
Edited by  

Nam-Hai Chua, Rajeev Ram and Michael S. Strano

Published in  

Frontiers in Plant Science

Non-destructive 
methods for 
monitoring plant 
health

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/research-topics/22394/non-destructive-methods-for-monitoring-plant-health#overview
https://www.frontiersin.org/research-topics/22394/non-destructive-methods-for-monitoring-plant-health#overview
https://www.frontiersin.org/research-topics/22394/non-destructive-methods-for-monitoring-plant-health#overview
https://www.frontiersin.org/research-topics/22394/non-destructive-methods-for-monitoring-plant-health#overview


February 2023

Frontiers in Plant Science 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-83251-626-3 
DOI 10.3389/978-2-83251-626-3

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


February 2023

Frontiers in Plant Science 2 frontiersin.org

Non-destructive methods for 
monitoring plant health

Topic editors

Nam-Hai Chua — Temasek Life Sciences Laboratory, Singapore

Rajeev Ram — Massachusetts Institute of Technology, United States

Michael S. Strano — Massachusetts Institute of Technology, United States

Citation

Chua, N.-H., Ram, R., Strano, M. S., eds. (2023). Non-destructive methods for 

monitoring plant health. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-83251-626-3

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-83251-626-3


February 2023

Frontiers in Plant Science 3 frontiersin.org

05 Fine-Grained Grape Leaf Diseases Recognition Method Based 
on Improved Lightweight Attention Network
Peng Wang, Tong Niu, Yanru Mao, Bin Liu, Shuqin Yang, Dongjian He 
and Qiang Gao

17 Detecting Plant Stress Using Thermal and Optical Imagery 
From an Unoccupied Aerial Vehicle
Bonny Stutsel, Kasper Johansen, Yoann M. Malbéteau and 
Matthew F. McCabe

35 Surface-Enhanced Raman Scattering Spectroscopy 
Combined With Chemical Imaging Analysis for Detecting 
Apple Valsa Canker at an Early Stage
Shiyan Fang, Yanru Zhao, Yan Wang, Junmeng Li, Fengle Zhu and 
Keqiang Yu

47 Handheld Multifunctional Fluorescence Imager for 
Non-invasive Plant Phenotyping
Ruochong Zhang, Sally Shuxian Koh, Mark Ju Teng Teo, Renzhe Bi, 
Shuyan Zhang, Kapil Dev, Daisuke Urano, U. S. Dinish and Malini Olivo

56 Non-destructive Plant Biomass Monitoring With High 
Spatio-Temporal Resolution via Proximal RGB-D Imagery and 
End-to-End Deep Learning
Nicolas Buxbaum, Johann Heinrich Lieth and Mason Earles

71 A Spatial-Temporal Analysis of Cellular Biopolymers on Leaf 
Blight-Infected Tea Plants Using Confocal Raman 
Microspectroscopy
Alireza Sanaeifar, Dapeng Ye, Xiaoli Li, Liubin Luo, Yu Tang and 
Yong He

84 Raman Spectroscopy Enables Non-invasive and Confirmatory 
Diagnostics of Aluminum and Iron Toxicities in Rice
Samantha Higgins, Sudip Biswas, Nicolas K. Goff, 
Endang M. Septiningsih and Dmitry Kurouski

93 Non-destructive Technologies for Plant Health Diagnosis
Mervin Chun-Yi Ang and Tedrick Thomas Salim Lew

102 Raman Spectroscopy Detects Changes in Carotenoids on the 
Surface of Watermelon Fruits During Maturation
Tushar Dhanani, Tianyi Dou, Kishan Biradar, John Jifon, 
Dmitry Kurouski and Bhimanagouda S. Patil

111 Raman Spectroscopy Applications in Grapevine: Metabolic 
Analysis of Plants Infected by Two Different Viruses
Luisa Mandrile, Chiara D’Errico, Floriana Nuzzo, Giulia Barzan, 
Slavica Matić, Andrea M. Giovannozzi, Andrea M. Rossi, 
Giorgio Gambino and Emanuela Noris

125 Novel Vegetation Indices to Identify Broccoli Plants Infected 
With Xanthomonas campestris pv. campestris
Mónica Pineda, María Luisa Pérez-Bueno and Matilde Barón

Table of
contents

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


February 2023

Frontiers in Plant Science 4 frontiersin.org

137 Physiological Responses Manifested by Some Conventional 
Stress Parameters and Biophoton Emission in Winter Wheat 
as a Consequence of Cereal Leaf Beetle Infestation
Helga Lukács, Ildikó Jócsák, Katalin Somfalvi-Tóth and 
Sándor Keszthelyi

148 Benchmarking organic electrochemical transistors for plant 
electrophysiology
Adam Armada-Moreira, Chiara Diacci, Abdul Manan Dar, 
Magnus Berggren, Daniel T. Simon and Eleni Stavrinidou

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


ORIGINAL RESEARCH
published: 22 October 2021

doi: 10.3389/fpls.2021.738042

Frontiers in Plant Science | www.frontiersin.org 1 October 2021 | Volume 12 | Article 738042

Edited by:

Nam-Hai Chua,

Temasek Life Sciences

Laboratory, Singapore

Reviewed by:

George Barbastathis,

Massachusetts Institute of

Technology, United States

Kevin Lim,

Wilmar International, Singapore

*Correspondence:

Shuqin Yang

yangshuqin1978@163.com

Dongjian He

hdj168@nwsuaf.edu.cn

Qiang Gao

Hillfinder@163.com

Specialty section:

This article was submitted to

Technical Advances in Plant Science,

a section of the journal

Frontiers in Plant Science

Received: 08 July 2021

Accepted: 23 September 2021

Published: 22 October 2021

Citation:

Wang P, Niu T, Mao Y, Liu B, Yang S,

He D and Gao Q (2021) Fine-Grained

Grape Leaf Diseases Recognition

Method Based on Improved

Lightweight Attention Network.

Front. Plant Sci. 12:738042.

doi: 10.3389/fpls.2021.738042

Fine-Grained Grape Leaf Diseases
Recognition Method Based on
Improved Lightweight Attention
Network
Peng Wang 1,2,3, Tong Niu 1,2,3, Yanru Mao 1,2,3, Bin Liu 2,3,4, Shuqin Yang 1,2,3*, Dongjian He 1,2,3*

and Qiang Gao 1*

1College of Mechanical and Electronic Engineering, Northwest Agriculture and Forestry (A&F) University, Yangling, China,
2 Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Xianyang, China, 3 Shaanxi Key

Laboratory of Agricultural Information Perception and Intelligent Services, Xianyang, China, 4College of Information
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Real-time dynamic monitoring of orchard grape leaf diseases can greatly improve the

efficiency of disease control and is of great significance to the healthy and stable

development of the grape industry. Traditional manual disease-monitoring methods are

inefficient, labor-intensive, and ineffective. Therefore, an efficient method is urgently

needed for real-time dynamic monitoring of orchard grape diseases. The classical deep

learning network can achieve high accuracy in recognizing grape leaf diseases; however,

the large amount of model parameters requires huge computing resources, and it

is difficult to deploy to actual application scenarios. To solve the above problems, a

cross-channel interactive attention mechanism-based lightweight model (ECA-SNet) is

proposed. First, based on 6,867 collected images of five common leaf diseases of

measles, black rot, downy mildew, leaf blight, powdery mildew, and healthy leaves,

image augmentation techniques are used to construct the training, validation, and test

set. Then, with ShuffleNet-v2 as the backbone, an efficient channel attention strategy

is introduced to strengthen the ability of the model for extracting fine-grained lesion

features. Ultimately, the efficient lightweight model ECA-SNet is obtained by further

simplifying the network layer structure. Themodel parameters amount of ECA-SNet 0.5×

is only 24.6% of ShuffleNet-v2 1.0×, but the recognition accuracy is increased by 3.66

percentage points to 98.86%, and FLOPs are only 37.4M, whichmeans the performance

is significantly better than other commonly used lightweight methods. Although the

similarity of fine-grained features of different diseases image is relatively high, the average

F1-score of the proposed lightweight model can still reach 0.988, whichmeans themodel

has strong stability and anti-interference ability. The results show that the lightweight

attention mechanism model proposed in this paper can efficiently use image fine-grained

information to diagnose orchard grape leaf diseases at a low computing cost.

Keywords: grape leaf diseases, diseases recognition, fine-grained image, attention mechanism, lightweight
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INTRODUCTION

Grape leaf disease is the main factor that causes a large-scale
reduction in orchards and restricts the healthy and stable
development of the grape industry. Realizing real-time dynamic
monitoring of orchard diseases is of great significance for
the early prevention and control of orchard diseases and the
cultivation of disease-resistant varieties. In recent years, with the
development of computer vision technology and the continuous
improvement of computing power, researchers have used deep
learning methods in the field of crop disease diagnosis and have
achieved remarkable results in general disease recognition tasks
(Lu et al., 2017; Priyadharshini et al., 2019; Chen et al., 2020; Liu
et al., 2020). For instance, Ma J. et al. (2018) proposed a deep
convolutional neural network to identify three types of cucumber
diseases and achieved an accuracy of 93.4%. Liu et al. (2018)
proposed a network based on AlexNet and GoogLeNet, which
used deep learning to diagnose apple leaf diseases for the first
time. The accuracy on the test set reached 97.62%, which was
better than traditional machine learning methods. Ferentinos
(2018) tested five classical convolutional neural networks to
identify plant leaf diseases, and the results showed that all of
them can achieve ideal accuracy. Although the convolution
neural network-based classification models mentioned above
can achieve superior recognition results, it has the imperfection
of highly dependent on the hardware performance of the
device. The huge amount of network parameters leads to
huge computational overhead, which cannot be afforded by
ordinary devices, and it is difficult to deploy to the terminals
for promotion.

In view of the high computational cost of large-scale models,
many scholars have carried out pieces of lightweight model
research. Xception (Chollet, 2017) was a lightweight model
improved by Google based on the Inception-v3 (Szegedy et al.,
2016). The deep separable convolution was used to reduce the
parameters, but the computational cost was increased. Compared
with traditional convolutional neural networks, while using
deep separable convolution, MobileNet-v1 (Howard et al., 2017)
introduces two hyperparameters that control the number of
convolution kernels and the resolution of the input image. This
model leveraged a stack layer structure; although the number of
parameters was reduced, there still exists the model degradation
problem. Sandler et al. (2018) suppressed the degradation of the
model by introducing the Inverted Residuals structure. By using
a linear activation function to effectively retain low-dimensional
features, the parameters of the model were further reduced,
and the accuracy was improved. Howard et al. (2019) added
the Squeeze-Excitation module (Hu et al., 2018) to the Inverted
Residual structure to endow the ability of the model to focus
on key feature channels. The lightweight model structure was
designed to be flexible and efficient, which may greatly reduce
the calculation cost and easy to be applied on mobile terminals,
including smartphones, embedded devices, etc. With its own
advantages, the application of lightweight networks in the field
of crop disease identification has also made some progress. Chao
et al. (2020) combined DenseNet and Xception strategies and

proposed XDNet to identify five apple leaf diseases. The model
recognition effect was preferable, and the amount of parameters
was not high. Tang et al. (2020) introduced the SE module into
the ShuffleNet network and proposed a lightweight convolutional
neural network. The public data containing four types of grape
diseases were used to evaluate the network performance; the
accuracy of the training set can reach 99.14%. Bi et al. (2020)
used the MobileNet network to identify two different apple
diseases and compared with other models in terms of efficiency
and accuracy to verify the effectiveness of the network. The
above pieces of research have opened up a new way for the
promotion of low-cost models; however, there are still problems
that existing lightweight method cannot achieve pleasant and
stable performance on a fine-grained image recognition task.
Ramcharan et al. (2019) used a mobile device equipped with
a lightweight model to diagnose cassava diseases in the field
and found that the different angles, brightness, and changes in
different diseases will affect the accuracy of the model.

Different from general image recognition tasks, the key
information of the local area plays a decisive role in the
classification decision in fine-grained image recognition. So,
how to make full use of the effective information is the key to
improve the performance on fine-grained recognition. Under the
influence of many interference factors, the feature differences
among different subclasses of a specific category of images may
be small, or the feature differences among different objects in
the same subclass may be large, which increases the difficulty
of fine-grained image classification. Therefore, the fine-grained
disease image recognition under the complex background has
higher requirements for the comprehensive performance of the
model. The fine-grained disease image identification method
based on visual attention can effectively focus on the region of
interest and improve the recognition performance of the model.
In recent years, it has been widely used in image classification,
object detection, and other fields and has achieved excellent
results. Yang et al. (2020) proposed an attention mechanism that
effectively used the key information of images and established
the image classification model for 14 different crops based on
transfer learning. The model was trained and tested with the
PlantVillage public data set. The test results show that the F1-
score of the proposed model can reach 0.93. Mi et al. (2020)
introduced the attention mechanism into DenseNet to identify
six different grades of wheat stripe rust and found that the
performance of the model with attention mechanism can be
significantly improved.

Inspired by the above research, a new lightweight model for
fine-grained grape leaf disease recognition is proposed in this
paper. The main innovations and contributions are summarized
as below:

(1) A new grape leaf disease data set is established, and the fine-
grained grape leaf diseases image datasets (FGGLDIs, namely
FGDs) are generated via image enhancement techniques. The
image enhancement techniques are used to simulate grape
leaf disease images collected under complex environment
conditions, enhance the generalization performance of the

Frontiers in Plant Science | www.frontiersin.org 2 October 2021 | Volume 12 | Article 7380426

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Grape Leaf Diseases Recognition

model, avoid over-fitting problems in the training process, and
lay the foundation for the popularization of the model.

(2) In this paper, the cross-channel interaction strategy without
dimensionality reduction is introduced into the lightweight
network, and a new fine-grained recognition model of grape
disease images based on the attention mechanism is proposed.
First, deep separable convolution is used to reduce the overall
amount of parameters of the model. Second, the efficient
channel attention (ECA) is embedded into the ShuffleNet
infrastructure and implemented through one-dimensional
convolution. Finally, a method of adaptive selection of the
size of the one-dimensional convolution kernel is adopted
to determine the coverage of the cross-channel interaction.
The method proposed in this paper can effectively reduce
the complexity while maintaining the performance of the
model, realize the effective fusion of multichannel features,
and strengthen the ability of the model to learn important and
fine-grained information in the lesion area.

The remainder of the paper is organized as follows: In Materials
and Methods, the structure information of the data set is
introduced, and FGDs is generated by using data enhancement
techniques. The model structure and the test process mentioned
in this article are discussed in detail. Results and Discussion
presents the test method to evaluate the performance of the
model and analyzes the test results. The model attention and
fine-grained feature learning are also displayed through heat
maps and fine-grained featuremaps, respectively. TheConclusion
summarizes the work of this article.

MATERIALS AND METHODS

This section introduces the materials and methods used in
the study, including the collected grape leaf disease image
data, FGDs established through image enhancement techniques,
relevant lightweight network, and detailed structure of the
proposed model.

Data Acquisition
The original data set used in this study contains a total of
6,867 images of grape leaf disease from two parts. First, 3,388
images of powderymildew, downymildew, and healthy leaves are
collected in the field of the grape planting experimental station of
Northwest A&FUniversity, Shaanxi Province, China. In different
weather conditions and different time periods (sunny, cloudy,
morning, noon, and evening), the MI 9 smartphone is used to
shoot from different angles and directions. Then, a total of 3,479
black measles, black rot, and leaf blight are collected from the
public data set. Through the above work, an original data set of
common grape diseases is established.

Figure 1 shows a random sample of each category of the
data set. It can be seen from the examples that there are a
large amount of complex background (Figures 1C,D,F) and
pure-color background (Figures 1A,B,E) images in the data set,
which has high requirements for the comprehensive performance
of the model. In Figure 1, black measles (Figure 1A), black
rot (Figure 1B), and leaf blight spots (Figure 1E) have a high

degree of similarity. When the leaves are onset, brown spots are
produced, which gradually expand into nearly circular spots with
edges appearing dark brown. Downy mildew (Figure 1C) early
disease spots are dense white frost-like objects, and the shape of
the disease spots is usually irregular polygonal when restricted
by leaf veins. When the disease is severe in the later stage,
the leaves will fall off early. Powdery mildew (Figure 1F) leaves
are covered with off-white powder, similar to downy mildew
symptoms; both of which form clusters of lesions locally and are
not easily distinguishable by the naked eye. Therefore, the above
mentioned classification of different diseases can be expressed as
a problem of fine-grained image classification.

Image Dataset Augmentation
In the orchards, grape leaves grow in different positions with
different shapes, and there are interference factors such as
weather and shooting angles. So, the data set need to be
expanded to avoid over-fitting during the training process. Before
performing image data augmentation, 100 images were randomly
selected from each category in the original data set, a total of
600 images, and then, adding Gaussian noise, rotated left 90◦,
rotated right 90◦, vertically flipped, and weakened sharpness,
respectively, forming an enhanced robustness test data set (RTD),
containing 3,000 images. Gaussian blur, contrast enhancement
by 30% and decrease by 30%, and brightness enhancement by
30% and decrease by 30% are adopted to the remaining images
in the original data set to simulate weather interference. Then,
rotating the image by 90◦, 270◦, horizontal flip, and vertical
flip to simulate the disturbance of different shooting angles and
the FGDs is established. Table 1 shows the detailed structure
information of FGDs. After the model was trained, RTDwas used
to test the model to verify the effect of model training. The above
work provides a data basis for model training.

ECA-SNet Network
Relevant Lightweight Network
With the development of computer vision technology, there
is an increasing demand for running high-quality deep neural
networks on mobile devices. Limited by the level of computing
power, it is difficult for mobile devices to carry conventional
convolution neural networks (CNNs) to deal with complete
various tasks. In order to meet the requirements of applying
deep neural networks on embedded and mobile terminals and
maintaining superior performance, the MobileNet-v2 endows
the model with remarkable feature extraction capabilities by
stacking the Inverted Residual Block feature extraction structure.
The specific method is to increase the dimensionality of input
feature matrix through 1×1 convolution, and then use 3×3 deep
separable convolution for feature learning, reduce the amount
of model calculations, and, finally, decrease the dimensionality
through 1×1 convolution and output after linear activation
function. In order to give the model attention mechanism,
MobileNet-v3 uses the Squeeze-and-Excitation module on the
basis of MobileNet-v2 to optimize the feature learning ability
of deep separable convolution. By assigning different weights
to different channel features, the adaptability of the model
to complex backgrounds is enhanced. Zhang et al. (2018)
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FIGURE 1 | Examples of grape leaf images. (A) Black measles, (B) Black rot, (C) Downy mildew, (D) Healthy, (E) Leaf blight, and (F) Powdery mildew.

TABLE 1 | The structure of FGDs.

Categories Black measles Black rot Downy mildew Healthy Leaf blight Powdery mildew

Training set 8,664 8,640 8,080 8,112 8,128 8,512

Validation set 2,166 2,160 2,020 2,028 2,032 2,128

Total 10,830 10,800 10,100 10,140 10,160 10,640

Proportion 0.1728 0.1723 0.1612 0.1618 0.1621 0.1698

proposed ShuffleNet network to solve the problems of computing
resources wasting and information interaction choked between
group convolutions, and greatly reduce computational costs.
The model mainly includes point-wise group convolution and
channel shuffle operation, as is shown in Figure 2. Mobile
terminal devices emphasize real-time, so it is necessary to
speed up the inference process while maintaining the final
accuracy. Commonly used inference acceleration methods, such
as pruning existing models to reduce connection redundancy,
quantification, and factorization, to reduce computational
redundancy, and knowledge distillation of large models into
small models are all accelerating and transforming existing
models. ShuffleNet focuses on structural design to directly
improve performance, and the core structure is more efficient.

In ShuffleNet-v1, floating-point operations per second
(FLOPs) was used to measure the multiplication operation of
convolution, and the design of this structure aims at reducing
FLOPs. However, many factors that affect the model speed
also include indicators, such as the memory access cost (MAC)
and the level of parallelism. Other operations, such as data
reading and writing, channel shuffling, etc., also consume certain
time and affect the model inference speed. A large amount
of point-wise group convolutions was used in ShuffleNet-v1,
which increases MAC and reduces computational parallelism. In
addition, a high degree of model fragmentation will significantly
affect the speed of inference. The excessive use of element-wise
operations, such as activation function, tensor addition, and
offset addition, are not conducive to speed improvement.
Based on the above criteria, Ma N. et al. (2018) redesigned the
ShuffleNet Unit and proposed the idea of channel separation
to replace the group convolution. The input feature is equally
divided into two branches, and each branch maintains the
same identity after separation. The 1×1 convolution is used to,
instead, point-wise group convolution and maintained the same

FIGURE 2 | The structure of the ShuffleNet Unit.

channel depth in a single branch. The reasoning speed is further
improved by reducing element-wise operations, and channel
shuffling is used to realize information interaction. Furthermore,
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FIGURE 3 | The overall structure of ECA-SNet.

the network structure can be scaled by controlling the number of
convolution kernels, which could adjust the network width.

Structure of Proposed Model
In recent years, some progress has been made in the research
of crop disease recognition based on attention mechanism
(Karthik et al., 2020; Zeng and Li, 2020). The attention
mechanism assigns high-contribution information to the larger
weights while suppressing other irrelevant information through
weights distribution, which is an effective method for model
performance optimization. Different types of grape leaf diseases
have relatively small differences, and the distinguishable fine-
grained features are difficult to capture. Therefore, the effective
attention mechanism to the characteristics of fine-grained lesions
is the key to solving this problem.

Inspired by the above work, a fine-grained image recognition
network for grape leaf diseases with a lightweight attention
mechanism, namely ECA-SNet, is proposed in this paper. The
main structure of the model includes three stages and a total of 12
ECA-SNet Units as is shown in Figure 3. First, the conventional
convolution is implemented on the input image, and the Max
pooling operation is used to reduce the size of output feature
matrix to 1/4 of the input image, and then the characteristic

information is learned through 12 ECA-SNet Units. Finally,
the output features of the conventional convolutional layer
and the pooling layer are sent to the fully connected layer
for classification.

Wang et al. (2020) analyzed the conventional channel
attention mechanism and found that the dimensionality
reduction operation affects the performance of channel attention,

and proper cross-channel interaction can significantly reduce

the complexity of the model while maintaining efficient

performance. Therefore, this paper adopts the strategy without
dimensionality reduction in the design of basic structure of
ECA-SNet Unit, as shown in Figure 4. There are two types of
ECA-SNet Units. The module shown in Figure 4A (Unit 1) is
the first unit of each Stage. The input feature matrix passing

through two non-interacting branches and concatenating the two
output feature matrices to doubled their depth. The ECA strategy
is used in two branch structures, respectively. Figure 4B (Unit
2) module is the subsequent structure of each stage. First, the
input feature matrix is equally divided into two groups. The
main branch undergoes a series of operations and uses the ECA
strategy, another branch output directly without operation and
concatenating with the output of the main branch, and the depth
of the feature matrix remain unchanged.

The strategy without dimensionality reduction of
cross-channel interaction that increases the revenue of
the channel attention mechanism is shown in Figure 5.
By considering each channel and its n neighborhoods,
cross-channel interaction information is captured. The
size of the convolution kernel n represents the coverage
of cross-channel interaction, that is, the number of
neighborhoods that participate in the attention prediction
of a specific channel.

In order to avoid manual tuning, the method of adaptively
selecting the one-dimensional convolution kernel size is used
to determine the value of n. Conv1D is used to capture
the cross-channel interaction; the size of n determines the
coverage of the interaction. The number of n is related to
the channel dimension C, and, in the case of fixed number
group convolutions, the high-dimensional (low-dimensional)
channel is proportional to the long-distance (short-distance)
convolution. In the same way, the coverage of n of the cross-
channel information interaction is also proportional to the
channel dimension C, that is, the mapping relationship between
n and C is shown in Equation (1):

C=ϕ (n) (1)

Based on the above analysis, it can be seen that n and C are
in a non-linear proportion. As a kernel function, exponential
family functions are widely used to deal with unknown mapping
problems. So, the exponential function is used to approximate
the mapping φ as shown in Equation (2). In addition, since the
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FIGURE 4 | Detailed structure of the ECA-SNet Unit. (A) Unit 1. (B) Unit 2.

FIGURE 5 | Efficient channel attention module.

Frontiers in Plant Science | www.frontiersin.org 6 October 2021 | Volume 12 | Article 73804210

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Grape Leaf Diseases Recognition

TABLE 2 | Detailed structural information of ECA-SNet.

Layer Output size Kernel size Repeat Output channel

0.5× 1.0×

Input 224 × 224 – – 3 3

Conv 112 × 112 3 × 3 1 24 24

MaxPool 56 × 56 3 × 3 1

Stage1 28 × 28 – 3 48 116

Stage2 14 × 14 – 6 96 232

Stage3 7 × 7 – 3 192 464

Conv 7 × 7 1 × 1 1 1,024 1,024

avg pool 1 × 1 7 × 7 1 – –

FC – – 1 6 6

channel dimension is usually set to an integer power of 2, 2(γ
∗n−b)

is used instead of exp(γ
∗n−b), and the mapping relationship of

Equation (3) was obtained. In this paper, in order to reduce
the time and computational costs of the training process and
improve the friendliness of model training, the hyperparameters
γ and b were set to 2 and 1, respectively. It can be seen
that the function φ enables long-range interactions for large-
sized channels.

C=ϕ (n)≈ exp(γ ∗n−b) (2)

C=ϕ (n)=2(γ
∗n−b) (3)

Finally, given the channel dimension C, the size of
convolution kernel n can be determined according to
Equation (4), where |m|odd represents the odd number closest
tom.

n=9 (C)=

∣

∣

∣

∣

log2 (C)

γ
+
b

γ

∣

∣

∣

∣

odd

(4)

The detailed structure information of the model is shown
in Table 2. Two different versions of networks, 0.5×
and 1.0×, are designed according to the depth of the
output feature matrix. Repeat represents the number
of repetitions of a specific operation; multiple ECA-
SNet Units are repeated in Stage1–Stage3. It should be
noted that the first operation of each stage is Unit 1,
which doubled the feature dimension, and is only used
for the first layer in each stage, and Unit 2 is used for
subsequent operations.

EXPERIMENTAL RESULTS AND
DISCUSSION

Parameters Setting
In order to verify the performance of the ECA-SNet network,
the Python language is used to build a model based on the
Pytorch 1.7.1 deep learning framework, and the model is trained
and tested on a GPU-equipped server. The detailed equipment
configuration information of the test is shown in Table 3.

TABLE 3 | Hardware and software environment.

Configuration item Value

CPU Intel® Xeon(R) Gold 5217 CPU@3.00 GHz

GPU NVIDIA Tesla V100 (32GB)

Operating system Ubuntu 18.04.5 LTS 64

RAM 251.4GB

Hard disk 8TB

Model Training Process
The experiment process of fine-grained image recognition of
the grape disease is shown in Figure 6. First, images of grape
leaves are collected from orchards and public data set, and
disease categories are labeled based on expert experience and
then, standardized the annotated disease images and divided
the original image library into the training set, the validation
set, the test set, and different methods are used to enhance
the training set and the test set. Finally, the model is trained
with FGDs and tested with RTD to identify the type of
each disease.

Weights Information Iterate Process
In order to visualize the optimization process of the numerical
distribution of the convolutional layer, the histogram of weight
value distribution of part convolutional layers is drawn, which
is shown in Figure 7. Figure 7A shows the iterative process
of the weights information of the first convolutional layer
of the network. The abscissa is the numerical change of
the convolutional layer during the iteration process, and
the ordinate is the number of iterations. It can be seen
that the weights information with large contribution is
gradually highlighted, indicating that the model has been
continuously optimized during the training process. When
iterating to the 25th epoch, the weights value basically no
longer changes, indicating that the network training has
tended to be saturated. Figure 7B is the tiled form of
histogram of the last convolutional layer in the network.
The abscissa represents the numerical information of the
convolutional layer, and the ordinate represents the number
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FIGURE 6 | The overall flowchart of grape fine-grained disease image identification.

of times the corresponding numerical value appears. With
the training process proceeds, the data distribution tends to
be concentrated. In order to keep the training process stable
and convergent, the learning rate decays according to the
cosine curve.

Performance of Proposed Model
In order to evaluate the performance of the model, the proposed
model is tested with RTD, and the confusion matrix of the
0.5× version and 1.0× version of ECA-SNet is shown in
Figures 8A,B. Figures 8A,B show the classification performance
of ECA-SNet, and the accuracy reached 98.86 and 99.66%,
respectively. Among them, the main misclassification of 0.5×
version of the model is misidentification of the Black rot
as Black measles, and there is also a little misidentification
between Downy mildew, Powdery mildew, and Healthy leaves.
Compared with 0.5× version, ECA-SNet 1.0× has a higher
recognition performance, and the error is further reduced.
Accurate recognition of fine-grained images in a complex
background poses a great challenge, but the false recognition of
each category of the model in this paper is steadily maintained
at a low level. The test results show that ECA-SNet can
accurately perceive key areas and has strong robustness and
stability for fine-grained image recognition of grape diseases in
complex environments.

Comparison of Proposed Model With
Traditional Lightweight CNNs
In order to clarify the performance level of the model,
the comparative test is conducted with multiple lightweight
networks. Based on the confusion matrix, indicators, such as
accuracy, precision, recall, and F1-score, are used to measure
the comprehensive recognition performance of different grape
diseases in each network. Accuracy, precision, recall, and F1-
score are calculated from true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) results. The
calculation of these indicators is shown in Equations (5–8):

Accuracy=
TP+TN

TP+FP+TN+FN
(5)

Precision=
TP

TP+FP
(6)

Recall=
TP

TP+FN
(7)

F1− score=2×
Precision× Recall

Precision+Recall
(8)

The performance indicators of ECA-SNet and other commonly
used lightweight networks are compared, and the statistical
results are shown in Table 4. MobileNet-v2 adopts the inverted
residual structure, which effectively avoids the problem of
model degradation. Deep separable convolution, the core of
feature extraction, can greatly reduce the amount of parameters
and calculations while ensuring accuracy. The RTD accuracy
of MobileNet-v2 0.4× can reach 95.23%, which proves that
the bottleneck structure has a strong feature learning ability.
It is worth noting that, although both the 0.4× and 0.7×
versions of MobileNet-v2 can achieve acceptable recognition
accuracy, they need more calculations compared with other
lightweight networks, which has a certain impact on the running
speed of the model. By introducing the channel attention
mechanism and redesigning the time-consuming layer structure,
MobileNet-v3 greatly reduces the amount of calculations and
achieves an average F1-score slightly higher than MobileNet-v2.
However, due to the adoption of the channel attention strategy
that included the dimensionality reduction layer, it inevitably
leads to the increases of the parameters. The ShuffleNet-v2
network optimized the ShuffleNet structure based on criteria,
such as optimal MAC, reduced network fragmentation, and
reduced element-wise operations. Since the network failed to
pay attention on the fine-grained information of the key areas
of grape leaves when extracting features, the ShuffleNet-v2 test
results performed poorly. Additionally, it can be seen from
Table 4 that the higher complexity of the relevant network has
a certain improvement in the effect of disease identification. It is
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FIGURE 7 | Histogram of weights numerical distribution of the convolutional layer. (A) The numerical distribution iteration process of the first convolutional layer, (B)

The numerical distribution iteration process of the last convolutional layer.

FIGURE 8 | Confusion matrix of proposed ECA-SNet. (A) ECA-SNet_ 0.5 × (B) ECA-SNet_1.0 ×.

because the increase of feature extraction layer structure enables
the network to learn more relevant features, but this also leads to
a rapid increase of model volume.

ECA-SNet generates high-efficiency channel attention by

adaptively selecting the size of a one-dimensional convolution

kernel on the basis of ShuffleNet-v2 and avoiding dimensionality

reduction operations. The channel interaction strategy greatly

improved the performance of channel attention, making ECA-
SNet have the accurate recognition performance. The test

accuracy of ECA-SNet 0.5× and ECA-SNet 1.0× with the

RTD reaches 98.86 and 99.66%, respectively, which are higher
than other networks of the same magnitude and have the
least amount of parameters and computational costs. The test
results show that avoiding dimensionality reduction and proper
cross-channel interaction is very important for learning efficient
channel attention.

Network Attention and Fine-Grained
Visualization
The evaluation of model performance through common
indicators lacks intuitive display, and it is difficult to understand
which part of the input image the model relies on to make
decisions. In order to understand and analyze the network
structure and visually display the model decision-making basis,
the attention heat map visualization method is used to display
the attention area. Table 5 shows the attention heat map of
ECA-SNet and other commonly used lightweight models. Sample
images of healthy, downy mildew, black rot, powdery mildew,
and leaf blight are randomly selected for testing. The red mark
in the original image in Table 5 is the annotation information of
the diseased area on the grape leaves by the expert. According to
the visualization results, it can be seen that the location of the
key fine-grained features of grape disease images in a complex

Frontiers in Plant Science | www.frontiersin.org 9 October 2021 | Volume 12 | Article 73804213

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Grape Leaf Diseases Recognition

TABLE 4 | Performance comparison of the proposed ECA-SNet against the classical lightweight CNNs.

Model Accuracy/% Average Precision/% Average Recall/% Average F1-score FLOPs/M Params/M

MobileNet-v3 small_0.75× 94.76 95.28 94.76 0.950 40.7 0.89

ShuffleNet-v2_0.5× 92.46 92.81 92.46 0.926 41.5 0.35

MobileNet-v2_0.4× 95.23 92.25 95.23 0.937 81.5 0.39

ECA-SNet_0.5× 98.86 98.86 98.86 0.988 37.4 0.31

MobileNet-v3 large_0.75× 96.70 96.83 96.70 0.967 146.1 2.42

ShuffleNet-v2_1.0× 95.20 95.30 95.20 0.952 147.8 1.26

MobileNet-v2_0.7× 95.93 96.03 95.93 0.959 178.6 1.12

ECA-SNet_1.0× 99.66 99.66 99.66 0.996 125.6 1.08

Bold values indicate best results under each index.

TABLE 5 | Visualization of attention heat map of grape leaf diseases.

Class Original image ShuffleNet-v2 0.5× MobileNet-v2 small 0.4× MobileNet-v3 small 0.75× ECA-SNet 0.5×

Healthy

Downy mildew

Black rot

Powdery mildew

Leaf blight

background is difficult to determine, and neither ShuffleNet
nor MobileNet can accurately focus on the key feature regions.
The MobileNet-v2 network pays attention to much background
information, which leads to insufficient feature learning. On
account of MobileNet-v3 introduction of a channel attention
mechanism, it plays a certain role in the key area of feature
learning and reduces the attention of background information,
but the effect is still poor. The ECA-SNet proposed in this
paper can distinguish the foreground and the background and
accurately locate the key areas. The leaf diseased area is strongly
activated as the decision-making basis. In the recognition of
diseased leaves with a purity background, each network can focus
on the diseased area to varying degrees and has remarkable
recognition ability. Compared with other networks, ECA-SNet
can more comprehensively focus on lesion areas in different
locations and has more superior decision-making capability.

The diseased spots of grape leaves are usually scattered
randomly in different positions on the leaves; the shape, size,

and density of the diseased spots will affect Grad-CAM++

(Chattopadhyay et al., 2017). Therefore, in order to further
display the fine-grained information of the network focus
area, the guided back propagation and Grad-CAM++ were
dot multiplication to obtain visual feature maps. The feature
maps obtained above have both high resolution and category
separability. Some example image test results are shown in
Table 6. The red mark in the original image in Table 6 is
the annotation information of the region of interest (diseased
area) on the grape leaves by the expert. The feature maps of
ShuffleNet-v2 are sensitive to large areas of lesions and can
accurately locate the area of lesions. When the lesions become
smaller and their locations gradually disperse, the fine-grained
information extraction capability of themodel is greatly declined.
The fine-grained information extracted by MobileNet-v2 has
much redundancy, which affects the accurate judgment of the
model. MobileNet-v3 reduces redundancy, but the richness of
fine-grained information is also reduced and fails to accurately
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TABLE 6 | Fine-Grained feature visualization of grape leaf diseases.

Class Original image ShuffleNet-v2 0.5× MobileNet-v2 small 0.4× MobileNet-v3 small 0.75× ECA-SNet heatmap ECA-SNet 0.5×

Black measles

Black rot

Leaf blight

locate the key information for classification decisions. According
to Table 6, it can be found that ECA-SNet has excellent
adaptability to lesion features; the key fine-grained information
is comprehensive, and the information redundancy is low. The
model in this paper can accurately locate different lesion shapes,
positions, and densities and can make accurate classification
decisions accordingly. The above test results show that the model
in this paper fully considers the characteristics of disease spots
and model structure, and the performance of grape leaf disease
recognition is improved significantly.

CONCLUSION

A fine-grained image recognition model for grape diseases
with an improved lightweight channel attention mechanism is
proposed in this paper, which provides technical support for
dynamic and efficient management of orchard grape diseases.
Based on mobile devices, 3,388 images of grape leaf diseases
are collected in the field, and 3,479 images are obtained
from public data sets. By using image-enhancement techniques,
the FGDs containing 62,670 images are generated. First, on
the basis of ShuffleNet, a cross-channel interaction strategy
without dimensionality reduction is used to make the model
have efficient channel attention. Second, the layer structure
is reduced in different stages to build an efficient ECA-
SNet with a less parameter. Ultimately, the cross-channel
coverage is determined by adaptively selecting the one-
dimensional convolution kernel, which reduces the calculation
costs while maintaining efficient channel attention performance.
The proposed model is trained with FGDs and has been tested
with RTD. The comparative experiments, including various
performance evaluation indicators and process visualization, are
carried out.

Through the experimental results, it can be seen that the
model proposed in this paper achieves the best recognition

effect under the condition of extremely low calculation
and parameters, with an accuracy of 98.86% and the F1-
score of 0.988. Means, such as visualization, also show the
superior performance of the model and realize the efficient
performance of fine-grained disease images identification of
grape leaves. The above work laid the theoretical foundation
for the next development of automatic inspection equipment
for disease identification and real-time orchard grape disease
information acquisition.
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Soil and water salinization has global impact on the sustainability of agricultural 
production, affecting the health and condition of staple crops and reducing 
potential yields. Identifying or developing salt-tolerant varieties of commercial crops is a 
potential pathway to enhance food and water security and deliver on the global 
demand for an increase in food supplies. Our study focuses on a phenotyping 
experiment that was designed to establish the influence of salinity stress on a 
diversity panel of the wild tomato species, Solanum pimpinellifolium. Here, 
we explore how unoccupied aerial vehicles (UAVs) equipped with both an optical and 
thermal infrared camera can be used to map and monitor plant temperature (Tp) 
changes in response to applied salinity stress. An object-based image analysis 
approach was developed to delineate individual tomato plants, while a green–
red vegetation index derived from calibrated red, green, and blue (RGB) optical 
data allowed the discrimination of vegetation from the soil background. Tp 
was retrieved simultaneously from the co-mounted thermal camera, with Tp 
deviation from the ambient temperature and its change across time used as a 
potential indication of stress. Results showed that Tp differences between salt-
treated and control plants were detectable across the five separate UAV 
campaigns undertaken during the field experiment. Using a simple statistical 
approach, we show that crop water stress index values greater than 0.36 
indicated conditions of plant stress. The optimum period to collect UAV-based Tp 
for identifying plant stress was found between fruit formation and ripening. 
Preliminary results also indicate that UAV-based Tp may be used to detect plant 
stress before it is visually apparent, although further research with more frequent 
image collections and field observations is required. Our findings provide a tool to 
accelerate field phenotyping to identify salt-resistant germplasm and may allow 
farmers to alleviate yield losses through early detection of plant stress via 
management interventions.

Keywords: unoccupied aerial vehicle, unmanned aerial vehicle, thermal infrared, salt tolerance, phenotyping, 
tomato, plant stress, accessions
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INTRODUCTION

The area of agricultural land impacted by salinization and 
sodification is increasing globally, with more than 50% of arable 
land predicted to be  affected by 2050 (Wang et  al., 2003; Jamil 
et al., 2011). Concurrently, it is anticipated that crop production 
will need to more than double to meet the demands of a 
projected 10 billion people by 2050 (Ray et  al., 2013). 
Furthermore, increasing affluence and shifting diets toward 
greater meat consumption mean that without improvements 
in productivity, water consumption in agriculture will increase 
by a further 70–90% over the same period (Molden, 2013; 
Pittock et  al., 2016). Global freshwater supplies are under 
extreme pressure, with agricultural production already accounting 
for more than two-thirds of freshwater use (Famiglietti, 2014; 
Brauman et  al., 2016; Pastor et  al., 2019). Therefore, irrigation 
with brackish water presents as an enticing option, as the 
targeted application of water is an effective way to close the 
yield gap (Licker et  al., 2010; Mueller et  al., 2012). The 
identification and breeding of cultivars with increased resilience 
to salt stress would provide an effective twofold solution to 
ensuring future food security by enabling production on marginal 
land and the potential to irrigate with brackish water (Morton 
et  al., 2018).

Salt stress in plants results in complex physiology and 
morphometric changes that occur in two distinct phases (Munns 
and Tester, 2008). The first phase occurs rapidly (minutes to 
days) as the plant responds to the buildup of salt in the roots, 
which leads to reduced osmotic potential and hence water 
uptake. This phase is referred to as ion-independent and causes 
stomatal closure and a reduction in new shoot growth. The 
second ionic phase occurs more slowly (days to weeks) once 
salt concentration in the leaves reaches cytotoxic levels, resulting 
in senescence of mature leaves (Munns and Tester, 2008; 
Isayenkov and Maathuis, 2019). A plant’s response to salt stress 
also varies with the growing environment (Maas, 1993), making 
field trials necessary to assess stress in agronomically important 
traits such as yield quantity and quality. Despite focused research 
efforts, there has been little progress in identifying salt-tolerant 
genes. Researchers attribute this lack of progress to the genetic 
complexity of salt tolerance (Morton et  al., 2018) and the 
limitations of manual field phenotyping (Araus and Cairns, 
2014). New tools and approaches are required to bridge this 
phenotype-to-genotype divide (McCabe and Tester, 2021).

Recent advances in remote sensing technologies offer a 
means to overcome some of the limitations of traditional field 
phenotyping. Unpiloted aerial vehicles (UAVs) mounted with 
multispectral, hyperspectral, and thermal sensors have proven 
particularly useful for phenotyping due to their ability to capture 
plant data at unprecedented spatial (sub-cm), temporal 
(on-demand), and spectral resolutions. Laborious and often 
subjective manual measurements of plant phenotypic traits can 
now be  augmented by consistent information derived for an 
entire field in a single flight and with repeatability across the 
growth cycle (Araus and Cairns, 2014; Holman et  al., 2016). 
For example, UAV-captured data can provide insights on plant 
nitrogen status (Perry et al., 2018), height (Ziliani et al., 2018), 

biomass (Bendig et  al., 2014; Johansen et  al., 2020), and 
temperature (Deery et  al., 2016; Malbéteau et  al., 2018) at the 
field scale and on demand, which is accelerating field screening 
and selection of germplasm for agronomically important traits 
to guide breeding programs and optimize commercial cultivars 
(Hickey et  al., 2019).

The last decade has seen a rapid expansion in the application 
of UAVs for field phenotyping (Yang et  al., 2017; Xie and 
Yang, 2020). However, applications of UAV-based sensing in 
salinized environments for rapid identification of salt-tolerant 
germplasm are relatively unexplored, despite research showing 
that wild-growing relatives (e.g., Solanum pimpinellifolium) of 
cultivated crops (e.g., Solanum lycopersicum) have increased 
salt tolerance (Zuriaga et  al., 2009; Rao et  al., 2013; Bolger 
et  al., 2014; Razali et  al., 2018). Johansen et  al. (2019, 2020) 
addressed this gap by assessing phenotypic traits, including 
tomato plant area, plant cover, growth rate, condition, biomass, 
and yield from UAV-based multispectral imagery to discriminate 
plant performance under salt stress and control conditions. 
They identified distinct differences in phenotypic traits between 
control and salt-treated plants and found the traits suitable 
for identifying most of the highest yield-producing plant 
accessions. They also incorporated these traits into a random 
forest approach to predicting yield before harvest. Overall, their 
results indicated that salt tolerance is evident in many phenotypic 
expressions and is best discriminated from other abiotic and 
biotic stresses by incorporating UAV measurements of 
multiple traits.

Extending on these prior studies, we investigate the collection 
of plant temperature measurements (Tp) derived from UAV-based 
thermal infrared (TIR) cameras to screen for salt stress. Tp is 
commonly used as a surrogate for stomatal conductance, as 
stomatal closure results in reduced transpiration, which in turn 
leads to an increase in Tp (Tanner, 1963; Jones, 2013). However, 
TIR-based Tp is also influenced by environmental factors such 
as net radiation, vapor pressure deficit (VPD), and wind speed 
(Jackson et  al., 1988). Therefore, researchers commonly use Tp 
measurements in combination with air temperature (Ta) for 
TIR indices such as the crop water stress index (CWSI) (Idso 
et al., 1981; Jackson et al., 1981) to normalize data and compare 
plant stress across multiple days. Tp and its use via the CWSI 
have been explored in broad-acre crops (Bian et  al., 2019; 
Gracia-Romero et  al., 2019; Zhang et  al., 2019), tree crops 
(Gonzalez-Dugo et  al., 2012, 2014; Park et  al., 2017), and 
vineyards (Baluja et  al., 2012; Bellvert et  al., 2016; Sepúlveda-
Reyes et  al., 2016; Kustas et  al., 2018). From an analysis of 
the recent literature, an examination of Tp retrievals in annual 
vegetable crops seems to be  limited to potato plants (Rud 
et  al., 2014). The ability to detect salinity-induced stress in 
tomato plants via remotely sensed Tp in the initial 
ion-independent phase would be particularly helpful in providing 
an early detection method of stress before changes in plant 
color or shape occur.

Using remotely sensed Tp as an indicator of stress requires 
its accurate retrieval from UAV TIR imagery, which remains 
challenging (Aragon et  al., 2020; Döpper et  al., 2020; Perich 
et  al., 2020). First, UAV TIR cameras use lightweight uncooled 
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microbolometers, making them prone to thermal drift (Gómez-
Candón et  al., 2016; Mesas-Carrascosa et  al., 2018; Döpper 
et  al., 2020). Second, the impact of vignetting and dead pixels 
in the focal plane array needs to be  accounted for (Kelly 
et  al., 2019; Aragon et  al., 2020). Third, the methods used to 
generate the orthomosaic from which Tp is retrieved will also 
influence the apparent temperature (Perich et al., 2020). Fourth, 
shadowing within the plant canopy can lead to large temperature 
differences between sunlit and shaded components, which may 
require consideration (Jones et  al., 2002). Fifth, the soil 
background temperature integration can bias the retrieved Tp 
(Jones and Sirault, 2014). Finally, the sensitivity of Tp to 
environmental variation means that weather changes such as 
wind speed, wind direction, or cloud cover across a flight can 
introduce uncertainty (Maes et  al., 2017).

Overcoming the low radiometric accuracy of UAV-based 
TIR cameras has led to the development of laboratory-based 
and vicarious calibration procedures to improve temperature 
retrievals (see Jensen et  al., 2014; Khanal et  al., 2017; Maes 
et  al., 2017; Ribeiro-Gomes et  al., 2017; Torres-Rua, 2017; 
Aragon et  al., 2020). Even though calibration procedures are 
employed, research to date demonstrates the need to carefully 
consider how data are captured, processed, and ultimately used 
to retrieve Tp. Researchers have employed many methods to 
identify vegetation pixels from which to retrieve Tp in coarse 
TIR imagery. Researchers interested in bulk canopy temperature 
have previously used simple polygons to delineate plots (Deery 
et  al., 2016; Gracia-Romero et  al., 2019; Perich et  al., 2020). 
However, this method only works for crops with canopy closure, 
which precludes the impact of the background soil temperature 
on Tp retrievals. Therefore, TIR imagery is commonly 
co-registered to red, green, and blue (RGB), multispectral, or 
hyperspectral imagery so that vegetation indices or classification 
algorithms can be  applied to identify pixels representing 
vegetation (Rud et  al., 2014; Zhang et  al., 2019; Maimaitijiang 
et  al., 2020). To prevent reliance on other data sources, a 
number of approaches have been developed based solely on 
TIR imagery for Tp retrieval (Meron et  al., 2010, 2013; Cohen 
et  al., 2017; Park et  al., 2017; Bian et  al., 2019). Often, such 
approaches delineate canopy extent using edge detection methods, 
from which they can then retrieve Tp from pixels.

For a method to be adopted in precision agriculture workflows, 
it needs to be farmer-friendly and as straightforward as possible 
(Cohen et  al., 2017). Based on the reviewed literature, there 
is currently a significant knowledge gap and disconnect between 
obtaining and extracting UAV-based TIR information and then 
ensuring this information can be  translated into meaningful 
biological understanding at the individual plant scale (Kellner 
et  al., 2019). Our research presents an approach for retrieving 
Tp from UAV-based TIR and RGB imagery, with an experimental 
focus on a diversity panel of tomato plants undergoing drip-
irrigation in both control and salt water conditions. The retrieved 
Tp is interrogated to understand its response to plants experiencing 
salt stress and establish if TIR-based indices can identify: 
differences in plant stress between control and salt-treated 
plants, and the optimum time during the growing season to 
detect plant stress using multi-temporal UAV-based TIR data.

MATERIALS AND METHODS

Description of Study Site
The study took place during the 2017–2018 growing season 
(November–January) at a field located within the King Abdulaziz 
University Agricultural Research Station in Hada Al-Sham, 
Saudi  Arabia (21° 47ʹ48ʺN, 39° 43ʹ35ʺE, Figure  1). The field 
was divided into four separate plots, each approximately 40 m 
x 40 m, with 15 rows of 20 tomato plants. Two plots were 
established as controls, with freshwater irrigation (approx. 
900–1,000 ppm NaCl). The other two plots were irrigated twice 
daily (except Fridays) with saline water of increasing 
concentrations (Figure  1). In developing the diversity panel, 
200 accessions (199 wild Solanum pimpinellifolium and one 
commercial S. lycopersicum) were screened for salt tolerance 
via randomized planting of three replications of each accession 
for each treatment (i.e., three salt-treated and three control 
plants per accession, producing a total of 1,200 plants). At 
the beginning of November, 1,200 seedlings were transplanted 
into the field (after 1 month of greenhouse growth), with 
harvesting taking place between 16 and 26 January (Figure  1). 
Additional details of the site and trial design information can 
be  found in Aragon et  al. (2020)) and Johansen et  al. (2019). 
The focus of this study was to understand whether TIR data 
can identify differences in plant stress between control and 
salt-treated Solanum pimpinellifolium plants.

A weather station was installed toward the middle of the 
field (Figure  1) to collect meteorological data throughout the 
growing season. Ta and relative humidity (RH) were recorded 
every minute at 2.3 m above ground level (AGL) using an 
HMP155 humidity and temperature probe (Vaisala, Helsinki, 
Finland), from which the VPD was calculated (May et  al., 
2008). Wind speed and direction were also recorded every 
minute at 2.2 m AGL with a WindSonic anemometer (Gill, 
Hampshire, United  Kingdom). Meteorological data were 
augmented by four distributed stations in each of the plots 
that measured point-scale thermal infrared temperature via an 
Apogee radiometer (SI-111, Apogee, Logan, United  States), 
which facilitates interpretation of the UAV-collected TIR data 
(see locations in Figure  1). The Apogee sensors were installed 
in each plot approximately 1 m above a plant, representing a 
footprint of around 0.40 m2. As our study occurred in an arid 
desert environment, sandstorms impacted the site on December 
8 and 16, 2017, and January 4 and 8–10, 2018. To combat 
the impact of the sandstorms on results, field staff washed 
the plants with non-saline water after each event.

Thermal Infrared and Optical RGB Data 
Collection and Processing
Thermal Infrared Image Collection and Processing
TIR images were captured using a gimbal-stabilized FLIR Tau 
2 core with a ThermalCapture 2.0 capture system (TeAx, 
Wilnsdorf, Germany) mounted on a DJI Matrice 100 quadcopter 
(Da Jiang Innovations, Shenzhen, China). The camera has a 
broadband spectral range across 7.5–13.5 um with a resolution 
of 640 × 512 pixels and a focal length of 13 mm. Manufacturer 
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guidelines indicate temperature retrievals with a specified 
accuracy of ±5°C and sensitivity of 0.04°C. Flying height was 
13 m AGL at a speed of 2 m.s−1 for a total flight duration of 
approximately 17 min, with flight times shown in Table  1. The 
imagery was collected from a nadir view, with around 60% 
sidelap and 93% forward overlap. Five large circular aluminum 
trays that can be  easily distinguished in the TIR data (due to 
their low emissivity) were deployed at both the center and 
each corner of the field as ground control points (GCPs) 
(Figure  1). Each GCP’s location was surveyed using a Leica 
AS10 Real-Time Kinematic Global Navigation Satellite System 
and base station (Leica Geosystems, St. Gallen, Switzerland).

Before deploying the TeAx 640 camera, a temperature-
dependent radiometric calibration matrix was applied to correct 
ambient temperature dependency, vignette effects, and other 
non-uniformity noise (Aragon et  al., 2020). The multilinear 
regression matrix from Aragon et  al. (2020) was applied to 
the collected thermal data before subsequent processing. In 
this correction, the mean Ta acquired during each flight was 
used for the temperature-dependent radiometric calibration to 
remove any influence of ambient temperature dependency. 

Geo-referencing and orthorectification of the TIR imagery were 
performed using Agisoft PhotoScan (Agisoft LLC, St. Petersburg, 
Russia). Before image alignment and scene reconstruction based 
on matched feature points, the calibrated radiance values were 
linearly stretched to the full dynamic range to improve feature 
identification. The image alignment step also performs a bundle 
adjustment to estimate the camera positions, orientations, and 
lens calibration parameters. Hence, to recalculate the camera 
positions, the self-calibrating bundle adjustment computes three-
dimensional point clouds from which thermal orthophotos 
were built (Malbéteau et  al., 2021).

For each of the five UAV campaigns, approximately 150 
individual geo-referenced and orthorectified images were collected 
across each of 18 flight lines. Due to the forward overlap of 
93% and the near-identical acquisition time of neighboring 
overlapping images, an averaging approach was applied to each 
pixel in the overlapping areas of each swath. The averaging 
method was applied to each swath due to the rapid changes 
in surface temperature and the impact of environmental 
conditions on the uncooled (unstabilized) sensor, which is often 
a significant challenge for UAV-based TIR processing (Aragon 

FIGURE 1 | Left: The location of the tomato field experiment and a field photograph of Salt Plot 2 at the King Abdulaziz University Agricultural Research Station, 
Hada Al-Sham, Saudi Arabia (21° 47ʹ48ʺN, 39° 43ʹ35ʺ E). Right: A UAV-derived orthomosaic of the site captured on January 14, 2018, showing the trial layout. 
Bottom: The timing of UAV flights, tomato phenological stages, and concentrations of salt in parts per million (ppm) in the water used to irrigate the salt-treated plots 
across the growing season.
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et  al., 2020). To alleviate the influence of flight orientation 
relative to the wind direction and to ensure normalization of 
neighboring swaths, a flight direction correction method was 
also applied. The correction method normalized the pixel values 
within the neighboring swaths by assuming a 0°C difference 
between the overlapping (60% sidelap) areas. Initially, the first 
swath of the flight survey was used for correcting the second 
swath. Then, the second corrected swath was used for correcting 
the third swath and so forth. Adjusting the temperatures of 
each swath one by one and starting with the first swath of 
the flight survey ensured that all swaths were also corrected 
for temperature variability experienced during the 17 min of 
flight time (Malbéteau et  al., 2021). The normalization process 
of individual swaths allowed them to be  merged to form 
an orthomosaic.

Optical RGB Image Collection and Processing
RGB data were collected with a Zenmuse X3 camera (Dà-Jiāng 
Innovations, Shenzhen, China) concurrently with the TIR data, 
except on December 6, 2017, when RGB data were collected 
at 11:44 (approximately 44 min after the TIR data collection). 
The RGB image collection occurred with 82% sidelap and 
93% along-track overlap, with a photograph captured every 
3 s. All UAV data were collected under clear sky conditions 
and close to solar noon to reduce sun angle impacts on the 
RGB data (Table  1). RGB imagery was processed in Agisoft 
PhotoScan (Agisoft LLC, St. Petersburg, Russia) to construct 
a geometrically corrected orthomosaic, which was then 
radiometrically corrected using calibration panels and the 
empirical line method (Smith and Milton, 1999). Additional 
information regarding the collection, processing, and calibration 
of the RBG imagery is outlined in Johansen et  al. (2019).

The processed RGB orthomosaics had a GSD of 0.005 m. 
The RGB orthomosaics were resampled to the same resolution 
as the TIR orthomosaics (0.015 m) using nearest-neighbor 
resampling in the rasterio.warp module. The resampling was 
undertaken to ensure that the RGB data could be  used to 
determine each plant’s extent for Tp retrieval from the TIR 
data (Figure  2). To ensure accurate co-registration of the TIR 
and RGB datasets, the RGB orthomosaics were manually 
geo-referenced in QGIS (QGIS Development Team, 2021) to 

the TIR data using the five GCPs with a polynomial 
transformation, resulting in a mean square error between the 
centers of each GCP across all campaigns of approximately 0.01 m.

Retrieving Plant Temperature From the 
Thermal Infrared Orthomosaics
An object-based image analysis (OBIA) approach was applied 
to the RGB orthomosaics to identify each plant’s extent in 
the TIR orthomosaic (Figure  2, Step  1). A full description of 
the workflow used to create the OBIA RGB delineations can 
be  found in Johansen et  al. (2019). In order to omit pixels 
within the delineated plants that were associated with white 
identification tags (attached to individual plants), pixels with 
blue reflectance above the 99.5th percentile were removed. 
Next, green vegetation was discriminated within the delineated 
objects by applying a k-means clustering to the green–red 
vegetation index (GRVI) (Motohka et  al., 2010). The GRVI 
was calculated as per Eq.  1 using the collected RGB data, as 
this index produced good results in Johansen et  al. (2019; 
Figure 2, Step 5a). We applied a k-mean unsupervised approach 
run with two clusters, k-means++ initialization, ten different 
centroid seeds, and a maximum iteration of 300  in the scikit-
learn package of the Python 3.5 software (Pedregosa et  al., 
2011). We  set two clusters since the plants had already been 
delineated with the OBIA approach, and we  were merely 
interested in discriminating vegetation from the sandy 
background, which had distinct spectral characteristics. For 
the classification of vegetation, a threshold value of GRVI > 
0 was also used (Motohka et  al., 2010). The distribution of 
temperature for vegetation classified with both the k-means 
approach and the GRVI threshold was subsequently compared 
to determine the most suitable approach (Figure  2, Step  6).

 
Green-red vegetation index GRVI Red

Red
( ) = −

+
Green
Green  

(1)

Even after the GRVI mask was applied, there were a number 
of pixels with Tp that was considerably higher than that expected 
for vegetation, indicating mixed pixel or classification issues. 
Therefore, the approach of Rud et  al. (2014) was adopted to 
determine a realistic estimate for the maximum deviation of 
Tp from Ta. In this case, a threshold of Ta + 9°C was used after 
analyzing both the field-installed Apogee radiometer and UAV 
data for the growing season. Subsequently, any pixels that had 
positive GRVI values but were warmer than Ta + 9°C were 
removed to allow the formation of the final vegetation mask, 
from which Tp was ultimately retrieved (see Figures  2, 3).

Following Poblete et  al. (2018), a k-mean clustering using 
a five-cluster a priori and k-means++ initialization was also 
applied on the blue band in order to differentiate sunlit and 
shaded areas of the tomato plants. The selection of a five-
cluster a priori was also verified by applying the elbow method 
to identify the optimum number of clusters (Thorndike, 1953). 
The maximum blue reflectance value of the first cluster was 
used as the threshold above which vegetation was identified 
as sunlit. From the final vegetation mask (Figure 2), we retrieved 

TABLE 1 | UAV data collection date, start time and coincident mean air 
temperature (Ta), relative humidity (RH), wind speed (WS), and vapor pressure 
deficit (VPD) for the 17-min flights.

UAV Flight 
Date

Start Time Ta (°C) RH (%) WS (ms−1) VPD (kPa)

November 
16, 2017

13:33 32.83 38.78 4.02 3.05

December 
06, 2017

11:00 32.48 22.89 2.85 3.77

December 
20, 2017

11:56 32.14 14.39 2.29 4.11

January 07, 
2018

12:42 29.79 15.85 1.44 3.53

January 14, 
2018

12:47 30.11 27.76 2.43 3.09
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descriptive statistics of Tp (minimum, maximum, mean, median, 
standard deviation, and pixel count). If the vegetation mask 
had a pixel count of <10% of the original number of pixels 
in the OBIA delineation, we  removed the plant from  
further analysis, assuming the plant was dead or that the 
canopy had senesced and was thus too sparse for accurate Tp  
retrieval.

Identifying Plant Stress and Calculating 
Thermal Indices
To consistently compare plant temperature across the five flights, 
we  calculated the deviation of Tp from ambient temperature 
(dTp = Tp - Ta), a measure often used in field phenotyping studies 
of heat tolerance (Balota et  al., 2007). To further normalize 
for meteorological conditions, we  calculated the CWSI using 
Eq (2) (Idso et  al., 1981; Jackson et  al., 1981), where dTp is 
the actual difference between Tp and Ta, dTpLL

 is the lower 
limit that represents transpiration at the maximum rate 
(theoretically a non-stressed plant cooled via latent heat 
exchange), and dTpUL

 is the upper limit that represents a halt 
in transpiration (theoretically a stressed plant, where sensible 
heat exchange determines Tp).

  
CWSI =

−
−

dT dT
dT dT

p

p p

pLL

UL LL  
(2)

Traditionally, there have been two ways to derive these 
transpiration baselines: empirically (CWSIE) and theoretically 
(CWSIT), with many researchers reviewing and debating the 
various limitations of each (Gardner et  al., 1992; Maes and 

Steppe, 2012; Gerhards et  al., 2019). The main limitation of 
the CWSIT is the complex meteorological data required to 
solve the energy balance equation. CWSIE has seen broad 
application, as it only needs three variables (Ta, Tp, and RH) 
to be  calculated. However, the CWSIE approach requires dTp 
and VPD measurements to be collected across an entire growing 
season to calculate robust baselines (Gardner et  al., 1992). 
More recently, UAV studies have proposed a simplified statistical 
method (CWSIS) using the temperature distribution in the 
image scene to set the baselines (Gonzalez-Dugo et  al., 2013; 
Rud et  al., 2014; Bian et  al., 2019). This simplified approach 
is appealing, as it only requires measurements of Ta, which 
facilitates applications in precision agriculture (Cohen et  al., 
2017). However, both stressed and non-stressed plants need 
to be  present in the imagery using the simplified approach.

As our study occurred in Saudi  Arabia, where there is a 
paucity of studies applying the CWSI, we  tested all three 
approaches. For CWSIE, we  calculated the baselines using the 
intercept and slope values for tomato plants in Idso (1982). 
For CWSIT, we  calculated dTpLL as presented in O’Shaughnessy 
et  al. (2011). As the calculation of dTpUL in CWSIT is error-
prone due to the estimation requirements of aerodynamic 
resistance and roughness length (Idso et  al., 1981), we  did 
not calculate it. Instead, we  adopted Ta + 9°C as an estimate 
for dTpUL (see Retrieving Plant Temperature). For the simplified 
statistical approach (CWSIS), we  examined the Tp histogram 
distribution and set dTp LL as the mean of the lowest 5% of 
plant temperatures in the control plots, while dTpUL was set 
as Ta + 9°C. (Meron et al., 2013; Rud et al., 2014; Bian et al., 2019).
We applied a standard independent two-sample T-test (α = 0.01) 
in the SciPy package of the Python 3.5 software language 

FIGURE 2 | Workflow to retrieve plant temperature (Tp) of green vegetation from the thermal infrared (TIR) orthomosaic using an object-based image analysis (OBIA) 
delineation of the red, green, and blue (RGB) image data, k-mean classification, green–red vegetation index (GRVI) thresholding, and air temperature (Ta).
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(Virtanen et  al., 2020) to assess whether there was a difference 
in thermal indices between salt-treated and control plots. To 
understand the change in thermal indices across the season, 
we calculated the percentage difference between the treatments 
and plotted the thermal indices as a box plot for each treatment 
to determine the optimum time to detect stress.
A field-based visual assessment of plants in poor condition 
was performed on January 4, which identified 30 dead plants. 
To assess whether Tp could be  used to identify the dead plants 
earlier in the season and prior to senescence, 30 healthy plants 
were also selected from a visual assessment of the January 7 
RGB data, with those plants distributed across the two control 
and two salt plots. That allowed comparison of the plants 
from the two groups, i.e., healthy and dead in the beginning 
of January, to determine whether Tp could be  used for early 
detection of plant stress, while all plants were still green 
in December.

RESULTS

Discriminating Plant From Soil 
Temperature in the Thermal Infrared 
Orthomosaics
To determine the best approach to discriminate vegetation in 
the TIR orthomosaics to retrieve Tp, pixel-based temperature 
distributions within all tomato plants in the field trial were 
plotted. The presence of pixel-based temperatures >50°C (i.e., 
approximately Ta + 20°C) within the OBIA delineations (Figure 4) 

indicated that some pixels represented soil or non-photosynthetic 
vegetation. When pixel-based temperature was retrieved using 
k-means clustering of the GRVI with a two-cluster a priori to 
separate background and vegetation, the frequency of pixels with 
temperatures >40°C reduced significantly (Figure  4). Therefore, 
it was assumed that this method was predominantly retrieving 
temperature from pixels representing vegetation rather than a 
mixed pixel response. A limitation of the k-means classification 
was attributed to vegetation being discriminated with a dynamic 
threshold of the GRVI value for the different campaigns to 
separate the two classes (Table  2), making a multi-temporal 
comparison of Tp challenging. Using a fixed threshold of GRVI 
> 0 to discriminate vegetation produced a similar temperature 
distribution across the five campaigns to that of the k-mean 
approach (Figure  4). However, the frequency of pixels with 
positive GRVI values decreased as the percentage of senesced 
vegetation increased. For example, the k-mean threshold for 
GRVI that separates vegetation and background was 0.02 on 
December 6. However, as non-photosynthetic vegetation increased, 
the threshold became −0.04 by January 14, which was the date 
exhibiting the largest difference between the two approaches in 
the number of retrieved vegetation pixels (Table 2). As a consistent 
comparison across the five flight dates was of most interest, a 
fixed threshold of GRVI > 0 was adopted for the final mask 
to retrieve Tp. However, a flexible clustering approach may 
produce better discrimination for single campaigns, which can 
be  seen in the reduced number of pixels >40°C in the k-mean 
approach on December 6 (Figure  4).
As shown in Figure  4, the number of plant pixels increased 
through the growing season, peaking on January 7 with a subsequent 

FIGURE 3 | An example of the vegetation mask where the GRVI was greater than 0 (i.e., indicating vegetation) and with pixels greater than air temperature 
(Ta) + 9°C dropped. Data are overlaid on a red, green, and blue image of six plants in a range of conditions in control plot 2 on January 14, 2018. Note light red on 
the edge plant corresponds to GRVI > 0 pixels warmer than Ta + 9°C.
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reduction due to increasing plant senescence prior to harvest. 
Counter to this trend was the reduction in the number of vegetation 
pixels on December 20. The fact that this occurred in both the 
OBIA and GRVI retrievals suggests that the decline may be attributed 

to the plant damage and decrease in plant area caused by a 
sandstorm before the UAV capture (Johansen et  al., 2019).
There is a tendency toward a negative relationship between 
GRVI and Tp, as increased GRVI values (greenness) result 

FIGURE 4 | Top Distribution of pixel-based temperatures within the plant delineations from the OBIA approach applied to the red green blue (RGB) data (purple) 
and for vegetation within the delineations determined by k-means clustering using a two-cluster a priori on the (GRVI; yellow) for the five UAV data collection dates. 
Bottom) The distribution of pixel-based temperature for vegetation classified where GRVI > 0 (green), overlaid on the k-mean approach (yellow) for comparison. 
When there is a greater frequency of pixels classified as vegetation with GRVI > 0 than the k-means approach (i.e., for December 6), it is shown in a lighter green 
color. Average air temperature (Ta) is shown for each flight.

TABLE 2 | The GRVI k-mean thresholds separating vegetation and the soil background across the five UAV data collection dates, as well as standard deviation (σ) of 
plant temperature (Tp) in the field trial for vegetation masks using GRVI > 0 and GRVI > 0 in combination with Tp < Ta + 9°C.

Flight date Nov 16, 2017 Dec 06, 2017 Dec 20, 2017 Jan 07, 2018 Jan 14, 2018

GRVI k-mean threshold −0.02 0.02 −0.03 −0.02 −0.04
Max σ of Tp @ GRVI > 0 6.0 7.1 7.8 9.2 4.9
Mean σ of Tp @ GRVI > 0 2.3 2.2 2.0 2.1 1.8
Max σ of Tp @ GRVI > 0 + Tp < Ta + 9°C 2.6 3.2 3.3 2.7 2.5
Mean σ of Tp @ GRVI > 0 + Tp < Ta + 9°C 1.3 1.8 1.6 1.5 1.2

24

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Stutsel et al. Thermal Imaging of Plant Stress

Frontiers in Plant Science | www.frontiersin.org 9 October 2021 | Volume 12 | Article 734944

in Tp decreases due to latent heat exchange during transpiration. 
In our study, this trend held within the OBIA delineations, 
which included background soil and non-photosynthetic 
vegetation (Figure 5). However, there was no clear relationship 
between Tp and GRVI for GRVI > 0. The large range in Tp 
values for pixels with GRVI > 0 and the fact that there were 
pixels with positive GRVI values that have unrealistically high 
temperatures for vegetation demonstrated that the GRVI 
co-registration method did not fully resolve mixed pixel issues. 
Therefore, we  set a more realistic threshold of Ta + 9°C for 
the maximum deviation of Tp from Ta to mask pixels further. 
The need for the Ta + 9°C threshold is shown with the reduction 
in the maximum standard deviation (σ) of Tp before and 
after the threshold was applied (Table  2). The mean of the 
maximum σ of Tp was 7°C for the five dates with GRVI > 0  
but decreased to 2.9°C with the GRVI > 0 and Tp < Ta + 9°C 
(Table  2). The drop in the σ of Tp indicates that GRVI > 0  
and Tp < Ta + 9°C effectively classified vegetation pixels and 
omitted background and mixed pixels, which is essential to 
ensure confidence that changes in Tp are an indication of a 
response to salt stress.
The number of plants from which Tp was able to be retrieved 
with the final vegetation mask (GRVI > 0 and Tp < Ta + 9°C) 
compared to the number of plants as identified with the 
initial OBIA RGB delineation is shown in Table  3. As the 
growing season progressed, the sample size of the salt and 
control plots started to differ due to increased deterioration 
of plant condition in the salt plots based on the GRVI < 0  
and Tp > Ta + 9°C thresholds. Note also that Tp was extracted 
from more plants on December 6 than November 16, due 
to the small plant size of the initial vegetative growth stage, 
as well as and soil background effects (i.e., the 
Ta + 9°C threshold).

Examining the Influence of Sunlit and Shaded 
Components of Tomato Plants
While separating vegetation and soil temperatures is important 
to minimize mixed pixel responses (McCabe et  al., 2008), high-
resolution TIR sensing also allows for the discrimination of sunlit 
and shaded elements within the instrument’s field of view. To 
assess whether large temperature differences existed between sunlit 
and shaded vegetation components, the distributions of the sunlit 
(high reflectance) and shaded (low reflectance) components within 
the tomato plants (as determined by GRVI > 0) were compared 
to that of the whole plant, i.e., sunlit and shaded components 
combined. As shown in Figure  6, the plants had a relatively 
homogenous temperature range between sunlit and shaded plant 
components. The largest difference in shaded and sunlit 
temperatures occurred on December 6, 2017, which coincided 
with the date of the greenest vegetation (highest GRVI values) 
and earliest data collection time of 11:00 h. The denser, more 
developed canopy and lower sun angle likely increased the impact 
of shading on this date. However, as there was no distinct 
temperature range between sunlit and shaded components, 
subsequent analysis of retrieved Tp of salt stress was based on 
both sunlit and shaded vegetation, defined by GRVI > 0 and 
Tp < Ta + 9°C.

Can UAV Thermal Infrared Data Identify 
Stressed Tomato Plants?
To determine differences in plant response to either fresh or 
saline water irrigation, we  assessed the deviation of Tp from 
the ambient temperature in both the salt and control plots. 
As shown in Figure  7, the mean temperature of tomato plants 
in the salt-treated plots consistently deviated from the ambient 
temperature more than the control plots across all five collection 
dates. The mean dTp was above 5°C in both the salt-treated 

FIGURE 5 | The relationship between mean plant temperature (Tp) and the mean GRVI for the OBIA delineations (top) and GRVI > 0 retrieval.
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and control plots during the first collection on November 16, 
indicating that the plants may have been too small or sparse 
for accurate Tp retrieval. For instance, the mean plant area 
based on the OBIA RGB delineation was 0.06 m2 on November 
16, but increased to 0.42 m2 by December 6. From December 
6 to January 14, mean dTp increased from 2.2 to 4.1°C in 
the control plots and from 3.6 to 4.7°C in the salt plots, 
demonstrating that the salt treatment led plants to have a 
higher Tp above the ambient temperature (Figure 7). The biggest 
difference in dTp between salt and control plots occurred on 
December 20, with a difference of 1.3°C. Interestingly, on this 
day, plants also had the smallest deviation from Ta, with only 
one outlier in the control plot exceeding 6°C. The UAV flight 
on December 20 had a higher VPD (atmospheric demand for 
water) than on December 6 and January 7 and 14. Often, 
increasing VPD can lead to an initial increase in stomatal 
conductance, which decreases as the plant regulates its water 
exchange (Damour et  al., 2010). The influence of VPD on 

tomato stomatal conductance may have caused the smaller 
dTp values for this date and may also be  contributing to the 
larger dTp difference between salt-treated and control plants 
(Patanè, 2011). The difference in dTp between treatments was 
less apparent on January 14 (4 days before harvest), which 
may have been the result of plant aging and senescence being 
a larger factor in determining Tp than salt stress, as will 
be  discussed in UAV-Derived Plant Temperature.
In order to compare results across the data collections, Tp had 
to be  normalized for the variable weather conditions. To do 
this, the CWSI was calculated in three ways, as presented in 
Identifying Plant Stress and Calculating Thermal Indices 
(also see Supplementary Figure S1). Here, we  only discuss 
CWSIS, as it only required measurements of Ta and showed 
similar characteristics to CWSIE and CWSIT (Also, a full season 
of accurate daily dTp was not available to calculate robust 
local transpiration baselines.) A smaller difference in CWSIS 
between the control and salt-treated plots occurred on January 

FIGURE 6 | Distribution of pixel temperatures for sunlit, shaded, and all vegetation as classified by GRVI > 0 for the five UAV data collection dates. Sunlit vegetation 
was identified as pixels with a reflectance value greater than the maximum value in the first cluster of a five-cluster k-mean approach based on the blue band. 
Average air temperature (Ta) during each flight is also displayed.

TABLE 3 | Number of plants for which plant temperature (Tp) was retrieved in each of the thermal infrared orthomosaics.

UAV flight date
OBIA delineation OBIA masked for GRVI > 0 & < Ta + 9°C

Control Salt Total Control Salt Total

November 16, 2017 587 585 1,172 470 464 934
December 06, 2017 587 586 1,173 575 555 1,130
December 20, 2017 583 582 1,165 531 394 925
January 07, 2018 561 566 1,127 490 361 851
January 14, 2018 524 521 1,045 449 251 700

The number of plants is calculated based on: (1) the delineations of the OBIA approach and (2) the OBIA approach combined with the application of GRVI > 0 and Tp < Ta + 9°C.
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14 compared to the preceding dates. The smaller difference 
in CWSIS between treatments closer to harvest suggests that 
Tp was better at discriminating stress between the fruit formation 
and ripening/mature stages (Figure  1), when plants in both 
plots had more developed canopies. From December 6 to 
January 7, mean CWSIS in the control plots ranged between 
0.23 and 0.27, whereas the salt plots ranged from 0.36 to 0.44, 
indicating that CWSIS > ~0.36 may be  an indicator of stress. 
It is worth noting that CWSIs values <0 represent plants that 
are cooler than the mean of the lowest 5% of plant temperatures 
in the control plots, which was used to set the lower limit 
in the CWSI that represents transpiration at the maximum 
rate. As CWSIs was overestimated if Tp was retrieved from 
non-vegetation surfaces (Irmak et al., 2000), we omitted CWSIS 
values for November 16 due to large dTp values on that date, 
which represented Tp retrievals integrated the soil background.
It is apparent from Figures  7, 8 that there is a large range 
in Tp (and consequently dTp) and CWSIS values within both 
the control and salt plots, which may be  due to different 
stomatal responses to stress in each of the 200 accessions, as 
well as spatial variations within the trial. The spatial variations 
are plotted in Figure  9, with individual CWSIS shown for 
both the control and salt treatment for December 20, 2017, 
and January 7, 2018, which represented the time from fruit 
formation to mature, ripe fruit. As can be  seen, there is a 
clear tendency for higher CWSIS values in the two salt treatments, 
relative to the control, with a larger number of plants with 
CWSIs values >0.35  in the salt-treated plots. For instance, on 
December 20, only 19% of control plants had a CWSIS > 0.35, 
compared to 57% for the salt-treated plants. On January 7, 

the proportion of plants with CWSIS > 0.35 for the control and 
salt plots increased to 24 and 68%, respectively (Figure  9). It 
is, of course, important to recognize that spatial variability in 
real-world trials is more than just a function of plant stress, 
with other soil and environmental factors playing a role. 
However, while not all aspects of the spatial variation (e.g., 
the December sandstorms with northeasterly winds) in CWSIs 
observed in Figure  8 can be  attributed to salt-induced stress 
alone, Figure  9 provides some additional insights to help 
interpret the influence of irrigation treatments.
A field-based assessment of plant condition was undertaken 
on January 4, with 30 plants identified as dead. An equivalent 
number of healthy plants were separately identified from the 
RGB imagery collected on January 7. The CWSIS values for 
plants in the healthy and dead categories are shown on December 
6  in Figure 10 to understand whether CWSIs values measured 
earlier in the season were indicative of the plant condition in 
early January.
Plants in the salt plots that were dead by January 4, but in 
good condition on December 6, generally had higher CWSIs 
values than those control plants that were still healthy at the 
beginning of January (Figure  10). Of the plants that were 
classified as healthy, the ones in the control plots exhibited 
lower CWSIS values than in the salt plots (median = 0.46 and 
0.23, respectively). Interestingly to note is that for salt-irrigated 
plants on December 6, the difference in median CWSIS values 
between plants that were dead and healthy by the beginning 
of January (0.57 and 0.46, respectively) is much smaller than 
for the control plants (0.47 and 0.23, respectively). This is 
most likely because the salt irrigation caused some level of 

FIGURE 7 | Differences between plant and air temperatures (dTp) for all plants within the salt and control plots for the five UAV campaigns. The boxes span the 
interquartile range (IQR), with notches indicating the median and the dashed diamond the standard deviation and mean. The whiskers bound 1.5*IQR.
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FIGURE 8 | Crop water stress index (CWSIS) values for the simplified statistical method over both salt and control plots for four UAV campaigns throughout the 
growing season. The boxes span the interquartile range (IQR), with notches indicating the median and the dashed diamond the standard deviation and mean. The 
whiskers bound 1.5*IQR.

FIGURE 9 | Maps of the CWSIs values for the simplified statistical method in the salt-treated (S1 and S2) and control (C1 and C2) plots for December 20, 2017 
(left), and January 7, 2018 (right).

28

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Stutsel et al. Thermal Imaging of Plant Stress

Frontiers in Plant Science | www.frontiersin.org 13 October 2021 | Volume 12 | Article 734944

plant stress early in the growing season, i.e., December 6, 
irrespective of plant appearance. These differences in CWSIS 
values on December 6 indicate that at least some plants that 
appeared green and visibly healthy with GRVI > 0 and Tp < Ta + 9°C 
showed early stress warning signs with high CWSIs values 
almost a month prior to plant death.

DISCUSSION

Identifying salt-resistant germplasm in field trials is challenging 
for a number of reasons, not the least being that plant response 
to stress is complex and manual field methods to screen 
germplasm are onerous and often subjective (Araus and Cairns, 
2014; Morton et  al., 2018). UAV remote sensing has emerged 
to phenotype plants and provides a way to derive an additional 
understanding of stress responses. Previous research has explored 
the morphometric detection of salt stress in tomatoes through 
RBG and multispectral UAV data (Johansen et al., 2019, 2020). 
While data collection and processing workflows for such 
approaches are comparatively well developed, the retrieval of 
accurate Tp from UAV TIR data remains challenging (Ribeiro-
Gomes et al., 2017; Torres-Rua, 2017; Kelly et al., 2019; Aragon 
et  al., 2020; Perich et  al., 2020).

Challenges in the Retrieval of Plant 
Temperature From Thermal Infrared 
Imagery
Here, we  explored the retrieval of Tp from a UAV TIR camera 
in a tomato field trial, demonstrating that it is possible to 
detect differences between salt-treated and control plants, which 
may help identify salt-tolerant tomato germplasm in future 

research. In our study, Tp was retrieved where GRVI > 0 and 
setting a maximum pixel threshold of Ta + 9°C. The latter 
condition was required because the presence of pixels with 
Tp > Ta + 20°C in the OBIA plant delineation showed that object-
based methods alone are insufficient to retrieve accurate Tp, 
at least from the tomato plants explored herein. This finding 
aligns with Cohen et  al. (2017), who also suggest that while 
object-based approaches work well for tree crops, they fail to 
retrieve Tp from field crops due to their less defined canopy 
structure. We  observed that even when Tp is extracted from 
pixels with GRVI > 0, temperatures that are unrealistically 
high for vegetation still occurred, demonstrating that the use 
of GRVI alone does not fully resolve mixed pixel issues. Our 
findings align with recent UAV TIR studies that could not 
eliminate all mixed pixels. For example, Zhang et  al. (2019) 
used red and green reflectance together with TIR data to 
retrieve Tp for a maize crop and concluded that better methods 
for eliminating mixed pixels are required to facilitate 
accurate extraction.
In our study, the mixed pixel issues were alleviated by combining 
RGB data with this empirical method (i.e., Ta + 9°C), which 
estimates the maximum temperature possible for non-transpiring 
vegetation. Researchers commonly report this empirical upper 
baseline in studies of drought stress for inclusion in CWSI 
calculations, e.g., Ta + 5°C in cotton (Cohen et al., 2005), Ta + 7°C 
in potato (Rud et  al., 2014), and Ta + 5°C in wheat (Jackson, 
1982) have all been used. The fact that our upper baseline 
was larger than those published could be  attributed to the 
higher solar radiation and Ta of the arid field site or potentially 
an extreme isohydric behavior (Han et  al., 2020), with closed 
stomata required to maintain turgor. As the field installed 
Apogee TIR radiometers used for setting the Ta + 9°C threshold 
make an integrated measurement of Tp from their field of 
view, vegetation movement driven by wind may have occasionally 
led to the integration of soil temperature, but it was not possible 
to fully resolve or remove the impact of soil background 
(Aubrecht et  al., 2016).
The successful retrieval of Tp using a co-registration approach 
between the RGB and TIR imagery was dependent on good 
pixel alignment of the whole study area (Meron et  al., 2013). 
While the datasets in the study were collected with two different 
sensors (Zenmuse X3 and TeAx 640) having differing resolutions 
and viewing geometries, they showed good alignment at the 
GCPs. Future research could identify whether the processing 
of RGB and TIR data together, as in Javadnejad et  al. (2020), 
leads to better Tp retrieval than processing datasets separately 
with co-registration to GCPs. While new strategies for processing 
TIR data and identifying vegetation within the orthomosaic 
would likely improve results, research advances are inevitably 
constrained by available UAV TIR camera resolutions (640 × 480 
pixels) and precision (Aragon et  al., 2020). Although lower 
flying heights can increase pixel resolution, the downwash from 
a multirotor UAV may influence measured Tp (Tang et  al., 
2020). Lower flying height also increases flying time to cover 
the site, increasing the chance of temperature changes occurring 
during a flight, which could further influence results. The 
precision of uncooled microbolometers, together with the 

FIGURE 10 | CWSIs values on December 6 for the simplified statistical 
method for plants from both the control and salt-treated plots identified as 
either dead (by ground-based visual observation) on January 4 or healthy (by 
RGB image assessment) on January 7. The boxes span the interquartile 
range (IQR), with notches indicating the median and the dashed diamond the 
standard deviation and mean. The whiskers bound the 1.5*IQR. The sample 
size is reflective of the plants that were identifiable in the UAV imagery with the 
GRVI > 0 and plant temperature <air temperature +9°C on both December 6 
and January 7, or field-identified as dead on January 4 (control dead = 12, 
control healthy = 10, salt dead = 18, and salt healthy = 20).
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potential impact of adjacency effects from background scattering 
(Aragon et  al., 2020), adds further uncertainly to derived Tp 
measurements. While the adjacency effect on high-resolution 
satellite data has recently been explored (Zheng et  al., 2019; 
Duan et  al., 2020), the influence on UAV-based data remains 
under-explored and should be the focus of future work, especially 
in regard to phenotyping studies, where sub-degree accuracies 
may be  required.
The detection of plant stress via UAV TIR data can be sensitive 
to the level of solar radiation due to its influence on stomatal 
conductance, with many studies showing the need to consider 
variation between sunlit and shaded plant components (Jones 
et  al., 2002; Meron et  al., 2013; Poblete et  al., 2018; Zhang 
et  al., 2019). However, these studies predominately occur in 
tree or vineyard crops with developed canopies where intra- 
and inter-plant shading can be  significant compared to low 
profile well-spaced tomato plants. Nonetheless, we  examined 
the temperature difference between high (sunlit) and low 
(shaded) blue reflectance areas of the plants and found, as 
opposed to Poblete et al. (2018), that shadowing did not increase 
the range in Tp. Therefore, the separation of sunlit and shaded 
plant components did not improve results in our study. It also 
meant that methods incorporating the standard deviation of 
Tp as a proxy for transpiration differences between sunlit and 
shaded areas to detect stress such as in Han et  al. (2016), 
could not be  applied to our study.

UAV-Derived Plant Temperature Can 
Be Used to Identify Plant Stress
While there are many unresolved questions and inherent sensor 
limitations for Tp retrievals from UAV TIR data, our research 
demonstrates a detectable difference in Tp between the salt-
treated and control plots. Differences are apparent across all 
data collections following the initial salt application on November 
14, 2017. Results suggest that Tp best discerns plant stress 
between the stages of fruit formation and ripening (i.e., between 
December 20 and January 7), an outcome most likely related 
to canopy cover, which was shown to peak approximately a 
month before harvest (Johansen et al., 2019). Increased canopy 
closure reduces soil background influence and increases the 
plant area over which transpiration is occurring. Once senescence 
begins, and photosynthesis reduces, and so too does transpiration 
and canopy cover. This result aligns with Perich et  al. (2020), 
which, although based on a wheat crop, also showed that the 
optimal time to make TIR measurements is before the onset 
of senescence. The smaller difference in TIR indices (dTp and 
CWSIs) between salt and control plots on January 14, together 
with the broad range in plant condition in both treatments, 
demonstrates that the morphometric methods of Johansen et al. 
(2019) present a better approach for identifying stress-tolerant 
germplasm close to harvest.
Our results suggest that a threshold of CWSIs >0.36 may 
indicate stress, based on mean differences between salt-treated 
and control plants and the fact that this threshold applied to 
57 and 68% of plants in the salt plot, but only 19 and 24% 
in the control plots on December 20 and 7 January, respectively. 

While studies applying CWSI to tomato plants are limited, 
our results are similar to Anconelli et  al. (1993), where CWSI 
>0.35 led to yield reduction in processing tomatoes (i.e., tomatoes 
that are canned and machine harvested). Many studies have 
suggested that CWSI values around 0.3 represent an optimum 
threshold for commencing irrigation in response to water stress 
(Reginato, 1983; da Silva and Rao, 2005; González-Dugo et  al., 
2006). While there are observable differences between the salt 
and control plots, there is a broad range of dTp and consequently 
CWSIs values in both treatments. This range may be  inherent 
to the data collection method due to thermal drift or the 
creation of the orthomosaic. However, compared to previous 
research we  applied a novel orthomosaic generation method 
by Malbéteau et al. (2021), wherein the temperature of overlapping 
pixels was averaged along each swath and normalized between-
swath temperatures to reduce the impact of standard orthomosaic 
generation approaches (which integrate overlapping flight lines 
collected minutes apart and exposed to different wind directions).
Presuming the ranges in CWSIs are reflective of real temperature 
differences between plants, we  suggest that these differences 
are due to the 200 accessions exhibiting a range of stomatal 
conductance responses to salt stress. While Tp has been used 
to detect plant stress since the 1960s (Fuchs and Tanner, 1966), 
it is based on the assumption that plants show an isohydric 
reaction to stress, reducing stomatal conductance to limit 
transpiration. A growing body of evidence suggests that plants 
within the same species exhibit both isohydric and anisohydric 
responses to stress (Sade et al., 2012). The mechanism employed 
by tomato varieties with different salt tolerance levels to regulate 
water use is also unclear (Han et  al., 2020). For example, the 
commercial variety “Moneymaker” (Lycopersicon esculentum 
Mill., cv) is anisohydric and maintains stomatal conductance 
in response to stress (Sade et  al., 2012). The domesticated 
variety “Brigade” (Lycopersicon esculentum Mill.) reduces 
stomatal conductance under drought stress. However, it also 
opens stomata within a day of irrigation (Patanè, 2011). In 
comparison, wild types of tomato plants can keep stomata 
closed for up to 6 days after irrigation to maintain turgor 
(Torrecillas et al., 1995). The variation in stomatal conductance 
response among the 200 wild genotypes in our trial is still 
to be determined. Therefore, even with very accurate Tp retrievals, 
cooler plants may not necessarily be  the least stressed in terms 
of agronomically desirable traits such as yield. Plants that had 
a higher temperature soon after salt application may maintain 
turgor and produce comparatively higher yields. Resolving this 
complexity and determining whether Tp can be  used to 
differentiate the performance of accessions in our trial are the 
focus of ongoing research. Identification of inter-accession 
differences was not the intent of the research presented herein, 
as the combination of accuracy limitations in current TIR 
cameras (Kelly et  al., 2019; Aragon et  al., 2020), the complex 
role of environmental interactions with plant response, and 
the uncertainty and complexity in the mechanism employed 
by Solanum pimpinellifolium plants in response to salt stress 
are all aspects that impact the discrimination of accession-
based behavior. Ongoing work will seek to explore some of 
the genotype–phenotype interactions, and the thermal infrared 
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data may provide some insights into this effort. As UAV-based 
Tp results are confounded by a plant’s morphology (canopy 
density, leaf inclination), there also needs to be focused research 
into how to account for morphological variation to increase 
confidence in the association between observed Tp and stomatal 
conductance (Perich et  al., 2020).
The fusion of TIR information with broadband spectral (Johansen 
et  al., 2019) or hyperspectral data will likely provide more 
in-depth insight than TIR data alone to elucidate the challenges 
in observed Tp associated with plant physiological response 
(Hernández-Clemente et  al., 2019). Building upon the results 
herein and integrating TIR data into the development of turnkey 
UAV phenotyping solutions could provide a method to enable 
the early detection of salt impacts by detecting changes in Tp 
in the initial ion-independent response to stress. While our 
study would have been improved by ground-based visual scoring 
of plant health during November and December (after the 
initial salt application), our results showed that CWSIS values 
were higher in salt-treated than control plants from December 
6. Early detection of stress before observed changes in plant 
form would enable breeders to select germplasm for future 
breeding studies rapidly and farmers to balance irrigation with 
brackish water while maintaining yields.

CONCLUSION

Salinization is increasingly impacting agricultural land around 
the world, and available freshwater water resources are 
increasingly under sustained pressures. Identifying new plant 
varieties that can either thrive on salinized land or tolerate 
irrigation with brackish water is crucial to ensuring future 
water and food security. UAV-based remote sensing has emerged 
as an effective means to phenotype field plants rapidly. Combining 
TIR imagery with multispectral data may enable the detection 
of plant stress before visible symptoms become apparent. Here, 
we  retrieved Tp from UAV-based TIR data using concurrently 
collected RGB data to identify vegetation pixels (GRVI > 0) 
and an empirical estimate of the maximum possible vegetation 
temperature (Tp < Ta + 9°C) to alleviate mixed pixels with 
background contamination. Results demonstrated measurable 
differences in Tp between salt-treated and control plants across 
five UAV campaigns performed during the growing season, 
with analysis suggesting that CWSIS >0.36 was indicative of 
stress. The reduction in CWSIS differences between treatments 
toward the end of the growing season demonstrates that the 
optimum time to use Tp for identifying salt stress is between 
the fruit formation and ripening stages. Tp and CWSIS differences 
between salt and control plots were detectable from December 
6, indicating that TIR data may provide a means of early 
detection of salt stress before visible impacts are discernable. 
Further research with more frequent image and field data 
around the initial salt treatment is required to identify the 
exact time between salt application and a measurable Tp response 
to stress. Tp and CWSIS differences were also identified not 
just between control and salt-treated plants, but between control 
plants that went on to either die or sustain their plant health 

a month later. While our analyses provide new insights into 
the use of UAV-based TIR sensing for the early detection of 
plant stress, additional research is required to explain both 
the observed spatial variation and the processes behind stomatal 
conductance regulation in individual accessions.
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Apple Valsa canker (AVC) with early incubation characteristics is a severe apple tree
disease, resulting in significant orchards yield loss. Early detection of the infected trees
is critical to prevent the disease from rapidly developing. Surface-enhanced Raman
Scattering (SERS) spectroscopy with simplifies detection procedures and improves
detection efficiency is a potential method for AVC detection. In this study, AVC
early infected detection was proposed by combining SERS spectroscopy with the
chemometrics methods and machine learning algorithms, and chemical distribution
imaging was successfully applied to the analysis of disease dynamics. Results
showed that the samples of healthy, early disease, and late disease sample datasets
demonstrated significant clustering effects. The adaptive iterative reweighted penalized
least squares (air-PLS) algorithm was used as the best baseline correction method to
eliminate the interference of baseline shifts. The BP-ANN, ELM, Random Forest, and LS-
SVM machine learning algorithms incorporating optimal spectral variables were utilized
to establish discriminative models to detect of the AVC disease stage. The accuracy of
these models was above 90%. SERS chemical imaging results showed that cellulose
and lignin were significantly reduced at the phloem disease-health junction under AVC
stress. These results suggested that SERS spectroscopy combined with chemical
imaging analysis for early detection of the AVC disease was feasible and promising. This
study provided a practical method for the rapidly diagnosing of apple orchard diseases.

Keywords: apple Valsa canker, early detection, Surface-Enhanced Raman Scattering, chemical imaging, machine
learning
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INTRODUCTION

Apple Valsa canker (AVC), caused by fungus Valsa mali, is a
severe apple tree disease resulting in serious economic losses
in Southeast Asia and China (Wang et al., 2011). Commonly,
AVC is mainly found by the characteristics of canker, infected
tissue softening, outflowed light brown water stain, sunken
or cracked on trunks at the early infected stage (Zang et al.,
2012). The fungal pathogen mainly infected the subcutaneous
phloem through the wounded bark tissue at the initial infected
stage. After infection, fungus hypha colonized the phloem
tissues, leading to severe tissue cell death (Suzaki, 2008).
What’s more, plant protection experts have proved that the
fungus Valsa mali can survive in weak and dead tissues of
the apple trees for more than 1 year before appearing visible
symptoms (Meng et al., 2019). For example, Zang et al. (2012)
found that more than 50% of apple orchards existed fungus
Valsa mali in symptomless apple tree tissues. However, when
visible symptoms appear, it is challenging to prevent AVC
from spreading throughout the orchard by conventional treating
methods such as spraying fungicides, manually removing the
diseased areas, and pruning the dead branches. Unfortunately,
there were no adequate methods for AVC treatment due to the
complicated pathogenic mechanism so far. Thus, early detection
of the infected trees is necessary to prevent the rapid development
of the disease in orchards.

There are various molecular biology methods, including
Enzyme-Linked ImmunoSorbent Assay (ELISA) and Polymerase
Chain Reaction (PCR), were developed for the isolation and
identification of pathogenic (Liu et al., 2015; Golhani et al., 2018).
ELISA kits have been widely utilized thanks to the low cost,
but are ineffective for detecting symptomless tissue (Fang and
Ramasamy, 2015), while PCR is an effective detection method.
Zang et al. (2012) developed a nested PCR assay to detect
the presence of Valsa mali in apple trees and achieved an
accuracy of 64.7%. However, DNA deriving from the woody plant
tissues contained PCR inhibiting compounds and could affect the
accuracy of PCR reaction (Martinelli et al., 2015). What’s worse,
a well-equipped laboratory and experienced personnel are also
required, which was not feasible for on-site detection using the
PCR (Okiro et al., 2019). Therefore, it is of great significance
to develop a fast, non-destructive and economical method for
accurate detection of AVC.

Reported studies have demonstrated that advanced non-
invasive measuring technologies, such as RGB image processing
(Cruz et al., 2019; Hu et al., 2020), dielectric spectrum (Khaled
et al., 2018), laser scanning (Khairunniza and Vong, 2014),
and spectroscopic methods (Ranulfi et al., 2016; Dou et al.,
2021) have a massive amount of potential for diagnosing tree
diseases. Among them, the spectroscopy technique is powerful
for quality and safety inspection due to the character of simplicity,
rapidity, and affordability, which makes it indispensable in
tree disease detection. Raman spectroscopy (RS) is a non-
invasive, rapid, and high throughput spectroscopic technique
(Farber et al., 2020; Huang et al., 2020; Zhao et al., 2021).
Raman shift is only related to the vibration frequency of
the molecular functional group, but not to the incident light.

Therefore, each sample’s the Raman “fingerprint” of each sample
is unique (Fang et al., 2021). Significantly, RS could provide
essential information related to the biochemical composition of
the tree tissue cell, such as protein, polysaccharide, and lipid.
Neither symptomatic nor asymptomatic trees, these biochemical
compositions are significantly different between diseased and
healthy tissue. These compositions changes can be reflected
in Raman shifts or intensity changes of specific Raman bands
assigned to those molecules. Therefore, RS provides an accessible
way to identify subtle changes in the molecular compounds,
which offers theoretical evidence for detecting tree diseases.
Vallejo et al. (2016) investigated the application of RS combined
with statistical analysis for detecting citrus Huanglongbing (HLB)
infection in the field, and a good result was obtained with an
overall classification accuracy of about 89.2%. Sanchez et al.
(2019b) readily distinguished between healthy and early-HLB
citrus trees using a handheld Raman system and achieved an
accuracy of 94%. In their following study, Sanchez et al. (2019a)
demonstrated that utilizing a handheld Raman spectrometer in
combined with chemometric analyses enabled the detection and
identification of the secondary disease on HLB-infected orange
trees. Those researches indicated that the RS technique combined
with chemometrics methods could detect diseased trees.

However, RS is frequently interfered by fluorescence caused
by chromophores in plant tissue, and compositional changes
under disease stress may lead to Raman band broadening or
drift (Mukherjee et al., 2017; Petrov, 2017). This drawback may
lead to significant deviations in the biochemical composition
analysis of RS data. Surface enhanced Raman scattering (SERS)
spectroscopy, based on the improvement of traditional RS,
uses certain metallic nano-substrates such as gold or silver
nanoparticles (AgNPs) to enhance signals under low laser
powers, which maximizes fluorescence suppression. Meanwhile,
the Raman system combined with the micro-imaging technology
allows for scanning micron-scale Raman collection points (e.g.,
one-micron pixel) (Li X. L. et al., 2019), which offers chemical
information on the constituents at a high spatial resolution
in situ. Qin et al. (2011) developed a Raman chemical imaging
system to visualize the internal distribution of lycopene in
postharvest tomatoes and established a Raman chemical image
to visualize the spatial distribution of lycopene at different stages
of maturity. Yang et al. (2018) used a Raman imaging system to
detect the spatial distribution of chemical components in maize
seeds. These studies manifested that Raman chemical imaging has
great potential in the visualizing of plant tissue components.

Therefore, this study aimed to develop a fast, non-invasive,
and in situ diagnosis method for detecting AVC at early infection
stages using SERS combined with micro-imaging technology.
The main objectives are to: (1) Optimize experimental conditions
(i.e., laser intensity and exposure time) for obtaining valid
SERS micro-imaging data, including Synthesis and SERS
AgNPs characterization; (2) Establish optimal discriminative
models for detecting AVC in early infection stages based on
machine learning algorithms; (3) Generate micro-distribution
maps of cellulose and lignin at the disease-health junction of
the tree phloem tissues to reveal the dynamic development
characteristics of the disease.
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MATERIALS AND METHODS

Fungal Culture and Sample Inoculation
The fungus Valsa mali stored at −80◦C in an ultra-low
temperature refrigerator were inoculated onto potato dextrose
agar (PDA) medium. The 2-year-old apple branches (Malus
domestica cv. Fuji) were collected from the Economic Tree
Garden of Northwest A&F University. The selected branches
were pruned into 15 cm segments, and the surface of the branches
was disinfected with 75% alcohol for 15 min. Then, they were
cleaned with sterile water three times until there was no odor.
The ends of the branches were sealed with a wet skimmed cotton
to keep them fresh, followed by punching holes in the branches
with a hole puncher (hole diameter 5 mm). The activated Valsa
mali fungus was inoculated on the wounds of apple branches with
two points on each branch. After inoculation, the branches were
transferred to a 25◦C incubator for further incubation.

Synthesis and Surface-Enhanced Raman
Scattering Silver Nanoparticles
Characterization
In the present research, AgNPs were synthesized by using the
Lee–Meisel method. The synthesis steps were as follows: AgNO3
(36 mg) was dissolved in 200 ml of ultrapure water and boiled
quickly. A solution of 1 wt.% trisodium citrate (6 mL) was
charged to the reaction solution and was held on boiling for
25 min accompanied by stirring at 200 rpm. After cooling to
room temperature, we pour the AgNPs solution into a centrifuge
tube and store it away from light. The chemical reaction equation
is as follows:

4Ag++C6H5O7Na3+ 2H2O = 4Ag +C6H5O7H3+ 3Na+ + O2

Subsequently, the prepared AgNPs were characterized to verify
their validity. The morphology of the AgNPs was measured by
Tecnai G2 transmission electron microscopy (FEI Inc., Hillsboro,
OR, United States). The UV-Vis absorption spectra of the
AgNPs were measured using Lambda 35 Spectrophotometer
(PerkinElmer Inc., Waltham, MA, United States). The Raman
spectra of the AgNPs were collected by DXR3xi Raman micro-
imaging spectrometer (Thermo Fisher Scientific Inc., Waltham,
MA, United States).

Surface-Enhanced Raman Scattering
Spectroscopy Acquisition
First, branches were removed from the incubator, and the
inoculation points on the phloem were scraped with a knife as the
samples. Each sample placed on a glass slide was dripped with the
AgNPs. Then, each sample was placed on the automatic stage and
aligned with a Raman laser using a 10x/0.25 NA magnification
objective lens for SERS imaging collection using a DXR3xi Raman
micro-imaging system (Thermo Fisher Scientific Inc., Waltham,
MA, United States). Specific parameters were to: the excitation
wavelength was 785 nm; the collected spectral range was 300–
3,000 shift/cm−1; the laser intensity was 2.6 mW; the exposure
time was 0.00285 s (350 Hz); the number of scanning was 40.

For spectral imaging in the x and y directions, the samples
were scanned point by point in 2 µm steps. It should be noted
that no destructive effects of the laser on the samples were
observed. Routinely, before starting the Raman measurements,
the calibration procedure that came with the instrument was
executed automatically. At this time, the software interface
displayed “Performing automatic X axis calibration.” The data
acquisition software OMNICxi v1.6 was used to adjust the
acquisition parameters.

Spectral Data Processing and Analysis
Spectra Preprocessing
Background noises and baselines were generated during the
acquisition of the SERS spectra, which seriously impaired the
interpretability of the spectra. Meanwhile, these noises and
baselines would also reduce the simplicity and robustness of
the calibration model built on these spectra. Therefore, selecting
the optimal pretreatment method was necessary to improve
the spectral quality. In this study, spectral curves were first
extracted for each pixel point of the imaging data before spectra
preprocessing. Then, the spectral data were preprocessed with
three algorithms to eliminate noise and correct the baseline
background. These three algorithms include the multiple spectral
baseline correction (MSBC), the asymmetric least squares (AsLS),
and the adaptive iterative reweighted penalized least squares
(air-PLS). Subsequently, the advantages and disadvantages of
the three algorithms were compared using the correlation
analysis method.

The AsLS method, proposed by Eilers (2003, 2004), is a
classical baseline correction algorithm that combined a smoother
with the asymmetric weighting of deviations from the smoothed
trend to form an effective baseline estimation method. The MSBC
method, proposed by Peng et al. (2010), is an improved approach
based on the AsLS algorithm. The MSBC method learns baselines
that perform well on the corresponding spectra and then “co-
regularize” the selection by correcting inconsistencies between
the spectra. Air-PLS is an improvement approach based on the
weighting of the original model by the weighted least squares
method. The light environment is automatically subtracted by
meaning the iterative regression, and the background is deducted
(Baek et al., 2015).

Optimal Variables Selection and Dimension
Reduction
Multivariate calibration methods in chemometrics aim to
construct relationships between variables and properties of
interest to make a classification model. However, with the
redundant spectral variables, data usually included some
noise and unnecessary information, which rendering unreliable
predictive properties. Therefore, optimal variables selection and
dimension reduction have been used to address these problems.

Principal component analysis (PCA) can replace the original
variables with a few principal components with significant
deviation to reduce the original high-dimensional variable space
(Dong et al., 2014). In addition, competitive adaptive reweighted
sampling (CARS) and random frog (RFrog) algorithms were
combined to select the optimal variables associated with the
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predicted properties and exclude the interference of unrelated
variables. The CARS algorithm used exponentially decreasing
function (EDF) as a selection strategy to select critical variables
based on adaptive reweighted sampling competitively (Li et al.,
2009; Li Q. Q. et al., 2019). The RFrog algorithm calculated the
selection probability of each variable by moving across trans-
dimensions between models, enabling the search for the optimal
variable (Li et al., 2012).

Classification Models
BP artificial neural network (BP-ANN) (Zhang et al., 2018)
is the most classical and successful neural network commonly
utilized for non-linear fitting and pattern recognition. BP-
ANN is a one-way multi-layer feedforward network composed
of an input, hidden, and output layer. The learning process
is composed of forwarding propagation of signals and back-
propagation of errors.

The random forest (RForest) is a widely used machine
learning algorithm, which has been successfully applied to pattern
recognition (Lussier et al., 2020), and the choice appropriate
number of decision trees is crucial in RForest. When the test data
entered the classifier, each decision tree classified the data. Finally,
the class with the most classification results from all decision trees
was taken as the result.

The least squares support vector machine (LS-SVM) is a
machine learning method that emerged from the statistical
learning theory. LS-SVM divides the data samples into multi
classes by determining a hyperplane in the input space,
maximizing the separation between the classes (Lucay et al.,
2020). Its vital parameter indexes are the kernel function and the
corresponding parameters of this function.

Extreme learning machine (ELM) is one of the practical
training algorithms for single-layer feedforward neural networks
(Qiu et al., 2015). ELM has a faster training and better
generalization performance than traditional machine learning
algorithms and could overcome issues such as the local
minimum, inappropriate learning rate, and overfitting (Wu
et al., 2021). Therefore, it is widely used in the condition of
classification and regression.

In summary, Figure 1 demonstrated Key steps for detecting
apple Valsa canker at an early stage based on SERS spectroscopy
combined with chemical imaging analysis. All procedures were
written in MATLAB R2018b (The MathWorks, Natick, MA,
United States) and ran on a personal computer with an Intel Core
i5-9400F CPU, 16GB RAM, and a Windows 10 operating system.

RESULTS AND DISCUSSION

Phenotypic Development of Healthy and
Inoculated Branch
Figure 2a demonstrated the strains of the fungus Valsa mali
on the PDA medium. The junctions of diseased and healthy
tissues in the inoculated branch samples were assessed visually
in the early stage of AVC disease. The bark surface of inoculated
branch samples showed no visible symptoms during the first
7 days. However, the phloem inside the bark appeared with

early infection symptoms. Figure 2b demonstrated the dynamic
process of the diseased phloem in the first 7 days. The healthy
phloem (the first 3 days) had a smooth surface and displayed
tender green. The diseased phloem became rough and showed
pale brown when the symptoms of mild infection were visible on
the 5th day. Subsequently, the diseased phloem appeared dark
brown, and the tissue was rotten on the 7th day. The infected
area of the diseased phloem, centered on the inoculation site,
was continuously extended outward with time. Most notably,
the infection symptoms remained in the phloem and did not
appear on the bark surface in the first 7 days. The phloem
regions were manually labeled as healthy, disease-1 (the disease-
health intersection), and disease-2 (late-disease) according to the
infection progression of the pathogen. The purpose of dividing
the region into three categories is to simulated the time-series
dynamic process of pathogen infection (i.e., pathogen infection
spread outward around the center point). In Figure 2c, the
disease-health intersection of the diseased phloem was presented
using optical microscopy. It can be observed that the healthy
tissue appeared green with intact cellular tissue structure; The
disease-1 tissue appeared dark brown, and the infected tissue
outflowed light brown water stain; The disease-2 tissue was
mainly characterized by canker and softened tissue.

Surface-Enhanced Raman Scattering
Silver Nanoparticles and Its
Characterization
The microstructure, UV-Vis spectrum, and Raman spectrum of
AgNPs were analyzed to investigate the enhancement effects of
the synthesized AgNPs. Figure 3A is the transmission electron
microscopy (TEM) image of AgNPs, Figure 3B displays the UV-
Vis spectra, and Figure 3C shows the Raman spectra.

In Figure 3A, it could be seen that the morphological character
of AgNPs was very uniform in a monodisperse spherical shape.
In addition, the average diameter of AgNPs was about 50 nm. As
shown in Figure 3B, only one UV-Vis characteristic absorption
peak (at 410 nm) corresponding to the single plasmon resonance
mode was observed, and the half-peak breadth was only 90 nm.
These features further indicated that the shape and size of the
synthesized AgNPs were very uniform. In Figure 3C, the Raman
spectrum had a faint signal, suggesting that the synthesized
AgNPs themselves had no strong Raman characteristic peaks
and did not have an interferential effect on experimental results.
Therefore, the synthesized AgNPs were suitable as SERS substrate
to detect branch samples in this research.

Overview of Surface-Enhanced Raman
Scattering Spectra
Spectral imaging is capable of acquiring the spectra from a
specified point at the sample surface. By adjusting the x, y
position, acquisitions of the spectra from multiple points on the
sample surface can be performed, assembling a spectral image
of the sample. Figure 4 clearly showed the spectrum of healthy
tissue samples, with and without AgNPs, respectively. Raman
spectra peaks of healthy samples without AgNPs did not appear.
The SERS characteristic peaks of healthy samples were obvious,
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FIGURE 1 | Key steps for detecting apple Valsa canker at early stage based on SERS combined with chemical imaging analysis. There were four main steps in the
experiment: step 1, preparation of the samples; step 2, data acquisition; step 3, data processing; step 4, discriminant and analysis.

which further proved that AgNPs were effective. Figure 5 showed
the micro-spectral image of diseased phloem through pointwise
scanning by Raman micro-imaging system. The spectral data
were obtained by splitting each pixel point of the spectral image.
All the original SERS spectra were also shown in Figure 5.
The pathogenic mechanism of AVC remains poorly understood
(Wang et al., 2021). On the one hand, cell wall degrading enzymes
(e.g., pectinases) played an important role in the infection process
(Yin et al., 2013). On the other hand, studies have shown that
phloridzin in apple tissues can be degraded by AVC, and the
metabolites have toxic effects on apple tissue cells (Feng et al.,
2020). These researches explained why the vibration band of
disease-2 is weaker than the health spectrum.

There was an obvious baseline offset in the disease-1 and
disease-2 even after dropwise addition of the AgNPs to suppress
fluorescence. Therefore, the MSBC, AsLS, and air-PLS algorithms
were adopted to eliminate the disturbances of the baseline offset.
The parameters for these methods were manually set to obtain
the best result. For the MSBC algorithm, the parameters were set
to λ = 150, µ = 8 × 107, and ρ = 0. For AsLS algorithm, the
parameters were set to λ = 5,000, and ρ = 0.0001. For the air-
PLS algorithm, the parameters were set to λ = 150, and ρ = 0.01.
The corrected spectra and the predicted fluorescence baselines
were plotted in Figures 6A–C. As shown in Figure 6, the curved
baselines were well-fitted and subtracted by the three algorithms.
The corrected spectra showed that the baselines were pulled
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FIGURE 2 | Phenotypic development of healthy and inoculated branch. (a) The strains of the fungus Valsa mali on PDA medium. (b) The dynamic process of the
diseased phloem in the first 7 days. (c) Optical micrograph of the disease-health junction.

FIGURE 3 | SERS AgNPs and its characterization. (A) Transmission electron microscopy image of AgNPs. (B) The UV-Vis spectra of AgNPs. (C) Raman spectrum
of AgNPs.

FIGURE 4 | The spectrum of healthy tissue samples, with and without AgNPs, respectively. (A) Raman spectra peaks of healthy samples without AgNPs did not
appeared. (B) The SERS characteristic peaks of healthy samples were obvious, which further proved that AgNPs was effective.

back to zero absorbance, the peak locations remained unchanged,
and the peak shapes were more prominent, which indicated the
effectiveness of the baseline correction methods.

As shown in Figure 6, many SERS peaks can be clearly
observed. In detail, the peaks at 319, 957, 1,026, 1,165, 1,242,
and 1,325 cm−1 were indicators of cellulose, corresponding to
C-C-C or C-O-C skeletal bending (Szymanska et al., 2011), C-C

or C-O stretching vibration (Beć et al., 2020), C-C or C-O
stretching vibration (Beć et al., 2020), H-C-C or H-C-O skeletal
bending (Edwards et al., 1997), C = O stretching vibration (Beć
et al., 2020), and C-H bending vibration (Edwards et al., 1997),
respectively. The peaks at 625, 731, 1,599, and 2,939 cm−1

were indicators of lignin, corresponding to skeletal bending
(Agarwal et al., 2011), skeletal bending (Agarwal et al., 2011), C-C
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FIGURE 5 | The sketch represents the basic principle of the spectral data cube and shows the raw spectra and spectral imaging of three types of samples.

FIGURE 6 | Spectral baseline correction. (A) Baseline correction using MSBC. (B) Baseline correction using AsLS. (C) Baseline correction using air-PLS. The blue
line represents the original spectrum, the red line represents the estimated baseline, and the yellow line represents the corrected spectrum.

aromatic ring (Agarwal, 2006), and C-H asymmetric stretching
vibration (Gierlinger and Schwanninger, 2007), respectively.
The assignment of characteristic wavenumbers was presented
in Table 1.

Selecting Optimal Preprocessing Method
The correlation analysis method was adopted to select the best
preprocessing algorithms. The correlation between the corrected
variables was plotted in Figure 7. Significantly, the regions close
to the line y = x had a correlation coefficient of 1, indicating that
the original spectra were greatly disturbed by the baseline offset.
This high degree of collinearity would cause adverse effects on
classification analysis. Comparing Figures 7B–D with Figure 7A,
the regions with a high degree of collinearity have a noticeable
decrease, and most of the spectral variables had low correlation
with others except in the spectral ranges of 300–400, 640–880,
and 1,490–1,970 cm−1. In addition, the proportion of pixel

points with values greater than 0.6 to the total pixel points was
calculated, and the proportions were 0.35, 0.09, 0.24, and 0.07,
respectively. The AsLS method failed to effectively fit the baseline
at 1,200–1,600 cm−1, resulting in a relatively poor result of
baseline correction. This result indicated that the MSBC and air-
PLS baseline offset elimination strategies could greatly reduce the
high correlation levels among spectral variables, and especially,
the air-PLS algorithm had the best elimination effect. Therefore,
the spectra corrected by the air-PLS algorithm were used for
further analysis.

Clustering Visualization by Principal
Component Analysis
As an unsupervised learning strategy, PCA was often used to
demonstrate the clustering effect based on the samples’ similarity
of samples in the feature space. In the present research, PCA was
performed on the raw spectra of the total sample set to visualize
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TABLE 1 | Assignment of characteristic wavenumbers.

Wavenumber Assignment Biological
components

References

319 C-C-C or C-O-C
skeletal bending

Cellulose Szymanska et al. (2011)

625 Skeletal bending Lignin Agarwal et al. (2011)

731 Skeletal bending Lignin Agarwal et al. (2011)

957 C-C or C-O stretching
vibration

Cellulose Beć et al. (2020)

1,026 C-C or C-O stretching
vibration

Cellulose Beć et al. (2020)

1,165 H-C-C or H-C-O
skeletal bending

Cellulose Edwards et al. (1997)

1,242 C = O stretching
vibration

Cellulose Beć et al. (2020)

1,325 C-H bending vibration Cellulose Edwards et al. (1997)

1,599 C-C aromatic ring Lignin Agarwal (2006)

2,939 C-H asymmetric
stretching vibration

Lignin Gierlinger and
Schwanninger (2007)

the distribution of healthy, disease-1, and disease-2 samples.
The score scatters plot of clustering analysis were shown in
Figure 8. PC1, PC2, and PC3 provided 51.74, 15.01, and 11.56%
of the variations among samples, respectively. The cumulative
contribution of the first three PCs achieved 78.31%. Figure 8

demonstrated that the healthy, disease-1, and disease-2 samples
had obvious clustering effects. Therefore, the three types of
samples had distinct spectral characteristics.

Optimal Variables Selection
There were 1,401 variables in the SERS spectra. However, spectral
data contained many non-critical variables, which might reduce
the accuracy and stability of subsequent discriminant models.
Therefore, selecting optimal variables was essential for better
choices of discriminant models. In the present research, two
strategies were used to select characteristic variables: algorithm
selection (CARS combined with RFrog) and manual selection.

Important variables were extracted from the total 1,401
spectral variables in the full range of 300–3,000 cm−1, as shown in
Figure 9. The selected optimal variable subsets were set to subset-
1 and subset-2, respectively. In the algorithm selection method,
10 wavenumbers at 448, 536, 667, 1,165, 1,211, 1,312, 1,314, 1,412,
1,707, and 2,951 cm−1 in the subset-1 were identified. In the
manual selection method, 10 wavenumbers at 319, 625, 731, 957,
1,026, 1,165, 1,325, 1,460, 1,570, and 2,939 cm−1 in the subset-2
were identified.

Discriminant Models Establishment
Before establishing discriminant models, SERS spectral data were
divided into a calibration set and a prediction set at the ratio

FIGURE 7 | The correlation between the corrected variables was plotted. (A) High correlations were found among original spectral variables. (B) Correlations were
noticeably declined using MSBC. (C) Correlations were noticeably declined using AsLS. (D) Correlations were noticeably declined using air-PLS. However, the
air-PLS algorithm has the best elimination effect.
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FIGURE 8 | Score plots of first three PCs from PCA on spectral data of the
three types of samples.

FIGURE 9 | The characteristic variables for early disease detection of the AVC
disease. Two strategies were used to select characteristic variables: algorithm
selection (subset-1) and manual selection (subset-2).

of 3:1. Generally, the independent variable (x) represented the
spectral matrix of samples, and labeled grades (y) stood for
the AVC infection severities. Therefore, the labels for healthy,
disease-1, and disease-2 were 1, 2, and 3, respectively. BP-
ANN, ELM, RForest, and LS-SVM models were established using
four variable matrices (x) to classify the healthy, disease-1, and
disease-2 samples. These four variable matrices (x) included the
full SERS spectra, the subset-1, the subset-2, and the predicted
fluorescence baselines.

After formula calculation and experience screening, the
learning rate of the BP-ANN model was set uniformly to 0.1, and
the number of neurons in the hidden layers were 10, 3, 3, and
10, respectively. The number of neurons in the hidden layer of
the ELM model was determined by comparing the performances
of the ELM model using different numbers of neurons from 1 to
100 with a step of 1. The ELM with 34 neurons was selected as
the optimal model. The number of decision trees in the RForest

model was determined by comparing the model performances
using different numbers of decision trees from 1 to 500 with a
step of 1. The RForest with 100 decision trees was selected as
the optimal model. The LS-SVM model used RBF as the kernel
function, and the optimal penalty coefficient (c) and the kernel
function parameter gamma (g) were obtained by a grid search
procedure. Finally, the best-c was 379, and the best-g was 45.

The discriminant accuracy of the models was presented in
Table 2. There were significant differences in the classification
results of the four models on the full spectra dataset. The
classical BP-ANN model learned complex relationships between
data, thus improving the analytical performance (such as high
sensitivity and specificity) of classification. However, the BP-
ANN model had the regrettable tendency to train toward a
local optimal rather than a global optimal (Lussier et al., 2020).
This also explained why the BP-ANN model had the lowest
classification accuracy on the full spectra dataset compared to
the other three models. As opposed to the BP-ANN model, the
LS-SVM model was deterministic and its solution was global
and unique. As a result, the classification accuracy of the LS-
SVM model improved significantly compared to the BP-ANN
model. In the present case of the RForest model, each tree selected
features maximize the separation of the dataset into three classes.
The output of each decision tree was then pooled, leading to the
final optimal classification result. Therefore, the RForest model
also exhibited excellent analytical performance comparable to
the LS-SVM model.

Compared with the full spectra dataset, over 99% of non-
critical input variables (10 vs. 1401) were removed in subset-1
and subset-2. Meanwhile, the classification accuracy of the subset
models was not decreased significantly, which demonstrated
the superiority of the optimal variable selection strategies.
Generally, the fluorescence baselines reduced the simplicity
and robustness of a calibration model built on the raw
spectra. The existing studies by other scholars had removed
the fluorescence baseline from the raw data. However, the
classification accuracy of the models based on the fluorescence
dataset was surprisingly excellent in the present research. When
infesting the phloem tissue, fungus Valsa mali produced various
chemical substances such as protocatechuic acid, isocoumarin,
and phlorizin. Although these chemical substances produced
fluorescence interference, the baseline reflected the chemical
composition and content information. Thus, the fluorescence
baseline became available as valid information. This innovative
discovery will guide our subsequent research.

TABLE 2 | The discriminant accuracy of the models.

Models Discriminant accuracy (%) Running
time (s)

Full SERS
spectra

Subset-1 The subset-2 Predicted
fluorescence

baselines

BP-ANN 86.22 93.17 92.42 91.80 0.28

ELM 92.36 85.35 88.93 95.39 0.01

RForest 98.46 96.67 95.87 99.57 0.15

LS-SVM 98.86 94.49 95.48 98.04 0.91
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FIGURE 10 | Chemical distribution images of phloem samples based on SERS spectroscopy. (a–c) The optical micrographs of the phloem tissues taken from the
branches of three trees. (d–f) The chemical imaging results based on the cellulose signature peak at 300–550 cm−1. (g–i) The chemical imaging results based on
the lignin signature peak at 1,600 cm−1.

However, the above three methods mainly focused on
feature extraction, optimal parameters, and optimal variables
selection without considering the model runtime, which was also
crucial for intelligent online detection, were not investigated.
Furthermore, the intelligent online detection would be an
important research direction in plant disease detection fields. The
ELM model randomly generated the hidden node parameters
and then analytically determined the output weights instead of
iterative tuning (Huang et al., 2006). Thus, the ELM model
runs quickly and lends itself to real application scenarios,
which is very important for intelligent online detection. As
seen in Table 2, the ELM model ran as fast as 0.01 s, far
better than the other three methods. The LS-SVM model first
used the grid search method to select the best-c and best-g,
severely delaying the discriminatory efficiency and making the
run time as high as 0.91 s. Therefore, the ELM algorithm can
be considered as the detection model in the subsequent online
detection study.

Chemical Imaging Analysis of the
Disease-Health Junction
The SERS micro-spectral image data cube of each phloem
sample was processed by the air-PLS algorithm to eliminate
fluorescence baseline, and the parameter values were consistent
with section “Overview of Surface-Enhanced Raman Scattering
Spectra.” Then the processed micro-spectral cube in a pixel-wise
manner generated chemical distribution images in Figure 10. The
symmetric tensile vibration at 1,600 cm−1 in lignin was identified
as the characteristic peak of lignin components, while the bands
at 300–550 cm−1 were contributed by cellulose. Therefore, these
images were constructed based on the cellulose signature peak at
300–550 cm−1 and lignin signature peak at 1,600 cm−1.

Due to the fact that cell walls were probed in phloem
tissues, the spectra collected did not contain any intracellular
signals. Figures 10a–c showed the optical micrographs of the
phloem tissues taken from the branches of three trees. The
chemical imaging results based on the cellulose signature peak
at 300–550 cm−1 were shown in Figures 10d–f. The redder-
colored the pixels, the stronger the spectral signals of the
chemical component. Meanwhile, the bluer-colored the pixels,

the weaker the spectral signals. It can be noticed that the SERS
signal at the healthy tissue exhibited high intensity with red,
bright yellow, and green pixel colors. The diseased phloem
tissue exhibited low intensity with blue and green pixel colors,
and the disease-health junction exhibited green pixel colors.
These differences in SERS imaging of different regions can be
attributed to differences in cell wall components. The chemical
imaging results based on the lignin signature peak at 1,600 cm−1

were shown in Figures 10g–i, showing a similar pattern as
the cellulose distribution. The different regions of the phloem
tissue shown a distinct distribution of cellulose and lignin, and
the observations here were in good agreement with optical
micrographs. The results suggested that cellulose and lignin
in the cell walls of infected tissues reduced significantly. It
also confirmed previous research (Ke et al., 2013) that cell
wall degrading enzymes were considered to play an important
role in fungal infection. Therefore, Raman microimaging was
capable of detecting AVC at early infection stages. It is worth
noting that Raman microimaging can visualize the intensity
and distribution of components of the cell walls in situ
through cytological observations. Meanwhile, this rapid and
non-invasive chemical imaging strategy is superior to the other
methods, such as the reagent staining method and transmission
electron microscopy.

CONCLUSION

In this study, SERS spectroscopy combined with chemometric
methods was applied for early detection of the AVC disease.
Firstly, three spectral preprocessing algorithms were compared,
and the air-PLS algorithm was considered effective in removing
the spectra fluorescence background. Thereafter, PCA provided
a good clustering effect to visualize the distribution of samples
in three classes. Two strategies selected optimal variables to
develop machine learning models for detecting AVC disease,
and these models exhibited excellent analytical performance.
Meanwhile, the classification accuracy of the models based on the
fluorescence dataset was surprisingly excellent, which was a great
inspiration. Besides, this study proposed a new strategy for SERS
chemical imaging of the diseased apple phloem tissues using
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a non-destructive, label-free method. This chemical imaging
provided the spatiotemporal dynamic characteristics of changes
in the cellulose and lignin of the phloem disease-health junction
under fungus stress, which would be helpful in the early AVC
detection and analysis of disease dynamics.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

SF: writing – original draft and writing – review and editing.
JL: investigation, resources, writing – review and editing, and
revision. YW, FZ, and YZ: investigation and resources. KY:
conceptualization, investigation, resources, and writing – review
and editing. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Program Nos. 31901403 and 61705188),
Natural Science Basic Research Plan in Shaanxi Province
of China (Program No. 2020JQ-267), China Postdoctoral
Science Foundation (Program No. 2018M641023), Shaanxi
Province Postdoctoral Science Foundation (Program No.
2017BSHYDZZ61), Science and Technology Innovation
and Achievement Transformation Project of Experimental
Demonstration Station (Program No. TGZX2019-10), and Key
Laboratory of Agricultural Internet of Things, Ministry of
Agriculture and Rural Affairs, China.

ACKNOWLEDGMENTS

We would like to thank Guangyu Sun (Northwest A&F
University) for providing the experimental materials. We would
also like to thank Life Science Large Instrument Sharing
Platform (Northwest A&F University) for its support for
TEM experiments.

REFERENCES
Agarwal, U. P. (2006). Raman imaging to investigate ultrastructure and

composition of plant cell walls: distribution of lignin and cellulose in black
spruce wood (Piceamariana). Planta 224, 1141–1153. doi: 10.1007/s00425-006-
0295-z

Agarwal, U. P., James, D. M., and Sally, A. R. (2011). FT-raman investigation
of milled-wood lignins: softwood, hardwood, and chemically modified black
spruce lignins. J. Wood Chem. Technol. 31, 324–344. doi: 10.1080/02773813.
2011.562338

Baek, S. J., Aaron, P., Young, J. A., and Jaebum, C. (2015). Baseline correction
using asymmetrically reweighted penalized least squares smoothing. Analyst
140, 250–257. doi: 10.1039/c4an01061b
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Fluorescence imaging has shown great potential in non-invasive plant monitoring
and analysis. However, current systems have several limitations, such as bulky
size, high cost, contact measurement, and lack of multifunctionality, which may
hinder its applications in a wide range of settings including indoor vertical farming.
Herein, we developed a compact handheld fluorescence imager enabling multipurpose
plant phenotyping, such as continuous photosynthetic activity monitoring and non-
destructive anthocyanin quantification. The compact imager comprises of pulse-
amplitude-modulated multi-color light emitting diodes (LEDs), optimized light illumination
and collection, dedicated driver circuit board, miniaturized charge-coupled device
camera, and associated image analytics. Experiments conducted in drought stressed
lettuce proved that the novel imager could quantitatively evaluate the plant stress
by the non-invasive measurement of photosynthetic activity efficiency. Moreover, a
non-invasive and fast quantification of anthocyanins in green and red Batavia lettuce
leaves had excellent correlation (>84%) with conventional destructive biochemical
analysis. Preliminary experimental results emphasize the high throughput monitoring
capability and multifunctionality of our novel handheld fluorescence imager, indicating
its tremendous potential in modern agriculture.

Keywords: fluorescence, multifunctional, handheld, non-invasive plant phenotyping, photosynthetic activity,
anthocyanin

INTRODUCTION

Effective plant monitoring techniques are critical in gaining insights on plant health, allowing for
improved decision-making and a more streamlined workflow in modern agriculture. Most land
plants produce their own food by chlorophyll, a group of green pigments. Part of the ambient
light absorbed by chlorophyll are used to produce carbohydrates through photochemistry and the
unused parts are either dissipated as heat or re-emitted as longer wavelength fluorescence. These
three processes are in competition and chlorophyll fluorescence emission was found to be dynamic
and complex with a plenty of information (Kautsky, 1960). Hence, chlorophyll fluorescence
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has been widely used as an indicator of photosynthetic
activity (PSA) and plant self-protection mechanism. Modulated
chlorophyll fluorescence measurement methods (Quick and
Horton, 1984; Schreiber et al., 1986) became more popular than
non-modulated methods as they can be used in the presence of
ambient light in the field and do not require a dark environment.
More interestingly, chlorophyll fluorescence was found to be
related to the amount of phenolic compound in the epidermis
of leaves and fruit peels (Cerovic et al., 2002; Hagen et al.,
2006; Agati et al., 2007). Anthocyanin, as an important part
of phenolic compound, attracts much attention due to its
antioxidant effects and health benefits (Khoo et al., 2017). Besides,
anthocyanin content can help to assess quality, maturity stage,
and also in determining the harvesting time of a plant (Christian
and Jackson, 2009). The conventional destructive biochemical
analysis of anthocyanin is discontinuous, time-consuming, and
costly since it involves harvesting, multiple extraction steps
before reaching the quantification stage (Nakata and Ohme-
Takagi, 2014). Thus, there is a great demand for an advanced
device that can be used for both PSA monitoring and fast non-
destructive anthocyanin quantification to improve agricultural
efficiency and productivity.

Nowadays, several fluorescence imagers and sensors are
commercially available for non-invasive PSA monitoring, such
as Walz Imaging-PAM, Photon Systems Instrument FluorCams,
and LI-COR (Cen et al., 2017; van Tol et al., 2017; Wang et al.,
2017; Backes et al., 2021; Linn et al., 2021). However, none of
the above-mentioned imaging devices can be used to quantify
anthocyanin content. Moreover, they are relatively bulky and
expensive. Apart from the above mentioned devices, Force A
founded in 2004 developed Dualex and Multiplex which have
been used to quantify anthocyanin content through fluorescence
emission (Hagen et al., 2006; Agati et al., 2007; Steele et al., 2009),
but they are point sensors without imaging capability. Besides,
they cannot quantitate plants’ PSA parameters that requires
pulse-amplitude modulated (PAM) excitation. Hence, there is
an unmet need for a compact and high-throughput fluorescence
imager for multi-purpose applications. Technical challenges in
developing such a system include combining multiple functions
in single device, maintaining system performance, size, and
cost reduction. Herein, we overcame these challenges and
developed a compact handheld multifunctional and multi-
spectral fluorescence imager with the following advantages:
(1) it combines non-invasive and continuous PSA monitoring
and anthocyanin distribution quantification in a single device;
(2) it is a high-resolution imaging device, which inherently
has high throughput measurement capability and can provide
morphological information; (3) it is compact and low-cost
by incorporating dedicated optoelectronics design. The study
was divided into two parts to verify the functions of the
self-developed device: PSA monitoring and non-invasive
anthocyanin quantification. In the first part, the PSA of drought
and control plants were measured by the imager to quantify the
stress condition based on obtained fluorescence images. In the
second part, non-invasive anthocyanin measurement was carried
out and results were correlated with biochemical analysis to
assess the quantification accuracy of our device.

MATERIALS AND METHODS

Instrument Design
The developed compact fluorescence imager mainly consists
of multi-spectral light emitting diode (LED panel, LED driver
board, CCD camera with IMX273 sensor, imaging lenses, and
filters. Its photo and overall schematic are shown in Figures 1A,B.
The size reduction was achieved by using a customized board-
level driver circuit and all-in-one multi-spectral LED (Cree
XLamp XM-L) that provide high-intensity RGB output in a
small package (5 mm × 5 mm). Each package contains 625
(± 5), 528 (± 8), and 458 (± 8) nm LED diodes and each
of them can be controlled independently. A total of 12 RGB
LEDs are connected in series and arranged in the groups
of 3 on 4 LED blocks. Individual LED block was tilted by
30 degrees for better illumination. RGB color channels are
controlled by three independent LED drivers (AP8802H, Diodes
Incorporated). In this study, the LED was operated in PAM mode
with different widths and amplitudes of pulse light to achieve
dynamic illumination (Schreiber et al., 1986). The dimming of
LEDs was adjusted by the 0–5 V analog output signal from the
data acquisition (DAQ) card (USB-6003, NI). A board level mono
color charge-coupled device (CCD) camera (A15S, Alkeria) was
fixed in the center and employed as an image detector, together
with an imaging lens and 695 nm long-pass filter (LPF). The
working distance is adjustable from 25 mm to infinity and the
resolution is 1,088× 1,456.

Fluorescence Data Acquisition and
Processing
The device provides two operating modes, which can be used
to monitor the PSA and measure anthocyanin content, non-
invasively and continuously. Under PSA monitoring mode, the
measuring light (ML), saturation pulse (SP), and actinic light
(AL) in blue (465 nm) with different intensity and period are
shined at a specific sequence. The modulation of various LED
beams was controlled by analog output from DAQ card with
different pulse widths and voltages. ML is a weak and short
pulse used to measure the minimal fluorescence without causing
any photosynthesis. It was set to be 1 ms with 3 s pulse
interval and < 1 µmol photons m−2s−1. SP is a strong pulse
that makes all photosystem II reaction centers closed, which is
used to determine the maximal fluorescence yield. It was set
at 200 ms with intensity of > 3,000 µmol photons m−2s−1.
AL refers to the continuous light to drive the photosynthetic
activity with intensity of ∼300 µmol photons m−2s−1. The
illumination sequence of different pulses and the corresponding
camera shutter signal are shown in Figure 1C. After 3-h dark
adaption, the ML was applied to measure minimal fluorescence
F0 pixel-wisely, followed by a SP to get maximal fluorescence Fm.
Then, 5 MLs were shined to measure the fluorescence response
after SP. Note that the number of MLs is adjustable. The AL
was turned on after that and together with sequential MLs and
SPs, steady state fluorescence F (after photosynthesis is stable)
and maximal fluorescence after light adaption Fm’ were obtained.
The camera shutter was fixed at 980 µs to acquire the images
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FIGURE 1 | (A) Photograph of the developed compact fluorescence imager. Side view and front view (inset). (B) System diagram and inner structure of fluorescence
imager. DAQ, data acquisition. (C) Timing diagram of light emitting diode (LED) modulation and camera shutter control signals for photosynthetic activity monitoring
with blue LEDs. ML, measuring light; SP, saturation pulse; AL, actinic light; TTL, transistor–transistor logic. Note that the timing diagram is for illustration purpose
only. The pulse widths and amplitudes are not presented in right scale due to limited space.

at the end of ML and SP. Fluorescence images were saved real-
time for post-processing. The maximum efficiency and operating
efficiency of photosystem II (PSII) for each pixel can be calculated
as (Kitajima and Butler, 1975; Genty et al., 1989):

Fv/Fm =
Fm − F0

Fm
(1)

φPSII =
F
′

m − F
F′m

(2)

For anthocyanin measurement, the green (528 nm) and red
(625 nm) LEDs were shined sequentially with 10 ms pulse width
and 1 s interval. The illumination intensity for both colors were
adjusted and measured by a commercial photoactive radiation

(PAR) meter (Apogee SQ-500) to ensure the same PAR output
according to photosynthetic photon flux (Barnes et al., 1993).
Anthocyanins are usually located in the epidermis of plant
leaves to absorb light and protect plants from harmful radiation
(Hughes et al., 2007; Zhu et al., 2018). The green and red LED
induced images were acquired at the steady state. Thus, based
on chlorophyll screening effect and Beer-Lambert Law, the pixel-
wise anthocyanin index was estimated by the following formula
(Agati et al., 2007):

Anth_Index = log
(

F625

F528

)
(3)

where F625 and F528 are steady state fluorescence images excited
by red and green LEDs.
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Plant Preparation for Photosynthetic
Activity Measurement
Drought treatment was planned for PSA monitoring. Lettuce
seeds (Lactuca sativa var. Little Gem) were surface sterilized
using a 10% bleach solution containing Triton X-100, and then
plated on Murashige and Skoog (1962) basal media with 1%
agar. Plants were germinated and grown in a growth chamber
at 22◦C under 24 h continuous light and ∼90 µmol m−2 s−1

light intensity. After 4 days, lettuce seedlings were transferred to
soil containing a 10:1 ratio of BVB peatmoss (BVB substrates,
Netherlands) and sand. Plants were grown at 22 ◦C under a
16 h light/8 h dark cycle, ∼150 µmol m−2 s−1 light intensity,
and 70% relative humidity. Before drought treatment, all plants
were watered daily to keep the soil wet. When the plants were
23 days old, watering was withheld. Then, 64 equally sized
lettuce plants were randomly divided into control and drought
groups. At days 3 and 5 after the start of drought treatment,
water was added to control plants (till soil was saturated with
water), and relevant non-invasive PSA measurements were taken
in the afternoon about 4–6 h after watering. On day 3, 16
plants of each group were measured. The same procedure was
repeated on day 5 and the remaining 32 plants of the two
groups were measured. The whole process is illustrated in
Figure 2A.

Biochemical Analysis for Anthocyanin
Content
For anthocyanin measurement, mixed salad leaves (Farmers’
Pick) were purchased from a supermarket. Then, 22 leaves
including 5 green, 12 red, and 5 intermediate Batavia leaves
(Supplementary Figure 1) were measured non-invasively
by the developed fluorescence imager. Following non-
invasive measurements, the biochemical quantification of
total anthocyanins was carried out. The anthocyanin extraction
was based on the procedure described by Neff and Chory
(1998). The fresh weights of each sample were measured.
Samples were placed in microfuge tubes and snap frozen in
liquid nitrogen, then ground using a mortar and pestle. The
extraction protocol is designed as follows where the volumes
described in the following steps (except microplate reader
measurements) were used for every 100 mg of fresh weight
measured (total volumes were scaled according to the fresh
weight of each sample). After grinding plant samples, 300 µl
of methanol (containing 1% HCl) was added. Samples were
incubated overnight in a dark refrigerator. On the next day,
200 µl water was added to each tube, followed by 500 µl
chloroform. Then, samples were spun down in a centrifuge at
21,000 × g for 5 min. Furthermore, 400 µl of the supernatant
(top methanol and water) phase was transferred into a new
microfuge tube. Another 400 µl of 60% methanol (containing 1%
HCl):40% water solution was added into the new microfuge tube.
Two replicates of 200 µl per sample were pipetted in a 96-well
microplate. Total anthocyanins were determined by measuring
the A530 and A657 using a Spark multimode microplate reader
(Tecan, Switzerland). Total anthocyanin content of the entire
leaf sample in relative units was calculated based on the formula

in Laby et al. (2000), except that the fresh weight was not
divided:

Total anthocyanins = [OD530 − (0.25 × OD657)]

× total extraction volume (mL) (4)

Statistical Analysis
For the obtained 8PSII and Fv/Fm fluorescence images, 5,000
pixels out of the non-zero pixels (effective pixels) for each
plant were randomly selected and averaged. Background pixels
with zero values were excluded. Then, the mean fluorescence
intensities of the 16 plants in each group at days 3 and 5 were
plotted in boxplots. The mean values and standard deviations
(SDs) are calculated over the 16 plants for each group at each
time point and summarized in Supplementary Table 1. The
box was defined by the minimum, 25th percentile, median, 75th
percentile, and the maximum of pixel intensities. Difference
between the means of drought and control plants was compared
by two-tail Student’s t-test using Python 3.7, SciPy toolbox.

Total anthocyanin index was calculated as the sum of
every pixel’s value of anthocyanin image. Then, Random
sample consensus (RANSAC), a robust regression algorithm was
executed in Python to determine the correlation between non-
invasively measured total anthocyanin index and destructive
biochemical analysis result, as described in Equation 4. RANSAC
can automatically exclude outliers during regression to enhance
the overall predication accuracy. Data points whose residuals
are out of the threshold (median absolute deviation (MAD) by
default) are classified as outliers.

RESULTS

High Throughput Plant Photosynthetic
Activity Monitoring Under Drought
Treatment
During PSA measurement, blue output from RGB LEDs was
triggered and the fluorescence imager was fixed on the top
of plants with fully opened aperture. The working distance
was adjusted to ∼20 cm with the field of view (FOV) of ∼
23 cm × 17 cm throughout the experiment to cover most part
of the plants. The acquired series of fluorescence images were
calculated pixel-wise based on Equations 1, 2 to obtain 8PSII and
Fv/Fm images on days 3 and 5. Representative images are shown
in Figures 2B,C and the remaining images are provided in the
Supplementary Figures 2, 3. From the images, the difference
between control and drought groups can be clearly seen. At
day 3, control group fluorescence images showed slightly higher
values than drought group, especially for Fv/Fm. The difference
between treatments became more pronounced at day 5. To
better quantify these differences, statistical analysis mentioned
in the section “Statistical Analysis” was performed and result
is shown in Figure 2D and Supplementary Table 1. It can be
calculated that at day 3, the 8PSII and Fv/Fm mean values of
control group are 0.46 and 0.61% higher than drought group,
respectively. For 8PSII , the value of p is 0.7 indicating that there
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FIGURE 2 | (A) Plants drought treatment for photosynthetic activity measurement. Examples of (B) day 3 and (C) day 5 fluorescence images of 8PSII and Fv/Fm.
C represents for control group and D represents for drought group. The scale bar represents 5 cm. (D) Boxplots: mean values of 5,000 effective pixels randomly
selected from 8PSII and Fv/Fm images of the 16 plants in drought and control groups at days 3 and 5. Box is defined by 25th, 50th, and 75th percentiles. Top and
bottom bars are maximum and minimum pixel intensities. Numbers below are mean values ± standard deviations (SDs). Student’s t-test were conducted to
compare the difference of drought and control groups based on the values of p (n = 16, ns: p > 0.05, ∗p < 0.05, ∗∗∗∗p < 0.0001).
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is no statistically significant difference between the two groups.
Nevertheless, Fv/Fm appears to be a better indicator to detect
plant stress at early stage, since p < 0.05 showing the difference
between two groups is statistically significant. At day 5, mean
values of 8PSII and Fv/Fm increased by 5.3 and 0.96% for control
group but decreased by 9.1 and 2.6% for drought group, with
respect to day 3. 8PSII and Fv/Fm of control group are 16.4
and 4.3% higher than drought group. Moreover, the values of
p are almost 0 indicating that the stressed plants can be well
distinguished at day 5 either by 8PSII or Fv/Fm. It is also worth
noting that the spread, interquartile range (IQR), and SD of
drought group at day 5 are larger than those in the control group,
indicating that higher photosynthetic heterogeneity is present in
the stressed plants. Successful identification of such heterogeneity
by fluorescence imaging can assist in predicting plant response to
environment (Bresson et al., 2015).

Unlike point sensors, which can only provide conventional
photosynthetic parameters, such as 8PSII and Fv/Fm etc., the
homemade fluorescence imager can simultaneously provide
morphological information to monitor plant canopy cover size
using the single device, which is useful in studying the effect of
stress on crop yields (Osborne, 2016; Anda et al., 2021). Since
the whole plants’ canopies were imaged in the PSA experiment,
the size can be easily quantified from any of the corresponding
fluorescence images as an additional parameter. To estimate the
plant size, we counted the number of effective pixels (non-zero) of
Fv/Fm images for individual plant, and are presented in Figure 3.
The mean and SDs are summarized in Supplementary Table 2.
At day 3 when water was added to the control group, the effective
numbers of pixels of Fv/Fm images is 18.1% higher for the control
group, based on their mean values. The value of p of these two
groups are 0.009. At day 5, the significant difference between
drought and control groups can be seen. By counting the leaf
area in Fv/Fm images, the differences in mean effective pixels is
∼154%. The Student’s t-test of drought and control groups gave
p < 0.0001 for Fv/Fm images. Moreover, stressed plants decreased
41% in canopy size while control plants grew > 27% from
day 3–5, according to Fv/Fm effective pixels. The preliminary
result proved that the fluorescence imager can provide both
photosynthetic and morphological parameters simultaneously to
monitor the plant condition, which is an advantage over normal
cameras or point sensors.

Non-invasive Anthocyanin Measurement
vs. Biochemical Analysis
A non-invasive anthocyanin measurement was conducted using
red and green output from RGB LEDs as excitations. Working
distance was adjusted to be ∼9 cm in this experiment and the
corresponding FOV (8.5 cm × 6 cm) was enough to cover the
entire leaf sample. Figure 4 shows the examples of non-invasive
anthocyanin measurement done by the developed fluorescence
imager. The first row shows photos taken by mobile phone
camera as a reference. The second and third rows are the
fluorescence images generated by 528 and 625 nm illumination,
respectively. It should be noted that F528 and F625 are shown
using the same colormap (viridis) and dynamic range for direct

FIGURE 3 | Violin plots of effective pixel numbers of Fv/Fm images for drought
and control plants at days 3 and 5 (∗∗p < 0.01, ∗∗∗∗p < 0.0001).
Mean ± SDs are shown.

visualization and comparison. The anthocyanin distribution
images calculated from F528 and F625 based on Equation 3 are
drawn in Python BuPu colormap and shown in the last row.
It can be clearly seen that for red Batavia, F528 is much lower
than F625 resulting in the higher anthocyanin index. This is
because anthocyanins absorb green light while transmits red
light. More anthocyanins distributed in epidermis leads to the
stronger attenuation of green light (Agati et al., 2007). Therefore,
the amount of 528 nm photons that reached the mesophyll to
excite chlorophyll fluorescence decreases. On the contrary, green
Batavia leaf with extremely low or no anthocyanin content shows
smaller difference between F528 and F625, since less green light
is absorbed by the epidermis. The amount of red and green
photons passing through epidermis to excite chlorophyll are
similar, resulting in lower anthocyanin index, as expected. It can
be considered that the anthocyanin index of green Batavia leaf
is much lower than red one for every pixel, which is closer to
the background signal. Hence, it looks light-colored and even
“disappeared” in the anthocyanin distribution plot. Results for
other samples can be found in Supplementary Figures 1, 4–6.

To validate the non-invasive anthocyanin index measurement
using a fluorescence imager, anthocyanin content from the leaf
extracts was quantitated and correlated using a biochemical
method. Results from biochemical measurements are presented
in Supplementary Table 3. The regression and fitting were
performed as described in section “Statistical Analysis.” The
correlation results of destructive biochemical analysis and
anthocyanin index are shown in Figure 5. Despite two outliers
(sample 15 and 18) were spotted, the final coefficients of
determination R2 are 0.8404 and 0.8420, respectively, indicating
an excellent linear correlation and validating the effectiveness and
accuracy of our compact fluorescence imager in the non-invasive
anthocyanin measurement.
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FIGURE 4 | Representative images of the non-invasive anthocyanin measurement of green and red Batavia leaves. First row: the photos of sample leaves as
reference. Second row and third rows: fluorescence images excited by 528 and 625 nm. Last row: the images of anthocyanin index (ANTH) which were calculated
pixel-wisely from F528 and F625 based on Equation 3. The scale bar represents 1 cm.

DISCUSSION

Our compact handheld fluorescence imager realized the non-
invasive monitoring and quantification of PSA and anthocyanin
content in plants and leaves, emphasizing its multifunctionality.
First, with a series of blue pulse illuminations under PSA mode,
the home-built fluorescence imager was able to continuously
acquire fluorescence images and form fluorescence induction
kinetic curves (Supplementary Figure 7), which reflect the plant

FIGURE 5 | Correlation between the sum of pixel-wise anthocyanin index
measured non-invasively by developed fluorescence imager (total anthocyanin
index) and total anthocyanin content extracted from whole leaf. The
biochemically measured anthocyanin content is expressed in arbitrary units.
Data falling in the shaded area [residuals within median absolute deviations
(MAD)] are classified as inliers.

transient response to the ambient light and energy transfer
efficiencies. 8PSII and Fv/Fm values were used to identify
plant stress in drought experiment that showed similar values
and trend as reported before (Wang et al., 2018; Shin et al.,
2020). Apart from 8PSII and Fv/Fm demonstrated in this
work, more photochemical and non-photochemical quenching
parameters can be also calculated from the curve (Maxwell
and Johnson, 2000) that will be carried out in the planned
future work. In addition, we demonstrated that plant canopy
cover can be calculated from fluorescence images, so that both
photosynthetic and morphological parameters can be obtained
simultaneously, which makes it superior to normal cameras and
fluorescence point sensors.

In addition, conventional destructive anthocyanin
quantification by the biochemical analysis requires tedious
procedures, which is time consuming and manpower intense.
Our fluorescence imager with alternate red and green
illuminations, can display anthocyanin content distribution
fast and non-invasively in the FOV, for plant maturity stage
determination (Ahmadiani et al., 2014) or quality evaluation.
Zivcak et al. (2017) named fluorescence signal log(F635/F516)
as ANTH index and they conducted a study to non-invasively
quantify the total flavonoid content in lettuce using ANTH index
measured by a single-point detector. They correlated it with
total flavonoids measured by an aluminum chloride colorimetric
method with quercetin calibration and obtained a coefficient
of determination of R2

= 0.5356. In our study, log(F625/F528)
was correlated with total anthocyanin content, the correlation
was significantly improved to R2

= 0.84. Better correlation may
owe to anthocyanin’s dominant absorption of red light among
flavonoids. Additionally, thanks to its imaging capability, the
entire leaf could be covered. Every pixel of leaf was counted,
instead of a rough estimation based on a small area average.
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Supplementary Figure 8 shows correlation between average
anthocyanin index and anthocyanin content per gram fresh
weight (total anthocyanins/FW), where average anthocyanin
index was calculated as the mean value of randomly selected
1,000 non-zero pixels for each sample. In this case, a power
function was used for fitting, according to Agati et al. (2007)
and achieved R2

= 0.8420. However, average anthocyanin index
obtained by optical method is area based and expressed per pixel.
On the other hand, biochemically-measured anthocyanin content
is normalized to leaf weight and expressed per gram fresh weight.
Hence, this correlation is the lack of validity without considering
leaf fresh weight per area, which is not recommended. Overall,
the imaging capability of our device will contribute to high
throughput screening, detailed spatial heterogeneity detection
and high spatial resolution etc., bringing in more convenience
and possibilities for plant phenotyping and quality checks.

However, there are a few aspects that need to be considered
in the operation of the system. First, the PAR illumination is
only uniform at a certain distance, meaning that the leaves at
different heights may undergo different illumination intensity.
However, it will not affect the final result, since both PSA
and anthocyanin measurement are based on the relative ratio
or dynamic change of fluorescence signals during different
illuminations. Second, for anthocyanin measurement, Equation 3
is only valid when anthocyanins are distributed in the epidermis
of plants. Moreover, calibration curves may be different for
different species. This could be addressed by calibrating the
system with large datasets, which will be validated in our ongoing
study in an indoor vertical farm. The purpose of this study
was to introduce the tremendous capability of the system. In
the future applications, the calibration and limit of detection
need to be carried out and determined accordingly. Last, in the
current study, a PC was used for real-time data transfer and
processing. In future, powerful microcontroller and LCD screen
will be incorporated for real-time on-board image processing and
display, to make the fluorescence imager a stand-alone device
toward commercialization.

CONCLUSION

In conclusion, we have developed a multifunctional compact
handheld fluorescence imager for non-invasive and high
throughput plant phenotyping. Preliminary PSA measurement
was conducted and plants under drought stress were
successfully differentiated by photosynthetic and morphological

indicators. Anthocyanin content in Batavia lettuce leaves was
quantified non-invasively and showed good correlation with
biochemical analysis. Being different from commercially available
fluorescence imaging and sensing devices, our fluorescence
imager utilizes all-in-one RGB LEDs, a dedicated driver
circuit, and a method to achieve multifunction capability and
compact size. To the best of our knowledge, it is the first-
of-its-kind compact fluorescence imaging device for both the
non-invasive PSA monitoring and anthocyanin distribution
measurement. These features will help to significantly reduce
manpower and cost in various applications to improve
agricultural efficiency. We envision that this system has great
potential in modern agriculture for both in-field and indoor
farm settings.
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Plant breeders, scientists, and commercial producers commonly use growth rate as an 
integrated signal of crop productivity and stress. Plant growth monitoring is often done 
destructively via growth rate estimation by harvesting plants at different growth stages 
and simply weighing each individual plant. Within plant breeding and research applications, 
and more recently in commercial applications, non-destructive growth monitoring is done 
using computer vision to segment plants in images from the background, either in 2D or 
3D, and relating these image-based features to destructive biomass measurements. 
Recent advancements in machine learning have improved image-based localization and 
detection of plants, but such techniques are not well suited to make biomass predictions 
when there is significant self-occlusion or occlusion from neighboring plants, such as 
those encountered under leafy green production in controlled environment agriculture. To 
enable prediction of plant biomass under occluded growing conditions, we develop an 
end-to-end deep learning approach that directly predicts lettuce plant biomass from color 
and depth image data as provided by a low cost and commercially available sensor. 
We test the performance of the proposed deep neural network for lettuce production, 
observing a mean prediction error of 7.3% on a comprehensive test dataset of 864 
individuals and substantially outperforming previous work on plant biomass estimation. 
The modeling approach is robust to the busy and occluded scenes often found in 
commercial leafy green production and requires only measured mass values for training. 
We then demonstrate that this level of prediction accuracy allows for rapid, non-destructive 
detection of changes in biomass accumulation due to experimentally induced stress 
induction in as little as 2 days. Using this method growers may observe and react to 
changes in plant-environment interactions in near real time. Moreover, we expect that 
such a sensitive technique for non-destructive biomass estimation will enable novel 
research and breeding of improved productivity and yield in response to stress.

Keywords: controlled environment agriculture, deep learning, biomass, monitoring, lettuce, computer vision, 
artificial intelligence, phenotyping algorithms
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INTRODUCTION

Plant growth is a foundational biological process that underlies 
both agricultural and ecological productivity. Biomass 
accumulation is the final product of photosynthetic CO2 
assimilation and its rate is closely tied to traits such as productivity 
and stress response (Muchow, 1988; Scully and Wallace, 1990). 
Growth rate is linked to crop productivity and yield for grain, 
fruit, and vegetable crops. Vegetative crop growth rate, for 
example, is a strong predictor of final grain production in 
rice, soybean, wheat, and maize (Egli and Zhen-wen, 1991; 
Karimi and Siddique, 1991; Takai et  al., 2006; Egli, 2019). 
Among leafy vegetables, growth rate is even more directly tied 
to yield as the leaves, and often stems, are harvested as the 
final product. Due to its close link to yield, growth rate is 
commonly measured in response to limitation and excess 
application of inputs such as light (Zhou et al., 2019), temperature 
(Zhou et  al., 2019), nutrients (Sapkota et  al., 2019), and water 
(Gallardo et  al., 1996). Consequently, growth rate in response 
to variable inputs provides an optimization criterion for breeding 
higher input efficiency crops (e.g., nitrogen and water use 
efficiency; Zotarelli et  al., 2009). Beyond breeding, growth rate 
monitoring provides commercial agricultural producers a means 
for detecting stress and understanding growth over time, both 
of which can lead to more precise planning and optimization 
of management practices (Kacira et  al., 2005). Thus, plant 
growth monitoring is a critical tool for breeders, scientists, 
and commercial producers in their efforts to manage and 
develop more productive and stress tolerant crops.

The most direct method of determining plant biomass growth 
is via destructive sampling, which requires harvesting and 
weighing each individual (Catchpole and Wheeler, 1992). The 
destructive nature of this method reduces its utility in breeding 
and commercial settings as it often necessitates prohibitive 
numbers of individuals to generate the representative samples 
required for daily or sub-daily population biomass estimates. 
On the other hand, non-destructive biomass estimation allows 
for continuous measurement of individual plants which 
substantially reduces plant number requirements for effective 
experimentation and monitoring. Hand-gathered allometric 
methods that relate volume and height data to biomass are 
time-consuming, laborious, and may generalize poorly (Pottier 
and Jabot, 2017). The recent development of proximal and 
remote sensing-based approaches offers the promise of lower 
data acquisition cost and increased throughput and accuracy. 
Such methods generally involve computer vision-based analysis 
of color (Jung et  al., 2015; Jiang et  al., 2018) and 3D data 
modalities (Mortensen et  al., 2018; Hu et  al., 2018; Jin et  al., 
2020). Data is typically acquired from one or more viewpoints 
using color sensors, RGB-D cameras, or LiDAR systems. Then, 
plant pixels (or in the case of 3D data, voxels or 3D points) 
are segmented from the background via either classical or 
machine learning methods (Jung et al., 2015; Jiang et al., 2018; 
Mortensen et  al., 2018; Loresco et  al., 2019; Jin et  al., 2020). 
The segmented data is used to generate features that can serve 
as predictors of biomass such as pixel counts (Jiang et  al., 
2018), 3D volume (Mortensen et  al., 2018; Jin et  al., 2020), 

plant height (Hu et  al., 2018; Jin et  al., 2020), projected leaf 
area (Mortensen et  al., 2018; Jin et  al., 2020), and other color 
and structural features (Hu et  al., 2018; Jin et  al., 2020). More 
recently, promising results have been achieved with deep learning 
methods which do not rely on initial scene segmentation, but 
instead estimate biomass by directly mapping input images to 
biomass (Zhang et  al., 2020).

Of these prior works, most rely on idealized scene conditions 
containing isolated individuals within field-of-view of the 
image. Only the methods of Jin et  al. (2020) and Mortensen 
et al. (2018) are designed to estimate individual plant biomass 
within scenes containing the dense plant canopies typical of 
commercial agricultural settings. In commercial agriculture, 
high planting densities result in neighboring plants that create 
occlusions with each other, significantly increasing the 
complexity of the segmentation task. Furthermore, even with 
an effective segmentation algorithm, occlusions can cause 
large holes within the resulting segmented plant pixels, 
potentially reducing the accuracy of calculated biomass 
predictors. These problems are greatly exacerbated in leafy 
green production, where canopies can become near continuous 
(Figures 1A–C). While both works developed effective plant-
from-plant segmentation schemes, neither tested their methods 
on extremely high density continuous canopies (Mortensen 
et  al., 2018; Jin et  al., 2020). Further, both methods rely to 
some degree on human input, greatly reducing the throughput 
and advantage of remote sensing based biomass estimation.

To solve the challenge of accurate and autonomous individual 
plant biomass estimation within high density canopies, 
we  propose an end-to-end deep learning approach. Our 
end-to-end approach eliminates the need to perform explicit 
individual plant segmentation and instead allows a deep 
convolutional neural network (DCNN) to implicitly perform 
segmentation by learning a mapping from input image space 
to individual plant biomass. Motivated by previous biomass 
estimation work that relies on 3D data as well as the ability 
of DCNNs to jointly learn from color and depth imagery 
(Gupta et  al., 2014; Eitel et  al., 2015; Ophoff et  al., 2019; Ward 
et  al., 2019), our model incorporates both color and depth 
data as provided by an inexpensive and commercially available 
stereovision RGB-D camera. We  hypothesize that DCNNs are 
well suited to understanding not only plant structure and size, 
but the influence of neighboring plant occlusion on the resulting 
view presented in overhead imagery of dense plant canopies.

In this work we develop a novel approach to non-destructively 
monitor crops by estimating the fresh biomass of individual 
lettuce plants grown in a typical commercial hydroponic cropping 
system from a proximal overhead viewpoint. By combining RGB-D 
sensing with a deep learning regression approach, we demonstrate 
state-of-the-art performance for quantifying biomass across the 
entire range of the lettuce growth cycle, from transplant (< 1 g) 
through maturity (> 30 g). Our approach and results not only 
have implications for leaf lettuce but can more broadly be applied 
to estimate biomass and other phenotypic traits of crops grown 
in occluded environments. To validate our model’s ability to 
function as a crop monitoring system, we  perform an additional 
experiment which subjects plants to various heterogeneously 
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applied nutrient stresses. This rigorously tests the model’s ability 
to capture varying trends in growth between neighboring individuals 
and shows that monitoring growth dynamics at the individual 
plant scale is possible under non-idealized cropping conditions.

MATERIALS AND METHODS

Dataset for Deep Learning Model Creation
Our dataset used in model creation is composed of pairs of 
overhead images and biomass values of the baby leaf lettuce 
cultivar Lactuca sativa var. Powerhouse grown in a high density 
hydroponic cropping system. Every image was centered upon 
a unique individual lettuce plant and the associated biomass 
value was the measured fresh above ground biomass of the 
corresponding center plant in the image.

Cultivation System
Plants used in this work were grown indoors within a laboratory 
facility at the University of California, Davis campus. Plants 
were grown in continuously recirculating nutrient film technique 
hydroponic systems (SananBio, Xiamen, Fujian, China; Figure 1A). 
The systems were composed of four vertical tiers, with each 
tier holding two growing trays. One growing tray contained 54 
plants arranged in a nine by five grid pattern with an approximate 
spacing of three inches. Seeds were germinated in one-inch 
rockwool cubes and transplanted into the SananBio system 
growing trays after first emergence of true leaves. Plants were 
grown until imaging and destructive measurement of fresh 
biomass was performed. Each rockwool cube contains the plant’s 
root system which is free to grow beyond the cube into a 
drainage channel. Photosynthetic photon flux was maintained 
continuously at an average of 135 μmol·s−1·m−2 over the canopy 
area. Temperature was maintained between 72 and 85°F.

Imaging System
The chosen imaging system utilized an Intel RealSense d435i 
(Intel Corp., Santa Clara, CA, United  States) camera mounted 

vertically over the imaging bay at a height of 37 cm (Figures 1C,D). 
It was actuated to positions directly above each plant by a 
stepper motor and belt driven positioning system. While the 
theoretical tolerances of the positioning system are on the order 
of 1 mm, inaccuracies due to deformations of the plastic trays 
and alignment with the imaging system resulted in observed 
positional tolerances of approximately 1 cm. Images were always 
taken while the camera was not in motion. Data collected 
consisted of an 848 pixel by 480 pixel 8-bit color RGB image 
as well as an associated depth image. The depth image is a 
2D image, where each pixel represents the distance between 
the sensor and the in-scene object with a precision of 0.1 mm. 
No filtering was applied to the depth images. We  chose to 
utilize a depth to color image alignment scheme with the Intel 
RealSense 435i, which involves a transformation of the depth 
image centered at one monochromatic sensor origin to the 
designated color sensor origin. The result was a depth image 
aligned to the color image (i.e., they share a coordinate system).

Data Collection
Data collection was performed on single trays, which correspond 
to a 54 plant subsample of the growth trial. During each data 
collection event a tray was removed from the cultivation system 
and placed under the imaging system. The illumination within 
the imaging system was maintained at approximately 100 lux 
and 6,500 K. Immediately after imaging, fresh above ground 
biomass was recorded. This was accomplished by severing the 
plants directly below the cotyledon and weighing them to a 
precision of 0.001 g or 0.1 g, depending upon the plant’s size 
and ability to fit within an analytical balance chamber. Each 
data collection event therefore yielded 54 RGB images, 54 
aligned depth images, and 54 plant biomass values.

Growth Trials for Destructive Biomass 
Measurements
Six growth cycles were conducted sequentially over a 5 months 
period. Each cycle featured a varying number of total trays 

A B C D E

FIGURE 1 | (A,B) The SananBio vertical cultivation system with individual lettuce plants at various growth stages. (C,D) The 2-axis imaging system equipped with 
an RGB-depth camera that was used to image lettuce plants and weigh destructively weigh individual plant mass values. (E) Our modified top fed drip system for 
growth monitoring under controlled nutrient stress.
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and plant count, although individual trays always contained 
a full 54 plants. During each growth cycle, data collection 
events started 1 week after transplant at a rate of three to four 
events per week and continued until all trays were harvested. 
This resulted in plants with a harvest date between 7–30 days 
after transplant. A total of 3,888 plants were harvested and 
their biomass values destructively measured.

Non-destructive Growth Monitoring in 
Response to Stress Induction
After achieving satisfactory biomass prediction accuracy, 
we  implemented the model in a plant monitoring application 
to track growth over time from transplant to harvest. 
We  modified our previous hydroponic system from nutrient 
film technique, where every plant received the same fertigation 
solution, to a top-fed drain to waste system (Figure  1E). 
This allows for the application of unique fertigation solution 
to four subsets of plants in a random spatial arrangement. 
Each plant site was fertigated by a single 0.5 gallon per 
hour pressure compensating emitter for 1 min every 7 h. Four 
separate pumps supply the system, each connected to drip 
lines arranged in an alternating pattern along each axis. By 
supplying each pump with a certain fertigation solution, 
we can dynamically select the fertigation solution experienced 
by any particular subset of the plants. The entire growing 
system was canted to facilitate draining and reduce the uptake 
of shared leachate by plant roots. We  maintain equivalent 
lighting and transplanting conditions as the original dataset.

Experimental Design
Our experiment consisted of 108 plants that were completely 
randomly distributed into four groups of 27 plants (n = 27; 
Figure  1E). Each group was subjected to a different schedule 
of nutrient stress inductions and reductions designed to 
dynamically modify the growth rate of each treatment group 
over time (Table 1). Since the plants were grown hydroponically, 
nutrient stress was induced by providing pure distilled water 
through the irrigation system. To return to non-stress conditions, 
fertigation was resumed with half strength Hoagland solution. 
We  composed a schedule of nutrient stress applications for 
each of three treatments and a control (Table  1). For each 
treatment we  indicate the number of days after transplant 
(rounded to the nearest imaging date) that stress conditions 
were induced or reduced. All treatments started with Hoagland 
solution after transplant (Day 0). The “control” treatment receives 
no stress induction and is provided Hoagland solution for the 
entire growth period.

Data Collection
We utilized the same imaging system as in the original model 
training dataset. The only modification made was within our 
software to allow for automated image capture according to a 
set interval. Images were taken every 8 h for the duration of 
the experiment, with each imaging event consisting of 108 
images. This resulted in a sequential representation of plant 
growth composed of 96 images per plant over the 32-day 
experiment (a total of 10, 368 sets of RGB and depth images). 
Imaging of the entire tray of 108 plants required 5 min to complete.

In addition to the collected image data, we measure per-plant 
width (defined as the largest horizontal extent of the plant) 
and height (distance from the top of the growth tray to the 
tallest portion of the plant) at three separate dates (day 12, 
16, and 23 from transplant). These non-destructive measurements 
provide us with some understanding of ground-truth plant 
growth, helping verify that our stress treatments truly induce 
the changes in plant growth that our model illustrates.

Model Detection of Stress Treatments
As the purpose of this work is to evaluate the suitability of 
a deep learning-based biomass estimation model as a crop 
monitoring technique, we evaluate how well the model predictions 
can capture changes in growth induced by controlled nutrient 
stresses applied heterogeneously over time and space. 
We  approach this by examining the per-treatment model 
predicted mass, as well as the derived metrics growth rate 
(GR) and relative growth rate (RGR; Equation 1). For each 
metric we  test for treatment effects by determining when the 
per-treatment means become statistically separable from each 
other over time. Based on our understanding of expected 
treatment effects, we  can utilize the results of our statistical 
tests to determine which growth metrics are the most responsive 
determinants of nutrient stress.

Our test consists of applying Tukey’s HSD test (Tukey, 1949) 
for multiple pairwise comparisons to determine whether the 
treatment means are distinguishable at p  ≤ 0.05 between any 
two treatments. We  calculate this for each growth trait across 
the entire time series. RGR is calculated for each plant within 
a given data collection event by first applying a backwards 
looking moving-average with a window size of 3, followed by 
a gradient based RGR calculation given by Equation 1.

           RGR GR
mt
t

=  with 
−−

=
∆

1t tm m
GR

t  (1)

where mt = moving average biomass at time t and ∆t = difference 
in time between t and t-1 (units are 8 h). Boundary cases in the 
moving average and RGR calculations are dropped.

TABLE 1 | Treatment schedules as begun on particular days (“Solution” = half strength Hoagland solution; “Water” = De-ionized distilled water).

Treatment n Day 0 Day 6 Day 11.7 Day 15.7 Day 15.7

A 27 Solution Water Solution Solution Solution
B 27 Solution Solution Water Water Solution
C 27 Solution Solution Water Solution Water
D (control) 27 Solution Solution Solution Solution Solution

59

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Buxbaum et al. Non-destructive Plant Biomass Monitoring

Frontiers in Plant Science | www.frontiersin.org 5 April 2022 | Volume 13 | Article 758818

RGB-D Regression Network Architecture
Our choice of architecture is modeled from successful work 
in RGB-D object detection and classification utilizing 
feedforward neural networks (Eitel et  al., 2015; Ward et  al., 
2019). We  utilize a dual-branch architecture for each input 
data modality along with feature map fusion (Figure  2). In 
particular, Ophoff et  al. (2019) empirically demonstrated that 
a mid to late fusion architecture performs best for real-time 
object detection when utilizing YOLOv2 as the feature extraction 
network for each branch. We  utilize ResNet-50 for feature 
extraction and retain the final 1,000 × 1 fully connected layer 
from ImageNet’s 1,000 classes while removing the softmax 
activation function. The fully connected layer from each branch 
is then end to end concatenated into a feature vector of 2000 
× 1. This feature vector is passed to the regression head, 
which consists of one fully connected 1,000 × 1 layer and 
one 1 × 1 layer. Rectified linear unit functions are utilized 
as the activation function between all layers besides the final, 
which is simply a linear activation. In testing we  found no 
benefit to increased depth of the regression head. The resulting 
late fusion network can leverage transfer learning with ImageNet 
pretrained weights for fast convergence with our relatively 
small dataset (Figure  2).

Model Loss Function
We train the network to minimize a mean average percent 
error (MAPE) loss function (Equation 2). While known to 
produce biased under estimations in statistical prediction problems, 
in our testing an MAPE loss function resulted in more even 
model performance across the entire range of possible plant 
sizes than either L1 or L2 loss functions. We  speculate that 
this is due to the MAPE loss function driving model learning 
as a function of relative, rather than absolute, difference between 
the model predictions and ground truth. This phenomenon is 
especially pronounced in our dataset, which features a range 
of plant mass values in the order of 300x—from 0.1 g to more 
than 30 g. It should be  noted that we  favor relative error and 
consistent model performance across all plant sizes as it better 
pertains to our goal of utilizing plant mass estimation models 
to inform crop status across the entire growth cycle.
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where n = number of samples, Ai = i-th sample ground truth 
mass, and Fi = i-th predicted mass.

FIGURE 2 | The late fusion multimodal regression network. Depth and RGB data are processed by two separate ResNet50 branches. The output of each branch, 
a 1,000 × 1 layer, are concatenated and then used as input into the regression head, whose final layer produces the biomass prediction.
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Model Input Preprocessing
While our color data may be  utilized directly by the RGB 
branch of the model, the single channel depth data lacks 
the 3-channel dimension expected by the first layer of the 
pre-trained Resnet50 depth branch. Possible solutions of 
adapting non 3-channel input data for use with RGB pre-trained 
networks generally fall into two distinct pre-processing schemes: 
(1) Expanding the third dimension of the input data to 3 
channels or (2) replacing the first layer of the network with 
a new convolutional kernel that expects a different size channel 
dimension. The former solution allows for full retention of 
pre-trained weights, while the second requires a new, untrained 
weight initialization for the first convolutional layer. We  find 
that encoding of the single channel depth input to three 
channel RGB, as proposed by Eitel et  al. (2015), results in 
improved learning compared with other pre-processing schemes 
tested: (1) single channel depth combined with a new, randomly 
initialized first convolutional layer and (2) three times replicated 
depth channel input with pretrained first convolutional layer. 
We  follow a “jet” color scheme that maps the depth output 
of the RealSense camera to RGB color. The depth and 
corresponding color images are linearly normalized to [0, 
1] and maintain their precision via a 32-bit floating-point 
number. Normalization is achieved by first filtering out large 
depth data values corresponding to the non-plant scene, 
defined as any depth value larger than 380 mm (a number 
arrived at by taking into account the camera field of view 
and height from the growing tray). This reduces the range 
of depth values from [0, 12,000] (the maximum distance 
possible in the scene) to [0, 3,800] while maintaining all 
relevant scene information. Reducing the depth data range 
increases the contrast of the resulting RGB mapping. Finally, 
both color and depth images are center cropped to 480 by 
480 pixels.

Model Training Details
The model is implemented using the PyTorch framework 
within Python (Paszke et  al., 2019). Each branch of the 
RGBD network is initialized from modality-specific pre-trained 
weights. This is achieved by first training each branch 
separately as its own model to predict lettuce biomass. Those 
branches are initialized via ImageNet pre-trained weights 
available from the PyTorch’s model zoo and are trained 
with a regression head consisting of a single 1000×1 fully 
connected layer. The regression head is then removed and 
the remaining branch weights used to initialize the weights 
for final fine-tuning of the RGBD model. All relevant training 
parameters are kept consistent across the RGB, depth, and 
RGBD networks.

The training dataset is composed of 2,484 plants, 
corresponding to the remaining data from the validation and 
test sets as described in Section 2.4. (Figure  3A) The weights 
and biases of the network are learned using the AdamW 
optimizer with a weight decay of 0.001. The learning rate is 
set to 0.0001 and is decreased by 50 percent at epochs 20, 
40, 60, 80, and 100. We  use a mini batch size of 16 on a 
single Nvidia Titan RTX GPU. Training is terminated at 

convergence, defined as when no decrease in epoch validation 
loss is observed for 60 continuous epochs.

Training Data Augmentation
We apply regularization by utilizing several problem and data 
appropriate data augmentation schemes at train time; all of 
which were done using PyTorch Torchvision augmentation 
functions (Paszke et  al., 2019). The first is a random, image 
center-based rotation of both depth and color images from 0 
to 360 degrees. We speculate that this is an effective augmentation 
strategy that preserves the input data distribution due to the 
symmetrical nature of lettuce plant growth combined with the 
location of the plant apex at the image center. The second is 
a random manipulation of brightness, contrast, saturation, and 
hue by a factor of 0.5–1.5. The third is a grayscale transformation 
of the color image applied with a probability of 0.1. The second 
and third augmentation schemes are applied to the color input 
image only and serve to reduce model dependency on color. 
The color images in our dataset are not of uniform quality due 
to unaccounted for changes in scene brightness relative to camera 
exposure time. We  choose not to apply similar augmentation 
schemes to the depth data, as the mapped RGB channel distribution 
and intensity values are directly related to scene geometry as 
a result of their encoding from depth information.

Model Selection and Evaluation
For the purpose of model selection, we  created a validation 
set that better represents all possible plant conditions than 
the overall dataset (Figure  3B). This involved sampling from 
the overall dataset such that the validation set achieved a 
more, although not perfectly, uniform distribution across 
biomass values. We  selected eight trays (378 plants) that 
represent harvest times from 14 to 35 days since germination. 
From this distribution, we  subsample 100 individual data 
points via a weighted sampling scheme: biomass values are 
discretized into 35 bins corresponding to 1 g increments, and 
then are sampled by weighing each bin inversely to its count. 
Best performing models were selected based upon the lowest 
loss achieved on the validation dataset at model convergence.

Model evaluation criteria is an important factor for determining 
model performance in regression tasks. Common criterion for 
biomass estimates include MAPE (Equation 2) and root mean 
squared error (RMSE; Equation 3). However, for the problem 
of plant mass estimation, single value summary statistics give 
incomplete insight into model performance as they mask potential 
heteroscedasticity as well as imbalances in dataset distribution. 
The nature of our problem changes significantly over the range 
of biomass values and corresponding stage of development of 
the plants in the scene. Plant structure and size varies significantly 
over time, while larger neighboring plants introduce increasing 
occlusions. Additionally, the end user of such a model may 
have varying use cases and accuracy requirements.
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Where n = number of samples, Ai = i-th sample ground truth 
mass, and Fi = i-th predicted mass.

For these reasons, during model evaluation we  report RMSE 
and MAPE on a per-group basis for ranges of ground truth mass 
values. These groups were chosen based upon the relative levels 
of occlusion experienced by plants of those mass values on average. 
We  present the results of all models evaluated on the unseen 
test dataset. Our test set was composed of 864 plants sourced 
from a single growth cycle not present in either the training or 
validation sets (Figure 3C). Sourcing all test data from a separate 
growth cycle reduces the possibility of overfitting to variations 
in phenotypic expression within the different growth trials.

Model Ablation Study
The rationale for utilizing joint RGB and depth data modalities 
as predictor variables in a biomass estimation model centered on 
three facets: (1) the current state of the art detection and semantic 
segmentation models utilize RGB data, (2) many current biomass 
estimation methods utilize 3D representations, and (3) DCNNs 
can effectively learn jointly from each modality. However, we find 
it worthwhile to further investigate whether the combined data 
modalities truly result in superior predictive performance over 
either modality individually. We  conduct an ablation study which 
tests the ability of each data modality to predict plant biomass. 
In this study, we  present the predictive results of the RGB and 
depth only networks that also form the weights used during the 
initialization of the RGBD network. Each network mirrors the 
RGB-D regression network, with identical training parameters as 
well as input preprocessing, pretraining, and similar regression head.

Model Interpretation via Gradient Class 
Activation Mapping
Intuitively, the problem of individual plant biomass estimation 
requires an understanding of the extent and physical characteristics 
of the plant of interest in the scene, including an approximation 
of any occluded or out of scene portions. Due to the nature of 
our loss function, there is no strict enforcement of localization, 
leaving us unsure as to whether the model is in fact learning 
center plant mass, or simply some other mapping of common 
scene features of the dataset to biomass. This limits our trust in 
the model—and its broader applicability to problems involving 
individual plant mass estimation—by potentially reducing its 

generalizability outside of the dataset distribution. Due to our 
homogenous environmental conditions, our dataset generally features 
scenes of plants of similar size and age. An ability to generalize 
outside of this distribution becomes important when considering 
certain applications of the model, such as growth rate abnormality 
detection where estimation of unlike neighbors may become 
important. While one could answer the question of generalizability 
through extensive testing within a target distribution, we  forgo 
that additional expense and explore the question instead by 
investigating model decision making and predictive behavior. In 
particular, we utilize Gradient Class Activation Mapping (GradCAM; 
Selvaraju et  al., 2016) to explore model localization via the latent 
space as well as examine examples of the success and failure 
modes of the model. GradCAM is a generalization of the class 
activation map method (Zhou et al., 2015) that allows for visualization 
of important latent space features in pixel space. We apply GradCAM 
to the final block of the RGB Resnet50 branch of our RGBD 
network, ignoring the depth branch contribution in favor of 
simplicity in understanding model localization. We  report the 
visualizations of Guided GradCAM for the top five best and worst 
predictions over four different binned ranges of plant mass.

In addition to GradCAM, we  explore the model prediction 
success and failure modes by visually examining the best and 
worst predictions. We  hypothesize that a model that has truly 
learned center plant mass is likely to succeed and fail under 
different scene conditions than a model that has learned an 
unrelated mapping. For instance, the former might succeed 
when the center plant is less occluded, while the latter might 
succeed under scene conditions where plants are relatively 
similar (i.e., median of dataset distribution). Similarly, failure 
modes are likely to differ, such as when the center plant is 
under heavy occlusion, or when the center plant is of greatly 
different size than its neighbors (dataset distribution outlier). 
While this analysis is speculative in nature, we  found it 
worthwhile to publish some best and worst case examples that 
may help illustrate what mapping the model has learned.

RESULTS

Lettuce Image and Biomass Dataset
The resulting dataset contains comprehensive representations 
of the lettuce cultivar ‘Powerhouse’ over its entire life cycle, 

A B C

FIGURE 3 | (A) Training, (B) validation, and (C) test data distributions.
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FIGURE 5 | Examples of the color image data collected (at native resolution) and scene composition for plants at various ages and mass.

totaling 3,888 RGB images, 3,888 aligned depth images, and 
3,888 plant biomass values (Figure 4). Due to its size, a variety 
of phenotypic expressions are present, including variations in 
leaf color from green to dark purple. Some trays also exhibited 
stem elongation, likely a physical response to either shade 
condition or low air temperature.

There are some qualities of the dataset that are worth noting. 
Due to the exponential nature of plant growth, the dataset 
distribution is skewed towards smaller and younger plants 
(Figures 3, 4). Additionally, the plants were grown under well-
watered and adequate nutritional conditions, and therefore the 
dataset contains no representations of plants under water stress 
or severe nutritional stress. A variety of possible environmental 
parameters exist that could result in phenotypic responses that 
are not represented in the dataset.

Lettuce Image Data
In their native resolution of 848 by 480, the images contain 
up to 15 plant sites, although this is reduced to nine plant 
sites at a resized 480 by 480 resolution for model use (Figure 5). 
At larger plant sizes, the scene changes significantly, with far 

fewer plants represented. In fact, the center plant’s full extent 
is often not completely represented in the resized images 
(Figure  5).

The color data were well focused and generally of high 
quality, although issues related to the RealSense camera’s 
automatic exposure algorithm resulted in some over- (low 
contrast, larger average pixel values) and under- (low contrast, 
smaller average pixel values) exposed images. Depth images 
contained some missing pixels due to errors in stereo matching 
due to occlusion and specular effects. The extent of missing 
data was generally greater for larger plants (Figure  5). The 
depth data were not evaluated for absolute measurement accuracy, 
although visualizations of the depth data show good 
representation of the scene despite missing data.

RGBD Model
The model shows strong predictive performance over the entire 
854 plant test set, achieving an RMSE of 1.13 g, a MAPE of 
7.3%, and a Pearson’s correlation coefficient of 0.989 (Figure 6A). 
Some heteroscedasticity can be  observed, and the greatest 
average relative errors occurred on the smallest and largest of 

FIGURE 4 | Biomass accumulation over time for the (A) training and validation and (B) test datasets measured destructively. Each data point represents one or 
more samples harvested at a certain age since germination. Points represent the median value while vertical extent bars indicate 25–75% quantiles.
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plant masses, in addition to some variability in predictive power 
between that ranges (Figure  7).

Model Data Modality Comparison
The RGBD model outperforms both RGB and depth only 
models in MAPE while the RGB model outperforms in RMSE 
(Figures 6B,C). Among the smallest plants, RGBD significantly 
outperforms each modality separately while the RGB and depth 
models achieve very similar relative and absolute error (Figure 7). 
As the plants increase in mass, the RGBD model generally 
outperforms the RGB and depth models while RGB outperforms 

depth. However, for plants between 10–15 g and 15–25 g, RGB 
shows comparable performance and even outperforms the 
combined RGBD modality in both MAPE and RMSE metrics.

Model Prediction Performance 
Examination
Among the best predictions, the model shows strong localization 
of the center plant (Figure  8). This tends to hold true across 
plant sizes, with important activations indicated along occlusion 
boundaries for larger plants. We  notice a similar outcome 
among the worst predictions, although some cases show 
activations that are not centered on the center plant or appear 
to contain additional activations of neighboring plants that 
are not part of an occlusion boundary.

Examining the best and worst case model predictions reveals 
a nuanced relationship between prediction error and scene 
composition. We  notice that in comparison to the high error 
predictions, low error predictions generally involve less occluded 
scenes. However, some examples of high error scenes show 
similar levels of occlusion to their low error counterparts, 
especially among examples of bins [2, 5] (Figure  8). In this 
bin, the worst performing cases do not appear contain stronger 
occlusion, but rather the center plant is significantly smaller 
than its neighbors.

Model Predicted Biomass Response to 
Stress Treatments
The control (Treatment D) exhibits an expected sigmoidal 
biomass accumulation pattern approaching an asymptote after 
day 30 (Figure 9). All other treatments resulted in less biomass 
accumulation over the experimental period compared with 
the control.

Starting after the stress induction of treatment A on day 
6, the mean biomass accumulation decreases. The mean 
separation (as calculated via Tukey HSD test) between treatment 
A and the other treatments occurs on day 9.3, approximately 
3.3 days after the stress induction. No mean separation occurs 
before this day. At day 11.7, treatment A begins to receive 
nutrient solution, removing the nutrient stress and increasing 
biomass accumulation until day 24.3. Here, a malfunction 

A B C

FIGURE 6 | Predicted vs. observed mass values for the test set for each model. (A) RGBD, (B) RGB, and (C) Depth.

FIGURE 7 | Binned evaluation metrics for the test set.
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A E

B F

C G

D H

FIGURE 8 | Sample best (A–D) and worst (E–H) predictions from the test set along with GradCam output for varying mass ranges. Each represents a mass range. 
Starting from the top are [0, 2] (A,E), [2, 5] (B,F), [5, 10] (C,G), and [10, 25] (D,H).

of the irrigation system caused extensive wilting in some of 
the individuals within the treatment. This was remediated 
on day 26, and recovery can be  seen at that time in the 
wilted plants (Supplementary Figure S1), as well is in the 
biomass predictions (Figure  9). After this recovery, the 
confidence interval associated with treatment A mean biomass 
estimation increases dramatically.

The response of biomass accumulation to the nutrient stress 
applied simultaneously to treatments B and C on day 11.7 is 
evident by their decrease in biomass accumulation compared 
with treatment D (control). There is a delay in the separation 
of the means between treatments C and D of 2.3 days after 
stress induction (day 14), and of 3 days between treatments 
B and D (day 14.7). No mean separation between these 
treatments occurs before day 14.

The response to the nutrient stress reduction applied to 
treatment C on day 15.7 is evident in the increase of biomass 
accumulation of treatment C compared with treatment  
B (Figure  9). Treatment C’s mean biomass becomes 
significantly larger than treatment B’s on day 20.7 (5 days 
after stress reduction).

The final scheduled stress event occurs on day 21, when 
treatment C begins to receive water and treatment B receives 
Hoagland solution. This results in the treatment means becoming 

inseparable at day 26, where it remains as such for the remaining 
duration of the trial.

Model Predicted Growth Rate and Relative 
Growth Rate as Stress Response 
Indicators
In contrast with the model predicted biomass accumulation, 
the derived growth metrics GR and RGR exhibit significantly 
more daily fluctuation (Figures 10, 11). A result of this variation 
is the potential for mean separation between treatments that 
are experiencing identical growing conditions. Because of this, 
a simple difference in treatment mean GR or RGR is not a 
suitable metric for stress detection. Instead, we  propose a 
criterion of two consecutive differences in GR or RGR means 
to indicate a significant change in growth dynamics between 
treatments. Stress response detection based on this criterion 
for GR is indicated at day 8.7 for treatment A compared with 
treatments B, C, and D; day 13.7 for treatments B and C 
compared with treatment D (control), and day 18.3 for treatment 
B compared with treatment C. Stress response detection for 
RGR is indicated at day 8.7 for treatment A compared with 
treatments B, C, and D; day 13.3 for treatments B and C 
compared with treatment D (control), and day 17.7 for treatment 
B compared with treatment C (Table  2).
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DISCUSSION

In this study we  present a powerful technique for accurate 
non-destructive plant biomass prediction in visually occluded 
environments. While direct performance comparisons with prior 
studies are difficult due to a general lack of benchmark datasets 
for plant biomass estimation, we believe that our method represents 
state-of-the-art for the proximal non-destructive individual biomass 
estimation task. Moreover, we  show that deep learning models 
can learn individual plant traits under heavy occlusion without 
explicit localizing annotations. The ability for deep learning models 
to implicitly learn occlusion lowers data labelling costs and allows 
for the potential to solve complicated tasks in agriculture that 
are challenging to solve via hand engineered computer vision 
algorithms. As data quantity can be  large in agricultural systems, 
our method’s reliance on relatively inexpensive supervision in 
the form of biomass measurements allows for scalability that 
likely will only improve prediction accuracy. Finally, we  have 
shown that it is possible to achieve high predictive performance 
on plant biomass estimation solely from color data acquired via 
readily available and low cost RGB sensors.

Comparison With Prior Non-destructive 
Lettuce Biomass Estimation Efforts
The results presented here demonstrate a substantial advancement 
in our capacity to non-destructively estimate individual plant 

biomass under occluded growth conditions. In comparison with 
the results obtained by Mortensen et  al. (2018), our model 
demonstrates substantially lower relative error at 7.3% compared 
to 40%. While the cropping system is not identical between 
this study and that of Mortensen et  al. (2018), our work 
maintains lower relative error even under much greater occlusion 
and planting density. It should be noted that while the author’s 
field-based data acquisition system allowed for good control 
of lighting conditions, the scene background conditions are 
busier than our indoor acquisition system due to irregular 
soil and weed presence. Similarly, to our work, the authors’ 
method relies on images taken above the plant to be estimated. 
However, their method additionally requires the xy-coordinates 
of the stem emergence point to be known, as well as segmentation 
masks for validation of the underlying segmentation algorithm 
used to generate the fresh weight predictors. While our method 
relies on a far larger dataset, each data annotation is less 
expensive as we  require only a single measured fresh weight 
value per plant.

In another study, Zhang et  al. (2020) used a convolutional 
neural network approach to single plant biomass estimation 
but did so only on isolated plants lacking occlusion. While 
an RGBD camera was also used in their work, depth data 
was used only for an initial preprocessing segmentation step 
and not as model input. Despite a lack of occlusion from 
neighboring plants, their segmented RGB-only model appears 
to underperform both our RGB and RGBD models through 

FIGURE 9 | Mean per treatment predicted biomass with 95% confidence interval. Dark vertical lines and roman numerals indicate when treatments were applied. 
(I) Treatment A begins to receive pure water, (II) Treatment A begins to receive Hoagland solution and Treatments B and C begin to receive water, (III) Treatment C 
begins to receive Hoagland solution, and (IV) Treatment B begins to receive Hoagland solution and Treatment C begins to receive water. An asterisk marks where 
wilting in Treatment A was visually noticed in the image data (day 24.3).

66

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Buxbaum et al. Non-destructive Plant Biomass Monitoring

Frontiers in Plant Science | www.frontiersin.org 12 April 2022 | Volume 13 | Article 758818

visual comparison of the predicted versus observed scatter 
plots. However, a quantitative comparison between our studies 
is difficult to make due to missing information on the normalizing 
unit in the normalized RMSE performance metric used by 
the authors. If we  do indeed achieve higher performance, 
we  speculate that this is due to the use of a larger training 
dataset along with a DCNN regression architecture that leverages 
a pre-trained ResNet backbone.

Learned Model Features and 
Generalizability
Perhaps one of the more powerful aspects of our modeling approach 
is the ability to implicitly learn to localize the center plant during 
training without explicit annotation. This localization is evident 
in the visualizations of feature map activations provided by GradCAM 
in both best and worst case prediction examples (Figure 8). Similar 
visualizations provided by GradCAM of the depth modality also 
show similar trends between the best and worst case predictions, 
including strong localization. However, it is evident that model 
starts to fail when the center plant is of lesser size than its 
neighbors. This is likely a result of two conditions: increased 
occlusion under these conditions and overfitting to the training 
dataset. In particular, the latter condition is due to the uniform 
nature of the cultivation practices used to generate the dataset, 
which resulted in scenes containing neighboring plants that generally 
(but not always) are of similar size and mass. Therefore, our 

model has likely learned to estimate center plant mass while also 
overfitting to some degree to common scene features of the training 
data distribution. Our plant monitoring experiment further supports 
this, as those scenes contained neighboring plants with significant 
variation in size and mass. The model’s ability to capture, in 
aggregate, expected changes in growth under such conditions 
suggests that it has learned to predict center plant mass. The 
model could be  made more robust to variable sized plants by 
training with a more heterogeneous dataset; a hypothesis which 
warrants further investigation in future studies.

Another notable phenomenon is the relative lack of contribution 
of the depth data modality to model predictive performance. 
It is possible that our use of depth data is suboptimal for model 
learning. For instance, the pre-trained weights are tuned for 
feature extraction of color, and not depth, images. To allow for 
the use of pre-trained weights we  map the depth data to a 
3-channel color image, allowing the model to directly use its 
pre-trained feature extraction capabilities on the depth data. 
This mapping scheme imbues color data with a direct relationship 
to absolute distance from the sensor (e.g., red is farthest away 
while blue closest). While this does allow the model to learn 
biomass estimation to some extent, it is unknown whether it 
has maintained a strong understanding of absolute scene size 
and shape after this mapping due to the pre-training of the 
initial convolutional layer. Additionally, as our image capture 
height is fixed, the real world area represented by each pixel 
is essentially constant, allowing relative plant size to be estimated 

FIGURE 10 | Mean per treatment predicted growth rate with 95% confidence interval. Y axis units are g (8 h)−1. Dark vertical lines and roman numerals indicate 
when treatments were applied. (I) Treatment A begins to receive pure water, (II) Treatment A begins to receive Hoagland solution and Treatments B and C begin to 
receive water, (III) Treatment C begins to receive Hoagland solution, and (IV) Treatment B begins to receive Hoagland solution and Treatment C begins to receive 
water. An asterisk marks where wilting in Treatment A was visually noticed in the image data (day 24.3).
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in the scene via RGB only. It may be  the case that had image 
acquisition height been variable, depth data may have had an 
increased importance and outperformed color as the relative 
size of plants in each scene could no longer be  directly tied 
to their absolute size in world space. We suspect that a modified 
architecture that can more directly utilize depth data would 
outperform, such as models that utilize 3D representations of 
the scene such as meshes or point clouds (Qi et  al., 2017).

Model Predictions for Plant Growth 
Monitoring
We have shown that our model is able to predict individual 
plant biomass with enough accuracy to capture the effects of 

nutrient stress on biomass accumulation within 2 days, even 
when those effects are applied with spatial heterogeneity. This 
illustrates model robustness to heterogenous plant size in the 
scene despite having been trained on more homogenous 
conditions. We  further validate the response of the model by 
showing through hand collected measurement that our treatments 
had real effect on plant size, and by extension, in biomass 
accumulation (Supplementary Figure S2). However, it is difficult 
to quantify the true accuracy of the biomass, GR, and RGR 
calculations, as we  have no ground truth for each treatment. 
Further, there are sources of variation in the response of each 
plant to the treatments, such as genotypic and block effects, 
which are not easily separable from model prediction error 
when examining the data in aggregate. Potential sources of 
block effects in include variations in lighting intensity, as well 
cross treatment contamination from plant roots which extend 
into the common drainage channels of the hydroponic system. 
As such, we  do not have an exact understanding of the how 
our model’s predicted stress induction response time differs 
from the true stress induction response time.

While we  do not know the true model biomass prediction 
error for this experiment, we  do know that larger prediction 
errors would likely lead to a longer time before significant 
treatment effects can be  determined by the Tukey HSD test. 
In a soilless top-fed hydroponic system such as ours, we would 
expect a significant change in fertigation solution (such as our 
nutrient stress treatments) to result in a close to immediate 

FIGURE 11 | Mean per treatment predicted relative growth rate with 95% confidence interval. Y axis units are in (8 h)−1. Dark vertical lines and roman numerals 
indicate when treatments were applied. (I) Treatment A begins to receive pure water, (II) Treatment A begins to receive Hoagland solution and Treatments B and C 
begin to receive water, (III) Treatment C begins to receive Hoagland solution, and (IV) Treatment B begins to receive Hoagland solution and Treatment C begins to 
receive water. An asterisk marks where wilting in Treatment A was visually noticed in the image data (day 24.3).

TABLE 2 | A summary of time until statistically significant treatment mean metric 
differences are observed for each stress event.

Metric
Stress event response time

Day 6 Day 11.7 Day 15.7

Biomass 3.3 d 3 d 5 d
GR 2.7 d 2 d 2.3 d
RGR 2.7 d 1.7 d 1.7 d

The stress events occurred on days 6, 11.7, and 15.7, and the times indicated for each 
metric are the number of days from each event until the time of data capture indicating 
treatment separation as provided by Tukey HSD test.
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change to RGR. This is due to both the lack of cation exchange 
capacity of the stone wool medium and the ratio of medium 
volume to irrigation volume, likely resulting in a rapid change 
in concentration of nutrient ions in the root zone (Silber, 
2008). Without access to nutrient ions, the plant’s biomass 
accumulation rate slows over time as it must rely only upon 
existing nutrient stores in its tissues to support cell growth 
and function. Our model required between 1.7 and 2.7 days 
to determine a significant treatment effect via RGR, which 
we  believe is consistent with expected RGR of typical lettuce 
cultivars, the expected effect of complete nutrient deprivation 
on RGR, and our originally published model test error of 
7.3% (Holsteijn, 1980).

The predicted RGR curves generally follow the expected 
shape as previously seen in the literature (Holsteijn, 1980). 
RGR decreases with time for all treatments as well as the 
control. During stress induction the RGR decreases, and then 
increases during stress reduction (Figure  11). An interesting 
phenomenon can be  seen after stress reduction: a treatment’s 
RGR may rejoin that of the control provided no additional 
stress is introduced or sustained (Figure  11). The variance of 
the predictions within each treatment increases with time, as 
evidenced by larger mean confidence intervals. This is consistent 
with the expected model error as determined during our model 
validation. It should be noted that the ability to detect significant 
treatment effects was maintained beyond day 17, at which 
point plants of up to 15 g existed and contained significant 
occlusion. In addition to predicting RGR response between 
the comparable treatments via analysis of variance, by examining 
the graphs of RGR, GR, and biomass over time we  can see 
that the effects of stress reduction (Treatment A on day 12) 
and stress induction (Treatment C on day 21) that occurred 
without a directly comparable treatment (Figures  9–11). The 
effect of Treatment C’s day 21 stress induction can be  seen 
through day 32, revealing that our model maintains general 
accuracy even when neighboring plants (in particular, Treatment 
D) are large (Figure  9).

An unintended irrigation malfunction caused some 
individuals (approximately 15) within treatment A to 
experience water stress starting at approximately day 24. 
While we  do not know exactly when water stress began for 
those individuals, it becomes visually noticeable in the image 
data at day 24.7 (Supplementary Figure S1). A reduction 
in predicted biomass is observed during this water stress 
period (Figure 9). That our model indicates a sudden change 
in biomass may practically be  quite valuable and supports 
its sensitivity to changes in growth rate. While reduced 
predicted biomass is consistent with reduced plant water 
content under drought conditions, we  exercise caution in 
concluding that our model can accurately extrapolate to 
individuals that are experiencing less than well-watered 
conditions, as such conditions are not represented in either 
the training or test datasets used to create and evaluate the 
model. This does leave open the possibility, however, that 
our model can serve as an indicator of crop response to 
environmental parameters that result in morphological change 
beyond biomass accumulation. Such sensitivity also allows 

for the future possibility of fine-tuning the model with data 
that includes plants experiencing wilting or other stress 
conditions, furthering the use of the model as a non-destructive 
plant stress detector.

CONCLUSION

Our work introduces a novel technique that applies proximal 
vision based plant trait estimation models to the problem of 
stress detection and growth monitoring with high spatial and 
temporal resolution over the entire lettuce cropping cycle. By 
utilizing highly accurate biomass estimation models, short-term 
plant-environment interactions within cropping systems can 
be  better monitored and quantified. Our brief exploration of 
the response in biomass accumulation to nutrient stress is far 
from exhaustive. Improvements could result from 
implementations featuring models with lower prediction error 
and more frequent data acquisition. To further determine the 
utility and ability of such sensing methods at scale, an 
implementation into a commercial facility should be conducted. 
This would help answer questions such as which stresses are 
best predicted by short term changes in biomass accumulation, 
on what basis do we  make comparison of individuals for the 
purpose of stress or abnormality detection, and where do these 
methods fail in real world settings.
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The objective of the present study was to characterize the temporal and spatial
variation of biopolymers in cells infected by the tea leaf blight using confocal Raman
microspectroscopy. We investigated the biopolymers on serial sections of the infection
part, and four sections corresponding to different stages of infection were obtained
for analysis. Raman spectra extracted from four selected regions (circumscribing the
vascular bundle) were analyzed in detail to enable a semi-quantitative comparison of
biopolymers on a micron-scale. As the infection progressed, lignin and other phenolic
compounds decreased in the vascular bundle, while they increased in both the walls
of the bundle sheath cells as well as their intracellular components. The amount of
cellulose and other polysaccharides increased in all parts as the infection developed. The
variations in the content of lignin and cellulose in different tissues of an individual plant
may be part of the reason for the plant’s disease resistance. Through wavelet-based
data mining, two-dimensional chemical images of lignin, cellulose and all biopolymers
were quantified by integrating the characteristic spectral bands ranging from 1,589
to 1,607 cm−1, 1,087 to 1,100 cm−1, and 2,980 to 2,995 cm−1, respectively. The
chemical images were consistent with the results of the semi-quantitative analysis, which
indicated that the distribution of lignin in vascular bundle became irregular in sections
with severe infection, and a substantial quantity of lignin was detected in the cell wall and
inside the bundle sheath cell. In serious infected sections, cellulose was accumulated in
vascular bundles and distributed within bundle sheath cells. In addition, the distribution
of all biopolymers showed that there was a tylose substance produced within the
vascular bundles to prevent the further development of pathogens. Therefore, confocal
Raman microspectroscopy can be used as a powerful approach for investigating the
temporal and spatial variation of biopolymers within cells. Through this method, we can
gain knowledge about a plant’s defense mechanisms against fungal pathogens.
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Frontiers in Plant Science | www.frontiersin.org 1 April 2022 | Volume 13 | Article 84648471

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.846484
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2022.846484
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.846484&domain=pdf&date_stamp=2022-04-18
https://www.frontiersin.org/articles/10.3389/fpls.2022.846484/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-846484 April 12, 2022 Time: 18:53 # 2

Sanaeifar et al. Evaluation of Plant Disease Resistance

INTRODUCTION

Almost every country in the world consumes tea on a daily
basis, making it one of the top three most popular beverages in
the world. There are many diseases affecting tea crops, and one
of the most serious is tea leaf blight, caused by Colletotrichum
camelliae Massee (Wang et al., 2016). Typically, anthracnose
appears 5–18 days after infection and the affected leaves wither
as a result of the damage caused by the development of the
lesion (He et al., 2019). Plants that are infected with a pathogen
take numerous protective measures to protect themselves.
A plant disease resistance can be divided into two categories:
organizational structure resistance and chemical resistance. The
organizational structure resistance includes the cuticular layers,
cork layers, abscission layers, tylose, gum, and so on, while the
chemical resistance includes phenolic compounds, phytoalexins,
hypersensitive reactions, pathogenesis-related proteins, and so
forth (Lu et al., 2018).

In the prevention of fungal diseases, phenolic compounds play
a vital role as a kind of chemical resistance. These compounds
have the ability to kill pathogens and postinfection productions.
The antimicrobial properties of certain phenolic compounds
were highlighted recently in a number of studies (Korukluoglu
et al., 2008; Mikulic-Petkovsek et al., 2013). Lignin is one of the
most significant phenolic compounds. Plant lignins are primarily
involved in supporting organs, transmitting sap through lignified
parts of the plant’s vascular system, and serving as defensive
compounds (Etesami and Jeong, 2018; Soderberg et al., 2021).
A reduction in lignin content in crop plants can adversely impact
lodging resistance and disease resistance (Pedersen et al., 2005).
It has been reported that both abiotic and biotic stresses stimulate
some defense genes, including peroxidase, polyphenol oxidase,
and phenylalanine aminoamylase, which together are responsible
for the formation of lignin within plants (Anand et al., 2009;
Shinde et al., 2018). To prevent pathogens from progressing
further, lignin forms cork layers around the site of infection.
Additionally, tylose is also an important structure found in
the infected tissues of the vascular bundle, which consists of
hemicellulose, cellulose, and pectin (Pegg et al., 2020; Kashyap
et al., 2021). Tylose can affect the vascular bundle by blocking it,
thereby preventing infection. Additionally, gum can also provide
some resistance to infection by acting on the site of infection
(Kashyap et al., 2021). Several studies have demonstrated that
biopolymers such as lignin or other phenolic compounds, as well
as cellulose or other polysaccharides are adapted to the process
of disease resistance in plants. However, the temporal and spatial
changes of these biopolymers at the cellular level as a result of
infective development are unclear. As a result, further studies
are necessary in order to clarify the role of these biopolymers in
disease resistance.

There are many conventional chemical analyses that are
routinely performed on certain biopolymers, such as high
performance liquid chromatography (Mikulic-Petkovsek et al.,
2013), but these methods are in most cases invasive and use
a large quantity of chemical reagents in order to determine
the results (Bellaloui et al., 2012). It should be noted that all
of these methods require disintegration of the plant tissues, so

only information about composition can be determined, not
micromolecular structure and distribution. Also, the distribution
of lignin can be determined using an electron microscope (Kiyoto
et al., 2018; Polo et al., 2020). The problem is that no domain
information can be collected simultaneously, and staining
technology must be used in conjunction with microscopes in
order to get distribution information. Therefore, a quantitative
and qualitative analysis technology should be developed for
future research.

Raman microspectroscopy technique has shown a great deal
of promise in finding out compositional, structural and spatial
information about cellular polymers, due to its high spatial
resolution and spectral fingerprint response characteristics (Zhao
et al., 2019; Mateu et al., 2020; Saletnik et al., 2021). A remarkable
perspective on visualizing cellular walls can be gained by Raman
microspectroscopy, which provides detailed information about
the physical properties and chemical composition of the cell
wall in plants (Pohling et al., 2014). It has also been used to
investigate the structure of different types of vascular cells in
plants, which are highly complex tissues subject to substantial
changes during growth (Jin et al., 2018). This technique has been
successful in revealing the spatial and structural characteristics
of lignin and cellulose (Ji et al., 2013; Kanbayashi et al., 2019).
The Raman peak associated with lignin appears approximately
at 1,600 cm−1 since the lignin molecule is composed of
aromatic ring vibrations which are in symmetry (Gierlinger and
Schwanninger, 2006). Furthermore, Raman microspectroscopy
can be used to assess changes in lignin composition during plant
lignification (Littlejohn et al., 2015), as well as assess differences
in lignin distribution and intensity within the walls of different
types of xylem cells (Wang et al., 2021). However, there has
been no research to our knowledge that has utilized Raman
spectroscopy to investigate the time and spatial variations of
lignin and cellulose in cells infected with fungal pathogens.

Raman spectroscopy of biological tissues typically produces
low-energy signals that are disturbed by noise and fluorescence
background. The background-signal contribution is usually
reduced by hardware methods at the stage of detection or
numerical methods at the stage of data processing (Zeng et al.,
2021). However, hardware techniques tend to be inconvenient
and costly (Adami and Kiefer, 2013). There are several ways
to eliminate background noise, such as direct or modified
polynomial fitting and subtraction (Beier and Berger, 2009),
rolling-circle spectral filtering (Brandt et al., 2006) and so
forth. However, all of these methods of background data
reduction are not capable of handling large amounts of data.
In order to perform each spectroscopy correction, a special
polynomial or circle radius is required, which leads to large
mathematical calculations and a disunity calibration reference.
Wavelet transform (WT) has been widely used for the denoising
and background removal in Raman spectroscopy (Ma et al., 2018;
Chi et al., 2019). In general, the WT process is a mathematical
algorithm that is capable of localizing signals both on a time
and frequency scale. It is also possible for part of the inherent
information to be found within a particular sub-space of WT.
There is a kind of WT called the discrete wavelet transform
(DWT) in which the wavelets are discretely sampled. DWT is
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a well-established method for improving resolution via spectral
denoising and baseline removal (Chen et al., 2011). Researchers
in the field of Raman spectroscopy have recently suggested the
use of DWT as an ideal strategy for denoising and removing
background noise. It has the greatest advantage that bulk data can
be processed according to a unified wavelet structure (Tavassoli
et al., 2020; Sharan et al., 2021).

It was the objective of the present study to demonstrate the
potential of confocal Raman microspectroscopy and the data
mining method DWT for the detection of temporal and spatial
variation of biopolymers in tea cells induced by leaf blight
infection along with the time period of infection for determining
the causes of this variation. It is a cutting-edge analytical tool
which is capable of imaging lignin and cellulose in situ. Our
research opens up a novel way of studying plant disease resistance
at the cellular scale without involving destruction of the plants.

MATERIALS AND METHODS

Preparation of Tea Samples
We grew tea seedlings [Camellia sinensis (L.) O. Kuntze] of the
variety Longjing 43 in pots under natural light, temperature,
and manual water conditions for nearly 1 year. In order to
confirm that the chosen tea was healthy and free from any fungus
infection, the samples were cultivated in a climate incubator
(DRX-1200, Hangzhou Runbo Experimental Equipment Co.
Ltd., Hangzhou, China) at a fixed temperature (25◦C) and
humidity (90%) for 10 days. If the plant showed no signs
of disease, the plant was chosen for the subsequent infection
experiment; otherwise, this procedure was repeated until the
plant was healthy. This procedure was followed in order to select
healthy tea plants. The fungus (Colletotrichum camelliae Massee)
was supplied by the Agricultural Experiment Station of Zhejiang
University. The mycelium block was inoculated on the tea leaf
4 days after activation. Afterward, the inoculated tea was grown
in an incubator for 10 days at a temperature of 28◦C and with a
relative humidity of 90%.

The lesion part (Figure 1B) was then cut from the tea leaf
(Figure 1A), and prepared for resin embedding in accordance
with the following steps. (1) Double fixation: first, the specimen
was fixed with 2.5% glutaraldehyde in phosphate buffer (pH 7.0)
for more than 4 h, and then it was washed three times in the

FIGURE 1 | A schematic of the sample preparation process: (A) infected tea
leaf, (B) enlargement of infected area, and (C) bright field microscopy images
of sections.

phosphate buffer after it had been fixed; finally, the specimen was
postfixed with 1% OsO4 in phosphate buffer (pH 7.0) for an hour.
(2) Dehydration: a series of increasing concentrations of ethanol
was used to dehydrate the specimen (50, 70, 80, 90, 95, and 100%).
About 15–20 min were spent in each step, then the solution was
transferred to absolute acetone. (3) Infiltration: in a 1:1 mixture of
absolute acetone and the final spurr resin mixture, the specimen
was dissolved for 1 hour at room temperature. Afterward, the
mixture was treated with acetone-resin (1:3) for 3 h and left
overnight. (4) Embedding and semithin sectioning: in capsules
containing embedding medium, specimens were heated at 70◦C
for approximately 9 h. A microtome (Thermo Fisher Finesse 325
paraffin) was used to cut sections of 5 µm thick without further
processing. The cutting direction was edge toward the infection
site. Four sections were selected for Raman spectroscopy, and
each section was separated by about 50 µm. Figure 1 illustrates
the process of sample preparation. The schematic diagram of
the infected part and the locations of four sections are shown
in Figure 1B. The infection site was at the center of the lesion
part (represented with a blue circle in Figure 1B). The sectioning
was done from the edge to the center. Accordingly, S1 was
designated as the first section, namely the shortest infection time
and the slightest extent of infection. The second, third, and fourth
sections were labeled S2, S3, and S4, respectively. Within these
four sections, S4 had the longest infection period and the most
serious degree of infection.

Spectroscopy Acquisition
A confocal Raman microspectrometer (Renishaw,
United Kingdom/Via-Reflex 532/XYZ) equipped with a
diode-pumped solid state laser (50 mW at 532 nm) was applied
to collect the spectra. The use of 532 nm wavelength excitation
to analyze cellulose and lignin contributions has demonstrated
that the signal from these biomolecules can be used for detailed
analysis of the cell wall, despite the non-bleaching selectivity.
The comparative analysis of NIR (785 nm)-excited versus
532 nm-excited Raman spectra of the same samples indicated
that imaging and characterization of cellular walls may yield
greater advantages from high scattering at the visible wavelength,
rather than from low bleaching at the NIR wavelength (Heiner
et al., 2018; Zeise et al., 2018).

The laser power applied to the sample was 0.5 mW, and the
incident laser beam was focused onto the sample surface with
a 50× objective lens at 0.75 numerical aperture. During the
mapping process, an integration time of 10 s and steps of 1 µm
were assigned, and every pixel was represented by a single scan.
The four sections were scanned near the vascular bundle, which
can be seen in Figure 1C, where the yellow circle represents the
vascular bundle and the red rectangle represents the scanning
area. The Raman spectrometer was configured to map the Raman
spectral data with a spatial resolution of 1 µm in both horizontal
and vertical directions. Due to the differences in tissue types,
the scanning extent varied for the different sections, with 1,053,
735, 936, and 780 points for the S1, S2, S3, and S4 sections,
respectively. For the purpose of removing background, a Raman
spectroscopy of pure spurr resin was also performed.
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FIGURE 2 | DWT and IDWT data processing of Raman spectra. (A) Optical microscope image of tea tissue, (B) Raman spectroscopy of a sampling point, (C)
wavelet decomposition coefficients, (D) wavelet reconstruction signals, and (E) chemical image generated from the reconstruction signal (D6).

Discrete Wavelet Transform
As explained in the introduction, DWT provides an extremely
useful method to remove Raman background information. In
wavelet analysis, signals are decomposed into discrete levels
of resolution, which is known as multi-resolution. Due to the
fact that the background consists primarily of low-frequency
features, this background is removed from the spectrum. To
denoise a specific Raman signal, in addition to the DWT
for decomposition (analysis), an inverse DWT (IDWT) is
also applied for reconstruction (synthesis; Li et al., 2020).
Sub-band filters can be used to decompose and reconstruct
wavelets. A schematic view of a WT used in the present
study for minimizing the effects of fluorescence in Raman
chemical imaging is shown in Figure 2. Figure 2A illustrates
the Raman spectral scanning region of healthy tea tissue, where
each grid point represents a sampling point. Figure 2B shows
a Raman spectral response curve for a sample circled with
a red line in Figure 2A, and this sample is taken as an
example to illustrate the inhibition of fluorescence by WT.
The Daubechies 1 wavelet was adopted for decomposition
and reconstruction in this study, and then seven wavelet
decomposition coefficients were calculated as a6, d6, d5, d4,
d3, d2, and d1, as seen in Figure 2C. Following this, seven
wavelet reconstruction signals (A6, D6, D5, D4, D3, D2,
and D1) were computed by IDWT from the corresponding
wavelet decomposition coefficients, as shown in Figure 2D. As
illustrated in Figure 2E, the Raman chemical image can finally
be derived from the wavelet reconstructed signal (D6) for all
sampling points.

The optimization approach for chemical imaging was
implemented in three steps in this study. The first step
involved wavelet decomposition of the signal, followed
by wavelet reconstruction, and the third step involved

integrating the biopolymer feature bands based on the
reconstruction structure D6.

RESULTS

Raman Spectrum of Leaf Blight-Infected
Tea Tissue
Raman spectral scanning includes the vascular system, and
vascular bundles are tightly surrounded with bundle sheath cells
as shown in Figure 1C. The details of the scanning regions of
the four sections and their typical Raman spectral responses are
shown in Figure 3.

Figures 3A,C,E,G show the bright-field microscopy images
of scanning areas of the S1, S2, S3, and S4, respectively, the
tissues within the yellow ellipse represent the vascular bundles,
whereas the tissues within the red ellipse represent the bundle
sheath cells. Also, Figures 3B,D,F,H show the Raman spectra
of the sampling points along the horizontal black line in each
scanning area. It is important to note that these black lines
traverse both vascular bundles and bundle sheath cells. According
to Figure 3B, the Raman intensity of the vascular bundle lying
on the black line is much larger, up to 3.5 × 104. However, the
Raman intensities of the other sampling points are almost equal
to zero. Accordingly, it is concluded that there is a substantial
difference between the Raman spectral response of vascular
bundle and bundle sheath cells in the S1 section. The Raman
spectral intensity of the vascular bundle is still higher than that of
the bundle sheath cell in the S2 section, although the difference
is less than that of the S1 section (Figure 3D). The Raman
spectral intensity of the vascular bundle is shown in Figure 3F
to be greatly reduced, while the Raman spectral intensity of
the bundle sheath cell is highly increased, and the difference
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FIGURE 3 | Raman spectral scanning regions and spectral responses for (A,B) S1, (C,D) S2, (E,F) S3, and (G,H) S4.

between the two is further reduced in the S3 section. As shown
in Figure 3H, the Raman spectral intensities in the bundle sheath
cell and the vascular bundle are comparable in the S4 section.

Generally, the Raman intensity of the vascular bundles in the
four sections is relatively high, which may be attributed to the
high lignin content of the vascular bundles (Richter et al., 2011).
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FIGURE 4 | PCA plots of samples infected over time. (A) Vascular bundle. (B) Cell wall. (C) Intra-cellular.

Also, the Raman intensities of vascular bundles are ranked in
descending order as S1, S2, S3, and S4 indicating that the lignin
and other biopolymers decreased from S1 to S4 along with an
increase in infection severity. In addition, it is noteworthy that the
Raman spectral response differences of the vascular bundle and
bundle sheath cells gradually decrease from S1 to S4, indicating
that the differences in structure and composition between these
two types of tissues are gradually diminishing as the disease
severity increases. It may be because the pathogen destroys the
ordered structure of these tissues and decomposes many of the
biopolymers that compose their cell walls.

Principal Component Analysis-Based
Temporal Classification of Infection
An overview of the temporal and spatial comparisons of four
sections was presented in the previous section. In order to have
a detailed temporal analysis of these sections, Raman spectra of
the same tissue in four different sections were selected. There are
two parts to the bundle sheath cell, namely, the cell wall and the
inside of the cell. As the proportion of vascular bundles was small
in the scanning region, the analysis was conducted on the whole
bundle. In this regard, three different parts were distinguished:
the cell wall of the bundle sheath cell, the inside of the bundle
sheath cell, and the vascular bundle. As shown in Figure 3, 60
points were recorded for each part. Sample points for the vascular
bundle were selected within the yellow circles, samples for the cell
wall were selected along the edge of the red lines, and samples for
intracellular were selected within the red areas.

To simplify the data visualization process, principal
component analysis (PCA) was first used to re-express the
original Raman signals. In three different parts, 240 Raman
spectral samples in sections S1, S2, S3, and S4 were analyzed
using PCA. The PCA was applied to the Raman spectral region
of 579–3,062 cm−1. Figures 4A–C illustrate the results of
PCA analyses for the first two principal components (PC1,
PC2) of the vascular bundle, cell wall, and intracellular
components, respectively.

Results indicated that the first two components, in three
separate parts, contained over 99% of the data variance
in classification based on four different stages of infection.
Figure 4A indicates that the vascular bundle signal in S1 is
quite different from that in the other three sections, with a
more scattered distribution. The reason is that the Raman
spectra of vascular bundles in S1 were significantly higher than
those of S2, S3, and S4 (see Figure 3). Additionally, since the
vascular bundle itself is composed of xylem and phloem, these
60 spectra are scattered throughout due to the fact that the
vascular bundle itself is composed of various structures and
substances. However, the vascular bundle spectra of S2, S3, and
S4 were more concentrated, indicating that the structures of
the bundle were not greatly different. It is possible that the
structure has been damaged in these sections. This conclusion is
in accordance with the results in the previous section. According
to Figure 4B, the boundary between these four sections was
not clearly defined, there were some overlaps. Specifically, the
S1 overlapped the S2 and the S3 overlapped the S4. However,
the boundary of S1 and S2 was clearly distinct from S3 and S4,
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indicating the composition of the cell wall in S3 and S4 was
clearly different from S1 and S2. Also, in Figure 4C, the boundary
was clearly defined, except in S1 and S2. The analysis revealed
the components of S1 and S2 inside the cell were similar, but
they differed greatly in S3 and S4. In spite of overlaps in the
PCA score plots, the clustering results were satisfactory. Thus, the
extracted two principal components were able to reveal Raman
spectral features in the vascular bundle, cell wall, and intracellular
structures of the four sections, ensuring effective identification.
Furthermore, the principal component distribution indicates that
Raman spectroscopy can reflect differences in four sections, i.e.,
Raman spectroscopy is capable of recognizing four sections.

Analysis of Raman Spectra Based on
Characteristic Peaks
It is essential to determine the characteristic peaks of the
background before analyzing the distribution of biopolymer in
tea cells. Due to the presence of spurr resin in a semi-thin
transverse section of the tea tissue, background disturbance from
the spurr resin must be removed. Figure 5 shows representative
Raman spectra of vascular tissue and its background. The
spectrum of the vascular tissue is randomly selected from the
vascular bundle on the first section in Figure 3A marked with
a yellow circle, while the spectrum of the background comes
from the pure spurr resin. For removing fluorescence interference
and highlighting the signal, polynomial fitting and subtracting
were employed. There were six main peaks in the resin, which
could interfere with the analysis of the sample. Especially the
peak at 1,664 cm−1, which is also included in the sample.
The spectroscopy of the vascular bundle generated a strong
and broad peak at 1,600 cm−1. This peak may be comprised
of four peaks: 1,570, 1,600, 1,630, and 1,660 cm−1. These last
three peaks were related to lignin. The 1,600 cm−1 was assigned
to aromatic ring mode, the 1,630 cm−1 to ring conjugated
C=C stretching of coniferaldehyde, and the 1,660 cm−1 to ring
conjugated C=C stretching of coniferyl alcohol (Hänninen et al.,
2011; Mateu et al., 2020). It is noteworthy that these three peaks
appeared in all phenolic compounds. There was also a peak at

FIGURE 5 | A typical Raman spectrum of the vascular tissue and the spurr
resin.

1,214 cm−1 corresponding to aryl-O of aryl-OH and aryl-O-
CH3 and guaiacyl ring mode (with C=O group) that was related
to lignin. The peak at 900 cm−1 was associated with bending
of HCC and HCO at C6, and the signal around 1,000 cm−1

was associated with heavy atom stretching (CC and CO; Adapa
et al., 2009). The two peaks were related to cellulose. The peak
at 1,110 cm−1 may consist of two peaks (1,095 and 1,123 cm−1),
which were related to cellulose as well. Additionally, these peaks
corresponded to the highest polysaccharide levels. Signals at
1,335 cm−1 were caused by HCC and HCO bending or by
aliphatic O–H bending. Both lignin and cellulose showed signals
at this wavelength (Adapa et al., 2009). Since the resin possesses
a peak at 1,660 cm−1 as well, it was selected as a standard peak
for semi-quantitative comparisons. It should also be mentioned
that the sharp peak around 2,400 cm−1 that was caused by
noise has been removed as it represents a spurious peak from
the spectrometer.

Following this, biopolymer analysis was conducted on three
positions, namely the vascular bundle, the cell wall, and the
intracellular. According to the results of the PCA, Raman
spectroscopy can demonstrate differences in the four sections.
Raman spectroscopy was averaged to simplify the analysis, and
then polynomial fitting and subtracting were implemented to
eliminate fluorescence interference and highlight the signal.

Figure 6A shows the spectrum of the vascular bundle from S1
to S4. In Figure 6B, a semi-quantitative analysis was performed
and a standard peak at 1,660 cm−1 was chosen as a baseline in
order to make an accurate comparison. From S1 to S4, the Raman
intensity of 1,600 and 1,630 cm−1 that corresponded to lignin
decreased. This finding revealed that the more severe infection
within the vascular bundle resulted in less lignin content. In this
case, it may be because the structure of the vascular bundle was
damaged by the pathogen, causing the lignin to be distributed
irregularly. A small amount of lignin might be expelled from the
vascular bundle; therefore, the content of lignin in the vascular
bundle was reduced. The decomposition of lignin caused by
fungi is another cause for the reduction of lignin. Research
has previously revealed that certain fungi have the capacity to
decompose lignin (Wei, 2012). In contrast, the peaks relating to
cellulose, such as 900 and 1,000 cm−1, were increased from S1 to
S4. In other words, the maximum cellulose content was located
in the most serious section. This was due to the fact that, when a
pathogen invades the vascular bundle, the xylem will produce a
substance called tylose, consisting of cellulose, hemicellulose, and
pectin. The vascular bundle was damaged by the pathogen, thus
the defense structure tylose was produced to block the vessels and
prevent the spread of the invasion.

The spectrum of the cell wall from S1 to S4 is shown
in Figure 7A, and the semi-quantitative analysis is shown in
Figure 7B. It was shown that the Raman intensities of 1,630 and
1,600 cm−1 increased first and then decreased slightly, which was
different from the variation trend in vascular bundles. This may
be due to the plant’s inherent resistance to stress. To avoid further
damage, the plant may increase its lignin content (Chérif et al.,
1991). The Raman intensities of cellulose were initially decreased
and then increased. The reduction of cellulose in cell walls may
be a result of pathogen decomposition. In S3 and S4, however,
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FIGURE 6 | (A) Raman spectroscopy and (B) Semi-quantitative intensity
analysis of vascular bundle.

the content increased, which may be due to the emergence of
some new substances. In previous research, it was reported that
hydroxylproline-rich glycolproteins are present in cell walls to
protect them against pathogens (Deepak et al., 2008).

In Figure 8A, we present the intracellular spectrum from S1 to
S4, and Figure 8B shows the semi-quantitative analysis. As can be
observed, there was a similar variation trend in Raman intensity
between the intracellular and the cell wall. There was an increase
in intensity at 1,600 and 1,630 cm−1, followed by a decrease. As
the Raman shifts at these two peaks are observed in all phenolic
compounds, this may indicate that the amount of phenolic
compounds within the cell was increased. In addition to their role
in the prevention of fungal diseases, phenolic compounds also
exert toxic effects on pathogens and their postinfection activities
(Korukluoglu et al., 2008; Mikulic-Petkovsek et al., 2013). Thus,
the presence of phenolic compounds also contributed to the
plant’s active resistance. In addition, the Raman bands at 900,
1,000, and 1,110 cm−1 increased first and then decreased.
This may be due to another organizational structure resistance,
namely gum, which contains substances such as cellulose, semi-
cellulose, lignin, etc. Gum also functions to prevent pathogens
from spreading further (Kashyap et al., 2021).

FIGURE 7 | (A) Raman spectroscopy and (B) Semi-quantitative intensity
analysis of cell wall.

Raman Chemical Imaging of
Biopolymers
As the scanning regions contain thousands of Raman spectra,
DWT was applied to remove the noise and fluorescence
interference from the spectra. The chemical images of lignin
and cellulose were reconstructed using DWT. The lignin band
of 1,600 cm−1 which was assigned to aromatic ring mode
was used to establish chemical images. In order to visualize
the chemical image of lignin, spectral intensity from 1,589 to
1,607 cm−1 was integrated. Furthermore, the chemical image
of cellulose was produced with a range of intensities from
1,087 to 1,100 cm−1. Also, the CH-stretching region between
2,980 and 2,995 cm−1, which was assigned to all polymers,
such as cellulose, hemicellulose, pectin and lignin, was used to
establish chemical images (Gierlinger and Schwanninger, 2006).
The chemical images of the four sections are illustrated in
Figure 9, and the white arrowheads indicate the vascular bundles.
The distribution of lignin in the slightest infected area is almost
limited to the vascular bundles and the corner of the bundle
sheath cell wall (Figure 9B). As shown in Figure 9C, there is
a distribution of cellulose in the vascular bundle as well as in
the entire bundle sheath cell wall. Additionally, the distribution
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FIGURE 8 | (A) Raman spectroscopy and (B) Semi-quantitative intensity
analysis of intra-cellular.

area of all biopolymers (Figure 9A) was greater than that of
lignin and cellulose due to the presence of hemicellulose and
pectin. As the extent of infection was increased in Figure 9E, the
distribution of lignin in the vascular bundle became irregular.
In addition to the corner of the bundle sheath cell, lignin is
produced throughout the entire cell wall. Figure 9F shows that
the distribution of cellulose was similar to that of lignin. The
distribution of all biopolymers (Figure 9D) revealed that there
was an accumulation in the vascular bundle. It is shown in
Figure 9H that most lignin is distributed in the cell wall, and
the structure of the vascular bundle is damaged, therefore the
amount of lignin in the bundle is reduced as compared to
Figures 9B,E. In addition, an abundance of lignin or phenolic
compounds accumulated inside the cell. The distribution of
cellulose (Figure 9I) was also extended to the intracellular space.
As shown in Figure 9G, the photochemical image of biopolymers
shows cellulose, hemicellulose, pectin, and lignin are abundantly
produced. Lastly, in the most seriously infected section, lignin
or other phenolic compounds (Figure 9K), as well as cellulose
(Figure 9L) were scattered throughout the scanning region.
Moreover, a significant amount of biopolymers were accumulated

(Figure 9J) in the vascular bundle, which was associated with the
formation of tylose.

DISCUSSION

While it is known that lignin, phenolic compounds, tylose,
and other biopolymers contribute substantially to plant disease
resistance, their temporal and spatial variations with the
development of infection have not been well investigated.
Confocal Raman microscopy was used in this study for the
analysis of biopolymers on a micrometer scale. There was a clear
visualization of the spatial distribution of the lignin. Using semi-
quantitative analysis, it was found that the Raman intensities
of lignin decrease gradually from S1 to S4, while cell wall
and intracellular Raman intensities increase. There was also an
increase in cellulose content in the vascular bundle as well as in
the cell wall and intracellular spaces. This may be due to the fact
that in the vascular bundle, there is primarily resistance provided
by hemicellulose, cellulose or pectin, specifically by tylose. In the
bundle sheath cell, both biopolymers contribute to the resistance
factor. There was a rising trend in both Figures 7B, 8B. Variations
can be caused by antimicrobial polymers such as phenolic
compounds, hydroxyproline-rich glycoproteins, gum, etc. It
should be noted that the semi-quantitative analysis has confirmed
the chemical images. The lignin distribution in the vascular
bundle has become increasingly irregular from S1 to S4. In this
case, the pathogens have caused damage to the structure of the
vascular bundle, which has led to a loss of rigidity in the vascular,
eventually degenerating and collapsing. The lignin content of the
vascular bundle was reduced as a result. Using the CH-stretching
region between 2,980 and 2,995 cm−1, the chemical image of
all biopolymers containing hemicellulose, cellulose, and pectin
determined that these polymers were gradually accumulated in
the vascular bundle. In addition, the distribution of lignin in
bundle sheath cells demonstrated that in sections where the
infection was severe, like S3 or S4, the cells were thick with lignin
or phenolic compounds in order to resist pathogen invasion.
These results are consistent with previous research. Researchers
discovered that phenolic compounds show defense responses
characterized by rapid and early accumulation at the infection
site, which prevents the pathogen from spreading (Chérif et al.,
1991). The formation of lignin was one of the responses to
these conditions (Zhao et al., 2019; Mateu et al., 2020; Saletnik
et al., 2021). In bundle sheath cells, cellulose was distributed
similarly to lignin. This occurred due to the synthesis of various
polysaccharides to combat the pathogen, such as hydroxyproline-
rich glycoproteins.

It has been shown in our study that the wavelet transform can
be highly efficient in reducing low-frequency fluorescence signals
that accompanied and interfered with the Raman spectra of
plant tissues. This finding was also consistent with other studies
that have shown that the wavelet transform eliminates the low-
frequency fluorescence signal. Using wavelet coefficients at level
6, the Raman spectral difference between untreated samples and
alkali-treated samples of rice straw was quantitatively assessed
after residual noise and fluorescent background was removed
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FIGURE 9 | Chemical images of four sections: S1 (A–C), S2 (D–F), S3 (G–I), and S4 (J–L). (A,D,G,J): all polymers band intensity, (B,E,H,K): lignin band intensity,
and (C,F,I,L): cellulose band intensity.

(Li et al., 2020). In support of our findings, researchers have
indicated that spectroscopic methods combined with DWT
analysis offered a rapid and non-destructive approach for
estimating integral chemical information (Wang et al., 2018;
Yao et al., 2018; Li et al., 2019; Liu et al., 2021). It was
possible to perform wavelet transform on spectra using a
formula which involves manipulating and adjusting the wavelet
function to generate values that distinguish various frequencies.
DWT analysis was therefore able to access a larger amount of
information embedded within the plant spectrum resulting in an
advanced ability to extract information from it.

Although imaging techniques are widely used to analyze
cell walls, a thorough understanding of their structure is still
lacking. The classic methods for imaging cell walls are to stain
or label their chemical components (e.g., using immunolabeling);
however, such analyses rely on the results of a large number
of mixed samples obtained from enzyme-isolated or pulverized
plant tissues (Zhao et al., 2019). Imaging of plant cell walls
is performed using classical methods to determine the spatial
and temporal changes in polysaccharides within cell walls
during the growth process (Hervé et al., 2011; Tobimatsu
et al., 2013). However, these techniques have limitations due to
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their expense, depth of penetration and spatial resolution, and
some of them use fluorescent imaging, which poses challenges
due to photobleaching and genetic modifications. In addition,
these microscopy approaches are non-quantitative for analyzing
cell walls. Confocal Raman microspectroscopy, which does not
require stains or fluorescent indicators to operate, has greatly
improved label-free imaging and enabled more in-depth and
detailed study of the plant cell wall. In addition to measuring cell
wall components simultaneously, it also allows observing changes
in cell wall morphology (Wu et al., 2016).

It should be noted that this paper has some limitations that can
be improved in future research. Increasing the number of sections
in this article would provide a comprehensive description of
the entire infection process. Furthermore, the scanning area can
be large enough to allow for the representation of the entire
cell. It is demonstrated in this paper that a novel approach
is used to examine the mechanism of plant resistance, which
contributes to a better comprehension of biopolymer variations
in the process of fungal infection. This is the first time that
confocal Raman microspectroscopy has been applied to study
the time and spatial variation of damage to the cell wall in
fungal-host interactions. The method proposed in this paper is
potentially applicable for the in situ quantification of polymers
in the cell wall structure as well as composition. Researchers can
evaluate the damage to the cell walls directly from epidermal
tissue using Raman microspectroscopy in the future with the
help of laser penetration of microdots infected by pathogens. It
has been demonstrated that the microspectroscopy method can
provide real-time monitoring of the structure of the poplar cell
wall during the process of ethyl-3-methylimidazolium acetate
solubilization (Zhang et al., 2014). Accordingly, in this non-
destructive in situ method, there is no requirement for samples
to be cut or significantly altered in order to be measured, thus
preserving the integrity of samples.

CONCLUSION

This study used confocal Raman microspectroscopy for the
first time to further investigate the temporal and spatial
variations of biopolymers observed in tea leaf blight-infected
cells. We analyzed the Raman spectra of four sections that show
progression of infection in order to conduct a semi-quantitative
Raman intensity analysis of biopolymers. PCA was able to reveal
Raman spectral signatures in the vascular bundle, cell wall, and
intracellular structures of each of the four sections, which enabled
Raman spectroscopy to be used to differentiate between the four

sections. A semi-quantitative analysis revealed that the Raman
intensities of lignin gradually declined as infection progressed,
whereas those of the cell wall and intracellular regions increased.
As well, cellulose quantities increased in three parts with infection
severity. It was proposed that the wavelet transform could be
used for in situ Raman chemical imaging. With its excellent
multiscale analysis capability, wavelet transform was able to
exclude low-frequency fluorescence interference as well as high-
frequency cosmic rays from the image. It was found that the
two-dimensional chemical images of lignin, cellulose, and all
biopolymers are analyzed via wavelet-based data mining based
on the acquisition of the characteristic wavelengths ranging
from 1,589 to 1,607 cm−1, 1,087 to 1,100 cm−1, and 2,980 to
2,995 cm−1, respectively. The semi-quantitative analysis results
were completely consistent with the chemical images that were
obtained. Therefore, confocal Raman microspectroscopy can
be considered a powerful tool that can be used to analyze
cellular biopolymers to identify changes occurring due to
fungal infection.
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Metal toxicities can be detrimental to a plant health, as well as to the health of
animals and humans that consume such plants. Metal content of plants can be
analyzed using colorimetric, atomic absorption- or mass spectroscopy-based methods.
However, these techniques are destructive, costly and laborious. In the current study,
we investigate the potential of Raman spectroscopy (RS), a modern spectroscopic
technique, for detection and identification of metal toxicities in rice. We modeled
medium and high levels of iron and aluminum toxicities in hydroponically grown plants.
Spectroscopic analyses of their leaves showed that both iron and aluminum toxicities
can be detected and identified with ∼100% accuracy as early as day 2 after the stress
initiation. We also showed that diagnostics accuracy was very high not only on early, but
also on middle (day 4–day 8) and late (day 10–day 14) stages of the stress development.
Importantly this approach only requires an acquisition time of 1 s; it is non-invasive and
non-destructive to plants. Our findings suggest that if implemented in farming, RS can
enable pre-symptomatic detection and identification of metallic toxins that would lead
to faster recovery of crops and prevent further damage.

Keywords: metal toxicity, rice, Raman spectroscopy, non-invasive diagnostics, plants

HIGHLIGHTS

- We show that Raman spectroscopy can be used for confirmatory pre-symptomatic diagnostics
of high and medium levels of iron and aluminum toxicities in rice.

INTRODUCTION

Continuous improvement in crop yield is critically important to address the growing problem of
food security (Ingram and Maye, 2020; Payne and Kurouski, 2021). Biotic and abiotic stresses can
substantially reduce crop yield. Biotic stresses caused by viruses, fungi, and bacteria can reduce up to
30% of the crop yield (Ingram and Maye, 2020; Payne and Kurouski, 2021), whereas abiotic stresses
such as drought, flood, extreme temperatures, nutritional deficiencies, and metallic toxicities can
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be more detrimental (Mantri et al., 2012; Waqas et al., 2019;
Angulo-Bejarano et al., 2021). These stresses can reduce up to
70% of the crop yield (Farber et al., 2019a; Lew et al., 2020;
Payne and Kurouski, 2021). Some efforts have been made to
subsequently reduce the impacts of various abiotic stresses in
rice crops, through genetics, genomics, and breeding programs
(Thomson et al., 2009; Chin et al., 2011; Jagadish et al., 2012;
Hasanuzzaman et al., 2013; Kumar et al., 2014; Li et al., 2014;
Matthus et al., 2015; Gonzaga et al., 2017; Singh et al., 2017;
Septiningsih and Mackill, 2018; Thapa et al., 2020; Ignacio et al.,
2021; Liang et al., 2021; Tnani et al., 2021).

Metal toxicities can damage the plant directly, as well as cause
substantial health issues if such plants are consumed by animals
and humans. For instance, aluminum (Al) toxicity is a major issue
for crop production in numerous countries with acidic soils [soils
with pHs of 5.5 and lower; (Barabasz et al., 2002)]. Such soils
take over 50% of the arable land in the world. Al ions inhibit
elongation and division of cells in the root tip, decelerating root
development, which results in a substantial decrease in water and
nutrient uptake by plants (Bojórquez-Quintal et al., 2017). This
results in a substantial change in the plant metabolism and may
cause the death of the plant (Farber et al., 2019a). Consumption
of such Al-rich plants is also associated with dementia and other
neurodegenerative disorders. Iron (Fe) is an essential element
for all living organisms. However, if it accumulated in plants, Fe
promotes Fenton reaction that generates hydroxyl radicals, which
in turn damage lipids, proteins, and DNA (Sahrawat, 2005). Fe
also inhibits cell division and elongation of plant roots. As a
result, plants grown on Fe-rich soils demonstrate suppressed
vegetation and lower crop yield compared to plants cultivated on
soils with a low Fe content. These pieces of evidence demonstrate
an urgent need for timely detection and identification of such
metal toxicities in plants.

Conventionally, metal toxicities are diagnosed via
colorimetric, atomic absorption or mass spectroscopy analyses
(Sáez-Plaza et al., 2013). The colorimetric approaches are based
on thiocyanates and a Prussian Blue dye (Woods and Mellon,
1941; Gitz et al., 2018). Such colorimetric approaches are
routinely used for qualitative metal ion staining in animal and
plant histological sections (Johnson et al., 2012; Roschzttardtz
et al., 2013; Grillet et al., 2014; De la Fuente et al., 2017).
However, these methods are laborious, lacks precision and fail
to detect small variations of metals between samples. Atomic
absorption spectroscopy is a highly accurate technique that is
based on the electromagnetic emission of the individual elements
that are converted into ions by flame-heating of the sample
(Wachasunder and Nafade, 2001). Together with inductively
coupled plasma-mass spectroscopy (ICP-MS), atomic absorption
spectroscopy is frequently used for highly accurate identification
of metal content of both plants and soils (Masson et al., 2010;
Tokalıoğlu, 2013). However, these spectroscopy approaches are
laborious and costly; they also require sample shipment to a
laboratory, which typically cannot be afforded by most farmers in
developing countries. These limitations of traditional techniques
for plant and soil analyses catalyzed a search for inexpensive, fast,
and portable analogs that can be used for confirmatory diagnosis
of metal toxicities in plants.

Our own results, as well as experimental findings reported by
other groups, show that Raman spectroscopy (RS) can be used to
detect both biotic and abiotic stresses in plants (Altangerel et al.,
2017; Egging et al., 2018; Farber and Kurouski, 2018; Farber et al.,
2019b, 2021; Mandrile et al., 2019; Sanchez et al., 2019b, 2020a,b;
Gupta et al., 2020). RS is based on a phenomenon of inelastic
light scattering that was experimentally demonstrated by C.V.
Raman at the beginning of the 20th century. These inelastically
scattered photons provide information about the structure and
composition of analyzed specimens (Kurouski et al., 2015).
Biotic and abiotic stresses drastically alter plant metabolism
(Payne and Kurouski, 2021). Such changes can be detected
using RS, which allows for confirmatory, non-invasive, and non-
destructive diagnostics of both biotic and abiotic stresses. For
instance, Farber and Kurouski (2018) showed that RS could
detect and identify different fungal pathogens in corn. Sanchez
et al. (2019a,b, 2020c) discovered that RS could be used to
detect Huanglongbing (HLB) or Citrus Greening Disease in
oranges and grapefruits. Furthermore, using RS, HLB could be
distinguished from nutritional deficiencies with 100% accuracy.
Recently reported experimental findings show that RS can also
detect and identify nutritional deficiencies caused by a lack of
nitrogen, phosphorus, and potassium in soil (Sanchez et al.,
2020a). These results show that RS be used to probe changes
in plant biochemistry associated with a lack of macronutrients.
Based on these findings, we hypothesized that RS may have
similar sensitivity for diagnostics of changes associated with
microelements, such as Al and Fe.

In this study, we aim to determine the extent to which RS
can be used to detect Al and Fe toxicities in rice (Oryza sativa).
For this, we performed a growth chamber experiment in which
rice plants were exposed to medium and high levels of Al and Fe
toxicities (Supplementary Figure 1). Using a hand-held Raman
spectrometer, we collected spectra from leaves of these plants
starting at day 2 (D2) after stresses were induced. These spectra
were used to determine changes in plant biochemistry that are
likely to be associated with both Al and Fe toxicities.

We also used Partial Least Squares-Discriminant Analysis
(PLS-DA) to determine the accuracy of Raman-based diagnostics
of metal toxicities. Our finding shows that RS coupled to PLS-
DA can detect pre-systematic Al and Fe toxicities with high
accuracies. These findings suggest that RS can be used for
screening metal toxicities in plants. This information can be used
to mitigate the stresses on the early stages of plant vegetation and
minimize the consumption of such toxin-contaminated crops by
animals and humans.

MATERIALS AND METHODS

Plant Materials and Experimental Design
Presidio rice was grown in bins that contained Styrofoam
with pads. The pads were covered by a mesh grid as
described by Samonte et al. (2013) and Sanchez et al.
(2020a). One pre-germinated seedling was placed in the
mesh in each hole resulting in a total of 24 seedlings
per bin. The seedlings were first soaked in water for the
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first 24 h to initiate seed germination (Sanchez et al., 2020a).
Next, germinated plants were grown in a Yoshida solution
consisting of macronutrients (114.30 mg/L NH4NO3, 50.40 mg/L
NaH2PO4.2H2O, 89.30 mg/L K2SO4, 108.25 mg/L CaCl2 and
405 mg/L MgSO4.7H2O), and micronutrients [1.875 mg/L
MnCl2.4H2O, 0.093 mg/L (NH4)6Mo7O24.4H2O, 1.09 mg/L
H3BO3, 0.038 mg/L CuSO4.5H2O, 9.62 mg/L FeCl3.6H2O,
14.88 mg/L C6H8O7.H2O and 0.043 mg/L ZnSO4.7H2O] for
4 weeks. Next, plants were exposed to medium and high Fe
and Al stresses. For Al stress, 0.042 mg/L or 314 µM of AlCl3
was used in the high-stress bin and 0.021 mg/L or 157 µM of
AlCl3 was used in the medium stress bin. For Fe stress, the high-
stress bin contained 2.196 g/L or 8.12 mM FeCl3.6H2O solution,
and the medium stress bin contained 1.098 g/L or 4.06 mM
FeCl3.6H2O solution. During the 2-week period in which plants
were under metallic stress, height measurements, photographs,
and Raman spectra were collected at D2, D4, D6, D8, D10,
D12, and D14, Supplementary Figure 1. The pH was checked
every day during stress conditions to ensure that the solution
remained at a pH of 5. Every 3 days, a new hydroponic solution
was created, the old stress solution was discarded, and fresh
stress solutions were added at the same concentrations for each
medium stress and high stress. The growth of the rice occurred
in a controlled growth chamber with a day/night setting on a
12 h/12 h, humidity set to 55%, and a day/night temperature set to
29◦C/26◦C (Sanchez et al., 2020a). The experiment was repeated
twice for this work.

Raman Spectroscopy
Agilent Resolve hand-held Raman spectrometer was used to
collect spectra from plants. For each spectral acquisition, the
plant leaf was gently positioned at the nozzle of the spectrometer.
Acquisition time was 1 s; laser power was 495 mW. Baseline
correction was performed automatically by the spectrometer.
These conditions were found to be non-destructive as no visual
damage of plant leaves was evident after spectral acquisition
(Sanchez et al., 2019a). A total of 50 spectra were collected
from each group of plants (50 for control, 50 for Al high,
50 for Al medium, 50 for Fe high, and 50 for Fe medium).
Next, spectra were exported from the spectrometer and analyzed
using PLS Toolbox (Eigenvector Research Inc., Wenatchee,
WA, United States).

Data Analysis
First, multiplicative signal correction based on the mean was
applied to all data. Next, the second derivative was taken of the
Raman spectra with a filter width of 51 and polynomial order
3. Finally, the spectra were smoothed with a 15-point window
then area normalized. A partial least squares-discriminant
analysis (PLS-DA) was performed for all data presented in
the results and discussion of this manuscript. The imported
spectra wavenumbers that were analyzed were included from
300 cm−1 to 2,000 cm−1 which includes all important spectra
characteristics of rice plants and metallic stress. Each spectrum
was area normalized at 1,440 cm−1 and mean-centered. Every
PLS model statistically analyzed the level of metallic stress to sort
the significant differences between Al and Fe metallic toxicities,
Supplementary Figure 2. PLS-DA results are summarized in

Tables 2, 3. For instance, Al high stress plants were compared
to the control group (healthy plants) on D2 using the PLS-DA
binary model in which the Cross Validation matrix ranked the
accuracy of the ability for the Raman spectrometer to distinguish
between the two data sets. The confusion matrix of Al high versus
healthy on D2 gave a true prediction rate (TPR) of 1 (100%)
for distinguishing Al High stress plants from healthy plants. The
same method was used for the other experimental groups and
following days (see Supplementary Figures 1, 2).

RESULTS AND DISCUSSION

Spectra collected from leaves of healthy rice plants exhibited
vibrational bands that could be assigned to pectin (747 cm−1),
cellulose (915 and 1,048 cm−1), carotenoids (1,000, 1,155, 1,185,
1,218, and 1,525 cm−1), phenylpropanoids (1,601–1,630 cm−1),
protein (1,674 cm−1), and aliphatic vibrations (1,218, 1,288,
1,326, 1,382, 1,440, and 1,488 cm−1) that cannot be assigned to
a particular class of compounds (Figure 1 and Table 1).

We found that spectra collected from leaves of rice exposed
to both medium and high Fe toxicities demonstrate an
increase in the intensities of phenylpropanoid vibrations (1,601–
1,630 cm−1), as well as a decrease in the intensities of carotenoids
(1,000, 1,155, 1,184, 1,218, and 1,525 cm−1). These spectral
changes suggest that Fe toxicity is associated with an increase
in the concentration of phenylpropanoids and a decrease in the
concentration of carotenoids.

FIGURE 1 | Raman spectra collected from leaves of healthy (green) and Fe
stressed (red) at day 10 with high (A) and medium (B) levels of Fe. Spectra
normalized on CH2 vibrations (1,440 cm-1) present in nearly all classes in
biological molecules [marked by asterisks (*)].
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TABLE 1 | Vibrational bands and their assignments for spectra collected
from rice leaves.

Band (cm−1) Vibrational mode Assignment

520 ν(C-O-C) Glycosidic Carbohydrates (Edwards et al.,
1997; Pan et al., 2017)

747 γ(C–O-H) of COOH Pectin (Synytsya et al., 2003)

915 ν(C-O-C) In-plane,
symmetric

Cellulose, phenylpropanoids
(Edwards et al., 1997)

1,000 In-plane CH3 rocking of
polyene aromatic ring of
phenylalanine

Carotenoids (Schulz et al., 2005);
protein

1,047 ν(C-O)+ν(C-C)+δ(C-O-H) Cellulose, phenylpropanoids
(Edwards et al., 1997)

1,085 ν(C-O)+ν(C-C)+δ(C-O-H) Carbohydrates (Almeida et al., 2010)

1,155 C-C Stretching; ν(C-O-C),
ν(C-C) in glycosidic linkages,
asymmetric ring breathing

Carotenoids (Schulz et al., 2005),
carbohydrates (Wiercigroch et al.,
2017)

1,184 ν(C-O-H) Next to aromatic
ring+σ(CH)

Carotenoids (Schulz et al., 2005)

1,218 δ(C-C-H) Carotenoids (Schulz et al., 2005),
xylan (Agarwal, 2014)

1,265 Guaiacyl ring breathing, C-O
stretching (aromatic); -C=C-

Phenylpropanoids (Cao et al., 2006),
unsaturated fatty acids (Jamieson
et al., 2018)

1,288 δ(C-C-H) Aliphatics (Yu et al., 2007)

1,326 δCH2 Bending Aliphatics, cellulose,
phenylpropanoids (Edwards et al.,
1997)

1,382 δCH2 Bending Aliphatics (Yu et al., 2007)

1,440–1,488 δ(CH2) Aliphatics (Yu et al., 2007)

1,525 -C=C- (in-plane) Carotenoids (Rys et al., 2014; Adar,
2017; Devitt et al., 2018)

1,601–1,630 ν(C-C) Aromatic ring+σ(CH) Phenylpropanoids (Agarwal, 2006;
Kang et al., 2016)

1,654 -C= C-, C=O Stretching,
amide I

Proteins (Devitt et al., 2018)

Our own results, as well as experimental findings reported
by other groups, show that on the molecular level, an increase
in the intensity of phenylpropanoid vibrations is due to an
increase in the concentration of low molecular weight aromatic
compounds, such as p-coumaric acid. These molecules are also
directly involved in the plant response against biotic and abiotic
stresses such as bacteria and nutritional deficiencies.

A decrease in the carotenoid content has strong physiological
relevance to plant defense mechanisms (Havaux, 2014).
Specifically, Fe ions activate enzymatic oxidation of neoxanthin,
one of the plant carotenoids, that yields abscisic acid, a hormone
that enhances plant resistance to such stresses (Nambara and
Marion-Poll, 2005). Reactive oxygen species (ROS) produced
by Fenton reaction can also oxidize β-carotenes producing
β-lonone, β-cyclocitral that aim to protect the plant against
various biotic and abiotic stresses (Nambara and Marion-Poll,
2005; Havaux, 2014). Thus, reduction in the concentration of
carotenoids by ROS can be considered to be a hallmark of Fe
toxicity (Yu et al., 2007).

We have also observed a decrease in the intensity of
cellulose (1,047 cm−1) and protein (1,654 cm−1) bands
(Figure 1). These spectral changes that Fe toxicities are associated

with cellulose degradation in plants, as well as the strong
transformation of plant enzymes. More detailed elucidation of
direct biochemical changes requires the use of high-performance
liquid chromatography (HPLC) and its mass spectroscopy
(HPLC-MS) analogs. These studies are beyond the scope of
the current work.

The physiological effects of Fe on plant health corresponds
with what is shown on the Raman spectra in Figure 1.
The increased peak in the phenylpropanoid band region
corresponds to an increase in phenylpropanoids within the
plant. Phenylpropanoids play a key role in plant development
and cell division. Thus, when metal toxicity such as Fe is
present, there is an increase in phenylpropanoids to defend
itself against abiotic stresses (Cheynier et al., 2013). These
phenolics can be detrimental to the plant when released as a
defense mechanism due to the toxicity of some phenols in great
quantities, which causes harm to plant growth (Cheynier et al.,
2013). Visual evidence is seen in the Supplementary Material
of Fe stressed plants that they died the quickest. Carotenoids
are partly responsible for plant color and photosynthesis. We
see that the Fe stress plants quickly lost their color, turning
brown rapidly. A decrease in the carotenoid band region
corresponds to a decrease in carotenoids in the Fe stressed
plants, leading to a lack of healthy color. Without carotenoids,
the plant will lose molecules for maintaining normal plant
health. Carotenoids are a predecessor to abscisic acid (ABA)
which is involved in a defense mechanism (Stanley and Yuan,
2019). Since carotenoids play a role in the photosynthetic
process, it is evident that with a decrease in carotenoids, the
plant will become extremely sick or die (as we see in both
Fe medium stress and Fe high-stress plants). Proteins and

FIGURE 2 | Raman spectra collected from leaves of (A) Al High (red) vs.
Healthy (green) on day 14; (B) Al Medium (red) vs. Healthy (green) on day 14.
Spectra normalized on CH2 vibrations (1,440 cm-1) present in nearly all
classes in biological molecules [marked by asterisks (*)].
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TABLE 2 | Percent accuracy of stress vs. healthy over 2 weeks.

Accuracy of stress vs. Healthy each day

D2 D4 D6 D8 D10 D12 D14

Al High 100% 82% 100% 92% 94% 90% 96%

Al Medium 100% 94% 100% 100% 74% 100% 94%

Fe High 92% 82% 100% 100% 100% – –

Fe Medium 100% 74% 100% 100% 100% 100% 92%

pectin are integral components for the strength and structure
of the plant. Pectin is responsible for cell wall strength (Wu
et al., 2018). Moreover, we see a decrease in the protein
and pectin band intensities corresponding to the reduction
in pectin and protein concentration within the Fe stressed
plants also leading to degraded plants shown visually from the
Supplementary Material.

We found that Al toxicities cause nearly opposite changes in
plant biochemistry. Specifically, we have observed an increase in
the intensities of carotenoid and protein vibrations in the spectra
collected from plants exposed to Al stresses (Figure 2). We also
found that the intensity of phenylpropanoid vibrations decreased
in the spectra collected from Al-stressed plants. Importantly,
if the magnitude of these changes for medium and high Fe
stresses were nearly the same, the magnitude of stresses for high
(Figure 2A) vs. medium (Figure 2B) Al stresses is different. As
expected, we have observed greater changes upon stronger (high
vs. medium) stresses.

Visually the Al stressed plants appeared healthier and grew
taller while keeping the healthy green color for a longer
time. Much is still to be learned from Al stress and why an
opposite effect was shown comparatively with Fe stress. This
is quite interesting because the phenylpropanoid band intensity
decreases as a representation of the decrease in phenylpropanoids
under Al stress. This, in turn, should mean that the root
elongation would also decrease rapidly, and the Al stress plants
would die quickly. However, we see that the Al high-stress plants
grew the most in comparison to the other stressed plants. It is
possible that Presidio may possess some degree of tolerance to Al
toxicity. It is known that Al will affect different varieties of plants
in different ways (Bojórquez-Quintal et al., 2017). Therefore,
further research needs to be done especially on the physiological
effects of Al toxicity in plants.

Other studies have shown that Al can induce a more efficient
nutrient uptake mechanism which would lead to faster growth
(Bojórquez-Quintal et al., 2017). This may explain the reason
we see rapid growth yet a decrease in the phenylpropanoid
band because the efficiency of nutrient uptake is combatting
the decrease in phenylpropanoids. The pectin band increased
while the concentration of Al increased, suggesting an increase of
pectin within the plant. Another study also found an increase of
pectin by 50% in Al stress plants (Nagayama et al., 2019). Pectin
is responsible for cell wall strength (Wu et al., 2018). Pectin can
be linked to increased plant growth (Hassan et al., 2019). Due
to Al influencing pectin increase within the plant, and pectin
aiding in growth, we see an increase in the height of the Al high-
stress plants. With the increase in the carotenoid band intensity,

FIGURE 3 | Comparison of plant height over 2 weeks, showing healthy vs. stress. Fe died after day 10. Each bar represents the mean ± SE (n = 14). Different letters
in each graph (a–k) indicate significant differences (P < 0.05, ANOVA and Duncan’s test).
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as Al concentration increases, an inference can be made that
Al has caused an increase in the concentration of carotenoids
within the plant. Carotenoids are linked to plant growth and
are also produced as part of a defense mechanism when certain
biotic and abiotic stresses are present (Swapnil et al., 2021).
Since carotenoids are an integral part of photosynthesis, it can be
stated that the increase in Al causing an increase in carotenoids
has led to faster growth. Higher carotenoid concentration will
allow for more efficient photosynthesis and thus plant growth.
We also see that the protein band has an increased intensity,
meaning an increased concentration in protein within Al stress
plants. Previous studies have also found that Al can increase a
variety of proteins within a plant (Chen and Lin, 2010). Proteins
also aid in plant growth, as we see in the Al high-stress plants.
Again, further study should investigate the effects of Al on plant
growth and toxicity.

Next, we used PLS-DA to investigate the accuracy of
identifying both Al and Fe stresses at different states of plant
vegetation (Table 2). We found that both Al and Fe stresses (high
and medium levels) can be diagnosed as accurately as 98% at
D2. This accuracy slightly decreases at D4 (83%), then reaching
100% at D6. These findings suggest that once the stress is induced,
it causes drastic changes in plant biochemistry (D2). However,
aiming to mitigate such stresses, plants try to level off Al- and
Fe- induced changes in plant biochemistry, which reduces the
accuracy of their diagnostics at D4. The magnitude of such efforts
is reduced at D6, which results in highly accurate differentiation
between the biochemistry of a healthy plant and plants exposed
to both Fe and Al toxicities.

We also investigated the extent to which spectroscopic
libraries can be used for robust and reliable identification of these
stresses in plants. For this, we used spectra collected at different
time points to build a model that can be used for the identification
of high and medium Al and Fe stresses (Figure 3). We found that
high Al stress can be diagnosed with 88.6% accuracy, whereas
high Fe stress can be detected and identified with 88.3% accuracy
(Table 3). Interestingly, the accuracy of diagnostics of medium
levels of stresses is higher and is equal to 94.9% and 88%,
respectively. Finally, we found that the absence of metal stresses
healthy plants can be diagnosed with∼90% accuracy.

It is important to note that conventionally used parameters,
such as plant height, cannot be used for the identification of such
changes (Figure 3). Specifically, we found that plants exposed to
high Al stresses are taller than healthy plants, whereas analogous
medium Al stresses result in substantial deceleration of the
plant growth. High Fe stresses cause substantial impairment
to the plant vegetation that results in substantial deceleration
of the plant growth. However, plants exposed to medium Fe

TABLE 3 | Percent accuracy from binary model to distinguish between stressed
plant and healthy plants.

Stress vs. Healthy

Al Fe Healthy Avg.

High stress 88.60% 87.23% 88.29%

Medium stress 94.90% 88.03% 91.00%

stress, although they experience some impairment in the plant
growth typically only incrementally behind healthy plants at the
corresponding vegetation state.

It is important to note that this work is a first proof-of-
principle study that reflects the potential of RS in confirmatory
diagnostics of plant stresses caused by metal toxicities. Additional
work is required to verify these findings on other crops, such
as sorghum, wheat and corn. It is also important to investigate
the extent to which a spectroscopic library developed for one
plant variety in one geographic area can be used for the accurate
stress determination in other varieties and other geographic
areas. Finally, it is critically important to determine the extent
to which other abiotic stresses, as well as biotic stresses that
can be simultaneously present in plants that experience metallic
toxicities can alter the accuracy of detection of individual stresses.
These studies are currently in progress in our laboratory.

CONCLUSION

Our findings show that RS can be used for a label-free, fast and
confirmatory diagnostics of plant stresses caused by Al and Fe
toxicities. Although such diagnostics can be performed by atomic
absorption spectroscopy and ICP-MS, RS requires no sample
modification which drastically limits direct costs of such testing.
Our results show that already at D2, one can detect and identify
medium when referring to the stress levels and high Al and
Fe toxicities with ∼100% accuracy. Our findings demonstrate
that not only at early but also at middle and late stages, both
middle and high Al and Fe toxicities can be correctly detected and
identified. One can expect that a hand-held Raman spectrometer
equipped with such libraries and chemometric models can be
used directly in the field for timely assessment of the plant
health. We also expect that such devices can be used in grocery
stores for label-free, non-invasive and non-destructive control
of plant products.

This work also expanded the potential of RS in digital farming.
Our findings together with experimental results reported by
other groups demonstrate that this innovative spectroscopic
technique can be used to transform agricultural approaches in
the United States and overseas (Altangerel et al., 2017; Egging
et al., 2018; Farber and Kurouski, 2018; Farber et al., 2019b,
2021; Mandrile et al., 2019; Sanchez et al., 2019b, 2020a,b;
Gupta et al., 2020).
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As global population grows rapidly, global food supply is increasingly under strain. This

is exacerbated by climate change and declining soil quality due to years of excessive

fertilizer, pesticide and agrichemical usage. Sustainable agricultural practices need to

be put in place to minimize destruction to the environment while at the same time,

optimize crop growth and productivity. To do so, farmers will need to embrace precision

agriculture, using novel sensors and analytical tools to guide their farm management

decisions. In recent years, non-destructive or minimally invasive sensors for plant

metabolites have emerged as important analytical tools for monitoring of plant signaling

pathways and plant response to external conditions that are indicative of overall plant

health in real-time. This will allow precise application of fertilizers and synthetic plant

growth regulators to maximize growth, as well as timely intervention to minimize yield

loss from plant stress. In this mini-review, we highlight in vivo electrochemical sensors

and optical nanosensors capable of detecting important endogenous metabolites within

the plant, together with sensors that detect surface metabolites by probing the plant

surface electrophysiology changes and air-borne volatile metabolites. The advantages

and limitations of each kind of sensing tool are discussed with respect to their potential

for application in high-tech future farms.

Keywords: nanosensors, wearable sensors, volatiles, plant health, non-destructive

INTRODUCTION

Plant health monitoring is an attractive and sustainable strategy that could be used for optimization
of crop growth practices. It complements popular agricultural techniques used by farmers to
maximize yield including crop rotation, intercropping and genetic modification (Uzogara, 2000;
Wang et al., 2014; Yang et al., 2020). It also allows the precise calibration of optimal dosage
and application of agrichemicals such as pesticides, herbicides or plant growth regulators (Ang
et al., 2021; Roper et al., 2021). However, current chromatography-based analytical techniques are
limiting the potential of plant health monitoring in influencing farm management decisions on a
day-to-day basis (Pan et al., 2010; Balcke et al., 2012). Though highly sensitive and quantitative,
these techniques are destructive and highly labor-intensive, requiring laboratory-based extraction
and processing of multiple plant samples for every data point.
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The emergence of non-destructive sensors is critical in
supporting more efficient plant health monitoring. These
sensors transduce plant signals into digital signals to establish
direct communication between plants and growers (Qu et al.,
2021). By tapping into plants’ physiological events in real
time, non-destructive sensors enable prompt adjustment of
environmental conditions to augment crop productivity while
minimizing resource use (Xi et al., 2021). In this mini-review,
the focus is on sensors that detect endogenous metabolites,
phytohormones and signaling molecules within the plant itself,
and sensors that detect surface or air-borne volatile metabolites.
Dynamic changes in internal plant metabolites or signaling
molecules often influence various aspects of plant growth
and development, as well as plant acclimation responses to
external stresses. The in vivo sensors are based on either
electrochemical sensors or plant nanobionic sensors. Both
sensing platforms have shown enhancements in sensitivity and
selectivity driven by recent advances in nanotechnology which
conferred unique electrocatalytic and optical properties to the
sensors (Kwak et al., 2017; Li et al., 2021). Table 1 compares the
various in vivo electrochemical and plant nanobionic sensors,
plant metabolites it detects, nanomaterial-based sensor design,
detection method and plant species that the sensors were
demonstrated in. Besides internal signaling molecules and plant
phytohormones, plants also emit surface metabolites in the
form of electrical signals, and air-borne metabolites in the form
of volatile organic compounds (VOCs) serving as chemical
signals that mediate inter-plant communication, and trigger
defense responses of neighboring receiver plants (Erb, 2018; Hu
et al., 2021). This forms the basis of crop yield enhancement
through intercropping. Hence, non-destructive sensors that
capture and monitor the emission of VOCs in real-time would
also be indicative of plant health, enabling early diagnosis of
plant diseases.

ELECTROCHEMICAL SENSORS FOR IN

PLANTA MONITORING OF HORMONES
AND SIGNALING MOLECULES

Electrochemical sensing technology is a promising strategy
for detection of plant hormones and signaling molecules in
living plants. The key advantages of electrochemical sensing
technologies include good repeatability and accuracy, high
sensitivity, portability due to ease of miniaturization, low cost
and relatively rapid response times to analytes (Hayat and
Marty, 2014). Typically, an electrochemical sensor comprises a
sensing or working electrode, a counter electrode and a reference
electrode, separated by an electrolyte. In recent years, advances
in nanomaterials have resulted in significant enhancement in the
analytical performance of these electrochemical biosensors and
this has, in turn, opened up more possibilities for rapid and
in situ detection of analytes in biological samples (Beaver et al.,
2021). Carbon-based nanomaterials and metallic nanoparticles
are known to enhance biosensor performance and sensitivity due
to their unique electrocatalytic properties, facilitating increased
electron transfer of redox-active species (Shi et al., 2011, 2012).

One such sensing tool is a paper-based electroanalytical
device developed for detection of H2O2 and salicylic acid (SA)
in tomato leaves infected with Botrytis cinerea pathogen (Sun
et al., 2014, 2020). Out of all the reactive oxygen species (ROS)
molecules, H2O2 has the longest stability within plant cells
(Huang et al., 2019). Hence, H2O2 is the key ROS molecule
known to participate in cell signaling regulation and induction
of plant defense gene expression upon inoculation with bacteria.
On the other hand, SA is the main plant hormone involved in
plant defense and immunity (Fu and Dong, 2013; Ding and Ding,
2020; Vlot et al., 2021). For detection of H2O2 or SA on the paper-
based electroanalytical devices, circular tomato leaves samples
were punched out of the leaf at different times post infection
and transferred onto the surface of their respective working
electrodes for measurement (Figure 1A). While it provides rapid
detection of H2O2 and SA, this detection method is invasive and
destructive as punching out of leaf samples could cause wounding
and tissue senescence.

It remains challenging to achieve online monitoring of
electrochemical signals in situ without the need to extract or
cut up leaf samples. Some researchers have managed to insert
electrochemical sensors into fruits for measurement of plant
metabolites. For instance, an electrochemical tryptophan (Tryp)
sensor was fabricated onto a glass carbon electrode (GCE) for
detection in tomato fruit samples (Gao et al., 2021). Tryp is an
important precursor for auxin (IAA) biosynthesis and IAA is
a plant hormone that plays a crucial role in controlling plant
development (Teale et al., 2006). Due to the GCE size, the
Tryp electrochemical sensor causes plant tissue damage upon
electrode insertion in smaller fruits. Recently, a miniaturized
Tryp electrochemical sensor has been constructed using a
smaller graphite rod electrode (GRE) (Figure 1B) (Yang et al.,
2021) which causes less tissue damage during insertion and
has successfully detected Tryp levels in smaller fruits such as
cherry tomatoes. However, even with the miniaturized GRE,
minimizing plant tissue damage when inserting the sensor
electrode to other fragile plant parts, such as the leaves or stem,
remains complicated.

Microneedle arrays are an attractive option that has been
used for construction of minimally invasive electrodes that can
be inserted into plant samples. This strategy forms the basis
of in situ abscisic acid (ABA) (Figure 1C) and SA (Figure 1E)
electrochemical sensors (Liu et al., 2021; Wang et al., 2021). ABA
is a plant hormone crucial in plant development processes, such
as seed germination, stomato closure and plant adaptation to
stresses (Lee and Luan, 2012; Hsu et al., 2021). Both sensors
use chronocoulometry as electrochemical sensing strategy, which
measures the amperometric response currents of the analytes
and generates current-time curves. To minimize damage to
plant tissues, the ABA and SA sensors were assembled onto a
microneedle and inter-digitated microelectrode (IDME) arrays,
respectively to be inserted into plant samples such as cucumber
fruit (Figure 1D) and leaves (Figure 1F) (Liu et al., 2021; Wang
et al., 2021). Remarkably, the SA sensor could be attached to
cucumber leaves for 1 month, constantly monitoring changes
in SA levels without adversely affect plant growth, confirming
its reliability and stability. While attaching the IDME array
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sensor causedminimal tissue damage tomature cucumber leaves,
further work needs to be done to confirm if the same applies to
smaller plants or crops.

All in all, electrochemical sensors designed for in vivo
detection of plant hormones and metabolites are rapid and low-
cost. Coupled with novel nanomaterials, the sensors achieved
enhanced sensitivities which enable detection of plant hormones
and metabolites which are typically present in low quantities.
Despite this progress, most electrochemical sensors have been
designed to detect biomolecules only in fruit samples with limited
applicability to other plant organs. Future approaches include
the development of biocompatible nanoelectrodes that could be
inserted into the leaves, stem or roots of different plant species
with negligible tissue damage.

PLANT NANOBIONIC SENSORS FOR IN

VIVO MONITORING OF HORMONES AND
SIGNALING MOLECULES

Aside from possessing unique electrocatalytic properties, carbon-
based nanomaterials such as single-walled carbon nanotubes
(SWNTs) have photostable emission in the near-infrared (nIR)
region that does not overlap with chlorophyll autofluorescence
(Kwak et al., 2017). This facilitates the application of SWNTs
as in vivo optical sensors for plant signaling molecules and
hormones. The polymer or single-stranded DNA doubles up as
a SWNT dispersing agent in aqueous medium and as a synthetic,
non-biological antibody for selective recognition and binding to
specific plant signaling molecules and hormones. This technique
is known as corona phase molecular recognition (CoPhMoRe)
whereby different polymer structures or DNA sequences result
in the creation of distinct SWNT corona phases that triggers
optical modulations such as fluorescence intensity changes or
wavelength shifts upon analyte binding (Zhang et al., 2013).
Upon syringe infiltration to different plant species, including
model speciesArabidopsis thaliana and non-model plants such as
arugula and spinach, these nanosensors could non-destructively
monitor the spatiotemporal profile of endogenous signaling
molecules and hormones (Lew et al., 2020a). Such information
could be captured remotely with portable electronics, providing
users with real-time information about plant health. One such
nanosensor is designed for in planta detection of stress-induced
H2O2 signaling waves in different plant species, including
lettuce (Lactuca sativa), arugula (Eruca sativa), spinach (Spinacia
oleracea), strawberry blite (Blitum capitatum), sorrel (Rumex
acetosa) and Arabidopsis thaliana (Figure 1G) (Lew et al.,
2020b). The sensor utilizes a single-stranded (GT)15 wrapped
SWNT suspension that selectively and reversibly binds to H2O2.
Different types of stress inflicted onto the plants also resulted in
the formation of unique H2O2 signaling waveforms varying in
amplitude, velocity and full-width-half-maximum (Figure 1H).
The specific stress-induced waveforms aids in the elucidation of
complex ROS signaling pathways occurring in real-time upon
plant acclimation to external stresses.

Plant nanobionic sensors have also been developed for rapid
detection of synthetic auxin plant hormones, used extensively

in plant tissue cultures and as herbicides (Figure 1I) (Ang
et al., 2021). Synthetic auxins, 1-naphthalene acetic acid (NAA)
and 2,4-dichlorophenoxyacetic acid (2,4-D), are important
agricultural and horticultural tools as they mimic natural auxins
in influencing various aspects of plant growth and development
and are more chemically stable and potent compared to
natural auxins (Gianfagna, 1995). Separately, 2 different cationic
polymer wrapped SWNTs are reported to selectively detect
NAA and 2,4-D in different plant species including spinach,
Arabidopsis thaliana, Brassica rapa subsp. chinensis (pak choi),
and Oryza sativa (rice) grown in various media, including
soil, hydroponic, and plant tissue culture media. The 2,4-D
nanosensor also has potential application in rapid testing of 2,4-D
herbicide susceptibility as it revealed a discrepancy in uptake and
accumulation of supplemented 2,4-D in the leaves of susceptible
pak choi vs. resistant rice.

Besides plant hormones and signaling molecules, SWNT-
based optical nanosensors have been used in detection of
secondary metabolites such as polyphenols. Polyphenols are
commonly induced in plants as defense against pathogens
or herbivores (Singh et al., 2021). They are prevalent in all
plant tissues and organs and are specifically secreted into
root exudates to repel pathogenic micro-organisms (Baetz and
Martinoia, 2014). Nißler et al. (2022) discovered a selective
nanosensor for tannic acid, a key polyphenol using polyethylene
glycol phospholipid biopolymer as SWNT wrapping. The optical
nanosensor detected tannic acid level changes in Tococa leaf
methanol extracts challenged with herbivores and in Glycine
max (soybean) cell culture samples stimulated with a pathogen-
derived elicitor, a branched β-glucan cell wall component of the
Oomycete fungus Phytophthora sojae. It also enabled real-time
visualization of polyphenols secreted from the roots of soybean
seedlings over a 24 h time-period post elicitor treatment.

By embedding nanosensors into leaves, living plants have also
been engineered to detect contaminants that are transported
into the plant via the roots and stem. Recently, a plant
nanobionic sensor is developed for detection of arsenite, a
toxic heavy metal pollutant predominantly found in anaerobic
rice paddy soils taken up through silicon transporters in
the roots (Ma et al., 2008). Here, the SWNT is wrapped
with single-stranded (GT)5 which resulted in a strong
and selective turn-on response upon detection of arsenite
(Figure 1J) (Lew et al., 2021). The sensors were successfully
embedded in spinach and rice leaves that detected arsenite
that was introduced to the root medium. Further, they were
demonstrated in Pteris cretica ferns which had the natural
ability to hyperaccumulate and tolerate high levels of arsenite
(Meharg, 2003). By combining the optical properties of the
nanosensor and the intrinsic ability of these ferns to pre-
concentrate arsenite, the sensitivity of the nanosensor is
enhanced, enabling the detection of 0.6 and 0.2 ppb levels of
arsenite after 7 and 14 days, respectively. In another study,
peptide-functionalized SWNTs were designed to optically detect
picric acid, a common explosive analyte, in spinach plants
(Figure 1K) (Wong et al., 2017). In general, the real-time
information obtained by these plant nanobionic sensors could be
interfaced with portable and inexpensive electronics such as the
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TABLE 1 | Comparison of the various in vivo electrochemical and plant nanobionic sensors.

Electrochemical sensors

Plant analyte Working electrode Nanomaterials-based modification Detection method Plant species References

H2O2 Indium tin oxide Nano-gold Voltammetry Tomato leaves Sun et al., 2020

SA Carbon tape Multi-walled carbon nanotubes/Nafion Voltammetry Tomato leaves Sun et al., 2014

Tryp Glass carbon Polydopamine/reduced graphene

oxide/MnO2 nanocomposite

Voltammetry Tomato fruits Gao et al., 2021

Tryp Miniaturized graphite rod Multi-walled carbon

nanotubes/poly(sulfosalicylic acid)

Voltammetry Tomato and cherry tomato

fruits

Yang et al., 2021

ABA Ta wires Vertical graphene with core-shell

Au@SnO2 nanoparticles assembled

onto microneedle array

Chronocoulometry Cucumber fruits and juices,

grapes and radishes, blended

Arabidopsis leaf juices

Wang et al., 2021

SA Al microelectrodes Core-shell Au@Cu2O nanoparticles,

graphene and polydopamine densely

packed into IDME array

Chronocoulometry Cucumber leaves, juices and

stems

Liu et al., 2021

Plant nanobionic sensors

Plant analyte SWNT type SWNT modification Detection method Plant species References

H2O2 HiPco SWNT and

(6,5)-enriched SWNT

Single-stranded DNA oligomer: (GT)15 nIR fluorescence

quenching

Lettuce, Arugula, Spinach,

Strawberry blite, Sorrel,

Arabidopsis thaliana leaves

Lew et al., 2020b

NAA HiPco SWNT Cationic poly(N-vinyl imidazolium) nIR fluorescence

quenching

Spinach, Arabidopsis thaliana,

Pak choi, Rice leaves

Ang et al., 2021

2,4-D HiPco SWNT Cationic fluorene-co-phenyl polymer nIR fluorescence

turn-on

Spinach, Arabidopsis thaliana,

Pak choi, Rice leaves

Ang et al., 2021

Tannic acid Monochiral (6,5) SWNT Polyethylene glycol–phospholipids nIR fluorescence

red-shift and

quenching

Soybean Glycine suspension

cells, Soybean seedling root

exudates, Tococa leaf

methanol extracts

Nißler et al., 2022

As (III) HiPco SWNT Single-stranded DNA oligomer: (GT)5 nIR fluorescence

turn-on

Spinach, Rice and Pteris

cretica hyperaccumulator fern

leaves

Lew et al., 2021

Picric acid HiPco SWNT and

(6,5)-enriched SWNT

Bombolitin II peptide nIR fluorescence

quenching

Spinach leaves Wong et al., 2017

Raspberry Pi-based camera module, enabling remote sensing in
the field.

In summary, plant nanobionic sensors represent a
significant advance in the field of non-destructive sensing

in living plants. No pre-treatment, extraction or cutting up
of plant samples are required as in vivo sensing capabilities

are imparted to the plants. They are versatile and have
successfully extracted spatiotemporal information about
various analytes of interest from a diverse range of plant

species that are agriculturally important (Lew et al., 2020d).
Plant signaling pathways are however complicated and

will require the generation of an integrated response from
multiplexing of different nanosensors in order to untangle
their intricate interactions. In particular, nanoparticle design

principles to localize nanosensors within specific plant organs
or compartments will be important to facilitate sensor

multiplexing and to illuminate inter-organelle signaling
(Lew et al., 2018, 2020c).

NON-DESTRUCTIVE DETECTION OF
SURFACE AND AIRBORNE PLANT
METABOLITES

Besides internal metabolites, plants also propagate a wide range
of signaling molecules along the surface of their organs in
response to changing environmental conditions (Mcsteen and
Zhao, 2008; Wong et al., 2017; Lew et al., 2020a). These
surface metabolites can be accessed non-destructively to inform
the state of plant health and stress conditions. In particular,
conductive materials which can conform onto the leaf surface
have been engineered to probe electrical signals induced by
external stresses. Thesematerials have been shown to adhere onto
the leaf surface despite the irregular surface topographies and the
existence of trichomes in many plant species. Conductive agar
gels, connected to metal wires, can be employed as electrodes
to capture the temporal profile of electrical signals elicited upon
wounding in Arabidopsis thaliana (Mousavi et al., 2013; Nguyen
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FIGURE 1 | (A) Paper-based electro-analytical device used in detection of H2O2 in circular plant samples punched out of the tomato leaves (Sun et al., 2020); (B)

Miniaturized electrochemical sensor inserted into tomato fruits for detection of auxin precursor, Tryp (Yang et al., 2021); (C) in situ ABA electrochemical sensor

assembled onto a microneedle array for detection in fruits (Wang et al., 2021); (D) Current-time curves generated when the ABA microneedle sensor is inserted into

cucumber where ABA concentrations is linearly correlated with the step current observed (Wang et al., 2021); (E) in situ SA electrochemical sensor arranged in an

IDME array for insertion into cucumber leaves (Liu et al., 2021); (F) Response current (top) and derived SA concentration (bottom) obtained from the IDME array

sensor in 5 different live cucumber leaves (Liu et al., 2021); (G) Brightfield (left) and corresponding false-colored images (right) of a spinach leaf infiltrated with H2O2

(red arrow) and reference (blue arrow) nanosensors on both sides of the leaf mid-vein. False-colored images shows the transient H2O2 wave upon mechanical

wounding of the leaf at t = 0min (Lew et al., 2020b); (H) H2O2 nanosensor response to different types of stress applied to the plant, including mechanical wounding

(red), flg22 treatment (green), high light (orange) and high heat (blue) stresses (Lew et al., 2020b); (I) Real-time sensing of 2,4-D uptake in hydroponically grown pak

choi and rice leaves using nanosensors which illustrated a turn-on response observed in pak choi but not in rice over a time-period of 5 h (Ang et al., 2021); (J)

Arsenite nanobionic sensor infiltrated into hyperaccumulator plant Pteris creticas fern, showing intensity changes corresponding to arsenic accumulation detected

over 7-day time period upon arsenite exposure (Lew et al., 2021); (K) Schematic of standoff detection of nitroaromatic compound, picric acid, using nanosensors with

real-time information relayed from the nanosensor-infiltrated plant to a portable Raspberry Pi-based electronic device (Wong et al., 2017).
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et al., 2018). Recently, the conformability of such hydrogel-
based approach was improved by using thermogels as morphable
electrodes (Luo et al., 2021). The thermogel solution can undergo
in situ gelation on hairy leaf surfaces at room temperature to
provide higher adhesiveness and improved signal-to-noise ratio
for plant electrophysiology (Figure 2A). In another approach,
biocompatible polymer electrodes were printed on the leaf
surface using the vapor-phase polymerization process (Kim
et al., 2019). Stress perception would trigger changes in
the electrical conductivity along the surface of plant organs,

which can be monitored with the vapor-deposited polymer
electrodes through bioimpedance spectroscopy. Drought andUV
photodamage in plants can be monitored over 130 days with this
approach. Through non-destructive impedance measurements,
these conformal polymer electrodes also enabled early detection
of ozone damage in fruiting plants before the manifestation
of leaf necrosis (Figure 2B) (Kim et al., 2020). Instead of
monitoring electrical signals propagated by plants, Koman et al.
developed an innovative approach to monitor the opening
and closing of stomata by printing a conductive ink across

FIGURE 2 | (A) Thermogel application to monitor electrical potential signals from plants with hairy stems (Luo et al., 2021). (B) Printed conductive polymers enabled

impedance spectroscopy to detect ozone damage (Kim et al., 2020). (C) Detection of plant VOCs using smartphone-integrated chemical sensor arrays (Li et al.,

2019). (D) Differential colorimetic response of sensor arrays upon exposure to tomato plants infected with Pseudomonas infestans (Li et al., 2019). (E) Principal

Component Analysis (PCA) plot to distinguish pathogenic infections on tomato plants based on chemical sensor arrays (Li et al., 2019).
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the stomatal apertures (Koman et al., 2017). Stomata opening
causes the contact of conductive ink across the guard cells to
be broken, leading to an increase in the electrical resistance.
The circuit is closed when the aperture closes, lowering the
resistance. Hence, this approach enabled monitoring of stomata
opening and closing latencies. Stomatal dynamics in response
to different light wavelengths and drought conditions could
be captured with the printed conductive ink over a period
of 7 days. These approaches highlight promising technologies
capable of long-term monitoring of plant electrophysiology for
stress detection. However, they are labor intensive as their
measurements necessitate physical contact with conductive wires
to obtain the electrical resistance or impedance values. If the
circuit information can be transmitted wirelessly, it will pave way
toward wider applications in the field without requiring wired
connections or skilled personnel to operate such technology.

There are various types of VOCs that plants employ as
communication signals in response to abiotic and biotic stresses
(Engelberth et al., 2004; Ton et al., 2006; Erb et al., 2015; Acton
et al., 2018). As airborne metabolites, these VOCs serve as
signaling molecules between different plant organs and between
distant plants (Maffei et al., 2011; Karban, 2017; Cofer et al.,
2018). Detection of these VOCs could therefore indicate plant
health status non-invasively (Tholl et al., 2021). In general, the
detection of VOCs from plants in the field is categorized under
two sequential procedures: sampling and analysis. Sampling
is required to trap and pre-concentrate VOCs to achieve the
detection limit of the analytical instrument. An adsorbent
material is typically used to capture VOCs, either through static
or dynamic pre-concentration (Jansen et al., 2011). Once trapped,
these VOCs can be released upon thermal desorption treatment
using a gas chromatography coupled with mass spectrometer
(GC-MS). The mixture of VOCs can then be separated and
identified with GC-MS analysis. However, this conventional
GC-MS-based analysis method requires complex laboratory
equipment with substantial time lags between sampling and
analysis, limiting on-field analysis of plant VOCs. Portable GC-
MS instruments have been developed to accelerate VOCs analysis
(Beck et al., 2015; Sharma et al., 2019; Stierlin et al., 2020), but
they often require manual sample injection and suffer from poor
compound resolution due to limited column length.

Electronic nose-based approach has been demonstrated for a
more rapid detection of plant VOCs. This technology leverages
changes in the electrical output of a chemical sensor array
when a mixture of VOCs flow over the sensor array (Cui
et al., 2018; Karakaya et al., 2020). The collective array pattern
can then be analyzed to distinguish between different VOCs,
enabling non-destructive monitoring of plant VOCs. Analysis
of VOCs emitted by diseased plants through this electronic
nose approach enabled early identification of bacterial diseases
in apple plants before symptom manifestation (Cellini et al.,
2016), as well as discrimination of healthy rice plants from
those infected with brown planthopper (Nilaparvata lugens)
(Xu et al., 2014). Building on the electronic nose approach,
nanoparticle-based chemical sensor arrays were recently coupled
with a smartphone for non-destructive analysis of VOCs from
tomato plants (Figure 2C) (Li et al., 2019). The arrays would

change color differently in response to various VOCs, enabling
fingerprinting of 10 green leaf volatiles. This concept was then
used to detect late blight in tomato as early as the second
day of pathogen inoculation (Figures 2D,E). While these are
promising developments in sensing plant VOCs, the stability and
selectivity of these technologies in response to different stressors
and pathogen infections are still to be studied for widespread
application in the field.

DISCUSSION

A multitude of advanced materials and novel technologies have
been proposed for non-destructive plant health monitoring.
These toolsets can be broadly categorized into in vivo sensors,
which aim to probe the signaling molecules within plant
tissues, or platforms to detect surface and airborne metabolites.
Monitoring the internal signaling molecules has the advantage
of detecting physiological concentrations of plant hormones
and small molecules immediately after stress is perceived,
enabling real-time plant stress detection. Electrochemical-based
microneedle array sensors and fluorescent nanosensors are
exciting developments in this area which have been employed
to study plant signaling pathways and reveal new mechanistic
understandings of plant physiology in response to stresses.
While promising, these sensors still need to be introduced
manually into the plant tissues, limiting the throughput of
such approach for agricultural applications. Non-destructive
technologies to detect surface and airborne metabolites include
conductive polymers and gels tomonitor plant electrophysiology,
as well as portable GC-MS and electronic nose approach for
VOCs analysis. These platforms do not require access to the
internal plant tissues or cells, and thus can be conveniently
applied outside of the plant organs for non-invasive monitoring.
However, some of these approaches suffer from low sensitivity,
bulky form factors and unproven demonstrations in the
field. Despite these limitations, non-destructive plant health
monitoring has significantly improved our understanding of
plant physiological responses to external stresses. Progress in this
research area should give rise to more advanced technologies
which can be applied to study agriculturally relevant crops
in the field, bridging the knowledge gap between model
plants commonly used in plant biology and economically
important crops.
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A non-invasive and non-destructive technique, Raman spectroscopy, was explored to 
distinguish different maturity stages (20, 30, 40, and 50 days after anthesis) of watermelon 
(Citrullus lanatus) fruits from four cultivars: Fascination, Orange Crisp, Amarillo and Crimson 
Sweet. Spectral acquisition from the fruit surface was carried out at the wavelength range 
of 400–2,000 cm−1 using a handheld Raman spectrometer equipped with 830 nm laser 
excitation source. The spectra were normalized at 1,438 cm−1 which was assigned to CH2 
and CH3 vibration. Detecting changes in the spectral features of carotenoids on the surface 
of watermelon fruits can be used as a marker to monitor the maturity of the fruit. The spectral 
analysis confirmed the presence of two major carotenoids, lutein and β-carotene, and their 
intensity decreased upon maturity on the fruit surface. Identification of these pigments was 
further confirmed by resonance Raman spectra and high-performance liquid chromatography 
analysis. Results of partial least square discriminant analysis of pre-processed spectra have 
demonstrated that the method can successfully predict the maturity of watermelon samples 
with more than 85% accuracy. Analysis of Variance of individual Raman bands has revealed 
a significant difference among the stages as the level of carotenoids was declined during 
the ripening of the fruits. Thus, Raman spectral signatures can be used as a versatile tool 
for the non-invasive determination of carotenoid changes on the watermelon fruits’ surface 
during ripening, thereby enabling effective monitoring of nutritional quality and maturity 
indices before harvesting the watermelon.

Keywords: Raman spectroscopy, non-invasive, ripeness, carotenoids, external quality

INTRODUCTION

The maturity at harvest significantly affects the quality of fruits and vegetables and the 
postharvest value chain (Erkan and Dogan, 2019). Non-climacteric fruits such as watermelon 
(Citrullus lanatus) only reach ideal quality for consumption when allowed to ripen on the 
parent plant (Paul et  al., 2012). Usually, the maturity of watermelon fruits is assessed 
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based on ground spot yellowness, loss of shine, thumping, 
or the number of senescent tendrils. However, these indicators 
are highly variable and do not apply uniformly to all 
genotypes. Furthermore, it is challenging to predict the 
maturity from rind color pattern, as no color breaks is 
visible as ripening proceeds (Vinson et  al., 2010). It is, 
therefore, crucial to choose a suitable harvest time for proper 
postharvest management of watermelon. Non-destructive 
techniques for appropriate pre- and postharvest handling 
have received much attention by replacing time-consuming 
and labor-intensive conventional techniques for monitoring 
the quality of fruits (Arendse et  al., 2021). Several 
non-destructive methods such as acoustic impulse response 
(Stone et  al., 1996; Diezma-Iglesias et  al., 2004; Ke et  al., 
2009; Zhang et  al., 2010; Pintor et  al., 2016), dielectric 
spectroscopy (Nelson et al., 2007a,b), laser Doppler vibrometry 
(Abbaszadeh et al., 2011a,b, 2013a,b, 2014, 2015a,b), machine 
vision systems (Ali et  al., 2017; Jie and Wei, 2018), surface 
elastic waves (Stone et  al., 1996; Ikeda et  al., 2015; Ali 
et  al., 2017), near-infrared and visible spectroscopy (Flores 
et  al., 2008; Jie et  al., 2014, 2019) have been studied for 
internal and external evaluation of watermelon quality.

Among non-destructive techniques, Raman spectroscopy 
has received increased interest as a promising non-invasive, 
label-free, and field-based high-throughput phenotyping 
platform for precision agriculture (Akpolat et al., 2020; Payne 
and Kurouski, 2020). Raman spectroscopy, which emerged 
from the discovery of the Raman effect by C. V. Raman 
in 1928, is a powerful technique that detects characteristic 
rotational/vibrational energy levels of a molecule. Raman 
spectroscopy gives spectral fingerprint of the molecules, and 
the intensity of Raman peak is directly proportional to the 
molecule’s concertation (Hata et  al., 2000). Development of 
portable Raman instruments has enabled rapid in-field 
measurement of chemical fingerprints and phenotyping of 
different plant properties (Conrad and Bonello, 2015). Raman 
spectroscopy has been extensively applied for structural 
analysis, quality and safety control, classification, and 
quantification of fruits and vegetables such as apple, avocado, 
apricot, cabbage, carrot, citrus, cucumber, grape, kiwifruit, 
mango, citrus, olive, pear, pepper, potato, spinach, and tomato 
(Liu et  al., 2013; Lee and Herrman, 2016; Qin et  al., 2019). 
However, few studies have been examined the internal or 
external quality attributes of watermelon. Furthermore, the 
shorter penetration depth of source radiation makes it 
challenging to study internal quality attributes of fruits with 
a thick rind, such as watermelon. Regardless, the Raman 
spectrum from the surface of the watermelon could be  used 
for quality evaluation (Arendse et  al., 2018).

The present investigation applied Raman spectroscopy to 
study the variation of carotenoids in the rind of watermelon 
fruit during ripening. Carotenoids are common plant pigments 
and antioxidants with many beneficial properties to plant and 
human health. Because the Raman spectra of carotenoids vary 
with minor structural differences, the spectra have been widely 
used to identify and characterize carotenoids in biological 
systems. Resonance Raman spectra were acquired from pure 

compounds and carotenoid-rich fractions to confirm the 
presence of individual carotenoids and the results of Raman 
spectroscopy were compared with those obtained from HPLC 
analysis. Lastly, partial least squares-discriminant analysis 
(PLS-DA) was used to couple Raman spectra to the 
developmental stage, allowing us to predict different development 
stages of four watermelon cultivars. PLS-DA has been 
demonstrated to be  a more suitable discriminant method 
comparing to methods like Fisher’s linear discriminant analysis 
or principal component-linear discriminant analysis (Yang and 
Yang, 2003; Lee et  al., 2018).

MATERIALS AND METHODS

Watermelon Samples and Analysis
Raman experiments were conducted using four watermelon 
varieties: (a) Fascination, (b) Orange Crisp., (c) Amarillo, 
and (d) Crimson Sweet. Watermelon fruits were harvested 
at 20 days (Stage A), 30 days (Stage B), 40 days (Stage C), 
and 50 days (Stage D) after anthesis. Fruits were harvested 
in the Texas A&M University experimental fields located at 
the Horticultural Research and Extension Facility near Snook, 
TX during the harvest season in the year 2020. Fruits were 
directly transported to the laboratory and washed with water 
before analysis. Reference compounds lutein, β-carotene and 
lycopene, reagent-grade acetone, chloroform, HPLC grade 
methanol, and tert-butyl methyl ether were purchased from 
Sigma-Aldrich, United  States. Nanopure water (Barnstead/
Thermolyne, Dubuque, IA, United  States) was used for 
HPLC analysis.

Raman Spectrum Acquisition and Data 
Processing
Three fruit samples at each stage per variety were used for 
Raman spectrum acquisition. Spectra ranging from the stalk 
end to the flower end of each fruit’s surface were acquired 
using a hand-held spectrometer (Resolve, Agilent, United States) 
equipped with a 495 mW laser source with 830 nm excitation 
wavelength. Spectral acquisition time was set at 1 s. Spectra 
were acquired using the surface mode setting built into the 
portable instrument. The barrier scan mode was used, but 
due to different thicknesses of watermelon rinds, the parameters 
of the barrier scan varied from scan to scan. Before multivariate 
analysis, pre-processing such as area normalization, mean 
centering, a Kruskal–Wallis test was carried out using MATLAB 
2020a software. All spectra were normalized to 1,439 cm−1 
bands, corresponding to CH2 and CH3 vibration, which cannot 
be assigned to any specific class of biomolecule. Kruskal–Wallis 
one-way analysis tests if the median in a set of samples is 
significantly different from other classes in the set. The null 
hypothesis for Kruskal–Wallis test is that there is no significant 
difference in the band of interest. The significance level is 
0.05. The results report a 95% CI for the true value of median 
for each compared group. The multi compare function was 
used to overlap the confidence intervals. Partial least squares 
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discriminant analysis (PLS-DA) was conducted using MATLAB 
PLS_Toolbox 8.6.2.

Resonance Raman Study
Resonance Raman spectra of individual carotenoids (pure 
standards dissolved in extraction solvent) and carotenoid-
rich fractions (extracted as described below) were acquired 
using a confocal inverted microscope (Nikon, Model 
TE-2000U) with 20x dry Nikon objective (NA = 0.45). A 
solid-state laser (Necsel SLM785.0-FS-01) was used for 485 nm 
excitation. Lutein, lycopene, and beta-carotene were dissolved 
in extraction solvent (acetone: chloroform, 7:3), and spectra 
were collected from solutions individually. The signal was 
collected in a backscattering geometry and sent to a 
spectrometer (Princeton Instruments, IsoPlane-320) equipped 
with a 600 groove/mm grating. Prior to entering the 
spectrograph, the Rayleigh scattering was filtered with a 
long-pass filter (Semrock, LP03-785RS-25). The dispersed 
light was then sent to the CCD (PIX-400BR). All data were 
processed using GRAMS/AI 7.0 (Thermo Galactic, Salem, 
NH). Spectra were baselined using multiple-point baseline 
correction in GRAMS/AI 7.0 (Thermo Galactic, Salem, NH).

Extraction of Carotenoids
After the spectral acquisition, the watermelon rind was separated 
from the flesh and blended using a laboratory blender (Magic 
Bullet). Five grams of crushed rind was extracted in dark 
using extraction solvent (acetone: chloroform, 7:3), vortexed 
for 1 min at 1814 x g, homogenized (850 Homogenizer, Fisher 
Scientific, Waltham, Massachusetts, United States) and sonicated 
(Cole-Parmer Ultrasonic cleaner 8,893) in ice-cold water for 
30 min. Sample tubes were centrifuged (Beckman Model TJ-6, 
Ramsey, Minnesota, United  States) at 4480 x g for 10 min. 
The lower organic layer was collected in another tube and 
the extraction procedure repeated on the sample to ensure 
the maximum recovery of analytes. Organic layers from two 
extractions were pooled together, a 5-ml aliquot was transferred 
to amber glass vial, and solvent was removed under vacuum 
at room temperature. The residue was redissolved in 1 ml of 
extraction solvent. Carotenoid-rich fractions were stored 
at −80°C until further analysis.

HPLC Profiling of Carotenoids
A Waters 1525 HPLC system (Milford, MA, United  States) 
equipped with 2996 PDA detector, a 717 Plus autosampler was 
used for quantification. Separation of carotenoids was achieved 
on YMC carotenoid C30 (250 mm × 4.6 mm) column. The mobile 
phase constitutes a mixture of (A) tert-butyl methyl ether 
(TBME):methanol:water (85:13:2), and (B) methanol:TBME:water 
(85:13:2). The gradient was programmed as follows: 0–3 min, 
85% (B); then 35%, 33%, 20%, 10%, and 85% B at 6, 12, 19, 
23 and 25 min; after that, the initial condition was restored 
for 3 min. For analysis, 20 μl of each aliquot was injected and 
the chromatogram was monitored between 210 and 700 nm. 
Statistical analysis of HPLC results was performed using Microsoft 
Excel 2019.

RESULTS AND DISCUSSION

Identification of Carotenoids Using Raman 
Techniques
Raman spectra collected from the surface of four different 
cultivars of watermelon demonstrated similar profiles. The 
spectral feature of Fascination type watermelon at four different 
stages of maturity is shown in Figure  1. The bands observed 
at 1,002, 1,156, 1,186, 1,217, and 1,525 cm−1 can be  assigned 
to carotenoids. Carotenoids show two strong Raman bands 
(1,525 and 1,156 cm−1) due to in-phase υ(C–C) and υ(C–C) 
stretching vibrations of the polyene chain (Qin et  al., 2011). 
For instance, β-carotene with 11 conjugated double bonds is 
characterized by the bands at 1,515 and 1,157 cm−1. Bands at 
1,186 and 1,217 can be  assigned to C–C stretching vibrations 
coupled to either C–H in-plane bending or C–CH3 stretching 
modes (Grudzinski et al., 2016). A feature of medium intensity 
occurs at around 1,002–1,008 cm−1, corresponding to the in-phase 
rocking modes of the CH3 groups attached to the polyene 
chain (Schulz et  al., 2005; Jehlička et  al., 2014). These distinct 
carotenoid signals also enabled the effective monitoring of four 
levels of maturity index in hot peppers by Raman spectroscopy 
(Legner et al., 2021). Raman spectroscopy was recently explored 
for the in situ, non-destructive, and rapid quantitative analysis 
of photosynthetic pigments, chlorophyll, and carotenoids in 
tea leaves (Zeng et  al., 2021). Other characteristic vibrational 
bands observed at 520 and 1,047 cm−1 can be  assigned to 
cellulose, 915 cm−1 to carbohydrates, 747 and 850 cm−1 to pectin, 
1,267 and 1,606 cm−1 to phenylpropanoids or lignin, 1,670 cm−1 
to protein and 1,286, 1,327, 1,386 and 1,439 cm−1 to CH2/CH3 
vibrations of aliphatic groups (Supplementary Table  S1).

Resonance Raman
The carotenoid bands observed from the watermelon rind 
surface using the handheld spectrometer were further 
confirmed using a confocal microscope at 485 nm excitation. 
In resonance Raman Spectroscopy, laser excitation frequency 
is chosen to be  close to the frequency of a sample’s electronic 
transition (Merlin, 1985). The resonance Raman spectra of 
individual carotenoids, β-carotene, lutein, and lycopene 
exhibited peaks at υ = ~1,527, υ = ~1,159 and υ = 1,008 cm−1 
(Supplementary Figure S1). These peaks match the fruit surface 
spectra of lutein and β-carotene, confirming the presence of 
these two pigments in the watermelon rind.

However, resonance Raman spectra recorded from pure 
carotenoids revealed band shifting of assigned wavenumbers. 
Carotenoids bind biomass, which affects the main polyene 
chain and thus can cause a significant shift of the band position 
(1,008–1,002 cm−1) due to changes in electron delocalization. 
Carotenoids in different solvents can undergo slight band shifts 
from 1,008 (in extraction solvent) to 1,002 (in watermelon 
rind) cm−1 due to different vibronic coupling in different stages 
(Yu et  al., 2007). Another factor affecting the band shifts is 
substitution at the terminal end groups of the molecule, resulting 
in very small wavenumber changes in the solid and liquid 
states. The band position of carotenoids also depends on the 
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laser wavelength used for excitation (Jehlička et al., 2014; Harris 
et  al., 2015). Furthermore, resonance Raman spectra of 
carotenoid-rich fractions of each variety at each stage confirmed 
the presence of lutein and β-carotene (Figure  2), further 
authenticated by HPLC analysis. In a previous study, a variety 
of intact fruits and vegetables and their juices were measured 
for carotenoids by resonance Raman spectroscopy and compared 
to concentrations determined by extraction and HPLC (Bhosale 
et  al., 2004).

Raman Spectral Analysis
The spectra obtained from Raman analysis were normalized 
at 1,438 cm−1, which corresponds to CH2 and CH3 bending 
vibrations. Since most organic compounds have these features, 
it is impossible to attribute these bands to a specific compound. 
However, normalization allows us to compare the relative 
intensity of the bands. The watermelon rind showed a trend 
of decreasing spectral intensity of the main bands from the 
early stage (A) to the mature stage (D). PLS-DA was conducted 
to determine whether watermelon maturity stages can 
be  discriminated by using the Raman spectra. Classification 
results of the PLS-DA model created using Raman spectral 
data are presented in Table  1. The results table shows that 
the stage D classification, which determines the full maturity 

FIGURE 1 | Raman spectra obtained from the surface of the watermelon fruit Fascination cultivar. The stacked spectra represent an average of 20DA = 43, 
30DA = 42, 40DA = 42, and 50DA = 24. The spectra were normalized at 1,439 cm−1 [Marked with an asterisk (*)].

FIGURE 2 | Resonance Raman spectra of carotenoid-rich fraction show 
prominent bands related to carotenoids obtained from the rind of the 
Fascination type watermelon.

105

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Dhanani et al. Maturity Prediction by Raman Spectroscopy

Frontiers in Plant Science | www.frontiersin.org 5 May 2022 | Volume 13 | Article 832522

stage, was 100% accurate for three out of four cultivars, 
while the full maturity stage for the Fascination type 
watermelon was classified with 95.8% accuracy. 64.3% of 
spectra identified correctly as stage B and C in Fascination 
type watermelon, while the rest were incorrectly identified 
as other stages. Similar accuracy (64.3%) in prediction of 
stage B of the Amarillo cultivar was also observed. True 
prediction rates for the remaining stages ranged from 73.8% 
to 93% for all cultivars. Our results show that PLS-DA is 
able to differentiate fully matured stages with an accuracy 
between 95.8% and 100%. Harvesting watermelon fruits at 
full maturity is critical for the best teste and texture, which 
determines their market value.

The results obtained from the PLS-DA confusion matrix 
give an overall view of the classification model, but do not 
provide information about variation in the individual groups, 
i.e., the significant differences among maturity stages. Therefore, 
ANOVA was conducted to determine whether the differences 
in bands associated with carotenoids were statistically significant 
(Figure 3). In general, stage A tended to have wider confidence 
intervals for the true mean intensity of all the bands of 
carotenoids compared to the later stages (B, C and D). Despite 
the higher intensity in the Raman spectra, the band at 
1,525 cm−1 could not accurately differentiate the stages of 
maturity for all the cultivars. For Fascination type watermelon, 
all the bands at stage D were significantly lower than in 
earlier stages. However, stages B and C did not show any 
significant difference in the spectral intensities. Still, they 
were distinguished from stages A and D. For the Orange 
Crisp variety, the intensity of all the studied bands at stages 
C and D were not significantly different from each other 
but had a significantly higher intensity compared to stages 
A and B. The band intensities in stages B and D were similar 

in Amarillo type watermelon. As stated earlier, all the bands 
at stage A were of significantly higher intensity than all other 
later stages. Finally, in Crimson Sweet, the intensity of bands 
in stages B and C were similar in Fascination type watermelon 
and bands in stages B, C, and D were less intense than in 
stage A. Despite the similarity in the intensities of certain 
ripening stages, the confidence interval centers for the studied 
varieties were observed in decreasing order except for Amarillo 
cultivar during maturity.

The wavenumbers that were mainly accountable for 
classification could be  observed by inspecting the loadings 
plot for the first three latent variables (LVs), as shown in 
Figure 4. Those wavenumbers are considered to be important 
for the differentiation between stages of maturity. Fascination 
cultivar’s loading plot shows that the LV with the highest 
contribution is at 1,156 cm−1 and can be  assigned to the 
carotenoid pigments. Other variables that have the most 
significant contribution to LV1 correspond to regions of 
the Raman spectrum at 1,327 and 1,606 cm−1. These 
characteristic bands can be  assigned to the chlorophylls and 
lignin phenylpropanoids. Investigation of the loading plot 
of Orange Crisp cultivar indicated that wavenumber at 1,386 
and 1,525 cm−1 corresponds to aliphatics and carotenoids 
were more important for the discrimination of ripening 
stages. Similarly, Raman’s considerable absolute value at 1,386 
and 1,525 cm−1 for Amarillo melons had a significant influence 
on classification. The Crimson Sweet cultivar’s loading plot 
showed that variation associated with carotenoids (1,156, 
1,186, and 1,525 cm−1) was the most important for this 
discrimination. Inspection of all the cultivar loading plots 
showed that the band observed at 1,327 cm−1, which was 
assigned to C–H vibration of aliphatics, also had a remarkable 
effect on predicting maturity stages.

TABLE 1 | Confusion matrix computed from the PLS-DA model of Raman spectra collected from four watermelon cultivars.

Ripening stage Total spectra Predicted as A Predicted as B Predicted as C Predicted as D Correct (%)

Fascination

A 43 38 5 0 0 88.4
B 42 8 27 7 0 64.3
C 42 2 11 27 2 64.3
D 24 0 0 1 23 95.8

Orange crisp
A 43 40 1 2 0 93.0
B 43 0 43 0 0 100
C 39 4 1 32 2 82.1
D 40 0 0 0 40 100

Amarillo
A 42 42 0 0 0 100
B 42 12 27 3 0 64.3
C 42 0 3 38 1 90.5
D 20 0 0 0 20 100

Crimson sweet
A 42 36 6 0 0 85.7
B 42 9 31 2 0 73.8
C 42 1 4 37 0 88.1
D 20 0 0 0 20 100

Bold value is the highest number of spectrums predicted according to their ripening stage.
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HPLC Analysis
An optimized HPLC method using a C30 RP column for the 
quantification of carotenoids (Supplementary Figure  S2) was 
further used for the analysis of watermelon samples. Lutein and 
β-carotene were the major carotenoids identified in the watermelon 
rind extracts and their total concentrations ranged from 1.88 
to 14.73 and 0.04 to 0.14 μg/g fresh weight (FW), respectively 
(Figure  5). The HPLC analysis did not confirm the presence 
of lycopene in the extracts congruent with the Raman experiment 
results. In the Fascination type watermelon, the total carotenoid 
level varied among ripening stages. However, the intensity of 
Raman bands for stage B and C were almost similar but lower 
than stage A and higher than stage D (Figure  3A). HPLC 

results show that variation in the total carotenoid level in Orange 
Crisp cultivar was similar to Fascination variety. ANOVA of 
Raman bands revealed that stages A and B had a significantly 
higher rank than stages C and D (Figure 3B). Significant variation 
in the carotenoid contents in the Amarillo type watermelon 
was not observed among the maturity stages. Still, an increasing 
trend was recorded up to stage C. The rank of carotenoid bands 
at stages B and D was similar from ANOVA results, and stages 
B to D were significantly lower than stage A (Figure  3C). The 
highest amount of lutein (14.73 μg/g FW) and β-carotene (6.51 μg/g 
FW) representing the total carotenoids (21.24 μg/g FW) was 
recorded in stage B of Crimson Sweet. The level of carotenoids 
increased from stage A to B, then later showed a decreasing 

A B C D

FIGURE 3 | The median (circles) and 95% CI (line) for the relative intensity of bands of carotenoids observed on the surfaces of four watermelon cultivars 
[Fascination (A), Orange Crisp (B), Amarillo (C), and Crimson Sweet (D)] at four stages of fruit development. For each stage, 20–43 spectra were collected for each 
cultivar. The confidence intervals were compared to 50 days stage (blue). The separation of different developmental stages is in red and unseparated is in grey. All 
the spectra analyzed in Kruskal–Wallis test were normalized to 1,439 cm−1.
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trend. The general trend observed in the Kruskal–Wallis and 
ANOVA results for Fascination cultivar remained true for Crimson 
Sweet type watermelon (Figure 3D). Further, HPLC results show 
a decreasing trend for stages B and C for all the cultivars except 
Amarillo. These trends match the Raman trend analysis results 
if we  look at the confidence interval center in ANOVA.

CONCLUSION

The study confirmed that variation in the carotenoid content 
measured on the surface of watermelon fruits using a Raman 
spectrometer can be reliably used for the non-invasive detection 
of fruit maturity. Raman spectral features for carotenoids were 
consistent throughout the ripening process with diminishing 
intensity at full maturity. A fast and sensitive HPLC method 
for carotenoids was developed using a C30 column with a 
gradient consisting of TBME, methanol, and water for the 
validation of Raman spectral analysis. Lutein was a prominent 
carotenoid followed by β-carotene in the peel of all watermelon 
varieties. Along with HPLC, resonance Raman confirmed the 
presence of lutein and β-carotene as major pigments. PLS-DA 
successfully classified more than 85% of samples with respect 
to their stage of maturity. ANOVA results of five Raman bands 
related to carotenoids revealed a significant difference in their 

intensities, thereby decreasing the carotenoid level throughout 
the maturation process. Raman spectroscopy is a prominent 
technique for identifying and characterizing carotenoids in 
plant tissues. The Raman bands observed at 1,002, 1,156, 1,186, 
1,217, and 1,525 cm−1 corresponding to –C–C– and –C–C– 
vibrations can be  used as fingerprints to characterize the 
carotenoids. Integrating Raman spectroscopy with other 
non-destructive techniques such as near-infrared region 
measurement, Fourier transform infrared spectrophotometry, 
and chemometric tools could show promising results for online 
quality assessment of watermelon.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included 
in the article/Supplementary Material, further inquiries can 
be  directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

TDh, JJ, KB, and BP designed the field and lab analysis 
experiments. TDo and DK designed RS experiment. TD carried 
out all analytical work. TDh and TDo conducted, collected 

C D

A B

FIGURE 4 | Loading plots for the first three latent variables (LVs) representing wavenumbers having the highest contribution to the maturity prediction model 
developed from the surface Raman spectra of four watermelon cultivars [Fascination (A), Orange Crisp (B), Amarillo (C), and Crimson Sweet (D)].

108

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Dhanani et al. Maturity Prediction by Raman Spectroscopy

Frontiers in Plant Science | www.frontiersin.org 8 May 2022 | Volume 13 | Article 832522

and interpreted results, and drafted the manuscript. TDh and 
TDo have equal contribution. All authors contributed to the 
article and approved the submitted version.

FUNDING

DK and BP acknowledges the Institute for Advancing Health 
Through Agriculture for providing financial support. BP also 

acknowledges SCRI-Texas Department of Agriculture Block 
grant 2019-SC-1920-38, USDA-SCRI-2017- 51181-26834.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpls.2022.832522/
full#supplementary-material

 

REFERENCES

Abbaszadeh, R., Moosavian, A., Rajabipour, A., and Najafi, G. (2015a). An 
intelligent procedure for watermelon ripeness detection based on vibration 
signals. J. Food Sci. Technol. 52, 1075–1081. doi: 10.1007/s13197-013-1068-x

Abbaszadeh, R., Rajabipour, A., Ahmadi, H., Delshad, M., and Mahjoob, M. 
(2011a). “Assessment of watermelon quality using vibration spectra,” in 
Innovative Computing Technology. INCT 2011. Communications in Computer 
and Information Science. Vol. 241. eds. P. Pichappan, H. Ahmadi and E. 
Ariwa (Heidelberg, berlin: Springer), 21–29.

Abbaszadeh, R., Rajabipour, A., Ahmadi, H., Mahjoob, M., and Delshad, M. 
(2013a). Prediction of watermelon quality based on vibration spectrum. 
Postharvest Biol. Technol. 86, 291–293. doi: 10.1016/j.postharvbio.2013.07.013

Abbaszadeh, R., Rajabipour, A., Delshad, M., Mahjub, M., Ahmadi, H., and 
Lague, C. (2011b). Application of vibration response for the nondestructive 
ripeness evaluation of watermelons. Aust. J. Crop. Sci. 5:920

Abbaszadeh, R., Rajabipour, A., Mahjoob, M., Delshad, M., and Ahmadi, H. 
(2013b). Evaluation of watermelons texture using their vibration responses. 
Biosyst. Eng. 115, 102–105. doi: 10.1016/j.biosystemseng.2013.01.001

Abbaszadeh, R., Rajabipour, A., Sadrnia, H., Mahjoob, M. J., Delshad, M., and 
Ahmadi, H. (2014). Application of modal analysis to the watermelon through 
finite element modeling for use in ripeness assessment. J. Food Eng. 127, 
80–84. doi: 10.1016/j.jfoodeng.2013.11.020

Abbaszadeh, R., Rajabipour, A., Ying, Y., Delshad, M., Mahjoob, M. J., and 
Ahmadi, H. (2015b). Nondestructive determination of watermelon flesh 
firmness by frequency response. LWT 60, 637–640. doi: 10.1016/j.lwt.2014.08.029

Akpolat, H., Barineau, M., Jackson, K. A., Akpolat, M. Z., Francis, D. M., 
Chen, Y.-J., et al. (2020). High-throughput Phenotyping approach for screening 
major carotenoids of tomato by handheld Raman spectroscopy using 
chemometric methods. Sensors 20:3723. doi: 10.3390/s20133723

Ali, M. M., Hashim, N., Bejo, S. K., and Shamsudin, R. (2017). Rapid and 
nondestructive techniques for internal and external quality evaluation of 
watermelons: a review. Sci. Hortic. 225, 689–699. doi: 10.1016/j.
scienta.2017.08.012

Arendse, E., Fawole, O. A., Magwaza, L. S., and Opara, U. L. (2018). Non-
destructive prediction of internal and external quality attributes of fruit 
with thick rind: a review. J. Food Eng. 217, 11–23. doi: 10.1016/j.jfoodeng. 
2017.08.009

A

C

B

FIGURE 5 | Concentration of individual pigments (A) lutein (μg/g FW), (B) β-carotene (μg/g FW), and (C) total carotenoids detected at different stages of ripening 
from the fruit rinds of four different cultivars of watermelon. Error bars represent SD from the average (n = 18).

109

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/articles/10.3389/fpls.2022.832522/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.832522/full#supplementary-material
https://doi.org/10.1007/s13197-013-1068-x
https://doi.org/10.1016/j.postharvbio.2013.07.013
https://doi.org/10.1016/j.biosystemseng.2013.01.001
https://doi.org/10.1016/j.jfoodeng.2013.11.020
https://doi.org/10.1016/j.lwt.2014.08.029
https://doi.org/10.3390/s20133723
https://doi.org/10.1016/j.scienta.2017.08.012
https://doi.org/10.1016/j.scienta.2017.08.012
https://doi.org/10.1016/j.jfoodeng.2017.08.009
https://doi.org/10.1016/j.jfoodeng.2017.08.009


Dhanani et al. Maturity Prediction by Raman Spectroscopy

Frontiers in Plant Science | www.frontiersin.org 9 May 2022 | Volume 13 | Article 832522

Arendse, E., Nieuwoudt, H., Magwaza, L. S., Nturambirwe, J. F. I., Fawole, O. A., 
and Opara, U. L. (2021). Recent advancements on vibrational spectroscopic 
techniques for the detection of authenticity and adulteration in horticultural 
products with a specific focus on oils, juices and powders. Food Bioprocess 
Technol. 14, 1–22. doi: 10.1007/s11947-020-02505-x

Bhosale, P., Ermakov, I. V., Ermakova, M. R., Gellermann, W., and Bernstein, P. S. 
(2004). Resonance Raman quantification of nutritionally important carotenoids 
in fruits, vegetables, and their juices in comparison to high-pressure liquid 
chromatography analysis. J. Agric. Food Chem. 52, 3281–3285. doi: 10.1021/
jf035345q

Conrad, A. O., and Bonello, P. (2015). Application of infrared and Raman 
spectroscopy for the identification of disease resistant trees. Front. Plant 
Sci. 6:1152. doi: 10.3389/fpls.2015.01152

Diezma-Iglesias, B., Ruiz-Altisent, M., and Barreiro, P. (2004). Detection of 
internal quality in seedless watermelon by acoustic impulse response. Biosyst. 
Eng. 88, 221–230. doi: 10.1016/j.biosystemseng.2004.03.007

Erkan, M., and Dogan, A. (2019). “Harvesting of horticultural commodities,” 
in Postharvest Technology of Perishable Horticultural Commodities (Elsevier: 
Woodhead Publishing), 129–159.

Flores, K., Sanchez, M., Perez-Marin, D., Lopez, M., Guerrero, J., and 
Garrido-Varo, A. (2008). Prediction of total soluble solid content in intact 
and cut melons and watermelons using near infrared spectroscopy. J. Near 
Infrared Spectrosc. 16, 91–98. doi: 10.1255/jnirs.771

Grudzinski, W., Janik, E., Bednarska, J., Welc, R., Zubik, M., Sowinski, K., 
et al. (2016). Light-driven reconfiguration of a xanthophyll violaxanthin in 
the photosynthetic pigment-protein complex LHCII: a resonance Raman 
study. J. Phys. Chem. B 120, 4373–4382. doi: 10.1021/acs.jpcb.6b01641

Harris, L. V., McHugh, M., Hutchinson, I. B., Ingley, R., Malherbe, C., Parnell, J., 
et al. (2015). Avoiding misidentification of bands in planetary Raman spectra. 
J. Raman Spectrosc. 46, 863–872. doi: 10.1002/jrs.4667

Hata, T. R., Scholz, T. A., Ermakov, I. V., McClane, R. W., Khachik, F., 
Gellermann, W., et al. (2000). Non-invasive Raman spectroscopic detection 
of carotenoids in human skin. J. Invest. Dermatol. 115, 441–448. doi: 10.1046/j.
1523-1747.2000.00060.x

Ikeda, T., Choi, P.-K., Ishii, T., Arai, I., and Osawa, M. (2015). Firmness 
evaluation of watermelon flesh by using surface elastic waves. J. Food Eng. 
160, 28–33. doi: 10.1016/j.jfoodeng.2015.03.020

Jehlička, J., Edwards, H. G., and Oren, A. (2014). Raman spectroscopy of 
microbial pigments. Appl. Environ. Microbiol. 80, 3286–3295. doi: 10.1128/
AEM.00699-14

Jie, D., and Wei, X. (2018). Review on the recent progress of non-destructive 
detection technology for internal quality of watermelon. Comput. Electron. 
Agric. 151, 156–164. doi: 10.1016/j.compag.2018.05.031

Jie, D., Xie, L., Rao, X., and Ying, Y. (2014). Using visible and near infrared 
diffuse transmittance technique to predict soluble solids content of watermelon 
in an on-line detection system. Postharvest Biol. Technol. 90, 1–6. doi: 
10.1016/j.postharvbio.2013.11.009

Jie, D., Zhou, W., and Wei, X. (2019). Nondestructive detection of maturity 
of watermelon by spectral characteristic using NIR diffuse transmittance 
technique. Sci. Hortic. 257:108718. doi: 10.1016/j.scienta.2019.108718

Ke, X., Guandong, G., Guifa, T., Yuxin, Z., and Yuchen, J. (2009). Non-destructive 
acoustic detection method for maturity of watermelon [J]. Journal of Agricultural 
Mechanization Research 8, 150–154.

Lee, K.-M., and Herrman, T. J. (2016). Determination and prediction of fumonisin 
contamination in maize by surface–enhanced Raman spectroscopy (SERS). 
Food Bioprocess Technol. 9, 588–603. doi: 10.1007/s11947-015-1654-1

Lee, L. C., Liong, C.-Y., and Jemain, A. A. (2018). Partial least squares-discriminant 
analysis (PLS-DA) for classification of high-dimensional (HD) data: a review 
of contemporary practice strategies and knowledge gaps. Analyst 143, 
3526–3539. doi: 10.1039/C8AN00599K

Legner, R., Voigt, M., Servatius, C., Klein, J., Hambitzer, A., and Jaeger, M. 
(2021). A four-level maturity index for hot peppers (Capsicum annum) 
using non-invasive automated mobile Raman spectroscopy for on-site testing. 
Appl. Sci. 11:1614. doi: 10.3390/app11041614

Liu, B., Zhou, P., Liu, X., Sun, X., Li, H., and Lin, M. (2013). Detection of 
pesticides in fruits by surface-enhanced Raman spectroscopy coupled with 
gold nanostructures. Food Bioprocess Technol. 6, 710–718. doi: 10.1007/
s11947-011-0774-5

Merlin, J. C. (1985). Resonance Raman spectroscopy of carotenoids and 
carotenoid-containing systems. Pure Appl. Chem. 57, 785–792. doi: 10.1351/
pac198557050785

Nelson, S. O., Guo, W.-C., Trabelsi, S., and Kays, S. J. (2007a). Dielectric 
spectroscopy of watermelons for quality sensing. Meas. Sci. Technol. 18, 
1887–1892. doi: 10.1088/0957-0233/18/7/014

Nelson, S. O., Guo, W.-C., Trabelsi, S., and Kays, S. J. (2007b). “Sensing quality 
of watermelons through dielectric permittivity.” in 2007 IEEE Antennas and 
Propagation Society International Symposium: IEEE. 285–288.

Paul, V., Pandey, R., and Srivastava, G. C. (2012). The fading distinctions 
between classical patterns of ripening in climacteric and non-climacteric 
fruit and the ubiquity of ethylene—an overview. J. Food Sci. Technol. 49, 
1–21. doi: 10.1007/s13197-011-0293-4

Payne, W. Z., and Kurouski, D. (2020). Raman-based diagnostics of biotic and 
abiotic stresses in plants. A review. Front Plant Sci. 11:616672. doi: 10.3389/
fpls.2020.616672

Pintor, A. L. C., Magpantay, M. A. A., and Santiago, M. R. (2016). Development 
of an android-based maturity detector mobile application for watermelons 
[Citrullus Lanatus (Thunb.) matsum. & Nakai] using acoustic impulse response. 
Small 200, 44–56.

Qin, J., Chao, K., and Kim, M. S. (2011). Investigation of Raman chemical 
imaging for detection of lycopene changes in tomatoes during postharvest 
ripening. J. Food Eng. 107, 277–288. doi: 10.1016/j.jfoodeng.2011.07.021

Qin, J., Kim, M. S., Chao, K., Dhakal, S., Cho, B.-K., Lohumi, S., et al. (2019). 
Advances in Raman spectroscopy and imaging techniques for quality and 
safety inspection of horticultural products. Postharvest Biol. Technol. 149, 
101–117. doi: 10.1016/j.postharvbio.2018.11.004

Schulz, H., Baranska, M., and Baranski, R. (2005). Potential of NIR-FT-Raman 
spectroscopy in natural carotenoid analysis. Biopolymers 77, 212–221. doi: 
10.1002/bip.20215

Stone, M., Armstrong, P., Zhang, X., Brusewitz, G., and Chen, D. (1996). 
Watermelon maturity determination in the field using acoustic impulse 
impedance techniques. Trans. ASAE 39, 2325–2330. doi: 10.13031/2013.27743

Vinson, E. L., Woods, F. M., Kemble, J. M., Perkins-Veazie, P., Davis, A., and 
Kessler, J. R. (2010). Use of external indicators to predict maturity of mini-
watermelon fruit. HortScience 45, 1034–1037. doi: 10.21273/HORTSCI. 
45.7.1034

Yang, J., and Yang, J.-Y. (2003). Why can LDA be performed in PCA transformed 
space? Pattern Recogn. 36, 563–566. doi: 10.1016/S0031-3203(02)00048-1

Yu, M. M. L., Schulze, H. G., Jetter, R., Blades, M. W., and Turner, R. F. B. 
(2007). Raman microspectroscopic analysis of triterpenoids found in plant 
cuticles. Appl. Spectrosc. 61, 32–37. doi: 10.1366/000370207779701352,

Zeng, J., Ping, W., Sanaeifar, A., Xu, X., Luo, W., Sha, J., et al. (2021). Quantitative 
visualization of photosynthetic pigments in tea leaves based on Raman 
spectroscopy and calibration model transfer. Plant Methods 17, 1–13. doi: 
10.1186/s13007-020-00704-3

Zhang, Y.-X., Han, J.-L., and Yao, W. (2010). “Non-destructive watermelon 
maturity detection by acoustic response.” in 2010 2nd International Conference 
on Information Engineering and Computer Science: IEEE. December 25–26, 
2010; China: Wuhan, 1–4.

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2022 Dhanani, Dou, Biradar, Jifon, Kurouski and Patil. This is an 
open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and that 
the original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

110

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1007/s11947-020-02505-x
https://doi.org/10.1021/jf035345q
https://doi.org/10.1021/jf035345q
https://doi.org/10.3389/fpls.2015.01152
https://doi.org/10.1016/j.biosystemseng.2004.03.007
https://doi.org/10.1255/jnirs.771
https://doi.org/10.1021/acs.jpcb.6b01641
https://doi.org/10.1002/jrs.4667
https://doi.org/10.1046/j.1523-1747.2000.00060.x
https://doi.org/10.1046/j.1523-1747.2000.00060.x
https://doi.org/10.1016/j.jfoodeng.2015.03.020
https://doi.org/10.1128/AEM.00699-14
https://doi.org/10.1128/AEM.00699-14
https://doi.org/10.1016/j.compag.2018.05.031
https://doi.org/10.1016/j.postharvbio.2013.11.009
https://doi.org/10.1016/j.scienta.2019.108718
https://doi.org/10.1007/s11947-015-1654-1
https://doi.org/10.1039/C8AN00599K
https://doi.org/10.3390/app11041614
https://doi.org/10.1007/s11947-011-0774-5
https://doi.org/10.1007/s11947-011-0774-5
https://doi.org/10.1351/pac198557050785
https://doi.org/10.1351/pac198557050785
https://doi.org/10.1088/0957-0233/18/7/014
https://doi.org/10.1007/s13197-011-0293-4
https://doi.org/10.3389/fpls.2020.616672
https://doi.org/10.3389/fpls.2020.616672
https://doi.org/10.1016/j.jfoodeng.2011.07.021
https://doi.org/10.1016/j.postharvbio.2018.11.004
https://doi.org/10.1002/bip.20215
https://doi.org/10.13031/2013.27743
https://doi.org/10.21273/HORTSCI.45.7.1034
https://doi.org/10.21273/HORTSCI.45.7.1034
https://doi.org/10.1016/S0031-3203(02)00048-1
https://doi.org/10.1366/000370207779701352
https://doi.org/10.1186/s13007-020-00704-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Frontiers in Plant Science | www.frontiersin.org 1 June 2022 | Volume 13 | Article 917226

ORIGINAL RESEARCH
published: 14 June 2022

doi: 10.3389/fpls.2022.917226

Edited by: 
Nam-Hai Chua,  

Temasek Life Sciences Laboratory, 
Singapore

Reviewed by: 
Dmitry Kurouski,  

Texas A&M University, United States
 Gajendra Pratap Singh, 

Singapore-MIT Alliance for Research 
and Technology (SMART), Singapore

*Correspondence: 
Emanuela Noris  

emanuela.noris@ipsp.cnr.it  
Andrea M. Rossi  

a.rossi@inrim.it

Specialty section: 
This article was submitted to  

Technical Advances in Plant Science,  
a section of the journal  

Frontiers in Plant Science

Received: 10 April 2022
Accepted: 23 May 2022

Published: 14 June 2022

Citation:
Mandrile L, D’Errico C, Nuzzo F, 

Barzan G, Matić S, Giovannozzi AM, 
Rossi AM, Gambino G and 

Noris E (2022) Raman Spectroscopy 
Applications in Grapevine: Metabolic 

Analysis of Plants Infected by Two 
Different Viruses.

Front. Plant Sci. 13:917226.
doi: 10.3389/fpls.2022.917226

Raman Spectroscopy Applications in 
Grapevine: Metabolic Analysis of 
Plants Infected by Two Different 
Viruses
Luisa Mandrile 1, Chiara D’Errico 2, Floriana Nuzzo 2, Giulia Barzan 1, Slavica Matić  2, 
Andrea M. Giovannozzi 1, Andrea M. Rossi 1*, Giorgio Gambino 2 and Emanuela Noris 2*

1 Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy, 2 Institute for Sustainable Plant Protection, National Research 
Council of Italy (CNR), Torino, Italy

Grapevine is one of the most cultivated fruit plant among economically relevant species 
in the world. It is vegetatively propagated and can be attacked by more than 80 viruses 
with possible detrimental effects on crop yield and wine quality. Preventive measures 
relying on extensive and robust diagnosis are fundamental to guarantee the use of virus-
free grapevine plants and to manage its diseases. New phenotyping techniques for 
non-invasive identification of biochemical changes occurring during virus infection can 
be used for rapid diagnostic purposes. Here, we have investigated the potential of Raman 
spectroscopy (RS) to identify the presence of two different viruses, grapevine fan leaf virus 
(GFLV) and grapevine rupestris stem pitting-associated virus (GRSPaV) in Vitis vinifera cv. 
Chardonnay. We showed that RS can discriminate healthy plants from those infected by 
each of the two viruses, even in the absence of visible symptoms, with accuracy up to 
100% and 80% for GFLV and GRSPaV, respectively. Chemometric analyses of the Raman 
spectra followed by chemical measurements showed that RS could probe a decrease in 
the carotenoid content in infected leaves, more profoundly altered by GFLV infection. 
Transcriptional analysis of genes involved in the carotenoid pathway confirmed that this 
biosynthetic process is altered during infection. These results indicate that RS is a cutting-
edge alternative for a real-time dynamic monitoring of pathogens in grapevine plants and 
can be useful for studying the metabolic changes ensuing from plant stresses.

Keywords: Raman scattering, Vitis vinifera, carotenoids, virus, early diagnosis

INTRODUCTION

Grapevine (Vitis vinifera L.) is one of the most important fruit crop, with up to 7 million 
hectares cultivated worldwide in 2020 (FAOSTAT, 2020). Grapevine is mainly grown for wine 
production and for fresh and dry fruit consumption, but it is also used for seed oil extraction, 
alcoholic beverage and vinegar production; moreover, several social, touristic, and cultural 
activities are linked to its cultivation, generating a positive impact on the economy.

Grapevine is affected by several pathogens, including fungi, oomycota, phytoplasmas, and 
viruses heavily influencing yield and quality of the crop and reducing the economic revenues. 
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Among grapevine pathogens, viruses are widespread in all 
cultivated areas, causing different diseases, such as the rugose 
wood complex, leafroll, infectious degeneration, and fleck disease 
(Fuchs, 2020). Up to now, more than 80 viruses from 17 
families and 34 genera have been identified (Martelli, 2014, 
2018), frequently occurring in mixed infection.

Within this large number of viral entities threatening 
grapevine, grapevine rupestris stem pitting-associated virus 
(GRSPaV) and grapevine fanleaf virus (GFLV) are two well-
known and widespread examples. After its discovery about 
two decades ago, GRSPaV is nowadays considered one of the 
most ubiquitous viruses, found in Europe, America, Australia, 
and Asia (Meng and Rowhani, 2017). GRSPaV belongs to the 
genus Foveavirus, family Betaflexiviridae, and it is generally 
associated to “Rupestris Stem Pitting,” a disorder of the “Rugose 
Wood complex” (Meng and Gonsalves, 2003). Its presence has 
been linked to other grapevine diseases, including the vein-
clearing complex on cv. Chardonnay (Lunden et  al., 2009). 
Nonetheless, in most cases GRSPaV induces latent infections, 
with no visible symptoms on infected plants. Despite this, 
GRSPaV was reported to trigger a number of transcriptional 
changes on cv. Bosco, mainly regarding photosynthesis and 
CO2 fixation, leading to a moderate decrease of the photosynthetic 
process and an altered reaction of plants to biotic/abiotic stress, 
underlying possible beneficial effects mediated by this virus 
toward abiotic factors (Gambino et  al., 2012; Pantaleo et  al., 
2016; Tobar et  al., 2020).

GFLV (family Secoviridae, genus Nepovirus) is a harmful 
and economically deleterious virus, responsible for the “Grapevine 
infectious degeneration” complex (Sanfaçon et  al., 2009). 
Symptoms induced by GFLV include vein yellowing, mosaics, 
internode shortening, typical leaf deformations, smaller and 
fewer bunches, with irregular ripening. The variability of 
symptoms observed in vineyards depends on the virus strain, 
grapevine genotype, cultural practices, and environmental 
conditions (Martelli, 2017). GFLV is transmitted by the soil-
borne ectoparasitic nematode Xiphinema index and by infected 
plant material. Beside phenotypic alterations typical of infectious 
degeneration, the physiological and molecular changes induced 
by GFLV can be occasionally associated to an improved tolerance 
toward fungal infections (Gilardi et al., 2020) and to a moderate 
water stress (Krebelj et  al., 2022). Overall, GRSPaV and GFLV 
represent two virus models regarding the symptomatology 
induced on vine plants, which interact with the host in complex 
and unexpected ways, justifying to more deeply explore the 
changes occurring during the infection processes.

Early diagnosis of plant pathogens is crucial for a proper 
disease management, allowing not only to eliminate infected 
material and reduce further spread of the pathogens, but also 
to implement clean stock programs useful to preserve the sanitary 
status of a crop. This is particularly relevant for grapevine, a 
vegetatively propagated perennial crop, and for viral pathogens 
which cannot be  eliminated with chemical pesticides. For these, 
in fact, eradication programs are required before the nursery 
stage and during the clonal selection, currently performed applying 
sanitation techniques such as meristem culture, thermotherapy, 
and somatic embryogenesis. Specifically, due to the extensive use 

of clonal multiplication of grapevine, many countries have 
established strict regulations for the grapevine propagation material, 
in order to verify the presence of viruses and reduce the risk 
of disease spread (Golino et  al., 2017). Plant disease diagnosis 
is commonly performed using molecular-based procedures (Fang 
and Ramasamy, 2015; Martinelli et al., 2015), which can be time-
consuming, unsuitable for rapidly testing large numbers of samples, 
require skilled personnel and the availability of pathogen-specific 
reagents (gene sequences or antibodies), and are not frequently 
implemented for field application. Indeed, grapevine certification 
schemes mainly rely on serological and molecular assays, aided 
by biological indexing, time-consuming and expensive activities 
often requiring multiple evaluations. In Italy, sanitary schemes 
dictate that all materials test negative for grapevine virus A (GVA), 
GFLV, Arabis mosaic virus (ArMV), grapevine leafroll-associated 
virus-1 and -3 (GLRaV-1, −3), and grapevine fleck virus (GFkV, 
this only for rootstocks; Italian regulation D.M. 7 July 2006 and 
D.L. 02 February 2021). Therefore, new diagnostic tools, ideally 
suitable for field testing of plants by untrained personnel, using 
friendly and inexpensive equipment and providing results in a 
short time, with minimal number of steps would be  extremely 
important. Such strategies could allow extensive and fast screening 
of imported vegetative material, preventing disease spread.

Raman spectroscopy (RS) records the molecular vibrations of 
cellular metabolites present in a specimen in the absence of labels 
or reagents and has been recently proposed as a non-destructive 
and rapid diagnostic procedure for plant pathogens. The spectra 
obtained from healthy and diseased plant samples are used as 
specific fingerprints, reflecting changes in cellular metabolites 
occurring following infection by pathogens or during abiotic 
stresses. Indeed, several groups including our laboratory have 
shown that RS can sense the presence of different plant pathogens, 
among which viruses, in different cultivated crops (Yeturu et  al., 
2016; Egging et  al., 2018; Farber and Kurouski, 2018; Farber 
et  al., 2019a,b; Sanchez et  al., 2020). In particular, we  showed 
that specific changes in tomato plants artificially inoculated with 
two different viruses can be  identified by RS, at a stage when 
visual symptoms were not yet visible (Mandrile et  al., 2019).

In the current study, we  investigated the potential of RS 
to determine the occurrence of two different viruses infecting 
grapevine cv. Chardonnay; the two pathogens were chosen as 
examples of a latent-asymptomatic virus (GRSPaV) and a 
dangerous-symptomatic virus (GFLV), whose absence is required 
in the certification protocols. Plants separately infected by the 
two viruses were analyzed with a Raman microscope apparatus 
at different time points during the vegetative season and systemic 
molecular changes induced by the viruses were analyzed by 
quantitative reverse transcription-PCR (RT-qPCR).

MATERIALS AND METHODS

Plants
V. vinifera cv. Chardonnay plants infected by either GFLV 
(cluster IB; NCBI Acc. No. MN889891) or GRSPaV (phylogenetic 
group GRSPaV-SG1; NCBI Acc. No. MN889892) were previously 
described in Gilardi et  al. (2020). In this work, 2-year-old 
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infected plantlets and healthy individuals (n = 4) were maintained 
in 5-L pots filled with a peat substrate (TS4, Turco Silvestro, 
Italy). Plants were kept under a gauze greenhouse for the 
whole duration of the experiment, with constant watering. Each 
plant represents a biological replica.

RNA Extraction and RT-qPCR
Total RNA was extracted using a rapid CTAB method (Gambino 
et  al., 2008) and its quantity and quality were evaluated with 
a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, United  States). RNA was then treated with 
DNase (DNase I, Thermo Fisher Scientific, Waltham, MA, 
United States) and reverse-transcribed using the High-Capacity 
cDNA Reverse Transcription Kit (Thermo Fisher Scientific), 
following manufacturer’s instructions.

RT-qPCR reactions were performed in a CFX Connect Real-
Time PCR system (Bio-Rad Laboratories, Hercules, CA, 
United States), using SYBR Green (SensiFAST™ SYBR® No-ROX 
Kit; Meridian Bioscience, Memphis, Tennessee, United  States) 
with the following cycling conditions: denaturation at 95°C 
for 2 min, followed by 40 cycles at 95°C for 15 s and 60°C for 
30 s. RT-qPCR was conducted for the relative quantification 
of GFLV and GRSPaV, using primers specific for viral RdRp 
(Gilardi et  al., 2020), and for transcriptional analysis of genes 
representative of the carotenoid pathway, using Ubiquitin (VvUBI) 
and Actin1 (VvACT1) as internal controls. The primers for 
RT-qPCR are listed in Supplementary Table S1. Four independent 
biological replicates and three technical replicates were run for 
each RT-qPCR. Gene expression data were subjected to analysis 
of variance (ANOVA), followed by the Tukey’s HSD post hoc 
test (p ≤ 0.05). The SPSS statistical software package (SPSS Inc., 
Cary, NC, United States, v.23) was used to run statistical analyses.

Raman Spectroscopic Measurements
Raman spectra were acquired from one half of the fifth leaf 
counting from the apex, while the other half was used for 
virus detection and transcript accumulation analysis. Leaf 
samples for RS analysis were stored in plastic bags and kept 
on ice until spectra acquisition within the following 4 h. Spectra 
(400–3,100 cm−1; 5 cm−1 resolution) were acquired using a 
Dispersive Raman Spectrometer (DRX Thermo Fisher Scientific, 
Waltham, United States; 785 nm excitation laser, 10× microscope 
objective, 2 μm laser spot diameter, 10 mW laser power; 20 
scansions, 1 s each), were collected on the same point of the 
leaf, taking three points per leaf, on three different leaf lobes.

The spectrometer was weekly calibrated using a certified 
white light for intensity and neon gas lines for frequency. 
Moreover, a Si standard was measured before each session, to 
guarantee consistency within measurements and to avoid 
differences due to instrument performances. Four different 
measurements were performed, at monthly intervals, starting 
in May, until August 2021 (T1 to T4).

Chemometric Analysis of Raman Spectra
Chemometric analysis was conducted using the PLS Toolbox 
(Eigenvector Research, Inc., Manson, WA) for Matlab R2015a 

(Mathworks, Natick, MA). Spectral range between 650 and 
3,060 cm−1 was considered. Spectra pre-processing consisted in 
smoothing (Savitzky-Glay filter, 21 pt.), baseline correction 
(automatic weighted least square regression, second order and 
Whittaker filter with asymmetry 1e−5, λ 1,000), and mean centering. 
Principal Component Analysis (PCA) was used to find non-random 
data structures attesting non-random variability between groups 
of spectra. The effect of the different factors of the experimental 
design was evaluated by analysis of variance simultaneous component 
analysis (ANOVA-SCA, also known as ASCA), considering the 
following k factors: (i) “time” (T1, T2, T3, and T4); (ii) “virus” 
(presence of infection; levels healthy, GRSPaV and GFLV), and 
(iii) “biological replicates” (levels: different plant specimens).

ASCA was performed considering the two-way correlations 
between factors. The significance of the experimental factors 
was quantified determining values of p through a permutation 
test between the levels of the factors (Zwanenburg et al., 2011). 
The H0 hypothesis of no experimental effect, indicating no 
difference between the levels averages of the effect matrices, 
with a confidence level of p was tested. Values of p were 
obtained for the main effects by randomizing the levels of 
each factor under consideration.

Partial least squares discriminant analysis (PLS-DA) was 
finally used as a classification method to test the possibility 
to recognize infected plants. Since an external test set for 
validation was not available, leave-one plant-out cross validation 
(CV) was used to determine the classification error (CE).

Sample Extraction and Analysis of Total 
Carotenoids, Chlorophylls, and 
Polyphenols
Plant extracts were prepared according to Alrifai et  al. (2021), 
with slight modifications. Grapevine leaves were freeze-dried 
and maintained at −80°C; 25–30 mg of powdered material were 
extracted in 4 ml of an acetone:ethanol (1:1, v/v) solution and 
extracts were sonicated in a water bath for 15 min and incubated 
at room temperature for 4 h, with shaking at 400 rpm (Sky4 
Shaking Incubator, Argo Lab). After centrifugation (1,600 ×g, 
5 min), each supernatant was transferred to a clean tube; pellets 
were re-extracted twice with the same solvent, once using 2 ml 
for 2 h, followed by 1 ml for 1 h. Supernatants from the same 
sample were pooled. For total carotenoid and chlorophyl content 
analysis, a 250-μl aliquot of each extract was added in triplicate 
to a 96-well microplate. The plate was analyzed immediately 
using a UV/VIS Varioskan Lux (Thermo Fisher Scientific, 
Waltham, United States) multi-wells reader, measuring absorbance 
at 452 nm. A calibration curve was prepared with a β-carotene 
(Sigma Aldrich, Certified Reference Material, >99%) solution, 
using at least five concentrations from 2 to 50 μg/ml, R2 > 0.99. 
Total carotenoid content was expressed as μg of β-carotene 
equivalents/g of dry weight sample. Absorbance at 666 nm was 
also recorded to evaluate the chlorophyll content and relative 
comparison between the tested samples was performed to 
provide semi-quantitative information.

Total polyphenol content was measured by the Folin–Ciocalteu 
method, using the same ethanol:acetone (1:1) leaf extracts (see 
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above). Aliquots of 200 μl of each extract were added to 15-ml 
tubes containing 3 ml ultrapure water and 200 μl Folin–Ciocalteu 
reagent (Sigma Aldrich). After mixing and incubating the 
samples for 6 min at room temperature, 200 μl of 20% (w/v) 
Na2CO3 (Carlo Erba) were added to each tube and vortexed. 
After 30 min incubation at 37°C, aliquots of 200 μl of each 
sample were placed in triplicate in a 96-wells microplate and 
absorbance at 765 nm was measured with the UV/VIS Varioskan 
Lux multi-wells reader, by subtracting the absorbance of the 
blank (ethanol:acetone solution, 1:1). A calibration curve made 
with gallic acid was used as standard, measuring at least five 
concentrations from 40 to 200 mg/L. Results were normalized 
to the weight of the dried leaf sample (mg/L).

EXPERIMENTAL RESULTS AND 
DISCUSSION

Virus Accumulation in Grapevine Plants 
Along the Vegetative Season
In this work, we  considered grapevine plants cv. Chardonnay 
infected by either GRSPaV or GFLV, and healthy control 
individuals (Gilardi et  al., 2020). Plants were surveyed along 
the whole vegetative season from May to August 2021, at four 
different time points (T1 to T4) at monthly intervals. During 
the whole season, no visible symptoms could be  detected on 
plants infected by either virus, in agreement with a previous 
report (Gilardi et  al., 2020) and in line with unpublished 
observations of young plants kept in pots, across several years 
(G. Gambino, personal observations).

RT-qPCR virus quantification analysis showed an overall 
stable accumulation of GRSPaV along the whole duration of 
the experiment, with a slight increase only at the end of the 
season (Figure  1). In vineyard conditions, the GRSPaV titer 
in leaves tends to decrease as the season progresses, while no 
such decrease occurred in the present conditions (Gambino 
et  al., 2012). On the contrary, a remarkable drop in the 
accumulation of GFLV occurred since the second time point 
analyzed (T2, June), with no further changes during the vegetative 
season (Figure  1). The reduction of the GFLV titer along the 
season is in line with observations recorded in vineyard, where 
the highest GFLV concentrations in leaves were found in May, 
i.e., at the beginning of the vegetative period (Krebelj et  al., 
2015; Gilardi et  al., 2020).

Raman Spectra Measurements of Leaves
The Raman spectra of grapevine leaves were collected on intact 
plant material, focusing the excitation laser directly onto the 
leaf surface. A near infrared laser wavelength was used to 
limit the undesired fluorescence effect disturbing Raman signals. 
Other research paper dealing with Raman measurements on 
plant tissues report the alternative use of 785 nm (Dou et  al., 
2021), 830 nm (Farber et al., 2019b; Sanchez et al., 2020; Payne 
et  al., 2022), or 1,064 nm (Yeturu et  al., 2016; Farber and 
Kurouski, 2018; Skoczowski et  al., 2022) laser wavelengths to 
minimize fluorescence interference and increase signal-to-noise 

ratio. At the same time, a relatively low laser power and low 
magnification objective were adopted to avoid thermal stress 
of the tissue and to collect information from a relatively large 
area (spot size >2  μm). The mean spectra of grapevine leaves 
showed vibrational bands that were assigned to cellulose, 
carotenoids, polyphenols, chlorophylls, xylan, lignin, and proteins, 
being the major components of leaves (Figure 2). The assignment 
of bands of the most relevant peaks are reported in Table  1. 
According to previous literature, most of the wavenumbers 
were related to photosynthetic pigments (Zeng et  al., 2021).

Following this analysis, the spectra obtained from healthy 
plants were compared with those collected from virus-infected 
plants, at the different time points. Similar spectral profiles 
were registered among the three different groups of samples, 
at the different time measurements (Figure  2), indicating that, 

FIGURE 1 | Relative accumulation of grapevine rupestris stem pitting-
associated virus (GRSPaV) and grapevine fan leaf virus (GFLV) in grapevine 
cv. Chardonnay leaf tissue, at different times (T1 to T4, at monthly intervals) 
during the vegetative season. Quantitative reverse transcription-PCR (RT-
qPCR) signals were normalized to VvAct and VvUBI transcripts. Data are 
presented as the mean ± SE (n = 4). Lowercase letters denote significant 
differences attested by Tukey’s honestly significant difference (HSD) test 
(p < 0.05).
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at preliminary observation, the spectral fingerprint of leaves 
was not severely influenced by the presence of virus infection, 
but only minimal changes were registered. The entire fingerprint 

regions of the mean spectra for the three classes of plants 
and the four sampling times are shown in supporting information 
(Supplementary Figure S1) for a better comparison. For the 

FIGURE 2 | Average Raman spectra of healthy (green), GRSPaV- (yellow), and GFLV- (red)-infected grapevine cv. Chardonnay leaves. Spectra are the result of four 
plants per group. Representative spectra collected in the first measurement session (T1) are shown.

TABLE 1 | Raman bands assignments for grapevine leaves.

Band (cm−1) Vibrational assignment References

2,800–3,000 CHx stretching
1,605 m ν(phenyl ring; phenolics and lignin) Eravuchira et al., 2012
1,551 m br chlorophyll - central 16-membered-ring vib. + ν(C=C; pyrrole ring)
1,526 s ν1(C–C; carotenoids) Koyama et al., 1986
1,483 m δ(CH2) and δ (CH3)
1,438 m ν(phenyl ring; phenolics) Eravuchira et al., 2012
1,370 δCH2 bending vibration (aliphatic) Yu et al., 2007
1,328 m δ(CH) + ν(CN; pyrrole ring br.—chlorophylls) Boldt et al., 1987
1,320 [δ(C12 − H), ν(C11-C12)](β-carotene) Eravuchira et al., 2012
1,280 m δ(phenyl-OH; phenolics) + − δ(CH). ν(CN; chlorophyll) Eravuchira et al., 2012; Yeturu et al., 2016
1,215 m δ(CH) + δ(CH2; chlorophyll) Boldt et al., 1987
1,180 ms ν(CC) + γ(CH; chlorophylls) + δ(CH phenyl; phenolics) Boldt et al., 1987; Eravuchira et al., 2012
1,150 s ν2(C\\C; carotenoids) Gill et al., 1970
1,140 m sh ν(CN). δ(CNC; chlorophyll) Boldt et al., 1987
1,110 δ (C – OH; carbohydrates) Farber and Kurouski, 2018
1,050 ν (C – O) + ν(C – C) + ν(C – OH; carbohydrates) Farber and Kurouski, 2018
1,000 m δ(C – CH3; carotenoids) Gill et al., 1970
980 m undefined (chlorophylls)
909 m undefined (chlorophylls)
738 ms ring br. mode (aromatics)
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majority of bands, frequency mismatches between healthy and 
infected plants can be  noticed since the third sampling time.

Previous works have determined the assignment of Raman 
bands obtained from leaf samples which are mostly due to 
carotenoids, being among the most Raman active classes of 
compounds present in such tissue (Yeturu et  al., 2016). In 
particular, the most evident peak observed at 1,526 cm−1 is 
assigned to the stretching of the –C=C– double bond in 
the conjugated chain of carotenoids (Adar, 2017), while the 
shoulder at 1,550 cm−1 is due to chlorophylls. Focusing our 
attention on this particular band and comparing the mean 
spectra of healthy and infected plants monitored during the 
entire vegetative season, a reduced carotenoid concentration 
in leaves of GFLV-infected plants was noticed since the 
second measurement (T2). On the contrary, no such tendency 
occurred in healthy plants or in GRSPaV-infected plants 
(Figure  3). In addition, a frequency change that exceeds 
the resolution limit of 5 cm−1, was registered in infected 
tissues for the carotenoid peak, as well as for other bands 
in the Raman fingerprint region, since the second sampling 
(Figure  3). In particular, the –C=C– stretching shifted to 
a slightly lower frequency in infected plants (from 1,526 to 
1,518 cm−1 for GFLV and from 1,526 to 1,520 cm−1 for GRSPaV, 
at T3), possibly resulting from a modification of the carotenoids 
profile occurring in these plants (Figure 3). A previous study 
by Withnall et al. (2003) showed a linear inverse dependency 
of the frequency location of the band of –C=C– double 
bonds and the length of the conjugated chain of carotenoids. 
However, due to the intrinsic limits of Raman measurements 
on complex biological matrices, the available data do not 
allow to specifically address the accumulation of carotenoid 

molecules of a specific length, an issue which should be 
investigated with more selective techniques.

Overall, the modification of the Raman peaks, especially 
those associated to carotenoids, provides an indication that 
the infection by these two viruses leads to a different 
metabolic response of infected plants. In particular, a reduced 
concentration of carotenoids in grapevine suggests a functional 
link to either a modulation of transcripts involved in 
carotenoid metabolism or to their degradation and 
fragmentation or conversion to apocarotenoids, i.e., signaling 
molecules produced in response to stress. A decrease in 
carotenoid concentration has been frequently reported when 
analyzing by Raman spectroscopy plants infected by pathogens 
(Dou et  al., 2021; Farber et  al., 2021; Vallejo-Pérez et  al., 
2021) or subjected to abiotic stresses (Altangerel et  al., 
2017; Sng et  al., 2020), confirming the role of this class 
of molecules in plant stress responses.

Beside the visual comparison of the average spectra collected 
from healthy and infected plants over time, a more complete 
investigation regarding the changes in the Raman profiles was 
conducted, with a multivariate unsupervised visualization method. 
This procedure allows to consider the whole spectral information 
and to test the significance of spectral differences within the 
groups included in the experimental design. For this, the entire 
dataset was processed with ASCA using the four plants present 
in each group (factor “Infection,” levels “healthy,” “GRSPaV,” 
“GFLV”), considering one leaf per plant, three spectra per 
leaf, four sampling sessions over four measurements, at monthly 
intervals (factor “Time,” levels “T1,” “T2,” “T3,” and “T4”). 
This process is expected to model the effect of each of the 
factors included in the experimental design and to evaluate 

A B C

FIGURE 3 | Raman spectroscopic analysis of (A) healthy and of (B) GRSPaV- or (C) GFLV-infected grapevine cv. Chardonnay leaves, at different time points (T1 to 
T4) during the vegetative season. Focus on the peaks associated to carotenoids and chlorophyll. Average spectra are the result of four plants per group.
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the significance of each effect. At the same time, a PCA model 
was calculated for each design factor, to help visualizing the 
results. Then, the significance of each factor was tested by 
permutation tests within the levels of the factors, providing a 
p < 0.5 value for significant factors. Unfortunately, the ASCA 
model for the combined dataset showed that no significant 
spectral variation could be  modeled over time to distinguish 
the three levels of the factor “infection” (Table  2). On the 
contrary, the factors “time” and “plant specimen” resulted 
significantly different.

These results urged us to consider separately the four sampling 
sessions and to determine the discrimination ability of RS to 
detect molecular changes induced in leaves by virus infection, 
on a temporal basis. For this, in order to obtain data grouping 
in accordance with the infection, at each sampling time, a 
PCA was performed, i.e., a common visualization method used 
to reduce the number of variables and to plot multivariate 
data as a scatter plot accounting for unsupervised agglomeration 
of samples due to common features. The PCA score plots 
obtained are shown in Figure  4, colored according to the 
infection condition at each sampling time.

In order to elucidate the spectral features driving this 
unsupervised clustering of spectra, the loadings of the different 
PCA models were compared. In details, at T3 and T4, the 
loadings of the first three PCs are very similar 
(Supplementary Figure S2). Noteworthy, the most important 
features allowing to separate the different spectra are PC1, 
which refers to the overall spectral intensity, mainly regarding 
carotenoid peaks, and PC2, accounting to the band shifts 
observed at 1,527 cm−1 (carotenoids) and 780 cm−1 (aromatics, 
probably mainly phenolics, such as anthocyanin). This analysis 
confirms that the differences found in the mean spectra are 
common to all spectra of the same group, albeit with different 

TABLE 2 | Results of ANOVA simultaneous component analysis (ASCA) 
elaboration on the complete data set of samples.

Factor
No. of principals 

components
Effect p

Time 3 39.76 0.001
Plant specimen 11 13.57 0.001
Virus 2 2.77 1.00
Mean - 0.00 -
Residuals - 52.28 -

Results were obtained from 144 spectra collected from 12 plants, over 4 months.

A B

C D

FIGURE 4 | PCA score plots of the spectra of healthy and GRSPaV- or GFLV-infected grapevine cv. Chardonnay plants, calculated at ((A) T1, (B) T2, (C) T3, 
(D) T4, at monthly intervals). 3D graph rotation is set to optimize result visualization.
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magnitude. Moreover, this procedure showed that at T3 and 
T4 it is possible to distinguish healthy plants from those infected 
by the two different viruses. On the contrary, at T1 and T2, 
no score grouping could be  obtained in the PC1, 2, 3 scores 
plot, indicating a poor differentiation of spectral profiles of 
healthy and infected plants. The variance captured at T1 and 
T2 by the first three PCs, which is mainly related to the 
fingerprint region between 500 and 1,600 cm−1 does not drive 
clear grouping of scores related to the infection conditions of 
the samples (Supplementary Figures S2A,B).

Supervised Data Analysis
Considering the absence of visible symptoms induced on grapevine 
by the two viruses here considered, a major goal of this work 
was to determine if RS coupled to multivariate statistical methods 
could discriminate healthy plants from infected individuals. 
Therefore, PLS-DA was used as a classification method to evaluate 
the possibility to discriminate healthy from infected plants based 
on their Raman spectra. Due to the reduced number of plants 
included in the experimental design which could not be separated 
into a calibration and a validation set, the Leave-one-group-out 
cross-validation (CV) method was used; noteworthy, to test the 
validity of the model with a method more similar to external 
set testing, full leave-one-out CV was avoided, and the exclusion 
groups of CV corresponding to “one-plant-out” at a time were 
set. Therefore, to test the recognition ability of RS, different 
class vectors were considered, as follows: (1) three class models 
(healthy, GRSPaV, GFLV) to simultaneously distinguish healthy 
plants from plants infected by each of the viruses, (2) two 
class models (healthy vs. infected plants), considering all infected 
plants together, and (3) two class models (healthy vs. GRSPaV-
infected plants or healthy vs. GFLV-infected plants), separately 
considering the two different viruses. The classification results 
of such a cross-validation test are reported in Table  3.

Although in the first two measurements (T1 and T2) it was 
not possible to discriminate the presence of either GRSPaV or 
GFLV in the plants with a high level of accuracy in CV, infected 
plants could be distinguished with a classification error (CE) < 20% 
starting from the T3 measurement. In particular, infected plants 
(considering GRSPaV and GFLV together) could be distinguished 
from healthy individuals with CE values of 8% at T3 and T4, 
a result particularly relevant considering the complete absence 
of symptoms. Noteworthy, CE 0% were obtained for GFLV-
infected tissue in the last two sampling times, probably resulting 

from changes in the metabolism of carotenoids occurring in 
such plants, justifying further investigations, as below described.

The score plots of the two best models in the area defined 
by the two first latent variables (LVs) of the PLS-DA model 
and the Receiver Operating Characteristic (ROC) curves are 
shown in Figure  5, providing a clear visual indication of the 
model sensitivity and specificity. The two relevant LVs of these 
models are shown in Supplementary Figure S3, while the 
model images for the three classes (H,R,G) and for (H,R) at 
T3 and T4 are reported in Supplementary Figure S4.

Interestingly, the discriminative ability of RS was independent 
from the amount of virus determined in the leaves and was higher 
toward the end of the vegetative season (Table  3; Figure  1). This 
is particularly interesting in the case of GFLV for which the best 
classification rates in the PLS-DA model were calculated at the 
T3-T4 measurements against the backdrop of a sharp viral load 
reduction in the same period. Nonetheless, this result can be assessed 
in the light of a “load metabolic effect” induced by virus infection 
in this crop along the seasonal progression (Gambino et  al., 2012; 
Chitarra et  al., 2018; Martin et  al., 2021). Moreover, the results 
here reported support previous observations of a higher metabolic 
impact on grapevine plants exerted by GFLV compared to GRSPaV, 
corroborating the concept of a co-evolution of GRSPaV with this 
crop (Gambino et al., 2012) possibly resulting from the long-lasting 
presence of a hard to eradicate pathogen in grapevine.

Validations via Chemical Analytical 
Extractions
To confirm the results of the RS analyses, the concentration of 
the three main classes of pigments, i.e., carotenoids, total phenolics, 
and chlorophylls, were measured by spectrophotometric assays in 
the same tissues used for RS. As it can be  observed in Figure  6, 
the peculiar trends measured with Raman spectroscopy concerning 
the concentration of carotenoids were confirmed. In particular, a 
decrease in carotenoid concentration can be  noticed from T1 to 
T4  in GFLV-infected plants (Figure  6A), in accordance with the 
RS results (Figure 3). Regarding the other two classes of compounds 
investigated, i.e., chlorophylls and polyphenols, no significant trends 
are revealed, in line with the observation that their Raman signals 
were not relevant for the discrimination between healthy and 
infected plants. However, interestingly, significant differences in 
the content of total phenolics compounds between healthy and 
GFLV-infected plants were recorded at T3 and T4, probably 
supporting the higher discrimination accuracy for infected plants.

Regarding chlorophylls, a similar trend was detected over 
time in all groups of plants, independently on the presence 
of virus infection. Based on these results, the accumulation 
of chlorophylls does not seem to be influenced by the infection 
process, rather by the environmental conditions, while the 
content of carotenoid and phenolic compounds is altered in 
infected plants. This observation is in line with recent studies 
highlighting the relevance of secondary metabolites as players 
in plant defense responses, thus underlying the importance of 
characterizing the metabolic profiles associated to disease 
susceptibility traits in grapevine as a promising approach to 
identify trait-related biomarkers (Maia et  al., 2020).

TABLE 3 | PLS-DA classification to distinguish grapevine plants infected by 
either GFLV or GRSPaV from healthy individuals, over the vegetative season.

Model T1 (%) T2 (%) T3 (%) T4 (%)

3 Classes (H,R,G) 50 52 14 19
2 Classes (H,I), I = R + G 19 36 8 8
2 Classes (H,R) 25 31 8 12
2 Classes (H,G) 13 17 0 0

Results are expressed as classification error (CE) and cross validation (CV). H, healthy; 
R, GRSPaV; G, GFLV; and CE, classification error.
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Transcriptional Analysis of Genes Involved 
in the Carotenoid Pathway
Since the most interesting information related to virus infection 
determined by RS is linked to the carotenoid content, a 

transcriptional study was conducted by RT-qPCR to measure 
the expression level of a set of target genes involved in carotenoid 
metabolism (Leng et al., 2017). Carotenoids are mainly synthesized 
from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate 

A

B

FIGURE 5 | PLS-DA model at T3 (A) and T4 (B), with scores on latent variable 1 and 2 plots and Receiver Operating Characteristic (ROC) measurements for GFLV 
recognition from healthy plants.

A B C

FIGURE 6 | Accumulation of (A) carotenoid, (B) phenolic, and (C) chlorophyll compounds in healthy and infected grapevine leaf samples, during the vegetative 
season. The values reported are mean ± SE of the classes of compounds obtained from four independent biological samples (n = 4).
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FIGURE 7 | Relative expression levels of VvDXS (VIT_05s0020g02130), VvDXR (VIT_17s0000g08390), VvHDR (VIT_03s0063g02030), VvGGPS1 
(VIT_04s0023g01210), and VvGGPS2 (VIT_18s0001g12000), measured by RT-qPCR. Samples were collected in four sampling points along the season (May_T1, 
June_T2, July_T3, and August_T4). RT-qPCR signals were normalized to VvAct and VvUBI transcripts. Data are presented as the mean ± SE (n = 4). Significance of 
sampling time, virus, and time x virus (T × V) interaction was assessed by Tukey’s HSD test for p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***) and the corresponding results are 
given above each graph in the figure panel. Lower case letters above bars are reported when the T × V interaction are statistically significant as attested by Tukey’s HSD.

(DMAPP) produced through the monoterpene biosynthetic pathway 
(MEP). In particular, we tested the first two genes of the biosynthetic 
MEP route, 1-deoxy-D-xylulose-5-phosphate synthase (VvDXS) 
and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (VvDXR), 
and one of the last genes, 1-hydroxy-2-methyl-2-(E)-butenyl-4-
diphosphate reductase (VvHDR). For these genes, a slight transcript 
modulation occurred in both healthy and virus-infected plants. 
While the sampling time (T) was significant for all the three 
genes, the effect of virus (V) was significant only in the case 
of VvDXR, whose expression increased at T4  in GRSPaV- and 
GFLV-infected plants. The interaction between virus and time 
(V × T) was significant only for VvDXR, showing a decrease in 

GFLV-infected plants at T2, followed by an increase at T4  in 
both virus-infected samples (Figure  7).

Two isoforms of geranyl pyrophosphate synthase (VvGPPS), 
a gene operating along the MEP pathway, responsible for the 
production of geranyl pyrophosphate acting as substrate of 
monoterpenes synthases in the late carotenoid pathway, resulted 
strongly transcriptionally regulated along with time progression 
(T), but not by the presence of virus infection (V). In addition, 
considering the V × T interaction, a significant downregulation 
of VvGPPS2 was recorded in particular in GFLV-infected plants 
at T2 (Figure  7), mirroring the carotenoid reduction observed 
by Raman analysis (Figure  3).
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Of the two genes encoding the phytoene synthase (VvPSY), 
considered as a bottleneck reaction in the carotenoid pathway, 
VvPSY1 did not show any significant modulation regarding 
the effects of virus infection or time progression, while VvPSY2 
showed a strong T effect (Figure  8), indicating its prominent 
role in the carotenoid reduction occurring after the T1 sampling 
in the whole set of samples (Figure 3). The phytoene produced 
by VvPSY is then desaturated through the action of phytoene 
desaturase (VvPDS) which showed a modulation affected only 
by T, in particular at T4.

Among the genes involved in carotenoid catabolism, 
we  analyzed a carotenoid cleavage dioxygenase (VvCCD4) 
and a 9-cis-epoxycarotenoid dioxygenase (VvNCED). VvCCD4 
is linked to the production of volatile compounds and 
strigolactones and showed significant V and T effects, with 
a negative correlation with the accumulation of carotenoids 

at T3 and T4. On the other side, VvNCED, a key enzyme 
in the biosynthesis of abscisic acid (ABA), showed a significant 
T effect with negative correlations with the carotenoids at 
T2 and T3, and an interesting upregulation in GFLV-infected 
plants at T4 (Figure  8).

Collectively, positive correlations between the reduced 
accumulation of carotenoids, particularly, in GFLV-infected 
plants, and the downregulation of transcripts involved in 
their biosynthesis (i.e., VvGGPS2 and VvPSY2) were detected, 
accompanied by an upregulation of genes responsible for 
carotenoid catabolism, i.e., VvCCD4 and VvNCED. This 
suggests that virus infection, particularly in the case of 
GFLV, can accelerate the natural reduction of photosynthetic 
processes mediated by carotenoids occurring across the 
vegetative season. Moreover, it indicates that RS can sense 
a metabolic stress response leading to the accumulation 

FIGURE 8 | Relative expression levels of VvPSY1 (VIT_04s0079g00680), VvPSY2 (VIT_12s0028g00960), VvPDS (VIT_09s0002g00100), VvCCD4 (VIT_02s0087g00930), 
and VvNCED (VIT_19s0093g00550), measured by RT-qPCR. Samples were collected in four sampling points along the season (May_T1, June_T2, July_T3, and August_
T4). RT-qPCR signals were normalized to VvAct and VvUBI transcripts. Data are presented as the mean ± SE (n = 4). Significance of sampling time, virus, and time x virus 
(T × V) interaction was assessed by Tukey’s HSD test for p ≤ 0.01 (**), p ≤ 0.001 (***) and the corresponding results are given above each graph in the figure panel.

121

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Mandrile et al. Diagnosis of Grapevine Viruses by Raman Spectroscopy

Frontiers in Plant Science | www.frontiersin.org 12 June 2022 | Volume 13 | Article 917226

of ABA and strigolactones (Milborrow and Lee, 1998; 
Auldridge et  al., 2006; Havaux, 2013), originating from 
carotenoid precursors.

CONCLUSION

A growing number of evidences are showing that RS 
techniques represent a non-invasive, non-destructive 
analytical approach to monitor the sanitary status of plants 
(Payne and Kourowsky, 2021). Here, we  applied RS to 
grapevine, one of the most economically important crops 
worldwide, affected by relatively higher number of pathogens 
compared to other fruit trees and subjected to strict 
certification programs to guarantee its phytosanitary status. 
The PLS-DA model here obtained from the RS data 
demonstrated the suitability of the RS approach to 
discriminate healthy from infected plants, even in the absence 
of macroscopic symptoms, with up to 92% accuracy for 
GRSPaV and 100% accuracy for GFLV, the latter taken as 
a representative virus that should be  absent in certified 
virus-free plant materials. The Raman spectra allowed to 
identify the major metabolic changes occurring in this crop 
in response to virus infection, paving the way to adopt a 
RS-based approach as a complementary procedure to detect 
early stages of viral infection not only in vineyards but 
also in the nurseries. Following proper verification of the 
congruence of the results, direct evaluation of plants grown 
in vineyards will be  feasible using high-throughput portable 
Raman spectrometers, as reported by other groups (Farber 
and Kurouski, 2018; Krimmer et  al., 2019; Sanchez et  al., 
2019; Gupta et  al., 2020).
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A rapid diagnosis of black rot in brassicas, a devastating disease caused by

Xanthomonas campestris pv. campestris (Xcc), would be desirable to avoid significant

crop yield losses. The main aim of this work was to develop a method of detection of

Xcc infection on broccoli leaves. Such method is based on the use of imaging sensors

that capture information about the optical properties of leaves and provide data that can

be implemented on machine learning algorithms capable of learning patterns. Based on

this knowledge, the algorithms are able to classify plants into categories (healthy and

infected). To ensure the robustness of the detection method upon future alterations in

climate conditions, the response of broccoli plants to Xcc infection was analyzed under

a range of growing environments, taking current climate conditions as reference. Two

projections for years 2081–2100 were selected, according to the Assessment Report of

Intergovernmental Panel on Climate Change. Thus, the response of broccoli plants to

Xcc infection and climate conditions has been monitored using leaf temperature and five

conventional vegetation indices (VIs) derived from hyperspectral reflectance. In addition,

three novel VIs, named diseased broccoli indices (DBI1-DBI3), were defined based on

the spectral reflectance signature of broccoli leaves upon Xcc infection. Finally, the nine

parameters were implemented on several classifying algorithms. The detection method

offering the best performance of classification was a multilayer perceptron-based artificial

neural network. This model identified infected plants with accuracies of 88.1, 76.9, and

83.3%, depending on the growing conditions. In this model, the three Vis described in

this work proved to be very informative parameters for the disease detection. To our

best knowledge, this is the first time that future climate conditions have been taken into

account to develop a robust detection model using classifying algorithms.

Keywords: biotic stress, climate change, hyperspectral reflectance imaging, machine learning, thermography

INTRODUCTION

The cultivation of broccoli (Brassica oleracea var. italica) has become increasingly attractive and
profitable. It is highly regarded for its nutritional value and also its antioxidant and anticancer
properties (Owis, 2015). In Spain, the production of broccoli has increased exponentially in the last
decades, and it is expected to continue rising in future. In 2018, broccoli crop yields reached up to
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561,000 tons in Spain, and most of them were exported to
European countries (latest available data reported by Ministerio
de Agricultura, Pesca y Alimentación, www.mapa.gob.es).

Pests and plant diseases are a great challenge in modern
agriculture and the main cause of production and economic
losses in agriculture worldwide (Savary et al., 2012). Current
practices and social activities, such as intensified monoculture
in large areas, the use of genetically uniform plant varieties, and
international trading of agricultural commodities, contribute
largely to the widespread of plant disease epidemics and rapid
pathogen evolution (Zhan et al., 2015). Like other Brassica
crops, broccoli plants are susceptible to infection by fungi
(Alternaria leaf spot, anthracnose, blackleg, or mildews), some
viruses (virus mosaic), and bacteria (black rot, soft rots, bacterial
leaf spots). Among the bacterial pathogens, Xanthomonas
campestris is one of the most important in brassicas (Mansfield
et al., 2012; Ekman et al., 2014; Dep. Primary Industries and
Regional Development, Government Western Australia 2018,
www.agric.wa.gov.au/broccoli/diseases-vegetable-brassicas).
The most notable pathovar of X. campestris is campestris
(Xcc), which is the causal agent of black rot of crucifers
and affects all cultivated brassicas. Indeed, and according
to the report elaborated by EIP-AGRI Focus Group for the
European Commission, Xcc is a threat to the production of
broccoli, cauliflower, and cabbage throughout Europe (2016,
Integrated Pest Management for Brassica, https://ec.europa.
eu/eip/agriculture/en/publications/eip-agri-focus-group-ipm-
brassica-final-report). Moreover, Xcc can be subdivided into
nine races on the basis of the responses they induce on different
cultivars. Among the nine races described for Xcc, races 1 and 4
are considered the most virulent and spread worldwide (Fargier
and Manceau, 2007; Tortosa et al., 2018).

Precision agriculture demands the development of imaging
sensor-based methods of detection and diagnosis of plant
stress, including diseases. Several optical sensors are currently
implemented to monitor crop fields (Aasen et al., 2019; Gerhards
et al., 2019; Maes and Steppe, 2019; Pérez-Bueno et al.,
2019a; Kashyap and Kumar, 2021; Pineda et al., 2021). Their
applicability at lab scale and in high-throughput platforms by
proximal sensing, and in the field by remote sensing, makes
them particularly useful. However, the data provided by imaging
sensors are large and complex and, consequently, difficult
to interpret. Hence, improving our ability to extract useful
information from these vast datasets requires the use of machine
learning algorithms (Sperschneider, 2020). Machine learning is a
subset of artificial intelligence (AI), consisting of algorithms that
are able to learn patterns from a database of known samples and,
based on those patterns, identify or categorize new samples. In
agriculture, these algorithms can assist in the monitoring and
decision-making processes of crop management (Chlingaryan
et al., 2018; Golhani et al., 2018; Liakos et al., 2018; Gao et al.,
2020). Thus, the implementation of imaging sensors and AI is
a pivotal tool for crop management based on digital agriculture
(Talaviya et al., 2020; Jung et al., 2021). However, alteration in
growth conditions due to climate change imposes an additional
challenge to plant disease detection methods based on AI. The
expected rises in CO2 concentration and temperature associated

to climate change would have an impact on agriculture, affecting
plants and pathogen physiology (Trivedi et al., 2022) and their
geographical distribution (Aidoo et al., 2021). For that reason,
potential future climate should be considered as an experimental
variable to develop more robust detection methods.

Thermography and multi/hyperspectral reflectance imaging
are the most common sensors applied in agriculture (Zarco-
Tejada et al., 2018; Maes and Steppe, 2019; Pérez-Bueno
et al., 2019b). On the one hand, canopy to air differential
temperature (TC-TA) is an indirect measurement of the
vegetation transpiration rate (Scarth et al., 1948; Milthorpe and
Spencer, 1957; Fuchs and Tanner, 1966) and is widely used in
proximal and remote sensing for stress detection, as recently
reviewed by Pineda et al. (2021). On the other hand, the high
spectral resolution of hyperspectral reflectance imaging allows
the creation of a growing collection of vegetation indices (VIs).
These VIs are transformations of two or more spectral bands
which allow reliable temporal and spatial inter-comparisons of
vegetation attributes. Thus, VIs are quite simple and effective
parameters to quantitatively and qualitatively evaluate vegetation
traits such as vigor, fitness, and pigment composition, among
other applications (Huete et al., 2002).

In fact, many VIs can be found in the literature. One of the
most widely used is the normalized difference vegetation index
(NDVI), which is related to vitality of canopies (Tucker, 1979;
Pettorelli, 2013). Other VIs correlate with a wide range of plant
physiological traits. For example, the photochemical reflectance
index (PRI) correlates with photosynthetic activity (Gamon et al.,
1992); the carotenoid reflectance index (CRI) (Gitelson et al.,
2002) and the anthocyanin reflectance index (ARI) (Gitelson
et al., 2001) are related to pigment contents; and the water balance
index (WBI) is connected to water content in leaves (Peñuelas
et al., 1993). Indeed, recent works have implemented VIs to
the study of plants infected by Xanthomonas spp. Abdulridha
et al. (2019) used a collection of VIs (ARI and NDVI among
them) implemented on classifying algorithms to successfully
identify tangerine plants infected by X. citri pv. citri. Similarly,
NDVI values correlated well with the extension of the lesions
caused by X. campestris pv. oryzae on rice leaves (Zhang et al.,
2022). Moreover, several works have compared the association
between climate change and the interannual variability registered
on NDVI in several locations around the world (Kalisa et al.,
2019; Bagherzadeh et al., 2020; Zhao et al., 2021). Nonetheless,
new reflectance parameters could be defined for a given purpose
to maximize differences when standard VIs are not sensitive
enough (Miao et al., 2007; Mahlein et al., 2013; Zhang et al., 2017;
El-Hendawy et al., 2019; Jia et al., 2019; Yuan et al., 2019).

The main aim of this work was to develop an efficient method
for the detection of Xcc infection in broccoli plants based on
thermal and hyperspectral reflectance imaging on individual
leaves. For this purpose, six parameters were recorded: leaf
temperature (particularly TC-TA) and five already known VIs.
Moreover, three novel VIs specifically designed for detecting
the Xcc infection were extracted from the reflectance spectra of
healthy and diseased broccoli leaves. They were named diseased
broccoli indices (DBI1-DBI3). This set of nine parameters were
implemented on a selection of algorithms widely used on
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TABLE 1 | Climatic conditions assessed for broccoli growth: CCC (current climate

conditions), RCP 4.5, and RCP 8.5 (Representative Concentration Pathways 4.5

and 8.5) regionalized for Region of Murcia for years 2081–2100.

Climate Scenario Temperature (◦C) CO2 (ppm)

Day Night

CCC 31 17 408

RCP 4.5 34 20 650

RCP 8.5 37 23 1000

precision agriculture for their success in classifying infected
plants: the multilayer perceptron-based artificial neural network
(MLP), the support vector machine (SVM), and the k-nearest
neighbor (kNN). Finally, the suitability of the trained models
was evaluated by comparing their performances in correctly
classifying new samples as healthy or diseased leaves under a
range of climate conditions, including intermediate and extreme
climate change scenarios, as well as current climate conditions.
Furthermore, the relevance of every input parameter for the
detection of Xcc infection in broccoli plants was evaluated.

MATERIALS AND METHODS

Plant Growth at Different Climate
Conditions
Growth conditions under two possible future climate change
scenarios were chosen taking into account the 5th Assessment
Report by the Intergovernmental Panel on Climate Change
(AR5; IPCC, 2014). In that assessment, a range of projections of
greenhouse gases emissions responding to both socio-economic
development and climate policy was considered. Future
climate conditions were estimated based on representative
concentration pathways (RCPs), depending on potential
scenarios of greenhouse gases emissions and their atmospheric
concentrations, air pollutant emissions, and land use for the year
2100. Thus, current climate conditions (CCC) were compared
to future scenarios, being RCP 8.5 the most extreme scenario,
meaning most dramatic increase in CO2 levels and subsequent
global warming. In turn, the so called RCP 4.5 would represent
an intermediate scenario between CCC and RCP 8.5 and was
considered by the AR5 as the most probable scenario by 2100.

The C3 broccoli plants (Brassica oleracea var. italic cv.
calabrese natalino) were grown in a growth chamber in a 16/8-
h day/night regime with 60% relative humidity, 200mol photon
m−2 s−1 of PAR light. The ambient temperature and CO2

concentrations (Table 1) were chosen according to the data
regionalized by the Spanish State Meteorology Agency (AEMet)
for Region of Murcia (largest Spanish broccoli producer) for
current climate conditions and those corresponding to RCP 4.5
and RCP 8.5 in years 2081–2100. Day and night temperatures
correspond to the average values in Region of Murcia during
the growing season. For each experiment, plants were sown
and grown at the corresponding CCC, RCP 4.5, or RCP
8.5 conditions.

Bacterial Growth and Inoculation
Xanthomonas campestris pv campestris (Xcc) race 1 and race
4 were grown for 24 h at 28◦C in LB (Luria-Bertani) plates.
Bacterial suspensions were prepared in sterile 10mM MgCl2 at
108 colony-forming units per ml (cfu mL−1) by adjusting the
optical density at 600 nm to 0.1.

The third leaf of four-week-old plants (under CCC or RCP 4.5)
or five-week-old plants (in case of RCP 8.5) was mock-inoculated
with sterile 10mMMgCl2 or inoculated with bacterial suspension
by clipping four secondary veins per leaf with rat tooth tweezers
previously dipped in the corresponding solution (Figure 1). For
each experiment, twelve plants per treatment (CCC and RCP 4.5)
and four plants per treatment (RCP 8.5) were inoculated. Leaves
were imaged at 1, 2, 3, 6, and 9 days post-inoculation (dpi). At
least two experiments per climate condition were carried out,
providing similar results.

Thermal Imaging
Thermal images of whole leaves were recorded using a FLIR
A305sc camera (FLIR Systems, Wilsonville, OR, USA) vertically
positioned 30 cm above the leaf, according to Pérez-Bueno
et al. (2016). For each measurement, 10 thermal images were
collected in the plant growth chamber over 10 s. These images
were averaged to extract temperature values for whole leaves.
Image processing was carried out using the FLIR ResearchIR v.
3.4 software.

Hyperspectral Reflectance Imaging
Reflectance spectra (400–1,000 nm) of broccoli leaves were
recorded using a Pika L hyperspectral imaging camera (Resonon,
Bozeman, MT, USA) in the visible (400–700 nm) to near-
infrared spectral range (700–1,000 nm), with a spectral sampling
at 2.1 nm and a spectral resolution (full width at half
maximum) of 3.7 nm. The camera was positioned vertically
45 cm over the sample, which was placed on a translation
stage. Thus, a datacube with 281 images was built for each
attached leaf.

Leaves were illuminated with four calibrated xenon
lamps with homogeneous light intensity between 400 and
1,000 nm, positioned above the samples and around the
camera. Previous to leaf measurements, dark and light
corrections were made in darkness and illuminating a
white homogenous calibration tile provided by Resonon,
respectively. Dark and light corrections, build-up of datacubes
and analysis, were carried out with the software Spectronon v.
2.134 (Resonon).

Reflectance spectra averaged for whole leaves were obtained
and used to calculate images corresponding to several widely used
VIs, as summarized in Table 2. To avoid overfitting of machine
learning models, only not redundant VIs were selected.

Data Analysis
Numerical data obtained from thermal and reflectance images
(including reflectance spectra and VIs) were managed using
Microsoft Office Excel 2016 (Microsoft Corporation, Redmond,
WA, USA). Aiming to design a simple method of detection,
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FIGURE 1 | Timecourse of symptoms evolution of mock-control, Xcc race 1-infected, and Xcc race 4-infected broccoli plants at current climate conditions (A; CCC),

and the representative concentration pathways RCP 4.5 (B) and RCP 8.5 (C). White arrows indicate the inoculation points. For simplicity, they have only been shown

in mock-controls leaves at CCC. Dpi, days post-inoculation.

values were averaged from whole leaves rather than regions
of interest.

Two-tailed Student’s t-test (Microsoft Excel) was performed
to compare, for every treatment and at every dpi assayed: (a)
spectra reflectance profiles; (b) values of novel VIs (DBIs). The
null hypothesis was that there were no differences between
treatments. This hypothesis was considered false at p < 0.05, and
variables were treated as different when p-value was below this
value. Figure graphs were plotted using Microsoft Excel.

Classification Analysis by Machine
Learning
Data collected through whole experiments were organized in
databases (Microsoft Excel), one per climate condition. Each
database contained values of selected parameters (TC-TA, NDVI,
PRI, ARI, CRI, WBI, DBI1, DBI2, and DBI3) at every dpi (1–9
dpi) and treatment (mock-control, Xcc race 1-, and Xcc race 4-
infected plants). In addition, data were rescaled from zero to one
to ensure comparison between treatments and days, according
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TABLE 2 | Common vegetation indices (VIs) from the literature that were used in this work.

VIs name Related to Equation References

Anthocyanins reflectance index 1 Anthocyanins ARI = 1
R550 −

1
R700 Gitelson et al., 2001

Carotenoids reflectance index 2 Carotenoids CRI = 1
R510 −

1
R700 Gitelson et al., 2002

Normalized difference vegetation index Vigor NDVI =
R800 − R670
R800 + R670 Tucker, 1979

Photochemical reflectance index Photosynthesis PRI =
R531 − R570
R531 + R570 Gamon et al., 1992

Water balance index Water WBI = R900 − R970 Peñuelas et al., 1993

TABLE 3 | Sample size (n) of the training and test databases created for each

growth condition.

Treatment Training dataset (n) Test dataset (n)

CCC 98 41

RCP 4.5 84 39

RCP 8.5 42 18

to the equation: rescaled value= (x-minimum)/maximum. Then,
the three databases were randomly partitioned into training
and test datasets, in a proportion of 7:3, respectively (Table 3).
This partition was carried out using a seed that ensured that
every category (treatment and dpi) was well represented in
both datasets. The experimental data were analyzed by the free
version of KNIME v. 4.3.2 (KNIME AG, Zurich, Switzerland;
www.knime.com; Berthold et al., 2008).

Three models were built for each one of the three growing
conditions by analyzing the corresponding databases with three
supervised classifying algorithms: MLP, SVM, and kNN. MLP
is a network inspired by biological neural networks in which
different interconnected nodes (called neurons) organized in
layers transmit information to each other, learning from both
input and output data (Hahn, 2009; Behmann et al., 2015). In
contrast, SVM distributes samples in a high-dimensional feature
space defined by support vectors. In this case, new samples
are categorized based on what side of hyperplanes they fall
on (Behmann et al., 2015). Finally, kNNs assign proportional
weights to the contributions of the sample neighbors based
on distances. These weights determine to what category a new
sample would most likely belong to (Blanzieri and Melgani,
2008).

Broccoli leaves were categorized into mock-control, Xcc race
1-, and Xcc race 4-infected plants using the classifying algorithms
MLP, SVM, and kNN. The performance of classification was
evaluated in terms of (i) sensitivity (true positive rate); (ii)
specificity (true negative rate); (iii) accuracy (percentage of right
guesses); and (iv) F-measure (harmonic mean of precision and
sensitivity; where precision is the number of correct control
samples divided by the number of all plants classified as
“control”). All the three feedforward backpropagation MLPs
tested were designed to have one hidden layer with four neurons
(half the number of variables used to feed them). Higher
number of hidden layers or their neurons did not result in an
improvement of the performance. A polynomial kernel was used

for the SVMs, with bias = 1 and gamma = 1. More complex
spatial kernels did not improve the performance of the algorithm.
Finally, the optimal number of neighbors for the kNN algorithm
was k = 5 using the Euclidean distance. Regarding SVM and
kNN libraries, we have used the basic nodes (SVM learner and K
nearest neighbor, respectively) implemented on Knime software
v. 4.3.2. This process was performed independently for each of
the three climate conditions under study.

Finally, the global variable importance was calculated
for each parameter (TC-TA, NDVI, PRI, ARI, CRI, WBI,
DBI1, DBI2, and DBI3), that is, how informative was a given
parameter for the model to make a correct decision. For such
a purpose, global surrogate random forest (RF) models were
trained to estimate the variable importance using the Global
Feature Importance component developed for Knime software
(https://hub.knime.com/knime/spaces/Examples/latest/00_
Components/Model%20Interpretability/Global%20Feature
%20Importance$\sim$xsR90ymhRbHOc78Z). RF was trained
on the standardly pre-processed input data. Feature importance
was then calculated by counting how many times it had been
selected for a split and at which rank (level) among all available
features (candidates) in the trees of the RF.

RESULTS

Evolution of Symptoms Under a Range of
Growth Conditions
Plants grown from sowing under CCC, RCP4.5, or RCP8.5
conditions were inoculated with Xcc race 1 or 4, and the
evolution of symptoms was followed up to 9 dpi. At CCC and
RCP 4.5, Xcc infection on broccoli plants consisted in chlorosis
followed by a progressive necrosis of the tissue surrounding the
inoculation site to finally reach the V-shaped lesions typical of
this bacterial infection (Figure 1). Xcc race 4 caused the most
severe symptoms, with necrosis at the clipping point starting at
3 dpi and evident at 6 dpi; chlorosis surrounded the inoculated
area at 6 dpi, and V-shaped lesions were patent at 9 dpi. In
contrast, Xcc race 1 produced similar symptoms in a slower
time course, with a delay of 3 days. Mock-control leaves only
displayed the actual lesions. It is worth noticing that there was no
evolution in symptoms from 0 to 1 dpi under any of the assayed
growth conditions.

The RCP 8.5 conditions affected the growth of broccoli plants,
which displayed stunting and early senescence. Moreover, leaves
were smaller and thicker than those of plants grown at CCC or
RCP 4.5 conditions. At RCP 8.5, the evolution of the infection by

Frontiers in Plant Science | www.frontiersin.org 5 June 2022 | Volume 13 | Article 790268129

http://www.knime.com
https://hub.knime.com/knime/spaces/Examples/latest/00_Components/Model%20Interpretability/Global%20Feature%20Importance${sim }$xsR90ymhRbHOc78Z
https://hub.knime.com/knime/spaces/Examples/latest/00_Components/Model%20Interpretability/Global%20Feature%20Importance${sim }$xsR90ymhRbHOc78Z
https://hub.knime.com/knime/spaces/Examples/latest/00_Components/Model%20Interpretability/Global%20Feature%20Importance${sim }$xsR90ymhRbHOc78Z
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Pineda et al. Identifying Xcc-Infected Broccoli Plants

FIGURE 2 | Spectral profiles of whole leaves of mock-control, Xcc race 1-infected, and Xcc race 4-infected broccoli plants at current climate conditions and at

different days post-inoculation (dpi). Graphs represent mean values for every treatment. Sample size (n) is given for each timepoint and treatment: mock-control

(green); Xcc race 1-infected (orange); and Xcc race 4-infected broccoli plants (purple). A, B, C, and D: 1, 3, 6, and 9 dpi, respectively.

either race resembled that described for Xcc race 4 under CCC.
Moreover, Xcc race 1 was more virulent than Xcc race 4 at 9 dpi.

Novel VIs Could Discriminate Between
Healthy and Xcc-Infected Broccoli Leaves
For every treatment (mock-control, Xcc race 1-, and Xcc race 4-
infected), whole leaf reflectance spectra were registered at 1, 2, 3,

6, and 9 dpi. Those profiles revealed specific spectral patterns for
each treatment, showing clear differences between them from the
first timepoint measured (Figure 2; Supplementary Figures 1,
2). Thus, the use of VIs based on hyperspectral reflectance
measurements seemed to be useful to distinguish between control
and Xcc (race 1 or 4)-infected plants. The common VIs ARI, CRI,
PRI, NDVI, and WBI were obtained from the spectra for every
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TABLE 4 | Novel vegetation indices (VIs) firstly described in this work.

VIs name Related to Equation

Diseased broccoli

index 1

Xcc infection DBI1 =
R400 − R690

R850

Diseased broccoli

index 2

Xcc infection DBI2 =
R400
R850

Diseased broccoli

index 3

Xcc infection DBI3 =
R578
R529

treatment and dpi measured and recorded in a database for each
climate condition.

In addition, novel VIs were designed, based on spectral
differences between healthy and Xcc-infected broccoli leaves.
Reflectance spectra were compared by Student’s t-test in order
to determine at which wavelengths reflectance values were
statistically different (at least p < 0.05) between treatments.
Thus, three spectral ranges were found to show maximal
differences between treatments at every dpi tested: 400–500,
600–700, and 900–1000 nm. On the contrary, the regions 520–
570 and 730–890 nm were very stable and not affected by the
infection until 9 dpi. For this reason, they were selected for
“normalization” of the designed parameters. Several wavelengths
were chosen within these spectral regions of interest. To avoid
redundancy of adjacent wavelengths in the reflectance spectra,
only wavelengths separated by at least 40 nm were used in
this process. Finally, the selected wavelengths were combined
by different mathematical calculations (additions, subtractions,
divisions, or combinations thereof) in order to find novel VIs
showing statistical differences (p < 0.05 according to Student’s t-
test) between treatments along entire experiments at each climate
condition. Among the large collection of proposed VIs, three of
them, named diseased broccoli indices 1–3 (DBI1−3; Table 4),
offered maximum significant differences between mock-control
and Xcc-infected broccoli plants. It is worth noticing that DBI1−3

did not show statistically significant correlation with each other,
meaning that DBI1−3 did not provide redundant information to
the classifiers.

Identification of Xcc-Infected Leaves by
Classificatory Algorithms
For each experimental condition, an independent database was
built containing the values of selected parameters (TC-TA, NDVI,
PRI, ARI, CRI, WBI, DBI1, DBI2, and DBI3) for every treatment
and dpi assayed. The three databases were normalized and then
randomly split in two datasets: training (70%) and testing (30%).
Each of the three training dataset was used to feed supervised
classifying algorithms (MLP, SVM, and kNN) to classify samples
into the following categories: mock-control, Xcc race 1-, and Xcc
race 4-infected leaves; each of the three testing dataset was used
to calculate their performance of classification.

The MLPs provided the highest accuracy for every climate
condition (Figure 3). They also provided the highest F-measure
under every condition and, in general terms, the highest
sensitivity. In contrast, SVM and kNN showed similar accuracies

for CCC; however, these two algorithms were not able to
identify control and infected samples at RCP 4.5 or RCP 8.5,
with accuracies of 45–50% and rather low specificity. Moreover,
any attempt of classification by MLP, SVM, or kNN into two
categories (mock-control vs Xcc-infected) was inefficient. This
was probably due to the underrepresentation of mock-control
samples in the datasets (1/3 healthy vs. 2/3 of infected), whereas
in three-category models, every group had the same size.

The suitability of the designed VIs for the identification of
Xcc-infected leaves was evaluated in terms of global variable
importance in the classifiers, calculated by a surrogate RF
algorithm (Figure 4). The accuracies obtained for the fit of each
RFwere 85.7%, 87.2%, and 88.9% for CCC, RCP 4.5, and RCP 8.5,
respectively. Under CCC, the most informative parameters were
DBI1, DBI2, and WBI. In contrast, under RCP 4.5 conditions,
TC-TA, DBI3, and PRI obtained the highest global variable
importance. Finally, under RCP 8.5 conditions, DBI2, CRI, and
NDVI were the most instructive parameters.

DISCUSSION

Imaging techniques appear to be essential for precision
agriculture due to their fast time-spatial response to biotic
and abiotic stress in a non-destructive manner (Barón et al.,
2016; Mahlein, 2016). In the last years, thermal and (multi-
or hyper-) reflectance imaging sensors have been broadly used
for monitoring stress in crop fields. Furthermore, sustainable
agriculture is increasingly relying on AI (such as classifying
algorithms) coupled with computer vision, to solve farming
issues and to promote the automation of decision-making
process (Tian et al., 2020; Nabwire et al., 2021). However, these
methods require basic research to define informative parameters
that efficiently report the health state and fitness of a particular
crop. This work aims to define optimal VIs and classifiers
for the detection of Xcc-infected broccoli leaves. Furthermore,
the robustness of those models was analyzed under climate
conditions mimicking those expected for Region of Murcia in
years 2081–2100.

According to Fargier and Manceau (2007), when a cultivar
of a brassica is infected by Xcc, a collection of polymorphisms
is obtained depending on the race inoculated. In the case
of broccoli plants used for this study (B. oleracea var. italic
cv. calabrese natalino), the symptoms developed under CCC
triggered by races 1 and 4 were similar. However, Xcc race
1 showed a slower timecourse than race 4 under the same
ambient conditions. The process of undergoing climate change
could affect considerably plant biochemistry and therefore plant
defense responses. For this reason, it is relevant to include
future climate conditions in disease detection studies. Indeed,
each disease may respond differently to these variations, and
thus, climate change would cause neutral, positive, or negative
effects on plant responses to diseases (Trebicki et al., 2017;
Velásquez et al., 2018; Cheng et al., 2019). According to the
results reported here, symptoms caused by Xcc on susceptible
broccoli plants would not be altered on an intermediate climate
change scenario like RCP 4.5. These results are in accordance
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FIGURE 3 | Performance of three algorithms for the classification of samples into the categories control, Xcc race 1-infected, and Xcc race 4-infected leaves in terms

of overall accuracy (A), F-measure (B), sensitivity (C), and specificity (D) for each climate scenario. SVM, support vector machine; MLP, multilayer perceptron-based

artificial neural network; kNN, k-nearest neighbors (k = 5 neighbors). CCC, current climate conditions; RCP 4.5 and 8.5, representative concentration pathways 4.5

and 8.5.

with previous works, as extensively reviewed by Gullino et al.
(2018). However, the RCP 8.5 imposed a stress condition
limiting or slowing down plant growth. It will be of particular
interest to gain knowledge about the impact of combined high
temperature and high CO2 on photosynthetic processes of the
broccoli plant which, as a C3 species, is well adapted to mild
temperatures. Nevertheless, further research would be needed
to fully understand the impact of climate change on broccoli
plant physiology (particularly on photosynthesis), as well as
on the physiology of Xcc races, and/or their interaction with
host plants.

In literature, a number of classic VIs derived from
multispectral (and hyperspectral) imaging can be found. This
VIs can be used to detect, classify, and quantify specific diseases
with varying degrees of success (Lowe et al., 2017). However,
high-resolution spectra recorded with hyperspectral imaging
sensors allow the selection of an optimized set of wavelengths to
maximize differences between healthy and infected plants. Those
wavelengths can be used to create novel parameters specific for
a given host–pathogen system or stress factor. This approach has
already been demonstrated to be suitable to detect diseased plants
when combined with AI algorithms. Thus, Mahlein et al. (2013)
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FIGURE 4 | Global variable importance calculated using a global surrogate random forest (RF) model. CCC, current climate conditions; RCP 4.5 and 8.5,

representative concentration pathways 4.5 and 8.5; ARI, anthocyanin reflectance index; CRI, carotenoid reflectance index; DBI1−3, disease broccoli index 1–3; NDVI,

normalized difference vegetation index; PRI, photochemical reflectance index; TC-TA, normalized temperature; WBI, water balance index.

reported specific spectral disease indices for the detection of sugar
beet plants infected with Cercospora leaf spot, sugar beet rust, or
powdery mildew. Those indices improved disease detection and
identification when implemented on classifiers. Similarly, Yuan
et al. (2019) proposed a novel method for detecting anthracnose
in tea plants based on hyperspectral imaging that included two
new disease indices in the classificatory models. Moreover, the
analysis of reflectance spectral data of healthy and diseased wheat
ears allowed the creation of a novel index that demonstrated
a stronger ability to determine the severity of the Fusarium
head blight compared with other sixteen existing spectral indices
(Zhang et al., 2020).

In this work, three novel VIs have been developed to
successfully distinguish between healthy and Xcc-infected
broccoli plants (Table 4). Leaf reflectance is a complex
phenomenon dependent on biochemical and biophysical
properties of the canopy leaves, which in turn are affected by
growth conditions and diseases. Thus, the visible reflectance
range (400–700 nm) is mostly influenced by the leaf pigment

content; the reflectance in the near-infrared range (700–
1100 nm) depends on water content and leaf structure, or
internal scattering processes; and the short-wave infrared
(1,100–2,500 nm) is influenced by the composition of leaf
chemicals and water, as reviewed by Mahlein (2016). Since
chlorophylls are the main pigments influencing reflectance
spectrum at 400 and 690 nm, both DBI1 and DBI2 indices could
be indicative of the severity of chlorosis. Moreover, DBI3 could
be also related to the contents on chlorophylls and carotenes
(Carter and Knapp, 2001).

DBI1, DBI2, and DBI3, together with thermal (TC-TA) and
other common hyperspectral reflectance parameters (NDVI,
PRI, ARI, CRI, and WBI), were implemented in three
different supervised classifiers (MLP, SVM, and kNN) for each
experimental condition. Since the learning process of each
algorithm differs from each other, so will the quality of its
predictions on the new samples. In this sense, it is a common
procedure to compare the performance of several algorithms
when sorting new samples (the validation datasets) after training
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on the same dataset. Metrics such as specificity (true negative
rate), sensitivity (true positive rate), accuracy (percentage of
right guesses), or F-measure (harmonic mean of precision and
sensitivity) evaluate the performance of classification, that is,
the estimation of the true risk of error of the output prediction
of a machine learning algorithm (Shalev-Shwartz and Ben-
David, 2014; Liakos et al., 2018). The MLPs were the most
effective classifier, with the highest overall accuracy and F-
measure under the three growing conditions assayed. The
performance of theMLPmodels was comparable to that reported
by other authors for disease detection classifiers. Indeed, an
increasing number of studies apply classifiers to spectral data
(including or not thermal parameters) to identify infected plants
at conditions resembling CCC. For example, Sankaran et al.
(2013) reported an accuracy of 87% when classifying citrus
trees infected by Candidatus Liberibacter spp, a bacteria causing
Huanglongbing disease. Zarco-Tejada et al. (2018) obtained
accuracies of disease detection exceeding 80% when classifying
Xylella fastidiosa-infected olive trees. This pathogen, alike Xcc, is
a xylem bacterium. Abdulridha et al. (2020a,b) identified tomato
plants infected with tomato yellow leaf curl virus, Xanthomonas
perforans, or Corynespora cassiicola (a fungus) with 94–100%
accuracy depending on the pathogen. Pérez-Bueno et al. (2019b)
detected avocado trees suffering white root rot (caused by the
fungus Rosellinia necatrix) with accuracies up to 82.5%. Nguyen
et al. (2021) achieved accuracies ranging from 82 to 96.75% when
identifying vines affected by the Grapevine vein-clearing virus.
Similarly to the results here reported, Yuan et al. (2019) designed
novel hyperspectral reflectance indices which help to identify
Gloeosporium theae-sinesis Miyake-infected tea plants with 94
and 98% accuracies at pixel and leaf levels, respectively.

The performance of the models was affected differentially by
growing conditions, depending on the classifier. In both RCPs,
the accuracy of the classifiers decreased in all cases. However,
the accuracy of models based on MLP only decreased from
88.1% at CCC to 76.9 and 83.3% for RCP 4.5 and RCP 8.5,
respectively. This advantage of MLPs against SVM and kNN
models could be related to the fact that MLPs are less affected
by noise factors (compared to other algorithms), which in turn
reduces significantly the influence of the unknown variability.
Therefore, MLPs are usually more robust models that often
outperform other classifying algorithms in solving a variety of
classification problems (Basheer and Hajmeer, 2000; Bala and
Kumar, 2017). To our best knowledge, this is the first time that
machine learning classifiers have been applied to hyperspectral
and thermal data taken under climate conditions mimicking
those projected for the future in order to classify healthy and
infected plants.

DBI1, DBI2, and DBI3 proved to be important features for
plant classification according to a surrogate RF used for testing
the global importance of variables. Overall, DBI1 and DBI2 were
themost informative parameters of the set for CCC. However, the
global variable importance varied for each parameter depending
on the climate conditions. Under RCP 4.5 conditions, TC-TA and
DBI3 were the most informative parameters. In contrast, DBI2

was the parameter with the highest global variable importance
at RCP 8.5. This effect may be due to the impact of growing
conditions on the symptomatology (degree of chlorosis and/or
necrosis) of the infections, as discussed above.

CONCLUSION

The parameters DBI1, DBI2, and DBI3 here presented are good
reporters for Xcc infection in broccoli leaves. Furthermore,
the model based on MLP and the set of parameters DBI1,
DBI2, and DBI3 along with common VIs (ARI, CRI, NDVI,
PRI, and WBI) and TC-TA would be an effective procedure
for the identification of Xcc-broccoli infected plants. In
addition, this model proved to be robust regardless of the
climate conditions.
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Supplementary Figure 2 | Spectral profiles of whole leaves of mock-control, Xcc

race 1-infected, and Xcc race 4-infected broccoli plants at RCP 8.5 and at

different days post-inoculation (dpi). Graphs represent mean values (n = 4) for

every treatment and timepoint.
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Oulema melanopus L. (Coleoptera: Chrysomelidae) is one of the most serious pests of
winter wheat that causes peeling of the epidermis and tissue loss. The complex mapping
of the physiological responses triggered by O. melanopus as a biotic stressor in winter
wheat has not been fully explored with the help of non-invasive imaging and analytical
assays, yet. The aim of the present work was to study the effect of O. melanopus on the
physiological processes of winter wheat, especially on the extent of lipid peroxidation
and antioxidant activity derived from tissue destruction, as well as photosynthetic ability.
The results of the measurements enabled the identification of the antioxidant and lipid-
oxidation–related physiological reactions, and they were reflected in the dynamics of
non-invasive biophoton emissions. Our non-invasive approach pointed out that in the
case of O. melanopus infestation the damage is manifested in tissue loss and the
systemic signaling of the biotic stress may have reached other plant parts as well,
which was confirmed by the results of antioxidant capacity measurements. These results
indicate that the plant reacts to the biotic stress at a whole organizational level. We
identified that the antioxidant and lipid-oxidation–related physiological reactions were
reflected in the dynamics of two aspects of biophoton emission: delayed fluorescence
and ultra-weak bioluminescence. Our research further supported that the non-invasive
approach to stress assessment may complete and detail the traditional stress indicators.

Keywords: biotic stress, delayed fluorescence, leaf damage, lipid oxidation, non-invasive imaging, Oulema
melanopus, Triticum aestivum, ultra-weak photon emission

INTRODUCTION

The cereal leaf beetle, Oulema melanopus L. (Coleoptera: Chrysomelidae) is one of the most serious
pests of cereals, especially winter wheat. The species is originally a Mediterranean fauna element,
but it has been introduced in the whole Palearctic and Nearctic regions (Lesage et al., 2007). The
presence and damages of this pest are very significant due to the extended distributions of it and its
host plants, which is confirmed by in-crop pesticide treatments against it by means of some residual
(Tanaskovic et al., 2012) and other biological in-crop applications (Mazurkiewicz et al., 2021).

Frontiers in Plant Science | www.frontiersin.org 1 July 2022 | Volume 13 | Article 839855137

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.839855
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2022.839855
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.839855&domain=pdf&date_stamp=2022-07-06
https://www.frontiersin.org/articles/10.3389/fpls.2022.839855/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-839855 June 30, 2022 Time: 15:7 # 2

Lukács et al. Physiological Reactions of Wheat Damaged by O. melanopus

The typical symptoms of both adults and larvae on the
host plant caused by cereal leaf beetle are thin and long lines,
where initially the epidermis of the leaf has been peeled. Under
uncontrolled circumstances, these damages can aggravate in
several cases even when the majority part of photosynthetic
surfaces could also impair (Bieńkowski, 2010). A field of
cereals looks weathered and chloritized, but is never completely
destroyed. First and second leaves of plants are mostly inhabited
by larvae (Groll and Wetzel, 1984), where damage is usually no
more than 40% of the total (Philips et al., 2011). In case the leaves
of cereals are damaged by some biotic or abiotic factors, they
generally lag behind in their development and have a decreased
nutrient integration, occurred water management disturbance
which eventually leads to quantitative and qualitative yield loss
(Steinger et al., 2020).

The in vivo and non-invasive approach in plant stress
detection has been considered to be of high importance, and
the biophoton emission measurement is one of these techniques
whose application has gained attention in the last two decades
(Bodemer et al., 2000; Birtic et al., 2011; Kobayashi et al.,
2014; Rui-Rui et al., 2015; Kamal and Komatsu, 2016; Kan
et al., 2017; Prasad et al., 2017; Oros and Alves, 2018; Zhou
et al., 2019; Jócsák et al., 2020; Chen et al., 2021; Pónya et al.,
2021). Plants emit photons under certain circumstances, such
as energy release from the photosynthetic apparatus of the non-
utilized photons in the electron transport chain of photosystem
II (PSII). This phenomenon is the delayed fluorescence (DF)
that reflects the integrity state of the photosynthetic apparatus.
DF only occurs in photosynthetic tissues with decay times from
milliseconds to minutes (Bodemer et al., 2000). At this point,
some of the electrons in the photosynthetic electron transport
chain flow back to the reaction center, where the chlorophyll
molecules reach an excited state and emit photons, such as
red luminescence. Research revealed that DF decay kinetics are
suitable for the in vivo determination of the homeostatic state
of plants, nevertheless the extent of DF and its decay dynamics
are suitable for stress assessment purposes (Goltsev et al., 2009,
Sánchez-Moreiras et al., 2020). Bodemer et al. (2000) found
that DF decay differs in 3-(3,4-dichlorophenyl)-1,1-dimethylurea
(DCMU)-poisoned Chlorella spp. culture compared with healthy
culture. Zhou et al. (2019) used DF to assess the effects of drought
stress and salinity on barley, but to our knowledge, not for
biotic stressors.

Another source of photon emission is related to the
mitochondrial processes, the electron transport chain which
emits photons through the relaxation of its excited components.
Furthermore, the oxidation of lipids (Zhou et al., 2019) produces
photon-emitting reactive oxygen species (ROS), such as triplet
carbonyls and singlet oxygen, as well as reactive nitrogen species
(RNS) (Bennett et al., 2005), the detection and visualization of
which is possible with a highly sensitive charge-coupled device
(CCD) (Jócsák et al., 2020).

These processes can be utilized in stress-related researches
in plants since the strength of the signals of both DF and
ultra-weak bioluminescence (UWLE) differ under the metabolic
and tissue structure alterations triggered by stressors of either
abiotic. UWLE was formerly used for the characterization of heat

stress (Kobayashi et al., 2014), flood (Kamal and Komatsu, 2016),
osmotic stress (Rui-Rui et al., 2015), or cadmium (Jócsák et al.,
2020), similarly to biotic stressors, such as leaf wound in
Spathiphyllum (Oros and Alves, 2018) and Arabidopsis (Prasad
et al., 2017), or the infestation of two spotted-spider mite
(Tetranychus urticae L.) (Pónya et al., 2021). These investigations
commonly utilize the possibility to differentiate among the
effects of stressors via imaging and parameterizing of the
bioluminescence measurements, but to this date there were no
studies on the tissue alterations of O. melanopus on winter wheat.

Several studies carried out research on the effects of leaf
impairment triggered by various factors on reproductive traits
(Macedo et al., 2007; Shao et al., 2010; Steinger et al., 2020),
nutrient content (Buráňová et al., 2015; Hamnér et al., 2017), and
adaptive ability (Chen et al., 2016) of winter wheat. Nevertheless,
the complex mapping of the physiological responses triggered by
this biotic stressor in winter wheat has not been fully explored
with the help of non-invasive imaging and analytical assays,
yet. In this context, the aim of the present work was to study
the effect of O. melanopus on the physiological processes of
winter wheat, especially on the extent of lipid peroxidation
and antioxidant activity derived from tissue destruction, as well
as photosynthetic ability. In addition, we were also aimed to
identify whether these physiological reactions are reflected in
the dynamics of the non-invasive measurement, imaging, and
analysis of biophoton emission.

MATERIALS AND METHODS

Sampling and Experimental Setting
To determine the physiological response of winter wheat caused
by O. melanopus, mixed-gender adults were collected from an
insecticide-free environment. The collection was carried out in
early April 2021 in the Zselicszentpál area (Hungary, Somogy
county, GPS coordinates: 46◦30′84′′N, 17◦82′08′′E). Adults were
collected using an entomological sweeping net. The temperature
range during the rearing of insects in the climate chamber was
20 ± 1◦C. Relative humidity was maintained at 60 ± 5%, and
photoperiodic setting was 18L:6D, corresponding to the insect
vitality optimum (Mazurkiewicz et al., 2019).

In parallel, healthy, damage-free winter wheat seeds were
sown in 19-cm diameter plastic pots (80 seeds/pot), which were
placed in a Pol-Eco Apartura KK 1450 climate chamber (POL-
EKO-APARATURA sp.j. ul. Kokoszycka172C 44–300 Wodzisław
Śląski, Poland) at 20◦C, 120 µM m−2 s−1 light intensity for 16 h
as daylight conditions and 16◦C; 0 µM m−2 s−1 light intensity
for 8 h as night conditions. When seedlings reached the 2–3
leaved stage, 5 pots continued to grow without changing their
conditions, and 5 pots were treated with 20 images of the model
beetles (O. melanopus) per pot under the isolator covered with
well-ventilated textiles. Subsequently, after leaf damage, stress
analytical evaluation and non-invasive imaging were taken on the
sixth day of insect application to determine the extent of oxidative
stress and its visual display. First, the non-invasive type of the
measurements were conducted starting with ultra-weak photon
emission (UPE). After the completion of the UPE measurement,
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the soil plant analysis development (SPAD) measurement was
done. The sequential order of the measurement was chosen
to avoid any potential stress on the plants including even the
light pressure that the usage of SPAD equipment poses on
the leaf blades of the seedlings. Subsequently, the seedlings
were sampled for the fresh/dry weight (DW) determination,
ferric reducing antioxidant power (FRAP), and malondialdehyde
(MDA) measurements when the whole above-ground part of the
plants was used. The sampling method was the following: the
above-ground part of the seedlings was cut into ∼0.5-cm pieces.
After that the pieces were mixed thoroughly to create an average
sample for the fresh DW and for antioxidant capacity and lipid
peroxidation measurement. The measurements were repeated
three times per pot and the chemical analyses were measured in
three parallels per each pot.

Tissue Damage Determination
Similar to other leaf analysis-based experiments (Sorgini et al.,
2019; Zhang et al., 2019; Wang et al., 2020), damaged leaves were
scanned to objectively determine leaf surface destruction. Five
leaves were scanned and the number of pixels per each image
were determined and the pixel number of the white background
was subtracted, resulting in the pixel number of the whole leaf.
Then, pixel points of differently colored areas were designated
using the GIMP 2.10.8 software, and thus the pixels of damaged
leaves were determined in the percentage of reduction of the
photosynthesizing surface (Figure 1).

Determination of Fresh/Dry Weight Ratio
A total of 1 g of leaves were measured by an Ohaus Discovery
DV215CDM (Ohaus Corporation 1.800.672.7722 7 Campus
Drive, Suite 310 Parsippany, NJ 07054, United States) analytical
scale weighing up to 5 decimal places. Subsequently, leaves
were dried in a drying cabinet (Memmert SLE 600, Memmert
GmbH + Co. KG, Aeussere Rittersbacher Strasse 38, D-91126
Schwabach, Germany) at 60◦C for 24 h. Then the weight of the
dried samples was recorded. Fresh/DW ratio was expressed as %
and it was calculated by [(wx − w0)/wx] × 100, where the wx is
the DW and w0 is the fresh weight.

Measurement of Lipid Peroxidation
Malondialdehyde content was determined by the thiobarbituric
acid (TBA) reaction with some modifications to the original
method of Heath and Packer (1968). Samples of 0.5 g were
homogenized with 2 mL of 0.1% trichloroacetic acid (TCA)
in cold mortars from which 1.8 mL was transferred to 2 mL
microtubes with automatic pipettes. To this solution, 40 µL of
20% butylated hydroxytoluene (BHT) in absolute ethanol was
added to stop further lipid oxidation. The solutions were vortexed
for 15 s and centrifuged at 18,600 × g for 10 min at 4◦C. From
the clear supernatant, 0.25 mL was added to 1 mL of 20% TCA
containing 0.5% TBA, gently mixed, and briefly centrifuged for
5 s. The solutions were incubated in a water bath (Julabo ED-
5M) for 30 min at 96◦C. The reactions were stopped by cooling
the solutions immediately on ice followed by centrifugation
at 10,000 rpm for 5 min. Absorbance at 532 and 600 nm
was recorded using a SmartSpecTM Plus spectrophotometer,

and MDA concentration was calculated by subtracting the
non-specific absorption at 600 nm from the absorption at 532 nm
using an absorbance coefficient of extinction, 156 mM−1 cm−1.
The results were expressed as nmol g−1 in DW.

Ferric Reducing Antioxidant Power
Assay
Total antioxidant activity is measured by the modified assay of
FRAP of Benzie and Strain (1999). The constituents of the FRAP
reagent were the following: acetate buffer (300 mM pH 3.6),
2,4,6-tripyridyl-s-triazine (TPTZ) 10 mM in 40 mM HCl, and
FeCl36H2O (20 mM). The working FRAP reagent was prepared
by mixing acetate buffer, TPTZ, and FeCl36H2O in the ratio of
10:1:1 at the time of use. The standard solution was 10 mM
ascorbic acid (AA) prepared freshly at the time of measurement.
To 0.1 mL of the supernatant was added 2.9 mL of FRAP reagent
in 5-mL screw cap centrifuge tubes, vortexed in a 37◦C water
bath (Julabo ED-5M, JULABO GmbH 77960 Seelbach/Germany)
for 4 min, and the absorbance was measured at 593 nm against
a blank with a BIORAD SmartSpecTM Plus spectrophotometer
(Bio-Rad Ltd., 1000 Alfred Nobel Drive Hercules, CA 94547,
United States). The FRAP values of the samples were determined
were of AA equivalent (mmol AA equivalent g−1 DW) based on
the AA calibration curve, as the averages of three independent
measurements (Benzie and Strain, 1999; Szõllõsi and Szõllõsi
Varga, 2002).

Determination of Relative Chlorophyll
Content
The SPAD index, a non-invasive measurement for relative
chlorophyll content, was measured by reading 10 individual
points on 10 seedlings of each treatment with SPAD (Soil
Plant Analysis Development–SPAD-502; Konica Minolta Sensing
Inc., Japan) equipment. In a wheat leaf with ∼10–15 cm long,
measurements were taken along the full length of each leaves
approximately every 1–1.5 cm.

Non-invasive Imaging of Stress
Reactions in Plant: Delayed
Fluorescence and Ultra-Weak Photon
Emission
For measuring UPE, the NightShade LB 985 In Vivo Plant
Imaging System (Berthold Technologies GmbH & Co. KG,
75323 Bad Wildbad, Germany) equipped with a sensitive,
thermoelectrically cooled slow-scan NighOwlcam CCD device
has been employed. The instrument was controlled by the
IndiGoTM 2.0.5.0. software. Intensities of light were converted
into counts per second (cps) by using the controlling software.
The exposure time was kept at 60 s using a pixel binning of 2× 2.
During the duration of taking the images both the “background
correction” and the “cosmic suppression” options were enabled
to ensure the elimination of high-intensity pixels potentially
caused by cosmic radiation. One pot for each treatment of the
seedlings to be imaged was placed into the dark imaging box.
In the first part of the measurement, DF signal was measured
immediately after placing the pots in the dark chamber for
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FIGURE 1 | Leaf surface destruction caused by O. melanopus. Five leaves were scanned and the pixels of damaged leaves were determined in the percentage of
reduction of the photosynthesizing surface.

10 min. Thereafter, the samples were continued to be kept in dark
to provide sufficient time for dark adaptation, and from the 30th
minute, for the pots spent in the dark, bioluminescence data was
also acquired for 10 min.

Statistical Analysis
One-way ANOVA was assumed to applied to determine the
differences between samples. To do so, two conditions must
be fulfilled. Firstly, the samples must be normally distributed,
secondly the samples must have homoscedasticity. Shapiro–
Wilks test was used to determine the distribution. The null
hypothesis was that the sample is normally distributed, which
was accepted when the p-value exceeded 0.05. Depending
on the distribution, i.e., the sample is normally or not-
normally distributed, two methods were applied to calculate the
homogeneity of variances: Bartlett test for normal distributions
and Flinger–Killeen non-parametric test for non-normal
distributions. When the distribution of the two samples
was different, the less robust Flinger–Killeen test was used
to determine homoscedasticity. Since the results of testing
conditions supported the application of one-way ANOVA
only in the case of fresh/DW data, Wilcoxon-test was used
to prove the differences between samples for the rest of the
measured parameters. When both samples (control + infested)
have the same distribution, the type of homoscedasticity
test is unequivocal. In the case of MDA, the Flinger–Killeen
test was chosen with higher reliability for determining the
homogeneity of variance.

Statistical Outputs of Homogenous
Distribution and Significant Differences
of the Examined Stress Indices
Table 1 presents the results of the statistical analysis of the
measured physiological parameters, such as relative chlorophyll
content, antioxidant capacity, and lipid oxidation; and biophoton
emission-related parameters: DF and UPE.

The results of the Shaphiro–Wilks test indicated that UPE
and MDA values showed normal distribution but the test of
the parameters (SPAD, FRAP, and DF) did not. Furthermore
since the variance of the samples was so pronounced, the
ANOVA was only applicable for the statistical analysis of

the fresh/DW ratio values. According to the results for one-
way ANOVA and Wilcoxon tests, all parameters showed
significant differences (Table 1; more detailed results in
Supplementary Material 1).

RESULTS

Changes in the Photosynthetic Tissue
and Relative Chlorophyll Content
The damage of O. melanopus showed serious tissue damage
during the 6 days of infestation. Mean of leaf surface destruction
caused by O. melanopus was 12.280 ± 1.323%, the average
of five investigated leaves (Figure 1). The results of the
relative chlorophyll content (SPAD index) and fresh/DW ratio
are presented in Figure 2. The infestation of O. melanopus
manifested as a significant decrease in the SPAD index

TABLE 1 | Statistical analysis of the examined stress parameters in damaged
wheat caused by O. melanopus: ANOVA analysis of fresh/dry weight ratio and
Wilcoxon tests of relative chlorophyll content (SPAD), antioxidant capacity (FRAP),
lipid oxidation (MDA), delayed fluorescence (DF), and ultra-weak
photon emission (UPE).

Summary Results of ANOVA for fresh/dry weight ratio

Groups Count Sum Average Variance

Control 5 45.318 9.063 0.017

O. melanopus infested 5 60.354 12.071 0.106

Analysis of variance

Source of variation SS df MS F p-value F critical
value

Between groups 22.608 1 22.608 384.891 5.8 × 10−8 5.317

Within groups 0.495 8 0.061

Total 23.104 9

p-value Results of Wilcoxon test

MDA 1.478 × 10−7 There are significant differences between groups

FRAP 3.383 × 10−6

SPAD 2.200 × 10−16

UPE 2.200 × 10−17

DF 1.520 × 10−3
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FIGURE 2 | (A) Relative chlorophyll content (SPAD index; n = 10) and (B) fresh: dry weight ratio (n = 10) of healthy and O. melanopus infested wheat leaves. Mean
values and standard deviations are presented. Letters represent significant differences within the treatments.

FIGURE 3 | Effect of O. melanopus infestation on (A) antioxidant capacity (n = 15) (mmol AA equivalent g-1 DW) and (B) lipid oxidation (n = 30) (m g-1 DW MDA
equivalent) in wheat leaves. Mean values and standard deviations are presented. Different letters represent significant differences within the treatments.

from 28.2 to 20.6. The Shapiro–Wilks normality test showed
that the SPAD data did not show normal distribution
(p > 0.05), and thus was analyzed with the Wilcoxon test
(Table 1) and revealed a significant (p = 2.2 × 10−16) 27%
decrease in total (Figure 2). The normality test resulted in
normal distribution for fresh/dry mass ratio, and consequently
the one-way ANOVA was used and proved a significant
(p = 5.84 × 10−16) increase of O. melanopus infested wheat:
24.9%, from 9.064 to 12.071.

Changes in Antioxidant Capacity and
Lipid Oxidation
The FRAP values reflect that part of the overall antioxidant
state of plant tissues that is possible to determine with the

method of ferric reducing antioxidant capacity. The Shapiro–
Wilks normality test resulted that the antioxidant capacity data
did not show normal distribution (p > 0.05), and the Wilcoxon
test (Table 1) was used which showed that the increase was
significant (p = 3.383 × 10−6) in the FRAP values of the
O. melanopus-infested wheat samples (11.43 µg AA equivalent
g−1 FW) compared with the healthy leaves (6.92 µg AA
equivalent g−1 FW; Figure 3).

Lipid oxidation is a stress indicator of membrane structure-
and function-related processes, such as the damage caused by
O.melanopus. The results of MDA level measurement showed the
decrease in MDA content in the tissues of O. melanopus-infested
wheat. The Shapiro–Wilks normality test resulted that the lipid
oxidation data did not show normal distribution (p > 0.05),
thus the data were analyzed with the Wilcoxon test (Table 1),
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FIGURE 4 | (A) Delayed fluorescence decay of healthy and (B) O. melanopus infested leaves during the first 5 min of the measurement. The intensity of color bar
shows signal intensity detected by the equipment and converted into a scale of color intensity via IndiGoTM 2.0.5.0. software.

which proved that the decrease in MDA content was significant
(p = 1.478 × 10−7). The control MDA level was 16.91 nM g−1

FW and theO.melanopus-infested level dropped to 14.87 nM g−1

FW, i.e., 13%, which is a statistically significant (p ≤ 0.05)
decrease induced by the biotic stressor: O. melanopus.

Changes in the Sum of Overall Count per
Second Values of Delayed Fluorescence
and Lipid Oxidation Related
Bioluminescence
The results of DF decay of healthy and O. melanopus infested
leaves during the first 5 min of the measurement are presented
in Figure 4. The images reveal a distinct difference between the
healthy and stressed samples. The DF signal of the healthy plants
was highly intensive during the first minute of the measurement
in both sample types, which was depicted as intensive orange and
red pseudocolors in the images. A decreasing tendency of signals
was obtained from the second minute of the measurement in
heathy plants; however, the photon emission signals arising from
the O. melanopus infested leaves were lower as it was indicated
by the pseudocolors. This tendency continued during the fourth
minute and the photon emission reached low intensity by the end
of the fifth minute.

Figure 5 shows the results of UPE both in the original
size and due to UPE in an enlarged version of typical areas
with considerable UPE signals. The images of UPE signals
showed differences between the healthy and O. melanopus-
infested samples, and according to the pseudocolor intensity, it
indicated an increase of stressed plants in all the first 5 min of the
measurement compared to that of the healthy samples.

Besides the acquisition of images, the fluorescence data
were also analyzed to derive objective parameters for a precise
evaluation of the putative trends and tendencies depicted by the
images. DF measurements were followed consecutively by UWLE

data acquisition after a completed dark adaptation period of
30 min (Figure 6). This measurement setup enabled a distinction
between photosynthetic- and lipid-oxidation-related processes.
The Shapiro–Wilks normality test resulted that the both DF and
UPE data did not show normal distribution (p > 0.05), and thus
was analyzed with Wilcoxon test.

The presented data are the summary of all photon counts
during 10 min of data acquisition for both DF and UPE
(Figure 6). The results show an opposite trend of the changes
in DF and UPE indicated before in the presented images
(Figures 4, 5), but both types of measurements resulted in
a significant difference in the sum of overall photon count
per second values. However, in the case of DF, the infestation
of O. melanopus resulted in a 250% significant decrease
(p = 0.001152) compared to the control plants from 1.72 × 106

to 6.88 × 105. On the contrary, the direction of the changes of
UPE was opposite to that of the DF values and resulted in a
significant (p = 2.2 × 10−17) increase (Table 1). UPE was more
than 300% higher than in the case of the control from 7499.688
to 2197.424 (Figure 6).

Changes of Overall Count per Second
Values of Delayed Fluorescence and
Lipid Oxidation-Related
Bioluminescence
To identify the temporal dynamics of O. melanopus-induced
changes in photon emission, the time-course analysis of
the detected photon signals was also conducted besides the
evaluation of the sum of the overall cps values. Therefore, both
DF and the consequent UPE were measured for 10 min.

The results show a distinctive trend in both the phenomena.
DF has a highly sharp decreasing tendency in first few minutes
of the measurement, and from the fifth minute the data decays
toward zero, but does not reach it. After dark adaptation was
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FIGURE 5 | Ultra-weak photon emission of (A: original; B: enlarged) healthy and (C: original; D: enlarged) O. melanopus-infested leaves during the first 5 min of
measurement. The intensity of color bar shows signal intensity detected by the equipment and converted into a scale of color intensity via IndiGoTM 2.0.5.0.
software.

completed, the UPE values reached a quasi-steady state that
significantly differed according to the sample types for the whole
duration of our observations (Figure 7).

DISCUSSION

The indication of this research was to visualize and gain
parameters of the physiological effects regarding key metabolic
pathways, such as photosynthesis and lipid oxidation affected
by a biotic stressor, O. melanopus. Firstly, the tissue structure
disruption was determined and analyzed by pixel distinction,
and the damage was objectively determined as it was done
several times before (Bieńkowski, 2010; Philips et al., 2011). After
6 days of O. melanopus infestation, there was tissue loss that
was manifested in the decrease of chlorophyll content, which

was indicated by the SPAD index and increased fresh/dry ratio
values. The phenomenon of tissue loss is a typical symptom
of O. melanopus infestation and it has been documented that
the extent of the loss of photosynthetic tissue could be so
pronounced that photosynthetic efficiency drops (Olfert et al.,
2004). The results of relative chlorophyll content and fresh/DW
ratios indicate mechanisms of altered photosynthetic system and
tissue integrity.

The analytical investigations of antioxidant capacity and
lipid oxidation, along with the measurements of DF and
UPE, provided a deeper insight not only into the underlying
mechanisms, but in the case of the two latter to the temporal
dynamics as well. The dynamics of DF and UPE were opposite
in their trends and the scale of the emitted photons were distinct.
These changes and differences originated from the distinct nature
of the underlying processes.
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FIGURE 6 | Sum of overall count per second (A) DF and (B) UPE values of control and O. melanopus-infested wheat. Mean values (n = 3) and standard deviations
are presented. Letters represent significant differences within the treatments.

FIGURE 7 | Temporal changes of overall count per second (A) DF and (B) UPE values of control and O. melanopus-infested wheat during a 10-min measurement
period. Mean values (n = 5) and ±SD are presented.

In the initial phase of photon emission measurement right
after the placement of the plants into the dark chamber, the
processes of the photosynthesis started to gradually cease,
resulting in DF. It is well-known that dark-adaptation-related
phenomenon of photosynthesizing tissues, the decay of which
takes more time, if the plant is in an intact and healthy condition.
However, DF ceases more rapidly if the plant is under the effect
of a stressor of any kind, in our case a biotic one: O. melanopus.
DF decay kinetics were proved to be proper tools for stress
assessment purposes, mostly in the case of abiotic stressors
(Bodemer et al., 2000; Kan et al., 2017; Zhou et al., 2019; Chen
et al., 2021), and according to our results, for a biotic stressor
as well. In accordance to the findings of Hennecke and Brüx
(2012), our results also point to a relationship between UPE and
the oxidation state. These authors showed that a healthy plant
emits DF considerably more intensively, than a stressed one as
opposed to the phenomenon of UPE; when the photon-emission

is a sign of the presence of stressors, and thus stressed plants emit
photons more intensively than non-stressed ones (Hennecke and
Brüx, 2012; Jócsák et al., 2020).

The results of tissue loss quantification showed the destructive
effect of O. melanopus infestation, which obviously included the
loss of membrane system as well, that consequently reflected
as a decrease in the colorimetric oxidative stress assessment
assay. That is why according to our results, MDA content, as an
indicator of lipid oxidation processes, did not completely prove to
be suitable for the proper characterization of the degree of stress
induced by O. melanopus. This phenomenon can be explained
by the type of damage because the investigated impairment was
triggered by a pest, which typically causes direct destruction of
plant tissues. As opposed to some hiding lifestyle, arthropod
pests, such as cereal leaf miner (Agromyza nigrociliata Hendel,
1931), which trigger an indirect covertly damage which will not
occurred on the host plant (not directly affecting the examined
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photosynthetic tissues, Roik and Walczak, 2012). The reason
for this may lie in the fact that the chewing action leads to
tissue loss, which may interfere with the results of the analytical
measurement. The formation of TBA reactive substances that
are possible to detect via the formation of malondialdehyde are
mostly linked to membrane lipids, the degradation of which leads
to an accelerating reaction of oxidized forms of lipid membranes.
In the case of O. melanopus, however, it was not possible to
properly quantify as a consequence of tissue loss.

Nevertheless, the results of UPE enlightened this problem
from a different angle. Until recently, the recognition of ROS
as detrimental products of plant metabolism has been toned
since it was confirmed that ROS act as signaling molecules
with the capability of mediating environmental signals toward
the genetic functionality of the cells leading to stress-responsive
alteration of gene expression (Sewelam et al., 2016). These
environmental signals include both abiotic stressors and biotic
ones, such as pathogens, herbivores, and wounding, as we have
experienced during our research work, since ROS are curial
components of host defense responses leading to the increased
synthesis of antioxidants (Bhatia et al., 2004), as indicated in our
research work by the increased FRAP values. Different kinds of
ROS, such as hydrogen peroxide, superoxide, or singlet oxygen
combined with their production sites, such as plastids, cytosol,
peroxisome, or apoplast, trigger distinctive physiological and
molecular responses (Gadjev et al., 2006). One way of fulfilling
these signaling roles is that ROS such as H2O2 is able to diffuse
through cells via aquaporin (Borisova et al., 2012), leading to
systemic responses (Sewelam et al., 2016). Although in the case of
O. melanopus infestation, the damage is manifested in tissue loss,
the systemic signaling of the biotic stress may reach other plant
parts as well, which led to increased UPE signals. The results of
antioxidant capacity measurements further strengthen this idea,
since, despite the tissue loss, the non-enzymatic ferric reducing
antioxidant capacity significantly increased, indicating that the
plant reacts to the biotic stress on a whole organizational level.

Based on the present results, the changes of the healthy and
O. melanopus infested wheat showed that the insect causes severe
damage to wheat that was visualized (Figure 4) and parametrized
(Figure 5) through the detection of photon signals emitted by
the plants. Furthermore, our results indicate the possibility to
capture the signaling mechanisms of infestation, since despite the
lowered MDA values, the overall photon emission increased in
O. melanopus infested leaves. However, the specific nature of the
formed ROS will be a consequent step on the path of elucidating
the concrete signaling pathways of O. melanopus infestation,
some of which are independent of the direct lipid oxidation
processes that the decrease of MDA level indicated along with the
increase of overall biophoton emission signals. As a consequence
of the investigations, it was confirmed that DF and UPE are
both suitable for non-invasive way of biotic stress detection,
triggered by O. melanopus. We identified that the antioxidant and
lipid-oxidation–related physiological reactions were reflected in
the dynamics of non-invasive biophoton emissions: both in the
decay of DF and the consequent differences in UPE signals. Our
research further supported that the non-invasive approach of
stress assessment may complete and detail the traditional stress

indicators, leading to a more precise estimation of the outcome
of biotic stressors, even on a large scale.

Moreover, the physiological response of the damaged target
organisms triggered by various stressors can be objectively judged
by the application of this non-destructive imaging, which at
the same time creates further research opportunities for the
cognition of the inner stress advancement in the later vegetation
stage of the same living plant material. In additional future
perspectives, these non-destructive methods should play an
increasingly determinative role in the research of plant-arthropod
interaction to the more perfect discovery of hidden biological
progressions. Eventually, the results originating from these
methods can unequivocally contribute to both the development
of integrated plant protection and the realization of reasonable
pesticide utilization.
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Plants are able to sense and respond to a myriad of external stimuli, using

different signal transduction pathways, including electrical signaling. The

ability to monitor plant responses is essential not only for fundamental

plant science, but also to gain knowledge on how to interface plants

with technology. Still, the field of plant electrophysiology remains rather

unexplored when compared to its animal counterpart. Indeed, most studies

continue to rely on invasive techniques or on bulky inorganic electrodes that

oftentimes are not ideal for stable integration with plant tissues. On the other

hand, few studies have proposed novel approaches to monitor plant signals,

based on non-invasive conformable electrodes or even organic transistors.

Organic electrochemical transistors (OECTs) are particularly promising for

electrophysiology as they are inherently amplification devices, they operate

at low voltages, can be miniaturized, and be fabricated in flexible and

conformable substrates. Thus, in this study, we characterize OECTs as viable

tools to measure plant electrical signals, comparing them to the performance

of the current standard, Ag/AgCl electrodes. For that, we focused on two

widely studied plant signals: the Venus flytrap (VFT) action potentials elicited

by mechanical stimulation of its sensitive trigger hairs, and the wound

response of Arabidopsis thaliana. We found that OECTs are able to record

these signals without distortion and with the same resolution as Ag/AgCl

electrodes and that they offer a major advantage in terms of signal noise,

which allow them to be used in field conditions. This work establishes these

organic bioelectronic devices as non-invasive tools to monitor plant signaling

that can provide insight into plant processes in their natural environment.

KEYWORDS

plant electrophysiology, organic electrochemical transistor (OECT), organic
electronics, Venus flytrap, Arabidopsis thaliana

Introduction

Plants are the most widespread organisms on the planet, representing the majority
of Earth’s biomass (Bar-On et al., 2018). These organisms, the product of millions of
years of evolution, are highly developed biosensors, capable of monitoring a myriad of
external stimuli such as water availability, temperature, and soil composition, among
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many others (Yu et al., 2021). The stimuli sensed by plants
are transduced via different signaling pathways, including
hydraulic, chemical, and electrical signals (Choi et al., 2016).
While the importance of electrical signals for plant signaling
has been widely reported, it is a very complex phenomenon,
as recently reviewed by Klejchova et al. (2021). Indeed, when
considering biological signaling, electrical signals do not occur
isolated. Instead, they are intrinsically related to ionic transients
and plant hormonal responses (Farmer et al., 2020; Suda et al.,
2020; Grenzi et al., 2021). Monitoring plant responses to various
stimuli in high resolution will not only advance our knowledge
on basic plant science, which can be used to improve plant
acclimation to biotic and abiotic stress, but also provide a handle
for interfacing plants with technology, aiding the development
of advanced and green technology.

A notable example of plant electrical signaling is the Venus
flytrap (VFT) action potential. These fast action potentials are
one of the most well-known plant signals, having been first
described in the 19th century (Burdon-Sanderson, 1873). These
electrical signals, characterized by an “all-or-nothing” response,
fast propagation, and constant amplitude (Gilroy and Trewavas,
2001), are elicited by the activation of mechanosensitive
trigger cells and lead to the sudden closure of the trap,
allowing for the digestion of small insects and arachnids
(Hedrich and Neher, 2018).

In another relevant example, a different and slower type of
plant signals is the slow wave potential. This signal, induced
by external stressors, consists of a transient depolarization
of irregular shape and duration (Vodeneev et al., 2015), and
has been associated with the activation of cellular defense
mechanisms, such as the synthesis of the defense-related
hormone jasmonate (Mousavi et al., 2013; Nguyen et al., 2018)
and ethylene (Marhavý et al., 2019). While these signals have an
intracellular origin, it is possible to monitor them by changes
in the leaf surface potential, which are called wound-activated
surface potential changes (WASPs) (Mousavi et al., 2013).

Overall, even though this signaling mechanism is quite
widespread and carries an enormous amount of information,
the field of plant electrophysiology is still in its infancy when
compared to its animal counterpart. Most common techniques
in this field are restricted to cumbersome data acquisition setups
and laboratory conditions, requiring the use of Faraday cages
and physical immobilization of plants (Dufil et al., 2021). Other
techniques, especially applied to intracellular recordings, are
not suitable for monitoring environmental electrophysiological
responses, since they wound the plant and consequentially alter
their electrical behavior (Salvador-Recatalà et al., 2014). Thus,
there is a need to develop new tools that allow in situ monitoring
in a non-invasive manner.

Recent reviews in plant electrophysiology highlight the need
for this field to be considered as an interdisciplinary challenge in
order to attain significant knowledge (Li et al., 2021). Indeed, the
development of devices and materials capable of interfacing with

plants, for a myriad of functions, has been increasing, bringing
together material science and plant biology (Lew et al., 2020;
Dufil et al., 2021). A new contender to advance this effort is the
field of organic electronics.

While the current standard for plant electrophysiology
remains Ag/AgCl electrodes (Volkov et al., 2011, 2019), or
other metal inorganic electrodes (Rhodes et al., 1996; Brette and
Destexhe, 2012; Chatterjee et al., 2015, 2017; Ríos-Rojas et al.,
2015; Kim et al., 2018; Chong et al., 2019), novel approaches
from the realm of organic electronics are now been explored.
These include self-adhering poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS)-based surface electrodes,
which are flexible and can thus conform to plant anatomy
(Meder et al., 2021), as well as the development of an ionic
electrode capable of interfacing hairy plant tissues with metal
electrodes that allows for a significant improvement in signal-
to-noise ratio (SNR) and maintains signal stability regardless of
plant movements (Luo et al., 2021).

Among organic electronic devices, the organic
electrochemical transistor (OECT) represents an optimal
platform for interfacing living systems (Nawaz et al., 2021) as it
operates at low voltages and has an electrolyte as an integral part
of the device. The OECT is a three terminal device where source
and drain electrodes are connected by a thin layer of an organic
(semi) conductor, while the gate electrode is separated by an
electrolyte. Typically, in OECTs, organic mixed-ionic electronic
conductors (OMIECs), such as the conjugated polymer
PEDOT:PSS, are used as the channel material (Stavrinidou
et al., 2013; Paulsen et al., 2020). Upon bias application between
gate and source, ions are driven from the electrolyte into the
channel resulting in doping or dedoping of the OMIEC layer
and therefore changing the channel conductivity (Rivnay et al.,
2018). The ions can penetrate throughout the OMIEC layer
volume, giving rise to a volumetric capacitance, which allows
high signal amplification, and thus operation in low voltage
regime (Proctor et al., 2016; Volkov et al., 2017). Additionally,
OECTs can be fabricated on ultra-thin, flexible and conformable
substrates (Khodagholy et al., 2013; Cea et al., 2020). They are
miniaturized devices with high amplification and ensure high
SNR, essential characteristics for in vivo recording.

One of the first uses of OECTs as tools for electrophysiology
was described by Malliaras and colleagues the authors developed
OECT arrays to successfully measure epileptiform discharges
in rat brain, demonstrating higher SNR compared to surface
electrodes (Khodagholy et al., 2013). The application of
OECTs as tools for mammalian electrophysiology has become
increasingly widespread and validated, with several innovations
in both surface and implantable technologies in the last years
(Bai et al., 2019). On the other hand, reports on the use of OECTs
for plant monitoring and electrophysiology are much sparser in
literature. Two notable examples focus on the successful use of
enzymatically functionalized OECTs for long-term monitoring
of glucose and sucrose in trees (Diacci et al., 2021) and on a first
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FIGURE 1

(A) Schematic representation of the experimental setup where an OECT (top view) with channel and co-planar gate electrode is attached on the
lobe of the VFT and an external electrode is placed in the soil. (B) Schematic (side) representation of an OECT where the current in the
conducting polymer channel between source (S) and drain (D) electrodes is modulated by a voltage applied between the electrolyte and
channel via a gate electrode (G). (C) Simplified schematic of the various electrolytic components interfacing with the OECT channel on the VFT
lobe (side view).

demonstration of OECTs as tools for plant electrophysiology,
where these devices were able to record the action potential of
the carnivorous VFT, with increased SNR compared to Ag/AgCl
electrodes (Bischak et al., 2020). However, this last example
is only a demonstration that does not fully characterize these
devices as electrophysiological tools.

Thus, we aimed to benchmark OECTs for plant
electrophysiology (Figure 1) using two well-known plant
electrical signals as biological models: action potential of VFT
and wound response of Arabidopsis thaliana. In this work,
we compare OECTs to a PEDOT:PSS electrode (equivalent
in size and composition) and to a Ag/AgCl electrode (the
current gold standard for plant electrophysiology). We also
compare the performance of the different devices in less
controlled conditions, where a Faraday cage is not used to
minimize external noise.

Materials and methods

Organic electrochemical transistor
fabrication

A 125 µm-thick polyethylene naphthalate foil (PEN, Teonex
Q65HA, Peutz Folien GmbH, Germany) was cut in a circular
substrate with 10.2 cm diameter. The substrate was cleaned
with water and acetone, then vacuum baked for 90 s at 120◦C.

Layers of 2 nm of chromium (Cr), for a better metal adhesion,
and 50 nm gold (Au) were evaporated onto the clean surface.
Photolithography (MA/BM6 Mask Aligner, SUSS MicroTec
SE, Germany) and a Shipley 1805 positive resist were used
to pattern the gold contacts, wiring, channel and gate/s. The
substrate was then wet etched in I2/KI solution for Au, and
with a chromium etcher for the chromium layer while the
remaining resist was stripped with acetone. A thin film of
PEDOT:PSS (Clevios PH1000) mixture with 5% (v/v) ethylene
glycol (EG), 1% (v/v) (3-Glycidyloxypropyl)trimethoxysilane
(GOPS), and dodecylbenzenesulfonic acid (1 drop per 5 ml) was
deposited by spin-coating and patterned using a Shipley 1813
positive resist. The PEDOT:PSS layer was then dry etched with
CF4/O2 reactive ions, in order to create channels and gates. The
remaining resist was stripped again with acetone. In the end,
the substrate was encapsulated, to ensure wire insulation with
SU-8 2010 (MicroChem) and openings on the active areas were
created by wet etching with developer mr-Dev 600 (Microresist
Technology). Chemicals were used as received from Sigma-
Aldrich unless stated otherwise.

Plant material

Venus flytrap plants were acquired from Plantagen
(Sweden) and kept in a greenhouse with controlled temperature
and humidity (22/18◦C light/dark, 12 h photoperiod, 60%
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relative humidity), and watered with DI water. A. thaliana were
seeded and grown in a controlled growth chamber (IntellusUltra
Connect, Percival Scientific, IA, United States), with a 12 h
photoperiod, at 18◦C and 80% relative humidity.

Electrophysiological recording of
Venus flytrap action potentials

Venus flytrap plants were removed from the greenhouse
and left to acclimate to the experimental room for at least
10 min before experiments were performed. For Ag/AgCl and
PEDOT:PSS electrode recordings, the electrode was placed on a
trap, using Signa gel as an electrolyte, and a Ag/AgCl electrode
in the soil was used as a reference electrode. One trigger
hair was touched using a wooden stick after acquiring 20 s
of baseline recording (no activity). Data was acquired using
a InfiniiVision 3000A X-Series digital oscilloscope (Keysight
Technologies, CA, United States). For OECT recordings, the
source-drain channel of the OECT was placed on a trap, using
Signa gel as an electrolyte, and a Ag/AgCl electrode in soil was
used as the gate electrode. The device was biased with VDS = –
0.4 V and VGS = 0.3 V. Data was recorded using a Keithley
SourceMeter 2612B (Tektronix, OR, United States) and custom
Labview software. For recordings inside the Faraday cage, an
extra Ag/AgCl electrode was placed in soil and connected to the
Faraday cage, in order to ground the whole system.

Electrophysiological recording of
Arabidopsis thaliana laser-induced
wound response

Five-week-old A. thaliana plants were removed from the
growth chamber and left to acclimate in the recording setup for
c. 20 min. At this point, a Ag/AgCl electrode was placed in the
damp soil and one of the recording devices was interfaced with
one of the leaves, using a 10 mM KCl and 20 wt% PVA in DI
water solution as an electrolyte. For Ag/AgCl and PEDOT:PSS
electrode recordings, the Ag/AgCl electrode in soil was used
as the reference electrode. For OECT recordings, this electrode
was used as the gate electrode and the device was biased with
VDS = –0.4 V and VGS = 0.3 V, which resulted in the highest
signal amplification (Supplementary Figure 1). For recordings
inside the Faraday cage, an additional Ag/AgCl electrode was
place in the soil, and used to ground the whole system. A 7 W
laser (450 nm, Sainsmart, KA, United States) was focused on the
main vein 1 cm distally away from the recording device, in order
to induce a wound with 1 mm diameter. Baseline activity was
recorded for at least 20 s before the laser was triggered. The laser
was active for 1 s at 50% laser power, which was sufficient to
burn through the leaf. Wound response was recorded for at least
100 s following the laser action, using a Keithley SourceMeter

2612B for OECT or a ME2100-System (Multichannel Systems,
Germany) for the Ag/AgCl or PEDOT:PSS electrodes.

Data analysis

All experiments were performed with at least three different
plants. A detailed characterization of the full datasets can be
found in Supplementary Table 1. Data acquired from the digital
oscilloscope and the ME2100-System were downsampled to
100 Hz to match that acquired by the Keithley SourceMeter. For
VFT action potentials, data were filtered with an analog Bessel
highpass filter (0.01 Hz, order 2) to remove baseline wandering.
The different action potentials were aligned by their steepest
deflection point (local minima of the first temporal derivative).
If more than one action potential was recorded in one trap,
these were averaged and considered to be N = 1. For A. thaliana
data, the different WASPs were aligned by the timing of laser
on. For parameter quantification, all waveforms were smoothed
with a gaussian averaging filter, with window size of 200 ms
and 500 ms, for VFT and A. thaliana, respectively. Data were
analyzed with custom Matlab code and GraphPad Prism.

Results

Organic electrochemical transistor
configuration for plant
electrophysiology

The motivation of using OECTs as plant electrophysiological
tools relies in the inherent amplification of the OECT device
where small changes on the gate voltage are translated as larger
changes in the OECT channel current. We hypothesize that
the plant signals can act as voltage modulators at the gate
electrode. In order to optimize the electrophysiology recordings
with OECTs, different OECT configurations were tested using
the VFT as the model system. In all configurations, the OECT
channel was placed on a lobe of one of the traps, using the
commercially available Signa gel as the interfacing electrolyte.
However, we explored three different ways to interface the gate
electrode: (i) a PEDOT:PSS electrode was placed on the same
lobe with the OECT channel and was electrolytically connected
to plant and channel (Figure 2A and Supplementary Figure 2
for alternative representation); (ii) a Ag/AgCl electrode was
attached on a non-electrically active plant surface (Figure 2B);
and (iii) a Ag/AgCl electrode was immersed in the soil
(Figure 2C). In order to study the modulation of the OECT
channel current via the gate electrode, we measured the transfer
curve in the various configuration (VDS = −0.4 V and VGS

from −0.2 to 0.6 V). The transfer curves showed that efficient
modulation of the channel current occurs in all configurations
with slightly improved modulation when the gate electrode is
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FIGURE 2

Different OECT configurations for plant electrophysiology. OECT transfer curves and transconductance and VFT action potentials recorded with
(A) OECT co-planar PEDOT:PSS gate electrode. (B) Ag/AgCl electrode in a non-electrically active plant tissue as the gate electrode. (C) Ag/AgCl
electrode in soil used as gate electrode. In contact refers to a recording of the trap where the OECT channel is attached. Distant corresponds to
recordings in which a different trap was stimulated. Black trace: gate current. Blue trace: drain current.

placed in the soil. Quantitatively, this is shown by the maximum
transconductance value that corresponds to the derivative of the
transfer curve and hence the change on the channel current due
to a change on the gate potential.

Then, action potentials were recorded in the different
configurations, by stimulating either the trap in which the OECT
channel was attached or a distant trap. First, we observed that
when a co-planar gate electrode is used, we were not able to
record the action potential. In contrast when the gate electrode
is placed on the plant or in the soil the action potential can
be recorded as a change in the OECT channel current. These
results show that, in order to efficiently record the plant signals,
the plant must be part of the OECT circuit with gate voltage
being applied between plant and OECT channel either via
soil or a non-electrically active plant tissue. Furthermore, the
action potential was recorded only when the OECT channel was
attached on the stimulated trap and not at a distant one. This
shows that the plant signal is local and does not travel across the

whole plant, which is in line with previous reports (Volkov et al.,
2007; Suda et al., 2020) that show that the signal does not travel
beyond the petiole.

Thus, for the following experiments, a Ag/AgCl electrode
placed in the soil was used as the gate electrode of the
device, which is in line with previous studies of OECTs as
electrophysiological tools in plants (Bischak et al., 2020) and in
mammalian brain (Khodagholy et al., 2013).

Fast plant signals: Venus flytrap action
potentials

Given their importance in the field of plant
electrophysiology, the VFT action potentials were chosen to first
investigate the use of OECTs as tools in plant electrophysiology.
The OECT channel was placed on a trap, using the commercially
available Signa gel as the interfacing electrolyte and a Ag/AgCl

Frontiers in Plant Science 05 frontiersin.org

152

https://doi.org/10.3389/fpls.2022.916120
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-916120 July 16, 2022 Time: 14:28 # 6

Armada-Moreira et al. 10.3389/fpls.2022.916120

FIGURE 3

Venus flytrap (VFT) action potentials recorded with different devices. (A) Schematic representation of the recording setup. The OECT channel
was attached on a lobe of a VFT trap, using a commercially available electrophysiology gel as an electrolyte. Gate voltage (VGS) was applied
between source and a Ag/AgCl electrode in the soil. Drain voltage (VDS) was applied across the OECT channel. For recordings with Ag/AgCl or
PEDOT:PSS electrodes, the recording electrodes were attached on the trap, and a Ag/AgCl electrode in soil was used as reference. For the
recordings inside of the Faraday cage, an extra Ag/AgCl electrode was placed in the soil and used to ground the whole system. (B) Average
waveform acquired with the different devices: OECT (green trace), Ag/AgCl electrode (black trace), and PEDOT:PSS electrode (blue trace). Data
represented as mean ± 95% CI. N = 9–24 traps from 4 to 10 independent plants. Quantification of the (C) linear relationship between the
maximal down slope and minimum amplitude; (D) linear relationship between the maximal up slope and the peak-to-peak amplitude of the
action potential; (E) duration of action potential, characterized by the delta time at half-width. No significant differences were found in any of
the considered parameters, using a simple linear regression and statistical comparison of slopes [for panels (C,D)] or a two-way ANOVA
considering the parameters "device" and "Faraday cage" [for panel (E)]. (F) Time-frequency domain normalized magnitude scalograms of the
average waveform acquired with the different devices, inside and outside of the Faraday cage. The average waveform is overlaid in white.
(G) Quantification of SNR for the different waveforms, N = 9–20. *p < 0.05, ****p < 0.0001 using a two-way ANOVA considering the
parameters "device" and "Faraday cage," followed by Tukey’s multiple comparison test. In black, differences within the same "cage" condition; in
red, differences in the same "device" condition. In (E,G), data are represented in violin plots, where the width of the shaded area represents the
proportion of data points at any given zone, with lines at median and quartiles.

Frontiers in Plant Science 06 frontiersin.org

153

https://doi.org/10.3389/fpls.2022.916120
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-916120 July 16, 2022 Time: 14:28 # 7

Armada-Moreira et al. 10.3389/fpls.2022.916120

electrode in the soil as the gate electrode (Figure 3A) as
described in the previous section. For recordings with Ag/AgCl
and PEDOT:PSS electrodes, the recording electrode was
placed on the trap and a Ag/AgCl electrode in soil as the
reference electrode. The average waveforms recorded with the
different devices (Figure 3B) show high correlation among
themselves (Supplementary Table 2), which implies that the
OECT performed similarly to the electrodes in recording this
phenomenon. Importantly, three different OECTs were used to
record these signals, to ensure proper reproducibility among
devices. The waveforms obtained from the different OECTs
were equivalent (Supplementary Figure 3).

Different waveform parameters were quantified in order
to compare in detail the similarity of the different devices
in resolving this signal (Supplementary Figure 4). The
relationship between the peak signal amplitude and slope
(Figure 3C), as well as the relationship between the peak-to-
peak amplitude (PPA) and the slope between signal minimum
and maximum (Figure 3D), showed similar behavior for all
considered devices, both inside and outside of the Faraday cage
(Supplementary Table 3). Furthermore, the time interval at
half-width was considered to quantify the temporal component
of the action potential (Figure 3E). Again, no differences
were found between the different devices. Taking all these
quantifications into account, we conclude that the OECT is as
efficient in recording the VFT action potentials as the current
standard for plant electrophysiology (Ag/AgCl electrode) and
the similar in size and composition PEDOT:PSS electrode.

Signal-to-noise ratio of the different devices was then
calculated as the peak amplitude of the waveform (current
or voltage) divided by the standard deviation of the baseline
recording (no stimulation), a widely used method of computing
SNR found in literature (Khodagholy et al., 2013; Bischak et al.,
2020). In Figure 3F, the time-frequency domain of the average
waveforms, a visual representation of the signal power at each
frequency band and timepoint, shows a much clearer signal
resolution for OECT compared to other devices, especially
outside of the Faraday cage. This finding is then quantified in
Figure 3G, where the OECT shows a higher SNR compared to
the other devices, either inside or outside of the Faraday cage.
Additionally, the signal recorded with the OECT does not get
disrupted outside of the Faraday cage, unlike those recorded
with the Ag/AgCl and PEDOT:PSS electrodes.

Slow plant signals: Arabidopsis thaliana
wound-activated surface potential
changes

As previously mentioned, slow wave potentials and, more
specifically, wound-induced potential changes, are also relevant
plant electrical signals. However, when studying wounding
responses, it is very common to find signal artifacts that arise

from the movement induced by the wounding stimulus and
not the wounding itself (Degli Agosti, 2014; Luo et al., 2021).
Thus, to avoid such artifacts, we chose to study a laser-induced
wound response. Since WASP intensity weakens with increasing
distance from site of wounding (Stahlberg et al., 2006), we chose
to record 1 cm away, in the proximal direction, from the laser
and keep that distance constant. Furthermore, it is also known
that WASP amplitude depends on the intensity of the stimulus
(Vodeneev et al., 2015), which led us to set the 7 W laser at a
constant intensity of 50% of laser power for 1 s.

The different devices were then interfaced with an
A. thaliana leaf, using a solution of 10 mM KCl and 20 wt%
PVA in DI water as electrolyte. Similarly to the experimental
setup for recording the VFT action potential, a Ag/AgCl
electrode in the soil was used as the gate electrode for OECT
recordings or as the reference electrode for PEDOT:PSS and
Ag/AgCl electrode recordings. For recordings inside of the
Faraday cage, an additional Ag/AgCl electrode was placed in
the soil and used to ground the system. The average waveform
recorded with the different devices (Figure 4A) is similar to
those found in literature (Mousavi et al., 2013; Nguyen et al.,
2018). Additionally, as previously described in literature, we
did not find any spontaneous electrical activity unrelated to
the wounding signal (Mousavi et al., 2013). All the obtained
waveforms share a high correlation between the different
devices and also between different Faraday cage conditions
(Supplementary Table 2), implying that the OECT can resolve
this biological signal as efficiently as the other electrodes.
While the signals are similar, the WASPs present an increased
variability in their response tail. This was already expected since
WASP architecture is known to be quite variable, even within
the same plant species (Mousavi et al., 2013; Farmer et al.,
2020), which accounts for the increased error associated with
the duration/recovery of the recorded WASPs.

In order to finely quantify the waveform similarity between
the different devices, two different WASP parameters were
considered, as depicted in Figure 4B. These were latency
(Figure 4C, the time interval between wounding and reaching
half peak amplitude) and duration (Figure 4D, the time interval
between wounding and recovery, measured as the zero in the
signal’s first temporal derivative). Using a two-way ANOVA
considering the parameters “device” and “Faraday cage,” no
statistically significant differences were found between the
different samples. Considering the waveform and parameter
similarity, it is possible to conclude that the OECT is able to
record this biological signal in a manner comparable to the
current gold standard.

Finally, the frequency content of the different waveforms
was investigated (Figure 4E) and a SNR analysis was performed
(Figure 4F). When the recordings were performed inside of
the Faraday cage, all the devices show a similar time-frequency
spectrum, although it is possible to observe some noise at
around 40 Hz caused by the laser in the spectrums of the
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FIGURE 4

Arabidopsis thaliana WASP triggered by laser recorded with different devices. (A) Average waveform recorded with the different devices, inside
and outside the Faraday cage: OECT (green trace), Ag/AgCl electrode (black trace), and PEDOT:PSS electrode (blue trace). Data represented as
mean ± 95% CI. N = 10–20 leaves from 3 to 5 different plants. (B) Schematic representation of experimental setup. Laser was shined on a leaf
for 1 s at 50% laser power and the different devices were in contact with the leaf less than 1 cm away, in a proximal direction, from the laser. The
parameters considered for the characterization of the WASP were latency (time to reach half of maximal amplitude) and duration (time from
laser on to recovery). (C) Quantification of latency and (D) duration of WASPs recorded with the different devices. No statistically significant
differences were found. N = 7–18. (E) Time-frequency analysis of the average waveform acquired with the different devices, inside and outside
of the Faraday cage. (F) Quantification of SNR for the different waveforms, N = 9–19. **p < 0.01, ****p < 0.0001 using a two-way ANOVA
considering the parameters “device” and “Faraday cage,” followed by Tukey’s multiple comparison test. In black, differences within the same
“cage” condition; in red, differences in the same “device” condition. In (C,D,F), data are represented in violin plots, where the width of the
shaded area represents the proportion of data points at any given zone, with lines at median and quartiles.

PEDOT:PSS and Ag/AgCl electrodes. This is then translated into
similar values of SNR between the different devices. However,
when the recordings were performed outside of the Faraday

cage, it is possible to observe an increase in noise levels
(50 Hz) in both PEDOT:PSS and Ag/AgCl electrode recordings.
Similarly, this is translated into a significant decrease in the SNR
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for these devices, while the OECT maintains a high SNR, which
highlights an advantage of using this latter device for plant
electrophysiology, especially outside of laboratory conditions.

Discussion

In this work, we set out to benchmark OECTs for plant
electrophysiology, comparing their performance to that of
PEDOT:PSS and Ag/AgCl electrodes. We were able to conclude
that OECTs can resolve the biological signals as efficiently as
the tested electrodes and that these organic electronic devices
offer a significant improvement in the SNR of the recordings,
especially when moving away from laboratory conditions.
This is, to our knowledge, the first report that thoroughly
characterizes these devices for plant electrophysiology, in a
controlled and quantified manner, considering two different
types of electrical signals. Importantly, while surface electrical
recordings do not allow for the determination of the cellular
origin of the signals, this approach represents a compromise
between spatial resolution and invasiveness and remains a
relevant method to extract meaningful information about plant
electrophysiology.

Regarding the VFT action potential, while the waveforms
attained are similar to some found in literature (Bischak et al.,
2020), there is a large variability in action potential shape
reported over the years (de Bakker et al., 2021; Meder et al.,
2021). While a more comprehensive study on the origin of
this variability remains to be conducted, special attention
should be paid to the experimental setup and data filtering
in plant electrophysiology. Indeed, since electrophysiology has
been developed for mammalian systems, most commercially
available electrophysiology systems are not suitable for plant
signal recording. For this application, it is required that the
employed system has the capacity to record high amplitude
signals and has no hardware highpass filter (such as the
commonly used 0.1 Hz highpass filter). Along the same line, data
filtering can deeply impact the recorded signal. For example,
for neuronal signals, it is possible to bandpass them to extract
different components only because a great deal of research
was devoted to isolate and quantify the different frequency
contents of those signals. Such knowledge does not yet exist
for plant electrical signals. Thus, even seemingly innocuous
data treatment can mask some aspects of these signals. In
practical terms, while data acquisition and treatment in plant
electrophysiology still needs to be further elucidated and
optimized, this discussion brings to light the need to create
field-wide standards and analyses.

Regarding the values found for SNR, our study is in line with
previous reports that state that VFT action potentials recorded
with OECTs have a SNR of 1250, compared to that of Ag/AgCl
of 11 (Bischak et al., 2020), which corresponds to a difference
of around 40 dB between the devices. While these findings are

in line with our results, this study does not mention if the
recordings were performed inside a Faraday cage nor does it
mention if data filtering was performed.

Regarding A. thaliana WASPs, there is less variability in
signal shape found in literature, with our waveforms matching
those previously reported. Still, when studying wound response
in plants, some aspects must be considered. Firstly, surface
recordings are more suitable for this end than intracellular
approaches, since they are non-invasive and thus do not
elicit wound responses caused by insertion. However, they
do not allow for the identification of the cellular identity
of these signals (Farmer et al., 2020). This leads to a very
relevant conundrum in the study of plant wound response:
not being able to identify cellular origins without invasive
techniques; but also changing the wound response by using
said techniques. This problem is now starting to be surmounted
by the use of voltage-sensitive dyes and genetic mutants
(Zhao et al., 2015; Farmer et al., 2020; Rigoulot et al.,
2021). Nonetheless, a better integration of molecular-based
approaches and electrophysiological techniques still needs
to be developed.

Our study, albeit not tackling the issue of the cellular
origin of plant electrical signals, was still able to show that,
for A. thaliana WASPs, the OECT offers the advantage of a
higher SNR when not in laboratory conditions compared to the
used electrodes.

Overall, this study validates OECTs as viable tools for
plant electrophysiology, with the clear advantage of maintaining
signal integrity outside of laboratory conditions. The application
of untethered OECT-based sensors in situ using Arduino devices
with WiFi modules (Diacci et al., 2021) further corroborates
this conclusion. Additionally, previous work on OECTs as
mammalian electrophysiological tools employed multi-OECT
arrays (Khodagholy et al., 2013), which implies that this
technology can be used to resolve spatial and temporal signals
in field conditions. A final advantage of OECTs is the possibility
for their low-cost fabrication, using screen-printing technology
(Zabihipour et al., 2020).

Alas, the validation of new tools for plant electrophysiology
is only a small fraction of much needed innovation. Recent
reviews cover the advances in plant-inspired biomimetic soft
robotics and machines (Esser et al., 2020; Mazzolai et al., 2020),
as well as the developments in plant biohybrid devices and
bioelectronic applications (Dufil et al., 2021), highlighting the
immense possibilities for interaction of plants with technology.
However, without better and more diverse tools to study plant
phenomena, these possibilities cannot be reached.
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