Perinatal pharmacology is influenced by a myriad of physiological variables that are changing dynamically. The influence of these covariates has not been assessed systemically. The objective of this work was to use theophylline as a model drug and to predict its pharmacokinetics before, during (including prediction of the umbilical cord level), and after pregnancy as well as in milk (after single and multiple doses) and in neonates using a physiological-based pharmacokinetic (PBPK) model. Neonatal theophylline exposure from milk consumption was projected in both normal term and preterm subjects. Predicted infant daily doses were calculated using theophylline average and maximum concentration in the milk as well as an estimate of milk consumption. Predicted concentrations and parameters from the PBPK model were compared to the observed data. PBPK predicted theophylline concentrations in non-pregnant and pregnant populations at different gestational weeks were within 2-fold of the observations and the observed concentrations fell within the 5th−95th prediction interval from the PBPK simulations. The PBPK model predicted an average cord-to-maternal plasma ratio of 1.0, which also agrees well with experimental observations. Predicted postpartum theophylline concentration profiles in milk were also in good agreement with observations with a predicted milk-to-plasma ratio of 0.68. For an infant of 2 kg consuming 150 ml of milk per day, the lactation model predicted a relative infant dose (RID) of 12 and 17% using predicted average (Cavg,ss) and maximum (Cmax,ss) concentration in milk at steady state. The maximum RID of 17% corresponds to an absolute infant daily dose of 1.4 ± 0.5 mg/kg/day. This dose, when administered as 0.233 mg/kg every 4 h, to resemble breastfeeding frequency, resulted in plasma concentrations as high as 3.9 (1.9–6.8) mg/L and 2.8 (1.3–5.3) (5th−95th percentiles) on day 7 in preterm (32 GW) and full-term neonatal populations.
Childhood obesity is an alarming public health problem. The pediatric obesity rate has quadrupled in the past 30 years, and currently nearly 20% of United States children and 9% of children worldwide are classified as obese. Drug distribution and elimination processes, which determine drug exposure (and thus dosing), can vary significantly between patients with and without obesity. Obesity-related physiological changes, such as increased tissue volume and perfusion, altered blood protein concentrations, and tissue composition can greatly affect a drug’s volume of distribution, which might necessitate adjustment in loading doses. Obesity-related changes in the drug eliminating organs, such as altered enzyme activity in the liver and glomerular filtration rate, can affect the rate of drug elimination, which may warrant an adjustment in the maintenance dosing rate. Although weight-based dosing (i.e., in mg/kg) is commonly practiced in pediatrics, choice of the right body size metric (e.g., total body weight, lean body weight, body surface area, etc.) for dosing children with obesity still remains a question. To address this gap, the interplay between obesity-related physiological changes (e.g., altered organ size, composition, and function), and drug-specific properties (e.g., lipophilicity and elimination pathway) needs to be characterized in a quantitative framework. Additionally, methodological considerations, such as adequate sample size and optimal sampling scheme, should also be considered to ensure accurate and precise top-down covariate selection, particularly when designing opportunistic studies in pediatric drug development. Further factors affecting dosing, including existing dosing recommendations, target therapeutic ranges, dose capping, and formulations constraints, are also important to consider when undergoing dose selection for children with obesity. Opportunities to bridge the dosing knowledge gap in children with obesity include modeling and simulating techniques (i.e., population pharmacokinetic and physiologically-based pharmacokinetic [PBPK] modeling), opportunistic clinical data, and real world data. In this review, key considerations related to physiology, drug parameters, patient factors, and methodology that need to be accounted for while studying the influence of obesity on pharmacokinetics in children are highlighted and discussed. Future studies will need to leverage these modeling opportunities to better describe drug exposure in children with obesity as the childhood obesity epidemic continues.
Pregnancy and associated physiologic changes affect the pharmacokinetics of many medications, including selective serotonin reuptake inhibitors—the first-line pharmacologic interventions for depressive and anxiety disorders. During pregnancy, SSRIs exhibit extensive pharmacokinetic variability that may influence their tolerability and efficacy. Specifically, compared to non-pregnant women, the activity of cytochrome P450 (CYP) enzymes that metabolize SSRIs drastically changes (e.g., decreased CYP2C19 activity and increased CYP2D6 activity). This perspective examines the impact of pharmacokinetic genes—related to CYP activity on SSRI pharmacokinetics during pregnancy. Through a simulation-based approach, plasma concentrations for SSRIs metabolized primarily by CYP2C19 (e.g., escitalopram) and CYP2D6 (e.g., fluoxetine) are examined and the implications for dosing and future research are discussed.
The limit for possible survival after extremely preterm birth has steadily improved and consequently, more premature neonates with increasingly lower gestational age at birth now require care. This specialized care often include intensive pharmacological treatment, yet there is currently insufficient knowledge of gestational age dependent differences in drug metabolism. This potentially puts the preterm neonates at risk of receiving sub-optimal drug doses with a subsequent increased risk of adverse or insufficient drug effects, and often pediatricians are forced to prescribe medication as off-label or even off-science. In this review, we present some of the particularities of drug disposition and metabolism in preterm neonates. We highlight the challenges in pharmacometrics studies on hepatic drug metabolism in preterm and particularly extremely (less than 28 weeks of gestation) preterm neonates by conducting a scoping review of published literature. We find that >40% of included studies failed to report a clear distinction between term and preterm children in the presentation of results making direct interpretation for preterm neonates difficult. We present summarized findings of pharmacokinetic studies done on the major CYP sub-systems, but formal meta analyses were not possible due the overall heterogeneous approaches to measuring the phase I and II pathways metabolism in preterm neonates, often with use of opportunistic sampling. We find this to be a testament to the practical and ethical challenges in measuring pharmacokinetic activity in preterm neonates. The future calls for optimized designs in pharmacometrics studies, including PK/PD modeling-methods and other sample reducing techniques. Future studies should also preferably be a collaboration between neonatologists and clinical pharmacologists.
Current intervention strategies have not been successful in reducing the risks of adverse pregnancy complications nor maternal and fetal morbidities associated with pregnancy complications. Improving pregnancy and neonatal outcomes requires a better understanding of drug transport mechanisms at the feto-maternal interfaces, specifically the placenta and fetal membrane (FM). The role of several solute carrier uptake transporter proteins (TPs), such as the organic anion transporting polypeptide 2B1 (OATP2B1) in transporting drug across the placenta, is well-established. However, the mechanistic role of FMs in this drug transport has not yet been elucidated. We hypothesize that human FMs express OATP2B1 and functions as an alternate gatekeeper for drug transport at the feto-maternal interface. We determined the expression of OATP2B1 in term, not-in-labor, FM tissues and human FM cells [amnion epithelial cell (AEC), chorion trophoblast cell (CTC), and mesenchymal cells] using western blot analyses and their localization using immunohistochemistry. Changes in OATP2B1 expression was determined for up to 48 h after stimulation with cigarette smoke extract (CSE), an inducer of oxidative stress. The functional role of OATP2B1 was determined by flow cytometry using a zombie violet dye substrate assay. After OATP2B1 gene silencing, its functional relevance in drug transport through the feto-maternal interface was tested using a recently developed feto-maternal interface organ-on-a-chip (OOC) system that contained both FM and maternal decidual cells. Propagation of a drug (Rosuvastatin, that can be transported by OATP2B1) within the feto-maternal interface OOC system was determined by mass spectrometry. FMs express OATP2B1 in the CTC and AEC layers. In FM explants, OATP2B1 expression was not impacted by oxidative stress. Uptake of the zombie violet dye within AECs and CTCs showed OATP2B1 is functionally active. Silencing OATP2B1 in CTCs reduced Rosuvastatin propagation from the decidua to the fetal AEC layer within the feto-maternal interface-OOC model. Our data suggest that TPs in FMs may function as a drug transport system at the feto-maternal interface, a function that was previously thought to be performed exclusively by the placenta. This new knowledge will help improve drug delivery testing during pregnancy and contribute to designing drug delivery strategies to treat adverse pregnancy outcomes.
Aspirin was once believed to reduce the mortality of Kawasaki disease (KD) due to its effect on the thrombotic occlusion of coronary arteries. However, conflicting evidence has been found regarding aspirin treatment and its benefit in patients with acute KD. We compared the efficacy of different aspirin doses in acute KD. A literature search of PubMed, EMBASE, and Cochrane databases was conducted to identify studies comparing different doses of aspirin for acute KD. The primary outcome of interest was coronary artery lesions (CAL). We used random-effects network meta-analysis. Six retrospective studies, including 1944 patients receiving aspirin in doses of 0, 3–5, 30–50, or 80–100 mg/kg/day, were selected. The risks of CAL were not significantly different for the various doses of aspirin compared to the placebo: odds ratio (OR) was 1.10 [95% confidence interval (CI): 0.70–1.71] for patients with aspirin 3–5 mg/kg/day; OR = 1.23 (95% CI: 0.67–2.26) for aspirin 30–50 mg/kg/day, and OR = 1.59 (95% CI: 0.74, 3.421) for 80–100 mg/kg/day. The P-score ranged from 0.76 for placebo to 0.19 for aspirin 80–100 mg/kg/day. The different doses of aspirin exhibited no significant difference with regard to the efficacy of CAL or with the secondary outcomes of intravenous immunoglobulin resistance or hospital stays for acute KD. Therefore, we found that treatment without any aspirin is not inferior to other doses of aspirin and can also slightly reduce the risk of CAL.
Frontiers in Neuroscience
Adolescence and Risk of Psychopathology: Understanding Trajectories and Early Interventions