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Editorial on the Research Topic

EEG/MEG based diagnosis for psychiatric disorders

For a long time, the diagnosis and evaluation of psychiatric disorders are mainly

based on clinical symptoms and signs, but the understanding of the etiology and

pathogenesis of these psychiatric disorders such as schizophrenia and depression is still

not completely clear. At present, there is a lack of objective neurobiological markers

that can be used in clinical routine work such as clinical diagnosis, curative effect

evaluation and prognosis evaluation of psychiatric disorders. Therefore, it is of great

clinical significance to find biomarkers to improve the diagnosis level and evaluate

the curative effect. Electroencephalogram (EEG) is a non-invasive technique to record

the potential activity of biological brain, through which researchers can analyze the

mechanisms underlying psychiatric disorders. In addition, machine learning can be used

to further verify the role of these electrophysiological indicators in clinical diagnosis

and curative effect evaluation of psychiatric disorders. The goal of this Research Topic

is to advance research on neurobiomarkers and EEG/MEG-based diagnostic methods

for mental disorders. We hope to conduct in-depth research on the pathogenesis and

diagnostic measures of mental diseases such as schizophrenia and depressive disorder

through EEG/MEG, in order to improve the performance of artificial intelligence for

mental diseases diagnosing. Under this research theme, the following is a brief overview

of nine published articles, which, respectively, studied the diagnosis, treatment, and

future research of psychiatric disorders by using EEG/MEG.

In this issue, some work are about the research of diagnosis methods of

mental disorders. The paper titled “Machine Learning-Based Electroencephalographic

Phenotypes of Schizophrenia and Major Depressive Disorder” by Jang et al. investigates

brain phenotyping in patients with schizophrenia (SZ) and major depressive disorder

(MDD) using EEG and conducted machine-learning-based classification of the two

diseases, using these EEG components.
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Although EEG microstates have been suggested as a

potential endophenotype for schizophrenia, no clear dynamic

pattern of microstates has been found. The paper titled “EEG

Microstates and Its Relationship With Clinical Symptoms in

Patients With Schizophrenia” by Sun et al. demonstrates that

patients with schizophrenia have abnormal EEG microstates,

especially the microstate class C, through the method of

grouping patients into subgroups according to the level of

positive and negative symptoms.

Little research has explored EEG differences between

adolescents with major depressive disorder (MDD) and healthy

controls, particularly EEG microstates differences. The paper

titled “Abnormalities in Electroencephalographic Microstates

Among Adolescents With First Episode Major Depressive

Disorder” by He et al. is the first study to explore the

dynamic activity of resting-state large-scale brain networks

among adolescents with MDD indicating that adolescents with

MDD show EEG alterations in temporal scale of subsecond

across the whole brain.

The paper titled “Detection of Schizophrenia Cases From

Healthy Controls With Combination of Neurocognitive

and Electrophysiological Features” by Tian et al. develops

a comprehensive machine learning pipeline based on

neurocognitive (contains seven specific areas of cognition)

and electrophysiological [PPI, EEG power spectrum, detrended

fluctuation analysis, and fractal dimension (FD)] features by

using logistics, random forest, and extreme gradient boosting

(XGBoost) algorithms and evaluated their classification

capabilities separately.

Deep learning techniques have been applied to

electroencephalogram (EEG) signals, with promising

applications in the field of psychiatry. The paper titled “From

Sound Perception to Automatic Detection of Schizophrenia: An

EEG-Based Deep Learning Approach” by Barros et al. researches

the altered patterns in electrical brain activity during auditory

processing and their potential to discriminate schizophrenia

and healthy subjects. Their results show the potential of deep

learning methods in the study of impaired auditory processing

in schizophrenia with implications for diagnosis.

Results of more recent studies have suggested that ASD

is a dysfunction of coordination over widely distributed brain

regions. To meet this challenge, the paper titled “Atypical

Resting State Functional Neural Network in Children With

Autism Spectrum Disorder: Graph Theory Approach” by

Soma et al. examines the resting-state MEG-derived functional

network in children with and without ASD using graph theory

and demonstrates a difference between children with and

without ASD in MEG-derived resting-state functional brain

networks. Their study indicates that combining graph theory

and MEG might be a promising approach to establish a

biological marker for ASD.

Secondly, it is about exploring the treatment methods of

these diseases. Transcranial direct current stimulation (tDCS)

is an emerging therapeutic tool for treating posttraumatic

stress disorder (PTSD). The paper titled “Predictions of

tDCS treatment response in PTSD patients using EEG based

classification” by Kim et al. investigates tDCS treatment

responsiveness in patients with PTSD using EEG spectral

power and machine learning-based prediction methods.

These results can provide important information and provide

meaningful methods for early identification of patients

who may be clinically affected by tDCS treatment, thus

reducing the cost and time spent by these patients in the

treatment process. Their findings provide information

for future research directions, and if confirmed, it is

expected that they will eventually provide information for

medical guidelines.

The paper titled “Repetitive Transcranial Magnetic

Stimulation Modulates Frontal and Temporal Time-Varying

EEG Network in Generalized Anxiety Disorder: A Pilot

Study” by Song et al. investigates the effect of low-frequency

rTMS targeting the right DLPFC on clinical symptoms and

TMS-evoked time-varying brain network connectivity in

patients with GAD. Their study demonstrates that rTMS

does have potential as an effective augmentative treatment

in GAD.

One of the work is about the analysis of the development

status and trends of these research fields. The paper titled

“Bibliometric Analysis of Quantitative Electroencephalogram

Research in Neuropsychiatric Disorders From 2000 to

2020” by Yao et al. integrates bibliometric information

on the current status, the knowledge base, and future

directions of QEEG studies in neuropsychiatric disorders

from a macroscopic perspective. It suggests that in the past

20 years, QEEG has been used to reveal the pathological

mechanism of various neuropsychiatric diseases, to assist

clinical diagnosis and to promote the selection of effective

treatment methods. Besides, future studies should focus on

cross-validation of promising QEEG biomarkers, development

of noval biomarkers, and extraction of biomarkers by

machine learning.

The work in this special issue may fall into three

categories of research: (1) methods designed for diagnosis

of psychiatric disorders; (2) methods for the treatment of

psychiatric disorders; (3) trends in this field. AI techniques,

including machine learning and deep learning, have been

widely applied to improve diagnosis performance and

treatment effectiveness. This issue will facilitate to deepen the

understanding of the underlying mechanisms of psychiatric

disorders from the aspects of neuroelectrophysiology

and neuromagnetic-physiology with AI assistance, to

improve the accuracy and convenience of treatment
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and also to inspire the development of better diagnostics

and treatments.
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Background: Psychiatric diagnosis is formulated by symptomatic classification;

disease-specific neurophysiological phenotyping could help with its fundamental

treatment. Here, we investigated brain phenotyping in patients with schizophrenia

(SZ) and major depressive disorder (MDD) by using electroencephalography (EEG)

and conducted machine-learning-based classification of the two diseases by using

EEG components.

Materials and Methods: We enrolled healthy controls (HCs) (n = 30) and patients with

SZ (n = 34) and MDD (n = 33). An auditory P300 (AP300) task was performed, and the

N1 and P3 components were extracted. Two-group classification was conducted using

linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Positive

and negative symptoms and depression and/or anxiety symptoms were evaluated.

Results: Considering both the results of statistical comparisons and machine

learning-based classifications, patients and HCs showed significant differences in

AP300, with SZ and MDD showing lower N1 and P3 than HCs. In the sum of amplitudes

and cortical sources, the findings for LDA with classification accuracy (SZ vs. HCs:

71.31%, MDD vs. HCs: 74.55%), sensitivity (SZ vs. HCs: 77.67%, MDD vs. HCs:

79.00%), and specificity (SZ vs. HCs: 64.00%, MDD vs. HCs: 69.67%) supported these

results. The SVM classifier showed reasonable scores between SZ and HCs and/or MDD

and HCs. The comparison between SZ and MDD showed low classification accuracy

(59.71%), sensitivity (65.08%), and specificity (54.83%).

Conclusions: Patients with SZ and MDD showed deficiencies in N1 and P3

components in the sum of amplitudes and cortical sources, indicating attentional

dysfunction in both early and late sensory/cognitive gating input. The LDA and SVM

classifiers in the AP300 are useful to distinguish patients with SZ and HCs and/or MDD

and HCs.

Keywords: electroencephalographic phenotyping, machine learning, auditory P300, schizophrenia, major

depressive disorder
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INTRODUCTION

Although psychiatric diagnosis is based on phenomenological
distinction of overt features such as behavior, mood, and
thought, determination of the neuropathological mechanisms
with electroencephalography (EEG) remains challenging.
Among the neurophysiologic phenotypes determined using
EEG, there is no consistently recommended brain model for
schizophrenia (SZ) and major depressive disorder (MDD).
Previous EEG studies have focused on pathophysiological
distinctions and symptomatic relationships (1–3). The clinical
variations in SZ and MDD are very heterogeneous (4–
6). Beyond clinical diagnosis based on phenomenological
distinctions between SZ and MDD, the definition of EEG
endophenotypes using machine learning could provide
insights facilitating therapeutic breakthroughs for a variety
of pathologic phenotypes (7–10). Especially, classification
performance in psychiatric disorders was assured by applying
linear discriminant analysis (LDA) and support vector machine
(SVM) (11).

Auditory P300 (AP300) is a representative neurophysiological
indicator in patients with SZ and depression (12–15);
however, some studies provided inconsistent findings for
this indicator in depression (16). AP300 includes the N1
and P3 components, which represent the most negative
potential at around 100ms and the most positive potential at
around 300ms following the onset of an auditory stimulus,
respectively. Changes in P3 and N1 amplitudes in the midline
electrodes are commonly observed (17, 18). Furthermore,
the highest peak potential within defined time ranges for
each component shows large variations across individuals
because each component includes several neurobiological
attributes (19, 20). Alternatively, the width of amplitudes
within the defined time ranges can also indicate a pathological
state (21).

AP300 reflects cognitive processes in auditory responses as

well as working memory and attention process (22, 23). N1 has

been defined as the neural allocation for early sensory input

from the target stimulus (24, 25), and decreased N1 could reflect

abnormal early selective attention in SZ and mood disorder
(26–29). P3 is a major component of AP300 that is generated
by late positive potential from information processing, such as

an inputting rare event under ordinary situations (30, 31). N1
and P3 deficiencies are commonly observed in patients with SZ
(32, 33). Several studies have also reported delayed latencies and
decreased amplitudes of both N1 and P3 in patients with MDD
(13, 34–36).

Here, we compared AP300 between healthy controls (HCs)
and patients with SZ and MDD. To identify brain phenotypes
of SZ and depression, changes in the N1 and P3 components
were expressed in three dimensions, namely, peak with latency,
sum of amplitudes, and cortical sources, by using radar charts.
In addition, we applied machine learning techniques with linear
discriminant analysis (LDA) and support vector machine (SVM)
classifiers for each two-group classification.

MATERIALS AND METHODS

Participants
We enrolled 34 patients with SZ (13 men and 21 women),
33 patients with MDD (11 men and 22 women), and 30 HCs
(15 men and 15 women). The mean ages of the participants
with SZ and MDD and the HCs were 37.21 ± 14.94, 40.03
± 11.08, and 43.63 ± 12.80 years, respectively. The ages of
all participants ranged from 19 to 82 years (mean: 40.15 ±

13.19 years). Participants who had vision or hearing problems,
drug and/or alcohol abuse, traumatic brain injury, and a
lifetime history of neurological disorders were excluded. Healthy
participants with a lifetime history of psychiatric disorders were
also excluded. All participants were native Koreans diagnosed
using the MINI International Neuropsychiatric Interview of
the Diagnostic and Statistical Manual of Mental Disorders, 5th
Edition. The Positive and Negative Syndrome Scale (PANSS) (37)
was evaluated in patients with SZ, while the Hamilton Depression
and Anxiety rating scales (HAMD and HAMA) (38, 39) were
evaluated in patients with MDD. The Beck Depression Inventory
(BDI) was also evaluated in patients with MDD and HCs
(40). All symptomatic evaluations were performed by a trained
psychiatrist. Written informed consent was obtained from all
the participants. This study followed the relevant guidelines and
regulations of the Institutional Review Board of Seoul St. Mary’s
Hospital College of Medicine, The Catholic University of Korea
(approval number: KC09FZZZ0211).

EEG Measurements
All the participants were seated in a comfortable chair in a sound-
attenuated room. The EEG recording was performed using the
NeuroScan SynAmps amplifier (Compumedics USA, El Paso,
TX, USA) with a 62-channel head cap mounted with AgCl
electrodes according to the international extended 10–20 system
(FP1, FPz, FP2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7,
FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2,
C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7,
P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO5, PO3, POz, PO4, PO6,
PO8, CB1, O1, Oz, O2, and CB2). Eye movements were detected
by electrooculography (EOG) sensors placed above and below
the left eye and the outer canthus of both eyes. Bandpass filters
ranged from 1 to 100Hz with a sampling rate of 1000Hz. The
reference and ground channels were located on both themastoids
and forehead, respectively. The impedance wasmaintained below
5 kΩ during the recording session.

AP300 Protocol and Analyses
AP300 with an auditory oddball task was conducted in the
response-contingent behavior paradigm comprising 200 stimuli
delivered using MDR-XB500 headphones (Sony, Tokyo, Japan)
at 85 dB SPL with 2,000-ms fixed inter-stimulus intervals. A
total of 160 standard tones of 1,000Hz and 40 target tones of
1,500Hz were presented randomly. The duration of the tone was
100ms, and the rise and fall times were 10ms. The STIM2 system
(Compumedics USA, El Paso, TX, USA) was used to synchronize
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the auditory stimuli and EEG signals. All participants were
instructed to press a button promptly when the target tones of
1,500Hz were presented. A fixation cross was displayed in the
middle of the screen during all recording sessions. Above 30-
artifact free and -accurate epochs were used in the analyses. Gross
artifacts were removed through visual inspection by a trained
evaluator who had no information about the origin of the data.
Artifacts related to eye blinks and/or movements were rejected in
accordance with established mathematical procedures by using
SCAN 4.5 and CURRY 8.0 software (41). Based on vertical EOG,
positive and negative components exceeding 300 µV from the
before- and after-onset stimuli (−100 to 300ms) were rejected.
The data were epoched from before-onset 100ms to after-onset
700ms on target stimuli. Pre-stimulus baseline correction was
applied, and artifacts exceeding ±100 µV were rejected for all
electrodes. The data were bandpass-filtered with a zero-phase
shift ranging from 1 to 55Hz. In the peak with latency, N1
was extracted between 50 and 150ms post-stimulus. P3 was
extracted between 250 and 500ms. The width of the amplitudes
was calculated by summation of all the amplitudes within the
defined time ranges.

Cortical Source Analyses and Regions of
Interest (ROIs)
Cortical source estimation was performed using standardized
low-resolution brain electromagnetic tomography (sLORETA)
software. Estimation of the EEG inverse problem was conducted
at the cortical source regions based on the 6,239 voxels (42). The
source densities of N1 and P3 were calculated using mean values
within the defined time ranges. ROIs in the cortical source level
were selected to examine changes in the default mode network
regions and cognitive control network (43, 44). The source
activities of ROIs were extracted from the mean voxel values
of the selected areas. The selected 14 regions were the left/right
superior frontal gyri (SFGs), left/right middle frontal gyri
(MFGs), left/right medial frontal gyri (MeFGs), left/right inferior
frontal gyri (IFGs), left/right superior temporal gyri (STGs),
left/right inferior parietal lobes (IPLs), and left/right precuneus.

Machine Learning Analyses
Features were selected based on three dimensions: peak with
latency (n= 12), sum of amplitudes (n= 7), and cortical sources
(n = 28). Dimension-based feature selection was applied. The
present study lacked a suitable sample size. Reducing dimension
should be performed when the sample sizes and features were
sufficiently large to secure acceptable classification performance
(45). The classification accuracy, sensitivity, and specificity were
evaluated using the 10-by-10-fold cross-validation technique
with LDA (46) and linear SVM classifiers (47). Analysis in
machine learning was conducted using MATLAB 2019 software
with add on toolbox the Bioinformatics and the Statistics and
Machine learning (Mathworks, Inc, USA).

Statistical Analyses
Descriptive statistics were analyzed using multivariate analysis of
variance (MANOVA), chi-square test, and t-test, as appropriate
(Table 1). Age, education, and accepted AP300 trials among the

TABLE 1 | Demographic data of the present study.

Variables SZ (n = 34)

(a)

MDD

(n = 33) (b)

HCs (n = 30)

(c)

Statistics

Age 37.21 (14.94) 40.03 (11.08) 43.63 (12.80) f = 1.930,

p = 0.151

Sex (m/f) 13/21 11/22 15/15 χ
2, p = 0.387

Education 13.21 (3.37) 13.70 (2.30) 15.27 (1.57) f = 5.553,

p = 0.008

a < c

Duration of illness

(Missing value)

29.09 (12.11)

(0)

37.29 (7.83)

(26)

- -

Positive 29.26 (6.23) - - -

Negative 19.97 (7.14) - - -

General 52.94 (8.66) - - -

Total 102.18

(15.08)

- - -

HAM-D - 20.15 (5.65) - -

HAM-A - 22.48 (7.77) - -

BDI - 28.06 (12.33) 9.33 (7.49) T = 7.357, p

< 0.001

AP300 accepted

trials

37.71 (2.51) 37.27 (2.83) 37.73 (2.78) F = 0.297,

p = 0.744

Drug

administration (n)

29 6 - -

Antipsychotics

Amisulpride 6 - - -

Aripiprazole 4 - - -

Blonanserin 1 - - -

Clozapine 1 - - -

Olanzapine 11 - - -

Paliperidone 5 - - -

Quetiapine 7 - - -

Risperidone 1 - - -

Antidepressants

Alprazolam - 1 - -

Lorazepam - 2 - -

Mirtazapine - 1 - -

Paroxetine - 1 - -

Sertraline - 1 - -

Venlafaxine - 3 - -

groups were compared using MANOVA. Differences in sex were
also examined using the chi-square test. BDI scores between
patients with MDD and HCs were compared using t-test. For
multivariate analysis with covariance, 49 variables of AP300 were
examined as dependent variables among all groups, with age,
sex, and education as covariates. Statistical significance was set
at p < 0.05, two-tailed. Main-effect comparison was performed
using the Bonferroni correction from the original p-values (48).
All statistical analyses were performed using IBM SPSS software
(version 20.0; IBM Corp., Armonk, NY, USA).

RESULTS

Descriptive statistics are presented in Table 1. We found no
significant differences in age (F = 1.930, p = 0.151) and sex
(χ2, p = 0.387) among the three groups. Level of education was

Frontiers in Psychiatry | www.frontiersin.org 3 October 2021 | Volume 12 | Article 7454589

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Jang et al. Machine Learning-Based EEG Phenotype

significant between patients with SZ and HCs (SZ < HCs, F =

5.553, p = 0.008). The BDI scores significantly differed between
HCs and patients with MDD (t= 7.357, p < 0.001). The number
of accepted AP300 trials did not differ significantly among the
three groups (F= 0.297, p= 0.744).

The present study found significant differences in AP300
among HCs and patients with SZ and MDD [F(2, 91) = 1.704, p
= 0.006, η2 = 0.645]. In the assessment of the sum of amplitudes
of AP300 (Table 2 and Figure 1A), significant differences were
found among patients with SZ, MDD, and HCs (SZ < MDD <

HCs, N1-Fz, p< 0.001; SZ<MDD, SZ<HCs, N1-Cz, p= 0.005;
SZ<MDD, N1-Pz, p< 0.037; SZ<MDD, SZ<HC, Total value,
p= 0.014).

On evaluating the peak with latency of AP300 (Table 2 and
Figures 1B,C), differences were significant (SZ < HCs, N1-Fz-
Peak, p = 0.027; SZ < MDD, SZ < HCs, P3-Pz-Peak, p =

0.043). On evaluating the cortical source activities of AP300
(Table 2 and Figure 2), significant differences were found (SZ
< HCs, MDD < HCs, N1-R-IPL, p = 0.012; N1-L-Precuneus,
p = 0.004; N1-R- Precuneus, p < 0.001; P3-R-STG, p = 0.003;
P3-L-IPL, p < 0.001; P3-R-IPL, p < 0.001; P3-L-Precuneus, p
< 0.001; P3-R-Precuneus, p < 0.001). There were no significant
differences in the assessments of AP300 behavior. Meanwhile,
correlations between clinical symptoms and AP300 were not
significant (Figure 3).

The machine learning results with LDA and SVM are
presented in Table 3. The results of the two-group classification
are as follows:

Accuracy for sum of amplitudes: SZ vs. MDD, LDA, 59.71%,
SVM, 54.48%; SZ vs. HCs, LDA, 71.31%, SVM, 57.81%;
and MDD vs. HCs, LDA, 74.55%, SVM, 58.89%. Sensitivity

for sum of amplitudes: SZ vs. MDD, LDA, 65.08%, SVM,
56.18%; SZ vs. HCs, LDA, 77.67%; SVM, 56.77%; and MDD
vs. HCs, LDA, 79.00%, SVM, 57.58%. Specificity for sum of
amplitudes: SZ vs. MDD, LDA, 54.83%, SVM, 52.73%; SZ vs.
HCs, LDA, 64.00%, SVM, 59.00%; and MDD vs. HCs, LDA,
69.67%, SVM, 60.33%.
Accuracy for peak with latency: SZ vs. MDD, LDA, 55.75%,
SVM, 53.88%; SZ vs. HCs, LDA, 70.74%, SVM, 67.35%; and
MDD vs. HCs, LDA, 70.60%, SVM, 70.95%. Sensitivity for
peak with latency: SZ vs. MDD, LDA, 57.25%, SVM, 55.00%;
SZ vs. HCs, LDA, 69.42%; SVM, 70.00%; and MDD vs. HCs,
LDA, 75.17%, SVM, 72.12%. Specificity for peak with latency:
SZ vs. MDD, LDA, 55.00%, SVM, 52.73%; SZ vs. HCs, LDA,
72.33%; SVM, 64.33%; and MDD vs. HCs, LDA, 65.33%,
SVM, 69.67%.
Accuracy for cortical sources: SZ vs. MDD, LDA, 54.28%,
SVM, 54.78%; SZ vs. HCs, LDA, 65.41%, SVM, 71.88%; and
MDD vs. HCs, LDA, 55.50%, SVM, 65.87%. Sensitivity for
cortical sources: SZ vs. MDD, LDA, 58.25%, SVM, 66.77%;
SZ vs. HCs, LDA, 69.25%, SVM, 74.41%; and MDD vs. HCs,
LDA, 64.00%, SVM, 81.21%. Specificity for cortical sources:
SZ vs. MDD, LDA, 50.08%, SVM, 42.42%; SZ vs. HCs, LDA,
60.67%, SVM, 69.00%; and MDD vs. HCs, LDA, 46.67%,
SVM, 49.00%.

DISCUSSION

The present study demonstrated differences in AP300 between
HCs and patients with SZ and MDD. AP300 with N1 deficiency
in patients with SZ and MDD was predominantly found in the
sum of the amplitudes. Machine learning-based classification

TABLE 2 | Comparisons of AP300 between patients and HCs.

Variables SZ (n = 34) MDD (n = 33) HCs (n = 30) Statistics

(a) (b) (c) Pairwise

comparison

Original

p-value

Bonferroni corrected

p-value

Effect

size (η2)

Sum of amplitudes

N1-Fz 278.18 (131.35) 375.58 (137.70) 471.05 (159.07) a < b < c <0.001 <0.001 0.226

N1-Cz 334.39 (117.94) 449.97 (162.03) 490.52 (144.58) a < b, a < c <0.001 0.005 0.182

N1-Pz 294.24 (121.56) 421.81 (164.11) 354.74 (102.65) a < b 0.001 0.037 0.146

Total 2583.68 (1114.06) 3591.49 (1583.27) 3879.94 (1245.18) a < b, a < c <0.001 0.014 0.165

Peak(µV) with latency (ms)

N1-Fz-Peak 6.00 (2.50) 7.37 (2.26) 8.46 (2.65) a < c 0.001 0.027 0.152

P3-Pz-Peak 6.88 (3.33) 8.87 (3.72) 9.95 (3.52) a < b, a < c 0.001 0.043 0.143

Cortical sources

N1-Right IPL 0.41 (0.38) 0.39 (0.42) 0.82 (0.67) a < c, b < c <0.001 0.012 0.168

N1-Left Precuneus 0.89 (0.59) 0.91 (0.96) 1.67 (1.20) a < c, b < c <0.001 0.004 0.187

N1-Right Precuneus 0.80 (0.51) 0.88 (0.72) 1.51 (0.97) a < c, b < c <0.001 <0.001 0.223

P3-Right STG 0.86(0.52) 1.29 (0.87) 1.73 (0.88) a < c, b < c <0.001 0.003 0.194

P3-Left IPL 0.45(0.43) 0.50 (0.45) 1.12 (0.90) a < c, b < c <0.001 <0.001 0.245

P3-Right IPL 0.38(0.28) 0.35 (0.31) 0.97 (0.77) a < c, b < c <0.001 <0.001 0.250

P3-Left Precuneus 0.91(0.65) 1.14 (1.08) 2.66 (2.12) a < c, b < c <0.001 <0.001 0.276

P3-Right Precuneus 0.90(0.58) 1.09 (0.98) 2.38 (1.94) a < c, b < c <0.001 <0.001 0.244
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FIGURE 1 | AP300 with brain phenotyping. (A) is the radar chart with sum of amplitudes. (B) is the peak and latency. (C) illustrates topographical map of N1 and P3

between patients and healthy controls.

FIGURE 2 | Comparison of AP300 at cortical source level. Blue color indicates cortical source deactivations in patients, compared to healthy controls. The sLORETA

has a low-resolution anatomical distribution.

with LDA showed reasonable accuracy and sensitivity between
SZ and HCs and/or MDD and HCs. Considering the results
of both statistical comparisons and machine learning-based
classification, patients with SZ showed defective EEG phenotypes
inN1-Fz, N1-Cz, N1-Pz, and total value in the sum of amplitudes.
Patients with MDD showed an impaired EEG phenotype in

N1-Fz in the sum of amplitudes. In cortical sources, patients with
SZ and MDD showed decreased N1 and P3. The SVM classifier
showed reasonable sensitivity between SZ and HCs and/or MDD
and HCs.

The impaired N1 component in patients with SZ reflects early
sensory gating deficits, which lead to a dysfunctional process
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FIGURE 3 | Correlations between clinical symptoms and AP300. Correlations were not significant.

TABLE 3 | Classification using LDA and SVM.

Two sample classifications Accuracy (%) Sensitivity (%) Specificity (%) Number of features Selected features

LDA SVM LDA SVM LDA SVM

SZ vs. MDD 59.71 54.48 65.08 56.18 54.83 52.73 7 Sum of amplitudes

SZ vs. HCs 71.31 57.81 77.67 56.77 64.00 59.00

MDD vs. HCs 74.55 58.89 79.00 57.58 69.67 60.33

SZ vs. MDD 55.75 53.88 57.25 55.00 55.00 52.73 12 Peak with latency

SZ vs. HCs 70.74 67.35 69.42 70.00 72.33 64.33

MDD vs. HCs 70.60 70.95 75.17 72.12 65.33 69.67

SZ vs. MDD 54.28 54.78 58.25 66.77 50.08 42.42 28 Cortical sources

SZ vs. HCs 65.41 71.88 69.25 74.41 60.67 69.00

MDD vs. HCs 55.50 65.87 64.00 81.21 46.67 49.00

of attentional information (49). This impaired phenotype is
associated with aberrant neural plasticity in SZ patients showing
clinical high-risk factors (50). Patients with depression showed
delayed latency of N1 and a lower P3 amplitude (36). Deficits in
early sensory gating are related to maladaptive initial directions
of sensory information, resulting in delayed N1 latency and lower
amplitude (49). P3 is an index of the late sensory gating that
decodes whether the stimulus is significant or unnecessary (51).

The present study showed significant differences in N1 and
P3 between patients with SZ and those with MDD. Compared
to patients with MDD, patients with SZ had lower N1 and
P3 amplitudes. However, this difference lacked power because
classification with machine learning has low accuracy, sensitivity,
and specificity. Previous studies reported that high classification
performance was identified when sensor and source level EEG
features were used together (10). EEG microstate features
had higher classification performance than conventional EEG
features in patients with SZ (52). In MDD, EEG band frequency
features showed a good performance classifying patients and
healthy individuals (53). In the present study, the mean and
standard deviation in the EEG data could influence the results
in statistical comparison, while distributional similarity of the

used features between groups could have a possible effect on
the lacking power in classification with machine learning. In
addition, sociodemographic factors could influence the results.
Further studies are warranted in patients with several clinical
phenotypes and EEG features.

This study had a few limitations. First, the sample size
was small; thus, future studies with large sample sizes should
be conducted to verify the results. Second, several clinical
phenotypes, such as affective or mood-specific types and
psychosis with mood symptoms, need to be considered.
Nevertheless, determination of the neuropathological
mechanism via EEG phenotyping could provide useful
information for the fundamental treatment of psychiatric
disorders. This study identified that in sum of amplitude, a
neurophysiologic phenotype with an N1 deficit featured in
patients with MDD and SZ, indicating a dysfunctional process
of early sensory attentional information. Supporting this result
was that the LDA classifier showed reasonable accuracy and
sensitivity. In cortical sources, a phenotype with deficits in both
N1 and P3 was observed in patients with MDD and SZ, reflecting
maladaptive early and/or late sensory/cognitive gating inputs.
The SVM classifier with sensitivity showed reasonable scores.
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Schizophrenia is a complex and devastating disorder with unclear pathogenesis.

Electroencephalogram (EEG) microstates have been suggested as a potential

endophenotype for this disorder. However, no clear dynamic pattern of microstates has

been found. This study aims to identify the dynamics of EEGmicrostates in schizophrenia

and to test whether schizophrenia patients with altered clinical symptoms severity

showed different microstates abnormalities compared with healthy controls. Resting-

state EEG data in 46 individuals who met the ICD-10 diagnostic criteria for schizophrenia

and 39 healthy controls was recorded. The patients with schizophrenia were divided into

subgroups based on the level of their negative or positive symptoms assessed using the

Positive and Negative Syndrome Scale. Microstate parameters (contribution, occurrence,

and duration) of four prototypical microstate classes (A–D) were investigated. Compared

with healthy controls, individuals with schizophrenia showed increased duration and

contribution of microstate class C, decreased contribution and occurrence of microstate

class B. Different microstate patterns were found between subgroups and healthy

controls. Results in this study support the consistent observation of abnormal EEG

microstates patterns in patients with schizophrenia and highlight the necessity to divide

subjects into subgroups according to their clinical symptoms.

Keywords: schizophrenia, clinical symptoms, resting-state, electroencephalogram (EEG), microstates

INTRODUCTION

Schizophrenia is a complex and devastating mental illness which has affected multiple aspects of
patients. Despite numerous long-term studies, its pathogenesis still remains poorly understood.
The synchronization models within or between numerous brain regions play an essential role
in understanding the psychopathology of schizophrenia. Therefore, recent studies have been
focusing on the involvement of the global brain functions in this disorder (1–3). To this end,
the use of resting electroencephalogram (EEG) microstates is highly valued to investigate the
endophenotypes for schizophrenia (4, 5). Microstates reflect the global brain function by instantly
configuring the electrical field of the scalp (6); they remain stable for about 60–120ms and
quickly change into another class of microstates, and then become stable again, showing the semi-
simultaneity of the brain network activity on a large scale (7). Besides, microstate sequences and
the patterns of these sequences are related to the subsequent switching between these integrated
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states (7). Studies also reported that the microstates might
be associated with different mental states and represent the
collaborative activities in certain brain networks (8), therefore,
they can be considered as the “atoms of thought.” A large body
of evidence showed that the microstate time series could provide
insight into the brain’s neural activity at the rest state (9–11).
Some studies using functional magnetic resonance imaging
(fMRI) and EEG methods have shown significant correlations
between microstate maps and fMRI resting-state networks (11).
Although some studies argued that the attribution patterns of
microstates to fMRI brain functions must be more complex (10),
the microstates class A, B, C, and D were related closely with
auditory, visual, saliency, and attention network, respectively (9).
Therefore, microstate analysis of EEG is a helpful and powerful
neurophysiological approach to study the global brain function;
it is also inexpensive, and might be clinically translatable.

The microstates detected with EEG are highly replicable,
and thus can be grouped into different sets according to their
topographical similarity with the use of clustering algorithms.
It is generally believed that the optimal number of microstate
classes is closely related to the dataset studied. To date, there has
been no consensus or unified standard on how to determine the
optimal number of microstate classes (7). However according to
pioneering studies, four major microstate classes, namely class A,
B, C, and D, have been found. These four classes of microstates
are highly consistent in resting-state EEG and can explain around
80% of the global variance of EEG data (12).

In some studies, patients with schizophrenia exhibited
temporal dynamic abnormalities of EEG microstates, such as
increased duration and occurrence of microstates class C (13,
14) and decreased duration and occurrence of microstates
class D (15), as compared to healthy controls. A meta-analysis
on studies of EEG microstates from 1999 to 2015 showed
moderate alterations of two classes of microstates in patients
with schizophrenia: higher frequency of microstate class C and
shorter duration of microstate class D (16); there is also evidence
for a slight shortening of microstate class B. Similar to the
above study, a recent meta-analysis included studies published
before November 29, 2019 (4) found that compared with healthy
controls, individuals with schizophrenia showed consistently
increased time coverage and occurrence of microstate class
C, as well as decreased time coverage of microstate class D.
Although the consistency regarding class C and D is remarkable,
there are still inconsistent findings in studies (17, 18). As for
microstate class A and B, the findings are inconsistent and more
complicated (19–22).

A factor leading to the variation in previous findings
might be the differences in clinical symptoms in patients
with schizophrenia. Individuals with this disease often have
different levels of positive or negative symptoms, which might
be associated with different prognosis, cognition, medication,
and psychophysiology (23, 24). Some studies have explored the
relationship between specific abnormalities in EEG microstates
and different clinical symptoms of schizophrenia. An early study
in patients with chronic schizophrenia showed that the mean
microstate duration was positively correlated with the total scores
of the Scale for Assessment of Negative Symptoms and the Brief

Psychiatric Rating Scale (25). According to some other studies,
the duration of microstate class D was shorter in periods with
hallucinations (26) and the degree of shortening was significantly
correlated with the severity of paranoid hallucination (15).
On the contrary, recent studies did not find any correlation
between microstates and clinical symptoms in patients with
chronic schizophrenia (4). Taken together, the above results
might suggest a potential relationship between microstates and
clinical symptoms. However, in previous studies, schizophrenia
patients are usually considered as a unitary group and no
conclusions could be drawn due to the inconsistent results.
Therefore, studies on microstate patterns based on different
symptoms of patients might provide insights for understanding
the dynamics of microstates in schizophrenia.

To our knowledge, findings in previous researches did
not propose a clear model for microstates in schizophrenia
and inconsistent results may be related to different levels
of psychopathological symptoms. In this study, to identify
differences between schizophrenia patients and healthy controls
with regard to microstates, we will first take the patients
with schizophrenia as a unitary group. Further, we will divide
the patients into subgroups based on the severity of their
positive or negative symptoms, in order to investigate whether
schizophrenia patients with altered clinical symptoms severity
showed different microstates abnormalities compared with
healthy controls.

MATERIALS AND METHODS

Participants
Forty-six patients with schizophrenia (SCZ) aged between 18
and 60 years were enrolled in this study. All the patients
were diagnosed with schizophrenia according to the ICD-10
criteria and the Mini-International Neuropsychiatric Interview.
Thirty-nine healthy controls (HC) with matched gender and
age were recruited from the community, according to the
inclusion criterion of having no current or lifetime Axis I or II
diagnoses. The exclusion criteria for all the participants were as
follows: history of serious medical conditions, severe intellectual
disability, previous episode of psychosis due to substance abuse,
use of alcohol or benzodiazepine within 24 h, and inability to
complete the test. Socio-demographic information such as age,
gender, and education level was recorded for all the subjects. All
the participants were fully informed of the procedures and signed
the written informed consent form. The study was approved by
the Clinical Research Ethics Committee of the Second Xiangya
Hospital, Central South University.

To assess the clinical symptoms in schizophrenia patients, the
Positive and Negative Syndrome Scale (PANSS) (27) was used.
The PANSS scale consists of 30 items and is divided into three
subscales, i.e., positive, negative, and general psychopathology
subscales. All the items are scored with a 7-point scale. The 7
items in the subscale for positive symptoms were summed up to
get a score for positive symptoms, which ranged from 7 to 49; the
score for negative symptoms was calculated in the same way.

Patients with schizophrenia were classified as having high or
low level of positive symptoms according to the median of the
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overall severity of positive symptoms (Median = 15.5, Range =
7–30); patient with a higher score for positive symptoms than the
median were assigned into the group with high level of positive
symptoms (HP) and those with a score lower than or equal to the
median were assigned into the group with low level of positive
symptoms (LP). Similarly, patients were assigned into the group
with high level of negative symptoms (HN) or the group with low
level of negative symptoms (LN), according to the median of the
overall severity of negative symptoms (Median= 12, Range= 7–
33). After classification, there were 23 patients in the HP group,
23 patients in the LP group 26 in the LN group and 20 in the
HN group.

Among the 46 patients, 20 were receiving antipsychotic
medication; there was no difference in the medication status
between the subgroups (χ2 = 0.354, p = 0.552, χ2 = 0.174, p =
0.676; when divided according to positive and negative symptoms
respectively). No significant correlation between positive and
negative symptoms scores were found (r =−0.087, p= 0.565).

EEG Recordings
The EEG data were acquired using a 64 BrainAmp cap
(BrainProducts GmbH, Munich, Germany), with electrodes
positioned according to the 10–20 International System. An
additional electrode was used as the ground. The linked mastoid
(TP9 and TP10) served as the reference for all the electrodes.
The vertical electro-oculogram (VEOG) was recorded from the
electrode below the right eye. The signals recorded were filtered
with a bandpass of 0.1–1,000Hz, and all impedances of the
electrodes were kept below 10 k�. During the recording, the
participants was instructed to sit comfortably in a chair, keep
relaxed with eyes closed.

Data Pre-processing
Offline pre-processing was performed using the software
EEGLAB. The VEOG channel were removed, therefore 61
channels were retained left for the further analyses. The EEG
data were filtered with a bandpass of 0.1–70Hz and then with a
notch filter of 48–52Hz. Bad EEG periods were removed through
visual inspection, and interpolation of bad channels with severe
artifacts across the whole recording. The data were then divided
into 2 s segments and an infomax-based independent component
analysis (ICA) was conducted with residual eye- and muscular-
artifacts were removed (28). Finally, the data were re-referenced
to the common average reference and filtered with a bandpass of
2–20 Hz.

Microstate Analysis
Microstate analysis was performed with the Microstate Analysis
plugin developed by Thomas Koenig (http://www.thomaskoenig.
ch/index.php/software/). Individual microstate maps for each
subject were calculated from original momentary maps. To
extract EEG microstates, the peaks of the global field power
(GFP) were firstly extracted, and topographic maps occurring at
the peaks of the GFP curve were then submitted to a modified
k-means clustering algorithm to isolate map topographies.
According to the most common (12) and reproducible (7)
classification, the number of microstates classes were defined

as four. The number of repetitions was set at 20 and the
maximum number of iterations was set at infinite. The group-
level microstate classes were then identified for SCH and HC
patients separately. Using the mean microstate classes across all
the participants as the template, individual and group-level maps
were sorted out, and the following parameters were extracted
for the four microstate classes: globally explained variance,
contribution (the proportion of time spent for each microstate),
occurrence (the total number of the microstate of a given class
per second), and duration (the mean duration of a microstate
class in milliseconds).

Statistics Analyses
For continuous variables, inter-group comparisons were
performed using t-test. Gender difference between group
was tested using Pearson’s χ2 test. Inter-group differences in
microstate parameters between SCZ subgroups or between SCZ
patients and HC were tested using repeated measure analysis of
variance (rm-ANOVA), with group (SCZ or LP or HP or LN or
HN and HC) as between-subject factor, and microstate classes
(A-D) and microstate parameters (contribution, occurrence, and
duration) as within-subject factors. The Greenhouse-Geisser
correction was applied for multiple comparisons. Post hoc tests
were performed only when statistical significance was indicated
in the rm-ANOVA. Pairwise inter-group comparisons for
microstate classes and parameters were corrected for multiple
comparisons with Bonferroni correction. All the analyses were
conducted using the SPSS Version 23.0.

RESULTS

Subject Characteristics
The demographic and clinical characteristics of SCZ patients
and HC are presented in Table 1. There was no significant
difference in gender, age and education level between groups.
There was no significant difference in the score of PANSS
negative symptoms between the LP and HP subgroups
(Supplementary Table 1), and no significant difference in
the score of PANSS positive symptoms between the LN
and HN subgroups (Supplementary Table 2). PANSS general
psychopathology significantly differed between the LP and HP
subgroups as well as between the LN and HN subgroups, with
HP group showed higher PANSS general psychopathology score
than LP group, and HN group showed higher PANSS general
psychopathology score than LN group.

Data Quality
After the rejection of artifacts, the numbers of 2-sec segments
included in the analysis for each group was 100.10 ± 36.358 for
HC, 94.8 ± 24.414 for patients with SCH, 97.87 ± 21.663 for the
HP group, 91.74 ± 27.022 for the LP group, 99.60 ± 25.525 for
the HN group, and 91.12± 23.348 for the HN group.

Microstate Parameters: Overall Results
The overall maps, and the maps for patients with SCH
and HC are shown in Figure 1. The spatial configuration of
the four microstate classes for each subgroup was presented
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TABLE 1 | Demographic and clinical characteristics of all the participants.

HC (n = 39) SCZ (n = 46) t/ χ2 P

Gender (M/F) 25/14 36/10 2.088 0.148

Age (years, mean ± SD) 27.21 ± 6.92 28.72 ± 7.44 0.964 0.338

Education (years, mean ± SD) 14.08 ± 2.28 13.16 ± 3.01 1.588 0.116

Age at onset (years, mean ± SD) 24.64 ± 6.93

Medication (yes/no) 20/23

Illness duration (years, mean ± SD) 4.11 ± 5.82

PANSS positive 15.91 ± 5.86

PANSS negative 14.41 ± 7.74

PANSS general psychopathology 30.98 ± 7.38

PANSS total 61.30 ± 16.28

SCH, individuals with schizophrenia; HC, healthy controls; PANSS, Positive and Negative

Syndrome Scale.

FIGURE 1 | The spatial configuration of the four microstate claasses for the

two groups and all the participants. Polarity was ignored. SCH, individuals with

schizophrenia; HC, healthy controls; ALL, all the participants in this study.

in Supplementary Figures 1, 2. The four microstate classes
explained 76 and 78% of the global variance for the SCH group
and the HC, respectively. For each subgroup, the four microstate
classes explained 78% of the global variance in the HP group, and
the percentage was 77% in the LP group, 77% in the HN group,
and 79% in the LN group.

Inter-group Differences in Microstate
Parameters
The four parameters for SCH, subgroups (HP, LP, HN, LN) and
healthy controls are presented in Figure 2. For SCH vs. HC, main
effect was found (F= 4.177, p= 0.044), and rm-ANOVA showed
an interaction of group × microstate parameters × microstate
class [F(6, 498) = 4.008, p= 0.009]. Post hoc analysis revealed that
the interaction effect was related to differences in microstate class
B and class C. Compared with HC, patients with SCH showed
increased mean duration and contribution of microstate class C
and decreased mean contribution and occurrence of microstate

class B. No statistically significant inter-group difference was
found for microstate class A and D. The means and standard
deviations for all considered parameters and microstate classes
are reported in Supplementary Table 3. Detailed results of rm-
ANOVA are presented in Supplementary Table 4 and Post hoc
results in Supplementary Table 5.

For HP vs. HC, an interaction of group × microstate
parameters × microstate class [F(6, 360) = 2.860, p = 0.049]
was found. Post hoc analysis revealed that, compared with HC,
the HP group showed increased duration and contribution of
microstate class C and decreased occurrence and contribution
of microstate class B (Figure 2B). Detailed results of rm-
ANOVA and Post hoc results for HP vs. HC are presented in
Supplementary Tables 6, 7.

For LP vs. HC, an interaction of group × microstate
parameters [F(6, 120) = 4.059, p = 0.048] and an interaction
of microstate parameters × microstate class [F(6, 360) = 8.224,
p = 0.001] were found. Post hoc analysis showed that the LP
group had decreased occurrence of microstate class A and B, and
increased duration of microstate class C, as compared with HC
(Figure 2B). Detailed results of rm-ANOVA and Post hoc results
for LP vs. HC are presented in Supplementary Tables 8, 9.

For LN vs. HC, rm-ANOVA revealed an interaction of group
× microstate parameters × microstate class [F(6, 378) = 4.155,
p = 0.015]. Simple effect analysis revealed that compared with
HC, LN group showed decreased occurrence and contribution
of microstate class A and B, and increased duration and
contribution of microstate class C (Figure 2C). Detailed results
of rm-ANOVA and Post hoc results for LN vs. HC are presented
in Supplementary Tables 11, 12.

For HN vs. HC, no main effect or interaction was found
(Figure 2C). Detailed results of rm-ANOVA for HN vs. HC are
presented in Supplementary Table 10.

DISCUSSION

In this study, we have found that patients with SCH showed
increased duration and contribution of microstate class C,
decreased contribution and occurrence of microstate class B.
Nevertheless, different patterns were found when we divided
the SCH patients into subgroups according to the level of
positive and negative symptoms. Specifically, both HP and LP
showed increased duration and contribution of microstate class
C, decreased occurrence and contribution of microstate class B,
as compared to HC. Besides, the LP group also showed decreased
occurrence and contribution of microstate class A. The LN
group showed increased duration ofmicrostate class C, decreased
occurrence of microstate class A and B, but no difference was
found between the HN group and HC group.

In patients with schizophrenia, altered temporal dynamics of
EEG microstates had been found in several studies (4, 15, 21).
Similar patterns were also found in high-risk populations of
psychosis (18, 22), such as siblings of schizophrenia patients (4).
Consistent with these studies, our findings demonstrated altered
microstate class C in SCH as well as most subgroups. As patients
with schizophrenia usually exhibit abnormal assignment of
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FIGURE 2 | Statistics of the microstate parameters: duration, contribution, and occurrence. *P < 005. Errror bars represent standard error. SCH, individuals with

schizophrenia; HC, healthy controls; HP, schizophrenia patients with high levels of postive symptoms; LP, schizophrenia patients with low levels of postive symptoms;

HN, schizophrenia patients with high level of negative symptoms; LN, schizophrenia patients with low lwvwl of negative symptoms. (A) SCH vs. HC. (B) Comparisions

were made between groups (HP vs. HC, LP vs. HC). (C) Comparisons were made between groups (HN vs. HC, LN vs. HC).

saliency (29) as well as dysfunction of attentional processing and
executive control (30, 31), the increased occurrence of microstate
class C in schizophrenia might be a sign of imbalance across
processes involved in saliency. A fMRI-EEG study suggested that
microstate class C was correlated with the cerebral activations
in the posterior part of the anterior cingulate gyrus, the left
claustrum, bilateral inferior frontal gyrus, as well as the right
anterior insula (9), which have been found to be part of the
saliency-network (32, 33) and to play a critical role in switching
between the default mode and executive function mode (34).

Previous studies found a decrease in microstate class B in
medication-free schizophrenia patients, as compared to healthy
controls (20, 35). In addition, a study found that microstate
class B could be used to distinguish patients with first-episode
psychosis from high-risk individuals with and without later
transition to psychosis (36) and proposed that microstate class

B might be a state biomarker underlying the progression of
psychosis. However, some studies had shown the opposite effect
(18, 37) in medicated patients, which was attributed to the effect
of antipsychotic drugs onmicrostates. This effect can also be used
to explain our findings, since more than half of the subjects with
schizophrenia were medication-free. As for microstate class A,
inconsistent and complicated results have been yielded. Similar
to a recent study on first-episode psychosis (21), our study
also identified decreased occurrence of microstate class A, while
some other studies found an increase (18, 20). No consistent
inter-group difference between patients with schizophrenia and
healthy controls was found for microstate class A in a recent
meta-analysis (4).

We did not find any abnormalities in microstate class D
in patients with SCZ, which was inconsistent with literature
reports (4). But this difference could explain by medication,
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as antipsychotic drugs might have a normalization effect on
microstate dynamics (i.e., increasing the occurrence ofmicrostate
class D) (14). Besides, from a general perspective, the maps
assigned to a certain microstate class varied in different studies,
especially for microstate classes C and D (12), which might be
one of the reasons for the inconsistencies between the present
study and some provious studies in terms of microstate class D
in patients with SCZ.

In this study, we observed different microstate patterns
when compared subgroups and healthy controls, although it
is difficult to explain the functional significance of microstate
changes showed in these subgroups, it highlighted the necessity
to distinguish patients according to their clinical symptoms. Our
findings also provided another explanation for the inconsistent
results in studies on microstates in patients with schizophrenia.
In future works, patients with schizophrenia could be grouped
on the basis of their clinical symptoms, in order to reduce
the heterogeneity of subjects and obtain results which may be
more consistent.

One of the main limitations of this study is the psychometric
measure we used to divide schizophrenia patients into different
subgroups. The results are likely to be different if we used another
scale such as the Brief Psychiatric Rating Scale. In addition,
individuals with high levels of both positive and negative
symptoms may show different microstate patterns compared to
those with high levels of positive or negative symptoms alone.
However, we were only able to investigate positive or negative
symptoms independently by dividing the SCZ patients according
to the subscale scores of PANSS. Treatments, especially drug
therapy, are highly likely to affect the microstate parameters. In
this study, some patients were on medication, which might be
one of the reasons for some differences observed in this study.
Another limitation in this study is that four microstate classes
were selected as they had been established in most previous
studies (6). Although the four microstate classes explained
more than 76% of the variance for each group, it is possible
that the abnormalities in SCZ patients are undetected in the
remaining 20% of the components. Nevertheless, the four
microstate classes allowed direct comparison between this study
and previous researches. Lastly, with the relatively small number
of patients, especially the small number of subjects included
in each subgroup, the results might be less accurate due to
sampling error.

In summary, our results suggested that patients with
schizophrenia have abnormal EEG microstates, especially the
microstate class C. However, different patterns were found when

we divided the schizophrenia patients into subgroups according
to the level of positive and negative symptoms, whichmay suggest
different neural mechanisms underling positive and negative
symptoms and highlight the necessity to differentiate patients
according to their clinical symptoms.
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1Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan,
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Kanazawa University, Kanazawa, Japan, 5Department of Computer Science, Chiba Institute of Technology, Narashino, Japan

Measuring whole brain networks is a promising approach to extract features of autism

spectrum disorder (ASD), a brain disorder of widespread regions. Objectives of this

study were to evaluate properties of resting-state functional brain networks in children

with and without ASD and to evaluate their relation with social impairment severity.

Magnetoencephalographic (MEG) data were recorded for 21 children with ASD (7 girls,

60–89 months old) and for 25 typically developing (TD) control children (10 girls, 60–91

months old) in a resting state while gazing at a fixation cross. After signal sources were

localized onto the Desikan–Killiany brain atlas, statistical relations between localized

activities were found and evaluated in terms of the phase lag index. After brain networks

were constructed and after matching with intelligence using a coarsened exact matching

algorithm, ASD and TD graph theoretical measures were compared. We measured

autism symptoms severity using the Social Responsiveness Scale and investigated its

relation with altered small-worldness using linear regression models. Children with ASD

were found to have significantly lower small-worldness in the beta band (p = 0.007)

than TD children had. Lower small-worldness in the beta band of children with ASD

was associated with higher Social Responsiveness Scale total t-scores (p = 0.047).

Significant relations were also inferred for the Social Awareness (p = 0.008) and Social

Cognition (p = 0.015) sub-scales. Results obtained using graph theory demonstrate

a difference between children with and without ASD in MEG-derived resting-state

functional brain networks, and the relation of that difference with social impairment.

Combining graph theory and MEG might be a promising approach to establish a

biological marker for ASD.

Keywords: autism, MEG, graph theory, small-worldness, social communication
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INTRODUCTION

The etiology of autism spectrum disorder (ASD), a
neurodevelopmental disorder characterized by stereotypic
or repetitive behaviors with impaired social cognition and
communication disorders (1), remains largely unknown.
However, impaired social cognition and communication can
be improved by early and appropriate interventions (2, 3). Its
early diagnosis is nevertheless difficult in many cases because
no biological marker has been established (4, 5). Consequently,
clinicians must rely on symptoms.

In the field of brain imaging, researchers have characterized
the functions of individual brain regions affected by ASD.

However, results of more recent studies have suggested that
ASD is a dysfunction of coordination over widely distributed

brain regions (5–7). Assessing relations between brain regions
(i.e., brain connectivity) and functions in each region can be an
effective approach to extracting differences between individuals
with ASD and typically developing (TD) individuals. Brain

connectivity is a multi-faceted concept. In the human brain,
neurons and neural populations do not function individually.
They interact with other elements in a coordinated manner

through their afferent and efferent connections (8). In this
context, anatomical relations through bundles of axons are
designated as structural connectivity, which can be measured
using structural brain imaging such as MRI and diffusion tensor
imaging (DTI). Structural connectivity describes the architecture
of interregional connections, but it provides less information
related to how neurophysiological functions are supported by
this architecture. In contrast, functional connectivity is based on
statistical dependencies between time series of cerebral activity in
different brain regions. The connectivity can be measured using
fMRI, SPECT, EEG or magnetoencephalography (MEG) (9). As
such, functional connectivity is thought to form a physiological
basis of information processing (10). It can therefore be of
more interest. These two types of connectivity are fundamentally
different. Results from earlier studies are somewhat inconsistent,
but many reports of the literature describing connectivity in
ASD yield a promising hypothesis: ASD is a disorder of long-
range under-connectivity combined with local over-connectivity
(11). However, in light of the brain’s inherent complexity, any
hypothesis based on such a simple measure (i.e., mean of the
strength of connectivity) might be an oversimplification. Tomeet
this challenge and to describe the properties of complex networks
on a large scale, the field of neuroscience has provided graph
theory (12).

Within the graph theory framework, a complex system is
described as a set of relations among discrete objects. A key
concept of graph theory is reduction of a complex system
to a “graph”: a set of nodes (i.e., objects) and edges (i.e.,
relations). Using graph theory, one can describe properties of
such graphs using the same parameters, irrespective of their
constituent elements (10, 13). In this context, a brain network
is definable as a graph in which the nodes represent brain
regions and the edges linking pairs of nodes represent functional
connectivity between pairs of corresponding brain regions. Based
on such a graph, graph metrics represent the characteristics

of the entire brain network as single numerical values. It is
noteworthy that graph metrics differ from traditional measures
of connectivity (e.g., means of connectivity) in two meaningful
ways. First, graph theoretical analysis is applied to “graphs,”
for which spatial arrangements of nodes were not considered.
Particularly, edges are not weighted by the length of connections.
Angles between edges are not specified. For that reason, graph
metrics theoretically preserve very little or no spatial information.
The results therefore might not be reconciled with earlier
findings obtained for the connection-length-dependent over-
connectivity and under-connectivity. Second, using graph theory,
one can describe a certain property of the entire brain network
in a single measure. In this sense, one need not address
the difficulty posed by multiple comparisons. In contrast, for
example, comparing the means of functional connectivities for
each pair of brain regions can be expected to result in multiple
comparisons. Erroneous inferences become more likely. With
the help of graph theory, properties of a given graph can be
described using various measures. Well-established and widely
used measures include the mean clustering coefficient (CC),
average shortest path length (cPL), and small-worldness (SW).
Because CC represents the degree to which connected nodes are
clustered, it is thought to represent the tendencies of the brain
to process information locally (i.e., local functional segregation)
(14). Characteristic path length (cPL) represents the average
number of edges in shortest paths (i.e., sequence of edges
connecting one node to another), where the average is taken over
all possible pairs of nodes. For that reason, cPL is thought to
indicate integration of information from remote brain regions
(i.e., global functional integration) (14). Networks with high CC
and low cPL are well-connected both locally and globally, and
are therefore designated as small-world networks. Such networks
are thought to represent an optimal balance between functional
local segregation and global integration (15, 16). To describe
how much a given network possesses small-world properties,
small-worldness (SW) is defined as the ratio of normalized CC
and cPL. SW is a particularly interesting property in that the
healthy human brain is a small-world network (10, 17), but
brain networks reportedly deviate from small-world networks in
some neurological conditions such as Alzheimer’s disease (17),
depression (18), and schizophrenia (19).

Several studies have applied graph theory to compare the
brain networks of typically developing individuals to those of
patients with ASD in terms of CC, cPL, or SW. Two studies
particularly examined graphs of structural connectivity (i.e.,
DTI). Others have emphasized functional connectivity. Among
those latter studies, two used resting-state fMRI. All others
have been EEG/MEG studies. Unsurprisingly considering
methodological differences such as imaging modalities,
participant characteristics, and graph theoretical measures,
the results obtained from DTI-derived or resting-state fMRI-
derived networks are inconsistent. The first report of structural
networks was a study by Rudie et al. (20). They investigated
structural networks generated based on DTI-derived fiber
tracts in adolescents with and without ASD. Using six graph
theoretical measures (i.e., CC, cPL, normalized CC, normalized
cPL, SW, and modularity), the authors reported that the ASD
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group showed significantly lower modularity, but no significant
differences were found in the other five measures. In a study
conducted later by Qin et al. (21), children with ASD (2.89 ±

0.97 years old) and TD children (3.15 ± 1.12 years old) were
recruited. Among seven measures (i.e., CC, cPL, normalized
CC, normalized cPL, SW, global and local efficiency), their
DTI-derived structural network showed significantly lower
cPL and higher global/local efficiency in children with ASD.
Combining those results, the structural brain network of ASD
would show lower cPL and higher global/local efficiency in
early childhood, after which those characteristics become less
evident in later developmental stages. Adolescents with ASD
would then show lower modularity than typically developing
individuals. Among studies assessing functional connectivity,
two used resting-state fMRI (20, 22). For one of those studies
(20), Rudie et al. also investigated functional networks generated
from resting-state fMRI. Results showed significantly lower
CC, cPL, and modularity in the adolescent ASD group. It is
noteworthy that Kaku et al. reported contradictory results:
children with severe ASD were found to have significantly higher
normalized CC and small-worldness than children with mild
or moderate ASD (22). It remains unclear whether the relation
between autistic symptoms and CC derived from resting-state
fMRI is somewhat non-linear (i.e., individuals with ASD show
lower CC than TD individuals, but those who have severe ASD
shows paradoxically higher CC) or the relation is age-dependent
(i.e., higher CC in childhood, but lower CC in adolescents
corresponds to lower social communication).

All other reported graph theoretical studies of functional
connectivity have used MEG or EEG. One must be cautious
when comparing results of these studies because of the different
imaging modalities (EEG vs. MEG), participant characteristics,
and graph theoretical measures. Moreover, in MEG/EEG studies,
synchronization measures differ among studies. Within the
framework of those limitations, however, a consensus seems
to hold that brain networks of adults with ASD constructed
based on resting-state MEG/EEG derived functional connectivity
show lower CC and higher cPL than those of healthy controls.
However, the results are inconsistent for the younger population.
The first report was of a study conducted by Pollonini et al.
(23). They recruited young adults with and without ASD and
investigated the functional networks generated from resting-
state MEG recordings. Based on their findings, they reported
significantly lower CC and higher cPL (in the broadband signal)
in the ASD group than in healthy controls. From a later study,
adults with ASD were also reported as having significantly lower
CC (in the theta combined with the alpha band, and beta band)
and higher cPL (in the beta band) than healthy controls had
(24). Furthermore, Han et al. reported that children (6–11 years
old) with ASD showed lower CC and lower SW in widely
various frequencies, but the difference was less evident in younger
children (3–6 years old) (25). It is noteworthy that the graph
theoretical measures were correlated with ASD symptom severity
in the alpha band. Regrettably, however, the results obtained
from this study should be compared with caution because they
did not exclude effects of medication. All the reports described
above indicate lower CC in ASD patients than in healthy control

participants. One notable exception is a study conducted by Ye
et al. (26). They reported higher CC and lower cPL in the theta
band for adolescents (12–15 years old) with ASD compared to
healthy controls. It remains unclear whether the properties of
resting state MEG/EEG-derived functional brain networks are
specifically different in adolescents with ASD from those in
adults or children with ASD, in that lower CC and lower SW in
childhood ASD reported by Han et al. might arise as an effect
of medication.

Results from studies that used non-resting state EEG/MEG are
inconsistent. On the one hand, Boersma et al. investigated non-
resting state EEG data (i.e., children passively viewed pictures
of cars and faces) obtained from children with and without
ASD (2–5 years old). Based on their findings, they reported that
children with ASD had lower CC, lower SW (in theta and alpha
bands), and higher cPL (in broad band) than those found for
healthy control participants (27). On the other hand, Takahashi
et al. investigated MEG data obtained when children actively
watched animated video programs. They reported that children
with ASD (4–7 years old) showed significantly higher SW in the
gamma band and lower SW in the delta band, but differences
in CC or cPL were not significant (28). It is noteworthy that
among the three graph theoretical studies of children with ASD
(25, 27, 28), lower SW has been almost consistently reported. For
the other graph metrics, however, the findings are inconsistent.
Considering the recording conditions [resting-state (25) vs.
during visual stimulation (27, 28)], the difference might arise
from atypical functional connectivity during visual information
processing in ASD (29, 30), but the possible effect of medication
in the study by Han et al. makes it difficult to compare the results
directly. Furthermore, no earlier studies have investigated the
relation between the graph metrics and ASD symptom severity
after controlling for medication effects. In this context, resting-
state MEG/EEG studies of children with and without ASD,
excluding medication effects, might have a great merit, yet no
such studies have been conducted. For such a study, it would
be desirable to investigate relations between graph theoretical
measures and autistic symptoms.

Therefore, for this study, we examined the resting-state MEG-
derived functional network in children with and without ASD
using graph theory. Furthermore, we examined the relation
between graph theoretical measures and social communication.
Based on results of earlier studies, we hypothesized that children
with ASD show lower SW in resting-state MEG. Particularly,
our hypotheses were the following: (1) Children with ASD show
lower SW than TD children do. (2) Lower SW corresponds to
severe ASD symptoms.

MATERIALS AND METHODS

Experimental Design
For child participants with or without ASD, we assessed autism
symptom severity using the Social Responsiveness Scale (SRS)
(31). Intelligence was assessed using the Kaufman Assessment
Battery for Children (K-ABC, Japanese version) (32). We
recorded resting state MEG data. Signal sources are mapped
onto the Desikan–Killiany atlas of 68 brain regions. Then
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MEG-derived functional brain networks were constructed in
terms of the phase lag index (PLI). Applying graph theory,
we calculated SW from the graphs of functional networks.
Furthermore, as an exploratory analysis, we calculated CC and
cPL for completeness. We then compared the graph metrics
between ASD and TD. If a significant group effect was found
in any graph metric, we investigated the relation between autism
symptom severity and the graph metric.

Ideally, to calculate the necessary sample size to test our
hypothesis, we had to know the effect size of having ASD on
SW in exactly the same setting (e.g., using resting-state MEG
and graphs of PLI-derived functional networks for children
with and without ASD). However, no such earlier study has
been described, as explained in the Introduction. We therefore
expanded the search scope to include studies in which children
with and without ASD were compared in terms of SW obtained
from functional connectivity graphs (25, 27, 28). Unfortunately,
we were unable to extract or calculate the standard effect
size from those studies because of a lack of information.
Consequently, we chose to assume the effect size as large because
the three studies found significant effects of ASD on SW in small
sample sizes: Boersma et al. compared 12 children with ASD
and 19 TD children (27); Han et al. compared 20 children with
ASD and 40 TD children (25); and Takahashi et al. compared 24
children with ASD and 24 TD children (28). To assess differences
between two independent means in two groups, we set the effect
size as 0.8, set the alpha value as 0.05, and set the (1—beta)
value as 0.8. The statistical power was calculated for the one-
tailed not two-tailed t-test because we hypothesized that children
with ASD show lower SW than TD children do. The required
sample size was therefore calculated as 21 for each group. For the
sample size calculation, we used software (G∗Power ver. 3.121.6;
Heinrich-Heine-Universität Düsseldorf).

Participants
The clinical group included 21 children with ASD recruited
from Kanazawa University and affiliated hospitals. The control
group included 25 TD children with no reported behavioral or
language difficulty. The ASD diagnosis was made according to
the Diagnostic and Statistical Manual of Mental Disorders (4th
edition, DSM-IV) (33), using the Diagnostic Interview for Social
and Communication Disorders (DISCO) (34), and the Autism
Diagnostic Observation Schedule-2 (ADOS-2) (35, 36). We
excluded children with (1) blindness, (2) deafness, (3) any other
neuropsychiatric disorder, or (4) ongoing medication regimen.
Written informed consent was obtained from parents before
the children participated. The Ethics Committee of Kanazawa
University Hospital approved the methods and procedures,
which were conducted in accordance with the Declaration
of Helsinki.

In case some were unable to complete the MEG recording,
we recruited a few more participants than indicated as necessary
by the sample size calculation. Unfortunately, however, one
girl with ASD was excluded from analyses during MEG data
preprocessing (see Preprocessing below). In consequence, we
analyzed 20 children with ASD (14 boys, 6 girls, 60–89 months
old) and 25 TD children (15 boys, 10 girls, 60–91 months old),

which were fewer than the number indicated by the sample
size calculation.

Assessment of Social Autism Symptom
Severity
Participant’s autism symptom severity was assessed in the SRS:
a 65-item rating scale that measures social communication and
autistic mannerisms. A parent of each participant filled out the
SRS. We used gender-normed T scores (SRS-T) and its five sub-
scales: social awareness (SRS-AWA, ability to recognize social
cues), social cognition (SRS-COG, interpreting social behavior),
social communication (SRS-COM, reciprocal communication in
social situation), social motivation (SRS-MOT, motivation to
participate in social interactions), and autistic mannerism (SRS-
MAN, circumscribed interests and stereotypy). Higher scores
represent greater autism symptom severity.

The SRS can be completed by a parent or another adult
informant. By virtue of this feature, it involves ratings of children
in their natural social contexts and reflects what has been
observed consistently over weeks or months of time, rather
than merely reflecting results of a single clinical or laboratory
observation (31). Nevertheless, one must be cautious when
interpreting the SRS results because all such parent rating scales
have important shortcomings, such as parent bias and limited
reliability, compared to direct observation by expert clinicians.

Assessment of Intelligence
Intelligence of the participants was assessed using the K-ABC.
In K-ABC, skills for problem-solving abilities are interpreted as
intelligence and are measured on the Mental Processing Scale
(MPS) (37). Knowledge of facts, defined as achievement, is
measured on the Achievement Scale (ACH). In this sense, K-
ABC was developed to distinguish intelligence from knowledge
(32, 37). Those scores are provided as age-adjusted standardized
scores, normalized to have a mean of 100 and standard deviation
of 15.

MEG Recordings
MEG data were recorded using a 151-channel Superconducting
Quantum Interference Device (SQUID) whole-head
coaxial gradiometer MEG system for children (PQ 1151R;
Yokogawa/KIT, Kanazawa, Japan) in a magnetically shielded
room (Daido Steel Co., Ltd., Nagoya, Japan) installed at the
MEG Center (Ricoh Co., Ltd., Kanazawa, Japan). We used
a custom-made child-sized MEG system to measure brain
responses in children because some difficulties arise when using
conventional adult-sizedMEG systems for young children. Using
the child-sized MEG system ensures that sensors are positioned
easily and effectively for the child’s brain. Moreover, it ensures
that head movements are constrained (38).

We undertook great effort to keep each child motionless
during the recording. We instructed each child not to move
the head or body to avoid motion artifacts. Then, one staff
member escorted the child into the shielded room. The roomwas
decorated with colorful pictures of cartoon characters, generally
of a signature vehicle in a popular animation series. To encourage
the child further to maintain a steady head position, the staff
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member stayed in the room. In this way, we were able to entertain
most of the children. Additionally, they were monitored carefully
using a video monitoring system. If the head position of the
subject had obviously moved from its starting position, those
related MEG data were excluded from further analyses.

Low pass filtered MEG data (500Hz) were collected at a
2,000Hz sampling rate. The MEG recordings were made in a
resting state: the participant lay supine on a bed and gazed at
a fixation cross mark projected onto a screen during the MEG
recording. Then MEG data were recorded for 130 s for each
participant. The time of MEG recording was between 11A.M.
and 3 P.M. No child showed a clear sign of drowsiness in
terms of MEGwaveforms. Ideally, longer recording durations are
desirable. For children, especially children with ASD, however,
it was difficult to keep them sitting still for long durations. The
recording period had to be determined with compromise. Given
that limitation, we adopted 50 s as the minimum, as we did for
an earlier study (28) in which we analyzed artifact-free segments
of length minimum of 50 s and found significantly different SW
between children with and without ASD. We set the recording
time as 130 s, slightly longer than 50 s, to secure a minimum of
50 s and to spare some time.

MRI Recordings
A 1.5 T MRI scanner (SIGNA Explorer; GE Healthcare, USA)
was used to obtain structural brain images from all participants
and to compute individual head models for source analysis. The
T1-weighted gradient echo and Silenz pulse sequence (TR =

435.68ms, TE = 0.024ms, flip angle = 7◦, FOV = 220mm,
matrix size = 256 × 256 pixels, slice thickness = 1.7mm, a
total of 130 transaxial images) images were used for anatomical
reference. All participant’s MRI images were recorded.

Co-registration of MEG on MRI Image
We co-registered the MEG and MRI images according to the
marker locations. Four markers were recorded by the MEG and
the MRI: midline frontal, vertex, and each bilateral mastoid
process. For MEG, we used four coils generating a magnetic field.
For MRI, we used four pieces of lipid capsule as markers because
those are observed as high-intensity regions. Additionally, we
showed points on mastoid processes, nasion, and the skull
surface visually in MRI. About 15–25 points were shown for
each participant.

MEG Data Analysis
TheMEG analyses were performed using Brainstorm (39), which
is documented and freely available under the GNU general public
license for download online.

Preprocessing
The MEG data were preprocessed according to
recommendations from the Organization for Human Brain
Mapping (40). First, we downsampled the MEG data to 500Hz.
Second, we excluded three sensors from analyses because their
signal quality was poor. Third, after applying notch filters (60,
120, and 180Hz) to remove power-supply noise, we applied a
band-pass filter (0.5–200Hz). Fourth, we used the independent

component analysis (ICA) to remove blink and cardiac artifacts.
Finally, segments containing apparent motion noise or radio
frequency interference were excluded from analyses after they
were visually identified by an MEG expert who was blinded
to the identities of participants. One girl’s motion noise was
excessive. For that reason, we excluded data obtained from
this child from subsequent analyses. Data were segmented for
continuous segments of 5 s. A minimum of 10 segments (50 s
recording period) was accepted for each subject. Each epoch was
band-pass filtered for commonly used frequency bands: delta
(2–4Hz), theta (4–8Hz), alpha (8–13Hz), beta (13–30Hz), and
gamma (30–60Hz). This preprocessing procedure is identical to
that used for our earlier study (28).

Atlas-Guided Source Reconstruction and
Segmenting
We performed signal source estimation using the participant’s
original anatomy. An anatomically constrained MEG approach
that places an anatomical constraint on the estimated sources
was used to estimate the brain signal sources (41). When the
sources are estimated, each participant’s recorded brain activity
is assumed to lie in the cortical mantle. We coregistered MEG
on participant’s MRI images. A head model was computed using
the overlapping spheres algorithm (42) with the default source
space (a lower-resolution cortical surface representation, with
15,000 vertices). We used weighted minimum-norm estimation
to estimate source orientation constraints (43). An identity
matrix was used as noise covariance because no noise recording
is available. Signal sources were grouped together into 68 regions
represented in the Desikan–Killiany atlases (44). When we
grouped sources, we used principal component analysis.

We chose Desikan–Killiany atlases considering the limit
of spatial resolution of MEG as well as a balance between
interpretability of the results and fineness of estimation.
Graph theoretical analysis of the functional brain network
fundamentally depends on the definition of nodes (i.e., brain
regions). A parcellation scheme must be chosen that reasonably
samples the brain regions. Results from fewer regions of
interest (ROI) are expected to offer increased interpretability, but
functionally and anatomically distinct regions can be regarded as
a single ROI. Conversely, results frommany ROIs finely represent
functional connectivity patterns, but their interpretability might
be difficult (45). Between these two extremes, Hallquist et al.
reported in their recent literature review that researchers should
divide the brain into at least 200 functional regions for fMRI
studies (46). In MEG studies, however, more compromises must
be made because of its low spatial resolution. In this context,
Farahibozorg et al. investigated the optimal number of parcels
while simultaneously minimizing the leakage between them.
They concluded that the number was approximately 70 parcels,
which is expected to reflect the limit of spatial resolution of MEG
(47). Based on these considerations, we adopted the Desikan–
Killiany brain atlas as suitable for this study.

Phase Lag Index
To estimate functional connectivity between signal sources, we
used the phase lag index (PLI). Although functional interactions
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can be measured by quantifying the phase relation between
their time series (48), one must consider that reconstructed
sources might contain spurious and artificial interactions because
of field spread. In such cases, artificial synchrony might be
observed between nearby signal sources (49). This kind of
artificial synchrony can be removed by suppressing zero-lag
synchrony and by detecting exclusively lagged interactions. One
mixing-insensitive interaction metric, PLI, attenuates artificial
interactions (50). Briefly, the instantaneous phase at each time
point of the filtered waveform was calculated for each epoch
using the Hilbert transform. Then, phase difference 1ϕ(tk)(k =
1,2,3, . . . , N, where N is the number of time points in an epoch)
was calculated for each time point. The value of PLI between
two signal sources in an epoch was obtained using the following
definition (50).

PLI =

∣

∣

∣

∣

1

N

∑N

k=1
sign [1ϕ (tk)]

∣

∣

∣

∣

(1)

We used PLI to estimate phase synchrony between source pairs
for each frequency band. The value of PLI is in the range of zero
to one, inclusive. Two more synchronized sources have PLI that
is closer to one. It is noteworthy that PLI does not indicate which
of the two signals is leading in phase.

Graph Construction and Graph Metrics
To describe brain characteristics, we used graph theory. A graph
is a basic topographical representation of a network consisting of
“nodes” and “edges.” The network used for this study comprised
68 nodes (brain regions defined by Desikan–Killiany) connected
by weighted edges (calculated as PLI values). Therefore, an
undirected weighted functional connectivity matrix (68 × 68)
was constructed for each frequency band (i.e., delta, theta, alpha,
beta, gamma) and for each epoch. We averaged the matrices of
all epochs for each participant. Binary graph approaches were
applied to simplify characteristics of a graph and to remove
spurious connections. Because no formal consensus exists for
a robust method for threshold selection, we set proportional
threshold κ, the proportion of total connections retained, as 0.2
according to results reported for earlier studies (28, 50, 51) (A
κ of 0.2 indicates that the strongest 20% of the connections
were selected.). Furthermore, considering κ-dependency of graph
metrics, we also investigated a set of κ for 0.1–0.3 with 0.02
increments. For these binary matrices, we calculated the most
commonly used graph metrics: The clustering coefficient (CC),
the characteristic path length (cPL), and small-worldness (SW)
(15). Consequently, the graph metrics were obtained from each
frequency band (i.e., delta, theta, alpha, beta, and gamma) for
each set of proportional thresholds κ. To calculate them, we used
the Brain Connectivity Toolbox (http://www.brain-connectivity-
toolbox.net/, ver. 2019-03-03). Mathematical definitions of those
metrics have been reported elsewhere in the literature (10, 52).

The number of connections between the nearest neighbors
of a node as a proportion of the maximum number of possible
connections, expressed as CC, represents how clustered a graph’s
nodes are. The presence of clusters in functional networks
suggests organization of segregated neural processing (10). In

addition, cPL represents the average length of the shortest path
that must be traversed to go from one node to another. That
value represents how rapidly a graph conveys information from
one region to another and suggests the degree of integration
of a graph (10). In rare cases, two nodes are disconnected;
thereby, PL becomes infinite. To avoid this difficulty, we calculate
only from connected nodes according to a method used for
our earlier study (28). Additionally, SW was determined by the
ratio of normalized CC and normalized cPL. When a graph
has high CC and low cPL, the graph is more clustered but it
conveys information more rapidly. Such a property is designated
as SW. The property is thought to reflect an optimal balance
of functional integration and segregation (52). To evaluate the
SW of a graph, CC and cPL are adjusted because these metrics
clearly depend on the numbers of nodes and edges of the graph.
SW is therefore defined as the ratio of normalized CC and cPL.
In this way, a graph of high SW is a network that is markedly
more clustered than random networks (i.e., randomly generated
networks for which the numbers of nodes and edges are the
same), yet they have approximately the same characteristic path
length (16). The SW measure captures this property in a single
statistic (52). Normalized CC and cPL were obtained from a
random network that is randomized by rewiring all edges five
times. We produced 1000 random networks and their CC and
cPL (hereinafter, CCrand and cPLrand) for each graph. Then,
SW was found using the ratio of normalized CC and cPL (i.e.,
CC/CCrand and cPL/cPLrand). For each subject, CC, cPL, and
SW were calculated on each frequency band.

Statistical Analysis
Statistical analyses were conducted using software (Stata ver.
14.2; Stata Corp., College Station, TX, USA). We tested
differences in age and scores in K-ABC and SRS between ASD
and TD using Student t-tests (two-tailed). Sex difference was
tested using chi-square tests.

The differences between ASD and TD on SW were tested
using Student’s t-test (one-tailed) for each frequency band (delta,
theta, alpha, beta, and gamma). Then, to elucidate differences
between ASD and TD on graph metrics further, we matched the
two groups in terms of MPS in K-ABC while considering the
possible effects of intelligence on functional connectivity (53). To
improve the balance, we used coarsened exact matching (CEM)
(54). Subsequently, we applied adjusted regression analysis.
Particularly, we predict graph metrics based on the condition
(ASD or TD) with CEM-weight for weighting. For the CEM
algorithm, we temporarily coarsen (or categorize) each variable
based on its distribution or on natural or intuitive divisions.
Each participant is then assigned to one of a specified set of
strata in which the participant characteristics are matched exactly
on a set of coarsened variables. A weighting variable (CEM-
weight) is generated to equalize the number of treated and
control cases in one stratum. It is used for subsequent regression
analyses (54). We used Sturge’s rule as a binning algorithm (54).
This report describes the degree of imbalance before and after
matching by measurement of the multivariate L1 distance. The
L1 distance represents how two groups are balanced in terms
of matched variables (in our case, K-ABC). The L1 distance is
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a value between zero and one: a smaller value represents better
balance. Our primary emphasis was examination of differences
of SW for five frequency bands: delta, theta, alpha, beta, and
gamma. Significance was inferred for P < 0.01 after Bonferroni
correction for five comparisons was applied. We also analyzed
cPL and CC for completeness, but we formulated no particular
hypothesis related to those measures. Effect sizes were provided
as R2. Although we primarily emphasized the graphs of the
proportional threshold 0.2 for consistency with earlier studies
(28, 38, 51), this procedure was applied for a set of κ over the
range of 0.1–0.3 with 0.02 increments.

To investigate the relation between SW and autism symptom
severity, we specifically examined the metric obtained from the
graphs of threshold 0.2 as a representative for consistency with
earlier studies (28, 38, 51). If a significant group effect was found
for SW in any frequency band, then we applied a linear regression
models to predict the SW based on the SRS-T score. In doing so,
we assessed the relation between autism symptom severity and
SW in such frequency bands. We analyzed effects of SRS on the
SW only in children with ASD because we observed that SRS-
T scores were much lower and homogeneous in TD children,
thereby indicating the presence of the floor effect. Significance
was inferred for P < 0.05, but we used appropriate correction for
multiple comparisons if a significant group effect was found for
more than one frequency band.

Furthermore, we investigated the relation between SW and
SRS sub-scales to discern which sub-scale drives the effect. For
sub-scale analysis, significance was inferred for P < 0.01 after
Bonferroni correction was applied for five multiple comparisons:
social communication, social awareness, social cognition, social
motivation, and autistic mannerisms sub-scales.

In addition, considering the possibly different results derived
from informant-based (i.e., SRS) and laboratory-based (ADOS-
2) measures, we analyzed effects of ADOS-social interaction
and communication scores on SW. Particularly, we applied a
linear regression model to predict SW based on ADOS-social
interaction and communication scores. Effect sizes were provided
as R2.

Before applying any linear regression model, we verified that
our data meet the assumptions for regression analysis before
application of linear regression. Specifically, we used standard
methods to verify linearity, normality, homogeneity of variance,
model specifications, and influence. As a result, the assumption of
homogeneity was violated for some regressionmodels. Therefore,
we used heteroscedasticity-robust standard errors (55).

RESULTS

One girl with ASD was unable to complete K-ABC because
of severe psychomotor agitation. We found no significant
differences in sex, age, or epoch number. Significant differences
were found in the SRS total score, SRS sub-scale, Mental
Processing Scale, and Achievement Scale. Table 1 presents the
related results. Among the 20 children with ASD, module 1 was
applied to one child, module 2 was applied to 17 children, and

TABLE 1 | Characteristics of participants.

ASD TD χ
2 or t P-value

N 20 25

Sex (% Male)
†

70 60 0.49 0.486

Age in months‡ 73.5 69.2 −1.73 0.091

Epoch number‡ 19.7 21.2 1.25 0.217

SRS total score‡ 68.8 46.5 −7.57 < 0.001*

K-ABC scores

MPS‡ 99.2 114.5 3.15 0.003*

Achievement scale‡ 95.3 106.9 2.41 0.020*

†
Chi-square test.

‡Student’s t-test.

*Statistical significance.

ASD, autism spectrum disorder; TD, typically developing children; K-ABC, Kaufman

Assessment Battery for Children; SRS, Social Responsiveness scale; MPS, Mental

Processing scale.

module 3 was applied to two children. Supplementary Table 1

presents the subject’s sub-scores in ADOS-2.

Group Differences in SW: One-Tailed
T-tests
Our primary emphasis was to investigate differences in SW
between the brain network of children with and without ASD.
We first investigated the SW in each frequency band setting κ at
0.2 for consistency with earlier studies (15, 26, 35). Student’s t-
test showed that children with ASD had significantly lower SW
in the beta band than TD children did [t(43) = 2.67, p = 0.005
for a one-tailed t-test and p = 0.011 for a two-tailed t-test]. The
differences were not significant for any other frequency band.

Similar patterns were observed for the other κ. Children
with ASD showed lower SW in the beta band, the differences
of which were most marked when κ was set as 0.14–0.22.
Figure 1, Supplementary Figures 1–4, Supplementary Table 2

present the relevant results.

Group Differences in Graph Metrics in
Matched Participants – CEM
To investigate differences between ASD and TD on graphmetrics
further, we matched the two groups in terms of MPS in K-
ABC considering possible effects of intelligence on functional
connectivity. We first investigated the graph metrics setting κ at
0.2. After improving balance using the CEM algorithm, 15 ASD
children and 25 TD children comprised thematched participants.
The L1 distance improved from 0.300 to 0.115. After matching,
we used linear regression with CEM weights to predict the graph
metrics based on the condition (i.e., ASD or TD). Only for the
model predicting SW in the beta band was the main effect of the
condition (t(40) = −2.83, p = 0.007) found to be significant.
Table 2 presents results obtained from the graphs with κ of
0.2. Similar patterns are observed for the neighboring κ. The
differences were marked when the proportional threshold was set
as 0.16–0.22. Significant difference in SW was found in the theta
band when κ was set as 0.10, but the difference was not significant
when κ was set as 0.12 or higher. Therefore, we discarded
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FIGURE 1 | Group differences in graph metrics for different proportional thresholds in the beta band. Means of the respective graph metrics are presented with 95%

confidence intervals for the respective proportional thresholds. Children with ASD show lower SW in the beta band for widely various proportional thresholds. ASD,

children with autism spectrum disorder; TD, typically developing children; SW, small-worldness CC, clustering coefficient; cPL, characteristic path lengths. *Indicate

statistical significance.
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TABLE 2 | Difference between ASD and TD in graph metrics in matched participants with κ of 0.2.

Frequency band Graph metrics Coeff. S.E. t p 95% CI R2

Delta SW 0.001 0.017 0.05 0.957 −0.034 – 0.036 <0.001

CC −0.002 0.006 −0.31 0.758 −0.014 – 0.010 0.003

cPL 0.005 0.005 1.05 0.301 −0.005 – 0.016 0.028

Theta SW −0.016 0.021 −0.75 0.456 −0.060 – 0.027 0.015

CC 0.006 0.009 0.73 0.473 −0.011 – 0.024 0.014

cPL 0.014 0.009 1.62 0.113 −0.003 – 0.031 0.065

Alpha SW −0.023 0.025 −0.90 0.375 −0.073 – 0.028 0.021

CC −0.022 0.019 −1.19 0.243 −0.061 – 0.016 0.036

cPL −0.005 0.023 −0.21 0.833 −0.052 – 0.042 0.001

Beta SW −0.083 0.293 −2.83 0.007* −0.142 – −0.024 0.174

CC −0.005 0.010 −0.54 0.592 −0.025 – 0.015 0.008

cPL 0.008 0.018 0.44 0.661 −0.028 – 0.043 0.005

Gamma SW −0.009 0.032 −0.29 0.776 −0.075 – 0.056 0.002

CC −0.001 0.011 −0.06 0.952 −0.022 – 0.021 <0.001

cPL −0.006 0.012 −0.52 0.608 −0.031 – 0.018 0.007

*Statistical significance.

ASD, autism spectrum disorder; TD, typically developing children; SW, small-worldness; CC, clustering coefficient; cPL, characteristic path length.

TABLE 3 | Effect of SRS score on SW in the beta band in ASD participants with κ of 0.2.

vs. SW Coeff. Robust S.E. 95% CI t p F R2

SRS-T −0.003 0.001 −0.006 – 0.000 −2.14 0.047* 4.57 0.196

SRS-AWA −0.004 0.002 −0.008 – −0.001 −2.69 0.015 7.23 0.258

SRS-COG −0.004 0.001 −0.007 – −0.001 −3.00 0.008* 9.01 0.281

SRS-COM −0.003 0.002 −0.007 – 0.000 −1.81 0.088 3.27 0.154

SRS-MOT −0.001 0.002 −0.005 – 0.003 −0.69 0.500 0.47 0.037

SRS-MAN −0.002 0.002 −0.006 – 0.001 −1.27 0.219 1.62 0.112

*Statistical significance.

ASD, autism spectrum disorder; TD, typically developing children; SW, small-worldness; SRS-T, Social Responsiveness Scale Total score; SRS-AWA, Social Awareness sub-scale;

SRS-COG, Social Cognition sub-scale; SRS-COM, Social Communication sub-scale; SRS-MOT, Social Motivation sub-scale; SRS-MAN, Social Mannerism sub-scale.

this result as noise. Supplementary Table 3 presents the results.
Although our primary emphasis is on SW, we investigated group
differences for other graph metrics (i.e., CC and cPL) for each
frequency band and each κ. Significant differences were found for
CC in the delta band when κ was set as 0.10 and were found for
cPL in the theta band when κ was set as 0.30, but the differences
were non-significant for the other κ. Hence we discarded these
results as noise. We found no significant effect of group in any of
the models. Supplementary Table 3 presents the results.

Relation Between SW and Autism
Symptom Severity
To elucidate the relation between SW and autism symptom
severity, we specifically examined the SW in the beta band
obtained from the graphs of κ = 0.2 as a representative for
consistency with earlier studies (28, 38, 51). We applied a
linear regression model to predict the SW in the beta band
based on SRS-T score. The regression model revealed the main
effect of SRS-T score as significant (t(18) = −2.14, p = 0.047).
For sub-scale analysis, a significant main effect was found
only for the model predicting SW in the beta band based
on the SRS-cognition sub-scale (t(18) = −3.00, p= 0.008).

The higher SRS-awareness sub-scale tended to correlate with
lower SW in the beta band, but the effect was non-significant
after Bonferroni correction (t(18) = −2.69, p = 0.015).
Those results indicate that a higher SRS-T score was associated
with lower SW in the beta band in ASD children, in which
SRS-cognition and SRS-awareness drove this effect. Table 3

presents the results. A graph showing the relation between
social sub-scale scores and small-worldness is presented in
Figure 2.

As an exploratory analysis, we applied linear regression to
predict SW in the beta band based on ADOS-social interaction
and communication scores. Among the 20 children with ASD,
one subject was applied module 1, 17 subjects were applied
module 2, and two subjects were applied module 3. Observations
were therefore insufficient for module 1 and module 3.
Consequently, we analyzed the effects of ADOS-social interaction
and communication scores on the SW only for 17 individuals
who were applied to module 2.We did not find a significant effect
of ADOS-social interaction and communication scores (t(15) =
0.22, p = 0.831). This non-significant result contrasts against the
significant relation found between the SRS scores and SW in the
beta band. Supplementary Table 4 presents the results.
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FIGURE 2 | Relation between social sub-scale scores and small-worldness in children with autism spectrum disorder. ASD, children with autism spectrum disorder;

SRS-Awareness, Awareness sub-scale of Social Responsiveness Scale; SRS-Cognition, Cognition sub-scale of Social Responsiveness Scale; SW, small-worldness.

DISCUSSION

For TD children and children with ASD (5–8 years old), we

recorded resting-state MEG data. No participant was taking

medication. We constructed functional brain networks in terms

of PLI and analyzed the properties of those networks to explore
differences between the two groups. Children with ASD were
found to have significantly lower SW in the beta band than TD
children did, but not in the other frequency bands. Furthermore,
in children with ASD, lower SW in the beta band corresponded
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TABLE 4 | Earlier EEG/MEG studies for ASD using graph theory.

Authors Year N (ASD vs.TD) Ages Device Band Autistic traits

Boersma et al. (27) 2013 12 vs. 19 2–5 EEG (with Pictures) Broad cPL↑

Alpha, Theta CC↓,SW↓

Takahashi et al. (28) 2017 24 vs. 24 4–7 MEG (with Animation) Gamma SW↑

Delta SW↓

Han et al. (25) 2017 60 vs. 76 3–6 EEG Broad None

20 vs. 40 6–11 CC↓, SW↓

Ye et al. (26) 2014 16 vs. 15 12–15 MEG Theta CC↑, cPL↓

Pollonini et al. (23) 2010 8 vs. 8 around 19* MEG Broad CC↓, cPL↑

Barttfeld et al. (24) 2011 10 vs. 10 16–38 EEG Beta CC↓, cPL↑

ASD, autism spectrum disorder; TD, typically developing children; EEG, electroencephalography; MEG, magnetoencephalography; SW, small-worldness; CC, clustering coefficient;

cPL, characteristic path length.

↑ or ↓ indicate significant increase or decrease.
*Authors did not describe the age range of participants. 18.7 ± 0.7 for ASD group, 19.0 ± 1.2 for TD group.

to severe autistic symptoms in terms of SRS-T scores. This
association was driven by the association between the SW in the
beta band and SRS-cognition sub-scale. However, the relation
between SW in the beta band and ADOS-social interaction and
communication sub-scale was found to be non-significant.

For the beta band, we found significantly lower SW in the
ASD group than in TD children. This result accords with results
reported by Han et al. (25). After using resting-state EEG to
investigate 6–11-year-old children, they reported that children
with ASD showed lower CC and lower SW for widely various
frequencies including the beta band. Nevertheless, they did
not exclude effects of medication. In this context, the results
obtained from the present study confirm the reduced SW in the
functional brain network of children with ASD such that the
difference cannot be explained by medication effects. Ye et al.
similarly compared ASD and healthy control subjects, but of
a slightly older age (12–15 years old) (26). In contrast to the
non-significant results obtained for CC and cPL in the current
study, they reported higher CC and lower cPL in the ASD
group. Although comparing these findings directly is difficult
because they neither explicitly exclude the effects of medication
nor calculate SW, the present results can extend their results,
indicating that the altered CC and cPL in the brain network of
ASD would be less evident in a younger population. Boersma
et al. and Takahashi et al. investigated children with and without
ASD, similarly to the current study, but they used non-resting
state EEG/MEG (27, 28). Particularly, Boersma et al. investigated
children (aged 2–5 years) with and without ASD using EEG
data obtained while children passively viewed images of cars
and faces. The ASD group was found to show lower CC and
higher cPL, as well as lower SW. Takahashi et al. investigated
a similar age range (aged 4–7 years) using MEG data obtained
while children watched animated video programs. They found
that the ASD group showed higher SW in the gamma band
and lower SW in the delta band, but the differences in CC
or cPL were not significant. Considering atypical functional
connectivity during visual information processing in ASD (29,
30), a difference between those results and the current analysis
might arise from different recording conditions (i.e., resting

state vs. visual stimulation). Overall, the present results provide
additional evidence of age-dependent change in the resting-
state functional brain networks of ASD by demonstrating that
children with ASD show lower SW than those of healthy controls.
Given the results from earlier studies, individuals with ASD
are expected to show higher CC and lower cPL in their later
developmental stage. They would then show lower CC and higher
cPL during adulthood. Summarized results from earlier studies
are presented in Table 4.

To date, only a report by Han et al. has described a
study investigating the association between graph theoretical
measures and autistic symptoms. However, they did not exclude
medication effects (25). For that study, ASD symptom severity as
measured by the autism behavior checklist (56) was negatively
correlated with CC and positively correlated with cPL in
the alpha band. This report is therefore the first describing
that ASD symptom severity measured by SRS is related to
a graph metric (i.e., SW in the beta band) of resting-state
MEG-derived functional brain networks in childhood ASD after
controlling for medication effects. This association was driven
by association between the SW and SRS-cognition sub-scale.
Against our expectations, however, the relation between ADOS-
social interaction and communication scores and the SW was
not found to be significant. This inconsistency might arise from
the different results derived from parent ratings (i.e., SRS) and
clinical observations (ADOS-2). Those different results might
be explained by contextual factors and different perspectives.
Parents might have more opportunities to observe their child’s
everyday behaviors. Such behaviors might not be apparent during
brief one-to-one test situations (i.e., the controlled test setting
for ADOS-2). However, parents are not necessarily trained to
differentiate and capture autistic behaviors, whereas clinicians
are trained extensively to be able to capture autistic behaviors
accurately. Clinicians also have vast amounts of knowledge about
typical and atypical development of children. For these reasons,
by combining results from two regression analyses (SW vs. SRS
scores and SW vs. ADOS-social interaction and communication
score), it might be found that lower SW in children with
ASD corresponds to fewer social behaviors appearing only in
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situations outside of an examination room. However, the results
should be interpreted with caution because of major limitations:
parent ratings entail parent bias and provide lower reliability than
direct observations made by expert clinicians.

Some limitationsmust be described. First, most of the children
with ASD examined for this study were high-functioning
children who were able to remain stationary during MEG
measurements. Therefore, the findings might not be applicable
to children with lower verbal or intellectual abilities, or who
have difficulty remaining stationary. Second, we computed PLI
for each of >10 epochs of 5 s. This shorter epoch length might
affect the PLI values and PLI-based graph metrics. For that
reason, one must be cautious when comparing the present results
with those from other studies using different epoch lengths.
For example, Fraschini et al. analyzed effects of epoch length
on PLI and PLI-derived graph metrics using six epochs for
each epoch length (i.e., 1, 2, 4, 6, 8, 10, 12, 14, and 16 s) (57).
They reported that, in the source space, PLI values and PLI-
based graph metrics (weighted CC and weighted cPL) show a
decrease with increasing epoch length, where the results stabilize
for epochs with lengths of longer than 10 s. Furthermore, at
the network level, shorter epochs showed less clear patterns of
PLI than those obtained from longer epochs, possibly reflecting
inter-epoch variation in neuronal activity. It is noteworthy,
however, that their study found no significant relation between
epoch length and the standard error of the mean PLI and PLI-
based graph metrics with better behavior (in terms of stability)
was observed for measures extracted from source level analyses
compared with results obtained from sensor level analyses.
Although it is difficult to compare those results directly because
of methodological differences (e.g., EEG vs. MEG, frequency
bands, source estimationmethods), the evidence suggests that the
results presented herein might be valuable in terms of test–retest
reliability, but one must be cautious when comparing results
from different studies using data obtained using different epoch
lengths. Third, we exerted great effort to keep the participants
motionless. Despite that effort, it is still possible that motion
artifacts resulted from subtle movement during the acquisition.
In addition, the head motion possibly differed between the two
groups. Unfortunately, we did not have access to head motion
data from MEG scans to ascertain whether this was true. Further
study using a quantification algorithm for head movement
can be expected to help clarify how motion artifacts affect
the graph metrics. Fourth, comparison of the results obtained
from this study with those from other graph theoretical studies
using different quantities of ROIs (i.e., number of nodes) and
different proportional thresholds should be done only with due
caution. An important difficulty arises from the fact that graph
metrics depend on the number of graph nodes and edges (58).
Especially, the dependence cannot be neglected when the nodes
are fewer than 200 (58). No satisfactory method for correcting
for such effects has been reported in the relevant literature.
Fifth, the sample was smaller than the sample size calculation
indicated. A study with low statistical power has a reduced

likelihood that a significant result reflects a true effect. In fact,
it might overestimate the effect size (59). For that reason, to
estimate the effect sizes of group difference (i.e., ASD vs. healthy
controls) accurately in graph metrics, studies examining a larger
sample must be conducted. Sixth, one must be cautious when
interpreting the results of parent-report measures such as SRS
because all such scales entail important shortcomings, such as
parent bias and limited reliability, compared to direct observation
by expert clinicians.

For this study, we specifically examined young TD children
and children with ASD because early diagnosis of ASD is
important for supporting developmental follow-up in children
with ASD. Our study provides important information that can
be expected to improve our understanding of neurophysiological
mechanisms underlying the earlier development of social
abilities and brain networks in children with ASD. As a highly
non-invasive method, MEG can provide a potential biomarker
for ASD in young children by application of the observed
behavioral and neurophysiological alterations in patients
with ASD.
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Background: Recent studies have reported changes in the electroencephalograms

(EEG) of patients with major depressive disorder (MDD). However, little research

has explored EEG differences between adolescents with MDD and healthy controls,

particularly EEGmicrostates differences. The aim of the current study was to characterize

EEG microstate activity in adolescents with MDD and healthy controls (HCs).

Methods: A total of 35 adolescents with MDD and 35 HCs were recruited in this

study. The depressive symptoms were assessed by Hamilton Depression Scale (HAMD)

and Children’s Depression Inventory (CDI), and the anxiety symptoms were assessed

by Chinese version of DSM-5 Level 2-Anxiety-Child scale. A 64-channel EEG was

recorded for 5min (eye closed, resting-state) and analyzed using microstate analysis.

Microstate properties were compared between groups and correlated with patients’

depression scores.

Results: We found increased occurrence and contribution of microstate B in MDD

patients compared to HCs, and decreased occurrence and contribution of microstate D

in MDD patients compared to HCs. While no significant correlation between depression

severity (HAMD score) and the microstate metrics (occurrence and contribution of

microstate B and D) differing between MDD adolescents and HCs was found.

Conclusions: Adolescents with MDD showed microstate B and microstate D changes.

The obtained results may deepen our understanding of dynamic EEG changes among

adolescents with MDD and provide some evidence of changes in brain development in

adolescents with MDD.

Keywords: adolescents, major depressive disorder, EEG resting state, EEG microstate, first-episode depression
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INTRODUCTION

Major depressive disorder (MDD), characterized by low mood,
loss of interest, possible symptoms of physical discomfort,
suicidal behaviors, and cognitive dysfunction, is one of the most
common mental disorders (1), and has been the second leading
cause of disability worldwide because of its significant impact on
the quality of life (2). In recent years, the prevalence of MDD has
increased in adolescents and young adults (3), and up to 20% of
adolescents are affected by MDD, which severely affected their
lives and increased the risk of suicide (4). Early diagnosis and
treatment contribute to decreasing MDD severity and improving
the well-being and prognosis of MDD patients. Due to lack of
effective and specific indicators, the diagnosis ofMDD is based on
patients’ clinical symptoms, which is more tricky for adolescents
as the manifestation of MDD among them is less typical than
among adults (5, 6). Therefore, identifying potential biomarkers
of depression is very important for the diagnosis and treatment
of MDD, and studies on MDD among adolescent population are
necessary and urgent.

A large number of functional magnetic resonance imaging
(fMRI) studies have reported changes in brain structure and
function among MDD patients (7, 8), including reduced
hippocampal volume (9), thinner cortex in parahippocampal-
limbic and insular-limbic areas (10), reduced connectivity within
the frontoparietal control system (11) and disrupted network
connectivity in the default mode network (DMN) (12, 13).
Although many fMRI studies have explored differences between
MDD patients and healthy subjects in depth, these studies
cannot dynamically assess changes of brain with time. The
electroencephalograms (EEG) can compensate for this defect
of fMRI because of its good time resolution and can capture
rapid changes in the dynamics of neuronal network (14). Because
of its low cost, non-invasive, and easy to complete, EEG has
been widely used in the neurocognitive disciplines in recent
years. Previous studies among patients with MDD have found
higher theta power in the frontal cortex and rostral anterior
cingulate compared to healthy subjects (15). Higher power of
the gamma band was also found among adult MDD patients
with suicide ideation (16). Researches among adolescents with
MDD showed lower theta band and decreased resting-state
connectivity in the frontal cortex (17). Lower left-sided alpha
power was also found in adolescents with MDD, and left-sided
alpha power was related to depression scores (18). Currently,
all of these EEG analyses are mainly based on traditional
approaches, such as powder spectral analysis (18) and resting-
state connectivity (17).

Resting EEG involves a limited number of potential
topographic maps, as each topographic map remains stable for
a certain period of time (60–120ms) before quickly switching to
another topographic map. All these topographic map are called
“EEG microstates,” and they dynamically change with time in
an organized manner (19). The change in the EEG microstate
indicates a change in the overall coordination of neuronal activity
in the participant over time (20). Although different numbers of
cluster maps have been reported in previous study (21, 22), four
cluster maps, which are termed A, B, C, and D, are consistently

identified in majority researches (23, 24). Studies based on EEG-
fMRI technical have revealed the hemodynamic correlation of
EEG microstate: microstate A may be associated with auditory
network, while microstate B may be associated with the visual
network, microstate C may reflect activity in the default mode
network and the activity of the dorsal attention network may be
related to microstate D (20, 25). Based on the dynamic changes
of the four EEG microstate maps, the spontaneous brain activity
can be represented by the duration, occurrence, contribution
and transition possibility sequence of each EEG microstate maps
(20). Capturing the temporal difference of dynamic changes of
EEG microstates could be a promising method to study the
spontaneous brain activity of adolescents with MDD.

In recent years, EEG microstate analysis has been used in
patients with mental disorder, such as bipolar disorder (26),
methamphetamine use disorder (27), schizophrenia (28), and
depression (21, 22). Different psychopathological conditions
showed different EEG microstate feature changes. Microstate B
features were found to be related to depression scores among
bipolar disorder patients (26). Studies among adults with MDD
found that higher occurrence of microstate A was associated with
depressive symptoms (21), and the contribution and duration of
microstate D were reduced among depressed patients compared
to healthy subjects and related to depression severity (22).
Existing studies also found that EEG microstate feature may
change with medication or the use of repetitive transcranial
magnetic stimulation (rTMS). The duration, occurrence and
contribution of microstate B decreased among the MDD patients
after 2 weeks medication (29). These findings indicate that in-
depth study of EEG microstates may provide new evidence for
the diagnosis and treatment of adolescents with MDD. While
to date, there has been no research on EEG microstate among
MDD adolescents.

Here, we used EEG microstate as a new approach to explore
the difference of spontaneous resting EEG between adolescents
with MDD and HCs. The aims of the present study were to
test whether there are differences in the temporal characteristics
of EEG microstates between adolescents with MDD and HCs
and whether there is a correlation between clinical symptoms
and microstates.

MATERIALS AND METHODS

Participants
The MDD patients were recruited in the outpatient clinic of
the Second Xiangya Hospital, Central South University. The
diagnostic process was performed by a child and adolescent
psychiatrist with an intermediate professional title or above.
The kid version of the Mini International Neuropsychiatric
interview (Mini-kid) was used to confirm the diagnosis and
to eliminate other mental disorders. The inclusion criteria for
patients were: (1) 12–17 years old; (2) a diagnosis of MDD
according to the Diagnostic and Statistical Manual of Mental
Disorder-Fifth Edition criteria (DSM-5); (3) first episode; (4)
no history of psychiatric drug treatment before completing the
examination; (5) the Children’s Depression Inventory (CDI)
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TABLE 1 | Demographic and clinical data of the participants.

Characteristic MDD HC

N = 35 N = 35 t/χ2 p

Age, M (SD) 14.58 ± 1.46 15.05 ± 1.67 −1.241 0.219

Gender, male/female (n) 10/25 15/20 1.556 0.212

Education years, M (SD) 8.69 ± 1.47 8.69 ± 1.71 0.251 1

Duration of illness (months) 15.20 ± 11.07 NA NA NA

CDI score, M (SD) 38.34 ± 7.85 9.57 ± 4.65 18.662 <0.001

Anxiety score, M (SD) 40.26 ± 7.85 NA NA NA

HAMD score, M (SD) 21.97 ± 2.73 NA NA NA

GEV (%) 74.08 ± 1.92 73.77 ± 2.74 0.558 0.579

M, mean; SD, standard deviation; MDD, major depressive disorder; HC, healthy control; GEV, global explained variance.

FIGURE 1 | Mean scalp topographies of microstates (A–D).

score ≥19 (30) and Hamilton Rating Scale for Depression
(HAMD-17) score ≥17. The Mini-kid and the assessment
for the depression symptoms (HAMD-17) were completed
by two professional psychiatrists, who received consistent
training before the beginning of the experiment. The HCs were
recruited through advertising in a junior school in Changsha,
Hunan Province and in online social media platforms (WeChat
Moments). The inclusion criteria for the HCs were: (1) 12–17
years old; (2) no history of psychiatric illness by the Mini-kid

interview; (3) no first-degree relatives with psychiatric disorders;
(4) no history of psychiatric medication use. All the subjects
were interviewed by two professional psychiatrists and met the
inclusion criteria. Those subjects (1) meeting the diagnostic
criteria for mental disorders other than depression (only for
MDD patients); (2) suffering from other nervous system diseases
(brain trauma, epilepsy, intracranial tumors, etc.) or serious
physical diseases; or (3) unable to complete the examination for
other reasons were excluded. Finally, 35 adolescents with MDD
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FIGURE 2 | Mean and standard error of microstate metrics (duration, occurrence, and contribution) of MDD (black) and HC (gray) groups * significant difference

between MDD and HC groups, as assessed by the unpaired t-test with Bonferroni correction.
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and 35 HCs participated this study. The general information such
as gender, age and education years were collected among both
groups, and the duration of illness were collected among the
patient group.

This study was approved by the National Clinical Center
Medical Ethics Committee of the Second Xiangya Hospital,
Central South University. Written informed consent was
provided by both the participants and their guardians.

Symptom Ratings
Depression symptoms were assessed using the Children’s
Depression Inventory (CDI) (31) and Hamilton Rating Scale
for Depression (HAMD-17). CDI is the most widely used self-
assessment scale for children and adolescents with MDD. The
CDI consists of 27 items scored using 0–2 points. The total score
is obtained by totaling all items: the higher the score, the higher
the degree of depression. Cronbach’s α for the CDI was found to
be 0.8504 in a study of Chinese children and adolescents (32). The
HAMD-17 was conducted as an interview with the subjects to
assess the severity of depressive symptoms. HAMD-17 consists of
17 items scored on a 5-point scale, with 0 indicating no symptoms
and 4 indicating extremely severe symptoms. Anxiety symptoms
were assessed using the Chinese version of the DSM-5 Level 2-
Anxiety-Child scale. It consists of 13 items scored on a scale
of 1–5: the higher the score, the higher the anxiety symptoms.
Cronbach’s α for this test was 0.90 in a study of Chinese children
and adolescents (33).

EEG Recordings and Pre-processing
A standard clinical EEG protocol of 5min (resting-state and
eyes closed) was recorded using 64 scalp electrodes with the
International 10–20 system. Participants were asked to seat in a
quiet room comfortably. The electrooculogram was recorded by
one facial electrode located 1 cm below the middle of the right
eye. EEG data were recorded at a sampling rate of 5,000Hz. The
data were referenced to the FCz electrode. Before the experiment,
we reduced the electrode impedance below 5K �.

Pre-processing was performed using MATLAB 2013b and
EEG tools. First, the sampling rate was lowered to 500. The data
were band-pass filtered with cutoffs of 0.1–45Hz and segmented
into 2 s per epoch. When there were artifacts in a channel, the
spherical interpolation method was used for interpolation (34),
and <6 channels for each subject were replaced. When the signal
quality of a segment was poor (the voltages of more than 10
channels exceed 80mV), it would be excluded. After that, each
subject retained at least 3min EEG signals. Eye artifact correction
was performed using independent component analysis (35).

Microstate Analysis
The Microstate Analysis plug-in (Version 0.3) for EEGLAB
(34) developed by Thomas Koenig was used for the microstate
analysis. Artifact-free EEGs were band-pass filtered between
2 and 20Hz then the data were re-referenced for the whole
brain (36). The global field power (GFP) is calculated, and
topographic maps selected for clustering are those at GFP peak
(37). The polarity of the clusters was ignored. The number
of clusters was selected as four based on previous researches

which four clusters have been widely used and differences were
found between HCs and patients with mental disorders (24). The
microstate map of each participant was calculated by the original
instantaneous diagram using atomic aggregation hierarchical
clustering (AAHC) (38). The grand-mean model diagrams of
each group (HC group, MDD group) were calculated and labeled
as “A,” “B,” “C,” and “D.” The first and last segments were ignored
by the microstate toolbox. The following parameters were
extracted from the microstate data: duration (average duration
of the four different microstate categories), occurrence (how
many times per second the four microstate categories appear on
average), contribution (percentage of time covered by the four
microstate categories), and transition possibility (probability of
conversion between the four microstate categories). The global
explained variance (GEV) is calculated to assess to what extent
the microstate topographic can explain the original EEG data.

Data Analysis
Data were analyzed using SPSS version 21 (IBM). Categorical
variables are reported as the count (n) and percentage (%).
Continuous variables are expressed as the mean (M) ±

standard deviation (SD). The independent sample t-test was
used to compare general demographic information between
the two groups. We used 4 (microstate classes) × 2 (groups)
repeated measures analysis of variance (ANOVA) to evaluate the
interaction effects of each microstate parameter. Greenhouse–
Geisser correction for ANOVA was applied. The two tailed
unpaired t-test was performed for each microstate separately as
post-hoc analysis to assess the difference between MDD patients
and HCs, if the interaction microstate ∗ group was significant.
Bonferroni correction was used for the post-hoc comparisons,
and p < 0.013 (i.e., 0.05/4, there were 4 different types of
microstates) was considered statistically significant formicrostate
features. Pearson correlation analysis was used to analyze the
relationships between HAMD scores and the microstate metrics
differing between MDD adolescents and HCs. The statistical
tests were two-sided and the level of statistical significance was
set as α = 0.05. Bonferroni correction was applied for multiple
correlation analyses.

RESULTS

Participant Characteristics
The demographic characteristics of the two groups and symptom
ratings in the MDD group are shown in Table 1. There were no
significant differences in age, education years, or gender between
the two groups (all p > 0.05). For patients with MDD, the mean
duration of illness was 15.20 ± 11.07 months. The CDI score
of the MDD group was 38.34 ± 7.85, higher than that in HCs
(9.57 ± 4.65), and the difference was significant (p < 0.001). The
anxiety score was 40.26 ± 7.85, and the HAMD score was 21.97
± 2.73 among the MDD group. Four microstates (classes A to
D) in the two groups were identified by AAHC. The average
global explained variance was 74.08 ± 1.92% and 73.77 ± 2.74%
for MDD group and HCs, respectively, and the difference was
not significant (p = 0.579). The four microstate topographic
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TABLE 2 | Comparison of microstates between the MDD group and HC group.

MDD HC

M SD M SD t p

Duration A 0.0694 0.0094 0.0667 0.0080 1.266 0.210

B 0.0700 0.0100 0.0656 0.0089 1.921 0.059

C 0.0705 0.0100 0.0700 0.0089 0.180 0.858

D 0.0643 0.0089 0.0685 0.0106 −1.800 0.076

Occurrence A 3.8142 0.7684 3.5605 0.6258 1.512 0.135

B 3.8897 0.4083 3.6105 0.4615 2.681 0.009

C 3.9352 0.5801 3.9337 0.6130 0.011 0.992

D 3.0691 0.7062 3.7987 0.6058 −4.639 <0.001

Contribution A 0.2617 0.0663 0.2366 0.0540 1.807 0.075

B 0.2686 0.0561 0.2359 0.0462 2.657 0.010

C 0.2721 0.0673 0.2722 0.0604 −0.001 0.999

D 0.1976 0.0632 0.2564 0.0564 −4.107 <0.001

M, mean; SD, standard deviation; MDD, major depressive disorder; HC, healthy control. Bonferroni correction for the post-hoc comparisons: p < 0.013.

TABLE 3 | Comparison and means for all transition probabilities in the MDD and HC groups.

MDD HC

Mean SD Mean SD t p Direction

A-B 0.0910 0.0246 0.0721 0.0179 3.662 <0.001 MDD > HC

A-C 0.0953 0.0265 0.0786 0.0209 2.936 0.005 MDD > HC

A-D 0.0619 0.0181 0.0779 0.0153 −3.999 <0.001 MDD < HC

B-A 0.0920 0.0227 0.0721 0.0187 3.994 <0.001 MDD > HC

B-C 0.0942 0.0209 0.0841 0.0181 2.157 0.035 MDD > HC

B-D 0.0689 0.0277 0.0768 0.0225 −1.311 0.194

C-A 0.0940 0.0263 0.0812 0.0205 2.270 0.026 MDD > HC

C-B 0.0946 0.0197 0.0831 0.0166 2.626 0.011 MDD > HC

C-D 0.0688 0.0204 0.0902 0.0237 −4.055 <0.001 MDD < HC

D-A 0.0622 0.0168 0.0751 0.0164 −3.267 0.002 MDD < HC

D-B 0.0697 0.0278 0.0778 0.0224 −1.337 0.186

D-C 0.0678 0.0216 0.0918 0.0252 −4.284 <0.001 MDD < HC

M, mean; SD, standard deviation; MDD, major depressive disorder; HC, healthy control. Bonferroni correction for the post-hoc comparisons: p < 0.013.

maps resemble those in the previous literature in both groups
(Figure 1).

Microstate Metrics
Repeated measures ANOVA was conducted to compare the
microstate duration, occurrence, contribution and transition
possibility between the two groups. EEG microstate (A, B, C,
D) were regarded as a within-subject factor and group (MDD
or HC) as a between-subject factor. The results for microstate
duration showed that the Microstate ∗ Group interaction effect
was significant (F =4.559; p = 0.006), while the within-subject
factor effect (F =1.657; p = 0.185) and group effect (F = 0.373;
p= 0.543) were not significant. Post-hoc comparisons showed no
significant difference in microstates (A, B, C, D) between the two
groups (all p > 0.013; Figure 2; Table 2).

The results for microstate occurrence showed there were
significant main effect of microstate (F = 9.827; p < 0.001) and
Microstate ∗ Group interaction effect (F = 9.606; p < 0.001),
but no significant main effect of Group (F = 0.479; p = 0.491).
Post-hoc analysis showed that the MDD group had a higher
frequency of microstate B and a lower frequency of microstate
D compared to the HC group, and these differences were
statistically significant (both p < 0.013). The occurrence of
microstates A and C did not differ significantly between theMDD
group and HC group (p = 0.135 and p = 0.992, respectively;
Figure 2; Table 2).

For the contribution of microstates, the main effect of
microstate (F = 5.260; p = 0.003) and Microstate ∗ Group
interaction effect (F = 7.889, p < 0.001) were significant, but
the main effect of Group (F = 0; p = 1) was not significant.
Post-hoc analysis showedmoremicrostate B contribution and less
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TABLE 4 | Correlation for microstate metrics and HAMD score.

r p

Occurrence B 0.253 0.143

Occurrence D 0.017 0.923

Contribution B 0.341 0.045

Contribution D 0.089 0.611

Bonferroni correction for multiple correlations: p < 0.013.

microstate D contribution in the MDD group compared to the
HC group, and the differences were statistically significant (both
p < 0.013). There were no statistically significant differences in
othermicrostate contributions between theHC andMDDgroups
(both p > 0.013; Figure 2; Table 2).

For the transition probabilities, there were significant main
effect of the microstate (F = 3.878; p < 0.001) and significant
Microstate ∗ Group interaction effect (F = 5.174, p < 0.001),
while the main effect of Group (F = 0.582; p = 0.448) was not
significant. Post-hoc analysis showed that the MDD group had
a lower possibility of transition from “A to D,” “C to D,” “D to
A,” and “D to C” than the HC group, and the differences were
significant (all p < 0.013). Furthermore, the MDD group showed
a higher possibility of transition from “A to B,” “A to C,” “B to
A,” and “C to B” than the HC group, and the differences were
significant (all p < 0.013; Table 3).

Relationship Between Microstate Metrics
and Depression Score
Finally, we examined the relationship between depression
severity (HAMD score) and the microstate metrics (occurrence
and contribution of microstate B and D) differing between
MDD adolescents and HCs. We found that contribution of
microstate B is correlated with HAMD score (r = 0.341,
p= 0.045, uncorrected). After Bonferroni correction was applied,
the significance was gone (p > 0.013, Table 4).

DISCUSSION

To the best of our knowledge, this is the first study to
explore the dynamic activity of resting-state large-scale brain
networks among adolescents with MDD. Our results indicate
that adolescents with MDD show alterations in sub second of the
whole brain. Compared to HCs, adolescents with MDD showed
abnormally increased occurrence of microstate B and decreased
occurrence of microstate D. The increase in microstate B may be
caused by more transitions from microstate C to microstate B.
Adolescents with MDD had less transitions from “A to D” and
more transition from “D to C,” which were the reasons for the
decrease in microstate D among MDD subjects compared with
the HCs.

Limited research has examined EEG microstate duration
and/or occurrence in depressed patients. Our results showed
the difference in microstate duration between adolescents with
MDD and HCs was not obvious, which is inconsistent with
other studies in adult MDD patients (22, 39). For example,

Murphy et al.’s (22) research showed that the duration of
microstate D was reduced among the adults MDD patients
compared to the healthy subjects. However, our results are in
line with the Damborská’s results which found no difference
in duration between the adults MDD patients and HCs
(21). Although there was no change in the duration, the
occurrence and contribution changed in adolescents with MDD.
Our results showed that adolescents with MDD patients had
higher contribution, occurrence of microstate B. This finding
is in line with a previous research which found that the
duration, occurrence, and contribution of microstate B were
decreased as depressive symptoms improved amongMDD adults
(29). The head surface signal source displays microstate B
was closely associated with right posterior alpha activity by
accurate low resolution electromagnetic tomography (eloreta)
(40). The adolescents with MDD showed reduced posterior
alpha compared to HCs, and posterior alpha activity was related
to depression symptoms, anhedonia symptoms, rumination
(41). Microstate class B was significantly correlated with blood
oxygenation level dependent (BOLD) changes in the striatum,
extra-striatal cortex, and bilateral occipital cortex, which is
related to the visual network (20, 42, 43). Microstate B was
also found to be correlated to posterior temporal gyrus (44).
Previous fMRI research of depressed subjects has found lower
functional anterior cingulate cortex and posterior superior
temporal gyrus connectivity compared to HCs (45). These
regions play vital roles in integrating, collecting and processing
information from the external environment and the internal
body (46), and understanding emotions or feeling of other people
(47). The increase of microstate B among MDD patients in the
current study is in line with that MDD patients have deficits
in cognitive function and depression symptoms, anhedonia
symptoms. The higher occurrence of microstate B was mainly
caused by the increased transition from “C to B” among
MDD patients. Microstate C reflects part of the DMN, which
is a task negative network (20). Among patients with MDD,
overactivation of the DMNmay be related to negative rumination
(12). Other researchers have suggested that abnormalities in
DMN connectivity are associated with deficits in emotion
regulation among MDD patients (48). Therefore, the more
frequent transition from “C to B” may reflect that adolescents
with MDD have more frequent spontaneous rumination and
emotion regulation.

Our results agree with previous studies reporting a decrease
in microstate D (contribution and occurrence) among the
adults MDD patients (22). Microstate D was found to
be closely associated to the dorsal attention network (25).
The decrease in microstate D is consistent with a large
number of previous fMRI studies which showed decreased
connectivity of the dorsal attention network among patients
with MDD (11). The dorsal attention network is involved
in internally- or externally-oriented attention. Decreases in
connectivity of the dorsal attention network may predict
deficits in attention among MDD patients (49). In addition,
connectivity between the frontoparietal network and dorsal
attention network is weaker among adults MDD patients
than HCs (11). Decreased connectivity of the frontoparietal
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network and dorsal attention network is reported to be
associated with higher levels of maladaptive rumination (50).
Imbalances in these different network connections could lead
to not only cognitive and executive dysfunction, but also
emotional regulation dysfunction, which are characteristics of
MDD (51).

The current study was the first study to explore the EEG
microstate changes among adolescents with first episode MDD
and HCs under resting-state. Although the participants in our
study was adolescents, the results were partially consistent with
previous studies among adults (22, 29). Both the adolescents and
adults with MDD showed an increased (decreased) occurrence
and contribution of microstate B (D). There are also some
different findings among adults MDD patients. For example,
Murphy et al. (22) found decreased duration of microstate D
while we didn’t. The differences may be explained by different
methodologies, such as different clusteringmethods and different
numbers of selected topographic maps (21, 22). Moreover, all
subjects in this study are teenagers and their brains are in a
stage of continuous development. It has been found in previous
study that the duration of microstates increases continuously
with increases in age (52). One thing that cannot be ignored is
that depression itself may have effect on the brain development
(53), resulting in divergence at different stages. One advantage of
this study is that we assessed differences between the adolescents
with first episode MDD and HC groups in the general resting
condition, i.e., there is no cognitive task or emotional processing,
so some task-related confounders can be eliminated (54). In
addition, research conducted among adolescents may have a
certain predictive ability for their mental health in adulthood.

LIMITATIONS

There are several limitations of this study that should be
noted. First, the EEG microstate depends on source modeling
technology. However, the source modeling is based on the poor
spatial resolution of EEG. Secondly, the patients with MDD
included in the present study are adolescents. As the first
depressive episode in early adolescence may be a manifestation
of a later diagnosis of bipolar disorder, some of the patients in
this study may be diagnosed with bipolar disorder in later life.
Thirdly, the present study only included 35 patients and 35 HCs.
A larger number of subjects should be included in future studies.
Lastly, although there was no gender difference between the two
groups, it should be pointed out that the gender of subjects was
not completely matched between groups. There are differences
in EEG microstates between males and females in terms of the
duration and occurrence of specific microstates (52). Therefore,

future research should include more subjects to study potential
gender effects.

CONCLUSIONS

The results of this study supported changes in microstate B and
D of adolescents with MDD compared to HCs. It provided new
insights into dynamic changes in resting-state EEGs of MDD
adolescents, and provides some evidence for further exploration
of biomarkers and early diagnosis of MDD among adolescents.
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Generalized Anxiety Disorder (GAD) is a highly prevalent yet poorly understood chronic

mental disorder. Previous studies have associated GAD with excessive activation of

the right dorsolateral prefrontal cortex (DLPFC). This study aimed to investigate the

effect of low-frequency repetitive transcranial magnetic stimulation (repetitive TMS, rTMS)

targeting the right DLPFC on clinical symptoms and TMS-evoked time-varying brain

network connectivity in patients with GAD. Eleven patients with GAD received 1Hz rTMS

treatment targeting the right DLPFC for 10 days. The severity of the clinical symptoms

was evaluated using the Hamilton Anxiety Scale (HAMA) and the Hamilton Depression

Scale (HAMD) at baseline, right after treatment, and at the one-month follow-up. Co-

registration of single-pulse TMS (targeting the right DLPFC) and electroencephalography

(TMS-EEG) was performed pre- and post-treatment in these patients and 11 healthy

controls. Time-varying brain network connectivity was analyzed using the adaptive

directed transfer function. The scores of HAMA and HAMD significantly decreased

after low-frequency rTMS treatment, and these improvements in ratings remained at

the one-month follow-up. Analyses of the time-varying EEG network in the healthy

controls showed a continuous weakened connection information outflow in the left frontal

and mid-temporal regions. Compared with the healthy controls, the patients with GAD

showedweakened connection information outflow in the left frontal pole and the posterior

temporal pole at baseline. After 10-day rTMS treatment, the network patterns showed

weakened connection information outflow in the left frontal and temporal regions. The

time-varying EEG network changes induced by TMS perturbation targeting right DLPFC

in patients with GAD were characterized by insufficient information outflow in the left

frontal and temporal regions. Low-frequency rTMS targeting the right DLPFC reversed

these abnormalities and improved the clinical symptoms of GAD.
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INTRODUCTION

Generalized anxiety disorder (GAD) is a common and
debilitating mental disorder; its prevalence rate was found
to be 5.7% in an epidemiological survey (1, 2). Patients
with GAD mainly present with difficulty in mood regulation
and have unrealistic, excessive, and uncontrollable worries
about daily affairs (for no reason and for at least 6 months)
GAD may be accompanied by dysfunction, such as fatigue,
difficulty concentrating, irritability, muscle tension, sleep
disturbances, etc (3, 4). The treatment of GAD is still
based on drug therapy, supplemented by psychological
counseling (5–7); however, the side effects, for instance,
delayed movement or dizziness, often lead to treatment cessation
(8). Despite the many drug options available, almost 40%
of patients with GAD do not respond to pharmacologic
treatment (9). Therefore, new treatments for GAD are
urgently needed.

Transcranial magnetic stimulation (TMS) is a non-
invasive, effective brain stimulation technique that can

activate cortical neurons; and its principle is based on
Faraday’s electromagnetic induction theory (10, 11).

Repetitive TMS (rTMS) can reduce or increase cortical

excitability depending on the stimulation frequency (12):
low-frequency rTMS (≤1HZ) can reduce the excitability
of the motor cortex while high-frequency rTMS (≥5HZ)
can excite the adjacent cerebral cortex (13). rTMS has been
successfully applied in the treatment of anxiety, depression,
epilepsy, stroke, and other neurological and psychotic
disorders (14–20).

Co-registration of TMS and electroencephalography (TMS-
EEG) is a multimodal imaging technique for the direct and
non-invasive exploration of cortical reactivity (21, 22). The
technique can assess a variety of neurophysiological processes,
including cortical responses, local excitation and inhibition,
oscillatory activity, effective connectivity, and neuroplasticity, as
well as provide important information about the transmission
of activity throughout the brain (23). One of the main
advantages of TMS-EEG is that it can be used to simultaneously
assess the different neurophysiological characteristics of the
cortical areas through a time-varying EEG network (24–
26).

Recent evidence from neuroimaging studies strongly suggests
that mood regulation in patients with GAD is associated with
abnormalities in neural circuits of the frontal limbic region,
including the dorsolateral prefrontal cortex (DLPFC) (27). The
DLPFC plays a central role in emotional regulation by connecting
the cortical and subcortical regions (for example, the dorsal
anterior cingulate cortex, inferior frontal gyrus, ventral anterior
cingulate cortex, and ventral anterior cingulate cortex) (28).
Patients with GAD showed greater connectivity between the
limbic and prefrontal regions than healthy controls (29).

This study aimed to investigate the effect of low-frequency
rTMS targeting the right DLPFC on clinical symptoms and
TMS-evoked time-varying brain network connectivity in patients
with GAD.

SUBJECTS AND METHODS

Subjects
Eleven patients with GAD (6 men, mean age = 42.1 ± 9.0 years)
were recruited between July 2015 and January 2016 from the
Department of Neurology, Xuanwu Hospital, Capital Medical
University. The inclusion criteria for the patients with GAD were
as follows: (1) meeting the diagnostic criteria for generalized
anxiety disorder in the DSM-V; (2) aged between 18 and 55 years;
(3) having a Hamilton anxiety scale (HAMA) score >14; (4)
patients who had taken anti-anxiety drugs did not need to stop
taking them, but the medication frequency and dose needed to
remain unchanged in the 1 month preceding the experiment; (5)
having no abnormalities on physical examination of the nervous
system; (6) being right-handed. The exclusion criteria for the
GAD group were as follows: (1) having other types of anxiety
diagnosed based on the DSM-V; (2) scoring>20 on theHamilton
depression scale (HAMD); (3) having secondary anxiety due to
other organic diseases; (4) having a history of brain surgery
and epilepsy; (5) having metallic foreign bodies, such as cardiac
pacemakers and stents; (6) being a pregnant or lactating patient.
Furthermore, 11 healthy subjects (6 men, mean age = 34.5 ± 9.6
years) matched with the GAD group in terms of gender and age
were recruited into the control group. This study was approved
by the Ethics Committee of Xuanwu Hospital, Capital Medical
University. All subjects provided informed consent to participate
in this study.

Neuropsychological Assessment
Each patient with GAD was assessed before and right after
rTMS treatment and at the follow-up visit (1 month) using
the Hamilton Anxiety Scale (HAM-A) (30) and the Hamilton
Depression Rating Scale (HAM-D, 17 items) (31).

Measurement of the Resting Motor
Threshold
Single-pulse TMS was applied with a figure-of-eight coil (70mm
diameter) connected to a monophasic Magstim stimulator
(Magstim Company Ltd., London, UK) to measure the resting
motor threshold (rMT), which was defined as the lowest
stimulation intensity that could produce at least five motor-
evoked potentials with wave amplitudes >50 µV among
10 trials in the right first dorsal interosseous muscle. The
surface electromyography was recorded using disc-shaped Ag-
Cl electrodes that were placed in a tendon-belly arrangement.
The stimulating coil was positioned tangentially to the skull with
the coil handle pointing backward and laterally at 45◦ from the
anteroposterior axis.

TMS-EEG Data Acquisition
Twenty-minute TMS-EEG data were acquired using a magnetic
field-compatible EEG amplifier (Yunshen Ltd, Beijing, China)
digitized with a sampling rate of 1,024Hz and an electrode
cap with 32 TMS-compatible electrodes positioned according to
the 10–20 system (Greentek Ltd, Wuhan, China). The electrode
impedances were maintained below 5 k�. The AFz was used
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as the grounding electrode, and the nasal tip electrode served
as the reference. One hundred and twenty single-pulse TMS
stimuli were applied to the right DLPFC (corresponding to F4
points on the subject’s scalp, according to the international 10–20
system) at 90% RMT. Each stimulus was applied at an interval
of 4 s. The subjects were asked to stay still and have their eyes
closed throughout data acquisition. They were also provided with
earplugs to block out ambient and coil discharge noises.

rTMS Treatment
rTMS treatment was administered to all patients with GAD using
Magstim Rapid 2 stimulator (Magstim Company Ltd., London,
UK). The stimulation site was the right DLPFC (corresponding
to F4 points on the subject’s scalp, according to the international
10–20 system). The coil plane was tangential and was kept
parallel to the scalp, with the coil handle facing the occipital side.
The following stimulus parameters were used: frequency, 1Hz;
intensity, 90% RMT; number of stimuli, 1,500 per day for 10
consecutive days.

TMS-EEG Data Preprocessing
MATLAB (R2015b, TheMathworks, USA) was used for EEG data
preprocessing and time-varying network analysis. First, EEG data
was imported and the filtering bandwidth was adjusted to 3–
30Hz, with the data sampling rate reduced by 8 times to 128Hz.
EEG data from 1,000ms before to 2,000ms after each stimulus
point were intercepted as data segments, and about 80–100 data
segments were retained for each subject’s EEG data.

Time-Varying EEG Network Analysis
Adaptive Directed Transfer Function and the

Multivariable Adaptive Autoregressive Model
The adaptive directed transfer function (ADTF) was based on
the multivariable adaptive autoregressive model (base on the
preprocessed TMS-EEG data) (32):

X(t) =

P
∑

i=1

3(i, t)X(t − i)+ E(t) (1)

Type: X(t) was the vector data that varied over time, 3

(i, t) was the time-varying model coefficient matrix that can
be determined by the Kalman filter method (33), E(t) was
multivariate independent white noise, and P was the optimal
order of the model that can be determined by the Schwarz
Bayesian criterion. We then took the Fourier transform of (1):

3(f )X(f ) = E(f )

X(f ) =3−1(f )E(f ) = H(f )E(f )
(2)

In the formula: 3(f ) =
∑p

k=0
3ke

−j2π f1tk(3k=0 = I), H(f )
was the transfer coefficient matrix, corresponding to the time-
varying model coefficient matrix 3(i, t), and we could get the
time-varying transfer coefficient matrixH(f, t). The elementHij(f,
t) represented the connection relationship between the element J

and the element I at frequency f and time t. The ADTF value
could be expressed as follows:

ADTFij(f , t) =
∣

∣Hij(f , t)
∣

∣

2
(3)

Standardized as:

γ2ij(f , t) = −

∣

∣Hij(f , t)
∣

∣

2

n
∑

m=1

∣

∣Him(f , t)
∣

∣

2
(4)

The above equation described the directional causal
relationship between elements J and I at time T; it was an
effective relationship. In order to calculate all the information
flowing from one node to another in a particular frequency band,
it was usually possible to combine all γij

2 in that frequency band:

22
ij(t) =

f−2
∑

k=f1

γ2ij(k, t)

f2 − f1
, 22

ij ∈ [0, 1] (5)

Time-Varying EEG Network Patterns
MATLAB (R2015b) was utilized to identify the dynamic EEG
network patterns in healthy subjects and pre- or post- the
rTMS treatment.

(1) Calculate 40 time-varying adtf matrices from 360ms before
the stimulation point to 40ms before the stimulation point of
each data segment in the 3–30Hz, average all data segments to
obtain the baseline time-varying ADTF matrix of each subject,
and then average 40 time points in this period to obtain the
average baseline ADTF matrix of each subject.

(2) Calculate 246 time-varying ADTF matrices from 60 to
2,000ms after the stimulation point of each data segment in the
3–30Hz, and average all data segments to obtain the time-varying
ADTF matrix of each subject.

(3) Subtract the average baseline ADTF matrix from the time-
varying ADTF matrix of each subject to obtain the time-varying
ADTF matrix after baseline correction.

(4) Take the baseline corrected ADTF value of the first 10%
of the minimum negative value at each sampling time point of
60–2,000ms, and draw the time-varying brain network diagram
of weakened connection used Brain_graphic (24).

Statistical Analysis
Demographic and clinical variables were compared using
between-group two-sample, two-tailed t-tests or chi-squares. The
HAMA and HAMD scores of GAD patients at three time points
(before treatment, at the end of treatment, and 1 month after
the end of treatment) were analyzed using repeated-measures
ANOVA. The effects were considered significant if p < 0.05.

RESULTS

Neuropsychological Characteristics
We enrolled a total of 22 subjects into the study: 11 patients
with GAD (6 men, mean age = 42.1 ± 9.0 years) and 11
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TABLE 1 | Neuropsychological characteristics of GAD.

Variables Before treatment After treatment 1 month after treatment

HAMA 21.45 ± 4.13 11.27 ± 4.36* 11.36 ± 3.72#

HAMD 13.45 ± 4.66 8.73 ± 3.72* 8.27 ± 3.29#

Data are presented as mean ± SD. *P < 0.05 vs. before treatment in the same group,
#P < 0.05 vs. before treatment in the same group. GAD, Generalized anxiety disorder;

HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale.

healthy subjects (6 men, mean age = 34.5 ± 9.6 years). The
healthy subjects were matched with the patients with GAD in
terms of gender and age. All the subjects completed the entire
study without adverse events. The HAMA and HAMD scores
significantly decreased after rTMS treatment and 1 month after
treatment (Table 1).

Time-Varying EEG Network Patterns
From the above time-varying network analysis, Figure 1 shows
the EEG network patterns of the patients with GAD before and
after treatment as well as those of the healthy controls. In the
healthy controls, the time-varying EEG network after single-
pulse TMS of the right DLPFC showed the hub node on the
left frontal (119 and 212ms) and left mid-temporal (212ms
and 415ms) weakened connection patterns. Compared with that
of the healthy controls, the time-varying EEG network after
single-pulse TMS targeting the right DLPFC of the patients with
GAD before therapy showed the hub node on the left frontal
pole (119ms) and left posterior temporal pole (212 and 415ms)
weakened connection patterns. Compared with the patterns
before treatment, the time-varying EEG network after single-
pulse TMS targeting the right DLPFC of the patients with GAD
after rTMS treatment showed the hub node on the left frontal
(119 and 212ms) and left temporal (212 and 415ms) weakened
connection patterns. The results show that the time-varying
network pattern after treatment is very similar to the healthy
subject, indicating that rTMS treatment promotes the restoration
of brain network connections.

DISCUSSION

Summary of Key Findings
To the best of our knowledge, this study was the first to use
time-varying EEG networks to investigate the underlying neural
connection mechanisms of GAD. In the present study, we found
that low-frequency rTMS stimulating the right DLPFC was
effective at improving the symptoms of GAD, and the abnormal
time-varying EEG networks in GAD showed a trend toward
normalization after rTMS treatment. Furthermore, this effect
was sustained: at 1 month follow-up visit, GAD continued to
report fewer anxiety symptoms as the HAMA and HAMD scores
continued to significantly decline from those reported at the
end of treatment. This study demonstrates that rTMS does have
potential as an effective augmentative treatment in GAD.

Comparison With Previous Studies
The prefrontal lobe is an important part of the neural loop
of emotional processing. It plays an important regulatory role
through its round-trip connection with the temporal lobe and
limbic system, in which the DLPFC is the pivotal brain region.
Using fMRI, Bystritsky et al. found that the right DLPFC of
patients with GAD was abnormally activated, and they recruited
10 patients with GAD to undergo low-frequency rTMS therapy
for a total of 6 times for 3 weeks (1Hz, 90% rMT, 900 stimuli
per time), with the stimulation targeting the right DLPFC; the
HAMA score significantly reduced at the end of the treatment
(34). Gretchen et al. (35) stimulated the right DLPFC with rTMS
(1Hz, 90% RMT) and observed that after active rTMS treatment,
the activity of the right DLPFC significantly improved and
there were improvements in self-reported emotion regulation
difficulties at posttreatment and at the 3-month follow-up in the
active group only. In the present study, patients with GAD were
treated with low-frequency rTMS (1Hz, 90% RMT), targeting the
right DLPFC for 10 days. The results showed that the clinical
symptoms of 11 patients with GAD improved after treatment,
and the scores of HAMA and HAMD significantly decreased
compared to those before treatment. The curative effect lasted at
least 1 month.

Interpretation of Findings
The left and right hemispheres of the human brain are
functionally asymmetrical. According to the theory of the
titer model of brain emotions, the right hemisphere plays a
leading role in the processing of negative emotions, while the
left hemisphere is mainly responsible for processing positive
emotions (36). A study using fMRI found that showing
subjects pictures with obvious emotional colors led to increased
blood flow in the bilateral anterior cingulate gyri, DLPFC,
amygdala, and anterior temporal brain (37). Negative images
more significantly activated the relevant brain regions of the
right hemisphere, and positive meanings significantly activated
the relevant brain regions in the left hemisphere (38). Although
our study has shown that rTMS can improve GAD symptoms
through the regulation of the DLPFC, the exact neurobiological
mechanisms remain unclear. We consider that GAD is a disease
of abnormal brain function in which the different cortex areas
have abnormal connections.

Abnormal functional connectivity of GAD has been reported
widely in fMRI studies. Compared with healthy controls, the
function connectivity of the right medial prefrontal gyrus of
the default mode network and the superior temporal gyrus
of the salience network increased significantly in the GAD
patients (39). We used the adaptive directed transfer function
to analyze TMS-EEG signals, as well as to prove the existence
of network abnormality in GAD. Compared with the healthy
controls in patients with GAD, the time-varying EEG network
showed that the right DLPFC has insufficient inhibition of
information outflow from the left frontal and temporal regions,
and that the abnormal activation of the left temporal lobe leads
to overreaction to external stimulus processing. Therefore, low-
frequency rTMS is administered to the right DLPFC to inhibit its
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FIGURE 1 | The time-varying EEG network connections after single-pulse TMS stimulation compared to before stimulation. Time, after single TMS. Green lines,

decreased infor mation; blue arrows, the direction of information flow; Red lines, two-way decreased information; GAD, Generalized anxiety disorder.

activity and promote the restoration of the information outflow
trend toward the normal.

Excessive and uncontrollable worry is the core symptom
of GAD, the pathological worry pattern might be linked with
alterations of fronto-limbic regions, such as the DLPFC
and amygdala, to handle the external threat through
the heightened arousal and distress state (40). RTMS
strengthened the GAD processing advantage of positive
emotions by activating information outflow from the left
frontal lobe. As a result, the symptoms of anxiety and
depression significantly improved. This observation may
support the hypothesis that GAD may be a disorder of brain
functional connectivity, and rTMS treatment could reverse
this abnormity.

Strengths and Limitations
This study had several limitations. First, the sample size
was relatively small; a larger sample size is needed in
further investigations. Second, we should add a sham
stimulation group as a control. Third, further studies need
to use the neuro-navigated system to locate DLPFC to
improve the accuracy of stimulation. Last but not least,
we only used HAMA to measure anxiety in patients
with GAD; in the subsequent studies, we will add the
State-Trait Anxiety Inventory (STAI), a more sensitive
inventory in case of GAD because it measures both state
and trait anxiety.

CONCLUSION

The present study was designed to determine the effectiveness
of low-frequency rTMS treatment for GAD. We found that the
curative effect lasted at least 1 month. Our study revealed that the
right DLPFC in GAD has insufficient inhibition of information
outflow in the left frontal and temporal regions. Low-frequency
rTMS treatment targeting the right DLPFC may reverse these
abnormal changes and improve the symptoms of anxiety.
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Deep learning techniques have been applied to electroencephalogram (EEG) signals,

with promising applications in the field of psychiatry. Schizophrenia is one of the most

disabling neuropsychiatric disorders, often characterized by the presence of auditory

hallucinations. Auditory processing impairments have been studied using EEG-derived

event-related potentials and have been associated with clinical symptoms and cognitive

dysfunction in schizophrenia. Due to consistent changes in the amplitude of ERP

components, such as the auditory N100, some have been proposed as biomarkers

of schizophrenia. In this paper, we examine altered patterns in electrical brain activity

during auditory processing and their potential to discriminate schizophrenia and healthy

subjects. Using deep convolutional neural networks, we propose an architecture to

perform the classification based on multi-channels auditory-related EEG single-trials,

recorded during a passive listening task. We analyzed the effect of the number of

electrodes used, as well as the laterality and distribution of the electrical activity over

the scalp. Results show that the proposed model is able to classify schizophrenia

and healthy subjects with an average accuracy of 78% using only 5 midline channels

(Fz, FCz, Cz, CPz, and Pz). The present study shows the potential of deep learning

methods in the study of impaired auditory processing in schizophrenia with implications

for diagnosis. The proposed design can provide a base model for future developments

in schizophrenia research.

Keywords: auditory processing, convolutional neural network, deep learning, EEG, schizophrenia

1. INTRODUCTION

Schizophrenia (SZ) is a chronic and complex brain disorder that affects social and cognitive
functioning (1). SZ is characterized by the presence of positive (e.g., hallucinations and delusions)
and negative symptoms (e.g., blunted affect), as well as cognitive deficits (2). About 75% of
patients experience hallucinations in the auditory modality, most frequently as voices (3). Deficits
in auditory processing have frequently been reported in SZ, which may reflect auditory cortex
pathology (4). Some studies have documented larger deficits in patients with (vs. without) auditory
hallucinations (5).
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Several studies aimed to probe the neural mechanisms
underpinning auditory processing abnormalities in SZ, using
different techniques such as electroencephalography (EEG).
Event-related potentials (ERP) of the EEG represent the averaged
electrical activity elicited in response to an event (e.g., stimulus,
motor response). They provide a suitable method to specify the
time course of brain activity in response to auditory stimulation,
for example (6). Alterations in ERP components have been
consistently documented in SZ and proposed as potential
biomarkers of this disorder (7). For example, the mismatch
negativity (MMN) and P300 amplitudes are robustly attenuated
in SZ (8, 9). In turn, sensory gating studies have shown reduced
P50 suppression in SZ patients in auditory paired-stimulus
paradigms (10–13). Other studies have focused on the N100
ERP component, specifically showing generalized amplitude
reductions in response to sounds in SZ. This reduction seems
to be more pronounced in patients who experience auditory
hallucinations (14, 15).

Deep learning applied to EEG data could represent a
promising contribution to a more accurate prediction of
psychosis conversion in at-risk states of or treatment response
in diagnosed patients, as well as of disease trajectories (16).
EEG-based deep learning algorithms have also seen growing
interest among neuroscientists, especially in the context of
brain-signal decoding. However, deep learning is still a poorly
explored method in the development of EEG-based models
applied to SZ diagnosis and prediction. Convolutional networks
have been implemented with the goal of recognizing and
classifying patterns from multivariate time series, such as the
EEG signal (17–19). The success of this type of neural network
applied to EEG data for decoding purposes has prompted us to
investigate the use of convolutional neural networks (CNN) for
SZ classification.

1.1. Related Work
SZ classification on the basis of early auditory EEG-derived
ERP components has already been attempted with classical
machine learningmodels (20–22). Components such as the P300,
MMN, or N100 were mainly elicited with auditory oddball and
passive listening paradigms and used as input features in SZ
recognition with random forest (RF), support vector machine
(SVM), or linear discriminant analysis (LDA) classifiers. The
results of these studies underscore the potential of auditory
ERP components recurrently proposed as SZ biomarkers when
their characteristics are used as features to discriminate patients
from healthy subjects. A limitation of these approaches relates
to the process underlying feature extraction and selection,
which requires domain expertise. The few studies that probed
the potential of deep learning in EEG-based classification of
SZ (23–27) achieved the best performances with CNN-based
models applied to resting-state EEG data, which is independent
of cognitive or sensory processing. Despite their capacity to
discriminate healthy from SZ subjects, these models do not
inform about auditory processing, which is affected in SZ (4).
Very recently, Aristizabal et al. (28) explored both machine
and deep learning techniques to identify children at risk of SZ
on the basis of EEG data collected during a passive auditory

oddball task. In the classical machine learning approach, the
mean amplitude was extracted in the 80–220 ms and 160–
290 ms latency intervals, when ERP components indexing of
sensory processing (N100 and P200, respectively) are expected to
emerge. The mean values were extracted for 5 midline electrodes:
Fz, FCz, Cz, CPz, and Pz. Using common classifiers, such as
decision trees, k-nearest neighbors, and SVM, the discrimination
between healthy and at-risk children based on those features
was unsuccessful. As for the deep learning approach, a 2D-
CNN-LSTM was proposed, composed of one 2D convolutional
layer, followed by normalization and fully-connected layers.
The information from the previous block was processed with
a stack of two LSTM (long-short term memory) networks,
whose output was transformed with sigmoid non-linearity for
classification purposes. This model based on EEG single-trials
achieved the best performance in at-risk children identification.
For each trial, a spatio-temporal 2D signal was created using
a 300 ms post-stimulus window focusing on the 5 midline
electrodes. The machine learning attempt illustrates the difficulty
in specifying stimulus-related signal features that allow a precise
identification of SZ risk. The results of both approaches may
reflect the developmental phase of the population under study,
namely ongoing developmental brain maturation processes.
Notwithstanding, this study demonstrates the potential of deep
learning methods in subjects’ discrimination as a function of
psychosis risk.

Evidence for altered auditory processing in SZ has fostered
the investigation of the dynamics of electrical brain activity
targeting the differentiation between patients and healthy
subjects. Amplitude reduction of auditory evoked potentials such
as the N100 have been consistently reported in the literature (14,
29). Those alterations have driven the use of machine learning
methods for automatic SZ recognition. Beyond the time-
consuming feature extraction, both machine learning models
and ERP analysis exhibit a major limitation: the non-uniformity
of the time windows and electrodes used for feature selection
across studies. By contrast, deep learning methods profit from
automatic pattern learning, with minimal human intervention.
Although deep learning architectures based on EEG signals have
been proposed for SZ classification, the learning of patterns from
the electrical brain response to auditory stimuli is a scarcely
investigated topic. A recent review provided a critical analysis of
deep learning and classical machine learning methods to detect
SZ based on EEG signals (30), highlighting the potentialities
of these methods in clinical research. Notwithstanding, from
this review it is also clear that more studies are necessary and
that surpass the limitations of the existing ones. The current
work intends to assess the potential of deep models to learn
discriminatory EEG patterns in the early stages of auditory
processing, which may inform about the significance of sensory
changes to SZ diagnosis and prognosis. We followed good
practices for the development and implementation of machine
learning methods proposed in Barros et al. (30).

1.2. Contributions
This paper presents a multi-channel deep convolutional neural
network for SZ and healthy control (HC) single-trial EEG
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classification across subjects. The CNN-based architecture is
proposed for trial-wise decoding of EEG signals elicited in
response to externally generated auditory stimulation. The main
contributions of this work are:

• The application of deep learning methods to SZ classification
using stimulus-related EEG single-trials recorded during
auditory processing of pure tones. Unlike previous deep
learning research using resting-state EEG data for the same
purpose, our model is based on sensory processing measures.
Since auditory impairments have been documented in SZ, we
hypothesize that the signal’s dynamic during sound processing
is altered in this disorder.

• The recording of EEG data during a passive listening task to
provide discriminatory information. The proposed task is of
short duration, easily implemented in a clinical environment,
and does not require an overt response from the subject.

• The specification of which number of electrodes and which
scalp localization should be used to most accurately predict
whether the signal belongs to a SZ subject or not. This
study sheds light on which electrode location is most relevant
for identifying changes in brain activity during auditory
processing since most studies in this field use a different
number and combination of electrodes.

• The comparison of classical machine learning with deep
learning architectures to classify SZ based on auditory EEG
responses. Given the advantages of deep learning over
machine learning methods, we hypothesize that deep neural
networks will be able to learn different patterns based on
auditory EEG signals, allowing a more accurate classification
of SZ subjects.

• The use of ensemble methods to reduce the variance of
predictions of the developed deep learning model.

This paper is organized as follows. The methodology used for
data acquisition and the deep learning model’s architecture
are detailed in Section 2. Section 3 describes the dataset, the
evaluation procedure, and the experimental setup. In Section 4,
the results are described and discussed. Finally, Section 5 presents
the main conclusions.

2. METHODOLOGY

In this section, we describe the methodology used for EEG
data acquisition. With a simple listening task, we aimed to
elicit auditory evoked potentials that shed light on the time
course of auditory processing. The signal dynamics elicited
by auditory stimuli is also explained, showing the expected
pattern in both control and SZ subjects. Afterward, the proposed
deep learning architecture is presented in detail, which aims
to extract information from the time course of the EEG signal
and its topographical distribution. The main objective is to
obtain a model capable of recognizing patterns in the electrical
brain activity underlying auditory processing in SZ. Lastly, the
traditional machine learning approaches commonly found in
other proposals are introduced. The implementation of these
algorithms provides a strong base model for a proper analysis of

the specific advantages of deep learning (over machine learning)
methods in predicting whether an individual suffers from SZ or
not, on the basis of auditory processing alterations.

2.1. EEG Data Acquisition
EEG data were recorded using 64 electrodes according to the 10-
10 international system configuration, while subjects performed
an auditory task (see Figure 1A). After EEG signal acquisition,
offline pre-processing was performed: the signal was filtered,
segmented, and carefully inspected to remove potential artifacts.

2.1.1. EEG Task
The task involved the presentation of 100 tones, with a variable
inter-stimulus interval (ISI—temporal interval from the offset of
one stimulus to the onset of another) ranging between 1,000 and
2,000 ms (Figure 1B). The presentation of each sound is called a
trial. During data acquisition, the EEG signals were obtained over
electrodes placed on the scalp of the participant, who were asked
to listen passively to the sounds. This task allows examining the
response of the auditory system to externally generated sounds.

2.1.2. Auditory ERP Components
The N100 and the P200 components are typically elicited in
response to sound onset. The N100 can be elicited by any
discernible auditory stimulus irrespective of task demands (14).
This negative potential typically occurs between 80 and 120 ms
after sound onset, with maximal amplitude over fronto-central
and central electrodes (6, 31). The P200 is a positive deflection
that occurs approximately 200 ms after sound onset (6). This
component is distributed over centro-parietal electrodes. Its
amplitude is generally maximal over the vertex (6, 32). Both
N100 and P200 auditory components measured during passive
listening tasks can reflect early automatic attention allocation
and stimulus categorization, respectively (33). Considering
the consistently reported alterations in the N100 and P200
amplitudes in psychosis (14, 32), an approach focused on the
time window of these early auditory processing indices has the
potential to accurately discriminate HC and SZ subjects.

The ERP analysis consists of averaging all segments related
to a given condition from a subject and subsequently computing
the grand averages, which represent the average of EEG activity
across subjects. When conducting this traditional analysis, the
background activity (unrelated to the stimulus) is faded away
and the N100 and P200 components emerge. The typical
grand averages waveforms obtained from the ERP analysis are
illustrated in Figure 2, showing a reduction in the amplitude
of the N100 and P200 in SZ. Although the main assumption
of signal averaging is that the EEG signal in each trial has
stable characteristics, such as morphology, the truth is that ERP
averaging hides the intertrial variability in latency and amplitude
of the underlying components (34). Therefore, the averaged ERP
signals may only represent an approximate picture of the neural
processes elicited by an auditory stimulus. Thus, we adopted a
single-trial approach, considering the above-mentioned trial-to-
trial variability.
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FIGURE 1 | (A) Illustration of electrodes placement over the scalp for EEG data recording; (B) schematic illustration of the auditory-only condition of the experimental

paradigm.

FIGURE 2 | Grand average ERP waveforms showing the N100 and P200 responses to external sounds over Cz electrode in healthy subjects and SZ patients. The

topographic distribution of the N100 and P200 components is also shown in both groups.

2.2. Deep Learning Architecture
In the current work, we propose a CNN-based deep learning
architecture for SZ classification. The model takes the EEG

single-trial recordings as input and provides the probability that
a given segment comes from a SZ or HC subject. The acronym
SzNet will be used hereinafter to refer to the proposed model.
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FIGURE 3 | Example of an EEG compounded 2D signal created from one single trial using a set of 5 electrodes. The color scale shows amplitude, in microvolts, over

the time points recorded for each of the selected electrodes.

CNNs are able to find patterns by convolving a filter, or
kernel, over the data. Depending on the data structure, the
convolutional process can occur in different dimensions. A
1D convolution layer creates a kernel that slides over a single
dimension. This can be relevant to find correlations between
points in the temporal course or topographical distribution of
the EEG data. On the other hand, the use of 2D convolutions
allows correlating temporal and spatial information, ensuring
that patterns are learned from both dimensions. The maximum
signal amplitudes can change in their topographical distribution
over time. This is illustrated in Figure 2 by differences in the scalp
distribution of the auditory N100 (blue) and P200 (red) peaks
reported in the literature, with dark colors corresponding to
their maximal activity (N100 - fronto-central distribution; P200 -
central distribution).

Therefore, a 2D convolutions strategy allows extracting
information about amplitude variation over time and,
simultaneously, across electrodes. In order to take advantage
of bidimensional convolutions, we created a 2D structure
for each trial by stacking 1D signals captured from midline
electrodes over frontal (Fz), fronto-central (FCz), central (Cz),
centro-parietal (CPz), and parietal (Pz) regions of the scalp. We
obtained spatio-temporal 2D signals for the EEG segments in
which the rows correspond to the selected electrodes, and the
columns to the time points of the segment window considered, as
illustrated in Figure 3. The value of each coordinate corresponds
to the amplitude of the signal. The electrodes (rows) were stacked
from the frontal to the parietal regions in the images created, so
that the network could extract features with functional meaning.

A schematic representation of themain blocks of the proposed
method is presented in Figure 4. The first block corresponds
to EEG data acquisition and preprocessing, and the second one
corresponds to the detailed architecture of the SzNet model. The
SzNet architecture is composed of three main types of layers:
convolutional, pooling, and fully-connected (FC) layers. Those

layers are stacked to increase the network depth, enhancing the
selectivity and the sensitivity to slightly relevant variations (35).
The learning process of the network is divided into two
phases. The first (blue-shaded area in Figure 4) involves learning
patterns from the time course of each EEG segment for each
electrode. The second (orange-shaded area in Figure 4) aims to
correlate those patterns between different electrodes of interest,
extracting spatial information. This approach intended to mimic
the traditional analysis of this type of data.

The proposed model consists of a stack of 14 layers of
neural network connections. Layers 1, 2, 4, 5, 7, and 8 perform
9-point 1D convolutions (9x1 shaped kernels) over the time
dimension. This small-size kernel allows capturing more detailed
information about the signal’s temporal course. After each
convolutional layer, the batch normalization is conducted. In
deep learning methods, the output of one layer is the input of
the next, and so forth. If the parameters of one layer change, the
distribution of the input values of the next layer also changes.
This shift in inputs distributions, or covariance shift, can be
problematic in deep learning methods with many layers (36).
Batch normalization mitigates the covariate shift ensuring the
normalization of the activations of each layer (36). The batch
normalization is followed by the application of the ReLU
function. Layers 3, 6, and 9 are subsampling max-pooling layers
(MaxPool2D), which also aim to reduce the number of network
parameters. As the network expands, the number of channels
used is increased to improve network capacity. Sixteen channels
are initially set for the first set of convolutional layers, being
duplicated after each max-pooling layer from there onwards up
to the 9th layer.

From this point onwards, the learning process is slightly
different, with special attention to the scalp distribution of the
EEG amplitude. The 10th layer, with 32 channels, performs 3-
point 1D convolutions over the spatial dimension (1x3 kernel),
searching patterns in the distribution across the different
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FIGURE 4 | Schematic illustration of the end-to-end process with the first block corresponding to EEG data acquisition and pre-processing. The second block shows

the architecture of the SzNet model in detail.

electrodes. Afterward, 2D convolutions with 3x3 kernels are
applied to find correlations between temporal and spatial
information. This layer also has 32 channels, and its output
is flattened, becoming a 1D structure with 512 points. This
transformation is followed by 3 FC layers, which aim to
aggregate information from high-level features extracted in
preceding layers and determine which features are more strongly
correlated with a particular class. The fully connected layers are
implemented through linear functions. The last layer is fully
connected to all its inputs (128) and the 2 outputs nodes (one
for SZ and other for HC). The first two FC layers are followed
by the ReLU function. After the last FC layer, the softmax
function is applied to determine the probability distribution of
the two outputs.

2.3. Traditional Machine Learning
There are few publicly available databases of EEG signals from
subjects with a diagnosis of SZ. This hampers the comparison of
the distinct classical machine learning or deep learning models
proposed in the literature. To assess whether our deep network
architecture brings advantages over traditional machine learning
methods, we tested different algorithms.

Given the versatility of RFs, these algorithms were applied
to perform the SZ classification using features extracted from
auditory ERP data. In fact, RF is a robust classification algorithm.
This model consists of a large number of small decision trees,
known as estimators. RF combines predictions of the estimators
to produce a more accurate prediction. This method performs
well with heterogeneous and high-dimensionality features, and
its ensemble design allows to compensate for the overfitting of
standard decision trees (37).

2.4. Ensemble Strategy
The ensemble technique consists of combining multiple models,
known as base learners, in order to reduce the generalization
error and variance (38). Rather than having a single learner as
the best predictor, different models are trained separately and

then averaged to produce one optimal predictive model (38).
This is the strategy behind RF, which is considered a strong
classifier. RF uses bagging (Bootstrap Aggregation) to increase
the diversity in training of the ensemble (39) and decision trees
as base learners (37). A large set of trees are ensembled, and
then averaged (40). Since trees are remarkably noisy and weaker
classifiers, they strongly benefit from averaging (40).

In an attempt to improve the generalization ability of
the proposed deep learning model, we also adopted an
ensemble strategy.

3. EXPERIMENTAL SETUP

In this section, we detail the EEG dataset used, describing the
preprocessing and the transformations applied to prepare data to
be used as the model’s input. Lastly, we describe the setup of our
deep learning and traditional machine learning classifiers.

3.1. Data
The experimental EEG recordings used in this study were
obtained from a publicly available Kaggle dataset (41), hereinafter
referred to as dataset A. The use of a small pool of training
data may result in an increased risk of model overfitting, and,
consequently, of poor generalization to new data. Although some
methods can be implemented, such as the k-fold cross-validation
technique, the increase in data quantity can help to minimize
overfitting. For this reason, dataset A was extended with EEG
data collected by our research team, using a similar sensory
task, hereinafter referred to as dataset B. The entire dataset used
in this study encompasses EEG recordings from 63 HC and
65 SZ subjects [dataset A: 32 HC and 49 SZ (17 early illness,
32 chronic); dataset B: 31 HC and 16 SZ (all first-episode)].
Each subject dataset comprises EEG segments (one segment
per trial). Both databases were merged after statistical analyses
showed that differences between the two were not significant
(see Supplementary Material).
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3.1.1. Data Acquisition and Preprocessing
EEG data were recorded using a 64-channel Active Two Biosemi
system (Biosemi, Amsterdam, The Netherlands) during the
passive listening task, involving the presentation of 100 sounds:
1,000 Hz, 80 dB sound pressure level (SPL), 50 ms duration tones
for dataset A, and 680 Hz, 70 dB SPL, 50 ms duration tones for
dataset B. Individual segments (trials - one per tone presented)
were created from continuous recordings with a 3,000 ms
duration, time-locked to tone onset with 1,500 ms pre-stimulus
and 1,500 ms post-stimulus. For the EEG data collection,
subjects performed a basic auditory-motor task composed of
three different conditions: auditory-motor condition; auditory-
only condition; and motor condition, as described in Ford
et al. (42) and Pinheiro et al. (43). For the purposes of the
current study, only data from the auditory-only condition were
considered. Dataset A were acquired in a continuous mode
at a digitization rate of 1,024 Hz and referenced off-line to
averaged earlobe electrodes. Dataset B were collected also in
a continuous mode but at a sampling rate of 512 Hz and re-
referenced to the averagedmastoid electrodes. Both datasets were
preprocessed off-line using EEGLab, a MatLab Toolbox (44).
Before preprocessing, dataset A was downsampled to 512 Hz so
that all data had the same sampling frequency. The EEG data
were digitally filtered with a 0.1 Hz high-pass filter, and the
outlier channels were interpolated. The trials were normalized
with a baseline correction by subtracting the mean amplitude of
the −100 to 0 ms pre-stimulus interval to the whole segment.
Trials were subjected to the FASTER toolbox for artifact rejection
and rejection of outlier single trials (45). This preprocessing
procedure is explained in more detail in Ford et al. (42).

3.2. Deep Learning Algorithm
3.2.1. Temporal Window
Since the focus of this study was on auditory processing, we
selected a shorter time window instead of using the signal from
the entire segment. The time window considered as input for
the proposed model was shortened to 500 ms of duration,
corresponding to a total of 256 time points. EEG segments were
extracted from −100 to 400 ms time-locked to sound onset,
comprising the expected latencies of the auditory N100 and
P200 peaks. Figure 3 provides an example of the 2D structure
generated for one trial showing the amplitude for the selected
ROI (set of electrodes).

3.2.2. Data Normalization
The amplitude range of EEG recordings varies substantially
across subjects, or even within a subject. The normalization of
the neural network inputs allows not only comparable measures
but also the gradient descent to converge faster. Consequently,
the EEG data structures created were transformed before the
training phase. The min-max normalization was applied in
order to rescale the data. The absolute minimum and maximum
values were determined for each training segment and for each
electrode. The rescaling was then performed, with the segments’
amplitudes varying between the average value of the minima and
the average value of the maxima determined for each electrode.
A Z-score standardization was then applied allowing data of

the entire sample to have zero mean and unit variance. This
standardization forces data from both groups of subjects to have
the same distribution.

3.2.3. Data Partitioning
Each subject’s dataset was composed of a variable number of
segments after the removal of segments with artifacts (mean of
segments/subject: 94,86 ± 2,27). In total, 5,756 trials from 63
HC subjects and 5,853 trials from 65 SZ subjects were used. A
stratified 10-fold cross-validation was performed. The dataset
splitting was performed by subject rather than by segment.
This procedure ensured that segments of a subject contained
in a fold did not leak into other folds. The subjects’ datasets
were shuffled and split into 10-folds, while ensuring that each
fold had the same proportion of SZ and HC subjects’ data.
In each of the ten iterations, the model was trained using 9-
folds, while the remaining fold was used for the test. From
the subjects contained in the 9 training folds of each iteration,
approximately 90% of them were effectively used for training,
while the remaining were used as a validation set. Also, in this
split we ensured that the selected subjects contained all their EEG
segments (see Supplementary Material for more information
on dataset splitting). The validation dataset was used to tune
hyperparameters and provide an unbiased evaluation of the
model. This division was also stratified according to SZ and
HC classes, after shuffling the subjects. As in the folds split, the
procedure also ensured that segments of a subject did not leak
into other folds, so that segments belonging to a training subject
were used neither for validation nor for testing. In each iteration,
all data segments contained in the training and validation sets
were randomized.

3.2.4. Model Training and Hyperparameters
The training process was performed on 300 epochs. The
EEG images of all subjects that belonged to the training
set were randomly shuffled. The network was trained with
ADAM optimizer (lr = 1 × 10−4) and a mini-batch of
size 4. Regularization techniques are implemented to prevent
overfitting. The learning algorithm is modified in order to reduce
its generalization error, but not the training error (38). For
regularization, a spatial dropout of 0.25 at some convolutions
was used, as illustrated in Figure 4. To limit the model’s
capacity, the L2 regularization was also implemented by adding
a parameter norm penalty of 1 × 10−4 to the cost function.
The Xavier Glorot uniform (46) was used as initializer of the
model’s parameters, ensuring the zero-mean and keeping the
variance of activations the same across every layer. The cross-
entropy of the outputs was calculated concerning the true
labels, generating a loss. The negative loss likelihood (NLL)
function was used to determine the loss (47). As described
before, the model output is a probability of an image label
being assigned to the SZ or HC groups. For validation purposes,
a probability threshold of 50% was considered to classify
the segment as SZ or HC. The accuracy of the model was
determined by all EEG images included in the analysis using
cross-validation. During the optimization by backpropagation,
we saved the optimal model evaluated with the validation
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FIGURE 5 | Schematic representation of the features extracted from each subject’s ERP waveform.

data set. The typical duration of model training is about 15 h
(90 min/fold).

3.3. Traditional Machine Learning
Algorithms
3.3.1. Feature Extraction
EEG feature extraction was performed based on ERP waveforms,
which were obtained for each subject after averaging across all
trials. Figure 5 provides a schematic illustration of the extracted
features. The ERP mean amplitude was determined from 75 to
105 ms latency window (post-stimulus onset), corresponding
to the window in which the N100 ERP component typically
emerges, and from 150 to 210 ms latency window capturing
the P200 component. Both time windows are shown with red
shading in Figure 5. We also included three slopes as features:
the beginning of N100 deflection, the transition from N100 to
P200, and the final descending section of the P200 component.
Yellow shaded areas in Figure 5 mark the latency intervals
considered for calculating these slopes. All these five features
were extracted from the signals captured by the electrodes Fz,
FCz, Cz, CPz, and Pz. In addition, the amplitudes (circular
symbol) and latencies (triangular symbol) of the N100 and
P200 peaks (blue and green marks, respectively, in Figure 5)
over FCz and Cz electrodes were also extracted. A matrix of
features was created, with rows corresponding to the subjects
and the columns corresponding to the 33 features extracted for
each one.

3.3.2. Data Partitioning and Normalization
A stratified 10-fold cross-validation method was applied to test
machine learning models. Subjects (features matrix rows) were
shuffled and split into 10-folds, ensuring that each fold had the
same proportion of SZ and HC subjects data and that no subject
was repeated in any fold. As implemented in the deep learning
model, in each of the 10 iterations, the model was trained using
9-folds, while the remaining fold was used for the test. From
the subjects contained in the 9 training folds of each iteration,
approximately 10% of them were used in the validation set.

3.3.3. Models Training and Hyperparameters
The SZ classification was firstly performed with the RF algorithm
using features extracted from the 5 electrodes. Several tests
were performed to evaluate the effect of the different extracted
features. The hyperparameter tuning was conducted for each
one, focused on the number of estimators, maximum number of
features, maximum depth of the tree, and split criterion using the
validation set. Initially, only the mean amplitudes in the N100
and P200 windows were used, with ten features included per
subject. RF configured with 100 estimators, a maximum number
of features of 5, and a maximum depth of 2, achieved the best
performance. Afterward, the N100 and P200 peak amplitudes
and latencies were added to the previous data set, totaling 18
features per subject. The best model was configured with 50
estimators, a maximum number of 10, and a maximum depth of
2. Finally, slopes were also considered (Section 4.4.1 will provide
the rationale for including slopes as features). The best model
performance using the 33 features per subject was achieved with
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TABLE 1 | Metrics used to assess the model’s performance, their formulas, and

descriptions.

Metric Formula Description

Accuracy TP+TN
TP+TN+FP+FN

Proportion of correctly predicted subjects labels

Recall TP
TP+FN

Proportion of correctly predicted SZ subjects

Specificity TN
TN+FP

Proportion of correctly predicted HC subjects

Precision TP
TP+FP

How consistent predictions are when tests are

repeated

AUC-ROC Area under the curve:

Recall vs. FP
FP+TN

How much the model is capable of

distinguishing between classes

TN, True Negative; TP, True Positive; FN, False Negative; FP, False Positive.

100 estimators, using a maximum of 2 features in each split and
a maximum depth of 15 in each tree. In both cases, the criterion
used to find the optimum split in the validation set was the Gini
impurity measure.

3.4. Ensemble Method
We used the SzNet as base learner and the hard voting algorithm
as the ensemble method. We combined 5 fits of the SzNet model
trained with different randomly selected seeds in model’s weights
initialization. This approach is justified by the fact that different
initializations lead the neural networks to converge to distinct
solutions (48). The hard voting of predictions from separately
trained models is one of the simplest ensemble methods and it
predicts the class with the largest sum of votes from the models.

3.5. Evaluation Metrics
In order to test themodels’ performance, all input samples of each
subject were fed into the model. The probability of each sample
belonging to a SZ subject was computed. Unlike validation, a
subject-based approach was considered to test the model. Thus,
the average of each subject’s input samples probabilities was
determined and the same probability threshold (50%) was used
to assign a label to the subject. This label can be positive (SZ)
or negative (HC). To describe the prediction quality, five metrics
were derived from the confusion matrix (Table 1).

3.6. Implementation Details
Both deep and traditional machine learning models were

implemented on a workstation with an Intel R© Core
TM

CPU (i7-
4770k, 3.5 GHz) and an NVIDIA R© GPU (GeForce R© GTX 1070).
Deep learning models were implemented using the open-source
framework Pytorch, based on Torch library. RF algorithms
were also written in python using Scikit Learn (49) and
NumPy (50) packages.

4. RESULTS AND DISCUSSION

In this section, we start by motivating the choice of kernel for
time-domain convolutions. Thereafter, we present and discuss
the ablative study, which assesses the relevance of the amount
and location of EEG spatial-temporal information used. In this
ablative study, we evaluate the number of electrodes used as well

as their location over the scalp. After, we compare our proposal
with related work, and we present its limitations.

4.1. Kernel Size for Temporal Convolution
The kernel size determines the receptive field of a convolution
and provides information about the number of input datapoints
the network can look at (51). This is a factor to take into account
when considering a network’s ability to encode the features, and
it is associated with the learning parameters.

In this study, the kernel size used for time-domain
convolution defines what information is extracted from the
EEG signal. The decomposition of EEG signals can reveal
oscillatory activity in specific frequency bands (52). Activity
in each band has been associated with different functions.
The faster rhythms of the EEG signal, corresponding to the
gamma band (above 30 Hz), are linked to complex auditory
information processing. Desynchronization of these oscillations
during auditory processing has been reported in SZ (52, 53).
Thus, we search for the best kernel size using cross-validation.
After testing various sizes, the 9x1 kernel was the one that
reflected the best results.

4.2. Ablation Study
4.2.1. Relevance of the Number and Location of

Electrodes
Different regions of interest (ROI) were analyzed in order to
understand whether and which spatial information is relevant
for SZ discrimination. The effects of the number of electrodes
and their location were tested. The choice of specific electrodes
considered the topographical distribution found both for
N100 and P200 ERP components (Figure 2). Since the largest
amplitudes of these components are widely spread over the
frontal, central, and parietal areas, the first approach used all
the 35 electrodes covering these regions. Then, the number of
electrodes was reduced, keeping the coverage of the same scalp
areas, but varying its location from the left hemisphere to the
right. Three combinations of electrodes were considered (5, 15,
and 35 electrodes over the frontal, fronto-central, central, centro-
parietal, and parietal regions). The three models are hereinafter
referred to as SzNet-5, SzNet-15, and SzNet-35 corresponding
to the three sets used: 5, 15, and 35-electrodes sets, respectively.
To assess the use of 15 and 35 electrodes, the SzNet architecture
was slightly changed: an extra convolutional layer (with 32 filters)
was incremented after layer 9, followed by a ReLU function
(additional details on the architectures of these models are
provided in the Supplementary Material). The electrodes in 2D
structures were also aligned from the frontal to the parietal
region, and from the left to the right hemisphere, as exemplified
in Figure 6. N corresponds to the number of electrodes from
each scalp region tested, which was set to 3 for SzNet-15 and to
7 for SzNet-35. The kernel size used in the extra convolutional
layer is dependent on N. This layer aimed to gather information
from each region (frontal, fronto-central, central, centro-parietal,
and parietal). Convolutions with stride equal to N in the spatial
dimension allowed obtaining one feature per region, as illustrated
in Figure 6. The remaining network was unaltered.
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FIGURE 6 | Illustration of the electrode alignment in the 2D structure created for each EEG segment, and schematization of the convolutional process of the extra

layer added to the SzNet-15 and SzNet-35 networks. Kspatial represents the kernel used in the convolutional layer. N corresponds to the number of electrodes of each

area tested.

FIGURE 7 | Schematic representation of the different ROIs showing the topographical distribution of electrodes considered to test the three models SzNet-35,

SzNet-15, and SzNet-5.

Figure 7 schematically presents the ROI, which varies in
number of electrodes and hemispheric location, used to evaluate
the performance of the three models developed. The 10-fold
cross-validation metrics, computed for each subset of electrodes,
are presented in Table 2. The results of SzNet-5 and SzNet-15
using different spatial subsets show differences in accuracy as a
function of electrode location in the training and data sets. The
training and testing with midline and right ROI data showed
improved performances. Both accuracy and AUC-ROC metrics
show that SzNet-5 with midline and right-1 data, and SzNet-
15-midline achieved the best performances. The lower result
achieved by the SzNet-5 left-1 subset can account for the slightly
lower performance obtained by SzNet-15-midline.

Although no asymmetries in auditory processing alterations
have been reported in SZ patients (54), these results suggest
that changes in amplitude of right hemisphere EEG signals are
contributing more to the discrimination of SZ and HC subjects.

Nonetheless, the use of midline electrodes seems more beneficial
and is corroborated by most of N100 studies in SZ, which often
report a medial to midline N100 amplitude decrease (14). The
results suggest that the use of small subsets of electrodes can
improve SZ classification.

Our results suggest that the model using 5 midline electrodes
(SzNet-5-midline) more accurately predicts whether the EEG
signals come from a SZ or a HC subject. Although with
minor differences, this model achieved the best performance, on
average, for every metric. Subtle differences in accuracy values
can represent important practical improvements since a variation
of only 0.8% is necessary to indicate or detect the increase or
decrease of a unit in the number of correctly identified subjects.

4.2.2. Benefiting From Electrode Alignment
We propose the alignment of electrodes in the 2D data structures
created to feed the deep learning model. Instead of randomly
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TABLE 2 | Performance of the models tested (SzNet-5, SzNet-15 and SzNet-35) using different spatial ROI evaluated with five metrics: accuracy; AUC-ROC; precision;

recall; and specificity.

Model ROI Accuracy AUC-ROC Precision Recall Specificity

SzNet-35 - 0.71 ± 0.07 0.71 ± 0.08 0.70 ± 0.7 0.77 ± 0.09 0.65 ± 0.11

SzNet-15 Left 0.67 ± 0.09 0.67 ± 0.09 0.67 ± 0.14 0.79 ± 0.15 0.55 ± 0.26

SzNet-15 Midline 0.76 ± 0.07 0.76 ± 0.07 0.79 ± 0.13 0.77 ± 0.17 0.74 ± 0.19

SzNet-15 Right 0.73 ± 0.10 0.72 ± 0.10 0.69 ± 0.10 0.88 ± 0.15 0.56 ± 0.19

SzNet-5 Left3 0.71 ± 0.10 0.70 ± 0.10 0.70 ± 0.08 0.77 ± 0.19 0.63 ± 0.17

SzNet-5 Left2 0.72 ± 0.05 0.71 ± 0.04 0.75 ± 0.11 0.72 ± 0.20 0.71 ± 0.17

SzNet-5 Left1 0.67 ± 0.08 0.67 ± 0.08 0.71 ± 0.13 0.70 ± 0.20 0.65 ± 0.24

SzNet-5 Midline 0.78 ± 0.08 0.78 ± 0.08 0.82 ± 0.13 0.77 ± 0.15 0.79 ± 0.17

SzNet-5 Right1 0.77 ± 0.08 0.77 ± 0.09 0.81 ± 0.21 0.72 ± 0.21 0.77 ± 0.09

SzNet-5 Right2 0.72 ± 0.11 0.72 ± 0.11 0.70 ± 0.10 0.78 ± 0.19 0.65 ± 0.14

SzNet-5 Right3 0.67 ± 0.07 0.67 ± 0.07 0.70 ± 0.14 0.72 ± 0.23 0.61 ± 0.26

SzNet-5 Midline** 0.77 ± 0.09 0.77 ± 0.09 0.86 ± 0.16 0.68 ± 0.15 0.85 ± 0.16

The highest values achieved for each metric are highlighted in a different color. Similarly, the model and ROI that achieved the best results are marked. **randomly aligned ROI.

stacking the EEG signal segments, we hypothesized that the
alignment according to the topographical arrangement of the
electrodes could represent a more realistic way to extract spatial
information from the data structures. To confirm that network
performance benefits from this strategy, a comparison between
random and organized arrangements of segments was conducted
for the proposed model, SzNet-5, using the midline ROI. The 10-
fold cross-validation metrics are presented in Table 2, with the
randomly aligned ROI marked with asterisks at the bottom of the
table. With the organized alignment, the accuracy, AUC-ROC,
and recall metrics were improved. The most notorious difference
is in the recall value, which is higher when the signal segments
are not randomly stacked. The increase in this metric means that
the ratio of diagnosed patients incorrectly identified as healthy
subjects decreased, which would be a positive result in clinical
diagnosis. This may suggest that the spatial dynamics of brain
activity over time may be relevant in characterizing auditory
processing in SZ.

4.3. Relevance of SzNet
SZ classification based on classical machine learning methods
applied to EEG data recorded during auditory tasks has been
performed using features extracted from ERP components.
Besides requiring expertise, there is a great variability in the
extracted features. By contrast, the use of deep learning allowed
the SzNet model to automatically learn patterns from EEG
single-trials. Despite the heterogeneity of the disorder, the model
managed to distinguish whether the signal belongs to SZ or
HC considering a short time window focused on early auditory
processing stages. Although it may simultaneously be considered
a limitation, the fact that the SZ sample is not subdivided
according to the different disease subgroups or stages (e.g., first-
episode or chronic patients), mimics the heterogeneity that will
always exist in a real clinical situation. Another advantage of our
approach is the reduced number of trials and the task used for
EEG data acquisition. The elicitation of some ERP components
such as the MMN, whose features are recurrently used for

classification purposes, requires a large number of stimuli and,
consequently, is time-consuming. On the contrary, the passive
listening task used in our study is simple and manageable in a
clinical environment, where diagnosis is expected to be rapidly
made. Besides binary classification, another aim of the current
study was to understand if auditory processing impairments may
contribute to the characterization of SZ, in particular considering
alterations in ERP components that have been proposed as
SZ biomarkers. Only the study conducted by Aristizabal et
al. (28) documented the application of deep learning methods
to auditory EEG signals. Their aim was to identify subjects at
risk of developing SZ using the time course of EEG signals
in response to auditory stimuli. With a shallower architecture
combining convolutional and recurrent networks and with less
learnable parameters, an accuracy of 72.54% was achieved. The
problem addressed as well as the database used differ from
ours, therefore the studies are not directly comparable. Still,
it should be noted that Ahmedt-Aristizabal and collaborators
used the same 5 electrodes (Fz, FCz, Cz, CPz, Pz) for which
our ablative study showed an improved performance. The SzNet
results indicate that changes in the auditory processing are key
features in SZ diagnosis. This shows the need to look at sensory
changes that are often neglected in clinical assessment, and
supports the addition of a new domain to the Research Domain
Criteria (RDoC) framework, focused on sensory impairments in
psychiatric disorders (55).

4.4. Machine Learning vs. Deep Learning
The application of classical machine learning algorithms allowed
us to obtain a base-model to compare with the proposed deep
learning model.

4.4.1. Features Selection
The selection of relevant features plays an essential role in
machine learning classification. The auditory N100 and P200
components shed light on the sensory processing of sounds,
and their latency and amplitude are affected by the level of
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FIGURE 8 | Heatmaps (yellow to red colormap) obtained using Grad-CAM for the segments most likely to belong to HC and SZ subjects.

subject’s arousal, alertness, and attention (56). Abnormalities
in these components have been consistently reported in SZ
patients, which include reduced amplitude of the N100 as well as
reduced amplitude and shorter peak latencies of the P200 (57).
Moreover, both auditory ERP components have been used to
examine sensory and information processing impairments in
SZ (58). In light of this, our focus turned to these components,
in particular their amplitude and latency. Time windows for the
extraction of the N100 and P200 mean amplitudes were based
on visual inspection of the grand average waveforms and on
previous studies (6). Since the N100 and P200 peak amplitudes
are topographically distributed over frontocentral and central
regions, as seen in Figure 2, the FCz and Cz signals were
considered for the analysis of both peak amplitude and latency.

While auditory processing abnormalities in SZ have been
investigated by means of ERP analyses, our deep learning
approach extracts features from the signal that may be directly
correlated to those components and that are relevant to the
discrimination of SZ and healthy subjects. Therefore, the
interpretation of the feature extraction in the implemented SzNet
model provides more information about their relationship with
specific ERP components. The Grad-CAM (Gradient-weighted
Class Activation Mapping) algorithm was used to produce a
saliency map of the critical regions in the input EEG segments
for the classification (59). The importance of the features
extracted by the SzNet model (considering the last convolutional
layer features) is represented by heatmaps obtained by Grad-
CAM implementation in Figure 8. The color scale shows the
variation of features relevance, with dark tones representing
highly discriminative features in the signal morphology.

For this purpose, we considered the EEG segments correctly
identified with a greater degree of certainty (probabilities

above 0.80). An averaged heatmap of the selected samples was
computed for SZ and HC (Figure 8). An average of the EEG
segments was also computed to inform on the features’ location
and correspondence in the spatio-temporal images.

Figure 9 illustrates HC and SZ heatmaps over Cz and
averaged temporal segments (see Supplementary Material for
the other electrodes representations). Group differences around
250 ms post-stimulus onset appear to have been the most
critical temporal feature for the classification of SZ segments.
Interestingly, the transition of more pronounced negative to
positive deflections around 110 ms post-stimulus onset, i.e., from
the N100 to the P200 deflection, may have been pivotal for SZ
identification. This transition is more abrupt in HC as a result
of increased N100 and P200 amplitudes. Both salient features
seem to have a more significant effect across the five electrodes
(Figure 8). The feature extracted from HC segments seem to be
more prominent (higher heatmap values) for the classification
by inspecting both heatmaps. It should be noted that the most
important features to identify HC are located around 50 ms
post-stimulus onset. Subtle differences in this time interval may
correspond to the transition from a P50-like deflection, whose
latency seems to vary between groups, to a N100 deflection. The
transitions from P50 to N100, N100 to P200, and the P200 end
seem to have relevance for the discrimination of the two groups.
In order to interpret these findings, we also extracted the slopes
in the time intervals corresponding to those three transitions as
input features for machine learning models.

RF can provide a measure of the importance of each
feature, according to its contribution to the overall
classification performance. Benefiting from the increased
system interpretability, the features’ weights may provide
important information on the critical EEG electrodes and
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FIGURE 9 | Grad-CAM heatmaps cross-section and averaged EEG signals over Cz electrode drawn for HC and SZ groups. The time intervals associated with the

most relevant features are shaded with the color corresponding to the heatmap of each group. Topographical distribution maps of EEG signal amplitudes at those

time intervals are also presented for each group.

features for discriminating SZ. Figure 10 shows the weight of
each feature for the RF result considering 33 features. N100
features from frontal, fronto-central, and central scalp regions
were the most important features for classification, which is
consistent with the literature (14). However, the slopes extracted
from the transitions between ERP components appear to have
been significant. This result suggests that the temporal dynamics
of early auditory processing is altered in SZ. Hence, all these
features were considered to obtain the best performance as they
seem to have an impact on the differentiation of subjects with SZ.

4.4.2. Models Performance
Table 3 presents the RF models’ performance using ERP features
for SZ classification. The inclusion of amplitude and latency
of the N100 and P200 peaks over FCz and Cz electrodes (RF-
18) improved the classification achieved by the RF, which only
include the N100 and P200 mean amplitudes over all the 5
midline electrodes (RF-10). The best result was obtained when
adding all 33 features (RF-33), which included the slopes in
the three transition time intervals between ERP components
suggested by the GRAD-CAM implementation. The best model
distinguished HC and SZ subjects with an accuracy of 73%.
Adding the slopes values as features increased the specificity,

which suggests that these features may have a more significant
influence on the identification of HC subjects.

The performance of the deep learning method surpasses that
of the traditional machine learning models, and demonstrates
the potential of the model we propose here for SZ classification.
Unlike standard techniques in which features are extracted
manually and provided to the model for classification, the
deep learning model performs both feature extraction and
classification. CNNs are able to detect highly specific features
of the training dataset under the constraints of the specific
prediction, such as the data labels (38). The end-to-end
training forces feature extraction by minimizing the loss for
SZ classification. Through this optimization technique, CNNs
provide improved models and, thus, more accurate results (38).

4.5. Ensemble Learning
The result of the ensemble of SzNet models’ predictions are
presented in Table 3. An improved performance is observed
using 5 models, surpassing the single SzNet result (see
Supplementary Material). As expected, the voting ensemble
offered a lower variance in predictions made over base learners,
which improved the generalization ability.
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FIGURE 10 | Importance of each feature given by its weight to final performance of RF using 33 features. Bars colors corresponds to the colors used in Figure 5.

TABLE 3 | Results of the classification performed by the RF, the proposed deep learning model, and the ensemble learning method.

Model Features Accuracy Precision Recall Specificity AUC-ROC

RF 10 0.69 ± 0.10 0.70 ± 0.15 0.70 ± 0.17 0.69 ± 0.14 0.70 ± 0.10

RF 18 0.70 ± 0.11 0.71 ± 0.14 0.70 ± 0.17 0.71 ± 0.15 0.70 ± 0.11

RF 33 0.73 ± 0.13 0.73 ± 0.15 0.70 ± 0.17 0.76 ± 0.13 0.73 ± 0.13

Proposed 0.78 ± 0.08 0.82 ± 0.13 0.77 ± 0.15 0.79 ± 0.17 0.78 ± 0.08

Ensemble 0.80 ± 0.08 0.82 ± 0.14 0.82 ± 0.14 0.78 ± 0.18 0.80 ± 0.08

4.6. Limitations and Future Directions
The single-trial EEG recordings contain task-related activity.
However, this activity is overlaid with task-unrelated brain
processes, which results in a low signal-to-noise ratio (SNR).
Variations in SNR across trials and subjects, which may also
arise from differences in EEG data acquisition parameters, may
affect signal quality. Moreover, fluctuations in the latency and
magnitude of the EEG responses to stimuli, combined with the
high dimensionality of EEG signals, increase both intra- and
intersubject variability. The best performances from raw EEG
data may be achieved with larger training data sets, which also

prevents overfitting: more subjects and more trials per subject
to overcome inter and intrasubject variability, respectively. Data
augmentation techniques may increase the diversity of the data
available for training the model, and thus prevent overfitting.
Notwithstanding, we note that our attempts at data augmentation
did not lead to improved SzNet model performance.

As mentioned before, SZ subgroups or stages (e.g., first
episode vs. chronic) were not considered in this study.
Future studies should address whether SzNet performance
is affected by illness stage and symptom severity. However,
some requirements should be taken into account: adaptation
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of the SzNet model for multi-class classification; inclusion of
a larger amount of data from each SZ subgroup. Following
the adaptation of the model to multiple classes, an important
approach might be to include data from subjects at risk
of developing SZ or in prodromal stages. This line of
development may allow prediction of disease onset and a
better understanding of the course of the underlying auditory
processing alterations.

SzNet can provide a baseline model for future developments
and analyses. A well-characterized public SZ EEG database is
highly recommended for the direct comparison and objective
evaluation of the performances of different algorithms.

5. CONCLUSION

This paper presents the application of a deep convolutional
neural network to the analysis of EEG signals recorded in a
passive listening task in healthy and SZ adults. Using only 5
midline electrodes (Fz, FCz, Cz, CPz, and Pz), the proposed
model achieved an average accuracy of 78% in the discrimination
between SZ and HC subjects. By ensembling predictions of 5
fits of this model, trained with different weights initialization,
SZ classification achieved an accuracy of 80%. The deep network
allowed the automatic learning of patterns from the time course
and spatial distribution of EEG single-trials, capable of detecting
alterations in brain indices of auditory processing in SZ, despite
the great heterogeneity of the disorder. SzNet provides a base
model for future developments in SZ research and, specifically,
(differential) diagnosis and prediction.
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Background: The search for a method that utilizes biomarkers to identify patients with
schizophrenia from healthy individuals has occupied researchers for decades. However,
no single indicator can be employed to achieve the good in clinical practice. We aim
to develop a comprehensive machine learning pipeline based on neurocognitive and
electrophysiological combined features for distinguishing schizophrenia patients from
healthy people.

Methods: In the present study, 69 patients with schizophrenia and 50 healthy
controls participated. Neurocognitive (contains seven specific domains of cognition)
and electrophysiological [prepulse inhibition, electroencephalography (EEG) power
spectrum, detrended fluctuation analysis, and fractal dimension (FD)] features were
collected, all these features were taken together to generate the identification models
of schizophrenia by applying logistics, random forest, and extreme gradient boosting
algorithm. The classification capabilities of these models were also evaluated.

Results: Both the neurocognitive and electrophysiological feature sets showed a
good classification effect with the highest accuracy greater than 85% and AUC
greater than 90%. Specifically, the performances of the combined neurocognitive and
electrophysiological feature sets achieved the highest accuracy of 93.28% and AUC of
97.91%. The extreme gradient boosting algorithm as a whole presented more stably
and precisely in classification efficiency.

Frontiers in Psychiatry | www.frontiersin.org 1 April 2022 | Volume 13 | Article 81036270

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2022.810362
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyt.2022.810362
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2022.810362&domain=pdf&date_stamp=2022-04-05
https://www.frontiersin.org/articles/10.3389/fpsyt.2022.810362/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


fpsyt-13-810362 March 31, 2022 Time: 15:23 # 2

Tian et al. Detecting People With Schizophrenia

Conclusion: The highest classification accuracy of 93.28% by combination of
neurocognitive and electrophysiological features shows that both measurements are
appropriate indicators to be used in discriminating schizophrenia patients and healthy
individuals. Also, among three algorithms, extreme gradient boosting had better
classified performances than logistics and random forest algorithms.

Keywords: schizophrenia, neurocognition, electrophysiology, electroencephalography, prepulse inhibition (PPI),
biomarker, machine learning, classification

INTRODUCTION

Schizophrenia is one of the most severe mental disorders,
affecting 20 million people worldwide (1). Extensive studies show
that cognitive deficits are one of the core features of significant
neurological dysfunction associated with schizophrenia and are
typically associated with a poor prognosis (2, 3). In addition,
cognitive deficits are no less predictive of schizophrenia and
its level than positive and negative symptoms, if not better
(4, 5). Several specific areas of cognition can be assessed by
a neurocognitive measure battery, which usually involves the
speed of processing, attention, working memory, and verbal
learning (6).

In addition, pre-pulse inhibition (PPI) is considered an
indicator that reflects information processing deficits in patients
with schizophrenia, which is based on electrophysiological
measures (7, 8). Most previous studies show that PPI is
reduced in schizophrenic patients and their unaffected first-
degree relatives (9). However, in comparison to neurocognitive
measurements, PPI presents only a moderate effect size
(Cohen’s d < 0.8) (10). Yang et al. (11) reports a novel
PPI paradigm involving attentional enhancement effects of
PPI while providing a more significant effect size (Cohen’s
d > 1.2). Additionally, electroencephalography (EEG) is a non-
invasive electrophysiological measure widely applied to assess
the neural response of the brain to external stimulation. The
EEG power spectrum describes the distribution of power into
each frequency band and is commonly used in schizophrenia
research (12, 13). Extensive research shows that patients with
chronic schizophrenia have abnormal EEG frequencies at rest
compared with healthy individuals (12, 14–16). Meanwhile, more
advanced EEG analytical methods have been studied in recent
years, such as detrended fluctuation analysis (DFA), a fractal
analytical method to quantify long-range temporal correlations
(LRTCs) in power-law form. A previous study reports strongly
reduced LRTCs in both alpha and beta frequency bands in
patients with schizophrenia (17).

The current gold standard for schizophrenia diagnosis is built
on the International Classification of Diseases, 11th Revision
(ICD-11) or the Diagnostic and Statistical Manual of Mental
Disorders, 5th Edition (DSM-5). These diagnostic methods
rely on descriptive psychopathology, which, to some extent,
reflects the subjective judgment of psychiatrists. Therefore,
there is an urgent need for clinicians to have an objective
measure of characteristics. Nevertheless, frustratingly, due to the
heterogeneity of the etiology and clinical variability, excellent
biomarkers for the diagnosis of schizophrenia are still lacking. In

fact, there is no single indicator that can be adopted in clinical
practice. In recent years, the role of machine learning in auxiliary
diagnosis has received increasing attention throughout the field
of schizophrenia research. In translational medicine and clinical
practices, these methods are widely involved in exploration
for presymptomatic screening, prognostic prediction, and
supporting treatment decisions (18). However, to date, there is a
paucity of literature about building machine learning models on
neurocognitive and electrophysiological biomarkers.

This study developed a comprehensive machine learning
pipeline based on neurocognitive (contains seven specific areas of
cognition) and electrophysiological [PPI, EEG power spectrum,
detrended fluctuation analysis, and fractal dimension (FD)]
features by using logistics, random forest, and extreme gradient
boosting (XGBoost) algorithms and evaluated their classification
capabilities separately.

MATERIALS AND METHODS

Experimental Subjects
This study enrolled 69 patients with schizophrenia and 50 healthy
controls. The diagnosis was established by the researchers from
interviews using the Structured Clinical Interview for DSM-
IV (SCID) and supplemented by clinical notes. All subjects
were right-handed, and their audiometric assessments (pure tone
audiometry, 1,000 Hz) were normal. The inclusion criteria for the
enrollment of patients with schizophrenia are as follows: 1) all
clinically stable subjects had no history of neurological disorders
or head trauma, 2) no history of electroconvulsive therapy
within the past 6 months, and 3) no history of alcohol/drug
dependence or abuse (except tobacco). Patients were excluded
because of unstable medical conditions or IQ below 70. During
this study, all patients received antipsychotic treatments as usual.
The healthy control group (CON) consisted of subjects matched
to the schizophrenia group (SCZ) in terms of gender, age, years
of education, and smoking history. The exclusion criteria for the
CON include substance abuse, suicidal risk, major head trauma,
and neuropsychiatric disorders. Before signing the informed
consent, each subject received a detailed description of the aims
and procedures for participation in the study. The independent
ethics committee of Beijing Anding Hospital approved the study.
The psychopathological status of the patients was also assessed
by the Positive and Negative Syndrome Scale (PANSS). The
demographic and clinical characteristics of SCZ and CON are
summarized in Table 1.
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Neurocognitive Assessments
The neurocognitive function of the subjects was assessed using
the Repeatable Battery for the Assessment of Neuropsychological
Status (RBANS; Chinese version) (19). The RBANS assesses
five separate cognitive domains: immediate memory (IMM),
delayed memory (DEM), visuospatial and constructional (VC),
attention (ATT), and language functioning (LAN). Besides
RBANS, the Stroop Color-Word Test (Chinese version) (20)
was also administered. Each subject was asked to complete
two interference tasks, and color (INT-C) and word (INT-W)
interference times were recorded. In this part of the experiment,
five RBANS features (IMM, DEM, VC, ATT, LAN) and two
Stroop features (INT-C, INT-W) were extracted.

Electrophysiological Assessments
Prepulse Inhibition Measures
Subjects were comfortably seated in a reclining chair with
their arms fully relaxed in a natural position. Acoustic startle
measured through electromyogram (EMG) signal was recorded
from the right orbiculate oculi muscle. Electrode impedances
were maintained at <5 k�. The eye-blink component of auditory
startle reflexes was quantified by the human EMG startle reflexes
system (EMG XEYE human startle reflex, Tian Ming Hong Yuan
Instruments Company, Beijing, China). In addition, the EMG
was bandpass filtered to 100–1,000 Hz and amplified 10,000
times. Acoustic startle stimuli were presented binaurally through
two headphones. Acoustic signals were characterized by a sound-
level meter (AUDit and System 824, Larson Davis, United States).

PPI was tested according to the same paradigm used in
previous research (11, 21). In short, the precedence effect was
utilized to generate two different perceived spatial relations
between the prepulse and background sound: perceptual
separation and perceptual colocation. A more detailed
description of the PPI paradigm and related theories are
available in previous studies (11, 21). Finally, two features
were extracted from this test (perceived spatial colocation PPI,
PSC-PPI; perceived spatial separation PPI, PSS-PPI).

Electroencephalography Recording and Processing
Electroencephalography Data Preprocessing
Subjects were comfortably seated in a reclining chair. Then, they
closed their eyes and remained relaxed and quiet for 5 min.
Continuous EEG was digitized at 1,000 Hz using the EGI EEG
system (EGI, Electrical Geodesics, Inc., America) with 128-
electrode HydroCelnet referenced to the vertex (Cz). Off-line
preprocessing of EEG data was conducted by using EEGLAB
(v2019.1) (22) and FieldTrip (23) toolboxes in MATLAB
(MATLAB Release 2017b, MathWorks, Inc.). EEG raw data
was first resampled to a 500-Hz sampling rate and bandpass
filtered to 0.5–45 Hz. For each subject, artifact removal was
administered using both continuous raw data and independent
component analysis (ICA, algorithm: runica) within EEGLAB.
ICA components were classified using an EEGLAB plugin
ICLabel tool (24). Eye movement, blink, heartbeat, muscular
activity, or other artifacts were distinguished from the ICA data.
The EEG data were then manually inspected to verify artifact

TABLE 1 | Demographic and clinical characteristics of healthy control and
schizophrenia group.

Factor CON (N = 50) SCZ (n = 69) χ2/t P

Gender (male/female) 38/12 49/20 0.37 0.545a

Age (year) 42.2 ± 8.8 44.8 ± 7.0 −1.80 0.074b

Education (years of schooling) 10.9 ± 3.1 10.8 ± 2.5 0.15 0.882b

Smoking (yes/no) 24/26 35/34 0.09 0.769a

Duration of illness (year) 19.7 ± 8.3

Age at onset (year) 24.5 ± 6.6

CPZe (mg/day) 292.7 ± 265.3

PANSS score 63.3 ± 13.1

Positive Symptoms 12.8 ± 4.5

Negative Symptoms 20.0 ± 6.4

General Psychopathology 30.5 ± 5.6

Mean ± SD are reported for age, education, duration of illness, age at onset, CPZe,
and all PANSS scores.
CON, Health Control Group; SCZ, Schizophrenia Group; CPZe, Chlorpromazine
Equivalent Doses; PANSS, Positive and Negative Syndrome Scale.
a Indicates P-value for chi-square test.
b Indicates P-value for independent sample t-test.

removal. The bad electrodes were replaced with interpolated
data from the remaining electrodes. Finally, all electrodes were
rereferenced to an average reference.

Power Spectrum Features
The power spectral density (PSD) of each electrode was evaluated
using the Fast Fourier Transform (FFT, Welch method, 2s
sliding window, 50% overlap, 0.5-Hz frequency step), yielding
an EEG spectrum ranging from 0.5 to 45 Hz. The frequency
bands were selected as follows: delta (1.0–4.0 Hz), theta (4.0–
8.0 Hz), alpha (8.0–14.0 Hz), beta (14.0–30.0 Hz). D, T, A,
and B denote delta, theta, alpha, and beta frequency bands,
respectively. AL and AR were computed by averaging the power
in the alpha band for the left (Fp1, F3, C3, P3, O1, F7, T3,
T5) and right hemispheres (Fp2, F4, C4, P4, O2, F8, T4, T6).
(D + T)L and (D + T)R were averaged by summing the power
of delta and theta in the left and right hemispheres. AFp and
AO were calculated by averaging the alpha band power for
the Fp channels (Fp1, Fp2) and the O channels (O1, O2). The
absolute power (Abs) and relative power (Rel) in each frequency
band were computed for each electrode. A/T ratio, A/B ratio,
(D + T)/(A + B) ratio, (D + T)/(A + B) ratio, (D + T)L/(D + T)R
ratio, AFp/AO ratio were calculated for Abs as well as Rel. In PSD,
20 features were extracted. For detailed features information,
see Table 2.

Detrended Fluctuation Analysis Features
Detrended fluctuation analysis is an analytical method based on
scale-free theory for estimating long-range temporal correlations
(LRTCs) in power-law form (25). That is, if a time series data
has a non-random temporal structure with slowly decaying
autocorrelations, DFA can quantify the rate of decay of these
correlations as indexed by the DFA power-law exponent. Some
evidence suggests that the DFA reflects brain maturation and may
prove useful as a potential biomarker for the pathophysiology
of neurodevelopmental disorders (26). DFA calculation was
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TABLE 2 | Statistical comparison of neurocognitive and electrophysiological
features.

Features CON (N = 50) SCZ (n = 69) t P a

IMM *** 89.24 ± 19.73 54.70 ± 15.30 10.75 0.000

VC ** 89.92 ± 20.65 78.81 ± 15.47 3.36 0.003

LAN *** 91.88 ± 16.30 77.68 ± 12.51 5.38 0.000

ATT *** 104.34 ± 15.94 91.09 ± 12.26 5.13 0.000

DEM *** 90.66 ± 19.16 64.39 ± 18.32 7.57 0.000

INT-C ** 4.21 ± 3.88 7.39 ± 5.95 −3.30 0.003

INT-W ** 16.78 ± 9.27 24.69 ± 12.85 −3.71 0.001

PSC-PPI (%) ** 31.70 ± 26.15 11.26 ± 29.07 3.95 0.001

PSS-PPI (%) *** 50.65 ± 25.92 14.70 ± 25.30 7.57 0.000

Abs-D (µV2) 10.43 ± 12.57 11.01 ± 13.61 −0.23 0.824

Abs-T (µV2) * 3.30 ± 3.60 6.67 ± 7.96 −2.79 0.014

Abs-A (µV2) 7.19 ± 8.18 9.78 ± 10.56 −1.45 0.264

Abs-B (µV2) 0.80 ± 0.73 0.99 ± 1.07 −1.09 0.376

Abs-A/T 2.79 ± 3.25 2.25 ± 2.41 1.03 0.393

Abs-A/B 9.17 ± 7.99 10.77 ± 9.32 −0.98 0.397

Abs-(D + T)/(A + B) 3.67 ± 6.58 2.27 ± 2.55 1.61 0.202

Abs-(D + T)L/(D + T)R 1.00 ± 0.26 1.05 ± 0.33 −1.01 0.393

Abs-AL/AR 0.98 ± 0.33 0.97 ± 0.28 0.22 0.824

Abs-AFp/AO ** 1.49 ± 1.75 0.69 ± 0.61 3.51 0.002

Rel-D * 3.64 ± 1.54 2.98 ± 1.31 2.53 0.028

Rel-T * 1.37 ± 0.65 1.85 ± 1.01 −2.94 0.010

Rel-A 2.32 ± 1.16 2.55 ± 0.89 −1.22 0.376

Rel-B 0.36 ± 0.15 0.34 ± 0.18 0.72 0.550

Rel-A/T 2.46 ± 2.45 2.01 ± 1.82 1.14 0.376

Rel-A/B 8.35 ± 6.62 9.71 ± 6.61 −1.11 0.376

Rel-(D + T)/(A + B) 2.69 ± 2.53 2.18 ± 2.36 1.13 0.376

Rel-(D + T)L/(D + T)R 1.02 ± 0.13 1.05 ± 0.14 −1.10 0.376

Rel-AL/AR 0.98 ± 0.13 0.98 ± 0.12 0.37 0.754

Rel-AFp/AO 0.76 ± 0.42 0.80 ± 0.24 −0.61 0.592

DFA-D 0.73 ± 0.04 0.75 ± 0.07 −2.06 0.082

DFA-T * 0.68 ± 0.05 0.70 ± 0.06 −2.38 0.039

DFA-A ** 0.77 ± 0.09 0.71 ± 0.09 3.42 0.003

DFA-B *** 0.66 ± 0.07 0.61 ± 0.06 4.21 0.000

FD 1.60 ± 0.04 1.61 ± 0.04 −0.70 0.550

Mean ± SD are reported for all features.
a Indicates P-value for independent sample t-test, and false discovery rate (FDR)
was used to adjust P-value.
CON, Health Control Group; SCZ, Schizophrenia Group; IMM, immediate memory
score; VC, visuospatial/constructional score; LAN, language score; ATT, attention
score; DEM, delayed memory score; INT-C, color interference time; INT-W, word
interference time; PPI, prepulse inhibition; PSC-PPI, perceived spatial co-location
PPI; PSS-PPI, perceived spatial separation PPI; Abs, absolute power spectra; Rel,
relative power spectra; D, T, A, B denote delta, theta, alpha, and beta frequency
band, respectively; L, left; R, right; Fp, frontal pole; O, occipital; DFA, detrended
fluctuation analysis; FD, fractal dimension.
*P < 0.05; **P < 0.01; ***P < 0.001.

performed using the Neurophysiological Biomarker Toolbox
(NBT).1 First, all electrodes were filtered in delta, theta, alpha, and
beta oscillations, respectively. Then, the amplitude envelope was
generated from each frequency band. Finally, the DFA value for
each electrode was estimated per participant and stored for each
frequency band separately. DFA-D, DFA-T, DFA-A, DFA-B were

1https://github.com/NBT-Analytics/NBTpublic

computed by averaging all electrodes in delta, theta, alpha, and
beta frequency bands.

Fractal Dimension Features
Brain complexity can be described as the highly structured
temporal structure observed in the EEG signal between pure
randomness (e.g., white noise) and the absence of variability
(constancy or pure periodicity). The EEGLAB plugin myFractal2
was used to calculate FD for each electrode. Finally, the FD
feature was extracted by averaging the FD value of all electrodes.

Statistical Analyses
Statistics were performed in RStudio (Version 1.2.5033, RStudio,
Inc., Boston, United States) with R software (Version 3.6.3).
The demographic and primary clinical data include gender,
age, years of education, smoking history, duration of illness,
age of illness onset, chlorpromazine equivalent doses, PANSS
total score, PANSS positive score, PANSS negative score,
and PANSS general psychopathology score. All demographic
and clinical variables except gender and smoking history
were expressed as means and SDs. The independent t-test
and the chi-square test were conducted to evaluate potential
differences in demographic, clinical variables neurocognitive, and
electrophysiological between CON and SCZ. The false discovery
rate (FDR) was computed to adjust P-values for multiple testing
based on the Benjamini-Hochberg method (27). P < 0.05 (two-
tailed) was considered as indicative of statistical significance.
PASS version 11.0 (NCSS, LLC., Kaysville, UT, United States) was
used for statistical power calculation.

Classification
All analyses were carried out using R 3.6.3 software. To choose
the optimal features for SCZ and CON classification, the
classification ability of each feature was first evaluated. A self-
compiled function was used to compute Cohen’s d-values of
each feature. Receiver operating characteristic curve (ROC)
analysis of each feature was created using the package of
pROC in R. ROC values of every feature containing accuracy,
sensitivity, specificity, and area under ROC curve (AUC) was
used for analyses.

All features were then divided into two different categories:
neurocognitive and electrophysiological sets. The rfe function (R
caret package) was used for feature selection by the multivariate
recursive feature elimination method (28). The main idea of
multivariate recursive feature elimination is to build the model
repeatedly and then select the best (or worst) features, put the
selected features aside, and then repeat the process over the
remaining features until all the features have been traversed. In
this process, the order to be eliminated is the order of the features.
The rfe was first fitted to all features using the bagged tree
algorithm. Each feature was ranked according to its importance
to the model. In each iteration of feature selection, the ranked
features were retained, the model was refitted, and performance
was assessed. The final selection of features in each set was based
on 10-fold cross-validation.

2https://github.com/rami-codes/myFractal
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Then, two optimal subsets (neurocognitive and
electrophysiological selected feature sets) and one combination
feature set (containing two subsets) were obtained. After feature
selection, the logistics algorithm (R stats package), the random
forest algorithm (29) (R randomForest package), and the
Extreme Gradient Boosting XGBoost algorithm (30) (R xgboost
package) were utilized to estimate the classification models
from the three features sets. When dealing with medium-sized
structured data or table data, it is generally considered that the
algorithm based on decision tree is the best. Random forest is an
ensemble method to build decision trees. Intuitively speaking,
each decision tree is a classifier, and then, for an input sample, N
trees have N classification results. The random forest integrates
all the classified voting results and specifies the classification
with the most votes as the final output. The classification results
of several weak classifiers are voted to form a strong classifier,
which is the idea of the random forest. XGBoost is another
ensemble machine learning algorithm that uses a decision tree as
a weak classifier and then integrates these weak classifiers into a
strong classifier. In the process of integration, different weights
are usually given according to classification accuracy of weak
classifiers. Moreover, after adding weak classifiers, the data is
usually reweighed to strengthen the classification. Shortly after
the XGBoost was put forward, 17 of the 29 champions in Kaggle
Data Challenge 2015 used the XGBoost method, which defeated
the neural network method.

Finally, the performance of these models is validated using
the 10-fold cross-validation method. The results of the validation
were then averaged. The classification performance was evaluated
by accuracy, sensitivity, and specificity. Besides this, the
performance of each model was also evaluated using ROC curves.

RESULTS

Demographics and Clinical
Characteristics
SCZ (N = 69) and CON (N = 50) were well matched for gender,
age, years of education, and smoking history. There were no
significant differences between SCZ and CON in the distribution
of these characteristics (Table 1).

Statistical Comparisons of All Extracted
Features Between Schizophrenia Group
and Control Group
The statistical analysis results of all features are presented in
Table 2. The means and standard deviations of all features are
shown. In total, all neurocognitive features were statistically
different between SCZ and CON. It can also be observed that
all PPI features differed significantly between the two groups.
Among the EEG power spectrum features, only absolute theta
power (Abs-T), absolute power AFp/AO ratio (Abs-AFp/AO),
relative delta power (Rel-D), and relative power theta (Rel-T)
showed statistically significant differences. In addition, the DFA
of CON is lower than that of SCZ (DFA-T) in the theta band as
well as both alpha and beta bands of CON being significantly

higher than that of SCZ (DFA-A, DFA-B). None of the FDs
differed significantly between SCZ and CON. Among all features,
the P-values for IMM, LAN, ATT, DEM, PSS-PPI, and DFA-B
were less than 0.001.

Cohen’s d and Classification
Performance of Single Feature
To choose optimal features to distinguish SCZ from CON, the
Cohen’s d and the ROC values were first evaluated for each
feature. The ROC values included accuracy (%), sensitivity (%),

TABLE 3 | Cohen’s d and the classification performance of single feature.

Features Cohen’s d Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC
(%)

IMM 1.42 84.03 73.91 98.00 91.87

VC 0.60 69.75 95.65 34.00 64.65

LAN 0.90 76.47 75.36 78.00 75.74

ATT 0.86 77.31 85.51 66.00 77.84

DEM 1.16 83.19 82.61 84.00 86.58

INT-C 0.59 64.71 53.62 80.00 66.00

INT-W 0.65 67.23 53.62 86.00 71.26

PSC-PPI 0.69 70.59 76.81 62.00 70.61

PSS-PPI 1.16 80.67 79.71 82.00 84.32

Abs-D 0.04 53.78 49.28 60.00 50.00

Abs-T 0.50 67.23 62.32 74.00 67.13

Abs-A 0.27 68.07 86.96 42.00 61.71

Abs-B 0.20 60.5 72.46 44.00 57.88

Abs-A/T 0.19 37.82 7.25 80.00 48.7

Abs-A/B 0.18 67.23 91.3 34.00 58.43

Abs-(D + T)/(A + B) 0.30 63.87 81.16 40.00 56.96

Abs-(D + T)L/(D + T)R 0.19 53.78 23.19 96.00 54.26

Abs-AL/AR 0.04 42.86 43.48 42.00 51.54

Abs-AFp/AO 0.62 68.07 76.81 56.00 67.68

Rel-D 0.46 66.39 82.61 44.00 63.1

Rel-T 0.53 63.03 62.32 64.00 64.35

Rel-A 0.23 63.87 78.26 44.00 56.23

Rel-B 0.13 53.78 36.23 78.00 56.12

Rel-A/T 0.21 56.3 52.17 62.00 52.87

Rel-A/B 0.21 65.55 89.86 32.00 58.35

Rel-(D + T)/(A + B) 0.21 63.03 79.71 40.00 55.59

Rel-(D + T)L/(D + T)R 0.20 58.82 56.52 62.00 56.61

Rel-AL/AR 0.07 47.06 46.38 48.00 47.8

Rel-AFp/AO 0.11 60.5 66.67 52.00 59.13

DFA-D 0.38 57.14 30.43 94.00 58.52

DFA-T 0.43 61.34 62.32 60.00 61.57

DFA-A 0.61 68.07 63.77 74.00 70.1

DFA-B 0.73 71.43 75.36 66.00 71.94

FD 0.13 54.62 46.38 66.00 53.46

AUC, area under receiver operating characteristic curve; IMM, immediate memory
score; VC, visuospatial/constructional score; LAN, language score; ATT, attention
score; DEM, delayed memory score; INT-C, color interference time; INT-W, word
interference time; PPI, prepulse inhibition; PSC-PPI, perceived spatial co-location
PPI; PSS-PPI, perceived spatial separation PPI; Abs, absolute power spectra; Rel,
relative power spectra; D, T, A, B denote delta, theta, alpha, and beta frequency
band, respectively; L, left; R, right; Fp, frontal pole; O, occipital; DFA, detrended
fluctuation analysis; FD, fractal dimension.
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specificity (%), and AUC (%). Table 3 shows these indexes from
the neurocognitive and electrophysiological features. As can be
seen in Table 3, a total of 14 features had d-values that exceeded
the range of medium effect sizes (Cohen’s d = 0.5) (31), which
is generally consistent with the statistical result. These include
IMM, VC, LAN, ATT, DEM, INT-C, INT-W, PSC-PPI, PSS-PPI,
Abs-T, Abs-AFp/AO, Rel-T, DFA-A, and DFA-B. Among them,
the Cohen’s d-values of LAN, ATT, DEM, and PSS-PPI were
all greater than 0.8, indicating a large effect size, whereas the
Cohen’s d-value of IMM reached 1.42, suggesting a minimal effect
size. In Table 3, it is evident that the neurocognitive features
performed better than the electrophysiological features in terms
of ROC values. IMM was the most suitable neurocognitive
feature for classification with an accuracy of 84.03%, and its
AUC reached 91.87%. Five neurocognitive features (IMM, LAN,
ATT, DEM, and INT-W) had AUC values greater than 70%,
demonstrating functional discrimination capacities of features
(32). The PSS-PPI was the best potential electrophysiological
feature with an accuracy of 80.67% and an AUC of 84.32%. All
four electrophysiological features (PSC-PPI, PSS-PPI, DFA-A,
and DFA-B) had AUCs greater than 70%.

Classification Performances of
Combined Features
As mentioned in the methods, the REF method was used to select
the neurocognitive and electrophysiological feature sets that
could optimally distinguish between CON and SCZ. In addition,
10-fold cross-validation was used for feature selection to
prevent overfitting. Finally, the neurocognitive selected features
(NSF) subset contained immediate memory, delayed memory,
attention, language functioning, color interference time, and
word interference time. The electrophysiological selected features
(ESF) subset contained PSC-PPI, PSS-PPI, Abs-T, Abs-A, Abs-
AFp/AO, Abs-(D + T)/(A + B), Rel-D, Rel-T, Rel-A/B, DFA-A,
and DFA-B. All selected features (ASF) included two subsets as
described above. Then, the logistics, random forest and XGBoost
algorithms were implemented to build classification models from
the NSF subset, ESF subset, and ASF set. On this basis, these
models were evaluated using a 10-fold cross-validation method.

Finally, the fitted values for the probability of people with
schizophrenia ranged from 0 to 1. Accuracy, sensitivity, and
specificity were calculated by setting cutoff points at 0.5 of the
fitted values, and then the ROC curves were evaluated and AUCs
were calculated based on the fitted values. These model evaluation
indicators (accuracy, sensitivity, specificity, and AUC) are shown
in Table 4. Figure 1 shows the ROC curves for each model to
represent the differences of ROC curves more clearly. As can be
seen from Table 4 and Figure 1, the model containing all selected
feature sets exhibits the best classification performance regardless
of the algorithm used (logistics accuracy of 87.39%, random
forest and XGBoost accuracy of 93.28%). The NSF subset models
and the ESF subset models showed roughly comparable levels
of classification accuracy, but the NSF subset models performed
better than the ESF subset in terms of AUC values. Besides
this, the XGBoost algorithms performed more consistently and
accurately in both accuracy and AUC among all the compared

TABLE 4 | Classification performances of combined features.

Feature set Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC (%)

NSF subset models

Logistics algorithm 82.35 88.41 74.00 89.88

Random forest algorithm 88.24 82.61 96.00 96.59

XGBoost algorithm 89.08 89.86 88.00 93.99

ESF subset models

Logistics algorithm 82.35 86.96 76.00 90.84

Random Forest algorithm 84.87 91.30 76.00 91.88

XGBoost algorithm 88.24 89.86 86.00 90.52

ASF set models

Logistics algorithm 87.39 92.75 80.00 92.54

Random forest algorithm 93.28 94.20 92.00 97.36

XGBoost algorithm 93.28 91.30 96.00 97.91

NSF subset, Neurocognitive Selected Features subset include IMM, LAN,
ATT, DEM, INT-C, INT-W features; ESF subset, Electrophysiological Selected
Features subset include PSC-PPI, PSS-PPI, Abs-T, Abs-A, Abs-AFp/AO, Abs-
(D + T)/(A + B), Rel-D, Rel-T, Rel-A/B, DFA-A, DFA-B; ASF set, All Selected Features
set include NSF subset and ESF subset.

algorithms. The ASF set model with the XGBoost algorithm
achieved the highest accuracy of 93.28% and an AUC of 97.91%.
Statistical power was calculated by tests for one ROC curve
procedure in PASS software. The power analysis showed that 50
patients and 69 healthy subjects were sufficient to have more than
90% statistical power at a two-sided alpha of 0.05 for significance
level (Supplementary Table 1).

To better present the differences in the classification ability of
these three algorithms, scatterplots were drawn with the fitted
values of the NSF subset as the horizontal coordinates and
the fitted values of the ESF subset as the vertical coordinates
(Figure 2). It is apparent that the fitted values of the random
forest and XGBoost algorithm are more densely distributed
in this plot compared to the logistics algorithm, which also
suggests that the random forest and XGBoost algorithms provide
better performance in distinguishing schizophrenia patients from
healthy individuals.

DISCUSSION

Classification Performance of
Neurocognition in Schizophrenia
First, this study sought to determine which feature set was more
beneficial in distinguishing between schizophrenic patients and
healthy control subjects to construct the model. The second aim
of the project was to identify which machine learning algorithm
performed better in terms of classification ability and robustness.

The highest classification accuracy was 84.03% based on a
single neurocognitive feature, achieved by immediate memory.
A high level of immediate memory is considered as a predictor
of improved cognitive impairments in schizophrenic patients
(33). This also implies a potential opportunity for evaluating
the prognostic or medical effect by using an immediate memory
score. Other neurocognitive indicators performed well. For
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FIGURE 1 | Receiver Operator Characteristics (ROC) curves for classification of schizophrenia patients and controls based on different combinations of features
using logistics (A), random forest (B), and XGBoost algorithm (C). NSF subset, Neurocognitive Selected Features subset include IMM, LAN, ATT, DEM, INT-C, INT-W
features; ESF subset, Electrophysiological Selected Features subset include PSC-PPI, PSS-PPI, Abs-T, Abs-A, Abs-AFp/AO, Abs-(D+T)/(A+B), Rel-D, Rel-T,
Rel-A/B, DFA-A, DFA-B. ASF set, All Selected Features set include NSF subset and ESF subset. The red, green and blue lines show the ROC curves for the NSF
subset, ESF subset and ASF set, respectively. The AUC of logistics models based on NSF subset, ESF subset, ASF set was 89.88%, 90.84%, 92.54%. The AUC of
random forest models based on NSF subset, ESF subset, ASF set was 96.59 91.88%, 97.36%. The AUC of XGBoost models based on NSF subset, ESF subset,
ASF set was 93.99%, 90.52%, 97.91%.

FIGURE 2 | The horizontal/longitudinal coordinate axis represents the probability of people with schizophrenia (%). NSF subset, Neurocognitive Selected Features
subset include IMM, LAN, ATT, DEM, INT-C, INT-W features; ESF subset, Electrophysiological Selected Features subset include PSC-PPI, PSS-PPI, Abs-T, Abs-A,
Abs-AFp/AO, Abs-(D + T)/(A + B), Rel-D, Rel-T, Rel-A/B, DFA-A, DFA-B; ASF set, All Selected Features set include NSF subset and ESF subset. (A–C) Scatter plots
from two features set (NSF subset and ESF subset) using logistics, random forest and XGBoost models.

instance, the delayed memory score also received an excellent
classified effect (accuracy of 83.19% and AUC of 86.58%). The
classification accuracy of the combined neurocognitive feature
set was slightly higher than that of any single feature classifier
(accuracy of 89.08% and AUC of 93.99%).

Previous studies demonstrate the importance of
neurocognitive-based machine learning techniques for
diagnosing schizophrenia. Vacca et al. (34) employed several
machine learning techniques (logistics regression, decision tree,
random forest, k-nearest neighbor, neural network, support
vector machine) to distinguish between 86 schizophrenic
patients and 115 healthy subjects. The best methods turned
out to be support vector machine and neural network with
accuracies of 87 and 84.8%. Antonucci et al. (35) investigated
the discriminatory performance of genetic, environmental, and
neurocognitive classifiers by using support vector classification
and repeated nested cross-validation. The cognitive classifier
showed an accuracy of 88.7%, followed by environmental
(65.1%) and genetic (55.5%) classifiers. The findings of the
two studies are in line with the current study, revealing

that neurocognition is a robust indicator in differentiating
schizophrenia from healthy people.

Classification Performance of
Electrophysiology in Schizophrenia
PPI deficits are involved in the biological bases of schizophrenia
and proposed as a potential biomarker for genetic studies
with more than 50% of PPI variance attributed to genetic
factors (36). Mackeprang et al. (37) argue that PPI was not
affected by antipsychotic treatment and, instead, was a stable
vulnerability index for schizophrenia. Mena et al. (38) used
longitudinal data to examine whether PPI deficits exhibit a
temporary effect in the acute phase of schizophrenia. The result
suggests that the PPI remained reduced at the 3 months post-
discharge assessment, implying that the PPI was a biomarker of
schizophrenia. However, in practice, the PPI did not separate
schizophrenic subjects from healthy controls (39). In comparison
to neurocognitive and other electrophysiological measures, the
PPI showed a medium Cohen’s d-value of below 0.6 (40). The
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previous study establishes a novel PPI paradigm by using a
precedence effect–based perceived separation, which produced a
Cohen’s d-value of 1.27 and an AUC of 85.2% (11). The current
study analyzes whether PSC-PPI and PSS-PPI single features
could distinguish SCZ from CON. The accuracy of PSS-PPI was
80.67%, and the AUC was 84.32%.

In addition, other single markers were tested for their
ability to identify schizophrenia based on the EEG power
spectrum, detrended fluctuation analysis, and fractal dimension.
DFA is a method to evaluate the large-scale functional neural
dysconnectivity of schizophrenic patients at the temporal level.
It was found that DFA was substantially attenuated in both
alpha and beta frequency bands in patients. DFA-B presented
the highest accuracy of 71.43% and AUC of 71.94% in a
single EEG feature.

Compared with the best single electrophysiological feature
(PSS-PPI), the combined electrophysiological feature increased
the accuracy from 80.67 to 88.24% and the AUC from 84.42
to 91.88%. Devia et al. (41) report that the EEG signals from
a free-viewing paradigm distinguished patients from healthy
subjects with an overall accuracy of 71%. Thilakavathi et al. (42)
analyzed the EEG power spectrum and found that the vector
machine classifier produced an accuracy of 88% when features
were combined together. Laton et al. (43) used a combination
of oddball and mismatch event-related potentials and increased
accuracy from 79.8 to 84.7% for a single feature. The above
findings suggest that it is essential to select the appropriate
EEG feature set to better distinguish between schizophrenic and
healthy individuals.

Classification Performance of Combined
Neurocognitive and Electrophysiological
Features in Schizophrenia
The results show that both neurocognitive and
electrophysiological feature sets had a good performance
with accuracy values greater than 80% and AUC values greater
than 85%. Specifically, the combined neurocognitive and
electrophysiological features delivered the highest accuracy of
93.28% and AUC of 97.91%. In fact, the XGBoost algorithm
as a whole presented a more stable and accurate classification
efficiency in this study. As previous research indicates, XGBoost
had several advantages in terms of speed and accuracy over
other tree-based ensemble methods, such as Random Forests,
AdaBoost, and the traditional gradient boosted trees (30).

Potential Limitations
There are several potential limitations to this study. First, this
is a single-center study with limited sample size. Due to the
relatively small number of subjects in the study, caution should
be exercised when attempting to generalize these findings to
clinical applications. Second, there is a lack of drug-naïve patient
groups. Drugs may have potentially confounded the findings
of the classification performances of these models and clinical
status. Third, it is related to the duration of the disease.
Nevertheless, no correlation was found between all features and
CPZe as well as duration of illness (Table 5). The last one

is model interpretability. Indeed, classic statistical regression
models, such as linear regression, perform better in terms
of interpretability than black-box machine learning models.
Perhaps it is for this reason that the acceptance of machine
learning among clinicians is lacking. However, schizophrenia
is likely to be etiologically heterogeneous, resulting in poor
prediction performance of a linear model. Linear regression

TABLE 5 | Correlation between all features and CPZs, duration of
illness in patients.

Features CPZe Duration of illness

r P r P

IMM 0.100 0.398 −0.050 0.671

VC 0.000 0.991 −0.020 0.861

LAN −0.100 0.432 0.140 0.245

ATT −0.090 0.478 0.070 0.563

DEM 0.080 0.518 0.020 0.849

INT-C −0.010 0.955 −0.010 0.955

INT-W −0.180 0.132 −0.010 0.926

PSC-PPI −0.150 0.233 0.080 0.507

PSS-PPI −0.200 0.101 0.190 0.115

Abs-D 0.050 0.677 0.040 0.768

Abs-T −0.050 0.708 0.120 0.330

Abs-A 0.050 0.667 0.140 0.264

Abs-B 0.140 0.254 0.130 0.283

Abs-A/T 0.150 0.222 −0.010 0.912

Abs-A/B −0.050 0.674 0.050 0.705

Abs-(D + T)/(A + B) −0.090 0.456 −0.010 0.937

Abs-(D + T)L/(D + T)R −0.010 0.952 0.120 0.321

Abs-AL/AR −0.080 0.496 0.100 0.421

Abs-AFp/AO 0.030 0.799 −0.010 0.953

Rel-D 0.040 0.763 −0.060 0.610

Rel-T −0.210 0.078 0.070 0.547

Rel-A 0.080 0.513 0.030 0.803

Rel-B 0.010 0.926 −0.020 0.879

Rel-A/T 0.150 0.211 −0.020 0.893

Rel-A/B −0.040 0.740 0.070 0.544

Rel-(D + T)/(A + B) −0.100 0.405 −0.020 0.880

Rel-(D + T)L/(D + T)R 0.130 0.280 0.050 0.677

Rel-AL/AR −0.170 0.159 0.080 0.519

Rel-AFp/AO −0.020 0.850 0.090 0.478

DFA-D 0.080 0.503 0.160 0.197

DFA-T −0.010 0.947 0.080 0.496

DFA-A −0.040 0.720 −0.040 0.752

DFA-B 0.040 0.740 0.180 0.137

FD 0.130 0.281 −0.080 0.519

P-value for spearman rank correlation analysis, and false discovery rate (FDR) was
used to adjust P-value.
CPZe, Chlorpromazine Equivalent Doses; IMM, immediate memory score; VC,
visuospatial/constructional score; LAN, language score; ATT, attention score; DEM,
delayed memory score; INT-C, color interference time; INT-W, word interference
time; PPI, prepulse inhibition; PSC-PPI, perceived spatial co-location PPI; PSS-
PPI, perceived spatial separation PPI; Abs, absolute power spectra; Rel, relative
power spectra; D, T, A, B denote delta, theta, alpha, and beta frequency band,
respectively; L, left; R, right; Fp, frontal pole; O, occipital; DFA, detrended fluctuation
analysis; FD, fractal dimension.
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cannot model the inherent complexity of data sets (such as feature
interaction). Therefore, when choosing an appropriate machine
learning model, we usually need to weigh the accuracy and
interpretability of the model.

In future research, to provide a simple, robust, and reliable
model for detecting schizophrenia, first-episode, drug-naïve
patients with schizophrenia will be recruited. Moreover, patients
with depression and bipolar disorder will also be invited to
participate in a future study to assess the specificity of the
model and to determine whether the severity of these features
varies across psychiatric disorders. Besides this, additional
EEG features may be identified in the classification. Further
research may also be conducted to evaluate the efficacy of
interventions and prognosis.

CONCLUSION

In this study, a comprehensive machine learning pipeline
was provided to detect patients with schizophrenia by
applying logistics, random forest, and extreme gradient
boosting (XGBoost) algorithm classifiers to neurocognition,
electrophysiology, and their combination. The highest
classification accuracy of 93.28% was achieved by combining
neurocognitive and electrophysiological features, suggesting that
these measurements are appropriate indicators for discriminating
schizophrenia patients from healthy individuals. Also, among
these three algorithms, XGBoost has better classification
performances than the other two algorithms. These results
suggest that neurocognitive and electrophysiological features
can be used along with machine learning for potential
clinical applications.
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Background: With the development of quantitative electroencephalography (QEEG),

an increasing number of studies have been published on the clinical use of QEEG

in the past two decades, particularly in the diagnosis, treatment, and prognosis of

neuropsychiatric disorders. However, to date, the current status and developing trends

of this research field have not been systematically analyzed from a macroscopic

perspective. The present study aimed to identify the hot spots, knowledge base, and

frontiers of QEEG research in neuropsychiatric disorders from 2000 to 2021 through

bibliometric analysis.

Methods: QEEG-related publications in the neuropsychiatric field from 2000

to 2021 were retrieved from the Web of Science Core Collection (WOSCC).

CiteSpace and VOSviewer software programs, and the online literature analysis

platform (bibliometric.com) were employed to perform bibliographic and

visualized analysis.

Results: A total of 1,904 publications between 2000 and 2021 were retrieved. The

number of QEEG-related publications in neuropsychiatric disorders increased steadily

from 2000 to 2021, and research in psychiatric disorders requires more attention in

comparison to research in neurological disorders. During the last two decades, QEEG

has been mainly applied in neurodegenerative diseases, cerebrovascular diseases,

and mental disorders to reveal the pathological mechanisms, assist clinical diagnosis,

and promote the selection of effective treatments. The recent hot topics focused

on QEEG utilization in neurodegenerative disorders like Alzheimer’s and Parkinson’s

disease, traumatic brain injury and related cerebrovascular diseases, epilepsy and

seizure, attention-deficit hyperactivity disorder, and other mental disorders like major

depressive disorder and schizophrenia. In addition, studies to cross-validate QEEG

biomarkers, develop new biomarkers (e.g., functional connectivity and complexity),

and extract compound biomarkers by machine learning were the emerging trends.

80

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2022.830819
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2022.830819&domain=pdf&date_stamp=2022-05-23
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yhtyxl2006@126.com
mailto:wangyoupsy@foxmail.com
https://doi.org/10.3389/fpsyt.2022.830819
https://www.frontiersin.org/articles/10.3389/fpsyt.2022.830819/full
https://bibliometric.com


Yao et al. QEEG Bibliometrics in Neuropsychiatric Disorders

Conclusion: The present study integrated bibliometric information on the current status,

the knowledge base, and future directions of QEEG studies in neuropsychiatric disorders

from amacroscopic perspective. It may provide valuable insights for researchers focusing

on the utilization of QEEG in this field.

Keywords: bibliometrics, quantitative electroencephalogram, neuropsychiatric disorders, CiteSpace, VOSviewer

INTRODUCTION

Electroencephalography (EEG) is a tool for recording
spontaneous electrical activity generated in the cerebral cortex
using multiple electrodes placed on the scalp (1), providing
real-time assessment of cerebral physiological functions (2).
Since the German psychiatrist Hans Berger first tried to record
human cerebral electrical activity from the scalp in 1928 (3), EEG
technology has continued to develop, which is currently one of
the most influential noninvasive tools available to clinicians for
evaluating a patient’s neurophysiological functions (4).

Quantitative EEG (QEEG) techniques separate complex EEG
signals into components such as amplitude, frequency, and
compress time, permitting the display of several hours of data on
one image (5). QEEG empowers a neurologist or a psychiatrist’s
unprecedented ability to look at summarized EEG information,
which was not previously possible with a visual examination of
EEG traces. More importantly, QEEG can provide an objective,
replicable measure of brain functions that is less dependent on
subjective or behavioral reports that may vary across settings
and informants (6). Therefore, QEEG can be used in more
productive ways than non-QEEG to identify and categorize
neuropsychiatric diseases, as well as to predict the outcome of
therapeutic intervention (7).

To date, several studies have summarized the development
of QEEG methodology (8–10) or systematically reviewed the
research papers on the possible use of QEEG as a biomarker in
adult or child psychiatric disorders (11, 12) and in Alzheimer’s
disease (13). However, to our knowledge, there is no existing
study to analyze the developing status of the QEEG research field
from a macroscopic perspective.

Bibliometrics, an important branch of intelligence science

(14), uses the literature system and bibliometric characteristics

as the research object and conducts quantitative and qualitative

analyses of the literature (15). In recent years, bibliometric

analysis has been applied to visualize the knowledge status,

features, evolution, and emerging trends in various research

fields (16). It can help scholars extract quantitative information

on distribution by country/region, institution, author, journal,

research hot spots, and frontiers in a particular field in a short

time, providing in-depth reviews and insights about the research

field (17). Therefore, the present study used bibliometric tools

to analyze the QEEG studies in neuropsychiatric disorders from
2000 to 2021 to provide a comprehensive overview.

The specific research questions in the present study for
QEEG research in neuropsychiatric disorders were as follows:
1) What are the overall publication trends, the geographic
distributions, the most important journals, and who are the

FIGURE 1 | Flow diagram of the inclusion process.

potential collaborators? 2) What is the knowledge framework in
this field in terms of research hot spots and knowledge base? 3)
What are the future directions of this field?

METHOD AND DATA SOURCE

Data Collection
Data for the present study were retrieved from the Web of
Science Core Collection (WOSCC) database in January 2022.
We used TS = [(quantitative electroencephalography) OR
(QEEG) OR (quantitative EEG)] AND WC = [(neurology) OR
(psychiatry) OR (neuropsychiatry)] as the search terms, where
“TS” represents term subject and “WC” represents “Web of
Science categories.” The time limitation was between 1 January
2000 and 31 December 2021. Only literature published in English
was included, and duplicated articles were deleted. To avoid
bias due to daily database updates, we performed the literature
retrieval fromWOSCC on a single day, that is, 27 January 2022. A
total of 1,904 publications were included and consisted of original
articles and reviews. The search strategy is depicted in Figure 1.

Analysis Tools
All the collected data were converted into TXT format and
exported for further visual analysis by bibliometric software,
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including CiteSpaceV (5.8.R3) and VOSviewer (1.6.16), and the
online literature analysis platform (bibliometric.com). Visualized
information, such as yearly output, subject categories of WOS,
and impact factor (IF), was analyzed based on the function
of literature analysis on WOSCC. The number of countries,
institutions, and international collaborations were analyzed by
bibliometric.com. CiteSpaceV was used to perform collaboration
network analysis (including authors, institutions, journals, co-
cited journals, co-cited authors, and co-cited references) and
related centrality. The specific parameters used in CiteSpaceV
were set as follows. For the selection of time slices, a slice of
1 year was used for determining the connection strength, and
cosine was used for this purpose. For the threshold, we selected
the top 50 nodes in each time slice. Moreover, the pruning used a
pathfinder and merged network. VOSviewer was used to analyze
the keywords. The keyword co-occurrence map in VOSviewer
only includes terms that appear at least 15 times under the binary
count. The purpose of the algorithm is to ensure that the terms
that occur more frequently have larger bubble images and the
terms with high similarity are close to each other with a similar
color. Finally, the keyword overlay map was used based on the
occurrence of keywords to visualize the emerging topics from
2000 to 2021.

RESULTS

Annual Publications
A total of 1904 publications that met the retrieval criteria
were included in further analysis. The total number of annual
publications is shown in Figure 2A, which depicts an increasing
trend from 2000 to 2021. As shown in Figure 2B, the trend of
the annual publications in the neurology field showed steady
growth. However, the yearly output of articles in the psychiatry
area increased relatively slowly, indicating that the application of
QEEG in psychiatric disorders requires more attention.

Analysis of Countries and Institutions
Publications of QEEG research were obtained from 71 countries.
About 89.92% of the publications were from the top 10
countries (Table 1). The trends of annual output from the
top 10 countries are shown in Figure 3A. Most publications
were from the United States (n = 657, 34.5%). The centrality
analysis in CiteSpaceV represented the influence of a node,
and a node was of great significance when the centrality
value is greater than 0.1. Countries with a centrality value
greater than 0.1 were the United States (n = 0.95) and
Germany (n = 0.14), suggesting that publications from
these two countries had a greater influence on QEEG
research. The international cooperation between countries is
shown in Figure 3C. The most frequent collaboration was
observed between the United States and Canada, followed
by Australia.

A total of 2,433 institutions published QEEG-related articles.
The trends of annual output from the top 10 institutions
are shown in Figure 3B. The distribution of institutions is
scattered. Table 1 lists the top 10 productive institutions, and
343 papers have been published by these institutions, accounting

for 18.01% of the total publications. About 60% of the top 10
institutions are from the United States, including the University
of California, Los Angeles, Yale University, Massachusetts
General Hospital, New York University, Harvard University, and
Columbia University.

Analysis of Journals and Co-cited Journals
A total of 245 journals were involved, and the top 10 most active
QEEG-related journals published 47.53% of the total publications
(n = 905; Figure 4A). Among the top 10 journals in QEEG
research, Clinical Neurophysiology (n= 281) was the most active
journal, followed by Clinical EEG and Neuroscience (n = 144)
and Journal of Clinical Neurophysiology (n= 84).

Co-cited journals were journals cited together by researchers,
which usually reflected the foundation of a research field and
were one of the most important indicators in bibliometric
analysis. Half of the top 10 co-cited journals in QEEG research
in neuropsychiatric disorders were published in Q1 according
to JCR. Biological Psychiatry showed the highest impact factor
(IF = 13.382). Clinical Neurophysiology (n = 1,106) ranked first
in co-cited journals, followed by Electroencephalography and
Clinical Neurophysiology (n = 1,004) and Neurology (n = 880),
suggesting these journals were well recognized in QEEG research
in the neuropsychiatric field (Figure 4B).

Analysis of Authors
A total of 8,003 authors contributed to QEEG research in
neuropsychiatric disorders. As presented in Table 2, six authors
published over 25 articles. The most productive authors were
Cook IA and Leuchter AF who published 36 articles in
this field. Their research direction is mainly focused on the
abnormality of QEEG in major depression and its rehabilitation
by pharmacological treatments.

Research Hot Topics Based on Keyword
Analysis
To reveal the hot topics in the research field, we used VOSviewer
to produce a keyword co-occurrence map (see Figure 6). The
keyword co-occurrence map retrieved five major keyword
clusters of QEEG research in neuropsychiatric disorders. As
shown in Figure 5, each keyword cluster is depicted in a
distinct color. That is, the blue cluster represents research
in attention-deficit hyperactivity disorder (ADHD), the yellow
cluster represents research in neurodegenerative disorders, such
as Alzheimer’s disease, the green cluster represents research in
epilepsy, the purple cluster represents research in traumatic
brain injury and related cerebrovascular diseases, and the red
cluster represents research in psychiatric disorders, such as major
depressive disorder and schizophrenia. These five research areas
are currently hot topics in the research field.

Knowledge Base by Cluster Analysis of
Co-cited References
Co-cited references are co-cited articles in the reference lists of
other articles. The co-citation network by CiteSpaceV revealed
1,067 nodes, 3,989 co-citation links, and 22 clusters. These
clusters represented the knowledge base and networks of
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FIGURE 2 | The number of publications from 2000 to 2021. (A) The number of publications in neurology and psychiatry. (B) The total number of publications and the

percentage of total publications.

QEEG studies in neuropsychiatric disorders. Figure 6 shows all
automatically extracted clusters. Each cluster is depicted with
a unique color. The nodes in each cluster represent the co-
cited documents, and the lines between the nodes represent the
co-cited relationship. The labels of the clusters were extracted
from the keywords of the citing publications, based on the
latent semantic indexing (LSI) method. The general information
about the co-citation clusters is summarized inTable 3, including
the number of cited references, the average publication year of
the cited references, and the silhouette value of each cluster.
The silhouette value of a cluster ranges from 0 to 1, and
a larger value indicated greater discrimination from other

clusters (18). In addition, Table 4 presented the research disease
categories and domains retrieved from the co-cited reference
clusters. Supplementary Table S1 summarized highly co-cited
references and the most relevant citing articles in each co-
citation cluster.

Research Emerging Trends Based on
Keyword Analysis
We also used VOSviewer to produce the overlay map to
show the latest emerging topics (Figure 7). In VOSviewer,
we set the threshold of occurrence frequency to 15, and
253 of the total 7,458 keywords met the criteria. Among
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TABLE 1 | Top 10 countries and institutions with the highest number of publications from 2000 to 2021.

Rank Country Number of

Publications

Centrality Institution Number of

publications

Centrality

1 USA 657 0.95 Univ Calif Los

Angeles (USA)

60 0.26

2 Germany 168 0.14 Sapienza

University of Rome

(Italy)

35 0.11

3 Italy 167 0.06 Univ Montreal

(Canada)

34 0.09

4 Netherlands 118 0.02 Yale University

(USA)

33 0.09

5 Canada 115 0.07 Massachusetts

Gen Hospital

(USA)

32 0.06

6 Australia 112 0.01 NYU(USA) 31 0.08

7 UK 107 0.09 University Sydney

(Australia)

31 0.05

8 Switzerland 105 0.03 Harvard University

(USA)

30 0.06

9 China 85 0.02 University Twente(

Netherlands)

30 0.04

10 France 78 0.01 Columbia

University (USA)

27 0.01

FIGURE 3 | The top 10 countries and institutions. (A) The number of publications of the top 10 countries. (B) The cooperative relationship between countries. (C) The

number of publications of the top 10 institutions.

these keywords, “biomarker,” “connectivity,” and “machine
learning” have emerged since 2018 and represented the future
directions in QEEG studies in neuropsychiatric disorders.
These emerging topics are depicted in yellow color in
Figure 7.

DISCUSSION

General Information
The current study applied a visualized bibliometric method
to analyze the research hot spots, the knowledge base, and
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FIGURE 4 | The number of publications of the top 10 journals and co-cited journals. (A) The number of publications of the top 10 journals. (B) The number of

citations of the top 10 co-cited journals.

TABLE 2 | Top 10 productive authors from 2000 to 2021.

Rank Author H-index Country Institution Count Citation count Yearly average

citation count

1 Cook IA 44 USA University of California Los Angeles 36 1,464 67

2 Leuchter AF 43 USA University of California Los Angeles 36 1,461 66

3 van Putten MJAM 16 Netherlands University of Twente 29 1,067 49

4 Cagy M 2 - Universidade Federal do Rio de Janeiro 26 199 9

5 Ribeiro P - - - 26 208 9

6 Babiloni C 10 Italy Sapienza University of Rome 25 905 41

7 Hunter AM 19 Scotland University of Stirling 21 513 23

8 Piedade R 20 Brazil Universidade Federal do Rio de Janeiro 21 183 8

9 Rossini PM 49 Italy IRCCS San Raffaele Roma Rome 20 935 43

10 Del Percio C 41 Italy Sapienza University of Rome 17 507 23

the emerging topics of the publications about QEEG in the
neuropsychiatric research field. A total of 1,904 papers were
collected based on 2000–2021 data from WoSCC. All papers
were published by 2,433 institutions from 71 countries in 245
peer-reviewed journals with 57,237 co-cited references. The
annual publication output and annual citation number revealed
a steady growth in the research field. About 34.5% of the total
publications were from the United States. Close cooperation
between the United States, Canada, and Australia was found,
suggesting their significant contribution to QEEG research in
neuropsychiatric disorders. Among the 10 top institutions, 60%
were from the United States, such as the University of California,
Los Angeles, Yale University, Massachusetts General Hospital,
New York University, Harvard University, and Columbia
University. Among the top 10 authors, Cook IA and Leuchter
AF published more studies and received higher co-citations,
suggesting that their teams could be potential collaborators for
researchers. Additionally, we found journals with high impact
factors in our top 10 co-cited journals, such as Biological
Psychiatry (IF = 13.382), Brain (IF = 13.501), and Annual of
Neurology (IF = 10.422), which could be important sources
of references.

Hot Topics of QEEG Research in the
Neuropsychiatric Disorders
According to the keyword co-occurrence map by VOSviewer,
five clusters were retrieved and represented five major categories
of neuropsychiatric diseases in QEEG research. The blue
cluster represented the psychiatric disorder “ADHD.” ADHD
is characterized by excessive restlessness and an extremely
poor concentration span, resulting in impulsive and disruptive
behavior. Bresnahan and Barry (19) suggested that QEEG might
be used to differentiate ADHD adults from normal adults
and adults who display the symptoms of ADHD without
meeting the diagnostic criteria of ADHD. Elevated resting
theta power and reduced alpha and beta power, together
with elevated theta/alpha and theta/beta ratios, were found to
be most reliably associated with ADHD (20, 21). Recently,
novel measurements have emerged. For example, gamma power
abnormalities might provide an opportunity to investigate the
neurobiological mechanisms that underlie the clinical symptoms
of ADHD (22–24).

The yellow cluster represented the neurodegeneration
disorders, particularly Alzheimer’s disease (AD) and Parkinson’s
disease (PD). Excessive slow wave activity has been shown in

Frontiers in Psychiatry | www.frontiersin.org 6 May 2022 | Volume 13 | Article 83081985

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Yao et al. QEEG Bibliometrics in Neuropsychiatric Disorders

TABLE 3 | Basic information of the co-cited reference clusters.

ID Cluster name Size Avg (YR) Silhouette

0 Mild cognitive impairment (mci) 108 2005 0.90

1 Attention deficit/hyperactivity disorder 79 2000 0.93

2 Cardiac arrest 78 2012 0.94

3 Theta/beta ratio 78 2011 0.92

4 Machine learning 65 2017 0.94

5 Nonconvulsive status epilepticus 57 2016 0.90

6 Depression 52 2008 0.97

7 Migraine 50 2006 1.00

8 schizophrenia 46 1997 0.93

9 Alzheimers disease 39 2000 0.98

10 Human immunodeficiency virus (hiv) 36 2011 0.98

11 Neurofeedback 34 2008 0.95

12 Cordance 32 1999 0.95

13 Seizure anticipation 32 1998 0.99

14 Biomarker 29 2015 0.99

15 Seizure detection 16 2015 1.00

16 Dysplasia focal cortical 12 1996 1.00

17 Stereo-eeg 11 2014 1.00

20 Methylphenidate 9 2014 0.99

21 Caffeine 8 1996 1.00

24 Obstructive sleep apnea 7 2017 1.00

29 Peri-/intraventricular hemorrhage (pivh) 5 2008 0.99

Size, number of publications in the cluster; Avg (YR), the average publication year of the references in the cluster.

TABLE 4 | Research disease categories and domains retrieved from the co-cited reference clusters.

General disease

category

Disease Pathology Diagnosis Treatment

Cerebrovascular

diseases

Ischemic stroke Cluster 2 cardiac arrest

Cluster 7 migraine

Cluster2 cardiac arrest

Cluster7 migraine

Intracerebral

hemorrhage

Cluster 29

peri-/intraventricular

hemorrhage (pivh)

Neurodegenerative

diseases

Epilepsy Cluster 17 stereo-eeg

Cluster 16 dysplasia focal

cortical

Cluster 13 seizure

anticipation

Cluster 5 nonconvulsive

status epilepticus Cluster 15

seizure detection

Cluster 16 dysplasia focal

cortical

Cluster 15 seizure detection

Alzheimer’s

disease

Cluster 8 schizophrenia

Cluster 10 human

immunodeficiency virus (hiv)

Cluster 0 mild cognitive

impairment (mci) Cluster 9

alzheimer’s disease

Parkinson’s

disease

Cluster 4 machine learning Cluster 4 machine learning

Mental disorders Attention-

deficit/hyperactivity

disorder

Cluster 1 attention

deficit/hyperactivity disorder

Cluster 1 attention

deficit/hyperactivity disorder

Cluster 3theta/beta ratio

Cluster 11 neurofeedback

Cluster 20 methylphenidate

Depression Cluster 6 depression

Cluster 12 cordance

Cluster 14 biomarker

Other Substance abuse Cluster 21 caffeine

Obstructive sleep

apnea

Cluster 24 obstructive sleep

apnea
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FIGURE 5 | The keyword co-occurrence map.

dementia of the Alzheimer’s type that increases with disease
progression (25). Compared to AD, the inter-hemispheric
coherence values for the delta and theta bands in the fronto-
temporo-central regions were higher in dementia with Lewy
bodies (DLB). For patients with AD, the beta band was lower
than DLB in almost all temporo-centro-parieto-occipital regions
(26). Additionally, in patients with PD, abnormalities in QEEG,
such as an increase in posterior theta power, were found with
the occurrence of mild cognitive impairment or dementia (27).
QEEG could also provide reliable biomarkers for objective
monitoring of disease severity and progression in PD, as well
as for promoting early diagnosis of nonmotor symptoms (28).
For example, decreased dominant frequency and increased
theta power, which reflect EEG slowing, were biomarkers of
cognitive deterioration.

The green cluster represented “epilepsy” and “seizure,” which
included the temporal lobe epilepsy, electroconvulsive-induced
epilepsy, and so on. Larsson and colleagues showed that
peak alpha frequency (PAF) variability was compromised in

patients with epilepsy (29). Park et al. suggested that the
automatic quantitative ictal high-gamma oscillation analysis may
be effective in delineating the epileptogenic zone (30). QEEG
background activity may also provide useful information on
seizure duration. A higher theta power ratio in the temporal
region contralateral to the epileptic focus may suggest a longer
epilepsy duration (31).

The purple cluster represented traumatic brain injury (TBI)
and related cerebrovascular diseases, such as stroke and
subarachnoid hemorrhage (SAH). QEEG might predict the
prognosis after TBI. In particular, measures of alpha power
and variability were indicative of relatively better functional
outcomes within the first year after TBI. This was hypothesized
to reflect intact thalamo-cortical loops and thus the potential for
recovery of consciousness even in the apparent absence of current
consciousness (32). QEEG can also be used to identify patients
at risk of cerebral infarction. In patients with SAH, there was a
moderate correlation between transcranial Doppler/color-coded
duplex sonography (TCD/TCCS) frequencies and QEEG alpha
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FIGURE 6 | Cluster analysis of co-cited references.

power reduction, but only QEEG could differentiate patients
with and without cerebral infarction (33). Moreover, worsening
alpha/delta ratio (ADR) on QEEG was a reliable predictor of
delayed cerebral ischemia (DCI) in patients with aneurysmal
SAH. Further studies are still needed to confirm the role of QEEG
in the prediction of DCI (34).

The red cluster consisted of QEEG studies in several common
psychiatric disorders, including major depressive disorder
(MDD), anxiety, and schizophrenia (35, 36). Delta power values
could be potentially used in the differential diagnosis between
schizophrenia and depression. In patients with MDD, delta
power over Fp1, Fp2, F4, and F8 regions was lower in comparison
to schizophrenia patients (37). Impaired development of a
resting-state brain network in adolescents with MDD may
represent an intermediate phenotype that can be assessed with
QEEG. Youth with MDD showed decreased resting connectivity
in the alpha and theta frequency bands, particularly in the frontal
cortex (38). In addition, Moon et. al found increased overall
absolute delta power and relative gamma power as potential
markers that could differentiate post-traumatic stress disorder
(PTSD) from anxiety disorders (39).

Knowledge Base of QEEG Research in the
Neuropsychiatric Field
To better clarify the knowledge base of QEEG research in
the neuropsychiatric field, we analyzed the cited literature and
the citing literature in each co-citation cluster (Figure 6 and
Table 3). A total of 22 clusters were extracted by CiteSpace
through co-cited references analysis. These co-citation reference
clusters could be classified into three disease categories:
neurodegenerative diseases, cerebrovascular diseases, and mental
disorders (Table 4). In these three disease categories, QEEG
has been applied to investigate the pathological mechanisms,
assist clinical diagnosis, and promote the selection of appropriate
treatments. The most relevant co-cited articles and citing articles
are listed in Supplementary Table S1.

In chronic neurodegenerative diseases, the majority of QEEG
research is about Alzheimer’s disease (AD) and Parkinson’s
disease (PD). In AD research, QEEG was mainly used
to explore the pathology and diagnosis of AD. In the
study of pathological mechanisms underlying AD, cluster
8 “schizophrenia” showed that there were similar QEEG
characteristics between AD and schizophrenia (40–42) and
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FIGURE 7 | The overlay map.

that schizophrenia was associated with an elevated risk of
developing AD (43), which suggested that the pathological
mechanisms of these two diseases may be related. The co-cited
references of cluster 10 “human immunodeficiency virus (HIV)”
indicated that cortical source mapping by low-resolution brain
electromagnetic source tomography (LORETA) of resting state
EEG rhythms could characterize neurodegenerative disorders-
induced cognitive impairment, such as Parkinson’s disease
related dementia (PDD) and Alzheimer’s disease (AD) (44,
45), while the citing documents in this cluster showed that
HIV research also applied LORETA in evaluating the cognitive
functions in patients with HIV (46, 47). In the study of
AD diagnosis, cluster 9 “Alzheimer’s disease” indicated that
QEEG can accurately differentiate the stage of AD (48–51).
Cluster 0 “mild cognitive impairment (MCI)” suggested that
QEEG was a valuable tool for the early diagnosis of AD
(52–56). For PD patients (co-cited references of cluster 4
“machine learning” indicated that QEEG could provide reliable
biomarkers for nonmotor symptom severity and progression
(28, 57). Besides, the citing articles in this cluster pointed out
that preoperative QEEG biomarkers could predict cognitive
deterioration of PD after subthalamic deep brain stimulation
with high accuracy by using a machine learning pipeline (58,
59).

In the study of acute neurodegenerative diseases, QEEG
was also an important method to study epilepsy pathology,
epilepsy prediction, epilepsy detection, and epilepsy treatment.

In the research of pathological mechanisms of epilepsy, co-
cited references of cluster 17 “stereo eeg” demonstrated that
QEEG could be used to explore the desynchronization and
synchronous discharge of neurons in different stages of epilepsy
(60, 61). The citing literature of this cluster showed that
quantitative stereo EEG could be used to analyze the inhibitory
and promoting factors of seizures in inter-ictal period (62,
63). Based on the hypersynchronization hypothesis of epileptic
seizures, cluster 13 “seizure anticipation” found that the trend
of abnormal synchronization of neurons can be detected by
QEEG nonlinear analysis to predict epileptic seizures (64–66).
In terms of epilepsy detection, the co-cited literature of cluster
5 “nonconvulsive status epilepticus” showed that the use of
QEEG could accurately diagnose epilepsy (67–69), and the citing
literature of this cluster showed that QEEG could also be used
to monitor nonconvulsive status epilepticus (70). In addition,
cluster 15 “seizure detection” showed that QEEG combined
with quantitative electromyography (EMG) can identify the
characteristics of different epileptic subtypes (71, 72). In terms
of epilepsy treatment, citing articles of cluster 16 “dysplasia focal
cortical” indicated that the QEEG index can provide a reliable
basis for determining epileptic focus before the surgical treatment
of focal epilepsy (73), and the co-cited documents in this cluster
proved that QEEG index could accurately predict the surgical
prognosis of epilepsy (74, 75). Cluster 15 also showed that QEEG
could help to predict and prevent sudden unexpected death in
epilepsy (SUDEP) (76, 77).
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In cerebrovascular diseases, according to the co-cited
literature of cluster 2 “cardiac arrest” (CA) and cluster 7
“migraine,” EEG signals mainly come from the activities of
pyramidal cells in the cerebral cortex, which are vulnerable
to cerebral ischemia (78), so QEEG is suitable for detecting
abnormal neural activities of ischemic stroke (IS) and evaluating
the IS prognosis (79–81). The study of EEG characteristics of
cerebral ischemia is also helpful to investigate other related
diseases. Citing documents of cluster 2 suggested that cardiac
arrest would cause secondary ischemic stroke. Therefore, even if
cardiopulmonary resuscitation is successfully accepted, patients
may have neurological sequelae. QEEG index can reflect
brain activity in real time and assist doctors to judge the
prognosis of patients with CA and take corresponding treatment
in time (82, 83). The citing literature of cluster 7 showed
that because migraine and ischemic stroke have similar EEG
characteristics, it was speculated that the change in cerebral
blood activity may be one of the manifestations of migraine (84,
85). In addition, according to cluster 29 “peri-/intraventricular
hemorrhage (PIVH),” QEEG has also been used in the early
diagnosis of intracerebral hemorrhage in premature infants in
recent years (86–89). In brief, the knowledge base of QEEG in
cerebrovascular diseases is mainly about monitoring and treating
the abnormal brain functions related to cerebrovascular disease
by using QEEG.

In the studies related to mental disorders, attention-deficit
hyperactivity disorder (ADHD) and depression are two major
application fields of QEEG. The cited and citing literature
in cluster 1 “attention-deficit hyperactivity disorder” included
various types of QEEG studies on ADHD, including the use of
QEEG to study the etiology, diagnostic biomarkers, prognostic
biomarkers, and add-on treatment of ADHD (20, 52, 86–93).
First, the literature of cluster 1 indicated that QEEG could verify
different etiological hypotheses of ADHD (90). Second, cluster
1 also denoted that QEEG could accurately judge the abnormal
brain activities associated with ADHD (20, 93), and cluster 3
“theta/beta ratio” indicated that theta/beta ratio might be used
as an index to identify ADHD subtypes (21, 94, 95). Third, the
literature in cluster 20 “methylphenidate” mainly used the QEEG
index to evaluate the efficacy of different drugs in the treatment
of ADHD (96–98). Among them, methylphenidate has been
proven to be a drug that can effectively alleviate the symptoms
of ADHD (97, 98). Finally, it is particularly noteworthy
that ADHD is the major application field of neurofeedback
therapy. Cluster 11 “neurofeedback” showed that many studies
have proved that neurofeedback therapy can effectively treat
ADHD (54, 99–102), particularly when targeted, personalized
neurofeedback treatment was applied (102). Moreover, the co-
cited references of cluster 20 also showed the long-term efficacy of
neurofeedback in the treatment of ADHD (103, 104). Therefore,
the application of QEEG in the field of ADHD has a relatively
good research foundation.

For the knowledge base of QEEG studies in other mental
disorders, most studies on depression focused on evaluating the
efficacy of antidepressants with QEEG indicators. The citing
literature of cluster 6 “depression” (105, 106) and the co-cited
literature in cluster 14 “biomarker” (107, 108) suggested that

there may be methodological differences among studies and
a lack of replications in this research area, so there is still
no widely recognized QEEG index that can accurately predict
the efficacy of antidepressants. Particularly, on the one hand,
the co-cited literature in cluster 12 “cordance” suggested that
cordance, a QEEG index that can comprehensively analyze
relative EEG power and absolute EEG power and highlight the
brain pathological activities (109), has not been able to predict
the efficacy of antidepressants (110–112). On the other hand, the
co-cited literature in cluster 6 (113–115) and the citing literature
from cluster 12 (80, 116) showed that prefrontal theta cordance
has the value of predicting the response of antidepressants, which
indicated that the cordance index still has the potential for
further research. Moreover, citing articles of cluster 14 argued
that researchers can try using machine learning to explore QEEG
biomarkers for evaluating the efficacy of antidepressants (117,
118).

Caffeine withdrawal response and sleep disorder are the
remaining two clusters identified by CiteSpace, suggesting wide
applications of QEEG in the neuropsychiatric field. The literature
in cluster 21 “caffeine” showed that QEEG can be used to
study the neural mechanism underlying the withdrawal response
to drugs, such as caffeine and cocaine (119, 120). Cluster 24
“obstructive sleep apnea (OSA)” suggested that QEEG during
sleep could help to reveal the pathological mechanism of OSA,
while awake QEEG could evaluate the impact of OSA on
cognitive functions (118, 121, 122).

Emerging Trends and Future Direction of
QEEG Research in Neuropsychiatric
Disorders
Overlay visualization presented the time of emergence of the
keywords and reflected the latest and emerging research topics.
From the overlay map shown in Figure 7, we can see that
the recently searched keywords are shown by yellow nodes.
The emerging keywords were “biomarker,” “connectivity,” and
“machine learning.”

As for QEEG biomarker research, recent studies started to
cross-validate the prognostic value of previously suggested EEG
biomarkers in larger independent datasets, since an increasing
number of QEEG biomarkers in neuropsychiatric disorders were
revealed in prior studies. For example, Ip and colleagues showed
that alpha asymmetry seems to be the most promising EEG
biomarker for the prediction of treatment response in women
with MDD in comparison to alpha power, delta and theta activity
at the anterior cingulate cortex (ACC) (123). Moreover, new
QEEG biomarkers have also been investigated. Interictal high-
frequency oscillation and modulation index have been found
to improve the prediction accuracy of post-operative seizure
outcomes (124).

QEEG-based functional connectivity has also been
investigated in recent years as a diagnostic tool to predict the
symptom severity of neuropsychiatric disorders. EEG functional
connectivity has shown promising results as a diagnostic tool
for AD. Similarly, in Down syndrome (DS) with Alzheimer’s
dementia, decreased alpha and increased delta coherence and
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weighted phase lag index were observed when compared to
DS (125). EEG functional connectivity and complexity were
used to predict depression severity among depressive patients.
A significant negative relationship was found between graph
metrics (i.e., degree and clustering coefficient) and depression
severity in the alpha band, while the EEG complexity measures
in alpha and delta bands by the nonlinear analysis were positively
associated with symptom severity (126).

Another breakthrough is QEEG-based machine learning
studies. Throughmachine learning, a compound of automatically
extracted EEG biomarkers differentiated good vs. poor cognitive
function of PD patients with higher accuracy than a single
spectral EEG feature (58). More QEEG biomarkers (e.g.,
coherence, spectral, and event-related potentials) should be
investigated and combined with machine learning or deep
learning methods to predict the occurrence, severity, and
treatment response for neuropsychiatric disorders.

Strengths and Limitations
Our bibliometric study has several strengths. First of all, it is
the first study to use the scientometric method to summarize
the research history and development trends of QEEG studies in
the neuropsychiatric field. It included the most comprehensive
analysis, covering nearly all aspects of previous publications,
and provided valuable information to QEEG researchers and
helped them gain a better insight into the evolving research
foci and trends. However, our study was also subjective to
several limitations. First, the data come merely from WoSCC,
and other databases, such as Embase or PubMed, were not
searched, and hence this study may not completely represent all
QEEG data. But notably, WoSCC is the most frequently used
database for scientometric research. Second, the retrieved articles
were restricted to those published in English, resulting in some
linguistic bias.

CONCLUSION

The present study performed a bibliometric analysis of the overall
scientific output of QEEG research in the neuropsychiatric
field from 2000 to 2021. During the last two decades, QEEG
has been applied to reveal the pathological mechanisms,
assist clinical diagnosis, and promote the selection of effective
treatments for a variety of neuropsychiatric diseases, including
neurodegenerative diseases, cerebrovascular diseases, and mental

diseases. Studies in these disease categories and domains
added to the knowledge base of this research field. The
hot topics of research included five major neuropsychiatric
disorders, including ADHD, neurodegenerative disorders like
Alzheimer’s and Parkinson’s disease, traumatic brain injury and
related cerebrovascular diseases, epilepsy and seizure, and other
psychiatric diseases, such as MDD and schizophrenia. Besides,
future studies should focus on cross-validating promising
QEEG biomarkers, developing new biomarkers (e.g, functional
connectivity and complexity), and extracting biomarkers by
machine learning.
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Transcranial direct current stimulation (tDCS) is an emerging therapeutic

tool for treating posttraumatic stress disorder (PTSD). Prior studies have

shown that tDCS responses are highly individualized, thus necessitating the

individualized optimization of treatment configurations. To date, an e�ective

tool for predicting tDCS treatment outcomes in patients with PTSD has

not yet been proposed. Therefore, we aimed to build and validate a tool

for predicting tDCS treatment outcomes in patients with PTSD. Forty-eight

patients with PTSD received 20 min of 2 mA tDCS stimulation in position

of the anode over the F3 and cathode over the F4 region. Non-responders

were defined as those with less than 50% improvement after reviewing clinical

symptoms based on the Clinician-Administered DSM-5 PTSD Scale (before

and after stimulation). Resting-state electroencephalograms were recorded

for 3 min before and after stimulation. We extracted power spectral densities

(PSDs) for five frequency bands. A support vector machine (SVM) model was

used to predict responders and non-responders using PSDs obtained before

stimulation. We investigated statistical di�erences in PSDs before and after

stimulation and found statistically significant di�erences in the F8 channel in

the theta band (p = 0.01). The SVM model had an area under the ROC curve

(AUC) of 0.93 for predicting responders and non-responders using PSDs. To

our knowledge, this study provides the first empirical evidence that PSDs can

be useful biomarkers for predicting the tDCS treatment response, and that a

machine learning model can provide robust prediction performance. Machine

learningmodels based on PSDs can be useful for informing treatment decisions

in tDCS treatment for patients with PTSD.

KEYWORDS

tDCS, PTSD, EEG, therapeutics, stimulation, machine learning

1. Introduction

Traumatic experiences, such as the coronavirus disease 2019 (COVID-19) pandemic,

are highly prevalent in modern society (1). Therefore, it is essential to understand how to

best help those affected by traumatic events as well as informing effective interventions to

reduce their psychosocial impacts (2). Many studies have sought to identify the optimal
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way to prevent and treat post-traumatic stress disorder (PTSD)

(3–5), a series of reactions that can occur after someone has

experienced traumatic events.

Transcranial direct current stimulation (tDCS) is a possible

alternative treatment modality for addressing PTSD. More

specifically, tDCS is a therapeutic tool that normalizes brain

function and relieves symptoms by sending weak direct current

stimulation to the brain surface through electrodes located on

the scalp in order to spontaneously activate nerve cells. This is

a safe neuromodulation technique that has few adverse effects

(i.e., loss of consciousness, convulsions, abnormal sensations) as

compared to other brain stimulation modalities (6).

Previous research has demonstrated that tDCS shows great

promise as a therapeutic intervention for treating clinical

neuropsychiatric disorders, including PTSD, depression,

and cognitive decline. Auditory verbal hallucinations are

robustly reduced by tDCS (7). Another study recently

suggested that tDCS may be a promising novel treatment

for addressing impulsivity in attention deficit hyperactivity

disorder (ADHD) (8). A small number of studies have

reported clinically significant improvements following tDCS

treatment with respect to a range of cognitive and emotional

performance metrics in PTSD patients evaluated using

electroencephalograms (EEG), event-related potentials (ERP),

and alpha peak frequencies (APF) (9).

In the current study, although tDCS treatment resulted in

clinical improvements in patients with PTSD, not all patients

were positively impacted by tDCS. Several patients showed a

clinical response, while others showed no difference or even

a worsening of their symptoms. tDCS modulates spontaneous

neuronal activity, and the amount and direction of its effects

critically depend on the physiological state of the target neural

structures. Since the effects of tDCS depend on the baseline

status of the brain at the time of application, individual patients

show considerable heterogeneity in treatment outcomes (10).

Consequently, tDCS responses are highly individualized, and

this critically affects the evaluation of tDCS responses (11).

Supervised machine learning methods (e.g., support vector

machines; SVM) can be used to identify and predict individual

clinical responses in electric field characteristics following tDCS

treatment (12). Individual prognostic classifications of tDCS

outcomes can provide important insights for future tDCS

Abbreviations: ADHD, attention deficit hyperactivity disorder; APF, alpha

peak frequency; AUC, area under the ROC curve; CAPS-5, Clinician-

Administered PTSD Scale for DSM-5; COVID-19, coronavirus disease

2019; EEG, electroencephalogram; ERP, event-related potentials; FDR,

false discovery rate; ICA, independent component analysis; PSD,

power spectral density; PTSD, post-traumatic stress disorder; ROC

curve, receiver operating characteristic curve; SCID, Structured Clinical

Interview; Sev, total severity score; Sx, total number of prevalent PTSD

symptoms; SVM, support vector machines; tDCS, transcranial direct

current stimulation.

interventions. However, to the best of our knowledge, there

are currently no studies utilizing machine learning strategies in

patients with PTSD undergoing tDCS treatment.

EEG has been used as a biomarker for detecting and

classifying brain dysfunction. Previous work has demonstrated

that various forms of brain disorders, including PTSD

(13), schizophrenia (14), major depressive disorder (15) and

Alzheimer’s disease, can be diagnosed by monitoring patients’

EEG responses. Therefore, analyses using EEG responses have

the potential to identify clinical responses to neuropsychiatric

treatments, including tDCS. This study aimed to demonstrate

the potential of evaluating EEG responses in order to

classify responders and non-responders among patients with

PTSD. The results of this study might inform appropriate

individualized treatments that can be adequately introduced by

selecting patients based on their characteristics and expected

treatment effects.

In this study, we compared electrophysiological responses

before and after tDCS treatment by analyzing 62-channel EEG

readings in 48 patients with PTSD. We aimed to provide

a tool for increasing the effectiveness of tDCS by building

and validating a personalized therapeutic response classification

model. A machine learning model was trained to determine

the best performing EEG channels and frequency bands. These

features were also used to predict the outcomes of tDCS

treatment in patients with PTSD. We hypothesized that (1) a

statistically significant difference in the specific channel and

frequency band that can be observed by comparing EEG

responses before and after treatment between responders and

non-responders, and (2) therapeutic responders and non-

responders could be predicted and classified using the EEG

features identified in (1).

2. Materials and methods

2.1. Participants

Fifty-one patients with PTSD were enrolled in this study.

Patients were diagnosed by an experienced psychiatrist using

the Structured Clinical Interview for DSM-V (SCID) Axis I

Psychiatric Disorders (16). The Clinician-Administered PTSD

Scale for DSM-5 (CAPS-5) was used to evaluate psychiatric

symptoms (17, 18). Participants aged <19 years or those with

too many EEG artifacts due to body and eye movements

were excluded from the current study. A total of 48

patients (23 males, age 50.81 ± 11.60 years [mean ± SD])

were ultimately enrolled. All participants signed a written

informed consent form that was approved by the institutional

review board of Inje University, Ilsan Paik Hospital (IRB

no. 2015-07-025). This study was conducted in accordance

with the principles of the Declaration of Helsinki and its

later amendments.
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We categorized the patients into responders and non-

responders based on their CAPS-5 scores. For the clinical

assessment, total severity scores (Sev) and the total number of

prevalent PTSD symptoms (Sx) were obtained for each patient.

These scores statistically significantly decreased in both groups

after tDCS stimulation [Sev: t(47) = 6.33, p < 0.001, Sx: t(47) =

6.89, p < 0.001]. Patients whose PTSD scores (total Sev scores

and total Sx scores) improved bymore than 50%were designated

responders. The remaining participants were designated non-

responders. In total, 31 participants were designated non-

responders and the remaining 17 participants were designated

responders.

Demographic data for the participants in each group are

presented in Table 1. We additionally conducted comparisons

between responders and non-responders on the different sub-

scales of the main PTSD symptoms. The sub factors of PTSD

symptoms in CAPS-5, intrusions (B), avoidance (C), negative

affect and anhedonia (D) and externalizing, anxious arousal

and dysphoric arousal (E), were obtained for comparison.

Independent t-tests were employed to compare age, educational

attainment, and Sev and Sx scores and other main scales

across groups. Sev and Sx scores and other scales include

pre- and post-treatment values measured before and after

treatment, respectively.

2.2. tDCS protocol and application

Each tDCS session was applied using two saline-soaked

sponge pads, with the anodal electrode positioned over the

dorsolateral prefrontal cortex (with a F3 electrode location

selected according to the International 10/20 System) and a

cathode electrode placed over the F4 electrode. The position

of the anode (F3) electrode montage is important in patients

with posttraumatic stress disorder (PTSD) as it is closely related

to the left dorsolateral prefrontal cortex (DLPFC). DLPFC

plays a central role in emotional processing by regulating

fear expression through projections to the vmPFC (19) and

lateralized DLPFC dysfunction could be the underlying cause

of stress and memory problems shown in PTSD patients (20).

In addition, patients with PTSD showed weakly connected and

hypoactive central executive network (CEN) where DLPFC is

involved as a major node (21). We further applied tDCS on

athode (F4) as the position determines current intensity of

stimulation at the left DLPFC by affecting neuromodulation

under the anode (22). Therefore, considering (a) previous

studies supporting the relationship between abnormalities found

in PTSD patients and DLPFC dysfunction (23, 24) and (b) the

efficacy of tDCS for PTSD on DLPFC (25), this study involved

right and left DLPFC (F3 and F4) as the stimulation area of tDCS

for patients with PTSD.

The active stimulation protocol involved applying 2.0

mA intensity for 20 min. Participants sat quietly during

TABLE 1 Demographic and clinical characteristics of responders and

non-responders.

Responders

(N = 17)

Non-responders

(N = 31)

p

Age (years) 51.18± 10.84 50.61± 12.17. 0.874

Sex 0.489

Male 7 (41.2) 16 (51.6)

Female 10 (58.8) 15 (48.4)

Education 10.59± 4.37 11.65± 3.27 0.348

(years)

CAPS-5

Pre

B Sev 11.76± 5.95 10.77± 4.92 0.539

B Sx 3.47± 1.70 3.58± 1.52 0.973

C Sev 5.71± 2.49 3.48± 2.42 0.004

C Sx 1.59± 0.62 1.19± 0.83 0.115

D Sev 13.65± 6.59 13.16± 6.16 0.8

D Sx 4.06± 1.52 4.10± 1.80 0.815

E Sev 11.65± 4.43 10.35± 4.56 0.348

E Sx 3.53± 1.07 3.52± 1.39 0.973

Total Sev 42.76± 16.22 37.42± 13.29 0.224

Total Sx 12.65± 3.69 12.26± 4.07 0.745

Post

B Sev 2.29± 2.17 7.87± 3.86 <0.001

B Sx 0.65± 0.79 2.61± 1.54 <0.001

C Sev 0.53± 1.23 4.32± 2.69 <0.001

C Sx 0.24± 0.56 1.55± 1.12 <0.001

D Sev 2.88± 2.87 10.77± 5.70 <0.001

D Sx 0.71± 0.92 3.42± 1.84 <0.001

E Sev 4.24± 2.82 7.13± 3.42 0.005

E Sx 1.35± 1.00 2.48± 1.43 0.008

Total Sev 9.94± 6.02 30.1± 9.64 <0.001

Total Sx 2.94± 2.3 10.06± 3.56 <0.001

PTSD, post-traumatic stress disorder; CAPS-5, clinician-administered PTSD scale for

DSM-5; Sev, severity; Sx, symptoms; B, intrusions factor of CAPS-5; C, avoidance factor

of CAPS-5; D, negative affect and anhedonia factor of CAPS-5; E, externalizing, anxious

arousal and dysphoric arousal factor of CAPS-5.

the stimulation session, while the researcher monitored and

recorded tDCS electrode impedances. Each subject received 1

tDCS session per day during 10 days. Thus, total 10 session of

tDCS were applied for a subject.

2.3. EEG data acquisition

For EEG acquisition, the participants were seated in a

slightly dim room for 3 min with their eyes-closed and in

a relaxed state. During the experiment, all the participants

were told in advance not to move or sleep. EEG data were

acquired using a NeuroScan SynAmps amplifier (Compumedics
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USA, Charlotte, NC, USA), and a NeuroScan Quick-Cap with

62 Ag/AgCl electrodes was placed according to the extended

international 10–20 system. All recorded EEG data were

sampled at 1,000 Hz and filtered using a 0.1–100 Hz bandpass

filter. The electrode impedance was kept below 5 k�, with

ground and reference electrodes located on the forehead and Cz

reference point, respectively.

2.4. EEG preprocessing

RawEEGdata from 62 EEG channels (excludingHEO, VEO,

and EKG channels) were preprocessed using EEGLAB (26) and

MATLAB R2020a software (MathWorks, Natick, MA, USA).

EEG data sampled at 1,000 Hz were re-referenced according

to the common average reference and the baseline data was

removed. A Butterworth bandpass filter was used to filter the

EEG data with cutoff frequencies of 1 and 50 Hz. Artifacts

caused by movements, such as those of the muscles and eyes,

were rejected using a independent component analysis (ICA).

More specifically, all independent components were filtered by

visual inspection and segments containing large artifacts were

excluded. After pre-processing, EEG segments with a length of

150 s were prepared based on data from 48 patients.

For each segment, power spectral density (PSD) was

extracted using Welch’s method (27). Welch PSD values were

obtained using the built-in method in MATLAB (28, 29). More

specifically, data were divided into several 1 s segments with

50% overlap. Next, each segment was windowed using the

Hamming window and the periodogram of each windowed

semgent was obtained after a fast Fourier transform. Finally, all

periodograms were averaged to obtain the Welch PSD values

for each participant using the average powers in five specific

frequency bands: delta (1–4 Hz), theta (4–8 Hz), low alpha (8–10

Hz), high alpha (10–12 Hz), and beta (12–30 Hz).

2.5. Feature extraction

Figure 1 summarizes the analytical procedure used in this

study. First, we investigated treatment outcomes by comparing

PSD values before and after tDCS treatment, as shown in the

upper pathway in Figure 1. To assess differences, we computed

PSD change rates after treatment. Changes in the frequency

band power over the treatment period were calculated using the

following equation:

Pchange(f ) =
Ppre(f )− Ppost(f )

Ppre(f )
(1)

where Ppre(f ) is the pre-treatment PSD in a certain

frequency band, and Ppost(f ) is the post-treatment PSD in

the same frequency band. By comparing Pchange(f ) between

responders and non-responders, we attempted to identify

frequency bands that exhibited therapeutic effects and used these

bands to predict treatment responses.

To predict treatment response, only pre-treatment PSD was

used to classify responders and non-responders. Pre-PSD was

used as the input to the classifier, as shown in the lower path

in Figure 1.

2.6. Statistical analysis

An independent t-test was used to evaluate the mean

difference in PSD change rates between responders and non-

responders. Since the number of responders was less than 30,

we performed the Kolmogorov-Smirnov test for normality and

Levene’s test for equality of variance. If normality was not

satisfied, we employed a Mann-WhitneyU-test instead of a two-

sample t-test as appropriate. Moreover, we used multiple EEG

channels to compare PSD change rates between the two groups.

P-values were adjusted using the false discovery rate (FDR) to

control for Type I errors. All statistical analyses were performed

using R Statistical Software (version 4.1.1; R Foundation for

Statistical Computing, Vienna, Austria).

2.7. Classification

An SVMwas used to classify responders and non-responders

using the PSD of the pre-treatment phase. SVM is well-known

as a classic supervised learning classifier (30). In this study,

the radial basis function was selected as the kernel function

in the SVM to model complex nonlinear relationships. We

used the grid search method with a range of C and γ values

(ranging from 0.001 to 100) to adjust the optimal combination

of SVM parameters. One combination of hyperparameters with

the best cross-validation accuracy was selected and used to

train an SVM on the entire dataset (31). Using each EEG

channel’s average powers from five frequency bands, we first

split the data into training and testing sets for five-fold cross

validation. For each fold, a grid search was performed to identify

the optimal parameter values producing the best predictive

model. Model evaluation was based on evaluations of the area

under the receiver operating characteristic (ROC) curve (AUC).

We calculated classification performance using the AUC as

well as sensitivity and specificity. To avoid imbalance between

two classes and get reasonable conclusion, we also computed

balanced accuracy which is based on two common metrics,

sensitiviy and specificity.

More specifically, we evaluated classification performance

based on readings from a single EEG channel for each frequency

band. We then improved the SVM model using multiple

channels, starting from a single channel and iteratively adding

channels one by one. We added a channel that best improved
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FIGURE 1

The flowchart of overall analysis procedure.

the model until all 62 channels were used for training. We aimed

to design EEG channels for each frequency band to provide

effective predictors of treatment outcomes. We also performed

the cluster-based permutation test to deal with the multiple

comparison problem in multi-channel EEG data. We produced

1,000 random permutations and p-values were obtained from

the best SVM model which showed the highest AUC in multi-

channel classification (32).

3. Results

3.1. Statistical analysis for treatment
outcomes

To determine the frequency bands that could best select

treatment outcomes following tDCS in patients with PTSD,

we compared the rates of change in PSD values (Pchange(f ))

between responders and non-responders within five frequency

bands. After FDR correction, some channels in the theta and

beta bands showed statistically significant differences between

groups. None of the channels in the remaining three frequency

bands were found to be statistically significant. The theta band

had six significant channels (F7, F8, FC6, FT8, P2, and POZ)

and the beta band had 23 significant channels (AF3, AF4, F5, F3,

F1, F2, F4, F6, F8, FC5, FC4, FC6, FT8, C3, C4, T8, CP3, CPZ,

CP2, CP4, PZ, P2, and POZ) at a statistical significance level of

0.05. Although there were statistically significant differences of

the rates of change in PSD values (Pchange(f )) in those frequency

bands, there were no existing significant differences in baseline

power (pre-PSD). The F8 channel in the theta band [t(39.348)
= –4.18, p < 0.001] and the FC6 channel in the beta band

[t(42.95) = –3.88, p < 0.001] showed the strongest statistically

significant differences. Figures 2A,B show the topographies of

the averaged beta PSD change rates in responders and non-

responders in beta frequency. As can be clearly seen in the figure,

responders exhibited decreased beta PSD values within all 62

channels after treatment, with greater reductions especially in

the frontal and centro-parietal regions. In contrast, in most non-

responders, beta PSD values increased after treatment. Figure 2C

illustrates the statistical significance of the topography of the

logarithmic FDR-corrected p-values. Statistical significance was

observed in the channels located in the frontal and centro-

parietal regions. The FC6 channel in the frontal region, which

showed the statistically strongest significant difference, showed

a relatively large decrease of PSDs in responders (pre-PSD: 0.481

± 0.32, post-PSD: 0.331 ± 0.172). On the other hand, it shows

relatively large increase in non-responders (pre-PSD: 0.383 ±

0.286, post-PSD: 0.422± 0.355).

3.2. Prediction of treatment response

To determine whether pre-PSD reading could be used to

predict treatment response, an SVM was trained to classify

responders and non-responders. First, as a single-channel

approach, the SVM model was trained for each channel and

frequency band to identify the channels and bands that best

represented the treatment response. SVM classification of all

five bands accurately distinguished tDCS responders from non-

responders, with AUCs ranging from 0.71 to 0.81 (delta: AUC =

0.81 at Cz; theta: AUC = 0.71 at FCz; alpha low: AUC = 0.72

at FC5; alpha high: AUC = 0.79 at FC2; beta: AUC = 0.78 at

Pz). Figure 3 shows the topographies of the SVM classification

performances in terms of the AUC for each frequency band.

Second, the multichannel approach improved the SVM

classification between the two groups to a greater degree. More

specifically, as shown in Figure 4, all five frequency bands

usually demonstrate that the AUC increases for the first few

channels and then continues to decrease as the number of

channels increase. Therefore, the prediction accuracy reached its

maximum in all frequency bands when using this multichannel

approach. For the delta example, the single best prediction

accuracy was 0.81 at Cz. However, adding the O1, FC2, FC1, and
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FIGURE 2

Topographies of beta band averaged power spectral density (PSD) change (pre-post) rates in (A) responders and (B) non-responders. (C)

log-scaled adjusted p-values (corrected) from false discovery rate (FDR) obtained from two-sample t-tests also in Beta band. Values between

electrodes are interpolated.

FIGURE 3

Single-channel support vector machine (SVM) performance (area under the receiving operating characteristics curve [AUC]) for each electrode.

(A) Delta; (B) Theta; (C) Alpha Low; (D) Alpha High; (E) Beta.

F2 channels provided a much better performance at 0.93. Table 2

summarizes the prediction performance of the single-andmulti-

channel approaches in each frequency band.

4. Discussion

The present study investigated tDCS treatment responses

using statistical analysis and machine learning techniques

for EEG data in patients with PTSD. Each individual was

defined as a responder or non-responder to tDCS treatment

depending on psychiatric symptom changes assessed by the

CAPS-5 evaluation. Since we acquired multi-channel EEG

data before and after tDCS treatment, a comparison could

easily be made to find the EEG feature best predicting

responsiveness. Using the pre-delta PSDs for five selected

channels (Cz, O1, FC2, FC1, and F2), the SVM model

presented in this paper was able to predict an individual’s tDCS

responsiveness with an AUC of 0.93, despite the small size of the

training data.

4.1. EEG for monitoring tDCS

Together with electrical stimulation, EEG monitoring

can provide additional mechanistic information as well as
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FIGURE 4

Support vector machine (SVM) prediction accuracy in the area under the receiving operating characteristics curve (AUC) for each frequency

band. The red dots indicate the highest classification results of that frequency range.

TABLE 2 Support vector machine (SVM) classification results for the best channel per frequency range with pre-power spectral density (PSD)

readings.

Frequency

band

Single max Multiple max

Channel AUC Sensitivity Specificity

Balanced

accuracy

(%)

Channel AUC Sensitivity Specificity

Balanced

accuracy

(%)

p-value

Delta CZ 0.81 0.7 0.8 75.2 CZ, O1, FC2, FC1, F2 0.93 0.77 0.87 81.7 <0.001

Theta FCZ 0.71 0.35 0.81 58.0

FCZ, POZ, CPZ, FZ,

FC4, FC3, F6, FC1,

FC2, CP1, T8, AF4,

CP2, CP4, F4, F2, C2,

CZ, P6, CP5, FC5,

P7, C6

0.79 0.12 0.97 54.2 0.006

Alpha Low FC5 0.72 0.32 0.91 61.5 FC5, CP6, P2, PZ 0.76 0.13 0.93 53.3 0.011

Alpha High FC2 0.79 0.53 0.87 70.2 FC2, P4 0.8 0.32 0.83 57.5 0.04

Beta PZ 0.78 0.37 0.81 59.0 PZ, CP5 0.87 0.73 0.78 80.0 0.002

AUC, area under the receiver operating characteristics curve.

information regarding the clinical effects on brain function.

EEG has been widely used to measure the cortical effects of

tDCS. For example, Boonstra et al. (33) presented changes

in mean frequency, demonstrating that the mean frequency

was statistically significantly reduced after tDCS stimulation

as compared to sham stimulation. Song et al. (34) observed

a statistically significant increase in beta power during

stimulation. Cavinato et al. (35) observed changes in cortical

EEG oscillations, such as alpha and beta waves, in patients

with disorders of consciousness. Similarly, we observed theta

and beta power changes that were similar to other studies

demonstrating spectral differences in PTSD patients with tDCS
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treatment (36, 37). These two frequency bands, theta and beta,

have been reported as the key observable indices for clinical

effects of tDCS treatment related to major symptoms of PTSD,

such as stress, depressive and anxiety. According to Palacios-

García’s study, the increase in psychosocial stress and stress-

related anxiety was related to specific changes in beta-band

(38). Dunkley also reported theta band plays a critical role in

attentional, depressive and anxiety-related sequelae observed

in PTSD populations (39). Therefore, our findings clinically

suggest that the alleviation of PTSD symptoms, which is the

effect of tDCS treatment, can be observed and monitored in

patients’ EEG.

Most of the aforementioned studies reported an increase in

spectral power after stimulation, and this result was replicated

in our study. However, when the participants were divided

into responders and non-responders, this trend was observed

only for non-responders. More specifically, the non-responders

showed an increase, whereas the responders showed a decrease

after treatment. As there were statistically significant group

differences in PTSD Total sev and sx scores after treatment, as

well as some sub scales of the CAPS (B, C, D and E), these

spectral power differences could be related to clinical effects

to PTSD in major symptoms such as intrusions, avoidance,

negative affect and anhedonia. Especially in a key disease

factor (avoidance, P = 0.004), the responder group differed

significantly from the non-responder group, with a large effect

size. Both groups present differently clinicaly at baseline. This

avoidance factor in CAPS-5 is mainly related to the functional

deterioration of the left frontal lobe (40, 41). The left frontal

anodal tDCS performed in our study is a left frontal lobe

activating protocol. Therefore, these numerical differences in the

treatment responders suggest that the effect of tDCS treatment

was clearly applied in the treatment responders.Since evaluating

differences between responders and non-responders may help

in identifying patients responsive to tDCS at early stages of

treatment, it is crucial to compare patient groups through

EEG monitoring.

4.2. Machine learning for predicting
responsiveness

Owing to recent advances in machine learning, clinical

outcomes can now be measured or evaluated using

electrophysiological data. For instance, a study by Zandvakili

et al. (42). presented an approach for predicting the clinical

response to brain stimulation in mental disorders using

resting EEG readings. Specifically, these researchers proposed

an automated EEG classification to predict tDCS treatment

outcomes in patients with major depressive disorder (MDD).

Based on their proposed cognition labels, the evaluated machine

learning classifier exhibited a high predictive performance

(87%) using a single channel and an even higher predictive

performance (92%) using multiple channels. Albizu et al. also

reported an SVM model that could predict individual tDCS

responsiveness with 86% accuracy (12).

Similar to the study conducted by Zandvakili et al,

we evaluated prediction performance while comparing single

channels and multiple channels. By comparing the performance

of each of the five frequency bands, it was possible to identify

specific channels and bands with high prediction performance.

The proposed approach demonstrated that it is possible to

predict therapeutic outcomes using resting EEG readings with

relatively high performance and accuracy (AUC = 0.93). This

result showed higher predictive performance than the case of

logistic regression was performed with the baseline avoidance

scale (AUC = 0.75), a key disease factor that showed a significant

difference between the two groups in baseline. Furthermore, in

each frequency band, EEG electrodes located in the middle line

(e.g., FCZ, CZ, PZ) and electrodes placed in frontal region (e.g.,

FC5, FCZ, FC2) commonly showed the highest performance.

The accurate prediction of tDCS response is meaningful because

the efficiency of clinical treatment can be substantially increased

given this information.

4.3. Study limitations

Despite the high performance of the predictions generated

in this study, we acknowledge some limitations of this work.

For example, the sample data were based on subjects who

were diverse in age, with patients ranging in age from their

20s to their 70s. According to Bokszczanin’s study, treatment

outcomes may vary according to age and gender (43). However,

differences in age-specific effects of tDCS treatment were not

clearly observed in this study. In addition, the CAPS-5-based

patient group assignments may not be divided clearly. As the

degree of improvement varies substantially from person to

person, some people are located near the boundary between

response and nonresponse. We anticipate extending our study

to a much larger and more comprehensive study population of

patients with PTSD so that the therapeutic effects of tDCS can

be comprehensively identified and predicted.

5. Conclusions

The current study investigated tDCS treatment

responsiveness in patients with PTSD using EEG spectral

power and machine learning-based prediction methods. In

this study, the evaluated patients in the two groups showed

statistically significant differences in EEG spectral power in the

theta and beta frequency bands with respect to their treatment

response. In addition, we demonstrated that machine-learning-

based classifications can predict tDCS treatment outcomes
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with considerable accuracy. From these results, it is possible

to identify specific channels and bands that most accurately

represent the tDCS response in patients with PTSD. Despite one

of the aforementioned limitations (i.e., that we only considered

two labels for CAPS-5), we conclude that these results have

the potential to hold new insights as a basis for diagnosing

and predicting the clinical response to tDCS treatment. These

results could therefore provide critical information informing a

meaningful approach for the early identification of patients who

might be clinically affected by tDCS treatment, thus reducing

the cost and time these patients would otherwise expend during

the treatment process. Our findings inform future research

directions, and, if confirmed, are expected to ultimately inform

medical guidelines.
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