumor immunotherapy, N6-methyladenosine (m6A)
modification and targeted glycolytic pathway are hot spots in
cancer therapy, which have been used for a wide variety of
applications in the research and treatment of LUAD. However,
there have been few studies on the multifaceted analysis of
NPM1 in LUAD, especially the relationship between NPM1
with LUAD immunotherapy, glycolysis and m6A modification.

In this study, we downloaded The Cancer Genome Atlas
(TCGA) LUAD data sets and Gene Expression Omnibus (GEO)
data sets. Bioinformatics analysis was performed using R
software package and other online databases to investigate
differences in NPM1 expression in different cancers, and cell
assay and immunohistochemistry (IHC) were used to verify
differences in NPM1 expression between LUAD samples and
normal samples. The NPM1 co-expression gene network in
LUAD was analyzed from multiple aspects, and the biological
functions and signal transduction pathways of these genes were
analyzed. Finally, the relationship between NPM1 and tumor
immune cell infiltration, m6A and glycolysis related genes was
discussed, which is helpful to understand the possible
mechanism of LUAD.
MATERIALS AND METHODS

Ethics Statement
The protocol of this study had been approved by the Ethics
Committee of Taihe Hospital Affiliated of Hubei University of
org 28
Medicine (Shiyan, China) and conducted according to the
principles stated in the Declaration of Helsinki.
Expression of NPM1 in LUAD
We used Oncomine (www.oncomine.org) (10, 11) online
database and TCGA data sets (www.tcga-data.nci.nih.gov/tcga)
(12) to analyze the difference of NPM1 expression in different
tumors. Oncomine database used Student’s t test to compare the
expression level of NPM1 in cancer samples and control group,
and selected data with fold change > 2 and P value < 0.000001.
We also analyzed the LUAD data sets in TCGA (n = 594) and
GEO (www.ncbi.nlm.nih.gov/geo; GSE31210, n = 246) (13) data
sets to study the difference of NPM1 expression between tumor
tissues and normal tissues. The relationship between NPM1
expression level and clinicopathological characteristics of
LUAD patients was studied by analyzing the clinical data of
LUAD data sets in TCGA database, and the prognostic and
diagnostic value of NPM1 in LUAD was evaluated by Cox model
and ROC curve. Finally, we verified the differential expression of
NPM1 in LUAD and normal samples by qRT-PCR and IHC
staining. The specific procedures refer to previous studies (14),
and see the Supplementary Materials for details.
Enrichment Analysis of NPM1 Gene
Co-Expression Network In LUAD
The TCGA LUAD data sets was analyzed using the stat packet of
R software to study the co-expression genes related to NPM1
expression. Pearson’s correlation coefficient was calculated to test
the statistical correlation, and ggplot2 package of R software was
used to draw volcano map and heat map for display. Gene
ontology (GO) function and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of co-expressed
genes were performed by clusterProfiler package (version: 3.18.0)
(15) of R software, and visual analysis of data was performed by
ggplot2 software package.
Gene Set Enrichment Analysis
To further understand the underlying mechanism of NPM1, we
divided samples from the TCGA LUAD data sets into two
groups based on the median expression level of NPM1 and
performed GSEA (www.gsea-msigdb.org/gsea/index.jsp) (16)
to investigate whether genes in the two groups were rich in
meaningful biological processes. The annotated gene set
c2.cp.v7.2.symbols.gmt [Curated] was selected as the reference
gene set. FDR (qvalue) < 0.25 and P < 0.05 were considered
statistically significant.
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Correlation Between NPM1 and Tumor
Immune Infiltrating Cells
To further explore the potential immunomodulatory
mechanism of NPM1 in the regulation of tumor-infiltrating
immune cells, we used the TIMER database (www.cistrome.
shinyapps.io/timer) (17, 18) to evaluate the correlation between
NPM1 expression in TCGA LUAD samples and immune
infiltrating cells. Immune infiltrating cells include B cells,
neutrophils, CD4+ T cells, macrophages, CD8+ T cells and
dendritic cells. We analyzed the relationship between NPM1
copy number variation (CNV) and immune cell infiltration
using the somatic copy number alteration (SCNA) module in
the TIMER database. R’s CIBERSORT (19) software package
was used to detect the proportion of 22 immune cells in LUAD
samples with high and low NPM1 expression. We further
performed Kaplan-Meier curve analysis to investigate the
differences in survival between high and low expression levels
of NPM1 and immune cell. In addition, we analyzed the
association between NPM1 and immune cell marker genes in
LUAD samples using TIMER, GEPIA, and TCGA databases.
Immune cell markers are selected from the website of R&D
Systems (www.rndsystems.com/cn/resources/cell-markers/
immune-cells).

Correlations of NPM1 Expression With
m6A Modification in LUAD
The R software package was used to analyze the correlation
between the NPM1 expression and the m6A related genes
expression in the GSE31210 and TCGA LUAD data sets,
including ZC3H13, YTHDF3, HNRNPA2B1, IGF2BP1,
IGF2BP3, YTHDC2, YTHDF1, FTO, HNRNPC, METTL14,
METTL3, WTAP, RBM15, ALKBH5, IGF2BP2, RBMX,
RBM15B, YTHDC1, VIRMA and YTHDF2 (20). R software
package was used to analyze the proportion of m6A related
genes in LUAD samples with high and low NPM1 expression.
The Kaplan-Meier curve showed the relationship between he
expression of related genes and the prognosis of LUAD. The data
were analyzed visually by ggplot2 software package.

Correlations of NPM1 Expression With
Glycolysis in LUAD
To further analyze the correlation between NPM1 expression
and LUAD glycolysis, R software package was used to analyze the
correlation between expression of NPM1 and glycolysis related
genes in GSE31210 and TCGA LUAD data sets, including ENO1,
G6PD, HK1, HK2, LDHA, LDHB, PDHB, PDK3, PDK4, PGK1,
PKM, SLC2A1, SLC2A2 and SLC2A3. The proportion of
glycolysis related genes in LUAD samples with high and low
NPM1 expression was analyzed by R software package. Kaplan-
Meier curves showed the relationship between the expression of
related genes and the prognosis of LUAD. The software package
ggplot2 was used for visual analysis of the data. To further
confirm the idea that NPM1 overexpression affects the glycolysis
of LUAD, we retrospectively analyzed images of 40 LUAD
patients who underwent 18F-FDG PET/CT scans and analyzed
them with IHC scores of the corresponding surgically resected
Frontiers in Immunology | www.frontiersin.org 39
tissues to explore the possibility that NPM1 may influence the
glycolysis process of LUAD.
RESULTS

Pan-Cancer Analysis of NPM1 mRNA
Expression in Different Databases
We used Oncomine online database and TCGA data sets to
analyze the difference of NPM1 mRNA expression between
LUAD group and control group. Oncomine database analysis
showed that the expression of NPM1 in colorectal cancer (21–
24), head-neck cancer (25), kidney cancer (26–28), leukemia
(29), liver cancer (30), lung cancer (31, 32), lymphoma (33) and
sarcoma (34) was higher than that in normal tissues. The
expression of NPM1 in breast cancer (35) was lower than that
in normal tissues (Figure 1A). Table 1 summarizes the details of
NPM1 expression in various cancers.

We further analyzed the expression of NPM1mRNA in human
tumors using TCGA data sets. Figure 1B shows the difference of
NPM1 in different tumor tissues and normal tissues. Compared
with normal tissues, the expression level of NPM1 was significantly
increased in BRCA (breast invasive carcinoma), CHOL
(cholangiocarcinoma), COAD (colon adenocarcinoma), ESCA
(esophageal carcinoma), GBM (glioblastoma multiforme), HNSC
(head and neck squamous cell carcinoma), KIRC (kidney renal
clear cell carcinoma), LIHC (liver hepatocellular carcinoma),
LUAD (lung adenocarcinoma), LUSC (lung squamous cell
carcinoma), PRAD (prostate adenocarcinoma), READ (rectum
adenocarcinoma) and STAD (stomach adenocarcinoma), while it
was significantly decreased in KICH (kidney chromophobe) and
UCEC (uterine corpus endometrial carcinoma).

Expression Levels of NPM1 in
LUAD Patients
We analyzed LUAD data sets from TCGA and GEO to
investigate the differential expression of NPM1 in LUAD
samples and normal samples. Analysis of both TCGA and
GEO data showed that the expression level of NPM1 was
significantly increased in LUAD samples compared to the
control group (Figures 1C, D). To further prove the accuracy
of the predicted results, qRT-PCR and IHC staining experiments
were used to further verify the results. qRT-PCR results showed
that the expression level of NPM1 mRNA was significantly
increased in human lung adenocarcinoma cell lines compared
with normal human lung epithelial cells (Figure 1G). IHC
staining showed that NPM1 was mainly expressed in the
nucleus of LUAD cells. The NPM1 IHC score in tumor sample
tissue was significantly higher than that in paracancerous tissue
(Figures 1H, I). These results suggest that NPM1 overexpression
may contribute to the progression of LUAD. To further evaluate
the prognostic and diagnostic potential of NPM1 in LUAD, we
performed Cox regression model and ROC curve analysis. The
results of Cox regression model analysis showed that high
expression of NPM1 in LUAD predicted worse survival (HR =
1.51(1.13-2.02), P = 0.006) (Figure 1E). The results of ROC
analysis showed that NPM1 had a good prediction accuracy for
July 2021 | Volume 12 | Article 724741
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LUAD, and the area under the ROC curve was 0.785 (95%CI:
0.744-0.827) (Figure 1F).

To further determine the potential importance of NPM1 in
clinical Settings, we analyzed clinical outcomes from TCGA
LUAD samples. The results showed (Figure 2) that the
expression of NPM1 in Stage II group was significantly higher
than that in Stage I group. The expression of NPM1 in T4 group
was higher than that in T1, T2 and T3 groups. The expression of
NPM1 in N0 group was lower than that in N1 and N2 groups.
Frontiers in Immunology | www.frontiersin.org 410
During OS events, NPM1 expression was significantly higher in
patients who died than in the surviving group. Similarly, NPM1
expression was significantly higher in patients who died than in
the survival group during DSS events.

Enrichment Analysis of NPM1 Gene
Co-Expression Network in LUAD
We used the stat package of R software to analyze the co-
expressed genes associated with NPM1 expression in the
A B

C D

G H

E F

I

FIGURE 1 | The expression of NPM1 in lung adenocarcinoma (LUAD) and pan-carcinoma. (A) NPM1 mRNA expression levels in pan-cancer were measured using
Oncomine. (B) Pan-cancer data downloaded from the TCGA data sets were used to assess NPM1 mRNA expression levels. (C) Difference in expression of NPM1
between LUAD and matched normal tissues in TCGA data sets. (D) Difference in expression of NPM1 between LUAD and normal tissues in GSE31210 data sets.
(E) The survival curve of NPM1. (F) ROC curve analysis of NPM1 diagnosis. (G) Difference of expression of NPM1 in LUAD cell lines and human normal lung
epithelial cell lines. (H) Immunohistochemistry assay was used to analyze the expression of NPM1 in LUAD tissues and paracarcinoma tissues. (I) The mean NPM1
IHC score in LUAD tissue was significantly higher than that of matched paracarcinoma tissue. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. ns, not significant.
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LUAD data sets of TCGA. Only the data of protein-coding
genes were retained. As shown in Figure 3A, 5845 genes were
positively correlated with the expression of NPM1, and 4625
genes were significantly negatively correlated with the
expression of NPM1 (P < 0.05). When the threshold
selection was cor > 0.7 and P < 0.05, four genes showed the
strongest correlation, namely RACK1 (cor = 0.747, P = 1.196E-
96), BTF3 (cor = 0.734, P = 1.867E-91), RPL26L1 (cor = 0.714,
P = 1.273E-84) and NHP2 (cor = 0.704, P = 2.323E-81). The
heat map showed the top 50 important genes positively and
negatively correlated with NPM1 expression, respectively
(Figures 3B, C). The detailed description of co-expressed genes is
shown in Supplementary Table 1.

The GO function and KEGG pathway enrichment analysis of
the top 200 co-expressed genes positively correlated with NPM1
expression were performed by R software package. Under the
condition of p.adj < 0.05 and qvalue < 0.2, NPM1 co-expressed
genes were involved in 156 biological process (GO-BP), 60 cell
component (GO-CC), 16 molecular function (GO-MF) and 5
KEGG. The bubble graph demonstrates the top 5 messages for
GO-BP, GO-CC, GO-MF and KEGG, respectively. GO
functional annotations showed that NPM1 co-expressed genes
were mainly involved in the translational initiation, ribosome,
and structural constituent of ribosome (Figures 3D–F). KEGG
pathway analysis demonstrated that the co-expression of NPM1
was primarily associated to the ribosome, Parkinson disease,
and RNA transport (Figure 3G). Supplementary Table 2
summarized the details of the GO function and KEGG
pathway of NPM1 co-expression enrichment analysis.
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Gene Set Enrichment Analysis
To characterize the potential function of NPM1 gene, GSEA was
performed on the differential genes. A total of 419 gene sets were
found, including mTORC1 mediated signaling (FDR = 0.205,
P = 0.036), p53 hypoxia pathway (FDR = 0.205, P = 0.045),
signaling by EGFR in cancer (FDR = 0.205, P = 0.039), antigen
activates B cell receptor BCR leading to generation of second
messengers (FDR = 0.159, P = 0.006), aerobic glycolysis (FDR =
0.163, P = 0.007), methylation (FDR = 0.205, P = 0.035)
(Figure 4). Detailed enrichment analysis information is shown
in Supplementary Table 3.
Correlation Between NPM1 and Tumor
Immune Infiltrating Cells
We used the TIMER database to analyze the correlation between
NPM1 expression and immune infiltrating cells in LUAD. The
results showed that the expression of NPM1 was negatively
correlated with the expression levels of B cells (r = -0.149, P =
1.03E-3), CD4+ T cell (r = -0.221, P = 8.89E-7) and macrophages
(r = -0.117, P = 1.00E-2), while positively correlated with the
expression levels of CD8+ T cells (r = 0.104, P = 2.23E-2)
(Figure 5A). At the same time, we found that NPM1 CNV has
a closely association with the degree of infiltration of B cell,
CD4+ T cell, macrophages, neutrophils and dendritic
cell (Figure 5B).

CIBERSORT analysis showed that NPM1 expression level had
correlation with tumor immune cell infiltration (Figure 5C),
including B cell memory (P < 0.001), B cell plasma (P = 0.003),
TABLE 1 | NPM1 expression in cancerous versus normal tissue in ONCOMINE.

Cancer Site Cancer Type P Value t−Test Fold Change Reference (PMID)

Breast Invasive Breast Carcinoma 1.51E-31 -24.245 -34.469 18438415
Colorectal Colon Adenocarcinoma 6.36E-9 7.443 2.299 11306497

Colon Adenoma 2.66E-18 13.932 2.737 18171984
Cecum Adenocarcinoma 6.08E-15 11.581 3.115 TCGA Colorectal
Colon Mucinous Adenocarcinoma 6.11E-11 9.054 3.475 TCGA Colorectal
Rectal Adenocarcinoma 3.11E-17 11.654 2.592 TCGA Colorectal
Colon Adenocarcinoma 1.10E-17 13.451 2.657 TCGA Colorectal
Colorectal Carcinoma 5.56E-12 8.599 2.158 20957034
Colon Adenocarcinoma 5.09E-14 8.859 2.209 17640062
Colon Adenoma 4.12E-8 10.752 2.714 20957034
Colon Carcinoma 8.28E-7 9.333 2.185 20957034
Colorectal Carcinoma 8.03E-14 14.326 3.487 20957034

Head-Neck Oral Cavity Squamous Cell Carcinoma 4.20E-8 6.277 2.232 21853135
Kidney Hereditary Clear Cell Renal Cell Carcinoma 1.93E-13 11.212 2.078 19470766

Non-Hereditary Clear Cell Renal Cell Carcinoma 1.27E-9 7.895 2.034 19470766
Clear Cell Renal Cell Carcinoma 3.22E-7 8.348 2.604 17699851
Clear Cell Renal Cell Carcinoma 1.38E-11 9.277 2.245 16115910

Leukemia Pro-B Acute Lymphoblastic Leukemia 1.65E-11 9.502 2.498 20406941
T-Cell Acute Lymphoblastic Leukemia 1.24E-25 12.948 2.316 20406941
Acute Myeloid Leukemia 6.46E-25 14.102 2.043 20406941

Liver Hepatocellular Carcinoma 2.84E-71 23.638 2.632 21159642
Hepatocellular Carcinoma 2.28E-8 7.333 2.421 21159642

Lung Lung Adenocarcinoma 1.28E-7 6.128 2.025 17540040
Squamous Cell Lung Carcinoma 2.29E-11 9.623 2.262 20421987

Lymphoma Burkitt’s Lymphoma 8.78E-8 8.028 3.979 18794340
Diffuse Large B-Cell Lymphoma 2.77E-7 6.644 3.860 18794340

Sarcoma Myxoid/Round Cell Liposarcoma 6.64E-7 9.520 2.786 20601955
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T cell CD4+ memory activated (P = 0.004), T cell regulatory
(Tregs) (P < 0.001), T cell gamma delta (P = 0.031), NK cell
activated (P = 0.036), Macrophage M0 (P < 0.001), Macrophage
M2 (P = 0.007), Myeloid dendritic cell resting (P = 0.032) and
Myeloid dendritic cell activated (P < 0.001). We further generated
Kaplan-Meier curve using the TIMER database to investigate the
differences in survival between high and low expression levels of
NPM1 and immune cell. We found B cell infiltration (P < 0.001),
dendritic cell infiltration (P = 0.048) and NPM1 expression (P=
0.017) to significantly correlate with LUAD prognosis (Figure 5D).

To evaluate the relationship between NPM1 and various
immune infiltrating cells of LUAD, TIMER, GEPIA databases
and TCGA LUAD data sets were analyzed to analyze the
association between NPM1 and immune marker genes of several
Frontiers in Immunology | www.frontiersin.org 612
immune cells (Table 2). All three analyses demonstrated that the
expression of NPM1 was associated with B cell and NK cell
immune marker genes, including CD19, MS4A1, CD79A,
B3GAT1, KIR3DL1 and CD7. The scatter plot showed the
correlation between NPM1 expression and B cell and NK cell
immune marker genes, respectively (Figure 6).

Correlations of NPM1 Expression With
m6A Modification in LUAD
Modification of m6A plays an important role in the development
of LUAD. By analyzing the GSE31210 and TCGA LUAD data
sets to investigate the correlation between NPM1 expression and
the expression of 20 m6A related genes in LUAD. The results
demonstrated that in the GSE31210 and TCGA LUAD data sets,
A B C

D E F

G H I

FIGURE 2 | Relationship between NPM1 mRNA expression and clinicopathological parameters in lung adenocarcinoma (LUAD) patients. The NPM1 mRNA
expression level was expressed by using ggplot2 package of R software for the patient characteristics of (A) age, (B) gender, (C) pathologic stage, (D) T stage,
(E) N stage, (F) M stage, (G) OS event, (H) DSS event and (I) PFI event. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. ns, not significant.
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the expression of NPM1 was significantly positively correlated
with ALKBH5, HNRNPC, IGF2BP1 and YTHDF2 (Figure 7A,
P < 0.05). In addition, NPM1 expression was significantly
positively correlated with HNRNPA2B1, METTL14, RBM15B,
RBMX, VIRMA, WTAP, YTHDF1 and YTHDF3 in the TCGA
LUAD data sets (P < 0.05), while NPM1 expression was
negatively correlated with HNRNPA2B1, YTHDC1 and
ZC3H13 expression in the GSE31210 data sets (P < 0.05).

The scatter plot shows the association between NPM1 and
m6A related genes expression (Figure 7B). At the same time,
TCGA LUAD samples were divided into high and low expression
groups according to the expression level of NPM1. We attempted
to analyze the m6A related genes differential expression between
high and low groups with NPM1 expression to determine whether
m6A modification was different between high and low groups
with NPM1 expression in LUAD (Figure 7C). The results
demonstrated that compared with the low expression group, the
Frontiers in Immunology | www.frontiersin.org 713
expressions of HNRNPC, METTL14, RBMX, VIRMA, WTAP,
YTHDF2 and YTHDF3 in the high expression group of NPM1
were increased (P < 0.05). Venn diagram showed both expression
correlation and differential expression of genes, including
HNRNPC and YTHDF2 (Figure 7D). Kaplan-Meier curve
showed that high expression of HNRNPC was strongly
associated with poor prognosis of LUAD (P = 0.001), while
YTHDF2 expression was not associated with poor prognosis of
LUAD (P = 0.295) (Figure 7E). These results suggest that NPM1
may be closely related to the m6A modification of LUAD,
especially through its regulation with HNRNPC, and ultimately
affect the progression and prognosis of LUAD.

Correlations of NPM1 Expression With
Glycolysis in LUAD
Glycolysis of tumor cells plays an important role in the
progression of LUAD. By analyzing the GSE31210 and TCGA
A B C

D E

F G

FIGURE 3 | Enrichment analysis of NPM1 gene co-expression network in lung adenocarcinoma (LUAD). (A) Volcano map showed co-expression genes associated
with NPM1 expression in TCGA LUAD data sets. (B, C) Heat maps showed the top 50 co-expression genes positively and negatively correlated with NPM1
expression in the LUAD data sets. (D–F) Enrichment analysis of gene ontology (GO) terms for NPM1 co-expression genes. (G) Enrichment analysis of Kyoto
Encyclopedia of Genes and Genomes (KEGG) terms for terms for NPM1 co-expression genes.
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LUAD data sets to investigate the correlation between NPM1
and the expression of 14 glycolysis related genes in LUAD. The
results showed that the expression of NPM1 was significantly
positively correlated with ENO1, G6PD, HK2, LDHA, LDHB,
PDK3, PGK1 and SLC2A1 in the GSE31210 and TCGA LUAD
data sets (Figure 8A, P < 0.05). In addition, NPM1 expression
was significantly positively correlated with HK1, PDHB, PKM
and SLC2A3 in the TCGA LUAD data sets (P < 0.05), while
NPM1 expression was negatively correlated with PDK4
expression in the GSE31210 data sets (P < 0.05).

The scatter plot shows the association between NPM1 and
glycolysis related genes (Figure 8B). At the same time, we
attempted to analyze the differential expression of glycolysis
related genes between the high and low groups with NPM1
expression (Figure 8C). The results demonstrated that
compared with the low expression group, the expression of
ENO1, HK1, HK2, LDHA, LDHB, PDHB, PGK1, PKM,
SLC2A1 and SLC2A3 were increased in the high expression
group of NPM1 (P < 0.05). Venn diagram showed both
expression correlation and differential expression of genes,
including ENO1, HK2, LDHA, LDHB, PGK1 and SLC2A1
(Figure 8D). Kaplan-Meier curves showed that high expression
of ENO1, HK2, LDHA, LDHB and SLC2A1 was strongly
associated with poor prognosis in LUAD (P < 0.05), while
PGK1 expression was not (P > 0.05) (Figure 8E).

Further analysis showed a significant correlation between
FDG uptake and NPM1 immunohistochemical staining in
LUAD patients (Figure 9, P < 0.05). These results suggest that
NPM1 may be closely related to the glycolysis of LUAD,
Frontiers in Immunology | www.frontiersin.org 814
especially through the regulation of ENO1, HK2, LDHA,
LDHB and SLC2A1, and ultimately affect the progression and
prognosis of LUAD.
DISCUSSION

NPM1 is a highly conserved protein commonly found in
eukaryotic cells. It is mainly localized in the nucleus and can
shuttle between the nucleus and cytoplasm to participate in
nucleocytoplasmic signal transport (3, 4). Studies have shown
that the content of NPM1 in tumor cells and growing cells is
significantly higher than that in quiescent cells (36, 37).
Overexpression of NPM1 can promote the growth and
proliferation of various tumor cells (5–8). These results suggest
that NPM1 may be a potential target for tumor gene therapy.
However, there are few studies on the comprehensive analysis of
NPM1 in LUAD.

In the present study, the NPM1 expression in tumors was
predicted by bioinformatics analysis, and the expression
of NPM1 in LUAD was verified by cel l assay and
immunohistochemical staining. Through the analysis of
Oncomine database, we found NPM1 was overexpressed in 9
types of cancer, and analysis of the TCGA data set found that
NPM1 was overexpressed in 13 types of cancer, which was
consistent with the results of previous studies (4, 36, 37). Based
on the analysis of GEO and TCGA LUAD data sets, the
expression level of NPM1 in LUAD tissues was significantly
higher than that in normal tissues. The expression of NPM1 in
A B C

D E F

FIGURE 4 | Gene Set Enrichment Analysis. Pathway enriched in the p53 hypoxia pathway (A) mTORC1 mediated signaling (B) signaling by EGFR in cancer
(C) antigen activates B cell receptor BCR leading to generation of second messengers (D) methylation (E) and aerobic glycolysis (F).
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LUAD and normal samples was detected by qRT-PCR and IHC,
and the analysis results were consistent with the above results.
We also used ROC curve to analyze the ability of NPM1
expression to predict LUAD, and found that NPM1 had
certain accuracy in predicting the outcome of tumors and
normal samples. Previous studies have found that NPM1
expression had certain accuracy in predicting the prognosis of
gastric cancer (38) and prostate cancer (39). At the same time, we
also found that high expression of NPM1 predicted a worse
prognosis in patients with LUAD, suggesting that changing the
expression level of NPM1 may improve the prognosis in patients
with LUAD. Finally, NPM1 expression was found to be related to
tumor grade. In conclusion, NPM1 may serve as a potential
diagnostic and prognostic marker for LUAD.
Frontiers in Immunology | www.frontiersin.org 915
However, current studies on the role of NPM1 in tumor
mainly focus on its role in ribosome processing and assembly,
centrosome replication and molecular chaperone (4, 36, 37).
Other biological functions of NPM1 in LUAD are less studied. In
this study, R software package was used to analyze the co-
expression genes of NPM1 in LUAD, and it was found that the
expressions of RACK1, BTF3, RPL26L1 and NHP2 in LUAD had
the strongest correlation with NPM1. Wu et al. (40) found that
PHB2 promotes tumorigenesis via RACK1 in non-small cell lung
cancer. Jeon et al. (41) found that kahweol inhibited the
proliferation of NSCLC cells through ERK-mediated signaling
pathways and the downregulation of BTF3, while the role of
RPL26L1 and NHP2 in LUAD has not been reported. The GO
and KEGG function enrichment analysis of 200 co-expressed
A
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D

FIGURE 5 | Correlation between NPM1 and Tumor Immune Infiltrating Cells. (A) Correlation between the expression of NPM1 and immune infiltrating cells in lung
adenocarcinoma (LUAD). (B) NPM1 CNV affects the infiltrating levels of B cell, CD4+ T cell, macrophages, neutrophils and dendritic cell in LUAD. (C) Changes of 22
immune cell subtypes between high and low NPM1 expression groups in LUAD tumor samples. (D) Kaplan-Meier plots of immune infiltration and NPM1 expression
levels in LUAD. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. ns, not significant.
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genes positively correlated with NPM1 expression demonstrated
that the co-expression of NPM1 was primarily associated to
translational initiation, ribosome, and structural constituent of
ribosome. KEGG pathway analysis showed that the co-
expression of NPM1 was primarily associated to ribosome,
Parkinson disease, and RNA transport, which was like the
findings of previous studies (4). The GSEA pathway
enrichment analysis showed that the differential genes grouped
according to NPM1 expression were mainly enriched in the
mTORC1 mediated signaling, p53 hypoxia pathway, signaling by
Frontiers in Immunology | www.frontiersin.org 1016
EGFR in cancer, antigen activates B cell receptor BCR leading
to generation of second messengers, aerobic glycolysis and
methylation pathways. Previous studies have shown that the
occurrence and development of LUAD are closely related to the
first three pathways (42–44).

Immune infiltration of tumor cells is associated with lymph
node metastasis and prognosis of LUAD (45, 46). TIMER
database analysis showed that the expression level of NPM1 in
LUDA was negatively correlated with B cells, CD4+ T cells and
macrophages, and positively correlated with the expression level
TABLE 2 | Correlation analysis between NPM1 and immune cell marker gene in TIMER, GEPIA and TCGA.

Description Gene markers TIMER GEPIA TCGA

Purity Tumor Tumor

rho P rho P rho P

B cell CD19 -0.197 1.08E-05 -0.24 5.00E-08 -0.193 6.86E-06
MS4A1 -0.149 9.01E-04 -0.18 6.70E-05 -0.184 1.88E-05
CD79A -0.189 2.39E-05 -0.26 1.20E-08 -0.169 8.43E-05

CD8+ T Cell CD8A 0.013 7.69E-01 0.0061 8.90E-01 0.048 2.67E-01
CD8B -0.013 7.68E-01 -0.016 7.30E-01 0.037 3.99E-01
IL2RA 0.099 2.81E-02 0.15 1.20E-03 0.111 1.04E-02

Tfh CXCR3 -0.134 2.79E-03 -0.14 2.70E-03 -0.050 2.51E-01
CXCR5 -0.168 1.83E-04 -0.39 3.50E-09 -0.130 2.63E-03
ICOS -0.006 8.89E-01 0.019 6.70E-01 -0.023 5.99E-01

Th1 IL12RB1 -0.103 2.23E-02 -0.082 7.30E-02 -0.070 1.04E-01
CCR1 -0.019 6.69E-01 0.05 2.70E-01 0.045 2.97E-01
CCR5 -0.037 4.11E-01 0.0054 9.10E-01 -0.019 6.56E-01

Th2 CCR4 -0.031 4.93E-01 0.02 6.60E-01 -0.061 1.56E-01
CCR8 0.029 5.18E-01 0.091 4.60E-02 0.023 6.03E-01
HAVCR1 0.080 7.72E-02 0.088 5.20E-02 0.046 2.93E-01

Th17 IL21R -0.087 5.23E-02 -0.064 1.60E-01 -0.079 6.81E-02
IL23R 0.012 7.97E-01 0.097 3.30E-02 -0.088 4.15E-02
CCR6 -0.095 3.43E-02 -0.0089 8.50E-01 -0.103 1.73E-02

Treg FOXP3 -0.054 2.35E-01 -0.057 2.10E-01 0.011 8.00E-01
NT5E 0.104 2.12E-02 0.16 3.20E-04 0.162 1.72E-04
IL7R -0.008 8.53E-01 0.022 6.30E-01 -0.067 1.21E-01

T cell exhaustion PDCD1 -0.071 1.15E-01 -0.087 5.50E-02 -0.018 6.74E-01
CTLA4 -0.067 1.39E-01 -0.089 5.20E-02 -0.091 3.49E-02
LAG3 -0.141 1.74E-03 -0.19 2.50E-05 -0.072 9.61E-02

M1 Macrophage NOS2 -0.080 7.50E-02 -0.008 8.60E-01 0.007 8.81E-01
IRF5 -0.223 5.80E-07 -0.14 1.40E-03 -0.095 2.83E-02
PTGS2 -0.051 2.56E-01 -0.053 2.50E-01 -0.060 1.68E-01

M2 Macrophage CD163 0.009 8.38E-01 0.048 2.90E-01 0.036 4.09E-01
MRC1 0.011 8.14E-01 0.12 1.00E-02 0.029 5.03E-01
CD209 0.016 7.15E-01 0.11 2.10E-02 0.052 2.30E-01

TAM CCL2 -0.001 9.74E-01 0.0077 8.70E-01 0.071 1.02E-01
CD86 -0.021 6.36E-01 0.053 2.40E-01 0.046 2.87E-01
CD68 -0.055 2.24E-01 0.088 5.30E-02 0.034 4.30E-01

Monocyte CD14 -0.095 3.41E-02 -0.046 3.20E-01 0.050 2.50E-01
CD33 -0.062 1.66E-01 -0.0073 8.70E-01 0.005 9.12E-01
ITGAX -0.197 9.99E-06 -0.17 1.60E-04 -0.179 3.32E-05

Natural killer cell B3GAT1 -0.138 2.11E-03 -0.12 6.70E-03 -0.153 3.79E-04
KIR3DL1 -0.158 4.36E-04 -0.11 2.10E-02 -0.091 3.62E-02
CD7 -0.205 4.28E-06 -0.23 3.50E-07 -0.096 2.57E-02

Neutrophil FCGR3A 0.034 4.56E-01 0.096 3.50E-02 0.092 3.36E-02
CD55 -0.059 1.94E-01 0.058 2.00E-01 0.053 2.21E-01
ITGAM -0.090 4.46E-02 -0.029 5.20E-01 -0.038 3.81E-01

Dendritic cell CD1C -0.069 1.27E-01 -0.008 8.60E-01 0.012 7.77E-01
THBD -0.010 8.22E-01 0.087 5.60E-02 0.065 1.33E-01
NRP1 0.019 6.80E-01 0.12 9.40E-03 0.040 3.52E-01
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of CD8+ T cells. In addition, NPM1 CNV was significantly
correlated with the infiltration levels of B cells, CD4+ T cells,
macrophages, neutrophils and dendritic cells. These results
suggest that NPM1 may be involved in the immune response
to the tumor microenvironment of LUAD, especially to B cells,
CD4+T cells and macrophages. The proportion of 22 tumor
immune cells in LUAD was determined by CIBERSORT
analysis. We identified 10 types of immune cells, including
memory B cells, plasma B cells, activated memory CD4+ T
cells, regulatory T cells, gamma delta T cells, activated NK
cells, M0 macrophages, M2 macrophages, resting myeloid
dendritic cells and activated myeloid dendritic cell, and their
expression ratio showed significant differences with different
expression levels of NPM1. At the same time, survival analysis
also found that LUAD patients with B cell low expression group
had a worse prognosis. In addition, through the analysis of
TIMER, GEPIA database and TCGA data sets, we found that
the expression of NPM1 was significantly negatively correlated
with the gene markers of B cells and NK cells, suggesting that
NPM1 may affect the immune infiltration of LUAD by affecting
the expression of B cells and NK cells. B cells and NK cells are
important immune cells of the body, which have a wide range of
anti-tumor effects (47–50). Yang et al. (48) found that in lung
cancer cells, blocking the transforming growth factor-b signaling
pathway enhanced the antitumor effect of NK-92 cell therapy.
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Germain et al. (49) found that lung cancer patients with high
density B cells had a better prognosis. We speculate that the
overexpression of NPM1 inhibits the infiltration of B cells and
NK cells in LUAD, and ultimately further accelerates tumor
progression. We suggest that the high expression of NPM1 in
LUAD patients may trigger an anti-tumor immune response,
suggesting that NPM1 plays an important role in the immune
regulation of LUAD. However, more experiments are needed to
further verify our hypothesis, especially the relationship between
NPM1 and B cells and NK cells, respectively.

As a part of methylation modification, m6A modification is
one of the most common RNAmethylation modifications, which
can influence the occurrence and development of cancer by
regulating cancer-related biological functions (2, 51, 52). Li et al.
(51) found that FTO, as an m6A demethylase, is highly expressed
in acute myeloid leukemia and plays an important role in
carcinogenesis. However, there are few studies on the
relationship between NPM1 and m6A in solid tumors. In this
study, we found that the expression level of NPM1 was
significantly positively correlated with ALKBH5, HNRNPC,
IGF2BP1 and YTHDF2. We also found that the expression
levels of HNRNPC, METTL14, RBMX, VIRMA, WTAP,
YTHDF2 and YTHDF3 were significantly increased in the high
NPM1 expression group. Finally, Kaplan-Meier curve analysis
showed that LUAD patients with high HNRNPC expression had
A

B

FIGURE 6 | NPM1 expression correlated with B cell and natural killer cell in lung adenocarcinoma (LUAD). Markers include CD19, MS4A1 and CD79A of B cell
(A) B3GAT1, KIR3DL1 and CD7 of natural killer cell (B).
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a worse prognosis. We believe that the cancer promoting effect of
NPM1 gene is related to the modification of m6A, which may
affect the methylation level of LUAD through its association with
HNRNPC, and ultimately affect the progression of LUAD.

The enhancement of glycolysis is strongly associated to the
development of cancer and the poor prognosis. Targeting cancer
glycolysis metabolism is a new strategy for cancer treatment (53).
Zhu et al. (54) found that NPM1 promoted aerobic glycolysis and
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tumor progression in patients with pancreatic cancer by
inhibiting the fructose-1, 6-bisphosphatase 1. In this study, we
found that the expression level of NPM1 was significantly
positively correlated with ENO1, G6PD, HK2, LDHA, LDHB,
PDK3, PGK1 and SLC2A1.We also found that the expression
levels of ENO1, HK1, HK2, LDHA, LDHB, PDHB, PGK1, PKM,
SLC2A1 and SLC2A3 were significantly increased in the high
expression group of NPM1. Finally, Kaplan-Meier curve analysis
A

B

C

D E

FIGURE 7 | Correlations of NPM1 expression with m6A related genes in lung adenocarcinoma (LUAD). (A) GSE31210 and TCGA LUAD data sets analyzed the
correlation between the NPM1 and the m6A related genes expression in LUAD. (B) Draw a scatter plot to show the correlation between the NPM1 and the m6A
related genes expression, include ALKBH5, HNRNPC, IGF2BP1 and YTHDF2. (C) The differential expression of m6A related genes between high and low NPM1
expression groups in LUAD tumor samples. (D) Venn diagram showed both expression correlation and differential expression of genes, including HNRNPC and
YTHDF2. (E) Kaplan-Meier curve of HNRNPC and YTHDF2. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. ns, not significant.
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A

B

C

D E

FIGURE 8 | Correlations of NPM1 expression with glycolysis related genes in lung adenocarcinoma (LUAD). (A) GSE31210 and TCGA LUAD data sets analyzed
the correlation between the NPM1 and the m6A related genes expression in LUAD. (B) Draw a scatter plot to show the correlation between the NPM1 and the
glycolysis related genes expression, include ENO1, G6PD, HK2, LDHA, LDHB, PDK3, PGK1 and SLC2A1. (C) The differential expression of glycolysis related
genes between high and low NPM1 expression groups in LUAD tumor samples. (D) Venn diagram showed both expression correlation and differential
expression of genes, including ENO1, HK2, LDHA, LDHB, PGK1 and SLC2A1. (E) Kaplan-Meier curve of ENO1, HK2, LDHA, LDHB, PGK1 and SLC2A1.
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. ns, not significant.
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showed that LUAD patients with high expression of ENO1, HK2,
LDHA, LDHB and SLC2A1 had a worse prognosis. Further
analysis found a significant association between FDG uptake
and NPM1 immunohistochemical staining in LUAD patients.
We suggest that NPM1 may enhance the glycolytic ability of
LUAD by promoting the expression of ENO1, HK2, LDHA,
LDHB and SLC2A1, and thus promote the occurrence and
development of LUAD.

In conclusion, our study confirmed that NPM1 is
overexpressed in LUAD, and its expression level is related to
clinical case characteristics and prognosis of LUAD patients. The
expression level of NPM1 is closely related to the extent of
immune cell infiltration, which may reduce the anti-tumor effect
by inhibiting the infiltration of B cells and NK cells. NPM1 is
associated with m6A modification and glycolysis, and m6A
modification may promote the glycolysis and malignant
proliferation of LUAD by enhancing the stability of NPM1.
NPM1 can be used as a biomarker for the diagnosis, treatment
and prognosis of LUAD.
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Gynecologic malignancies, mainly including ovarian cancer, cervical cancer and
endometrial cancer, are leading causes of death among women worldwide with high
incidence and mortality rate. Recently, adoptive T cell therapy (ACT) using engineered T
cells redirected by genes which encode for tumor-specific T cell receptors (TCRs) or
chimeric antigen receptors (CARs) has demonstrated a delightful potency in B cell
lymphoma treatment. Researches impelling ACT to be applied in treating solid tumors
like gynecologic tumors are ongoing. This review summarizes the preclinical research and
clinical application of engineered T cells therapy for gynecologic cancer in order to arouse
new thoughts for remedies of this disease.

Keywords: gynecologic malignancies, engineered T cells, CAR-T, TCR-T, adoptive T cell therapy, immunotherapy
INTRODUCTION

Gynecologic malignancies are serious threats to women’s health worldwide. Although traditional
procedures like surgery, radiotherapy and chemotherapy have effectively decreased mortality,
researchers are seeking new ideas and strategies to reduce the recurrence and metastasis of
tumors, alleviate adverse drug reactions, as well as further improve the life quality of patients.

Adoptive T cell therapy (ACT) is one of the most powerful weapons among a wide range of
approaches focusing on our immune system. The basic principle of this treatment refers to
reinfusing autologous lymphocytes which are expanded, screened and modified in vitro to
patients for tumor regression mediated by T cells. Early preclinical research successfully proved
that with a genetically transferred synthetic receptor targeting antigen CD19, which is a broad
marker commonly expressed by B cell lymphoma cells, reinfused autologous T cells could eliminate
org July 2021 | Volume 12 | Article 725330123
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established B cell tumors in mice (1). Based on multiple tried-
and-true basic experiments, clinical trials later showed
prominent advantages of this kind of engineered T cells named
chimeric antigen receptor T cells (CAR-Ts) in patients with
hematological malignancies (2–5). Promoted by these significant
achievements, adoptive T cell therapy has proved to be the
potential adjuvant therapy for tumor treatment.

The application of natural tumor-infiltrating lymphocytes (TILs)
obtained from suspension or fragments of the resected tumor is the
earliest achievement of ACT. In 24th May, 2019, a TIL product
named LN-145 was granted as the breakthrough designation for
cervical cancer (6), exhibiting remarkable objective response rate
(ORR) and disease control rate (DCR) in treating cervical cancer
(7). Although TILs have higher concentration of specific T cells
comparing to peripheral T cells , the hostile tumor
microenvironment attenuates the long-term survival of functional
T cells, as TILs are sensitive to anergy, exhaustion and apoptosis. In
addition, the gathering of TILs requires joint efforts of surgeons to
obtain fresh tumor samples where effective lymphocytes could be
extracted. Groundbreakingly, engineered T cells, including T cell
receptor modified T cells (TCR-Ts) and CAR-Ts, currently have a
promising advance in tumor immunotherapy since they could be
genetically modified in structure to target specific tumor antigens or
to express cytokines ameliorating immunosuppressive tumor
microenvironment. Two CAR-T products have already been
Frontiers in Immunology | www.frontiersin.org 224
approved by the USA Food and Drug Administration (FDA) for
refractory leukemia and lymphoma immunotherapy (8, 9).

In this review, we discuss the application of engineered T cells
in gynecologic malignancies in preclinical and clinical trials, and
explore further opportunities of implicating this therapy in
clinical decision for gynecologic oncology. A brief timeline of
milestones associated with this field is arranged (Figure 1).
Pioneer clinical application of engineered T cells, critical
clinical trials carried out for gynecologic cancers and
commercial CAR-T agents and related synergist approved by
the FDA are included (10–12).
ENGINEERED T CELLS

Based on the gene editing technology, engineered peripheral T
cells with specific antigen binding receptors like TCRs or CARs
could further facilitate ACT progress compared with TILs. These
two therapies have different mechanisms and efficiency
preference for treating distinct tumors. Currently, mainstream
cell preparation methods include the following steps: (1)
obtaining frozen apheresis white blood cell (WBC) product
from patients; (2) the selection and enrichment of T cells by
corresponding selection beads; (3) activation of T cells via
addition of stimulating cytokines like interleukin (IL) 2 and
FIGURE 1 | Milestones of ACT. A brief summary of some landmark achievements in ACT development history with a focus on engineered T cells for treating
gynecologic malignancies from the year 2006 to 2021. Significant events include: (1) pioneer treatment of metastatic melanoma by TCR-T and B cell lymphoma by
CAR-T; (2) the first or the fastest progressing clinical trial of engineered T cells in different gynecologic tumors; (3) the acknowledgement of CAR-T, TIL and IL-15
products by FDA. ACT, adoptive T cell therapy; BMS, Bristol-Myers Squibb; CAR, chimeric antigen receptor; FDA, the Food and Drug Administration; IL, interleukin;
TCR, T cell receptor; TIL, tumor infiltrating lymphocyte.
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beads like anti-CD3/CD28 beads; (4) transduction of target CAR
or TCR genes through lentiviral, retroviral vectors or transposase
systems and so on; (5) expanding the number of T cells in vitro;
(6) cryopreservation.

T Cell Receptor Modified
T Cells (TCR-Ts) Therapy
TCRs are specific receptors on the surface of T cells capable of
recognizing peptide major histocompatibility complex (pMHC)
formed by peptide antigens presented by the MHC on tumor or
antigen presenting cells. The killing ability of CD8+ T cells
depends on the specific identification of cleaved peptide chains
bound to class I human leukocyte antigen (HLA) by TCRs,
therefore it is noteworthy that the function of TCRs only works
in HLA-appropriate patients. T cell sources derived from
individuals or humanized mice with matched HLA alleles and
sophisticated techniques are required for the personalized
production of TCRs. The alpha and beta chain pair of TCRs
can be genetically modified to target tumor antigens and thus T
cells transfected with these new TCRs can specifically recognize
and eliminate cancer cells. Recently, a non-virus solution using
the Sleeping Beauty (SB) transposons system to target unique
neoantigens was described (13), which exhibited advantages with
lower price and risk of random insertional mutagenesis.

Compared with the antibody-binding-like principle of CAR-
Ts, TCR-Ts can recognize target antigens more extensively since
they not only identify cell membrane antigens but also
intracellular tumor antigens presented by pMHC, inducing a
more orderly and durable immunological synapse formation
process. Particularly, the targeting of almost 90% solid tumors
relies on tumor specific antigens (TSAs) inside tumor cells, while
surface antigens are often tumor associated antigens (TAAs)
which can also be expressed by normal tissues to affect their
function. Besides, TCR-Ts follow the natural signaling pathway
to maintain their original regulatory mechanism, being more
sensitive to low-copy antigens than CAR-Ts. Consequently, the
potential of TCR-Ts dramatically outweighs CAR-Ts in treating
solid tumors (14). However, the utility of TCR-Ts in treating
solid tumors is progressing slowly. Currently, there is no market
approval for any TCR-T products. Several clinical trials are
still ongoing.

Chimeric Antigen Receptor
T Cells (CAR-Ts) Therapy
The most obvious character of CAR-T cells in contrast to TCR-T
cells is that CARs can directly bind antigens in an MHC-
independent fashion, therefore they are potentially able to
detect most of the surface-expressing targets in patients who
have various HLA types. This is particularly important for
immunotherapy because tumor cells losing MHC-associated
antigens are probable to escape immune surveillance. A CAR is
composed of an extracellular antigen-binding domain, most of
which is an antibody–derived single-chain variable fragment
(scFV), a transmembrane domain and an intracellular
signaling domain of the TCR CD3z chain to activate T cells
(15). The consisting improvements of CAR-T include the
Frontiers in Immunology | www.frontiersin.org 325
introduction of an additional co-stimulatory molecular CD28
or 4-1BB (CD137) intracellular domain (16), and inducers for
transgenic cytokines like IL-12 and IL-15 (17) (Figure 2).

The landmark of CAR-T therapy is the commercial CD19
specific CAR-T approved by the FDA for relapsed or refractory
acute lymphocytic leukemia (ALL). Two commercial agents,
tisagenlecleucel (Kymriah, Novartis) (9) and axicabtagene
ciloleucel (Yescarta, Kite Pharma) (8) were acknowledged in
2017. After this, brexucabtagene autoleucel (Tecartus, Kite
Pharma) (18), lisocabtagene maraleucel (Breyanzi, Bristol-
Myers Squibb) (19) and idecabtagene vicleucel (Abecma,
Bristol-Myers Squibb) (20) were approved successively by the
FDA for marketing, further promoting the clinical implement of
CAR-T therapy in hematological malignancies. Among these
agents, only Abecma targets B cell maturation antigen (BCMA),
others continue to focus on CD19.
STUDIES OF ENGINEERED T CELLS
IN COMMON MALIGNANT
GYNECOLOGIC TUMORS

Unlike the popularity of CAR-T therapy in hematological
malignancies, studies for broader swaths in the field of
gynecologic tumors are still in the bud. Antigen selection is
crucial in deciding treatment programs which lead to TCR-T or
CAR-T therapy and the treatment efficiency. Where the antigen
is expressed at the cell and tissue level should be the first
consideration by high-throughput, ultra-sensitive mass
spectrometry and other means when ACT is carried out.
Improvements could be reflected in the optimization of
antigen selection for patients with different types of
gynecological tumors in the future.

Ovarian Cancer
Ovarian cancer significantly jeopardizes the health of women
with high lethality. With advanced surgical treatment and
systematic care, the five-year relative survival rate of patients is
slightly promoted, but still less than 50% (21).

Armed with the knowledge that the melanoma-associated
antigen 4 (MAGE-A4) and the New York esophageal squamous
cell carcinoma 1 (NY-ESO-1) are commonly expressed by
ovarian cancer cells (26.4% and 3.6% respectively) (22), TCR-T
products targeting these two ideal antigens have been designed
and applied in clinical research. MAGE-A4c1032T cells are used
in HLA-A*02:01 (A2+) patients with MAGE-A4 positive tumors
including ovarian cancer in an ongoing phase I multi-tumor
study (NCT03132922). In cohort 3/expansion (28 patients), 7
patients with synovial sarcoma had partial response (PR), 11
patients had stable disease (SD), 5 patients had progressive
disease (PD) and the remaining 5 were non-evaluable. MAGE-
A4 specific TCR-T exhibited therapeutic potential and
manageable adverse effects at a dose range of (1.2~10) ×109

(23). In further research, a CD8a co-receptor was introduced
into CD4+ T cells alongside the engineered TCR (ADP-
A2M4CD8). These modified CD4+ T cells could in turn
July 2021 | Volume 12 | Article 725330
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elevate the cytotoxicity and expansion of effector CD8+ T cells
(24). NY-ESO-1 is the most broadly researched antigen with a
panel of phase I/II clinical studies ongoing (NCT01567891,
NCT03159585, NCT03691376, NCT03017131, NCT02869217).
TBI-1301 is a cell product which is genetically modified to
express NY-ESO-1 specific TCR. Butler et al. conducted a
phase Ib clinical trial using TBI-1301 to treat HLA-A*02:01+
or A*02:06+ patients with NY-ESO-1+ solid cancers
(NCT02869217). The ovarian patient had SD for 4.7 months
and the standard dose infused was 5×109 (25). Another study
used affinity enhanced autologous NY-ESO-1c259T cells for
treating HLA-A*02:01, *02:05, or *02:06 positive recurrent
ovarian cancer (NCT01567891). However, so far, no objective
tumor response has been recorded for 6 patients who completed
the research.

Mesothelin (Msln) is another frontier antigen for ovarian
cancer. Anderson et al. conducted a preclinical experiment with
Msln specific TCR1045 T cells. These T cells exhibited tumor
cytotoxicity both in ID8VEGF ovarian cancer cells and in murine
model, but the function was on the wane within 21 days. To
enhance the antitumor activity, engineered T cells were
repeatedly infused to mice and a maintained effect was seen.
The time to progression (TTP) for TCR1045 plus an irradiated
Frontiers in Immunology | www.frontiersin.org 426
peptide-pulsed splenocyte vaccine was longer than that of using
T cells alone or no-treatment group (112 days, 91 days, 77
days) (26).

Findings for targeting mesothelin in CAR-T therapy are also
of note. Haas et al. enrolled five patients with mesothelin
expressing recurrent ovarian cancer in a phase I study
(NCT02159716). The most significant result was seen in
ovarian cancer among multiple mesothelin+ tumors involved.
Patients received lentiviral transduced CART-meso cells with
different doses: two were infused with (1~3)×108/m2 cells, and
three were infused with (1~3)×107/m2 cells, both groups were
evaluated as SD for 28 days. Although the function of tumor
control was observed, these antitumor responses were transient
and limited (27). A case of patient with refractory epithelial
ovarian cancer after chemotherapy was reported recently. The
patient received two infusions of CAR-Ts encoded by genes
specific for mesothelin and the immune checkpoint inhibitors.
An antiangiogenic drug inhibiting vascular endothelial growth
factor receptor (VEGFR)-2 named apatinib was included in the
treatment. The follow-up assessment showed partial response
with attenuated diameter of liver metastatic nodules and a 17-
month survival (NCT03615313). Only slight adverse reactions
were observed (28). Zhao et al. revealed that humanized (hu)
FIGURE 2 | The development of CAR construction. A CAR is composed of an extracellular antigen-binding domain, most of which is an antibody–derived scFV,
a transmembrane domain and an intracellular signaling domain of the TCR CD3zchain to activate T cells. To enhance the antitumor ability of CAR-T, the design of
CARs has evolved over recent years. The second generation of CAR consists of an additional co-stimulatory domain, usually CD28 or 4-1BB (CD137) moieties to
improve the capacity of persistence and proliferation of T cells. An extra co-stimulatory domain (CD28 and 4-1BB or TLR2) is added in the third-generation of CAR
to further augment the efficacy of infused CAR-T cells. In the fourth generation of CAR, the intracellular segment of the cytokine receptor is also added to the CAR,
which effectively promotes the expansion of T cells. CAR, chimeric antigen receptor; scFv, antibody-derived single-chain variable fragment; TCR,
T cell receptor; TLR, toll-like receptor.
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CD19 specific CAR had 6-fold higher affinity compared with
murine CAR (29). Murine CAR has different structure domains
which tend to trigger adaptive immunity. Once immune
recognition of murine scFv is established, the therapeutic effect
would be considerably subdued. Improved strategy employing
huCART-meso cells to treat cancers commonly express
mesothelin is now recruiting candidates (NCT03054298). A
research using the fourth generation CAR-Ts for refractory or
relapsed ovarian cancer has just been initiated with outcomes
remaining to be seen (NCT03814447).

Mucin 16 (MUC16) is a glycosylated mucin widely expressed
in ovarian cancer, serving as a promising target for CAR-T
therapy. A phase I clinical trial is ongoing with MUC-16ecto
CAR-T cells to treat recurrent ovarian cancer (NCT02498912). 5
dose levels are planned for the assessment of the maximum
tolerated dose (3×105, 1×106, 3×106, 1×107, 3×107).
Furthermore, these CAR-T cells are modified to secrete IL-12,
which could improve T cell persistence and overcome
various inhibitions from the tumor microenvironment (30).
Nectin is a class of cell adhesion molecule which belongs to the
Ca2+-independent immunoglobulin superfamily proteins.
Nectin-4 is expressed in various organs during fetal
development but barely expressed in adults other than
placenta. In ovarian tumor tissues, nectin-4 is overexpressed
and plays a key role in tumor cell adhesion, migration,
aggregation and proliferation (31). Currently there is a phase I
clinical trial using the CAR-T, which involves in various
costimulatory domains and cytokines (IL-7 and CCL19, or IL-
12) to treat nectin-4 positive ovarian cancer (NCT03932565).
Recently, Garcia et al. provided evidence that T cells with CAR
targeting Müllerian inhibiting substance type 2 receptor
(MISIIR) were tumoricidal both in vitro and in vivo and no
reaction was reported to normal primary human cells. Especially,
MISIIR specific CAR-Ts lysed multiple human ovarian and other
gynecologic cancer cells, showing potency in treating gynecologic
malignancies in the clinic (32).

PRGN-3005 UltraCAR-T was engineered to express MUC-
16, membrane bound IL-15 (mbIL-15) to promote persistence of
T cells and the kill switch to ensure safety simultaneously. It was
applied in a phase I clinical trial for patients with advanced
and recurrent platinum-resistant ovarian cancer in 2019
(NCT03907527). This is a seminal gene and cellular therapy
which owns a non-viral multigenetic transfer patent to produce
UltraCAR-T cells without the need for in vitro proliferation, thus
shortening the waiting period from several weeks to one day.
This landmark study has the potential to allow the therapy
accessible to common patients by reducing costs. It also holds
promise for subverting the current pattern of CAR-T cell therapy
by regulating the immune system and tumor targeting in a more
precise fashion (33).

Studies have demonstrated that the combination of ACT and
immune checkpoint inhibitor (Pembrolizumab and Nivolumab)
can fight against T cell exhaustion induced by immune
checkpoints and augment the antitumor activity in the
treatment of advanced, recurrent or metastatic programmed
cell death protein ligand 1 (PD-L1) expressing gynecologic
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malignancies (34). Accordingly, a programmed cell death
protein 1 (PD-1) gene-knocked out transferred T cell product
has been promoted recently via gene editing technology
(CRISPR-Cas9, lentivirus technology, etc.). A phase I clinical
study evaluating the safety and efficiency of PD-1 gene-knocked
out CART-meso cells for treating mesothelin positive multiple
solid tumors is currently ongoing (NCT03747965). A clinical
trial of advanced refractory ovarian cancer using aPD-1 CART-
meso cell therapy combined with apatinib was also observed with
potential therapeutic effect, which is detailed mentioned
above (NCT03615313).

Cervical Cancer
Cervical cancer is one of the most common gynecologic
malignancies bothering middle-aged women, especially in
developing countries. Although the incidence and mortality of
cervical cancer have declined in recent years, the morbidity
crowd tends to be younger, which is still worthy of vigilance (35).

The infection with high-risk human papillomavirus (HR-
HPV) is a noted driver for the development of nearly all
cervical cancers. E6 and E7 oncoproteins are highly expressed
by HPV+ cervical cancer cells, becoming attractive therapeutic
targets for engineered T cells. Preclinical research revealed that
HPV-16 E6 (36)/E7 (37) specific TCR-Ts could detect and kill
HLA-A2+ HPV-16+ tumor cells in vitro without cross-reactivity
against human self-peptides. The antitumor avidity of E7 TCR-
Ts against cervical cancer was also verified in a murine model.

A phase I/II study of HLA-A2 restricted E6 TCR-Ts for HPV-
associated cancers (NCT02280811) was reported by Doran et al.
Other interventions include common conditioning regimen, and
systemic aldesleukin. Among 6 cervical cancer patients, 2 of
them displayed SD, one for 6 months, another for 4 months. The
percentage of E6 T cells in infused cells (range from
(1~170)×109) were 51% and 71% respectively. In the phase I
portion, no severe adverse effects were observed (38). A first-in-
human, phase I clinical trial of HLA-A2 restricted E7 TCR-Ts to
treat patients with metastatic HPV-16+ cancers has just
uploaded its report (NCT02858310). Two in five patients with
cervical cancer displayed PR for 8 months and 3 months, with T
cell portion in infused cells (range from (1~107)×109) being 97%
and 96%, respectively. One patient had SD for 3 months, and no
response was observed in the remaining two patients.
Researchers also proposed that genetic defects in the key
elements of the antigen presentation and interferon response
were responsible for treatment resistance of ACT (39). Some
patients combined the PD-1 blockade therapy to improve T cell
infiltration. In trial NCT03578406, five patients were treated with
E6 TCR-T monotherapy: two of them received 5×106/kg dose
and three received 1×107/kg dose. 28 days later, three patients
had SD, one patient had PD, one patient was loss to follow-up. In
another arm, two patients were infused with 5×106/kg and
1×107/kg of anti-PD-1 TCR-Ts respectively. The patient with
lower dose was assessed as SD at both day 28 and month 2 post-
infusion, showing promising efficiency for combining engineered
T cell therapy with immune checkpoint inhibitor for cervical
cancer patients (40).
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New therapeutic targets of CAR products have been widely
expanded via several preclinical researches which have
progressed to the stage of animal experiments. CD47 specific
CAR-Ts were proved to effectively kill ovarian, pancreatic, and
cervical cancer cell lines and retard pancreatic tumor growth in
mice (41). Recently, the antitumor efficiency of CART-meso cells
was illustrated in SiHa cells in vitro by elevated levels of IL-4、
IL-2、IL-5、tumor necrosis factor (TNF) a and interferon
(IFN) g secretion. The capacity in tumor control sustained for
about 1 week in vivo. Better results were obtained following the
second injection of T cells (42). Positive responses were also
observed in Hela, SiHa, ME-180 and C-33A cell lines and in
murine models through natural killer group 2D (NKG2D)/
NKG2D-ligand pathway (43).

Currently, a phase I/II study of CART-meso cells in treating
metastatic cancers including cervical cancer and ovarian
cancer has been terminated with only one patient assessed as
SD for > 3.5 months (NCT01583686). There is an ongoing
phase I/II clinical trial using CARs targeting antigens such as
GD2, prostate specific membrane antigen (PSMA), MUC-1,
mesothelin or other markers positive to cervical cancer
(NCT03356795). CD22 is often selected as the target for B
cell malignancy. Recently, a phase I study employed CD22
specific CAR-Ts to treat solid tumors, including cervical cancer
(NCT04556669). They also introduced the anti-PD-L1
monoclonal antibody to the CAR structure. More clinical
evidence regarding the efficiency of CAR-T therapy for
cervical cancer is required.

Endometrial Cancer
Endometrial cancer (EC) is the sixth most common cancer in
women, and this ranking may rise especially in western countries
(44). Although the 5-year survival rate of patients in the early
stage is 95%, it would sharply decrease to 16% to patients with
advanced or recurrent metastatic tumors (45).

There are not enough reports for the clinical assessment of
ACT in EC until now. Only one patient treated with 5×109 TBI-
1301 showed SD for 3.6 months without cytokine release
syndrome (CRS) in a phase Ib clinical trial which has been
mentioned above (NCT02869217). On 13 Nov 2020, a phase I/II
clinical trial has just been initiated using CAR-Ts targeting
alkaline phosphatase, placental (ALPP) for endometrial cancer
and ovarian cancer (NCT04627740). The primary outcome
measures related adverse events and the secondary outcome
measures ORR, progression-free survival (PFS) and the
number of transferred T cells.

Vulvar Squamous Cell Carcinoma
High-grade squamous intraepithelial lesion (HSIL) is a
precancerous lesion of vulvar squamous cell carcinoma
(VSCC) caused by HPV infection (46). The risk of cancer
development can be reduced by treating HSIL. TCR-Ts
targeting HPV-16 E6 protein thus provide a therapeutic
window for HSIL to further prevent VSCC. A related phase I
clinical trial was closed due to the lack of perceived clinical
activity observed in the study (NCT03197025). A phase II study
of HPV-16 E7 TCR-Ts for treating HSIL was also terminated
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without concrete results (NCT03937791). In a clinical study of
E7 specific TCR-Ts mentioned above, vulvar diseases are
included (NCT02858310).
THE CHALLENGES WITH ENGINEERED T
CELLS IN GYNECOLOGIC ONCOLOGY

Several challenges become apparent when it comes to the
promotion of engineered T cells. The major concern with
this therapy is the severe adverse effect. TAAs can also be
expressed by normal tissues, causing undesired on-target/off-
tumor toxicity. CD19 CAR-Ts could induce the deficiency of
normal CD19+B cells and cause weakened immunity. Besides,
some TCRs or CARs are not specific to target antigen, but
cross-react to other self-antigens. Taking MAGE-A3 specific
TCR-Ts as an example, in previous studies, there were fatal
events associated with injury in MAGE-A13 expressing tissues
like the nervous system (47) and titin of cardiac cells (48, 49).
MAGE-A13 was marginally expressed but unexpected and
deadly destructive. Antigen selection is the first consideration
in designing an ACT protocol. It is critical to choose ideal
ant igens that are tumor-specific , carcinogenic and
immunogenic in order to strengthen the antitumor efficiency
and reduce related toxicity simultaneously. In clinical trials
using TCR-Ts to treat gynecologic malignancies, the target
antigens involve: HPV16-E6/E7, NY-ESO-1, MAGE-A3,
MAGE-A4, mesothelin. Antigens used as CAR-T therapeutic
targets include: mesothelin, CD70, CD22, CD133, GD2,
PSMA, MUC1, MUC16, human epidermal growth factor
receptor 2 (HER-2), nectin-4, anti-alpha folate receptor
(FR-a), ALPP, B7-H3, TnMUC1 (Table 1). In recent years,
neoantigens have also emerged as a potential therapeutic
option for gynecologic tumors since they are induced by
somatic point mutations in tumor cells instead of co-
expression with normal tissues. Matsuda et al. have
successfully generated 3 neoantigen-specific TCRs through
whole-exome sequencing (WES) of 7 ovarian tumors and the
induction of peripheral blood mononuclear cells (PBMCs)
isolated from healthy donors. These T cells could recognize
their corresponding neoantigens although cross-reactivity to
the wild-type peptide was observed in one of them (50). As an
infant in the field of immunotherapy, it warrants further
investigation whether these neoantigens will continue to be
stably expressed by tumor cells.

CRS is another common threat particularly for CAR-T
treatment. The excessive stress reaction of immune system
would release superabundant cytokines such as TNF-a、IL-
1、IL-6、IL-12、IFN-a、IFN-g , leading to systemic
inflammatory response syndrome (SIRS) and multiple organ
failure. Grade 3 and 4 CRS can be life-threatening. In a
multicenter clinical trial using CD19 CAR-Ts to treat
refractory diffuse large B-cell lymphoma, 20% patients had
grade ≥3 CRS events. More seriously, a rare case of fulminant
haemophagocytic lymphohistiocytosis was reported (51). In
another trial of CD19 CAR-Ts treating refractory ALL, 3 cases
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TABLE 1 | Clinical trials of engineered T cells in gynecologic cancer immunotherapy (www.clinicaltrails.com).

Cancer Type antigen Stage and Result Host NCT

Ovarian cancer TCR-T MAGE-A4 Phase I (recruiting) University of Miami, USA NCT03132922
7 pts had PR, 11 had SD,
5 had PD

TCR-T NY-ESO-1 Phase IIa (completed with results) City of Hope National Medical Center, USA NCT01567891
No objective effects have been
reported

TCR-T NY-ESO-1 Phase I (completed without results) Zhujiang Hospital of Southern Mediacal University, China NCT03159585
TCR-T NY-ESO-1 Phase I (recruiting) Roswell Park Cancer Institute, USA NCT03691376
TCR-T NY-ESO-1 Phase I (active, not recruiting) Roswell Park Cancer Institute, USA NCT03017131
TCR-T NY-ESO-1 Phase Ib (recruiting) Princess Margaret Cancer Centre, Canada NCT02869217

One patient had SD for 4.7m with
grade 2 CRS

TCR-T NY-ESO-1 Phase I (unknown) Shenzhen Second People’s Hospital, China NCT02457650
TCR-T Neoantigen Phase II (suspended) National Institutes of Health Clinical Center, USA NCT04102436
TCR-T Neoantigen Phase II (suspended) National Institutes of Health Clinical Center, USA NCT03412877
CAR-T Mesothelin Phase I (completed with results) Abramson Cancer Center of the University of

Pennsylvania, USA
NCT02159716

Five patients had SD for 28 days
Hu CAR-T Mesothelin Phase I (recruiting) University of Pennsylvania, USA NCT03054298
CAR-T Mesothelin Early Phase I (recruiting) Shanghai 6th People’s Hospital, China NCT03814447
CAR-T Mesothelin Phase I (terminated) National Institutes of Health Clinical Center, USA NCT01583686

Only one patient had SD for >
3.5m

CAR-T Mesothelin Phase I/II (recruiting) The Second Affiliated hospital of Zhejiang University School
of Medicine, China

NCT03916679

CAR-T Mesothelin Early Phase I (recruiting) The Second Affiliated hospital of Zhejiang University School
of Medicine, China

NCT03799913

CAR-T Mesothelin Phase I (recruiting) Shanghai East Hospital, China NCT04562298
CAR-T Mesothelin Phase I (Active, not recruiting) National Cancer Institute, USA NCT03608618
CAR-T Mesothelin Phase I (unknown) Biotherapeutic Department and Pediatrics

Department of Chinese PLA General Hospital
NCT02580747

aPD1-CAR T Mesothelin Early Phase I (recruiting) Shanghai 10th people’s Hospital, China NCT04503980
aPD1-CAR T Mesothelin Phase I/II (recruiting) Shanghai Cell Therapy Research Institute. NCT03615313
CAR-T MUC16 Phase I (active, not recruiting) Memorial Sloan Kettering Cancer Center, USA NCT02498912
CAR-T Nectin4/FAP Phase I (recruiting) The Sixth Affiliated Hospital of Wenzhou Medical University,

China
NCT03932565

UltraCAR-T MUC16 Phase I (recruiting) Fred Hutch/University of Washington Cancer
Consortium, USA

NCT03907527

CAR-T B7-H3 Phase I (not yet recruiting) Lineberger Comprehensive Cancer Center, USA NCT04670068
CAR-T ALPP Phase I/II (not yet recruiting) Xinqiao Hospital of Chongqing, China NCT04627740
CAR-T FRa Phase I (recruiting) University of Pennsylvania Health System, USA NCT03585764
CAR-T CD133 Phase I (completed without results) Biotherapeutic Department and Pediatrics

Department of Chinese PLA General Hospital
NCT02541370

CAR-T HER-2 Phase I (recruiting) Zhongshan Hospital Affiliated to Fudan University, China NCT04511871
CAR-T HER-2 Phase I/II (withdrawn) Southwest Hospital of Third Millitary Medical

University, China
NCT02713984

CAR-T CD70 Phase I/II (suspended) National Institutes of Health Clinical Center, USA NCT02830724
CAR-T TnMUC1 Phase I (recruiting) The Angeles Clinic and Research Institute, USA NCT04025216

Cervical cancer TCR-T HPV-E6 Phase I/II (completed with results) National Institutes of Health Clinical Center, USA NCT02280811
One patient had SD for 6m, one
had SD for 4m

aPD1-TCR T HPV-E6 Phase I (recruiting) Qingzhu Jia, Chongqing, China NCT03578406
Enhanced SD in combination with
anti-PD-1 therapy

TCR-T HPV-E7 Phase I/II (recruiting) National Institutes of Health Clinical Center, USA NCT02858310
TCR-T HPV-E7 Early Phase I (suspended) National Institutes of Health Clinical Center, USA NCT04476251
TCR-T HPV-E7 Phase I (withdrawn) National Institutes of Health Clinical Center, USA NCT04411134
TCR-CD4+ T MAGE-A3 Phase I/II (active, not recruiting) National Institutes of Health Clinical Center, USA NCT02111850

One patient had CR for > 29m
TCR-T MAGE-A3 Phase I/II (terminated) National Institutes of Health Clinical Cente, USA NCT02153905

One patient had PR after 6w and
12w

CAR-T Mesothelin Phase I (terminated) National Institutes of Health Clinical Center, USA NCT01583686

(Continued)
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of death induced by refractory CRS were reported (52).
Management methods of CRS include: monoclonal antibodies
against IL-6 (siltuximab, clazakizumab) and its receptor
(tocilizumab), IL-1 receptor (anakinra), glucocorticoids,
alemtuzumab and etc (53). In trial NCT02869217, the patient
with ovarian cancer had grade 2 CRS which required tocilizumab
to manage.

Tumor heterogeneity is reflected in different sites of the same
tumor or its recurrent lesion, being responsible for antigen
escape. The loss of target antigen after ACT represents a key
mechanism in the recurrence of tumor. Unfavorable feedback
has been obtained from CD19-negative relapses. In up to 60%
patients with refractory ALL, relapses after receiving CD19 CAR-
T therapy could happen due to the loss of CD19 antigen. Once
the antigen load is insufficient to activate immunoreaction,
patients would become resistant to CAR-T therapy. Efforts
were made to overcome this obstacle through establishing a
dual CAR-T which could combine an additional antigen like
CD123, a stem cell marker expressed in CD19-negative relapses,
to prevent possible antigen loss (54).

The immunosuppressive microenvironment is a contributing
factor to the proliferation, metastasis and drug resistance of
gynecologic tumor cells. Particularly, abdominal cavity
metastasis is a common pathological feature of ovarian cancer,
and the formation of ascitic fluid provides a favorable
microenvironment for affect ing tumor growth and
invasiveness. It promotes vascular and lymphangiogenesis in
tumor tissues and enables tumor cells to evade immune
surveillance via several pathways: (1) offering ligands for
immune checkpoint proteins, such as PD-1 and cytotoxic T
lymphocyte associate protein-4 (CTLA-4); (2) providing an
immune suppressive setting through cytokines such as
IL-10, IL-6, TGF-b vascular endothelial growth factor (VEGF)
and so on, extracellular matrix components like matrix
metalloproteinases (MMPs) or suppressive cells such as
myeloid-derived suppressor cells (MDSCs) and regulatory T
cells (Tregs); (3) interaction with multiple active substances in
stromal cells, such as tumor-associated macrophages (TAMs),
cancer‐associated fibroblasts (CAFs), and endothelial cells;
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(4) creating a physically and chemically hostile metabolic
environment that is hypoxia, glucose-deficient, acidic, full of
indolamine-1-oxidase and arginase (55).

The application of CAR-T therapy has long been
constrained with unsatisfactory results in solid tumors
including gynecologic tumors. A major hindrance for the
broader use of CAR-Ts is attributed to the resistance of
tumor microenvironment. Researchers found that by
expressing IL-7 and CCL19 in CAR-Ts in mice, the immune
cell infiltration in tumor tissues increased, thus reinforcing
antitumor effects (56). In addition, chemokines e.g. CCR2b
(57) and CCR4 (58) are factors affecting the progression and
metastasis of tumor. Conversely, they can also facilitate the
tumor infiltration of CAR-Ts when co-expressed with T
lymphocytes. Although attempts in the combination of
immune checkpoint blockades and ACT seem to make
reversing the inhibitory microenvironment a reality, this
strategy is still flawed due to neglect of the systemic network
comprised of multiple immune suppressive mechanisms. A more
concentrated attack on solid tumors is to use lipid nanoparticles to
ferry immune-modulatory agents that are pertinently combined into
components of tumor microenvironment. Compared with
monotherapy, the level of TAMs, MDSCs and Tregs all
reduced (9.4-fold, 4.6-fold, 4.8-fold), and the concentration of
antitumor cells like CD8+ T cells and invariant natural killer
T cells (iNKTs) increased (6.2-fold, 29.8-fold) (59). It seems to be
a promising method with less cost, labor and fewer
adverse effects.

The transient persistence of transferred T cells also makes it
challenging to achieve optimal clinical results. Increasing the
number of long-term memory T cells is a feasible way in
obtaining sustained immunity. Stem memory T cells (Tscm)
are superiorly potential in self-renewal, proliferation and long-
last existence compared with T cells in other stages (60).
Exploring approaches to induce Tscm-like T cells has been a
hot spot of tumor immunology in recent years. Productive
methods include cancer vaccines with regulated TCR signaling
(61), co-culture with cytokines like IL-7, IL-15, IL-21 (62), and
the addition of co-stimulation domains (63).
TABLE 1 | Continued

Cancer Type antigen Stage and Result Host NCT

Only one patient had SD for >
3.5m

aPD1-CAR-T CD22 Phase I (recruiting) Fourth Hospital of Hebei Medical University, China NCT04556669
CAR-T GD2, PSMA,

MUC1, Msln
Phase I/II (recruiting) Shenzhen Geno-immune Medical Institute, China NCT03356795

Endometrial
cancer

CAR-T Mesothelin Phase I (unknown) Biotherapeutic Department and Pediatrics Department of
Chinese PLA General Hospital

NCT02580747

CAR-T ALPP Phase I/II (not yet recruiting) Xinqiao Hospital of Chongqing, China NCT04627740
Vulvar squamous
cell carcinoma

TCR-T HPV-E6 Phase I (terminated) National Institutes of Health Clinical Center, USA NCT03197025
TCR-T HPV-E7 Phase II (terminated) National Institutes of Health Clinical Center, USA NCT03937791
TCR-T HPV-E7 Phase I/II (recruiting) National Institutes of Health Clinical Center, USA NCT02858310
July 2021 | Volume 12 |
ALPP, alkaline phosphatase, placental; CAR, chimeric antigen receptor; CR, complete response; CRS, cytokine release syndrome; FAP, fibroblast activation protein; FRa, anti-alpha folate
receptor; HER-2, human epidermal growth factor receptor 2; HPV, human papillomavirus; MAGE-A, melanoma-associated antigen; Msln, mesothelin; MUC16, mucin 16; NY-ESO-1, New
York esophageal squamous cell carcinoma 1; PD, progressive disease; PD-1, programmed cell death protein 1; PR, partial response; PSMA, prostate specific membrane antigen; SD,
stable disease; TCR, T cell receptor.
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THE FUTURE OF ENGINEERED
T CELLS IN THE FIELD OF
GYNECOLOGIC TUMORS

An essential contributing factor for the broader application of
engineered ACT technology is a systematically manufactured
process. The whole process should be strictly controlled with
quality testing to obviate contamination and satisfy clinical
demand. Although multiple CAR-T agents have been
permitted into the market, the preparation of T cells before
treatment is still performed in a personalized pattern, which is
time-consuming for 12 days in average with small scale (64). The
protocol is now embracing a more automatic and universal
fashion called ‘off-the-shelf’ ACT manufacture using allogenic
T cells that are modified to be mildly immunoreactive to the host
(65). Importantly, the depletion of allogeneic TCR, class I HLA
molecule of donor T cells with CRISPR-Cas9 system would make
‘off-the-shelf’ CAR-Ts come true by reducing the risk of graft-
versus-host disease (GVHD) (66).

The efficiency of engineered T cells in treating gynecologic
tumors is currently not fully supported by sufficient clinical data
and warrants further attempts in the clinical setting. Efforts to
break barriers discussed above such as antigen selection,
toxicities, the immune-unfavorable microenvironment in
gynecologic tumors, the persistence of infused cells are making
headway. Future investigation should provide update on these
topics: (1) carrying forward clinical and preclinical trials; (2)
more appropriate antigen binding sites; (3) how to break barriers
to produce engineered T cell in a larger scale without toxicity;
(4) how to maintain the cytotoxicity of engineered T cells in the
tumor microenvironment; (5) synergistic treatment with
immune checkpoint inhibitors or other substances. With
further work to be done and deeper understanding of ACT, it
would present a potential treatment for gynecologic oncology.

Another direction in engineered ACT technology is using
natural killer (NK) cells as an alternative to T cells. NK cells have
been proved to be safer in terms of CRS and GVHD risks than
Frontiers in Immunology | www.frontiersin.org 931
modified T cells with insensitivity to MHC and the presence of
inhibitory receptor as a safety switch (67). A phase I study using
mesothelin specific CAR-NK cells to treat epithelial ovarian
cancer is ongoing (NCT03692637).
SUMMARY

Engineered T cells therapy for gynecologic cancer would inevitably
face the existence of practical challenges such as safety concerns,
difficult choices of appropriate antigen, the immunosuppressive
tumor microenvironment, the short pharmacological duration and
high finical cost. Based on a substantial number of preclinical
researches with various models, series of phase I/II clinical trials
are exploring the optimal route and dosage of ACT products, or
whether a combination with surgery, radiotherapy, chemotherapy,
or other immunotherapies would facilitate the treatment of
malignant gynecologic tumors with decreased recurrence and
metastasis rate, reduced adverse drug reactions, and improved life
quality of patients.
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Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) T cells holds impressive
clinical outcomes especially in patients who are refractory to other kinds of therapy.
However, many challenges hinder its clinical applications. For example, patients who
undergo chemotherapy usually have an insufficient number of autologous T cells due to
lymphopenia. Long-term ex vivo expansion can result in T cell exhaustion, which reduces
the effector function. There is also a batch-to-batch variation during the manufacturing
process, making it difficult to standardize and validate the cell products. In addition, the
process is labor-intensive and costly. Generation of universal off-the-shelf CAR T cells,
which can be broadly given to any patient, prepared in advance and ready to use, would
be ideal and more cost-effective. Human induced pluripotent stem cells (iPSCs) provide a
renewable source of cells that can be genetically engineered and differentiated into
immune cells with enhanced anti-tumor cytotoxicity. This review describes basic
knowledge of T cell biology, applications in ACT, the use of iPSCs as a new source of
T cells and current differentiation strategies used to generate T cells as well as recent
advances in genome engineering to produce next-generation off-the-shelf T cells with
improved effector functions. We also discuss challenges in the field and future
perspectives toward the final universal off-the-shelf immunotherapeutic products.

Keywords: adoptive cell therapy, induced pluripotent stem cells, T cells, chimeric antigen receptor, tumor
infiltrating lymphocytes, cancer immunotherapy, off-the-shelf T cells
INTRODUCTION

Adoptive cell therapy (ACT) of T lymphocytes offers a potential therapy for chronic viral infection
and cancers. ACT can be achieved by isolating T cells from the excised tumor mass (tumor
infiltrating lymphocytes or TILs), ex vivo expanding and reinfusing them into the patient to target
viral or tumor antigens (1, 2). However, the process of TIL isolation and expansion limits their
clinical applications since it is technically difficult, labor-intensive, costly and difficult to standardize.
TILs do not often provide potent anti-tumor effects due to exhaustion of T cells. In addition,
identification of antigen-specific T cells in other solid tumors is very challenging (3). To improve
specificity and cytotoxicity of ACT, genetic engineering approaches to target the antigens by
transduction of antigen-specific T cell receptor (TCR) or chimeric antigen receptor (CAR) gene can
be performed. The engineered T cells are then expanded and reinfused into the patient after
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lymphodepletion. The TCR-engineered T cells recognize target
antigens, which are processed within the cytoplasm and
presented by specific human leukocyte antigen (HLA) or major
histocompatibility complex (MHC) class I molecules on the
surface of the viral-infected cells or cancer cells (4). Several
studies reported the use of TCR-engineered T cells to treat
patients including NY-ESO-1-directed tTCR and MAGE-A3-
directed tTCR for multiple myeloma (MM) (5, 6), and WT1-
directed tTCR for acute myeloid leukemia (AML) (7). However,
ACT using TCR-engineered T cells is limited by the need to
engineer TCR specific for antigen and MHC molecules of
the patient.

In contrast, antigen recognition by CAR is mediated by a
synthetic hybrid receptor composed of an extracellular antigen-
recognition domain, which is a single-chain variable fragment
(scFv) derived from the variable regions of a monoclonal
antibody (mAb), a transmembrane (TM) domain and
intracellular signaling domains such as TCR-derived CD3z and
co-stimulatory domains (CD28 or 4-1BB) (8). Unlike TCR-
engineered T cells, CAR T cells can recognize a specific
antigen and eliminate the tumor cells in an HLA-independent
manner, therefore, enhancing therapeutic outcomes. Clinical
trials using CAR T cell therapy showed a long-term remission
in both hematological malignancies and solid tumors (9, 10). To
date, the US FDA approved four CD19-directed CAR T cell
products: Kymriah™ in 2017 and Yescarta™ in 2018, Tecartus™

in 2020, and recently Breyanzi® in 2021, for the treatment of
relapsed or refractory B cell malignancies (1, 2). Despite its
remarkable success, ACT using autologous TCR- or CAR-
engineered T cells has some unavoidable limitations. The ACT
therapy relies on personalized manufacture, which proves very
challenging in terms of time and cost to manufacture T cells
thereby restrictive for large-scale clinical applications. Moreover,
it is also technically difficult to obtain sufficient number of
autologous T cells from lymphopenic patients who are heavily
pretreated with chemotherapy, or immunodeficient patients, to
generate a clinically relevant dose of T cells for therapy (3, 11). In
order to obtain sufficient number of cytotoxic T cells (CTLs) for
ACT, ex vivo expansion to enrich the number of CTLs is required
before infusion. This process involves several stimulation steps
using various cytokines to increase T cell proliferation. Long-
term culture can drive CTLs into an “exhausted state”, where
CTLs have shortened telomere length, and lose proliferative
capacity and effector function, which hinder their clinical
practicality (4, 5).

One way to generate an unlimited supply of universal
allogeneic CAR T cells for cancer immunotherapy is to use
induced pluripotent stem cells (iPSCs) as a starting material.
Advances in iPSC technology have made the generation of
autologous pluripotent stem cells (PSCs) possible. These cells
have unlimited proliferation and can be differentiated into all
specialized cell types of the body; therefore, they represent an
autologous renewable cell source for regenerative medicine.
iPSCs can be derived from various somatic cell sources, mainly
skin fibroblasts and peripheral blood, by introducing the
Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) (6, 7).
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One of the useful applications of iPSCs in regenerative
medicine is the production of CTLs for viral or cancer
immunotherapy. Previous studies demonstrated that iPSCs
generated from T cells retained rearranged TCR genes. Upon
differentiation toward T cell lineage, the iPSC-derived T cells
re-expressed the same TCR as those of the parental T cells (8, 9).
In addition, iPSCs are amenable to genetic modification, so it is
possible to engineer the cells to have enhanced specificity and
effector functions. Since iPSCs can be expanded unlimitedly,
clinical-scale quantities of T cells with the desired antigen
specificity can be manufactured. In this review, we provide the
basic knowledge and recent advances of iPSC-derived T cell
generation for clinical applications starting from the initial cell
source for iPSC generation to the applications of iPSC-derived
T cell products for cell-based therapy. In addition, we summarize
future directions and challenges towards the final universal,
off-the-shelf immunotherapeutic products.
T CELL BIOLOGY AND APPLICATIONS
IN ACT

T cells play an essential role in the host defense mechanism
against pathogens and cancers. They can be distinguished from
other types of lymphocytes by the expression of TCR, which
binds to the foreign antigen presented on the MHC. This
interaction induces the release of cytotoxic granules and
expression of Fas-ligand, which results in the target cell
apoptosis (10). T cells originate from hematopoietic stem cells
(HSCs), which give rise to all blood cell lineages. HSCs in the
bone marrow differentiate into common myeloid progenitors
(CMPs), which produce granulocyte-macrophage progenitors
(GMPs) and megakaryocyte-erythroid progenitors (MEPs), or
common lymphoid progenitors (CLPs), which produce
lymphoid cells (12). T cell development occurs after CLPs
from the bone marrow migrate into the thymus via the
bloodstream. In the thymus, CLPs receive the Notch signal
from cortical thymic epithelial cells (cTECs). During the first
step of T cell development, the Notch signal stimulates CLPs to
commit to double-negative (DN) cells (CD8-/CD4-) (13), which
can be divided into four subpopulations (DN1 to DN4) based on
the expression of CD25 and CD44 (14). From the DN1 to DN4
stages, the precursor cells undergo TCR rearrangement mediated
by RAG protein to generate TCR. TCRs are randomly generated
and are unique for each precursor cell. After successful TCR
rearrangement, the DN4 cells express both co-receptors, CD4
and CD8 (double-positive (DP) cells). During this step, the DP
cells undergo a positive selection in the cortex; the DP cells
expressing TCRs that are able to bind to MHC molecules plus
self-antigens on the cTEC surface with appropriate affinity will
be retained (15). The outcomes of the positive selection depend
on the signals from TCRs and the co-receptors (CD4 or CD8). If
the DP cells have TCRs that are able to bind to MHC class II of
cTECs, the DP cells will become CD4 single-positive (SP) cells by
downregulating CD8 expression. On the other hand, if the DP
cells have TCRs that fit the MHC class I molecule, the DP cells
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will downregulate the expression of CD4 and become CD8 SP
cells. The DP cells that receive too low TCR signals or no TCR
signals for self-antigen-MHC molecules will undergo apoptosis
to prevent the generation of useless T cells (16).

Apart from positive selection, TECs also involve in negative
selection, the process to eradicate the autoreactive T cells. In this
process, the SP cells migrate to the medullar of the thymus where
the SP cells encounter more diverse self-antigen MHC provided
by medullary thymic epithelial cells (mTECs) and dendritic cells.
The SP cells that bind with high affinity to the self-antigen will be
eliminated from TCR repertoires by apoptosis (17). The process
of negative selection generates mature T cells with a highly
diverse TCR repertoire and self-tolerance to enter the
bloodstream and circulate to peripheral tissues in response to
pathogens (18). The newly generated T cells are considered naïve
T cells at this stage because they have not been exposed to an
antigen. When the naïve T cells interact with an antigen-
presenting cell showing the MHC/peptide complex that can
specifically bind to their TCR, T cell activation is initiated.
This activation triggers the proliferation of the naïve T cell
clone and differentiates the naïve T cells into the effector T
cells. During this period, CD4+ and CD8+ T cells exhibit
inflammatory cytokine secretion and cytotoxicity toward the
transformed cells or infected cells, respectively. If the pathogen
is successfully eliminated, the majority of effector T cells will die
while the surviving effector T cells will be differentiated further to
the memory cells. These cells are inactive and maintained for
long-term immunity (19).

In 1987, Rosenberg and colleagues reported the first ACT
using TILs to treat patients with metastatic malignant melanoma.
TILs were expanded by in vitro culture in the presence of
recombinant interleukin 2 (IL-2) and transfused into the
patients to treat melanoma. The results demonstrated that TILs
had autologous tumor-specific cytotoxicity; in addition, TILs
from some patients also had limited capacity to kill allogeneic
fresh tumor targets suggesting that adoptive transfer of TILs
could be a potential approach for the treatment of cancer patients
(20). In 1994, a larger number of patients with metastatic
melanoma were treated with autologous TILs with IL-2, with
or without the administration of cyclophosphamide. However,
the results demonstrated that only 5 of 29 patients had complete
responses (21). It was subsequently shown that lymphodepletion
prior to ACT increased the complete response rate of the therapy
(22, 23), and this finding led to a breakthrough in ACT against
melanoma. However, TIL treatments in some types of solid
cancer, such as breast cancer or cholangiocarcinoma, are not as
effective as in melanomas (24), and the number of TILs is often
insufficient for the treatment. To enhance the specificity of T cells
and efficacy of ACT, TILs from the patients were transduced with
transgenic TCR (25). These engineered TILs simultaneously
react with two different antigens. Previous studies showed that
the infusion of NY-ESO1 TCR-engineered T cells resulted in
tumor regression in melanoma and synovial sarcoma patients
(26, 27). Although genetic-engineered T cells have been
developed against many antigens, their TCRs must bind to the
tumor antigen presented on the HLA class I molecule to mediate
Frontiers in Immunology | www.frontiersin.org 336
the specific killing effect. This process often results in poor
treatment efficacy since tumors can downregulate HLA class I
molecules and co-stimulatory molecules (28, 29). To overcome
this problem, CAR technology has been developed. The first
generation of CAR invented in 1989 (30, 31) comprises the scFv
from the antibody fused with the transmembrane domain of
TCR, which contains the transduction signal, CD3z chain. In the
second and third generations of CAR, the co-stimulatory
domains derived from CD28, 4-1BB, or OX40 are added to
enhance T cell activation and improve CAR T cell function
against the tumors that do not express co-stimulatory
molecules (32).

Although the clinical outcomes of CAR T cell therapy have
been very impressive, the manufacturing costs for a single
infusion of these novel therapies are very costly: $475,000 for
Kymriah and $373,000 for Yescarta, making them inaccessible to
most patients (33, 34). These prices do not include the
hospitalization fees; therefore, the cost for the treatment needs
to be reduced in order to make it economically practical and
accessible to most cancer patients. Another important limitation
of ACT is to find a healthy HLA-matched donor; therefore, some
transplant centers focus on developing third-party T cell banks
from common HLA donors (35). Other efforts have been made
to generate universal allogeneic CAR T cells, which utilize
healthy donor T cells for CAR and TCR engineering to
increase antigen specificity and avoid graft-versus-host disease
(GvHD), respectively (36–41). The treatment using these
universal allogeneic CD19 CAR T cells (UCART19)
demonstrated great success in two pediatric patients with acute
lymphoblastic leukemia (ALL) (40). Recently, the successful
results from two multicenter phase 1 studies using UCART19
in patients with relapsed and/or refractory B-ALL emphasize the
potential of CAR T cells to induce complete remission in 67% of
patients, even in the patients with high disease burden (42).
However, there are some concerns regarding the manufacturing
process; prolonged ex vivo culture can cause T cell exhaustion
and reduced effector functions. In addition, there is also batch-
to-batch variability during the manufacturing process. Therefore,
clinical studies with larger cohorts are required to validate
allogeneic CAR T cells (43).
INDUCED PLURIPOTENT STEM
CELLS AS A NEW CELL
SOURCE FOR ACT

Although ACT of functional CTLs has offered a potential therapy
for viral infection and cancers, the ex vivo expansion of
autologous T cells has proved very challenging. This problem
can be overcome by regenerating antigen-specific CTLs through
iPSC reprogramming. Previous studies demonstrated that iPSC-
derived CTLs could be expanded from 100-fold to 1,000-fold
within two weeks of culture compared to 20-fold of the original T
cells. These regenerated CTLs also exhibited higher telomerase
activity and longer telomere length than the original T cells.
September 2021 | Volume 12 | Article 759558
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Furthermore, the marker of exhausted T cells, PD-1, was not
expressed, whereas the markers of central memory T cells, CCR7,
CD27 and CD28, were co-expressed (9). In a more recent study,
the regenerated CD8ab CTLs were expanded up to 10,000-fold
and changed their phenotype from a naïve to an effector/memory
profile. In this study, 104 iPSCs were used to generate 109-1010

CD8ab CTLs sufficient for a single transfusion (44). Apart from
the regeneration of CTLs, iPSCs also provide an unlimited cell
source for other T cells subsets such as regulatory T cells (Tregs)
(45). Tregs play a critical role in suppressing cell-mediated
immunity leading to the maintenance of immunological
tolerance. Patients with autoimmune disorders have been
found to have lower levels of Tregs (46). Furthermore, patients
with type 1 diabetes (T1D) also have a deficient number of Tregs
(47). Therefore, the generation of a large number of functional
Tregs followed by ACT to autoimmune patients is required to
suppress the hyperactivity of autoreactive T cells. Due to a low
frequency of Treg in peripheral blood (~1-2% in humans),
several attempts have been made to generate Tregs from iPSCs
for use in ACT. The first proof-of-concept study showed that
mouse iPSC-derived Tregs could control the development of
collagen-induced arthritis in the rheumatoid arthritis mouse
model (48). Similarly, the mouse iPSC-derived Tregs could
migrate to the pancreas and prevent the destruction of
pancreatic b-cells by autoreactive T cells in the T1D mouse
model (49). Therefore, a combination of iPSC technology with
adoptive immunotherapy or CAR technology may provide a
large number of T cells for future clinical applications.

Unlike other differentiated cell types, the generation of
functional CTLs with a specific TCR from iPSCs depends
significantly on the original somatic cell sources (Figure 1).
When using non-T cell sources such as fibroblasts or
keratinocytes as a somatic cell source, the derived iPSC clones
bear the germline TCR gene. After T cell differentiation in vitro,
the iPSC-derived T lymphocytes are generated with unpredictably
rearranged TCR. This process recapitulates normal T cell
development where sequential expression of CD7, cytoplasmic
CD3, and surface CD3 was observed followed by TCR gene
rearrangement of the gd and ab loci, respectively (50). However,
without autologous TECs, positive and negative selection may not
occur. Therefore, these iPSCs can only be used for studying
normal T cell development and disease modeling; they are not
suitable for clinical use due to the concern about autoreactive T
cells. Apart from studying normal T cell development, disease-
specific iPSCs can be generated from somatic cells (non-T cells) of
patients with inherited diseases affecting the immune system such
as X-linked Severe Combined Immunodeficiency (SCID-X1) with
the Interleukin-2 receptor gamma chain (IL-2Rg) mutation (51) or
recombination-activating gene 1 (RAG1) mutations (52) to study
abnormal T cell development in these disease models. Genetic
correction in these disease-specific iPSCs using genome editing
technologies such as TALENs or CRISPR/Cas9 systems with a
subsequent in vitro differentiation also offers great potentials for
future autologous therapy (51).

In 2011, Seki et al. developed the method for iPSC generation
from mature human peripheral blood T cells using a Sendai viral
Frontiers in Immunology | www.frontiersin.org 437
vector to avoid transgene insertion (53). This method could
generate iPSCs from a small amount (approximately 1 ml) of
human peripheral blood samples (54). However, their method
used fetal bovine serum (FBS) and mouse embryonic fibroblasts
(MEF) as feeder cells, which result in contamination of xenogeneic
antigens and zoonotic pathogens. In 2014, the generation of
human iPSCs from peripheral blood T cells in a defined culture
system was achieved using Sendai viral transduction and various
combinations of chemically defined culture medium and coating
matrices. For example, the combination of mTeSR1 medium and
Matrigel resulted in the highest reprogramming efficiency
(0.005%) (55). Overall, the reprogramming efficiencies under the
feeder-free system are generally lower than those using the feeder
cells. Even though the reprogramming efficiency using blood cells
is lower than fibroblasts, blood cells are preferable because the
isolation is minimally-invasive and easy to perform.

On the other hand, generation of iPSCs from T cells results in
the pre-rearranged TCR gene in the iPSC clones. The rearranged
TCR can eliminate the risk of autoreactive TCR since the T cells
undergo positive and negative selection in the thymus. However,
the specificity of TCR is unknown. In 2013, Themeli et al.
reported the generation of CD19 CAR-engineered T-iPSCs that
can efficiently be differentiated into CAR T cells against CD19+

malignant B cells in vitro. These T-iPSC-derived CAR T cells
displayed therapeutic activity by potently inhibiting tumor
growth in a mouse model (56). Similarly, Minagawa et al.
demonstrated that when the monocyte-derived iPSCs were
transduced with a transgenic antigen-specific TCR, these cells
exhibited a monoclonal expression of the transduced TCR
after T cell differentiation in vitro. The iPSC-derived transgenic
TCR T cells could also delay tumor progression in xenograft
cancer models (57). These two studies showed that even though
the iPSCs have no antigen-specific TCR, the specificity of
iPSC-derived T cells can be achieved by transduction of
CAR or transgenic TCR to generate therapeutic T cells for
cancer immunotherapy.

After the concept of T cell production utilizing PSCs has been
proposed, Watarai et al. utilized the nuclear transfer technique to
reprogram NKT cells. The nuclear transfer ESCs bearing
rearranged invariant Va14-Ja18 TCRa gene were established
from the mouse NKT cells (58). This study has proved
that the rearranged TCR gene was retained throughout the
reprogramming and differentiation process. Advances in the
iPSC technology in 2006 led to reprogramming of CD8+ T cells
specific toMART1+ melanoma using Sendai viral vectors carrying
OSKM factors and SV40 large T antigen at MOI 30. Analysis of
TCRa chain mRNA in the CD8+ T cells generated from these
iPSCs confirmed that the iPSC-derived CD8+ T cells expressed
the same TCRa chain gene as the parental MART1-specific T
cells (8). Similarly, Nishimura et al. reported successful
reprogramming of antigen-specific T cells into iPSCs. First, the
transduction was performed using six retroviral vectors encoding
OCT3/4, SOX2, KLF4, c-MYC, NANOG, and LIN28A; however,
no iPSC-like colonies were observed. In the second attempt, the
reprogramming was performed using the Sendai viral (SeV)
vector system consisting of two Sendai viral vectors. The first
September 2021 | Volume 12 | Article 759558
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vector encodes OSKM factors and the microRNA-302, while the
second vector encodes the SV40 large T (LT) antigen. The iPSC-
like colonies appeared on the mouse embryonic fibroblast (MEF)
feeder cells within 40 days after transduction (9). The same
approach enables reprogramming of several T cell clones
specific for Nef antigen in HIV, pp65 antigen in cytomegalovirus
(CMV), glutamic acid decarboxylase (GAD) antigen in
type 1 diabetes, and alpha-Galactosylceramide (a-GalCer).
Frontiers in Immunology | www.frontiersin.org 538
Importantly, the iPSCs and the parental T cells had identical
antigen-recognition sites (CDR3 sequence) on the TCRA and
TCRB genes (9). Recently, the SeV vectors encoding five factors
(OSKM + SV40 LT antigen) were used for reprogramming
various types of antigen-specific T cells and NKT cells,
including WT1-specific T cells, LMP2-specific T cells (44),
GPC3-specific T cells (57), b3a2-specific T cells (59) and
Va24+ invariant natural killer T cells (60, 61).
FIGURE 1 | Generation of iPSC-derived T cells from different somatic cell sources. Non-T cell sources contain germline TCR gene, upon T cell differentiation, the iPSC-
derived T cells express random TCR. These T cells can be used for studying normal T cell development and disease modeling. For applications in ACT, the exogenous
TCR can be introduced to the iPSCs. Upon T cell differentiation, the transgenic TCR generates the CD3 signal, which then leads to allelic exclusion and inhibition of
endogenous TCR rearrangement; therefore, the iPSC-derived T cells express the transgenic TCR to target specific antigens. Alternatively, peripheral blood T cells can
serve as a cell source for iPSC generation. T cell has the rearranged TCR gene, which is retained throughout the reprogramming and differentiation process. For
applications in ACT, T-iPSCs can be engineered with CAR to enhance tumor specificity, or the antigen-specific T cell clone can be used for reprogramming to generate
the antigen-specific T cells.
September 2021 | Volume 12 | Article 759558
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In contrast to peripheral blood T cells, antigen-specific T cells
are mainly effector memory T cells or central memory T cells,
which are in the latest stage of development. Effector memory T
cells or central memory T cells are prone to apoptosis when
stimulated due to their short telomere length (62). Therefore,
reprogramming of antigen-specific T cells is very technically
challenging. Previous studies showed that the process requires
supplementation of the OSKM factors with additional factors
such as hTERT and SV40 LT antigen, which have potent anti-
apoptotic activity (63), and the use of MEF feeder cells (8, 9). It is
worth noting that the hTERT and SV40 large T antigen are
known oncogenes; upon insertion into the genome, these factors
may cause tumorigenesis. Even though it is not a concern when
using the SeV vector system because the viral RNA is diluted and
removed from the cells after reprogramming, the SV40 large T
antigen might increase double-stranded break (DSB)-associated
mutations. Thus, other pluripotency-associated genes, such as
NANOG and LIN28, were used instead of SV40 LT antigen in
combination with OSKM factors for T cell reprogramming (64).
This system called 6-factor (OSKM + NL) offers advantages over
the conventional system (OSKM + SV40 LT) by eliminating the
oncogenes and is therefore preferable for applications in ACT. In
addition, T-iPSCs reprogrammed by a 6-factor system were able
to efficiently differentiate into antigen-specific T cells with strong
cytotoxicity against cervical cancer. There is no significant
difference in cytotoxicity from that of the conventional T-
iPSCs (64). Although this 6-factor system successfully
generated iPSCs from the antigen-specific T cells, there are two
main issues associated with using antigen-specific T cell-derived
iPSCs for clinical translation, including clonal variability, which
affects T cell differentiation potential (65), and alloreactivity (66).
The study demonstrated that approximately 50% of antigen-
specific T cell-derived iPSC clones exhibited great T cell
differentiation potential (66). There is also a possibility that T
cell alloreactivity will occur at 10% even in the case of HLA-
matched patients (67, 68). Therefore, to develop an off-the-shelf
product from T-iPSCs for use in an allogeneic setting, it is
necessary to establish multiple clones of antigen-specific T cell-
derived iPSCs and screen for the best clones and other spare
clones in case of alloreactivity. It was estimated that eight initial
iPSC clones are sufficient to create two powerful T-iPSC clones
(66). The generation and screening of eight iPSC clones are time-
consuming and expensive, especially from antigen-specific T cell
sources. An alternative approach such as introducing TCR or
CAR into T-iPSCs would be more practical for developing off-
the-shelf ACT.
GENERATION OF T CELLS FROM
PLURIPOTENT STEM CELLS

Generation of T cells from PSCs requires two essential stages.
First, PSCs need appropriate signals from microenvironments to
be committed toward hematopoietic stem cells (HSCs), followed
by the Notch signaling for T cell lineage commitment (69).
During the first step toward HSCs, PSCs must be differentiated
Frontiers in Immunology | www.frontiersin.org 639
into the definitive mesoderm (ME) and hemogenic endothelium
(HE), which then undergoes the process known as an
endothelial-to-hematopoietic transition (EHT). During EHT,
the HE is rounded up and releases the floating cells with
hematopoietic stem/progenitor cell (HSPC) markers, CD34
and CD43, into the medium (70, 71). Two waves of
hematopoiesis occur in human embryo development, primitive
and definitive. Definitive hematopoiesis can give rise to HSPCs
with the potential to develop into T cells (72). The previous study
demonstrated that there are no true markers to distinguish
between the primitive and definitive HSPCs in the CD34+

CD43+ populations. Therefore, identification of ME by using
the phenotypes KDR+ and CD235a- is essential (73). After HSC
induction, the differentiation process must recapitulate normal T
cell development in the thymus where sequential expression of
CD7, cytoplasmic CD3, and surface CD3 was observed, followed
by TCR gene rearrangement of the gd and ab loci, respectively.
This section focuses on various approaches that have been used
to mimic the microenvironment in the thymus to induce mature
T cell differentiation in vitro (Figure 2 and Table 1).

Co-Culture System Using Stromal Cells
A simple and well-known method to induce T cell commitment
in vitro is the co-culture system with mouse stromal cells, OP9, as
supporting cells for T cell differentiation. The OP9 cell line can
be derived from the mouse bone marrow with a defect in
macrophage colony-stimulating factor (MCSF) production
(85). The OP9 cells can be expanded in vitro for a long time
and selectively facilitate HSPC differentiation and lymphoid
development (86). In 2002, Schmitt et al. developed a
monolayer co-culture system for in vitro T cell differentiation
using the OP9 cell line overexpressing Delta-like 1 (OP9-DL1), a
human homolog of the Notch ligand. Co-culture of mouse HSCs
with the OP9-DL1 cells induced CD4+ CD8+ double-positive
(DP) T cells and CD8+ SP T cells (87). In 2005, La Motte-Mohs et
al. published the first report of the generation of human T cells
from CD34+ HSPCs using the OP9-DL1 co-culture system (88).
A similar co-culture system has been used to generate T cells in
vitro using the MS5 and C3H/10T1/2 stromal cell lines
expressing DL1. Similar to OP9-DL1, MS5 and C3H/10T1/2
stromal cells overexpressing DL1 support the differentiation of
umbilical cord blood CD34+ HSPCs to CD7+ DN cells after 3-4
weeks of co-culture (82, 89). Apart from DL1, Delta-like 4 (DL4)
is also known as a ligand for Notch-1 receptor (90). The in vitro
study showed that DL4 overexpression in stromal cells could
support T cell development in a similar manner to DL1 (69, 91).
Although there was no significant difference between the yield of
T cell differentiation when co-culturing with OP9-DL1 and OP9-
DL4, DL4 provided better results at physiological expression
levels (92). Further study indicated that DL4 provided a 10-fold
greater Notch receptor binding affinity than DL1 (93). As a
result, some studies used OP9-DL4 as a feeder cell for T cell
differentiation from pluripotent stem cells (50, 52, 72).

The first successful generation of T cells from iPSCs was
reported in 2009 by Lei et al., where mouse iPSCs co-cultured
with the OP9-DL1 cells in the presence of Flt3L and IL-7 could
be differentiated into the TCRb+ CD8+ SP T cells. These cells
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produced IL-2 and IFN-g after activation with anti-CD3
antibody, indicating that they are functional T cells. In
addition, the iPSC-derived T cells restored the T cell pool in
Rag1-/- mice after infusion (94). In contrast to mouse iPSCs, a
single-step co-culture system with the OP9-DL1 cells has not
been achieved in human iPSCs. To generate T cells, human
iPSCs were differentiated to CD34+ HSPCs via three methods,
embryoid body (EB) formation (56, 72), monolayer system (80,
95), and direct co-culture with the OP9 (96) or C3H10T1/2 cells
(9). The CD34+ cells were then transferred onto the OP9-DL1
cells in the presence of Flt3L and IL-7 to further differentiate into
pro-T cells, which later required TCR signal to become mature
Frontiers in Immunology | www.frontiersin.org 740
T cells (8, 9, 97). The mouse iPSC-derived pro-T cells can acquire
TCR signals from the MHC molecule on the OP9 cells (94, 98).
In contrast, the human iPSC-derived DP T cells cannot recognize
the mouse MHC molecule on the OP9 cells, so they cannot
obtain the TCR signal from co-culturing with the OP9-DL1 cells.
Therefore, activation of human pro-T cells using anti-CD3
antibody is required to generate mature T cells (8, 9, 44).

Although TCRab+ CD8+ T cells can be derived from human
iPSCs, previous studies showed that human iPSCs could generate
only T cells expressing CD8a subunit (CD8aa T cells) and high
levels of innate T cell-related markers (such as CD56) (8, 44, 56,
82). The CD8aa T cells differentiated from human iPSCs were
FIGURE 2 | Developmental markers during T cell differentiation and strategies to generate iPSC-derived T cells. The initial step of hematopoietic differentiation can
be achieved by various protocols, including feeder-free protocols such as monolayer system, co-culture with mouse stromal cells and EB formation. During this step,
the mesodermal (ME) cells expressing Brachyury and KDR are generated. The ME cells are committed further to HE, which express KDR, CD31, CD34 and CD144.
During EHT process, CD43+ HSPC emerges from the HE layers. Specification of T cell lineage requires Notch signaling, which can be provided through co-culture
with mouse stromal cells such as OP9-DL1 or OP9-DL4. Co-culture of iPSC-derived multipotent HSPCs with these cells in 2D or 3D system efficiently generates
mature T cells with phenotypes CD8+ CD4- TCR+ and CD3+. Alternatively, the Notch signals can be provided through a coating matrix mixture of retronectin and
recombinant DL4 protein.
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different from the effector T cells in peripheral blood, which are
CD8ab T cells. More importantly, the regenerated CD8aa T cells
from iPSCs showed a gene expression pattern similar to those of the
innate T cells and exhibited a non-specific killing effect (44, 56).
Frontiers in Immunology | www.frontiersin.org 841
Recently, Maeda et al. reported a novel method to generate
the CD8ab T cells from human iPSCs. During the differentiation
step, the CD4+ CD8+ DP cells were sorted and activated using
anti-CD3 antibody to generate CD8ab T cells similar to the
TABLE 1 | Generation of T cells from human iPSCs.

Cell source of iPSCs Regenerated T cells T cell differentiation Functional test Ref

Non-T cells
- Keratinocytes Randomly rearranged TCR

T cells
Co-culture with OP9-DL4
cells

In vitro TCR activation assay (74)

- Myeloid cells WT1-TCR transduced T cells Co-culture with OP9-DL1
cells

In vitro and in vivo specific killing assay (57)

Culture onto DL4-coated
plate

In vitro and in vivo specific killing assay (75)

- Monocytes WT1-TCR transduced T cells Co-culture with OP9-DL1
cells

In vitro and in vivo specific killing assay (76, 77)

- Fibroblasts T cells Co-culture with OP9-DL1
cells

In vitro TCR activation assay (78)

Co-culture with MS5-DL4
cells in ATO

N/A (79)

T cells
- PHA-activated lymphocytes CD19-CAR transduced T cells Co-culture with OP9-DL1

cells
In vitro and in vivo specific killing assay (56)

- Purified CD3+ T cells T cells Co-culture with OP9-DL1
cells

In vitro TCR activation assay (80)

- MART-1 specific CTL clone MART-1-specific T cells Co-culture with OP9-DL1
cells

In vitro TCR activation assay (8)

- Sorted MART-1-tetramer+ T cells MART-1-specific T cells Co-culture with OP9-DL1
cells

In vitro specific killing assay (66)

- Nef-specific CTL clone Nef-specific T cells Co-culture with OP9-DL1
cells

In vitro specific killing assay (9, 81)

Culture onto DL4-coated
plate

In vitro specific killing assay (75)

iC9-transduced Nef specific
T cells

Co-culture with C3H10T1/2-
DL1 cells

In vitro specific killing assay (82)

- GAG-specific CTL clone GAG-specific T cells Co-culture with OP9-DL1
cells

In vitro specific killing assay (81)

Culture onto DL4-coated
plate

In vitro specific killing assay (75)

- GPC3-specific CTL clone RAG2 KO GPC3-specific T cells Co-culture with OP9-DL1
cells

In vitro and in vivo specific killing assay (57)

GPC3-specific T cells Culture onto DL4-coated
plate

In vitro specific killing assay (75)

- LMP1-specific CTL clone LMP1-specific T cells Co-culture with C3H10T1/2-
DL1/4 cells

In vitro specific killing assay (83)

- LMP2-specific CTL clone LMP2-specific T cells Co-culture with OP9-DL1
cells

In vitro specific killing assay (44)

Co-culture with C3H10T1/2-
DL1/4 cells

In vitro and in vivo specific killing assay (83)

iC9-transduced LMP2-specific
T cells

Co-culture with C3H10T1/2-
DL1 cells

In vitro and in vivo specific killing assay (82)

- WT1-specific CTL clone WT1-specific T cells Co-culture with OP9-DL1
cells

In vitro and in vivo specific killing assay (44, 76,
77)

- Sorted HPV16-E6 -tetramer+ T cells HPV16-E6-specific T cells Co-culture with C3H10T1/2-
DL1/4 cells

In vitro and in vivo specific killing assay (64)

- Sorted HPV16-E7 -tetramer+ T cells HPV16-E7-specific T cells Co-culture with C3H10T1/2-
DL1/4 cells

In vitro specific killing assay (64)

- b3a2-specific Th1 clone CD4-transduced b3a2-specific
T cells

Co-culture with OP9-DL1
cells

Priming CTLs to increase specific killing
in vitro and in vivo

(59)

- Expanded TILs from colorectal
cancer specimens

Multiclonal colorectal cancer-
specific T cells

Culture onto DL4-coated
plate

In vitro and in vivo specific killing assay (84)
September 2021 | Volume 12 | Artic
ATO, artificial thymic organoid; b3a2, junction region of BCR-ABL p210; CAR, chimeric antigen receptor; CTL, cytotoxic T lymphocyte; DL1, delta-like 1; DL4, delta-like 4; GAG, group-
specific antigen; GPC3, glypican-3; HPV16-E6, human papillomavirus type 16 early protein 6; HPV16-E7, human papillomavirus type 16 early protein 7; iC9, inducible caspase-9; KO,
knockout; LMP1, latent membrane protein 1; LMP2, latent membrane protein 2; MART-1, melanoma antigen recognized by T cells 1; Nef, negative regulatory factor; PB, peripheral blood;
PHA, phytohaemagglutinin; RAG2, recombination activating gene 2; TCR, T cell receptor; Th1, T helper type 1; TIL, tumor-infiltrating lymphocytes; WT1, Wilms’ tumor 1.
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effector T cells from peripheral blood (44). DNA sequencing
revealed that the TCR gene of the iPSC-derived T cells and the
parental T cell clone were completely identical, suggesting that
antigen specificity of the parental T cells was retained in the
iPSC-derived T cells (8, 9, 44). Thus, in vitro cytotoxicity of
regenerated T cells was comparable to the parental antigen-
specific T cells (44). Moreover, the regenerated T cells had a
rejuvenated phenotype. The iPSC-derived T cells established
from an HIV-1-specific CTL clone could be expanded from
100-fold to 1000-fold within two weeks, whereas the parental T
cells could be expanded up to 20-fold. The regenerated CTLs also
had a 1.5-fold longer telomere length than parental CTLs (9).
Finally, the treatment with the iPSC-derived CD8ab T cells
markedly delayed tumor growth in the mouse model (44, 57, 82).
Worth noting that there is no report of the successful generation
of CD4+ helper T cells from iPSCs even though T-iPSC was
derived from the CD4+ T cell clones (59). Antigen-specific CD4+

T helper cells are essential in controlling immune reactions.
These cells can amplify anti-tumor immunity by inducing the
activation of tumor antigen-specific CTLs. Therefore, the
absence of CD4+ T cells in the iPSC-derived T cell population
may lead to insufficient control of tumor growth in patients.

Artificial Thymic Organoid
The three-dimensional (3D) structure of primary thymic stromal
cells has been shown to promote positive selection and TCR
rearrangement of human T cells in vitro (99). In 2017, Seet et al.
developed a new method called artificial thymic organoids
(ATO) system that combines the 3D organoid culture elements
and the expandability of the stromal cell line. The ATO system
requires a serum-free medium and the MS5 mouse stromal line
expressing human DL1 or DL4 (MS5-DL1 or DL4 cells), which
formed small 3D aggregates with human HSPCs by
centrifugation. The 3D aggregates were plated onto micropore
filters and cultured for six weeks. This ATO system fully
recapitulated the T cell development, especially during the
TCR rearrangement. At week 6 in ATOs, up to 20% of total
cells expressed TCRab and CD3, indicating that the cells reached
the SP stage without the requirement of anti-CD3 antibody. In
addition, CD8 SP T cells and CD4 SP cells isolated from ATOs
produced IFN-g and IL-2 in response to PMA and ionomycin
activation (100).

The ATO system was also applied to generate mature T cells
from ESCs and iPSC (79). Firstly, the ESCs or iPSCs were
induced to mesodermal lineage using BMP4, VEGF and bFGF
for three days in the monolayer culture system. The cells were
then dissociated into single cells and centrifuged with the MS5-
DL4 cells to form aggregates, which were cultured in the
hematopoietic induction medium for two weeks followed by
the T cell induction medium for 50 days. This approach
generated CD8 and CD4 SP T cells, which produced IFN-g in
response to phorbol 12-myristate 13-acetate (PMA) stimulation.
Deep sequencing results revealed that the TCRa and b chain
rearrangement occurred during the T cell differentiation in the
ATO system. Moreover, when using the NY-ESO-1-specific TCR
engineered H1 ESC line in the ATO system, nearly 100% of the
generated T cells expressed NY-ESO-1-specific TCR.
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Transduction of NY-ESO-1-specific TCR also inhibited the
rearrangement of the endogenous TCRab due to allelic
exclusion of the TCR gene. Following 14 days of expansion,
the ESC-derived TCR-engineered T cel ls expanded
approximately 100-fold and displayed specific cytotoxicity
against the NY-ESO-1 expressing target cells in vitro and in
immunodeficient mice. Interestingly, the studies demonstrated
that the ATO system could support the robust differentiation of
CD4+ T cells (79, 101). However, the function and potential of
CD4+ helper T cells generated from this method have not been
clearly investigated.

Feeder-Free Differentiation System
Despite the success in generating T cells, the use of mouse cells as
supportive feeders is not compatible with the development of
clinical-grade products due to contamination of xenogeneic
antigens. Although there have been many attempts to develop
human feeder cells to replace the mouse cell lines, the results
were unsatisfactory. Human fibroblasts or keratinocytes
engineered to express DL4 were insufficient to promote the
differentiation of human HSPCs to DN or DP T cells (102,
103). The first attempt to differentiate mouse HSPCs toward T
cells under the feeder-free system was performed using the
recombinant Notch ligand DL1 fused with Fc domain of
human IgG (DL1-Fc)-coated culture dish. This system enabled
the generation of the DP T cells that could reconstitute mature T
cells in the NOD/SCID mouse model (104). A similar approach
to differentiate mouse HSPCs applied the DL4-Fc protein-
immobilized culture dish in the medium supplemented with
SCF, Flt3L and IL-7. This system efficiently promoted the DP T
cell development (105). For a scalable T cell differentiation
system, Taqvi et al. immobilized the DL4 protein on
microbeads to support T cell development from bone marrow-
derived HSPCs. The results showed that the DL4-conjugated
bead system was sufficient to induce T cell commitment;
however, most differentiated cells were committed to the B cell
lineage leading to inefficient T cell generation (106).

Another group developed a novel feeder-free method
combining the recombinant VCAM-1 with DL4 proteins. This
system synergistically increased the robustness of T cell
commitment from cord blood-derived HSPCs in a xenogeneic-
free differentiation medium. After two weeks of differentiation,
the differentiated cells were arrested at the DP stage with the
phenotype of CD34- CD7+ CD5+ cells. The purified CD7+ cells
were further differentiated in vivo by intrahepatically injecting
into neonatal immunocompromised mice. After 10–12 weeks
post-engraftment, functional mature T cells were detected and
circulated in the peripheral blood of the immunodeficient mice
(107). Recently, Iriguchi et al. reported the success of using a
feeder-free system to generate iPSC-derived mature T cells. The
iPSC-derived CD235a−/CD14−/CD34+/CD43+ cells were
purified and differentiated into the functional antigen-specific
T cell lineage under a feeder-free system using immobilized DL4
protein and retronectin. During the differentiation, 3 × 105 iPSCs
could give rise to 6.2 × 108 T cells. Importantly, these iPSC-
derived T cells demonstrated the anti-tumor function in both in
vitro and in vivo xenograft models (75). Similarly, Ito et al.
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demonstrated that this feeder-free protocol could be applied for
the generation of tumor-specific T cells from TIL-derived iPSCs.
The result showed that the regenerated T cells retained the T cell
function and tumor-specific killing. Moreover, there was no
additional rearrangement at either the TCRa or TCRb chains
of the T cells generated by this feeder-free protocol (84).
However, these two studies still used bovine serum albumin
in the medium to obtain a large number of mature T cells;
therefore, the development of a complete xenogeneic-free
condition for clinical translation of iPSC-derived T cells is still
very challenging.
ADVANCES OF IPSC-DERIVED CAR T
CELLS FOR OFF-THE-SHELF ACT

The advent of genetic engineering has created the so-called next-
generation stem cell-based therapies with enhanced therapeutic
efficiencies (108). The most promising therapeutic application in
oncology to date has been CAR technology. To date, there are
four CD19 CAR T cell products approved by the FDA for the
treatment of relapsed or refractory large B cell lymphoma (2),
and more than 900 ongoing clinical trials targeting different
types of cancers (ClinicalTrials.gov). While CAR T cell therapy
holds impressive clinical outcomes, many challenges hinder its
applications, including insufficient autologous T cells due to
lymphopenia in patients and a high production cost. Human
iPSCs have become an attractive cell source for the generation of
CAR T cells regarding their self-renewal capacity. In 2013,
Themeli et al. reported the first proof-of-concept study
showing that the CD19 CAR-engineered iPSCs could be used
as a starting cell source for generating the functional CD19 CAR
T cells with anti-cancer capability in a xenograft model (56). To
broaden the applicability of CAR T cell therapy, many attempts
have been made to generate allogeneic CAR T cells devoid of
TCR to eliminate the risk of GvHD. These strategies employ
genome editing technologies such as zinc finger nucleases (37),
TALENs (40) or CRISPR/Cas9 (36) to disrupt TCR expression in
primary T cells from healthy donors and introduce CAR specific
to cancer antigens. Using CRISPR/Cas9 technology, Sadelain and
colleagues generated the engineered T cells with CD19 CAR gene
knockin at the TCR a constant (TRAC) locus. The engineered T
cells lack the endogenous TCR expression and simultaneously
express CD19 CAR under the control of its transcriptional
regulatory elements. These engineered TRAC-encoded CD19
CAR T cells exhibited increased anti-tumor activities in the
leukemic mouse model regarding the responses and prolonged
medium survival compared to the conventional, randomly
integrated CD19 CAR T cells. This study emphasized the
importance of transcriptional regulation of CAR expression;
the use of endogenous regulatory elements resulted in a better-
defined T cell product with minimized TCR-induced
autoimmunity and alloreactivity as well as delayed exhaustion
(36). Although the absence of TCR expression can lower the risk
of GvHD, CD3 signaling from CAR can alter the T cell lineage
commitment. The presence of all three CD3z immunoreceptor
Frontiers in Immunology | www.frontiersin.org 1043
tyrosine-based activation motifs (ITAMs) has been shown to
compromise the therapeutic potency of CAR T cells. Therefore,
the team modified the second and third CD3z ITAMs of CAR to
be non-functional (1XX) and generated CD19 1XX CAR T cells.
These engineered CAR T cells have calibrated ITAM activity
with similar strength of CD3 signaling from TCR, thereby
exhibiting increased persistence and better therapeutic efficacy
in the well-established pre-B acute lymphoblastic leukemia
(B-ALL) mouse model compared to the CAR T cells with all
three CD3z ITAMs or other types of mutants (109).

Despite excellent results obtained in primary CAR T cells,
multiplex genome engineering, quality control, and validation
are technically challenging. One way to address this issue is to
harness the unique characteristics of iPSCs, which are amenable
to genetic manipulation and clonal validation. Fate Therapeutics
has combined the iPSC technology with CAR to generate the
iPSC-derived TCR-less CD19 1XX CAR T cell product to treat B-
ALL. Upon T cell differentiation, the iPSCs harboring TRAC-
CD19 1XX CAR could give rise to the highest CD4+ CD8+ DP
population compared to other types of iPSC-derived CAR T
cells. Importantly, the CD4+ CD8+ DP cells could be efficiently
differentiated into CD8ab SP CAR T cells (110). This novel
platform, so-called “the first-of-kind off-the-shelf hiPSC-derived
CAR19 T cell product FT819” was manufactured under the
current Good Manufacturing Practice (cGMP) compliance and
applied in the pre-clinical study. The in vivo leukemia xenograft
mouse studies also showed that FT819 could control tumor
burden and prolong survival rate similar to those of the CD19
CAR T cells (111, 112). In addition, the mixed lymphocyte
reactions performed with HLA-mismatched peripheral blood
mononuclear cel ls (PBMCs) confirmed the lack of
alloreactivity, thereby eliminating the risk of GvHD (113).
Recently, Phase I multicenter trial of FT819 has been initiated
in up to 300 patients with relapsed/refractory B cell
malignancies. Various FT819 dose levels ranging from 30 to
900 million cells will be tested to find the recommended Phase II
dose. Three treatment regimens for each type of cancer will be
included: Regimen A, FT819 will be given as a single dose;
Regimen B, FT819 will be given as a single dose combining with
IL-2; and Regimen C, FT819 will be given at three fractionated
doses (114).

Besides the risk of GvHD, graft rejection by the recipient’s
immune cells is another concern. Several groups have generated
universal or hypoimmunogenic iPSC lines by eliminating HLA
class Ia (HLA-A, -B, and -C) and class II molecules to avoid
immune rejection by CD8 T cells and CD4 T cells, respectively,
and introducing HLA class Ib (HLA-G or HLA-E) or immune
checkpoint molecules (PD-L1 or CD47) to prevent NK cell-
mediated lysis or phagocytosis by macrophages (115–122). To
date, the main challenge for translating these approaches is how
to avoid NK cell-mediated lysis. This can be achieved by
suppressing the activating signals or promoting the inhibitory
signals. However, there are diverse activating and inhibitory
receptors expressed on NK cells of each individual; thus,
targeting multiple receptors is necessary to completely prevent
the NK cell attacks (123, 124). Previous studies showed that
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expression of HLA-E in the HLA-null iPSC-derived CD45+ cells
(116) and iPSC-derived retinal pigment epithelial cells (125)
could inhibit NK cell-mediated lysis through the interaction with
CD94/NKG2A receptors. However, it was shown that
approximately 50% of NK cells express NKG2A receptor (126);
therefore, HLA-E expressing cells may still be a target for
NKG2A- NK cells (122). More recently, Wang et al. took a
step forward by knocking out poliovirus receptor (PVR) or
CD155, a ligand for NK cell-activating receptor DNAM-1, in
the HLA-E-transduced, HLA-I- and HLA-II-null iPSCs. Upon
differentiation toward cytotoxic T cells, the engineered cells
could reduce the activation of DNAM-1+ NK cells, consisting
of both NKG2A+ and NKG2A- populations, and persisted longer
than the HLA-intact iPSC-derived T cells in vitro and in vivo in
the presence of allogeneic immunity (119). Therefore,
engineering multiple inhibitory/activating signals could lead to
a more effective escape from NK cells making the iPSC-derived T
cells applicable to a larger number of patients.

Apart from the modification of TCR and/or HLA genes
and the introduction of CAR for the generation of universal
iPSC-derived CAR T cells, there are attempts to engineer
the iPSCs with other molecules to expand the potential of
adoptive iPSC-derived CAR T cell therapy. One feature is the
expression of a high-affinity, non-cleavable form of antibody
receptor CD16 (hnCD16), which allows the scientists to adjust
the specificity of the T cell killing through antibody-dependent
cellular-cytotoxicity (ADCC) by adding a monoclonal antibody.
For example, the iPSC-derived CD19 CAR-hnCD16 T cells could
efficiently recognize and kill both CD19+ CD20+ and CD19-

CD20+ tumor cells when combined with anti-CD20 monoclonal
antibody (Rituxan) (113). Therefore, this strategy could be
applied to target multiple cancer antigens. Another approach
to increase the persistence and therapeutic efficacy of iPSC-
derived CAR T cells is to engineer a signaling-fusion complex
such as IL-7 receptor fusion (IL-7RF), which is a fusion protein
of IL-7 receptor and its ligand; therefore, IL-7RF can generate IL-
7 signal by itself without exogenous IL-7 support. The addition of
IL-7RF led to higher anti-tumor activity compared to the control
group in both the in vitro and in vivo studies (127).

In 2020, a novel TCR (MC.7.G5) was discovered using a
genome-wide CRISPR-Cas9 screening. This TCR exhibits a pan-
cancer cell recognition potential via the invariant monomorphic
MHC class I-related protein MR1 molecule. T cells expressing
the MR1-restricted TCR (MR1-TCR) could kill a broad range of
cancer cells independently of classical MHC molecules.
Importantly, these MR1-TCR T cells are inert when being co-
cultured with healthy cells from various tissues (128). The
discovery of the MR1-TCR offers therapeutic opportunities for
many cancers in all individuals. Recently, Nguyen et al.
demonstrated the feasibility of the MR1-TCR in the engineered
iPSCs, which also express CD19 CAR and hnCD16. Upon T cell
differentiation, the engineered iPSC-derived T cells could
recognize multiple hematological and solid tumor cell lines.
Expression of hnCD16 also enhanced killing of CD20+ Raji
cells when combined with Rituximab or HER2+ SKOV3 cells
in the presence of anti-HER2 monoclonal antibody (Herceptin).
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Besides, the CD19 CAR T cells expressing either MR1-TCR or
hnCD16 could eliminate CD19-negative lymphoma cells in the
co-culture system (129). Altogether, these studies demonstrate
the feasibility of iPSCs as a potential renewable cell source of
CAR T cells and pave the way for developing off-the-shelf CAR T
cell products with enhanced therapeutic efficacy (Figure 3).
CHALLENGES AND FUTURE
PERSPECTIVES

Adoptive immunotherapy using CAR T cells has shown great
success in patients with relapse and refractory B cell
malignancies. While autologous T cells provide safety
regarding lower risks of adverse side effects such as GvHD, the
manufacturing process takes too long for some patients. In
addition, the T cell doses largely depend on each individual.
This becomes challenging in patients with a low number of T
cells. Ex vivo expansion of T cells can result in T cell exhaustion,
which reduces effector functions. These issues limit the clinical
utility. Recently, the treatment using allogeneic T cells from
healthy donors has gained more interest since the cells can
be prepared and comprehensively validated in advance as
off-the-shelf cell products, which can eventually lower the
manufacturing cost and time (130). Advances in genome
editing technologies have generated various types of engineered
T cells with enhanced antigen specificity and persistence, and
reduced alloreactivity so the cells can be applied to patients with
broader histocompatibility. At present, several clinical trials are
being performed to test the safety and efficacy of these
engineered T cells, as reviewed in (131).

Meanwhile, iPSCs have been used as a starting cell source for
the generation of immune cells for next-generation adoptive
immunotherapy. The iPSCs offer advantages such as unlimited
proliferation and the ability to differentiate into various cell
types, including T cells and NK cells, and ease of multiplexed
genome editing. With these properties, the engineered iPSC
clones can be isolated, expanded, differentiated, functionally
validated and banked in advance (132). However, there are
several manufacturing and regulatory hurdles that need to be
overcome. For example, the reprogramming methods must be
integration-free to avoid potential mutagenesis and transgene
reactivation. The process must be performed under cGMP
standards (133). At the Center for iPS Cell Research and
Application (CiRA), Kyoto University, Japan, the clinical-grade
clonal master cell banks were derived from peripheral blood or
umbilical cord blood of HLA-homozygous healthy volunteers
using episomal plasmid reprogramming (134). Before the
secondary cell stock can be used, it is essential to ensure that
the cells exhibit normal karyotype and the residual plasmids were
absent. Genomic integrity associated with reprogramming and
prolonged culture of the established iPSC line, such as
chromosomal alterations, copy number variations (CNV), and
indel mutations, should be determined using whole-exome
sequencing and SNP array, or whole-genome sequencing (134,
135). In addition, if the iPSCs are genetically engineered using
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the CRISPR/Cas9 system, the off-target activity from the
incorrect binding of sgRNA can often occur and result in
insertion-deletion (indel) mutations. Therefore, after clonal
selection, it is recommended to conduct the whole-genome
sequencing and careful screening of the clones for sterility,
mycoplasma, and endotoxin before they are applied in
clinics (136).

Apart from the quality control of the established iPSC line, the
quality control of the final product, in this case, differentiated T
cells, must be performed to evaluate the phenotype and function
both in vitro and in pre-clinical studies. The differentiation
protocol to generate T cells should be developed under a
xenogeneic-free system i.e., without serum supplementation or
mouse stromal cells as supportive feeders. To date, most
published protocols still rely on the use of xenogeneic feeder
cells. Although a recent study reported the use of the
immobilized-DL-4 protein to generate clinically relevant
functional iPSC-derived CD8ab+ CAR-T cells (iCART), the
therapeutic efficacy of iCART cells was more inferior than that
Frontiers in Immunology | www.frontiersin.org 1245
of primary CART cells. This was due to the absence of CD4+ T
cells, which also play an important role in the anti-tumor effect of
CAR T cell therapy (75). While the 3D ATO platform could
produce CD4+ T cells, this approach still requires co-culture with
the mouse MS5-DLL4 cell line (137). Therefore, the generation of
clinical-scale iPSC-derived functional T cells consisting of both
CD8+ and CD4+ cells is necessary (138). Furthermore, the risk of
tumor formation after transplantation due to residual pluripotent
cells is the most significant concern. Cell sorting should be done
to eliminate the contaminating cells as part of a quality check. In
addition, the tumorigenicity test using immunodeficient mice
such as NOG mice is also required to ensure that the
transplanted cells are safe for clinical translation (133, 139). It is
worth noting that the cell manufacturing process is far more
sophisticated and complicated than pharmaceutical products.
Altogether, these challenges are the main hurdles that slow
down the clinical translation of iPSC-derived cell products.

As mentioned earlier, genome editing technology has been
applied to generate universal iPSC-derived T cells. The removal
FIGURE 3 | Engineered T-iPSC-derived T cells for next-generation ACT. Genome editing technologies can be used to eliminate the endogenous TCR to reduce the
risk of graft-versus-host-disease (GvHD) or HLA molecules to reduce the risk of immune rejection for allogeneic use, or to introduce CAR to specifically target cancer
cells. However, the conventional CAR with three ITAM motifs generates higher CD3 signals than endogenous TCR and results in altered T cell differentiation of iPSCs.
CD19-1XX CAR construct is the novel CAR construct with mutated second and third ITAM motifs to reduce the CD3 signal. Apart from CAR, the iPSC-derived T cells
can be modified to express MR1-restricted TCR to target a wide range of cancer cells. Other strategies to enhance cytotoxic activity and persistence include the
expression of hnCD16 and IL-7 RF.
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of HLA-I can pose a potential safety risk. If the transplanted cells
are virally infected or transformed into a tumor, they would not
be recognized by the immune cells. Therefore, the solution to
these problems is to introduce a suicide gene such as inducible
Caspase 9 (iCas9) into the cells. Upon activation by a specific
chemical inducer of dimerization (CID), the caspase cascade is
induced, and the cells rapidly undergo apoptosis (140). This
suicide system was previously tested in the T-iPSCs, and the
results showed that the cytotoxic T cells derived from the iC9-
expressing T-iPSCs were effective against EBV-induced tumors
in the mouse model. Upon administration with CID, the iC9
system was activated, leading to apoptosis of CTLs. The suicide
system can also be exploited to eliminate contaminating iPSCs or
tumors derived from iPSCs as well as preventing adverse events
such as GvHD, cytokine release syndrome, “on-target, off-tumor
toxicities” in iPSC-derived T cell therapy (82).

Other concerns observed in CAR T cell therapy could also be
considered for developing iPSC-derived T cells. The therapeutic
efficacy of CAR T cell therapy mainly depends on the identification
of the tumor-associated antigens or neoantigens that are expressed
only on the tumor cells and not on the healthy cells. The ideal
target antigen will have fewer adverse effects from “on-target, off-
tumor toxicities” (141). Furthermore, in solid tumors, the
immunosuppressive tumor microenvironments (TME) represent
a significant barrier that impairs the function of CAR T cells.
Several approaches have been applied to alter the TME from
immunosuppressive to pro-inflammatory, including the use of a
conditioning regimen prior to T cell infusion, small molecules to
interfere with immunosuppressive cells, and blocking antibodies
such as anti-PD-1 scFv to inhibit immune checkpoints (142, 143)
as well as engineering CAR to express cytokine receptor or to
secrete cytokines such as IL-12, IL-18, IL-15 to increase T cell
persistence and anti-tumor efficacy (141, 144–147). To date, the
CAR T cell therapy for solid tumors in clinical trials has not been
effective since T cells cannot penetrate and survive in the TME. To
overcome these hurdles, CAR platforms in other immune cells
have been explored. One of which is macrophages that have
abilities to penetrate the TME, perform phagocytosis and antigen
presentation, and interact with other immune cells in the TME.
Recently, Zhang et al. incorporated CD19-specific CAR into iPSCs
and differentiated them into macrophages (CAR-iMac). Upon
activation with leukemia and lymphoma cells, the CAR-iMAC
were polarized toward the pro-inflammatory M1 subtype and able
Frontiers in Immunology | www.frontiersin.org 1346
to phagocytose the tumor cells in an antigen-dependent manner.
Therefore, combining iPSC-derived CAR T cells and CAR-iMac
may provide an improved outcome in patients with the heavy
burden of solid tumors (148).
CONCLUSION

Advances in iPSC and genome editing technologies offer great
promise toward the next-generation ACT where the iPSCs can be
engineered to have a more potent cytotoxic function, increased
persistence, and less immunogenicity. The iPSC-derived CAR T
cells can be prepared and validated in advance as off-the-shelf
products to be administered to a large number of cancer patients.
Although several hurdles and challenges remain to be overcome,
this strategy will provide an infinite supply of true off-the-shelf
cell products for cancer immunotherapy.
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Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer with poor
prognosis. Surgery, chemotherapy, and radiofrequency ablation are three conventional
therapeutic options that will help only a limited percentage of HCC patients. Cancer
immunotherapy has achieved dramatic advances in recent years and provides new
opportunities to treat HCC. However, HCC has various etiologies and can evade the
immune system through multiple mechanisms. With the rapid development of genetic
engineering and synthetic biology, a variety of novel immunotherapies have been employed
to treat advanced HCC, including immune checkpoint inhibitors, adoptive cell therapy,
engineered cytokines, and therapeutic cancer vaccines. In this review, we summarize the
current landscape and research progress of different immunotherapy strategies in the
treatment of HCC. The challenges and opportunities of this research field are also discussed.

Keywords: immunotherapy, hepatocellular carcinoma, HCC, immune checkpoint inhibitors, adoptive cell therapy,
vaccine, CAR-T, TCR-T
INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most commonly occurring cancer and the third leading
cause of cancer death globally (1). In 2020, there were approximately 906,000 new cases and 830,000
deaths of primary liver cancer worldwide, most of which were HCC (comprising 75%-85% of cases)
(2). Although surgery is now the most effective treatment for HCC, tumor recurrence is quite
common following tumor resection, and the age-standardized five-year relative survival rate for
HCC is only 18.1% (3). Due to the difficulty of early diagnosis, the majority of HCC patients are
diagnosed as an advanced stage at the initial visit and lose the opportunity for curative treatment
such as hepatectomy or radiofrequency ablation, making HCC the second leading cause of cancer-
related death in adult males due to the lack of effective therapies (4). The two clinically approved
targeted therapy drugs, sorafenib and lenvatinib, could only extend the overall survival by 2 to 3
months (5, 6). Therefore, novel HCC treatment approaches are desperately needed.

Immunotherapy has been proven effective and safe in treating solid tumors, with long-term survival
and tolerable toxicity (7, 8). The liver is an immunologically tolerant organ, uniquely capable of limiting
hypersensitivity to antigens from food and bacterial products via the portal vein, and capable of
accepting liver transplants (9). It is suggested that the development of anti-tumor immunity against
HCC is synergistically hindered by this tolerogenic property of the liver and the immunosuppressive
org October 2021 | Volume 12 | Article 765101151
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tumormicroenvironmentofHCC.However, thepotential of cancer
immunotherapy to elicit systemic and durable anti-tumor
responses may make it an ideal therapeutic option for HCC,
which is characterized by metachronous multicentric occurrence.
To date, several immune checkpoint inhibitors (ICIs) targeting
cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell
death protein-1 (PD-1), or its ligand programmed cell death-ligand
1 (PD-L1) have been approved by the U.S. Food and Drug
Administration (FDA) for various types of cancers, including
HCC (10–12). Other immunotherapeutic strategies, such as
adoptive cell therapy, chimeric antigen receptor-modified
immune cells, engineered cytokines, and therapeutic cancer
vaccines, are matured to clinical trials and bring new hope for
HCC patients (13–16). In this review, we first summarize the
current landscape of immunotherapy for HCC (Figure 1), then
discuss this research field’s challenges, opportunities, and
future directions.
ANTIBODY-BASED THERAPY

Immune Checkpoint Inhibitors (ICIs)
Immune checkpoints are inhibitory immunoreceptors expressed
by effector immune cells that prevent them from becoming
overactivated. These inhibitory receptors include but not
Frontiers in Immunology | www.frontiersin.org 252
limited to CTLA-4, PD-1, T cell immunoreceptor with Ig and
ITIM domains (TIGIT), T cell immunoglobulin and mucin
domain containing-3 (TIM3), lymphocyte-activation gene 3
(LAG3), B and T lymphocyte attenuator (BTLA) (17). HCC
and other solid tumors use this physiological mechanism to
evade anti-tumor immune responses (18). ICIs are monoclonal
antibodies that could block the interaction of immune
checkpoint proteins with their ligands, thereby enhance the
anti-tumor immune response by preventing the inactivation of
T cells and restoring immune recognition and immune attack. At
present, the targets of ICIs mainly include PD-1, PD-L1, and
CTLA-4 (13). PD-1 is a member of the CD28 family, expressed
on the surface of most immune cells, mainly on activated T cells,
natural killer (NK) cells, regulatory T cells (Treg), myeloid-
derived suppressor cells (MDSC), monocytes, and dendritic
cells (DC). PD-1 can bind to its ligands PD-L1 and PD-L2,
which are expressed in various tumors, including HCC, to
transmit inhibitory signals to T cells and induce the immune
escape of tumor cells (19).

In 2017, the PD1 inhibitor nivolumab was granted accelerated
approval in the United States for the second-line treatment of
patients with advanced HCC after treatment with sorafenib. To
date, several exploratory studies of ICIs in treating HCC have been
conducted. Pembrolizumab and atezolizumab, targeting PD-1 and
PD-L1 respectively, have been gradually incorporated into the
FIGURE 1 | Current immunotherapies for hepatocellular carcinoma (HCC). PD1, Programmed cell death protein 1; PD-L1, Programmed cell death ligand 1; CTLA4,
cytotoxic T lymphocyte antigen 4; EpCAM, epithelial cell adhesion molecule; CAR-T, Chimeric antigen receptor T cell; NK, Natural killer cell; TCR-T, T cell receptor
engineered T cell; AFP, Alpha-fetoprotein; GPC3, Glypican 3; DC, dendritic cell.
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treatment guidelines in many countries and recommended as a
clinical treatment option forHCC.Nivolumab andpembrolizumab
result in a 15-20% rate of objective remissions (including 1-5%
complete remissions) that are durable and associated with
prolonged survival. In the CheckMate 040 trial, the median
duration of response to nivolumab among 48 patients in the
dose-escalation cohort was 17 months, and the 2-year survival
rate among responders was greater than 80% (20). KEYNOTE-240,
a phase III clinical trial testing pembrolizumab following sorafenib
treatment in 413 patients compared with placebo, showed
statistically prolonged survival (HR 0.78; P=0.023). The
progression-free survival and overall survival curves showed that
some patients benefited from pembrolizumab in the long term.
Nearly 20% of patients who received pembrolizumab remained
progression-free for more than one year, compared with less than
7% in the control group (21). The phase III CheckMate 459 trial
compared nivolumab with sorafenib in 743 patients naive to
systemic agents, patients who received nivolumab lived longer
than those who received sorafenib (median survival 16.4 versus
14.7 months, HR 0.85; P=0.07) (22). Longer follow-up of the
CheckMate 459 trial confirmed the ability of nivolumab versus
sorafenib to increase the rate of long-term survival (29%versus 21%
at 33 months) (23). The latest report in European Society for
Medical Oncology (ESMO) 2021 Annual Meeting shows that
tislelizumab, a humanized monoclonal antibody (mAb) with high
affinity for PD-1 demonstrated durable response in patients with
previously systemically treated unresectable HCC and was well
tolerated. A global, randomized phase 3 trial is ongoing that
compares tislelizumab with sorafenib as first-line treatment in
adult patients with unresectable HCC (NCT03412773) (24).

CTLA-4 is another member of the CD28 family that is mainly
expressed on activated T cells and dendritic cells and is involved
in the negative regulation of the immune response after binding
to B7 molecules (25). Ipilimumab and tremelimumab are both
CTLA-4 inhibitors, of which Ipilimumab is the first immune
checkpoint inhibitor approved by the FDA in 2011 for the
treatment of patients with advanced skin cancer (26).
Ipilimumab is an IgG1 mAb, while tremelimumab is an IgG2
mAb, with different antibody-dependent cell-mediated
cytotoxicity (ADCC) and complement-dependent cytotoxicity
(CDC) activities (27). A clinical trial in 2013 showed that
tremelimumab could effectively play an anti-HCC effect, with a
partial response rate of 17.6% and disease control rate of 76.4%
(28). With the in-depth investigation of the mechanism of
CTLA-4 inhibitors, some scientists believe that the mechanism
of CTLA-4 inhibitors is not through the immune checkpoint but
by targeted elimination of Tregs in tumors (29). TIM3 is
expressed on tumor-infiltrating lymphocytes (TILs) and
tumor-associated macrophages (TAMs) of human HCC and
negatively regulates the effector function of T cells, whereas its
expression on Treg cells results in enhanced suppressor activity
(27, 30, 31). The highly expressed TIM3 is associated with less
differentiated HCC (32). LAG3 expression is significantly higher
on tumor-specific CD4+ and CD8+ TILs than in other immune
compartments in patients with HCC. LAG3 has another
functional soluble ligand, fibrinogen-like protein 1, which is
Frontiers in Immunology | www.frontiersin.org 353
synthesized by hepatocytes (33). On March 5, 2019, the sialic
acid-binding immunoglobulin-like lectin-15 (Siglec-15) was
described as a novel immunosuppressive molecule in Nature
Medicine by Professor Lieping Chen (34). The latest research
shows that Siglec-15 promotes the migration of liver cancer cells
by repressing the lysosomal degradation of CD44 (35). The T-cell
immunoreceptor with immunoglobulin and ITIM domains
(TIGIT) is another immune checkpoint involved in tumor
immune surveillance (36). The TIGIT/CD155 pathway inhibits
T cell activation by enhancing IL-10 production and diminishing
IL-12 by DCs (37). Taken together, these preclinical data support
the investigation of TIM3, LAG3, Siglec-15, and TIGIT
inhibitors in HCC in combination with PD1 and PDL1 blockade.

Current clinical trial results show that patients treated with ICIs
alone have a lower response rate, so the combined use of ICIs and
other treatments will be the future direction. In 2020, the results
from IMbrave150, a global, randomized phase 3 trial, showed that
atezolizumab in combination with the anti-angiogenic drug
bevacizumab significantly reduced the risk of death in patients
with advanced unresectable HCC and significantly improved the
quality of patient survival (38).The combinationofpembrolizumab
plus lenvatinib, a tyrosine kinase inhibitor (TKI), showed an overall
response rate (ORR) of 46%, with complete response (CR) and
partial response (PR) observed in 11%and35%of included patients
with unresectable HCC, respectively (39). Similarly, recent
preclinical and clinical studies have proved that the combined
application of ICIs with transcatheter arterial chemoembolization
(TACE), radiofrequency ablation (RFA), and radiotherapy can also
promote the efficacy of anti-tumor immunotherapy (40, 41). In
addition, camrelizumab combinedwith the chemotherapy regimen
FOLFOX4 is being investigated as first-line therapy for advanced
HCC in a phase Ib/II clinical trial (42). A summary of the past three
years of clinical trials associated with ICIs therapy for HCC is listed
in Table 1.

Bispecific Antibody (BsAb) Therapy
Unlike monoclonal antibodies, BsAbs are prepared mainly by
recombinant DNA technology and can specifically bind two
antigens or epitopes simultaneously (43). BsAb can directly
enhance the activity of immune cells against tumors and can
also target immune checkpoints and tumor-associated antigens
(TAAs) to reverse immunosuppression in the tumor
environment. Therefore, they have more advantages in terms
of synergistic effects than monoclonal antibodies and can also
mediate a variety of specific biological effects. In most cases,
BsAbs recruit and activate immune cells to kill tumor cells by
bridging the gap between immune cells and tumor cells (44).
Solitomab (AMG110, MT110) is a humanized bispecific
EpCAM/CD3 antibody. The anti-EpCAM single-chain variable
fragment (scFv) is fused to the anti-CD3 scFv via a Gly4Ser
linker to form the bispecific T-cell engager (BITE), whose
binding to gd T cells can lead to near-complete lysis of HCC
cell lines in vitro (45). Another BsAb, Glypican-3 (GPC3)/CD3
BITE, is thought to recruit cytotoxic T lymphocyte (CTL) to
eliminate GPC3 + HCC cells (46). In one study, two anti-GPC3
Fab fragments were fused via flexible linker peptides to one
October 2021 | Volume 12 | Article 765101
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TABLE 1 | Clinical trials of ICIs therapy for HCC the last three years (www.clinicaltrails.com).

NCT ID Phase Interventions Country

NCT04943679 1, 2 Anti-PD-1/PD-L1/PEG-IFN-a China
NCT03638141 2 Durvalumab/Tremelimumab US
NCT04165174 2 Terepril monoclonal antibody/Apatinib China
NCT04696055 2 Regorafenib in combination with Pembrolizumab US
NCT04728321 2 Anti-PD-1/CTLA-4 bispecific antibody AK104/Lenvatinib China
NCT04444167 1, 2 Anti-PD-1/CTLA-4 bispecific antibody AK104/Lenvatinib China
NCT04193696 2 Radiation therapy and systemic anti-PD-1 immunotherapy China
NCT03869034 2 Transarterial Infusion Chemotherapy Combined With PD-1 Inhibitor China
NCT04974281 1 Anti-PD-1 and Lenvatinib Plus TACE China
NCT04418401 1 Donafinib Combined With Anti-PD-1 Antibody China
NCT04814043 2 Anti-PD-1 and lenvatinib plus TACE and chemotherapy China
NCT04814030 2 Anti-PD-1 Plus Chemoembolization and chemotherapy China
NCT04273100 2 Anti-PD-1 combined with TACE and lenvatinib China
NCT03605706 3 Camrelizumab (PD-1 Antibody) in Combination With chemotherapy China
NCT03839550 2 Apatinib mesylate +PD-1 antibody SHR-1210 China
NCT04564313 1 Anti-PD-1 Antibody Camrelizumab China
NCT04233840 2 Nivolumab (PD-1 Antibody) China
NCT04297280 2 Anti-PD-1 Antibody (IBI308) Combined With TACE China
NCT04229355 3 DEB-TACE plus PD-1 inhibitor China
NCT03857815 2 Radiation Combined With Anti-PD-1 Antibody (IBI308) China
NCT04639284 NA Anti-angiogenic agents plus anti-PD-1/PD-L1 antibodies China
NCT04518852 2 TACE combined with sorafenib and PD-1 mAb China
NCT04172571 2 anti-PD-1 antibody AK105 plus anlotinib hydrochloride China
NCT03939975 2 anti-PD-1 therapy in combination with incomplete thermal ablation China
NCT04248569 1 DNAJB1-PRKACA Fusion Kinase Peptide Vaccine Combined With Nivolumab and Ipilimumab US
NCT04802876 2 Spartalizumab (PD-1 inhibitor) Spain
NCT04191889 2 Hepatic Arterial Infusion combined with Apatinib and Camrelizumab China
NCT03829501 1, 2 anti-ICOS mAb (KY1044) in combination with anti-PD-L1 mAb (atezolizumab) US
NCT03652077 1 INCAGN02390 (TIM3 inhibitor) US
NCT03836352 2 DPX-Survivac, in Combination Cyclophosphamide, Pembrolizumab, US
NCT03849469 1 XmAb®22841 in Combination with Pembrolizumab US
NCT04709380 3 Radiotherapy Plus Toripalimab China
NCT04167293 2, 3 Sintilimab and Stereotactic Body Radiotherapy China
NCT04157985 3 PD-1/PD-L1 Inhibitors US
NCT04658147 1 Perioperative Nivolumab With or Without Relatlimab US
NCT03713593 3 Lenvatinib in Combination With Pembrolizumab US
NCT04629339 2 INCB086550 (Oral PD-L1 Inhibitor) Bulgaria
NCT04487704 NA camrelizumab China
NCT04114136 2 Anti-PD-1 mAb Plus Metabolic Modulator US
NCT04785287 1, 2 Anti-CTLA4 mAb, Nivolumab, and Stereotactic Body Radiation US
NCT04116320 1 Focused Ultrasound Ablation and PD-1 Antibody Blockade US
NCT04740307 2 pembrolizumab/quavonlimab (MK-1308A) plus lenvatinib US
NCT04665609 3 Thermal Ablation, Anlotinib and TQB2450 (PD-L1 inhibitor) China
NCT03867084 3 Pembrolizumab (PD-1 inhibitor) US
NCT04246177 3 lenvatinib and pembrolizumab in combination with TACE US
NCT03655613 1, 2 PD-1 inhibitor(APL-501 or nivolumab) + c-Met inhibitor (APL-101) Australia
NCT04052152 2 Anlotinib Hydrochloride Capsules combined with Sintilimab injection China
NCT04204577 2 Thermal Ablation, Apatinib and PD-1 Antibody SHR-1210 China
NCT04102098 3 Atezolizumab (Anti-PD-L1 Antibody) Plus Bevacizumab US
NCT04828486 2 Futibatinib and Pembrolizumab US
NCT03785210 2 Nivolumab (Anti-PD1), Tadalafil and Oral Vancomycin US
NCT03949231 3 PD1/PDL1 Inhibitor China
NCT03680508 2 TSR-022 (Anti-TIM-3 Antibody) and TSR-042 (Anti-PD-1 Antibody) US
NCT03973112 2 HLX10 in Combination With HLX04 China
NCT04912765 2 Neoantigen Dendritic Cell Vaccine and Anti-PD1 (Nivolumab) China
NCT03859128 2, 3 Toripalimab (PD-1 Antibody) China
NCT04926532 1, 2 Toripalimab (PD-1 Antibody) Plus Sorafenib China
NCT03722875 NA SHR-1210 (PD-1 Antibody) Plus Apatinib China
NCT04014101 2 Anti-PD-1 Antibody SHR-1210 Combined With Apatinib Mesylate China
NCT04947826 2 combination therapy of HAIC with PD-1 antibody and VEGF antibody China
NCT04411706 2 Anti-PD-1 Antibody combined with apatinib and capecitabine China
NCT03764293 3 Anti-PD-1 Antibody SHR-1210 Combined With Apatinib Mesylate China
NCT03793725 2 Anti-PD-1 Inhibitor SHR-1210 in Combination With Apatinib China
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Frontiers in Immunology | ww
w.frontiersin.org
 October 2021 | Volume 12 | Articl454
 e 765101

http://www.clinicaltrails.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. Immunotherapy for Hepatocellular Carcinoma
asymmetric third Fab-sized binding module to form an IgG-
shaped TriFab, which could be applied to engage two antigens
simultaneously, or for targeted delivery of small and large
payloads (47).
ADOPTIVE CELL THERAPY (ACT)

ACT is an immunotherapy that uses the immune cells of the
patient or a healthy donor to fight cancer and has recently
become an essential tool in the treatment of cancer (48).
Compared to antibodies or other targeted drugs, ACT can be
activated and replicate in vivo and has a long-lasting anti-tumor
effect. Therefore, ACT is also referred to as a “living” treatment
method (49). ACT is considered a highly individualized cancer
therapy because most effector cells are derived from the patient.
Because expanded or genetically modified effector cells can
recognize and attack tumor antigens, ACT is more specific
than chemotherapy (50). ACT clinical trials for the treatment
of HCC registered at clinicaltrials.gov in the last three years are
listed in Table 2.

Cytokine-Induced Killer Cell (CIK)
CIK cells are a heterogeneous population of immune cells produced
by in vitro expansion of human peripheral bloodmononuclear cells
(PBMC) in the presence of IL-2, IFN-g, and anti-CD3 monoclonal
antibodies (51). CIK cells are mainly composed of natural killer T
(NKT) cells, natural killer (NK) cells, and cytotoxic T lymphocytes
(CTLs). CIK can recognize tumor cells through the adhesion
molecules and lyse tumor cells in a major histocompatibility
complex (MHC) independent manner. In a phase I clinical trial,
Shi et al. used CIK cells to treat primary HCC and found that the
symptoms and characteristics of HCC patients were relieved
without significant side effects, indicating autologous CIK cells
can efficiently improve the immunological status in HCC patients
(52). Clinical trials have also shown that CIK cell therapy can not
only be used to treat patientswith inoperable primaryHCCbut also
has some effect in treating HCC patients after tumor resection.
Takayama et al. reported a clinical trial of CIK treatment in 150
patients with postoperative HCC. They found that the treatment
had no significant adverse effects, and the recurrence rate was 18%
lower in the treatment group, suggesting that CIK cells therapy
could reduce the recurrence rate of patients with postoperative
HCC and prolong the recurrence-free survival (53).

Researchers have also made many attempts to combine
conventional treatments with CIK cell therapy. TACE combined
with CIK cells could prolong progression-free survival in HCC
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patients compared toTACEalone (54).WangXPetal. reported that
after combined treatment of primary HCC patients with CIK cells
and local radiofrequency (RF) hyperthermia, T and NKT cells
increased significantly, and alpha-fetoprotein (AFP) decreased
from 167.67 ± 22.44 to 99.89 ± 22.05 ng/ml (P = 0.001) (55).
Although side effects such as pyrexia, chills, myalgia, and fatigue
were associated with CIK therapy in 17% of patients, they were not
severe enough to discontinue therapy (56). These data suggest that
CIK cells in combination with TACE or RF hyperthermia are safe
and effective in treating HCC patients.

Tumor-Infiltrating Lymphocytes (TIL)
TIL is one of the representative components of the host anti-
tumor immune responses, which including regulatory T cells
(Treg), NK cells, T cells, and B cells (57). Experiments in mice
show that TIL is 50-100 times more effective than lymphokine-
activated killer (LAK) cells in treating advanced metastatic
tumors (58). The feasibility of TIL therapy was demonstrated
in a phase I clinical trial in patients with primary HCC (59).
Because TILs are isolated from surgical tumor specimens and can
recognize multiple antigens, the tumor-inhibitory effect of TIL is
stronger than that of therapies targeting single antigens or
mutations. Previous studies have shown that TILs in HCC are
rare but may have a significant impact on tumor recurrence and
patient prognosis (60). In a randomized clinical trial, adoptive
TIL therapy was shown to improve recurrence-free survival after
liver resection in 150 patients with HCC (53). Patients with HCC
and prominent lymphocyte infiltration who underwent surgical
resection had a 38.6% lower recurrence rate and a 34.9% higher
five-year survival rate than patients without marked lymphocyte
infiltration (61). However, it is difficult to isolate TILs from the
tumor tissues of HCC patients and expand them in vitro. In
addition, only a few patients with HCC can tolerate lymphocyte
deletion, which is essential before TIL infusion (62).

Chimeric Antigen Receptor T Cell (CAR-T)
CAR-T therapy is novel cancer immunotherapy in which T cells
are genetically modified to recognize specific TAA and is the
current research hotspot of ACT (63). CAR-T cell therapy has
achieved encouraging outcomes in the treatment of hematological
malignancies. CAR-T cells targeting CD19 and B-cell maturation
antigen (BCMA) have been approved by the U.S. FDA for the
treatment of acute B-cell lymphocytic leukemia, certain types of
lymphomas, and multiple myeloma (64, 65). Due to the
heterogeneity of solid tumors, lack of specific targets, and
susceptibility to the tumor microenvironment, CAR -T therapy
for liver cancer is still in development (66).
TABLE 1 | Continued

NCT ID Phase Interventions Country

NCT04297202 2 Anti-PD-1 Inhibitor SHR-1210 in Combination With Apatinib China
NCT04393220 2 Combination of PD-1 and VEGFR-2 Blockade China
NCT04665362 1 Oncolytic Virus M1Combined With Anti-PD-1 Antibody and Apatinib China
NCT03966209 1 JS001(PD-1 inhibitor) China
NCT03732547 2 Anti-PD-1 Antibody Combined With PolyIC China
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In contrast to the T-cell receptor (TCR) structure of
conventional T cells, the CAR structure is independent of the
major histocompatibility complex (MHC) antigen presentation,
avoids restriction by MHC molecules, and solves the problem of
tumor immune escape due to downregulation of MHC (67)
(Figure 2). To date, a growing number of clinical trials have been
conducted to demonstrate the value of CAR-T cell therapy in
solid tumors.

GPC3 is a heparan sulfate proteoglycan containing 580 amino
acids and is overexpressed in HCC but is not present or shows
very low expression in normal tissues (68, 69). Gao et al.
constructed for the first time CAR-T cells targeting GPC3 and
demonstrated that GPC3 CAR-T cells could effectively eliminate
the growth of HCC cells in vitro and in vivo (70). Recently, our
lab reported that by splitting the CAR construct into two parts
(split GPC-3 CAR-T cells), HCC tumors could be eliminated
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with a decreased amount of proinflammatory cytokines (71).
Another study established patient-derived xenograft (PDX) HCC
models and proved that GPC3 CAR-T cells suppressed tumor
growth but with varying efficacy due to different expressions of
PDL1 on tumor cells (72). This suggests that the combination of
CAR-T therapy and ICIs is a feasible strategy to achieve higher
efficacy in eradicating PD-L1-positive HCC.

Alpha-fetoprotein (AFP), a secreted glycoprotein, is highly
expressed in the fetus but very low in adults. However, when HCC
occurs in adults, AFP is re-expressed (73). Conventional CAR-T cells
can only recognize tumor surface but not intracellular antigens.
Considering that all intracellular antigens are presented by MHC
class Imolecules, Liu et al. generated someuniqueCAR-Tcellswhich
can selectively bind to the AFP158-166 peptide-MHC complex, then
lyse HLA-A*02:01+/AFP+ tumor cells (74). Meanwhile, they
conducted a phase I clinical trial (NCT03349255) successfully
TABLE 2 | Clinical trials of ACT for HCC the last three years (www.clinicaltrails.com).

NCT ID Target Phase Interventions Country

NCT04121273 GPC3 1 CAR-T China
NCT02905188 GPC3 1 CAR-T US
NCT04538313 NA 1, 2 TILs China
NCT03884751 GPC3 1 CAR-T China
NCT03899415 HBV antigen 1 TCR-T China
NCT03980288 GPC3 1 CAR-T China
NCT03672305 c-Met/PD-L1 1 CAR-T China
NCT04162158 NA 1, 2 Allogeneic NK cells China
NCT04368182 AFP 1 TCR-T China
NCT03971747 AFP 1 TCR-T China
NCT03993743 CD147 1 CAR-T China
NCT04011033 NA 2, 3 Autologous iNKT cells China
NCT03941626 DR5, EGFR vIII 1, 2 CAR-T/TCR-T China
NCT04951141 GPC3 1 CAR-T China
NCT04550663 NKG2DL 1 CAR-T China
NCT03441100 MAGEA1 1 TCR-T US
October 2021 | Volume 12 | Articl
ACT, Adoptive cell therapy; GPC3, Glypican 3; CAR-T, Chimeric antigen receptor T cells; TILs, tumor-infiltrating lymphocytes; HBV, hepatitis B virus; TCR-T, T cell receptor engineered T
cells; AFP, Alpha-Fetoprotein; iNKT, Invariant natural killer T; DR5, Death receptor 5; EGFR vIII, Epidermal growth factor receptor variant III; NKG2DL, NKG2D ligand; MAGEA1, MAGE
family member A1.
FIGURE 2 | The schematic diagrams of the structures of TCR complex and CAR. The TCR a and b chains bind the MHC-peptide on antigen-presenting cells. Other
CD3 molecules, especially the CD3z, transmit signals and activate the T cells. TCR, T cell receptor; CAR, Chimeric antigen receptor; scFv, Single-chain variable
fragment; VH, heavy chain variable domain; VL, light chain variable domain.
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evaluating the safety and efficacy of CAR-T cells in AFP-expressing
HCCpatients. Therefore targeting intracellular antigenswithCAR-T
cells is a promising strategy for HCC treatment.

c-Met is a tyrosine kinase receptor that can induce hepatocyte
proliferation, survival, and regeneration (75). Overexpression of c-
Met can promote the development and progression of HCC.
Therefore, c-Met is considered a potential target for the treatment
ofHCC. Jiang et al. generatedCAR-T cells targeting c-Met and PD-
L1 and found that dual-targeted CAR-T cells exhibited marked
cytotoxicity against c-Met+ PD-L1+ HCC cells (76).

Natural-killer group 2 member D ligands (NKG2DL) are
expressed in many primary tumors, including HCC, but not in
normal tissues (77). Therefore, NKG2DL may provide a useful
target for HCC immunotherapy. Recently, Sun et al. constructed
novel NKG2D- CAR-T cells that target NKG2DL expressed on
HCC cells and found that NKG2D-CART cells specifically lysed
HCC cells with high expression of NKG2DL but did not affect
the NKG2DL negative cell line (78). The results of the xenograft
model also showed that NKG2D-CAR-T cells could successfully
inhibit tumor growth in vivo.

CD147, a type I transmembrane glycoprotein, was highly
expressed in HCC and other solid tumors (79). Zhang et al.
introduced Tet-On inducible CD147-CART cells to treat HCC
and found that with the supply of Dox, Tet-On inducible CD147-
CART cells could lyse multiple HCC cell lines in vitro and
effectively inhibit the growth of cancer cells in the HCC xenograft
model (80). Recently, a phase I study (NCT03993743) was
conducted to assess the safety of hepatic artery infusions (HAI)
CD147-CART cells for advanced hepatocellular carcinoma.

Other candidates target antigens for HCC CAR-T therapy
involve Mucin 1 (81), EpCAM (82), and CD133 (83–85).
However, all of the targets mentioned above are TAAs, which
are expressed not only in cancer cells but also in normal cells at
low levels, therefore causing on-target, off-tumor toxicities in
healthy tissues. Finding new specific antigens and improving the
efficacy and safety of CAR-T therapy in HCC is the most
important task for future researches.

CAR-NK
In the liver, the proportion of NK cells is significantly higher than
in the peripheral blood and spleen. Therefore, NK cell is believed
to play an important role in the prevention of HCC and is
considered a potential cell therapy resource for the treatment of
HCC (86). The strategy used to generate CAR-T cells can also be
applied to NK cells to generate CAR-NK cells. In addition, CAR-
NK cells can reduce the risk of autoimmune response and tumor
transformation because of their shorter lifespan than CAR-T
cells (87). Moreover, CAR-NK cells can be produced from a
variety of sources, including the NK92 cell line, peripheral blood
mononuclear cells (PBMC), umbilical cord blood (UCB), and
induced pluripotent stem cells (IPSC). Therefore, CAR-NK cells
can be supplied “off-the-shelf”, eliminating the need for
personalized and patient-specific products, as is the case with
current CAR-T therapies, and reducing the risk of syngeneic
xenograft reactions and graft-versus-host disease (GVHD) (88).

In 2018, Yu et al. developed GPC3-specific CAR-NK cells and
explored their potential in the treatment of HCC (89). In the study,
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GPC3-specific CAR-NK cells could induce significant cytotoxicity
and cytokine production when co-cultured with GPC3+HCC cells
in vitro. Furthermore, soluble GPC3 and TGF-b did not inhibit the
cytotoxicity, andno significant difference in anti-tumor activitywas
observed under hypoxic (1%) conditions. In another study, Tseng
et al. utilized CD147 as the target antigen and created CD147-
specific CAR-T and CAR-NK cells for the treatment of HCC (90).
The results showed that CD147-specific CAR-NK cells could
effectively kill various malignant HCC cell lines in vitro and HCC
tumors in xenograft and PDXmouse models. Importantly, GPC3-
synNotch-inducible CD147-specific CAR-NK cells selectively kill
GPC3+CD147+, but not GPC3-CD147+ HCC cells and do not
cause severe on-target/off-tumor toxicity in a human CD147
transgenic mouse model.

One of the major obstacles to CAR-NK immunotherapy is the
lack of efficient gene transfer methods in the primary NK cells.
Many recent studies have demonstrated successful transduction
of expanded NK cells with retroviral vectors, with efficiencies
ranging from 27% to 52% after a single round of transduction
(91). However, the insertional mutations associated with
retroviral transduction and the deleterious effects on primary
NK cell viability are among the most important limitations of
this method in a clinical setting.

TCR-Engineered T Cell (TCR-T)
TCR-T cells are produced by modifying T cells with the gene of
exogenous TCRs to specifically recognize the tumor antigen
peptides-MHC complex (92). Since all tumor-derived proteins
can be processed by proteasomes and presented by MHC, both
the tumor surface and intracellular antigens can be targeted by
TCR-T cells. Hence, TCR-T therapy should have broader
applications than CAR-T.

Hepatitis C virus (HCV) infects approximately 130-150
million people globally and can lead to associated liver
diseases, including HCC (93). Spear et al. generated HCV-
specific TCR-T cells by genetically engineering T cells with a
high affinity, HLA-A2-restricted, HCV NS3:1406-1415-reactive
TCR (94). The results showed that HCV-specific TCR-T cells
could induce regression of established HCV+ HCC in vivo,
suggesting HCV-specific TCR-T therapy may be a plausible
option for treating HCV-associated HCC.

A smaller percentage of Hepatitis B virus (HBV)-infection-
derived HCC tissues retain the HBV gene expression, which can
become TCR-T targets. In 2011, Gehring et al. generated HBV
surface antigen-specific TCR-T cells from PBMC of chronic HBV
and HBV-related HCC patients (95). These HBV-specific TCR-T
cells were multifunctional and capable of recognizing HBV-related
HCC tumor cells. In addition, a phase I clinical trial was conducted
to evaluate the safety and efficacy of HBV-specific TCR-T in
preventing the recurrence of HCC after liver transplantation
(96) (NCT02686372).

As mentioned earlier, AFP is another HCC-associated TAA.
Recently, Docta et al. reported the identification of a human
HLAA2/AFP158-specific TCR (97), and a clinical trial using
autologous T cells from HCC patients engineered with this AFP-
specific TCR has been initiated and is ongoing (NCT03132792).
In 2018, we identified multiple HLA-A2/AFP158-specific TCRs
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from HLA-A2 transgenic mice using an immunization strategy
with recombinant lentiviral priming and peptide boosting (98).
Human T cells equipped with these TCRs showed potent anti-
tumor activity in vitro and in vivo. Furthermore, systematic X-
scan data showed that these TCR T cells have minimal or no
cross-reactivity against human cells. A clinical trial using these
TCRTs to treat HCC patients has been initiated (NCT03971747).

Other candidates target antigens for HCC TCR-T therapy
involve GPC3 (99), New York esophageal squamous cell
carcinoma 1 (NY-ESO-1) (100), and human telomerase reverse
transcriptase (hTERT) (101). However, due to TCR ’s
promiscuity, TCR-T cells may cross-react normal tissue MHC-
peptide complex, leading to off-target toxicity. Both mouse and
human-derived TCRs can produce off-target toxicity. The
melanoma-associated antigen (MAGE)-A3/HLA-A1 TCR,
although derived from humans, caused significant cardiac
toxicity by targeting the cardiac muscle protein titin (102). On
the other hand, although NY-ESO-1 TCRT has shown clinical
anti-tumor efficacy, most other TCRTs have not been proven
effective for patients. Several factors can be considered to
improve the anti-tumor effect of TCR-T therapy, including
prolonging the survival period of TCR-T in vivo, improving
tumor infiltration, and preventing T cell exhaustion.
THERAPEUTIC VACCINE

The therapeutic vaccine is an immunotherapy that introduces
tumor antigens into patients in various forms, overcomes the
immunosuppressive tumor microenvironment, and then activates
the patient’s immune system to fight cancer (103). In 2010,
Sipuleucel-T (Provenge) became the first therapeutic autologous
vaccine approved by the U.S. FDA for the treatment of men with
asymptomatic or minimally symptomatic castrate-resistant
metastatic prostate cancer (104). At present, therapeutic vaccines
used for HCCmainly include peptides, DCs, and oncolytic viruses.
A summary of the past three years of clinical trials concerning
therapeutic vaccine therapy for HCC is listed in Table 3.

In a phase I study, administration of AFP-derived peptides to
15 patients with HCC caused no adverse events and resulted in
the generation of T cells with receptors that responded to the
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peptides. Among the 15 patients, one had a complete response,
and eight had a slowing tumor growth. The T cells of the patient
who had a complete response expressed a highly functional TCR
induced by the peptide vaccines (105). In another phase I clinical
trial, a GPC3-derived peptide vaccine was used in 33 patients
with advanced HCC and reported that the vaccine was well-
tolerated and elicited a high rate of GPC3-specific CTL responses
(106). Another phase II study showed that GPC3-positive HCC
patients treated with GPC3-derived peptide vaccine as an
adjuvant therapy had a significantly lower recurrence rate after
one year than patients who received surgery alone (24% vs. 48%,
p = 0.047) (107). Multidrug resistance-associated protein 3
(MRP3) is a carrier-type transporter, and its high expression is
associated with various cancer cells, including HCC (108). A
phase I clinical trial evaluated the safety and immunogenicity of
an MRP3-derived peptide as a vaccine in 12 HCC patients (109).
The vaccination was well-tolerated, inducing MRP3-specific
immunity in 72.7% of patients, with the median overall
survival (OS) being 14.0 months (95% CI: 9.6–18.5). When the
hTERT-derived peptide was used as a therapeutic vaccine in 14
HCC patients, the induction of hTERT-specific T cells correlated
with the absence of HCC recurrence, suggesting a possible role of
cellular immunity to hTERT in preventing recurrence (110).

DCs are responsible for T-cell stimulation and anti-tumor
immune response enhancement (111). A phase I trial of
autologous dendritic cell-based immunotherapy was conducted
in inoperable primary HCC patients to evaluate the safety and
feasibility. Eight HCC patients were enrolled in this trial, and in
one patient, the tumor shrank and showed necrotic changes on
computed tomography, whereas in two other patients, serum
levels of tumor markers decreased after vaccination (112).
Another phase II clinical trial results showed that the DCs
vaccine pulsed ex vivo with HepG2 cell lysate was safe and
well-tolerated with evidence of anti-tumor efficacy (113).
Furthermore, infusion of DC in combination with TACE
enhances tumor-specific immune responses more effectively
than TACE alone, although the effect is insufficient to prevent
the recurrence of HCC (114). Further clinical trials are ongoing,
but the results have not yet been announced.

Oncolytic viruses are viral particles engineered to lyse tumor
cells and induce anti-tumor immune responses. JX-594 (Pexa-
TABLE 3 | Clinical trials of therapeutic vaccines for HCC the last three years.

NCT ID Target Phase Interventions Country

NCT04251117 Neoantigen 1, 2 personalized neoantigen DNA vaccine (GNOS-PV02) and plasmid encoded IL-12
(INO-9012) in combination with pembrolizumab (MK-3475)

US, New
Zealand

NCT04912765 Neoantigen 2 Dendritic Cell Vaccine and Nivolumab Singapore
NCT04248569 DNAJB1-

PRKACA
fusion kinase

1 Peptide Vaccine Combined With Nivolumab and Ipilimumab US

NCT03674073 Neoantigen 1 Dendritic Cell Vaccine Combined With Microwave Ablation China
NCT04147078 Neoantigen 1 Dendritic Cell Vaccine China
NCT04317248 NA 2 Multiple Signals loaded Dendritic Cells Vaccine China
NCT04246671 HER-2 1, 2 TAEK-VAC-HerBy vaccine: Modified Vaccinia Ankara-BN (MVA-BN) virus US
NCT03942328 Streptococcus

pneumoniae
1 Autologous Dendritic Cells and Pneumococcal 13-valent Conjugate Vaccine US
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Vec) is currently the main oncolytic virus used in HCC clinical
trials (115). JX-594 is a vaccinia virus with disruption of the viral
thymidine kinase (TK) gene for cancer selectivity and insertion
of human granulocyte-macrophage colony-stimulating factor
(hGM-CSF) for immune stimulation (116). Heo et al. reported
a randomized phase II clinical trial (NCT00554372) evaluating
the feasibility of JX-594 in 30 HCC patients and found that high-
dose JX-594 infusion achieved longer median OS compared to
the low-dose arm (117). However, in patients previously treated
with sorafenib (NCT01387555), the median OS was not
significantly different in patients treated with JX-594 (118).
Currently, two phase III clinical trials associated with JX-594
in treating advanced HCC is ongoing (NCT02562755,
NCT03071094). In summary, although the therapeutic vaccine
for HCC shows good prospects, its clinical application still
requires further clinical trials to verify its efficacy and safety.

Although therapeutic vaccines have a promising future in
treating HCC, some challenges still need to be overcome. First of
all, the immunosuppressive tumor microenvironment (TME) of
HCC can induce antigen-specific T cell tolerance, resulting in
poor vaccine effectiveness. There is a growing need for new
therapeutic strategies for HCC vaccines to enhance anti-tumor
immune responses by counteracting the immunosuppressive
TME. Chemotherapy can enhance the anti-tumor effect of
cancer vaccines by overcoming the immunosuppressive TME,
improving the cross-presentationof tumor antigens, and increasing
thenumber of effector cells in theTME(119, 120).The combination
of appropriately dosed systemic/local chemotherapy with cancer
vaccines could be a potentially attractive option for HCC patients.
Alternatively, the combination of ICIs and cancer vaccines could be
an additional attractive option for HCC patients. Two clinical trials
are currently underway using ICIs combined with a kinase peptide
vaccine (NCT04248569) or a neoantigen DC vaccine to treat
patients with HCC. Another major challenge is that most of the
HCC vaccines presented in the current study are based on TAA.
TAA is expressed not only on cancer cells but also on normal cells,
resulting in an inadequate T-cell immune response and failing to
elicit a robust clinical response. Neoantigens are newly expressed
antigens in tumors that can be generated from viral proteins,
normal cellular proteins, or mutated host genes (121). Since T
cells that respond to neoantigens are not negatively selected during
thymic maturation and can be primed into potent tumor-killing
effector T cells, neoantigens are ideal targets for immunotherapy
(122). Given the growing interest in neoantigen-based therapies,
many clinical trials of therapeutic vaccines, including three clinical
trials for HCC neoantigens, are registered at ClinicalTrials.gov.
CYTOKINES

Cytokines are key components of the immune system and play a
critical role in the immune response to cancer. Because the
immune system is capable of recognizing and destroying cancer
cells, there has been great interest in the use of cytokines for cancer
treatment in recent decades (123). Interferon-alpha (IFN-a) was
the first cytokine approved by the U.S. FDA for the treatment of
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hairy cell leukemia (HCL) in 1986 (124). High-dose IL -2 was
approved in 1992 for the treatment of metastatic renal cell
carcinoma (mRCC) and in 1998 for metastatic melanoma
(MM). Since initial approval, IFN-a has been extended to
follicular lymphoma, melanoma, mRCC in combination with
bevacizumab, and acquired immunodeficiency syndrome
(AIDS)-related Kaposi’s sarcoma.

A meta-analysis found that IFN-a could decrease mortality
and early recurrence rates of HCC following curative treatment
but exerted no effect on the late recurrence rate (125).
Interestingly, the effect of adjuvant IFN-a on postoperative
recurrence differs between HBV-HCC and HCV-HCC cases,
indicating different strategies with adjuvant IFN-a should be
used to treat HCC with different backgrounds. In another meta-
analysis, the effects of adjuvant pegylated interferon (Peg-IFN)
therapy on the survival of patients with hepatitis-related HCC
after curative treatment were investigated (126). The results
showed that adjuvant Peg-IFN therapy could improve
recurrence-free survival (RFS) and overall survival (OS) in
patients after curative treatment for hepatitis-related HCC
without causing severe side effects.

Although IFN-a is gradually being displaced as the first-line
anti-tumor drug, the new long-acting Peg-IFN continues to play
an important role as a companion drug in HCC treatment (127).
A preclinical study using the PDX HCC model has shown that
interferon-b (IFN-b), in addition to its antiviral effect, can also
exert anti-tumor activity through the JAK-STAT and p53
signaling pathways (128). In addition, IL-2 also has a
pleiotropic effect on the immune system, which can increase
the proliferation of T cells and activate their anti-tumor action.
In patients with inoperable HCC, after treatment with IL-2, the
survival rate of patients has increased (129).

However, cytokines as monotherapy has not fulfilled their
original promise because parenteral administration of cytokines
does not achieve sufficient concentration in the tumor, is usually
associated with severe toxicity and induces humoral or cellular
checkpoints. To circumvent these obstacles, cytokines are being
investigated clinically with newly developed cytokine mutants
(superkines), chimeric antibody-cytokine fusion proteins
(immunokines), anti-cancer vaccines, and cancer-targeted
monoclonal antibodies to enhance their ADCC or to preserve
cellular response and anti-cancer efficacy.
CHALLENGES AND OPPORTUNITIES

The liver is an immunomodulatory organ containing a high density
of innate and adaptive immune cells (130). Under physiological
conditions, the liver is constantly exposed to intestinal antigens
derived from food and microbial products. Accordingly, the liver
has intrinsic immune tolerance that allows suppression of
inappropriate inflammatory responses (131). The tumor immune
microenvironment (TIME) is complex and consists of distinct
populations of immune cells that influence response to
immunotherapy and patient survival. The TIME of HCC is
mainly composed of TAMs, MDSCs, cancer-associated fibroblasts
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(CAFs), tumor-associated neutrophils (TANs), TILs, DCs, and
extracellular matrix (ECM) (132). Compared with other solid
tumors, HCC TIME exhibits a more potent immunosuppressive
effect, and almost all cell subsets and numerous regulatory
mechanisms contribute to HCC progression, posing a major
challenge for effective cancer immunotherapy.

In recent years, cancer immunotherapy has made major
breakthroughs, and its use in HCC has attracted increasing
attention. However, there are still many problems, such as
uncertain efficacy, low objective remission rate (OR), numerous
side effects, and resistance to the drug even when patients benefit
from it. Therefore, improving the tumor immunological
microenvironment and balancing the body’s immune response
to benefit more patients is an urgent problem and a future
development direction for HCC immunotherapy.

Reportedly, the OR of PD-1/PD-1 ICIs alone rarely exceeds
40%, and the OR of nivolumab and pembrolizumab in HCC did
not exceed 20% (133). On the other hand, immune-related
adverse events (IRAE) is an important reason affecting the
widespread use of cancer immunotherapy (134). ICIs can cause
inflammatory side effects, including hypophysitis, thyroid
dysfunction, and diabetes. CAR-T therapy can cause some
severe side effects such as cytokine release syndrome (CRS),
neurotoxicity, and even death. In addition, 7%-9% of patients
cannot be treated with CAR-T due to failure of CAR-T cell
production (135). Other challenges in immunotherapy for HCC
and other solid tumors include selecting more specific targets for
immunotherapy, how to ensure that ACT cells reach the tumor
site more effectively, and how to overcome immunosuppression
by the tumor microenvironment.

Anothermajor challenge in immunotherapy forHCC is the lack
ofmarkers to predict the effect of treatment. The latest report in the
ESMO 2021 Annual Meeting shows that the survival of patients
with advanced HCC treated with nivolumab was related to the
Child-Pugh (C-P) liver function score at baseline (136). However,
other methods of immunotherapy are mostly still in the early
clinical stage, and there are no good indicators for predicting the
therapeutic effect.

HCC is in a complex immunological microenvironment, so a
single immunotherapy method or even immunotherapies alone
have a lower remission and survival rate, and multitarget
combination therapy should be the focus of future development.
In a mouse model, four components of the host immunity
consisting of a tumor antigen targeting antibody, an ICI,
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a powerful T cell vaccine, and a T cell-stimulating cytokine were
required to eradicate large established tumors (137). Recently, the
data of the phase III clinical trial IMbrave150 showed that
atezolizumab in combination with the anti-angiogenic drug
bevacizumab significantly reduced the risk of death in patients
with advanced unresectable HCC and significantly improved
patients’ quality of life, making it the first first-line combination
therapy for patients with unresectable advanced HCC (38). The
combined use of ICIs against different targets may produce
synergistic effects. Similarly, the combined application of
immunotherapy with local therapy, such as radiofrequency
ablation, radiotherapy, embolization, can also promote the
efficacy of cancer immunotherapy (40, 41).
CONCLUSION

Although current immunotherapy for HCC has achieved some
success, it still faces challenges such as low objective remission rate
and adverse treatment reactions. Therefore, comprehensive analysis
from multiple aspects to formulate personalized precision
immunotherapy schemes for HCC patients, effectively evaluating
and predicting the efficacy of immunotherapy, and adopting
combined treatment strategies are urgent questions to be answered,
and also the future trend of HCC immunotherapy research.
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INTRODUCTION

Chimeric antigen receptor (CAR) T-cell therapy has dramatically expanded the success rate of
cancer immunotherapy, especially in CD19-expressing blood cancers. Yet, it has also given rise to
new complications, notably cytokine release syndrome, neurotoxicity, and, sometimes, fatal cerebral
edema. The exact mechanisms of such toxicities across different CD19 CAR T-cell products,
however, remain hotly debated. It was recently demonstrated that CARs containing a CD28
transmembrane domain (TMD) can heterodimerize with the endogenous CD28 receptor. Here, we
hypothesize that, upon on-target activation, this heterodimerization is responsible for the increased
sensitivity of CD19 CAR to CD19low brain mural cells, resulting in increased risk of developing
severe neurotoxicity. This hypothesis may only be confirmed with a clinical trial comparing two
CD19-CD28-TMD CARs differing only by targeted amino-acid mutations in the CD28
transmembrane domain.

T lymphocytes engineered with anti-CD19 chimeric antigen receptors (CAR) are emerging as
powerful treatments for leukemia and lymphoma. The US Food and Drug Administration (FDA)
approved two CD19 CAR T-cell products in 2017, which have shown clinical efficacy in the
treatment of relapsed/refractory (r/r) acute lymphoblastic leukemia (ALL) and r/r non-Hodgkin
lymphoma (NHL). The first CAR product, tisagenlecleucel (KYMRIAH/Novartis Pharmaceuticals
Corp., thereafter referred to as CTL019), originally developed by CAR T-cell pioneer Carl June and
colleagues, is currently approved for patients up to 25 years of age with r/r ALL and, since 2018, for
adults with r/r NHL. In 2017, axicabtagene ciloleucel (YESCARTA/Kite Pharma, Inc., a Gilead
Sciences Company, thereafter referred to as KTE-C19), is approved for adult patients with r/r NHL.
Since then, two other CD19-CAR T-cell products have been FDA-approved: brexucabtagene
autoleucel in 2020 (KTE-C19/TECARTUS/Kite Pharma, Inc., thereafter referred to as KTE-X19,
a product differing only from KTE-C19 by an extra-step in the manufacturing process to exclude
malignant circulating cells) for adult patients with r/r mantle cell lymphoma, and in 2021
lisocabtagene maraleucel (BREYANZI/Juno Therapeutics, Inc., a Bristol-Myers Squibb Company,
thereafter referred to as JCAR-17, a product with the same CAR design as its previous generation
JCAR-14) for adult patients with r/r large B-cell lymphoma. Notably, these CAR-T have the same
single chain variable fragment (scFv), but different hinge (HD), transmembrane (TMD), and
intracellular signaling domains (ICD) (Figure 1A).
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SAFETY CONCERNS OF CAR
T-CELL THERAPY

Although CAR T-cell therapy can induce spectacular clinical
remission, safety remains an important concern with up to one-
Frontiers in Immunology | www.frontiersin.org 266
third of the patients developing significant toxicities, namely
cytokine release syndrome (CRS) and immune effector cell-
associated neurotoxicity syndrome (ICANS) (1, 2). By 2018,
eighteen patients died after receiving CD19-CAR T-cells (3).
CRS is the most commonly observed cause of toxicity coinciding
A

B

C

D

E

FIGURE 1 | Retrospective analysis of the proportion of severe neurotoxicity of selected CD19 CAR T-cell products and proposed model for CAR T cell-mediated
neurotoxicity. (A) Construct designs of 5 selected CD19 CAR T-cell products, namely tisagenlecleucel (CTL019), Hu19, JCAR-14/-17, axicabtagene ciluleucel (KTE-C19),
JCAR-15, and SenI-B19, differing by their hinge (HD) and transmembrane (TMD) domain. (B) Forest plot representing untransformed proportions of severe neurotoxicities
(SN, grade 3 or higher) among patients treated with CAR T-cell products. Confidence intervals (95%) were calculated using binary random effect and DerSimonian-Laird
methods with OpenMeta (http://www.cebm.brown.edu/openmeta/index.html). (C) The odds ratios of grade 3 or higher severe neurotoxicity comparing Hu19, JCAR14-
/17, KTE-C19, JCAR15, and Senl B19 CAR-T products with CTL019 (set as reference) are shown. Calculations were made on SPSS Statistics (IBM, New York, NY) and
based on a Pearson Chi-Square test and logistic regression tests assuming that clinical monitoring among the different studies and CD19 CAR-T-cell product is
comparable. (D) Forest plot representing untransformed proportions of severe neurotoxicities comparing CARs with no CD28-CAR heterodimers (Hu19, CTL019),
inefficiently formed CD28-CAR heterodimers (JCAR-14/17), and efficiently formed CD28-CAR heterodimers (SenIB19, JCAR-15, KTE C19). (E) CAR T cells, following on-
target activation (I.), undergo several rounds of proliferation in the absence of antigen. This proliferation, fueled by CD40L-CD40 and B7-CD28 interactions with
monocytes and/or dendritic cells (II.), ultimately results in cytokine release syndrome (CRS) (III.). In turn, CRS compromises the blood-brain barrier (IV.), allowing CAR T
cells to penetrate the central nervous system (CNS). If CAR-CD28 heterodimers assemble on the cell surface, CAR T cells in the CNS interact with mural cells expressing
low levels of CD19 (V.), as well as with microglia expressing co-stimulatory receptors (VI.), triggering immune effector cell-associated neurotoxicity syndrome (ICANS).
HeDi, heterodimerization; SN, severe neurotoxicity; HD, hinge domain; TMD, transmembrane domain; ICD, intracellular domain.
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with the peak of CAR T-cell expansion (4), manifesting as fever,
life-threatening hemodynamic instability with multi-organ
failure, and, in some cases, fulminant hemophagocytic
lymphohistiocytosis. ICANS is the second most common
adverse event in CAR T-cell therapy ranging from mild
cognitive impairment to an encephalopathic state characterized
by confusion, delirium, seizures, and cerebral edema. ICANS can
happen concurrently with or independently of CRS, a feature
distinct from other organ-specific toxicities (1). The
management of CRS and ICANS is currently based on
administering anti-IL-6 monoclonal antibodies, sometimes
together with corticosteroids. The latter are, however, avoided
whenever possible to prevent inhibition of the infused CAR T
cells (3). Importantly, ICANS normally resolves within 2-3 weeks
after CAR T-cell infusion, although later recurrences are
possible (3).

Notably, some CD19-CAR T cells products are more
frequently associated with the development of severe ICANS
(Figure 1 and Supplementary Table 1 and references therein).
To address the rate of neurotoxicity among selected CD19 CAR-
T cells products, we performed a linear regression analysis of
reported severe neurotoxicity observed among 1004 patients
treated with CTL019, Hu19, JCAR-14, JCAR-17, KTE-C19,
KTE-X19, JCAR-15, and Senl-B19 (Supplementary Table 1
and Figures 1B, C). The odds ratio of having grade 3 or
higher severe neurotoxicity was significantly higher for KTE-
C19 (3.5, 95% confidence interval (CI), 2.2-5.5) and JCAR-15
(8.0, 95% CI, 4.5-14.4) than with CTL019 (set to 1), JCAR-14/-17
(1.4 95%CI 0.9-2.3), Hu19 (0.3, 95% CI 0.05-2.9) and SenI-B19
(3.1, 0.8-12.5) (Figures 1B, C). These results are consistent with
a recent meta-analysis (1). Additionally, they were also observed in
a single clinical trial comparing side by side CAR T cells produced
in the same conditions but engineered with a CAR design
matching either CTL019 or KTE-C19 (5). Infusion with the
KTE-C19-like product had to be suspended due to the high rate
of neurotoxicity events (5). These data echo the unexpectedly high
rate of severe ICANS 18/32, 56%) experienced during a phase 2
clinical trial, the ROCKET study, testing CD19-CAR T engineered
with a CD28-HD, TMD and ICD (JCAR-15). This trial had to be
terminated after the death of five patients from cerebral edema.
IDENTIFYING CAR FEATURES
ASSOCIATED WITH TOXICITY

The mechanism behind the observed differences in CAR T-cell
toxicity profiles between different products remains hotly debated.
First, all main CAR T-cell products (accounting for >80% of
infusions) share the same scFv, clone FMC63, ruling out major
differences in CAR antigen affinity. Second, severe neurotoxicity
was observed with CAR-T cells engineered with a CD28-z or 4-
1BB-z ICD using lentiviral or retroviral transduction protocols (2,
6). Finally, no study found a link between the CD4/CD8 T cell
ratio in the final CAR T-cell infusion product and neurotoxicity
occurrence, even though the starting cell populations (PBMCs vs.
enriched CD4 and CD8 T cells) and the expansion protocols (anti-
Frontiers in Immunology | www.frontiersin.org 367
CD3/CD28 beads vs. anti-CD3 alone) differed between them. Data
from clinical studies show that tumor burden is a risk factor for
developing CRS and ICANS (2). Recent preclinical studies showed
that recipient’s monocytes can be transactivated via the CD40-
CD40L pathway and responsible for the bulk of IL-1 and IL-6
production during CRS, excluding models based solely on the
direct interplay between CAR T cells and tumor cells. Indeed,
blocking IL-6 receptor with tocilizumab or using IL-1 receptor
antagonist prevents CRS in mouse models, providing a rationale
for using these monoclonal antibodies for the treatment of CRS
after CAR T cell therapy (7). Another comprehensive analysis
found a significant association between elevated pre-treatment
disease burden and high peak CAR T-cell expansion,
concomitantly with blood brain barrier disruption and central
nervous system-specific production of IL-6, IL-8, MCP1, and IP10
(6). There was, however, no significant correlation between severe
neurotoxicity and transfused CAR T-cell number or tumor cell
presence in the brain. More recently, single-cell RNA sequencing
surveys revealed the existence of rare (0.2% of brain cells) CD19-
expressing cells in the brain: mural cells, including pericytes and
vascular smooth muscle cells, which support vasculature and are
critical for the integrity of the blood-brain barrier. This suggests
that lysis of brain mural cells by CD19-CAR T cells may be partly
responsible for ICANS (8).

Yet, those results do not explain why there is an increased risk
of developing ICANS when infusing KTE-C19/KTE-X19 or
JCAR-15 as compared to CTL019 (Figures 1B, C). Importantly,
KTE-C19/KTE-X19 and JCAR-15 share the same hinge,
transmembrane, and signaling domain, all derived from the
CD28 molecule. It is known that CD28 signaling, as compared
to 4-1BB, results in faster and larger magnitude changes in protein
phosphorylation, influencing the response and differentiation of
effector T cells (9). However, in a recent phase 1 clinical trial,
Brudno et al. showed that a humanized CD19 CD28-zeta CAR
containing a CD28 signaling domain but a CD8-derived hinge
(HD) and transmembrane (TMD) domain resulted in much
reduced severe neurotoxicity: only 5% of patients who received
Hu19-CD8-CD28-zeta T cells (Hu19) experienced it versus 50%
of patients who received KTE-C19 (10). On the other hand, Li and
colleagues tested a CD19-CAR with a CD28-TMD/HD but a 4-
1BB intracellular costimulatory domain (Senl-B19) and reported
30% of ICANS (11). While it must be acknowledged that both
studies included only a limited number of patients, these results
suggest that the CD28 signaling domain is not sufficient to
provoke neurotoxicity and, more importantly, that the roles of
the HD and TMD in CAR T-cell-mediated neurotoxicity are
currently underestimated.
THE IMPACT OF THE CAR
TRANSMEMBRANE DOMAIN IN CAR
T-CELL TOXICITY

Several lines of evidence suggest that the CAR’s HD and TMD are
not inert and can modulate CAR-T cell activation. Carl June and
colleagues first showed that tonic signaling via CARs bearing a
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CD28-TMD, but not a CD8-TMD, sustained in vitro T-cell
proliferation up to 3 months in the absence of exogenous IL-2
and following a single TCR stimulation (12). Alabanza et al. found
that CD19-CAR T cells produced significant higher levels of
inflammatory cytokines upon CD19 recognition if featuring a
CD28-TMD/HD instead of a CD8-TMD/HD (13). Crystal
Mackall and co-workers demonstrated that swapping the CD8-
TMD/HD in a CD19 4-1BB-z CAR for a CD28-TMD-HD
lowered the antigen density threshold for CAR T-cell activation
(14). Finally, we have recently demonstrated that CD28 TMD-
containing CARs can recruit and dimerize with endogenous CD28,
which normally exists as a homodimer on the cell surface, via a
four amino acid motif in the TMD (15, 16). Consistent with this,
in-depth analysis of the CAR interactome and signalosome
revealed that the top interacting partner of a CAR bearing a
CD28-TMD/HD is endogenous CD28, and CAR mediated-
signaling is associated with phosphorylation of endogenous
CD28 (9, 17). This association, through heterodimerization of
the CAR with endogenous CD28 receptor via the CD28-TMD
(15), may result in stronger signal transduction, facilitating CAR
T-cell activation in the context of low levels of CAR antigen, such
as in low-CD19 mural cells. It is interesting to note that CD28-
CAR heterodimerizes inefficiently if the CAR is built with an IgG4-
HD. In silico modeling of the hinge-hinge interactions suggested
that the membrane proximity of the IgG4 hinge is too short to
form CAR-CD28 inter-molecular disulfide bonds for stabilizing
the CAR-CD28 heterodimerization, leading to preferential CAR-
homodimerization (15). This observation may explain why JCAR-
14/-17, engineered with a CD28-TMD and IgG4-HD, caused less
ICANS than KTE-C19/KTE-X19 or JCAR-15 (Figures 1B, C).
The risk of developing ICANS may thus be directly linked to the
capacity to form CD28-CAR heterodimers (Figure 1D).
DISCUSSION

In conclusion, we hypothesize that, while CAR T cells are
specifically activated on-target, they will undergo several rounds
of proliferation in the absence of antigen. This proliferation may be
fueled by CD40L-CD40 and possibly also by CD28-B7 trans-
interactions with monocytes and/or dendritic cells, ultimately
resulting in CRS. This process may compromise the blood-brain
barrier, facilitating the trafficking of CD19-CAR T cells into the
Frontiers in Immunology | www.frontiersin.org 468
central nervous system. Depending on whether CAR-CD28
heterodimers are efficiently formed and present on the cell
surface, CAR T cells could interact with low-CD19 mural cells
and with microglia, known to express co-stimulatory receptors,
ultimately initiating ICANS (Figure 1E). The fitness of the cells as
well as the level of CAR expression could directly influence the
severity of neurotoxicity. It will be extremely challenging to validate
this hypothesis based solely on preclinical mouse models. In our
opinion, its best demonstration will come from a clinical trial
comparing side by side CD19-CAR T cells differing only by select
amino acid mutations in their TMD. Such results may have an
important impact on the future design and choice of CD19-CAR T
cells for hematological but also autoimmune disease treatment.
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An Immunocompetent
Microphysiological System to
Simultaneously Investigate Effects of
Anti-Tumor Natural Killer Cells on
Tumor and Cardiac Microtissues
Oanh T. P. Nguyen1*, Patrick M. Misun1, Christian Lohasz1, Jihyun Lee1, Weijia Wang2,
Timm Schroeder2 and Andreas Hierlemann1

1 Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland,
2 Cell Systems Dynamics Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland

Existing first-line cancer therapies often fail to cope with the heterogeneity and complexity
of cancers, so that new therapeutic approaches are urgently needed. Among novel
alternative therapies, adoptive cell therapy (ACT) has emerged as a promising cancer
treatment in recent years. The limited clinical applications of ACT, despite its advantages
over standard-of-care therapies, can be attributed to (i) time-consuming and cost-
intensive procedures to screen for potent anti-tumor immune cells and the
corresponding targets, (ii) difficulties to translate in-vitro and animal-derived in-vivo
efficacies to clinical efficacy in humans, and (iii) the lack of systemic methods for the
safety assessment of ACT. Suitable experimental models and testing platforms have the
potential to accelerate the development of ACT. Immunocompetent microphysiological
systems (iMPS) are microfluidic platforms that enable complex interactions of advanced
tissue models with different immune cell types, bridging the gap between in-vitro and in-
vivo studies. Here, we present a proof-of-concept iMPS that supports a triple culture of
three-dimensional (3D) colorectal tumor microtissues, 3D cardiac microtissues, and
human-derived natural killer (NK) cells in the same microfluidic network. Different
aspects of tumor-NK cell interactions were characterized using this iMPS including:
(i) direct interaction and NK cell-mediated tumor killing, (ii) the development of an
inflammatory milieu through enrichment of soluble pro-inflammatory chemokines and
cytokines, and (iii) secondary effects on healthy cardiac microtissues. We found a specific
NK cell-mediated tumor-killing activity and elevated levels of tumor- and NK cell-derived
chemokines and cytokines, indicating crosstalk and development of an inflammatory
milieu. While viability and morphological integrity of cardiac microtissues remained mostly
unaffected, we were able to detect alterations in their beating behavior, which shows the
potential of iMPS for both, efficacy and early safety testing of new candidate ACTs.

Keywords: microphysiological system, 3D microtissue, natural killer cell, adoptive cell therapy, efficacy and
safety assessment
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INTRODUCTION

The lack of treatment options renders cancer one of the major
health burdens of our time. The International Agency for Research
on Cancer ranks cancer the second leading cause of death, with an
estimated global impact of 19.3 million new cancer cases and
approximately 10 million cancer deaths in 2020 alone (1). Current
standard cancer treatments, i.e., radio- and chemotherapies as well
as surgery are still confronted with multiple setbacks. While non-
invasive approaches suffer from severe side effects, low efficacy,
and therapy resistance, invasive surgery is only applicable for a
limited number of localized and contained solid tumors (2). The
search for safer and more durable therapies led to the
interdisciplinary efforts in the fields of oncology and
immunology and the development of cancer immunotherapies.
Since the first description of immunotherapy in the 1980s (3), a
large number of immunotherapeutic approaches have recently
entered clinical evaluation (4). These novel therapies utilize
different components of the immune system, such as antibodies
or immune cells to instruct the patient’s immune system to target
the cancer cells (5, 6). Among emerging cancer immunotherapies,
adoptive cell therapy (ACT) – a cell-based immunotherapy –
holds promise to personalize immunotherapy for each patient’s
condition. Cytotoxic immune cells, such as CD8+ T cells or natural
killer (NK) cells are isolated from patients (autologous) or healthy
donors (allogeneic). The cells are expanded in vitro and, in some
cases, genetically engineered to increase their lifespan and in-vivo
tumor-killing activity. High numbers of these immune cells are
then transferred back into the patient to mediate anti-tumor
activity (7). Although ACT offers an alternative treatment
option for cancer patients, who are refractory to standard
therapies, clinical trials of ACT with satisfactory results have
been limited to hematologic malignancies (7, 8). For non-
hematologic solid tumors, positive outcomes of such therapies
are sporadic. For instance, despite of its success to suppress
leukemia (9), NK cell-based ACT did not show any activity
against metastatic melanoma in a clinical trial by Parkhurst
et al. (10). It is worth mentioning that this clinical trial for ACT,
and many other trials, were carried out after substantial in-vitro
testing. The high anti-tumor activity evidenced in pre-clinical in-
vitro screenings and the contrasting lack of efficacy afterwards in
vivo highlight the poor in vitro-to-in vivo translatability of complex
treatments. Such poor translatability has been attributed mainly to
the widespread use of conventional two-dimensional (2D) cell
cultures and animal models for pre-clinical evaluations (11).

Traditional 2D cell cultures fail to mimic the architecture and
cellular heterogeneity of a solid tumor and cannot realistically
recapitulate tumor-immune cell interactions. Likewise, animal
models fail to reliably predict the efficacy and safety of immune-
cell-based therapies due to critical immunological differences
between animals and human beings (12, 13). During the past two
decades, human cell-derived 3D tissue models have attracted
more attention as tumor models for therapy screening as they
overcome problems associated with 2D cell cultures. Under
carefully designed culture conditions, tumor cells can form 3D
microtissues (MTs) that are spherical, compact, and closely
resemble in-vivo tumors in terms of structure, metabolism, loss
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of polarized cell morphology – as found in epithelial tissue-
originated tumors, and gene-expression profiles (14).

Microphysiological systems (MPSs) combine advanced tissue
models, such as 3D MTs, organoids or bioartificial tissues with
microfluidic technology. Such systems are key innovations to
further develop and refine advanced tissue models. The
microfluidic components within MPSs can be designed to
mimic different aspects of a tissue’s microenvironment, such as
physical and mechanical cues, and allow for interconnection of
several tissue models (15). Currently developed MPSs can
interconnect up to ten organ models for an experimental
duration of up to four weeks (16, 17), making them suitable
systems for systemic invest igat ions of inter-t issue
communication and for therapeutic testing. A wide range of
single- or multi-tissue MPSs have been developed, among which
are lung MPSs (18), gastrointestinal MPSs (19), liver MPSs (20),
and immunocompetent MPSs (iMPSs).

The majority of reported iMPSs for immune-oncology purposes
included either single tumor cells or 3D tumor MTs (TuMTs) that
were embedded in hydrogel. Immune cells were added into
microfluidic channels adjacent to the hydrogel, which were
initially separated from the tumor cells (21). Such a configuration
mimics the placement of cell components in the tumor
microenvironment (TME). The hydrogel recapitulated the dense
interstitial extracellular matrix (ECM) mesh of an in-vivo TME that
immune cells have to penetrate to reach the tumor cells. Such
realistic configurations helps to avoid overestimations of anti-tumor
efficacy – which are likely to be obtained with systems that combine
immune and tumor cells and enforce mutual interaction (22, 23).
Furthermore, 3D constructs and iMPSs can help to mimic
processes, such as immune-cell recruitment and migration, tumor
infiltration, and TME-relevant immunosuppression (22, 24–26)
that cannot be studied with conventional 2D cell cultures.
Although it could be shown that TME can influence therapeutic
outcomes, the indispensable use of ECM hydrogel limits the
experimental readout options to microscopy measurements.
Additionally, most studies focused on demonstrating treatment
efficacy while the safety assessment of candidate ACTs was
neglected. Two major risk factors of ACT include (i) on-target,
off-tumor attack of healthy cells by cytotoxic immune cells, and (ii)
the high level of soluble inflammatory chemokines and cytokines
that are released during tumor recognition and elimination.
Cytotoxic immune cells recognize tumor cells via pairing between
specific sets of their surface receptors and corresponding ligands on
the tumor cell surface. However, most of these ligands are also
expressed on healthy cells, which can result in accidental on-target,
off-tumor attack by these immune cells (27). Moreover, tumor-
immune cells interactions can give rise to a complex of
inflammatory chemokine and cytokines, eventually creating an
inflammatory environment that is harmful to bystander organs
(27–29). These adverse effects are difficult to predict even with
animal models (30). Currently, most ECM hydrogel-based iMPSs
are also not capable to simultaneously assess drug efficacy on the
tumor and its toxicity on secondary, healthy organs.

In an effort to narrow the gap between in-vitro studies and the
in-vivo situation, we developed an iMPS, which allows for co-
culturing of anti-tumor immune cells and 3D MTs. With this
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system, we aim at addressing current limitations of iMPS, such as
the local confinement of immune cells in hydrogels, the low
experimental throughput due to technical complexity, and
missing models of healthy tissues for simultaneous toxicity
testing. We used umbilical cord blood (UCB)-derived NK cells,
whose anti-tumor activity involves both, direct interaction of NK
cells with tumor cells and indirect tumor suppression via
chemokine/cytokine signaling (31, 32). The 3D tumor model
was established from the colorectal tumor cell line HCT116, the
cells of which can produce their own ECM (33) and form
compact, solid tumor-like MTs (TuMTs). 3D cardiac MTs
(CarMTs) – formed from induced pluripotent stem cell
(iPSC)-derived cardiac myocytes – were chosen as healthy-
tissue model. All organ models were combined in the
microfluidic chip that was developed for culturing of suspension
cells and several, spatially separated, solid tissue models. Dedicated
cell enrichment zones confined NK cells inside the medium
reservoirs at the ends of the microfluidic channels (Figure 1A).
During the experiments, NK cells either stayed in the cell
enrichment zones or circulated back and forth along the same
microfluidic channel (Figure 1A, ii and iii). Medium perfusion
was actuated by gravity-driven flow by tilting the microfluidic
chips, which ensured a constant exchange of soluble factors
between the three tissue types. Different indicators of tumor-NK
cell interaction were used: (i) NK cell-induced apoptosis of tumor
cells, (ii) an elevated level of inflammatory chemokines
[interleukin-8 (IL-8)] and cytokines [interferon-g (IFN-g), tumor
necrosis factor-a (TNF-a), granulocyte-macrophage colony-
stimulating factor (GM-CSF)], produced by TuMTs and NK
cells, and (iii) invasion of NK cells into the TuMT volume
(Figure 1B). To study the health status and detect structural
damages of CarMTs, we recorded and analyzed the pattern of their
spontaneous beating and measured soluble Troponin I in the cell
Frontiers in Immunology | www.frontiersin.org 372
culture supernatant. Our iMPS can potentially be used for early
recognition of ACT-associated cardiotoxicity, particularly for NK
cell-based ACT, the causes and consequences of which are still
under investigation (34, 35).
MATERIALS AND METHODS

Microfluidic Chip
We modified the Akura™ Flow MPS discovery platform
(InSphero, Schlieren, Switzerland), which was originally
developed to study inter-tissue communication between 3D MTs
(36). The microfluidic chip features two individual microfluidic
channels with medium reservoirs at both ends. Each channel can
accommodate up to ten fluidically interconnected MTs, which are
located in the MT compartments (Figure 1A, i). To accommodate
NK cells in suspension and to promote their direct interaction with
3D MTs, we adapted the chip by computer numerical control
(CNC) micro-milling: (i) We introduced a drop-shaped cell-
enrichment zone in the medium reservoirs (Figure 1A, ii and iii,
left panels). The cell enrichment zone retained NK cells close to the
entrance to the microfluidic channel after each tilting cycle and
prevented them from accumulating in the low-flow zones in the
corners of the reservoirs. For gravity-driven flow-based
experiments, each microfluidic channel was supplied with 200 µL
of fresh medium every day. This enabled the use of enough cell-
culture medium to maintain all tissue models viable during the
culturing periods. (ii) To facilitate direct cell-cell interactions
between NK cells and MTs, we removed the barrier structures in
the MT compartments (Figure 1A, ii and iii, right panels) and
enlarged the microfluidic channels to a cross-section of 220 mm ×
600 mm (height × width). More details on the performed
A

B

FIGURE 1 | (A) i) A schematic drawing of the iMPS, which is based on the Akura™ Flow platform (modifications indicated as red dashed lines). Scale bar: 10 mm.
ii) Cross-sectional view of one reservoir and adjacent MT compartments. iii) Bright-field images of the cell enrichment zone inside one reservoir (scale bar: 1 mm) and
a MT compartment with a TuMT (scale bar: 200 mm). (B) Schematic representation of on-chip cell cultures and possible interactions among components.
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modifications are shown in Figure S1. Gravity-driven perfusion
was induced by tilting the chip back and forth over a tilting angle of
±5° using the Akura™ Flow system (InSphero) inside a standard
cell-culture incubator. Each tilting cycle included a 5-min halt at
the positions of maximum tilting angle in both directions and a 1 h
40 min halt in a horizontal position. Detailed protocols for MT
loading and system operation were also previously described by
Lohasz et al. (36) and are demonstrated in Video S1.

Cell Cultures
Formation of 3D Tumor and Cardiac MTs
All cell cultures were maintained in a humidified incubator at
37°C and 5% CO2 (Binder CB 220, Tuttlingen, Binder,
Germany). The HCT116 human colorectal carcinoma cell line
(ATCC® CCL-247) was purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA). In brief, cells
were cultured in cell culture flasks using a tumor-growth
medium that contains Roswell Park Memorial Institute
(RPMI) 1640 medium (BioConcept, Allschwil, Switzerland),
10% heat-inactivated fetal bovine serum (h.i. FBS; Gibco,
Thermo Fisher Scientific, Waltham, MA, USA), 2 mM CTS™

GlutaMAX™ supplement (Gibco, Thermo Fisher Scientific), 1
mM sodium pyruvate (Gibco, Thermo Fisher Scientific), 1× non-
essential amino acids (NEAA) (Merck, Darmstadt, Germany),
and 50 mg/mL Kanamycin (BioConcept). Medium exchange was
done every two days, and the cells were sub-cultured when
reaching approximately 85% confluence.

The hiPSC line, CW30318CC1 (healthy donor, female), was
obtained from the CIRM hPSC Repository funded by the California
Institute of Regenerative Medicine (CIRM) via FujiFilm Cellular
Dynamics (Madison, WI, USA). This cell line was differentiated to
cardiac myocytes using the PSC Cardiomyocyte Differentiation Kit
(Gibco, Thermo Fisher Scientific). iPCS-derived cardiac myocytes
were maintained as monolayers in standard 12-well plates (Greiner
Bio-One, Kremsmünster, Austria), pre-coated with Geltrex
extracellular matrix (Gibco, Thermo Fisher Scientific) – diluted
1:50 in PBS without Ca2+ and Mg2+ (Gibco, Thermo Fisher
Scientific). Medium exchange was performed twice a week with a
cardiac myocyte growth medium that contains RPMI 1640, 2 mM
CTS™ GlutaMAX™ supplement, 1× B27 supplement (Gibco,
Thermo Fisher Scientific), and 50 mg/mL Kanamycin. No
passaging was performed during cardiac myocytes maintenance
as the cardiac myocytes hardly divide in culture. Only prior to MT
formation, cells were lifted with TrypLE Express enzyme solution
(Gibco, Thermo Fisher Scientific) for cell suspension preparation.
Here, TrypLE Express enzyme solution was used to preserve the
expression of cell surface markers (37).

For 3DMT off-chip production and maintenance, Nunclon™

Sphera™ U-shaped-bottom, 96-well plates (96U-well plates)
(Thermo Fisher Scientific) were used. 3D TuMTs were formed
from the HCT116 cell line in tumor-growth medium at an initial
seeding density of 500 cells/MT. In brief, 100 mL of cell
suspension containing 5000 cells/mL were seeded to each well
of a 96U-well plate and spun down at 250 ×g for 2 min. TuMTs
were ready to use at day 4 post seeding when their diameters
reached approximately 400 mm. At this size, the necrotic core did
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not form yet, and the TuMTs were large enough to not escape the
MT compartments.

We formed CarMTs in the cardiac myocyte growth medium
using an initial seeding density of 6500 cells/MT. Cardiac
myocyte suspension was prepared in cardiac myocyte growth
medium, supplemented with 20% h.i. FBS. Then, 200 mL of the
prepared suspension were seeded to each well of a 96U-well plate
and spun down at 200 ×g for 3 min. After 24 h, a compact cell
cluster formed, and the medium was replaced with standard
cardiac myocyte growth medium. Spontaneous beating of
CarMTs typically started between day 3 and day 4. To ensure
reproducibility among experiments, we only used CarMTs from
day 5 post seeding, when beating activity was observed in 100%
of MTs. Regular microscopy inspection was carried out, and
CarMTs with a weak beating activity or abnormal shapes were
disqualified. CarMT size attained roughly 380 mm at day 5 post
seeding with a slight shrinkage (~10-20 mm in diameter) over
time due to compaction. Once formed, CarMTs can be
maintained up to one month with medium exchange twice a
week. During all preparation steps, all cells were kept at 37°C on
a thermostat plate. Both types of MT were imaged with a
Cell3iMager Neo plate scanning system (SCREEN Group,
Kyoto, Japan) for quality check before each experiment.

NK Cells
Ethical Statement
Anonymized human umbilical cord blood (UCB) samples were
collected from healthy newborns of both sexes at the University
Hospitals Basel with parental informed consent. Relevant ethical
regulations were followed, according to the guidelines of the local
Basel ethics committee (vote 13/2007V, S-112/2010,
EKNZ2015/335).

Sample Processing and Cell Isolation
After collection, UCB cells were processed by density gradient
centrifugation. CD34 positive (CD34+) and negative (CD34-) cells
were separated using EasySep CD34 positive selection kit II (StemCell
Technologies, Vancouver, BC, Canada) and cryopreserved.

NK cells were isolated from the cryopreserved CD34–fraction
(hematopoietic stem cells removed) of human umbilical cord
blood (UCB). We used the EasySep NK cells isolation kit
(StemCell Technologies) to isolate NK cells and maintained
them in NK cell-growth medium (RPMI 1640, supplemented
with 10% h.i. FBS, 2 mM CTS™ GlutaMAX™ supplement, 1
mM sodium pyruvate, 1× non-essential amino acids (NEAA),
50 mg/mL Kanamycin, 50 mM b-mercaptoethanol (Gibco,
Thermo Fisher Scientific), and 200 U/mL recombinant human
interleukin-2 (IL-2; Peprotech, Cranbury, NJ, USA)) for up to
two weeks. Fluorescein isothiocyanate (FITC)-conjugated CD45
(clone HI30), Phycoerythrin (PE)-conjugated CD3 (clone
UCHT1), and Allophycocyanin (APC)-conjugated CD56
antibodies (clone HCD56) – all were purchased from StemCell
Technologies – were used to confirm the purity of NK cells after
isolation by flow cytometry (BD Fortessa, BD Biosciences,
Franklin Lakes, NJ, USA). Additionally, 2-(4-amidinophenyl)-
6-indolecarbamidine dihydrochloride (DAPI) stain (Merck) was
used to assess cell viability in flow cytometry analysis. Where
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indicated, NK cells were transferred to an NK cell-activating
medium that contained 1000 U/mL IL-2 and 20 ng/mL of
recombinant human interleukin-15 (IL-15; Peprotech) for
5 days before the experiments with a partial medium exchange
at day 3. This pre-treatment was extensively used to enhance the
overall proliferation and cytotoxic activity of NK cells against the
target tumor (38, 39), especially before on-chip cultures.

Cell Labeling and Live-Cell Imaging
To spatially track NK cells within the chip, we labeled the cells
with Cytopainter Cell Proliferation Staining Reagent – Green
fluorescence, (Abcam, Cambridge, UK), diluted from 500× stock
solution in NK cell-growth medium, for 40 min at 37°C before
seeding them into the iMPS. BioTracker NucView Blue 405
Caspase-3 Dye (PBS) (Merck) was added directly into the cell-
culture medium with a final concentration of 5 mM to visualize
apoptotic cells during the experimental duration. Live-cell
imaging was performed on a fluorescence Nikon TiE
microscope (Nikon Europe B.V., Amsterdam, Netherlands)
every day with a Plan Fluor 10× objective.

Static, Well Plate-Based Cultures of NK
Cells and MTs
For static co-culture experiments, we combined NK cells with
each type of MT in a 96U-well plate to assess the cytolytic activity
and the cytokine release of isolated NK cells. Since HCT116 cells
are relatively resistant to NK cell-induced cytolysis at a low
effector-to-target (E:T) ratio (40), we used a high E:T ratio of 10:1
based on the initial seeding density of HCT116. First, the culture
wells were pre-loaded with 100 mL of NK cell-growth medium,
into which pre-formed MTs were transferred by contact transfer.
Then, the wells were topped with 100 mL of NK cell suspension
prepared in the same medium. For mono-cultures, the wells were
filled with equal volumes of NK cell-growth medium without
cells. The plate was placed inside a cell-culture incubator for
three days without medium exchange. The morphological
changes of MTs were monitored daily by bright-field imaging.
MTs and the cell-culture supernatant were collected every day
for performing viability assays and chemokine/cytokine
quantitations. Jurkat cells, clone E6-1 (ATCC) were co-
cultured with MTs using the same experimental layout as a
negative control for tumor-killing activity. As positive controls
for cardiotoxicity, CarMTs were treated with 30 mMDoxorubicin
hydrochloride (Dox; Tocris, Bristol, UK) for 3 days in a Nunclon
Sphera 96U-well plate before measuring Troponin I levels (41).

On-Chip Cultures in iMPS
TuMTs and CarMTs were transferred to the iMPS chip by using
a contact-transfer technique at day 4 and at day 5 post seeding.
Each microfluidic channel was loaded with six TuMTs and four
CarMTs. Phenol red-free NK cell-growth medium was used for
all on-chip cultures. Fluorescently labeled NK cells were spun
down at 500 ×g for 5 min at 4°C and resuspended in a
pre-warmed medium at a density of 1.67 × 106 cells/mL. Since
a local administration of NK cells has proven to increase the
amount of NK cells at the tumor site and can lead to better tumor
Frontiers in Immunology | www.frontiersin.org 574
suppression (42), we introduced the NK cell suspension directly
into MT compartments through their loading ports. A total
amount of 30 mL of NK cell suspension was loaded in 5 mL-
dispensing steps into each TuMT-containing MT compartment.
The chip was kept in a horizontal position (without perfusion)
for 3 hours to prime the interaction between NK cells and MTs.
Fluorescence imaging was conducted at the end of the priming
period to check the presence of NK cells inside the MT
compartments and cell enrichment zones. On-chip cultures
were maintained for 3 days in the Akura™ Flow system inside
a cell culture incubator. To assess the beating activity of CarMTs,
we recorded 20 second-long AVI videos of each CarMT with a
frame rate of 100 frames per second at the beginning and at the
end of the experiments. Medium was exchanged daily during
3 days, and the removed medium was stored at -20°C for
supernatant-based assays. After the co-culturing period, all
unbound NK cells were removed from the microfluidic chip,
and MTs were either (i) collected from the chip for ATP-
dependent viability assays using the CellTiter-Glo 3D cell
viability assay (Promega, Madison, WI, USA) or (ii) fixed for
high-resolution microscopy.

Immunofluorescence (IF) Staining and
High-Resolution Microscopy
MTs were fixed directly on chip after the experiment. In brief, all
supernatant was removed from the reservoirs, then all
microfluidic channels were flushed twice with 200 mL of
phosphate-buffered saline (PBS, with calcium chloride (Ca2+)
and magnesium chloride (Mg2+), Merck). Then, 100 mL of
2% formaldehyde in PBS (Merck) were added to the microfluidic
channels for 10 min. All channels were flushed again three times
with 200 mL of PBS (without Ca2+ and Mg2+; Gibco), and MTs
were blocked with 5% bovine serum albumin (BSA; Merck) in PBS
(without Ca2+ and Mg2+) for at least 1 hour. Depending on the
experiments, different combinations of the following antibodies
were used: Alexa Fluor (AF) 647-conjugated anti-Cytokeratin 18
(CK18; clone C-04; Santa Cruz Biotechnology, Dallas, TX, USA) –
1:50 dilution, AF594-conjugated polyclonal anti-CD69 (Bioss
Antibodies, Woburn, MA, USA) – 1:200 dilution, and AF647-
conjugated anti-human major histocompatibility complex (MHC)
class I chain-related protein A and B (MICA/B) (clone 6D4,
BioLegend, San Diego, CA, USA) – 1:50 dilution. All antibodies
were diluted in 0.1% BSA in PBS (without Ca2+ and Mg2+) and
incubated with the MTs overnight at 4°C. The washing step was
repeated and, when applicable, nuclear counterstaining was
performed using NucBlue™ Live ReadyProbes™ Reagent
(Hoechst 33342, Invitrogen, Thermo Fisher Scientific). We used
a non-hardening mounting medium [ibidi Mounting Medium
(Ibidi, Gräfelfing, Germany)] to fill the whole system
before imaging.

We acquired 190 – 200 mm-thick Z-stacks of MTs in 2-mm
steps in different culture conditions to detect tumor-infiltrating
NK cells using either an inverted Leica SP8 (Leica Microsystem,
Wetzlar, Germany) or an inverted Nikon A1 (Nikon Europe
B.V.) confocal laser scanning microscope. To inspect the
expression of MICA/B NK cell ligand on the surface of TuMTs
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and CarMTs, 100 mm-thick Z-stacks of MTs were acquired in
0.4-mm steps using an X-Light v3 inverted spinning disk confocal
microscope (Nikon Europe B.V.).

Enzyme-Linked Immunosorbent
Assay (ELISA)
Cell-culture supernatant was collected into a low-binding Nunc™

96-well polypropylene storage microplate (Thermo Fisher
Scientific). We centrifuged the plate at 2000 ×g for 10 min to
remove cell debris, then transferred all supernatant to a new
storage plate of the same type and stored the supernatant at
-20 °C until use. We employed a customized bead-based multiplex
assay according to the manufacturer’s protocol (BioRad, Hercules,
CA, USA) to measure IL-8, GM-SCF, IFN-g, and TNF-a inside
the supernatant. Soluble Troponin I and soluble MICA (sMICA)
were measured separately using a human cardiac Troponin I
ELISA kit (Abcam) and a MICA human ELISA kit (Invitrogen,
Thermo Fisher Scientific), respectively, according to the
manufacturers’ protocol and a Tecan Infinite M1000 Pro plate
reader (Tecan, Männedorf, Switzerland).
Data Analysis
Microscope images were processed and analyzed using the
Nikon NIS-Elements Advanced Research (Nikon Europe B.V.)
or ImageJ software. Beating patterns of CarMTs were analyzed
using the Musclemotion macro (43) in ImageJ (National
Institution of Health, Stapleton, NY, USA). We used the Bio-
Plex Manager software (BioRad) and Microsoft Excel (Redmond,
WA, USA) to analyze data obtained from the multiplex assay and
the Troponin I ELISA. This data was statistically analyzed with
one-way or two-way ANOVA depending on the data set and
visualized using GraphPad Prism 7 software (GraphPad
Software, San Diego, CA, USA). Data obtained from sMICA
ELISA assay was processed and statistically analyzed with
GraphPad Prism 7. All statistical results were represented as
mean ± standard deviation (SD) with a significance of P < 0.05,
unless indicated differently.
RESULTS

Static, Well Plate-Based Cultures of NK
Cells and MTs
Human NK cells are characterized by the absence of surface markers
CD3 and the presence of CD56 (CD3-/CD56+). Therefore, after
isolation, we quantitated the proportion of CD3-/CD56+ cells in the
obtained population using flow cytometry. Figure S2 shows that
the purity of CD3-/CD56+ cells in our samples was up to 99.2%.
The isolated NK cell population also appeared to express CD56 at
different relative levels, which reflected the maturity and
differentiation state of the NK cells. CD56bright NK cells with high
CD56 surface expression are immature and less cytotoxic as
compared to fully differentiated CD56dim NK cells with lower
CD56 surface expression. These immature CD56bright NK cells,
however, can become as potent as their mature, differentiated
Frontiers in Immunology | www.frontiersin.org 675
counterpart through additional cytokine treatment (39), hence the
use of NK cell-activating medium in our experiments.

The two selected solid tissue models, TuMTs and CarMTs,
were qualitatively assessed for their ectopic expression of
membrane-bound MICA/B. MICA/B are the most studied
ligands for the NK group 2D (NKG2D) activating receptor,
which is universally expressed by NK cells (44). Figure 2A
shows high expression levels of membrane-bound MICA/B on
tumor cells within the optically accessible outer layers of the
TuMTs, while MICA/B was poorly expressed in CarMTs. These
results are supported by other studies that report high
expression levels of MICA/B on the cell surface of tumor cells
but not on the surface of normal cells (45). Based on this result,
we expected our UCB-derived NK cells to recognize and
eradicate tumor cells, while CarMTs should remain mostly
unaffected. In static co-cultures of each MT type and NK cells,
we closely monitored the size change of the MTs and their
chemokine/cytokine production to scrutinize the extent and
specificity of NK-cell-mediated tumor-killing activity. Our
results indicated that, in static TuMT-NK-cell co-cultures,
A

B

FIGURE 2 | (A) Membrane-bound MICA/B expression on TuMTs and
CarMTs shown by maximum intensity projection of 100 mm-thick Z-stacks.
Scale bars: 100 mm. (B) Specific anti-tumor activity of UCB-derived NK cells in
static co-cultures in a 96U-well plate. Upper panels: TuMT disintegrated after
72 hours in co-culture with NK cells. Lower panels: CarMT remained intact in
co-cultures with UCB-derived NK cells. Scale bars: 200 mm.
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UCB-derived NK cells showed specific anti-tumor activity
against TuMTs, regardless of the cytokine treatments. As
shown in Figure 2B (upper panel), TuMTs completely
disintegrated after 3 days in TuMT-NK-cell co-cultures. The
fast cytolysis of TuMTs occurred within the first day and was
confirmed by the low intracellular ATP-dependent viability of
the MTs and increased IFNg concentrations, as compared to the
low basal levels in mono-cultures of NK cells or TuMTs
(Figures S3A, B). As expected, NK cells did not affect the
morphology and viability of CarMTs after 3 days in co-culture
as shown in Figure 2B (lower panel) and Figure S3C. IFN-g
levels in CarMT-NK-cell co-cultures were at least 10-fold lower
than in co-cultures of NK cells and TuMTs (Figure S3D).

Negative control experiments with Jurkat cells, which do not
have cytotoxic activity against TuMTs, showed that a certain
additional mass of suspension cells did not interfere with the
growth of TuMTs (e.g., through nutrient competition). No IFN-g
was detected in this co-culture (data not shown).

iMPS: On-Chip Inter-Tissue
Communication and Anti-Tumor Effects
of NK Cells
To fully understand the dynamics and effects of each
individual tissue model in our iMPS, we included multiple
cell culture combinations, categorized into 3 groups as shown
in Table 1: (i) mono-cultures of each individual tissue model,
i.e., TuMTs, CarMTs, and NK cells, (ii) co-cultures of pairs of
tissue models, and (iii) a triple culture that included all cell models.
Data collected from mono-cultures were used as reference to
assess the contributions of each tissue/cell type in the co-
cultures and the triple culture, which revealed direct and/or
indirect interactions.

Tumor Growth
To obtain a first assessment on how CarMTs and/or NK cells
affect TuMT growth in different culture conditions, we tracked
the diameter of 18 individual TuMTs per cell culture condition
every day during three days. Absolute TuMT size changes were
calculated in reference to the size at day 0 of the experiment, at
which the MTs were transferred to the chip. As shown in
Figure 3A and Table S1, TuMTs grew steadily and similarly in
mono-culture and in co-culture with CarMTs during the three
days of the measurements.

In contrast, we observed heterogeneous changes in TuMTs size
when adding NK cells to cultures with TuMTs and the triple
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culture with both MT types (Figure 3A and Table S1). In those
cultures, the average growth of TuMTs was significantly lower
than that of TuMTs in mono-cultures and TuMT-CarMT co-
cultures (Figure S4A). Several TuMTs, especially in the triple
cultures, shrank between day 2 and day 3 of the experiment. These
shrinking MTs shared a few commonalities: (i) higher NK cell
accumulation within the MT compartment and the TuMT itself,
(ii) lower viability as shown by higher caspase 3/7 activity through
live-cell fluorescence imaging (Figure 3B, left panel), and low
intracellular ATP content, measured at day 3 of the experiment
(Figure S5). TuMTs that grew in diameter had none or only a few
NK cells on their surface or in the peripheral zone (Figure 3B,
right panel). This heterogeneous tumor growth suppression can be
attributed to (i) different levels of interaction between NK cells and
TuMTs during the initial priming period and/or the first day
(Figure S6), (ii) poor tumor invasion by NK cells, and/or (iii)
immune escape of TuMTs (46).

Proteolytic shedding of MICA’s ectodomain is one of the
major mechanisms used by tumor cells to escape from NK cell-
mediated killing (44). The released sMICA has been shown to
impair tumor cell recognition and cytotoxic activity of NK cells
by direct blockage or by sMICA-induced internalization and
degradation of NKG2D receptors (45). After confirming the
membrane-bound expression of MICA on TuMTs (Figure 2A,
left panel), we also measured the sMICA concentration released
into the cell culture supernatant for different culture conditions.
In agreement with the IF staining results for membrane-bound
MICA/B (Figure 2A, right panel), we did not detect any sMICA
in the mono-cultures of CarMTs or NK cells, as well as in the
CarMT-NK cell co-cultures. In contrast, less than 5 pg/mL of
sMICA were detected in mono-cultures of TuMTs in a 3-day
experiment, which indicates the presence of MICA shedding
(Figure 3C). Interestingly, MICA shedding was enhanced
significantly in TuMT/NK cell co-cultures and in triple
cultures, especially at day 3 of the experiment.

Tumor-Infiltrating NK Cells
As an additional endpoint analysis of the experiment, we fixed the
MTs directly on-chip and stained them with CD69 and CK18
antibodies. CD69 is an activation marker for NK cells, while CK18
is an epithelium-specific cytoskeletal protein. CK18 plays a role in
maintaining tissue integrity and was shown to be overexpressed in
colorectal cancer tissues and cell lines, including the HCT116 cell
line used in our work (47). It is important to note that only cells
that were double positive for Green fluorescence and CD69
staining were qualified as CD69+ NK cells, as NK cells were
TABLE 1 | All cell culture conditions in the microfluidic on-chip cultures.

Culture condition Abbreviation Tissue model/combination

Mono-culture Mono 1. TuMTs
2. CarMTs
3. NK cells

Co-culture Co 1. TuMTs – NK cells
2. CarMTs – NK cells
3. TuMTs – CarMTs

Triple culture Triple 1. TuMTs – CarMTs – NK cells
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stained with Cytopainter staining reagent prior to being seeded
into the iMPS. We searched for tumor-infiltrating NK cells by
taking Z-stacks of a total thickness of 190 – 200 µm and a Z-stack
size of 2 mm using a confocal microscope. As shown in Figure 4,
we found only a few NK cells that infiltrated the TuMTs across all
examined MTs. Most of these tumor-infiltrating NK cells were
CD69+ and resided within the few outermost cell layers of
the TuMT.

Chemokine/Cytokine Signaling
We next investigated the chemokine/cytokine signaling in
different culture conditions inside our MPS. To evaluate the
response of TuMTs to NK cell exposure, we measured IL-8 in the
cell culture supernatant in all cell culture conditions. IL-8 level
has been proven to increase in many types of solid tumors,
including colorectal tumor. An increased serum IL-8 content is
currently considered a potential predictive marker of higher
grade tumor burden and resistance to chemo- and immune-
therapies (48). As shown in Figure 5A, mono-cultures of TuMTs
Frontiers in Immunology | www.frontiersin.org 877
produced increasing amounts of IL-8, ranging from 83 ± 17 pg/mL
at day 1 to 138 ± 18 pg/mL at day 2, and 147 ± 19 pg/mL at day 3.
In contrast to the levels measured for TuMT mono-cultures, IL-8
levels significantly spiked in co-cultures of TuMTs and NK cells.
They slightly fluctuated in the TuMT-NK-cell co-cultures but
increased steadily in triple cultures – from 320 ± 120 pg/mL at day
1 to 430 ± 100 pg/mL at day 3 – and remained significantly
different from those observed in TuMT mono-cultures. Mono-
cultures of NK cells and CarMTs consistently produced less than
10 pg/mL of IL-8 (Figure S7A).

As an indicator for indirect anti-tumor activity of NK cells, we
measured the amount of GM-CSF, IFN-g, and TNF-a, which were
released by NK cells into the cell-culture medium. In the absence of
NK cells, all these cytokines of interest were undetectable (Figures
S7B-D). However, NK cells in mono-culture abundantly produced
all three cytokines. The absence of other T cell-associated cytokines,
e.g., IL-6, and IL-17 (data not shown), confirmed that NK cells
were the only source of these cytokines in our system (Figures 5B-
D). All cytokine levels dropped slightly over time in mono-cultures
A B

C

FIGURE 3 | (A) TuMT size changes monitored by bright-field imaging. Diameters of individual TuMTs measured at Day 1 (D1), Day 2 (D2), and Day 3 (D3) were
normalized to their own diameter at day 0 (n = 18 MTs) (Mono: mono-culture, Triple: triple culture). Detailed statistical comparisons between conditions are shown in
Figure S4A (ns: not significant). (B) Representative fluorescence images reflecting heterogeneous size changes of TuMTs in triple cultures. NK cells were labeled with
Green fluorescence cell proliferation staining reagent, while apoptotic cells were labeled with Blue 405 Caspase-3 Dye. Scale bars: 200 mm. (C) Quantitation of sMICA
released into the supernatant of different cell cultures during a 3-day experiment (n = 3). Detailed statistical comparisons between conditions are shown in Figure S4B.
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of NK cells, which is commonly observed when IL-15 was
withdrawn from the cell culture medium (49, 50). The
production of these cytokines was more extensive in co-cultures
of TuMTs with NK cells, compared to mono-cultures of NK cells.
However, all cytokines displayed different time-dependent
dynamics. Over the experimental period, GM-CSF levels
Frontiers in Immunology | www.frontiersin.org 978
increased slightly in TuMT-NK cell co-cultures and triple
cultures. In contrast, IFN-g and TNF-a levels decreased slightly
over time in all culture conditions. Interestingly, the IFN-g level
peaked at day 1 and dropped to a basal level within less than 2 days
in the triple cultures, while there was no clear trend in TuMT-NK-
cell co-cultures with respect to the basal level. TNF-a levels of all
FIGURE 4 | Images showing tumor-infiltrating NK cells at different Z-positions in a TuMT. The Z-depth – in reference to the bottom of the TuMT – is indicated at the
bottom left of each image. White dashed lines indicate the outer border of the TuMT in the corresponding Z-plane. Scale bars: 100 mm.
A B

DC

FIGURE 5 | Quantification of the chemokines/cytokines (A) IL-8, (B) GM-CSF, (C) IFN-g, and (D) TNF-a in the supernatant of different cell culture conditions over a 3-day
experimental period (n = 3) (Mono, mono-culture; Triple, triple culture) (ns: not significant). Detailed statistical comparisons between conditions are shown in Figure S8.
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culture conditions that included TuMTs remained higher than of
those without tumors until the end of the experiment (Figure S8).

Besides NK cells that (i) moved inside the iMPS with the flow
(Video S2) and (ii) interacted with TuMTs (Figures 3, 4), a
portion of NK cells did accumulate inside cell enrichment zones
during the experiment. This circumstance offered us the possibility
to parallelly investigate the indirect tumor growth suppression of
NK cells through soluble mediators, i.e., chemokines/cytokines.
Therefore, in a different set of triple cultures, we removed all NK
cells inside the cell enrichment zones on day 1. Figure S9 shows
the drop of GM-CSF, IFN-g, and TNF-a levels after NK cell
removal, while IL-8 levels increased over the next two days, as all
TuMTs continued to grow, albeit slowly (Figure S9A). This
experiment further confirmed the dependency of the system on
NK-cell-mediated signaling.

NK-Cell-Induced Anti-Tumor Activity Effects
on CarMTs
Finally, we investigated the behavior of CarMTs for all described
culture conditions by analyzing their physical interaction with NK
cells, ATP-dependent viability, soluble Troponin I secretion, and
beating patterns. The Troponin I level in patient serum is a
clinically used biomarker that indicates cardiac injuries at elevated
levels. Hence, we used soluble Troponin I as an indicator for health
Frontiers in Immunology | www.frontiersin.org 1079
status of CarMTs in our iMPS. As shown in Figure 6A and Figure
S10A, NK cells infiltrated CarMTs but did not negatively affect the
viability of CarMTs under all culture conditions. Additionally, while
CarMTs disintegrated after being exposed to 30 mMDox for 3 days
in a well-plate-based test, CarMTs in co-culture with NK cells and
in triple culture on-chip remained intact (Figure S10B). The
average Troponin I level per CarMT was lower than 10 pg/mL
under all conditions in our iMPS as compared to the value obtained
for Dox-treated MTs (47 ± 19 pg/mL per CarMT), which indicated
that there was no structural damage of cardiac myocytes in the
CarMTs (Figure 6A). Looking at the contraction profiles of the
MTs, only a slight arrhythmia was observed in the CarMTs of
CarMT-NK-cell co-culture (Figure S11C), while the CarMTs of the
triple culture exhibited an obviously decreased beating rate (Figure
S11D). In-depth analyses of the beating patterns of four exemplary
CarMTs per culture condition revealed an increased average peak-
to-peak time only in the CarMTs of the triple culture (Figure 6B).
The majority of scrutinized CarMTs in the triple culture showed
irregular contraction amplitudes as shown in Figure 6C. In fact,
under this culture condition, CarMTs experienced highly elevated
levels of both tumor-derived and NK cell-derived pro-
inflammatory chemokines and cytokines, most importantly IL-8
and TNF-a (Figures 5A, D), that have been shown to negatively
affect cardiac contractility in vivo (51, 52). Meanwhile, in CarMT-
A B

C

FIGURE 6 | (A) ATP-contents of CarMTs (n = 6) indicating viability and average soluble Troponin I, produced by individual CarMTs under different culture conditions
(n = 3) (Mono, mono-culture; Triple, triple culture; Dox: Doxorubicin hydrochloride). (B) Changes in beating patterns of CarMTs under different conditions, represented as
peak-to-peak time between contractions (ms). The figure shows exemplary patterns of four CarMTs per culture condition. The numbering on the X-axis indicates the
peak-to-peak interval count of individual CarMTs within a 20-seconds recording window (peak-to-peak intervals are shown in the insert graph.). (C) Contraction
amplitudes of CarMTs under different culture conditions. The figure shows exemplary patterns of four CarMTs per culture condition. The numbering on the X-axis
indicates the beat count of individual CarMTs within a 20-second recording window (beat counting is illustrated in the insert graph). For each culture condition, contraction
amplitudes of the same CarMT were connected by a dashed line in chronological order. The same color code was applied for the same CarMT in both (B, C).
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TuMT and CarMT-NK cell co-cultures, only one in four of
CarMTs exhibited irregular contraction amplitudes, suggesting
that detrimental effects on CarMTs may already be inflicted at a
lesser extent by TuMTs or activated NK cells, or in other words, by
lower levels of TuMT-derived IL-8 (Figure 5A) or NK cell-derived
TNF-a (Figure 5D).
DISCUSSION

Despite the therapeutic potential of immune cell-employed ACT,
there is still a large gap between in-vitro performance and in-vivo
efficacy. This discrepancy mainly is due to a limited access to
physiologically relevant tumor models and a lack of suitable
in-vitro platforms for studying interactions between tumor
models and immune cells. Interdisciplinary approaches will
help to overcome these problems and increase the relevance of
in-vitro screenings. While 3D tumor models offer more biological
relevance (14, 53–56), iMPSs can provide physiological niches and
critical cues for tumor models and immune cells to recapitulate
physiological interaction (22, 24, 57–59). Although many initiatives
show promising results, standardized iMPSs are still missing.
Reasons may include the limited scalability of many academic
approaches, the use of non-standardized and highly specialized
tissue models, differences in screening protocols among
laboratories, and the difficulty to transfer existing approaches to a
broader community and clinical or industrial settings.

In this work, we developed an iMPS to study direct and indirect
effects of anti-tumor NK cells on TuMTs and CarMTs. The
inclusion of CarMTs into our iMPS allowed for a simultaneous
assessment of potential off-target effects caused by anti-tumor NK
cells. Interestingly, while a complete eradication of 3D TuMTs by
NK cells was achieved in our static experiment, we observed
heterogeneous tumor-killing activities by NK cells in our iMPS.
This discrepancy shows how static culture conditions – where all
cell components are forced to interact – can lead to an
overestimation of ACT efficacy. Direct killing of TuMTs by NK
cells was observed in our iMPS by a combination of different
features: accumulation of NK cells in direct proximity of the MT,
an increase in caspase 3/7 activity in tumor cells, and TuMT growth
arrest or shrinkage. We also observed TuMTs that displayed a non-
responsive phenotype within the same microfluidic channel. In
such non-responsive TuMTs, growth and viability were not
affected by the presence of NK cells (Figure 3 and Figure S6A).
As shown in Figure S6B, growth trajectories of TuMTs were
determined by the level of direct interaction between TuMTs and
NK cells within the first day of co-culturing rather than the number
of NK cells in proximity of the TuMTs during the initial priming
period. TuMTs that harbored large numbers of NK cells at day 1
grew slower or were subjected to growth suppression. Meanwhile,
TuMTs harboring only a few NK cells at day 1 experienced less
growth suppression that was mainly a consequence of the presence
of NK cell-derived cytokines. The increased level of sMICA
shedded from TuMTs (Figure 3C) may contribute to the
observed ineffective NK cell-mediated tumor killing activity and
heterogeneous tumor growth suppression.
Frontiers in Immunology | www.frontiersin.org 1180
Additionally, as shown in Figure S6, once the diameter of a
given TuMT surpassed 500 mm, it was more likely to resist NK cell-
induced growth suppression. It has been shown in other studies that
TuMTs that are larger than 500 mm in diameter typically develop a
hypoxic core (60, 61). Hypoxia induces hypoxia-driven adaptive
mechanisms that promote tumor heterogeneity and survival while
it imposes an immunosuppressive microenvironment on immune
cells (62). Although the specific effect of hypoxia on NK cells
remains elusive, it was shown to cause NK-cell dysfunction and to
impair direct tumor-killing by tumor-infiltrating NK cells (63).

The chemokine/cytokine profiles of the on-chip cultures
confirmed the reciprocal signaling between TuMTs and NK cells,
indicating their interaction.We observed with all TuMTs that only a
few NK cells infiltrated the TuMTs. Similarly, only low numbers of
tumor-infiltrating NK cells were reported in different studies (46, 64,
65). Using whole-tissue sections of 112 patients and performing an
in-situ quantification of immune cells, Halama et al. showed that
NK cells were scarce in colorectal cancer tissue, even at early stages
of the tumor development. NK cell invasion and retention in tumor
tissue was low despite a high local level of chemokines, such as IL-8,
and increased levels of IFN-g and TNF-a in comparison to the
mucosa adjacent to the tumor tissue (64). In another study, Rios-
Doria et al. (66) developed xenograft models from different human
tumor cell lines in humanized mice and quantified the presence of
different immune-cell types within the tumor. Their results showed
high infiltration levels for B-cells and dendritic cells, while tumor-
infiltrating NK cells only amounted to between 1% and 5% of total
tumor-infiltrating lymphocytes. Interestingly, the low number of
NK cells – comparable to the number of tumor-infiltrating NK cells
– was shown to induce resistance against NK cell-mediated killing
in melanoma-resection-derived melanoma cell lines (67). To reveal
the reasons for the resistance against NK-cell-mediated killing in
our iMPS, extensive genomic and proteomic analyses will be
required in future work.

We attributed the heterogeneous anti-tumor activity of NK cells
to (i) different numbers and/or activation states of NK cells that
could establish physical interactions with TuMTs within the first
day of the experiment, (ii) chances of mutations within TuMTs that
lead to immune-editing and eventually escape from NK cell-
induced cell apoptosis (68), (iii) the development of tolerance for
tumor cells by NK cells (69), or (iv) the activity suppression of NK
cells by hypoxia and soluble factors shed from tumor cells (63, 70).

By including gravity-driven flow, our iMPS readily supported
indirect, soluble-factor-mediated interaction between all included
tissue models. This feature allowed us to simultaneously examine the
response of TuMTs to NK cell-mediated killing activity and its
impact on healthy CarMTs. A constant exposure of CarMTs to
chemokines/cytokines, released by TuMTs-NK cells interaction – as
shown in our iMPS – is difficult to realize withmedium-conditioning
approaches due to the short half-live times of IL-8 and TNF-a (half-
live time of IL-8: 24 minutes, half-live time of TNF-a – 18.2
minutes) (71).

Interestingly, we did not detect any structural damages of cardiac
myocytes in CarMTs for all our on-chip culture conditions.
Nevertheless, the high level of chemokine and cytokine release by
both TuMTs and NK cells upon interaction in the triple culture
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significantly reduced the beating frequency and altered the
contraction amplitude of CarMTs. This observation is in
agreement with in-vitro and in-vivo investigations by Buoncervello
et al. (52). In their in-vitro analysis, the authors dosed cardiac
myocyte cultures with different inflammatory chemokines/
cytokines, including IL-8, IFN-g, and TNF-a for 48 hours. They
reported an absence of cell death but various “severe phenotypic
changes” in chemokine/cytokine-treated cardiac myocytes,
indicating a dysfunction of contractile cytoskeletal elements. They
also provided evidence on the link between colorectal tumor-induced
heart systolic dysfunction and chronic systemic inflammation in
their follow-up in-vivo experiment (52). Similar to our results, they
did not detect any elevation of Troponin I in animal plasma across all
conditions. Not many studies have yet investigated the risks
associated with NK cell-based ACT so that NK cells are generally
considered to cause less side effects than T-cells (72). However, this
consideration may be due to the fact that suitable tissue models and
testing platforms that could reveal more subtle adverse effects are still
lacking. Moreover, solid tumors can alter the immune response and
other signaling pathways in ways that can lead to unexpected
damages to other organs. Therefore, more systemic approaches
and better tools are needed for researchers to address these
open questions.
CONCLUSION

In summary, we presented a simple and user-friendly iMPS that
offers: (i) long-term triple culture of 3D TuMTs with anti-tumor
NK cells and healthy CarMTs, (ii) microscopy-based observation
of direct TuMT-NK cell interaction and evaluation of the
spontaneous beating activity of CarMTs, (iii) collection of the
cell-culture supernatant for chemokine/cytokine profiling, and
(iv) harvesting of all tissue models for endpoint analyses. This
proof-of-concept work is aimed at demonstrating the potential
and versatility of iMPSs for use in immuno-oncology research,
especially for early in-vitro validation and safety assessment of
therapy approaches. More in-depth investigations regarding the
growth inhibition of TuMTs, the specific receptor-ligand
interactions involved in NK cell-mediated tumor killing, and
more extensive profiling of the signaling-molecule repertoire
remain topics for future work.
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Breast cancer (BC) is the most common malignancy among females. Chemotherapy
drugs remain the cornerstone of treatment of BC and undergo significant shifts over the
past 100 years. The advent of immunotherapy presents promising opportunities and
constitutes a significant complementary to existing therapeutic strategies for BC.
Chemotherapy as a cytotoxic treatment that targets proliferation malignant cells has
recently been shown as an effective immune-stimulus in multiple ways. Chemotherapeutic
drugs can cause the release of damage-associated molecular patterns (DAMPs) from
dying tumor cells, which result in long-lasting antitumor immunity by the key process of
immunogenic cell death (ICD). Furthermore, Off-target effects of chemotherapy on
immune cell subsets mainly involve activation of immune effector cells including natural
killer (NK) cells, dendritic cells (DCs), and cytotoxic T cells, and depletion of
immunosuppressive cells including Treg cells, M2 macrophages and myeloid-derived
suppressor cells (MDSCs). Current mini-review summarized recent large clinical trials
regarding the combination of chemotherapy and immunotherapy in BC and addressed
the molecular mechanisms of immunostimulatory properties of chemotherapy in BC. The
purpose of our work was to explore the immune-stimulating effects of chemotherapy at
the molecular level based on the evidence from clinical trials, which might be a rationale for
combinations of chemotherapy and immunotherapy in BC.

Keywords: breast cancer, chemotherapy, immunotherapy, immunogenic modulation, clinic trial
INTRODUCTION

Breast cancer (BC), a highly heterogeneous disease, is the most common cancer among women (1).
The 2021 global cancer statistics showed about 2.3 million newly diagnosed BC and approximately
0.69 million BC deaths, with a higher incidence than lung cancer (2, 3). The survival rates of BC vary
widely worldwide, with an estimated five-year survival rate of 80% in developed countries while less
than 40% in developing countries (1, 4). BC is generally comprised of luminal A, luminal B, HER2
overexpression, basal-like triple negative breast cancer (TNBC), and other special subtypes
org January 2022 | Volume 12 | Article 819405184
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proposed by St. Gallen International Breast Cancer Conference
in 2013 (5). Subtype identification provides a fundamental basis
for decision making in the therapeutic management of BC (6).
Thus, to select the most appropriate systemic therapy for BC,
subtype classification is quite necessary (7). Modern therapy of
BC involves a combination of surgery of operable tumors,
chemotherapy (neoadjuvant/adjuvant), endocrine therapy,
targeted therapy, radiotherapy and immunotherapy (8). The
initial approach for BC was aggressive surgery in the early 20th
century (6). And the types of chemotherapy and their indications
have experienced rapid growth since radical mastectomy evolved
from more aggressive to less aggressive (9). In 2001, a National
Institute of Health consensus panel concluded that owing to a
clear survival benefit by adjuvant polychemotherapy, it should be
recommended to the majority of women with localized BC
regardless of lymph node, menopausal, or hormone receptor
status (10). Since then, the status of chemotherapy in the
treatment of BC has been established.

It is traditionally recognized that BC is characterized by low
tumor mutation burden (TMB) and poorly immunogenic.
However, recent evidence revealed that infiltrating lymphocytes
(TILs) and programmed cell death-ligand 1 (PD-L1) were
expressed in a considerable proportion of HER2+ BC and TNBC
patients (11). Cancer immunotherapy aims to provoke an immune
response by either enhancing the cytotoxic potential of immune
cells or blocking the immunosuppressive tumormicroenvironment
(12). Immunotherapy has a rich content including immune
checkpoint blockade, adoptive cell therapies, adoptive cell
therapies vaccines and oncolytic viruses (13). Among these
therapy strategies, the United States Food and Drug
Administration (FDA) has approved immune checkpoint
inhibitors (ICIs) targeting PD-1 (programmed cell death receptor
1), PD-L1 (programmed cell death 1 ligand 1), and CTLA-4
(cytotoxic T-lymphocyte-associated antigen-4) for treatment of
solid tumors such as BC (14, 15). Among all subtype of BC,
TNBC, the most invasive BC, was regarded as the most
immunogenic type due to the presence of tumor neoantigens, and
high levels of lymphocytic infiltration, mutation (16). The results of
the IMpassion130 trial demonstrated a substantial overall survival
(OS) benefit and brought BC into immunotherapy era (17). Thus,
considerable effort has been dedicated to combination of standard-
of-care chemotherapies with immunotherapy in BC.

Chemotherapy was previously thought to be solely
immunosuppressive, but recent data showed that it might also
possess immunostimulatory properties. In this mini review, we
summarized the updated clinical trials on immunotherapy and
chemotherapy combinations in BC. More importantly, we
discussed recent literature on the immunomodulatory effects of
chemotherapy with a focus on immunostimulatory function.
IMMUNE CHECKPOINT INHIBITORS
COMBINED WITH CHEMOTHERAPY IN BC

First, the IMpassion130 (NCT02425891) trial funded by F.
Hoffmann–La Roche/Genentech comparing chemotherapy plus
Frontiers in Immunology | www.frontiersin.org 285
placebo versus chemotherapy plus atezolizumab brought BC into
the immunotherapy era. In this phase 3 trial, 902 patients with
untreated metastatic TNBC were randomly assigned (in a 1:1
ratio) to receive atezolizumab plus nab-paclitaxel or placebo plus
nab-paclitaxel. Patients received atezolizumab 840mg or placebo
intravenously on days 1 and 15 and received nab-paclitaxel at a
dose of 100 mg/m2 that administered intravenously on days 1, 8,
and 15 of every 28-day cycle. This trial displayed a substantial
progression-free survival (PFS) benefit in patients with
metastatic TNBC either the intention-to-treat population or
the PD-L1–positive subgroup. With a median follow-up of
12.9 months, among the ITT population, the median PFS was
significantly prolonged after the addition of atezolizumab as
compared to chemotherapy alone (7.2 vs 5.5 months); further, in
the PD-L1 positive population, the respective PFS benefit was
more improved (7.5 vs 5.0 months). Regarding the intention-to-
treat analysis, the median OS was 21.3 months (atezolizumab
plus nab-paclitaxel) and 17.6 months (placebo plus nab-
paclitaxel), while in the PD-L1 positive population, the OS was
increased 9.5 months with the addition of atezolizumab (25.0 vs.
15.5 months) (18). The above data has attracted significant
interest in clinical scientist, and then a series of ongoing trials
that were design for chemotherapy combined with
immunotherapy begun to emerge. Subsequent randomized
Phase III trial IMpassion131 (NCT03125902) evaluated first-
line paclitaxel with or without atezolizumab for unresectable
locally advanced/metastatic TNBC. 651 eligible patients were
randomized 2:1 to atezolizumab plus paclitaxel or placebo plus
paclitaxel. At the primary analysis, no significant improvement
of PFS or OS was observed while adding atezolizumab to
paclitaxel and the reasons for this remain unclear. At a median
follow-up of 9.0 months (atezolizumab-paclitaxel arm) and 8.6
months (placebo-paclitaxel arm), in the PD-L1-positive
population, median PFS was 6.0 months and 5.7 months,
respectively. Final OS results also showed no difference
between arms (atezolizumab-paclitaxel arm 22.1 months versus
placebo-paclitaxel arm 28.3 months). Results in the ITT
population were in accord with the PD-L1-positive population.
Conclusions from IMpassion131 also contrasted with results
from the KEYNOTE-355 trial (we will further elaborate below)
that evaluated a more extensively chemotherapy backbones
(including both paclitaxel and nab-paclitaxel, as well as
gemcitabine/carboplatin) with a different immunotherapy
agent, pembrolizumab (15). Both IMpassion130 and
IMpassion131 excluded patients with early relapse (disease
progression within 12 months of chemotherapy for early breast
cancer), however IMpassion132 (NCT03371017) is one of the
first trials prospectively focusing on the early relapsing TNBC
population. The IMpassion132 trial combined atezolizumab with
two commonly used non-taxane chemotherapy regimens
(gemcitabine plus carboplatin, or single-agent capecitabine),
which aimed to determine whether similar improvement
observed in the IMpassion130 could be achieved with an
alternative chemotherapy backbone in the case of early relapse.
This phase III trial is ongoing and the primary end point is OS in
the ITT population (19).
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KEYNOTE-355 (NCT02819518), compared pembrolizumab
plus chemotherapy (nab-paclitaxel; paclitaxel; or gemcitabine
plus carboplatin) with placebo plus chemotherapy, showed a
significant and clinically meaningful improvement in PFS among
patients with locally recurrent inoperable or metastatic TNBC
with combined posit ive score(CPS)of 10 or more.
Pembrolizumab combined chemotherapy showed a positive
result both in patients CPS≥10 and CPS≥1. Median PFS was
9·7 months and 5·6 months (pembrolizumab–chemotherapy and
placebo–chemotherapy, respective) among patients with
CPS≥10. Among patients with CPS≥1, median PFS was 7·6
and 5·6 months. Results in the ITT population were 7·5 and
5·6 months. These findings suggested a role for the combination
of pembrolizumab and chemotherapy for the first-line treatment
of metastatic TNBC (20). Compared to KEYNOTE-355, another
ongoing phase III clinical trial KEYNOTE-522 (NCT03036488)
mainly focused on patients with early TNBC. A pathological
complete response (pCR) at the time of definitive surgery and
event-free survival (EFS) in the ITT population were the two
primary end points. A total of 1174 patients with previously
untreated stage II or stage III TNBC were randomly assigned (in
a 2:1 ratio) to the pembrolizumab–chemotherapy group (784
patients) or the placebo–chemotherapy group (390 patients).
Patients in pembrolizumab–chemotherapy group received
therapy with pembrolizumab plus paclitaxel and carboplatin.
Placebo–chemotherapy group received placebo plus paclitaxel
and carboplatin, and both groups received doxorubicin–
cyclophosphamide or epirubicin–cyclophosphamide. At the
first interim analysis of 602 patients, the percentage of patients
with a pCR was 64.8% (pembrolizumab–chemotherapy group)
and 51.2% (placebo–chemotherapy group). In the PD-L1–
positive population, the percentage of patients with a pCR was
68.9% versus 54.9% (pembrolizumab–chemotherapy group
versus placebo–chemotherapy group), while the percentage of
patients with a pCR was 45.3% versus 30.3% (pembrolizumab–
chemotherapy group versus placebo–chemotherapy group) in
the PD-L1–negative population. The patients who received
pembrolizumab showed a significantly higher pathological
complete response percentage than those who received
placebo. Across all treatment phases, the incidence of
treatment-related adverse events of grade 3 or higher was
78.0% and 73.0%, including death in 0.4% (3 patients) and
0.3% (1 patient), in the pembrolizumab–chemotherapy group
and placebo–chemotherapy group, respectively (21).

The above clinical trials including chemotherapy plus
atezolizumab or pembrolizumab not only provide powerful
evidence for the benefits of chemotherapy combined
with immunotherapy, but also provide us new treatment
alternatives, which enable more BC patients to benefit
from immunotherapy. Several clinical trials have been designed
to explore the potentiality of chemotherapy combined
with immunotherapy with a variety of patterns. I-SPY2
trial which focus on the BC patients with a high-risk and
stage II/III evaluated pCR rates of pembrolizumab combined
with neoadjuvant chemotherapy. Both NCT02513472
and NCT03051659 paid attention to the combination of
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pembrolizumab and eribulin. A summary of completed and
ongoing Phase Ib/II and Phase III clinical trials in BC is
presented in Tables 1, 2.
ENHANCING THE ANTIGENICITY OR
ADJUVANTICITY OF BC CELLS

Impact of Chemotherapy on Tumor
Antigenicity
In recent years, in the absence of infection, a novel type of cell
death has been shown to be capable of triggering CD8+ T cells-
mediated responses against “dying cell” neoantigens through cell
stress-related processes, which has become an emerging research
interest and has been referred to as “immunogenic cell death”
(ICD) (33, 34). Chemotherapy-mediated ICD is also governed by
cell stress, where the involved fundamental processes are
regulated by cytoprotective pathways such as autophagy and
endoplasmic reticulum stress (35, 36). Evidence available
indicated that obviously enhanced tumor antigenicity induced
by chemotherapeutic drugs might be caused by elevated major
histocompatibility complex (MHC) expression and presentation
of tumor neoantigens (TNA) or tumor-associated antigens
(TAA) (37). Many existing chemotherapeutic agents and
ionizing radiation can enhance the tumor antigenicity and the
adjuvanticity effects of malignant cells when they elicit ICD and
anticancer immunity (38). Anthracyclines, the cornerstone of
chemotherapy regimens for BC, have been proven to one
initiator or potentiator of ICD process through activation of
the NLRP3 inflammasome (39). Previous preclinical studies
demonstrated that 5-fluorouracil (5-FU) directly induced the
upregulation of membrane-associated carcinoembryonic antigen
(CEA) and MHC molecules in BC cell lines (40). Docetaxel and
doxorubicin were also shown to promote the expression of
antigen-processing machinery components, resulting in
increased loading of MHC-I molecules in BC cells (41).
Topotecan characterized as topoisomerase I-targeting drug
showed immunogenic potential in TNBC cells by stimulating
MHC I expression, inducing the secretion of interferon-b and
activation of type I IFN signaling (42). Furthermore, an
increasing expression of antigen-presenting molecules (MHC-I,
MHC-II, and CD1d) was observed after gemcitabine and
cyclophosphamide treatment in 4T1 mammary carcinoma
cells, and thus promoting the antigen presenting behavior of
dendritic cells (DCs) (43–45). The elevated expression of MHC-
II and CD86 mediated by novel chemotherapeutic compound
was also reported in TNBC cell line MDA-MB-231 (46). There
are clear associations between the presence of MHC molecules
and clinical outcomes in BC (47). Higher expression of MHC
class II (MHC II) pathway genes expressions might predict
longer disease-free survival (DFS) and low risk of recurrence
for TNBC patients (48). Collectively, the upregulation of MHC-
related molecules could remodel the immunopeptidome of
cancer cells after chemotherapy, and thus enhancing
their antigenicity.
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Chemotherapy-Induced Alterations of
Damage-Associated Molecular Patterns
(DAMPs)
At late time point of cell death, tumor cells can transfer “eat me
signals” to facilitate immune cells phagocytosis and tumor
antigen presentation, resulting in the conversion of dying
tumor cells to adjuvanted-endogenous tumor vaccines (49).
The nature of DAMPs is the fundamentally dynamic
responding to chemotherapy-elicited cell stress that involve in
multi faceted influences on extra- and intracel lular
microenvironments (50). The release of DAMPs often reflects
the re-expression of novel membrane-bound, secreted proteins
and increased intracellular components, such as type I interferon
and adenosine triphosphate (ATP) (51). Among them, high
mobility group box 1 (HMGB1), calreticulin (CRT) and
surface heat shock protein 90 (HSP90) have been recognized as
key ICD-related DAMPs, which were reported to improve
antigen uptake and presentation of DC cells, and assist the
Frontiers in Immunology | www.frontiersin.org 487
CD8+ T cells to exert antitumor activity (52–54). These
DAMPs induced by chemotherapeutic drugs could promote a
state of anti-tumor immunity. However, other studies showed
that DAMPs such as HMGB1, CRT, and ATP were also involved
in BC progression, metastasis, and drug resistance (55–57). So,
DAMPs represent a double-edged sword in BC.

The interactions between HMGB1 and TLR-2, TLR-4, and
TLR-9 could also participate in cross-presentation of anti-tumor
T lymphocytes in vivo, which lead to the activation of DCs and
trigger antitumor immune responses (58, 59). In BC patients, the
expression of HMGB1 was able to effectively measure the
immunogenicity and effectiveness of chemotherapeutic drugs
(60). In vitro, the level of extracellular HMGB1 was increased
in conditioned media after doxorubicin treatment in MB-231
cells (61). Moreover, a significant increase of HMGB1 release was
also determined in HCC1143 cells with epirubicin/docetaxel
intervention (62). After neoadjuvant chemotherapy (NCT),
plasma HMGB1 dramatically increased for BC patients who
TABLE 1 | Summary of primary phase III clinical trials adding immunotherapy to chemotherapy in breast cancer.

Trial (National
Clinical Trial
Identifier)

Phase Interventions Patients enrolled Number of
patients

Primary endpoint Key Results Ref

IMpassion130
(NCT02425891)

III Nab-paclitaxel ± atezolizumab Untreated
metastatic TNBC

902 (451 treated
with
atezolizumab)

PFS Median PFS 7.2 months VS
5.5 months(PD-L1+ 7.5
months)

(18)

unselected for PD-
L1

OS Median OS 21.3 months VS
17.6 months (PD-L1+
25.0months)

IMpassion131
(NCT03125902)

III Paclitaxel ± atezolizumab Inoperable locally
advanced/
metastatic

651 (293 PD-L1
+)

PFS Median PFS 6.0 months VS
5.7 months(PD-L1+ 7.5
months)

(15)

TNBC
IMpassion132
(NCT03371017)

III First-line chemotherapy (capecitabine
[mandatory in platinum-pretreated
patients] or gemcitabine+ carboplatin)
± atezolizumab

Early relapsing
metastatic TNBC

approximately
350

OS Ongoing
(19)

Impassion031
(NCT03197935)

III chemotherapy (nab-paclitaxel
+doxorubicin + cyclophosphamide) ±
atezolizumab

Early-stage TNBC
(untreated stage II–
III)

333 (165 treated
with
Chemotherapy+
atezolizumab)

pCR Ongoing at data cutoff (April
3, 2020) (22)
pCR 58% VS 41%
pCR 69% VS 49% (PD-L1+)

KEYNOTE-119
(NCT02555657)

III pembrolizumab arms VS chemotherapy
arms

mTNBC (treatment
with anthracycline
or taxane before)

622 (312
pembrolizumab)

OS(PD-L1 CPS>=1
or CPS>=10)

Median OS 10·7 months VS
10·2 months (PD-L1
CPS>=1)

(23)

12.7months VS 11.6
months (PD-L1 CPS>=10)
9·9 months VS11.8 months
(overall population)

KEYNOTE-355
(NCT02819518)

III chemotherapy (nab-paclitaxel; paclitaxel;
or gemcitabine plus carboplatin) ±
Pembrolizumab

Previously
untreated locally
recurrent
inoperable or
mTNBC

847 (566
pembrolizumab)

OS、PFS(PD-L1
CPS>=1 or
CPS>=10 and ITT
populations)

Median PFS 9·7 months VS
5·6 months(PD-L1
CPS>=10)

(20)

7.6 months VS 5·6 months
(PD-L1 CPS>=1)
7.5 months VS 5·6 months
(ITT population)

KEYNOTE-522
NCT03036488

III Chemotherapy(paclitaxel +carboplatin) ±
pembrolizumab

Early-stage TNBC
(untreated stage II–
III)

1174 pCR first interim analysis
(21)EFS (ITT

population)
pCR 64.8% VS 51.2%
the incidence of treatment-
related adverse events of
grade 3 or higher 78.0%VS
73.0%
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apparently obtain complete pathological complete response or
partial remission (62). Another report also demonstrated that
upregulated expression levels of HMGB1 and CRT were found
after NCT in both BC patients and cell lines. And increase levels
of HMGB1 have been shown to predict an improved therapeutic
outcome in BC patieants receiving NCT (63, 64). CRT is an
essential initiator of ICD signaling that is exposed at the surface
of membrane and surrounded by immature and mature DCs
(54). In a BC model, docetaxel did not alter the secretion of
HMGB1 or ATP. However, exposure to CRT was observed in BC
cell lines after docetaxel intervention, and antitumor immunity
was reinforced mainly by the increased antigen presenting
capacity and translocation of CRT (41). In vitro studies
indicated that paclitaxel, gemcitabine and doxorubicin-
mediated chemotherapy could efficiently kill cancer cells and
lead to a high level of DAMP (CRT and HMGB1) (65–67). It has
been shown that cyclophosphamide analogues improved tumor
immunogenicity by facilitating the release of ICD markers (CRT,
HMGB1, and ATP) (43). Altogether, these observations
underscore the importance of adjuvanticity for chemotherapy
to support the initiation of clinically anti-tumor immunotherapy.
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ACTIVATION OF IMMUNE
EFFECTOR CELLS

Impact of Chemotherapy on the
Innate Immunity
Innate immune cells including DCs, natural killer (NK) cells and
macrophages may at least represent as adjuvants to immune
checkpoint inhibitors (68). Some chemotherapies drugs have
direct implications for DCs and NK cells. In vitro studies showed
NK cells-mediated cytotoxicity against BC cells was significantly
enhanced following epirubicin-based pretreatment indicating the
combination of anthracycline-based chemotherapy and NK cells-
based immunotherapy was potentially an efficient strategy for BC
treatment (69). Initially, cytotoxic chemotherapeutics were
demonstrated to induce an overall dysfunction of NK cells
responses in localized and metastatic BC patients (70, 71), while
the NK cells (CD56) numbers and macrophages (CD14) rapidly
returned to normal after adjuvant chemotherapy (72). Another
study reported that both epirubicin-based and doxorubicin-based
regimen could result in an increased percentage of monocytes and
NKcells, but amarkeddecreasewas observed inB-cell numbers (73).
TABLE 2 | Summary of phase Ib/II clinical trials adding immunotherapy to chemotherapy in breast cancer.

Trial (National
Clinical Trial
Identifier)

Phase Interventions Patients enrolled Number
of

patients

Primary
endpoint

Key Results Ref

NCT01633970 Ib Nab-paclitaxel ± atezolizumab Stage IV or locally recurrent TNBC
(all patients experienced at least 1
treatment-related adverse event)

33 safety 73% grade 3/4 adverse events,
(24)tolerability 21% grade 3/4 adverse events of special

interest and no deaths
KEYNOTE-173
(NCT02622074)

Ib Pembrolizumab+
chemotherapy

Early-stage TNBC (high-risk) 60 safety neutropenia adverse event 73%
(25)RP2D Immune-mediated adverse events and

infusion reactions 30%(grade>=3 10%)
two cohorts meet the RP2D threshold

NCT02513472 Ib/II Eribulin +pembrolizumab mTNBC(≤2prior systemic anticancer
therapies in the metastatic setting.)

167 safety,
tolerability

ORRs
(26)

ORR 25.8% (stratum1 n=66)
21.8% (stratum2 n=101)
ORR PDL-1+ VS ORR PDL-1-:
34.5% VS16.1% (stratum 1)
24.4% VS 18.2% (stratum2)

ALICE
(NCT03164993)

II Chemotherapy (pegylated
liposomal doxorubicin+
cyclophosphamide) ±
atezolizumab

mTNBC 75 Safety Ongoing
(27)PFS

KEYNOTE-086
(NCT02447003)

II Pembrolizumab Previously treated mTNBC (prior
treatment with anthracycline and
taxane)

170 (105
PD-L1+)

ORR ORR 5.3%
(28)safety (PD-L1+ 5.7%)

NCT03051659 II Eribulin ± pembrolizumab HR+/ERBB2-metastatic breast
cancer

88 PFS median PFS 4.1 vs 4.2 months
(29)

I-SPY2 Trial
(NCT01042379)

II NACT (taxane and
anthracycline) ±
pembrolizumab

Early-stage breast cancer (high risk) 300 pCR ongoing, estimated pCR rates
(30)pCR 44% vs 17% (ERBB2- cohort)

pCR 30% vs 13% (HR+/ERBB2- cohort)
pCR 60% vs22% (TNBC cohort)

GeparNuevo
(NCT02685059)

II NACT (nab-paclitaxel + EC) ±
pembrolizumab

Early-stage TNBC 174 pCR pCR 53.4% VS 44.2%
(31)

ICON
(NCT03409198)

IIb Chemotherapy ± ipilimumab
and nivolumab

Metastatic HR+ breast cancer 75 Safety Ongoing
(32)PFS
January 2022 | Volume 12 | Article 819
CPS, combined positive score; EFS, event-free survival; EC, E=epirubicin, C= cyclophosphamide; ERBB2-, ERBB2-Negative; HR+, Hormone Receptor Positive; ITT, intention-to-treat;
ORR, objective response rate; OS, overall survival; PD-L1, programmed death-ligand 1; pCR, pathological complete response; PFS, progression-free survival; RP2D, recommended
phase II dose; stratum 1, number of prior systemic anticancer therapies is 0; stratum 2, number of prior systemic anticancer therapies is 1–2; TNBC, triple negative breast cancer; mTNBC,
metastatic triple-negative breast cancer; NACT, neoadjuvant chemotherapy.
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Similarly, advanced BC patients using single-agent paclitaxel or
docetaxel led to an enhancement of NK and LAK cytotoxic
activity and increase of IFN-g, IL-2, IL-6, GM-CSF cytokine levels
in serum (74, 75). For clinical practice, a reduction in the infiltration
of NK cells into tumor tissue has been proposed to be a predictor of
chemotherapeutic treatment failure in BC (76, 77). During follow-up
after adjuvant therapy, a previous study reported that NK cells
cytotoxicity showed significantly elevated at all time-points and did
not correlate with the mode of adjuvant radiotherapy or
chemotherapy after a one-year follow-up (78). In addition, other
studies suggested that the absolute number of activated NK cells was
higher in BC patients who achieved pathological complete responses
(PCR) after neoadjuvant chemotherapy, which implied that
the improvement of NK cell activities was essential requirement
for pCR especially in HER2-positive BC patients (79, 80). NCT
could induce immune activation and a release from local
immunosuppression in the tumor microenvironment, and thus
activation of peripheral NK cells might promote the elimination of
metastatic tumors in BC (81).

The impacts of chemotherapy onDCs have also been studied in
BC. The antitumor efficacy of chemotherapies drugs is essentially
determined by DCs that present antigens to tumor-specific T
lymphocytes (39). Paclitaxel and doxorubicin were shown to
improve the antigen presentation ability of DCs through
stimulating the expression of costimulatory molecules and IL-
12p70 (82). A study found that DCs in tumor lysate could
consistently activate CD8+ CTLs for killing cancer cells in locally
advanced BC, indicating DC-based vaccinations might be well
suited to treat chemotherapy-resistant BC patients (83). A
combination of doxorubicin and cyclophosphamide with
autologous DCs was favorable to prolong the survival of T cells
and recover immune functions capacity (84). One mechanism
might be that this combination enhanced tumor immunogenicity
as cryptic vaccines and promoted the adjuvant effects of ICD.
Additionally, a recent multi-omics analysis revealed that BC
patients with higher level plasmacytoid DCs tended to exhibit a
more sensitive immune response and chemotherapies response,
which highlighted that the potential benefit from combination of
chemotherapy and immunotherapy might be achieved in BC
patients with high immune infiltration of plasmacytoid DCs (85).
Regarding the associations between DCs and chemotherapy in the
clinic, significant efforts have been made. Prior to NAC, a marked
unresponsiveness to in vitro stimulus was observed for DCs, while
NAC could induce a remarkable responsiveness of APC
compartments (86). A previous study also described a correlation
between circulating DCs level and pCR in BC and their findings
suggested that patients with a poor pCR after NAC were
characterized by low expression of myeloid-derived DCs and
plasmacytoid DCs (87). Altogether, these observations pave the
way to translate innate antitumor immunity into innovative
immunotherapies for fighting refractory BC.

Impact of Chemotherapy on the
Adaptive Immunity
B cells displayed dramatic depletion after chemotherapy and
remained persistent low level even 9 months following systemic
Frontiers in Immunology | www.frontiersin.org 689
chemotherapy (88, 89). It has been reported that the percentage
of peripheral blood B cells was substantial decreased by FEC (5-
fluorouracil, epirubicin, cyclophosphamide) or FDC (5-
fluorouracil, doxorubicin, cyclophosphamide) regimens in BC
(73). Likewise, vinorelbine, cyclophosphamide and 5-FU were
also reported to decrease the number of circulating B cells in
which cyclophosphamide had the largest influence over levels of
B cells (90). The reason for cytotoxic chemotherapy effect on B
cells was partly due to an increased sensitivity of B cells to
chemotherapeutic agent in vitro compared to T-cells (91).
Tumor infiltration of B cells in the tumor microenvironment
could serve as a promising biomarker to select BC patients who
might benefit from NAC (92). Memory B cells was correlated
with pCR to NAT in ER-negative BC tumors, which indicated
humoral immunity was essential for mediating response to
cytotoxic therapy (93). Also, higher B cells infiltration could
potentiate the local cytotoxic immune response and were
correlated with better outcomes in hormone receptor-negative
BC patients (94).

Substantial evidence suggested that chemotherapy contributed
to T-cells independent immune responses. In vivo treatment of
tumor-bearing mice demonstrated that doxorubicin led to a
significant increase in the number of CD4 + T cells, CD8+ T
cells and NK cells and promoted expression of interferon g (IFN-g)
and granzyme B (95). In another pre-clinical experiments, the
administration of anthracycline also facilitated the infiltration of
CD4+ and CD8+ T cells in TNBC mouse model (96). Several
possible mechanisms have been proposed to explain these
phenomena. Treatment of doxorubicin promoted cytotoxic T
lymphocytes accumulation by a potent production of IFN-g and
IL-17 in a BCmouse model, which suggested that gd T cells indeed
played a sizable role in doxorubicin-induced anti-tumor immune
response (97). Low doses of cyclophosphamide were shown to
reverse the immunosuppression and strongly enhanced the
abundance of tumor infiltrating T cells via the secretion of
various cytokines and activation antigen-presenting cells (98).
Furthermore, high dose of cyclophosphamide could completely
eradicate tumor cells, while cyclophosphamide at low doses was
able to reduce the number of circulating Tregs but increase the
production of tumor-specific T cells (99). In clinical contexts, the
percentages of CD3+, CD4+ T cells and Treg cells in blood
samples of BC were significantly decreased after 6 cycles of
chemotherapy (100). To assess the effect of combination
chemotherapy on subsets of immune cells, a study revealed that
anthracycline-based regimen could induce an increase of cytotoxic
T and NK cells, but a dramatic decrease of B cells in blood (73). A
better clinical response during chemotherapy has been linked to
higher level of circulating CD8+ T-cell (101). Some studies have
addressed the effects and correlations of NAC on effector T cells.
After NAC, BC patients with beneficial therapeutic effects often
correlated with an increased level CD4+ and CD8+ T-cells, and
decreased CTLA-4+ T cells and VEGF (102, 103). It has been
previously documented that the expression of CD8/Foxp3 was
upregulated in cancer tissues of pCR cases, which implied that
activation of antitumor T cell responses was occurred in these
tumors (104). Tumor microenvironment characteristics analysis
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further revealed that higher level of stromal tumor infiltrating CD8+
T cells and B cells significantly correlated with pCR in NAC
(105–107). However, existing studies have focused on the
prognostic value of infiltrating of immune effector cells on
chemotherapy. Understanding how to maximize the therapeutic
potential of chemotherapy-induced immunomodulatory effects
remains an open question.
HAMPERING THE FUNCTIONS OF
IMMUNOSUPPRESSIVE CELLS

Treg Cells
Treg cells mainly function in preventing excessive immune
activation. Blocking or depleting Tregs is therefore a viable
therapeutic strategy to enhance antitumor immunity (108).
Studies have revealed that the depletion of Treg cells in immune
cell infiltrate was associated with a protective anticancer immunity.
This also meant that anticancer immunity switched from a silent
immune response to anactive immune response (109, 110).A study
showed that BC patients had more Treg cells than normal
individuals. Meanwhile, an increasing level of Treg cells and
lower ratio of Th/Tr cells were found in Stage IV BC patients
compared to stage I, II, or IIIBCpatients (111). Ithasbeendescribed
that the percentage of Treg cells was reduced after 6 chemotherapy
cycles among stage II/III BCpatients (100). Paclitaxelwas shown to
not only reduce CD4+Foxp3+ Tregs cells but hinder cytokine
production of Tregs (112). The weakening effect of
cyclophosphamide on Tregs cells was often observed at low dose
(99). Additionally, metronomic cyclophosphamide regimens also
led to a profound and effective Treg inhibition in metastatic BC
patients (99). Low Treg abundance was determined in TNBC but
not in ER-positive or Her2-negative subtype, especially for patients
with pCR after NAC, which indicated that Treg abundance might
serve as a predictive biomarker for evaluating their NAC
effectiveness in TNBC (113).

M2 Macrophages and MDSCs
Tumor-associated M2 macrophages (M2-TAMs) was proposed to
promote immune escape and limit the efficacy of immunotherapy.
TargetingM2-TAMs synergizeswith immune checkpoint blockade
has emerged as promising strategies for cancer treatment (114).
Docetaxel administration could induce a switch from M2-like
phenotype to M1-like phenotype in mammary tumor-bearing
mice (115). In another 4T1 BC lung metastasis mice model,
nanosystem-based co-delivering doxorubicin was also able to
modulate the polarization from M2 macrophages to antitumor
M1 macrophages (116). BC patients who fail to respond to
anthracycline-containing NAC were predominantly associated
with the presence of M2+ macrophage phenotype (117).

Myeloid-derived suppressor cells, a heterogenic population of
immature myeloid cells, were characterized by their
immunosuppressive effects. Cytotoxic agents against MDSCs
represent therefore an appealing therapeutic strategy for cancer
therapy but its underlying molecular mechanism remains obscure
(118, 119). So far,manycytotoxic chemotherapeuticswere shownto
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have excellent repression onMDSCs in BC (120). In mouse model
of BC, an inhibitory effect on MDSC of doxorubicin has been
demonstrated in the spleen, blood, and tumor tissues (95).
Furthermore, the treatment of doxorubicin could increase the
frequency of the effector lymphocytes or NK cells that effectively
reducedMDSCratios (95).The above studiesnot only suggested the
direct cytotoxic effect on cancer cells, but also highlighted the
immunomodulatory role of doxorubicin on MDSC. In another
animal models, downregulation of splenic CD44+, IL-17A+
MDSCs effect of cisplatin was revealed by single cell mass
cytometry in 4T1 metastatic BC model (121). Docetaxel, one
chemotherapeutic agent for treating anthracycline-refractory BC,
have been reported to suppress the level of MDSCs and stimulate
the CTL response in spleens of mice (115). Gemcitabine and
cyclophosphamide were also found to be capable of inhibiting the
accumulation of MDSCs (43). Beyond that, capecitabine depleted
MDSCsand relieved their inhibitory effects onTandNKcells (122).
A single arm, pilot study observed that levels of circulatingMDSCs
increased after doxorubicin and cyclophosphamide treatment but
decreased after paclitaxel treatment for BC patients with NAC
(123). Compared to patients with Non-pCR following NAC,
circulating MDSCs seemed to lower for complete or near pCR BC
patients (123). Additional studies have also demonstrated that BC
patients with a lower level of circulating MDSCs before treatment
preferred to achieve a higher probability of a pCR after the last cycle
of chemotherapy (124). However, it is a well‐recognized challenge
to determine the target against MDSCs owing to its multiface of
MDSCs and the complexity of tumor microenvironment. Besides,
considerable research efforts are focusing on the total MDSCs
populations in BC. Thus, the immunomodulatory effects of
chemotherapy on different MDSC subtypes remain to be explored.
Effects of Anticancer Agents on the
Immune Checkpoints
In the past, BC was thought to be a “cold” tumor with low
immunogenicity and mutation burden. However, studies in recent
years have identified high PD-L1 and tumor infiltrating
lymphocytes in TNBC and HER-2-positive breast cancers (125,
126). At the preclinical level, doxorubicin was shown to inhibit
tumor immunosuppression through down-regulating the
expression of immune checkpoints PD-1 and TIM-3 in the
tumor tissue (127). In a TNBC murine model, doxorubicin/
cyclophosphamide regimen was able to effectively inhibit tumor
growth, increase the survival benefit, promote infiltrating of CD8+
T cells and suppress the suppressor molecules PD-L1 expression
(128). With regard to PD-L1 expression changes in BC after
chemotherapy, a panel of six anti-cancer compounds were
experimentally found to induce PD-L1 expression in four BC
cell lines through a cellular stress response pathway (129). Study
by Samanta et al. demonstrated that doxorubicin, gemcitabine, or
paclitaxel induced HIF-dependent, transcriptional activation of
CD47, CD73, and PDL1 expression that imparted TNBC cells the
ability to evade the immune systems (130). Similar findings have
been reported that paclitaxel, etoposide and 5-fluorouracil could
induce PD-L1 expression in BC cells and up-regulated PD-L1
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promoted PD-L1-specific T cell apoptosis (97). After treating with
metronomic cyclophosphamide, BC patients exhibited a higher
expression PD-L1 in tumor cells; however, no obvious benefit was
observed for CTX regimens combined with concomitant PD-L1
antibody therapy (131). A case report described that level of CD8
and PD-L1 expression on immune cells were increased after
capecitabine and gemcitabine-carboplatin-iniparib therapy (132).
A clinical trial aimed to identify molecular alterations of immune
gene signatures following neoadjuvant chemotherapy of TNBC
and they found several immune checkpoints including IDO1, PD-
L1 and CTLA4 were upregulated in pre-treatment samples who
Frontiers in Immunology | www.frontiersin.org 891
achieved pCR (133). Collectively, the absence of unifying PD-L1
protocols makes it hard to draw a convincing conclusions from
these studies. Besides, PD-L1 levels are generally evaluated in
tissues prior to chemotherapy, which might not reflect the real
status of the tumor microenvironment after chemotherapy.
CONCLUSION

For many decades, cytotoxic chemotherapeutics are still the
cornerstone of BC treatment (134). However, encouraging
FIGURE 1 | Overview of the immunostimulatory properties of chemotherapy in breast cancer. On-target effects: When tumor cells are exposed to chemotherapeutic
drugs, TAA, TSA and DAMPs release by dying tumor cells are engulfed by immature DCs, which promotes APCs maturation. Archived antigen-bearing APCs then
migrate to the tumor-draining lymph node, where APCs cross-prime to T cells. Thereafter, antigen-specific T cells undergo clonal expansion, and at least some of
them differentiate into memory T cells. Activated T cells then recognize tumor cells and mediate cytotoxic killing of tumor cells. Off-target effects: Chemotherapeutic
drugs can activate immune effector cells including natural killer (NK) cells, dendritic cells (DCs), and cytotoxic T cells, and depletion of immunosuppressive cells
including Treg cells, M2 macrophages and (myeloid-derived suppressor cells) MDSCs. Red arrows indicate an increased effect and red flat ended lines represent an
inhibitory effect. The text boxes near the arrows list the chemotherapy agents that elicit immunomodulatory effects in BC.
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advancements in cancer immunotherapy have provided more
options for certain subtypes of BC (11, 135). Single
chemotherapeutics agents or single immuno-oncological therapy
cannot obtain ideal therapeutic effect for advanced BC (136). Thus,
combining immunotherapy with the currently-available therapies
has shown great promise. Current mini-review summarizes the
updated clinical trials on immunotherapy and chemotherapy
combinations in BC (Tables 1, 2) and provides an overview of
immune-stimulating properties of cytotoxic chemotherapy
(Figure 1). There remains large room for improvement of
synergistic effects of these two combined modalities, so
identifying prerequisites for designed immunotherapy
combination strategies are of special importance.

ICD is a specific type of cancer cell death characterized by
antigen-specific immune responses against the antigens of dying
cancer cells (137). Anthracycline and taxanes-containing
chemotherapy can promote immunostimulatory activity by
increasing the antigenicity or adjuvanticity of cancer cells (138).
The ICD effects mediated by chemotherapy have largely centered
on chemotherapy-induced alterations of DAMPs (50, 139).
Notably, through DAMPs mechanisms, chemotherapy stimulates
immune system to recruit DCs and activate the immune responses
specific for tumor-relevant antigens. Conversely, fewer studies have
looked at the effects of chemotherapeutic drugs on tumor cell
antigenicity. Future studies are required to elucidate the
molecular mechanism of DAMPs in ICD and provide specific
interventions targeting them to facilitate development of
chemoimmunotherapeutic regimens. In BC, numerous studies
have demonstrated that chemotherapeutic agents can act directly
on immune cell subsets to elicit antitumor immunity. Off-target
effects of chemotherapy on immune cell subsets mainly involve
activation of immune effector cells including NK cells, DCs, and
CTLs, and depletion of immunosuppressive cells including Treg
cells, M2 macrophages and MDSCs. However, the dynamic
alterations of effector immune cells in full course of adjuvant
chemotherapy remain unknown.

Cytotoxic chemotherapies may act as upfront measures that
are capable of converting “cold” BC tumors into “hot” lesions,
which may be successful clearance with ICIs. In the present
Frontiers in Immunology | www.frontiersin.org 992
review we have focused on the immunomodulatory effects of
chemotherapy in BC. In addition to chemotherapy, endocrine
therapy, targeted therapeutic agents and radiation have also been
demonstrated to have analogous immunoregulatory function for
BC, in particular for radiotherapy (140, 141). Thus, these
therapeutic options should also be suggested for combined
immunotherapy based on different intrinsic subtypes of BC.
The immunotherapy era provides additional selections for
clinicians in BC treatment, but at the same time, many
unanswered questions exist regarding combinations with
chemotherapy and immunotherapy. How to identify
prerequisites of combination treatment given patient’s immune
status and intrinsic characteristics. Limited information is
available on the impact of cytotoxic chemotherapy on immune
checkpoints pathways not confined only PD-L1, PD-1 or
CTLA4. Lastly, it should be noted that single-agent
chemotherapy can act on multiple steps of antitumor immune
response, and one chemotherapy regimen may also play two
opposite roles in different immune targets.

Therefore, when considering potential applications in clinic,
drug dose, timing of administration and appropriate population
would need to be carefully considered.
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121. Balog J, Hackler LJr., Kovács AK, Neuperger P, Alföldi R, Nagy LI, et al.
Single Cell Mass Cytometry Revealed the Immunomodulatory Effect of
Cisplatin Via Downregulation of Splenic CD44+, IL-17a+ MDSCs and
Promotion of Circulating IFN-g+ Myeloid Cells in the 4T1 Metastatic
Breast Cancer Model. Int J Mol Sci (2019) 21(1):170. doi: 10.3390/
ijms21010170

122. Asleh K, Brauer HA, Sullivan A, Lauttia S, Lindman H, Nielsen TO, et al.
Predictive Biomarkers for Adjuvant Capecitabine Benefit in Early-Stage
Triple-Negative Breast Cancer in the FinXX Clinical Trial. Clin Cancer Res
Off J Am Assoc Cancer Res (2020) 26(11):2603–14. doi: 10.1158/1078-
0432.ccr-19-1945

123. Wesolowski R, Duggan MC, Stiff A, Markowitz J, Trikha P, Levine KM, et al.
Circulating Myeloid-Derived Suppressor Cells Increase in Patients
Undergoing Neo-Adjuvant Chemotherapy for Breast Cancer. Cancer
Immunol Immunother CII (2017) 66(11):1437–47. doi: 10.1007/s00262-
017-2038-3

124. Montero AJ, Diaz-Montero CM, Deutsch YE, Hurley J, Koniaris LG,
Rumboldt T, et al. Phase 2 Study of Neoadjuvant Treatment With NOV-
002 in Combination With Doxorubicin and Cyclophosphamide Followed by
Docetaxel in Patients With HER-2 Negative Clinical Stage II-IIIc Breast
Frontiers in Immunology | www.frontiersin.org 1396
Cancer. Breast Cancer Res Treat (2012) 132(1):215–23. doi: 10.1007/s10549-
011-1889-0

125. Polk A, Svane IM, Andersson M, Nielsen D. Checkpoint Inhibitors in Breast
Cancer - Current Status. Cancer Treat Rev (2018) 63:122–34. doi: 10.1016/
j.ctrv.2017.12.008

126. Zhu Y, Zhu X, Tang C, Guan X, Zhang W. Progress and Challenges of
Immunotherapy in Triple-Negative Breast Cancer. Biochim Biophys Acta Rev
Cancer (2021) 1876(2):188593. doi: 10.1016/j.bbcan.2021.188593

127. Sadighi S, Sharifian R, Kazemimanesh M, Muhammadnejad A, Shahosseini
Z, Amanpour S, et al. Down-Regulation of Immune Checkpoints by
Doxorubicin and Carboplatin-Containing Neoadjuvant Regimens in a
Murine Breast Cancer Model. Iranian J Basic Med Sci (2021) 24(4):537–
44. doi: 10.22038/ijbms.2021.54383.12221
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The Potential Mechanism of
Cancer Patients Appearing More
Vulnerable to SARS-CoV-2 and
Poor Outcomes: A Pan-Cancer
Bioinformatics Analysis
Xinwei Huang*†, Huazheng Liang†, Hong Zhang†, Li Tian, Peilin Cong, Tingmei Wu,
Qian Zhang, Xiaofei Gao, Wanrong Li , Aiwen Chen, Yuxin Zhang, Qianyu Dong,
Hanxi Wan, Mengfan He, Danqing Dai , Zhen Li and Lize Xiong*

Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China

To explore the potential mechanism of cancer patients appearing more vulnerable to
SARS-CoV-2 infection and poor COVID-19 outcomes, we conducted an integrative
bioinformatics analysis for SARS-CoV-2-required genes and host genes and variants
related to SARS-CoV-2 susceptibility and COVID-19 severity. BLCA, HNSC, KIRC, KIRP,
LGG, PCPG, PRAD, TGCT, and THCA patients carrying rs10774671-A (OAS1) genotype
may be more likely to have poor COVID-19 outcomes relative to those who carry
rs10774671-G, because individuals carrying rs10774671-A will have lower expression
of OAS1, which serves as a protective factor against SARS-CoV-2 processes and poor
COVID-19 outcomes. SARS-CoV-2-required genes were correlated with TME, immune
infiltration, overall survival, and anti-cancer drug sensitivity. CHOL patients may have a
higher risk of SARS-CoV-2 infection than healthy subjects. SARS-CoV-2-induced ACE2
and NPC1 elevation may have a negative influence on the immune responses of LUSC
and CD8+T infiltration of LUAD, and negatively affect the sensitivity of anti-lung cancer
drugs. LUSC and LUAD patients may have a varying degree of adverse outcomes if they
are infected with SARS-CoV-2. miR-760 may target and inhibit ACE2 expression. Cancer
patients appearing vulnerable to SARS-CoV-2 infection and having poor COVID-19
outcomes may be partly due to host genetic factors and dysregulation of SARS-CoV-
2-required genes. OAS1, ACE2, and miR-760 could serve as the treatment and
intervention targets for SARS-CoV-2.

Keywords: COVID-19, cancer, rs10774671 (OAS1), SARS-CoV-2, ACE2
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INTRODUCTION

As of 24 August 2021, 2019 novel coronavirus (COVID-19),
which is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has infected more than 200
million patients, including 4.2 million deaths (https://covid19.
who.int/). Recently, some vital host genes required for SARS-
CoV-2 infection processes containing initial binding (ACE2),
endosomal entry (RAB7A, ACTR2/3, and ARPC3/4), spike
protein cleavage, and viral membrane fusion (CTSL,
TMPRSS2, TMEM199, ATP6AP1/2, ATP6V0B/C/D1, ATP6V1
Frontiers in Immunology | www.frontiersin.org 299
families, and TOR1AIP1), endosome recycling (PIK3C3,
WDR81, SNX27, VPS26A, VPS29, VPS35, COMMD2/3/4,
COMMD3-BMI1, and ACP5), ER-Golgi trafficking (PPID,
ERMP1, DPM3, and CHST14), and transcriptional modulators
(SPEN and SLTM) were identified by Daniloski et al. (1) and
Hoffmann et al. (2) using a genome-scale CRISPR loss-of-
function screen or protease inhibitor in human cell lines
(Figure 1A). By using single-cell transcriptomics, RNA
interference knockdown, and small-molecule inhibitors, the
loss of endosomal entry pathway genes ATP6AP1, ATP6V1A,
CCDC22, NPC1, PIK3C3, and RAB7A was validated to result in
A

B

FIGURE 1 | The roles of SARS-CoV-2-required genes in SARS-CoV-2 infection processes and influence of host genetic factor in COVID-19 outcomes. (A) The vital
host genes required for SARS-CoV-2 infection processes containing initial binding, endosomal entry, spike protein cleavage, and viral membrane fusion, endosome
recycling, ER-Golgi trafficking, and transcriptional modulators. (B) SARS-COV-2-infected patients with risk genotypes appear more vulnerable to SARS-COV-2
infection and poor outcome, while those carrying protective genotypes appear more vulnerable to lower SARS-COV-2 possibility and good outcome5-9. This figure is
drawn on the Biorender website at https://biorender.com/.
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increased cellular cholesterol, which can block SARS-CoV-2
infection (1–3). Severe acute respiratory syndrome coronavirus
(SARS-CoV) and SARS-CoV-2 share 79.5% homologous
sequences, and both viruses use similar host genes as receptors
to enter human body cells (2). Kong and colleagues (4) indicated
that normal lung and lung cancer cell lines infected with SARS-
CoV can elevate ACE2 expression, maintaining a high level of
expression at 1 and 2 days. Notably, several research teams have
demonstrated that SARS-COV-2-infected patients with risk
genotypes appear more vulnerable to SARS-COV-2 infection
and poor outcomes, while those who carry protective genotypes
appear more vulnerable to lower SARS-COV-2 possibility and
good outcomes (5–9), indicating host-specific genetic factors
play an important role in SARS-CoV-2 susceptibility and
COVID-19 outcomes (Figure 1B). These findings provide new
insights into the mechanisms of pathogenesis of SARS-CoV-2
susceptibility and poor outcomes.

Risk factors for severe events and deaths from SARS-CoV-2
infection include older age, smoking, and medical comorbidities,
which are common in cancer patients. Four studies analyzing
cancer patients with SARS-CoV-2 infection revealed that they
appear more vulnerable to SARS-CoV-2 and show more
deteriorating conditions and poor outcomes compared with
non-cancer patients (10–13). Bernard et al. (10) and Dai et al.
(11) indicated that patients with different cancer types (especially
lung cancer and hematological cancer) and late metastatic stage
have the highest frequency of severe events. The possible reasons
for this may be attributed to cancer-related immunosuppression,
known complications, and immunotherapy treatment (11, 13).
However, the exact mechanisms remain unclear. Given a large
number of cancer patients and the continuing spread of SARS-
CoV-2, exploring this molecular mechanism could contribute to
the treatment of cancer patients infected with SARS-CoV-2.

This study explores the potentialmechanism for cancer patients
appearing vulnerable to SARS-CoV-2 and poor outcomes via
integrative bioinformatics analyses for SARS-CoV-2-required
genes (ACE2, TMPRSS2, ATP6AP1, ATP6V1A, CCDC22,
NPC1, PIK3C3, and RAB7A), host genes, and variants related to
SARS-CoV-2 susceptibility and COVID-19 severity.
MATERIALS AND METHODS

Data Download and Processing
RNA-seq and clinical data of 33 cancer types, and pan-cancer
immune signature scores, stemness score, and stemness score
data were downloaded from The Cancer Genome Atlas (TCGA)
database via UCSC Xena (https://xena.ucsc.edu/). Drug
susceptibility data including DTP NCI-60 and RNA-seq were
obtained from the CellMiner database (https://discover.nci.nih.
gov/cellminer/). In addition, RNA-seq datasets (GSE163959 and
GSE147507) of human nasal turbinate, lung tissues, A549 cells,
and primary human bronchial epithelial cells (NHBEs) with or
without SARS-CoV-2 infection were downloaded from Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/).
Frontiers in Immunology | www.frontiersin.org 3100
Expression Analysis of SARS-CoV-2-
Required Genes and Host Susceptibility
Genes in Human Tissues and Cells After
SARS-CoV-2 Infection
Package edgeR was used to normalize GSE163959 and
GSE147507 raw count datasets. The t-test was utilized to
compare the expression of SARS-CoV-2-required genes
between control and SARS-CoV-2 infected samples. Package
pheatmap was utilized to show their expression status. The same
analysis was also performed for host-specific genes associated
with COVID-19 susceptibility and severity. P < 0.05 was
considered statistically significant.

Expression Quantitative Trait Locus
Analysis for Host Genes and Variants
Related to COVID-19 Susceptibility
and Severity
PancanQTL web platform was used to comprehensively evaluate
the effect of variants related to COVID-19 susceptibility and
severity on local gene expression (cis-eQTLs) in 33 cancer types.
This platform included the expression and genotype data of
9,196 tumor samples and 5,606,570 cis-eQTL-gene pairs in 33
cancer types from TCGA (14). We then assessed the expression
status of host genes related to COVID-19 severity in multiple
organs and tumor tissues via The Human Protein Atlas database
(https://www.proteinatlas.org/).

Evaluating Expression Profiles of
SARS-CoV-2-Required Genes Across
Human Tissues
To identify the expression profiles of eight SARS-CoV-2-
required genes across human tissues, we examined their
expression across 21 tissue types using 4,790 RNA-seq datasets
from the Genotype-Tissue Expression (GTEx) v8 database
(https://www.gtexportal.org/home/datasets).

Differential Expression Analysis for
SARS-CoV-2-Required Genes Across
33 Cancer Types
Differential expression analysis for SARS-CoV-2-required genes
was performed across 33 cancer types by wilcox.test function. R
package pheatmap was used to visualize their differential
expression status between cancer samples and non-cancer
samples. P < 0.05 was considered statistically significant.

Identification of SARS-CoV-2-Required
Genes Associated With the Stage and
Prognosis of Cancer Patient
Differential expression analysis between SARS-CoV-2-required
genes and stage types in pan-cancers was performed using Gene
Set Cancer Analysis (GSCA) database (http://bioinfo.life.hust.
edu.cn/GSCA/#/expression) (15) and GEPIA 2 database (http://
gepia2.cancer-pku.cn/#index) (16). Moreover, we used R
packages survival, survminer, and reshape2 to explore the
association between the expression of SARS-CoV-2-required
January 2022 | Volume 12 | Article 804387
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genes and the prognosis of cancer patients. Firstly, based on the
survival data, Kaplan–Meier curve was utilized to analyze the
overall survival according to the high and low expression values
of the gene. We then conducted the univariate Cox regression
analysis for the relationship between the overall survival and
expressions of SARS-CoV-2-required genes. P < 0.05 was
considered statistically significant.

Tumor Microenvironment Analysis
Kruskal.test and R packages ggplot2, limma, and reshape2 were
used to test the association between immune subtypes and the
expressions of these genes according to the immune landscape of
cancers (17). The correlation between SARS-CoV-2-required
gene expression and tumor microenvironment (TME) was
analyzed with Spearman correlation and R packages estimate,
limma, and corrplot, according to the ESTIMATE immune,
stromal, and estimate scores, which can analyze the infiltration
levels of both stromal and immune cells in cancers (18).
Furthermore, cancer stem cell-like properties of each patient
were obtained from stemness scores based on transcriptomic
mRNA (RNAss) and epigenetic DNAmethylation (DNAss). The
association of stemness scores with SARS-CoV-2-required genes
was assessed by spearman analysis.

Immune Infiltration Analysis
GSCA database (15) was used to conduct immune infiltration
analysis for SARS-CoV-2-required genes. Additionally,
differential expression analysis for interested immune cell types
between tumor and adjacent normal tissues was performed in the
ImmuCellAI database (http://bioinfo.life.hust.edu.cn/
ImmuCellAI/#!/resource) using wilcoxon test (19). Survival
analysis was conducted to compare survival curves between
high and low immune cell abundance in one cancer by
multivariable Cox proportional hazard model. Covariates
contained immune cell infiltration and clinical factors (tumor
stages, age, and gender). P value of the log-rank test as shown in
each plot was used to compare the survival curves of the two
groups. Kaplan-Meier plot for immune cell infiltration was
drawn to visualize the survival difference.
Assessment of Association Between
SARS-CoV-2-Required/Susceptibility
Genes and Cancer-Related Genes
To explore the association between key SARS-CoV-2-required/
susceptibility genes and estimate their influence in cancer-related
genes affecting the prognosis of cancers, we performed a survival
analysis for SARS-CoV-2-required/susceptibility genes in lung
cancer via the GEPIA2 database. Based on TCGA lung cancer
tissues, we evaluated their correlation using spearman
correlation analysis. In addition, we performed a differentially
expressed gene analysis between lung cancer tissues and normal
tissues via the limma package of R soft. |log2 (fold change)| > 2
and P value < 0.05 after being adjusted by false discovery rate
were applied as the cutoff for differential gene expression
screening. We then assessed their correlation with the
prognosis of lung cancer by the GSCA database.
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Drug Sensitivity Analysis
To identify the relationship between drug sensitivity and SARS-
CoV-2-required genes, we evaluated the correlation between the
expression of each SARS-CoV-2-required gene and z-score for
cell sensitivity data (GI50) by spearman correlation analysis
based on DTP NCI-60 and RNA-seq data obtained from the
CellMiner database (20). In addition, a similar analysis was also
performed via the GSCA database based on Genomics of Drug
Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response
Portal (CTRP). |Cor| > 0.20 and P < 0.01 were considered as
statistically significant.

Prediction and Analysis of Upstream
MicroRNAs of SARS-CoV-2-Required
Genes
Upstream binding microRNAs of SARS-CoV-2-required genes
were predicted based on seven prediction programs, containing
RNA22, miRmap, PicTar, microT, PITA, miRanda, and
TargetScan in starBase 3.0 database (http://starbase.sysu.edu.
cn/), which mainly focus on miRNA-target interactions (21).
The predicted microRNAs were obtained according to their
appearance in one or more programs. StarBase 3.0 then was
used to analyze the correlation of SARS-CoV-2-required genes
with microRNAs, and assess the expression status of microRNAs
in pan-cancer and normal control tissues. Additionally, survival
analysis of microRNAs was also performed.

Statistical Analysis
All statistical analyses were based on R soft version 4.10 and
attached packages. Wilcox test was utilized to determine
differentially expressed SARS-CoV-2-required genes between
normal and tumor samples. Spearman correlation analysis was
utilized to assess the correlation between two variables. Log-rank
tests and Kaplan-Meier curves were utilized to evaluate the
relationship between gene expression and overall survival. P <
0.05 was considered statistically significant.
RESULTS

OAS1 May Serve as a Protective Factor
Against SARS-CoV-2 Infection and Poor
COVID-19 Outcomes
COVID-19 severity-related genes (SLC6A20, LZTFL1, FOXP4,
TMEM65, ABO, OAS1, TAC4, DPP9, TYK2, ZBTB11,
IL10RB, KANSL1, PLEKHA4, and IFNAR2) and single
nucleotide polymorphisms (SNPs) identified by genome wide
association studies were summarized in Table S1 (5–9). To
explore the role of genes related to COVID-19 severity in the
process of SARS-CoV-2, we performed a differential
expression analysis for these genes in human nasal turbinate,
lung tissues, A549 cells (non-small cell lung cancer), and
normal human bronchial epithelial cells (NHBEs) with/
without SARS-CoV-2 infection. As shown in Figures 2A–D
and Table S2, OAS1 and PLEKHA4 expressions were
significantly elevated in turbinate, lung tissues, and NHBEs
January 2022 | Volume 12 | Article 804387
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infected with SARS-CoV-2 compared to the control cells. In
up to 14,134 cases and 1.2 million controls, Zhou et al. found
that higher plasma OAS1 protein level is related to reduced
susceptibility (OR = 0.78, P = 8 × 10-6), hospitalization
(OR = 0.61 , P = 8 × 10-8) , and COVID-19 death or
ventilation (OR = 0.54, P = 7 × 10-8) (9). We further explored
whether OAS1 is specifically or widely expressed in organs and
Frontiers in Immunology | www.frontiersin.org 5102
tumor tissues via The Human Protein Atlas (HPA) database
(https://www.proteinatlas.org/). We found that OAS1 was
broadly expressed in different human organs and tumor
tissues, with low organ and cancer specificity (Figures 2E,
F). These findings suggest that OAS1 may serve as a protective
factor against SARS-CoV-2 progress and poor COVID-19
outcomes in the wide organs and tissues.
A B
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FIGURE 2 | The role of genetic factors in SARS-CoV-2 susceptibility and COVID-19 outcomes. (A–D) The response of host genes related to SARS-CoV-2
susceptibility and COVID-19 outcomes in human tissues and cells infected with SARS-CoV-2. (E, F) Expression status of OAS1 in human organs and tumor tissues.
This analysis was performed in The Human Protein Atlas (HPA) database (https://www.proteinatlas.org/). (G) The association of rs10774671-A (OAS1) with OAS1
expression in BLCA, HNSC, KIRC, KIRP, LGG, PCPG, PRAD, TGCT, and THCA tissues.
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Cancer Patients Carrying rs10774671-A
(OAS1) Genotype May Appear Vulnerable
to Poor COVID-19 Outcomes
COVID-19 severity-related SNPs were summarized in Table S1.
Rs2271616-T (SLC6A20), rs10490770-C, rs11385942-GA
(LZTFL1), rs1886814-C (FOXP4), rs72711165-C (TMEM65),
rs505922-C (ABO), rs10774671-A (OAS1), rs77534576-T
(TAC4), rs2109069-A (DPP9), and rs74956615-A (TYK2) was
reported to increase the risk of SARS-CoV-2 susceptibility and
poor COVID-19 outcomes such as crit ical i l lness ,
hospitalization, and respiratory failure, while rs11919389-C
(ZBTB11), rs912805253-T (ABO), rs2834167-G (IL10RB),
rs4767027-C (OAS1), rs1819040-A (KANSL1), rs4801778-T
(PLEKHA4), and rs13050728-C (IFNAR2) decrease these risks
(5–9). To further explore the effect of these genotypes on
expressions of potential key genes, we performed an expression
quantitative trait locus (cis-eQTL) analysis for these variants in
33 cancer types. As summarized in Table S3, rs4801778-T
(PLEKHA4) was positively associated with TULP2 expression
in LUAD (b = 0.26, P= 9.57E-05), while negatively associated
with HSD17B14 expression in PAAD and PRAD (-0.37 < b <
-0.36, 1.20E-08 < P < 8.36E-06). Rs11919389-C (ZBTB11)
showed a positive relationship with LOC285359 and
LOC100009676 expressions in GBM, LGG, PRAD, TGCT, or
THCA (0.20 < b < 0.42, 3.78E-26 < P < 3.04E-05) and had a
negative relationship with ZBTB11 and SENP7 expressions in
LGG or OV (-0.24 < b < -0.14, 7.65E-05 < P < 9.95E-05).
Rs13050728-C (IFNAR2) was positively linked to IFNAR2
expression in BRCA, LGG, and THCA (0.13 < b < 0.19, 5.58E-
10 < P < 7.34E-05) and negatively associated with IL10RB
expression in LGG (b = -0.16, P = 1.97E-06). In particular,
rs10774671-A (OAS1) was positively related to OAS3 expression
in LUSC (b = 0.20, P = 9.61E-05) and showed a consistent
negative association with OAS1 expression in BLCA, HNSC,
KIRC, KIRP, LGG, PCPG, PRAD, TGCT, and THCA (-0.57 <
b < -0.23, 1.79E-22 < P < 2.39E-06) (Figure 2G). The above
findings indicate that BLCA, HNSC, KIRC, KIRP, LGG, PCPG,
PRAD, TGCT, and THCA patients carrying rs10774671-A
(OAS1) genotype may be more likely to have poor COVID-19
outcomes relative to those carrying rs10774671-G because
individuals carrying rs10774671-A will have lower expression
of OAS1, which serves as a protective factor against SARS-CoV-2
infection and poor COVID-19 outcomes.

SARS-CoV-2 Affects Expression Levels of
SARS-CoV-2-Required Genes
Kong and colleagues found that SARS-CoV can obviously
increase ACE2 and TMPRSS2 expression levels in Calu-3 cells
during 24-48 hours compared with that at 12 hours (4),
indicating this kind of virus may elevate the expression of
SARS-CoV-2-required genes in human tissues or cells. To
explore the influence of SARS-CoV-2 infection in SARS-CoV-
2-required genes, we performed a differential expression analysis
for eight SARS-CoV-2-required genes in human nasal turbinates
and lung tissues, A549 cells, and NHBEs with/without SARS-
CoV-2 infection. We found that ACE2 is significantly elevated in
Frontiers in Immunology | www.frontiersin.org 6103
human nasal turbinate infected with SARS-CoV-2 compared
with mock infected turbinate (P = 0.002). Furthermore, the
expressions of ATP6AP1, NPC1, and PIK3C3 in A549 cells
were significantly influenced by SARS-CoV-2 infection
compared with the control group. In addition, NHBEs infected
with SARS-CoV-2 also showed an obviously increased
expression of ACE2, TMPRSS2, NPC1, and RAB7A compared
to that in control NHBEs (P < 0.06) (Figures 3A–D). These
results indicate that SARS-CoV-2 can affect the expression levels
of SARS-CoV-2-required genes in human normal tissues or cells
and lung tumor cells.

Identification of SARS-CoV-2-Required
Gene Expression in Human Tissues
SARS-CoV-2 was reported to invade various tissues such as the
lung, nerve, adrenal, esophagus, thymus, pancreas, breast, skin
cervix, and lymph node (22), with different susceptibility across
these tissues (22, 23). In this study, we analyzed the expression
profiles of SARS-CoV-2-required genes in normal tissue types
and explored whether this might influence the susceptibility of
the corresponding tissue tumor to SARS-CoV-2. Using 4,790
RNA-seq datasets from the Genotype-Tissue Expression (GTEx)
v8 database, we evaluated their expression across 21 tissue types.
We found that ACE2 and TMPRSS2 had an obvious expression
difference between human tissues. ACE2 exhibited the high
expression level in the testis, small intestine, and thyroid (6.33
< average TPM < 46.53), a secondary level in the pancreas, lung,
ovary, fallopian tube, breast, vagina, and minor salivary gland
(1 < average TPM < 2.38), and the low level in blood, muscle,
spleen, nerve, prostate, bladder, live, uterus, pituitary, and
adrenal gland (0.019 < average TPM < 0.70). TMPRSS2
exhibited a high expression level in the prostate, stomach, lung,
thyroid, small intestine, pancreas, liver, and minor salivary gland
(12.72 < average TPM < 178.1), the secondary level in vagina,
breast, fallopian tube, pituitary, and bladder (1.37 < average
TPM < 6.73), and a low level in other tissues. The other six
SARS-CoV-2-required genes especially ATP6AP1 and RAB7A
showed a broad expression in all tissues (2.18 < average TPM <
312.3) (Figure 3E). These findings mean that the thyroid, small
intestine, testis, and lung may show a higher SARS-CoV-2
infection risk relative to other tissues because both ACE2 and
TMPRSS2 expression were higher.

To further explore whether different cancer types had
different SARS-CoV-2 infection risks, we evaluated specific
expression profiles of SARS-CoV-2-required genes in the
tumor tissues. We observed that ACE2 and TMPRSS2 had a
lower expression level across all cancer types, compared to other
SARS-CoV-2-required genes (Figure 3F). Similar to the normal
organ tissues, the corresponding tumor tissues also showed an
obvious expression difference for both ACE2 and TMPRSS2, of
which BLCA, CECS, CHOL, COAD, ESCA, KIRP, LUAD,
LUSC, PAAD, READ, STAD, THCA, and UCEC had the
higher expressions of ACE2 and TMPRSS2 compared with
other tumor tissue types (Figure 3G). These results indicate
that the above cancer types might have a higher SARS-CoV-2
infection risk.
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Identification of SARS-CoV-2-Required
Gene Expression in Pan-Cancers
To evaluate whether cancer patients appear more vulnerable to
SARS-CoV-2 relative to healthy individuals, we performed a
differential expression analysis for SARS-CoV-2-required genes
across 18 cancer types that had more than 5 normal samples. We
Frontiers in Immunology | www.frontiersin.org 7104
found that these genes showed different expression levels
between 18 types of tumor tissues and corresponding control
tissues. ACE2 exhibited a significantly higher level in GBM,
KIRP, LUAD, and UCEC, as well as an obviously lower level in
BRCA, KICH, LIHC, PRAD, and THCA, compared with that in
normal tissues (P < 0.05) (Figure 4A and Table S4). Notably,
A B

C D

E

G

F

FIGURE 3 | The response of SARS-CoV-2-required genes in human cells and tissues infected with SARS-CoV-2 and their expression status in human tissues and
corresponding tumor tissues. The expression profiles of eight SARS-CoV-2-required genes in human nasal turbinate (A) and lung tissues (B), A549 cells (C), and
primary human bronchial epithelial cells (NHBEs) (D) with/without SARS-CoV-2 infection. (E) Expression profiles of SARS-CoV-2-required genes in 21 human tissues.
(F) Mean expression value of SARS-CoV-2-required genes in cancers. (G) Expression profiles of SARS-CoV-2-required genes across 33 cancer types.
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75% of SARS-CoV-2-required genes including RAB7A, PIK3C3,
ATP6AP1, ATP6V1A, CCDC22, and NPC1 showed a
consistently significant upregulation in CHOL relative to
normal tissues (1.09E-06 < P < 0.0001). In addition, ACE2 and
TMPRSS2 appeared to be upregulated in CHOL compared to
normal tissues (P > 0.05), indicating a possibly high risk of SARS-
CoV-2 infection for CHOL (Figures 4A, B). Furthermore, 62.5%
of SARS-CoV-2-required genes containing ACE2, TMPRSS2,
ATP6AP1, ATP6V1A, and CCDC22 exhibited a significant
upregulation in UCEC relative to normal tissue, while only
PIK3C3 showed an obvious downregulation in this cancer.

SARS-CoV-2-Required Gene Expressions
Affect Pan-Cancer Stage and Prognosis
To explore the role of SARS-CoV-2-required genes in pan-
cancer prognosis, we performed the survival and univariate
Cox proportional hazards regression analyses for these genes
Frontiers in Immunology | www.frontiersin.org 8105
in all cancer types. Survival analysis indicated that ACE2
expression showed a good overall survival in KIRC, OV, and
MESO. ATP6AP1 and ATP6V1A showed a positive association
with good survival in PAAD and KIRC, respectively. The high
CCDC22 or NPC1 expressions had a positive relationship with
the poor survival in LIHC or MESO. RAB7A expression showed
a poor prognosis in LIHC, UCEC, and PAAD, while exhibited a
good prognosis in UVM (P < 0.01) (Table S5). Notably,
univariate Cox proportional hazards regression analysis
suggested that only CCDC22, RAB7A, ATP6V1A, and
ATP6AP1 expressions were significantly associated with the
overall survival of LAML and showed a high risk for poor
prognosis. Moreover, our results also suggested that only
NPC1, RAB7A, CCDC22, ATP6V1A, and ATP6AP1
expressions were obviously correlated with overall survival of
LIHC and had a high risk for poor prognosis (HR >1, 6.78E-05 <
P < 0.08) (Figure S1A and Table S5). While, only ACE2,
A B

FIGURE 4 | Identification of differentially expressed SARS-CoV-2-required genes between cancer and control samples. (A) The expression of SARS-CoV-2-required
genes between cancer and control samples. *P < 0.05, **P < 0.01, ***P < 0.001. (B) Heatmap of log2 (fold change) for SARS-CoV-2-required genes between cancer
and control samples. Blue represents downregulation, Red presents upregulation.
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PIK3C3, ATP6V1A, and ATP6AP1 expressions were obviously
linked to the overall survival of KIRC and showed a low risk for
poor prognosis (HR <1, 3.26E-09 < P < 0.009). These findings
suggest a possibility that patients with LAML or LIHC infected
after SARS-CoV-2 may have a poor prognosis.

Dai et al. (24) observed that patients with metastatic cancer
(Stage IV) had a higher risk of death, ICU admission, and severe
conditions, compared with no cancers or cancers without
metastasis. In this study, we assessed the expression status of
SARS-CoV-2-required genes in the different stage types of pan-
cancers andpredicted the potential risk of SARS-CoV-2 infectionof
cancer patients with high or low stage type. In the GSCA database,
we found that multiple SARS-CoV-2-required genes were
downregulated in the high stage type (Stage III or IV) of KIRC
comparedwith low stage type (Stage I or II) (Figure S1B andTable
S6). We then confirmed the results in GEPIA 2 database, and
observed that ACE2, TMPRSS2, RAB7A, ATP6AP1, ATP6V1A,
andPIK3C3were significantlydownregulated inhigh stageofKIRC
comparedwith low stage (3.68 <F value< 10.4; 1.21E-06<Pr (>F) <
0.012). NPC1 and CCDC22 also showed a decreased tendency in
the high stage relative to the low stage. Thismeans that patientswith
a low stage of KIRCmay have a higher SARS-CoV-2 infection risk
than those with a high stage.

SARS-CoV-2-Required Gene Expressions
Are Related to Immune Response and the
Tumor Microenvironment in Pan-Cancers
The TME comprised of stromal cells, immune cells, fibroblasts,
blood vessels, endothelial cell precursors, etc., plays an important
role in the initiation and maintenance of tumorigenesis (25) and
affects the resistance to chemotherapy and radiotherapy,
metastasis, and recurrence of cancer patients (26). To
understand the association of SARS-CoV-2-required gene with
TME in pan-cancers, we performed a spearman correlation
analysis according to the ESTIMATE immune, stromal, and
estimate scores. RAB7A, PIK3C3, ATP6AP1, ATP6V1A, and
NPC1 expressions were found to show a consistently positive
relationship with immune, stromal, and estimate scores in DLBC.
Similarly, RAB7A, ATP6V1A, CCDC22, and NPC1 expressions
had a consistently positive association with immune, stromal, and
estimate scores in LAML. While TMPRSS2, PIK3C3, ATP6AP1,
and ATP6V1A expressions exhibited a consistently negative
relationship with immune, stromal, and estimate scores in KICH
(Figure S2A and Table S7). Moreover, we further explored their
roles in modulating cancer stem cells by measuring RNAss and
DNAss. As shown in Figure S2B and Table S7, SARS-CoV-2-
required genes might be linked to cancer stem cells purity in
cancers, especially DLBC, TGCT, and THYM. Overall, these
findings indicate that these genes could involve TME. The high
expression levels of RAB7A, PIK3C3, ATP6AP1, ATP6V1A,
CCDC22, and NPC1 were significantly associated with lower
tumor purity of patients with hematologic cancer LAML, while
TMPRSS2, PIK3C3, ATP6AP1, and ATP6V1A expressions were
obviously correlated with higher tumor purity of KICH patients.

Immune subtypes, containing wound healing (C1), INF-
gamma dominant (C2), inflammatory (C3), lymphocyte
Frontiers in Immunology | www.frontiersin.org 9106
depleted (C4), immunologically quiet (C5), and TGF-b
dominant (C6) are closely linked to overall survival and
progression-free interval of cancer patients. For cancer
patients, the C3 immune subtype shows the best prognosis,
while C2 and C1 exhibit poor outcomes. Patients with the C4
or C6 immune subtypes have the least favorable outcome (17).
We then explored the correlation of SARS-CoV-2-required genes
with immune response. All SARS-CoV-2-required genes were
found to be involved in six immune infiltration types in human
tumors (P < 0.001) (Figure S2C). Moreover, in LUSC, high
ACE2 and NPC1 expressions were found to be associated with
decreased C3 immune infiltration and correlated with increased
C1, C2, and C6 immune infiltration (Figure S2D). In contrast,
upregulation of RAB7A, ATP6V1A, and PIK3C3 was linked to
the increased C3 and the decreased C4 in KICH (Figure S2E).
These findings indicate that by affecting immune subtypes, ACE2
and NPC1 expressions may associate with a less favorable
outcome in LUSC, and RAB7A, ATP6V1A, and PIK3C3
expressions might link to a favorable outcome in KICH.

SARS-CoV-2-Required Gene Expressions
Correlate With Immune Cell Infiltration in
Pan-Cancers
Immune cell infiltration, including T cell (CD3+/CD8+/CD4+T,
memory/effector T cell, and regulatory T cell), T helper 1 (TH1)
cell, T helper 17 (TH17) cell, T helper 2 (TH2) cell, natural killer
(NK) cell, plays a crucial role in inhibiting tumor cells or
providing supports for tumor growth, and associates with a
prognosis of 17 human cancers (24, 27–29). We utilized the
ImmuCellAI database to perform a differential level analysis for
immune cell infiltration between tumor and adjacent normal
tissues and conducted a comprehensive analysis for the
prognostic value of the major immune cell types across pan-
cancers. We observed a broadly different abundance of immune
cell types between tumor and adjacent tissues in 17 cancers. As
shown in Figure 5A, nTreg, iTreg, Tr1, and Th1 were obviously
enriched in the nidus of most cancer types. Conversely, several
antitumor cells containing NKT, Th2, and Th17 exhibited a
lower infiltration in most tumor types than the corresponding
adjacent tissues. Especially, most immune cell types such as
nTreg, iTreg, Tr1, CD8 naive, Th1, Exhausted, CD8+T,
Cytotoxic, GammaDelta, MAIT, Tfh, NKT, CD4+T, Th2, and
Th17 were enriched in the nidus or adjacent tissues of LUAD and
LUSC. In addition, we found that CD8+T, GammaDelta, and Tfh
were correlated with favorable prognoses in most cancers
analyzed. Conversely, nTreg, NKT, and TH17 were indicative
of poor prognosis, which is consistent with another previous
report (24). Notably, CD8+T showed a strong correlation with
the good prognosis of LUAD patients (Figure 5B). Moreover,
eight SARS-CoV-2-required genes had a positive or negative
association with the abundance of most immune cell types in
different cancer types (FDR < 0.01) (Table S8), among which, the
expressions of ACE2 and NPC1 were negatively associated with
the abundance of CD8+T (Table S8). These results suggest a
relationship between SARS-CoV-2-required genes and immune
cell infiltration and prognosis in pan-cancers. SARS-CoV-2-
January 2022 | Volume 12 | Article 804387
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induced ACE2 and NPC1 elevation may have a negative
influence in CD8+T of LUAD patients, which may result in a
poor prognosis.

SARS-CoV-2-Required Genes Affect
Anti-Cancer Drug Sensitivity
Anti-cancer drug resistance is implicated in the therapeutic effect
and prognosis of cancer patients. In this study, we evaluated the
influence of SARS-CoV-2-required genes in anti-cancer drug
sensitivity. As summarized in Table S9, SARS-CoV-2-required
genes showed a broad influence on anti-cancer drug sensitivity.
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ACE2, RAB7A, PIK3C3, ATP6AP1, NPC1, and ATP6V1A had a
negative association with the sensitivity of 16 anti-cancer drugs
(P < 0.05). Especially, ACE2 expression was significantly
associated with the decreased sensitivity of Pazopanib
(advanced renal cell cancer and soft tissue sarcoma). NPC1
expression showed an obviously negative relationship with the
sensitivity of Dexrazoxane (a cardioprotective agent against the
cardiotoxic side effects of chemotherapeutic drugs), Oxaliplatin
(carcinoma of the colon or rectum), Ifosfamide (testicular,
ovarian, cervical, and bladder cancers, osteocarcinoma, small
cell lung cancer, and non-Hodgkin’s lymphoma), Elesclomol
A
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FIGURE 5 | Immune cell infiltration involved in the prognosis of cancer patients and SARS-CoV-2-required genes associated with drug sensitivity. (A) The
abundance of immune cell types between tumor and adjacent tissue in 17 cancers. (B) The relationship between immune cell types and the prognosis of cancer
patients. (C) The relationship between drug sensitivity and SARS-CoV-2-required genes. (D) The positive relationship between drug sensitivity and SARS-CoV-2-
required genes. *P < 0.05, **P < 0.01, ***P < 0.001.
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(metastatic melanoma), Paclitaxel (Kaposi’s sarcoma and cancer
of the lung, ovarian, and breast), and Vinorelbine (metastatic
non-small cell lung carcinoma) (P < 0.01) (Figure 5C),
suggesting that the upregulation of ACE2 and NPC1 may
reduce the curative effect of these drugs. ACE2, RAB7A,
CCDC22, ATP6AP1, NPC1, and PIK3C3 exhibited a positive
relationship with sensitivity of 18 anti-cancer drugs (P <
0.01) (Figure 5D).

Correlation Between OAS1, ACE2,
TMPRSS2, and Lung Cancer-Related
Genes and Their Influence on the
Prognosis of Lung Cancer
In this study, we found that several SARS-CoV-2-related genes
may affect the prognosis of lung cancer patients. To further
explore the potential mechanism of these genes on the prognosis
of lung cancer, we performed a correlation and survival analysis
for SARS-CoV-2-related genes and lung cancer-related genes in
lung cancer. We found that OAS1, ACE2, TMPRSS2 were
Frontiers in Immunology | www.frontiersin.org 11108
associated with overall survival of lung cancer (Figure 6A).
High OAS1 was associated with the poor overall survival of
LUAD, while high TMPRSS2 expression showed a good overall
survival in LUAD. ACE2 expression had a positive association
with overall survival of LUSC (Figure 6B). Correlation analysis
indicated that OAS1 expression had a negative correlation with
TMPRSS2 expression in LUAD. ACE2 expression showed a
positive association with TMPRSS2 expression in LUAD.
OAS1 expression exhibited no relationship with ACE2
expression in LUAD. For LUSC, there was a positive
association between OAS1, TMPRSS2, and ACE2 expressions
(Figure 6C). Differential gene expression analysis identified 268
downregulated and 69 upregulated differentially expressed genes
(DEGs) in LUAD as well as 561 downregulated and 296
upregulated DEGs in LUSC. Among these DEGs, 35
upregulated and 236 downregulated genes showed a consistent
association with both LUAD and LUSC (Table S10). We then
estimated the association of 271 DEGs with OAS1, TMPRSS2,
and ACE2 expressions in LUAD and LUSC. We found that
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FIGURE 6 | Correlation between OAS1, ACE2, and TMPRSS2, and effect of lung cancer-related genes in the prognosis of lung cancer. (A, B) Survival analysis for
SARS-CoV-2-required/susceptibility genes in LUAD and LUSC. (C) Correlation between OAS1, ACE2, and TMPRSS2. (D) Association of lung cancer-related genes
with the prognosis of LUAD. (E) Association of lung cancer-related genes with the prognosis of LUSC. *P < 0.05; **P < 0.01; #0.05 < P < 0.1.
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ACE2 expression had a positive correlation with GPX2
expression and a negative correlation with SLC2A1 expression
in both LUAD and LUSC. OAS1 expression was positively
related to C1QB expression in both LUAD and LUSC.
TMPRSS2 expression was negatively associated with 13 lung
cancer-related genes and showed a positive correlation with 130
lung cancer-related genes (Table S11). Finally, we carried out a
survival analysis for the above 146 lung cancer-related genes in
LUAD and LUSC. The results showed that 64 lung cancer-
related genes were linked to overall survival of LUAD patients,
and 26 lung cancer-related genes were correlated with overall
survival of LUSC patients. Among these genes, high SLC2A1
expression was associated with the poor overall survival of
LUAD patients, but not in LUSC. Notably, FLRT3, CYP4B1,
CHRDL1, SFTPC, SFTPB, and AGER, which had a positive
correlation with TMPRSS2, were significantly downregulated in
LUAD and LUSC. LUAD and LUSC patients with high FLRT3
expression had poor overall survival. CYP4B1, CHRDL1, SFTPC,
SFTPB, and AGER expressions were linked to the good overall
survival in LUAD patients (Figures 6D, E, and Table S11),
whereas the opposite was true in patients with LUSC, indicating
that these genes may have different effects on prognosis of LUAD
and LUSC.
Upstream Regulators of SARS-CoV-2-
Required Genes
Non-coding RNA is widely acknowledged to regulate the
expression of target genes. To identify the upstream regulators
of SARS-CoV-2-required genes and explore the potential
treatment and intervention targets for SARS-CoV-2, we used
the starBase database to predict microRNAs targeting SARS-
CoV-2-required genes. As summarized in Table S12, one
hundred and forty-six microRNAs were found to be upstream
regulators of SARS-CoV-2-required genes. In this study, we
focused on the ACE2 and its upstream microRNAs. Total 12
microRNAs containing miR-29a-3p, miR-29b-3p, miR-143-3p,
miR-149-5p, miR-29c-3p, miR-432-5p, miR-599, miR-653-5p,
miR-760, miR-942-5p, miR-1251-5p, and miR-212-5p were
predicted to target ACE2 and showed a significantly negative
or positive correlation with ACE2 expression in 30 cancer types
(-0.42 < Cor < 0.46; P < 0.05) (Figure 7A). These microRNAs
also exhibited significantly differential expression between 17
types of cancer samples and the corresponding control samples
(Figure 7B) and had a different effect on the prognosis of 25
cancer types (Figure 7C). In particular, miR-760, targeted ACE2,
had a negative relationship with ACE2 expression (Cor = -0.24;
P = 4.55E-06) (Figure 7D), and was markedly upregulated in
LIHC (FDR= 0.007) (Figure 7E). Its upregulation was positively
linked to the poor prognosis of LIHC patients (HR=1.78; P =
0.0015) (Figure 7F). Conversely, ACE2 was downregulated in
LIHC (FDR = 0.0038) (Figure 7G), and its upregulation showed
a positive association with the favorable prognosis of LIHC
patients (HR = 0.65; P = 0.017) (Figure 7H). These findings
indicate that microRNAs could be the potential regulator of
SARS-CoV-2-required genes. Notably, miR-760 may have the
Frontiers in Immunology | www.frontiersin.org 12109
potential to serve as a treatment and intervention target for
SARS-CoV-2 because of its inhibitory effect on ACE2.
DISCUSSION

Four epidemiological investigations revealed that cancer patients
appear more vulnerable to SARS-CoV-2 and show poor
outcomes compared with non-cancer patients (10–13).
Moreover, several research teams have demonstrated that host-
specific genetic factors play an important role in SARS-CoV-2
susceptibility and COVID-19 outcomes (5–9). In this study, we
aimed to explore whether SARS-CoV-2-required genes and host
genes and variants play a critical role in the SARS-CoV-2
susceptibility of cancer patients and poor COVID-19 outcomes
of cancer patients infected with SARS-CoV-2.

Firstly, we evaluated the response of 14 host genes related to
SARS-CoV-2 susceptibility and COVID-19 outcomes in multiple
cell types of the respiratory system after SARS-CoV-2 infection.
We found that SARS-CoV-2 can significantly elevate OAS1 and
PLEKHA4 expressions in turbinate, lung tissues, and NHBEs.
OAS1 showed a broad expression in different human organs and
tumor tissues of the HPA database, with low organ and cancer
specificity. Zhou et al. identified that increased plasma OAS1
protein level is positively associated with reduced COVID-19
susceptibility and poor outcomes in 14,134 cases and 1.2 million
controls. Collectively, these findings suggested that OAS1 may
serve as a protective factor against SARS-CoV-2 infection and
poor COVID-19 outcomes in the wide organs and tissues. We
further explored the effect of SNPs located on these 14 host genes
on expressions of potential key genes via expression quantitative
trait locus (cis-eQTL) analysis in 33 cancer types. Rs4801778-T
(PLEKHA4), rs11919389-C (ZBTB11), rs13050728-C (IFNAR2),
and rs10774671-A (OAS1) exhibited a positive or negative
regulation in TULP2, HSD17B14, LOC285359, LOC100009676,
SENP7, IFNAR2, OAS3, and OAS1 in multiple cancer types.
Especially, rs10774671-A (OAS1) showed a consistent negative
association with OAS1 expression in BLCA, HNSC, KIRC, KIRP,
LGG, PCPG, PRAD, TGCT, and THCA. Taking together, these
findings indicate that BLCA, HNSC, KIRC, KIRP, LGG, PCPG,
PRAD, TGCT, and THCA patients carrying rs10774671-A
(OAS1) genotype may be more likely to have poor COVID-19
outcomes relative to those carrying rs10774671-G because
individuals carrying rs10774671-A will have the lower
expression of OAS1, which serves as a protective factor against
SARS-CoV-2 progress and poor COVID-19 progress outcomes.

Subsequently, we assessed the response of eight SARS-CoV-2-
required genes in multiple cell types of the respiratory system
after SARS-CoV-2 infection. We observed that SARS-CoV-2
increased ACE2 and NPC1 expression in normal/tumor tissues
or cells of the human respiratory system, similar to one previous
report (4). We then evaluated expression profiles of SARS-CoV-
2-required genes in human normal and pan-cancer tissues. We
found that ACE2 and TMPRSS2 showed an obvious expression
difference between different human tissues, while other SARS-
CoV-2-required genes had a widely high or medium expression
January 2022 | Volume 12 | Article 804387
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level in all tissues. Compared with other tissues, the small
intestine, and thyroid, testis, lung, pancreas, breast, and
fallopian had higher expression levels of SARS-CoV-2-required
genes. For tumor tissues corresponding to the above organs,
BLCA, CECS, CHOL, COAD, ESCA, KIRP, LUAD, LUSC,
PAAD, READ, STAD, THCA, and UCEC showed higher
expressions of ACE2 and TMPRSS2 compared with other
tumor tissue types. These results may mean a higher SARS-
CoV-2 susceptibility in these tissues and the corresponding
tumor tissues.

We further analyzed the expression profiles for eight SARS-
CoV-2-required genes in pan-cancers. Seventy-five percent of
SARS-CoV-2-required genes including RAB7A, PIK3C3,
ATP6AP1, ATP6V1A, CCDC22, and NPC1 were found to
show a consistently significant upregulation in CHOL relative
Frontiers in Immunology | www.frontiersin.org 13110
to normal tissues. In addition, ACE2 and TMPRSS2 appeared to
be upregulated in CHOL compared to normal tissues. These
results indicate that CHOL patients potentially have a higher risk
of SARS-CoV-2 infection compared with healthy subjects. In
addition, we observed an association of SARS-CoV-2-required
genes with the poor or good prognosis of multiple cancer types
by survival analysis and univariate Cox proportional hazards
regression analysis. Among which, CCDC22, RAB7A,
ATP6V1A, and ATP6AP1 expressions were significantly
associated with the poor overall survival of LAML, suggesting a
possibility that patients with hematological cancer (LAML) after
SARS-CoV-2 infection may have a poor prognosis, and might
support conclusions by Bernard et al. (1) and Dai et al. (11) that
SARS-CoV-2-infected patients with hematological cancer have
the highest frequency of severe events including death rates and
A

C

B

D

E HGF

FIGURE 7 | Upstream regulators of ACE2. (A) microRNAs targeting ACE2. (B) Differentially expressed microRNAs between cancer tissues and control tissues.
(C) Association between microRNAs and the prognosis of cancers. (D) Correlation between miR-760 and ACE2 in LIHC. (E) Expression difference of miR-760
between LIHC tissues and control tissues. (F) Association between miR-760 and the prognosis of LIHC. (G) Expression difference of ACE2 between LIHC tissues
and control tissues. (H) Association between ACE2 and the prognosis of LIHC. *P < 0.05; **P < 0.01; ***P < 0.1.
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ICU admission. By GSCA and GEPIA 2 databases, we confirmed
that ACE2, TMPRSS2, RAB7A, ATP6AP1, ATP6V1A, and
PIK3C3 were significantly downregulated in the high stage of
KIRC compared with the low stage. NPC1 and CCDC22 also
showed a reduced tendency in the high stage. These results mean
that patients with a low stage of KIRC may have a higher SARS-
CoV-2 infection risk than those with a high stage.

We analyzed the relationship of SARS-CoV-2-required
genes with TME and immune response in pan-cancers and
found that their expression was significantly associated with
tumor purity of patients with LAML and KICH. Immune
subtypes were reported to involve overall survival and
progression free intervals of cancers. C3 (inflammatory)
shows the best prognosis in cancer patients, while C2 (IFN-g
dominant), C1 (wound healing), C4 (lymphocyte depleted),
and C6 (TGF-b dominant) exhibit the poor outcome (7). In
our analysis, the high ACE2 and NPC1 expressions were found
to be associated with the decreased C3 immune infiltration of
LUSC, and correlate with increased C1, C2, and C6 immune
infiltration. Immune cell infiltration plays a crucial role in the
prognosis of multiple human cancers (24, 27–29). Similar to
the previous report, we found that CD8+T, GammaDelta, and
Tfh were correlated with the favorable prognosis in most of the
cancer types analyzed; while nTreg cells, NKT, and TH17 cells
were indicative of poor prognosis (24), which may be affected
by SARS-CoV-2-required genes. Notably, CD8+T showed a
positive correlation with the good prognosis of LUAD patients,
and the expressions of ACE2 and NPC1 were negatively
associated with the abundance of CD8+T. Given that ACE2
and NPC1 were significantly upregulated in the normal tissues
and cells or tumor cells of the respiratory system infected after
SARS-CoV-2, these findings indicate that LUSC or LUAD
patients infected with SARS-CoV-2 may have a worse
outcome because SARS-CoV-2-induced ACE2 and NPC1
elevation may have a negative influence in C3 and a positive
effect on the C1, C2, and C6 immune infiltration of LUSC, or
have a negative influence in CD8+T of LUAD. This also may
support the conclusions of Bernard et al. (10) and Dai et al.
(11) that patients with lung cancer have a high frequency of
severe events.

To further explore the potential mechanism of SARS-CoV-2-
related genes on the prognosis of lung cancer, we performed a
correlation and survival analysis for these genes and lung cancer-
related genes in lung cancer. Our results suggested that OAS1,
ACE2, and TMPRSS2 expressions showed a different interaction
in LUAD and LUSC and had a different effect on the prognosis of
LUAD and LUSC. Notably, OAS1 expression showed a negative
association with TMPRSS2 expression in LUAD, while exhibited
a positive correlation with TMPRSS2 expression in LUSC,
indicating that upregulation of OAS1 may decrease TMPRSS2
expression in LUAD but may increase TMPRSS2 expression in
LUSC. We also found that these genes showed a consistent
association with 90 lung cancer-related genes having different
influences on the prognosis of LUAD or LUSC patients.
Especially, five lung cancer-related genes including CYP4B1,
CHRDL1, SFTPC, SFTPB, and AGER were consistently
Frontiers in Immunology | www.frontiersin.org 14111
downregulated in both LUAD and LUSC had a positive
correlation with TMPRSS2, exhibited an opposite effect on the
prognosis of LUAD and LUSC. These findings indicate that
LUSC and LUAD patients may have a varying degree of adverse
outcomes if they are infected with SARS-CoV-2 because of the
opposite interaction between OAS1 and TMPRSS2 in LUAD and
LUSC as well as the opposite effect of these lung cancer-related
genes on the prognosis of LUAD and LUSC.

We evaluated the influence of SARS-CoV-2-required genes in
anti-cancer drug sensitivity, a common event influencing the
therapeutic effect and prognosis of cancer patients. SARS-CoV-
2-required genes were found to show a broad influence in anti-
cancer drug sensitivity. Notably, ACE2 and NPC1, elevated in
human cells or tissues infected with SARS-CoV-2, were found to
be significantly associated with the decreased drug sensitivity
(Pazopanib, Dexrazoxane, Oxaliplatin, Ifosfamide, Elesclomol,
Paclitaxel, and Vinorelbine) of multiple cancer types including
small cell lung cancer and metastatic non-small cell lung
carcinoma, suggesting that patients with cancers (especially
lung cancers) after SARS-CoV-2 infection may have a poor
outcome because of the negative effect of SARS-CoV-2-
induced upregulation of ACE2 and NPC1 on these anti-cancer
drug sensitivity.

MicroRNA is dysregulated in various cancers via different
mechanisms, which in return influences cancer hallmarks such
as tumor cell proliferation, death inhibition, metastasis, and
angiogenesis (30). In the current analysis, 146 microRNAs
were found to be the upstream regulators of SARS-CoV-2-
required genes. Total 12 microRNAs were predicted to target
ACE2, with a significantly negative or positive correlation with
ACE2 expression in 30 cancer types. Especially, miR-760, a
broadly downgraded tumor suppressor in various cancer types
(30–33), may have the potential to serve as a treatment and
intervention target for SARS-CoV-2 because of its inhibitory
effect on ACE2. Elevating miR-760 could be beneficial for cancer
treatment and SARS-CoV-2 prevention.

In conclusion, the findings in this study demonstrate that
BLCA, HNSC, KIRC, KIRP, LGG, PCPG, PRAD, TGCT, and
THCA patients carrying rs10774671-A (OAS1) genotype may
have a higher risk for poor COVID-19 outcomes relative to those
who carry rs10774671-G. SARS-CoV-2-required genes were
correlated with TME, immune response, and infiltration,
overall survival, anti-cancer drug sensitivity of pan-cancers.
CHOL patients may have a higher risk of SARS-CoV-2
infection than healthy subjects. As shown in Figure 8, lung
cancer patients infected with SARS-CoV-2 may have a worse
outcome because SARS-CoV-2-induced ACE2 and NPC1
elevation, which in turn promotes further SARS-CoV-2
invasion, may influence the immune subtypes of LUSC and
immune infiltration in CD8+T of LUAD, and affect the
sensitivity of anti-cancer drug. LUSC and LUAD patients may
have a varying degree of adverse outcomes if they are infected
with SARS-CoV-2. OAS1, ACE2, and miR-760 could serve as
treatment and intervention targets for SARS-CoV-2. Future
studies are needed to confirm the results by in vitro and
in vivo experiments.
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Supplementary Figure 1 | The prognosis analysis for SARS-CoV-2-required
genes in 33 cancer types and the different assessment of SARS-CoV-2-required
genes in different stages of pan-cancers. (A) Univariate Cox regression analysis for
SARS-CoV-2-required genes. (B) SARS-CoV-2-required genes ACE2, TMPRSS2,
RAB7A, ATP6AP1, ATP6V1A, and PIK3C3 were downregulated in high stage type
of KIRC compared with low stage type identified by GSCA (http://bioinfo.life.hust.
edu.cn/GSCA/#/) and GEPIA 2 (http://gepia2.cancer-pku.cn/#index) databases.

Supplementary Figure 2 | SARS-CoV-2-required genes associated with
immune subtypes and tumor microenvironment. (A) Association of SARS-CoV-2-
required gene expression with the ESTIMATE immune, stromal, and estimate
FIGURE 8 | The prediction of the worse outcome for lung cancer patients infected with SARS-CoV-2. Lung cancer patients infected with SARS-CoV-2 may have a
worse outcome because SARS-CoV-2-induced ACE2 and NPC1 elevation may have a negative influence on the immune response of LUSC and CD8+T infiltration of
LUAD, and negatively affect the sensitivity of anti-cancer drugs including Ifosfamide, Paclitaxel, and Vinorelbine. miR-760 may have the potential to serve as a
treatment and intervention target for SARS-CoV-2 because of its targeted inhibition effect on ACE2.
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scores. (B) Association of SARS-CoV-2-required gene expression with RNAss and
DNAss. Association of SARS-CoV-2-required genes with immune subtypes in all
cancer patients (C), LUSC patients (D), and KICH patients (E).

Supplementary Table 7 | SARS-CoV-2-required genes associated with immune
subtypes and tumor microenvironment.

Supplementary Table 9 | SARS-CoV-2-required genes associatedwith drug sensitivity.
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Supplementary Table 10 | Identification of differentially expressed genes in
LUAD and LUSC, and their association with prognosis of lung cancer patients.

Supplementary Table 11 | Correlation between OAS1, ACE2, TMPRSS2, and
lung cancer-related genes.
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genes.
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Immunotherapy can effectively activate the immune system and reshape the tumor
immune microenvironment, which has been an alternative method in cancer therapy
besides surgery, radiotherapy, and chemotherapy. However, the current clinical
outcomes are not satisfied due to the lack of targeting of the treatment with some
unexpected damages to the human body. Recently, cell membrane-based bioinspired
nanoparticles for tumor immunotherapy have attracted much attention because of their
superior immune regulating, drug delivery, excellent tumor targeting, and biocompatibility.
Together, the article reviews the recent progress of cell membrane-based bioinspired
nanoparticles for immunotherapy in cancer treatment. We also evaluate the prospect of
bioinspired nanoparticles in immunotherapy for cancer. This strategy may open up new
research directions for cancer therapy.

Keywords: bioinspired membrane, nanoparticle, tumor targeting, immunotherapy, nanobiotechnology applications
INTRODUCTION

Cancer has been one of the most refractory diseases worldwide, causing millions of deaths with a
vast social consumption annually (1, 2). Much progress has been made in cancer treatments, such as
surgical excision, chemotherapy, and radiotherapy, and the survival of cancer patients has also been
greatly improved (3–5). However, the initial clinical response rate to many tumors did not achieve
the desired results, and with the extension of treatment time, the tumor often develops drug
resistance and is easy to relapse. Cancer immunotherapy as a new therapy developed rapidly in
recent years, which can control and kill tumor cells by stimulating or rebuilding the immune system
(6). Nonetheless, it was reported that these treatments could not achieve the ideal therapeutic results
and even caused unexpected damages to the human body due to deficient tumor targeting (7, 8).
Therefore, there is an urgent need to develop a novel delivery system to address the issues.

Recently, cell membrane-coated nanoparticles have attracted much attention due to their
biocompatibility, prolonged half-time, and superior tumor targeting from the source cells.
Tumor immunotherapy based on bioinspired nanoparticles is a new therapy developed rapidly
in recent years. Despite its potential significance for cancer treatment with excellent immune effect,
there is a lack of discussion that focuses on bioinspired nanoparticles. Hence, this study aims to
review bioinspired nanoparticles with different functions and strategies, such as nanodecoy-,
vaccine-, photo-, sono-, and chemo-immunotherapy (Scheme 1), and also discusses the current
lack of development and future development prospects.
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CELL MEMBRANE COATING
NANOPLATFORM IN THE THERAPY
OF CANCER

According to the function of membrane-coated nanoparticles, it
was briefly classified into nanodecoy-, vaccine-, photo-, sono-,
and chemo-immunotherapy, and the advancement of
membrane-coated nanoplatforms (NPs) in tumor treatment is
also discussed in this section.

Nanodecoy-Immunotherapy in Cancer
Treatment
Tumor cells can produce various cytokines (mainly including GM-
CSF, granulocyte-macrophage colony-stimulating factor, and
CXCL2, chemokine ligand 2), resulting in an immunosuppressive
environment through recruiting myeloid-derived suppressor cells
(MDSCs) and thus inhibit the functions of tumor-specific CD8+ T
cells and cause tumor cells’ immune escape (9, 10). Due to this fact,
it remains the major obstacle that limits the efficacy of
immunotherapy, such as immune checkpoint therapy. MDSCs
(consisting of ∼80% PMN-MDSCs, polymorphonuclear and
∼20% M-MDSCs, monocytic populations) are responsible for the
immunosuppressive tumor microenvironment (TME), which not
only primarily suppresses CD8+ T cells’ immune response but also
directly facilitates tumor growth and metastasis. Target elimination
of MDSCs may help improve antitumor immune response, but it
often brings about serious side effects. Recently, the
pseudoneutrophil cytokine sponges (pCSs), fabricated by coating
neutrophil membrane onto PLGA cores to mimic PMN-MDSCs,
Frontiers in Oncology | www.frontiersin.org 2116
were reported (10). Inheriting the properties of source cells, pCSs
can specifically absorb or neutralize MDSC-related cytokines and
hence decrease or disrupt the recruitment of MDSCs and
subsequently relieve immune tolerance. When incubated with
GM-CSF and CXCL2, pCSs can show a superior binding capacity
to them in a dose-dependent manner even compared with RBC@
NPs. Inspired by the facts, mice bearing B16F10 were injected pCSs
daily for 8 days, then the peripheral lymphoid organs and tumors
were collected and analyzed by flow cytometry, and the results
showed that pCSs could significantly suppress the expansion of
MDSCs in the bone marrow and thus decreased their assembly in
peripheral lymphoid organs and tumors. However, in
immunodeficient B6/Rag1−/− or NOG mice, pCSs treatments did
not limit the progress of melanoma or breast cancer. At the same
time, it could delay the growth of the tumors in normal mice. In
short, the antitumor activity of pCSs is established on an intact
immune system. In murine breast cancer 4T1 and melanoma
B16F10 models, pCSs administration can significantly enhance
the infiltration of CD+8 T cells and improve antitumor immune
response. Furthermore, in the combination therapy with anti-PD-1,
pCSs suppress tumor growth and prolong survival. Collectively, the
neutrophil cell membrane-coated NPs can be a novel immune-
modulating nanoplatform for effective cancer immunotherapy.

Vaccine-Immunotherapy in Cancer
Treatment
Cancer vaccines can drill immune cells to specifically recognize
and eradicate cancerous cells while sparing normal cells, which is
established by effective tumor-associated antigen delivery (11,
SCHEME 1 | Bioinspired cell membrane-based nanoparticles in tumor immunotherapy. Cell membrane-coated nanoparticles can be used as nanodecoy-, vaccine-,
photo-, sono-, and chemo-immunotherapy for tumor eradication.
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12). However, application of cancer vaccines is rarely reported in
clinics. Presently, tumor vaccine development is notoriously
limited because tumor antigens are derived from normal
antigens with subtle mutation or facile upregulation that is
difficult to stimulate cellular immunity (13, 14). In particular,
cancer cell membrane-coated nanoparticles have been used in
homologous targeting drug delivery because of the entire
inheritance of source cells. Therefore, taking advantage of
cancer membrane, whose membrane proteins could also be
tumor-specific antigens, to activate immune response would be
a promising strategy to enhance immunotherapy (15, 16).

In a recent study, B16-F10 cancer cell membrane-coated
murine-specific CpG-NPs (CpG-CCNPs) achieved a superior
prophylactic and therapeutic efficacy in melanoma therapy (17).
In the design, adjuvant CpG-loaded PLGA NPs were synthesized
to be the inner cores, which can stimulate the maturation of DCs
and the subsequent activation of tumor-specific T cells through
TLR-9 signaling. When incubated with bone marrow-derived
dendritic cells (BMDCs), the inner cores wrapped with the B16-
F10 membrane showed more enhanced endocytosis by BMDCs
compared with bare CpG NPs. Consistent with the findings, after
subcutaneous injection, CpG-CCNPs can be actively internalized
by macrophages and BMDCs in the draining lymph node while B
or T cells had relatively less cell uptake due to the nonspecific
interactions. DCs can be significantly activated to mature with the
confirmation of the upregulation of CD40, CD80, CD86, and
MHC-II. Meanwhile, due to the existence of melanoma major
antigens such as gp100 and tyrosinase-related protein (TRP)-2 on
the surface of CpG-CCNPs, it can strongly generate gp100-specific
and TRP-2-specific T cells in the spleen, verifying the previous
speculation that the nanoparticles were able to train the immune
system against various tumor antigens. When vaccinated with
CpG-CCNPs, mice then received B16-F10 cancer cell injection
challenges and showed an enhanced tumor-preventing efficacy
(86% of mice were tumor free during the 5-month post-challenge)
compared with other formulations. Then, the therapeutic efficacy
of the CpG-CCNPs was also examined in B16-F10 tumor-bearing
mice, and the results revealed that subcutaneous injection of the
CpG-CCNPs combined with an intraperitoneal injection of anti-
CTLA-4 and anti-PD-1 could inhibit tumor growth and prolong
the survival time than other treatments. Besides CpG, the toll-like
receptor 7 agonist imiquimod (R837) as a novel adjuvant was also
encapsulated into PLGA NPs and then covered with mannose-
modified tumor cell membranes (NP-R@M-M). Significantly, the
B16-OVA cancer cell membrane was wrapped onto the NPs and
then intradermally injected into mice bearing B16-OVA
melanoma tumor, and it can effectively trigger the maturation of
DCs and subsequent specific T-cell response. Correspondingly,
NP-R@M-M (B16-OVA cancer cell membrane coating) alone or
combined with anti-PD-1 checkpoint therapy exhibited an
enhanced B16-OVA tumor-inhibiting efficacy while sparing 4T1
breast cancer tumor, illustrating the specificity of the tumor
nanovaccine. Collectively, the works provided a rational design
by applying autologous cancer cell membrane as tumor-specific
antigen and combining coating nanotechnology to construct an
antitumor nanovaccine platform.
Frontiers in Oncology | www.frontiersin.org 3117
Sono-Immunotherapy in Cancer Treatment
Sonodynamic therapy (SDT) is based on ultrasound (US), and it
can produce large amounts of cytotoxic singlet oxygen (1O2) and
induce US cavitation and hyperthermia (18). Due to its
superiorly deeper tissue penetration, SDT has been developed
as a potential alternative to traditional cancer therapy (19).
Considering the fact that current SDT agents often show a low
SDT efficacy due to insufficient tumor accumulation, a
bioinspired membrane-coated nanoplatform would overcome
these limitations (20). Moreover, SDT can also be used to
activate the antitumor immune response and demonstrate a
superior synergistic effect with immunotherapy.

In a recent study, a macrophage membrane-coated nanoplatform,
integrating SDT, chemotherapy, and immunotherapy, is fabricated
(18). In the design, production of 1O2 in situ and targeted delivery
carbon monoxide (CO) to TME were combined upon stimulation by
the exogenous US and endogenous H2O2. Other than physically
inducing cancer cell death, the macrophage-coated nanoplatform can
also take advantage of these cracked tumor cells to activate tumor-
specific CD8+T cells to enhance immunotherapy. Importantly, due to
the existence of the macrophage membrane, the nanoplatform can
inhibit immune clearance, prolong drug circulation time, and thus
enhance tumor suppression. Then, the chemotherapeutic NLG919,
an indoleamine 2,3-dioxygenase (IDO) inhibitor, was loaded into the
nanoparticles to inhibit tumor metastasis. Collectively, the
macrophage membrane-coated nanoplatform represents a
promising antitumor strategy by integrating multimode cancer
therapies, which would be an alternative to clinics in the future.

Photo-Immunotherapy in Cancer
Treatment
Photodynamic therapy (PDT) is a promising cancer therapeutic
strategy and has attracted much attention due to its non-
invasiveness (21, 22). Local tumors can be inhibited by the
reactive oxygen species (ROS) generated by PDT due to
photosensitizers and laser irradiation (23), whereas the unwanted
photosensitizer leakage from delivery vehicles has largely limited the
progress of PDT, and PDT alone is not enough to active systemic
immune response to eradicate the metastatic tumor cells (24–26).
Therefore, decreasing photosensitizer leakage and improving tumor
targeting would reverse the unsatisfactory therapeutic outcomes.

In a recent study, Kim et al. developed a cell membrane
nanovesicle-based PDT strategy and efficiently inhibit local tumor
growth and suppress its metastasis (27) (Figure 1). Notably,
KillerRed (KR), a red fluorescence protein with emission
spectrum 510–600 nm and a photo-responsive sensitizer with
solid ability to generate ROS upon laser irradiation, was
selectively expressed on 4T1-Fluc cancer cells, avoiding the
leakage mentioned above from vehicles that reversely enhanced
PDT therapy. Then, the KR overexpressing cancer membrane was
extracted (KR-CCM) and then hybridized with monophosphoryl
lipid A (MPLA)-embedded liposomes to form the about 250-nm
lipocomplex (Lp-KR-CCM-A). Especially in the design, the 4T1
cancer membrane can improve tumor targeting (about 3.3-fold
higher cancer-targeting efficiency than a control liposome) because
of homotypic affinity andMPLA can stimulate an immune response
January 2022 | Volume 11 | Article 819817

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mu et al. Bioinspired Nanotherapeutics for Immuno-Oncology
A B

D

E

F

C

FIGURE 1 | Bioinspired membrane-based nanotherapeutics for photo-immunotherapy. (A) Schematic illustration of preparation of Lp-KR-CCM-A and its application
in cancer therapy. KR as photosensitizer in Lp-KR-CCM-A and can produce ROS upon laser irradiation to kill cancer cells (PDT) and thus enhance immunotherapy
with the help of lipid adjuvant MPLA. (B) Representative FL image showing KR expression in 4T1-Fluc cell membrane after transfection with mem-KR plasmid. (C)
Lp-KR-CCM-A stained with KR antibody-conjugated immuno-gold. (D) In vitro ROS generation induced by Lp-KR-CCM-A internalized in 4T1-Fluc cells upon laser
irradiation for 20 min. DCF-DA was used as an indicator of intracellular ROS. (E) In vitro BMDC maturation following different treatments and irradiation of 4T1-Fluc
cells in a co-culture system. (F) Analysis of cytotoxic CD8+T cells (gated on CD3+ T cells) in the spleen and lung after the indicated treatments. *p < 0.05; **p < 0.01;
***p < 0.001. Reproduced with permission (27), Copyright 2019, American Chemical Society.
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by targeting TLR4. After PDT, the subsequently generated ROS
induced cancer cells apoptosis and the released cancer damage-
associated molecular patterns (DAMPs) elicited DC maturation to
active systemic tumor-specific T cells to attack the metastatic cancer
cells in homotypic tumor-bearing mice. In short, the study novelty
constructed the biomimetic lipocomplex technology and may
improve cell membrane-based cancer therapy.

Chemo-Immunotherapy in Cancer
Treatment
Recurrence is one of the significant challenges that cause patient
death even after radical surgery in cancer therapy (28). In addition,
it has been reported that surgery wound and the resulting
inflammatory environment may accelerate recurrence or
metastasis. Hence, performing a post-operation consolidation
treatment is necessary, and immune checkpoint blockade (ICB) to
revert exhausted CD8+T cells has raised much attention (29–31).
Despite significant progress, current ICB-based therapies are still
restricted by autoimmune disorders and low objective drug
response (32). Unwanted binding of PD-1 or PD-L1 antibody to
normal tissues with i.v. injection may be one of the main reasons
responsible for the compromised efficacy (33). Recently, platelet-
based systems have attracted much attention as bioinspired drug
delivery vehicles (28, 34). However, it potentially limited its progress
and clinical use since blood-separated platelets are anucleated
cellular fragments without proliferation potency (35). To address
the issues, a strategy of genetic engineering platelet-based cascade
amplification immunotherapy was proposed (36). In the design,
lentivirus encoding EGFP-PD-1 was used to infect megakaryocyte
(MK) progenitor cell line L8057 to express PD-1 stably. Stimulated
by PMA, MKs underwent maturation, morphology change, and
ultimately produced PD-1-expressing platelets. Due to the intrinsic
properties, the purified platelets can actively target the
tumor surgery wound or the resulting inflammatory
microenvironment, and are then activated to produce
microparticles. In the incomplete-surgery B16F10 tumor model,
after three times i.v. injection of PD-1 platelets, the growth of
residual tumor was significantly suppressed, whereas free platelets
treatment could not prevent the recurrence. Through flow
cytometry analysis, it was observed that PD-1-expressing platelets
could induce more CD8+ T cells to infiltrate the tumors than that of
free platelets or PBS, and the infiltrated CD8+ T cells showed
enhanced secretion of granzyme B, indicating a reversion of T-cell
exhaustion. The superior therapeutic outcomes can be attributed to
in situ activation of platelet-derived microparticles of PD-1. To
verify whether the in situ activation resulted in tumor eradication,
bare aPDL1-platelet derived microparticles (PMPs) were collected
from the platelets in similar research. Moreover, the results
illustrated that direct injection of the PMPs could not inhibit the
tumor and no more than free antibody. These results can illustrate
that in situ activations of P–aPD-1/L1 at the tumor surgery wound
were crucial for anticancer effect. Moreover, to further evaluate the
ability of depletion of Tregs in TME, a model drug
cyclophosphamide (CP) was loaded into PD-1-expressing platelets
through co-culture or electroporation. In the therapy of the same
B16F10 tumor model with incomplete resection, the results showed
that CP-PD-1 platelet treatment could decrease Tregs in TMEwhile
Frontiers in Oncology | www.frontiersin.org 5119
vastly increasing the frequency of reinvigorated CD8+T cells,
demonstrating directly blocking tumor relapse. Collectively, the
study identified that gene engineering PD-1 vesicle could be an
effective bioinspired multifunctional platform for cancer
theranostics, in which targeted therapeutic delivery and
immunotherapy were combined.
DISCUSSION AND FUTURE PERSPECTIVE

Cancer immunotherapy changes the treatment pattern of tumors
and brings hope for tumor patients, especially those with advanced
malignant tumors. However, it also faces many problems, such as
low immune response rate, lack of adequate and reliable predictive
markers of curative effect, and lack of targeting. Monoclonal
antibody immunotherapy, CAR-T, or TCR-T therapy cannot
show an excellent therapeutic effect on all individuals and all
tumors, and the adverse reactions are not the same. The selection
of specific targets and the combined application of multiple
therapies can partially solve the problem of mistarget faced by
cancer immunotherapy at present (37). With the continuous
emergence and innovation of photodynamic, sonodynamic, and
other new technologies and methods, immunotherapy based on cell
membrane-coated nanoparticles has ushered in rapid development,
showing great potential for cancer treatment in the early stage of
clinical trials (38, 39). However, the efficacy of cancer treatment still
needs to be further improved, and future research needs to find
more specific immune targets, such as tumor-specific antigens and
new immune checkpoints, to avoid unnecessary targeting and
missed toxicity.

In addition, future studies still need to consider the following
two aspects: (1) Based on the different types and mechanisms of
cell membrane-coated nanoparticle immunotherapy, how can
the unique toxicity caused by histocompatibility problems in
immunotherapy be avoided? (2) The discovery of cancer drugs
depends on preclinical models to determine the priority of drug
targets, to study the mechanism of action, the method of
administration, the dose and time of treatment, and safety
management (40). At present, immunotherapy based on cell
membrane-coated nanoparticles is mostly limited to the essential
animal experimental stage, and the clinical conversion rate is
low, so the construction of a preclinical model close to the
human immune environment is the key.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
AUTHOR CONTRIBUTIONS

DM, PH, YS, and LJ conceptualized and wrote the manuscript.
GL corresponded to the article. All authors contributed to the
article and approved the submitted version.
January 2022 | Volume 11 | Article 819817

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mu et al. Bioinspired Nanotherapeutics for Immuno-Oncology
ACKNOWLEDGMENTS

This work was supported by the Major State Basic Research
Development Program of China (2017YFA0205201), the National
Frontiers in Oncology | www.frontiersin.org 6120
Natural Science Foundation of China (NSFC) (81925019 and
U1705281), the Fundamental Research Funds for the Central
Universities (20720190088 and 20720200019), and the Program for
New Century Excellent Talents in University, China (NCET-13-0502).
REFERENCES
1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2019. CA Cancer J Clin

(2019) 69:7–34. doi: 10.3322/caac.21551
2. Shi Y, Wang J, Liu J, Lin G, Xie F, Pang X, et al. Oxidative Stress-Driven DR5

Upregulation Restores TRAIL/Apo2L Sensitivity Induced by Iron Oxide
Nanoparticles in Colorectal Cancer. Biomaterials (2020) 233:119753.
doi: 10.1016/j.biomaterials.2019.119753

3. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation Induced
by Incomplete Radiofrequency Ablation Accelerates Tumor Progression and
Hinders PD-1 Immunotherapy. Nat Commun (2019) 10:5421. doi: 10.1038/
s41467-019-13204-3

4. Chu C, Ren E, Zhang Y, Yu J, Lin H, Pang X, et al. Zinc (II)-Dipicolylamine
Coordination Nanotheranostics: Toward Synergistic Nanomedicine by
Combined Photo/Gene Therapy. Angew Chem Int Ed Engl (2019) 58:269–
72. doi: 10.1002/anie.201812482

5. Chu C, Lin H, Liu H, Wang X, Wang J, Zhang P, et al. Tumor
Microenvironment-Triggered Supramolecular System as an In Situ
Nanotheranostic Generator for Cancer Phototherapy. Adv Mater (2017)
29:10.1002/adma.201605928. doi: 10.1002/adma.201605928

6. Martin OA, Martin RF. Cancer Radiotherapy: Understanding the Price of
Tumor Eradication. Front Cell Dev Biol (2020) 8:261. doi: 10.3389/
fcell.2020.00261

7. Yang Y. Cancer Immunotherapy: Harnessing the Immune System to Battle
Cancer. J Clin Invest (2015) 125:3335–7. doi: 10.1172/JCI83871

8. Shi X, Zhang Y, Tian Y, Xu S, Ren E, Bai S, et al. Multi-Responsive
Bottlebrush-Like Unimolecules Self-Assembled Nano-Riceball for
Synergistic Sono-Chemotherapy. Small Methods (2021) 5:2000416.
doi: 10.1002/smtd.202000416

9. Talmadge JE, Gabrilovich DI. History of Myeloid-Derived Suppressor Cells.
Nat Rev Cancer (2013) 13:739–52. doi: 10.1038/nrc3581

10. Li S, Wang Q, Shen Y, Hassan M, Shen J, Jiang W, et al. Pseudoneutrophil
Cytokine Sponges Disrupt Myeloid Expansion and Tumor Trafficking to
Improve Cancer Immunotherapy. Nano Lett (2020) 20:242–51. doi: 10.1021/
acs.nanolett.9b03753

11. Liu X, Yuan L, Zhang L, Mu Y, Li X, Liu C, et al. Bioinspired Artificial
Nanodecoys for Hepatitis B Virus. Angew Chem Int Ed Engl (2018) 57:12499–
503. doi: 10.1002/anie.201807212

12. Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, et al. Cancer Cell Membrane-Coated
Adjuvant Nanoparticles With Mannose Modification for Effective Anticancer
Vaccination. ACS Nano (2018) 12:5121–9. doi: 10.1021/acsnano.7b09041

13. Martin JD, Cabral H, Stylianopoulos T, Jain RK. Improving Cancer
Immunotherapy Using Nanomedicines: Progress, Opportunities and Challenges.
Nat Rev Clin Oncol (2020) 17:251–66. doi: 10.1038/s41571-019-0308-z

14. Lv P, Chen X, Fu S, Ren E, Liu C, Liu X, et al. Surface Engineering of Oncolytic
Adenovirus for a Combination of Immune Checkpoint Blockade and
Virotherapy. Biomater Sci (2021) 9:7392–401. doi: 10.1039/d1bm00928a

15. Hou Y, Zhou Y, Wang H, Sun J, Wang R, Sheng K, et al. Therapeutic Protein
PEPylation: The Helix of Nonfouling Synthetic Polypeptides Minimizes
Antidrug Antibody Generation. ACS Cent Sci (2019) 5:229–36.
doi: 10.1021/acscentsci.8b00548

16. Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, Wang Y, et al. A DNA Nanodevice-
Based Vaccine for Cancer Immunotherapy. Nat Mater (2021) 20:421–30.
doi: 10.1038/s41563-020-0793-6

17. Zhang P, Chen Y, Zeng Y, Shen C, Li R, Guo Z, et al. Virus-Mimetic
Nanovesicles as a Versatile Antigen-Delivery System. Proc Natl Acad Sci
USA (2015) 112:E6129–6138. doi: 10.1073/pnas.1505799112

18. Zhang X, Zhang Y, Zhang Y, Lv P, Zhang P, Chu C, et al. Bio-Engineered Cell
Membrane Nanovesicles as Precision Theranostics for Perihilar
Cholangiocarcinoma. Biomater Sci (2020) 8:1575–9. doi: 10.1039/c9bm02088h
19. Zhao H, Zhao B, Li L, Ding K, Xiao H, Zheng C, et al. Biomimetic Decoy
Inhibits Tumor Growth and Lung Metastasis by Reversing the Drawbacks of
Sonodynamic Therapy. Adv Healthc Mater (2020) 9:e1901335. doi: 10.1002/
adhm.201901335

20. Liu X, Li D, Liu G. Cell Membrane-Derived Biomimetic Nanodecoys for
Viruses. Sci China Life Sci (2020) 63:1254–6. doi: 10.1007/s11427-020-1669-x

21. Liu X, Liu C, Zheng Z, Chen S, Pang X, Xiang X, et al. Vesicular Antibodies: A
Bioactive Multifunctional Combination Platform for Targeted Therapeutic
Delivery and Cancer Immunotherapy. Adv Mater (2019) 31:e1808294.
doi: 10.1002/adma.201808294

22. Han Y, Pan H, Li W, Chen Z, Ma A, Yin T, et al. T Cell Membrane Mimicking
Nanoparticles With Bioorthogonal Targeting and Immune Recognition for
Enhanced Photothermal Therapy. Adv Sci (2019) 6:1900251. doi: 10.1002/
advs.201900251

23. Wang T, Wang D, Yu H, Feng B, Zhou F, Zhang H, et al. A Cancer Vaccine-
Mediated Postoperative Immunotherapy for Recurrent and Metastatic
Tumors. Nat Commun (2018) 9:1532. doi: 10.1038/s41467-018-03915-4

24. Ye X, Liang X, Chen Q, Miao Q, Chen X, Zhang X, et al. Surgical Tumor-Derived
Personalized Photothermal Vaccine Formulation for Cancer Immunotherapy.
ACS Nano (2019) 13:2956–68. doi: 10.1021/acsnano.8b07371

25. Liang X, Ye X, Wang C, Xing C, Miao Q, Xie Z, et al. Photothermal Cancer
Immunotherapy by Erythrocyte Membrane-Coated Black Phosphorus
Formulation. J Control Release (2019) 296:150–61. doi: 10.1016/
j.jconrel.2019.01.027

26. Shi Y, Xie F, Rao P, Qian H, Chen R, Chen H, et al. TRAIL-Expressing Cell
Membrane Nanovesicles as an Anti-Inflammatory Platform for Rheumatoid
Arthritis Therapy. J Control Release (2020) 320:304–13. doi: 10.1016/
j.jconrel.2020.01.054

27. Kim HY, Kang M, Choo YW, Go SH, Kwon SP, Song SY, et al.
Immunomodulatory Lipocomplex Functionalized With Photosensitizer-
Embedded Cancer Cell Membrane Inhibits Tumor Growth and Metastasis.
Nano Lett (2019) 19:5185–93. doi: 10.1021/acs.nanolett.9b01571

28. Wang C, SunW, Ye Y, Hu Q, Bomba HN, Gu Z. In Situ Activation of Platelets
With Checkpoint Inhibitors for Post-Surgical Cancer Immunotherapy. Nat
Bimed Eng (2017) 1:11. doi: 10.1038/s41551-016-0011

29. Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, et al. In Situ Sprayed
Bioresponsive Immunotherapeutic Gel for Post-Surgical Cancer Treatment.
Nat Nanotechnol (2019) 14:89–97. doi: 10.1038/s41565-018-0319-4

30. Fang L, Zhao Z, Wang J, Zhang P, Ding Y, Jiang Y, et al. Engineering
Autologous Tumor Cell Vaccine to Locally Mobilize Antitumor Immunity in
Tumor Surgical Bed. Sci Adv (2020) 6:eaba4024. doi: 10.1126/sciadv.aba4024

31. Wang F, Xu D, Su H, Zhang W, Sun X, Monroe MK, et al. Supramolecular
Prodrug Hydrogelator as an Immune Booster for Checkpoint Blocker-Based
Immunotherapy. Sci Adv (2020) 6:eaaz8985. doi: 10.1126/sciadv.aaz8985

32. Robert C. A Decade of Immune-Checkpoint Inhibitors in Cancer Therapy.
Nat Commun (2020) 11:3801. doi: 10.1038/s41467-020-17670-y

33. Zhang P, Zhang L, Qin Z, Hua S, Guo Z, Chu C, et al. Genetically Engineered
Liposome-Like Nanovesicles as Active Targeted Transport Platform. Adv
Mater (2018) 30:1705350. doi: 10.1002/adma.201705350

34. Li Z, Hu S, Huang K, Su T, Cores J, Cheng K. Targeted Anti-IL-1b Platelet
Microparticles for Cardiac Detoxing and Repair. Sci Adv (2020) 6:eaay0589.
doi: 10.1126/sciadv.aay0589

35. Swirski FK, Nahrendorf M. Cardioimmunology: The Immune System in
Cardiac Homeostasis and Disease. Nat Rev Immunol (2018) 18:733–44.
doi: 10.1038/s41577-018-0065-8

36. Zhang X, Wang J, Chen Z, Hu Q, Wang C, Yan J, et al. Engineering PD-1-
Presenting Platelets for Cancer Immunotherapy. Nano Lett (2018) 18:5716–
25. doi: 10.1021/acs.nanolett.8b02321

37. Schumacher TN, Schreiber RD. Neoantigens in Cancer Immunotherapy.
Science (2015) 348:69–74. doi: 10.1126/science.aaa4971
January 2022 | Volume 11 | Article 819817

https://doi.org/10.3322/caac.21551
https://doi.org/10.1016/j.biomaterials.2019.119753
https://doi.org/10.1038/s41467-019-13204-3
https://doi.org/10.1038/s41467-019-13204-3
https://doi.org/10.1002/anie.201812482
https://doi.org/10.1002/adma.201605928
https://doi.org/10.3389/fcell.2020.00261
https://doi.org/10.3389/fcell.2020.00261
https://doi.org/10.1172/JCI83871
https://doi.org/10.1002/smtd.202000416
https://doi.org/10.1038/nrc3581
https://doi.org/10.1021/acs.nanolett.9b03753
https://doi.org/10.1021/acs.nanolett.9b03753
https://doi.org/10.1002/anie.201807212
https://doi.org/10.1021/acsnano.7b09041
https://doi.org/10.1038/s41571-019-0308-z
https://doi.org/10.1039/d1bm00928a
https://doi.org/10.1021/acscentsci.8b00548
https://doi.org/10.1038/s41563-020-0793-6
https://doi.org/10.1073/pnas.1505799112
https://doi.org/10.1039/c9bm02088h
https://doi.org/10.1002/adhm.201901335
https://doi.org/10.1002/adhm.201901335
https://doi.org/10.1007/s11427-020-1669-x
https://doi.org/10.1002/adma.201808294
https://doi.org/10.1002/advs.201900251
https://doi.org/10.1002/advs.201900251
https://doi.org/10.1038/s41467-018-03915-4
https://doi.org/10.1021/acsnano.8b07371
https://doi.org/10.1016/j.jconrel.2019.01.027
https://doi.org/10.1016/j.jconrel.2019.01.027
https://doi.org/10.1016/j.jconrel.2020.01.054
https://doi.org/10.1016/j.jconrel.2020.01.054
https://doi.org/10.1021/acs.nanolett.9b01571
https://doi.org/10.1038/s41551-016-0011
https://doi.org/10.1038/s41565-018-0319-4
https://doi.org/10.1126/sciadv.aba4024
https://doi.org/10.1126/sciadv.aaz8985
https://doi.org/10.1038/s41467-020-17670-y
https://doi.org/10.1002/adma.201705350
https://doi.org/10.1126/sciadv.aay0589
https://doi.org/10.1038/s41577-018-0065-8
https://doi.org/10.1021/acs.nanolett.8b02321
https://doi.org/10.1126/science.aaa4971
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mu et al. Bioinspired Nanotherapeutics for Immuno-Oncology
38. Luo C, Hu X, Peng R, Huang H, Liu Q, Tan W. Biomimetic Carriers Based on
Giant Membrane Vesicles for Targeted Drug Delivery and Photodynamic/
Photothermal Synergistic Therapy. ACS Appl Mater Interfaces (2019)
11:43811–9. doi: 10.1021/acsami.9b11223

39. Ren E, Liu C, Lv P, Wang J, Liu G. Genetically Engineered Cellular Membrane
Vesicles as Tailorable Shells for Therapeutics. Adv Sci (2021) 8:e2100460.
doi: 10.1002/advs.202100460

40. Hegde PS, Chen DS. Top 10 Challenges in Cancer Immunotherapy. Immunity
(2020) 52:17–35. doi: 10.1016/j.immuni.2019.12.011

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
Frontiers in Oncology | www.frontiersin.org 7121
Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Mu, He, Shi, Jiang and Liu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.
January 2022 | Volume 11 | Article 819817

https://doi.org/10.1021/acsami.9b11223
https://doi.org/10.1002/advs.202100460
https://doi.org/10.1016/j.immuni.2019.12.011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Yuanzeng Min,

University of Science and Technology
of China, China

Reviewed by:
Ya Ding,

China Pharmaceutical University,
China

Jun Wu,
Sun Yat-sen University, China

*Correspondence:
Kele Cui

ckele@mail.ustc.edu.cn
Min Cheng

chengmin@ustc.edu.cn

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Oncology

Received: 21 November 2021
Accepted: 23 December 2021
Published: 14 January 2022

Citation:
Mei X, Li H, Zhou X,

Cheng M and Cui K (2022) The
Emerging Role of Tissue-Resident
Memory CD8+ T Lymphocytes in
Human Digestive Tract Cancers.

Front. Oncol. 11:819505.
doi: 10.3389/fonc.2021.819505

REVIEW
published: 14 January 2022

doi: 10.3389/fonc.2021.819505
The Emerging Role of Tissue-
Resident Memory CD8+ T
Lymphocytes in Human Digestive
Tract Cancers
Xinyu Mei1, Huan Li2, Xinpeng Zhou3, Min Cheng4,5,6* and Kele Cui5,6,7*

1 Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division
of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China, 2 Department of Thoracic Surgery,
Anhui Provincial Hospital Affiliated With Anhui Medical University, Hefei, China, 3 Department of Thoracic Surgery, Anhui
Provincial Hospital, Wannan Medical College, Hefei, China, 4 Department of Geriatrics, Gerontology Institute of Anhui Province,
The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, China, 5 Anhui Provincial Key Laboratory of Tumor Immunotherapy and
Nutrition Therapy, Hefei, China, 6 Cancer Immunotherapy Center, The First Affiliated Hospital of University of Science and
Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei,
China, 7 Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC),
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China

Malignant digestive tract tumors are a great threat to human public health. In addition to
surgery, immunotherapy brings hope for the treatment of these tumors. Tissue-resident
memory CD8+ T (Trm) cells are a focus of tumor immunology research and treatment due
to their powerful cytotoxic effects, ability to directly kill epithelial-derived tumor cells, and
overall impact on maintaining mucosal homeostasis and antitumor function in the
digestive tract. They are a group of noncirculating immune cells expressing adhesion
and migration molecules such as CD69, CD103, and CD49a that primarily reside on the
barrier epithelium of nonlymphoid organs and respond rapidly to both viral and bacterial
infection and tumorigenesis. This review highlights new research exploring the role of
CD8+ Trm cells in a variety of digestive tract malignant tumors, including esophageal
cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma. A summary of
CD8+ Trm cell phenotypes and characteristics, tissue distribution, and antitumor functions
in different tumor environments is provided, illustrating how these cells may be used in
immunotherapies against digestive tract tumors.

Keywords: CD8+ Trm cells, characteristics, antitumor effects, immunotherapy, digestive tract tumors
INTRODUCTION

Malignant digestive tract tumors are a great threat to human public health. According to 2020 global
cancer statistics, digestive tract tumors such as esophageal cancer (EC), gastric cancer (GC), colorectal
cancer (CRC), and hepatocellular carcinoma (HCC) rank in the top 10 in cancer incidence and
mortality and account for 23.4% of all new cases and 36.7% of deaths (1). The gastrointestinal mucosa
is prone to inflammatory lesions and tumors resulting from long-term stimulation by physical and
chemical factors and microorganisms (2). When tumors occur, although innate immune cells, as the
vanguard, can induce rapid effector responses, powerful adaptive immunity involving various subsets
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of T cells, which is then triggered, is the main force to exert
antitumor roles (3). As an important member of memory T cells,
the tissue-resident memory T (Trm) subset is a group of
noncirculating immune cells that reside in peripheral tissues and
mediate tumor defense through cytokine secretion in humans and
rodents (4–6). Trm cells include CD8+ Trm cells, CD4+ Trm cells,
regulatory Trm cells, natural killer Trm cells, and gd Trm cells, in
which CD8+ Trm cells are extensively studied in antitumor
research due to their powerful cytotoxic activity. CD8+ Trm cells
mainly reside on the barrier epithelium of nonlymphoid organs
and respond rapidly to both viral and bacterial infection and
tumorigenesis. In human digestive tract mucosa, CD8+ Trm cells
play a key role in anti-infection and antitumor immunity because
they elicit a rapid immune response after antigen stimulation (7) .

Thus, CD8+ Trm cells play an important role in maintaining
homeostasis and resisting tumorigenesis within the digestive
tract mucosa. By recognizing homologous antigens, CD8+ Trm
cells in the tumor microenvironment (TME) can rapidly secrete
cytokines to activate innate immune cells and enhance the
expression of chemokines and adhesion receptors, which in
turn recruit circulating immune cells needed to exert essential
antitumor functions. CD8+ Trm cell infiltration is associated
with improved prognosis in common digestive tract tumors,
such as EC, GC, CRC, and HCC (8–11).

Many treatments for malignant digestive tract tumors have
shifted from traditional chemotherapy to a combination of
chemotherapy and immunotherapy. In the TME of most
digestive tract cancers, CD8+ Trm cells usually show an
exhausted phenotype with the expression of inhibitory immune
checkpoints such as programmed cell death protein-1 (PD-1) and
T cell immunoglobulin and ITIM domain (TIGIT) (12–14).
Although immune checkpoint inhibitors are widely used in the
treatment of digestive tract tumors, there is still a high incidence of
immune-related adverse events, and many patients do not
respond well to immune checkpoint inhibitors due to the
absence of prognostic markers, resulting in poor therapeutic
outcomes (15–17). Therefore, adequate understanding of how
variations in CD8+ Trm cells in the TME affect digestive tract
tumor pathogenesis is of great practical significance for clinical
treatment. However, until now, the roles of CD8+ Trm cells in
digestive tract tumors have not been comprehensively described.

Herein, we review recent progress in understanding of the
tissue distributions, biological characteristics and antitumor
mechanisms of CD8+Trm cells in EC, GC, HCC and CRC to
provide directions for combined precision targeted therapy
strategies and prognosis prediction.
BIOLOGICAL CHARACTERISTICS OF
CD8+ TRM CELLS

The Origin and Maintenance of CD8+

Trm Cells
Trm cells are differentiated from naive T cells (18). The
predominant phenotypes of CD8+Trm cells express CD69,
CD103, and CD49a (19–21), but do not express lymphoid
Frontiers in Oncology | www.frontiersin.org 2123
homing molecules CCR7 and CD62 L and cannot be recycled
(22–24). For tumor immunity, cross-priming by type 1 classical
dendritic cell (cDC1) subsets, whose development and/or function
depends on basic leucine zipper ATF-like transcription factor 3
(Batf3) transcription, is necessary for optimal generation of Trm
cells (25–27). Indeed, Batf3-lineage DCs migrate to the draining
lymph node to mediate T cell cross-priming, while another subset
remains in the tumor site to produce CXCR3 ligands CXCL9 and
CXCL10 (CXCL11 in humans) used to recruit CD8+ effector T cells
back to the target tissue (27). After cross-priming by Batf3-driven
DCs, naive T cells and central memory T (Tcm) cells can
differentiate into precursor Trm (pTrm) cells that enter the blood
and circulate into targeted tissues. CD69 is upregulated on pTrm
cells after exposure to IFN-a released by macrophages. After
reaching the upper cortex, pTrm cells express CD103 and further
differentiate in response to TGF-b. Kruppel-like factor 2 (KLF2) is
a transcription factor encoding sphingosine-1 phosphate receptor 1
(S1PR1) and CD62 L, two molecules critical for naive T cell
recirculation (28). Competition of CD69 and S1PR1 enables T
lymphocytes to reside in peripheral tissue and differentiate into
Trm cells. At the same time, T cells entering the epithelial tissue
upregulate CD103 and downregulate the transcription factor KLF2
in response to TGF-b, promoting the residence of CD8+ T cells
(29). TNF-a and type I interferon can upregulate the expression of
CD69 on the surface of CD8+ Trm cells (24). In CD103-Trm cells,
the memory lymphocyte cluster (MLC) can also provide signals to
maintain CD103-Trm residence (23, 24) (Figure 1).

Although CD69 expression is upregulated in the early stage of
Trm cell development, it cannot be used as a reliable marker of
tissue residence because it is also expressed on other immune
cells, and T cells expressing CD69 are still able to enter the
circulation (30). CD103, also known as a E-integrin and human
mucosal lymphocyte antigen, is an integrin expressed on
intraepithelial T cells and some peripheral regulatory T cells.
By binding to its ligand E-cadherin, CD103 can make antigen-
specific T lymphocytes reside in epithelial tissue and is thus
considered a reliable marker for Trm cells (23). CD49a, also
known as very late antigen-1 (VLA-1), is a member of the
integrin family. By binding to collagenase type IV, CD49a can
prompt cells to be retained and survive in tissues (31).
Furthermore, the maintenance of Trm cells in tissues is
dependent on cytokines such as TNF-a, IL-15, TGF-b, and IL-
33, while migration and retention are impacted by chemokines
such as C-X-C motif chemokine receptor 6 (CXCR6), CCR10,
and CXC chemokine ligand 17 (CXCL17) (30).
The Role of CD8+ Trm Cells in the
Antitumor Immune Response
Tumor-infiltrating CD8+ T cells are effector T cells that can
directly recognize and kill target cells, serving as the immune
system’s frontline force against tumors. CD8+ T lymphocytes are
represented by cytotoxic T lymphocyte (Tc1) subsets, which have
antitumor and anti-infection functions by producing high levels
of perforin, granzyme B, IFN-g, and TNF-a (32). Of the immune
cells that infiltrate the TME, the infiltration of CD8+ T
lymphocytes, especially Tc1 subsets, is usually associated with a
January 2022 | Volume 11 | Article 819505
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more favorable prognosis (33). The antitumor function of CD8+

T cells depends on both differentiation and transport into the
TME (34). In the TME of solid tumors, factors such as abnormal
chemokine secretion and tumor angiogenesis can hinder the
transport and function of CD8+ T lymphocytes (35). When this
occurs, CD8+ Trm cells play an extremely important role in the
antitumor process (36). Among the various subsets of Trm cells,
CD8+ Trm cells are considered the first line of defense for
peripheral tissues to inhibit early exposed antigens and have
thus received considerable attention. The response of CD8+ Trm
cells to re-exposed homologous antigens in the barrier tissue is
faster than the response of circulating memory T cells (37, 38),
primarily as a result of the critical locations in which they reside.
These regions are the most common sites exposed to pathogens
such as bacteria and viruses and where epithelial cancers
originate. When activated, CD8+ Trm cells can quickly release
perforin and granzyme B to directly kill target cells (6, 39) and
amplify the activation of a small number of cells into an organ-
wide response (40). While Trm cells may have phenotypic
heterogeneity based on their location in the epithelia or stroma
and the tumor subtype, these cells can promote recruitment of T
lymphocytes into the epithelial TME and enhance the early signal
transduction of CD8+ T lymphocytes within tumors (41).
Frontiers in Oncology | www.frontiersin.org 3124
During tumorigenesis, CD69+CD8+/CD103+CD8+/CD49a+CD8+

T lymphocytes are highly activated, showing better effector
function than traditional CD8+ T cells, and are able to control
tumor growth (42).

When persistently exposed to tumor antigens, upregulation of
inhibitory receptors such as PD-1, cytotoxic T lymphocyte
associated antigen-4 (CTLA-4), TIGIT, T cell immunoglobulin-
and mucin-domain-containing molecule-3 (TIM3), and
lymphocyte activation gene-3 (LAG3) can lead to impaired
killing function and exhaustion of CD8+ T cells (43, 44). For
example, as esophageal squamous cell carcinoma (ESCC)
progresses, changes in the TME are accompanied by an increase
in immunosuppressive cells such as regulatory T (Treg) cells,
myeloid-derived suppressor cells (MDSCs), and immuno-
suppressive DCs, as well as soluble inhibitory molecules such as
indole-2,3 dioxygenase (IDO) (45) and fibroblast growth factor 2
(FGF2) (46), resulting in reduced infiltration and functional
inhibition of CD8+ T cells (47). In recent years, it has been
shown that tissue-resident T lymphocytes can overexpress PD-1
and other immune checkpoint molecules, such as TIGIT, LAG-3,
and Tim-3, in some experimental animal and human tumor
tissues (36, 48). There are two possibilities for this phenomenon:
1) tumor infiltrating CD8+ T lymphocytes express a variety of
FIGURE 1 | The origin and phenotypes of CD8+ Trm cells in human digestive tract tumors. In the draining lymph node, naive CD8+ T cells can differentiate into
precursor Trm (pTrm) cells after cross-priming by Batf3-driven DCs and then enter the blood and circulate into the target tissue. By producing the CXCR3 ligands
CXCL9 and CXCL10 (CXCL11 in humans), another subset of DCs remaining in the tumor site recruits pTrm cells into the tumor microenvironment. CD69 is
upregulated on pTrm cells after exposure to TNF-a and IFN-a. After reaching the upper cortex, pTrm cells express CD103 and further differentiate in response to
TGF-b. In addition to expressing CD69 and CD103, mature CD8+ Trm cells also express the adhesion molecule CD49a, thus possessing resident properties.
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integrins, including CD49a, and remain in the TME in a
quiescent/exhausted state, or 2) CD8+ T cells in the TME
upregulate the expression of multiple integrins after exhaustion
through an undetermined mechanism (Figure 2).

The following sections define the characteristics of CD8+Trm
cells along with current research evaluating a role for CD8+Trm
cells in antitumor therapy for four common digestive tract
cancers, EC, GC, CRC, and HCC (Table 1).
CHARACTERISTICS OF CD8+ TRM
CELLS AND THEIR POTENTIAL USE
IN THE TREATMENT OF DIGESTIVE
TRACT CANCERS

CD8+ Trm Cells in EC
In 2020, EC ranked seventh in new cases and sixth among
cancer-related deaths, with one in 18 deaths caused by EC (1).
Frontiers in Oncology | www.frontiersin.org 4125
ESCC, which primarily occurs in Asian countries, accounts for
about 90% of all pathological types of EC (63). Since it is directly
exposed to foreign antigens in food, the esophageal mucosa has a
special immune cell composition that plays an important role in
maintaining esophageal homeostasis and mucosal anti-infective
and antitumour processes. Strong expression of CD45RO, CD8,
CD3, and CD107a in EC tissues indicates that there are cytotoxic
memory CD8+ T cells in the stroma of these tumors (64).
Although CD103+CD8+ T cells express PD-1 and TIM-3 in
ESCC, they are relatively active cell subsets (12). Cells with the
Trm phenotype have higher proliferation ability and express
cytotoxicity-related molecules, indicating that there are highly
activated antitumor subsets in CD8+ tumor infiltrating
lymphocytes (TILs) in the TME.

The role of CD8+ Trm cells in EC is not well understood.
Alterations in CD8+ Trm cell phenotypes and biological
functions and the significance of these cells to EC prognosis
and diagnosis remain obscure. Indeed, we have focused on the
role of tissue-resident CD8+ T cells in EC for many years and
FIGURE 2 | The antitumor effects of CD8+ Trm cells in the TME of human solid tumors. In the process of tumorigenesis, CD8+ Trm cells could be highly activated
and show a higher effector function than traditional CD8+ T cells, releasing perforin and granzyme B and killing cancer cells. However, when persistently exposed to
tumor antigens and immunosuppressive factors, the upregulation of inhibitory receptors such as PD-1, CTLA-4, TIGIT, TIM3 and LAG3 leads to impaired killing
function and exhaustion of CD8+ Trm cells, making them unable to control tumor growth.
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found that CD49a, PD-1, and TIGIT molecules are highly
expressed on CD8+ T cells in the TME of ESCC patients,
indicating that there is also a population of tissue-resident
CD8+ T cells with high expression of CD49a that shows the
immune exhaustion phenotype in the ESCC TME. Multiple
components of the ESCC TME can lead to immune exhaustion
of CD103+CD8+ TILs, which can be repaired by aPD-1 blockers.

Clinical studies show that CD103+ CD8+ TILs are linked to
the overall survival of ESCC patients (12). Thus, CD103 may be a
suitable marker to evaluate the antitumor immune response of
CD8+ T cells in ESCC, and infiltration of CD103+CD8+ TILs in
the TME may be used as a biomarker to predict better prognosis
in esophageal carcinoma (8, 12). It is worth noting that
understanding the phenotype and function of CD8+ Trm cells
in the occurrence and development of ESCC and exploring how
best to reverse immune exhaustion and restore the antitumor
function of CD8+Trm cells is an urgent issue that must be
addressed by ESCC immunotherapeutic research. Establishing
effective immune intervention strategies that target inhibitory
molecules and reverse immune exhaustion will improve
precision clinical immunotherapy for ESCC.

CD8+ Trm Cells in GC
GC is one of the most common cancers in the world. In 2020,
this disease ranked fifth in morbidity, with more than one
million new cases, and fourth in mortality, with an estimated
769,000 deaths (1). Helicobacter pylori infection is a major risk
factor for the development of chronic gastritis to GC (65, 66), but
the exact role of inflammatory components in disease
progression remains unclear. Two types of gastric metaplasia,
intestinal metaplasia and spasmodic cleavage peptide expression
metaplasia (SPEM), are precancerous lesions of human gastric
adenocarcinoma (51). The accumulation of CD8+ Trm cells in
the gastric mucosa involves the regulation of absent in melanoma
2 (Aim2), one of the key components of the inflammasome.
Previous studies show that the lack of Aim2 can promote the
Frontiers in Oncology | www.frontiersin.org 5126
accumulation of CD8+ Trm cells in chronic inflammatory gastric
mucosa by preventing CD62 L and S1PR1 function (67). While
the high levels of IFN-g produced by gastric CD8+ Trm cells can
induce SPEM (68), these cells have antitumor cytotoxicity when
a tumor occurs (67).

CD103+CD8+ Trm cells in GC have similar phenotypes to
those in other nonlymphoid tissues, including downregulation of
lymph node homing-related molecules such as CD62 L, CCR7,
and T cell factor 1 (TCF-1) and upregulation of tissue
inhabitation promoting molecules such as CD69, CD49a, and
Runt-related transcription factor 3 (RUNX3) (20, 31, 50, 52, 69,
70). Approximately 30% of TILs in GC are CD69+CD103+ Trm
cells, which highly express the inhibitory receptors PD-1, TIGIT,
and CD39 (53). However, CD103+CD8+ T cells can produce high
levels of cytolytic enzymes and IFN-g in the presence of a wide
variety of inhibitory receptors (9). Moreover, PD-1 blockade
effectively restored the function of CD103+CD8+ T cells but not
CD103-CD8+ T cells. Thus, CD103+CD8+ Trm cells represent
highly activated T cell subsets in GC and play an important role
in inhibiting tumors (9).

Trm cell metabolism in GC tissues does not utilize glucose but
relies on fatty acid oxidation to maintain cell survival, such that
loss of fatty acids results in Trm cell death. GC cells outperform
Trm cells at lipid uptake and may induce Trm cell death.
Targeting PD-L1 can promote the survival of Trm cells by
reducing the expression of fatty acid binding protein (Fabp)4
and Fabp5 in gastric tumor cells, increasing the expression of
Fabp4/5 in Trm cells, and promoting lipid uptake by Trm cells
(53). Thus, metabolic reprogramming may be an effective way to
prolong the life span of GC Trm cells and enhance antitumor
immunity, including CD8+ Trm cell survival. In addition, B cells
in the tumor can form cell masses known as tertiary lymphoid
structures (TLSs), which can induce immune cells to effectively
recognize and attack cancer cells. In the gastric TME, TLSs are
positively correlated with tumor-infiltrating CD8+Trm cells.
Studies have indicated that Trm cells may be related to the
TABLE 1 | Characteristics of CD8+Trm cells in human digestive tract tumors.

Tumor
types

Phenotypes Inhibitory
receptors

Cytotoxicity Characteristics Cytokines References

EC CD69
CD103

PD-1
TIGIT
TIM-3

+ In addition to expressing inhibitory receptors, CD8+Trm cells in the EC have high
proliferation ability and high cytotoxicity-related molecule expression.

IFN-g
IL-2
CD107a

(13, 49)

GC CD69
CD49a
CD103
RUNX3

PD-1
TIGIT
CD39

+ CD8+Trm cells in the GC can induce SPEM by producing high levels of IFN-g,
produce high levels of cytolytic enzyme and IFN-g in the presence of a large amount
of various inhibitory receptors, and are related to the formation of TLS.

IFN-g
Granzyme B
Perforin
CD107a
IL-2
TNF-a

(10, 21, 28,
50–53)

CRC CD69
CD103

PD-1
CD39

+ CD8+Trm cells in the CRC have significant resident properties and tumor reactivity.
With a unique methylome pattern and distinct epigenetic properties, they can
enhance tissue immunity, improve barrier function, and prevent microbiota-
associated diseases.

IFN-g
Granzyme B
Perforin

(11, 54–59)

HCC CD69
CD49a
CD103
CD49b
CD11c

PD-1
TIM-3
LAG-3
CTLA-4
CD244
CD39

+ As a unique population with low cytotoxicity, hepatic CD8+Trm cells provide long-
term protection for human papillomavirus-like virus HPV-induced HCC.

Granzyme B
Granzyme K
Perforin
Granulysin

(60–62)
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formation of TLSs, and both may improve the outcomes of
targeted therapy for PD-1 inhibitors in GC (71–73).

CD8+Trm Cells in CRC
CRC ranks third in the world in incidence and second in
mortality (1). As the organ with the largest interface with its
environment, the gut is exposed to billions of antigens every day.
The immune system needs to ensure tolerance to non-dangerous
antigens and establish a strong immune response against
potentially dangerous antigens (74). Immune cells are unevenly
distributed in the gut. While CD8+ T cells (especially CD8+ Trm
cells), monocytes, and CD19+ B cells are concentrated in the
proximal colon, gd T cells and NK cells are more abundant in the
transverse colon, and CD4+ T cells and antibody-secreting cells
are enriched in the distal colon and rectum (54). CD8+ T cells in
the human intestinal tract are mainly Trm cells, which have
CD103 and CD69 phenotypes and provide the first response to
infection and tumors on the mucosal surface. TGF-b plays
different roles in the formation and maintenance of Trm cells
in the intestine. During secondary lymphoid organogenesis,
TGF-b inhibits the migration of effector CD8+ T cells to the
intestine, while during maintenance, TGF-b promotes the
residence of CD8+ T cells (55). The regulatory function of Trm
cells in the intestinal tract may be involved in intestinal
homeostasis. It has been reported that promoting Trm and
dendritic cell interactions can enhance tissue immunity,
improve barrier function, and prevent microbiota-associated
diseases (56). Due to the distinctiveness of the intestinal tract,
CD8+ Trm cells have phenotypic and functional heterogeneity in
response to infection and cancer, from pluripotent to
differentiated, and show preferential protection at sites of
imminent exposure to pathogens or persistent disease (75). In
CRC, CD103 and CD69 are associated with immune recognition
of Trm cells (57–59). CD103+CD39+CD8+ T cells have
significant resident properties and tumor reactivity (10), with a
unique methylome pattern in which the tumor reactivity markers
CD39 and CD103 are specifically demethylated. This process
provides these cells with distinct epigenetic properties (76).

CRC can be divided into microsatellite stable CRC (MSS) and
high microsatellite unstable CRC (MSI-H). While tumor-
infiltrating lymphocytes are abundant in MSI-H, which make
up approximately 15% of CRCs, MSS CRC lacks tumor-
infiltrating lymphocytes and is thus associated with a less
favorable prognosis (77, 78). CD8+ Trm cell numbers were
much higher in MSI-H than in MSS. Other studies show that
deletion of the IL-15 gene, which is essential to maintaining
intestinal Trm cells (79), is associated with poor prognosis,
indicating that CD8+Trm cells play an important antitumor
role in CRC. However, in MSI-H CRC, the expression of PD1
tended to increase in CD8+Trm cells, indicating that checkpoint
inhibition therapy targeting Trm cells in MSI-H CRC may be of
great significance (79).

CD8+ Trm Cells in HCC
In 2020, primary HCC was the sixth most frequently diagnosed
cancer, with more than 900,000 new cases, and the third leading
cause of cancer mortality, with 830,000 deaths (1). This
Frontiers in Oncology | www.frontiersin.org 6127
malignant tumor usually occurs in chronic inflammatory liver
disease, such as fibrosis or cirrhosis, and is associated with
certain risk factors, including hepatitis B virus (HBV), hepatitis
C virus (HCV), alcohol abuse, and metabolic diseases (80, 81).
Increased infiltration of cytotoxic T, NK, and NKT cells in the
liver plays an active antitumor role in primary HCC. To avoid
unnecessary activation of innate immune cells during continuous
exposure to food and microbial-derived antigens, the liver needs
to maintain a relatively immunotolerant environment. When
immunogenic stimulation occurs, liver CD103+ dendritic cells
express high levels of MHC-II, CD80 and CD86, which result in
massive activation of CD8+ T cells (82). For example, HBV
induces IFNg+CD8+ T cells to upregulate CD69 and CD103 and
induces liver CD8+ T cells to show the Trm phenotype in situ
(83). The presence of T cells and cytotoxic cells in TILs correlates
with a favorable prognosis of patients with HCC. More than 50%
of these tumor-infiltrating lymphocytes express CD69 (84), and
about 20-30% are positive for CD103, thus showing resident
characteristics. However, unlike other tumors, only about 5% of
human hepatic CD69+CD8+ T cells express CD103 (85). Recent
studies have shown that hepatic CD8+ Trm cells adhere to the
liver via LFA-1, and the residence of CD8+ T cells in the hepatic
sinusoid depends on the LFA-1-I/CAM-1 interaction (86).
However , chronic tumor ant igen st imula t ion and
immunosuppressive cells and their production in the TME can
put Trm cells into a “dysfunctional state”. Targeting immune
checkpoint molecules such as PD-1, TIM-3, LAG-3, and CTLA-4
can restore the dysfunction of Trm cells (87). However, hepatic
CD8+ Trm cells are a unique population with low cytotoxicity
(60), which may be related to the immunotolerant ecological
properties of the liver. Thus, anti-PD-L1 or anti-PD-1 alone may
not restore this dysfunction, and other agents, such as IL-2, may
have a synergistic effect in improving the antitumor immunity
of CD8+ Trm cells in HCC (87). In addition, the development
and maintenance of tumor-specific CD8+ Trm cells induced
by adenoviral vector immunization vaccine in the liver can
provide long-term protection for human papillomavirus-
like virus (HPV)-induced HCC and can enhance the formation
of CD8+ Trm cells by targeting CTLA-4 (61). Thus, CD8+

Trm cells may also play an active role in tumor vaccine
therapy for HCC.
APPLICATION OF CD8+ TRM CELLS IN
CANCER IMMUNOTHERAPY

The exhaustion phenotype of CD8+Trm cells in the TME does
not prevent antitumor activity from being reactivated. In vitro
studies of CD103+CD8+ T cells with high expression of PD-1 in
lung cancer have shown that blocking the expression of PD-1 on
these immune cells can restore their cytotoxicity against
autologous tumor cells, suggesting that anti-PD-1 therapy may
restore the killing function of CD8+ Trm cells toward autologous
tumors (62). In the last few decades, anti-PD-1/PD-L1 therapies
have shown remarkable efficacy in patients with malignant
gastrointestinal neoplasms. For instance, the international
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randomized phase III KEYNOTE-181 and KEYNOTE-590
studies in EC patients showed that pembrolizumab provided a
clinically meaningful overall survival (OS) benefit versus the
control group (88, 89). Indeed, clinically meaningful
improvements in overall response rate (ORR), progression-free
survival and OS were observed in GC patients treated with
pembrolizumab plus chemotherapy in the KEYNOTE-059 and
KEYNOTE-062 trials (90, 91). However, although anti-PD-1
mAb is a promising approach for advanced GC patients, the
response rate is still limited, with an ORR of only about
12.0% and a disease control ratio of about 34.7% (92).
Although immunotherapy has produced durable responses in
MSI-H CRC, with recent FDA approval of pembrolizumab in
the first-line setting of metastatic CRC (93), MSS CRC has
long been considered resistant to PD-1/PD-L1 blockade.
However, combination therapy, such as co-inhibition of anti-
PD-1 and STAT3 or regorafenib, a small molecule tyrosine
kinase inhibitor, can elicit an effective antitumor response in
a small subset of MSS CRC patients (49, 94). Disappointingly,
the ORR of checkpoint inhibitors in HCC patients is only
15-20% (95). Recently, the Nivolumab (CheckMate-459)
III phase trial failed to meet the primary endpoint, so an
effective immunosuppressive therapy against HCC is still
lacking (96).

There is no denying that the use of PD-1 inhibitors to reverse
the exhaustion of immune cells such as CD8+ Trm cells, alone or
with other checkpoint antibodies, has had controversial results.
Due to tumor heterogeneity, a lack of reproducibility of results,
and a complex scoring system, PD-L1 is not suitable as a
predictive biomarker (97). While methods such as the
combined positive score, which detects PD-L1 levels in tumors
and lymphocytes, can be used clinically to evaluate patient
response to PD-1/PD-L1-related inhibitors, their specificity for
evaluating therapeutic impact is poor (98). Therefore, treatment
options for patients with unresectable, locally advanced, or
metastatic esophageal cancer are still limited, requiring the
search for new predictive indicators and immunotherapy
strategies (99).

Another way to increase the number of functional CD8+ Trm
cells in tumors is by inducing their expansion using tumor
vaccines. Studies demonstrate that vaccination can induce Trm
cells in the tissue after natural infection and vaccination. For
example, intravaginal immunization or systemic perfusion has
been shown to boost vaginal mucosa by inducing Trm cells in the
reproductive area (100). In addition, encoding respiratory
syncytial virus mechanisms or recombinant cytomegalovirus
vectors of Bacille Calmette-Guerin vaccine proteins for
intranasal vaccination promotes immune cells to develop
resident properties (101, 102). The vaccine-specific CD8+ T cell
response can provide long-term protection against HPV-induced
skin cancer and HCC but is dependent on the induction and
accumulation of CD8+ Trm cells by blocking CTLA-4 early after
immunization (61). Local radiotherapy by vaccination (103),
which changes the expression of selectin, integrin, and
chemokines, can also enhance the recruitment of resident
CD8+ T lymphocytes in the tissue and tumor site.
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PERSPECTIVE

CD8+ Trm cell infiltration plays a critical role in the antitumor
immune response in the digestive tract. CD69, CD103, CD39, and
CD49a are the key biomarkers of tumor-reactive CD8+ Trm cells
and can be used as prognostic molecules for different digestive
tract tumors (57, 59). However, CD8+ Trm cells that have
infiltrated digestive tract tumors can also express immune
checkpoint molecules such as PD-1, CTLA-4, TIGIT, TIM3,
and LAG3, which can damage their killing function and cause
immune exhaustion (104, 105). While targeted application of
immune checkpoint inhibitors has achieved good results, the lack
of immune markers and disparate responses to immune
checkpoint inhibitors diminish the efficacy of treatment.
Determining how best to increase the number and function of
tumor-associated CD8+ Trm cells helps to maximize antitumor
immunity. There is also great diversity among CD8+Trm cell
phenotypes found in different digestive tract organs. For example,
while PD-1hi CD8+ Trm cells highly express cell adhesion and
tissue positioning markers, including CD69 and integrins CD11c,
CD49a, CD49b, and CD103 in HCC (87), CD103+CD8+ Trm
cells express tissue residency-promoting molecules, such as
CD69, CD49a, and RUNX3, in gastric cancer (9). CD103 is an
important marker of CD8+ Trm in ESCC. ESCC patients with co-
expression of PD-L1/TIM3 or PD-L1/TIGIT in CD8+ Trm cells
have a lower survival rate than those expressing either marker
alone (106). This may explain why only a small number of ECC
patients benefit from treatment with PD-1 inhibitors. The
absence of predictive indicators results in a high rate of
immune-related adverse events in response to drugs targeting
PD-1/PD-L1, with only a small number of patients showing
positive outcomes. Nevertheless, a novel strategy to solve this
problem is developing nanodrug delivery systems with a high
drug loading capacity and targeting ability. It has been reported
that biodegradable polymers such as poly (ursolic acid) are used
as drug carriers for treating CRC and other cancers. The
anticancer drug effectively loaded into poly(salicylic acid)
nanoparticles shows ultrahigh blood vessel penetration, tumor
penetration, and tumor accumulation due to the special prickly
nanostructure (107, 108). Thus, the combination of a therapeutic
polymer platform and immunotherapy to achieve precise targeted
therapy may be a new attractive therapeutic strategy for treating
digestive tract cancer.

In conclusion, alimentary tract neoplasms are a serious threat
to human health. Immunotherapy for digestive tract tumors still
has many problems, including blind treatment, side effects, and
disparate individual responses. CD8+ Trm cells exist in various
digestive tract tumors and are closely related to disease
prognosis. However, current research on the utilization of
CD8+ Trm cells in digestive tract tumors is still in the early
stages. Thus, a comprehensive understanding of CD8+ Trm cell
phenotypes and the characteristics of corresponding immune
checkpoint molecules that are expressed in digestive tract tumors
will be important to help guide accurate diagnosis and treatment
of different tumor types. Specific drug therapy and tumor vaccine
therapy that targets tumor-associated CD8+ Trm cells may
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become an important direction for antitumor research and
tumor precision therapy.
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GLOSSARY

AIM activation inducer molecule
Aim2 absent in melanoma 2
Batf3 basic leucine zipper ATF-Like transcription factor 3
CCR7 chemokine receptor 7
cDC1 classical dendritic cell
CRC colorectal cancer
CTLA-4 cytotoxic T lymphocyte associated antigen-4
CXCL17 CXC chemokine ligand 17
CXCR6 C-X-C motif chemokine receptor 6
EC esophageal cancer
ESCC esophageal squamous cell carcinoma
Fabp fatty acid binding protein
FGF2 fibroblast growth factor 2
GC gastric cancer
HBV hepatitis B virus
HCC hepatocellular carcinoma
HCV hepatitis C virus
HPV papillomavirus-like virus
IDO indole-2,3 dioxygenase
KLF2 Kruppel-like factor 2
LAG3 lymphocyte activation gene-3
MDSCs myeloid-derived suppressor cells
MLC memory lymphocyte cluster
MSI-H high microsatellite unstable CRC
MSS microsatellite stable CRC
ORR overall response rate
OS overall survival
pTrm precursor Trm
RUNX3 Runt-related transcription factor 3
S1PR1 sphingosine-1 phosphate receptor 1
SPEM spasmodic cleavage peptide expression metaplasia
TCF-1 T cell factor 1
Tcm central memory T
TIGIT immunoglobulin and ITIM domain
TILs tumor infiltrating lymphocytes
TIM3 T cell immunoglobulin-and mucin-domain-containing molecule-3
TME tumor microenvironment
TLSs tertiary lymphoid structures
Treg regulatory T
Trm tissue-resident memory T
VEGF vascular endothelial growth factor
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Cancer immunotherapy can boost the immune response of patients to eliminate tumor
cells and suppress tumor metastasis and recurrence. However, immunotherapy
resistance and the occurrence of severe immune-related adverse effects are clinical
challenges that remain to be addressed. The tumor microenvironment plays a crucial
role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have
emerged as powerful drug delivery platforms offering good biocompatibility and
biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading
capacity, controlled drug release, and low toxicity. In this review, we summarize the
application of injectable hydrogels as a unique platform for targeting the immunosuppressive
tumor microenvironment.

Keywords: cancer immunotherapy, tumor microenvironment (TME), injectable hydrogels, immunogenic cell death,
abscopal effect, controlled drug release
INTRODUCTION

Cancer is a major threat to human health worldwide (1). Cancer immunotherapy has emerged as a
promising cancer treatment approach that can inhibit tumor metastasis and recurrence by boosting
antitumor immune responses (2, 3). Cancer immunotherapies have revolutionized the treatment of
many cancer types in clinical settings. Immunotherapeutic agents include immune checkpoint
inhibitors, vaccines, immunologic adjuvants, adoptive cell transfer, and nonspecific immune-
stimulating factors (e.g., cytokines) (4). Nevertheless, low T cell infiltration levels, the presence of
inhibitory immune cells, and the lack of neoantigens limit response to immunotherapy. Systemic
administration of conventional drugs often requires high dosages or multiple injections, which can
lead to severe immune-related adverse effects and low patient compliance (5–7). Multiple
immunosuppressive factors in the tumor microenvironment (TME) have been shown to affect
the delivery of therapeutic agents and efficacy of T cell-based therapies, thus influencing the
therapeutic efficacy of cancer immunotherapy (8–10). Therefore, modulating or reprogramming the
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immunosuppressive TME can enhance the efficacy of cancer
immunotherapy. Many studies and clinical trials aiming to target
tumor immunosuppressive microenvironment to eradicate
malignant cells are ongoing (10, 11).

Hydrogels with 3D network structures have been widely used
in various fields, especially in biomedicine (7, 12–14). Injectable
hydrogels have attracted considerable attention as vehicles for
sustained drug delivery in situ because of their unique
advantages, including easy delivery by syringe and minimal
surgical wounds (13, 15). Injectable hydrogels can be loaded
with various agents, including chemotherapeutic drugs,
immunotherapeutic agents, antibodies, vaccines, cytokines, and
immune cells (7, 14, 16). Sustained and controlled release of
these therapeutic agents by injectable hydrogels can activate
systemic antitumor immune responses and inhibit tumor
metastasis and recurrence while causing minimal toxicity (7).
Herein, we highlight recent advances in reprogramming the
immunosuppressive TME using injectable hydrogels to
improve the efficacy of cancer immunotherapy (Figure 1).
Frontiers in Immunology | www.frontiersin.org 2135
CATEGORIES OF INJECTABLE
HYDROGELS

Injectable hydrogels are usually formed by quick sol-gel phase
transition or chemical polymerization in situ. They can be
directly delivered into the target sites by injection (12, 16).
Injectable hydrogels can be classified into chemically and
physically cross-linked hydrogels based on the gelling
mechanism (13, 16). Chemically cross-linked injectable
hydrogels are generated by introducing covalent linkages
between polymer chains via disulfide formation, photo-
irradiation, enzymes, Schiff’s base reactions, Michael-type
addition reactions, or Diels-Alder reactions (16). On the other
hand, physically cross-linked injectable hydrogels are formed
through intermolecular interactions, such as hydrogen bonds,
hydrophobic interactions, ionic cross-linking, and host-guest
interaction (16). Injectable hydrogels can also be classified as
natural or synthetic hydrogels based on the polymers used for
their preparation (7). Natural injectable hydrogels are typically
FIGURE 1 | Schematic diagram of antitumor therapy platform using hydrogels as platform to elicit antitumor immune response.
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composed of polysaccharides, proteins, and DNA. In contrast,
synthetic hydrogels consist of biodegradable polymers, such as
polypeptides and polyesters (7). Additionally, injectable
hydrogels can be divided into ordinary hydrogels and
smart hydrogels according to their responses to external
stimuli. Ordinary injectable hydrogels are not sensitive to
environmental changes, whereas smart injectable hydrogels can
be affected by temperature, pH, enzyme, and photoelectricity (13,
17). Moreover, injectable hydrogels can be biologically
functionalized with targeting moieties that have an affinity for
unique or overexpressed tumor cell markers for targeted drug
delivery applications (18).

Over the past decade, many studies have investigated the
antitumor potential of drug-loaded hydrogels (19). The
therapeutic potential of hydrogels has also been investigated in
patients with cancer. Up to September 2021, four clinical studies
related to drug-loaded hydrogels for the treatment of cancer have
been registered in the US registry of clinical trials (https://
clinicaltrials.gov/). Two completed, open-label, dose escalation
clinical studies (NCT02891460, NCT02307487) evaluated the
efficacy of mitomycin C-loaded hydrogels (TC-3) in patients
with bladder cancer. The results of these studies have not been
published yet (Table 1).
IMMUNOSUPPRESSIVE STATUS OF TME

TME is an integral part of tumors and can affect the efficacy of
cancer treatment (9). At different stages of tumor development,
different immune cell types are present in the TME. At an early
stage, tumors are infiltrated by antitumor immune cells,
including macrophages, natural killer (NK) cells, lymphocytes,
and dendritic cells (DCs) (20). However, at later stages of tumor
development, antitumor immune responses are hindered by
immunosuppressive cells, such as myeloid-derived suppressor
cells (MDSCs), regulatory T cells (Tregs), and M2 macrophages
(20, 21). The balance between different types of immune cells
determines the outcome of antitumor immune responses.

CD8+ cytotoxic T lymphocytes (CTLs) and CD4+ T helper
(Th) cells are paramount immune cells for tumor cell elimination
(22). Th1 responses, characterized by the production of IFN-g,
TNF-a, and IL-2, are also essential for tumor rejection. However,
Th1 responses can also contribute to tumor escape via IFN-g-
induced expression of the checkpoint molecule programmed
death-ligand 1 (PD-L1) or tumor immunoediting and selection
Frontiers in Immunology | www.frontiersin.org 3136
of resistant clones (23). In addition, long-term exposure of tumor
antigens to Th1 cells and other T cell subtypes may promote the
expression of inhibitory receptors, such as PD-L1, lymphocyte
activation gene 3 protein (LAG-3), and T-cell immunoglobulin
(Ig) domain and mucin domain protein 3 (TIM-3) (24). Immune
checkpoint pathways in cancer cells can cause T-cell dysfunction
and immune evasion. Immune checkpoint blockade (ICB),
especially antibodies against cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4), programmed cell death protein 1 (PD-1),
and PD-L1, can reverse immunosuppression and prevent
immune evasion (9). ICB has shown remarkable long-term
survival benefits in cancer patients with several types of
tumors, including melanoma, non-small cell lung cancer, and
renal cell carcinoma (16, 25).

However, Tregs, another subset of CD4+ T cells, often inhibit
antitumor immune responses and promote tumor growth. Tregs
can directly interact with CTLs and NK cells or indirectly inhibit
the antitumor activity of CTLs and NK cells by producing
immunoregulatory cytokines, such as IL-10 and TGF-b (10).
Notably, Tregs have been associated with unfavorable survival in
patients with many types of cancer (26). Hence, eliminating
Tregs in the TME may enhance antitumor immune responses.
Th2 cells can also block T-cell-induced tumor rejection by
promoting T-cell anergy, suppressing T-cell-mediated
cytotoxicity, and enhancing humoral immunity (10).

Tumor cells promote the recruitment of bone marrow-
derived cells (BMDCs), which can differentiate into
tumorigenic cell subtypes under certain conditions (20). For
instance, tumor-associated macrophages (TAMs) derived from
BMDCs promote tumor progression by facilitating angiogenesis,
invasion, and metastasis in vivo (27). MDSCs, another type of
BMDCs, can suppress antitumor immune responses by
inhibiting T cells and NK cells and promoting the expansion
of Treg populations within the TME (21).
INJECTABLE HYDROGELS TARGETING
IMMUNOSUPPRESSIVE TUMOR
MICROENVIRONMENT

Targeting Immune Checkpoint Molecules
Immune checkpoint blockade (ICB) immunotherapies,
especially antibodies against CTLA-4, PD-1, and PD-L1, have
revolutionized cancer treatment (28). However, ICBmonotherapies
TABLE 1 | Drugs embedded in hydrogels were used to treat cancers based clinical trials up to September 2021.

Study title Conditions Status Identifier

A Prospective Open Label Comparative Dose Ranging Study Evaluating the Effect of Pre-TURBT Intravesical Instillation of
Mitomycin C (MMC) Mixed with TC-3 Gel in Patients with Non Muscle Invasive Bladder Cancer (NMIBC)

Bladder
Cancer

Withdrawn NCT01799499

Safety and Tolerability Study Which Evaluate Intravesical Instillation with Mitomycin C Mixed with TC-3 Drug Retaining
Hydrogel Device in Patients with Muscle Invasive Bladder Cancer

Bladder
Cancer

Completed NCT02891460

Safety of Pre-TURBT Intravesical Instillation of Escalating Doses of TC-3 Gel and MMC in NMIBC Patients Bladder
Cancer

Completed NCT02307487

Safety and Efficacy of Doxorubicin-eluting-bead Embolization in Patients with Advanced Hepatocellular Carcinoma Hepatocellular
Carcinoma

Unknown NCT02525380
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show limited efficacy in most patients and may cause significant
toxicity (6, 9, 29). Therefore, more effective and safer combination
therapies involving ICB are under development. PD-L1 expressed
on the surface of tumor cells and on antigen-presenting cells can
interact with PD-1 expressed on activated T cells, promoting T-cell
apoptosis, anergy, and exhaustion (30, 31). Blocking the PD-1/PD-
L1 pathway with anti-PD-1 or anti-PD-L1 antibodies has
demonstrated promising therapeutic efficacy in a variety of
tumor types (32–35); however, response rates are only 10%–30%
(29, 36). Low neoantigen burden, insufficient infiltration of tumor-
specific T cells, and low expression of PD-L1 may contribute to the
low response rates in cancer patients treated with ICB (20, 37–41).
Moreover, multiple administration cycles of anti-PD-1 antibodies
can induce severe immune-related side effects (42–44); local
delivery of antibodies can minimize off-target effects and increase
drug bioavailability (45).

Wang et al. developed a drug-based supramolecular hydrogel
for local delivery of immune checkpoint inhibitors (ICIs) to
boost the host’s immune system against tumors (Figure 2) (46).
They first synthesized the amphiphilic prodrug, diCPT-
PLGLAG-iRGD, by conjugating a hydrophilic iRGD. This
Frontiers in Immunology | www.frontiersin.org 4137
prodrug can spontaneously assemble into supramolecular
nanotubes (P-NTs). By mixing a therapeutic dose of anti-PD-1
antibodies and P-NTs, they developed a hydrogel loaded with
anti-PD-1 antibodies. Wang et al. found that this formulation
could serve as a reservoir for long-term release of camptothecin
(CPT) and anti-PD-1 antibodies within the TME, thereby
inducing a potent antitumor immune response. They also
found that local P-NT-anti-PD-1 treatment in GL-261 brain
cancer and CT 26 colon cancer models led to tumor regression in
100% of mice.

The low immunogenicity of some tumor types and the body’s
decreased immune responses to tumor limit the development of
immunotherapy. Immunogenic cell death (ICD), featured by the
release of tumor-associated and tumor-specific antigens, danger-
associated molecular patterns, and pro-inflammatory cytokines,
plays an essential role in cancer immunotherapy (47). Recent
evidence suggests that neoadjuvant chemotherapy and the use
of biomaterials-based delivery systems both enhance the
therapeutic efficacy of immunotherapy owing to the induction
of ICD (48, 49). Gu et al. engineered an injectable reactive oxygen
species (ROS)-responsive hydrogel co-loaded with gemcitabine
A

B C D

FIGURE 2 | Schematic illustration of the in situ formed P-NT-anti-PD-1 hydrogel. (A) In situ formation of P-NT-anti-PD-1 hydrogel, which enables localized CPT and
anti-PD-1 delivery and promotes the activation of CD4 and CD8 T cells in the tumor microenvironment. (B) Representative transmission electron microscopy (TEM)
image of the networks of the P-NT hydrogel. (C) Circular dichroism (CD) spectrum of camptothecin (CPT) solution. (D) Photographs of liquid P-NT transformed into
hydrogel after the addition of phosphate-buffered saline (PBS). Reprinted with permission from Science Advances (46).
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(GEM) and anti-PD-L1 antibodies for in situ chemo-
immunotherapy (50). As the scaffold consists of ROS-
degradable hydrogel and the TME contains high levels of ROS,
GEM and anti-PD-L1 antibodies can be specifically released in
the TME. In B16-F10 melanoma and 4T1 breast tumor (low-
immunogenic) mouse models, local GEM delivery increased
tumor immunogenicity and augmented the antitumor efficacy
of ICB, thereby promoting tumor regression and suppressing
tumor recurrence. To enhance the expression of tumor-
associated antigens, Ruan et al. developed an in situ formed
dual-bioresponsive gel depot for co-delivery of anti-PD-1
antibodies and zebularine (Zeb), a demethylation agent that
enhances the expression of tumor-associated antigens (51).
Anti-PD-1 antibodies were loaded into pH-sensitive CaCO3

nanoparticles (anti-PD1-NPs) and encapsulated with Zeb in
the ROS-responsive hydrogel (Zeb-anti-PD-1-NPs-Gel). Local
release of Zeb increased the immunogenicity of cancer cells and
decreased immunosuppression. By doing so, Zeb boosted the
ability of anti-PD-1 antibodies to induce T cell-mediated
antitumor immune responses, inhibiting tumor growth and
prolonging survival in mice bearing B16-F10 tumors. In
addition to direct use of anti-PD-1 antibodies to block the PD-
1/PD-L1 pathway, targeting of a specific pathway that involves
PD-L1 transcriptional repressors is also practicable. Li et al.
reported a cancer cell membrane-derived hydrogel scaffold
loaded with Ca2+ channel inhibitor dimethyl amiloride (DMA)
and cyclin-dependent kinase 5 inhibitor roscovitine for cancer
treatment. In this system, cancer cell membrane, DMA and
roscovitine were chosen with the aim of creating an antigen
depot, suppressing Ca2+-governed exosome secretion and down-
regulating tumor cell PD-L1 expression, respectively (52).

CTLA-4 is expressed on activated Th1 cells and CTLs, and
binds to co-stimulatory molecules CD80 and CD86 of antigen-
presenting cells, thereby inhibiting the activation and proliferation
of T cells (53). Although blocking CTLA-4 signaling unleashes
antitumor immune responses, systemic administration of anti-
CTLA-4 antibodies may cause severe immune-related adverse
events (5, 54–57). Chung et al. evaluated thermosensitive
poloxamer 407 (P407) hydrogels as a slow-release system for
optimizing anti-CTLA-4 therapy (58). They found that P407
hydrogel-mediated delivery of anti-CTLA-4 antibodies reduced
serum antibody levels, mitigated the side effects of ICB, and
exerted antitumor effects in mice bearing CT26 tumors.
Similarly, Harui et al. found that local administration of
hydrogel-encapsulated anti-CTLA-4 antibodies exhibited
enhanced efficacy and minimal systemic toxicity in mice with
MC-38 tumors (59). Peritumoral administration of 100 µg of anti-
CTLA-4 antibodies loaded in hydrogels had similar or greater
effects than systemic administration of 600 µg of antibodies. While
preserving antitumor activity, serum exposure following the
administration of hydrogel-encapsulated anti-CTLA-4 was only
1/16th of that following systemic therapy.

Song et al. developed an injectable PEG-b-poly(L-alanine)
(PEA) hydrogel to co-deliver a tumor vaccine consisting of
tumor cell lysates (TCLs), granulocyte-macrophage colony-
stimulating factor (GM-CSF), and anti-CTLA-4 antibodies and
Frontiers in Immunology | www.frontiersin.org 5138
anti-PD-1 antibodies (60). TCLs, GM-CSF, anti-CTLA-4
antibodies, and anti-PD-1 antibodies were encapsulated into
the porous PEA hydrogel by mixing these agents with PEA
aqueous solution. Sustained release of tumor antigens and GM-
CSF promoted the recruitment and activation of DCs in vivo,
inducing tumor-specific CTL responses. The extended release of
ICIs from the hydrogel further enhanced T-cell activation and
reduced Treg levels in the TME by blocking PD-1 and CTLA-4
pathways. Notably, the hydrogel-based combination therapy
exhibited greater antitumor effects than the vaccine alone or
ICB monotherapy in melanoma and 4T-1 mouse models.
Targeting Tumor-Associated
Macrophages
Tumor-associated macrophages (TAMs) are a key component of
the TME and play a significant role in tumor progression (61, 62).
There are two main subtypes of TAMs: classically activated M1
macrophages (M1-TAMs) and alternatively activated M2
macrophages (M2-TAMs). M1-TAMs, which express high levels
of IL-12 and IL-23, can scavenge foreign antigens and kill tumor
cells (63). Tumor cells typically promote polarization of TAMs
towardM2 in TME, facilitating IL-10 production and tumor growth
(8). The balance between M1 and M2 TAMs has been associated
with drug resistance, angiogenesis, and immunosuppression in
tumors (8). Most macrophage-targeting therapies have three goals
(9, 64): (1) inhibit macrophage recruitment by blocking the C-C
motif chemokine ligand 2 (CCL2)/C-C motif chemokine receptor 2
(CCR2) axis (65, 66); (2) deplete macrophages or block -factor
(CSF)-1/CSF-1R signaling (67, 68); (3) reprogram TAMs toward an
M1-like phenotype using melittin (69), IFN-g (70), CD40 agonists
(71), or tumor hypoxia-targeting agents (72). As macrophages are
present throughout the body, systemic modulation of macrophages
can lead to off-target effects and systemic toxicity (73). Furthermore,
CCL2/CCR2- and CSF-1/CSF-1R-targeting strategies often result in
the development of monocyte and macrophage populations that
enhance neoangiogenesis and metastasis (74, 75).

M2-TAM depletion has proved effective in promoting tumor
regression by suppressing TAM-associated immunosuppression
(8). Although melittin is a potent anticancer agent, its hemolytic
effects limit its clinical application. To overcome this obstacle, we
developed a melittin-RADA32 hybrid peptide hydrogel. The
melittin- and doxorubicin (DOX)-loaded peptide hydrogel
(melittin-RADA32-DOX, or MRD hydrogel) exerted potent
anti-melanoma effects by modulating the TME (76). Moreover,
MRD hydrogels loaded with melittin and DOX exhibited direct
cytotoxic effects, specifically depleted M2-like macrophages, and
induced robust and long-lasting innate and adaptive immune
responses. Notably, a single injection of the formulation
significantly reduced the growth of primary melanoma tumors.

External stimuli can stimulate the reprogramming of M2-
TAMs into M1-TAMs, which have tumoricidal effects (77).
KN93, a specific inhibitor of CAMKII, was found to have a
direct tumoricidal activity and the ability to induce macrophage
reprogramming (78). To further potentiate these effects of the
January 2022 | Volume 12 | Article 832942
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melittin-RADA32 hydrogel, we designed a melittin-RADA24
peptide hydrogel loaded with KN93 (MR52-KN93; MRK
hydrogel) (79). Compared with free KN93, the MRK hydrogel
was more potent in eliminating tumor cells and inducing
immunogenic cell death. Moreover, MRK significantly reduced
the portion of M2-like TAMs and increased the ratio of M1-like
to M2-like TAMs in the TME (Figure 3).

The TME is usually acidic due to the presence of hypoxia and
glycolytic metabolism (79, 80). Cancer cell-derived lactate plays a
critical role in the polarization of macrophages from the M1
phenotype to the M2 phenotype, which promotes tumor growth
Frontiers in Immunology | www.frontiersin.org 6139
and metastasis (80). Liao et al. found that methylcellulose
hydrogels loaded with lactate oxidase promoted lactate depletion
and lactate-mediated repolarization of macrophages (81).

Several recent studies reported the direct involvement of
TAMs in tumor resistance to ICB. By comparing the TME of
ICB-resistant and ICB-sensitive murine tumors, Muraoka et al.
found that TAMs in resistant tumors lacked antigen-presenting
activity (82). They also found that cholesteryl-modified pullulan
nanogels could efficiently deliver large peptides to TAMs and
that upon TLR stimulation, the nanogel system elicited antigen-
presenting activity in TAMs (82). By modulating TAMs, this
A

B C

D E

FIGURE 3 | In vivo activation of the immune system of tumor-bearing mice by MRK. (A) Schematic diagram summarizing the therapeutic effects of the MRK
hydrogel alone or combined with anti-PD-1 antibodies. Subcutaneous injection of MRK stimulates dendritic cell maturation and T cell activation in the lymph nodes.
Activated T cells eliminate tumor cells. MRK can also stimulate M1-type polarization of tumor-associated macrophages, activating Th1 cells and cytotoxic T
lymphocytes. MRK combined with PD-1 alleviates hepatocellular ascites in mice. (B, C) Comparison of the production of M2-type macrophages (B) and dendritic
cells (C) in each group. (D, E) Tumor volume (D) and weight (E) in different groups. Reprinted with permission from Theranostics (78). **P < 0.01, ***P < 0.001.
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formulation transformed ICB-resistant tumors into ICB-
sensitive tumors. These results strongly support targeting
TAMs as a promising strategy for enhancing the efficacy of
cancer immunotherapy.

Because M1-TAMs can promote tumor rejection, direct
injection of M1-TAMs can significantly cause tumor regression
in vivo; however, the induction of acute inflammatory responses
limits the clinical translation of this approach (83). To improve
this strategy, Guerra et al. employed a synthetic extracellular
matrix (ECM) system consisting of cross-linked PEGdA and
Gel-PEG-Cys as a carrier for local delivery of activated M1
macrophages. They found that M1-loaded hydrogels promoted
apoptosis in hepatocellular carcinoma cells and tumor regression
in vivo while exhibiting low immunogenicity, high
biocompatibility, and improved release kinetics (84).
Targeting the Tumor Vasculature
Normal vascularization is critical for nutrients and oxygen
supply, as well as metabolic waste removal. However, abnormal
vascularization characterized by immature, disorganized, and
permeable blood vessels creates a hostile TME characterized by
hypoxia, low pH, low interstitial fluid pressure, decreased
immune cell infiltration and activity, and increased risk of
metastasis (85, 86). Furthermore, abnormal vascularization
reduces the diffusion of chemotherapeutic drugs and impairs
the efficacy of radiotherapy (86). Therefore, vascular
normalization could restore tumor perfusion and oxygenation
and enhance the efficacy of chemotherapy and radiotherapy
(87, 88).

Antibodies against vascular endothelial growth factor (VEGF)
have emerged as a promising therapeutic strategy for solid tumors,
as tumor growth and metastasis require neoangiogenesis (89).
Targeting VEGF signaling induces tumor vasculature
normalization, further reprogramming the immunosuppressive
TME and increasing the number of tumor-infiltrating
lymphocytes (TILs) (90, 91). Bevacizumab, the first approved
anti-VEGF drug to inhibit tumor angiogenesis in the United
States, has a limited half-life and membrane permeability. To
overcome these limitations, Ferreira and coworkers designed a
bevacizumab-loaded alginate hydrogel for localized anti-VEGF
cancer therapy by mixing alginate solution with bevacizumab and
cross-linking it with calcium chloride (92). The tridimensional
hydrogel increased drug stability, especially in acid environments,
and provided slow and continuous drug release to the tumor and
surrounding tissues after local application. Moreover, with the
development of photodynamic therapy (PDT), it has shown the
potential to trigger local and systemic antitumor immune
responses. However, abnormal angiogenesis and hypoxia in
TME promote immunosuppression. The immune response after
routine PDT is usually insufficient to cause tumor regression,
which limits the efficacy of PDT. Based on this, Zhou et al.
developed a prolonged oxygen-generating phototherapy
hydrogel (POP-Gel) system by combining the photosensitizer-
loaded thermosensitive hydrogel with calcium superoxide and
catalase to relieve tumor hypoxia. Long-term effective oxygen
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supply improved the hypoxic state of TME and down-regulated
the expression of HIF-1a and VEGF, further inducing a robust
antitumor adaptive immune response (93).

RNA interference (RNAi) enables robust and specific gene
silencing, providing a promising therapeutic avenue for cancer
treatment. However, efficient drug delivery systems for short
interfering RNAs (siRNAs) are lacking (94–96). Fujii et al.
developed a self-assembled nanogel of cholesterol-bearing
cycloamylose with a spermine group (CH-CA-Spe) as a carrier
to deliver VEGF-specific siRNAs (siVEGFs) into tumor cells.
This system showed low toxicity in patients, efficient intratumor
delivery, and high stability in vivo (97). The siVEGF-nanogel
complex was taken up by tumor cells via the lysosomal pathway
and suppressed VEGF expression in renal cell carcinoma cells.
Intratumoral injections of the complex effectively suppressed
tumor growth and neovascularization. The treatment also
significantly suppressed MDSC infiltration and IL-17A
production in the spleen, suggesting that silencing of VEGF
locally in the tumor may modulate systemic immune responses.

Despite promising findings in preclinical models, the efficacy
of anti-angiogenic therapies in the clinic has been disappointing,
as most patients exhibit innate or acquired resistance to the
treatment (98). However, anti-angiogenic therapeutics can
increase the efficacy of immunotherapy (99). Additionally, low
doses of anti-VEGF antibodies can induce vascular
normalization, prevent the differentiation of TAMs toward an
immune inhibitory M2-like phenotype, and block VEGF-
mediated inhibition of DC maturation (90). Therefore, vascular
normalization with anti-angiogenic therapies in combination
with other therapies may be an attractive therapeutic strategy.
Pal et al. developed a biocompatible self-assembled lithocholic
acid dipeptide-derived hydrogel (TRI-Gel), which provided
sustained delivery of DOX, anti-angiogenic combretastatin-A4
(CA4), and dexamethasone (100). TRI-Gel therapy inhibited
cancer cell proliferation, angiogenesis, and inflammation at the
tumor site, thereby suppressing tumor progression and
prolonging median survival with reduced drug resistance (100).
Yu et al. designed an in situ thermo-gelling hydrogel (mPEG-b-
PELG) to co-deliver combretastatin A4 disodium phosphate
(CA4P) and cisplatin (CDDP) for the local treatment of colon
cancer (101). Compared with the free drugs, the CA4P and
CDDP co-loaded gel induced less tumor cell death in vitro, while
its antitumor effect was highest in C26 tumor-bearing mice after
peritumoral injection (101).

Starvation therapies can inhibit tumor progression by
decreasing nutrient supply indispensable for tumor growth
(102, 103). Blood vessel occlusion can permanently occlude
blood and nutrition supply to the tumor. However, this
strategy is often associated with poor persistence, frequent
tumor metastasis and recurrence, and embolism in normal
blood vessels . Zhang and coworkers established an
extravascular gelation shrinkage-derived internal stress strategy
to narrow blood vessels, occlude blood and nutrition supply,
reduce vascular density, induce hypoxia and apoptosis, and
ultimately promote starvation of the tumor (104). To this end,
they engineered an organic-inorganic composite hydrogel
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consisting of PEG-SH-modified gold nanorods (GNR-PEG-SH)
and thermal-sensitive hydrogel mixture (chitosan (CS)/mPEG-
Mal/pNIPAAm-co-AAc; hydrogel-GNR). When irradiated with
an 808 nm laser, hydrogel-GNR induced internal stress, which
narrowed intratumor and adjoining blood vessels in a GNR-
dependent manner. This starvation therapy inhibited tumor
progression in both PANC-1 pancreatic cancer and 4T1 breast
cancer mouse models. Importantly, this starvation strategy
suppressed tumor metastasis and tumor recurrence by
reducing vascular density, occluding blood and nutrition
supply (Figure 4).
Targeting Other Immunoregulatory Cells
and Factors
In view of the strong immunosuppressive effect of Tregs in the
TME, targeting Tregs has emerged as an attractive strategy to
unleash antitumor immune responses and reenforce
immune-mediated tumor rejection (10). Tumor-specific Tregs
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residing at the TME express high levels of CTLA-4 and
OX40, and in situ injection of anti-CTLA-4 and anti-OX40
together with CpG can deplete tumor-infiltrating Tregs (104).
This in situ immunomodulation approach activates systemic
antitumor immune responses more effectively than systemic
immunomodulation strategies (105). The co-delivery of tumor
anti-CTLA-4, anti-PD-1, and tumor vaccines using injectable
PEG-b-poly(L-alanine) hydrogels increased the efficacy of
immunotherapy by reducing the number of Tregs and increasing
the number of activated CD8+ T cells in the TME (60). In addition
to directly killing tumor cells, some chemotherapeutic agents can
regulate the immune system through various mechanisms,
including the modulation of Tregs (106–112). Co-delivery of
DOX and CpG self-crosslinking nanoparticles (CpG NPs) using
injectable a-cyclodextrin/polyethylene glycol hydrogels increased
the number of cytotoxic CD8+ T lymphocytes and decreased the
numbers of MDSCs, M2-TAMs, and Tregs in the TME (107).
Additionally, although chemotherapy alone reduced the number of
Tregs to some extent, combination therapy using a-cyclodextrin/
FIGURE 4 | Occlusion of blood supply in ex vivo and in vivo artery models. (A) Schematic of the experimental apparatus for evaluating vessel occlusion ex vivo in
blood vessels (with an inner diameter of 1.00 mm) treated with the gelation shrinkage-induced internal stress platform. (B) Traversed volume of DMEM in the ex vivo
blood vessel model before (left) and after (right) gelation of hydrogel-GNR. (C–F) Collected blood volume (C), red blood cells (D), blood platelet (E), and white blood
cells (F) traversed through ex vivo blood vessels using rabbit blood containing heparin. **P<0.01 and ***P<0.001 compared to pre-gelation; determined using
Student’s t-test. (G) Schematic representation of the extravascular gelation shrinkage-induced internal stress system irradiated with 808 nm laser. (H) CDFI images
of abdominal arteries of nude mice treated which hydrogel-GNR. CDFI images were captured before and after irradiation with an 808 nm laser. White arrows indicate
the blood vessels of the abdominal artery. Reprinted with permission from Springer Nature (104).
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polyethylene glycol hydrogels-CpG NP-DOX remarkably reduced
the number of Tregs in the TME (107).

The balance between different immune cell subsets, immune
factors, and signaling molecules determine the outcome of
antitumor immune response. Intratumoral delivery of
immunomodulatory cytokines has been tested in the clinic as a
strategy to augment antitumor immune responses (10). To elicit
a therapeutic response, sufficient concentrations and long-lasting
release of cytokines in TME are necessary, along with a non-toxic
concentration of the cytokine outside of TME. GM-CSF, IL-2,
IL-12, and IFN-g are among the several cytokines tested for local
cancer treatment based on injectable hydrogels (16). Son et al.
demonstrated that GM-CSF improved the function of antigen-
presenting cells and enhanced antitumor immune responses
(113). Co-delivery of GM-CSF and anticancer drugs using a
chitosan-based hydrogel system resulted in a synergistic
anticancer effect, as tumor-specific CD8+ T cell responses were
significantly enhanced (113). Den Otter et al. developed
physically crosslinked dextran hydrogels for the local delivery
of IL2. The system exhibited a strong therapeutic effect,
enhancing the clinical applicability of IL-2 (114). Kurisawa and
coworkers developed an injectable hyaluronic acidtyramine
(HATyr) conjugate hydrogel to locally deliver IFN-a2a to treat
liver cancer (115). The enzymatically crosslinked HATyr
hydrogel released IFN-a2a in the TME and inhibited tumor
growth while providing tunable hydrogel stiffness and rapid
gelation rate (115). Eonju Oh et al. utilized gelatin-based
hydrogels for sustained co-delivery of DCs and oncolytic
adenovirus (oAd) co-expressing IL-12 and GM-CSF while
preserving the biological activity of the cytokines (116).
Compared with single treatment (oAd or DC) or combination
treatment without the gel (oAd+DC), oAd+DC/gel treatment
resulted in a significantly higher expression of IL-12, GM-CSF,
and IFN-g in tumors through a positive feedback loop. The high
levels of IL-12, GM-CSF, and IFN-g in the TME strongly activated
endogenous and exogenous DCs, which migrated to the draining
lymph nodes and promoted the activation and infiltration of CD4+

and CD8+ T cells into the tumor, finally leading to robust tumor
regression. Interestingly, oAd+DC/gel treatment also alleviated
tumor-induced thymic atrophy (Figure 5).

Chronic inflammation in TME can promote cancer
progression in several ways, and remission of chronic
inflammation can help control the tumor (117). The
cyclooxygenase 2 (COX2) inhibitor celecoxib has been shown
to exert antitumor effects in various human cancers (118, 119).
For instance, simultaneous and local administration of anti-PD-1
monoclonal antibodies and celecoxib using alginate hydrogels
resulted in stronger antitumor effects than anti-PD-1 or
celecoxib alone. In addition, the formulation elicited a potent
and sustained antitumor immune response (120). Notably, co-
delivery of celecoxib and anti-PD-1 monoclonal antibodies
increased the numbers of INF-g-expressing CD4+ and CD8+ T
cells and decreased the numbers of intratumoral Tregs, MDSCs,
and PD-L1-positive tumor cells. Furthermore, this co-delivery
system enhanced the expression of the anti-angiogenic
chemokines CXCL9 and CXCL10 and suppressed the
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intratumoral production of IL-1, IL-6, and COX2, suggesting
reduced inflammation and angiogenesis in the tumor.
CONCLUSION

Numerous injectable hydrogels have been developed over the
past years (121). Injectable hydrogels offer many advantages,
including good biocompatibility and biodegradability, minimal
invasion, convenient synthesis, versatility, high drug-loading
capacity, and controlled drug release ability (122). Owing to
their unique properties, injectable hydrogels can be used as drug
delivery systems, which can locally and continuously release
therapeutic agents. Although intratumoral injections suffer from
localized treatment and inhomogenous distribution across
tumors, injectable hydrogels as drug delivery systems can
overcome many limitations of current systemic therapies for
cancer, especially systemic toxicity and limited efficacy (123).
Compared with intravenous delivery, the intratumoral injection
can provide direct contact with tumor cells and immune cells,
eliciting a more strong and long-lasting immune response.
Besides localized treatment for single tumor, injectable
hydrogels can be applied for the treatment of extensive pleural
and peritoneal metastasis, such as malignant pleural effusion and
malignant ascites. More importantly, in some cases, injectable
hydrogels can not only effectively promote ICD of tumor cells
and reshape immunosuppressive TME against local tumors but
also often generate abscopal effect against distant metastases by
activating systemic antitumor immunity (124).

To eradicate cancer cells, effector immune cells must first be
activated and overcome the multiple suppressive factors in the
TME. Strategies to reverse the immunosuppressive TME include
the targeted inhibition of key immunomodulatory factors in the
TME using inhibitors of angiogenesis (89), ICIs (60), and agents
targeting immunoregulatory cells and factors (113). Off-target
effect and treatment resistance greatly weaken the therapeutic
effect of single treatment regimen. Therefore, a shift from
monotherapy to combination therapies is essential to provide
more options of available treatments. The development of novel
combination therapies may help enhance the antitumor effects
of current therapies and prevent the development of treatment
resistance. Hydrogels provide a promising platform for the co-
delivery of multiple agents targeting various components of the
TME while causing minimal systemic toxicity. In addition,
injectable hydrogels can also be combined with conventional
treatments, such as radiotherapy and chemotherapy, to
transform immunosuppressive TME to a pro-inflammatory
state and amplify the antitumor immune response (50,
121, 125).

Despite the advances in injectable hydrogels, there are still
several challenges that limit their clinical translation. It is necessary
to determine at which stage of tumorigenesis a given treatment is
most effective, and whether the effect of treatments depends on the
composition of TME at the primary and metastatic sites. Although
several combination systems demonstrate synergistic effects, their
compositions need to be further optimized to maximize their
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antitumor efficacy and reduce side effects. Furthermore, future
work is required to ensure that in addition to exerting antitumor
effects locally and modulating the TME, hydrogels also activate
systemic immune responses to prevent metastasis and tumor
recurrence. Future multidisciplinary studies are warranted to
design injectable hydrogel-based delivery systems for the co-
delivery and sequential release of different therapeutic agents to
maximize the overall therapeutic efficiency of cancer therapies and
accelerate their clinical translation, especially in some late-stage
cancers, such as malignant pleural effusion and malignant
ascites (126).
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Background: Histone acetylation modification is one of the most common epigenetic
methods used to regulate chromatin structure, DNA repair, and gene expression. Existing
research has focused on the importance of histone acetylation in regulating
tumorigenicity, tumor progression, and tumor microenvironment (TME) but has not
explored the potential roles and interactions of histone acetylation regulators in TME
cell infiltration, drug sensitivity, and immunotherapy.

Methods: The mRNA expression and genetic alterations of 36 histone acetylation
regulators were analyzed in 1599 hepatocellular carcinoma (HCC) samples. The
unsupervised clustering method was used to identify the histone acetylation patterns.
Then, based on their differentially expressed genes (DEGs), an HAscore model was
constructed to quantify the histone acetylation patterns and related subtypes of individual
samples. Lastly, the relationship between HAscore and transcription background, tumor
clinical features, characteristics of TME, drug response, and efficacy of immunotherapy
were analyzed.

Results: We identified three histone acetylation patterns characterized by high, medium,
and low HAscore. Patients with HCC in the high HAscore group experienced worse
overall survival time, and the cancer-related malignant pathways were more active in the
high HAscore group, comparing to the low HAscore group. The high HAscore group was
characterized by an immunosuppressive subtype because of the high infiltration of
immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor
cells. Following validation, the HAscore was highly correlated with the sensitivity of anti-
tumor drugs; 116 therapeutic agents were found to be associated with it. The HAscore
was also correlated with the therapeutic efficacy of the PD-L1 and PD-1 blockade, and the
response ratio was significantly higher in the low HAscore group.
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Conclusion: To the best of our knowledge, our study is the first to provide a
comprehensive analysis of 36 histone acetylation regulators in HCC. We found close
correlations between histone acetylation patterns and tumor malignant pathways and
TME. We also analyzed the therapeutic value of the HAscore in targeted therapy and
immunotherapy. This work highlights the interactions and potential clinical utility of histone
acetylation regulators in treatment of HCC and improving patient outcomes.
Keywords: histone acetylation, tumormicroenvironment, hepatocellular carcinoma, drug sensitivity, immunotherapy
INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary
liver cancer and ranks as the fifth leading malignancy worldwide
(1). Most patients with HCC have poor outcomes because of
limited early diagnosis and few available treatment options for
advanced-stage HCC (2). Even with active treatment, such as
liver transplantation, resection, percutaneous ablation,
transarterial chemoembolization, HCC is likely to recur and
metastasize, with a 5-year survival rate of less than 20% (3, 4).
In addition, both traditional chemotherapy and molecular-
targeted agents are impeded by tumor heterogeneity, as well as
the intrinsic and acquired drug resistance that can develop in
tumors. These characteristics limit the efficacy of systemic
therapy in HCC patients (5). Therefore, there is an urgent
need to investigate new strategies to improve the clinical
outcomes of patients with HCC. Recently, with deeper
exploration of the relationship between the immune system
and cancer, new therapeutic strategies aimed at mobilizing the
host immune system to eradicate tumor cells would advance the
cancer therapy field and introduce greater efficacy in
curing cancer.

Numerous cancer immunotherapy strategies have rapidly
emerged in recent years. The most notable immune-checkpoint
inhibition (ICI) treatments consist of agents targeting the
inhibitory immune receptors, cytotoxic T-lymphocyte (CTL)-
associated protein 4 (CTLA-4/CD152), programmed death
protein 1 (PD-1/CD279), and programmed death ligand 1
(PD-L1/B7H1/CD274). These agents have become effective
standard therapies in several advanced malignancies, including
melanoma (6–8), Merkel cell carcinoma (9), urological cancers
(10), non-small cell lung cancer (11), mis-match repair-deficient
arcinoma; MDSC, myeloid-derived
ppressor cells; HBV, hepatitis B virus;
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tumors (12), and Hodgkin’s lymphoma. Their response rates
range from 25 to 60% in first- and second-line settings (13).
Recently, ICI treatment has also been approved for HCC, gastric
cancer, triple negative breast cancer, cervical cancer, and head
and neck cancer, with response rates closer to 15% (14).

Nonetheless, the efficacy of ICI treatment is still limited
because of the ability of cancer tumors to develop primary,
adaptive, or acquired resistance to immunotherapy. The
resistance of cancer to immunotherapy depends on various
factors including the tumor microenvironment (TME), the
patient’s genetic background, epigenetics, metabolism, and cell
stemness (15). At the same time, the multiple factors involved in
immunotherapy resistance also provide many more targets that
can be attacked by therapeutic agents. To improve the efficacy of
immunotherapy, ICI can be combined with other treatments to
overcome the immunotherapy resistance.

One such treatment involves histone acetylation. This is one
of the most common epigenetic methods used to regulate
chromatin structure, DNA repair, and gene expression (16).
Histone acetylation is a type of posttranslational modification
in which multiple lysine residues at the N-terminus of histones
are catalyzed by histone acetyltransferases (HATs). This process
is highly dynamic, reversible, and regulated by proteins that can
be divided into three categories: “writer”, “reader”, and “eraser”.
The “writers” refer to enzymes that transfer acetyl groups to
histones, and the “erasers” refer to enzymes that remove acetyl
groups from histones. The “readers” are effector proteins that can
recognize the modified histones (17). Acetylation neutralizes the
positive charge on lysine, weakening the electrostatic association
between the histones and the DNA; this makes the DNA
becomes more accessible to transcription factors (18).

In general, histone acetylation is associated with elevated
transcription whereas histone deacetylation is often associated
with gene repression. Previous reports have demonstrated that
histone acetylation is closely related to tumorigenesis and can
impact certain biological processes of tumor cells, including
proliferation (19), apoptosis (20), metastasis (21), and stemness
(22). Histone deacetylases (HDACs) are critical regulators of
gene expression that enzymatically remove acetyl groups from
histones. As such, they are an example of “erasers.” Numerous
correlative studies have demonstrated aberrant expression of
HDACs (HDAC1, HDAC5, and HDAC7) in human tumors,
which can serve as molecular biomarkers to distinguish between
tumorous and normal tissue (23). HDAC inhibitors (HDACi)
can induce acute hyperacetylation of histones and generate the
re-expression of tumor-suppressor genes to inhibit tumor growth.
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Many HDACi have been proven to have potent anti-tumor
effects in several hematological and solid malignancies (24, 25).
Recently, researchers have found that histone acetylation is
closely related to the TME. Furthermore, numerous studies
have demonstrated that HDACi can reshape the TME via
various mechanisms, enhancing the ability of the immune
system to kill tumor cells. Specifically, these mechanisms
include upregulating the expression of tumor antigens,
enhancing antigen-processing ability, improving the cytolytic
activity of CD8+ T cells, and disrupting the immunosuppressive
function of IL-10 producing regulatory T cells (26–29). For
instance, in preclinical cancer models, HDACi were shown to
enhance the efficacy of immune checkpoint blockade using
anti-PD1/PDL1 or anti-CTLA4, immunostimulant therapies
such as anti-CD40 and anti-CD137, and adoptive T cell
immunotherapy (30–34).

Collectively, the above findings indicate that histone
acetylation plays an important role in the regulation of the
TME, and the molecular agents that target histone acetylation
regulators have the potential to disrupt cancer immunotherapy
resistance. As a result, combining molecular agents that target
histones with immunotherapy could produce additional clinical
benefit to patients. However, due to limitations in technical
methodology, previous analysis has been confined to a small
number of histone acetylation regulators, whereas the antitumor
effect of histone acetylation modification is characterized by
highly integrated interactions of numerous regulators.
Therefore, a comprehensive understanding of how the
regulatory network of multiple histone acetylation regulators
affects the biological behavior of tumor cells and TMEs would
contribute to the development of immunotherapeutic strategies.

In this study, we retrospectively investigated genomic
alterations in 1599 HCC samples from the Cancer Genome
Atlas (TCGA), International Cancer Genome Consortium
(ICGC), and Gene Expression Omnibus (GEO) cohorts. Our
objective was to comprehensively evaluate the patterns of histone
acetylation modification based on 36 histone acetylation
regulators. We found that histone acetylation patterns are
distinct in their activation of malignant cancer-related
pathways and infiltration of multiple immune cells. We also
constructed an HAscore model to quantify the histone
acetylation patterns in individual patients based on the
differentially expressed genes (DEGs) among them. Finally, we
assessed the therapeutic value of the HAscore in targeted HCC
therapy and immunotherapy.
MATERIALS AND METHODS

Collection of HCC Datasets and
Preprocessing
The workflow of the study is shown in Figure S1A. Gene
expression data and clinical features of liver cancer samples
were retrospectively retrieved from publicly available datasets of
the NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/),
TCGA (https://portal.gdc.cancer.gov/), and ICGC (https://dcc.
Frontiers in Immunology | www.frontiersin.org 3150
icgc.org/). Specifically, the clinical data we used from the TCGA
database included tumor stage, histological grade, vascular tumor
cell type, viral hepatitis serologies, Child–Pugh scores, alpha-
fetoprotein (AFP), gender, and overall survival (OS) times. In
addition, we obtained genomic mutation data (including somatic
mutation and copy number variation) of TCGA-LIHC from the
UCSC Xena database. In general, nine hepatocellular carcinoma
cohorts—TCGA-LIHC, ICGC-LIRI (Japan), ICGC-LICA
(France), GSE14520, GSE76427, GSE116174, GSE104580,
GSE112790, and GSE121248—for 1599 patients were included
for further analysis.

RNA sequencing data, including fragments per kilobase
million (FPKM) values and count values, were consistently
transformed into transcripts per kilobase million (TPM) values
(35). For microarray data from GEO, the normalized matrix
files were directly downloaded and normalized by the
“normalizeBetweenArrays” method of the R package limma
after gene symbol transformation, so that the intensities or
log-ratios would have similar distributions across a set of
arrays (36). Finally, we used the “ComBat” method of the sva
Package (37) to adjust the batch effect caused by non-
biotechnological bias.

Two immune checkpoint blockade treatment cohorts with
available expression and clinical information were used in our
study. First, we obtained the IMvigor210 cohort (http://research-
pub.gene.com/IMvigor210CoreBiologies), which consists of
advanced urinary tract transitional cell carcinoma treated with
atezolizumab, an anti-PD-L1 antibody (38). Second, we obtained
the David Liu cohort (https://www.nature.com/articles/s41591-
019-0654-5), which consists of metastatic melanoma treated with
nivolumab or pembrolizumab (39). The gene expression profiles
of the pre-therapy biopsy samples were curated and transformed
into the TPM format for further analysis.

We searched and collected the following datasets with
targeted therapy and chemotherapy from the GEO database:
the GSE5851 dataset (advanced metastatic colorectal cancer
treated with cetuximab monotherapy); GSE148623 dataset
(ductal breast cancer treated with ricolinostat, an HDAC6
inhibitor); and GSE22219 dataset (early primary breast cancer
treated with adjuvant cyclophosphamide, methotrexate, and
5-fluorouracil).

Corresponding clinical data were collected from the
appropriate GEO dataset metadata and the supplemental files
of relevant articles. All baseline information on the available data
is summarized in Table S1.

Consensus Clustering Expression Pattern
of 36 Histone Acetylation Regulators
The literature related to histone acetylation modification was
retrieved, and 36 acknowledged histone acetylation genes were
curated and analyzed to identify distinct histone acetylation
modification patterns (Table S2). An unsupervised consensus
clustering algorithm was applied to determine robust clustering
of liver cancer. We used the R package ConsensusClusterplus to
perform the above steps and conducted 1000 repetitions to
ensure the stability of the classification (40).
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Gene Set Variation Analysis (GSVA) and
Functional Annotation
To explain the differences in biological processes between histone
acetylation modification patterns, we realized GSVA enrichment
analysis by using “GSVA” R packages. This method is commonly
used to estimate the variation in pathways and biological process
activity in samples of an expression dataset (41). The gene sets of
“h.all.v7.4.symbols” were downloaded from the MSigDB
database for further GSVA analysis. The 13 most common
oncogenic hallmarks, epithelial-to-mesenchymal transition
(EMT), and cancer stem cell (CSC) signatures were obtained
from the supplementary table prepared by Sanchez-Vega et al.
(Table S3) (38, 42, 43). Differences were considered statistically
significant at P values < 0.05. We used the clusterProfiler R
package to perform functional annotation for histone acetylation
modification-related genes, with a cutoff value of FDR <
0.05 (44).

Estimation of TME Cell Infiltration
We used the single-sample gene-set enrichment analysis
(ssGSEA) algorithm to quantify the relative abundance of each
cell infiltration in the HCC TME. The gene sets defining each
immune cell type were obtained from the study by Charoentong
(Table S4) (45). The enrichment scores calculated by ssGSEA
analysis were used to represent the relative abundance of the
TME infiltrating cells in each sample. The immune-related
features were collected from previously published studies
(Table S3) (46, 47).

Differentially Expressed Genes (DEGs)
Among Histone Acetylation Modification
Phenotypes
To identify histone acetylation modification-related genes, we
classified patients into three distinct histone acetylation
modification patterns based on the expression of the 36
histone acetylation modification regulators. DEGs among
different modified histone acetylation patterns were determined
using limma (36). The significance criteria for determining DEGs
were set as adjusted P values < 0.001 and |FC| > 1.5. The adjusted
P value for multiple testing was calculated using the Benjamini–
Hochberg correction.

Construction of Histone Acetylation Gene
Signatures
To quantify the modified histone acetylation patterns of
individual tumors, we developed a scoring scheme to quantify
the histone acetylation modification level of individual patients
and described it as the HAscore. Specifically, 965 DEGs were first
identified from different HAclusters, and prognostic analysis was
performed for the DEGs using univariate Cox regression model
analysis. Subsequently, 591 genes with significant prognoses were
selected for further analysis. Next, the patients were classified
into several groups for further analysis by adopting an
unsupervised clustering method for analyzing prognosis-related
DEGs. The consensus clustering algorithm was used to define the
number of gene clusters and their stability. We then transformed
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the expression of these genes into a Z score and conducted
principal component analysis (PCA) to construct modified
acetylation-relevant gene signatures. Both principal
components 1 and 2 (PC1 and PC2, respectively) were selected
to act as signature scores. This method focused on the score of
the set with the largest block of well-correlated (or anti-
correlated) genes, while down-weighting contributions from
genes that did not track with other set members. We then
adopted a formula like that of previous studies to define the
HAscore (48, 49):

HAscore = S(PC1i + PC2i)

where i is the expression of histone acetylation modification
phenotype-related genes

Calculation of the EMT Score
EMT gene signatures were collected from Mak et al. (50),
including 25 epithelial and 52 mesenchymal marker genes.
Similar to this previous study (50, 51), the EMT score for each
sample was evaluated as SN

i
Mi

N − Sn
j
Ej

n , where M and E represent
the expression of the mesenchymal and epithelial genes,
respectively. Likewise, N and n represent the number of
mesenchymal and epithelial genes, respectively.

Correlation Analysis of HAscore and Drug
Sensitivity
The Genomics of Drug Sensitivity in Cancer (GDSC) database is
the largest public resource for information on drug sensitivity in
cancer cells and molecular markers of drug response (52). From
here, we collected the transcription profiles of approximately
1000 cancer cell lines, drug response measurements (as AUC of
the drug-sensitive curve) in cancer cell lines, as well as targets
and pathways of drugs. We performed Spearman correlation
analysis to calculate the correlation between drug sensitivity and
HAscore and considered |Rs| > 0.3 and FDR < 0.05, estimated by
Benjamini and Hochberg adjustment, as significant correlation.

Quantification of the Immune Response
Predictor: TIDE
The tumor immune dysfunction and exclusion (TIDE) algorithm
proposed by Jiang et al. was used to predict immune checkpoint
blockade response by modeling distinct tumor immune evasion
mechanisms, including the induction of T cell dysfunction
in tumors with high infiltration of CTL and the prevention
of T cell infiltration in tumors with low CTL levels by
immunosuppressive cells (53). A higher TIDE score indicates
that tumor cells are more likely to induce immune escape, thus
indicating a lower response rate to ICI treatment. In our study,
we used the all-sample average in each study as the
normalization control and calculated the TIDE score of each
sample using the TIDE tool on the TIDE web application (http://
tide.dfci.harvard.edu/), following the developer’s instructions.

Statistical Analysis
The data were analyzed using R (version 4.0.0) and R
Bioconductor packages. The normality and homogeneity test of
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variance were tested using the Shapiro–Wilk normality test and
Bartlett homogeneity test, respectively. The Wilcoxon test,
Kruskal–Wallis test, and t-test or one-way ANOVA were used
to compare the differences as nonparametric or parametric
methods. Correlation coefficients were computed using
Spearman’s and distance correlation analyses. A receiver
operating characteristic (ROC) curve was used to verify the
validity of the model. Based on the correlation between
HAscore and patient survival, the Survminer package was used
to determine the best cutoff point of survival information for
each cohort. The surv-cutpoint function was used to dichotomize
the HAscore, and all potential cutting points were repeatedly
tested to find the maximum rank statistic. Then, the patients
were divided into high and low HAscore groups according to the
maximum selected log-rank statistics to lessen the calculated
batch effect. Survival curves for the prognostic analysis were
conducted using the Kaplan–Meier method, and log-rank tests
were used to assess differences between groups. The chi-squared
test or Fisher test was used to analyze the differences in clinical
features between the HAscore groups. A univariate Cox
regression model was used to generate the hazard ratio (HR)
for histone acetylation regulators and histone acetylation-related
genes. To verify whether the HAscore was an independent
prognostic predictor, we incorporated the HAscore and related
clinical parameters into a multivariate Cox regression model
analysis. All statistical analyses were two-sided, and statistical
significance was set at P < 0.05.
RESULTS

Genetic and Transcriptional Alterations
of the 36 Histone Acetylation Regulators
in HCC
After a systematic review of published articles about histone
acetylation, 36 histone acetylation regulatory genes in HCC were
identified and incorporated into our analysis, including 9
“writers”, 12 “erasers”, and 15 “readers”, as shown in
Figure 1A (Table S2). Metascape analyses and KEGG
enrichment of the 36 histone acetylation regulators were
conducted. Significantly enriched biological processes were
mainly related to histone modification and cancer-related
pathways, as summarized in Figures 1B and S1B. To
determine the genetic alterations of histone acetylation
regulators in cancer, we assessed the prevalence of non-silent
somatic mutations in the 36 histone acetylation regulators. In the
HCC cohort of TCGA, 95 of the 364 (26.1%) samples
experienced genetic alterations in histone acetylation
regulators, primarily involving missense mutations and splice-
site mutations (Figure 1C). Among them, the mutation
frequencies of BPTF and SMARCA4 were the highest (3%),
followed by HDAC9, EP300, BAZ2B, PBRM1, CREBBP,
HDAC4, BRD4, and TAF1. In addition, the mutation
co-occurrence across histone acetylation regulators was
examined, and we found that there was a significant mutation
co-occurrence relationship between TAF1 and SMARCA4
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(Figure S1C). Furthermore, we examined somatic copy
number variations (CNVs) of the 36 regulators and found that
CNV was widespread among them, and CNV gain was the major
alteration (Figure 1D). The location of CNV alteration of m6 A
regulators on chromosomes is shown in Figure S1D. To
ascertain whether these genetic variations influenced the
expression of histone acetylation regulators in HCC patients,
we compared the mRNA expression of these regulators between
normal and HCC samples (Figure 1E). The results revealed that
most genes were upregulated in the HCC samples than in the
normal samples, excluding HDAC9, DPF3, and SMARCA2. The
genes with higher frequency of CNV gain than of CNV loss were
more likely to be upregulated in tumors (such as BPTF, BRD4,
and YEATS4). However, the gene expression patterns of some
regulators in tumor and non-tumor samples were not consistent
with CNV alteration. For example, HDAC1 had a higher
frequency of CNV loss than of CNV gain, but the mRNA
expression of HDAC1 was upregulated in HCC samples. To
investigate the discrepancy between CNV values and mRNA
expression, we divided the HCC cohort into four groups based
on CNV value (HCC samples with CNV gain, CNV loss, non-
significant alteration of CNV, and normal samples). We analyzed
the mRNA alterations in different groups of 10 regulators whose
mRNA expression was not significantly consistent with CNV
pattern (Figure S1E). The results showed that mRNA expression
was higher in the CNV gain group than in the other three groups,
and mRNA expression was lower in the CNV loss group than in
the CNV gain and non-significant CNV groups. The above
analyses indicate that CNV changes play an important role in
regulating the expression of histone acetylation regulators.
Furthermore, based on the expression of these 36 regulators,
we were able to distinguish HCC samples from normal
samples (Figure 1F).

This analysis demonstrated that the genetic landscape and
expression pattern of histone acetylation regulators between
HCC and normal samples are highly heterogeneous, indicating
that the imbalanced expression of histone acetylation regulators
may play a crucial role in the onset and development of HCC.

Identification of Three Clinical Feature-
Related Histone Acetylation Patterns
Based on the 36 Regulators
We obtained clinical data and mRNA expression matrices of
1599 HCC samples from nine datasets—TCGA-LIHC, ICGC-
LIRI (Japan), ICGC-LICA (France), GSE14520, GSE76427,
GSE116174, GSE104580, GSE112790, GSE121248—for further
analysis of the expression patterns among the 36 histone
acetylation regulators. To explore the prognostic value and
expression relationship of histone acetylation regulators, the
mRNA sequencing data from the TCGA-LIHC and ICGC-LIRI
cohorts with prognostic information were integrated into one
meta cohort for univariate Cox regression and Spearman
correlation analyses. The results demonstrated that multiple
regulators (HDAC2, HDAC1, HAT1, HDAC11, YEATS4,
SMARCA4, HDAC5, BRDT, DPF2, HDAC4, KAT7,
SMARCA2, BPTF, BRD4, PBRM1, HDAC3, BRD3, DPF1)
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were risk factors for HCC, and only SMARCA2 was a protective
factor against HCC (Figure S2A and Table S5). Correlation
analysis revealed a significant relationship among the expression
of the 36 regulators. Most of them were positively correlated with
each other, even though they belonged to different biological
groups (“writer”, “eraser”, or “reader”) and had different or
opposed bio-functions (Figure S2B). The expressions of
HDAC10 and HDCA11 (“erasers”) were negatively correlated
with that of KAT2B (“writer”), and the expression of HDAC11
was negatively correlated with that of DPF3 and SMARC2
(“readers”). These were the only negative correlations between
the expressions of the regulators. The comprehensive landscape
in the expression network of histone acetylation regulators and
their prognostic significance in HCC patients is depicted in
Frontiers in Immunology | www.frontiersin.org 6153
Figure 2A (Table S6). These results indicate that there is a
tight cross-talk among the histone acetylation regulators. The
writers, erasers, and readers construct a complex network and
integrally regulate the histone acetylation modifications,
impacting the development of HCC.

To identify the expression pattern of the 36 regulators, the
mRNA expression data of 774 HCC samples from the combined
datasets (TCGA-LIHC, ICGC-LIRI, and ICGC-LICA cohorts)
were classified using ConsensusClusterPlus. Three qualitatively
different histone acetylation patterns were identified using
unsupervised clustering, including 198 cases in pattern A, 204
cases in pattern B, and 372 cases in pattern C. We termed these
patterns HAcluster_A–C (Figure S2C and Table S7). Clustering
of histone acetylation was repeated in the GEO meta cohort
A B

D E
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FIGURE 1 | The landscape of genetic alterations of histone acetylation regulators in hepatocellular carcinoma (HCC). (A) Summary of the dynamic reversible process
of histone acetylation modification mediated by regulators (“writers,” “erasers,” and “readers”) and their biological functions. (B) Functional annotations of 36
regulators analyzed by the Metascape enrichment tool. Cluster annotations are shown in the color code. (C) The mutation frequency of 36 histone acetylation
regulators in TCGA-LIHC cohort. Each column represents individual patients. The barplot on top shows TMB, and the numbers on the right display the mutation
frequency of each regulator. The barplot on the right shows the proportion of each variation type. The stacked barplot on the bottom displays the fraction of
conversions in each sample. (D) The copy number variation (CNV) frequency of histone acetylation regulators in TCGA-LIHC was prevalent. The column represents
the alteration frequency. The deletion frequency is a light-green dot; the amplification frequency is a crimson dot. (E) Boxplot shows the expression of the 36 histone
acetylation regulators between tumor and normal tissues in the TCGA-LIHC cohort. Tumor: red; Normal: blue. (*P < 0.05, **P < 0.01, ***P < 0.001). (F) Principal
component analysis of the 36 histone acetylation regulators to distinguish tumors from normal samples in TCGA-LIHC. Tumor: pale blue; normal: yellow.
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(GSE14520, GSE76427, GSE116174, GSE104580, GSE112790,
and GSE121248), and a similar result was obtained (Figure
S2D). Notably, the PCA analysis shows that there was a
significant difference in the transcriptional profile among the
three different histone acetylation patterns, indicating that
unsupervised clustering was successful (Figure 2D). The
Frontiers in Immunology | www.frontiersin.org 7154
prognostic analysis revealed that the survival probability of
patients in HAcluster_B was worse than in HAcluster_A and
HAcluster_C based on the combined datasets of TCGA-LIHC
and ICGC-LIRI cohorts that have prognostic information
(Figure 2B). The prognosis predictive ability of the HAcluster
was re-examined using the combined data from the GEO
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C

FIGURE 2 | Histone acetylation modification pattern and clinical characteristics of each pattern. (A) The interaction among histone acetylation regulators in liver
cancer. The circle size describes the effect of each regulator on the prognosis and scale by P value. Favorable factors are shown with a pink semicircle on the right.
Risk factors are shown with a blue semicircleon the right. Three histone modification types of the 36 histone acetylation regulators are depicted by different colored
semicircle on the left. Readers: Indigo; writers: brown; erasers: gray. The red and blue lines represent positive and negative correlations, respectively (P < 0.0001).
(B) Survival analyses of three histone acetylation modification patterns based on 607 patients from the RNA-seq meta cohort (TCGA-LIHC, ICGC-LIRI). (C) Survival
analyses of three histone acetylation modification patterns based on 421 patients from the GEO meta cohort (GSE14520, GSE76427, GSE116174). (D) Principal
component analysis of the transcriptome profiles between three histone acetylation modification patterns, indicating a prominent difference on the transcriptome
between different HAclusters (based on RNA-seq meta cohort). (E) Unsupervised clustering of the 36 histone acetylation modification regulators in the TCGA-LIHC
cohort. The HAcluster, viral infection, vascular invasion, TNM stage, histology grade, age, and gender were used as sample annotations. Red represents high
expression, and blue represents low expression. Comparison of clinical characteristics proportion analysis between three HAclusters was evaluated by Chi-square
test (*P < 0.05, **P < 0.01).
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database and we obtained similar results (Figure 2C). Most
histone regulators, including writers, erasers and readers were
highly expressed in HAcluster_B, followed by HAcluster_C and
HAcluster_A (Figures 2E and S2E). This indicated that the
patients in HAcluster_B have the most active histone acetylation
modification and the modification turnover is fast. This may be a
risk factor for the prognosis of HCC patients. In addition, the
HAcluster was closely correlated with the clinical features of
HCC. The viral infection events, vascular invasion, high
TNM grade, and high histologic grade were significantly
enriched in HAcluster_B, as examined in the TCGA HCC
cohort (Figure 2E).

Three Histone Acetylation Patterns
Associated With Distinct Tumor Molecular
Backgrounds and Immune Infiltration
To identify the differences in biological behavior among the three
histone acetylation modification patterns, GSVA enrichment
analysis based on KEGG gene sets was performed (Table S8).
Compared to HAcluster_A and HAcluster_C, HAcluster_B was
enriched in carcinogenetic activation and stromal pathways,
cancer pathways, p53/MAPK/MTOR/NOTCH/WNT/ERBB/
TGF_BETA signaling pathways, cell cycle, and apoptosis. On
the other hand, HAcluster_A and HAcluster_C were enriched in
several biometabolism-related pathways (Figures 3A, B and
Table S9). We confirmed this result by conducting GSVA
enrichment analysis based on oncogenic hallmark data
obtained by Sanchez-Vega et al. and Mariathasan et al. (Table
S3) (38, 42); the results showed that HAcluster_B was enriched
in most of the malignant pathways, similar to the above analysis
(Figure 3C). Notably, the activity of angiogenesis, EMT, and
cancer stemness was also high in HAcluster_B (Figure 3C). As
shown in Figure S3A, B, mRNA expression of stem cell
biomarkers in HCC and the EMT score were the highest in
HAcluster_B. These analyses indicate that the histone acetylation
pattern was closely related to cancer’s bio-behavior in HCC, and
the high activity of histone acetylation relators could be a crucial
factor in improving the degree of malignancy.

Previous studies have reported a significant correlation
between TME infiltration of immune cells and modified
histone acetylation (54, 55). Therefore, we comprehensively
investigated the functional role of the regulatory network
composed of histone acetylation regulators in the TME. The
ssGSEA algorithm was used to quantify the relative abundance of
immune cells infiltrating the TME (Table S10). The Spearman
correlation analysis showed a strong correlation between
regulators and TME-infiltrating immune cells (Figure 3D). For
example, the expression of “erasers” HDAC7 and HDAC9 were
positively correlated with most of the TME-infiltrating immune
cells, and there was a positive correlation between activated CD4
T cells and most of the regulators. Additionally, the differences in
TME cell infiltration among thethree histone acetylation patterns
were analyzed (Figure 3E). HAcluster_B was remarkably
differences from HAcluster_A and HAcluster_C. The activated
dendritic cells and plasmacytoid dendritic cells were higher in
HAcluster_B than in HAcluster_A and HAcluster_C, indicating
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a highly active antigen-presenting function in this group. The
natural killer cells were also high in HAcluster_B. However,
activated CD8 T cells, the most powerful effectors in the
anticancer immune system (56), along with other important
tumor killer cells and gamma delta T cells (57) were both lower
in HAcluster B than that in HAcluster_A and HAcluster_C. It is
known that myeloid-derived suppressor cells (MDSC) (58) and
regulatory T cells are immune suppressive cells (59), while type 2
T helper cells are pro-tumorigenic (60). Both MDSC and type 2 T
helper cells were significantly higher in HAcluster_B, and
regulatory T cells were higher in HAcluster_B; however, this
was not statistically significant. These results indicated that
HAcluster_B is an immunosuppressive subtype, and its high
levels of immunosuppressive cells offset the positive influence of
highly-activated antigen pressing cells, which led to a poor
prognosis for patients in HAcluster_B. To confirm this
hypothesis, we analyzed the activity of immune suppression,
immune cytolytic effect, and antigen processing in the three
histone acetylation patterns based on the related gene signature
data from Bindea et al. and Thorsson et al. (Table S11) (46, 47).
The results demonstrated that the activities of immune
suppression and antigen processing were the highest in
HAcluster_B, and the immune cytolytic activity of HAcluster_B
was the lowest among the three groups, in agreement with
previous analyses (Figure 3F).

Construction of a Digital Model for
Quantifying Histone Acetylation Patterns
of Individual HCC Patients
To gain a comprehensive understanding of the differences in
biological features among the three HAculsters, we identified 591
DEGs that were significantly associated with patient prognosis to
characterize the HAcluster, based on three HAclusters previously
analyzed in the RNA-seq meta cohort (Figure S4A and Table
S12). The GO enrichment of these DEGs showed that their
functions were mainly enriched in histone acetylation, cell cycle,
RNA splicing, DNA replication, and cell adhesion (Figure 4A).
We found that patients could be clustered into three phenotype-
related subtypes based on these DEGs, named geneCluster_A,
geneCluster_B, and geneCluster_C, (Figure S4B, C). Most
DEGs were highly expressed in geneCluster_B, followed
by geneCluster_C and geneCluster_A (Figures 4B and
S4D). Most histone acetylation regulators were highly
expressed in geneCluster_B (Figure S4E). The survival
analyses showed that patient prognosis in geneCluster_B was
the worst, as analyzed in the RNA-seq meta cohort and GEO
meta cohort (Figures 4C and S4F). To depict and quantify the
histone acetylation pattern of individual HCC patients using a
convenient and precise method, we constructed a score model
based on these phenotype-related DEGs. This model was termed
the histone acetylation score (HAscore; see Materials and
Methods). We found that the HAscore was positively
correlated with the mRNA expression of histone acetylation
regulators and phenotype-related DEGs. The HAscore in
HAcluster_B and geneCluster_B was the highest. The HAscore
was moderately high in HAcluster_C and geneCluster_C, and
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the lowest in HAcluster_A and geneCluster_A (Figures 4D, E).
Next, we divided patients into high HAscore and low HAscore
groups using the Survminer package and conducted an overlap
analysis of these three different classifiers based on a histogram of
frequency distribution (analyzed on samples in the RNA-seq
meta cohort with prognostic information). The results showed
that samples in the high HAscore group were all from
geneCluster_B (172 out of 204: 84.3%), while 166 out of 191
(86.9%) samples in HAcluster_B composed the majority of
geneCluster_B. In addition, most of the patients in geneCluster
A and geneCluster_C belonged to HAcluster_A and
HAcluster_C, respectively, and contributed to the main part of
Frontiers in Immunology | www.frontiersin.org 9156
the low HAscore group (Figure 4G). The above results suggest
that these three computational methods of classification have a
high degree of coincidence.

Furthermore, we analyzed the prognostic prediction value of
the HAscore in patients with HCC. The results demonstrate that
the patients in the RNA-seq meta cohort and GEO meta cohort
with low HAscores, had a prominent survival benefit (Figures 4F
and S4G). Based on the RNA-seq meta cohort, the AUCs of
the time-dependent ROC curves for the HAscore were 0.708,
0.612, 0.624 and 0.573 at 1-, 2-, 3- and 5- year overall survival,
respectively (Figure 4H). Similar results were obtained from the
GEO cohort (Figure S4H). Next, we performed multivariate Cox
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FIGURE 3 | Biological characteristics of histone acetylation patterns. (A, B) GSVA enrichment analysis demonstrates the activation states of KEGG biological
pathways between distinct HAclusters in RNA-seq meta cohort and the activated group visualized by heatmap. Yellow and blue represent activated and inhibited
pathways, respectively. The HAcluster and project of database were used as sample annotations. (A) HAcluster A vs HAcluster B; (B) HAcluster B vs HAcluster (C)
Differences in oncogenic pathways among the three distinct HAclusters. (D) The correlation between the 36 histone acetylation regulators and TME infiltration cells in
RNA-seq meta cohort. Positive and negative correlations are marked in red and blue, respectively. (E) Boxplot of abundance of TME-infiltrating cells in three
HAclusters, based on the RNA-seq meta cohort. (F) Differences in immune-related functional pathways among the three distinct HAclusters. The statistical
differences among the three HAclusters were tested by the Kruskal–Wallis test. (*P < 0.05; **P < 0.01; ***P < 0.001; ns, non-significant).
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regression analysis using patient clinical characteristics including
age, sex, histologic grade, TNM stage, vascular invasion, and viral
infection. We found that the HAscore was a robust and
independent prognostic biomarker for evaluating outcomes of
patients in the TCGA-LIHC and GSE14520 cohorts (Figure 4I,
HR = 2.547, 95% CI: 1.218-5.325, P = 0.013; Figure S4I, HR =
Frontiers in Immunology | www.frontiersin.org 10157
1.647, 95% CI: 1.058-2.563, P = 0.027). In addition, survival
analyses based on the HAscore were also conducted for stomach
adenocarcinoma, bladder urothelial carcinoma, skin cutaneous
melanoma, and head and neck squamous cell carcinoma. The
results show that the survival prognosis of patients with high
HAscores was worse than those of patients with low HAscores
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FIGURE 4 | Construction of the characteristic signature of histone acetylation patterns and its prognostic significance. (A) GO enrichment analysis for histone
acetylation pattern related genes with prognostic significance. The x-axis indicates the gene ratio within each GO term. (B) Unsupervised clustering of 591 histone-
acetylation-related genes in RNA-seq meta cohort. The HAcluster, geneCluster, and cohorts were used as sample annotations. (C) The survival curves of different
geneClusters in the RNA-seq meta cohorts (TCGA-LIHC and ICGC-LIRI) were estimated by the Kaplan–Meier plotter (p = 1.62e-05, Log-rank test). (D) Differences in
the HAscores of the HAclusters in the RNA-seq meta cohorts. (E) Differences in the HAscores of the geneClusters in the RNA-seq meta cohorts. The statistical
differences were tested by the Kruskal–Wallis test. (****P < 0.0001). (F) Survival analyses for low and high HAscore groups in the RNA-seq meta cohort (TCGA-LIHC
and ICGC-LIRI) using Kaplan–Meier curves (P = 4.28e-07, Log-rank test). (G) Alluvial diagram demonstrating the changes in the HAcluster, geneCluster, and
HAscore groups. (H) The predictive value of HAscore in patients from the TCGA-LIHC and ICGC-LIRI RNA-seq meta cohorts (AUC: 0.708, 0.612, 0.624 and 0.573
for 1, 2, 3, 5- year overall survival). (I) Multivariate Cox regression model analysis of the factors including HAscore, patient age, gender, TNM status, histology grade,
vascular invasion, and viral hepatitis serologies in the TCGA-LIHC cohort.
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(Figure S4J). These results indicate that the HAscore was closely
related to prognosis and could be seen as a risk factor for HCC
and several other cancers.

Clinical Features, Transcriptional
Molecular Characteristics, and TME-
Infiltrating Cells Associated With the
HAscore
Our analyses have revealed survival prognostic differences
between the high HAscore and low HAscore groups.
Therefore, we determined to further explore the latent
mechanism behind these results. We analyzed the relationship
between the HAscore and the characteristics of the sample
including clinical characteristics, transcriptional molecular
background, and TME. The GSE14520 dataset and the TCGA-
HCC cohort with adequate clinical information were used to
analyze the correlation between HAscore and clinical
characteristics. As shown in Figures 5A and S5C, the HAscore
was higher in the groups with high AFP expression, vascular
invasion, viral infection, multiple nodules, advanced histologic
grade, TNM staging, and CLIP staging. In the TCGA-LIHC
cohort, samples with high AFP expression, viral infection,
vascular invasion, advanced histologic grade, and TNM staging
were significantly higher in the high HAscore group (Figure 5B
and Figure S5D). In the GES14520 dataset, samples with high
AFP expression, advanced TNM staging, and CLIP staging were
significantly higher in the high HAscore group (Figure S5A, B).
Considering that the above-mentioned clinical characteristics
were all risk factors for HCC prognosis (3, 61, 62), these results
elucidate the fact that patients with a high HAscore had a worse
survival prognosis.

Furthermore, the correlation between HAscore and tumor
molecular background was analyzed. The results show that
nearly all the cancer-related malignant pathways (such as cell
cycle, HIPPO, MYC, PI3K, and MYC), excluding the NRF2
signaling pathway, were significantly positively correlated with
the HAscore (Figure 5C and Table S13). The EMT score was
also higher in the high HAscore group (Figure S5E), indicating
that patients with high HAscores had higher activation of the
malignant pathway, resulting in a worse prognosis. Next,
correlation analysis involving HAscore, tumor-infiltrating
immune cells, and immune function was performed
(Figure 5D). The results demonstrate that the infiltration of
pro-tumorigenesis cells, type 2 T-helper cells (P = 1.5e-13), and
immunosuppressive cells, including MDSCs (P = 6.1e-05) and
regulatory T cells (P = 0.00099), were significantly positively
correlated with the HAscore. The immune cytotoxic cells-
gamma delta T cells that were significantly negatively
correlated with the HAscore (P = 0.02026). The HAscore was
also significantly positively correlated with the activity of
immune suppression (P = 4.536376e-12) and negatively
correlated with immune cytolytic activity (P = 1.827941e-09)
(Figure 5C). Additionally, in the high HAscore group the
enrichment of the number of MDSC, regulatory T-helper cells,
and type 2 T-helper cells was significantly higher, whereas that of
the number of cytolytic gamma delta T cells was significantly
Frontiers in Immunology | www.frontiersin.org 11158
lower (Figure 5E). The above results demonstrate that the
HAscore was closely correlated with TME, and the high
HAscore group was considered an immunosuppressive subtype.

The Predictive Ability of the HAscore
Model in the Sensitivity of Anti-Tumor
Drugs
Recently, numerous molecular-targeted agents have been
developed for the treatment of certain cancers and have had
good results. The above analyses reveal that histone acetylation
modification is closely related to the functional pathways of
cancer, such as cell cycle, DNA replication, the p53 pathway, and
the PI3K/mTOR signaling pathway. Thus, the HAscore could
have potential value in predicting the related drug response in
patients. To test this hypothesis, we assessed the association
between the HAscore and the response to drugs in cancer cell
lines using the GDSC database. Using the Spearman correlation
analysis, we identified 42 correlated pairs in which the AUC of
the drug-sensitive curve was significantly positively correlated
with HAscore (Table S14). These drugs included cetuximab, a
monoclonal antibody that inhibits epidermal growth factor
receptor (Rs = 0.522, P < 3.15E-61), the MEK inhibitor
trametinib (Rs = 0.444, P < 3.15E-61), and the HSP90 inhibitor
tanespimycin (Rs = 0.443, P < 3.15E-61). These results suggest
that these drugs could be more sensitive in samples with low
HAscores. In contrast, 74 correlated pairs were identified in
which the AUC of the drug-sensitive curve was significantly
negatively correlated with HAscore. These included the HDAC6
inhibitor ACY-1215 (Rs = -0.521, P < 3.15E-61), Wee1 inhibitor
MK-1775 (Rs = -0.492, P < 3.15E-61), and Bcl-2 inhibitor
sabutoclax (Rs = -0.472, P < 3.15E-61). These results suggest
that these drugs could be more sensitive in samples with high
HAscores (Figure 6A). Additionally, the signaling pathways of
the genes targeted by these drugs were analyzed. Notably, the
drugs that were sensitive in samples with high HAscores mostly
targeted histone acetylation, mitosis, cell cycle, and DNA
replication. This result is consistent with our previous analyses,
which demonstrated that most histone modification regulators
were highly active in the high HAscore group, along with cell
cycle and DNA replication. In addition, we found that the drugs
that were sensitive in samples with low HAscores mostly targeted
the MEK2 and RTK signaling pathways (Figure 6B).

To examine whether the HAscore could predict the drug
response in patients, we analyzed the relationship between drug
response and HAscore based on several datasets that were treated
with related anti-tumor agents. In the GSE5851 dataset, an
analysis of cetuximab monotherapy in patients with advanced
metastatic colorectal cancer reveals that the HAscore of
responders was significantly lower than that of non-responders
(Figure 6C), and the progression-free survival (PFS) of the low
HAscore group was significantly longer than that of the high
HAscore group (Figure 6D). The AUC of drug sensitivity-
dependent ROC curves for the HAscore was 0.691
(Figure 6E). These results are consistent with our finding that
the sensitivity of cetuximab was higher in the low HAscore
group. Furthermore, in the GSE22219 dataset, an analysis of a
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cyclophosphamide, methotrexate, and 5-fluorouracil regimen in
patients with breast cancer shows that the PFS of patients with
high HAscores was significantly longer (Figure 6F), consistent
with our previous analyses, which showed that methotrexate (Rs
= -0.422, P < 3.15E-61) and 5-fluorouracil (Rs = -0.386, P <
3.15E-61) were more sensitive in high HAscore samples. The
Frontiers in Immunology | www.frontiersin.org 12159
above results indicate that ACY-1215 (ricolinostat), an HDACi,
was sensitive in the high HAscore sample. The analysis based on
the GSE148623 dataset reveals higher HAscores in responders
and longer PFS in high HAscore patients (Figures 6G, H);
however, this was not statistically significant because of the
small sample size (N = 10). Collectively, these analyses indicate
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FIGURE 5 | Clinical features, molecular characteristics, and TME infiltrating cells of the distinct HAscore groups. (A) Difference in HAscore among distinct clinical features
related subgroups in the GSE14520 cohort. The Wilcoxon test was used to test the statistical differences among clinical features related subgroups. (B) Clinical features for
the high and low HAscore groups in TCGA-LIHC cohort. Chi-squared test or Fisher test was used to test the statistical differences. (C) Correlations between the HAscore
and the known gene signatures in RNA-seq meta cohort using Spearman analysis. Positive correlation is marked with red and negative correlation with blue. The asterisks
represent the statistical P value (*P < 0.05). (D) Correlations between HAscore and TME infiltrating cell abundance in RNA-seq meta cohort using Spearman analysis. The
circle size and x-coordinates describe the correlation coefficient. The color of the circle is scaled by P value. (E) Boxplot of each TME infiltrating cell abundance for high and
low HAscore groups in the RNA-seq meta cohort. The statistical differences among the HAscore groups were tested by the Kruskal–Wallis test. (*P < 0.05; **P < 0.01;
***P < 0.001; ns, non-significant).
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that the HAscore has potential value in predicting drug response
in patients.

The HAscore Model Predicts Response to
Immunotherapy With a PD-L1 or PD-1
Blocker
The emergence of immunotherapies targeting the PD-L1 and
PD-1 pathway blockade provides a positive outlook for patients
with cancer. However, the benefits of ICI therapy are still limited
Frontiers in Immunology | www.frontiersin.org 13160
because of innate or acquired immunotherapy resistance. Thus,
many studies have aimed to identify predictors of ICI therapy
for appropriate candidates, such as TIDE, which is widely used
and strongly recommended to evaluate the immune response in
cancer-related studies (63–68). Considering that the HAscore
appears to be closely correlated with the TME, we examined the
power of the HAscore to predict the response of patients to ICI
therapy based on two immunotherapy cohorts. First, we
analyzed the relationship between the HAscore and TIDE
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FIGURE 6 | The relationship between HAscore and drug sensitivity. (A) The Spearman analysis was used to evaluate the correlation between HAscore and AUC of
drug-sensitive curve. The brightness of column indicates the significance of the correlation. The height indicates the values of Rs. (B) Signaling pathways targeted by
drugs that were closely correlated with HAscore. The horizontal axis shows the drug names, and the vertical axis shows the signaling pathway targeted by the drugs. The
bar graph on the right displays the number of drugs in each signaling pathway. The significance of the correlation is shown by the size of the point. (C, G) The difference
of HAscores between distinct clinical outcomes of related anti-tumor drugs, including cetuximab (C) and ricolinostat (G). (D, F, H) Kaplan–Meier curves show the overall
survival time in high HAscore or low HAscore group after the treatment of related anti-tumor drugs, including cetuximab (D), a cyclophosphamide, methotrexate, and 5-
fluorouracil regimen (F), and ricolinostat (H). (E) The predictive value of the HAscore to the sensitivity of cetuximab (AUC = 0.691).
January 2022 | Volume 13 | Article 761046

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Histone Acetylation in TME and Immunotherapy
based on the TCGA-ICGC and GEO cohorts. The results show
that the TIDE scores were significantly higher in the high
HAscore group for both cohorts (P <2.2E-16; P = 1.7E-05;
Figures 7A, B), and the HAscore was positively correlated
with the TIDE score (Rs = 0.31; P < 2.2E-16; Rs = 0.15; P =
2.2E-05) (Figures S6A, B). In addition, the HAscore was
significantly positively correlated with MDSC infiltration (Rs =
0.49; P = 1.37e-47; Rs = 0.67; P = 4.03e-109) and exclusion
immune subtype (Rs = 0.46; P = 1.38e-42; Rs = 0.29; P = 1.05e-
17) calculated by the TIDE method in TCGA-ICGC and GEO
cohorts (Figures S6C, D). This result is consistent with our
previous finding, which demonstrated that the high HAscore
group was an immune suppressive subtype. Further, analysis in
the anti-PD-L1 immunotherapy cohort (Imvigor210) shows that
patients with a low HAscore had prolonged overall survival time
(P = 0.003) (Figure 7C) and better therapeutic outcomes. The
proportion of patients with complete response (CR) or partial
response (PR) to the anti-PD-L1 blocker was 27% in the low
HAscore group versus 13% in the high HAscore group
(Figure 7D, chi-squared P = 0.0133). Figures 7E, F show that
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the neoantigen burden and mutation burden were high in the
low HAscore group (P = 0.00022; P = 0.012), and the TIDE score
was low in the low HAscore group. This is consistent with the
finding that patients with low TIDE score seemed to gain more
clinical benefit from IBI therapy (Figure S6E). Figure S6F shows
that the AUC of the sensitivity-dependent ROC curve was 0.606
for the HAscore vs. 0.582 for TIDE score (P = 0.608). The study
of the David Liu cohort that was treated with anti-PD-1
immunotherapy yielded similar results. Figure 7G shows that
the OS of patients with low HAscores was significantly longer
than that of patients with high HAscores (P < 0.001).
Additionally, the proportion of patients with CR or PR to the
anti-PD-1 blocker was 43% in the low HAscore group versus
17% in the high HAscore group (Figure 7H, Fisher; P = 0.03947).
The above results indicate that patients with low HAscores could
gain more survival advantage and greater benefit from ICI
treatment. Further, the established modified histone acetylation
score model could improve the selection of drugs for HCC and
the prediction of response to anti-PD-L1 or anti-PD-
1 immunotherapy.
A B

D E

F G H

C

FIGURE 7 | The relationship between HAscore and immunotherapy. (A, B) The TIDE scores of individual HCC samples in the high HAscore or the low HAscore
groups. (A) shows the result from the RNA-seq meta cohort and (B) shows the result from the GEO meta cohort. (C, G) Kaplan–Meier curves show the overall
survival time in the high HAscore or the low HAscore groups after the treatment of PD-L1 pathway blockgade immunotherapy (C) or PD-1 pathway blockade
immunotherapy (G). (D, H) The proportion of patients with different responses to PD-L1 blockage (D) or PD-1 blockage (H). (E, F) the differences of neoantigen
burden (E) or mutation burden (F) in the high HAscore or the low HAscore group.
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DISCUSSION

Ample evidence exists showing that histone acetylation plays an
essential role in cancer biological processes such as proliferation,
apoptosis, differentiation, EMT, and drug sensitivity (69). Recently,
researchers have found that histone acetylation also has an
indispensable role in shaping the TME, which is an important
factor in determining patient prognosis. However, most studies have
focused on a single histone acetylation regulator. Relatively little is
known about the relationship between the three types of histone
acetylation regulators (“writer,” “eraser,” and “reader”) and their
function in cancer. Considering that the histone acetylation
regulators function as a tight network, it is necessary to analyze
them as a whole in cancer research.

In this study, we analyzed the correlation among 36 histone
acetylation regulators and found that the expression levels of nearly
all of the regulators were positively correlated with each other;
however, the functions of these regulators were different (even
opposite). Based on unsupervised clustering of the 36 regulators,
we divided the patients into three histone acetylation phenotypes
(HAcluster_A, HAcluster_B, and HAcluster_C). Interestingly,
their patterns were distinctly expressed in the 36 regulators.
Nearly all the regulators had the highest expression in
HAcluster_B, the regulators were moderately expressed in
HAcluster_C, and the regulators had the lowest expression in
HAcluster_A. This indicates that the activity and turnover of
histone acetylation was intense in HAcluster_B. Our survival
analysis reveals that the OS of patients in HAcluster_B was the
worst of the three phenotypes. Furthermore, to better characterize
the three histone acetylation phenotypes, we identified
differentially expressed genes among them. Based on these genes,
we constructed an HAscore model to digitally quantify the histone
acetylation phenotype in individual patients. The results show that
the HAscore was the highest in HAcluster_B, and the survival
prognosis of the high HAscore group was the worst.

To explore the mechanism causing the prognostic difference
among patients with different histone acetylation phenotypes, we
first analyzed cancer biological features with the three histone
acetylation patterns and two HAscore groups. We found that
HAcluster_B was characterized by significant activation of the
mTOR, ERBB, NOTH, WNT, TGF-b signaling pathways, cell
cycle, and apoptosis. The HAscore was also significantly positively
correlated with the activation of cell cycle, angiogenesis, EMT, cell
stemness, and cancer-related malignant signaling pathways
(HIPPO, MYC, NOTH, PI3K, TGF-b, RTK/RAS, TP53, and
WNT). The above-mentioned biological functions and signaling
pathways play an important role in promoting tumor
development. For example, HIPPO (70), NOCTH (71), TGF-b
(72) and WNT (73) are crucial signaling pathways that regulate
various cancer-related processes, including cell proliferation,
invasion, metastasis, and immunologic escape. The abnormal
activation of these signaling pathways promotes cancer
malignancy and leads to a poor prognosis (74–77).

Cancer stem cells are a subtype of cells that can self-renew by
division and generate tumor progeny required for sneaking through
and tumorigenesis (78, 79). In addition to their cancer-initiating
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ability, CSCs play a critical role in modulating other processes such
as EMT (80), immunotherapy resistance (81) and drug resistance
(82). These four signaling pathways also play key roles in supporting
CSC activity (83). In HAcluster_B and the high HAscore group,
where the malignant signaling pathways were active; the biomarkers
for HCC stem cells were all highly expressed, indicating the high
activity of CSCs in these two groups. These findings can partially
explain why patients in HAcluster_B or those with high HAscores
had the worse survival prognosis.

ICI therapy is a potentially good application in this setting
because it mobilizes the autoimmune system to kill cancer cells.
Mounting evidence has confirmed that diverse HDACi could alter
the biological processes of immune cells and reshape the immune
microenvironment, enhancing the tumor-killing effect of the
immune system (84–86). In this study, we found that histone
acetylation patterns were closely related to TMEs, and there were
distinct differences in tumor-infiltrating immune cells among the
three histone acetylation patterns. The activated dendritic cells,
plasmacytoid dendritic cells, and antigen processing activity were
significantly higher in HAcluster_B and the high HAscore groups.
The biological processes of antigen processing and presentation
play a critical role in improving the cancer-killing effect of immune
cells (87). Previous studies have pointed out that HDACi, which
improve the level of histone acetylation, could enhance antigen
presentation by cancer cells (26, 85, 88). Interestingly, HAcluster_B
and the high HAscore group had the highest expression of HATs,
which improves histone acetylation levels, and this could be the
reason for the high antigen processing and presentation observed
in these two groups. Future research will have to confirm this
hypothesis. Although antigen processing and presentation are
active in HAcluster_B and the high HAscore groups, the
immune-suppressive cells, MDSCs, and regulatory T cells were
higher in both of them. This indicates that the HAcluster_B and
the high HAscore groups were immune-suppressive subtypes, and
the pro-immunity effect brought by activated antigen processing
and presentation was offset by the immune-suppressive cells.
Further functional enrichment analysis confirmed that
HAcluster_B was highly enriched in immunosuppressive gene
signatures and less enriched in immune cytolytic gene signatures.
In addition, the HAscore was positively correlated with immune
suppression and negatively correlated with cytolytic activity. These
analyses indicate that the immune-suppressive subtype may be a
reason for the poor prognosis of patients in the HAcluster_B group
or with a high HAscore.

Finally, considering the strong relationship between histone
acetylation patterns, cancer-related malignant signaling
pathways, and TME, we examined the potential therapeutic
effects of the HAscore. We found that it was positively
correlated with the sensitivity of drugs targeting histone
acetylation, cell cycle, mitosis, DNA replication, BRD3, and
ROCK2. In contrast, we found that the HAscore was
negatively correlated with the sensitivity of drugs targeting
MEK2, PARP, VEGFR, ABL signaling, and histone
methylation. These results imply that patients with higher
HAscores could benefit more from the positively-correlated
drugs while the negatively correlated drugs would be more
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suitable for patients with lower HAscores. In addition, we found
that the HAscore could also predict the response of patients to
anti-PD-L1 or anti-PD-1 immunotherapy. Compared to the
patients with high HAscores, patients with lower HAscores
were more sensitive to ICI immunotherapy. However, the
benefits of ICI treatment are still limited due to the primary,
adaptive, and/or acquired resistance to cancer immunotherapy
(14). Fortunately, researchers have found that certain molecular-
targeted anti-tumor agents can prevent cancer’s immunotherapy
resistance and combining these anti-tumor agents with ICI
immunotherapy could greatly improve patient prognosis rather
than a single-drug regimen. For example, researchers have found
that the combination of a selective HDAC3 inhibitor with anti-
PD-L1 immunotherapy enhanced tumor regression in a syngenic
murine lymphoma model (86). Additionally, a phase 2 clinical
trial has shown that camrelizumab (a PD-1 monoclonal
antibody) combined with apatinib (a VEGFR-2 tyrosine kinase
inhibitor) shows promising efficacy and acceptable safety in
patients with advanced HCC in both the first-line and second-
line settings (89). This result is significantly better than ICI
therapy using a single immune-checkpoint inhibitor (90, 91).
Our findings provide evidence that the HAscore can be a
predictor for the sensitivity of certain targeted drugs combined
with ICI therapy. This indicates that there are potential new
treatment options for choosing a suitable targeted agent to
improve the outcome of immunotherapy in patients with HCC.
CONCLUSION

In this study, we comprehensively evaluated the histone
acetylation patterns of 1599 HCC cancer samples based on 36
histone acetylation regulators and identified three distinct
histone acetylation patterns. The integrated analysis indicates
that the differences in the activation of cancer-related malignant
pathways and TME could be the main reason for the distinct
prognostic outcomes of the three histone acetylation patterns.
Based on the transcriptional differences among histone
acetylation phenotypes, we constructed an HAscore model to
digitally depict them, and identified the therapeutic utility of the
HAscore in targeted therapy and immunotherapy. In summary,
our study shows that evaluating the histone acetylation patterns
of individual tumors will enhance our understanding of the
characteristics of the TME and help develop personalized,
combined, and immune-targeted therapeutic strategies for
HCC patients. However, there are limitations in this study.
The prognostic value of HAscore model on five-year OS of
HCC patients is unsatisfactory. In future, more efforts should
be paid to improve this model.
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Chimeric antigen receptor T cell (CAR-T cell) therapy has shown impressive success in the
treatment of hematological malignancies, but the systemic toxicity and complex
manufacturing process of current autologous CAR-T cell therapy hinder its broader
applications. Universal CAR-T cells have been developed to simplify the production
process through isolation and editing of allogeneic T cells from healthy persons, but the
allogeneic CAR-T cells have recently encountered safety concerns, and clinical trials have
been halted by the FDA. Thus, there is an urgent need to seek new ways to overcome the
barriers of current CAR-T cell therapy. In-vivo CAR-T cells induced by nanocarriers loaded
with CAR-genes and gene-editing tools have shown efficiency for regressing leukemia
and reducing systemic toxicity in a mouse model. The in-situ programming of autologous
T-cells avoids the safety concerns of allogeneic T cells, and the manufacture of
nanocarriers can be easily standardized. Therefore, the in-vivo induced CAR-T cells can
potentially overcome the abovementioned limitations of current CAR-T cell therapy. Here,
we provide a review on CAR structures, gene-editing tools, and gene delivery techniques
applied in immunotherapy to help design and develop new in-vivo induced CAR-T cells.

Keywords: CAR-T cells, barriers, in-situ editing, gene-editing tool, nano-delivery
INTRODUCTION

Chimeric antigen receptor T cell (CAR-T cell) therapy is a new cell immunotherapy technique that
incorporates synthetic receptors into T cells that recognize and kill tumor cells with a cognate
targeting ligand (1, 2). CAR-T cell therapy has demonstrated unprecedented response rates in
patients with B cell lymphoma since the first approval of CD19-targeted CAR-T cells in the USA
(1, 3–5). However, along with the remarkable achievements of CAR-T cell therapy, many systemic
toxicities, such as cytokine release syndrome (CRS) and neurotoxicity, have also been frequently
reported (2, 6–8). Additionally, the complex manufacturing process of CAR-T cells limits the
broader applications of this therapeutic method as a standard clinical treatment (2, 9–11).
Therefore, there is an exigent need to develop a new paradigm of CAR-T cells to overcome these
barriers and allow this therapeutic method to benefit more patients. To simplify the complex
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manufacturing process of CAR-T cells, universal allogeneic
CAR-T cells from healthy persons have been tested in clinical
trials (12–15). Universal CAR-T cells can be off-the-shelf and
then infused into patients like usual medicines, without needing
to wait for the isolation of autologous T cells from patients (12,
16); however, last year’s death case during the clinical trial of
UCARTCS1A from Cellectis raised safety concerns about
allogeneic CAR-T cells. The FDA also recently halted all
clinical trials on universal CAR-T cells from Allogene due to
safety concerns (17). Thus, we need new strategies to overcome
the associated toxicity and simplify the manufacturing process of
current CAR-T cell therapy. In-vivo CAR-T cells induced by
nanocarriers loaded with CAR genes and gene-editing tools have
shown promising effects for regressing leukemia (18–20). The in-
situ programming of autologous CAR-T cells can enhance the
targeted killing of tumor cells and reduce systemic toxicity such
as CRS and neurotoxicity. Additionally, the nanocarriers can be
easily manufactured in a standardized method (21) In-vivo
induced CAR-T cells provide a potential solution to overcome
the barriers of current CAR-T cell therapy. Thus, here, we review
CAR structure design, gene-editing tools, and gene delivery
systems and the future trend of immune cell therapy.
CAR STRUCTURE AND EVOLUTION

The structure of the chimeric antigen receptor (CAR) has a
modular design consisting of an antigen-binding domain, a
hinge, a transmembrane domain, and an intracellular signaling
domain (Figure 1A). The antigen-binding domain is usually a
single-chain variable fragment (scFv) molecule derived from a
monoclonal antibody that can bind to antigens on the surface of
malignant cancer cells (4, 22–24). The transmembrane domain is
responsible for anchoring the CAR onto the T cell membrane. The
intracellular signaling domain generally contains a T cell
activation domain derived from the CD3z chain of the T cell
receptor as well as co-stimulatory domains often comprised of an
Frontiers in Oncology | www.frontiersin.org 2168
immunoreceptor tyrosine-based activation motif containing
regions of CD28 or 4-1BB (also known as CD137 and
TNFRSF9) (25–29). Variations in each component of the CAR
structure enable fine-tuning of the functionality and antitumor
activity of the resultant CAR-T cell product. Various CAR
structures have been designed to improve the safety and efficacy
of CAR-T cell therapy. Once the designed CAR genes are
integrated into T cells, the scFv on the surface of T cells
specifically recognizes tumor-associated antigens and binds
CAR-T cells with tumor cells. After that, the intracellular signal
domains of CAR-T cells are activated and cause CAR-T cells to
proliferate and secrete cytokines that kill tumor cells (30–32).

There have been five generations of CAR structures since the
first clinical application of CAR-T cells by Carl June at the
University of Pennsylvania and hematologist David Porter at
the Children’s Hospital in Philadelphia in 2011 (33–35). The
first-generation CAR contained an intracellular stimulation
region and an extracellular scFv. This generation of CAR-T cells
could not continuously proliferate due to the lack of costimulatory
molecules (Figure 1B) (34). The second-generation CAR added a
costimulatory molecule, such as CD28, or 4-1BB (CD137) to
enhance the proliferation and reduce the toxicity of CAR-T cells
(36). Yescarta™ (Tisagenlecleucel) and Kymriah™ (axicabtagene
ciloleucel) are second-generation CAR-T cells that contain CD28
and 4-1BB, respectively (36). The third-generation CAR includes
two costimulatory molecules, such as CD27, CD28, tumor necrosis
factor superfamily 4 (OX40, also known as CD134), CD137 (4-
1BB), or CD244 (37, 38). The fourth-generation CAR is called
TRUCKs (T cells redirected for antigen-unrestricted cytokine-
initiated killing), which combines the direct antitumor capacities
of CAR-T cells with the immune modulating function of the
delivered cytokine (34, 39). TRUCKs have entered early-phase
clinical trials using a panel of cytokines, including IL-7, IL-12, IL-
15, IL-18, IL-23, and their combinations. The fifth generation
integrates an additional membrane receptor that controls the
activation of CAR-T cells in an antigen-dependent manner
(38, 40).
A B

FIGURE 1 | (A) The basic structure of a CAR: extracellular domain, transmembrane domain, and intracellular domain. (B) The development of the five generations of
CARs. The first generation only contained the CD3z chain functional energy domain9; the second generation contained CD3z+ a costimulatory molecular domain
(CD28, 4-1BB, etc.); the third generation contained CD3z and two costimulatory molecular domains; the fourth generation included suicide gene editing, immune
factor modification, and other integrated and refined regulatory tools; the fifth generation included simultaneous activation of TCR, costimulatory domain, and
cytokine triple signaling.
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In addition to adding new functional molecules into the CAR
structure, many studies have chosen alternative tumor-targeted
sites for new CAR structures. CD30 shows very strong expression
on malignant cells in Hodgkin’s lymphoma, rather than on
healthy lymphocytes and hematopoietic stem/progenitor cells
(HSPCs). CD30 CAR-T cell therapy has shown superior results
in the treatment of CD30+ malignant tumors, while healthy
activated lymphocytes and HSPC were unaffected (41). CD20 is a
33–37-kDa non-glycosylated transmembrane phosphoprotein
that helps develop and differentiate B cells (42). CD20 is highly
expressed in late pre-B cells and mature B cells, but it is not
expressed on the surface of HSPCs (43). CD20 CAR T-cell
therapy which has shown promise in the treatment of B-cell
non-Hodgkin lymphoma is now being considered for patients
with relapsed or refractory CD20-positive chronic lymphocytic
leukemia. Lym-1 targets the conformational epitopes of human
leukocyte antigen D-associated antigens (HLA-DRs) on the
surface of human B-cell lymphoma. The binding affinity of
Lym-1 with malignant B cells is higher than that of normal B
cells (44). Lym-1 CAR-T cells have exhibited potent antitumor
effects against B-cell lymphoma. Some alternative targeting sites
combine with CD19 to form dual-target CAR T cells. For
example, CD37 combined with CD19 was incorporated into
one CAR to generate a dual-specific CAR T cell capable of
recognizing CD19 and CD37 alone or together (45). CD79b is
also a complementary targeting site for CD19. CD19 and CD79
dual-specific CAR-T cells prevented the escape of B-cell
lymphoma from a single CD19 CAR-T cell (46, 47). Some
alternative targeting sites have co-targeting functions that act
on tumor cells and tumor microenvironments. For instance,
CD123 was expressed in both Hodgkin lymphoma cells and
tumor-associated macrophages so that anti-CD123 CAR-T cells
could co-target these two kinds of cells and kill them
simultaneously (48). The CAR structure is continually evolving
to improve the efficacy of current CAR-T cell therapy (32, 49).
BARRIERS TO CURRENT CAR-T
CELL THERAPY

Five CAR-T cell products have been approved by the FDA from
2017 to 2021, as listed in Table 1. KYMRIAH™ (Tisagenlecleucel)
Frontiers in Oncology | www.frontiersin.org 3169
is the first approved CAR-T cell therapy for adult patients with
certain types of B-cell lymphoma (50). Three approved CAR-T cell
products, YESCARTA™ (Axicabtagene ciloleucel), TECARTUS™

(brexucabtagene autoleucel), and BREYANZI® (lisocabtagene
maraleucel), are also approved for the treatment of B cell
lymphoma (51–53). The fifth CAR-T cell product, ABECMA®

(idecabtagene vicleucel), is used for multiple myeloma therapy
(54). Beyond the five approved CAR-T cell products, a large
pipeline of CAR-T cells is being studied in clinical trials (55–57),
but current CAR-T therapy has several barriers, such as associated
toxicity, immunosuppressive tumor microenvironments, and
complex manufacturing processes, which hamper the more
widespread implementation of CAR-T therapy (58–60).

The major toxicities associated with current CAR-T therapy
include cytokine release syndrome (CRS), immune effector cell-
associated neurotoxicity syndrome (ICANS), and on-target/off-
tumor toxicity (61–63). CRS is caused by the generation of
massive inflammatory cytokines, such as IL-6, IL-10, IL-2, and
TNFa, after CAR-T cell treatment. CRS often causes fever,
hypotension, hypoxia, organ dysfunction, and even life-
threatening adverse reactions (8, 64, 65). The occurrence of
severe or life-threatening CRS can reach 25%. ICANS is
another common toxicity associated with CAR-T cell therapy
and is characterized by neurological abnormalities with
aftereffects, usually within 1 week of CAT-cell treatment. The
frequent adverse effects caused by ICANS include toxic
encephalopathy with aphasia, confusion, and word-finding
difficulty (66–68). On-target/off-tumor toxicity is due to the
non-special expression of targeting proteins on both normal
and malignant cells (69, 70). For instance, when administrating
CD19 CAR-T cell in patients with malignant B cells, the on-
target/off-tumor effect will lead to B cell aplasia and result in
hypogammaglobulinemia due to the eradication of CD19+ B cell
progenitors by CD19 CAR T cells (71, 72).

The immunosuppressive tumor microenvironment (MVT)
inhibits the activation of CAR-T cells and accelerates the
exhaustion of T cells (70, 73). Unfavorable factors in
immunosuppressive MVT include hypoxia , various
immunosuppressive cells, and the sustained expression of co-
inhibitory receptors (74, 75). Hypoxia is defined as a shortage of
oxygen in the tumor MVT. Immunosuppressive cells in the
tumor MVT contain regulatory T cells (Tregs), tumor-
TABLE 1 | An overview of currently approved CAR-T products.

Category Approval Target Indication

Tisagenlecleucel, tisa-cel Aug.
2017

CD19 B-cell acute lymphoblastic leukemia (ALL) that is refractory or has relapsed after receiving at least second-line
regimens; relapsed or refractory large B-cell lymphoma (second indication approved in 2018)

Axicabtagene Oct.
2017

CD19 Treatment in adult patients with relapsed or refractory large B-cell lymphoma (LBCL)
Adult patients with relapsed/refractory mantle cell lymphoma (MCL) and B-cell acute lymphoblastic leukemia (ALL)

Ciloleucel, Axi-Cel
Brexucabtagene
autoleucel, KTE-X19

Jul. 2020 CD19

Lisocabtagenemaraleticel,
L iso-cel

Feb.
2021

CD19 Relapsed/refractory diffuse large B-cell lymphoma (DLBCL)

Idecabtagene Vicleucel,
ide-cel

Mar.
2021

BCMA Patients with relapsed/refractory multiple myeloma who have received four or more previous therapies, including
immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies
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associated macrophages (TAMs), and myeloid-derived
suppressor cells (MDSCs) (74, 76).

The current manufacturing process of CAR-T cells is a highly
complex endeavor, including T cell collection, genetic
modification and expansion, and infusion back into patients
(77, 78). These multistep technologies and logistics are rife with
risks (10). Additionally, the long-term and individualized
manufacturing processes pose great challenges for building up
standard operating procedures (79). The costly and technology-
intensive manufacturing processes of current CAR-T cells make
them out of reach for many cancer patients in need of this
novel therapy.
GENE-EDITING TOOLS IN CAR-T
CELL THERAPY

The gene-editing tools frequently applied to CAR-T cell therapy
include zinc-finger nucleases (ZFN), transcription activator-like
effector nucleases (TALEN), and clustered regularly interspaced
short palindromic repeats-associated 9 (CRISPR-Cas9)
technology (80–82). ZFN is the first broadly applied gene-
editing tool that includes zinc fingers, a large multimeric
protein, wherein each individual finger targets three to four
base-pair sequences within genomic DNA (83, 84). Multimeric
zinc finger proteins are able to link with the FokI endonuclease to
create a ZFN that can cleave site-specific double-stranded DNA
and lead to homologous recombination (HR) or non-
homologous end-joining (NHEJ) (85). ZFN can achieve
effective and specific gene-editing, but it is time-consuming to
optimize the targeting protein molecules. TALEN are composed
of several TAL units that can recognize base pairs of DNA and
link to an endonuclease to generate the site-specific cleavage of
DNAs (86, 87). TALEN are more economical than ZFN but still
require a long time to optimize the system. CRISPR-Cas9
technology is the most popular gene-editing tool due to its
simplicity and efficiency. The CRISPR-Cas9 complex was
initially identified as an immune system for cleaving foreign
viral DNA in Streptococcus pyogenes (88). These CRISPR
complexes are first transcribed into RNAs (crRNAs), including
bacterial CRISPR sequences, viral sequences (protospacers), and
intervening sequences (PAMs) (89). These crRNAs are then
complexed with the Cas endonuclease. Once the Cas–crRNA
complex recognizes a homologous protospacer and PAM
sequence, the Cas endonuclease cleaves the double-stranded
DNA, followed by an automatic DNA repair process (88). A
short-guide RNA (sgRNA) was introduced into the CRISPR-
Cas9 system as the crRNA, making CRISPR-Cas9 an efficient,
specific, and simple gene-editing tool (90). The development of
gene-editing technology has allowed the precise surgical gene-
editing of CAR-T cells to generate exhaustion-resistant T cells
via removing the PD1 of T cells (91). CRISPR-Cas9 was also used
to deplete endogenous antigens, such as CD33 and CD7, in
normal cells to reduce the on-target off/tumor toxicity of
redirected T cells (92, 93). The CRISPR-Cas9 system has been
used in many CAR-T clinical trials involving more than twenty-
Frontiers in Oncology | www.frontiersin.org 4170
one target antigens (Figure 2) (94–97). CD19 and BCMA
account for nearly one-half of the CAR-T clinical trials on
these target antigens. To use the CRISPR-Cas9 system more
widely to edit CAR-T cells, efficient delivery methods must
be developed.
GENE DELIVERY SYSTEMS

Plenty of delivery systems have been used to deliver gene therapy
products including the gene-editing tools and CAR genes
(Figure 3). Viral vectors have the highest transfection efficiency
and have been widely used to deliver genes in various applications
(96), but they suffer from the immunogenicity and cellular toxicity.
Adenovirus-associated viruses (AVV) have a lower risk of toxicity
than other viral vectors such as lentivirus, and adenovirus due to
insertional mutagenesis (98). However, the AAV vector has a
smaller packaging size (~5.0 kb) than other viral vectors (99).
Non-viral delivery systems for gene delivery can be classified into
either physical or chemical techniques. Physical techniques
include electroporation, needle injection, laser irradiation, and
gene guns. Electroporation is one of the most widespread
application methods, which induces pore formation on cell
membranes and the transient permeability of genes using
electric pulses (100–102). Physical techniques have attractive
effects on gene delivery due to their low immunogenicity, but
they cannot target internal organs. Chemical techniques that
mainly use nano-delivery systems include cationic lipids or
polymer-based nanoparticles, golden nanoparticles, silica
nanoparticles and quantum dots, carbon nanotubes, exosomes,
ferritin, and cell membranes. Lipid-based nanoparticles are one of
the most attractive non-viral vectors for gene delivery as several
formulations of these carriers have been approved to use in the
clinic (103–105). Especially, lipid-based nanoparticles have
recently been successfully used to deliver SARS-CoV-2 mRNA
vaccines (106). Lipid nanoparticles have also been used to deliver
the CRISPR/Cas9 system to achieve in-vivo genome editing at
clinically relevant levels (107, 108). Polymer-based nanoparticles
are another system suitable for gene delivery applications.
Positively charged polymers can form stable polyplexes with
genes that disrupt cell membranes and enable endosomal escape
(109, 110). The limitation of polymer-based nanoparticles is their
toxicity and immunogenicity caused by the interaction of their
positively charged surfaces with negatively charged cell
membranes and proteins in blood circulation (111, 112).
Exosomes are naturally secreted extracellular vesicles with
nanometer sizes that are being extensively investigated as gene
delivery vectors due to their natural biocompatibility and minimal
immune clearance (113, 114); however, more efforts are required
to overcome the difficulties in production, isolation, and
purification (115). Cell membranes derived from platelets and
red blood cells are biomimetic vectors used for gene delivery that
have natural biocompatibility and targeting, but their transfection
efficiencies need to be improved (116–118). Each of the other
chemical nano-vectors has unique characteristics that determine
their effects on gene delivery. Some have shown potential efficiency
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for the treatment of many diseases, but optimal delivery systems
are still unrealized for clinical use.
IN-VIVO CAR-T CELL INDUCTION

The current manufacturing process of CAR-T cells requires
dedicated equipment and significant technical expertise and is
also labor-intensive and time-consuming. (10, 119, 120). It limits
the broader worldwide applications of this technology and drives
up the price of CAR-therapy, making it out of reach of many
patients (121). To simplify the production process, universal
CAR-T cells from allogeneic healthy persons were tested in
clinical trials, but, the FDA recently halted all clinical trials on
the universal CAR-T cells from Allogene due to safety concerns
of allogeneic CAR-T cells. There is an urgent need to develop a
safe and simple production process for CAR-T cells. In-vivo
programming of CAR-T cells by nanoparticles is an elegant and
novel approach to simplify and standardize the complex
manufacturing process of ex-vivo CAR-T cells (122).
Additionally, the in-situ induction of CAR-T cells effectively
reduces the systemic toxicity of CRS and ICANS. Recently, in-
vivo induced CAR-T cells were accomplished through the nano-
delivery of CAR structures or gene-editing tools by the team of
Frontiers in Oncology | www.frontiersin.org 5171
Matthias Stephan from the Fred Hutchinson Cancer Research
Center (Seattle, USA) (18, 20). They accomplished the stable and
transient expression of targeting CAR protein in T cells via the
infusion of nanoparticles loaded with CAR-DNA and CAR-
mRNA, respectively. In these two works, the core of the nano-
delivery systems was composed of a cationic polymer, poly(b-
amino ester), assembled with a second-generation CAR structure
targeted to CD19. The exterior of the nano-delivery system was
composed of polyglutamic acid (PGA) conjugated with an anti-
CD3 antibody. The polymer nanoparticles carrying CD19-
specific CAR genes quickly and specifically edited T-cells in
vivo and brought about comparable antitumor efficacies to
conventional laboratory-manufactured CAR T-cells without
inducing systemic toxicity. In addition to the polymer
nanoparticles, viral vectors such as lentiviruses and AAV have
also been tested for the in-vivo generation of CAR-T cells.
Christian J. Buchholz and his colleagues first reported that
lentiviruses encapsulated with a second-generation anti-CD19
CAR gene induced in-situ CAR T cells in immunodeficient
NOD-scid-IL2Rcnull (NSG) mice and showed antitumor
activity (123, 124). They also exhibited cytokine release
syndrome that is notorious in clinical practice. In their study,
CAR-positive NK and NKT cells were unexpectedly detected,
which were likely caused by the non-specificity of the lentiviral
FIGURE 2 | Target antigens of CAR-T cell therapy using CRISPR-Cas9 gene-editing technology registered in ClinicalTrials.gov until June 2021. The data only
include clinical trials that are registered in USA.
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vector. To overcome the non-specificity of the viral vector,
Samuel K Lai et al. developed a bispecific binder to redirect the
lentiviral vector to T cells for the in-vivo specific engineering of
CAR-T cells (125). They observed the antitumor activity from
the in-vivo CAR-T cells engineered by lentivirus, but a relatively
low number of CAR-expressing T cells. They considered this to
be proof of a valuable and unverified theory of the superior
performance and self-renewal capacity of in-vivo CAR-T cells
compared with that of ex-vivo CAR-T cells. However, the toxicity
of the in-vivo CAR-T cells engineered by the bispecific binder-
redirected lentivirus was not included in this work. Among the
viral vectors, AVV has a lower risk of toxicity. Xilin Wu et al.
recently reported that AAV encoding a third-generation CAR
gene could sufficiently reprogram immune effector cells to
generate in-vivo CAR T cells (126). In this work, they showed
a strong proof of concept of AAV-induced in-vivo CAR-T cells,
but the authors were concerned about the non-specificity of the
AAV carrying the CAR gene. Except for the non-specificity of
the viral vector, a universal safety concern of viral vectors is the
random insertion of genes in the chromosol. Precise and rapid
gene editor tools such as CRISPR have been widely used to
generate ex-vivo CAR-T cells. There are many studies on in-vivo
gene-editing using CRISPR, but there are still no reports on the
application of CRISPR to generate in-vivo CAR-T cells. The
Frontiers in Oncology | www.frontiersin.org 6172
future applications of combing gene-editing tools and CAR genes
will accelerate the clinical adoption of in-vivo CAR-T cells.

The nano-delivery of designed CAR-structures and gene-
editing tools can induce the in-vivo formation of CAR-T cells
with multiple functions to overcome the barriers of current
CAR-T cells, such as associated CRS and ICANS toxicities,
immunosuppressive microenvironment, and complex
manufacturing processes (Figure 4). Systemic toxicities can be
reduced through tumor in-situ editing and the expansion of T
cells (18, 62). The incorporation of special cytokine genes into a
CAR structure enables CAR-T cells to secrete cytokines, flushing
the immunosuppressive microenvironment and making it
suitable for the survival and proliferation of T cells (127–129).
Loading gene-editing tools with CAR structures into
nanoparticles can knock out the genes of immune checkpoint
blockades to reverse T-cell exhaustion (130–132). More
importantly, this approach resolves the difficulty of process
standardization and scale-up of the manufacture of ex-vivo
CAR-T cells (133). The final gene-editor nanoparticles can be
conveniently produced, stored, and delivered as usual medicines
(Figure 5). These studies are just the beginning of the period of
in-vivo induced CAR-T cells. Their clinical applications still
require more efforts to monitor the in-vivo editing and
expansion status of T-cells.
FIGURE 3 | Representation of viral and non-viral nano-delivery systems classified as viral vectors, non-viral (physical and chemical). AAV, adeno-associated virus.
The total number of papers is 18,968 obtained from PubMed, and Microsoft Excel was used to obtain the pie graph. The keywords are the name of vectors and
gene delivery or CAR gene.
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FIGURE 4 | Overcoming the barriers of cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), tumor microenvironment
(MVT), and complex process through in-vivo CAR-T cell induced by nanomedicines composed of nano-carrier loaded with the CAR structure or a gene-editing tool.
FIGURE 5 | Comparison of generating CAR-T in-vitro and generating CAR-T-in-vivo by nano-delivery systems: In-vitro CAR T cells are first isolated from the patient,
proliferated in-vitro, and then genetically engineered to screen the successfully edited CAR T cells, which are amplified to a certain number of infusions into the
patient. In-vivo induced CAR T cells use nanotechnology to encapsulate CAR-expressing plasmids into nano-delivery systems including polymer nanoparticles and
viral vectors such as lentivirus and AAV, which are then targeted to tumor regions in-vivo to edit T cells in-situ at tumor sites to kill tumors.
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CONCLUSION AND FUTURE PROSPECTS

Enormous achievements have been made in CAR-T cell therapy
in the last decade, and five CAR-T cell products are available in
the clinic. However, current CAR-T cell therapy also has some
barriers that need to be overcome such as CRS and ICANS
toxicity and expensive and complex manufacturing procedures.
The in-vivo induced CAR-T cells by nanoparticles loaded with
CAR genes and gene-editing tools have shown potential
breakthroughs to overcome the abovementioned barriers of
current CAR-T cell therapy. Although very few studies have
reported nanoparticle-induced in-vivo CAR-T cells, robust
preclinical data have predicted the future of cellular therapy
through nano-delivery approaches. The field of in-vivo induced
CAR-T cell therapy is still in its infancy with many challenges for
the translation of this approach into clinical practice. A
systematic summary of the nano-delivery systems for inducing
in-vivo CAR-T cells can guide the design of the nanoparticles and
Frontiers in Oncology | www.frontiersin.org 8174
their cargo to optimize their efficacy (134–136). In summary, in-
vivo induced CAR-T cells are expected to replace current CAR-T
cell therapy and become the standard immune-cell therapy
for cancers.
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Chimeric antigen receptor T cell (CAR-T) therapy for the treatment of hematologic tumors
has achieved remarkable success, with five CAR-T therapies approved by the United
States Food and Drug Administration. However, the efficacy of CAR-T therapy against
solid tumors is not satisfactory. There are three existing hurdles in CAR-T cells for solid
tumors. First, the lack of a universal CAR to recognize antigens at the site of solid tumors
and the compact tumor structure make it difficult for CAR-T cells to locate in solid tumors.
Second, soluble inhibitors and suppressive immune cells in the tumor microenvironment
can inhibit or even inactivate T cells. Third, low survival and proliferation rates of CAR-T
cells in vivo significantly influence the therapeutic effect. As an emerging method,
nanotechnology has a great potential to enhance cell proliferation, activate T cells, and
restarting the immune response. In this review, we discuss how nanotechnology can
modify CAR-T cells through variable methods to improve the therapeutic effect of
solid tumors.

Keywords: nanotechnology, CAR-T, solid tumor, immunity, therapeutic effect
INTRODUCTION

CAR-T therapy has made remarkable achievements in the research and clinical treatment of cancer,
especially in the treatment of B cell malignancies (1–3). Unlike conventional surgery, radiotherapy,
chemotherapy, immune checkpoint blocking therapies, targeted drug therapy, and CAR-T cell
therapies offer more therapeutic options for patients with previously refractory tumors (4–8). To
date, the United States Food and Drug Administration has approved five CAR-T therapies, namely,
-Kymriah, Yescarta, Tecartus, Breyanzi and Abecma, -for hematologic malignancies (9). However,
CAR-T cell therapy has not achieved satisfactory results in the treatment of solid tumors, such as
colon, kidney, and ovarian cancers, for which the best clinical trial outcome is stable disease (10–14).

To improve the efficacy of CAR-T therapy in solid tumors, CAR-T cells must overcome three
obstacles. First, the lack of tumor-specific antigens, dense stroma and aberrant vasculature at the
tumor site prevent CAR-T cells from efficiently targeting the solid tumor site (15). Second, the
tumor immune microenvironment and immunosuppressive mechanisms reduce the antitumor
org March 2022 | Volume 13 | Article 8497591178
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activity of CAR-T cells in solid tumors. Finally, because of the
initial differentiation state of selected T cells, the cumbersome
production process of CAR-T cells , and the tumor
microenvironment (TME) with low oxygen, acidity and
nutrition, the survival and proliferation rates of CAR- T cells
in vivo were low.

Nanotechnology has multiple features that allow it to address the
challenges of CAR T cell therapy in treating solid tumors. With
optimal size, high surface area to volume ratio, a variety of shapes
and components, as well as surface modification and charge,
nanoparticles have a wide range of applications in tumor therapy
(16–20). Nanoparticles employed in clinical treatments can be
targeted to the site of the lesion with less accumulation in healthy
tissue, stronger drug permeability, and retention, and can be rapidly
biodegraded and eliminated without pharmacological and
Frontiers in Immunology | www.frontiersin.org 2179
toxicological activities (21–23). Therefore, a number of researchers
are exploring the use of nanoparticles in combination with CAR-T
therapy to improve the efficacy of CAR-T therapy in solid tumors.
Herein, we briefly introduce the three major challenges of CAR T
cells in solid tumor therapy, and summarize how to combine
nanoparticles with CAR T cells from different perspectives to
solve the challenges in solid tumor therapy (Figure 1).
CURRENT ROADBLOCKS IN CAR-T CELL
FOR SOLID TUMORS

Numerous clinical trials of CAR-T cell therapy for solid tumors
have been carried out, and a meta-analysis of the efficacy of
CAR-T therapy in solid tumors showed an overall response rate
FIGURE 1 | The mechanisms of Nanotechnology affect CAR-T function. Summary of strategies that are discussed in detail in this review.
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of 9%, although various therapeutic strategies have been
implemented (24). There are three major factors that influence
CAR-T therapy, as described below.

Targeting and Infiltrating
CAR T cells are designed to select tumor-associated antigens
(TAA) due to the lack of tumor-specific antigens (TSA). In a
large number of clinical trials CAR T cell targeting tumor-
associated antigens have been found cause damage to normal
tissue with low expression of tumor-associated antigens during
the process of recognizing and killing tumor cells, which is
referred to as the off-target effect (25). Moreover, the reasons
behind the success of CAR T cells in the treatment of
hematologic tumors is that they can migrate in blood, lymph
nodes, and bone marrow to interact with cancer cells (26). By
dynamic imaging microscopy on fresh tumor slices from nine
patients, Donnadieu et al. (27) investigated T cells with reduced
motility in the stroma of human lung tumors, which hinted
towards T cells facing difficulties in entering into the tumor due
to the presence of obstacles. This makes it easy to understand
that there are several other reasons why CAR T cells have
difficulty entering solid tumor. Tumor-associated fibroblasts
(TAFS) and abnormal vasculature at the tumor site result in
compact tumor tissue and a dense extracellular matrix
(ECM), which prevent CAR T cell to enter the solid tumor
microenvironment (28, 29). The experiments conducted by
Peschel et al. (30) confirm the lack of adoptively transferred T
cells accumulation in solid tumors, while the infused HER2-
specific T cells spread out in the breast cancer patient’s bone
marrow. In addition, chemokines can induce T cell migration
along the direction of increasing chemokine concentration.
However, some solid tumors inhibit chemokine secretion and
CAR T cells lack receptors that match chemokines secreted by
solid tumors (31, 32), such that chemokine receptors on T cells
mismatch with tumor secreted chemokines (33–35). Moreover,
the low expression of adhesion molecules including ICAM-1 and
2, VCAM-1 and CD34 in tumor endothelial cells (EC) inhibit the
effector T-cell from adhering to the EC and being transported to
the tumor (36).

Tumor Immunosuppression
Immunosuppression of the solid tumor microenvironment is
another significant challenge for CAR-T therapy. The causes of
tumor cells escaping the anti-tumor immune response are
complex, including the presence of immunosuppressive cells,
the presence of immunosuppressive cytokines and the absence of
immune activating factors. The presence of immunosuppressive
cells such as dendritic cells (DCs), myeloid-derived suppressor
cells (MDSCs), regulatory cells (Tregs), and M2 macrophages in
solid tumors sites, which secrete suppressive cytokines-such as
transforming the growth factor-b (TGF-b), adenosine,
interleukin-10 (IL-10), and vascular endothelial growth factor
(VEGF) extracellularly-, suppresses the immune system and
reduces the anti-tumor activity of CAR-T (37–40). Moreover,
the immune checkpoint molecules PD-1 and CTLA4, when
combined with the corresponding ligands, inhibit the killing
effect of T cells on the tumor and the activation of T cells (41, 42).
Frontiers in Immunology | www.frontiersin.org 3180
Survival and Proliferation
CAR T cells are targeted to the tumor site by a chimeric receptor
mediated expressed on the T cell surface, and eliminate cancer
cells through cell killing (43). Studies have shown that the long-
term survival and proliferation of CAR T cells capable of
maintaining normal function in vivo played a decisive role in
the therapeutic effect (44). However, the expansion of the CAR T
cells during the treatment of solid tumors is low in vivo. For
example, Michael et al. detected a large number of CAR T cells in
ovarian cancer patients after 2 days of transfusing in vitro gene-
edited T cells back into the body, but the increase only lasted for
about 1 month, and quickly declined to be virtually undetectable
in the majority of patients (13). Even with large doses of CAR T
cells, the presence of CAR T cells in the circulatory system was
not detected (45). Moreover, clinical data showed that longer
CAR-T cell persistence indicates longer delays, in the
development of disease progression (46). The factors that
influence the survival of CAR T cells in patients are complex,
including the differentiation and functional status of CAR T cells,
CAR target affinity, CAR immunogenicity, tedious time-
consuming production process, immunosuppressive and
hypoxic tumor microenvironment (47–49). Various
nanotechnology strategies may improve CAR T cell persistence
and expansion in vivo, which would endow CAR-T therapy with
superior antitumor activity in the treatment of solid tumors.
APPLICATION OF NANOTECHNOLOGY IN
CAR-T THERAPY IN SOLID TUMORS

Nanotechnology to Aid CAR T Cell Target
and Accumulate in Solid Tumors
To overcome the off-target effect caused by tumor-associated
antigens, one group designed circular bispecific aptamers to help
T cells recognize and bind to tumor cells. The aptamer can
simultaneously bind naïve T cells and tumor cells, and then
specifically activate T cells in the cell-cell junction complex. This
strategy helps T cells pinpoint the tumor site and kill cancer cells.
Thus, the targeted treatment of all kinds of cancer is possibly
realized by the use of specific anticancer aptamers (50).

In an effort to arm CAR T cells to collapse physical barriers
caused by angiogenesis, a dense extracellular matrix and stroma
in tumor sites, researchers have proposed numerous of NP-based
strategies (51, 52). By combing photothermal therapy with the
adoptive transfer of CAR T cells, Gu et al. succeeded in
promoting the accumulation and enhancing the conventional
CAR-T therapy against solid tumors. The indocyanine green
(ICG), a near-infrared (NIR) dye, is wrapped in poly(lactic-co-
glycolic) acid (PLGA) nanoparticles. Once exposed to NIR light
irradiation, ICG is used as the photothermal agent released into
solid tumor (53–55). Mild hyperthermia of the tumor disrupts its
compact structure, reduces interstitial fluid pressure (IFP),
increases blood perfusion, and releases tumor-specific antigens
that could significantly stimulate CAR T cells. After about 20
days, tumor growth was significantly inhibited, and no tumor
cells were detected in about one-third of the treated mice (56).
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Other researchers fabricated indocyanine green nanoparticles
(INPs) conjugated CAR T cells via the biorthogonal reaction.
After mild photothermal intervention, tumor vessels expanded,
blood perfusion increased, the ECM ablated and the tumor
tissues became loose. Thus, INPs engineered CAR-T
biohybrids accumulated and infiltrated extensively in the
tumor, remodeled the TME, restarted the immune response,
and boosted the efficacy of CAR-T immunotherapy. This
microenvironment photothermal-remodeling strategy provides
a promising prospect for CAR-T therapy in solid tumors (57).

Nanotechnology to Remold
Tumor Microenvironment to
Stimulate CAR T Cells
To reset immunosuppression of cancer environment and
promote the activation of CAR T cells, Zhao and colleagues
effectively combined the use of the nanozymes method. They
synthesized a tumor-targeting HA@Cu2−xS-PEG (PHCN)
nanozyme with photothermal and catalytic properties. After
irradiation by a near-infrared laser, the tumor extracellular
matrix is damaged by converting light energy into local heat
(58–60). Moreover, the reactive oxygen species by nanocatalyzed
tumor therapy increased the secretion levels of key cytokines,
such as the interferon and tumor necrosis factor as well as
tumor-specific antigens, thus activating the corresponding
CAR T cells at the tumor site (61).

To surmount the obstacle of hostile microenvironment,
researchers tend to combine CAR-T therapy with the use of
cytokines and/or antibodies. However, one problem is that CAR
T cells and cytokines/antibodies disperse preventing their
accumulation in the tumor sites (62, 63). Therefore, Xie et al.
used a pH-sensitive benzoic−imine bond and inverse electron
demand Diels−Alder cycloaddition to link magnetic nanoclusters
(NCs) and the PD-1 antibody (aP) together to form NC-Ap. The
constructed NC-aP binds to effector T cells due to their PD-
1expression. Magnetic resonance imaging (MRI) guided T cells
and aP to enrich in solid tumors through magnetization. Because
of the acidic tumor microenvironment, the aP is released after the
benzoic−imine bond, and then hydrolyzed. Consequently, the
adoptively transferred T cells and aP synergistically inhibit solid
tumor growth with a few side effects (64).

One of immunosuppressive molecules that inhibits the immune
function of CD4+ and CD8+ T cells is adenosine. On the surface of
activated T cells, the A2a adenosine receptor (A2aR) expressed and
trigged adenosine to accumulate outside the cell, which suppressed
T-cell proliferation and inhibited IFN–g secretion (65, 66). Thus,
using nanotechnology to efficiently transport SCH-58261 (SCH), a
small molecule inhibitor of A2aR, to CAR T cells in tumors is a
promising method. According to their report, Wang et al. used
CAR-T therapy and SCH–loaded cross-linked multilamellar
liposomes (cMLV) together, which significantly inhibited the
tumor growth and improved the survival of treatment groups,
the tumor infiltration rate of T-cells, as well as the expression level
of IFN–g in vivo. Through rescuing tumor-residing T-cell
hypofunction, this method augments CAR T-cell efficacy in solid
tumors (67).
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The presence of immunosuppressive molecules- such as
CTLA-4 and PD-L1 is another important cause of tumor
immunosuppression. They enable tumor cells to escape
surveillance by inhibiting the activation of immune cells,
namely the “immune escape” (68, 69). To reset the suppressive
solid tumor microenvironment, inhibitors targeting checkpoint
molecules (such as CTLA-4, PD-1 and PD-L1) and CAR-T
therapy were used in combination (70, 71). The disadvantages
of using immune-checkpoint inhibitors (ICIs) include the
emergence of a series of new immune-related adverse events
and systemic toxicities (72). Stephan et al. designed a liposomal
drug-loaded nanoparticle and decorated it with the tumor-
targeting peptide iRGD. In addition, PI-3065, a PI3K kinase
inhibitor that disrupts the function of immune-suppressive
regulatory T cell subsets and myeloid-derived suppressor cell
(40), and 7DW8-5, an immunostimulant-invariant natural killer
T cell (iNKT) agonist was placed in the liposome (73, 74). They
demonstrated that this new target nanoparticle alters the tumor
immunosuppression and evidently enhances the anti-tumor
activity of CAR T cells (75).

Nanotechnology to Aid CAR T Cells
Survive and Proliferate
The number of tumor-infiltrating lymphocytes is positively
related with clinical outcomes of CAR-T therapies (36, 76, 77).
T cells obtained from patients are limited, such that amplification
in vitro may be an effective solution. In the body, the expansion
of T cells requires the assistance of antigen-presenting cells
(APC), which cannot be achieved in vitro. In light of this
problem, Mooney et al. utilized mesoporous silica to create
micro-rods and added in the APC-secreting factor interleukin-
2, which extends the lifespan of T cells. They also coated the
high-aspect ratio mesoporous silica micro-rods (MSRs) with
supported lipid bilayers (SLBs) and a variety of antibodies that
activate T cells, mimicking APC’s cell membrane. In cell culture,
these rods randomly and automatically form a scaffold structure
that allows T cells to move around and expand freely. Results
showed that APC-mimetic scaffolds generate more CAR T cells
and maintain good killing efficacy compared to conventional
expansion systems (78).

The lack of proliferation signals in TME results in a low
survival rate of CAR T cells. As emerging therapies,
nanoparticulate RNA vaccines deliver liposomal antigen-
encoding RNA (RNA-LPX) to activate T cells in cancer
patients (79). Recently, Sahin et al. combined CAR-T with the
nanoparticulate RNA vaccine to achieve the regulated
proliferation of CAR-T cell expansion depending on RNA-LPX
dose. The mechanism involves that antigen delivery to antigen-
presenting cells in the spleen, lymph nodes, and bone marrow by
intravenous injection, followed by the initiation of a toll-like
receptor-dependent type-I IFN-driven immune-stimulatory
program (80). Moreover, Chan et al. used the tailored
nanoemulsion (Clec9A-TNE) vaccine to effectively solve the
problem of limited antigen presentation, promote the
proliferation of CAR T cells in vivo, and augment the efficacy
of solid tumor therapy (81).
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Conventional manufacturing of CAR-T cells includes several
elaborate procedures such as isolation, modification and
expansion, resulting a few effective redirected T cells that can
be used. Meanwhile, virus transfection and electroporation are
commonly used to help T-cells express targeted chimeric antigen
receptors (CARs) or T cell receptors. In turn, these methods
have drawbacks as they are time-consuming, have a small
application scale (82, 83). Stephan et al. designed a new genetic
programming named “hit-and run”, which transports mRNA
nanocarriers into cells through simple mixing and transient
expression of the target gene. The mRNA nanocarrier has
three prominent advantages: (i) lyophilized mRNA NPs can be
used for each application that has no effect on its properties and
efficacy. (ii) NP uptake and transfection efficiency did not differ
whether T cells proliferated or not. (iii) Lymphocyte-targeted
mRNA nanocarriers can edit the genome of CAR-T-cells without
influencing on their function. The paramount of this method is
that it can simply produce CAR T cells at a clinical scale within a
short time and without complex handling procedures in
vitro (84).

Another novel method was developed to program numerous
circulating T cells and effectively remove cancer cells in situ. On
the surface of the biodegradable poly (b-aminoester)-based
nanoparticles, anti-CD3e f(ab′)2 fragments are coupled with it
to target T cells. Inside of the nanoparticles, the poly(beta-
aminoester) (PBAE) polymer is assembled with microtubule-
associated sequences (MTAS) and nuclear localization signals
(NLS), which facilitates the gene transfer in the nucleus of the T
cells. To maintain CAR expression in T cells, the CD19 CAR
plasmid was flanked by the piggyBac transposase gene through a
cut-and-paste mechanism. These stable polymer nanoparticles
allow simple manufacture and storage, which provides a
practical, economical and widely available pathway for CAR-T
therapy (85).

The immunosuppression and hypoxia in the solid tumor
microenvironment result in the weaking CAR T cells
infiltration and proliferation. One research group constructed
an injectable hydrogel-encapsulated porous immune-microchip
system (i-G/MC) with oxygen reservoirs to intratumorally
deliver CAR T cells. In the injectable i-G/MC system, IL-15-
loaded alginate microspheres were made into thin immune-MCs
(i-MCs), which were connected with HEMOXCell (Hemo; an
oxygen carrier)-loaded alginate, and the alginate forms a gel layer
by self-assembly (86). The i-MCs were highly porous and
interconnected, which facilitates CAR T cell transport. Hemo,
a marine extracellular hemoglobin, has a strong oxygen storage
capacity and binds up to 156 oxygen molecules (per Hemo
molecule). After the i-G/MC was injected into the solid tumor,
the hydrogel (gel) layer degraded quickly, Hemo delivered
oxygen to TME, as well as CAR T cells, and decreased the
expression level of HIF-1a. Results showed that the immune-
niche improves hypoxia TEM and promotes survival and
infiltration of CAR T cells in solid tumors.

To avoid the side effects of systemically-administered
supporting cytokines like interleukins, protein nanogels (NGs)
with interleukin (IL)-15 super-agonist were designed. The NGs
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recognized the specific cell surface antigen and subsequently
released the drug at the sites of antigen encounter, for instance,
the tumor microenvironment. Most importantly, the NG
delivery enhanced the cell proliferation level 16-fold in tumors
and administered eight-fold higher doses of cytokine without
toxicity (87).
CONCLUSION

In preclinical studies, researchers have proposed a number of
strategies to improve CAR T cell function through the use of
nanotechnology. However, there are still some fundamental
issues to be addressed in the clinical application of CAR T
therapy. For example, the carcinogenicity, reproductive toxicity
and persistence of magnetic nanoclusters are still unknown and
therefore it cannot be used in clinical therapy. The use of near
infrared laser will cause damage to human skin, short-term use
will appear skin swelling phenomenon, long-term may affect
human reproductive function and induce cancer. The safety,
immunogenicity and toxicity of nano-vaccines have yet to be
verified. Will nano-derivative biodegrades induce non-specific
immune responses? Due to the specificity of tumor-associated
antigens, the preparation cycle of tailored nanoemulsion vaccine
is time consuming and involves high cost….

These questions from clinical studies may seem
disappointing, but many studies have highlighted the potential
of nanotechnology in combination with CAR T therapies for
solid cancers, which giving us great hope for CAR T cells.
Currently, there are about 40 CAR-T targets in clinical trials in
solid tumors, which has significantly outnumbered
hematological tumors. Different from CD19, which is often
used as a target for CAR-T therapy in hematologic tumors, the
main targets of CART development in solid tumors include
Mesothelin, GD2, HER2, GPC3, Claudin18.2(CLDN18.2) and so
on. Most CAR-T studies in solid tumors have low response rates
in the 0-25% range (88). Recently, the EMA granted prime
eligibility to CAR T - cell product candidate CT041, which
against the claudin18.2 protein (CLDN18.2) for the treatment
of gastric/gastroesophageal junction cancer. Results from a phase
I clinical trial published in 2019 show a total objective response
rate of 33% in a small group of patients with advanced gastric or
pancreatic cancers, with no serious side effects (89). This means
that CT041 is expected to become the world’s first approved solid
tumor CAR T product, thus achieving zero breakthrough in solid
tumor treatment.
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Although the synergistic effect of traditional therapies combined with tumor targeting or
immunotherapy can significantly reduce mortality, cancer remains the leading cause of
disease related death to date. Limited clinical response rate, drug resistance and off-target
effects, to a large extent, impede the ceilings of clinical efficiency. To get out from the
dilemmas mentioned, bacterial therapy with a history of more than 150 years regained
great concern in recent years. The rise of biological engineering and chemical modification
strategies are able to optimize tumor bacterial therapy in highest measure, and meanwhile
avoid its inherent drawbacks toward clinical application such as bacteriotoxic effects,
weak controllability, and low security. Here, we give an overview of recent studies with
regard to bacteria-mediated therapies combined with chemotherapy, radiotherapy, and
immunotherapy. And more than that, we review the bacterial detoxification and targeting
strategies via biological reprogramming or chemical modification, their applications, and
clinical transformation prospects.

Keywords: cancer treatment, immunotherapy, bacterial therapy, chemical modification, synthetic biology
INTRODUCTION

Recent investigations have shown a decline in cancer mortality (lung cancer, melanoma, and so on)
with the combined application of traditional and emerging therapies. Yet, it remains the primary
cause of disease-related death worldwide. According to the Big Data techniques, more than 17
million cancer deaths worldwide are predicted by 2030 (1). Traditional antitumor curative
treatments such as surgery and chemoradiotherapy inevitably have side effects such as the
inability to eradicate cancer cells thoroughly, nonspecific cytotoxicity, and drug/radiotherapy
resistance. More importantly, the highly anticipated innovative regimens such as tumor-targeted
therapy and immunotherapy face challenges, namely, off-target effects, therapeutic resistance, and
insufficient clinical response rate (2–4). These studies above highlight enormous challenges in
cancer treatment and illustrate the significance of finding new anticancer therapies.

Encouragingly, a large number of studies have shown that some types of bacteria can selectively
migrate to the tumor hypoxic area and stimulate an antitumor immune reaction, thus presented as a
promising platform for cancer treatment (5). In 1868, Coley et al. attempted to use Streptococcus
pyrogenes to infect tumor patients. It was surprising that some patients had witnessed tumor size
reduction and some of them even disappeared completely, suggesting that bacterial therapy might
be a valuable option (6, 7). However, the approach of Coley was questioned for a long time due to
the fatal infections (6). After long-term exploration, the researchers found that specifically gene-
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deleted bacterial strain possessed attenuated virulence and high
safety. Additionally, they found that living attenuated bacteria
possess the unmatched superiorities of active targeting and
specific intratumoral colonization (8).

The aforementioned advantages were attributed to the
nourishing, hypoxic, and immunosuppressive features of the
tumor microenvironment (TME) (9, 10). First, obligate
anaerobes (such as Clostridium and Bifidobacterium) and
facultative anaerobes (such as Salmonella, Pseudomonas, and
Escherichia coli) preferentially accumulate in the high-density
nutrient areas of tumors through their own specific chemical
receptors, flagellar movement, and signal transduction proteins
(11). Second, an inherent immune escape mechanism exists in
TME to avoid the monitoring and elimination of tumor cells.
Similarly, obligate or facultative anaerobic bacteria can survive
without being cleared by innate immune cells such as
macrophages and neutrophils or adaptive immune response
(12). In addition, the deformed and damaged vascular network
of TME can also promote the intratumoral infiltration and
intrusion of anaerobic bacteria (13). Interestingly, a recent
study has verified the aforementioned elucidation. The authors
detected 1,526 human tumors and their adjacent normal tissues,
namely, lung, breast, pancreas, ovary, and brain. Bacteria were
found to exist intracellularly in each tumor type, with unique
populations in each kind of cancer. Moreover, the bacteria in the
tumor are mainly intracellular and present in both cancer cells
and immune cells, indicating that they might be important
components of TME (14).

In addition to the above advantage of specifically intratumoral
colonization, some genetically attenuated bacterial strains are able to
secrete cytotoxic proteins and stimulate potent immune reaction to
kill tumor cells effectively (15). However, the failed attempts of
VNP20009 in phase 1 trial indicated that combination therapy is
urgently needed to make the enhancement of tumor targeting and
clinical response rate possible (16). For instance, bacteria such as
Listeria monocytogenes, Clostridium tetani, and Lactobacillus
acidophilus have been applied as immunostimulants and inhibitors
of tumor growth when combined with chemoradiotherapy or
Frontiers in Oncology | www.frontiersin.org 2187
immunotherapy (17). More importantly, the advancements in
genetic engineering combined with chemical synthesis have made
bacteria-mediated tumor-targeting therapy a prospective anticancer
treatment strategy to reduce systemic toxicity and improve
targeting efficiency.

In recent years, a mounting number of research publications
on applications of bacteria−based synergistic therapy has been
published. To summarize the recent progress of bacteria-based
cancer therapy, we searched various keywords via search engine
PubMed with different keywords in the past 12 years (2010–
2022) and found 11,188 related papers. Among them, 7,451
studies were related to the keywords “bacteria and cancer”,
followed by 1,532 studies on “bacteria and clinical trials”, 797
studies related to “bacteria and nanotechnology”, 615 documents
on “bacteria and genetic engineering”, and 608 studies related to
“bacteria and immunotherapy”. By comparison, the research on
the combination of bacteria with chemotherapy, radiotherapy or
immunotherapy is still limited (Figure 1). In this review, firstly,
we discussed the tumor targeting properties of bacteria and the
potential mechanism in the introduction. Secondly, we reviewed
the bacteria-based combination therapy with chemotherapy,
radiotherapy, and immunotherapy respectively. Thirdly, we
reviewed the bacteria-mediated chemical modification and
biological engineering. Lastly, we summarized clinical
applications of bacteria-based cancer vaccines and its
challenges in the future.
BACTERIA-MEDIATED COMBINED
CANCER TREATMENT

In general, the roles of bacteria in cancer initiation and progression
are a double-edged sword. On the one hand, some pathogenic
bacteria can induce chronic inflammation and promote tumor
development (18). Helicobacter pylori, as one prime example,
could lead to gastric tumorigenesis through persistent
inflammatory stimulation, increased epithelial cell proliferation,
and deregulated signaling transduction pathways crucial for
FIGURE 1 | Statistical chart showed overall number of studies published in PubMed from 2012 to 2022 using different keywords.
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cancer maintenance (19, 20). On the other hand, some bacteria have
shown great potential in treating various tumors. Bacteria can
express and secrete a large number of metabolites with different
biological activities that can be widely used in clinic, such as
actinomycin D, doxorubicin, bleomycin, and mitomycin (21–24).
Besides, a variety of enzymes, namely, L-asparaginase and arginine
dehydrogenase, produced by bacteria have displayed definite
anticancer efficacy (25, 26). The bacterial components and
secretions are natural apoptosis inducers and immune agonists
especially when employed in combination therapy (27) (Table 1).

Combined Bacteria-Mediated
Chemotherapy
Chemotherapy, as a classical systemic treatment, is relatively
effective against some types of cancer such as malignant
lymphoma, childhood acute leukemia, and chorionepithelioma.
Despite all these, it also has its dark side: digestive tract reaction,
arrest of bone marrow, immunosuppression, and insufficient tumor
targeting, particularly in acidic and hypoxic areas (38, 39). The
hypoxic area of the tumor center is usually chemotherapy resistant;
from this respect, anaerobes targeting the anoxic area can cooperate
with chemotherapy and make up for the shortcomings perfectly
(40). For example, Salmonella-laden temperature-sensitive
liposomes (thermobots) and high-intensity focused ultrasound
along with tumor heating (~40–42°C) were used to observe
macrophage-related immune alterations and whether they could
work in coordination with enhanced colonic chemotherapy: TB1:
passively incubated TBS (mean fluorescence intensity (MFI): 8.16 ±
0.014); TB2: TBS with biotin–streptavidin (MFI: 21 ± 0.14). The
activity of doxorubicin (Dox)-loaded bacteria and untreated control
bacteria was 70–75% compared with Salmonella. The results
showed that the efficacy of TB1 and TB2 was relatively higher
than that in the control group at body temperature, and TB2
showed a higher killing rate than TB1 when heated (~80% vs
60%). In addition, the expression of TNF-a, IL-1b, and IL-10 in
each group was significantly higher than that in the untreated
control group (316 ± 53 ng/ml vs 58.3 ± 1.15 ng/ml, 84.7 ± 3.93 ng/
Frontiers in Oncology | www.frontiersin.org 3188
ml, and 110.48 ± 7.82 ng/ml, respectively). In another study, the
acid-unstable conjugate of maleic anhydride (ECN-Ca-Dox) was
used to couple Dox with E. coli Nissle 1917 (ECN) to accumulate
bacteria and release antibiotics. The accumulation of DOX in the
tumor was 12.9 and 6.4%, respectively, 3 h and 3 days after the
intravenous injection of ECN-Ca-Dox, which was much higher
than that in the control group. As expected, the percentage of cell
proliferation in the ECN-Ca-Dox group was significantly lower than
that in the ECN-sa-Dox group (15.1 ± 1.2% vs 40.6 ± 4.3%); the rate
of apoptotic cells in the ECN-Ca-Dox group increased
correspondingly (41). The study next verified whether TAPET-
CD (an attenuated strain of Salmonella typhimurium expressing E.
coli cytosine deaminase) could convert nontoxic 5-fluorocytosine
(5-FC) into active anticancer drug 5-fluorouracil (5-FU). The
inhibitory effect of TAPET-CD combined with 5-FC on colon
tumors after subcutaneous transplantation was evaluated. High
levels of 5-FU were detected in tumors of mice treated with
combined therapy, but not in normal tissues. The combined
treatment had a higher inhibition of tumor growth than TAPET-
CD alone (88–96% vs 38–79%). After receiving a single injection of
TAPET-CD, the tumor growth was remarkably inhibited (79% on
the 40th day), and the TAPET-CD/5-FC group had a notable
antitumor effect (88% on the 47th day) (42).

Besides enhancing tumor killing, some probiotics can also
reduce the side effects caused by chemotherapy. Chemotherapy-
related intestinal catarrh of colorectal cancer is often caused by 5-
FU. However, patients treated with Lactobacillus had less diarrhea.
Also, no toxic events related to lactic acid bacteria were detected,
indicating that the supplementation of Lactobacillus rhamnosus
could enhance gastrointestinal tolerance and reduce the frequency
of severe diarrhea and abdominal discomfort associated with 5-FU
chemotherapy (43). One thing to note, however, is that lactic acid
bacteria can also cause local infections. In rare cases, probiotics may
cause systemic infections through bacteremia, especially in patients
with compromised immunity or Crohn disease (44). Therefore, the
safety of combined bacteria-mediated chemotherapy in vivo is a
matter to be considered.
TABLE 1 | Summaries of studies on bacteria with chemotherapy and radiation therapy.

Type of bacteria Methods Application Outcome References

selenium-enriched Bifidobacterium longum Intraperitoneal injection Chemotherapy Prevention of infection in small intestinal
mucositis

(28)

Bifidobacterium longum DD98 Preventive medication Chemotherapy Alleviation of intestinal and hepatic toxicities (29)
Salmonella typhimurium A1-R Targeted infection tumor Chemotherapy Quiescent G0/G1cancer cells to cycle to S/

G2/M and chemosensitive
(30)

Lactobacillus Probiotic capsules Chemotherapy The vaginal microbiome changes in a
normal direction

(31)

Lactobacillus kefiri LKF01 Oral administration Chemotherapy Effective in preventing severe diarrhoea (32)
Bifidobacterium infantis Mixture of specific monoclonal

antibody and radiation
Radiation
therapy

Prevention of tumor growth and prolonged
survival

(33)

Lactobacillus acidophilus LA-5 plus
Bifidobacterium animalis subsp.lactis BB-12

Oral administration Radiation
therapy

Prevention of incidence and severity of
radiation-induced diarrhoea

(34)

Salmonella typhimurium Infected murine melanoma cells
exposed to 8 Gy of g-radiation

Radiation
therapy

H2AX phosphorylation and apoptosis in
melanoma

(35)

Salmonella Typhimurium Modified miRNA expression vector
encoding

Radiation
therapy

Improved efficacy of radiotherapy (36)

Heat-killed Salmonella Typhimurium Intraperitoneal injection Radiation
therapy

Alleviation of radiation-induced lung injury (37)
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Combined Bacteria-Mediated
Radiotherapy
More than 60% of tumor patients need radiotherapy, yet the
radiation resistance of some tumor types and decreased
radiotherapy sensitivity of intratumor hypoxic areas largely
account for the failure of radiotherapy (45–47). Engineered E.
coli (5 × 107 colony-forming unit (CFU)) cooperated with
different doses of radiation (0, 8, 15, and 21 Gy). The
combination of bacteria and 21-Gy radiation significantly
reduced the tumor, completely eradicated the CT26 tumor,
and dramatically inhibited tumor metastasis (48). In a recent
study, Shiao et al. found that fungi and bacteria from the
intestinal system in breast cancer and melanoma mouse
models exhibited disparate roles. Although fungi depletion by
antibiotics boosted responsiveness to radiotherapy, the bacteria
exhaustion greatly accelerated tumor growth. Mechanistically,
elevated Dectin-1 (intrinsic receptor of fungi infection)
expression in tumor cells negatively correlated with the
survival of patients with breast cancer after radiation
therapy (49).

Probiotics can also exhibit the protective effect of
radiotherapy. A new probiotic mixture (Microflorana-F) was
tested in a male Wistar rat model of acute radiation-induced
enteritis to examine the effect of supplementation of lactic acid
bacteria on radiotherapy-related diarrhea in colorectal cancer.
After feeding standard food and active/inactive probiotics (the
same probiotics but heat inactivated) for 14 days, the changes in
endotoxemia and bacterial translocation were observed. Early
death (1 week) mainly occurred in rats fed standard food or
inactivated probiotics. The level of endotoxin in the irradiated
rats fed with standard food and inactivated probiotics increased
remarkably, but the aforementioned indexes were notably
improved after the addition of an active probiotic mixture
(P <0.05). In the culture of blood, portal vein, and bile
samples, active probiotics alone markedly reduced the bacterial
contamination in all samples (compared with inactivated
probiotics and standard feed samples, P <0.01) (50). In
addition, probiotic E. coli Nissle 1917 bacteria with catalase
secretion were used to relieve hypoxia of the tumor center and
boost the sensitivity of radiotherapy. This bacterial strain could
promote O2 generation and subsequent reactive oxygen species
production after X-ray irradiation, and as expected, notably
suppress tumor growth (51).

Bacteria-Mediated Immunoregulation and
TME Amelioration
The immunosuppressive properties of TME contribute to the
immune escape of tumor cells and clinical efficacy attenuation of
immunotherapy. Nevertheless, the bacteria colonized in tumor
hypoxic areas are expected to remold TME and improve immune
response (52). Once infected by bacteria, a large number of innate
immune cells gather in the TME to kill tumor cells directly or
secrete pro-inflammatory cytokines. For example, S, typhimurium
DppGpp strain could activate Toll-like receptor (TLR)4 and TLR5
pathways, resulting in the massive infiltration of macrophages
and neutrophils in TME and transformation of M2-like
Frontiers in Oncology | www.frontiersin.org 4189
macrophages that promoted tumor progression into M1-like
macrophages that inhibited tumor development (53, 54). In
addition, when bacteria infected tumor cells, the release of ATP
and the secretion of inflammatory bodies could trigger an
inflammatory storm, which, together with cytokines or
chemokines, such as IL-1b and IL-18, and pore-forming protein
gasdermin D could promote tumor regression (55). Besides,
Chandra et al. found that L. monocytogenes promoted the
targeting effect of immune cells after infecting tumor cells,
increased the production of IL-12 through MDSC subsets, and
enhanced the cytotoxic effect of T and NK cells (56). In addition,
as an indispensable part of innate immunity, TLRs and various
pathogen-associated molecular patterns could be stimulated by
the signals of Gram-negative bacteria, namely, lipopolysaccharide
(TLR4), flagellin (TLR5), and unmethylated CpGDNA
(TLR9) (57).

Apart from the innate immune system, the adaptive immune
response also plays a pivotal role in bacteria-mediated antitumor
therapy. Once anaerobes such as Salmonella entered into the
tumor region, B lymphocytes and CD8+ T cells infiltrated
and the number of regulatory T cells (Tregs) decreased to
stimulate a strong tumor-killing reaction (58). Meanwhile, the
anticancer activity is also exerted via increased expression of
immunostimulatory factors (such as IL-1b, TNF-a, and IFN-g)
and inhibited immunosuppressive factors, namely, arginase-1
(Arg-1), IL-4, transforming growth factor-b (TGF-b), and
vascular endothelial growth factor (VEGF) (59). Similarly,
Clostridium infection recruits granulocytes and cytotoxic
lymphocytes to TME and induces various cytokines and
chemokines, thus leading to the activation of functional T cells
and tumor regression (60, 61).

Tumor growth requires a special blood supply to support the
oxygen and metabolic demands. Bacteria can not only eliminate
cancer cells directly but also inhibit neovascularization and
destroy blood vessels in the tumor tissues. Saccheri et al. found
that Salmonella infection increased the expression of Cx43, while
inhibited hypoxia-inducible factor 1a and VEGF to reduce
angiogenesis in a melanoma model (62). Moreover, the
upregulation of TNF-a after Salmonella infection promotes the
permeability of blood vessels of tumor regions and leads to
vascular bleeding, which subsequently contributes to the
infiltration of cytotoxic immune cells (63). Therefore, apart
from competing with tumor cells for nutrients and activating
apoptosis or autophagy signaling pathways, bacteria can also
stimulate immune responses and improve suppressive TME
(64, 65).
CHEMICAL MODIFICATION AND
BIOLOGICAL ENGINEERING OF
BACTERIAL STRAINS

Besides the synergistic reaction with the aforementioned
treatments, bacteria have gained attention because of the
advantage of intratumor colonization (66). Although
facultative or obligate anaerobic bacteria have shown prime
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tumor colonization ability and are considered to be natural
tumor-targeting carriers, the tumor-targeting ability and
therapeutic safety of bacteria rarely go hand in hand (9, 67,
68). The main reason is that although obligate anaerobic bacteria
are relatively safe and can successfully target tumors, they do not
directly dissolve the tumor. In contrast, facultative anaerobic
bacteria present excessive natural toxicity but may bring about
obvious systemic toxicity (20). Therefore, biological engineering
and chemical modification technologies are urgently needed for
original bacterial strains to enhance tumor-targeting ability and
acquire tolerable toxicity during systemic administration.

Chemical Modification of Bacteria
The surface of the bacterial cell wall is electronegative. Thus,
positively charged nanoparticles can be self-assembled to the
surface of bacterial strains such as Salmonella through
electrostatic interaction. Hu et al. designed a cationic
nanoparticle-coated bacterial carrier assembled with a cationic
polymer and plasmid DNA to synthesize nanoparticle-coated
attenuated bacteria for an oral DNA vaccine in tumor
immunotherapy in vivo. The plasmid encoding vascular
VEGFR2 gene and antigen gene could induce antigen-activated
T lymphocytes and cytokines, inhibiting tumor angiogenesis and
growth (69). Besides, Bifidobacterium (BF), a Gram-positive
bacteria with a large amount of protein in the cell wall, is also
negatively charged on the surface. BF was combined with
cationic phase-change nanoparticles (CPNs) by electrostatic
adsorption. During high intensity focused ultrasound
irradiation on a tumor, BF-CPN particles could increase the
energy deposition after liquid–gas phase transition. Also, the
upconversion nanorods (CS-UCNR) of the core–shell structure
were coated with protonated oleic acid to make its surface
positively charged. Via electrostatic interaction and anaerobic
Bifidobacterium UCC 2003, the imaging agent CS-UCNR
was loaded and gathered on the tumor site through the
anaerobic targeting of bacteria. The combination of anaerobes
and functional NPs improved the treatment of tumor hypoxia
and provided a novel approach for specific diagnosis and
treatment (70).

Reforming bacteria by chemical bonding is another strategy
due to high levels of endogenous amino groups on the cell
surface. For instance, the nano photosensitizer (indocyanine
green nanoparticles, INPs) is covalently bound to the surface of
transgenic attenuated S. typhimurium strain YB1 through an
amide bond. The functional INPs with the reactive carboxylic
acid group (-COOH) and the amino group (-NH2) on the
bacterial surface could be directly covalently linked to form a
biological hybrid micro-swimmer (YB1-INP). The scanning
electron microscope images showed that more than 60% INPs
were attached to the surface of YB1. YB1-INP migration could
be induced by the destruction of tumor tissue and the
production of bacterial nutrients after photothermal
treatment. The bioaccumulation of YB1-INPs was 14 times
higher than that without photothermal intervention. YB1-INPs
showed the characteristics of specific intratumor targeting,
good photothermal conversion, and efficient fluorescence
imaging and could eliminate large solid tumors without
Frontiers in Oncology | www.frontiersin.org 5190
recurrence (71). In another study, poly(lactic acid-glycolic
acid) copolymer PLGA nanoparticles loaded with low-boiling
point perfluorohexane were integrated with anaerobic
Bifidobacterium longum through amide bonds. The anaerobic
targeted bacteria could infiltrate into the tumor deeply, increase
energy deposition by affecting the acoustic environment of
TME, and change the acoustic features of tumor tissue. This
strain could destroy tumor cells with liquid–gas phase
transition during irradiation. Thus, the addition of the
bacter ia l anaerobic enhanced the tumor- targe t ing
performance and retention time of administration (72).

Vesicles of cell membranes have received immense attention
as delivery vectors in recent years. Nanoscale proteolipid vesicles
have unmatched superiorities in drug delivery applications,
namely, controllable dimensions, flexible assembly, and
tractable surface modification (73). For example, bacteria-
secreted outer membrane vesicles (OMVs) of attenuated
Gram-negative bacteria Klebsiella pneumoniae along with
adriamycin were prepared simultaneously and then
transported to NSCLCA549 cells. Dox-OMV showed distinct
tumor growth inhibition ability, good tolerance, and better
pharmacokinetics. The pathogenic characteristics of OMVs
containing bacterial antigens enabled macrophages to recruit
in the tumor microenvironment and activate immune response
(74). Further, the bacterial secretions could also be combined
with nanomaterials to enhance antitumor efficacy (75). In
addition, the nano-bionic pathogens were prepared by
encapsulating cisplatin nanoparticles on the surface of
chemotherapeutic drug cisplatin. The biomimetic nanoparticles
encapsulated by OMVs were injected into tumor-bearing mice
after photothermal therapy and showed a superior tumor
clearance effect together with photothermal therapy (76).

Biological Engineering of Bacteria
Bacteria have the unique ability to manipulate genes, and flagella
on bacteria that can penetrate tissues make them a desirable
platform to be reprogramed. Various bacteria are preferentially
clustered in tumors, such as E. coli Salmonella Bifidobacterium,
and Clostridium (57, 77, 78). However, unattenuated live bacteria
bring about safety risks and even death due to bacterial toxins
when systemically administered. To be on the safe side, the
virulence-related genes must be modified via transposon, gene
site-directed mutation, and so forth (79, 80) (Table 2). A new
type of tumstatin drug (Tum) delivery system was established by
engineering Bifidobacterium. The inhibitory effect of Tum
transgenic B. longum (BL) on tumors in mice was measured.
The weight, growth, and percentage of vascular endothelial cells
of the transplanted tumor were also observed. After 39 days of
oral (OR) administration or injection into tumors (INT) and into
vena caudalis (INV), the inhibition rate in the INV-BL-Tum,
INT-BL-Tum, and OR-BL-Tum groups on the transplanted
tumor was 64.63, 75.21, and 38.56%, respectively. The
apoptosis of tumor cells and vascular endothelial cells in the
INT-Tum treatment and INV-Tum treatment groups was
dramatically higher than that in the control group (P <0.05).
All these findings confirmed the tumor-inhibitory effect of the
engineered bacteria (87).
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VNP20009 is another attenuated Salmonella strain. The
photothermal agent polydopamine (PDA) was transported to
the anoxic and necrotic areas of the tumor with the tumor-
targeting ability of VNP20009 to improve the antitumor effect on
malignant melanoma. When the concentration of dopamine was
1,000 mg/ml, the temperature of PDA-VNP suspension increased
by 23.0°C after irradiation for 300 s. However, under the same
conditions, the temperature of deionized water was raised only
by 8.2°C. B16F10 cells were irradiated with PDA-VNP prepared
using dopamine, and 80.7% of the cells were killed. The number
of bacteria in the tumor injected with PDA-VNP prominently
exceeded that in other organs. The results displayed that the
PDA coated on the surface of VNP20009 did not affect the
targeting and colonization ability of bacteria to tumor after
photothermal therapy, and the combination therapy was
conducive to tumor inhibition (88). Further, Chowdhury et al.
recently designed one nonpathogenic E. coli strain with
nanobody anti-CD47 expression controllable. CD47 is a kind
of “Don’t eat me” signal mainly expressed on tumor
macrophages. This platform effectively activated the infiltration
of cytotoxic T lymphocytes, promoted faster tumor regression,
inhibited distant metastasis, and delayed the survival time of
mice in the experimental group (10).

Advantage and Disadvantages of
Bacteria for Tumor-Specific
Targeting and Drug Delivery
Preliminary clinical trials of bacterial cancer treatment have not
been as successful as expected for several reasons. One possible
reason is due to the pathogenicity of bacteria. For example, in a
retrospective analysis of intravesical BCG therapy in 258
patients, complications included acute urinary retention,
hematuria, and urinary tract infection (1.2% vs 2.7% vs 5.4%
respectively). In addition, age is another major risk, with a higher
risk of complications over the age of 80 at diagnosis (19.0% vs
7.5%, p = 0.01). Timely intervention should be performed when
complications arise, and the risks and benefits of resuming
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intravesical BCG immunotherapy should be carefully assessed
(89). In addition, in a multicenter, phase III, open and
randomized controlled trial of Lactobacillus brevis CD2
(LBCD2) for the prevention of oral mucositis in patients with
head and neck tumors, a total of 68 patients were randomly
divided into the intervention group (LBCD2 lozenges) and the
control group (sodium bicarbonate mouthwash). Intervention
and control measures were discontinued when grade 3 or 4
oropharyngeal mucositis was present during radiotherapy. The
results showed that there was no significant difference between
the intervention group and the control group (40.6% vs 41.6%
respectively, P = 0.974), and the intervention group was similar
to the control group in terms of quality of life, pain and
dysphagia. However, the risk of enteral nutritional
requirements was significantly reduced in the control group
(OR = 0.341, 95% CI = 0.127–0.917, p <0.917). This result is
related to different RT techniques, preventive measures, bacterial
species, research subjects, mucositis score and others, which need
to be further studied (90).

In addition to the inherent pathogenicity, another reason
dampening bacteria-based therapy is that in animal models,
the toxicity is minimal due to the strong targeted colonization
of bacteria and the small number of bacteria required.
However, when translated into human trials, the number of
bacteria used for treatment and the space of necrosis within
the tumor need to be calculated and evaluated more accurately
(91). Besides, the comprehensive roles of bacteria therapy are
quite complicated in different tumor context. Recent studies
have found that microbial regions promote the molecular
pa thog en i c mechan i sm o f c ance r i n i t i a t i on and
development. in the chemotherapy resistance of colorectal
cancer patients, Fusobacterium was abundant in recurrent
colorectal cancer tissues after therapy (92). In addition,
castrated-resistant prostate cancer mice and patients have
rich intestinal microflora, which makes androgen precursors
converted into active androgens and participate in tumor drug
resistance (93).
TABLE 2 | Studies on engineered bacteria.

Types of bacteria Methods Results Reference
no.

Escherichia coli Nissle
1917

Encoding amino acids 45–132 of tumstatin was subcloned into inducible
expression vectors and solubly expressed in Escherichia coli BL21

Effectively restrain mice bearing B16
melanoma tumor.

(81)

Escherichia coli Nissle
1917

Bearing azurin-expressing plasmids using rabbit anti-azurin polyclonal antibody. 1. B16 melanoma and orthotopic 4T1
breast tumor growth were restrained

2. Pulmonary metastasis was prevented

(82)

Escherichia coli DH5a-
lux/bG

Transforming with pRSETB-lux/bG and plasmid extraction was carried out by
miniprep method

1. Targeted homing and proliferation in
TME

2. Tumor growth was inhibited.

(83)

Salmonella enterica
serovar Typhimurium

Genetically engineered SalpIL2 was constructed by inserting the human IL-2 gene
intovX4550 downstream

The safety of an orally in canine
osteosarcoma were confirmed

(84)

Salmonella enterica Modified attenuate Salmonella enterica released a recombinant fluorescent
biomarker

1. Fluoromarker transport through tumor
tissue

2. Previously undetectable microscopic
tumors were identified.

(85)

Listeria monocytogenes Expressing mesothelin (CRS-207) with chemotherapy 1. Anti-tumor immune responses increased
2. Susceptibility of neoplastic cells to

immune-mediated killing enhanced.

(86)
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The characteristics of hypoxia in tumor tissue, especially in the
central area, make the tumor resistant to radiotherapy, which
ultimately leads to poor therapeutic effect (94). Gold
nanoparticles (GNPs) with the characteristics of evading
immune system and targeting tumor become a suitable
radiosensitizer for radiotherapy, but its delivery effect in the
anoxic area of the tumor center is not good, so a tool that can
targeted transport GNPs is needed to make up for the effect of
radiotherapy in the hypoxic area. Previous studies have shown
that bacteria can selectively colonize in anoxic sites and active in
these areas. S. typhimurium as a highly active delivery agent has
been reported by many studies on hypoxic regions of tumors.
Amirhosein et al. (95) used live attenuated Salmonella Typhi
Ty21a with folic acid functionalized GNPs (FA-GNPs) to obtain
the Golden Bacteria, then injected FA-GNPs into the tail vein of
CT-26 tumor-bearing mice, and calculated the ratio of periphery
regions of tumors in comparison with central regions of tumors.
The result of FA-GNPs injection group and Golden Bacteria
group was 1.95 ± 0.13 vs 0.61 ± 0.10. This observation
demonstrates that even if GNPs modified with folic acid
targeted cancer cells, it still reached the periphery of the tumor
rather than the center of the tumor. The main reason is that the
vascular system around the tumor is different from that in the
central area, the surrounding blood vessels are more mature and
dense, intelligent targeting is still unable to use systemic
circulation for effective treatment in hypoxia areas. However,
the flagellum movement of anaerobic bacteria can be a means of
transport in anoxic zone to change this dilemma. The bacteria in
this study are safe as an active carrier in tumor-bearing mice. and
there was a significant advantage in transporting GNPs to the
central hypoxic area of the tumor.
CLINICAL APPLICATION OF
BACTERIA-BASED CANCER VACCINE

Bacteria-based cancer vaccine is a crucial application of bacteria
toward clinical transformation. Cancer vaccines mainly include
four components: vectors, various formulations, cancer adjuvants,
and specific antigens. Among these, cancer-specific antigens may
be the most concerning section determining the effectiveness and
specificity of tumor vaccines (96–98). Through chemical
modification and biological engineering as mentioned earlier,
bacteria present considerable foreground of clinical application.
When the virulence is attenuated, bacteria display great potential
of exerting an antitumor effect. The inherent features of bacteria
make them effective immunostimulants (99, 100).

Bacillus Calmette–Guérin (BCG), the only recognized and
licensed live bacteria for cancer treatment, was an attenuated
strain of Mycobacterium bovis and was successfully applied by
Morales in 1976 to treat superficial bladder cancer (BC) (101,
102). Nowadays, BCG has become a significant choice for treating
high-risk superficial BC in most countries (103). A randomized trial
compared the efficacy of intravesical maintenance therapy with
BCG and radical cystectomy (RC) in treating high-grade non-
muscular invasive bladder cancer (NMIBC). Of the 23 patients
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treated with BCG, 4 developed NMIBC after induction, 3 developed
NMIBC after 4 months, and 2 had metastatic cancer. The 20
patients who underwent RC treatment, 5 had no tumor, 13 had
highly malignant NMIBC, and 2 were detected with muscle
infiltration. The adverse reactions in both groups were mild [15/
23 (65.2%) BCG vs 13/20 (65.0%) RC] with similar quality of life.
The results showed that a considerable number of patients were
suitable for bladder preservation and could contribute to health and
quality of life (104).

Recently, Alejandrina et al. attempted to verify the treatment
potential of S. typhimurium vaccine strain CVD915 with the liver
metastasis model of breast cancer and lymphoma models. After
21 days, tumor infiltration was observed in both tumor models.
In addition, the expression of tumor-suppressive IL-10 levels and
the number of neutrophils and regulatory T cells decreased. In
the lymphoma model, about 10% of the mice witnessed the
elimination of tumor growth. The tumor-specific Th1 reaction
was triggered in the CVD915 group, followed by an increase in
the number of CD4+ T cells and dendritic cells. Meanwhile, the
number of tumor nodules in the liver decreased by 50%, and the
tumor volume decreased by 45% (105).

The use of attenuated Listeria, as a bacterial vector for cancer
vaccines, has been widely reported in preclinical trials (106, 107).
Taking cervical cancer as an example, the cancer-specific antigen
human papillomavirus type 16 E7 (HPV-16 E7)was fused with
the attenuated sequence Listeriolysin O (LLO) of hemolysin
protein to establish therapeutic cervical cancer vaccines. The
vaccines based on attenuated Listeria delayed tumor progression
in situ (108) and provided long-term immunity for patients with
early-stage cervical cancer (109). This vaccine could induce
robust immunity reaction and proliferation of cytotoxic T cells.
It had unique advantages such as genomic nonintegration and
could be exhausted easily via antibiotics to avoid serious side
effects (110–112). Therefore, taking advantage of live bacteria as
biological carriers to deliver recombinant tumor-specific
antigens is an effective approach to develop cancer vaccines.

Andreas et al. studied an oral DNA vaccine VXM01 that
induced an immune response against vascular endothelial
growth factor receptor 2 (VEGFR2) in patients with stage IV
and locally advanced pancreatic cancer (113). The vaccine used a
licensed live and attenuated S. typhimurium strain Ty21a as
vectors. Subsequently, 18 patients with advanced pancreatic
cancer receiving VXM01 and 8 patients receiving placebo
(isotonic sodium chloride). The oral vaccine was given four
times on the first, third, fifth, and seventh days, while the
fortified vaccine was given six times per month after the last
vaccination. The results showed that 75% (3/4) of the patients in
the high-dose group and 66.7% (8/12) in the low-dose group had
a 1.8-fold increase in T cell response compared with the placebo
group. In addition, patients receiving high-dose VXM01
vaccination showed a generally strong anti-VEGFR2 response
(114). Furthermore, the safety and immunogenicity of the
recombinant Lactococcus lactis vaccine expressing the HPV
type 16 E7 oncogene were evaluated in a phase I safety and
immunogenicity test of healthy female volunteers (115, 116). A
total of 55 qualified volunteers were divided into vaccine and
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placebo groups. Compared with the placebo group, a specific IgG
immune response could be induced 30 days after vaccination in
the 1 × 10 9 CFU/ml group compared with the placebo group
(5 × 109 CFU/ml vs 1 × 1010 CFU/ml, P = 0.0137 vs P = 0.0018).
This study showed that the candidate HPV16 E7 oncoprotein
oral vaccine produced by Lactobacillus was safe and
immunomodulatory (Table 3).
CHALLENGES AND FUTURE
PROSPECTIVE

Although bacteria have potent cytotoxicity (such as Coley’s
toxins) and powerful intratumor colonization capabilities
which make them desirable tumor killing agents and delivery
platform, obstacles toward clinical applications has been there all
along. One of the main challenges is that they may cause immune
side effects due to the inherent immunogenicity. Novel biological
and chemical modification can expand bacteria-mediated clinical
transformation, because researchers can obtain bacteria with
Frontiers in Oncology | www.frontiersin.org 8193
maximal advantages via knockout related genes to reduce
pathogenicity while retaining functions of bacteria. In addition,
timely management of effective antibiotics can also reduce the
risk of severe infection. Secondly, in consideration of the dose-
dependent toxicity presented in previous clinical trials, it seems
difficult for bacteria to be administered multiple times. Thus,
limited drug loading capacity is another challenge dampening
the applications of attenuated bacteria strains. Interestingly, how
to transform bacteria into intelligent “bacterial factory” or
“bacterial machine” appears to be emerging research highlights
(117, 118). The combined applications of robot technology and
biotechnology are expected to promote bacteria to move
intelligently to tumor sites and increase drug loading capacity
at the same time (Figure 2).
CONCLUSIONS

The unmatched advantage of tumor-targeting properties make
bacteria the ideal oncolytic agent to kill tumor cells specifically
TABLE 3 | Selected clinical trials investigating bacteria and cancer vaccine.

Trial number Therapeutic agent Population Mode of
delivery

Stage
of trial

Country

NCT02302170* Helicobacter pylori vaccine Healthy children aged 6–15 years Oral
vaccination

Phase
3

China

NCT00736476* Helicobacter pylori antigens-vacuolating cytotoxin A, cytotoxin-
associated antigen and neutrophil-activating protein

Healthy non-pregnant adults aged 18–40
years

Intramuscular
injection

Phase
1/2

Germany

NCT02371447* Recombinant Bacillus Calmette–Guérin (VPM1002BC) Patients with intermediate to high risk and
recurrent NMIBC

Intravenous
infusion

Phase
1/2

Switzerland

NCT02243371* Listeria monocytogenes-expressing mesothelin (CRS-207) Patients with cytologically or histologically-
proven, metastatic adenocarcinoma of the
pancreas

Intravenous
infusion Phase

2

USA

NCT01838200* Bacillus Calmette–Guérin Patients with unresectable stage III or stage
IV melanoma

Subcutaneous
injection

Phase
1

Australia
Ap
ril 2022 | Volum
e 12 | Art
*ClinicalTrials.gov identifier.
FIGURE 2 | An overview of bacteria-based synergistic therapy, namely, the mechanism of tumor targeting properties, combined therapy with chemoradiotherapy or
immunotherapy, chemical modification or biological engineering, and bacteria-mediated delivery of cancer vaccine.
icle 845346

ClinicalTrials.gov
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bao et al. Bacterial Reprogramming and Synergistic Therapy
and the excellent platform to deliver multifarious drugs.
However, bacteria-mediated therapy alone can hardly
eliminate tumor cells completely. As bacteria therapy has two
sides, a large number of clinical studies are needed to balance
the role of both good and evil of bacteria-based therapy when
combined with chemotherapy agents , radiat ion or
immunotherapy. So far, BCG is the only viable curative
treatment approved by the FDA up to the present. Although
cancer vaccines based on attenuated Listeria have entered
clinical trials of phase III, there are still some difficulties to be
addressed such as bacterial virulence, instability of expression
plasmid in bacteria, drug delivery efficiency intracellular.
Development of genetic engineering approaches, optimization
of chemical modification process and selection of targeted
reagents such as tumor specific antigen peptide are of
supreme importance in the near future.
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Activity of Bacillus Calmette-Guérin. Eur Urol (2021) 80(1):1–3.
doi: 10.1016/j.eururo.2020.08.027

103. Han J, Gu X, Li Y, Wu Q. Mechanisms of BCG in the Treatment of Bladder
Cancer-Current Understanding and the Prospect. BioMed Pharmacother
(2020) 129:110393. doi: 10.1016/j.biopha.2020.110393

104. Catto J, Gordon K, Collinson M, Poad H, Twiddy M, Johnson M, et al.
Radical Cystectomy Against Intravesical BCG for High-Risk High-Grade
Nonmuscle Invasive Bladder Cancer: Results From the Randomized
Controlled BRAVO-Feasibility Study. J Clin Oncol (2021) 39(3):202–14.
doi: 10.1200/JCO.20.01665

105. Vendrell A, Mongini C, Gravisaco MJ, Canellada A, Tesone AI, Goin JC,
et al. An Oral Salmonella-Based Vaccine Inhibits Liver Metastases by
Promoting Tumor-Specific T-Cell-Mediated Immunity in Celiac and
Portal Lymph Nodes: A Preclinical Study. Front Immunol (2016) 7:72.
doi: 10.3389/fimmu.2016.00072

106. Chavez-Arroyo A, Portnoy DA. Why is Listeria Monocytogenes Such a
Potent Inducer of CD8+ T-Cells? Cell Microbiol (2020) 22(4):e13175.
doi: 10.1111/cmi.13175

107. Zhou P, Liu W, Cheng Y, Qian D. Nanoparticle-Based Applications for
Cervical Cancer Treatment in Drug Delivery, Gene Editing, and Therapeutic
Cancer Vaccines. Wiley Interdiscip Rev Nanomed Nanobiotechnol (2021) 13
(5):e1718. doi: 10.1002/wnan.1718

108. Duan F, Chen J, Yao H, Wang Y, Jia Y, Ling Z, et al. Enhanced Therapeutic
Efficacy of Listeria-Based Cancer Vaccine With Codon-Optimized HPV16
E7. Hum Vaccin Immunother (2021) 17(6):1568–77. doi: 10.1080/
21645515.2020.1839291

109. Jia YY, Tan WJ, Duan FF, Pan ZM, Chen X, Yin YL, et al. A Genetically
Modified Attenuated Listeria Vaccine Expressing HPV16 E7 Kill Tumor
Cells in Direct and Antigen-Specific Manner. Front Cell Infect Microbiol
(2017) 7:279. doi: 10.3389/fcimb.2017.00279

110. Radoshevich L, Cossart P. Listeria Monocytogenes: Towards a Complete
Picture of its Physiology and Pathogenesis. Nat Rev Microbiol (2018) 16
(1):32–46. doi: 10.1038/nrmicro.2017.126
Frontiers in Oncology | www.frontiersin.org 12197
111. D'Orazio S. Innate and Adaptive Immune Responses During Listeria
Monocytogenes Infection. Microbiol Spectr (2019) 7(3). doi: 10.1128/
microbiolspec.GPP3-0065-2019

112. Maciag PC, Radulovic S, Rothman J. The First Clinical Use of a Live-
Attenuated Listeria Monocytogenes Vaccine: A Phase I Safety Study of Lm-
LLO-E7 in Patients With Advanced Carcinoma of the Cervix. Vaccine (2009)
27(30):3975–83. doi: 10.1016/j.vaccine.2009.04.041

113. Niethammer AG, Lubenau H, Mikus G, Knebel P, Hohmann N, Leowardi C,
et al. Double-Blind, Placebo-Controlled First in Human Study to Investigate
an Oral Vaccine Aimed to Elicit an Immune Reaction Against the VEGF-
Receptor 2 in Patients With Stage IV and Locally Advanced Pancreatic
Cancer. BMC Cancer (2012) 12:361. doi: 10.1186/1471-2407-12-361

114. Schmitz-Winnenthal FH, Hohmann N, Schmidt T, Podola L, Friedrich T,
Lubenau H, et al. A Phase 1 Trial Extension to Assess Immunologic Efficacy
and Safety of Prime-Boost VaccinationWith VXM01, an Oral T Cell Vaccine
Against VEGFR2, in Patients With Advanced Pancreatic Cancer.
Oncoimmunology (2018) 7:e1303584. doi: 10.1080/2162402X.2017.1303584

115. Yousefi Z, Aria H, Ghaedrahmati F, Bakhtiari T, Azizi M, Bastan R, et al. An
Update on Human Papilloma Virus Vaccines: History, Types, Protection,
and Efficacy. Front Immunol (2021) 12:805695. doi: 10.3389/
fimmu.2021.805695

116. Mohseni AH, Taghinezhad- SS, Keyvani H. The First Clinical Use of a
Recombinant Lactococcus Lactis Expressing Human Papillomavirus Type 16
E7 Oncogene Oral Vaccine: A Phase I Safety and Immunogenicity Trial in
Healthy Women Volunteers. Mol Cancer Ther (2020) 19:717–27.
doi: 10.1158/1535-7163.MCT-19-0375

117. Adnan M, Khan S, Al-Shammari E, Patel M, Saeed M, Hadi S. In Pursuit of
Cancer Metastasis Therapy by Bacteria and its Biofilms: History or Future.
Med Hypotheses (2017) 100:78–81. doi: 10.1016/j.mehy.2017.01.018

118. Patel M, Sachidanandan M, Adnan M. Serine Arginine Protein Kinase 1
(SRPK1): A Moonlighting Protein With Theranostic Ability in Cancer
Prevention. Mol Biol Rep (2019) 46:1487–97. doi: 10.1007/s11033-018-4545-5

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bao, Cheng, Liu, Luo, Zhou and Qian. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
April 2022 | Volume 12 | Article 845346

https://doi.org/10.1038/nri.2017.131
https://doi.org/10.1038/nri.2017.131
https://doi.org/10.1016/j.bmc.2017.10.021
https://doi.org/10.1002/bit.27596
https://doi.org/10.3390/vaccines3040940
https://doi.org/10.1016/j.urolonc.2020.09.031
https://doi.org/10.1016/j.eururo.2020.08.027
https://doi.org/10.1016/j.biopha.2020.110393
https://doi.org/10.1200/JCO.20.01665
https://doi.org/10.3389/fimmu.2016.00072
https://doi.org/10.1111/cmi.13175
https://doi.org/10.1002/wnan.1718
https://doi.org/10.1080/21645515.2020.1839291
https://doi.org/10.1080/21645515.2020.1839291
https://doi.org/10.3389/fcimb.2017.00279
https://doi.org/10.1038/nrmicro.2017.126
https://doi.org/10.1128/microbiolspec.GPP3-0065-2019
https://doi.org/10.1128/microbiolspec.GPP3-0065-2019
https://doi.org/10.1016/j.vaccine.2009.04.041
https://doi.org/10.1186/1471-2407-12-361
https://doi.org/10.1080/2162402X.2017.1303584
https://doi.org/10.3389/fimmu.2021.805695
https://doi.org/10.3389/fimmu.2021.805695
https://doi.org/10.1158/1535-7163.MCT-19-0375
https://doi.org/10.1016/j.mehy.2017.01.018
https://doi.org/10.1007/s11033-018-4545-5
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Xin Ming,

Wake Forest University, United States

Reviewed by:
Alessandro Rizzo,

Bari John Paul II Cancer Institute
(IRCCS), Italy
Philipp Ivanyi,

Hannover Medical School, Germany

*Correspondence:
Xiaonan Cui

cxn23@sina.com
Chunxia Zhang

qm1210@hotmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Oncology

Received: 31 December 2021
Accepted: 03 February 2022
Published: 07 March 2022

Citation:
Zhang Z, Li Y, Dong Y, Li J, Zhang B,
Zhang C and Cui X (2022) Successful

Treatment of a Patient With
Multiple-Line Relapsed Extensive-

Stage Small-Cell Lung Cancer
Receiving Penpulimab Combined

With Anlotinib: A Case Report.
Front. Oncol. 12:846597.

doi: 10.3389/fonc.2022.846597

CASE REPORT
published: 07 March 2022

doi: 10.3389/fonc.2022.846597
Successful Treatment of a Patient
With Multiple-Line Relapsed
Extensive-Stage Small-Cell Lung
Cancer Receiving Penpulimab
Combined With Anlotinib:
A Case Report
Zibo Zhang†, Yujun Li†, Yan Dong, Jia Li , Bin Zhang, Chunxia Zhang* and Xiaonan Cui*

Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China

Small-cell lung cancer (SCLC) is a highly malignant, rapidly developing group of diseases
with poor biological behavior. Most patients have extensive-stage SCLC (ES-SCLC) when
they are first diagnosed. Standard chemotherapy is prone to relapse in a short period of
time, and the patients’ median overall survival (OS) can reach only 13 months when
chemotherapy is given in combination with PD-L1 inhibitors. To date, no studies have
verified the efficacy and safety of the composite treatment of ES-SCLC with penpulimab
and anlotinib despite some recognized data and advantages related to this regimen.
Penpulimab, a novel PD-1 inhibitor with an IgG1 subtype, has a structural modification of
the Fc segment which can prevent the immune cells from being phagocytosed or killed
and can steadily avoid tumor immune escape. This case report describes a 71-year-old
man who had ES-SCLC for 7 years which progressed after receiving standard systemic
chemotherapy combined with radiotherapy. The third-line treatment of four cycles of
anlotinib and carilizumab was discontinued because of grade 2 immune-related
pneumonia despite the efficacy being evaluated as stable disease. After maintaining 22
months of progression-free survival, the patient relapsed and switched to a safer regimen
of penpulimab combined with anlotinib to continue the treatment for four cycles. Partial
response evaluation was confirmed twice, and the patient remained in good general
condition. The combination of penpulimab and anlotinib can positively regulate the
therapeutic effect by simultaneously acting on the tumor microenvironment and
promoting blood vessel normalization. In general, this case provides support for the
successful possibility of a rechallenge with immune checkpoint inhibitors, the better clinical
efficacy of cross-line therapy with anlotinib, and the drug safety of penpulimab, suggesting
a beneficial therapy for the clinical treatment of ES-SCLC.
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INTRODUCTION

Although extensive-stage small-cell lung cancer (ES-SCLC) is
very sensitive to initial treatment, with a tumor remission rate of
60–80%, most patients still experience relapse or drug resistance
after initial treatment. SCLC patients have a median overall
survival (OS) of only 4–5 months after further chemotherapy
(1, 2), and their general prognosis is poor (3). Although the
efficiency of treatment depends largely on the time interval
between the end of the initial treatment and relapse, an
individualized selection of effective later-line treatment options
significantly relieves symptoms.

SCLC can produce a better immune response with immune
checkpoint inhibitors (ICIs) because of its high mutational
burden and immunogenicity. Therefore, the combination of
immunotherapy and chemotherapy can significantly increase
anti-tumor efficacy and improve prognosis compared to
chemotherapy alone (4). Penpulimab (trade name: Anico) is a
new type of recombinant humanized anti-PD-1 monoclonal
antibody (mAb) with a special subtype of IgG1 structure that
is relatively stable. A modified Fc segment and an optimized
Fab segment can silence the Fc effect by preventing the
phagocytosis or killing of immune cells and reducing fever and
infusion reactions. Penpulimab, a novel mAb against PD-1
with anIgG1 subtype, not only enhanced the efficacy of
immunotherapy but also greatly improved the safety of the
drug. In addition, anlotinib is an oral multi-target tyrosine
kinase inhibitor that selectively inhibits vascular endothelial
growth factor receptor, fibroblast growth factor receptor,
platelet-derived growth factor receptor, c-Kit, and c-Met (5, 6).
The ALTER1202 study (7, 8) showed that anlotinib could be a
third-line standard treatment for patients with ES-SCLC for
whom chemotherapy failed.

In recent years, many positive results have been achieved with
anti-PD-1 ICIs combined with anti-angiogenic-targeting
regimens, such as lenvatinib plus pembrolizumab for
hepatocellular carcinoma (9) and atezolizumab plus
bevacizumab for renal cell carcinoma (10). In 31 patients
evaluated based on the RECIST 1.1 criteria, the first-line
treatment of hepatocellular carcinoma with anlotinib in
combination with penpulimab achieved an overall response
rate (ORR) of 31%, a disease control rate (DCR) of nearly
83%, and a median progression-free survival (PFS) of 8.8
months, which was comparable to the efficacy of similar anti-
angiogenic therapy and immunotherapy combinations. Adverse
effects were manageable, and the safety profile was deemed
satisfactory (11). Similarly, studies on the treatment of ES-
SCLC have repeatedly reported the clinical benefits of this drug
combination approach. In a single-arm, open, phase Ib dose
exploration study of the treatment of advanced solid tumors with
TQB2450 (PD-L1 inhibitor) and allotinib among six patients
with SCLC, four cases showed that the treatment had a partial
response (PR) efficacy (12). In a phase 2 study of the second-line
treatment of SCLC (13), it was observed that the ORR of patients
with SCLC who received carilizumab combined with apatinib as
a second-line treatment reached 33.9%, and the median OS was
8.4 months. It is worth noting that the median OS was even 8.0
Frontiers in Oncology | www.frontiersin.org 2199
months in resistant patients, suggesting that the combination
of ICIs and antiangiogenic drugs is a promising therapeutic
strategy for recurrent and advanced SCLC with increased
clinical recognition.

As an mAb against PD-1 with a new IgG1 subtype,
penpulimab has only been approved for marketing in China.
Currently, there are only recurrent or refractory indications for
Hodgkin’s lymphoma. There are no published or relevant
treatment data or case reports for penpulimab as a treatment
for SCLC; therefore, its therapeutic efficacy is unclear. The first
experimental application of penpulimab for patients suffering
from recurrent SCLC and immune-related pneumonia due to
other mAbs is shown in this case, along with successful
immune rechallenge treatment. The patient achieved
continuous remission, and the therapeutic effect was evaluated
as PR compared with the initial treatment. Moreover, the
patient’s general condition remained good without serious
adverse reactions.
BACKGROUND

A 71-year-old man was admitted to the hospital for “repeated
cough and sputum” in early November 2014. He had a BS of 1.96
m2, Eastern Cooperative Oncology Group score of 1, atrial
fibrillation for more than 10 years, and no smoking history or
family history. The chest CT (November 25, 2014) (Figure 1)
revealed the following: left pulmonary central cancer, obstructive
atelectasis in the left upper lobe, obstructive pneumonia, nodules
in the left lower lobe, and left hilar lymph node metastasis. The
left lower pulmonary veins might have been involved, including
multiple millet lesions in the right lung and pleural fluid on the
left side. No obvious signs of bone metastasis were observed on
bone ECT or PET-CT. The histopathological examination of the
fibreoptic bronchoscopy and immunohistochemistry samples
revealed heterogeneous cell clusters in the diseased tissue:
CD56 (NK-1) (+), CgA (minority +), and TTF-1 (+). The
results of the chest CT, histopathology, immunohistochemistry,
bronchial brush tablets, and lavage fluid base provided sufficient
evidence for the diagnosis of left SCLC, staged as ES.

The patient received chemotherapy with the etoposide and
cisplatin for six cycles from December 6, 2014 to March 26, 2015,
and lung radiotherapy and prophylactic brain irradiation were
continued since April 25, 2015. In early June 2018, the patient
suddenly developed a cough and expelled blood-stained
sputum. According to the subsequent chest CT (June 8, 2018)
(Figure 1), there were multiple blurred patches and striped
shadows in the lung tissue near the mediastinum of the left
lung and the left hilar descending aorta. A lump of about 3.2 ×
2.3 cm was seen on the side, which was considered malignant.
There were multiple miliary shadows in the left lung and irregular
nodules in the lower left lobe, with a diameter of approximately
0.6 cm each. Considering the recurrence of the patient’s
condition, he was administered the regimen with carboplatin
and etoposide for three cycles. After that, the lung lesion was
reduced by 25% so that the curative effect was evaluated
as SD, and local radiotherapy was continued for one cycle.
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FIGURE 1 | Graphic timeline of the case.
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On November 1, 2019, the patient coughed up blood again. After
four cycles of treatment with anlotinib and carilizumab, the
symptoms improved, and the efficacy was evaluated as SD.
However, the patient developed grade 2 immune-related
pneumonia, leading to the discontinuation of this regimen. On
August 31, 2021, the patient was reexamined via lung CT after
“coughing up sputum and hemoptysis for 1 week” (Figure 1).
Multiple nodules and masses were identified in the lower lobe of
the left lung; new larger nodules were apparent in the hilar area,
approximately 3.8 × 2.3 cm in size. Multiple miliary foci were
observed in both lungs. Left pleural effusion and thickened left
pleura were also observed. There were multiple small lymph
nodes in the left supraclavicular fossa with a shorter diameter of
0.3 cm. The patient’s condition recurred. For further treatment,
an unprecedented and experimental combination therapy with
penpulimab and anlotinib was applied for two cycles. The chest
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CT (October 09, 2021) (Figure 1) revealed the following: The size
of the mass in the left lower hilar area was about 3.5 × 2.5 cm and
was reduced when compared with the chest CT on August 31,
2021. Small nodules and strips were also seen in the left lower
lobe; the largest was about 0.7 × 0.3 cm, and the rest were similar
to those previously described. The effect of PR was evaluated
based on the examination of the images. After receiving the
combination treatment for two cycles, a re-examination via chest
CT (November 03 and December 06, 2021) (Figure 1) showed
that the patient’s condition was stable, and the curative effect
assessment of lesions showed a shrinking trend within the SD
range. In summary, the effect was significant, and so far, no
immune-related adverse reactions occurred after four cycles of
treatment, which further proved the considerable clinical efficacy
and drug safety of this regimen. Timeline of the treatment was
shown in Table 1.
TABLE 1 | Timeline of the treatment.

Time Major medical examination Diagnosis or disease
evaluation

Treatment

2014.11.25 Chest CT, whole-body
bone scan, positron emission
tomography–computed
tomography,
fiber bronchoscopy

Small-cell lung cancer of the
left lung at ES stage

Puncture of the lung lesions

2014.12.06–2015.03.26 – (Etoposide: 200 mg on day 1, day 2, and day 3 + 100 mg on day 4 +
cisplatin: 60 mg on day 1 and day 2) for 6 cycles

2015.04.15 Chest CT Partial response
2015.04.25 – Lung radiotherapy and prophylactic cranial radiotherapy
2018.06.08 Chest CT Local relapse
2018.06.09–08.12 – (Etoposide: 200 mg on day 1, day 2, and day 3 + 100 mg on day 4 +

carboplatin: 500 mg on day 1) for 3 cycles
2018.09.11 Chest CT Stable disease Lung radiotherapy
2019.11.01 Chest CT Local relapse
2019.11.02–2020.02.05 – (Anlotinib: 8 mg from day 1 to day 14 + camrelizumab: 200 mg on day 1) for

4 cycles
2021.08.31 Chest CT Local relapse Anlotinib: 8 mg from day 1 to day 14 + penpulimab: 200 mg on day 1
2021.10.09 Chest CT Partial response Anlotinib: 8 mg from day 1 to day 14 + penpulimab: 200 mg on day 1
2021.11.03 Chest CT Stable disease Anlotinib: 8 mg from day 1 to day 14 + penpulimab: 200 mg on day 1
2020.12.06 Chest CT Stable disease Anlotinib: 8 mg from day 1 to day 14 + penpulimab: 200 mg on day 1
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DISCUSSION
SCLC is a highly aggressive neuroendocrine tumor with high
malignancy, easy metastasis, and rapid progression. Based on the
Impower133 and Caspian trials (14, 15), the US Food and Drug
Administration recommended atezolizumab or durvalumab
combined with platinum as the first-line treatment option for
ES-SCLC. Despite the high response rate to initial platinum
therapy, almost all patients with ES-SCLC relapse after a short-
term treatment with a poor prognosis. Topotecan is a currently
approved second-line standard treatment, and navuluzumab or
palolizumab can also be used for the treatment of recurrent
SCLC. However, the National Comprehensive Cancer Network
recommended subsequent systemic and palliative symptomatic
treatment after the failure of first- or second-line treatment,
suggesting that there is no standard treatment recommendation.
Most patients will progress after receiving two or more previous
treatment regimens, and there are several limitations with third-
and later-line treatment options for patients who cannot receive
effective drug treatment, thus affecting their OS. The PFS of
this patient after frontline platinum-containing chemotherapy
was longer, which suggested that the patient had better
drug sensitivity.

Anlotinib inhibits tumor growth through anti-tumor
angiogenesis and controls tumor cell proliferation and
metastasis (16). In the ALTER-1202 study, anlotinib brought
better survival benefits to patients receiving third- and
subsequent-line treatment options for SCLC; their median PFS
was extended by 3.4 months (hazard ratio, HR: 0.19), and their
median OS was prolonged from 4.9 to 7.3 months (HR: 0.53)
when compared with the placebo. According to the ALTER-1202
study, the Guidelines for the Diagnosis and Treatment of SCLC
in Chinese Society Clinical Oncology recommended anlotinib as
a standard choice for the third-line treatment of SCLC. In 2019,
the National Medical Products Administration also approved the
use of anlotinib for SCLC, providing a standard third-line
therapy for patients with SCLC in China.

Other mAbs against PD-1 currently on the market all use
IgG4 subtypes, while IgG1 is only applied in penpulimab. MAbs
with IgG4 subtypes can give rise to poor stability, Fc–Fc
interactions, and antibody drug aggregation and can combine
with anti-tumor-specific IgG1 to inhibit natural IgG1
performance and promote tumor immune escape. By
comparison, antibodies with IgG1 subtypes are more stable,
which can reduce the likelihood of drug aggregation and
prevent tumor immune escape. In addition, most of the listed
mAbs against PD-1 are unmodified, leading to a reduction in
immune cells and affecting the anti-tumor immune response and
IL-8 release. In the case of penpulimab, genetic engineering is
used to carry out structural modifications to prevent immune cell
destruction and phagocytosis, decreasing the release of IL-8 and
enhancing the curative effect. Based on the currently available
clinical data, there had not been any comparative studies of two
mAbs against PD-1. In the AK105-201 study, penpulimab was
applied to the treatment of relapsed and refractory classical
Hodgkin’s lymphoma; the ORR was defined as the primary
endpoint and reached 89.4%, and all patients had an OS of
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18 months. Remarkably, the incidence of grade 3 adverse events
in patients receiving parimizumab was only 4.3%, and there was
no grade 4 to 5 immune-related adverse event (irAE) compared
with the first-generation PD-1 (17).

In this case, the patient was diagnosed with ES-SCLC upon first
presentation, with a disease course of up to 7 years. After four cycles
of third-line treatment with anlotinib and carilizumab, the disease
was evaluated as SD, but treatment was discontinued because of
grade 2 immune-related pneumonia. At the end of August 2021,
the patient’s lung lesions recurred. Since PFS was maintained for 22
months after anlotinib and carilizumab administration, the patient
was initially judged to be someone who could continue to benefit
from immunotherapy. Given that the patient’s immune-related
pneumonia returned to level 1, immunotherapy was reconsidered.
An observational, cross-sectional, pharmacovigilance cohort study
showed that about 28.8% of initial irAEs reoccurred upon
rechallenge treatment with ICIs (18). For patients who consider
resuming ICI treatment, it is necessary to reduce the possibility of
irAE occurrence, leading to discontinuation. Therefore, the original
therapy was replaced with a safer ICI, which, in this case, was
penpulimab. After four cycles of treatment with the combined
regimen of penpulimab and anlotinib, efficacy was assessed as PR
when compared with the baseline. The patient benefited from the
therapy continuously, without further adverse effects such as
immune-related pneumonia. Therefore, this case not only proves
the superior safety of penpulimab but also shows that rechallenge in
immunotherapy with ICIs and the trans-line treatment with
anlotinib are still effective, bringing great clinical benefit to
patients with ES-SCLC. Compared to the successful approval of
PD-L1 ICIs, two PD-1 drugs, nivolumab and pembrolizumab, were
withdrawn by the FDA for the treatment of SCLC in 2020 and
2021, respectively, due to their limited benefits. In this case, a PD-1
inhibitor combined with anlotinib might improve the tumor
remission rate of PD-1 ICIs and is a novel idea to try for
SCLC treatment.

In recent years, data on the safety and effectiveness of
restarting ICIs after immunotherapy has been interrupted by
the presence of many irAEs. A retrospective study indicated that
68 patients with non-small-cell lung cancer (NSCLC) who were
administered an ICI stopped their treatment due to irAEs, with
only 38 patients then resuming treatment. Subsequently, 18
patients (48%) did not experience irAE recurrence, and the
irAEs experienced thereafter were only mild to moderate (12/
20, 60%). ICI rechallenge in patients who discontinued treatment
due to irAEs may have potential benefits. In the KEYNOTE-010
trial, patients with NSCLC who received pembrolizumab
retreatment had an ORR of up to 42.9%; another large
European retrospective analysis showed that patients who
received an ICI rechallenge had a median OS of between 15.0
to 18.4 months (19, 20). Based on clinical experience, this patient
may have sustained an immune benefit and received a successful
immune rechallenge therapy. This was achieved by switching to
the safer penpulimab after the patient developed grade 2 immune-
associated pneumonia while on carilizumab, suggesting that the
choice of drug for immune rechallenge could be a break from
conventional therapy with the original drug (21).
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The main reason for the limited benefit of immunotherapy in
patients with SCLC is the lack of biomarkers to predict its efficacy
and toxicity. Based on a previous classification, Gay et al. (22)
analyzed the RNA sequence data of 81 SCLCs to classify SCLC into
four transcriptionally distinct subgroups: ASCL1/SCLC-A,
NEUROD1/SCLC-N, POU2F3/SCLC-P, and SCLC-inflamed
(SCLC-I). The vast differences in the immune microenvironment
of different subtypes of SCLC (23), based on the phenotypic
molecular expression of the SCLC-I subtype, showed that it may
have a higher response to immunotherapy. Additionally, trends
were observed in the follow-up analysis of the IMpower133 study,
providing an advantage for SCLC in immunotherapy population
selection as potential biomarkers and related mechanisms provide
strong evidence for this study. It seems possible to declare that the
treatment of SCLC has entered the era of precision therapy (24).
Therefore, the main limitation of this study is that early judgment
of the immune benefit for patients comes from clinical experience
after the assessment of efficacy. We hope that future universal
molecular typing of SCLC can pre-screen more populations,
though this requires more researchers to conduct more in-depth
and extensive research.
CONCLUDING REMARKS

In summary, our case further demonstrates the efficacy and
safety of penpulimab combined with anlotinib for the later-line
treatment of ES-SCLC, and two regimens of different
immunological drugs combined with an anti-vascular-targeting
agent achieved ideal survival benefits. However, different
outcomes in safety suggest that the selection of immune agents
in combination therapy may be a key factor affecting the
treatment outcome. After the patient developed grade 2
immune-related pneumonia, choosing the safer penpulimab as
a rebooted ICI and combining it with the cross-line therapy of
anlotinib improved the survival and did not lead to the
Frontiers in Oncology | www.frontiersin.org 5202
development of any irAEs. In summary, this combination is a
good treatment method for patients with ES-SCLC. It is expected
that, with the continuous development of oncology medicine,
relevant clinical trials can be conducted to obtain more scientific
and rigorous data to verify these findings in the near future.
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