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Prioritization of Diagnostic and
Prognostic Biomarkers for Lupus
Nephritis Based on Integrated
Bioinformatics Analyses
Zhimin Chen1, Ruilong Lan2, Keng Ye1, Hong Chen3, Caiming Chen1* and Yanfang Xu1*

1Department of Nephrology, Blood Purification Research Center, First Affiliated Hospital of Fujian Medical University, Fuzhou,
China, 2Central Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, China, 3Department of Pathology, First
Affiliated Hospital of Fujian Medical University, Fuzhou, China

Lupus nephritis (LN) is an important driver of end-stage renal disease (ESRD). However,
few biomarkers are available for evaluating the diagnosis and prognosis of LN. For this
study, we downloaded microarray data of multiple LN expression profiles from the GEO
database. We used the WGCNA and R limma packages to identify LN hub genes and
differentially-expressed genes (DEGs). We identified nine co-DEGs in the intersection with
LN-related genes from the Genecards database. We found DEGs that are primarily
associated with immune-related functions and pathways (including with the
complement pathway, primary immunodeficiency markers, and MHC-like protein
complexes) through our comprehensive GSEA, GO, and KEGG enrichment analyses.
We used other LN and SLE validation datasets and discovered six explicitly expressed co-
DEGs: HLA-DMA, HLA-DPA1, HLA-DPB1, HLA-DRA, IL10RA, and IRF8 in the LN set;
ROC and Precision-Recall curve analyses revealed that these six genes have a good
diagnostic efficacy. The correlation analysis with prognostic data from the Nephroseq
database indicates that the differential expression of these co-DEGs is associated with a
low glomerular filtration rate in that cohort. Additionally, we used a single-cell LN database
of immune cells (for the first time) and discovered these co-DEGs to be predominantly
distributed in different types of macrophages and B cells. In conclusion, by integrating
multiple approaches for DEGs discovery, we identified six valuable biomarkers that are
strongly correlated with the diagnosis and prognosis of LN. These markers can help clarify
the pathogenesis and improve the clinical management of LN.

Keywords: lupus nephritis, bioinformatics, biomarkers, diagnosis, prognosis, WGCNA

INTRODUCTION

Systemic lupus erythematosus (SLE) is a common chronic autoimmune disease with multifactorial
causes. SLE affects mainly women of childbearing age and its progression and prognosis are highly
heterogeneous. The characteristics of SLE include the production of autoantibodies, the deposition of
immune complexes, and impairment of multiple organ systems (Kiriakidou and Ching, 2020). A
genetic predisposition, environmental factors, apoptosis abnormalities, infections, the use of certain
drugs, and sex hormone levels are factors thought to play a role in the pathogenesis of SLE (Durcan
et al., 2019). The kidney is the most commonly affected organ in patients with SLE, and renal biopsies
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show a nearly 100% involvement with approximately 45–85% of
patients presenting clinical symptoms of lupus nephritis (LN)
(Furie et al., 2020). The pathogenesis of LN includes a process of
kidney damage caused by immune complex deposition in renal
tissues (Anders et al., 2020) due to inflammatory cell recruitment,
cytokine production, oxidative damage, complement activation,
and abnormal fibroblast proliferation (Davidson et al., 2019).
Inflammation and fibrosis are critical for the development of LN
because they include the interaction of innate and adaptive
immune cells with resident renal cells. Although
glucocorticoids and immunosuppressants have been shown to
improve survival in patients with LN, the current treatment for
this disease remains unsatisfactory (Lech and Anders, 2013).
Additionally, the adverse effects of non-specific treatments
(including those against infection and renal failure) make a
more effective and targeted approach urgent. Thus, conducting
additional research into the etiology and pathogenesis of the
disease is necessary to further improve the survival of patients
with LN.

Bioinformatics is a branch of computer science that focuses on
the storage, retrieval, and analysis of biological data. The analysis
of massive amounts of data generated by biochips has provided
helpful information to help understand molecular disease
mechanisms (Wooller et al., 2017). Bioinformatics has been
widely used to obtain disease gene expression profiles, to
identify disease-related genes and drug targets, and to analyze
complex disease pathogenic mechanisms. Craciun et al., for
example, used RNA sequencing to characterize the renal
transcriptomic profile of specimens in a mouse model of folic
acid-induced nephropathy (Craciun et al., 2016). As a result, they
identified 10 molecules associated with renal fibrosis, with the
levels of CDH11, MRC1, and PLTP being significantly increased
in the urine of patients with chronic kidney disease. Köttgen et al.
used genetic and genotype-population analyses to obtain 67093
European genome-wide SNPs and then performed a GWAS
analysis to identify SNP mutations in UMOD, a susceptibility
gene for chronic kidney disease (Köttgen et al., 2010).
Additionally, GWAS studies have helped identify susceptibility
genes for diabetic nephropathy and IgA nephropathy (Salem
et al., 2019; Sallustio et al., 2019).

In this study, we used bioinformatics approaches to screen for
co-differentially-expressed genes (co-DEGs) in LN from multiple
LN dataset sources. The purpose of this study was to identify and
prioritize diagnostic and prognostic biomarkers for lupus
nephritis and to explore the potential pathways and immune
cells that are related to the pathogenesis of LN.

MATERIALS AND METHODS

Data Download
We searched the GEO database (https://www.ncbi.nlm.nih.gov/
geo/) (Barrett et al., 2013) for human SLE- and LN-related
expression profiles using the keywords “lupus nephritis” and
“systemic lupus erythematosus.” GSE32591 is based on the
GPL14663 platform, which includes 29 normal kidney biopsy
and 64 LN kidney biopsy samples (Berthier et al., 2012). We

extracted data from 17 normal blood samples and 29 peripheral
blood samples from SLE patients with lupus nephritis from the
GSE99967 dataset (based on the GPL21970 platform) for
subsequent analysis (Wither et al., 2018). In addition, we
extracted data from seven normal and 14 lupus nephritis
samples from the GSE112943 dataset (built on the GPL10558
platform). GSE81622 is based on the GPL10558 platform and
includes 25 normal and 15 SLE samples of patients without LN
(Zhu et al., 2016). The GSE60681 dataset based on the GPL13497
platform includes data from 11 patients with LN and from 37
control samples in stable phase (Magnusson et al., 2017). Finally,
we also searched the Genecards database (https://www.genecards.
org/) using the keyword “lupus nephritis” to identify differential
genes associated with LN. Figure 1 illustrates the specific
applications used and the workflow for all data in this study.

Data Pre-Processing
We used the Perl language to process the original matrix of
GSE32591, GSE99967, GSE112943, GSE81622, and GSE60681.
The probe IDs were converted to gene symbols, and empty probes
were removed based on the annotation information contained in
each platform file. When multiple probes matched the same gene,
the average expression value was used to determine the gene’s
expression level. The Perl script we used to pre-process is detailed
in Supplementary Data S1.

Weighted Gene Co-expression Network
Analysis
We used the R language package WGCNA (Langfelder and
Horvath, 2008) to evaluate the GSE99967 expression matrix. We
extracted the LN grouping, SLEDIA-2K score, age, and gender data
from the original set as input data for the WGCNA. The sample
clustering dendrogram was constructed with the hcluster function,
and the TOM matrix was constructed using the pickSoftThreshold
function to determine the optimal soft threshold.We used candidate
power values (1–30) to determine the average connectivity and
independence of various modules. Dynamic shear trees were used to
identify gene modules. Next, we measured the association between
modules and sample traits using gene significance values (GS) and
module membership values (MM), and keymodules were identified.
We set |GS| to >0.3 and |MM| to >0.7 to filter hub genes in
accordance with the official WGCNA guidelines and prior
application examples to obtain the most relevant genes to the
traits in the key module (Langfelder and Horvath, 2008; Tang
et al., 2018).

Identification of
Co-Differentially-Expressed Genes
The annotated GSE32591 expression matrix was analyzed for
differentially-expressed genes (DEGs) using the R limma package
(http://www.bioconductor.org/packages/release/bioc/html/
limma.html) (Smyth, 2004) setting the |logFC| to >0.75 and the
adjusted p-value to <0.05 as the criterion. The DEGs were then
intersected with the module hub genes identified using WGCNA
in the GSE99967 set and the LN-related differential genes used in
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the Genecards database to identify co-expressed LN differential
genes (co-DEGs) across multiple source datasets.

Gene Set Enrichment Analysis
We performed a gene set enrichment analysis (GSEA)
(Subramanian et al., 2005) using the KEGG and REACTOME
gene sets in the GSEA C2 dataset (c2.cp.kegg.v7.4.symbols.gmt
c2.cp.reactome.v7.4.symbols.gmt), the GO gene set in the C5
dataset (c5.go.bp.v7.4.symbols.gmt, c5.go.cc.v7.4.symbols.gmt,
c5.go.mf.v7.4.symbols.gmt), and the hallmarker gene set
h.all.v7.4.symbols.gmt). |NES| > 1, NOM p-value < 0.05, FDR
q-value < 0.25 were set as the screening criteria for enrichment

pathways. The results were visualized using the OmicShare
(http://www.omicshare.com) cloud platform tool.

Gene Ontology, Kyoto Encyclopedia of
Genes and Genomes Enrichment Analysis
and Protein-Protein Interaction Network
Construction
We performed gene ontology (GO) (Ashburner et al., 2000) and
Kyoto encyclopedia of genes and genomes (KEGG) (http://www.
genome.jp/kegg/) (Kanehisa and Goto, 2000) enrichment
analyses of co-DEGs using the ClueGo (Bindea et al., 2009)

FIGURE 1 | | Study workflow. Abbreviations: Systemic lupus erythematosus (SLE); Lupus nephritis (LN); Weighted gene co-expression network analysis (WGCNA);
Gene set enrichment analysis (GSEA); Differentially-expressed genes (DEGs); Gene ontology (GO); Kyoto encyclopedia of genes and genomes (KEGG); Protein-Protein
interaction (PPI); Receiver operating characteristic curve (ROC); Precision-Recall curve (PRC).
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FIGURE 2 | | WGCNA analysis in GSE99968. (A) Sample-trait clustering heatmap. (B) Principal component analysis (PCA) shows the dimensionality reduction
distribution of control and LN sets. (C) Dynamic shearing tree merging similar module genes. (D) Module-trait correlation heatmap. (E) Module-module clustering tree
and correlation heatmap.
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and the Cluepedia (Bindea et al., 2013) plugins within the
CytoScape software (V 3.7.2, http://www.cytoscape.org/) (Cline
et al., 2007), setting p to <0.05 to screen the results and construct
the target-pathway network. The co-DEGs were submitted to the
STRING database (https://www.string-db.org/) (Szklarczyk et al.,
2015) to evaluate the interaction between co-DEGs from the
protein level; we obtained protein interaction network co-DEGs
by setting the confidence level to 0.4.

Validation of Co-Differentially-expressed
genes
We validated the expression levels of co-DEGs in theGSE112943 LN
expression profile dataset and the GSE81622 SLE expression profile
dataset without lupus nephritis to verify that co-DEGs have similar
expression profiles in different LN datasets and to verify whether the
co-DEGs were specific to LN. Significance tests were performed
using the Wilcoxon–Mann–Whitney test, with results visualized
using the ggplot2 package (Villanueva and Chen, 2019).We used the
PRROC package (Grau et al., 2015) to examine the co-DEGs’
diagnostic efficacy by performing Receiver Operating
Characteristic (ROC) and Precision-Recall curves (PRC) analyses
in the GSE60681 dataset. We validated the distribution of co-DEGs
in the published LN single-cell transcriptome sequencing database
(https://singlecell.broadinstitute.org/) to explore co-DEGs’
distribution in LN immune cells) (Arazi et al., 2019). Finally, we
analyzed the association between co-DEGs and clinical features
using the Nephroseq database (http://v5.nephroseq.org/) (Zheng
et al., 2017). A scatter plot was constructed after calculating the
Pearson correlation coefficient between co-DEGs and glomerular
filtration rates (GFRs). The Kruskal–Wallis test was used to test the
significance of co-DEGs and lupus pathological staging.

RESULTS

Weighted Gene Co-Expression Network
Analysis Identifies Key Lupus Nephritis
Genes
Genes of interest can be identified by combining gene and clinical
trait data and dividing the gene co-expression network of complex
biological processes into several highly correlated signature modules
that can detect the genes that perform critical functions. As shown by
the hierarchical clustering in Figure 2A, potential differences
between control and LN clusters exist between the different
clinical phenotypes. Our principal component analysis (PCA)
results show the dimensionality reduction distribution of control
and LN sets (Figure 2B). We used WGNCA to analyze the
GSE99967 expression matrix, with the shear height of the
function hcluster set to 100 and an outlier sample GSM266765
excluded (Supplementary Figure S1). We calculated the
pickSoftThreshold parameter to determine the optimal soft
threshold, which is 4 (Supplementary Figure S2). The dynamic
shear tree’s merged shear height was 0.25 for module identification
and module merging (Figure 2C). The minimum number of genes
in each networkmodule was set to 120, resulting in a total of 12 gene

modules. The most strongly correlated positive and negative
modules were chosen as critical modules for the pathogenesis of
the LN and SLEDAI-2K traits. Our results indicate that the blue
module was significantly negatively correlated with the LN trait,
while the cyan module was significantly positively correlated with
the SLEDAI-2K trait (Figures 2D,E). These two modules were
identified as critical modules, and when |GS|>0.3 and |MM|>0.7
were used to screen for essential genes, we found 2255 genes in the
LN trait and 1,388 genes in the SLEDAI-2K trait.

Gene Set Enrichment Analysis Enrichment
Analysis
We performed a comprehensive enrichment analysis of the
screened blue and cyan modules to discover the functions or
pathways associated with LN using the GSEA software and
exploring the functions and pathways of the key modules. Our
results show that the key modules were mainly enriched for GO
entries (including antimicrobial humoral response, defense
response to fungus), and KEGG pathways (including cell cycle,
P53 signaling pathway, systemic lupus erythematosus, and
primary immunodeficiency). The hallmark entries included
G2M checkpoint, mitotic spindle, and REACTOME pathways
including the RNA pol-I promoter opening and meiotic
recombination pathways (Supplementary Figure S3). Figures
3A,B present two GSEA pathways that are highly associated with
lupus pathogenesis. The complete GSEA enrichment results are
presented in Supplementary Table S1.

Identification of Differentially-Expressed
Genes and Screening of
Co-Differentially-Expressed Genes
In our screen for critical LN genes, we used a variety of methods to
obtain differentially-expressed LN genes. The differential genes in
GSE32591 were screened using the R limma package, setting the |
logFC| to >0.75 and the adjusted p-value to <0.05 as criteria, yielding
a total of 216 up-regulated and 63 down-regulated differential genes.
The volcano plot in Figure 3C depicts the distribution of DEGs.
Additionally, we entered the keyword “lupus nephritis” to search the
Genecards database for LN-related differential genes and found
1,248 genes (Supplementary Table S2). After using the
VennDiagram package (Chen and Boutros, 2011) to intersect the
critical genes of WGCNA, the DEGs of GSE32591, and the LN-
related genes in the Genecards database, we identified nine co-
expressed differential genes in multiple source datasets: TLR2, LTF,
IL10RA, IRF8, CD163, HLA-DMA, HLA-DRA, HLA-DPA1, and
HLA-DPB1 (Figure 3D).

Co-Differentially-Expressed Genes Gene
Ontology and Kyoto Encyclopedia of Genes
and Genomes Enrichment Analysis and
Protein-Protein Interaction Network
Construction
We deduced the specific functions and pathways of co-DEGs via
GO and KEGG enrichment analyses. Additionally, the PPI
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network results uncovered intrinsic co-DEG connections. The
ClueGo plugin in Cytoscape software can show a network of the
association between pathways and the enrichment of genes
among them. We imported co-DEGs into ClueGo for analysis,
and the results show that the main GO entries enriched by co-
DEGs included those for the MHC and MHC class II protein
complexes (Figure 4A). The KEGG pathways involved include
those for toxoplasmosis, inflammatory bowel disease, and others
(Figure 4B). Our STRING database results showed the protein
interaction associations of co-DEGs; we imported the results into
CytoScape software to calculate the degree values between the
networks (visualized using the cytoHubba plugin). IRF8 was the
hub gene in the network (Figure 4C).

Validation of Co-Differentially-Expressed
Genes in Other Lupus Nephritis and
Systemic lupus erythematosus Datasets
We used other LN and SLE expression profile data to validate the
expression of co-DEGs in different datasets. Our results indicated
that all co-DEGs were differentially expressed between control

and LN groups in the LN GSE112943 set (Figure 5A). The
expression levels of IRF8, IL10RA, HLA-DPA1, HLA-DPB1,
HLA-DMA, and HLA-DRA were not significantly different
between the control and SLE groups (without LN) in the
GSE81622 expression profile data. (Figure 5B). Therefore,
these six genes highly expressed in LN samples indicated that
they may serve as novel biomarkers for the disease.

Validation of Co-Differentially-Expressed
Genes’ Distribution in Single-Cell Datasets
Due to the close association between LN pathogenesis and
immune disorders, we investigated the distribution of co-
DEGs in immune cells using the published LN single-cell
sequencing database. We found that among the six co-DEGs
explicitly expressed in LN, HLA-related genes were overexpressed
in a variety of macrophage subtypes (inflammatory CD16+

macrophages, tissue-resident macrophages, phagocytic CD16+

macrophages) and B cells (naive B cells, ISG-high B cells,
activated B cells). However, IRF8 and IL10RA were expressed
at a relatively low level in macrophages and B cells. Additionally,

FIGURE 3 | | GSEA enrichment analysis and identification of co-DEGs. (A) KEGG dataset enrichment results. (B) HALLMARKER dataset enrichment results. (C)
Volcano map of GSE32591 differentially-expressed genes. (D) Venn diagram screening for co-differentially-expressed genes.
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FIGURE 4 | | Functional and pathway analysis of co-DEGs. (A)GO enrichment analysis of co-DEGs. (B)KEGG enrichment analysis of co-DEGs. (C) Protein-protein
interaction network of co-DEGs, color shades represent the degree size calculated with the cytoHubba plugin.
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three other co-DEGs, TLR2, LTF, and CD163, were only partially
expressed in macrophages (tissue-resident macrophages,
phagocytic CD16+ macrophages, M2-like CD16+macrophages)
(Figure 6A).

Diagnostic and Prognostic Analysis of Six
Co-Differentially-Expressed Genes
We further evaluated the six LN-specific co-DEGs as diagnostic
biomarkers by using ROC curves and a PRC analysis in a new LN
dataset GSE60681 to assess the sensitivity and specificity of co-
DEGs for LN diagnosis. As shown in Figure 6B, the ROC-AUC
values for all six genes were greater than 0.78 (IRF8, 0.919; HLA-
DPB1, 0.875;HLA-DRA, 0.882; IL10RA, 0.867;HLA-DMA, 0.803;
and HLA-DPA1, 0.781) suggesting that these six genes have good
diagnostic efficacy as LN markers. To obtain the minimum set of
genes with the greatest predictive power, we tested combinations
of the six genes; we found that the combination of IRF8, IL10RA,
HLA-DMA, and HLA-DPA1 had the greatest AUC value (0.94)
among the 15 tested combinations (Figure 6C). We also
performed a PRC analysis to compensate for the imbalance of
the selected samples, and our results showed that IRF8 (PR-AUC,
0.707) and IL10RA (PR-AUC, 0.605) retained a good diagnostic
sensitivity despite the unevenness of the samples (Figure 6D).
However, considering that the results of this method are affected
by the number of positive and negative samples, analysis using a
dataset with a different number of imbalanced samples would

allow for a more comprehensive assessment of the results (that is,
both ROC-AUC and PR-AUC showed good diagnostic efficacy
when analyzed using the GSE32591 dataset; please see
Supplementary Figures S4, S5). Thus, we believe that all six
genes have good diagnostic efficacy after combining the ROC and
PRC results from different datasets. To assess the association
between co-DEGs and LN prognostic factors, we validated the
association between co-DEGs and clinical traits in LN samples
from the Nephroseq database. Our findings indicate that a high
expression of different co-DEGs was correlated with a low
glomerular filtration rate in kidney disease samples (IL10RA,
HLA-DPA1, r � −0.490, p < 0.001; IRF8, HLA-DRA, r � −0.500,
p < 0.001; HLA-DPB1, r � −0.510, p < 0.001; HLA-DMA, r �
−0.480, p < 0.001) (Figure 7A). Further analysis revealed that
HLA-DPA1, IL10RA, and IRF8 were differentially expressed in
different pathological staging samples of lupus nephritis
(Figure 7B).

DISSCUSSION

We identified nine differential genes that were simultaneously
significant in datasets from multiple sources. Six of the genes are
LN-specific and are associated with a poor prognosis, and their
good diagnostic efficacy suggests that these genes can serve as
novel LN biomarkers. In addition, a comprehensive functional
and pathway enrichment approach revealed that the biological

FIGURE 5 | | Validation of co-DEGs in additional LN and SLE datasets. (A) Expression of co-DEGs in the additional LN dataset GSE112943. (B) Expression of co-
DEGs in the GSE81622 SLE dataset. (*p < 0.05, **p < 0.01, ***p < 0.001)
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mechanisms mediating LN development are interrelated. A
single DEG identification approach may miss some DEGs, but
not those that are significantly differentially expressed; thus,
the co-expressed genes identified in this study by integrating
multiple approaches may be critical for elucidating the
pathogenesis of LN.

The SLEDIA-2K score is a tool for assessing the severity of SLE
(Touma et al., 2018). Our WGCNA analysis revealed that the
critical modules derived from the LN trait are consistent with
those derived from the SLEDIA trait, indicating that the module

genes obtained are genuinely involved in the pathogenesis of LN.
LN is primarily caused by an antigen-antibody complex immune
response that results in large amounts of autoantibodies in the
intrarenal space (Qiu et al., 2019). These atypical antigen-
antibody reactions result in vascular damage, abnormal
complement activation, complex deposition, and an imbalance
of the oxidative/antioxidant and cytokine systems (Davidson
et al., 2019; Anders et al., 2020). Our results on the function
and pathways of critical gene enrichments confirm these
mechanisms (Supplementary Table S1).

FIGURE 6 | | Analysis of immune cell distribution and diagnostic efficacy of LN biomarkers (A). Expression of co-DEGs in different immune cell types in the single cell
LN sequencing database. (B) ROC curves of six differentially-expressed genes specific to LN in GSE60861. (C) ROC curve with optimal minimal gene set (IRF8, IL10RA,
HLA-DMA, HLA-DPA1) in GSE60861. (D) Precision-Recall Curves of six differentially-expressed genes specific to LN in GSE60861.
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Among the LN-specific DEGs identified, HLA-DMA, HLA-
DPA1,HLA-DPB1, andHLA-DRA all belong to the humanmajor
histocompatibility complex (MHC) and the HLA class II region,
alternatively referred to as the HLA-D region. Most genes in this
region are involved in immune responses and are classified into

several subregions (HLA-DR, DQ, DP, DO, and DM) (Wieczorek
et al., 2017; Wang et al., 2019). SLE has been linked to
polymorphisms in the HLA-D region that vary by race and
geographical region. Alleles at the same HLA locus, which
may differ structurally by a few nucleotides, can result in

FIGURE 7 | | Association of co-DEGs with LN clinical traits in the Nephroseq database. (A) Correlation analysis of six co-DEGs with the glomerular filtration rate of
patients (GFR). (B) Variations of six co-DEGs in samples from patients with different pathological staging of lupus nephritis. (*p < 0.05, ***p < 0.001).
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completely different disease susceptibility or resistance profiles
(Xue et al., 2018). This explains the differential expression of the
four HLA genes we identified in the SLE and LN datasets, with
genetic polymorphisms resulting in systemic and local
pathological changes (Xu et al., 2017). IRF8 is a member of
the interferon regulatory factor (IRF) family that regulates the
signaling pathway for Toll-like receptors (Salem et al., 2020).
Alternatively, IRF8 regulates Th cell differentiation, thereby
regulating immune cell development and inhibiting tumor cell
growth. Silencing the IRF8 gene in SLE mice has been suggested
to inhibit DC-mediated activation of NF-κβ or MAPKs, thereby
impairing type I interferon induction (Salem et al., 2020). IL-10 is
a multifunctional cytokine derived from multicellular organisms
that functions only when bound to a specific receptor (Moore
et al., 2001). IL-10 interacts with IL10RA and delivers excitatory
or inhibitory signals to cells via the JAK-STAT signal
transduction pathway (Geginat et al., 2019). Increased IL-10
expression in LN kidney tissues is associated with an increase
in macrophage infiltration and is highly correlated with the
severity of kidney damage (Saraiva et al., 2020). Additionally,
our results suggest that co-DEGs are differentially expressed
primarily in macrophages and B cells, a finding consistent
with the previous view that different types of macrophages
and B cells play more important roles in LN (through
complex interactions) than T cells (Arazi et al., 2019).

In summary, we identified several valuable biomarkers
associated with the diagnosis and prognosis of lupus nephritis.
These biomarkers are involved in a variety of different molecular
pathways expressed in various immune cells. However, additional
research is necessary to determine the association between
specific HLA alleles and LN because of the presence of HLA
gene polymorphisms. In addition, the lack of a definitive
experimental validation represents a limitation of our study.
We will focus on establishing more conclusive and robust
evidence for the validity of these identified co-DEGs as novel
biomarkers in subsequent studies.

CONCLUSION

We found nine differentially expressed genes closely associated
with LN diagnosis and prognosis by integrating multiple DEG
identification methods. Next, we identified six biomarkers that
may be LN-specific by expression validation in LN and SLE
datasets. A comprehensive gene enrichment analysis revealed that
the molecular mechanisms associated with LN pathogenesis are
linked to multiple critical immune pathways. Finally, we explored
the distribution of co-DEGs in LN immune cells by analyzing

data from a single-cell transcriptome sequencing database of LN.
Our prioritized biomarkers should be helpful for the diagnosis
and prognosis of LN and they should deepen our understanding
of its pathogenesis.
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Background: Lung adenocarcinoma (LUAD) is an exceedingly diverse disease, making
prognostication difficult. Inflammatory responses in the tumor or the tumor
microenvironment can alter prognosis in the process of the ongoing cross-talk
between the host and the tumor. Nonetheless, Inflammatory response-related genes’
prognostic significance in LUAD, on the other hand, has yet to be determined.

Materials and Methods: The clinical data as well as the mRNA expression patterns of
LUAD patients were obtained from a public dataset for this investigation. In the TCGA
group, a multigene prognostic signature was built utilizing LASSO Cox analysis. Validation
was executed on LUAD patients from the GEO cohort. The overall survival (OS) of low- and
high-risk cohorts was compared utilizing the Kaplan-Meier analysis. The assessment of
independent predictors of OS was carried out utilizing multivariate and univariate Cox
analyses. The immune-associated pathway activity and immune cell infiltration score were
computed utilizing single-sample gene set enrichment analysis. GO keywords and KEGG
pathways were explored utilizing gene set enrichment analysis.

Results: LASSO Cox regression analysis was employed to create an inflammatory
response-related gene signature model. The high-risk cohort patients exhibited a
considerably shorter OS as opposed to those in the low-risk cohort. The prognostic
gene signature’s predictive ability was demonstrated using receiver operating
characteristic curve analysis. The risk score was found to be an independent predictor
of OS using multivariate Cox analysis. The functional analysis illustrated that the immune
status and cancer-related pathways for the two-risk cohorts were clearly different. The
tumor stage and kind of immune infiltrate were found to be substantially linked with the risk
score. Furthermore, the cancer cells’ susceptibility to anti-tumor medication was
substantially associated with the prognostic genes expression levels.

Conclusion: In LUAD, a new signature made up of 8 inflammatory response-related
genes may be utilized to forecast prognosis and influence immunological state. Inhibition of
these genes could also be used as a treatment option.

Keywords: lung adenocarcinoma, inflammatory response, gene signature, immune status, tumor
microenvironment, drug sensitivity
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INTRODUCTION

Lung cancer has become the second commonly occurring type
of cancer in the world, and it is also the leading contributor of
cancer mortality in both men and women, as per the global
cancer statistics reported in 2020 (Sung et al., 2021). There are
two distinct subtypes of lung cancer that include small cell
lung cancer as well as non-small cell lung cancer (NSCLC).
The commonly occurring NSCLC is lung adenocarcinoma
(LUAD) (Cancer, 2014). The number of LUAD patients is
increasing as air pollution and smoking rates decline.
Research evidence has suggested that although the
prognosis of patients with early LUAD is relatively good,
approximately 10–44% of LUAD patients still die within
5 years following the surgical intervention (Goldstraw et al.,
2016). However, the 5-year overall survival (OS) rate of
patients with advanced LUAD is less than 15% (Kris et al.,
2014). Therefore, in addition to standard clinical factors, a
new prognostic signature for individualized survival risk
assessment must be devised.

The association between inflammation and cancer is well
recognized, and its function in the onset and progression of
cancer has always been a research topic (Balkwill and
Mantovani, 2001; Koliaraki et al., 2020). The inflammation
acts as a two-edged sword that can either inhibit or promote
tumor development (Greten and Grivennikov, 2019). People
can investigate the association between tumor and
inflammatory markers by evaluating commonly available
measures in the blood. For instance, the Glasgow prognostic
score, which includes albumin and C-reactive protein, has
independent predictive significance in cancer patients
(McMillan, 2013). The clinical systemic inflammation
markers such as platelet-lymphocyte ratio (PLR), neutrophil-
lymphocyte ratio (NLR), and lymphocyte-monocyte ratio
(LMR) were assessed in newly diagnosed lung cancer that
has not been previously treated, and these markers portrayed
considerable prognostic ability for OS that was independent of
formerly identified prognostic factors for lung cancer (Moik
et al., 2020). Studies are increasingly supporting the utilization
of combined acute-phase proteins to create an inclusive
predictive score for cancer premised on inflammation. Some
inflammatory response-related genes, in addition to serum
indicators, are utilized to predict tumor prognosis and
metastatic potential (Budhu et al., 2006; Lin et al., 2021).
Current research on the association between inflammation-
related genes and LUAD is limited.

LUAD patients’ clinical information and mRNA expression
profiles were collected from a public database for this
investigation. Then, using differentially expressed genes
(DEGs) that were linked to an inflammatory response from
The Cancer Genome Atlas (TCGA) cohort, we built a
prognostic signature and confirmed the reliability and
stability of the model utilizing the Gene Expression
Omnibus (GEO) cohort. To investigate its potential
mechanism, we employed functional enrichment analysis.
Moreover, we also looked at the link between the types of
immune infiltrates and the expression of prognostic genes.

Finally, we searched into the link between the expression of
prognostic genes, cancer chemoresistance, as well as tumor
stemness.

MATERIALS AND METHODS

Data Collection (TCGA-LUAD Cohort and
GEO(GSE68465) Cohort)
The TCGA (https://www.cancer.gov/tcga) (n � 594) and GEO
(http://www.ncbi.nlm.nih.gov/geo/) (n � 442) databases were
used to obtain clinical data and RNA sequencing data.
Patients who did not have a survival status or whose follow-
up duration was less than a day were omitted from the study. Both
TCGA and GEO made their data available to the public, in
accordance with their respective publication requirements and
data access policies. Moreover, in the Molecular Signatures
database, 200 inflammatory response-related genes were
discovered (Supplementary Table S1).

Construction and Validation of a Prognostic
Inflammatory Response-Related Gene
Signature
In the TCGA cohort, DEGs between non-tumor as well as tumor
tissues were detected utilizing the “limma” R package with a
false discovery rate <0.05 and a fold change >2. The
inflammatory response-related genes with prognostic
significance were evaluated utilizing Univariate Cox analysis.
To reduce the overfitting risk, LASSO-penalized Cox regression
analysis was utilized to build a prognostic model (Simon et al.,
2011). With the “glmnet” R package, the LASSO algorithm was
utilized to choose and compress variables so that some
regression coefficients were stringently equivalent to 0,
resulting in a model that was interpretable. The prognostic
model’s penalty parameter (λ) was assessed utilizing tenfold
cross-validation, and we adhered to the minimum
requirements. The expression levels of each inflammatory
response-related gene, as well as the matching regression
coefficient, were utilized to identify the patient’s risk scores.
The algorithm was defined as score � esum (each gene’s expression ×
corresponding coefficient). The participants were categorized into
low- and high-risk cohorts premised on their median risk
score. To investigate the distribution of distinct cohorts with
reference to gene expression levels in the built model, t-SNE and
PCA analyses were done using the “Rtsne” and “ggplot2” R
packages. The “survminer” R package was utilized to undertake
a survival analysis on the OS of low- and high-risk cohorts. The
time-dependent ROC curve analysis so as to assess the
prognostic signature’s predictive ability. In addition,
multivariate and univariate Cox analyses were employed to
investigate the signature’s independent prognostic value.

Functional Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) software 4.1 was employed
to performGene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses based on the DEGs between the
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low- and high-risk cohorts using GSEA. Single-sample GSEA
(ssGSEA) with the “GSVA” R package was used to compare the
activity of 13 immune-related pathways and the infiltration scores
of 16 immune cells between the low- and high-risk cohorts.

Immune Response Analysis and Tumor
Microenvironment
Stromal cells and immune cells infiltration levels in distinct tumor
tissues were assessed utilizing stromal and immune scores
(Yoshihara et al., 2013). The link between the risk score and
the stromal/immune scores was verified using the Spearman
correlation. A two-way ANOVA analysis was used to see if
there was a connection between the subtype of immune
infiltration and risk score. To quantify tumor stem cell-like
traits, researchers analyzed data collected from the epigenetics
and transcriptome of TCGA tumor samples (Dib et al., 2017).
The relationship between risk score and tumor stemness was
investigated using the Spearman correlation test.

Analysis of Sensitivity to Chemotherapy
The CellMiner interface (https://discover.nci.nih.gov/
cellminer) was utilized to access the NCI-60 dataset, which
included 60 distinct cancer cell lines from 9 distinct kinds of
malignancies. The link between medication sensitivity and
prognostic gene expression was investigated utilizing Pearson
correlation analysis. A correlation analysis was performed to
investigate the effectiveness of 263 medications authorized by
the FDA or currently in clinical studies (Supplementary
Table S2).

Statistical Analysis
The DEGs between tumor samples and surrounding tissues
were assessed utilizing the WilCoxon test. Subsequently, the
Chi-squared test was performed for comparison of the various
proportions. Next, ssGSEA scores of immunological pathways
or immune cells were compared between low- and high-risk
cohorts utilizing the Mann-Whitney, and the adjustment of the
p-value was done utilizing the Benjamini and Hochberg
technique. The Kaplan-Meier method was employed for the
comparison of the differences in OS among distinct cohorts. To
screen the independent determinants of OS, multivariate and
univariate Cox analyses were done. Spearman or Pearson
correlation analysis was utilized to examine the connection
between prognostic gene expression level or prognostic
model risk score and stemness score, drug sensitivity,
immune score, and stromal score, and. Plots were made
using R software (Version 3.6.3) and the tools survminer,
corrplot, venn, ggplot2, pheatmap, igraph, and ggpubr. A
two-tailed p < 0.05 depicted statistical significance in all
statistical results.

RESULTS

Figure 1 depicts this study’s flowchart. The research comprised 522
LUAD patients from the TCGA-LUAD group and 442 LUAD

participants from the GEO (GSE68465) group. The specific clinical
characteristics of these individuals were presented in Table 1.

Identification of Prognostic
Inflammation-Related DEGs in the TCGA
Cohort
In the tumor tissues as well as the adjacent non-tumor tissues, 59
inflammatory response-related genes were found to be differently
expressed. Based on the outcomes of the univariate Cox analysis,
13 of them were associated with OS (Figures 2A,B). The
prognostic indicators consisted of 13 inflammatory response-
related genes, and the PCDH7 gene risk ratio was 1.29 (95% CI �
1.130–1.472, p < 0.001, Figure 2C). Figure 2D depicts the
relationship among these genes.

Designing a Prognostic Model in the TCGA
Group
The LASSO-Cox regression was utilized to evaluate the expression
profiles of the aforementioned 13 genes, which was ensued by the
development of a prognostic model. Premised on the ideal value of λ,
an 8-gene marker was identified (Supplementary Figure S1). The
risk score was calculated as follows: e (expression level of BTG2 *

−0.088+expression level of CCL20 * 0.083+expression level of CD69 *

−0.044+expression level of GPC3 * −0.012+expression level of IL7R *−0.119+expression

level of MMP14 * 0.068+expression level of NMUR1 * −0.090+expression level of PCDH7 *

0.148). As per the median cut-off value, patients were separated into
two cohorts (Figure 3A). The high-risk category in the TCGA cohort
was determined to be strongly related to the more advanced TNM
stage (Table 2). The patients in distinct risk categories were dispersed
in two ways, according to PCA and t-SNE analysis (Figures 3E,F).
Furthermore, the scatter chart revealed that high-risk patients had an
increased likelihood of dying earlier as opposed to low-risk ones
(Figure 3B). The Kaplan-Meier curve constantly demonstrated that
high-risk patients had a considerably shorter OS contrasted with
those with low risk (Figure 3I, p < 0.001). For the investigation of the
prognostic model’s survival prediction, time-dependent ROC curves
were created, with the area under the curve (AUC) ranging between
0.695, 0.666, and 0.694 at 1-, 2-, and 3 years in that order (Figure 3J).
Survival analysis was carried out premised on the optimal cut-off
expression value for each of the prognostic genes to investigate the
relationship between the prognostic genes and prognosis, which
revealed that an elevated expression of these genes was all
considerably linked to poor OS except GPC3 (Supplementary
Figures S2A–H, p < 0.05).

Validation of the 8-Gene Signature in the
GEO Cohort
The participants in the GEO group were also grouped into low-
risk or high-risk cohorts premised on the median value from the
TCGA group to assess the stability of the model established from
the TCGA group (Figure 3C). t-SNE and PCA analysis indicated
a distinct dispersal of patients in the two groupings, similar to the
TCGA cohort results (Figures 3G,H). Correspondingly, as
contrasted with the low-risk cohort, patients in the high-risk
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cohort had an increased likelihood of dying prematurely
(Figure 3D) and a lower survival period (Figure 3K).
Furthermore, the AUC of the eight gene signature was 0.647,
0.642, and 0.638 at 1-, 2-, and 3-year in that order (Figure 3L).

Independent Prognostic Value of the
8-Gene Signature
To see if the risk score could be an independent predictive factor
for OS, we used both multivariate and univariate Cox analysis of
factors. The univariate Cox analysis illustrated that the risk scores
in the GEO and TCGA groups had a significant correlation with
OS (GEO group: HR � 2.115, 95% CI � 1.404–3.186, p < 0.001;
TCGA group: HR � 4.184, 95% CI � 2.703–6.474, p < 0.001)
(Figures 4A,B). Multivariate Cox analysis revealed that the risk
score remained to be an independent predictor of OS after

accounting for other confounding factors (TCGA group: HR �
3.475, 95% CI � 2.240–5.390, p < 0.001; GEO group: HR � 1.519,
95%CI � 1.012–2.278, p � 0.043) (Figures 4C,D). The ROC curve
research revealed that the risk score exhibited a better prognostic
predictive precision and that when paired with the tumor stage, it
offered a highly precise 3-year OS forecast in LUAD patients,
regardless of whether they were in the TCGA (AUC � 0.702) or
GEO dataset (AUC � 0.685) (Figures 4E,F). As a result, LUAD’s
predictive value was outstanding when the risk score and
clinicopathological parameters were combined.

Prognostic Model Risk Score and Clinical
Features
By analyzing the association of risk score with the clinical
characteristics of LUAD patients, we showed that the risk

FIGURE 1 | Flow chart of the whole study.
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score was significantly higher in patients’ age ≤65 (p � 0.0013)
compared with >65 in TCGA cohort, while the risk score was no
significant difference between the ages ≤65 and >65 years in GEO
cohort (p � 0.16) (Figures 5A,D). The risk score was significantly

higher in male (p � 0.0013) compared with female in GEO cohort,
while there was no significant difference in TCGA cohort (p �
0.0019) (Figures 5B,E). Our findings depicted risk scores that
were considerably greater in tumor stage III-IV as opposed to
tumor stage I-II in both the GEO and TCGA datasets when we
investigated the relationship between risk scores and clinical
characteristics of patients with LUAD (GEO: p � 0.051;
TCGA: p � 0.001) (Figures 5C,F). Furthermore, the
expression of BTG2, IL7R, and NMUR1 was dissimilar
between age ≤65 years and age >65 years, and the level of
expression of CD69, GPC3, and IL7R was distinct between
males and females (p < 0.05, Supplementary Figures S3A,B).
In addition, the expression of BTG2, CD69, GPC3, and IL7R were
considerably elevated in tumor stages III-IV as opposed to tumor
stage I-II (p < 0.05, Supplementary Figure S3C).

Immune Status and TME Analysis
ssGSEA was employed in quantifying the enrichment scores of
various immune cell subpopulations, related pathways, and
functions in order to further assess the connection between
immune status and risk score. The antigen presentation

TABLE 1 | Clinical characteristics of the LUAD patients used in this study.

TCGA cohort GEO cohort

No. of patients 522 442
Age (median, range) 66 (33–88) 65 (33–87)
Gender
Female 280 (53.6%) 219 (49.5%)
Male 242 (46.4%) 223 (50.5%)

Stage
I 279 (53.4%) 115 (26%)
II 124 (23.8%) 257 (58.1%)
III 85 (16.3%) 70 (15.9%)
IV 26 (5.0%) 0 (0%)
Unknown 8 (1.5%) 0 (0%)

Survival status
Alive 334 (64%) 207 (46.8%)
Deceased 188 (36%) 235 (53.2%)

FIGURE 2 | Identification of the candidate inflammatory response-related genes in the TCGA cohort. (A) Venn diagram to identify DEGs between LUAD tissues and
adjacent normal tissues. (B) The 13 overlapping genes expression between LUAD tissues and adjacent normal tissues. (C) Forest plots showing the results of the
association between 13 overlapping gene expression and OS. (D) The correlation network of candidate genes.
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process, involving aDCs, DCs, iDCs, pDCs, and HLA, was shown
to be considerably higher in the low-risk cohort in the TCGA
class (p < 0.05, Figures 6A,C). The fractions of T helper cells,
CD8+ T cells, Th1 cells, Tfh cells, TIL, T cell co-inhibition, and
T cell co-stimulation in the low-risk cohort were greater than in
the high-risk cohort, showing variances in T cell regulation
between the two cohorts. In addition, the high-risk cohort had
greater scores for B cells, mast cells, neutrophils, inflammation-
promoting, check-point, type II IFN response activity, and
cytolytic activity (p < 0.05). Comparing the two risk

subcategories in the GEO group yielded results that were
similar to those in the TCGA (p < 0.05, Figures 6B,D).

We investigated the link between immune infiltrates and risk
scores to find out more about the link between risk scores and
immune components. In human tumors, six types of immune
infiltrate were established that ranges from tumor-promotion to
tumor-suppression (Tamborero et al., 2018), including C1 (wound
healing), C2 (INF-γ dominant), C3 (inflammatory), C4 (lymphocyte
depleted), C5 (immunologically quiet), and C6 (TGF-β dominant).
Because none of the patient samples in LUAD corresponded to the

FIGURE 3 | Prognostic analysis of the 8-gene signature model in the TCGA cohort and GEO cohort. TCGA cohort (A,B,E,F,I,J), GEO cohort (C,D,G,H,K,L). (A,C)
The median value and distribution of the risk scores. (B,D) The distribution of OS status. (E,G) PCA plot. (F,H) t-SNE analysis. (I,K) Kaplan-Meier curves for OS of
patients in the high- and low-risk groups. (J,L) AUC time-dependent ROC curves for OS.

TABLE 2 | Baseline characteristics of the patients in different risk groups.

Characteristics TCGA cohort GEO cohort

High risk Low risk p value High risk Low risk p value

Age
≤65 136 (54.4%) 101 (40.4%) 0.0021 21 (47.73%) 210 (52.76%) 0.6343
>65 109 (43.6%) 144 (57.6%) 23 (52.27%) 188 (47.24%)
unknow 5 (2%) 5 (2%) — —

Gender
Female 127 (50.8%) 143 (57.2%) 0.1783 20 (45.45%) 199 (50%) 0.6793
Male 123 (49.2%) 107 (42.8%) 24 (54.55%) 199 (50%)

Stage
I-II 182 (72.8%) 205 (82%) 0.0095 32 (72.73%) 353 (88.69%) 0.0058
III-IV 65 (26%) 40 (16%) 12 (27.27%) 45 (11.31%)
unknow 3 (1.2%) 5 (2%) — —
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C5 immune subtype, C5 immune subtypes were excluded from the
study. The immune infiltration of LUAD in the TCGA dataset was
evaluated and contrasted with a risk score, with the outcomes
revealing that an elevated risk score was considerably linked to
C1, whereas a reduced risk score was considerably linked to C3
(Figure 6E). High expression of BTG2, CD69, GPC3, IL7R,
MMP14, and NMUR1 were significantly related with C3, and
high expression of CCL20, MMP14, and PCDH7 was clearly
connected with C1, as shown in Supplementary Figure S4.

In cancer immune evasion, the PD-1/PD-L2 and PD-1/PD-L1
pathways are important regulators. Immune checkpoints’s
expression such as PD-L2 and PD-L1 are essential markers for
personalized treatment. In the cohort categorized as high-risk, the
PD-1 and PD-L2 expression levels were distinct from those in the
low-risk cohort (Figures 7A,C) and revealed a negative relationship
with the risk score (Figures 7F,H). The PD-L1 expression levels
and immunological checkpoints were not substantially related
to the low- and high-risk cohorts (Figures 7B,G). With regards

FIGURE 4 | OS-related factors were screened, and the prognostic accuracy of risk score and clinicopathological factors were compared. TCGA cohort (A,C,E),
GEO cohort (B,D,F). (A,B) OS-related factors were screened by Univariate Cox regression analyses. (C,D) OS-related factors were screened by Multivariate Cox
regression analysis. (E,F) Time-dependent ROC curve was used to compare the prognostic accuracy of risk score, tumor stage, and the combination of risk score. and
tumor stage in 3-year.
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to tumor medication resistance genes, patients in the high-risk
cohort had elevated MRP1 expression as opposed to low-risk
patients, which was positively connected with risk scores, but
MRP3 was the inverse. With regards to tumor drug resistance
genes, MRP1 expression was elevated in the high-risk cohort as
opposed to the low-risk cohort and had a positive correlation
with risk scores, whereas MRP3 was the opposite (Figures
7D,E,I,J).

The RNA stemness (RNAss) score, which is premised on
mRNA expression, and the DNA stemness (DNAss) score,
which is premised on DNA methylation pattern, can both be
used to determine tumor stemness (Malta et al., 2018). The tumor
immune microenvironment was estimated using stromal and
immune scores. The goal of the correlation analysis was to see
if the risk score was linked to the immune microenvironment and
tumor stem cells. The outcomes illustrated that the risk score was
significantly and positively linked to RNAss and DNAss but
significant and negatively linked to immune and stromal score
(p < 0.05) (Figure 6F).

Pathway Analyses and Biological Function
The GSEA was employed for comparison between the low- and
high-risk cohorts in terms of GO function and KEGG pathway
enrichment. Cell cycle phase transition regulation was
considerably enriched in the high-risk cohort, while
intracellular activity was considerably enriched in the low-risk
cohort, according to GO function enrichment analysis

(Figure 8A). Also, enrichment of 12 KEGG pathways took
place in the high- and low-risk cohorts with a p < 0.05
(Figure 8B). Some cancer-related pathways such as Cell Cycle,
Proteasome, and P53, were found to be enriched in the high-risk
cohort, while JAK-STAT, MAPK, and VEGF were revealed to be
enriched in the low-risk cohort. In addition, FcεRI receptor,
calcium, and T cell receptor were also revealed in the KEGG
pathways, which were associated with inflammatory responses.
PI3K-AKT-mTOR-Signaling, mTORC1-Signaling G2/M
checkpoint, hypoxia, and epithelial-mesenchymal transition
pathways were statistically significant programs, according to
GSEA utilizing TCGA data from the Hallmarks gene sets
(Figure 8C).

Expression of Prognostic Genes and
Sensitivity of Cancer Cells to Drugs
The prognostic genes expression in NCI-60 cell lines was
explored, as well as the association between their levels of
expression and medication sensitivity. The findings revealed
that all prognostic genes were linked to some chemotherapy
drug sensitivity (p < 0.05) (Figure 9). For instance, higher
expression of CD69, BTG2, MMP14, PCDH7, GPC3, and
NMUR1 has been related to greater cancer cell drug sensitivity
to a variety of chemotherapeutic agents, including oxaliplatin,
vemurafenib, trametinib, paclitaxel, and vinblastine, etc. In
contrast, elevated expression of IL7R and CCL20 was linked to

FIGURE 5 | The risk score in different groups divided by clinical characteristics. TCGA cohort (A–C), GEO cohort (E–F). (A,D) Age. (B,E) Gender. (C,F) Tumor
stage.
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FIGURE 6 | Immune status between different risk groups and the association between risk score and tumor microenvironment. TCGA cohort (A,C), GEO cohort
(B,D). (A,B) The scores of 16 immune cells and (C,D) 13 immune-related functions were showed in boxplots. (E) Comparison of the risk score in different immune
infiltration subtypes. (F) The relationship between risk score and RNAss, DNAss, Stromal Score and Immune Score. p values were showed as: ns, not significant; *p <
0.05; **p < 0.01; ***p < 0.001.
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greater cancer cell drug resistance to bosutinib, lapatinib,
tamoxifen, IPI−145, and idelalisib.

DISCUSSION

The treatment of LUAD has advanced dramatically as a result of
the development of sequencing technology as well as the dawn of a
period of precision medicine, but lung cancer remains the most
fatal cancer on a global scale.We can’t always diagnose and forecast
the therapeutic effects of LUAD because there are few reliable
indicators. Therefore, developing a novel approach for reliably
identifying LUAD is critical for the disease’s diagnosis and
prognosis. Accompaniment fragments, circulating blood protein
profiling, DNA methylation, tumor DNA, miRNAs (Seijo et al.,
2019), circulating tumor cells (Maly et al., 2019), and a plasma
miRNA panel (Wadowska et al., 2020) have all been shown to have
high accuracy in LUAD prognosis in previous research. Moreover,
inflammatory response-related serum biomarkers including PLR,
LMR, NLR, and SII (systemic immune-inflammation index) also
portray better performance in forecasting the prognosis of LUAD
(Nost et al., 2021). Though, there hasn’t been any research on the
inflammatory response-related gene signature as a predictive
predictor for LUAD. Studies have shown that gene signatures
that are immune-related (Yi et al., 2021), hypoxia-related (Sun
et al., 2020), ferroptosis-related (Zhang et al., 2021), and energy
metabolism-related (Zhang et al., 2019) forecast 3-year OS in a
similar way as the findings in this research. Besides the excellent
predictive performance of LUAD, the inflammatory response-
related gene signature established in this research has greater
advantages as opposed to the gene signature aforementioned.
For instance, it can differentiate tumor resistance genes and
immune checkpoint genes into low- and high-expression
categories, and it has been demonstrated that risk scores are
connected to resistance to several chemotherapeutic medicines.
High-throughput sequencing was used in our investigation to

evaluate the prognostic signature genes expression levels, which
is a common technology that can produce accurate results.

For this research, we explored the expression of 200
inflammatory response-related genes in LUAD tissues as well
as how they relate to OS. From the TCGA cohort, 59 DEGs were
selected. Univariate Cox analysis depicted that 13 of the DEGs
were related to OS. Subsequently, a prognostic model was created
utilizing the LASSO regression analysis. The model included 8
inflammatory response-related genes and was verified in the GEO
group. The participants were grouped into low- and high-risk
cohorts premised on their median risk score. The outcomes
illustrated that the high-risk cohort was linked to the shorter
OS and higher tumor grade. Independent prognostic analysis
illustrated that risk score was an independent predictor for OS.

This research created a prognostic model comprised of 8
inflammatory response-related genes. CCL20, MMP14, and
PCDH7 were upregulated in LUAD tumor tissues and linked to
poor clinical outcomes, while BTG2, CD69, GPC3, IL7R, and
NMUR1 are the opposite. CCL20 is one of the important
members of chemokine family, which was reported that may be
a protective factor or prognostic risk factor for LUAD (Bao et al.,
2016). CCL20-encoded proteins are capable of chemotaxis of
lymphocytes, allowing the tumor to form an immune tolerance
state (Schutyser et al., 2003). In patients with NSCLC, the CCL20
gene and protein are overexpressed, and autocrine of CCL20 can
promote the migration and proliferation of lung cancer cells (Mao
et al., 2021). MMP14 is a member of the matrix metalloproteinase
family and contributes to a key function in cancer metastasis, its
expression is significantly correlated with poor OS (Stawowczyk
et al., 2017; Infante et al., 2018; Zhang et al., 2020). PCDH7 is a
member of the cadherin superfamily and has been found to
promote the metastasis of lung cancer cells (Chen et al., 2016).
BTG2 is a recently recognized tumor suppressor belonging to the
TOB/BTG family, and a study shows that BTG2 expression is
reduced in NSCLC tissues and is linked to shorter OS for patients
(Chen et al., 2020). Kim et al. (2003) demonstrated GPC3 to be a

FIGURE 7 | The comparison of the expression levels of PD-1, PD-L1, PD-L2, MRP1 and MRP3 between different risk groups and correlation analysis between risk
score and the expression levels of PD-1, PD-L1, PD-L2, MRP1 and MRP3. (A,F) PD-1. (B,G) PD-L1. (C,H) PD-L2. (D,I) MRP1. (E,J) MRP3.
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candidate gene for lung tumor suppression. Ning et al. (2021)
found GPC3 expression was significantly correlated with gender
and tumour stage in LUAD samples. IL7R has been explored as
aggressive tumor features for patients with LUAD: KRAS
mutation, larger tumor size, lymphovascular invasion, high-
grade morphology, and more frequent recurrence (Suzuki et al.,
2013). NMUR1 is a receptor for the neuropeptide NMU, and
NMUR1 signaling promotes inflammatory ILC2 responses,
highlighting the importance of neuro-immune crosstalk in
allergic inflammation at mucosal surfaces (Wallrapp et al., 2017).

We investigated the function of the risk score in immune
infiltration type to acquire a comprehensive understanding of the
interplay between immune components and risk score.We found that
high-risk score was closely linked to C1, whereas low-risk score was
strongly linked to C3, implied that C1 stimulates tumor occurrence

and progression while C3 was a good protective factor. Because highly
cytotoxic immunophenotypes can limit the occurrence and
progression of tumors, this study was consistent with the findings
of prior investigations (Tamborero et al., 2018). With regard to the
relationship between clinical features and risk score, a high-risk score
was found to be strongly connectedwith tumor stages III-IV, implying
that a high-risk score is unquestionably linked to a poor prognosis.

However, because there has been little research on these genes, it
is unclear if they influence LUAD patients’ prognosis through an
inflammatory response. Tumor-related signal pathways like
MAPK, p53, and JAK-STAT were considerably enriched in the
GSEA analysis, and incessant activation of these pathways is
connected to LUAD, which could be new treatment targets
(Chou et al., 2019; Mohrherr et al., 2019; Stutvoet et al., 2019).
Inflammation-related signal pathways including Calcium, T cell

FIGURE 8 |Gene set enrichment analysis of Biological functions and pathways. (A)GO, Gene Ontology. (B) KEGG, Kyoto Encyclopedia of Genes and Genomes.
(C) Hallmark gene set.
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receptor, and FcεRI receptor pathways were significantly enriched,
indicating that the inflammatory response is associated with tumor
progression. Besides, the low-risk cohort exhibited higher fractions
ofmast cells, Dcs, and neutrophils. Existing evidence has illustrated
that the presence of tumor-associated t mast cells, DCs, and some
neutrophils might have a protective influence on the progression of
the tumor, they were thought to be beneficial for survival in NSCLC
(Welsh et al., 2005; Engblom et al., 2017; Li et al., 2017). We show
that anti-PD-L2 antibodies were increased in the low-risk group,
this finding was aligned with the outcomes of former studies
(Shinchi et al., 2019). In our research, the low-risk cohort had a
greater immune checkpoint score as opposed to the high-risk
cohort, and the risk score was negatively connected with PD-1
and PD-L2 expression. Hence, the created prognostic model has
the potential to guide treatment decisions by predicting immune
checkpoint expression levels. Furthermore, a high-risk score was
linked to reductions in the type II IFN response activity, which is
critical for promoting tumor elimination, promoting anti-tumor
immunity, as well as tumor immune surveillance (Shankaran et al.,
2001; Street et al., 2001; Wang et al., 2015). Finally, higher T helper
cell, CD8+ T cell, TIL, Tfh cell, Th1 cell, T cell co-inhibition, and
T cell co-stimulation activities in the low-risk cohort implied that
the immune regulatory role in the high-risk cohort has been
inhibited, and this may be the main reason behind its poor
prognosis.

Currently, cancer biology is shifting from a “cancer cell-
centered” perspective to one whereby the cancer cells are
embedded in a stromal cells network that includes
inflammatory immune cells, vascular cells, and fibroblasts. The
TME is comprised of these cells (Greten and Grivennikov, 2019).
Cancer stem cell-like cells (CSCs) could be formed from a variety
of sources such as progenitor cells, long-lived stem cells, and
dedifferentiation of non-stem cells (Malta et al., 2018). Because of

their propensity to undergo self-renewal and invasion, CSCs
promote tumor growth. This is why treatment-induced drug
resistance is a problem for these cells (Huang et al., 2010).
The risk score was substantially linked to RNAss, DNAss,
immune and stromal score in a correlation analysis between
the immune microenvironment, tumor stem cells, and the
risk score.

We discovered that higher expression of several prognostic
genes was linked to greater medication resistance against a variety
of FDA-authorized chemotherapeutic medicines, including
bosutinib, lapatinib, tamoxifen, IPI145, and idelalisib, using
data from NCI-60 cell lines. Of course, some prognostic genes
have been connected with higher drug sensitivity for a variety of
medications. For instance, increased expression of CD69, BTG2,
MMP14, PCDH7, GPC3, and NMUR1 was linked to greater drug
sensitivity of cancer cells to drugs such as oxaliplatin,
vemurafenib, trametinib, paclitaxel, vinblastine, etc. The MRP
family consists of 13 members, with MRP1–MRP9 being the
primary transporters implicated in multidrug resistance via
extruding anticancer medicines from tumor cells (Sodani et al.,
2012). Therefore, the relationship between medication resistance
genes including MRP1 and risk score indicated that targeting
tumor medication resistance genes might be a potential
therapeutic option for high-risk patients, while MRP3 is the
opposite. These findings established that various prognostic
genes might be employed therapeutically as targets for
overcoming adjuvant drug sensitivity or drug resistance.

CONCLUSION

To summarize, our research identified an 8-gene inflammatory
response signature as a novel predictive factor. In both the

FIGURE 9 | Scatter plot of relationship between prognostic gene expression and drug sensitivity. (A) CD69. (B) BTG2. (C) MMP14. (D) IL7R. (E) PCDH7. (F)
GPC3. (G) CCL20. (H) NMUR1.
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TCGC and GEO validation cohorts, the signature was identified
as being independently linked with OS, and it was also found to
be useful in treatment sensitivity, functional analysis, and TME,
and providing understanding in forecasting the prognosis of
LUAD. The exact process linking inflammatory response-
related genes to tumor immunity in LUAD is unknown, and
more research is needed. Our research will go an extra mile
toward elucidating their function in carcinogenesis, especially
in the fields of drug resistance, TME, and immune response,
which is critical for developing individualized cancer
therapeutics.
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Ovarian cancer (OC) is typically diagnosed at an advanced stage and poses a significant
challenge to treatment and recovery. Rencently, Adenosine deaminase RNA-specific B1
(ADARB1), an adenosine-to-inosine (A-to-I) RNA-editing enzyme, has been found to play
an essential role in the development of cancer. However, the specific function of ADARB1
in ovarian cancer is still not fully understood. Here, we investigated the effects of ADARB1
on OC biology. By conducting bioinformatics analyses of several public databases, we
found significantly decreased ADARB1 expression in OC cells and tissues. Moreover, RT-
PCR and western blot showed lower ADARB1 expression in OVCAR3, HO8910pm and
A2780 OC cells compared to human normal ovarian epithelial cell IOSE. Cell proliferation
assay and clone formation assay showed that overexpression of ADARB1 (ADARB1-OE)
inhibited the proliferation of tumor cells. Wound healing and transwell assay indicated that
ADARB1-OE could suppress OC cell invasion and metastasis. Kaplan-Meier methods
revealed that the patients with low level of ADARB1 displayed poor prognosis. TISIDB
databases were further used to analyze the roles of ADARB1 in tumor-immune system
interactions in OC patients. Furthermore, ADARB1-OE down-regulated the expression of
phosphorylated AKT. Combination of ADARB1-OE and AKT inhibitor MK2206 exerted
stronger cell growth inhibition. Thus, our investigation demonstrated that low levels of
ADARB1 might be a potential target in the tumorigenesis and prognostic evaluation of OC
patients.

Keywords: ADARB1, ovarian cancer, Akt, cell growth, immune regulation

INTRODUCTION

Ovarian cancer (OC) is one of the most common gynecological tumors, and the onset age is mainly
concentrated in people between 40 and 60 years old, especially in people around 50 years old. It
accounts for 2.4–6.5% of the common female malignant tumors, and ranks third in female
reproductive system malignant tumors, next only to cervical cancer and endometrial cancer
(Brunty et al., 2020; Hidayat et al., 2020). The standard treatment for OC patients is surgery
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and chemotherapy. Due to the high recurrence rate and
therapeutic resistance, the 5-year survival rate for OC patients
is about 47% (Demircan et al., 2020; Moschetta et al., 2020).
Therefore, it is necessary to search for novel target molecules for
improving the treatment and prognosis of OC.

Adenosine deaminase RNA specific B1 (ADARB1) catalyzes the
conversion of adenosine (A) to inosine (I) in double-stranded RNAs
(Ma et al., 2020). Recently, emerging researches have revealed the
relationship between ADARB1 and cancer. In glioma, aberrant
expression of ADARB1 can affect the proliferation and invasion
of glioma cells by regulating microRNAs (Cesarini et al., 2018) or
CDC14B-Skp2 signaling axis (Galeano et al., 2013). The down-
regulation of ADARB1 may be related to the pathogenesis of
non-small cell lung cancer (Wang et al., 2019; Wang et al., 2020),
and low levels of ADARB1 in lung cancer are correlated with shorter
first progression (FP), overall survival time (OS) and post-progression
survival time (PPS). Moreover, ADAR2 suppresses tumor growth
and induces apoptosis by editing and stabilizing IGFBP7 in
esophageal squamous cell carcinoma (Chen et al., 2017). However,
the association between ADARB1 and OC has not been investigated.

The purpose of our study was to evaluate the role and
mechanism of ADARB1 in human OC. Through
bioinformatics data analysis and in vitro experiments, we
found that ADARB1 was downregulated in OC tissues and cell
lines, and was correlated with poor prognoses of OC patients.
Furthermore, overexpression of ADARB1 (ADARB1-OE)
significantly inhibited the proliferation, invasion and
metastasis of OC cells by down-regulating AKT phosphorylation.

MATERIALS AND METHODS

Data Acquisition and Reanalysis
As mentioned previously (Yan et al., 2018; Zhou et al., 2019) several
bioinformatics network resources were used to reanalyze the
molecular profiles of ADARB1 in OC patients (Supplementary
Table S1). Gene Expression Profiling Interactive Analysis
(GEPIA) (Tang et al., 2017) and University of Alabama Cancer
Database (UALCAN) (Chandrashekar et al., 2017) were used to
identify the expression profiles of ADARB1 in OC tissues. For the
prognostic analysis, the Kaplan–Meier Plotter (Lánczky et al., 2016)
and DRUGSURV database (Amelio et al., 2014) were utilized to
describe the relationship between ADARB1 expression and patients’
prognosis.

From the cBioPortal web tool (Gao et al., 2013), the genes
coexpressed with ADARB1 in OC were downloaded
(Supplementary Table S2). Then, the STRING (Szklarczyk
et al., 2017) and Cytoscape software (Reimand et al., 2019)
were used to complete the protein–protein interaction (PPI)
network of these coexpression genes. Then, we utilized the
WebGestalt (Wang et al., 2017) to conduct the GO and KEGG
pathway analysis of ADARB1 coexpression genes in OC samples.

Immunohistochemistry
The ovarian cancer tissues and paired adjacent tissues were obtained
from the Xiangya hospital, central south university. The ethical
approval number is 20210205. Specimens were deparaffinized in

xylene and rehydrated in a series of graded alcohol. Antigen retrieval
was completed after heating in citrate buffer. Endogenous peroxidase
was blocked using 3%H2O2 for 20min. The sections were incubated
with the primary antibody against ADARB1, p-AKT, CXCL12 and
KDR at 37°C for 1 h. Horseradish peroxidase-conjugated secondary
antibody was added and incubated at room temperature for 30min,
and 3,3′-diaminobenzitine (DAB) solution was used for color
reaction (ZSGB-BIO, China).

Cells and Reagents
Human OC cells OVCAR3, HO8910pm, A2780 and normal
ovarian epithelial cells IOSE were obtained from department
of Pathology, School of Basic Medical Sciences, Central South
University. OVCAR3, HO8910pm and IOSE were maintained in
Roswell Park Memorial Institute (RPMI)-1640 medium (BI,
Israel Beit Haemek Ltd.) with 10% fetal bovine serum (FBS),
while A2780 was grown in DMEM (BI, Israel Beit Haemek Ltd.)
supplemented with 10% fetal bovine serum FBS at 37°C and 5%
CO2. MK2206 was purchased from Selleck Chemicals and
dissolved in dimethylsulfoxide (DMSO) (Sigma, United States),
The exposed concentrations of MK2206 were 5 mM. Antibodies
against ADARB1 and p-AKT were purchased from Proteintech
(United States, 22248-1-AP and 66444-1-Ig). Antibodies against
GAPDH and CXCL12 were purchased from Abclonal (China,
AC002 and A1325), Antibody against KDR was purchased from
Affinity (China, AF6281). Antibodies against AKT and p-AKT
were from Cell Signaling Technology (United States). The second
antibody were purchased from ZSGB-BIO.

Western Blot
Cells were lysed in RIPA buffer and protein concentrations were
determined by a BCA protein assay kit (PP1002, BioTeck, Beijing,
China). A total of 30–40 μg of protein was separated by 10% SDS-
PAGE and electroblotted onto polvinylidene fluoride membranes
(Millipore, Merck, United States) for detection using indicated
antibodies. Immunoreactions were detected by an imaging
system (Alpha FluorChem FC3).

RNA Extraction and Reverse
Transcription PCR
Total RNA was extracted employing TRIzol reagent (Invitrogen)
according to the manufacturter’s instruction and reverse
transcribed to cDNA using the PrimeScript™ RT reagent kit
(Abclonal, China). The RT-PCR assay was conducted through
iTaqTMUniversal SYBR green Supermix (Abclonal, China), with
GAPDH as the internal control. The forward and reverse primer
sequences were used as follows: ADARB1: 5′-CGCGCCTTTGTT
TGTCATGTC-3′ and 5′-GGAAACTGAACGAAAGACCTC
AA-3′; GAPDH: 5′-CAGCAAGAGCACAAGAGGAA-3′ and
5′-ATGGTACATGACAAGGTGCGG-3′. Relative expression
levels were decided using the 2-ΔΔCT method.

MTT Asaay
The logarithmic growth phase cells were cultured in a 96-well
culture plate for 6 days with five replicates per group. MTT assay
was performed 48 h after transfection. Add 10 μl MTT solution to
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each well at the end of each day. After 4 h of continuous culture,
the culture medium was discarded, and DMSO (150 μl/well) was
added 6 days later, and the medium was shaken for 10 min. The
cell proliferation rate was calculated by measuring the optical
density (OD) of each well at 490 nm on a Microplate Reader.

Colony Formation Assay
A total of 1,000 cells were seeded in 6-well plates and incubated at
37°C with 5% CO2 for 10 days. Culture plates were performed in
duplicates. After a wash with phosphate buffer saline (PBS),
cultures were fixed with methanol for 20 min and stained with
crystal violet for 15 min. Colonies were examined and calculated.

Wound Healing Assay
The cells were inoculated into 6-well plates and cultured in
complete medium (37°C, 5% CO2) to at least 95% confluence
before wounds were created. To measure the cell migration, a
plastic 100 ul pipette tip was used to scrape cells in a monolayer to
creating wounds. Then, washed them three times in PBS and
incubated with FBS-free RPMI-1640 medium. Subsequently, cells
were cultured in either medium for 0, 12, 24 h. At the end of the
incubation period, phase-contrast microscopy was employed to
photograph the wounded area andmigration cells at the wounded
area. Finally, the extent to which the wound had closed over 24 h
was calculated and expressed as a percentage of the difference
between times 0 and 24 h using ImageJ software.

Transwell Invasion Assays
For invasion assays, Transwells (corning, United States) with 8-
μm pore size filters covered with matrigel were inserted into 24-
well plates. The cells were serum-starved overnight and then
added in the upper chamber (5 × 104 cells per insert) and the
complete culture medium supplemented with 10% FBS was used
as a chemoattractant in the lower chamber. After 24 h of
incubation, non-invading cells that remained on the upper
surface of the filter were removed, and the cells that had
passed through the filter and attached to the bottom of the
membrane were fixed in methanol and stained with 0.2%
Crystal violet. Numbers of the invasive cells in seven
randomly selected fields from triplicate chambers were
counted in each experiment under a phase-contrast microscope.

Statistical Analysis
Statistical analyses were performed using SPSS 22.0 for Windows.
Data were presented as mean ± standard deviation (SD) of at least
three independent experiments. Statistical analysis was
performed using Student’s t test and one-way ANOVA. The
Statistical significance is shown in the figures with *p < 0.05, **p <
0.01, ***p < 0.001 and ****p < 0.0001.

RESULTS

ADARB1Was Downregulated in OC Tissues
and Cell Lines
To evaluate changes in ADARB1 expression in OC and normal
ovarian tissues, we analyzed the expression levels of ADARB1

through several bioinformatics databases. The GEPIA analysis
revealed that ADARB1 mRNA expression was significantly
decreased in OC tissues (Figure 1A). From TCGA-OV, we
discovered the ADARB1 expression was clearly reduced in OC
compared with the normal tissues (Figure 1B). Similarly, using
the TNMplot (Figure 1C) and UALCAN (Figure 1D), we further
confirmed the downregulation of ADARB1 in OC tissues. In
addition, we found that OC cells OVCAR3, HO8910pm and
A2780 displayed a lower level of ADARB1 compared to the
normal ovarian cell IOSE (Figures 1E,F). Moreover, the
expression of ADARB1 in tumor tissues was lower than that
in adjacent tissues (Supplementary Figure S1). Next, we
analyzed the effects of ADARB1 expression on the clinical
characteristics of patients with OC. From DRUGSURV
database, we found that the patients with low level of
ADARB2 displayed poor prognosis in GSE14764 (Figure 2A).
In addition, Kaplan-Meier Plotter database was employed to
further evaluate the effects of ADARB1 expression on survival,
revealing that low levels of ADARB1 expression were correlated
with shorter progression-free survival (PFS) (Figure 2B).
Therefore, these results suggested that ADARB1 expression
levels might serve as an indicator for the clinical prognosis of
OC patients. Taken together, the decreased expression of
ADARB1 in OC tissues and cell lines suggested its anti-
oncogenic roles.

ADARB1 Could Suppress the Malignant
Biological Behaviors of OC Cells
To further identify the function of ADARB1 in OC, we
overexpressed of ADARB1 in HO8910pm and OVCAR3
ovarian cancer cells (Figures 3A,B). After then, we tested the
roles of ADARB1 overexpression in cell proliferation, migration
and invasion. TheMTT assay and colony formation assay showed
that ADARB1 overexpressed significantly decreased the
proliferation ability in HO8910pm and OVCAR3 cells
(Figures 3C–F). Similarly, we observed that ADARB1-OE
inhibited the metastasis and invasion ability in HO8910pm
and OVCAR3 cells, as indicated by the wound healing and
transwell assays (Figures 4A–D). These results suggest that
ADARB1 could suppress the malignant biological behaviors of
OC cells.

ADARB1 Suppressed OC Proliferation and
Metastasis by Inhibiting AKT
Phosphorylation
The PI3K-AKT pathway is a well-known tumor signaling
pathway that is involved in the development of various
tumors, including glioma (Dai et al., 2017), ovarian cancer
(Wu et al., 2021), etc. Moreover, phosphorylation activation of
AKT signaling can promote the malignant progression of ovarian
cancer (Samartzis et al., 2020; Zhai et al., 2020).We found that the
phosphorylation levels of AKT (p-AKT) in tumor tissues was
higher than that in adjacent tissues (Supplementary Figure S1).
And ADARB1-OE can effectively inhibit p-AKT without
affecting the total AKT level. Then, we investigated whether
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the effect of ADARB1 on OC cell proliferation andmetastasis was
associated with AKT activity. Western blot analysis showed that
p-AKT was obviously decreased when OC cells were

overexpressed ADARB1 or treated with MK2206, a specific
inhibitor of AKT. The inhibitory effect on p-AKT levels was
further increased by combinational treatment (Figure 5A). We

FIGURE 1 |Downregulation of ADARB1 in OC tissues and cell lines. (A–D) The expression of ADARB1 was analyzed by the (A)GEPIA, (B) TCGA, (C) TNM plot (D)
UALCAN databases, respectively. (E,F) Expression of ADARB1 was analyzed by RT-PCR and western blot.

FIGURE 2 | The effects of ADARB1 expression on the prognosis of OC patients. (A) The relationship between ADARB1 expression and OS analyzed by
DRUGSURV database. (B) The relationship between ADARB1 expression and PFS analyzed by Kaplan–Meier Plotter.
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performed the MTT assay and colony formation assay and
observed that OC cells treated with both MK2206 and
ADARB1-OE had a significantly suppression effect of cell
proliferation compared with the control group and either of

the individual treatment groups (Figures 5B–D). Moreover,
we examined cell migration and invasion capacity of
HO8910pm and OVCAR3 cells under ADARB1-OE and
MK2206 treatment. Compared to the control group, OC cells

FIGURE 3 | Overexpession of ADARB1 suppressed the proliferation ability of OC cells. (A,B) The mRNA levels of ADARB1 after transfected with ADARB1-OE in
HO8910pm and OVCAR3 cells. (C,D) The results of MTT assay after transfected with ADARB1-OE in HO8910pm and OVCAR3 cells. (E,F) The results of colony
formation assay after transfected with ADARB1-OE in HO8910pm and OVCAR3 cells.

FIGURE 4 | Overexpession of ADARB1 inhibited the migration and invasion ability of OC cells. (A,B) The results of wound healing assay after transfected with
ADARB1-OE in HO8910pm and OVCAR3 cells. (C,D) The results of transwell assay after transfected with ADARB1-OE in HO8910pm and OVCAR3 cells.
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showed a significantly weaker migration and invasion ability
when treated with MK2206 or ADARB1-OE (Figures 6A–D).
The above results indicated that anti-cancer activity by ADARB1
overexpression might be due to the inhibition of AKT signaling.

Functional Enrichment Analysis of
ADARB1-Associated Coexpression Genes
To further investigate the biological functions of ADARB1,
functional enrichment analysis was performed using ADARB1
related coexpressed genes. By using the cBioPortal database, we
screened 1399 ADARB1-associated coexpressed genes with the
criteria of p value ≤ 0.05 and |Spearman’s correlation|≥0.3
(Supplementary Table S2). Next, a PPI network was
performed using STRING and Cytoscape software
(Figure 7A). Meanwhile, the GO annotation (Figure 7B) and
KEGG pathway (Figure 7C) were further analyzed using
WebGestalt database. Biological processes indicated that these
coexpressed genes are mainly involved inmetabolic processes and
biological regulation. For cell component, these coexpressed
genes were mainly located on the nucleus and membrane. In
the aspect of molecular function, the coexpressed genes were
primarily enriched in protein binding and ion binding. The

KEGG pathway demonstrated that these coexpressed genes
were mainly related to the ribonucleotide metabolic process
and mitochondrial transport.

Regulation of Immune Molecules by
ADARB1
Increasing evidence demonstrated that ADAR family members
play important roles in immune regulation (Heraud-Farlow and
Walkley, 2020; Yanai et al., 2020). Therefore, from TISIDB
database, we investigated the relationship between ADARB1
expression and immune infiltration. As shown in Figure 8A,
the expression levels of ADARB1 positively correlated with
several immune cells, such as natural killer cell (NK cells),
central Memory T cell (Tcm), T effector memory (Tem) and
eosinophils. Figure 8B further confirmed the positive correlation
between ADARB1 expression and NK cells (Spearman r � 0.546),
Tcm (Spearman r � 0.45), Tem (Spearman r � 0.35) and
eosinophils (Spearman r � 0.24). Similarly, ADARB1 was
positively correlated with eosinophil and NK cells by using the
TISIDB database (Supplementary Figure S2). Moreover, we
analyzed the associations between ADARB1 expression and
the immunomodulators and chemokines. Supplementary

FIGURE 5 | AKT pathway was involved in ADARB1-reduced cell proliferation. (A) HO8910pm and OVCAR3 cells treated with ADARB1-OE and/or AKT inhibitors
MK2206 subjected to Western blot assays. (B) The MTT assay were performed after HO8910pm and OVCAR3 cells treated with ADARB1-OE and/or AKT inhibitors
MK2206. (C,D) The colony formation assay were performed after HO8910pm and OVCAR3 cells treated with ADARB1-OE and/or AKT inhibitors MK2206.
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FIGURE 6 | ADARB1 inhibits OC cell Metastasis and invasion by regulating AKT pathway. (A,B) The wound healing assays were performed after HO8910pm and
OVCAR3 cells treated with ADARB1-OE and/or AKT inhibitors MK2206. (C,D) The transwell assay were performed after HO8910pm and OVCAR3 cells treated with
ADARB1-OE and/or AKT inhibitors MK2206.
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Figure S3 showed the positive correlations between ADARB1
expression and several immunomodulators, including CD160
(Spearman r � 0.211), CSF1R (Spearman r � 0.231), KDR
(Spearman r � 0.3) and TGFBR1 (Spearman r � 0.208).
Supplementary Figures S4A,B showed the positive
correlations between ADARB1 expression and several
chemokines, including CCL14 (Spearman r � 0.153), CCL21
(Spearman r � 0.136), CXCL12 (Spearman r � 0.224) and
CXCL14 (Spearman r � 0.18), while the ADARB1 expression
levels were negative correlation with CCL13 (Spearman
r � −0.13), CXCL8 (Spearman r � −0.143), CXCL13
(Spearman r � −0.129) and XCL1 (Spearman r � −0.194). In
addition, we found the low level of ADARB1, KDR and CXCL2 in
tumor tissues compared with the adjacent tissues by
immunohistochemistry, which indicated that the expression of
ADARB1 was positively correlated with the expression of KDR
and CXCL12 (Supplementary Figure S1). We hypothesized that
ADARB1 might have a significant effect on immune regulation in
OC since it is obviously associated with various types of tumor-
infiltrating lymphocytes, immunomodulators, and chemokines
in OC.

DISCUSSION

This is the first study to investigate the expression and function of
ADARB1 in OC and its association with clinical features from the
perspective of bioinformatics. The results confirmed that the
expression of ADARB1 was significantly reduced in OC tissues
and cell lines. ADARB1might display an anti-cancer role through
inhibiting AKT phosphorylation. Moreover, patients with low
expression of ADARB1 had shorter OS and PFS from
DRUGSURV database and Kaplan-Meier Plotter database.
However, we found the inconsistent prognostic data by using
the Human Protein Altas database. These conflicting data may be
due to different patients’ characteristics, such as age and race, in
different databases. Thus, more OC patients from different
regions will be needed for further confirmation the roles of
ADARB1 in the future.

To date, ADAR has been widely found in all multicellular
animal species. The mammalian genome has five genes encoding
ADAR protein. Among these, ADAR1 and ADARB1 are active
deaminases, ADAR3 has no known editing activity, and two other
closely related testicle-specific ADAD1 and ADAD2 proteins lack

FIGURE 7 | Functional enrichment analysis of ADARB1-associated coexpressed genes in OC. (A) A protein-protein interaction network of ADARB1-associated
coexpressed genes drawn by the STRING and Cytoscape software. (B) GO analysis of ADARB1 associated coexpressed genes were identified by Webgestalt
database. (C) The KEGG pathways of ADARB1-associated coexpressed genes were identified by Webgestalt database.
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the key catalytic residues (Goncharov et al., 2019). Recently,
studies have demonstrated the key roles of ADARB1 in cancer
development (Galeano et al., 2012; Goncharov et al., 2019). For
example, hepatoma carcinoma patients with down-regulated
ADARB1 expression have a poor prognosis (Chan et al.,
2014). RNA editing of SLC22A3 regulated by ADARB1
promotes tumor invasion and metastasis in early familial
esophageal carcinoma (Fu et al., 2017). In addition, ADARB1-
OE promotes cell growth, motility, and invasion of malignant
pleural mesothelioma cells independent of its RNA-editing
activity (Sakata et al., 2020). However, the functional roles
ADARB1 in OC pathology has not been investigated. In the
present study, we demonstrated that ADARB1 expression was
significantly down-regulated in OC tissues and cells, and might
act as a tumor suppressor gene.

Alterations in AKT kinase activity are associated with a variety
of pathologies. Increased AKT1 activity is associated with a
variety of cancers, including OC (Gu et al., 2020; Samartzis
et al., 2020; Zhai et al., 2020). Previous study has
demonstrated that changes in AKT-dependent
phosphorylation of ADARB1 have the potential to affect
cellular programming (Piazzi et al., 2020). Similarly, the results
in our study indicated that ADARB1-OE significantly inhibited
tumor proliferation and metastasis through down-regulating
AKT phosphorylation.

In addition, GO and KEGG pathway analysis indicated that
genes coexpressed with ADARB1 were mainly enriched in

ribonucleotide metabolic process, which suggested that
ADARB1 might also be involved in OC progression by
regulating these pathways. The metabolism was thought to
sustained cancer cell malignant behaviors, including
proliferation and metastasis, and anti-tumor immune function
(Vaupel et al., 2019; Bergers and Fendt, 2021). To date,
increasingly anti-tumor metabolism targets have been
discovered, and have been used clinically for certain cancers
(Luengo et al., 2017; Vander Heiden and DeBerardinis, 2017).
Therefore, ADARB1 may be a useful molecular target for OC
therapeutics.

In recent years, immunotherapy has become the focus of
tumor therapy (Huang et al., 2020; Yan et al., 2020). T cell-
rich tumor patients have longer PFS and OS (Zhang et al.,
2003), while immune avoidance-associated mechanisms are
associated with low survival (Kandalaft et al., 2009). All this
evidence suggested that OC patients may benefit from
immunotherapy (Ghisoni et al., 2019). In this study,
TISIDB database was used to analyze the correlation
between ADARB1 and immune system, and the results
showed that ADARB1 had most significant correlation with
several tumor-infiltrating lymphocytes (NK cells, Tcm, Tem,
and eosinophils), immunomodulators (KDR, CSF1R, CD160
and TGFBR1), and chemokines (CXCL12, CCL14, CXCL14
and CCL21). ADARB1 knockout induces an antiviral immune
response, leading to the suppression of infection (Yanai et al.,
2020). Although these results suggested that ADARB1 may be

FIGURE 8 | Correlation of ADARB1 expression with tumor-infiltrating lymphocytes in OC. (A) The correlation between ADARB1 expression and tumor-infiltrating
lymphocytes. (B) The top four tumor-infiltrating lymphocytes showing the most significant correlations with ADARB1 expression. Supplementary Figure S1.
Immunohistochemistry was used to examine the ADARB1,p-AKT, CXCL12 and KDR expression in ovarian cancer tissue and paired adjacent tissue
(magnification 200×).
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related to tumor immunity, clinical research is needed for
further study.

In summary, our study illustrated that low expression of
ADARB1 is associated with poor prognosis in OC, suggesting
that ADARB1 may be an anti-oncogene and could serve as a
promising biomarker in the tumorigenesis of OC. Moreover,
ADARB1 was found to be involved in AKT-mediated malignant
biological properties of OC cells. In addition, ADARB1
expression is related to tumor-infiltrating lymphocytes and
immunomodulators. Therefore, our findings suggested that
ADARB1 likely plays a pivotal role in immune cell infiltration
and could serve as a promising biomarker for prognosis in OC
patients.
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ORAL squamous cell carcinoma (OSCC) is a malignant tumor with the highest incidence
among tumors involving the oral cavity maxillofacial region, and is notorious for its high
recurrence and metastasis potential. Long non-coding RNAs (lncRNAs), which regulate
the genesis and evolution of cancers, are potential prognostic biomarkers. This study
identified HOTAIRM1 as a novel significantly upregulated lncRNA in OSCC, which is
strongly associated with unfavorable prognosis of OSCC. Systematic bioinformatics
analyses demonstrated that HOTAIRM1 was closely related to tumor stage, overall
survival, genome instability, the tumor cell stemness, the tumor microenvironment, and
immunocyte infiltration. Using biological function prediction methods, including Weighted
gene co-expression network analysis (WGCNA), Gene set enrichment analysis (GSEA),
and Gene set variation analysis (GSVA), HOTAIRM1 plays a pivotal role in OSCC cell
proliferation, and is mainly involved in the regulation of the cell cycle. In vitro, cell loss-
functional experiments confirmed that HOTAIRM1 knockdown significantly inhibited the
proliferation of OSCC cells, and arrested the cell cycle in G1 phase. At the molecular level,
PCNA and CyclinD1 were obviously reduced after HOTAIRM1 knockdown. The
expression of p53 and p21 was upregulated while CDK4 and CDK6 expression was
decreased by HOTAIRM1 knockdown. In vivo, knocking down HOTAIRM1 significantly
inhibited tumor growth, including the tumor size, weight, volume, angiogenesis, and
hardness, monitored by ultrasonic imaging and magnetic resonance imaging In
summary, our study reports that HOTAIRM1 is closely associated with tumorigenesis
of OSCC and promotes cell proliferation by regulating cell cycle. HOTAIRM1 could be a
potential prognostic biomarker and a therapeutic target for OSCC.
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INTRODUCTION

Oral squamous cell carcinoma (OSCC) is recognized for its high
recurrence and metastasis rate, and is the most frequent
malignancy in oral tumors, and in particular, presents
constantly increasing morbidity (Ferlay et al., 2015;
Economopoulou et al., 2017). Although surgeons are
constantly adjusting surgical approaches and improving
multidisciplinary therapy, the 5-years survival rate of 50% still
represents a very poor prognosis, which is related to the specific
tissue involved, clinical features, histopathological grading, or
other factors (Bray et al., 2018). From another standpoint, the
cure rate increases to above 90% through early interventional
treatment, in individuals who are diagnosed with early-stage
cancer (Lingen et al., 2008; Qiu et al., 2021a). Therefore, it is
an urgent task to explore valuable biomarkers, which can provide
predictive evidence for the identification of OSCC high-risk
groups, early diagnosis, selection of treatment methods, and
monitoring of prognosis monitoring.

With the achievements of genome engineering, scientists have
no longer been limited to the development of a coding genome,
alternatively, they now focus on the non-coding genome, which
accounts for 98% of the whole genome (Rong et al., 2021). Long
non-coding RNAs (lncRNAs) have emerged as non-coding
RNAs, which are defined as a type of RNAs with transcription
length not exceed 200 bp, and structural diversity with no coding
ability (Salmena et al., 2011). LncRNAs that regulate the
expression pattern of mammalian coding genes at the
transcriptional or post-transcriptional levels directly or
indirectly have been demonstrated on the basis of numerous
studies (Winkle et al., 2021). LncRNAs participate in complicated
biological processes and are vital regulators in regulating or
deregulating expression of genes that determine the cellular
fate. LncRNAs have been identified to be involved in cancer
formation and development in thyroid cancer, head and neck
cancer, pancreatic cancer, and glioma (Ahadi 2020; Song and Kim
2021). Studies have confirmed that abnormal expression of some
functional lncRNAs could affect the progression of cancer. For
example, LINC00941 is abnormally upregulated in pancreatic
cancer, promoting glycolysis by regulating the Hippo pathway,
thereby promoting the malignant biological behavior of
pancreatic cancer (Xu et al., 2021a). H19 is a significantly
down-regulated lncRNA in prostate cancer confirmed to
inhibit the invasion of tumor cells by targeting TGFBI via
regulating miR-675, which could be a biomarker to benefit
diagnosis and therapy of advanced prostate cancer (Zhu et al.,
2014). Thus, it is of the utmost importance to explore the
expression, distribution, and molecular biological function of
OSCC-related lncRNAs as valuable markers in diagnosis,
treatment, and prognosis. It has been reported that the
expression of HOTAIRM1 is evidently downregulated in lung
adenocarcinoma tissues, and the growth of H1650 and PC-9 cell
lines were accelerated by promoting cell-cycle progression when
HOTAIRM1 was silenced (Chen et al., 2020). In glioblastoma
(BGM), researcher confirmed the upregulation of HOTAIRM1,
and further demonstrated that HOTAIRM1 acted as a facilitator
of malignant-behavior in BGM, which was shown to accelerate

the occurrence of migration and invasion (Xie et al., 2020). It’s a
sign that HOTAIRM1 may be a cancer-associated lncRNA and
influences the malignant progression of some cancers.
Nevertheless, the expression pattern and molecular function of
HOTAIRM1 in OSCC have not been elucidated to date.

In our study, HOTAIRM1 was identified as an upregulated
lncRNA and was found to be closely associated with OSCC
overall survival (OS), tumor stage, genomic instability, the
tumor cell stemness, the tumor microenvironment (TME), and
immune inflammation. In addition, our in vitro studies revealed
that HOTAIRM1 could accelerate the cell proliferation by
regulating the cell cycle of OSCC cells. In vivo, the tumor
growth was significantly inhibited by HOTAIRM1 knockdown,
including tumor size, weight, volume, angiogenesis, and tumor
hardness, as assessed by ultrasonic imaging (USI) and magnetic
resonance imaging (MRI). In conclusion, our findings have
demonstrated that HOTAIRM1 is a risk factor for OSCC, and
confirmed its function, and we suggest that HOTAIRM1 could be
a novel biomarker for the early diagnosis and therapy of OSCC.

MATERIALS AND METHODS

Data Extraction
The data used for our analysis was obtained from TCGA-HNSC
dataset, which can be downloaded through the Genomic Data
Commons (GDC) (https://portal.gdc.cancer.gov/), and including
the following information: Exp (expression data gathered in
HTSeq-Counts, HTSeq-FPKM, copy number variation (CNV)
and somatic mutations data. From the UCSC Xena database
(https://xenabrowser.net/), we obtained the clinical phenotype
and survival data. Patient samples with lesion sites in the oral
cavity (lip, gum, palate, jaw, floor of mouth, tongue, maxilla,
mandible, and buccal mucosa) were selected for our study and
those without clinical data information were excluded.

Data Processing and Differential
Expression Analysis
Firstly, the genes whose 80% of samples’ count value was at least
one were retained for the following analyses. Meanwhile, the
human gene transfer format (GTF) annotation file was acquired
from the GENCODE project (http://www.gencodegenes.org,
release 35) to convert the Ensembl gene ID into the gene
symbol and extracted the lncRNAs and protein-coding genes
profiles. Then, 4324 lncRNAs and 15952 mRNAs and their
corresponding count and FPKM expression profiles were
obtained.

Secondly, differential expression analysis of lncRNAs between
OSCC and control samples was performed using the R “DESeq2”
package. It was considered to be significant when DEGs meeting
the following conditions: I. false discovery rate (FDR) < 0.01; II. |
log2Fold Change (FC)|> 1 (Zhao and Ruan 2020; Xu et al., 2021b;
Markert, et al., 2021). Here, we focused on the lncRNA
HOTAIRM1, who is associated with multiple cancers, for
subsequent analysis. The samples were divided into high- and
low-HOTAIRM1 groups after the median HOTAIRM1
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expression value (1.5948) was set as the cut-off point (Ozawa
et al., 2017).

Survival Analysis
The R package “survival” and “survminer” were used to perform
univariate and multivariate Cox regression analyses and Kaplan-
Meier survival analysis. To retian the samples with complete
clinical data, we screened 288 samples from 324 OSCC patients
for overall survival (OS) analysis. The low and high groups were
cut-off through the median of HOTAIRM1 expression value.
p-value < 0.05 was considered statistically significant based on
log-rank test.

Genomic Variation Analysis
Firstly, the CNV data relevant to HOTAIRM1 expression were
analyzed using “gistic2.0” software, setting 0.1 as the q-value, and
was specific to chromosomes alterationsbetween HOTAIRM1-
high and HOTAIRM1-low groups; the results are presented using
the R package “maftools”. Secondly, to compare the tumor
mutation burden (TMB) between HOTAIRM1-high and
HOTAIRM1-low groups, the somatic raw variant counts
identified by TCGA were calculated, while whole-exome
38 Mb size was regarded as the estimate. Finally, to analyze
the correlation between the HOTAIRM1 and genetic
mutation, the Pearson correlation coefficient (PCC) was
calculated on the HOTAIRM1 expression and genetic
mutations vector. It is considered to be significantly correlated
when p-value of PCC< 0.05.

Correlation Analyses Between Tumor
Microenviroment and HOTAIRM1
For analyzing the association between tumor microenvironment
(TME) and HOTAIRM1 expression, the R packages “ESTIMATE”
was employed to get the stromal score, immune score and
ESTIMATE score (Yoshihara et al., 2013). And, to assess the
state of infiltration of immune cells, the CIBERSORT algorithm
was used to analyze (Newman et al., 2015). The PCCwas conducted
to analyze the correlation between HOTAIRM1 and tumor cell
stemness, TME and immune-infiltrating cells. A significant
correlation was considered to be when p-value of PCC< 0.05.

Weighted Gene Co-Expression Network
Analysis
According to absolute median difference of expression values, the
first 5000 mRNAs in all the OSCC samples were selected to
conduct WGCNA using the R package “WGCNA” (Langfelder
and Horvath 2008) to aquire the gene-sets associated with
HOTAIRM1. The power parameters were selected through the
“pickSoftThreshold.” We use topology overlap similarity (TOM)
matrix to represent the similarity of two genes in network
structure and modules containing at least 30 genes were
retained. We next calculated the correlation coefficient
between the modules and HOTAIRM1 expression to
determine the modules most related to HOTAIRM1. To
identify the key genes in this module having gene significances

(GS) ≥0.3, the module membership (MM) in the top 10% after
calculating were obtained.

Next, we further analyzed the biological functions involved in
these key genes. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis were completed by the R
package “ClusterProfiler.” After the Benjaminiand Hochberg (BH)
correction, p-values< 0.05 were considered to indicate significantly
enriched function and the results were displayed by R package
“ggplot2” and “enrichplot”, respectively. In addition, we obtained
the protein-protein interaction (PPI) information of key genes
from the STRING database (https://string-db.org/) and visualized
the PPI network using “cytoscape” software. In this study, the
interaction pairs with combined score> 0.4 were retained.

Analysis of Biological Function Associated
With HOTAIRM1 Up-Regulation
To further identify the biological changes caused by abnormal
HOTAIRM1 expression, we choose the top 20% samples of the
high-HOTAIRM1 group (highest 20% samples) and the bottom
20% samples of the low-HOTAIRM1 group (lowest 20% samples) to
analyze. The rank of each mRNA was determined based on their
Fold Change value (DESeq2) in the above samples. Meanwhile, the
gene sets of Hallmark, KEGG pathways, GO-BP terms and
Reactome pathways were all collected from Molecular Signatures
Database (MSigDB). Then, applying the R software package
“clusterProfiler” to conduct Gene Set Enrichment Analysis
(GSEA), and the gene sets were significant with adjust p-values
(BH) < 0.05. Finally, to confirm that HOTAIRM1 was indeed
involved in the biological processes of the cell cycle and cell
proliferation in OSCC, the Gene Set Variation Analysis (GSVA)
was conducted in low- and high- HOTAIRM1 expression groups.
This process was completed by R “GSVA” package.

Cell Culture
Human OSCC cell lines (Cal27 and SCC9) were obtained from the
Harbin Medical University (Harbin, China), and human oral
epithelial cells (HOEC) were originally supplied by the American
Type Culture Collection (ATCC, United States). Cal27 and HOEC
cells were maintained in a 37°C incubator with humidified
atmosphere containing 5% CO2 and cultured with Dulbecco’s
Modified Eagle’s Medium (DMEM) containing 10% Fetal Bovine
Serum (FBS), while Roswell Park Memorial Institute-1640 (RPMI
1640) containing 10% FBS was used for SCC9 cells.

Cell Transfection
Specific sh-RNAs (sh-HOTAIRM1) and the control sh-RNAs
(sh-NC) were obtained from General Biosystems (Anhui, China).
The sh-RNAs were transfected using the Lipofectamine 3000
reagent (following the manufacturer’s instructions) to
knockdown HOTAIRM1 expression in Cal27 and SCC9 cells.

Quantitative Real-Time Polymerase Chain
Reaction
Total RNA of OSCC cells was isolated using a Total RNA
Extraction Kit (Suzhou, China) and then transcribed into
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cDNA using Prime Script RT Reagent Kit (Takara, Shiga, Japan).
Subsequently, the SYBR Green Master Mix (TOYOBO, Japan)
was applied to conduct quantitative real-time polymerase chain
reaction (qRT-PCR) on the ABIPRISM 7900HT instrument
(Applied Biosystems, United States). The above experiments
were repeated 3 times. Primer sequences used were as follows:

HOTAIRM1
F: 5′-TTGACCTGGAGACTGGTAGC-3′
R: 5′-TTCAGTGCACAGGTTCAAGC-3′;
β-actin
F:5′ ATGAACTGGCGAGAGGTCTGT3′
R:5′ CCAGGAATGAGTAACACGGAGT3′.

Cell Counting Kit-8 Assay
The Cell counting kit-8 (CCK-8) (Dojindo, Rockville, MD,
United States) was used to estimate the proliferation ability.
The CCK-8 solution (10 μL) was added at specified culture
time points (24, 48, 72, and 96 h), to each well of Cal27 and
SCC9 cells seeded in a 96-well plate (density: 2.0 × 103 cells/well),
and then cultured for an additional 2 h at 37°C in the dark.
Finally, the optical absorption value, which represented the
number of viable cells, was evaluated at 450 nm.

Colony Formation Assay
One thousand treated OSCC cells were plated in a culture dish
whose diameter was 6-cm. After a 2-week culture, visible colonies
were fixed with methanol after staining with 0.5% crystal violet
for 15 min, and were counted using a microscope (IX51,
Olympus, Tokyo, Japan).

Western Blotting
First, the total proteins were extracted from the cells using the
radioimmunoprecipitation assay buffer (Pierce, Rockford, IL,
United States). The proteins at equivalent amount were
employed for the sodium dodecyl sulfate-polyacrylamide gel
electro-phoresis (SDS-PAGE), and then transferred to the
polyvinylidene fluoride membranes. After blocking
membranes with 5% non-fat milk/TBST for 1 hour,
incubation with the primary antibodies, including PCNA,
Cyclin D1, CDK4, CDK6, β-actin (Proteintech, Wuhan,
Hubei, China), p53 and p21 (Cell Signaling Technology,
Danvers, MA, United States), were performed at 4°C
overnight. Next, blots were exposed to the corresponding
horseradish per-oxidase-conjugated secondary antibodies for
an additional hour at room temperature. The secondary
antibodies used in this study, including anti-mouse IgG and
anti-rabbit IgG, were provided by Proteintech (Wuhan, Hubei,
China). Finally, images of protein bands were obtained using the
BioSpectrum 600 Imaging System (UVP, United States).

Cell Cycle Analysis
Transfected OSCC cells were washed twice by cold PBS and fixed
using precooled 75% ethanol. Thereafter, the cell-cycle phase
distribution of samples that had been digested using RNase
(10 mg/ml) and stained using propidium iodide (PI, 1 mg/ml),
were detected, and analyzed on FACSCalibur flow cytometer (BD

Biosciences, United States). The above process was repeated
3 times.

Animal Experiments in vivo
The female BALB/c nude mice (aged, 4–5 weeks) were purchased
from Charles River Japan (Beijing, China) and maintained in a
sterile environment. This animal experiment was approved by the
Committee on Animals of the First Affiliated Hospital of Harbin
Medical University (Harbin, China). After animals were
anesthetized, Cal27 cells (sh-NC or sh-HOTAIRM1) were
injected subcutaneously into the bilateral flanks of BALB/c
nude mice. For each mouse, the OSCC cells transfected with
sh-NC were inoculated into the left flank, while the OSCC cells
transfected with sh-HOTAIRM1 were inoculated into the right
flank. Every week, the animal models were weighed and
measured, and subjected to USI and MRI to observed
neoplastic formation and growth, for a total treatment period
of 4 weeks. The tumor volume was calculated using the following
formula: V � 0.5 × length ×Width2. At the end of the experiment,
the tumors in mice were excised after the animals were
euthanized.

Ultrasonic Imaging
The Ultrasound System (Aplio 500, Canon, Japan) was applied to
observe the tumors in vivo by USI. The specific imaging modes
used were B-mode ultrasonography to evaluate neoplastic
growth, Color doppler flow imaging (CDFI) and Color Power
Angio (CPA) were used to evaluate angiopoiesis and Ultrasonic
elastosonography (USE) to evaluate the tumor stiffness.

Magnetic Resonance Imaging
MRI soft tissue imaging was performed using an Achieva 3.0T TX
MRI System (Philip, Netherlands) to observe the neoplastic
growth and signal intensity with clinical oral floor imaging
sequences, containing T1WI, T2WI and T2-FLAIR images.

Statistical Analysis
SPSS software (Version 22.0, Armonk, NY, United States) was
employed to conduct the statistic analysis. All the experimental
data, which were obtained after three repetitions of independent
experiments, were presented as means ± standard deviation (SD).
To compare the difference between two groups, the Student’s
t-test was performed, and one-way ANOVA was conducted to
compare the difference between multiple groups. It was regarded
as statistically significant when p-values < 0.05.

RESULTS

HOTAIRM1 was identified as abnormally upregulated in OSCC
and was associated with tumor stage and worse prognosis

Figure 1 shows the complete workflow of our study to explore
LncRNA HOTAIRM1 in OSCC. According to the conditions in
“Data Extraction” screening, we finally acquired 342 OSCC
patients and a control group comprised of 32 para-cancerous
samples (Supplementary Table S1). Following calculation and
processing of the sample data, finally, 4324 lncRNAs and 15,952
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mRNAs were obtained. Then the obtained lncRNAs were
employed for the DEG analysis. Eventually, we identified 1069
abnormally expressed lncRNAs in the OSCC dataset
(Supplementary Table S2), which are illustrated in the
volcano plot in Figure 2A, including 717 upregulated
lncRNAs and 352 downregulated lncRNAs. Among the DEGs,
HOTAIRM1was observed to be a markedly upregulated lncRNA,
which has not been reported in previous studies on OSCC.
Further, we found that HOTAIRM1 was indeed highly
expressed in cancer samples but not in normal samples, even
in the paired-samples comparison (Figures 2B,C). In addition,
the expression of HOTAIRM1 in OSCC cell lines (SCC9 and
Cal27) was also significantly higher than in human oral epithelial
cells (HOEC), as assessed by qRT-PCR (Figure 2D). The power
of prediction by HOTAIRM1 as a potential biomarker was
evaluated by a receiver operating characteristic (ROC) curve
and the area under the ROC (AUC). The result showed that
the AUC value was 0.838, indicating the excellent power of
prediction by HOTAIRM1 as a potential biomarker
(Supplementary Figure S1). Next, we conducted an analysis
to evaluate the relationship between OS and clinical data,
including HOTAIRM1 expression, age, gender, tumor stage,
smoking as variables. In the univariate Cox-regression analysis,
HOTAIRM1 expression and tumor stage were revealed as the risk
factors for OSCC patient prognosis. While, in the multivariate
Cox-regression analysis, age, HOTAIRM1 expression and tumor
stage were all significantly independent predictors of OS of OSCC
patients (Table 1). Thus, it was reasonable to suspect that the

elevation of HOTAIRM1 may be a risk factor for OSCC. In
addition, we identified a correlation between HOTAIRM1
expression and tumor stage, indicating that more advanced
OSCC stage was associated with the higher expression of
HOTAIRM1 (Figure 2E). With regard to OS analysis, OSCC
patients with high-HOTAIRM1 expression were characterized by
a low survival rate and poorer bleak prognosis (Figure 2F).
Combined with the above findings, we considered
HOTAIRM1 as a risk factor likely to promote tumorigenesis
of OSCC.

Upregulation of HOTAIRM1Was Associated
With Genomic Instability
To explore the inherent factors associated with abnormal
HOTAIRM1-expression and OSCC carcinogenesis, we
investigated different genomic alterations in terms of
somatic variation and CNVs. First, we evaluated the copy
number variation status between groups with high-
HOTAIRM1 and low-HOTAIRM1 levels (Figure 3A), and
determined that amplification of CHR3 and deficiency of
CHR2 were significant variations in the high-HOTAIRM1
expression group, whereas in the low-HOTAIRM1
expression group, CHR11 amplification and the CHR13
deficiency were observed. These findings associated
HOTAIRM1 expression to CNVs of specific genes. Next,
we evaluated tumor mutation burden (TMB) status. In the
high-HOTAIRM1 group, the TMB was evidently higher

FIGURE 1 | The flowchart of this study.
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compared to that in the low-HOTAIRM1 expression group
(Figure 3B), which indicated that non-synonymous
mutations may be involved in the dysregulation of
HOTAIRM1 (t-test, p < 0.05). To better understand the
underlying link between genetic mutations and the

dysregulation of HOTAIRM1, we identified the first five
most relevant mutated genes (TP53, FAT1, MUC16,
DNAH5, HRAS), which provided evidence for the
association between genome aberrations and upregulation
of HOTAIRM1 in OSCC (Figure 3C).

FIGURE 2 |Upregulation and clinical significance of HOTAIRM1 in OSCC. (A) Volcano plot for DEGs. The blue represented the significantly down-regulated genes;
the red dots represented the significantly up-regulated genes; the green dot was the HOTAIRM1. (B) The comparison of HOTAIRM1 expression between all OSCC
samples and control samples. (C) The comparison of HOTAIRM1 expression between OSCC tissues and corresponding adjacent normal tissues. (D) qRT-PCR analysis
confirming HOTAIRM1 upregulation in OSCC cell lines. (E) Correlation analysis between HOTAIRM1 expression and OSCC tumor stage indicating the higher
HOTAIRM1 expression was associated with a higher tumor stage. (F) Kaplan-Meier analysis suggested that high HOTAIRM1 expression was associated with
unfavorable prognosis in OSCC. *p < 0.05, **p < 0.01.

TABLE 1 | Univariate and multivariate Cox regression analyses for overall survival in OSCC patients.

Variables Status Number Univariate analysis Multivariate analysis

DSBA 95% CI
of HR

Pvalue HR 95% CI
of HR

P- value

HOTAIRM1 low/high 146/142 1.414 1.000–1.999 0.049a 1.458 1.019–2.087 0.039a

Age ≤60/>60 126/162 1.314 0.924–1.870 0.129 1.505 1.031–2.197 0.034a

Gender female/male 90/198 0.943 0.655–1.359 0.754 0.940 0.639–1.382 0.753
Tumor stage stage I 18 1 (ref) — — 1 (ref) — —

Stage II 51 1.9773 0.584–6.693 0.273 1.738 0.510–5.921 0.377
Stage III 60 2.6724 0.801–8.920 0.110 2.231 0.663–7.507 0.195
Stage IV 159 4.2115 1.329–13.343 0.015a 3.637 1.137–11.658 0.030a

Smoking no/yes 197/91 1.3787 0.956–1.989 0.086 1.230 0.839–1.803 0.288

ap < 0.05.
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HOTAIRM1 Expression Was Related With
the Tumor Cell Stemness and Tumor
Microenvironment
To explore the relationship between HOTAIRM1 expression and
tumor cell dryness, pearson correlation analysis was performed
between HOTAIRM1 expression and stemness indices from
mRNA level (mRNAsi). The results showed that the higher
HOTAIRM1 expression was, the higher mRNAsi was
(Figure 3D), implying that HOTAIRM1 may contribute to the
progression of OSCC (p � 0.0071). It is well known that tumors
and the TME are an indivisible whole, therefore, we analysed the
association between HOTAIRM1 and stromal cells, and
immunocyte infiltration. The pearson correlation analysis
showed that HOTAIRM1 expression level was negatively
correlated with Stromal Score, ESTIMATE Score and Immune
Score (Figure 3E). With regard to immune-infiltrating cells, there
were four closely related immune cells associated with
HOTAIRM1 expression. Among these, there was a negative
correlation between HOTAIRM1 expression and resting mast
cell and M1 macrophages levels, while a positive correlation was
observed between HOTAIRM1 expression and eosinophils and

monocytes infiltration (Figure 3F). The above results suggested
that HOTAIRM1 might facilitate tumor cell proliferation
in OSCC.

Biological Functions Related to HOTAIRM1
in ORAL Squamous Cell Carcinoma
WGCNA was used to screen genes interacting with HOTAIRM1
in OSCC. A total of 14 modules were obtained following data
processing (Figure 4A), in which the brown module was
identified as the most significantly related to HOTAIRM1 as it
presented the highest Pearson’s coefficient, which suggested
signifying that HOTAIRM1 may could regulate or be
regulated by these genes in brown module (Figure 4B). A
total of 57 key genes whose expression was recognized as
being influenced by HOTAIRM1 and were used to speculate
the functions of HOTAIRM1 in OSCC (Figure 4C). Following
functional enrichment analysis on these key genes, the 57 genes
were determined to be active in biological processes regulating
cell proliferation, including DNA replication, mitotic nuclear
division, and changes in cell cycle phases (Figure 4D). In the
KEGG pathways analysis, the DNA replication, Mismatch repair,

FIGURE 3 | Correlation analyses between HOTAIRM1 and tumorigenesis-relevant variables. (A) The copy number variation of each chromosome in the samples
with high-HOTAIRM1 and low-HOTAIRM1 expression of OSCC is shown. The red peaks represent recurring focal amplification of chromosomes, while the blue areas
represent deletions. (B) TMB was higher in OSCC patients with high-HOTAIRM1 expression than in patients with low-HOTAIRM1 expression. (C) Relevance between
HOTAIRM1 expression and status of gene mutations and the five most correlated genes. (D) The relative association between the stemness index and HOTAIRM1
expression in OSCC. (E) The correlation analysis between HOTAIRM1 expression and cellular components related to the tumor microenvironment in OSCC, as
assessed by the stromal score, immune score, and ESTIMATE score. (F) Several immune-infiltrating cells markedly associated with HOTAIRM1 expression.
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and Nucleotide excision repair pathways were significantly
enriched and were associated with cellular proliferation
(Figure 4E). The above results indicated that HOTAIRM1 was
involved in OSCC-cell proliferation and specifically in cell cycle
regulation. A PPI-network-analysis was performed, which
demonstrated the interactive relationship between the 57
critical genes, which supported the functional prediction
regarding HOTAIRM1 activity in OSCC (Figure 4F). In
addition, we retained the interaction pairs with combined
score> 0.4 (Supplementary Table S3).

Gene Set Enrichment Analysis and Gene Set
Variation Analysis Indicated HOTAIRM1
Promoted Cell Proliferation
GSEA was used to identify the potential biomolecular alterations
caused by up-regulation of HOTAIRM1, focusing on the gene
sets of Hallmark, GO, KEGG, and REACTOME. The gene sets
enriched were mostly related to cell proliferative processes, for
example, DNA repair and E2F targets in Hallmark (Figure 5A),

regulation of the cell cycle G2/M phase transition and nucleotide
excision repair in GO (Figure 5B), DNA replication and
homologous recombination in KEGG (Figure 5C), and cell
cycle checkpoints and G1/S DNA damage checkpoints in
REACTOME (Figure 5D). GSVA was conducted to further
confirm the GSEA results by comparing the cellular
proliferation activity between groups with high-HOTAIRM1
and low-HOTAIRM1 expression, and a more active state of
cellular proliferation was observed in high-HOTAIRM1
expression group (Figures 5E–H).

Knockdown of HOTAIRM1 Inhibited
Proliferation and Arrested the Cell Cycle of
ORAL Squamous Cell Carcinoma Cells
To evaluated the influence on cell proliferation induced by the
upregulation of HOTAIRM1 expression in OSCC, we used a sh-
HOTAIRM1 strategy to knockdown HOTAIRM1 expression in
SCC9 and Cal27 cell lines. The knockdown efficiency of sh-
HOTAIRM1 in SCC9 and Cal27 cells were validated by qRT-PCR

FIGURE 4 |WGCNA module analysis showing that HOTAIRM1 was mainly involved in the biological process of cell proliferation. (A) A total of 14 related modules
were identified throughWGCNA, represented by different colors, which were displayed in a hierarchical clustering tree diagram. (B) The heatmap showed the correlation
between HOTAIRM1 expression and the modular eigengenes. The brown module showed the most positive significant correlation with HOTAIRM1. (C) Scatter plot of
module eigengenes in the brownmodule. The genesmeeting the module criteria, p-value ≥ 0.3 and in the top 10% of the brownmodule, are identified as key driving
genes associated with high HOTAIRM1 expression. (D) Functional enrichment analysis by GO demonstrated that key driver genes related to HOTAIRM1 were enriched
in cell proliferation processe. (E) The KEGG signaling pathway analysis showing driver genes related to HOTAIRM1 expression enriched in the pathways regulating cell
proliferation. (F) The interrelationship between the driver genes illustrated in the PPI network.
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(Figure 6A), and the results demonstrated that the sh-
HOTAIRM1 significantly decreased the expression of
HOTAIRM1 in both cell lines compared with the control
groups (sh-NC). The follow-up CCK-8 assay indicated that sh-
HOTAIRM1 cells presented much slower growth potential than
control cells with sh-NC (Figure 6B). Correspondingly, colonies
produced by sh-HOTAIRM1 cells showed a weak
competitiveness in quantity and size compared with sh-NC
cells (Figure 6C). Cell cycle analysis was carried out using
flow cytometry to determine whether the inhibition caused by
HOTAIRM1 knockdown in OSCC cells was due to a block in the
cell cycle. The analysis results indicated a significant G1 phase
arrest in SCC9 and Cal27 cells with HOTAIRM1 knockdown
(Figure 6D). Furthermore, to provide evidence supporting the
role of HOTAIRM1 activity in OSCC at the molecular level,
western blotting was performed to evaluate typical regulatory
factors and markers associated with cell proliferation and the cell
cycle, including the cell proliferation marker PCNA; G1 phase
regulatory factor CyclinD1; and key molecules of the cell cycle
signaling pathway p53, p21, CDK4, and CDK6. Compared to
control groups, the expression of PCNA, Cyclin D1, CDK4, and
CDK6 was reduced in sh-HOTAIRM1 OSCC cells, while p53 and

p21 expression was markedly increased (Figure 6E). The above
results confirmed that the knockdown of HOTAIRM1 induced
the inhibition of OSCC cell proliferation, altered the cell-cycle
distribution, and arrested cells in G1 phase due to the inhibition
of the cell cycle signaling pathway.

Knockdown of HOTAIRM1 Inhibited Tumor
Growth in vivo
To investigate the effect of HOTAIRM1 on OSCC in vivo, tumor
growth of xenografts in nude mice was monitored. HOTAIRM1
knockdown significantly inhibited the growth of xenograft
tumors formed by OSCC cells (Figure 7A). As shown in
Figures 7B,C, both the tumor weight and volume of the sh-
HOTAIRM1 group were obviously smaller than those of the sh-
NC group. In addition, the USI and MRI findings provided
valuable information on tumor progression and provided
information on parameters that are not detected by visual
inspection. In sh-HOTAIRM1 groups, both slower growth and
slightly weaker internal echogenicity of tumors were observed
compared to the control groups, provided by B-mode
ultrasonography. Poor angiogenesis and micro-angiogenesis in

FIGURE 5 | The function of HOTAIRM1mainly involves cell proliferation in OSCC further indicated by GSEA and GSVA analyses. (A)GSEA identified the gene sets
significantly enriched in Hallmark. (B) GSEA identified the gene sets significantly enriched in GO. (C) GSEA identified the gene sets significantly enriched in KEGG. (D)
GSEA identified the gene sets significantly enriched in REACTOME. (E–H) The scores related to cell proliferation assessed in the GSVA in the high-HOTAIRM1
expression group was higher than in the low expression group, suggesting the involvement of HOTAIRM1 in regulating cell proliferation. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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sh-HOTAIRM1 groups were revealed by Color Doppler Flow
Imaging (CDFI) and Color Power Angiography (CPA),
respectively. Ultrasonic elastosonography (USE) revealed the
slightly weaker hardness of tumors than that in sh-NC groups
(Figure 7D). Observed by the MRI, the tumor size of the sh-
HOTAIRM1 group was obviously smaller than that of the sh-NC
group, which was consistent with the results of USI. Furthermore,
in both the sh-NC group and sh-HOTAIRM1 group, the tumors
presented low signal intensity in T1WI and high signal intensity
in T2WI/T2-FLAIR, that were concordant with the conventional
MRI performance of OSCC (Figure 7E). In summary, these
findings convincingly demonstrated that HOTAIRM1-
knockdown inhibited tumor growth in vivo.

DISCUSSION

As the most common malignant tumor involving the oral and
maxillofacial regions, OSCC exerts a severe negative impact on
patients due to its poor prognosis and high recurrence rate (Ferlay

et al., 2015; Economopoulou et al., 2017; Speight et al., 2017).
Currently, the standard measures for treating OSCC involve the
surgery to resect the tumor followed by adjunctive therapy such
as chemotherapy and radiation. Nonetheless these treatment
approaches are not effective in improving the clinical outcome
of OSCC patients (Zanoni et al., 2019). Because traditional
surgical treatment cannot effectively improve the prognosis of
OSCC patients, searching for reliable biomarkers is essential to
improve the diagnosis and treatment of OSCC in the early stages
of the disease (Li et al., 2020; Jia et al., 2021). Based on previous
studies, abnormally expressed lncRNAs have been recognized as
moderators of tumor evolution in different cancers, exerting
procarcinogenic function or anticancer function by regulating
the malignant biological behaviors of tumors directly or
indirectly, including processes such as proliferation, migration,
invasion, and glycolysis (Schmitt and Chang 2016; Ahadi 2020;
Song and Kim 2021). For example, FOXD2-AS1 is upregulated in
OSCC and has been reported to inhibit the progression of
gallbladder cancer by mediating methylation of MLH1 (Liang
et al., 2020). LINC01410 has been reported to be abnormally

FIGURE 6 | In vitro knockdown of HOTAIRM1 restrained cell proliferation and regulated the cell cycle in OSCC cells. (A) Knockdown efficiency by sh-HOTAIRM1 in
SCC9 and Cal27 cells were validated by qRT-PCR. (B) Knockdown of HOTAIRM1 expression in OSCC cells suppressed cell growth measured via the CCK-8 assay. (C)
Colony formation assays evaluated the influence of HOTAIRM1 knockdown on cell proliferation of OSCC cells. (D) Flow cytometry was used to evaluate the impact on
cell cycle distribution by knockdown of HOTAIRM1 expression in OSCC cells lines. (E) Western blotting showing changes in key biomolecules related to cell
proliferation and cell cycle regulation, including PCNA, CyclinD1, p53, p21, CDK4, and CDK6. *p < 0.05, **p < 0.01.
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expressed in cervical cancer and promotes the growth and
invasion of cancer cells by regulating the miR-2467/VOPP1
axis (Liu and Wen 2020).

In this study, our aim was to identify the clinically valuable
lncRNAs pivotal to the initiation and progression of OSCC and to
further elucidate their functions and clinical significance. Our
study was the first to determine that HOTAIRM1 was an
upregulated lncRNA in OSCC according to the differential
expression analysis, which was subsequently confirmed by its
high expression in OSCC cell lines, confirming the relevance
between HOTAIRM1 expression and OSCC. However, a review
of the literatures relative to HOTAIRM1 showed that
HOTAIRM1 was previously explored only in thyroid, ovarian
cancer, non-small cell lung cancer, leukemia, and clear cell renal
cell carcinoma (Zhang et al., 2014; Chao et al., 2020; Hamilton
et al., 2020; Chen D. et al., 2021; Li et al., 2021; Liang et al., 2021).
In leukemia, HOTAIRM1was considered to be unfavorable and it
could activate RHOA/ROCK1 pathway to enhance
glucocorticoid resistance by inhibiting ARHGAP18 (Liang
et al., 2021). In ovarian cancer, silencing HOTAIRM1
promoted cell proliferation and inhibited cell apoptosis by
regulating the Wnt pathway and its downstream target gene
MMP9 (Ye et al., 2021). Thus, it was worthy to further investigate
the functional effects of HOTAIRM1 given the lack of studies

evaluating HOTAIRM1 in OSCC. We analyzed the correlation
between upregulated HOTAIRM1 expression and clinical data of
OSCC patients, in which OS and tumor clinical stages were
associated with HOTAIRM1 expression, indicating an
unfavorable prognosis as well as the prognostic value of
HOTAIRM1 in OSCC.

Some scholars proposed that a succession of genomic
alterations in neoplastic cells are crucial triggering factors for
cancers (Wu and Li 2021), therefore, we further assessed the
correlation between HOTAIRM1 expression patterns and
tumorigenic characteristics. In our study, the top five mutant
genes most related to HOTAIRM1 are TP53, FAT1, MUC16,
DNAH5 and HRAS. TP53 gene mutation was found to be most
correlated with abnormal expression of HOTAIRM1. Increasing
evidence has shown that the mutational status and the functional
regulation of TP53 in cancers are related to the disordered
expression of lncRNAs directly or indirectly (Aubrey et al.,
2018). TP53, is considered the “guardian of the genome” and
triggers cell apoptosis by inhibiting multiple pathways, and
participates in the identification of DNA damage via DNA
repair processes, thereby playing an important role in
maintaining genomic stability (Chatterjee and Viswanathan
2021). In other words, disrupting the “guardian of the
genome” could force damaged cells into senescence or

FIGURE 7 | Knockdown of HOTAIRM1 inhibits tumor growth in vivo. (A) Tumors were excised from nude mice at day 28 after tumor graft inoculation (n � 5). (B–C)
Weight of tumors and Volume were measured and calculated. (D) USI evaluation of tumors in mice using B-mode, CDFI, CPA, and USE. (E) MRI evaluation of tumors
using T1WI, T2WI and T2- FLAIR. *p < 0.05, **p < 0.01.
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apoptosis, thereby accelerating the accumulation of somatic
mutations. Moreover, FAT1 mutation information has been
repeatedly detected in human cancers, especially in squamous
cell carcinoma (Mountzios et al., 2014); MUC16 was recognized
as the third most common mutant oncogene (Bafna et al., 2010);
HRAS was a member of the RAS family of oncogenes, and its
mutation has been confirmed to be closely related to the initiation
of OSCC (Chai et al., 2020). This was also consistent with our
analysis, in which in the high-HOTAIRM1 expression group, the
somatic mutation rate was significantly higher than that of the
low-HOTAIRM1 expression group. In addition, our study also
identified obvious genome amplification and deletion patterns
(CNVs) in the high-HOTAIRM1 expression group. Similarly, in
anaplastic thyroid cancer (ATC), the amplification of
HOTAIRM1 genome copy number increased the expression of
HOTAIRM1, and drove the occurrence of ATC by inhibiting the
biosynthesis of miR-144 (Zhang et al., 2021). Our study indicated
that, at the genetic level, HOTAIRM1 may play a stimulatory role
in driving OSCC occurrence.

With the progressive revelation of tumour heterogeneity, cancer
stem cells (CSCs) are generally considered to be the components of
cancer initiation, which are able to form tumors and influence the
progression and malignancy of cancers (Clarke 2019). In Chen’s
study of esophageal squamous cell carcinoma, up-regulated LINC-
POU3F3 promoted the upregulation of tumor cell stem cell markers
(CD133, CD44 and CD90), thereby enhancing the radiotherapy
resistance of tumor cells and increasing the degree of malignancies
of esophageal cancer (Chen et al., 2021b). mRNAsi is considered to
be an indicator to describe the stemness of tumor cells, which could
quantify the CSCs to a certain extent (Malta et al., 2018). In our
study, the high expression of HOTAIRM1 was associated with
higher mRNAsi, indicating that the higher the expression of
HOTAIRM1, the stronger the dryness of OSCC cells, suggesting
that HOTAIRM1 may promote the malignant potential of OSCC.
The TME is described as the environment of tumor cell production
and growth, which includes not only the tumor cells themselves but
also the surrounding fibroblasts, immune and inflammatory cells,
and other cells, as well as the adjacent intercellular signals,
microvessels, and relevant infiltrating biological molecules (Balaji
et al., 2021). In our study, the HOTAIRM1 expression was inversely
proportional to stromal cell and immune cell content, suggesting
that HOTAIRM1may promote the proliferation of OSCC cells and
improve tumor purity. Studies accumulating over the past few
decades have shown that, tumor-antagonizing areas are often
accompanied by chronic inflammation and on the other hand,
the infiltration of immune cells in tumor tissues serve to promote
tumor evolution (Denaro et al., 2019). To date the identified tumor-
promoting immune cells consist of macrophages, mast cells, and
neutrophils, as well as T lymphocytes and B lymphocytes, which are
confirmed to contribute to induce and help maintain tumor
angiogenesis, to promote tumor cell proliferation, and to
facilitate metastasis and dissemination via seeding of cancer cells
at the edge of the tumor (Anderson 2014). In our study, the
HOTAIRMI expression was negatively correlated with
macrophage M1 (anti-tumor phenotype) and mast cells, and
positively correlated with monocytes and eosinophils.
Eosinophils infiltrate multiple cancers and have the ability to

regulate tumor progression and promote tumor growth either
directly by interacting with cancer cells or indirectly by
regulating TME (Grisaru-Tal et al., 2020). In the tumor immune
microenvironment, monocytes mainly support tumor cells to
escape host immune response by infiltrating tumor and
differentiating into tumor-related macrophages, thus affecting
tumor progression (Chittezhath et al., 2014). In this research,
HOTAIRM1 expression levels were correlated with the types of
the immune cells, and we speculated that HOTAIRM1 might
influence the tumor immune microenvironment and thus
promote the progression of OSCC.

To further explore the biological function of HOTAIRM1 in
OSCC, WGCNA was used to identify genes most closely related to
HOTAIRM1 expression. We determined that nearly all the crucial
genes were involved in cell proliferation and the cell cycle, such as
G1/S checkpoint, DNA replication, DNA mismatch repair, and
DNA damage detection. Subsequently, the function of
HOTAIRM1 was verified using GSEA and GSVA. Moreover,
in vitro cell function experiments showed the inhibition of
proliferation and the arrest in G1 phase cell cycle following
HOTAIRM1 knockdown in OSCC cells. As a classical cell
proliferation marker at the molecular level (Lu et al., 2019),
PCNA protein expression was significantly decreased in the sh-
HOTAIRM1 knockdown cells, which also suggested that
HOTAIRM1 knockdown inhibited the proliferation of OSCC
cells. In addition, the detection of molecular markers related to
cell cycle pathway showed that p53 and p21 were significantly
increased, while the CyclinD1, CDK4 and CDK6 were decreased
in OSCC cells with HOTAIRM1 knockdown. The smooth
progression of the cell cycle is a guarantee of cell growth and is
mainly controlled by p53 via monitoring checkpoints progression at
G1/S andG2/Mphases, which is closely related to the transcriptional
activation of cell cycle-related proteins (Li et al., 2019). As a p53
downstream gene, p21 is a cyclin-dependent kinases (CDKs)
inhibitor, which participates in cell cycle processes, plays a key
role in tumors activity through the p53 signal pathway, and can bind
with a series of cyclin/CDKs complexes to inhibit the activity of
corresponding protein kinases, mainly in the G1 phase (Xiong et al.,
2021). CyclinD1, a G1/S-specific cyclin-D1, is a marker of G1 phase,
and mainly forms complexes with CDK4 or CDK6 to regulate the
cell cycle and is indispensable for G1 phase entry to the S phase (Yan
et al., 2021). In various cancers, like in lung cancer, gastric cancer,
thyroid cancer, and ovarian cancer (Liang et al., 2019; Qiu et al.,
2021b; Yan et al., 2021), p53 and p21 jointly constitute the G1
checkpoint of the cell cycle to ensure that the cancer cells at G1 phase
smoothly enter S phase. FKBP11 has been described as a regulator of
the cell cycle and apoptosis via p53/p21/p27 and p53/Bcl-2/Bax
signaling pathways in OSCC, thereby promoting the proliferation of
cancer cells (Qiu et al., 2021b). BCAR4 is upregulated in esophageal
squamous cell carcinoma acting on the G1 phase of cell cycle to
promote cell proliferation by regulating the miR-139–3p/ELAVL1
axis and the p53/p21 signaling pathway (Yan et al., 2021). In human
acute promyelocytic leukemia, HOTAIRM1 knockdown inhibits
NB4 granulocyte cells differentiation by maintaining cells in the
G1 phase and by regulating integrin gene expression levels (Zhang
et al., 2014). In brief, our results revealed that in OSCC, the
knockdown of HOTAIRM1 upregulated the expression of p53
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and p21, maintaining the cells at G1 phase, likely due to the
inhibition of the p53/p21-mediated cell cycle signaling pathway,
thereby inhibiting cell proliferation. Finally, in xenograft tumor
experiments in nude mice, tumor growth was effectively inhibited
when HOTAIRM1 was knockdown in OSCC xenografted cells, and
resulted in tumors with smaller weight and volume, weaker blood
flow signals, and reduced tumor stiffness, as detected using
ultrasound imaging and MRI. It is well known that ultrasound
imaging and MRI are authoritative tools used to evaluate tumors
activity in the clinic (Smiley et al., 2019; Lalfamkima et al., 2021).
Altogether, it can be concluded that HOTAIRM1 exhibits
tumorigenic properties and facilitates tumor growth in OSCC.

In conclusion, our study was the first to identify HOTAIRM1
as a significantly upregulated lncRNA in OSCC, which is closely
related to poor prognosis of patients and may represent a new
potential biomarker for OSCC. Moreover, HOTAIRM1 was
shown to be carcinogenic in OSCC, by promoting cell
proliferation and by accelerating cell cycle progression, via
regulatory factors in the p53/p21 pathway induced by
abnormal HOTAIRM1 expression. Overall, our study revealed
that HOTAIRM1 acts as a novel possible prognostic biomarker
and therapeutic target for OSCC.
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Background: Necroptosis is a newly recognized form of cell death. Here, we applied
bioinformatics tools to identify necroptosis-related genes using a dataset from The Cancer
Genome Atlas (TCGA) database, then constructed a model for prognosis of patients with
prostate cancer.

Methods: RNA sequence (RNA-seq) data and clinical information for Prostate
adenocarcinoma (PRAD) patients were obtained from the TCGA portal (http://tcga-
data.nci.nih.gov/tcga/). We performed comprehensive bioinformatics analyses to
identify hub genes as potential prognostic biomarkers in PRAD u followed by
establishment and validation of a prognostic model. Next, we assessed the overall
prediction performance of the model using receiver operating characteristic (ROC)
curves and the area under curve (AUC) of the ROC.

Results: A total of 5 necroptosis-related genes, namelyALOX15, BCL2, IFNA1, PYGL and
TLR3, were used to construct a survival prognostic model. The model exhibited excellent
performance in the TCGA cohort and validation group and had good prediction accuracy
in screening out high-risk prostate cancer patients.

Conclusion: We successfully identified necroptosis-related genes and constructed a
prognostic model that can accurately predict 1- 3-and 5-years overall survival (OS) rates of
PRAD patients. Our riskscore model has provided novel strategy for the prediction of
PRAD patients’ prognosis.
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BACKGROUND INFORMATION

Prostate adenocarcinoma (PRAD) is a complex but common
malignancy that accounts for about 1300000 new cases and
360,000 deaths every year worldwide. Notably, PRAD accounts
for 15% of all new tumor-related cases, making it the second most
common neoplasia in elderly males, and the fifth most frequent
cause of cancer-related deaths worldwide (Bray et al., 2018; Siegel
et al., 2020). In China, PRAD is fast increasing, owing to the rapid
socio-economic development in the country, coupled with
changes in people’s living and eating habits, as well as an
increase in the aging population. Consequently, the disease has
become one of the most common urogenital malignancies among
elderly Chinese males (Wei et al., 2020). Current treatment
options for PRAD are limited, while patient prognosis remains
unsatisfactory. Therefore, prospecting for novel prognostic
markers is imperative to development of effective treatment
strategies and enhanced prognosis of PRAD patients. Previous
studies have shown that necroptosis, which was first identified
and named in 2005, is regulated by intracellular signaling
pathways (Degterev et al., 2005). Notably, this phenomenon
can be unmediated by caspases, thus functioning upon
inhibition of apoptotic pathways. Moreover, its cellular
morphology is consistent with that of conventional necrosis.
Additional research evidences have shown that necroptosis is
not only an important mechanism underlying cell death, but also
plays a crucial role in development and progression of many
immune system diseases, including chronic kidney diseases,
cerebral ischemia, myocardial ischemia, acute and chronic
neurodegenerative diseases, as well as tumors and many other
human pathological activities (Jouan-Lanhouet et al., 2014;
Barbosa et al., 2018). Although necroptosis exerts important
functions in oncogenesis and anticancer processes, only a
handful of studies have described its significance in PRAD. In
the present study, we systematically analyzed differential
expression profiles of necroptosis-related genes between
normal and PRAD tissues, then developed a novel risk-score-
based model for predicting prognosis of PRAD patients.

MATERIAL AND METHODS

Data Acquisition and Differential Gene
Expression Analysis
Necroptosis-related genes were extracted from previous studies
(Fan et al., 2014; Frank and Vince, 2019; Gong et al., 2019; Yuan
et al., 2019; Tang et al., 2020). RNA sequence dataset belonging to
499 PRAD patients and 52 normal controls, together with
corresponding clinical information were accessed and
downloaded from the TCGA database. Next, we employed the
“limma” package implemented in R software to identify
differentially expressed genes (DEGs) between the tumor and
adjacent normal tissues, based on FDR <0.05 and |log2FC| ≥ 1.
Thereafter, we recruited a total of 80 PRAD patients at The First
Affiliated Hospital of Zhengzhou University, as the validation
cohort. All patients voluntarily signed a written informed consent
prior to inclusion in the study, and ethical approval for the study

protocol was obtained from The First Affiliated Hospital of
Zhengzhou University.

Construction and Validation of a Prognostic
Model
The prognostic value of each DEG was first assessed by univariate
Cox regression analysis, then genes that were significantly
correlated with OS in PRAD patients identified. To avoid
overfitting of the model, we performed Lasso regression
analysis to further select significant prognostic genes for OS in
PRAD patients, using a penalty parameter tuning (λ) that was
conducted by 10-fold cross-validation based on minimum
criteria. The identified significantly expressed genes were then
incorporated into a multivariate Cox regression model, and the
risk score of each patient calculated using the following formula:
risk score � esum (each gene’s expression × corresponding
coefficient). Median risk-scores were then used to stratify
patients into either high- or low-risk groups, and validation of
model feasibility and accuracy conducted by generating AUC of
the ROC as well as calibration plots. Next, we applied the Cox
proportional hazards regression model to analyze these risk
factors in PRAD, targeting risk scores, gender, age, as well as
the T, N, and M stages. To validate the established model, based
on TCGA, we used the median scores to divide patients in the
validation cohort into high- and low-risk groups. We also
validated the model by stratifying patients in the validation
cohort into low- and high-risk subgroups based on the median
value of risk scores using the same formula as in the TCGA
cohort.

Validation of Gene Expression
Next, we performed quantitative real-time polymerase chain
reaction (qRT-PCR) analysis to quantify expression of DEGs
used for model construction in the validation cohort. Briefly,
total RNA was extracted from thoroughly ground (under
liquid nitrogen) target tissues using the Trizol reagent (Life
Technology, Grand Island, NY, United States). The RNA was
reverse transcribed to complementary DNA (cDNA) using the
RevertAid First Strand cDNA Synthesis Kit (Thermo
Scientific, Lithuania), then subjected to qRT-PCR using the
SYBR® Green qPCR mix 2.0 kit performed on the Roche
LightCycler® 480 Real-Time PCR System. The primers for
the genes targeted in this study were obtained from
TsingKe Biological Technology (Nanjing, China), and their
sequences are as follows: PYGL (forward 5′- CAGCCTATG
GATACGGCATTC -3′, reverse 5′- CGGTGTTGGTGTGTT
CTACTTT-3′), ALOX15 (forward 5′-GGGCAAGGAGAC
AGAACTCAA-3′, reverse 5′- CAGCGGTAACAAGGGAAC
CT-3′), BCL2 (forward 5′- GGTGGGGTCATGTGTGTGG
-3′, reverse 5′-CGGTTCAGGTACTCAGTCATCC-3′),
IFNA1 (forward 5′-GCCTCGCCCTTTGCTTTACT-3′,
reverse 5′-CTGTGGGTCTCAGGGAGATCA -3′), TLR3
(forward 5′- TTGCCTTGTATCTACTTTTGGGG -3′,
reverse 5′-TCAACACTGTTATGTTTGTGGGT -3′) β-actin
(Forward: 5′-CGAGCACAGAGCCTCGCCTTTGCC-3′,
Reverse: 5′-TGTCGACGACGAGCGCGGCGATAT-3’).
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Relative mRNA expression was calculated using the 2-ΔΔCt
method.

Functional Enrichment and Drug Sensitivity
Analyses
We first used the “cluster Profiler” package in R to perform
Gene Ontology (GO) functional and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses on
the screened necroptosis-related DEGs (Zeng et al., 2021).
Next, we applied the “org.Hs.eg.db” package to identify
significantly enriched genes and classify gene clusters. All
analyses were performed at a statistical significance of p <
0.05. The obtained DEG list was compared with a reference
dataset from the CMap database, to obtain a correlation
score based on enrichment of DEGs in the reference gene
expression profile. A positive number indicated that the DEG
was similar to the reference gene expression profile, thus
allowed analysis of similar interventions that produce the
above effects. Conversely, a negative number indicated that
the DEGs had an opposite gene expression profile to that of
the reference, suggesting that the drug may antagonize the
DEGs’ expression. Ultimately, potentially effective drugs that
can counteract drug resistance were inferred from the genetic
changes in drug-resistant cell lines, and ranked according to
correlation scores obtained on the reference gene expression
profile.

Analysis of Immune Infiltration and Tumor
Microenvironment
Considering that immune infiltration levels are correlated with
survival and prognosis of cancer patients, we evaluated the
relationship between risk-scores and immune infiltration
levels. Specifically, we applied multiple algorithms
implemented in the IOBR package in R (Zeng et al., 2021)
to estimate proportions of tumor-infiltrating immune cells.
Next, we calculated stromal and immune scores for each
sample using the ESTIMATE algorithm implemented in the
‘limma’ and ‘estimate’ packages in R.

RESULTS

Profiles of DEGs
A total of 499 and 80 PRAD patients from the TCGA and
validation cohorts, respectively, were included in this study.
Detailed clinical characteristics of these patients are shown in
Tables 1, 2. A total of 16 necroptosis-related genes were
differentially expressed between tumor and adjacent non-
tumor tissues. Profiles of these expression patterns are
presented using heatmaps in Figure 1A, while the
relationships among the DEGs are shown in Figure 1B.
Next, we performed LASSO regression analysis to screen
covariates, then applied a 10-fold cross validation with
minimum criteria to obtain an optimal λ. The final value of
λ yielded a minimum cross validation error. Consequently, a
total of 5 DEGs, namely ALOX15, BCL2, IFNA1, PYGL and
TLR3, were identified (Figures 2A,B). Incorporation of these
significant DEGs into a multivariate Cox regression model
revealed coefficients of included each gene. Finally, each PRAD
patient was assigned a separate risk score according to the
aforementioned formula.

Construction and Validation of a Prognostic
Model
Risk scores � 0.05834p expression level of ALOX15–0.0004914p

expression level of BCL2+ 0.665* expression level of
IFNA1+0.03093p expression level of PYGL −0.0008311p

expression level of TLR3. The resulting median cut-off value
was used to stratify patients into high-risk and low-risk groups,
comprising 249 and 250 individuals, respectively (Figure 3A). A
principal component analysis (PCA) plot showed that patients in
both groups were distributed in different directions, indicating
that the established model had excellent predictive ability to
distinguish between high and low-risk PRAD (Figure 3B).
Kaplan-Meier curves showed that patients in the low-risk
group were significantly associated with higher survival rates
compared to their high-risk counterparts (p < 0.05) (Figure 3C).
In addition, we generated time-dependent ROC curves to
estimate performance of the risk prediction model. AUC
values for the prognostic model were 0.822, 0.856, and 0.795

TABLE 1 | Basic clinical characteristics of PRAD patients in TCGA PRAD cohort.

Characteristic Levels Overall

n 499
T stage, n (%) T2 189 (38.4%)

T3 292 (59.3%)
T4 11 (2.2%)

N stage, n (%) N0 347 (81.5%)
N1 79 (18.5%)

M stage, n (%) M0 455 (99.3%)
M1 3 (0.7%)

Race, n (%) Asian 12 (2.5%)
Black or African American 57 (11.8%)
White 415 (85.7%)

Age, n (%) ≤60 224 (44.9%)
>60 275 (55.1%)

Age, median (IQR) 61 (56, 66)

TABLE 2 | Basic clinical characteristics of PRAD patients in validation cohort.

Characteristic Levels Overall

n 80
T stage, n (%) T2 32 (40%)

T3 40 (50%)
T4 8 (10%)

N stage, n (%) N0 64 (80%)
N1 16 (20%)

M stage, n (%) M0 72 (90%)
M1 8 (10%)

Age, n (%) ≤60 37 (46%)
>60 43 (54%)

OS event, n (%) Alive 64 (80%)
Dead 16 (20%)

Age, median (IQR) 59 (52, 69)
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for 1-, 3-, and 5-years survival, respectively (Figure 3D). The
calibration curve was close to 45°, indicating that the model had
good prognostic performance (Figure 3E).

qRT-PCR results showed that BLC2, PYGL, and TLR3 were
significantly downregulated in PRAD relative to normal adjacent
tissues in the validation cohort (Figure 4A). Results from risk score

FIGURE 1 | Identification of the candidate genes. (A). Heatmap showing differentially expressed genes between the two groups. (B). The relationship among
necroptosis-related DEGs.

FIGURE 2 | Processes of LASSO Cox model fitting. (A). Profiles of coefficients in the model at varying levels of penalization were plotted against the log(lambda)
sequence. (B). Ten-fold cross-validated error (the first and second vertical lines denote the minimum and cross-validated errors, respectively, within 1 standard error of
the minimum).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 8148134

Li et al. A Model for Prostate Adenocarcinoma

60

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


analysis for each patient, calculated using the same formula and
critical values, indicated that patients in the high-risk group had
significantly worse overall survival rates than those in the low-risk

group (p < 0.05) (Figure 4B). AUC values for the 5 necroptosis-
related gene signature were 0.836, 0.669, and 0 0.726 at 1, 3 and,
5 years, respectively (Figure 4C). Figure 4D shows the statistically

FIGURE 3 | Prognostic value of the 5-gene signature model in the test (TCGA) cohort. (A). Distribution and median values of the risk scores. (B). PCA plot. (C).
Kaplan-Meier curves showing OS of patients in the high-risk and low-risk groups. (D). AUC values of the time-dependent ROC curves showing prognostic performance
of the risk score. (E). Calibration plots for the established model.
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significant results for the genes that make up themodel. Multivariate
cox regressionreveals that the most significant in 5 DEGs was PYGL.
Based on these findings, we further explored the relationship
between PYGL and multiple pathways, and found that PYGL
expression was positively correlated with IFN−Gamma signature,
APM signaling, Proteasome, Basal differentiation, EMT
differentiation, Immune differentiation, Myofibroblasts, Interferon
response, and Keratinization, but had a negative correlation with
Urothelial differentiation, Luminal differentiation and
Neuroendocrine differentiation (Figure 4E). Collectively, these
results suggested that PYGL expression might be involved in
cancer progression.

Independent Prognostic Value of the Risk
Model
Next, we investigated the prognostic significance of different
clinical features in PRAD patients. Results from univariate
Cox proportional hazard regression analysis revealed that the
risk score had prognostic significance in OS (HR � 1.67, 95% CI:
1.23–2.79, Table 3). These results remained significant (HR �
1.42, 95% CI: 1.14–1.75, Table 3) in PRAD patients. Validation of
this signature’s prognostic value revealed that it was an

independent prognostic factor for PRAD (Table 3). A
heatmap of DEGs and distribution of patients’ age as well as
survival status across both low- and high-risk subgroups are
shown in Supplementary Figure S1.

High-Risk Scores Were Associated With a
Hot Tumor Microenvironment
Previous studies have shown that the TME plays a crucial role in
tumor extension, progression, migration and invasion (Chalmin
et al., 2018). GO terms showed that the DEGs were significantly
enriched in immune-related GO entries, including lymphocyte
differentiation, and macrophage aggregation. Moreover, KEGG
pathway enrichment results revealed that these genes were
enriched in cell adhesion molecules, cytokine and cytokine
receptor interactions, and necroptosis (Figure 5A). Overall, these
results indicated that the DEGs were significantly enriched in
immune-related activities, which implies that immune factors
represent the main feature of the TME in PRAD. Furthermore,
risk scores were positively correlated with the tumor
microenvironment (ESTIMATEScore) (Figure 5B). Furthermore,
multiple algorithms revealed that PYGL expression was strongly
associated withmacrophages, eosinophils and activated CD4+ T cells

FIGURE 4 | Validation of the 5-gene signature using a validation cohort. (A). Results of qRT-PCR analysis. (B). Kaplan-Meier curves showing OS of patients in the
high-risk and low-risk groups. (C). AUCs of time-dependent ROC curves indicating the prognostic performance of the risk score. (D). Kaplan-Meier curves showing OS
of patients in the high- and low-expression groups of 5 DEGs. (E) Pathway analysis targeting PYGL.
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among others, indicating that the established prognostic model was
associated with a hot TME (Figure 6A). ssGSEA results revealed
significant enrichment of many types of immune cells, such as
macrophages, and Tregs, among others, between the groups, while
immune-related functions were also significantly different between
the groups (Figure 6B).

DEG-Based Tumor Classification
Next, we performed K-means cluster analysis to stratify PRAD
patients into subtypes according necroptosis-related DEGs, and
obtained the highest intra- and low inter-group correlations when
k � 2 (Figure 7A). Based on results of the 16 DEGs, the 499 PRAD
patients were divided into 2 clusters. We generated a heatmap to
illustrate the resulting gene expression profiles and found that they
were matched to the clinical data (Figure 7B). A comparison of OS
revealed significant differences between the clusters (Figure 7C).

Drug Sensitivity Analysis
The highest negative correlation score was obtained in
Thioridazine (-0.703), a drug used for treatment of acute
schizophrenia, mania and depression. This suggests that this
drug has potential therapeutic effects in PRAD. On the other
hand, the highest scores were obtained in trichostatin A (an
antitumor inhibitor), LY-294002 (the first synthetic protein
kinase inhibitor), Sirolimus (an immunosuppressant),
Tanespimycin (an antitumor agent), Monorden (an antibiotic),
Sirolimus (an immunosuppressant), Tanespimycin (an
antitumor agent), and Monorden (an antibiotic). Estradiol
(estradiol) is a transdermal estrogenic therapeutic agent that
has been used to treat advanced PRAD. The above-mentioned
drugs exhibited a strong negative correlation suggesting that they
may have potential form treatment of PRAD (Figure 8).

DISCUSSION

Tumor growth occurs due to an imbalance between tumor cell
death and growth (Meier et al., 2000). Notably, inhibition of

excessive cell proliferation or normal cell death in the body
markedly exacerbates incidence of malignant tumors.
Therefore, some researchers believe that unlimited cell
proliferation and death inhibition represent the two
distinguishing features of malignant tumors. Necroptosis is a
newly discovered form of cell death that morphologically
manifests with similar characteristics to those observed in
necrosis. However, the 2 phenomena differ in that while
necrosis is a passive death caused by external physicochemical
stresses, such as infection or inflammation, and is not regulated
by signaling pathways, necroptosis is a regulated by programmed
death. Numerous studies have demonstrated that necroptosis
plays an important role in cancer initiation, progression, and
metastasis (Jouan-Lanhouet et al., 2014; Barbosa et al., 2018). In
the present study, we evaluated the relationship between
necroptosis-related genes and prognosis of PRAD patients.
Summarily, we screened for key genes that can independently
predict prognosis of PRAD patients, then used them to construct
a prognostic prediction model. Next, we verified the predictive
power of the established model, then applied a multifactorial Cox
regression model to assess the effect of other clinicopathological
parameters on the signature’s prognostic value in PRAD patients.

A total of 5 DEGs were included in the current model, with
ROC and calibration curves in both training and validation
cohorts showing that the model had excellent power in
predicting PRAD patients. In addition, we selected PYGL, a
gene located on chromosome 14q22.1 with a total of 20 exons
that has been widely used as a building block for predictive
models (Luo et al., 2020), and investigated its role in PRAD.
Results showed that high PYGL expression was an independent
predictor of poor prognosis in PRAD patients, consistent with a
pervious study that reported similar findings in glioma patients
(Luo et al., 2020). Our results further demonstrated that high
PYGL expression was closely associated with infiltration of
immune cells in tumors, with this expression pattern also
positively correlated with cancer associated fibroblasts (CAFs).
Previous studies have shown that CAFs inhibit T cell infiltration
by secreting peritumoral collagen and TGF-Beta/PD-L1 specific

TABLE 3 | univariate cox and multivariate cox regression analyses.

Characteristics Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

TCGA PRAD cohort

Age (>60 vs. ≤60) 5.28 (3.48–6.86) <0.001 4.69 (2.36–5.47) <0.001
Race (Black or African American vs. Asian) 1.74 (0.254–5.84) 0.951 — —

Riskscore (High vs. Low) 2.29 (1.63–3.65) <0.001 1.67 (1.23–2.79) <0.001
T (T1,T2vs. T3,T4) 0.37 (0.18–0.65) 0.041 0.46 (0.24–1.65) 0.21
N(N0vs.N1) 0.62 (0.42–0.81) 0.032 0.72 (0.54–0.89) 0.042
M(M0vs.M1) 0.76 (0.51–1.21) 0.63 — —

Independent validation cohort

Age (>60 vs<�60) 4.81 (2.96–5.91) <0.001 3.51 (2.19–5.78) 0.025
T (T2vs. T3,T4) 0.77 (0.59–0.89) 0.03 0.82 (0.53–0.98) 0.046
N (N0vs.N1) 0.68 (0.31–0.87) 0.02 0.63 (0.25–0.86) 0.031
M (M0vs.M1) 0.87 (0.36–1.86) 0.75 — —

Riskscore (High vs. Low) 1.87 (1.36–2.05) <0.001 1.42 (1.14–1.75) 0.034
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antibody YM101, while M7824 could effectively suppress CAFs
activity thereby promoting T cell infiltration (Lan et al., 2018; Yi
et al., 2021a; Yi et al., 2021b). Additional research evidences have
shown that the extracellular matrix produced by CAFs can also

limit efficacy of tumor therapy (Ziani et al., 2018; Dou et al.,
2020). Therefore, CAFs have become a new target for tumor
therapy. For example, inhibition of tumor progression by
targeting and regulating CAFs or overcoming their barrier

FIGURE 5 | (A). Profiles of GO functional terms and KEGG pathway enrichment for the identified DEGs (B). An overview of the ESTIMATE algorithm.
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effect has become a new approach for improving efficacy of tumor
therapy (Ziani et al., 2018). Since only a handful of reports have
described the specific function of PYGL in tumorigenesis of

PRAD, results of the present study provide new insights into
the relationship between necroptosis and PRAD based on PYGL
functions.

FIGURE 6 | (A) The relationship between PYGL expression and immune cell infiltration. (B). Comparison of ssGSEA scores between the two risk groups in the test
(TCGA) cohort.
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Previous studies have demonstrated the role of the tumor
microenvironment, especially the immune microenvironment, in
tumor biology (Sumida et al., 2011; Xu et al., 2020; Li et al., 2021).

Results of the present study showed that the identified DEGs were
mainly enriched in immune-related pathways. Consequently, we
performed an immune cell infiltration analysis to assess the

FIGURE 7 | Tumor classification based on the identified pyroptosis-related DEGs (A). Patients were grouped into 2 clusters according to the consensus clustering
matrix (k � 2). (B). Kaplan–Meier curves showing OS of patients in the 2 clusters. (C). A heatmap and clinicopathologic characteristics of patients in the 2 clusters based
on the identified DEGs.
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relationship between risk scores and overall survival of patients in
the context of immune system response. Our results indicated that
low-risk patients recruitedmore immune cells and triggered higher
activation of immune pathways than their high-risk counterparts.
Notably, the former group exhibited marked enrichment of NK
cells. Previous studies have showed that NK cells have a strong
cytocidal activity and do not require MHC activation to kill tumor
cells (Shu and Cheng, 2020). In addition, tumors have been found
to induce production of type II NKT cells, which in turn secrets IL-
13, thereby not only causing aggregation of MDSC in the tumor
microenvironment but also activating the STAT6 signaling
pathway and suppressing CD8+ T cell function (Terabe et al.,
2000; Terabe et al., 2005). Consequently, the use of NK cells for
tumor immunotherapy has gained numerous attention from all
over the world. Some of the current NK cell-based clinical
approaches for tumor therapy include cytokine-mediated NK
cell activation, autologous or allogeneic NK cell transfer, CAR
gene-modified NK cells and memory cells. In addition to
hematological tumors, modified NK and memory-like NK cells

have shown great potential for treatment of liver, non-small cell
lung, colorectal, ovarian and breast cancers (Li et al., 2015). Results
from our drug sensitivity analysis revealed several potential drugs
that might modulate the necroptosis-related genes. Notably,
expression of these necroptosis-related genes was negatively
correlated with thioridazine, trichostatin A, LY-294002,
sirolimus, tanespimycin and monorden, suggesting that these
could be potential new options as therapeutic drugs.

CONCLUSION

In summary, we identified differentially expressed necroptosis-
related genes, between PRAD and normal adjacent tissues, and
used them to establish a model for predicting prognosis of PRAD
patients. Moreover, we revealed the correlation between risk
scores and immune activities. However, further studies are
needed to elucidate the mechanisms underlying necroptosis in
tumor immunology.

FIGURE 8 | Drug sensitivity analysis.
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Clinical Significance of TET2 in Female
Cancers
Fang Wan, Fangfang Chen, Yangfan Fan and Deqin Chen*

Department of Surgery, The Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China

Female cancers refer to malignant tumors of the female reproductive system and breasts,
which severely affect the physical and mental health of women. Although emerging
experiment-based studies have indicated a potential correlation between ten-eleven
translocation methylcytosine dioxygenase (TET2) and female cancers, no
comprehensive studies have been conducted. Therefore, this study aimed to
summarize the clinical value and underlying oncogenic functions of TET2 in female
cancers, such as breast invasive carcinoma (BRCA), cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), ovarian serous cystadenocarcinoma (OV),
uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS), based
on the data obtained from The Cancer Genome Atlas. The expression of TET2 was
decreased in most female cancers, and its high expression was distinctly associated with
the favorable prognosis of most female cancers. Furthermore, CD8+ T-cell infiltration was
not correlated with TET2 in OV, UCEC, and UCS, whereas tumor-associated fibroblast
infiltration was significantly correlated with TET2 in BRCA, CESC, and OV. TET2 was co-
expressed with the immune checkpoint molecules ADORA2A, CD160, CD200, CD200R1,
CD44, CD80, NRP1 TNFSF4, and TNFSF15 in most female cancers. Enrichment analysis
revealed that some signaling pathways involving TET2 and related genes were related to
tumorigenesis. Immunohistochemical and immunofluorescence staining confirmed the
results of cancer immune infiltration analysis in BRCA tissues. Therefore, this study
provides evidence for the oncogenic functions and clinical value of TET2 in female cancers.

Keywords: TET2, female cancers, immune infiltration, TCGA, GEO

INTRODUCTION

Female cancers refer to malignant tumors of the female reproductive system and breasts, which
seriously threaten the physical and mental health of women. The incidence of breast, cervical, uterine
body, and ovarian cancers is gradually increasing, and ranking at the forefront of the incidence of
female malignant tumors (Chen et al., 2014). Among these cancers, breast cancer is a major
malignant tumor threatening the health of women worldwide. In 2018, more than 2 million new
cases of breast cancers were reported worldwide, with the incidence and mortality of breast cancer
ranking first among all female cancers (Ferlay et al., 2019). In addition, the incidence of cervical
cancer is increasing in the younger population (Lin et al., 2021). Therefore, effective diagnosis and
treatment of female cancers are of great clinical significance worldwide.

DNA methylation is a widely recognized epigenetic modification. In mammals, the addition of
guanine (linear dinucleotide) (CpG) to the promoter region can inhibit the activity of many genes
and promote stable heredity. However, the underlying mechanisms of active DNA demethylation
remain unclear, which is a fundamental question in epigenetics research (Greenberg and Bourc’his,
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2019). In 2009, TET protein was found to oxidize 5-
methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC)
in vitro, and since then, the Tet methylcytosine dioxygenase
(TET2) protein family has been extensively investigated. TET2
protein is one of the evolutionarily highly conserved members of
the Tet family. Several studies have demonstrated that TET2
protein can be used as an invertase to convert 5 mC to 5 hmC
(Chowdhury et al., 2014). Furthermore, TET2 can also convert
5 mC to 5-formylcytosine (5 fC) and 5-carboxylcytosine (5 caC)
through continuous oxidation reaction (Cadet andWagner, 2014;
Zhang et al., 2014). Although the underlying mechanisms of
dynamic regulation of 5 mC and its active and passive
demethylation processes remain unclear, the discovery of new
enzymatic activities of TET2 enhances the understanding of its
potential mechanisms. For example, DNA methyltransferase 1,
an enzyme used to maintain DNA methylation, does not
recognize 5 hmC, and the transformation of 5 mC to 5 hmC
may result in replication-dependent DNA-passive
demethylation. Oxidative derivatives of 5 hmC may be
involved in active DNA demethylation that is not dependent
on replication. Thymine DNA glycosylase (TDG) can shear 5fC
or 5caC on the CpG island (TDG has minimal activity for 5
hmC), and the resulting baseless sites are then repaired through
the base excision repair (BER) pathway, producing unmethylated
cytosine (Zhang et al., 2013). Owing to its role in promoting
hematopoietic stem cell self-renewal, cell line typification, and
monocyte differentiation during hematopoietic processes, TET2
protein has been mainly investigated in hematologic
malignancies, such as myeloproliferative disease and
myelodysplastic syndromes (acute leukemia) (Yan et al., 2017;
Yue and Rao, 2020). According to recent studies, TET2 has been
closely associated with solid tumors, and plays an important role
in tumor occurrence and development.

With the advancement of high-throughput and high-
resolution sequencing technologies, the open-access The
Cancer Genome Atlas (TCGA) (Ganini et al., 2021) and Gene
Expression Omnibus (GEO) (Clough and Barrett, 2016)
databases provide functional genomic data of tumorigenesis in
various cancers. Therefore, combined analyses of a single gene in
multiple tumors can be performed. In this study, a conjoint
analysis of TET2 was performed using data from TCGA and
GEO to assess the following aspects: transcriptional level, clinical
outcomes, DNA methylation, genetic mutations, cancer immune
infiltration, and related signaling pathways. In addition, tumor
tissue validation was performed to consolidate the results.
Therefore, this study aimed to comprehensively analyze the
clinical significance of TET2 in major female cancers, which,
to the best of our knowledge, has never been reported previously.

MATERIALS AND METHODS

Gene Expression Analysis
Data on TET2 expression in normal and tumor cell types and
tissues were obtained from the Human Protein Atlas (HPA)
(Godin and Eichler, 2017). High specificity was defined as a
normalized expression of ≥1 in at least one type of tissue or cell,

without the elevation of expression in any tissue or cell type. The
major female cancers included for analysis were breast invasive
carcinoma (BRCA), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), ovarian serous
cystadenocarcinoma (OV), uterine corpus endometrial
carcinoma (UCEC), and uterine carcinosarcoma (UCS), which
were included in TCGA database. Subsequently, the TET2
expression levels in various types and subtypes of cancers in
TCGA database and healthy controls were obtained from the
Tumor Immune Estimation Resource version 2 (TIMER2, timer.
cistrome.org) database (Li et al., 2017; Li et al., 2020). Gene
Expression Profiling Interactive Analysis version 2 (GEPIA2,
gepia2. cancer-pku.cn) was used for expression analysis using
box plots for cancer types with limited information of healthy
controls (Tang et al., 2019). Furthermore, TET2 expression in
different cancer stages was summarized via violin plots using
GEPIA2. The transformed transcriptional levels were calculated
as log2 of transcripts per million (TPM) +1 and were used in box
and violin plots. A Sanguini diagram was created using the R
package “ggalluval”.

The data of phosphorylated protein levels from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) (Edwards
et al., 2015) were analyzed using the UALCAN portal
(ualcan.path.uab.edu/analysis-prot.html) (Chandrashekar et al.,
2017). The expression level ssof phosphoprotein (with
phosphorylation at the S99 and S38 loci) of TET2
(NP_001120680) (with the absence of data of total protein)
was compared between the primary tumor and normal tissues.
The correlation between TET2 phosphoprotein and disease stage
and between the age of patients and histological features of
tumors was further analyzed. The available datasets of two
tumors, BRCA and UCEC, were selected. The PhosphoNET
database (phosphonet.ca) was used to analyze CPTAC-
identified TET2 phosphorylation, indicating that various
parameters should be considered while selecting putative
P-sites. Confirmed P-sites have lower hydrophobicity scores. A
lower P-site similarity score typically resembles confirmed
corresponding P-Ser, P-Thr, or P-Tyr sites. The maximum
KInase score provides the calculated score for the highest
match of 500 human protein kinases for amino acid sequence
surrounding the target P-site as determined using the kinase
substrate predictor V2. The total KInase score provides the sum
of the positive individual kinase substrate predictor V2 scores
from 500 human protein kinases. The conservation score is
defined as the average percentage similarity between the
human P-site and equivalent P-sites of 20 other diverse
species. This observation warrants further molecular studies to
explore the potential role of S38 phosphorylation in
tumorigenesis.

Survival and Prognosis Analyses
The association of overall survival (OS) and disease-free survival
(DFS) with TET2 in various TCGA cancers was assessed using the
survival map section of GEPIA2, and the threshold for different
expression levels was set as high (50%) and low (50%). The
hypothesis was validated using the log-rank test. In addition, OS,
distant metastasis-free survival (DMFS), relapse-free survival
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(RFS), post-progression survival (PPS), first progression (FP),
disease-specific survival (DSS), and progression-free survival
(PFS) were assessed using the interactive operation interface of
the KM plotter (kmplot.com) using data extracted from the GEO
database (BRCA and OV data were available [Supplementary
Table 1]). Multiple clinical variables were included in the
prognostic analysis, such as immunohistochemical (IHC)
staining of tumor tissues, lymph node involvement,
pathological grading, TP53 status, and treatment. The median
was used to analyze the association between BRCA and OV. The
hazard ratio (HR), 95% confidence intervals (CIs), and log-rank
p-values were computed, and the Kaplan–Meier survival plots
were generated.

The pooled analysis (univariate) of OS, disease-free interval
(DFI), progression-free interval (PFI), and DSS was conducted for
all tumors. A forest plot was drawn without merging the HRs. In
addition, a receiver operator characteristic curve (ROC) was
generated to determine whether TET2 expression could
accurately predict the 1-, 3-, and 5-years OS in selected types
of tumors in TCGA. The best cut-off value of TET2 expression
was calculated, and patients from each tumor type were divided
into the high- and low-expression groups based on the cut-off
value. Survival analysis was performed to validate OS between
groups stratified according to the cut-off value.

Genetic Alteration and DNA Methylation
Analysis
The genetic alteration features of TET2 were analyzed using
TCGA pan-cancer data from cBioPortal for Cancer Genomics
(cbioportal.org) (Gao et al., 2013). Alteration frequencies,
mutation types, and copy number alterations in selected types
of TCGA cancers were analyzed using the cancer-type summary.
In addition, mutation sites and three-dimensional TET2
structures were analyzed and represented in a schematic
illustration. Differences in TET2 genetic alteration-associated
OS, DFS, and PFS among various TCGA cancers were
analyzed under the comparison section. Furthermore, KM
plots with p-values were generated based on the log-rank test,
and the association between different DNAmethylation probes of
gene susceptibility and TET2 expression was assessed using
MEXPRESS (mexpress.be) (Koch et al., 2019; Koch et al.,
2015). In addition, the beta value of each sample, p-value
(adjusted using the Benjamini–Hochberg procedure), and
Pearson correlation coefficients (R) were evaluated. MethSurv
(Modhukur et al., 2018) (https://biit.cs.ut.ee/methsurv/) and
SurvivalMeth (Zhang et al., 2021) (http://bio-bigdata.hrbmu.
edu.cn/survivalmeth/) were used to analyze the prognostic
significance of single CpG methylation in TET2 in patients
with cancer.

Immune Infiltration Analysis
The association of TET2 levels with CD8+ T-cell infiltration and
cancer-associated fibroblasts in selected types of TCGA cancers
was analyzed using the Immune-Gene section of TIMER2. To
estimate immune infiltration, algorithms such as TIMER,
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL,

MCPCOUNTER, and EPIC were used. Both p and partial
correlation (r) values were evaluated using the purity-adjusted
Spearman’s rank correlation test. All results were presented in
heatmaps and scatter plots.

Cancer Immune Analysis
The potential association of TET2 expression with tumor
mutational burden (TMB), microsatellite instability (MSI),
checkpoint expression, number of neoantigens, tumor
microenvironment (ESTIMATE algorithm), and immune
response pathways in cancers was analyzed using Sangerbox
(sangerbox.com/Tool). The Spearman’s rank correlation test
was performed, and p and partial correlation (r) values were
evaluated.

TET2-Related Gene Enrichment Analysis
The STRING website (string-db.org) was used for TET2-related
gene enrichment analysis, including the following parameters:
organism, “Homo sapiens”; minimum required interaction score,
“low confidence (0.150)”; meaning of network edges, “evidence”;
maximum number of interactors to show, “no more than 50
interactors in the first shell”, and active interaction sources,
“experiments”. As a result, proteins that bound to or
interacted with TET2 were screened out based on published
experimentally confirmed data. Moreover, the top 100 genes
associated with TET2 were obtained using the similar gene
detection section of GEPIA2 based on the data of selected
cancers and healthy controls. Pearson’s correlation coefficient
was used to assess the correlation between TET2 and potential
TET2-related genes. The log2 of TPM was used to analyze dot
plots, and p and r values were calculated. In addition, a heatmap
representing related genes was generated using the Gene-Corr
section of TIMER2, with r and p values calculated using the
purity-adjusted Spearman’s rank correlation test. Intersection
analyses were conducted to compare TET2-related genes using
Jvenn (Bardou et al., 2014). Thereafter, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis was conducted
using combined results of previous analyses. The potential TET2-
related genes were analyzed using the Database for Annotation,
Visualization, and Integrated Discovery (Dennis et al., 2003). The
enriched signaling pathways were listed in “tidyr” (cran.rproject
org/web/packages/tidyr) and “ggplot2” (cran.r-project.org/web/
packages/ggplot2) of the R package. The “clusterProfiler” R
package (http://www.bioconductor.org/packages/release/bioc/
html/clusterProfiler) was used for gene ontology (GO)
enrichment analysis. The results of biological processes,
cellular components, and molecular functions were
represented in cnetplots. The R language software (R-4.0.4, 64-
bit) (www.r-project.org) was used for analysis, and p-values < 0.
05 were set as statistical significance for two-tailed analyses.

Histological Analysis
This study was approved by the ethics committee of The
Women’s Hospital, School of Medicine, Zhejiang University.
TET2 was detected in formalin-fixed paraffin-embedded
(FFPE) BRCA tissues and paired paracancerous tissues using
IHC staining, which was performed as previously described
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(Tsutsumi, 2021). Three pairs of tissues were examined. Briefly,
the tumor tissues were cut into 4-mm-thick sections, dewaxed in
xylene, and rehydrated in a graded series of alcohols. The
antigen was retrieved by heating the tissue sections in the
EDTA solution (1 mM, pH 9.0) at 100°C for 30 min. Cooled
tissue sections were immersed in 0.3% hydrogen peroxide for
15 min to block the endogenous peroxidase activity, rinsed with
phosphate-buffered saline for 5 min, and blocked with 3%
bovine serum albumin at room temperature for 30 min.
Subsequently, the sections were incubated with mouse
monoclonal antibody against human TET2 (ab243323) (1:30)
at 4°C overnight, followed by incubation with HRP-conjugated
goat anti-rabbit secondary antibody. Diaminobenzene and
hematoxylin were used as a chromogenic substrate and
nuclear counterstain, respectively, and representative images
were captured. To verify the correlation between TET2

expression and checkpoints in BRCA, immunofluorescence
(IF) staining was performed in FFPE BRCA tissues. CD276
(B7-H3), LAG3, and PDCD1 were selected for verification.
Briefly, the tissue sections were incubated with mouse
monoclonal antibody against human TET2 (10 µg/ml), rabbit
monoclonal antibody against CD276 (ab134161) (1 µg/ml),
rabbit monoclonal antibody against LAG3 (ab209236) (1:
100), and rabbit monoclonal antibody against PDCD1
(ab237728) (1:50) at 4°C overnight, followed by incubation
with Alexa®488-conjugated goat anti-mouse secondary
antibody or Alexa®549-conjugated goat anti-rabbit secondary
antibody (Thermo Fisher Scientific, CA, United States). The
nuclear stain Hoechst 34,580 (5 μg/ml; Molecular Probes,
Thermo Fisher Scientific, CA, United States) was added
before washing the incubated tissues. Finally, the sections
were dehydrated, cleared, and mounted using a confocal

FIGURE 1 | (A) TET2 transcriptional levels in different normal tissues analyzed using HPA, GTEx, and FANTOM5. (B) TET2 transcriptional levels in different normal
cells analyzed using HPA, Monaco, and Schmiedel. (C) TET2 expression in immune cells at the single-cell resolution extracted from the HPA. (D) IHC staining reveals the
protein expression of TET2 in normal tissues (mainly located in the nucleus, cited from the HPA).
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microscope. The resulting area was measured and cells were
quantified using the ImageJ software.

RESULTS

Gene Expression Analysis Using
Open-Access Databases
The gene expression patterns of TET2 in normal tissues and
immune cells are shown in Figures 1A,B. According to the

combined analysis of data from the HPA, GTEx, and
Functional Annotation of the Mammalian Genome 5
(FANTOM5), TET2 was found to be moderately or highly
expressed in all detected tissues (normalized expression value
>1), demonstrating low tissue-specific RNA expression
(Figure 1A, Human Protein Atlas). However, a contradictory
result was observed in immune cells. High cell-specific RNA
expression was observed in neutrophils (Figure 1C, Human
Protein Atlas). Moreover, according to results extracted from
the HPA, Monaco, and Schmiedel databases at the single-cell

FIGURE 2 | (A,B) Analysis of TET2 expression in various types or subtypes of cancers and normal tissues using TIMER2 and GEPIA2. (C) Analysis of
phosphorylated protein expression of TET2 in breast cancer (S99 site) and uterine corpus endometrial carcinoma (S38 site) and their corresponding normal tissues
combined with clinical parameters using CPTAC, (D) TET2 expression in different pathological stages of female cancers in TCGA database (*p < 0.05; **p < 0.01; ***p <
0.001). (E) Sanguini diagram representing the correlation between TET2 expression and the age, TMN stage (or tumor grade), and prognosis of patients.
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resolution, RNA single-cell-type specificity was low (Figure 1B,
Human Protein Atlas). Figure 1D demonstrates the IHC staining
(nuclear staining) of several normal tissues (the bone marrow,
cerebral cortex, colon, kidney, liver, lymph node, and testis).

TET2 expression in major female cancers in TCGA database
(including BRCA, CESC, OV, UCEC, and UCS) was analyzed
using GEPIA2 and TIMER2 (Figures 2A,B). The TET2
expression levels were lower in patients with BRCA, UCEC,

OV, and UCS than in healthy controls (p < 0.05).
Furthermore, the total TET2 protein levels were not available
in the CPTAC database, and differences in TET2
phosphorylation levels were observed between normal and
primary tumor tissues. The data of patients with BRCA and
UCEC in the CPTAC dataset were further assessed. The S38
locus exhibited a higher phosphorylation level in UCEC
tissues than in normal tissues (p < 0.001), followed by a non-

FIGURE 3 | (A) Correlation between TET2 and clinical prognosis analyzed using GEPIA2. The bold border indicates statistical significance. The Kaplan–Meier
plotter was also used to examine the association between TET2 and clinical prognosis. Survival studies related to TET2 in breast (B) and ovarian cancers (C).
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TABLE 1 | Survival analysis between TET2 high expression and low
expression groups in patients with breast cancer (Kaplan-Meier Plotter).

Condition/Clinical outcome Case number HR (95%CI) P

All
RFS 4934 0.78 (0.68–0.91) 0.0016
OS 1880 0.68 (0.52–0.90) 0.0054
DMFS 2767 0.68 (0.75–1.27) 0.85
PPS 458 0.80 (0.56–1.14) 0.22

ER (IHC)
Positive
RFS 902 0.91 (0.69–1.21) 0.51
OS 221 0.69 (0.35–1.34) 0.27
DMFS 248 1.09 (0.52–2.28) 0.83
PPS 34 0.64 (0.26–1.57) 0.33
Negative
RFS 470 0.96 (0.71–1.31) 0.82
OS 284 0.50 (0.32–0.80) 0.0027
DMFS 270 0.87 (0.57–1.33) 0.52
PPS 46 0.41 (0.18–0.93) 0.027

PR (IHC)
Positive
RFS 511 0.96 (0.67–1.4) 0.85
OS 0 - -
DMFS 144 2.02 (0.69–5.9) 0.19
PPS 0 — —

Negative
RFS 436 0.97 (0.69–1.36) 0.86
OS 148 0.82 (0.43–1.56) 0.55
DMFS 266 0.87 (0.56–1.35) 0.52
PPS 3 — —

HER2 (Array)
Positive
RFS 461 0.87 (0.64–1.18) 0.36
OS 223 0.92 (0.56–1.52) 0.75
DMFS 260 1.23 (0.78–1.94) 0.37
PPS 54 1.15 (0.63–2.12) 0.65
Negative
RFS 1,571 0.75 (0.63–0.90) 0.0015
OS 720 0.63 (0.46–0.87) 0.0044
DMFS 698 0.90 (0.65–1.25) 0.54
PPS 126 0.71 (0.46–1.11) 0.13

Lymph node
Positive
RFS 814 0.83 (0.65–1.06) 0.13
OS 230 0.47 (0.29–0.77) 0.0023
DMFS 261 0.81 (0.51–1.30) 0.38
PPS 76 0.57 (0.31–1.06) 0.073
Negative
RFS 574 0.98 (0.67–1.42) 0.90
OS 180 0.66 (0.29–1.46) 0.30
DMFS 240 1.22 (0.61–2.44) 0.58
PPS 23 0.70 (0.23–2.15) 0.53

Grade
1
RFS 113 1.80 (0.60–5.36) 0.29
OS 26 0.73 (0.06–8.33) 0.80
DMFS 44 — —

PPS 6 — —

2
RFS 243 0.77 (0.47–1.27) 0.30

(Continued in next column)

TABLE 1 | (Continued) Survival analysis between TET2 high expression and
low expression groups in patients with breast cancer (Kaplan-Meier
Plotter).

Condition/Clinical outcome Case number HR (95%CI) P

OS 64 0.42 (0.13–1.40) 0.15
DMFS 91 3.06 (1.09–8.58) 0.025
PPS 13 — —

3
RFS 481 0.92 (0.68–1.23) 0.56
OS 204 0.58 (0.35–0.97) 0.036
DMFS 234 1.21 (0.72–2.02) 0.47
PPS 72 0.61 (0.33–1.10) 0.099

TP53 status
Mutated
RFS 132 0.92 (0.51–1.65) 0.77
OS 56 0.96 (0.25–3.64) 0.96
DMFS 56 1.10 (0.38–3.13) 0.86
PPS 11 — —

Wild type
RFS 82 0.71 (0.30–1.66) 0.43
OS 6 — —

DMFS 6 — —

PPS 0 — —

Systemically untreated patients
Included
RFS 61 0.41 (0.14–1.19) 0.09
OS 0 — —

DMFS 6 — —

PPS 0 — —

Excluded
RFS 751 0.90 (0.73–1.11) 0.32
OS 107 0.72 (0.25–2.01) 0.52
DMFS 324 1.34 (0.81–2.22) 0.25
PPS 17 — —

Endocrine therapy
Included
RFS 385 1.01 (0.63–1.60) 0.98
OS 50 — —

DMFS 205 0.86 (0.37–1.99) 0.72
PPS 0 — —

Excluded
RFS 275 0.87 (0.56–1.34) 0.53
OS 107 0.72 (0.25–2.01) 0.52
DMFS 177 1.59 (0.88–2.84) 0.12
PPS 17 — —

Chemotherapy
Adjuvant only
RFS 255 1.27 (0.79–2.03) 0.32
OS 0 — —

DMFS 118 2.03 (0.90–4.57) 0.08
PPS 0 — —

Neoadjuvant only
RFS 111 0.75 (0.35–1.58) 0.45
OS 107 0.72 (0.25–2.01) 0.52
DMFS 107 0.73 (0.32–1.65) 0.45
PPS 17 — —

Abbreviation: OS, overall survival; DMFS, distant metastasis-free survival; RFS, relapse-free
survival; PPS, post-progression survival; IHC, immunohistochemical staining; ER, estrogen
receptor; HER2, human epithelial growth factor receptor 2; PR, progesterone receptor. Note:
High expression and low expression groups were defined by the median expression of TET2.
Bold values are statistically significant (p < 0.05).
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TABLE 2 | Survival analysis between TET2 high expression and low expression groups in patients with ovarian cancer (Kaplan-Meier Plotter).

Condition/Clinical outcome Number of patients
with available clinical

data

HR (95%CI) P

All
PFS 614 0.98 (0.81–1.18) 0.81
OS 655 0.68 (0.81–1.21) 0.93
PPS 382 0.80 (0.92–1.48) 0.19

Histology
Endometrioid
PFS 44 0.30 (0.09–0.96) 0.031
OS 30 0.68 (0.10–4.84) 0.70
PPS 10 — —

Serous
PFS 483 0.98 (0.80–1.21) 0.88
OS 523 1.00 (0.80–1.25) 1.00
PPS 346 1.09 (0.85–1.40) 0.49

Stage
1 + 2
PFS 115 0.57 (0.27–1.20) 0.13
OS 83 0.20 (0.04–0.88) 0.019
PPS 20 2.44 (0.65–9.14) 0.18
3 + 4
PFS 494 1.10 (0.91–1.34) 0.32
OS 487 1.01 (0.81–1.27) 0.91
PPS 361 1.12 (0.88–1.43) 0.35

Grade
1 + 2
PFS 189 0.65 (0.46–0.93) 0.018
OS 203 0.78 (0.52–1.16) 0.22
PPS 118 1.26 (0.81–1.96) 0.3
3
PFS 315 1.23 (0.96–1.58) 0.10
OS 392 1.05 (0.82–1.35) 0.71
PPS 240 1.15 (0.86–1.55) 0.34
4 —

PFS 18 — —

OS 18 — 0.53
PPS 18 0.73 (0.27–1.98) —

TP53 status
Mutated
PFS 124 1.48 (1.02–2.15) 0.038
OS 124 1.24 (0.85–1.81) 0.26
PPS 116 1.19 (0.81–1.74) 0.37
Wild type
PFS 19 1.57 (0.56–4.37) 0.38
OS 19 0.94 (0.34–2.65) 0.91
PPS 17 0.79 (0.27–2.32) 0.67

Debulk
Optimal
PFS 240 0.70 (0.51–0.92) 0.033
OS 243 0.96 (0.64–1.43) 0.83
PPS 139 1.18 (0.77–1.81) 0.43
Suboptimal
PFS 234 1.43 (1.09–1.88) 0.011
OS 235 1.40 (1.04–1.88) 0.024
PPS 205 1.61 (1.19–2.18) 0.0017

Chemotherapy
Contains Platin
PFS 502 1.14 (0.94–1.38) 0.19
OS 478 1.13 (0.90–1.43) 0.29

(Continued on following page)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 7906058

Wan et al. Role of TET2 in Female Cancers

77

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


statistical phosphorylation level of the S99 locus in BRCA tissues.
In patients with BRCA, the phosphorylation level of the S99 locus
was not correlated with stage, age, and histological features of
tumors. In patients with UCEC, the phosphorylation level of S38
was higher in patients aged 21–60 years than in those aged
61–80 years, except for the difference between tumor and
normal tissues. The phosphorylation level of the S38 locus was
significantly higher in patients with grade 2 UCEC than in
patients with grade 1 and 3 UCEC (Figure 2C). The
PhosphoNET database was used to analyze CPTAC-identified
phosphorylation of TET2, and it was found that S38 and S99
phosphorylation ranked 3rd and 11th among phosphorylation
levels of all TET2 loci. In addition, S99 phosphorylation was
experimentally supported, whereas S38 phosphorylation was not
(S99 source: Courtesy of Dr. Leonard Foster and Lindsay Rogers,
University of British Columbia, hydrophobicity = −0.260, P-site
similarity score = −52.8, maximum kinase specificity = 522, sum
of kinase specificity scores = 22,740 and conservation score =
15.5; S38: hydrophobicity = −1.120, P-site similarity score =
−55.7, maximum kinase specificity = 451, sum of kinase
specificity scores = 19,431 and conservation score = 17.3).

The “pathological stage plot” module of GEPIA2 was used
to observe the correlation between TET2 expression and

pathological stages of cancer. TET2 was found to be
significantly correlated with OV stages among selected tumors
(Figure 2D, p < 0.05). The Sanguini diagram revealed the
correlation between TET2 and the age, TMN stage (or tumor
grade), and prognosis of patients (Figure 2E).

TET2-Related Survival Analysis Based on
GEO and TCGA Databases
Patients with different cancers were divided into the high- and
low-expression groups based on the median TET2 expression
level. The association between TET2 expression and prognosis of
patients with various cancer types was analyzed using data
obtained from TCGA and GEO. TET2 expression was not
associated with prognosis in the selected major female cancers
in TCGA database (Figure 3A).

Subsequently, patients with BRCA and OV were analyzed
using the KM plotter (GEO database). In patients with BRCA,
high TET2 expression was associated with favorable OS (HR =
0.68, p = 0.0054) and RFS (HR = 0.78, p = 0.0016). In patients with
estrogen receptor (ER)-negative and human epithelial growth
factor receptor 2 (HER2)-negative BRCA, high TET2 expression
was correlated with a better prognosis (OS: HR = 0.50, p = 0.0027;

TABLE 2 | (Continued) Survival analysis between TET2 high expression and low expression groups in patients with ovarian cancer (Kaplan-Meier Plotter).

Condition/Clinical outcome Number of patients
with available clinical

data

HR (95%CI) P

PPS 373 1.20 (0.95–1.53) 0.12
Contains Taxol
PFS 381 1.04 (0.83–1.30) 0.73
OS 357 1.08 (0.81–1.44) 0.59
PPS 274 1.18 (0.88–1.57) 0.26

Contains Platin + Taxol
PFS 380 0.87 (0.67–1.12) 0.27
OS 356 1.18 (0.88–1.59) 0.27
PPS 273 1.23 (0.92–1.65) 0.17

Contains Avastin
PFS 0 — —

OS 0 — —

PPS 0 — —

Contains Docetaxel — —

PFS 0 — —

OS 0 — —

PPS 0 — —

Contains Gemcitabine — —

PFS 0 — —

OS 0 — —

PPS 0 — —

Contains Paclitaxel — —

PFS 0 — —

OS 0 — —

PPS 0 — —

Contains Topotecan — —

PFS 0 — —

OS 0 — —

PPS 0 — —

Abbreviation: OS, overall survival; PFS, progression-free survival; PPS, post-progression survival. Note: High-expression and low-expression groups were defined by the median
expression of TET2.
Bold values are statistically significant (p < 0.05).
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PPS: HR = 0.41, p = 0.027 in ER-negative patients; OS: HR = 0.63,
p = 0.0044; RFS: HR = 0.75, p = 0.0015 in HER2-negative
patients). In addition, high TET2 expression was associated
with good OS in patients with grade 3 BRCA (HR = 0.58, p =
0.036) and BRCA with lymph node involvement (HR = 0.47, p =
0.0023). High TET2 expression was only associated with a poor
prognosis in patients with grade 2 BRCA (DMFS: HR = 3.06, p =
0.025) (Figure 3B). Detailed results of univariate prognostic
analysis are summarized in Table 1. The TET2 expression
level was associated with the prognosis of patients with
endometrioid OV (PFS: HR = 0.3, p = 0.038), grade 1–2 OV
(PFS: HR = 0.65, p = 0.018), P53-mutated OV (PFS: HR = 1.48,
p = 0.038), and stage 1–2 OV (OS: HR = 0.2, p = 0.019). TET2
expression was also associated with the prognosis of patients with
OV treated with suboptimal debulking (OS: HR = 1.4, p = 0.024;
PFS: HR = 1.43, p = 0.011; PPS: HR = 1.61, p = 0.0017) and
optimal debulking (OS: HR = 0.7, p = 0.033) (Figure 3C).
Detailed results are summarized in Table 2. Therefore, TET2
expression indicating clinical outcomes differed between patients
with BRCA and OV.

A pooled analysis was performed to examine the association
between TET2 expression and OS, DFI, DSS, and PFI in major
female cancers in TCGA. The forest plot revealed that TET2 was
an independent prognostic factor for OS in OV (HR = 1.26, p =
0.048) but not for DFI and DSS in any selected tumors
(Figure 4A). Furthermore, ROC analysis was performed to

determine the efficiency of TET2 in predicting the 1-, 3-, and
5-years OS, DFI, PFI, and DSS in patients with selected tumor
types from TCGA database. Subsequently, the optimal cut-off
value of TET2 expression was calculated and used to divide
patients into the high- and low-expression groups. A survival
analysis was performed to validate prognosis between the groups.
The acceptable prediction efficiency of TET2 was defined as area
under the curve (AUC) > 0.6 and p-value < 0.05. TET2 was found
to have statistically significant efficiency in predicting survival in
several tumors (OS in UCS [cut-off value, 2.45; p = 0.048; 3-years
AUC, 0.55; 95% CI, 0.35–0.75; 5-years AUC 0.55; 95% CI,
0.29–0.8] and OV [cut-off value, 1.94; p = 0.072; 1-year AUC,
0.52; 95% CI, 0.41–0.63; 3-years AUC, 0.56; 95% CI, 0.49–0.63; 5-
years AUC, 0.55; 95%CI, 0.47–0.63], PFI in BRCA [cut-off value,
3.41; p = 0.01; 5-years AUC, 0.56; 95% CI, 0.49–0.63), and DSS in
OV [cut-off value, 1.93; p = 0.072; 1-year AUC, 0.51; 95% CI,
0.37–0.64; 3-years AUC, 0.55; 95% CI, 0.48–0.63; 5-years AUC,
0.55; 95% CI, 0.46–0.63]). However, the efficiency of TET2 in
predicting DSS in UCEC was acceptable (cut-off value, 2.51; p =
0.024; 1-year AUC, 0.61; 95% CI, 0.45–0.78) (Figures 4B–E).

TET2 Genetic Alteration and DNA
Methylation Analysis
Genetic alterations of TET2 in common female cancers (UCEC,
BRCA, CESC, UCS, and OV) were investigated. The results

FIGURE 4 | (A) Pooled analysis between TET2 expression and OS, disease-free interval (DFI), disease-specific survival (DSS), and progression-free interval (PFI)
based on data of female cancers obtained from TCGA; receiver operator characteristic curve analysis was performed to determine the efficiency of TET2 in predicting the
1-, 3-, and 5-years OS, PFI, or DSS of patients with breast cancer (B), uterine corpus endometrial carcinoma (C), uterine carcinosarcoma (D), and ovarian cancer (E).
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FIGURE 5 | TET2 mutation features analyzed using cBioPortal for Cancer Genomics based on TCGA database. Mutation patterns with cancer types (A), most
altered sites and three-dimensional structure of TET2 (B). Survival analysis for assessing the correlation between TET2 mutation and clinical prognosis of all female
cancers (C) and uterine corpus endometrial carcinoma (D). (E) Correlation between DNA methylation and TET2 expression in female cancers in TCGA database (*p <
0.05; **p < 0.01; ***p < 0.001).
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revealed that mutation in the TET2 gene was the most common
genetic alteration found in most patients with selected cancers.
Patients with UCEC had the highest proportion (9.07%) of TET2
genetic alterations, with gene mutations constituting the largest
proportion (46/529, 8.7%) (Figure 5A). Detailed information on
TET2 genetic alterations is presented in Figure 5B. Furthermore,
a missense mutation in TET2 was the most common type of
alteration, whereas the R1516*/Q was the most common
mutation site found in one patient with UCEC, one with
CESC, and one with BRCA. This mutation site was found to
induce missense or nonsense mutation in TET2. The possible
mutated protein structure of TET2 is presented in Figure 5B.
Consequently, the association between TET2 genetic alterations
and the prognosis of patients with selected cancers was assessed.
As demonstrated in Figure 5C, TET2 genetic alterations were
associated with favorable OS, PFS, and DSS in selected tumors.
Moreover, favorable OS and PFS were only observed in patients
with UCEC (Figure 5D). Furthermore, the association between
the DNA methylation level and gene expression of TET2 in
selected cancers in TCGA database was analyzed using
MEXPRESS. The DNA methylation level was found to be
significantly correlated with the gene transcriptional level at
different probes. Data are summarized in Table 3 and
Figure 5E. The heatmaps of single CpG site methylation of
TET2 in BRCA, CESC, UCEC, and UCS (analyzed using

MethSurv) are demonstrated in Figure 6A. It was found
that cg12306086, cg20586654, cg08530497, and cg22794775
in BRCA, CESC, UCEC, and UCS, respectively, had the highest
DNA methylation level and were mainly associated with the
prognosis of patients with BRCA. Detailed results are provided
in Table 4. As demonstrated in Figure 6B, the heatmap
(created using SurvivalMeth) revealed the single CpG
methylation level of TET2 in BRCA (TCGA and the
GSE37754 dataset of the GEO project) and UCEC (TCGA)
samples. Moreover, significant differences in the expression
patterns of single CpG methylation of TET2 were found
between the low- and high-risk groups in BRCA and UCEC.
In addition, a significant prognostic correlation was observed
between the high- and low-risk groups. These results
supported the conclusions drawn from MethSurv analysis.

TET2-Related Immune Infiltration Analysis
Based on TCGA Database
As one of the main characteristics of the tumor
microenvironment, immune cell infiltration is strongly
associated with oncogenesis. Tumor-associated fibroblasts and
CD 8+ T cells located in the stroma of the tumor
microenvironment contribute to regulating the functions of
different tumor-infiltrating immune cells. In this study, the
association between immune cell infiltration and TET2
transcriptional level was analyzed using data from TCGA
database. The results revealed that CD8+ T-cell infiltration was
not correlated with TET2 expression in OV, UCEC, and UCS
(Figure 7A). TET2 expression was significantly positively
correlated with immune-infiltrating tumor-associated
fibroblasts in BRCA, CESC, and OV (Figure 7B). The
representative plots of correlation analysis of the
aforementioned cancers estimated by a single algorithm are
demonstrated in Figures 7A,B. For instance, estimation using
TIMER revealed that TET2 expression was found to be positively
correlated with CD8+ T-cell infiltration in BRCA (r = 0.315, p =
2.92e-24).

Moreover, TET2 expression was found to be negatively
correlated with TMB in UCEC (p = 0.0081) (Figure 8A). No
correlation was found between TET2 expression and MSI
(Figure 8B). Furthermore, a positive correlation was observed
between TET2 expression and ADORA2A, CD160, CD200,
CD200R1, CD44, CD80, NRP1 TNFSF4, and TNFSF15 in
most female cancers in TCGA database, such as BRCA, OV,
UCEC, and CESC (Figure 8C). However, TET2 expression was
not associated with any checkpoints in UCS. Moreover, based on
the correlation analyses of immune response pathways, TET2
expression was negatively correlated with activated CD8+ T cells,
CD56+ natural killer cells, gamma delta T cells, macrophages,
MDSC, and monocytes but positively correlated with memory
B cells in BRCA, CESC, and UCEC in TCGA database
(Figure 8D). Furthermore, TET2 expression was not
associated with the number of neoantigens in female cancers
(Figure 8E). In addition, the correlation between TET2
expression and the tumor microenvironment was
quantitatively assessed using the R package “ESTIMATE”, and

TABLE 3 | Correlation of TET2 DNA methylation and gene expression at multiple
probes.

Variable p_value pearson_r

BRCA
cg13440296 3.57E-06 −0.15663
cg13365781 0.000731 −0.11437
cg02382073 0.035197 0.071456
cg09295382 4.52E-06 0.154988
cg09666717 0.0126 0.084798
cg22794775 0.013024 −0.08421
cg17862558 1.92E-06 0.161007

CESC
cg08924430 0.01208 −0.14263
cg13440296 0.011217 −0.14433
cg13365781 0.0433 −0.11505
cg02382073 0.036848 0.118813
cg00911488 8.75E-05 −0.22136
cg09666717 3.89E-05 −0.23224
cg20586654 2.55E-09 −0.33288
cg17862558 1.71E-07 −0.29336

OV
cg07360692 0.053061 −0.10038
cg08924430 0.024524 −0.11659

UCEC
cg13440296 0.036476 −0.09724
cg13365781 0.000396 −0.164
cg00911488 0.017602 −0.11029
cg09666717 1.53E-08 −0.26089
cg17862558 7.12E-05 −0.18357

UCS
cg00911488 0.029101599 −0.291904522

Abbreviation: BRCA, breast invasive carcinoma; CESC, cervical squamous cell
carcinoma and endocervical adenocarcinoma; OV, ovarian serous cystadenocarcinoma;
UCEC, uterine corpus endometrial carcinoma; UCS uterine carcinosarcoma.
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the correlation coefficients of TET2 expression and ESTIMATE,
stromal, and immune scores were evaluated separately. The
ESTIMATE score was negatively associated with TET2
expression in UCEC and CESC, the stromal score was
negatively associated with TET2 expression in UCEC, CESC,
and BRCA and the immune score was positively associated with
TET2 expression in OV and BRCA (Figure 8F).

Enrichment Analysis of TET2-Related
Parameters
To investigate the potential mechanisms of action of TET2 in
oncogenesis, potential TET2-binding proteins and TET2-
expression-associated genes were identified for pathway
enrichment analyses. A total of 50 TET2-binding proteins
were extracted using STRING. The interaction networks of
TET2 and the 50 proteins are demonstrated in Figure 9A.
Thereafter, GEPIA2 was used to combine the expression data
of selected tumors obtained from TCGA, and the top 100 related
genes were found to be associated with TET2 expression. The
results revealed that TET2 expression was positively correlated
with StAR-related lipid transfer domain containing 3 (R = 0.12),
proteasome 26S subunit, non-ATPase 3 (R = 0.11), post-GPI
attachment to proteins 3 (R = 0.084), ORMDL sphingolipid
biosynthesis regulator 3 (R = 0.12), and growth factor

FIGURE 6 | (A) Heatmap of the clustered expression level of TET2 in single CpG methylation (MethSurv) in breast cancer, cervical squamous cell carcinoma and
endocervical adenocarcinoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, and uveal melanoma. (B) Heatmap of single CpG methylation level
(upper left panel); methylation difference in CpG between the high- and low-risk groups (lower panel) and the Kaplan–Meier survival plot (upper right panel). These
analyses were performed using SurvivalMeth based on the data of TCGA and GEO projects.

TABLE 4 | The prognostic significance of single CpG methylation of TET2 in
patients with female cancer.

HR 95% CI P

BRCA
cg12306086 0.607 (0.402; 0.916) 0.017
cg20586654 0.67 (0.452; 0.992) 0.045
cg08530497 0.417 (0.26; 0.669) 0.00029
cg22794775 0.584 (0.392; 0.87) 0.0081

CESC
cg12306086 0.785 (0.464; 1.328) 0.37
cg20586654 0.865 (0.544; 1.377) 0.54
cg08530497 0.316 (0.162; 0.618) 0.00075
cg22794775 0.657 (0.41; 1.054) 0.081

UCEC
cg12306086 1.447 (0.817; 2.564) 0.21
cg20586654 1.441 (0.884; 2.349) 0.14
cg08530497 0.635 (0.342; 1.18) 0.15
cg22794775 1.453 (0.897; 2.353) 0.13

UCS
cg12306086 1.128 (0.569; 2.238) 0.73
cg20586654 1.392 (0.627; 3.089) 0.42
cg08530497 2.122 (0.946; 4.761) 0.068
cg22794775 0.84 (0.431; 1.637) 0.61

Abbreviation: BRCA, breast invasive carcinoma; CESC, cervical squamous cell
carcinoma and endocervical adenocarcinoma; OV, ovarian serous cystadenocarcinoma;
UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; HR, hazard
ratio; CI, confidence interval.
Bold values are statistically significant (p < 0.05).
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receptor-bound protein 7 (R = 0.039) genes (Figure 9B). As
demonstrated in the heatmap representing these genes
(Figure 9C), they were found to be positively correlated with
TET2 expression mainly in OV and CESC. Furthermore, KEGG
and GO enrichment analyses were conducted using the combined
results of the aforementioned analyses. Based on the GO analysis,
TET2-associated genes were mostly involved in processes
associated with collagen catabolism, histone deacetylase
activity, extracellular matrix organization, collagen type IV
trimer, extracellular matrix structural constituent, Sin3
complex, endoplasmic reticulum lumen, nucleoplasm,
collagen-activated tyrosine kinase receptor signaling pathway,
and platelet-derived growth factor binding (top 10) (Figure 9D).
Based on the KEGG analysis, the top 10 signaling pathways were
enriched in protein digestion and absorption, ECM–receptor

interaction, human papillomavirus infection, amebiasis,
AGE–RAGE signaling in complications associated with
diabetes, relaxin signaling, PI3K–Akt signaling, focal adhesion,
thyroid hormone signaling, and cell cycle. In addition, several
STAR signaling pathways were found to be associated with
oncogenesis, such as the PI3K–Akt signaling pathway (p =
0.00017), Notch signaling pathway (p = 0.0078),
transcriptional misregulation in cancer (p = 0.021), and Hippo
signaling pathway (p = 0.042) (Figure 9E).

Furthermore, we performed a differential expression analysis
between the high- and low-TET2-expression groups to identify
TET2-associated genes. The high-throughput sequencing data of
female cancers obtained from TCGAwere stratified into the high-
and low-expression groups based on the median expression
of TET2.

FIGURE 7 | Association between TET2 and immune infiltration of CD8+ T cells (A) and tumor-associated fibroblasts (B) in female cancers in TCGA. The
representative plots of correlation analysis generated using a single algorithm are displayed next to the heatmap.
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Differentially expressed genes were screened based on the
criteria of fold change >2 and p < 0.05. The result revealed 37
upregulated genes in BRCA, 16 upregulated genes and 1
downregulated gene in CESC, 147 upregulated and 5
downregulated genes in OV, 74 upregulated and 11
downregulated genes in UCEC, and 179 upregulated and 11
downregulated genes in UCS (Figure 10A). The Venn
diagram revealed no overlapping genes in all types of female
cancers (Figure 10B). Eventually, 419 genes were identified as
TET2-associated genes. Based on the GO analysis, these genes
were mostly involved in processes associated with anatomical
structure morphogenesis, tissue development, cell adhesion,
biological adhesion, collagen-containing extracellular matrix,
extracellular matrix, extracellular matrix structural constituent,
system development extracellular matrix organization, and
animal organ morphogenesis (Figure 10D). Based on the
KEGG analysis, the associated pathways were enriched in
ECM–receptor interaction, human papillomavirus infection,
proteoglycans in cancer, arrhythmogenic right ventricular
cardiomyopathy (ARVC), Hippo signaling, regulation of the
pluripotency of stem cells, breast cancer, Wnt signaling,
aldosterone-regulated sodium reabsorption, and small cell lung
cancer were enriched. Some enriched pathways are represented in
Figure 9E. In addition, the STAR signaling pathways, such as the
PI3K–Akt signaling (p = 0.00323) and Notch signaling (p =

0.00196) pathways, were associated with oncogenesis
(Figure 10C). Therefore, these results suggest that TET2 plays
a critical role in cancers. Furthermore, two different methods to
identify TET2-associated genes revealed seven overlapping
TET2-associated genes (TMEM178A, ARSJ, COL4A5,
COL1A1, COL3A1, COL5A1, and COL5A2) (Figure 10E). As
demonstrated in the heatmap (Figure 10F), these genes were
found to be positively correlated with TET2 expression in all
female cancers except UCS.

Histological Analysis of BRCA Tissues
IHC staining was used to detect TET2 in FFPE tissues. As shown
in Figures 11A,B, TET2 expression was slightly higher in paired
paracancerous tissues than in BRCA tissues. In addition, IF
staining revealed that TET expression was negatively
associated with LAG3 and PDCD1 expression but positively
associated with CD276 expression, which was consistent with
the results of the previous bioinformatic analyses.

DISCUSSION

Studies have demonstrated that 5-hydroxymethyluracil (5hmU)
can be formed by active deamination of 5 hmC through the
activation-induced deaminase/apolipoprotein B mRNA editing

FIGURE 8 | Analysis between TET2 expression and cancer immune infiltration. Correlation between TET2 expression and tumor mutational burden (A) and
microsatellite instability (B). Correlation between TET2 expression and checkpoint molecules (C), immunization routes (D), and the number of neoantigens (E).
Correlation between TET2 expression and ESTIMATE, stromal and immune scores in female cancers (F) (*p < 0.05; **p < 0.01; ***p < 0.001).
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enzyme complex (Pfaffeneder et al., 2014). The 5 hmU produced
can be removed via the action of DNA glycosylase and the BER
pathway. TET2 is considered a tumor suppressor gene, and its
haploid deficiency can initiate myeloid and lymphatic
transformation. TET2 mutations, such as deletion, insertion,
and code shift mutations, are usually accompanied by a
significant reduction in the total amount of 5 hmC. Loss of
TET2 function caused by the TET2 gene and IDH1/2mutations is
common in myeloid malignancies and lymphomas. One of the
most common causes of onco-suppressor gene inactivation in
tumors is hypermethylation in the promoter region related to
onco-suppressor gene silencing. In recent years, the role of TET2
in the occurrence and development of solid tumors has been
gradually revealed. Decreased TET2 expression has been reported
in solid malignant tumors, such as thyroid (Jia et al., 2020), gastric
(Deng et al., 2016; He et al., 2018), colorectal (Huang et al., 2016;
Ma et al., 2018; Zhang et al., 2019), ovarian (Zhang et al., 2015),
breast (Yang et al., 2015; Chen et al., 2017; Shen et al., 2021), and
prostate cancers (Nickerson et al., 2017). In vitro studies have
demonstrated decreased TET2 expression is associated with solid
tumor development. In vitro studies on breast cancer have
reported that TET2 knockout upregulates the expression of
programmed death-ligand 1 (PD-L1) in MCF7 cells. However,
ectopic TET2 expression inhibits the gene expression of PD-L1 in
MDA-MB-231 cells (Shen et al., 2021). Furthermore, KDM2A
knockout significantly increases TET2 expression in various

breast cancer cell lines. In cells with KDM2A deletion, TET2
expression is inhibited owing to ectopic KDM2A expression,
indicating that TET2 is the transcriptional inhibition target of
KDM2A. Therefore, KDM2A interacting with RelA co-occupies
the gene promoter region of TET2, thus inhibiting TET2
transcription. Moreover, RelA or KDM2A depletion can
restore TET2 expression. In KDM2A-deficient cells, TET2
upregulation can induce the reactivation of two tumor-
suppressive genes, epithelial cell adhesion molecule and
e-cadherin located downstream of TET, and thus inhibiting
cell migration and invasion (Chen et al., 2017).

This study aimed to demonstrate the overview of the TET2
gene in multiple female cancers and provide a foundation for the
study of such cancers. Whether TET2 plays a role in the
development of various female cancers mainly through a well-
known DNA methylation signaling pathway remains unknown.
To the best of our knowledge, studies on TET2 in female cancers
have not yet been reported. Therefore, this study
comprehensively evaluated the potential functions of TET2 in
different female cancers using data extracted from TCGA,
CPTAC, and GEO databases, such as TET2 gene expression
features, genetic mutations, DNA methylation, immune
infiltration, and gene interactions. TET2 was found to be
widely expressed in different tissues, with low tissue and cell
specificity, and high TET2 expression was found in multiple
normal organs. Low TET2 expression was found in female

FIGURE 9 | TET2-related gene enrichment analysis. (A) TET2-binding proteins were analyzed using STRING. (B) Correlation between TET2 and TET2-related
parameters in female cancers in TCGA analyzed using GEPIA2. (C) Heatmap of the corresponding correlation analysis in different types of cancers. The top 30 results of
GO (D) and Kyoto Encyclopedia of Genes and Genomes (E) enrichment analyses.
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cancers, except for CESC, suggesting its potential role in the
development of female cancers. However, this finding could not
be supported by protein-level analysis based on data extracted
from the CPTAC database owing to the unavailability of data on
the total protein level of TET2. The expression of S99-
phosphorylated TET2 protein in BRCA and S38-
phosphorylated TET2 protein in UCEC was also analyzed.
S38-phosphorylated TET2 was found to be elevated in tumor
tissues and negatively correlated with the tumor pathological

grade. A significant association was observed between TET2
expression and the tumor stage in OV in TCGA database. In
a study, Zhang reported that TET2 expression in OV was
significantly lower than that in normal ovarian tissues and was
correlated with the pathologic stage, tumor grade, lymph node
metastasis, and vascular thrombosis (Zhang et al., 2015), which is
consistent with our findings.

Survival analyses were conducted using GEPIA2 and KM plotter,
suggesting different outcomes in female cancers. TCGA prognostic

FIGURE 10 | (A) Heatmap (upper panel) and volcano plot (lower panel) representing differentially expressed genes between the high- and low-TET2-expression
groups in female cancers. (B) Venn diagram demonstrating the overlap between differentially expressed genes among female cancers. Enrichment analyses using Kyoto
Encyclopedia of Genes and Genomes (C) and GO (D). (E) Venn diagram demonstrating seven overlapping genes between two methods (based on correlation analysis
and differential expression analysis) of identification of TET2-associated genes. (F) Heatmap demonstrating the correlation between TET2 expression and the
seven overlapped genes in different types of cancers.
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analysis revealed that TET2 expression was not associated with
prognosis in female cancers. However, based on the survival
analysis of the KM plotter with Affymetrix HGU133A and
HGU133 + 2 microarrays (Györffy et al., 2010), high TET2
expression was associated with favorable OS and RFS in all
patients with BRCA. The results were partially confirmed in the
subgroup analysis stratified by clinical parameters, including IHC
staining, lymph node involvement, pathological grade, TP53
mutation status, and treatment. In patients with ER-positive,
HER2-positive, grade 2–3, and lymph node-involved BRCA,
increased TET2 expression indicated good survival. Similar results

were observed in patients with OV in the GEO database. However,
high TET2 expression was not always associated with a favorable
prognosis. Elevated TET2 expression was considered a risk factor in
patients with OV characterized by p53 mutation and in those who
underwent suboptimal debulking. To further confirm the effects of
TET2 on the prognosis of female cancers, studies with larger sample
sizes and those focusing on other types of female cancers such as
UCEC and CESE should be conducted.

More exhaustive studies are required to determine the exact role of
TET2 in tumor development—whether it initiates oncogenesis or acts
as a result of tumor development. Analysis of patient data extracted

FIGURE 11 | (A) Immunohistochemical staining reveals the protein expression of TET2 in breast cancer and the adjacent tissues. (B) Immunofluorescence staining
indicates subcellular localization of TET2 and the checkpoint molecules LAG3, CD276, and PDCD1 in breast cancer tissues. (1 cm in figure represents 50 µm in actual).
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from TCGA revealed that patients with UCEC had the highest TET2
mutation frequency, at approximately 9%. According to the analysis,
TET2 mutation was correlated with a poor prognosis in TET2-
mutated female cancers. Furthermore, lowDNAmethylation levels at
multiple regions and upregulated TET2 genetic expression were
found to be significantly correlated in female cancers. However,
the detailed clinical value should be further identified.

The correlation of TET2 with MSI and TMB in female cancers
remains unclear. In this study, TET2 expression was significantly
correlated with checkpoints and immunization routes in UCEC and
BRCA. In OV, TET2 expression was associated with a majority of
checkpoints but not with immunization routes, whereas
contradictory results were obtained in CESC. Several checkpoints
were examined in FFPE BRCA tissues via IF staining, and
bioinformatic analyses were used to confirm the results. Moreover,
based on the combined data of TET2-interacting elements and
TET2 transcription-associated genes in female cancers, enrichment
analysis revealed some potential effects of cancer-associated signaling
pathways, such as the PI3K–Akt signaling pathway, Notch signaling
pathway, transcriptional misregulation in cancer, and Hippo
signaling pathway, on tumor etiologies or oncogenesis. Some of
these findings have been reported (Xu, 2020); however, further
validation is required in vitro and in vivo.

We found no correlation between TET2 expression and
CD8+ T-cell infiltration in BRCA, CESC, OV, UCEC, and
UCS. Jiang (2020) reported that the loss of TET2 enhances
the differentiation memory of CD8+ T cells. In addition, the loss
of TET2 promotes early acquisition of memory CD8+ T-cell
features and strengthens the formation of memory CD8+ T cells
in a cell-inherent manner without affecting antigen-driven cell
proliferation or effector behavior (Carty et al., 2018). Whether
TET2 participates in immune checkpoint suppression mediated
by the CTLA-4 or PD-1 pathway, whether and how TET2 acts
on CD8+ cytotoxic T lymphocytes, and coordination of PD-L1/
CTLA-4 to regulate the anti-cancer CD8+ T-cell response
remain to be studied further. To the best of our knowledge,
this is the first study to report a positive correlation between
TET2, and immune infiltration in cancer-associated
fibroblasts in BRCA, CESC, OV, and UCEC. However,
detailed transcriptome or genome analyses are required to
reveal more evidence on the potential association between
TET2 and female cancer immunology. In this study, the
histological analysis of BRCA tissues revealed some signals
of TET2 localization in the cytoplasm. We speculated

that such a result was observed because of non-specific
signaling of TET2 antibodies or because some unexpected
interstitial tissues were stained. However, it did not affect the
conclusion.

Therefore, this study suggested that TET2 expression was
significantly correlated with clinical prognosis, DNA methylation,
gene mutation, and cancer immunology in female cancers. Our
findings provide a relatively comprehensive understanding of the
role of TET2 in the oncogenesis of female cancers.
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Background: Colon cancer is an aggressive and heterogeneous disease associated with
high morbidity and mortality. The immune system is intimately involved in tumorigenesis
and can influence malignant properties at the protein, epigenetic, and even genomic levels
by shaping the tumor immune microenvironment (TIM). However, immune-related
molecules that can effectively predict the prognosis of colon cancer remain under
exploration.

Methods: A total of 606 patients from TCGA and GEO databases were employed in our
study, in which 429 cases were set as the training cohort and 177 were defined as the
validation cohort. The immune infiltration was evaluated by ESTIMATE, TIMER, and
CIBERSORT algorithms. The risk signature was constructed by LASSO Cox
regression analysis. A nomogram model was generated subsequent to the multivariate
Cox proportional hazards analysis to predict 1-, 3-, and 5-year survival of patients with
colon cancer.

Results: Infiltrating immune cell profiling identified two colon cancer clusters (Immunity_L
group and Immunity_H group). The abundances of immune cells were higher in the
Immunity_H group, which indicated a better prognosis. Through further statistical analysis,
we identified four genes which were highly correlated with prognosis and representative of
this gene set, namely ARL4C, SERPINE1, BST2, and AXIN2. When the patients were
divided into low- and high-risk groups based on their risk scores, we found that patients in
the high-risk group had shorter overall survival time. Moreover, a nomogram including
clinicopathologic features and the established risk signature could robustly predict 1-, 3-,
and 5-year survival in patients with colon cancer.

Conclusion: We identified two distinct immune patterns by analyzing clinical and
transcriptomic information from colon cancer patients. A subsequently constructed
immune-related gene-based prognostic model as well as a nomogram model can be
used to predict the prognosis of colon cancer, thereby guiding risk stratification and
treatment regimen development for colon patients.
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INTRODUCTION

Recent cancer statistics reveals a high incidence of 10.2% for
human colon cancer, while the mortality rate is up to 9.2%, rising
from the fourth to the second place in the oncological field,
seriously threatening human life health (Bray et al., 2018; Siegel
et al., 2020a). Surgical removal of cancerous tissue, combined
with radiotherapy and chemotherapy (if necessary), has been the
mainstay of combating colon malignancies (Nie et al., 2020; Liao
et al., 2021). Due to advances in systemic drug targeting and
surgical techniques, the prognosis of colon cancer patients will be
significantly improved if they are diagnosed at an early stage
(Labianca et al., 2010). Therefore, accurate grading/staging of
colon cancer is helpful for the development of treatment options
as well as the prognosis of patients.

Current prognostic prediction mainly relies on the Tumor,
Nodes, Metastases (TNM) classification system (clinical level)
and histopathological criteria (histological level) (Pagès et al.,
2018). Unfortunately, patients still demonstrated an unpleasing
survival outcome due to the recurrence, metastasis, and resistance

to the agents. Clinicians and researchers have been searching for
novel treatment strategies in the hope for achieving better results,
and they focused on the cellular and molecular levels to identify
valuable markers and tumor-cell differentiation events. A
growing number of studies have demonstrated the role of gene
mutation status, gene expression levels, and signaling pathway
alterations in tumor initiation and progression, but accurately
identifying prognostic factors that can provide targets for therapy
remains difficult at the genomic level (Beane et al., 2009; Nagy
et al., 2018). The immune system is intimately involved in
tumorigenesis and can influence malignant properties at the
protein, epigenetic, and even genomic levels by shaping the
tumor immune microenvironment (TIM) (Deng et al., 2021).
Recently, a large body of evidence has shown that immune-
related molecules are of great value in predicting prognosis and
assessing therapeutic efficacy (Binnewies et al., 2018).

The TIM is a complex system composed of multiple immune
cells infiltrating into tumor tissue and various cytokines and
chemokines secreted by them (Mallmann-Gottschalk et al., 2019).
In there, natural killer (NK) cells can secrete cytokines, such as

FIGURE1 | Flow chart of this study. The square element represents the research process, and the oval element represents the specific researchmethod and result.
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interferon (IFN)-gamma and tumor necrosis factor (TNF)-α,
to exert an immunosuppressive phenotype via inhibiting
tumor cell proliferation and tumor angiogenesis (Liu et al.,
2018). Moreover, tumor associated macrophages (TAMs) and
regulatory T cells (Tregs) mediate a suppressed tumor
microenvironment which helps tumor cells achieve immune
escape, and promotes the development of malignancy (Pan
et al., 2020).

To address these suppressive immune phenotypes, targeting
immune-tumor cell interactions has become more intensively
studied, and immunotherapy has emerged as a promising area of
cancer treatment and has demonstrated its impressive clinical
value in colon cancer. This is mostly attributed to the face of
immune checkpoint inhibitors as antitumor agents, such as
programmed death 1 receptor (PD1) and cytotoxic T
lymphocyte antigen 4 (CTLA-4) inhibitors (Yaghoubi et al.,

FIGURE 2 | Two patterns of colon cancer based on immune cell clustering. (A) Cumulative distribution function (CDF) under different clustering numbers. (B)
Relative change in area under CDF curve with different clustering numbers. (C) Clustering heatmap when k = 2. (D) Heatmap showing the differences in immune cell
ssGSEA scores between two clusters. (E) PCA regarding two clusters. (F) The differences in response rates to immune checkpoint blockades between two clusters. (G)
The expressions of HLA genes between two clusters.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 8200923

Shen et al. Immunogenomic Signatures in Colon Cancer

92

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


2019). However, immunotherapy for colon cancer is still
imperfect, for example, the effect of immunotherapy cannot be
evaluated in advance. In conclusion, immunogenomic
classification will help to guide the identification and effective
treatment of early colon cancer and improve the accuracy of
prognosis evaluation.

In this study, we performed an immunogenomic profiling of
patients with colon cancer and divided them into two distinct
subtypes: high immunity (Immunity_H) and low immunity
(Immunity_L). We focused on analyzing two independent
cohorts of colon cancer patients to identify genes highly
associated with prognosis; based on their expression levels, the

FIGURE 2 | (continue)

FIGURE 3 | (A–J) Kaplan–Meier survival curves of individual cell types with significant prognostic values. (K) Differences in abundance of 10 immune cells between
normal and tumor tissues. (L) Immune cell abundances estimated by five algorithms (CIBERSORT, EPIC, IPS, MCPcounter, and TIMER) between two clusters.
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patients were allocated risk scores. We then combined
clinicopathological characteristics and the risk scores to
establish a model to accurately predict the survival rate of
patients with colon cancer. This analysis is of great
significance for the survival prediction of patients with colon
cancer and provides a potential target for its treatment.

MATERIALS AND METHODS

Data Source and Extraction
The data we used for analysis were obtained from The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) (The
Cancer Genome Atlas Network, 2012). In the dataset, 429
colon adenocarcinoma (COAD) patients had complete
clinicopathological and transcriptomic expression data. Thus,
they were enrolled as the training set. In addition, we also

downloaded three datasets, including GSE17536 (n = 177),
GSE17537 (n = 55), and GSE103479 (n = 156) in the Gene
Expression Omnibus (GEO, https:/www.ncbi.nlm.nih.gov/geo/)
to validate the results (Smith et al., 2010; Dienstmann et al., 2019).
The crude RNA expression data Fragments Per Kilobase of exon
model per Million mapped fragments (FPKM) were transformed
into Transcripts Per Kilobase of exon model per Million mapped
reads (TPM) for a better statistical evaluation.

Clustering for Distinct Immune Patterns in
Colon Cancer
We screened and quantified 28 immune cell types in the TCGA-
COAD dataset using the single sample gene set enrichment
analysis (ssGSEA) algorithm (Barbie et al., 2009). For each
independent dataset, an enrichment score was calculated to
represent the enrichment level of 28 immune cell types for

FIGURE 3 | (continue)
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FIGURE 4 | The biological functions of differentially expressed genes between two clusters. (A) The differentially expressed genes between the Immunity_L and
Immunity_H groups. Red triangles represent up-regulated genes and green triangles represent down-regulated genes. (B) Enrichment results of GO terms. Orange:
biological process, green: cellular component, purple: molecular function. (C) Enrichment results of KEGG pathways. Blue: cellular process, green: environmental
information processing, red: organismal systems.
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FIGURE 5 | The heatmap of differentially expressed genes.
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each tumor sample. Based on these ssGSEA scores, we performed
consensus clustering on TCGA-COAD. In brief, cluster analysis
was performed using “ConsensusClusterPlus” (Wilkerson and
Hayes, 2010), using agglomerative k-means clustering with a 1-
Pearson correlation distance and resampling 80% of the samples
for 10 repetitions. The optimal number of clusters was
determined using the empirical cumulative distribution
function plot. A principal component analysis (PCA) was
conducted to analyze the distinguishing ability of the clustering.

Quantification of Immunotherapy
Response, Major Histocompatibility
Complex, and Immune Microenvironment
We used the “ESTIMATE” package to calculate the Immune,
Stromal, and ESTIMATE scores for each sample to show the
component fractions and tumor purity (Yoshihara et al., 2013).
ImmuCellAI (Immune Cell Abundance Identifier) is a tool to
estimate the abundance of 24 immune cells from gene expression
dataset including RNA-Seq andmicroarray data (Miao et al., 2020).
We applied it to predict patients’ response to immune checkpoint

blockade therapy. The gene expression of the major
histocompatibility complex (MHC), human leukocyte antigen
(HLA), has also been explored in different clusters. Moreover,
the abundances of diverse immune and stromal components were
calculated using the “IOBR” R package (https://github.com/IOBR/
IOBR), which is designed for multi-omics immuno-oncology
biological research to decode tumor microenvironment and
signatures (Zeng et al., 2021). Specifically, five algorithms built
into the tool, including CIBERSORT (Newman et al., 2015),
immunophenoscore (IPS) (Charoentong et al., 2017), MCP-
counter (Becht et al., 2016), xCell (Aran et al., 2017), and EPIC
(Racle et al., 2017), were used to calculate the scores of 51
infiltrating (immune and stromal) cells in each sample.

Profiling of the Differentially Expressed
Prognostic Genes Related to Colon Cancer
Subtype-specific Immunity
We performed difference analysis between the Immunity_Low
(Immunity_L) group and Immunity_High (Immunity_H) group
using the “limma” package (Ritchie et al., 2015). The absolute

FIGURE 6 |Construction of risk signature based on differentially expressed genes. (A) The forest plot of differentially expressed genes with prognostic significance.
(B) The screening of coefficients and likelihood deviance under LASSO analysis. (C) The coefficients of model genes. (D) Best cutoff value selected by the log-rank test.
(E) The relationship between risk score, survival status, and model gene expression. (F) The Kaplan–Meier survival curve showing the difference between high risk and
low risk groups in TCGA-COAD. (G) The ROC curves regarding 1-, 3-, and 5-year survival outcomes in TCGA-COAD. (H) The differences in response rates to
immune checkpoint blockades between two groups.
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values of differential expression multiples >1.5 and p < 0.05 were
used as the criteria for screening differentially expressed genes.
The up- and down-regulated immune related genes (IRGs) in
colon cancer were displayed in volcano plot. For functional
analysis, we used the “org.Hs.eg.db” package (version 3.1.0) to
perform the gene ontology (GO; including biological process,
molecular function, and cellular component) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
annotation. A Benjamini–Hochberg false discovery rate (BH-
FDR) <0.05 was considered statistically significant. The
enrichment results were displayed as histogram and lollipop
charts.

Identification of Prognostic Genes and
Construction of Immune Signature
Univariate Cox regression analysis based on differentially
expressed genes was used to screen immune related genes
significantly related to the prognosis of colon cancer with p <
0.05 as the threshold. Subsequently, a Least Absolute Shrinkage

and Selection Operator (LASSO) Cox regression analysis with
“glmnet” package (Tibshirani, 1996) was used to further identify
essential genes and allocate coefficients for them. The risk score of
each sample was calculated using the following formula:

Risk score � ∑ n
i�1Coefipxi

where Coefi is the risk coefficient of each factor and xi is the
mRNA expression value (logarithmic transformed TPM) of each
factor. After determining the optimal cut-off value of risk score
through “survival” and “survminer” packages, patients were
divided into low risk and high risk groups correspondingly.
Survival curves were used to show the differences in survival
time and survival probability between high risk and low risk
patients based on the Kaplan–Meier method. The area under
curve (AUC) of receiver operating characteristic (ROC) curves
represented the predictive accuracy (Heagerty et al., 2000).
Univariate and multivariate Cox regression models were used
to analyze whether the risk score was able to independently
predict survival in patients with colon cancer.

FIGURE 6 | (continue)
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Establishment of Nomogram Prognosis
Prediction Model
Nomograms are widely used to predict the prognosis of the
disease, so we drew a nomogram based on all independent
prognostic factors identified by multivariate Cox regression
analysis to predict the survival probability of patients within 1,
3, and 5 years by using the “rms” package. For practical
application, we created a dynamic nomogram through
“DynNom” package and built an interactive web-based tool
with Shiny (https://shiny.rstudio.com/) (Supplementary
Material S1). A nomogram calibration curve was plotted to
judge nomogram accuracy by observing the relationship
between predicted probability and actual incidence. The
practicability of 1-, 3-, and 5-years OS was evaluated by ROC
curves. The prognostic ability of the nomogram and other
predictors (risk score, N stage, and M stage) for survival were
evaluated by decision curve analysis (DCA) curves using the
“rmda” R package.

Cell Culture
Normal human colon epithelial cells (NCM-460) and two human
colon cancer cell lines (HCT116, HCT8) were obtained from the
cell bank at the Chinese Academy of Sciences (Shanghai, China).
All cells were authenticated by short tandem repeat (STR)
profiling upon receipt and were propagated for less than

6 months after resuscitation. All cell lines were cultured in
Dulbecco’s modified eagle medium (DMEM) medium with
10% fetal bovine serum (FBS; Thermo Fisher Scientific,
Waltham, MA, USA). These cell lines were maintained in a
humidified chamber containing 5% CO2 at 37°C.

RNA Extraction and qPCR
Total RNA from cultured cells and fresh tissues was extracted
with Trizol regent (Thermo Fisher Scientific). We used
NanoDrop and an Agilent 2,100 bioanalyzer (Thermo Fisher
Scientific) to determine the concentration of extracted total RNA.
cDNA was obtained by reverse transcription using a reverse
transcription kit (Hiscrip II Q RT SuperMix for qPCR;
Vazyme, Nanjing, China) according to the manufacturer’s
protocol. Quantitative real-time polymerase chain reaction
amplification was performed with SYBR Green PCR master
mix (Takara, Japan) according to the manufacturer’s protocol.
Primers were designed as follows: SERPINE1, forward, 5′-AGT
GGACTTTTCAGAGGTGGA-3′, reverse, 5′-GCCGTTGAA
GTAGAGGGCATT-3′; ARL4C, forward, 5′-CCAGTCCCT
GCATATCGTCAT-3′, reverse, 5′-TTCACGAACTCGTTG
AACTTGA-3′; BST2, forward, 5′-CACACTGTGATGGCC
CTAATG-3′, reverse, 5′-GTCCGCGATTCTCACGCTT-3′;
AXIN2, forward, 5′-TACACTCCTTATTGGGCGATCA-3′,
reverse, 5′-TTGGCTACTCGTAAAGTTTTGGT-3′. GAPDH

TABLE 1 | Clinicopathological characteristics between the low risk and high risk groups

Characteristics Total (N = 429) Low risk (N = 333) High risk (N = 96) p Valuea

Age 0.59
Mean ± SD 66.70 ± 12.77 66.52 ± 12.75 67.31 ± 12.88
Median [min-max] 69.00 [31.00,90.00] 68.00 [31.00,90.00] 69.00 [34.00,89.00]

Gender 0.87
Female 202 (47.09%) 158 (36.83%) 44 (10.26%)
Male 227 (52.91%) 175 (40.79%) 52 (12.12%)

AJCC stage <0.01
Stage I 74 (17.25%) 68 (15.85%) 6 (1.40%)
Stage II 170 (39.63%) 131 (30.54%) 39 (9.09%)
Stage III 123 (28.67%) 89 (20.75%) 34 (7.93%)
Stage IV 62 (14.45%) 45 (10.49%) 17 (3.96%)

T stage <0.01
T1 9 (2.10%) 9 (2.10%) 0 (0.0e + 0%)
T2 75 (17.48%) 69 (16.08%) 6 (1.40%)
T3 297 (69.23%) 221 (51.52%) 76 (17.72%)
T4 48 (11.19%) 34 (7.93%) 14 (3.26%)

N stage 0.01
N0 253 (58.97%) 208 (48.48%) 45 (10.49%)
N1 99 (23.08%) 73 (17.02%) 26 (6.06%)
N2 77 (17.95%) 52 (12.12%) 25 (5.83%)

M stage 0.39
M0 367 (85.55%) 288 (67.13%) 79 (18.41%)
M1 62 (14.45%) 45 (10.49%) 17 (3.96%)

Disease type 0.35
Adenocarcinoma 372 (86.71%) 292 (68.07%) 80 (18.65%)
Mucinous adenocarcinoma 57 (13.29%) 41 (9.56%) 16 (3.73%)

Survival status <0.01
Alive 340 (79.25%) 276 (64.34%) 64 (14.92%)
Dead 89 (20.75%) 57 (13.29%) 32 (7.46%)

ap Value between the low risk group and high risk group.
AJCC, American Joint Committee on Cancer.
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was used as an endogenous control, and relative gene expression
was determined by the comparative 2−ΔΔCT method.

Immunohistochemistry
The Human Protein Atlas (HPA) (https://www.proteinatlas.org/)
is a program for mapping human proteins in cells, tissues, and
organs using integration of various omics technologies (Uhlen
et al., 2017; Sun et al., 2018). We obtained representative
immunohistochemistry results of the four target proteins in
colon cancer and normal colon tissues from the tissue atlas
and pathology atlas in HPA database, respectively.

Statistical Analysis
In this study, Kaplan–Meier method was used to estimate the
overall survival rate of different groups, and log-rank was used to
test the significance. The inter-group comparisons were achieved
by using Wilcoxon rank sum test. The chi-square test was used to
compare the clinicopathologic features (age, gender, TNM stage,

and AJCC stage) between the low risk group and high risk group.
Univariate and multivariate Cox regression analyses were utilized
to evaluate the independent prognostic value of the risk signature
regarding OS. Statistical analyses were made using R software
(version 4.0.3). Most visualizations were achieved by “ggplot2”
package. In most situations, p < 0.05 was used as a significant
threshold if not otherwise specified Figure 1.

RESULTS

Infiltrating Immune Cell Profiling Identified
Two Colon Cancer Clusters
We screened and analyzed 28 immune cell types by ssGSEA for
every tumor sample (Supplementary Table S2). Then, we
performed consensus clustering on TCGA-COAD dataset
based on the ssGSEA scores, which represented the activity or
infiltration levels of immune cells in the tumor sample. Finally,

FIGURE 7 | External validation. (A) The risk distribution, the Kaplan–Meier survival curve, and the ROC curves in GSE17536. (B) The risk distribution, the
Kaplan–Meier survival curve, and the ROC curves in GSE17537. (C) The risk distribution, the Kaplan–Meier survival curve, and the ROC curves in GSE103479.
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the patients were divided into two unique immune clusters (C1
and C2; Figures 2A–C). We found that the ssGSEA scores of all
the immune cell types were higher in C2 than those in C1

(Figure 2D). The C1 and C2 were thus defined as the
Immunity_Low (Immunity_L) group and Immunity_High
(Immunity_H) group, respectively (Supplementary Table S3).
Furthermore, the heatmap clearly demonstrated that the
Immunity_H group possessed higher stromal scores, immune
scores, and ESTIMATE scores when compared with the
Immunity_L group (Figure 2D). Correspondingly, the
Immunity_H group exhibited lower tumor purity.

PCA result further confirmed the reliability of this clustering,
as the subgroups could be significantly distinguished (Figure 2E).
More importantly, the Immunity_H group showed a higher
response rate to immune checkpoint blockers than the
Immunity_L group (51 vs. 15%; p < 0.001; Figure 2F). At the
same time, we found that most HLA genes were expressed at
higher levels in the Immunity_H group than in the Immunity_L
group (Figure 2G). These results collaborated that our clustering
significantly distinguished colon cancers into two groups with
distinct immune landscapes.

Next, we examined the relationship between individual
immune cell ssGSEA score and COAD patient’s overall
survival and found that 10/28 cell types were significantly
correlated with patient prognosis. Specifically, activated
B cell (p = 0.03; Figure 3A), effector memory CD4+ T cell (p
= 0.02; Figure 3B), eosinophil (p = 3.4e-3; Figure 3C),
immature B cell (p = 0.04; Figure 3D), neutrophil (p = 0.04;
Figure 3E), and type 17 T helper cell (Th17; p = 7.7e-3;
Figure 3F) were beneficial to patient survival, as a patient
with higher scores of these cell types would have a higher
survival probability, whereas CD56dim NK cell (p = 0.02;
Figure 3G), myeloid-derived suppressor cell (MDSC; p =
0.02; Figure 3H), natural killer T cell (p = 0.05; Figure 3I),
and T follicular helper cell (Tfh; p = 8.2e-3; Figure 3J) were
unfavorable to patient survival, as a patient with higher scores of
these cell types would have a worse survival. We then compared
the abundances of these immune cells between normal and
tumor tissues. Except for the natural killer T cell and type 17 T
helper cell, the remaining eight immune cells had generally
lower abundance in tumor tissues than in normal tissues
(Figure 3K). We used five algorithms to demonstrate
differences in the infiltrating cells between the two groups.
Overall, the abundances of immune cells were higher in the
Immunity_H group, especially for those calculated by
CIBERSOFT algorithm (Figure 3L).

Differentially Expressed Genes Related to
Colon Cancer Cluster-Specific Immunity
Were Identified and Verified
We analyzed the differentially expressed genes between the two
colon cancer immune subtypes in TCGA-COAD cohort. A total
of 18 genes were up-regulated in the immunty_H group and
down-regulated in the Immunity_L group. Conversely, 259
genes were down-regulated in the immunty_H group and
up-regulated in the Immunity_L group (Supplementary
Table S4; Figure 4A). Through GO enrichment analysis, we
found these differentially expressed genes were mostly located
on collagen-containing extracellular matrix, involved in

FIGURE 8 | The expression of these four genes in colon cancer cells and
tissues. (A) The relative mRNA levels of the four genes in normal colon
epithelial cells (NCM-460) and colon cancer cells (HCT116, HCT8) by qPCR.
(B) Representative IHC images of the four genes in colon cancer and
normal colon tissues.
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biological processes including response to interferon-gamma
and extracellular matrix organization. In terms of molecular
functions, these genes were mainly involved in extracellular
matrix structural constituent and chemokine activity
(Figure 4B). The results were consistent to the well-
established immune processes. Furthermore, KEGG
enrichment analysis concluded that these genes mainly
participated in the cellular processes of phagosome,
environmental information processing such as cytokine-
cytokine receptor interaction. Besides, they were enriched in
the organismal systems including hematopoietic cell lineage,
Th17 cell differentiation, and chemokine signaling pathway
(Figure 4C). These results largely indicated that these
differentially expressed genes derived from immunogenomic
clusters were closely linked to immune-related pathways.

A Four-Gene Risk Signature was
Constructed in the Training Set
These differentially expressed genes showed a completely distinct
expression patterns between the immunty_H group and the
Immunity_L group (Figure 5). By univariate Cox regression
analysis, we screened 11 differentially expressed genes that were
significantly associated with prognosis (Figure 6A), of which
AXIN2 was a protective factor because it harbored a hazard ratio
(HR) of less than 1 (HR= 0.861, p = 0.0481), while the remaining 10
genes were risk factors: SERPINE1 (HR = 1.24, p = 0.0076), SFRP2
(HR = 1.12, p = 0.0203), APOE (HR = 1.15, p = 0.0230), ARL4C
(HR = 1.27, p = 0.0236), BST2 (HR = 1.15, p = 0.0283), TGFB1 (HR
= 1.25, p = 0.0302), SLC2A3 (HR = 1.23, p = 0.0369), VSIG4 (HR =
1.2, p = 0.0389), C1QA (HR = 1.18, p = 0.0455), and BGN

(HR = 1.18, p = 0.0466). We performed further screening of
these genes by LASSO regression analysis and identified four
genes which were highly correlated with prognosis and
representative of this gene set, namely ARL4C, SERPINE1, BST2,
and AXIN2 (Figure 6B).

The LASSO analysis also allocated coefficients for these four
genes (Figure 6C), thus facilitating the assignment of risk score to
each patient. Under the best cut-off value of 0.56 detected by log-
rank test (Figure 6D), we displayed risk scores and survival status
distributions as Figure 6E. The high risk group had more
mortality events. And it clearly showed that ARL4C,
SERPINE1, and BST2 expression increased with increasing risk
score, whereas the expression of the AXIN2 decreased with
elevating risk score. The clinicopathological characteristics
between the high and low risk groups are summarized in
Table 1. It shows that the risk signature was an independent
indicator of prognosis as the characteristics were not significantly
different between the two groups, including age (p = 0.097),
gender (p = 0.36), AJCC pathologic stage (p = 0.22), T stage (p =
0.052), N stage (p = 0.46), M stage (p = 0.48), and disease type (p =
0.40). Kaplan-Meier survival curves depicted that colon cancer
patients with higher risk scores significantly had worse clinical
outcomes (HR = 2.17, 95% CI 1.41–3.35, p < 0.001; Figure 6F).
The ROC curves demonstrated that the risk signature harbored a
promising ability to predict OS in the TCGA-COAD cohort
(AUC: 1 year = 0.60, 3 years = 0.61, 5 years = 0.60;
Figure 6G). Besides, we also analyzed the response to immune
checkpoint blockers in the high risk and low risk groups. The
result showed that the low risk group showed higher response rate
to immune checkpoint blockers than the high risk group (35 vs.
22%; p = 0.017; Figure 6H).

TABLE 2 | Univariate and multivariate analyses in TCGA-COAD cohort.

Variable N Univariate analysis Multivariate analysis

HR (95% CI) p Value HR (95% CI) p Value

Age (years) 429 1.02 (1.00, 1.04) 0.091
Gender
Female 202 1 (ref)
Male 227 1.11 (0.73, 1.70) 0.627

T stage
T1 9 1 (ref)
T2 75 0.48 (0.05, 4.68) 0.531
T3 297 1.83 (0.25, 13.21) 0.551
T4 48 6.01 (0.80, 45.04) 0.081

N stage
N0 253 1 (ref) 1 (ref)
N1 99 1.70 (0.98, 2.97) 0.060 0.30 (0.10, 0.87) 0.027
N2 77 4.63 (2.82, 7.58) <0.001 0.69 (0.25, 1.90) 0.477

M stage
M0 367 1 (ref) 1 (ref)
M1 62 4.65 (2.98, 7.24) <0.001 21.87 (5.21, 91.76) <0.001

AJCC stage
Stage I 74 1 (ref) 1 (ref)
Stage II 170 2.42 (0.72, 8.10) 0.153 2.23 (0.66, 7.50) 0.195
Stage III 123 4.77 (1.45, 15.69) 0.010 9.99 (2.15, 46.42) 0.003
Stage IV 62 13.72 (4.19, 44.94) <0.001 NA NA
Risk score 429 7.16 (1.97, 26.00) 0.003 3.12 (0.81, 12.00) 0.011

HR, hazard ratio; CI, confidence interval; AJCC: American Joint Committee on Cancer; NA: not applicable.
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FIGURE 9 |Construction and validation of the nomogrammodel. (A)Construction of the nomogrammodel combining risk score and prognostic clinicopathological
indicators in TCGA-COAD. (B) Online dynamic nomogram accessible at https://scxiangya.shinyapps.io/DynNom/, depicting an example for predicting the survival
probability of a patient with TxN0M0 colon cancer and a risk score of 0.448. (C) Sankey diagram showing the distribution of patients in the high risk and low risk groups.
(D) The calibration curve judging nomogram accuracy by comparing the relationship between predicted and observed overall survival. (E) Time dependent ROC
curves showing the predictive ability of the nomogram. (F) Decision curve analysis curves and clinical impact curves evaluating the benefit when using the
nomogram model.
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Validation Cohort Demonstrated Stability of
the Risk Signature
To externally validate the prognostic ability of the established risk
signature, we calculated risk scores for patients in another three
independent cohorts (GSE17536, GSE17537, and GSE103479)
using the same formula (Figures 7A–C). Consistently, colon
cancer patients with higher risk scores had lower OS rate and
shorter OS time in the validation cohorts. The ROC analysis also
indicated that the risk signature had a promising prognostic value
for patients with colon cancer in the validation cohort (AUC for
GSE17536: 1 year = 0.65, 3 years = 0.61, 5 years = 0.58; AUC for
GSE17537: 1 year = 0.68, 3 years = 0.73, 5 years = 0.58; AUC for
GSE103479: 1 year = 0.56, 3 years = 0.58, 5 years = 0.61). These
results showed that the risk signature had an effective and stable
OS-predictive ability for colon cancer patients.

In Vitro Validation Demonstrated High
Expression of Model Genes in Colon Cancer
at Transcriptional and Protein Levels
To confirm that these four genes are indeed highly expressed in
colon cancer, the expressions of these four genes were detected by
quantitative PCR (qPCR) in normal colon epithelial cells (NCM-
460) and colon cancer cells (HCT116 and HCT8). The results
showed that the expression levels of these four genes in colon
cancer cells were obviously higher than those in normal colon
epithelial cells (Figure 8A). Furthermore, we confirmed the
protein expression profiles of these four genes in human
tissues. As showed in immunohistochemistry results
(Figure 8B), these four proteins were mainly distributed in the
cytoplasm or membrane and were upregulated in colon cancer
tissues compared with corresponding normal tissues. These
results evidently demonstrated that ARL4C, SERPINE1, BST2,
and AXIN2 were upregulated in colon cancer cells and tissues at
the transcriptional and protein levels, implying the importance of
these four genes in colon cancer pathogens.

The Risk Signature-based Nomogram Had
Better Prediction Ability and Practical Value
Firstly, we used univariate and multivariate Cox analyses to assess
whether the established risk signature was an independent
prognostic factor for patients with colon cancer (Table 2).
Based on the data of colon cancer samples in the TCGA data
set, univariate Cox analysis indicated that N stage, M stage, AJCC
stage, and risk score were remarkably associated with OS (p <
0.05). Subsequent multivariate Cox analysis further showed that
N, M stages, and risk score were independent predictors of OS (p
< 0.05). These results indicated that our risk signature, as an
independent prognostic indicator, might be useful for clinical
prognosis evaluation.

To create a clinically applicable quantitative tool to predict the
OS of colon cancer patients, we constructed a nomogram model
including the risk score, N stage, and M stage in the TCGA data
set (Figure 9A), which was available online (https://scxiangya.
shinyapps.io/DynNom/) as screenshot in Figure 9B. The Sankey

diagram exhibited the distribution of the clinicopathological
features of the patients in different groups (Figure 9C).
Calibration plots using 1,000 booted resampling revealed
perfect concordance regarding the observed vs. predicted rates
of 1-, 3- and 5-year OS in the TCGA-COAD cohort (Figure 9D).
The ROC analysis also indicated that the nomogram had a stable
and robust power in predicting the OS for colon cancer patients
(AUC: 1 year = 0.775, 3 years = 0.766, 5 years = 0.717; Figure 9E).
The DCA result indicated that the model combining prognosis-
related clinicopathologic characteristics and risk signature
conferred a better predictive potency than the three-factor
model alone (Figure 9F).

DISCUSSION

Colon cancer is one of the major malignant tumors of the
gastrointestinal tract, and approximately 600,000 people die
from it every year (Bray et al., 2018; Siegel et al., 2020b),
although 5-year survival for colon cancer has approached 65%
with improved surgical methods and subsequent treatments in
developed countries (Miller et al., 20192019). For colon cancer
patients who present with local invasion or distant metastasis, the
mortality rate is very high (Misale et al., 2012; Edwards et al.,
2014; Fang et al., 2017). Therefore, there is an urgent need to find
some new predictive parameters or therapeutic targets that are
highly correlated with prognosis. This helps us to establish an
early warning system in advance to rapidly identify patients with
more critical conditions in clinical work to guide the development
of subsequent treatment regimens and the prediction of survival
outcomes.

Although it has long been recognized that the immune cells
play an important role in tumor initiation and development
(Fridman et al., 2012), these insights have not made a major
influence on routine clinical practice. Moreover, the
transcriptomic correlation of immune infiltration in cancer
tissues on diagnosis and prognosis has attracted substantial
interest. However, very few of these studies focused on the
association between the difference of the immune cell
composition and prognosis in colon cancer.

In this study, we first analyzed 28 immune cell types to divide
TCGA-COAD into two unique immune patterns: the
Immunity_H group and Immunity_L group. The two groups
showed significant differences in anti-tumor immune activity,
immune cell infiltration, and response to immune checkpoint
blockades. Regarding the specific cell types, the complex and
diverse immune cells in the TIM include T lymphocytes
(70–80%), B lymphocytes (10–20%), macrophages (5–10%),
NK cells (<5%), and dendritic cells (1–2%) (Frankel et al.,
2017). Additionally, Tregs and TAMs contribute to tumor
escape with immune suppressive activity and inhibit anti-
tumor responses. Immune cells infiltrating tumors mediate the
TIM and thereby influence tumor prognosis (Wu et al., 2013). In
this study, we found that effector memory CD4 T cells, activated
B cells, eosinophils, and Th17 cells were positively correlated with
patient survival prognosis, while the immunosuppressive cells
MDSCs were negatively correlated with survival prognosis.
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Tumor immunotherapy is known to act as a tumor suppressor by
acting through these immune cells, so we could screen out colon
cancer patients who could benefit from immunotherapy based on
different expression levels of immune cells.

It is of great significance to find which immune-related genes
that play important roles in the development of the colon cancer
and the prognosis of the patient. By specific algorithms, we
identified a group of immune-related genes that predict the
prognosis of colon cancer patients. With further screening and
model construction, four genes including ARL4C, SERPINE1,
BST2, and AXIN2 were singled out to be highly associated with
prognosis. It has been found that overexpression of ARL4Cmight
contribute to the tumorigenesis and lead to worse prognosis in
colorectal cancer (Chen et al., 2016), which supported the result
of our study. A recent study has found that SERPINE1
participated in colon cancer microenvironment remodeling
and immune cell infiltration (Wang et al., 2021). This
explained why patients with overexpression of SERPINE1 had
poor prognosis in our study. Moreover, the prognostic
significance of BST2 in colon cancer has been put forward as
early as 2015 (Chiang et al., 2015). And finally, AXIN2 has been
consistently classified as a tumor suppressor gene in colorectal
cancers both in vivo and in vitro (Church and Fazio, 2005;Waaler
et al., 2012). However, it should be noted that AXIN2 was
previously identified as a potent tumor promoter instead of a
suppressor, as it was found to exert global control over gene
expression networks which were critical for tumor-invasive and
metastatic behavior (Wu et al., 2012). Its precise function in the
carcinomatous state may require further studies. In general, these
four genes are promising prognostic molecules in colon cancer.
The constructed model can well distinguish colon cancer patients
and predict prognosis, thereby helping to develop individualized
treatment options based on survival risk.

The aim of this study is to construct a model composed of
prognostic immune related genes, which can robustly predict
prognosis. The multivariate Cox regression analysis result
showed that the survival time of the high risk group was
significantly lower than that of the low risk group. This shows
that our model can be used as an independent prognostic factor
for colon cancer patients. According to the nomogrammodel, the
survival rate of colon cancer patients is consistent with the actual
situation. This indicates that the model can well distinguish colon
cancer patients and outperform clinical parameters alone.
Combining the fact that there was a significant difference in
the immune cell constitutions between the Immunity_H and
Immunity_L groups, we hypothesized that the immune-related
genes may affect the tumor prognosis by affecting the immune
infiltration. Consequently, the responses rates to immune
checkpoint blockade were significantly different between the
groups with distinct immune landscapes. It is thus suggested
that the poor prognosis of patients in the Immunity_L group may
be due to the immunosuppressive microenvironment.

However, there are still some limitations in our study. Due to
insufficient clinical information in the three GEO cohorts, the
nomogram model failed to be validated, and the AUC values of
ROC curves for the risk signature were not high due to the limited

sample size. Therefore, we will further validate this prognostic
model in other independent large cohorts to ensure the reliability
of our model. Moreover, functional experiments are also needed
to further reveal the interplay between immune related genes and
tumors.

CONCLUSION

We identified two distinct immune patterns by analyzing clinical
and transcriptomic information from colon cancer patients,
which exhibited distinct tumor purity and immune
composition. A subsequently constructed immune-related
gene-based prognostic model as well as a nomogram model
was closely related to the prognosis of colon cancer patients to
predict prognosis more precisely, thereby guiding risk
stratification and treatment regimen development for colon
patients.
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DesA Prognostic Risk Model of
LncRNAs in Patients With Acute
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Data
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Purpose: This study aimed to combine the clinical data of acute myeloid leukaemia (AML)
from The Cancer Genome Atlas (TCGA) database to obtain prognosis-related biomarkers,
construct a prognostic risk model using long non-coding RNAs (lncRNAs) in AML and help
patients with AML make clinical treatment decisions.

Methods: We analysed the transcriptional group information of 151 patients with AML
obtained from TCGA and extracted the expressions of lncRNAs. According to themutation
frequency, the patients were divided into the high mutation group (genomic unstable
group, top 25% of mutation frequency) and low mutation group (genomic stable group,
25% after mutation frequency). The ‘limma’ R package was used to analyse the difference
in lncRNA expressions between the two groups, and the “survival,” “caret,” and “glmnet”R
packages were used to screen lncRNAs that are related to clinical prognosis.
Subsequently, a prognosis-related risk model was constructed and verified through
different methods.

Results: According to the lncRNA expression data in TCGA, we found that seven lncRNAs
(i.e. AL645608.6, LINC01436, AL645608.2, AC073534.2, LINC02593, AL512413.1, and
AL645608.4) were highly correlated with the clinical prognosis of patients with AML, so we
constructed a prognostic risk model of lncRNAs based on LINC01436, AC073534.2, and
LINC02593. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway
analyses of differentially expressed lncRNA-related target genes were performed, receiver
operating characteristic (ROC) curves were created, the applicability of the model in
children was assessed using the TARGET database and the model was externally verified
using the GEO database. Furthermore, different expression patterns of lncRNAs were
validated in various AML cell lines derived from Homo sapiens.

Conclusions: We have established a lncRNA prognostic model that can predict the
survival of patients with AML. The Kaplan-Meier analysis showed that this model
distinguished survival differences between patients with high- and low-risk status. The
ROC analysis confirmed this finding and showed that the model had high prediction
accuracy. The Kaplan-Meier analysis of the clinical subgroups showed that this model can
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predict prognosis independent of clinicopathological factors. Therefore, the proposed
prognostic lncRNA risk model can be used as an independent biomarker of AML.

Keywords: acute myeloid leukaemia, cox regression, lncRNA, prognostic risk model, TCGA

1 INTRODUCTION

Acute myeloid leukaemia (AML) is a malignant clonal disease of
the haematopoietic stem and progenitor cells (Pelcovits and
Niroula, 2013). In China, leukaemia affects 3–4 individuals per
100,000 populations. Among deaths due to malignant tumours,
leukaemia ranked sixth in men, seventh in women and first in
children and adults aged <35 years. In China, the incidence of
acute leukaemia (AL) was significantly higher than that of chronic
leukaemia, and AML was the most common (1.62/100,000). In
recent years, intensive chemotherapy, haematopoietic stem cell
transplantation and rigorous supportive treatment have greatly
improved the prognosis of patients with AML aged <60 years.
Moreover, 30% of patients with non-acute promyelocytic
leukaemia are expected to survive for a long time (Sasine and
Schiller, 2016). However, for these patients, a good quantitative
model for predicting survival time is still not established (Song
et al., 2018).

With the development of sequencing technology, the detection
of leukaemia-related genes is becoming increasingly impeccable,
which has increasingly attracted the attention of researchers.
Among them, the long noncoding RNA (lncRNA) has
gradually become a research hotspot. LncRNA is an RNA
molecule with a length of >200 bp that originates from the
noncoding region of the genome. It regulates gene expression
at the transcriptional and post-transcriptional levels and
participates in various biological functions (Al-Kershi et al.,
2019). Some studies have shown that lncRNAs play an
important role in many life activities, such as dose
compensation effect, epigenetic regulation, cell cycle regulation
and cell differentiation regulation (Peng et al., 2017). Recent
studies have confirmed that changes in lncRNAs are related to the
occurrence and development hematological malignancy,
especially in AML. Myeloid-specific and polyadenylated
lncRNA LOUP was found to induce myeloid differentiation
and inhibits cell growth, acting as a transcriptional inducer of
the myeloid master regulator. LOUP recruits RUNX1 to both the
LOUP enhancer and the promoter, leading to the formation of an
active chromatin loop (Trinh et al., 2021). Yin et al.(Yin et al.,
2021) found that lncRNA DUBR highly expressed in AML,
resulting in poor prognosis, especially in M4 AML. In vitro
studies elucidated that knockdown of DUBR suppress the
survival colony formation ability in AML cells. Academics
pointed out that the activation of HOXBLINC, a HOXB locus-
associated lncRNA, is a critical downstream mediator of
NPM1c(+)-associated leukemic transcription program and
leukemogenesis. HOXBLINC loss attenuates NPM1c(+)-driven
leukemogenesis by rectifying the signature of NPM1c(+)
leukemic transcription programs. Overexpression of
HOXBLINC in mice enhances hematopoietic stem cell self-
renewal and expands myelopoiesis, leading to the development

of AML-like disease, reminiscent of the phenotypes seen in the
Npm1 mutant knock-in (Npm1(c/+)) mice (Zhu et al., 1956).
Gourvest et al.(Wei and Wang, 2017; Zhao et al., 2018; Liang
et al., 2020; Gourvest et al., 2021) report an identification of
lncRNA LONA overexpressed in NPM1-mutated AML patients.
While NPM1 is nuclear and LONA cytoplasmic in wild-type
NPM1 AML cells, LONA becomes nuclear as mutant NPM1
moves toward the cytoplasm. Gain or loss of function combined
with a genome-wide RNA-seq identified a set of LONA mRNA
targets encoding proteins involved in myeloid cell differentiation
and interaction with its microenvironment. LONA
overexpression exerts an anti-myeloid differentiation effect in
mutant NPM1 established cell lines and primary AML cells. In
vivo, LONA overexpression acts as an oncogenic lncRNA
reducing the survival of mice transplanted with AML cells and
rendering AML tumors more resistant to cytarabine
chemotherapy.

This study aimed to combine the clinical data of AML from
TCGA to obtain prognosis-related biomarkers, construct a
prognostic risk model related to lncRNAs in AML and help
patients with AML make clinical treatment decisions. In this
study, transcription data of 151 patients with AML were
downloaded from The Cancer Genome Atlas (TCGA). Perl
language was used to collate the data, and R language was
used for data analysis in an attempt to determine effective
prognostic biomarkers for AML and construct a prognostic
risk model using lncRNA in patients with AML.

2 METHODS

2.1 Research Objects and Data Acquisition
Transcription group data (transcription profiling) and
corresponding clinical data of 151 patients with AML were
obtained through TCGA website (https://tcga-data.nci.nih.gov/
tcga/). The database contains clinical data such as patient
number, age, survival time and survival status. The genome
mutation data (simple nucleotide variation) of 149 patients
were also downloaded from TCGA.

2.2 Acquisition of the Expression Matrix of
lncRNAs
On the official website of TCGA (https://gdc.nci.nih.gov/), the
TCGA-LAML transcriptional group data (transcription
profiling) were checked on the GDC Data Portal to download
relevant raw htseq-count data, manifest and metadata files. In the
CMD environment, the Perl language script was used to extract
the original count data to form an expression matrix. The
identification transformation of the transcription expression
profile was implemented as Homo_sapiens.GRCh38.95. chr.gtf
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and downloaded from the Ensemble website, the gene expression
profile matrix was obtained after comparison, and lncRNA was
extracted using Perl language script to obtain the lncRNA
expression matrix of patients with myeloid leukaemia.

2.3 Sample Mutation Frequency and
Grouping
In the CMD environment, Perl language scripts were used to
calculate the mutation frequency of the samples. In this study, 31
patients with the top 25% mutation frequency were assigned to
the genomic instability group (high mutation group, genomic
unstable [GU]) and 24 patients with the bottom 25% mutation
frequency to the genomic stability group (low mutation group,
genomic stable [GS]).

2.4 Screening of Differentially Expressed
lncRNAs and mRNAs in the High and Low
Mutation Groups and Gene Ontology and
Kyoto Encyclopedia of Genes and Genomes
Analyses
To determine potential AML biomarkers, R language was used to
calculate the mean value of lncRNA in the GS and GU groups,
and the “limma” R package was then used to set the threshold to
logFC >1.0 and p < 0.05 to screen the differentially expressed
IncRNAs between the two groups. Thereafter, data of the
upregulated and downregulated differentially expressed
IncRNAs and their corresponding expressions were saved, and
the “pheatmap” R package was used to draw a heat map. We used
the “limma” R package to test the correlation between the
expressions of mRNA and lncRNA in the samples and
obtained the correlation coefficient and p value. The mRNAs
of the first 10 related genes were selected as the target genes of the
corresponding differentially expressed lncRNAs. Subsequently,
GO and KEGG enrichment analyses of the target genes were
performed using “clusterProfiler” (version 3.14.3). The minimum
and maximum genes were set to 5 and 5,000, respectively. A p
value of <0.05 and a false discovery rate (FDR) of <0.25 were
considered significant.

2.5 Cox Regression Analysis
To determine which of the differentially expressed genes were
related to prognosis, we extracted the survival time and survival
status of patients with AML and excluded data of patients whose
survival time was less than 30 days. The survival time data were
compared individually with differential gene expression data, and
duplicated samples of expression data were removed; finally, 128
samples with complete prognosis were screened. Thereafter, the
survival time data and differential gene expression data were
combined into a matrix. Furthermore, we used the random
function of R language to randomly divide the 128 samples
into the train and test groups. First, we determined the
prognosis-related lncRNAs from the train group for Cox
analysis. Specifically, the univariate regression analysis was
performed on the train group using the “survival” and
“survminer” R packages. Seven lncRNAs related to prognosis

were obtained, and the corresponding forest map was drawn by R
packages “survival,” “caret,” “glmnet,” and “survminer.”
Thereafter, the “glmnet” and “survival” R packages were used
in the multivariate Cox regression analyses of the seven lncRNAs.

2.6 Construction of the lncRNA Prognostic
Model
Using multivariate regression, a survival-related prognosis model
was constructed based on three lncRNAs out of 7 that screened
through multivariate regression. The model formula is as follows:

Risk score � Σ3
i�1βi.

In this equation, β is the regression analysis coefficient of each
IncRNA after multifactor Cox regression analysis, and i is the
correlation of lncRNA of the multifactor regression. We defined
the risk score of single samples lower than the median risk score
of the training group as low risk and conversely as high risk.
Accordingly, samples were divided into the high-risk subgroup
and the low-risk subgroup in the train and test groups,
respectively.

2.7 Visualization, Evaluation and Testing of
the lncRNA Prognostic Model
2.7.1 Testing the Clinical Characteristic Preference
Between the Train Group and the Test Group
Randomly Divided Into Subgroups
To test whether the clinical characteristics of patients with AML
were consistent, patients with AML were divided into the elderly
(≥60 years) and non-elderly (<60 years) groups and male and
female groups. The chi-square test was used to process the
percentage of age and sex in the two groups.

2.7.2 Survival Analysis Verification
To test the applicability of the prognostic model in the
identification of patients with high- and low-risk status, we
used the “survival” and “survminer” R packages to draw the
high- and low-risk Kaplan–Meier curves of the train, test and
overall groups.

2.7.3 Receiver Operating Characteristic (ROC) Curve
To verify the accuracy of the model in predicting the prognosis of
patients with AML in different periods, we used the “survival,”
“survminer,” and “timeROC” R packages to draw the ROC curves
of the 1-year and 5-year survival rates of the train, test and overall
groups and calculated the area under their ROC curves (AUCs).

2.7.4 Relationship Between Known Clinical Prognostic
Genes and Gene Mutation Frequency and Prognostic
Model
Relationship Between Patient Risk Score and Gene Expression
and Between Patient Score and Genomic Instability
To examine the relationship between the prognostic model and
other factors, we ranked the samples according to the risk score
from low to high. Thereafter, we used the “limma” and
“pheatmap” R packages to visualise the expression of three
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lncRNAs related to multivariate regression in the train, test and
overall groups. Moreover, we visualised the mutation frequency
of each sample and the known mutation-driven genes.

Relationship Between the Prognostic Model and Known
Mutation-Driven Genes Such as TP53
We used the “limma” and “sparcl” R packages to extract the
differentially expressed lncRNAs and mutation statistics of all
samples. Thereafter, the samples were divided into GS (GS-like)

and GU (GU-like) groups by cluster analysis. Then, the mutation
frequency between the two types and the expression of themutant
gene LUNAR1 were evaluated, and the “ggpubr” R package was
used to draw the corresponding box diagram. To examine the
effect of common mutations on this prognostic model, we used
the “survival” and “survminer” R packages to draw the
Kaplan–Meier curves of the first six genes with the highest
mutation frequency in the GS (GS-like) and GU (GU-like)
groups. To test whether there was a significant difference in

FIGURE 1 | (A) Heat map of the top 20 upregulated and downregulated lncRNAs. The upregulated and downregulated genes are marked red and blue,
respectively. The top 10 mRNAs related to differentially expressed lncRNAs were selected as target genes. The Kyoto Encyclopedia of Genes (B) and Genomes and
Gene Ontology (C) analysis maps of the target genes were drawn.
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gene mutations between the high- and low-risk groups, we used
“plyr” and “ggplot2” R packages to draw single mutation
frequency histograms of common mutations in the train, test
and overall groups to verify whether known common mutations
affect the prognostic model of high- and low-risk scores.

2.7.5 Verification of the Prognostic Model With
Different Clinical Characteristics
To test the ability of the prognostic model to evaluate high- and
low-risk groups with different clinical traits, we divided the
samples into the elderly and non-elderly groups, male and
female groups, non-M3 groups and high mutation frequency
and low mutation frequency groups according to the clinical
traits. Note that: 1. the survival analysis of M3 (acute
promyelocytic leukaemia) group is not going to be performed
as the sample size in this group is relatively small. 2. TCGA-AML
data contains mutation data of 134 patients and complete clinical
information 128 patients, taking the intersection of them, there
are 88 patients with complete mutation data and clinical
information. High mutation frequency was defined as single
sample mutation counts ≥ median mutation counts, and low
mutation frequency as single sample mutation counts < median
mutation counts. Then, the “survival” and “survminer” R
packages were used to draw the Kaplan–Meier curves of
above-mentioned groups at high and low risks.

2.7.6 Applicability of the Prognostic Model in Children
We downloaded data of 155 child patients with AML with
complete prognosis-related lncRNA expression and clinical
information from the TARGET database (https://ocg.cancer.
gov/programs/target). Then, Microsoft Excel software was used
to sort out the data into the children group and calculated the
corresponding risk score. Finally, we used the “survival” and
“survminer” R packages to draw the corresponding
Kaplan–Meier curves between different groups of children and
adults to test the applicability of the model in children.

2.7.7 External Verification
GSE106291 (Herold et al., 2018) data from the GEO database, which
included survival information and transcriptome data of 250
patients with AML, were downloaded for further analysis. As not
every lncRNAwas clearly annotated in this data (especially for RNA-
seq data of early year), we calculated the risk score by determining
the RNA-related expression level according to LNCipedia (Volders
et al., 2019) and catRAPID (Armaos et al., 2021), in which different
lncRNA transcripts were considered to belong to a certain gene if
they share at least one (partially) overlapping exon and reside on the
same DNA strand. In this way, transcripts were clustered into genes.
The risk score was thus calculated according to the gene expression
when lncRNA was not clearly annotated. Then, we used the
“survival” and “survminer” packages for prognostic analysis.
Finally, 123 patients with complete survival information and
transcriptome data were included in the validation cohort.

2.7.8 LncRNA Expression Verification in AML Cells
The LncRNAs were detected in AML cell lines derived fromHomo
sapiens with fluorescence in situ hybridisation (FISH) based on the
protocol (Duncan et al., 2019). The methods were as follows: The
specimens were permeabilised with cold 0.1% Triton X-100. The
pre-hybridisation buffer was discarded, and hybridisation was
performed using the LINC01436, AC073534.2 and LINC02593
probe overnight, respectively. After washing with SCC buffer, the
coverslip was dyed with 4′,6-diamidino-2-phenylindole (DAPI),
and the fluorescence test was conducted with laser scanning
confocal microscope. AML cell lines were selected as follows:
HL-60 (derived from the peripheral blood of patients with acute
promyelocytic leukaemia), U937 (derived from the peripheral
blood of patients with acute monocytic leukaemia), MV4-11
(derived from the peripheral blood of patients with
biphenotypic B myelomonocytic leukaemia with FLT3-ITD
mutation) and Kasumi-1 (derived from the peripheral blood of
patients with acute myeloblastic leukaemia with AML1-ETO
fusion gene positive). All cell lines were ATCC sources. Cells
were maintained in RPMI-1640 medium supplemented with
10% foetal calf serum (HyClone Laboratories, Logan, UT,
United States), 100 U/mL penicillin and 100 μg/ml streptomycin
at 37°C in a humidified atmosphere of 5% CO2.

3 STATISTICAL ANALYSIS

Data analyses were performed in R language (R4.0.2), and the
difference was considered significant when p < 0.05.

4 RESULTS

4.1 Establishment of the lncRNA Prognostic
Model for AML
4.1.1 Differentially Expressed lncRNAs in TCGA
Patients With AML
We obtained 149 AML samples with transcriptome data from
TCGA database. A total of 31 patients with the first 25% mutation
frequency were classified as the GU group (high mutation group,

FIGURE 2 | Forest plot of the univariate Cox regression analysis of seven
lncRNAs with prognostic value. The X-axis represents the risk ratio, and the
Y-axis represents the lncRNAs with prognostic value. Red represents a high-
risk factor, which is negatively correlated with the survival time of the
patient. Blue represents a low-risk factor, which is positively correlated with
the survival time of the patient.
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FIGURE 3 | Kaplan–Meier curves of high- and low-risk groups of elderly and non-elderly patients and male and female patients. In the Kaplan–Meier curve of
different clinical subgroups of patients with AML, the X- and Y-axes represent the time and probability of survival, whereas the red and blue lines represent the high- and
low-risk groups, respectively.
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mutCount≥19), and 24 patients with post 25%mutation frequency
were classified as the GS group (low mutation group, mutCount
≤3). The average expressions of lncRNAs in the GS and GU groups
were calculated by R language, differentially expressed lncRNAs
were screened using the “limma” R package and the threshold was
set to (logFC >1.0 and p < 0.05). Finally, 59 differentially expressed
lncRNAs were obtained (Supplementary Table S1). Among them,
heat maps of 20 upregulated and 20 downregulated differentially
expressed lncRNAs were drawn (Figure 1A). To further examine
the human functions these lncRNAs are involved in, we performed
KEGG and GO enrichment analyses of 59 target genes of
differentially expressed lncRNAs. The results (Figures 1B,C)
revealed that the most abundant genes in the KEGG were
enriched in “Herpes simplex virus 1 infection” pathway.
Regarding GO, the most enriched genes were in the ‘DNA-
binding transcription factor activity, RNA polymerase II-
specific’ process.

4.1.2 lncRNA Prognostic Risk Model for AML
To evaluate the prognostic value of lncRNAs in AML, 128
samples were randomly divided into the train and test groups
by R language random function. Thereafter, the differentially
expressed lncRNAs in the train group were analysed by Cox
regression analysis. Seven lncRNAs (AL645608.6, LINC01436,
AL645608.2, AC073534.2, LINC02593, AL512413.1, and
AL645608.4) related to prognosis were obtained, and their
corresponding forest maps were drawn. As shown in Figure 2,
among the seven lncRNAs, only the hazard ratio (HR) of
LINC01436 is greater than 1, which means that LINC01436 is
a risk factor for patients with AML and has a negative correlation
with the clinical prognosis; therefore, the higher the expression,
the worse the prognosis. The rest of the lncRNAs (AL645608.6
[HR = 0.934], AL645608.2 [HR = 0.923], AC073534.2 [HR =
0781], LINC02593 [HR = 0.879], AL512413.1 [HR = 0.681] and
AL645608.4 [HR = 0698]) appeared as protective factors, which

FIGURE 4 | Kaplan–Meier curves of high- and low-risk groups in the train, test, and overall groups. The X- and Y-axes represent the time and probability of survival,
whereas the red and blue lines represent the high- and low-risk groups, respectively.
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were positively correlated with the clinical prognosis of the
patients, i.e. the higher the expression, the better the
prognosis. Furthermore, we used “glmnet” and “survival” R
packages to perform multivariate Cox regression analysis of
the seven lncRNAs, and the key result of model construction

was obtained. As shown in Supplementary Tables S2, S3 of 7
lncRNAs (LINC01436, AC073534.2 and LINC02593) were
selected as major parameters to build the model, and they
were identified as the independent prognostic factors through
multivariate Cox regression analysis (coef [LINC01436] =

FIGURE 5 |Receiver operating characteristic (ROC) curve of the prediction efficiency of the train, test, and overall groups. The X- and Y-axes represent 1-specificity
and sensitivity, respectively. Corresponding ROC curve of the (A) 1-year survival rate and (B) 5-year survival rate.

FIGURE 6 | The X-axes of A, B, and C are all samples sorted according to the increasing values at risk. (A) Heat map of the lncRNAs related to the prognostic
model; the ordinate represents the three lncRNAs that make up the prognostic model. Red represents upregulation of gene expression, while blue represents
downregulation of gene expression. (B) Distribution of gene mutation frequency; the ordinate represents the mutation frequency of each sample. (C) Expression
frequency distribution of UBQLN4, the driver of genomic instability; the ordinate is the expression of UBQLN4 in each sample.
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0.070402, coef [AC073534.2] = −0.303302254, coef [LINC02593]
= −0.139241309). The risk score of each patient could be
calculated according to the regression coefficient and
expression value of the three lncRNAs.

4.2 Visualization, Evaluation, and Testing of
the lncRNA Prognostic Model
4.2.1 Analysis of the Clinical Characteristic Preference
Among Random Groups
To determine the consistency of the clinical characteristics during
model construction, clinical features of all samples were
compared by the chi-square test. As shown in Supplementary
Table S3, the p value between the train and test groups were all
>0.05, indicating that our model grouping has no characteristic
preference.

4.2.2 Clinical Grouping Verification of the Prognostic
Model
According to the clinical characteristics, patients were divided
into the elderly and non-elderly groups and male and female
groups. The “survival” and “survminer” R packages were used

to draw the Kaplan–Meier curves of the high- and low-risk
patients in the elderly and non-elderly groups and male and
female groups. As presented in Figure 3, the Kaplan–Meier
curve showed that the survival time of patients in the low-risk
group was significantly prolonged, and the median survival
time in the non-elderly group was 2.17 years, which was higher
than that in the high-risk group (0.84 years). In the elderly
group, the median survival time in the low-risk group
(1.58 years) was higher than that in the high-risk group
(0.50 years). In the male group, the median survival time of
the low-risk group (1.84 years) was higher than that of the high-
risk group (0.63 years). In the female group, the median survival
time of the low-risk group (1.84 years) was higher than that of
the high-risk group (0.75 years). In the low mutation frequency
group, the median survival time of the low-risk group
(1.17 years) was higher than that of the high-risk group
(0.66 years). In the high mutation frequency group, the
median survival time of the low-risk group (1.66 years) was
higher than that of the high-risk group (0.67 years). In the non-
M3 group, the median survival time of the low-risk group
(1.71 years) was higher than that of the high-risk group
(0.67 years). These results showed that the prognostic model

FIGURE 7 | (A) Heat map of all samples after the cluster analysis. The X-axis is the sample type, blue represents the genomic stable type and red represents the
genomic unstable type. The Y-axis represents differentially expressed lncRNAs, red represents upregulation, and blue represents downregulation. (B) Box diagram of
the mutation frequencies of the two types. (C) Expression map of the two types of LUNAR1. (D) Kaplan–Meier curves of the GU-like and GS-like groups. In the
Kaplan–Meier curve of different somatic mutation count of patients with AML, the X- and Y-axes represent the time and probability of survival, whereas the red and
blue lines represent the GU-like and GS-like groups, respectively.
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was not affected by the gender, age, FAB subtypes and mutation
frequency of the patients, and the lncRNA prognostic
prediction model demonstrated good applicability when
patients were divided into high- and low-risk groups
according to the clinicopathological characteristics,
suggesting that the model is an independent index for
predicting the prognosis of patients with AML.

4.2.3 Verification of Survival Prediction
According to the prognostic model, we constructed the high- and
low-risk Kaplan–Meier curves of the train, test and overall groups
and calculated the p value of the high and low survival curves. The
median survival times were 1.84 and 0.67 years in the low- and
high-risk groups of the overall group (Figure 4), 1.715 and
0.58 years in the train group, and 1.92 and 0.92 years in the test
group, respectively. These results revealed that the survival rate of
the low-risk group was higher than that of the high-risk group,
indicating that the lncRNA prognostic prediction model showed
good applicability for the survival prediction of patients with AML.

4.2.4 ROC Curve
To analyse the prognostic model, we constructed the ROC curves
(Figure 5) of the 1-year and 5-year survival rates in the train, test
and overall groups. As shown in Figure 5, the AUCs of the 1-year

and 5-year survival rates were 0.876 and 0.713 in the train group,
0.663 and 0.799 in the test group, and 0.782 and 0.731 in the
overall group, respectively. The results revealed that the lncRNA
model had good prediction accuracy within 1–5 years and can
predict the survival of patients with AML in other independent
cohorts, and the accuracy of this model in predicting the 1-year
survival rate (AUC = 0.782) was better than that of the 5-year
survival rate (AUC = 0.731). The p values of the above-mentioned
analyses were all less than 0.05.

4.2.5 Relationship Between the Prognostic Model and
Clinically Known Prognostic Genes
Relationship Between Sample Risk and Gene Expression,
Patient Risk and Genomic Instability
To evaluate the relationship between predictive model scores and
gene expression, gene mutation frequency, and mutation-driven
genes, we ranked the samples of the train, test and overall groups
according to the risk scores from low to high (from left to right).
Thereafter, the expression heat maps, gene mutation frequency
distribution maps and box maps of related genes of the three
lncRNAs in the prognostic model were drawn. As shown in
Figure 6, the abscissa presents all samples sorted according to
the increasing risk prediction value of the model. The expressions
of AC073534.2 and LINC02593 decreased gradually with the

FIGURE 8 | Kaplan–Meier curves of the genomic stable type and genomic unstable type under different genemutations. The X-axis represents time, and the Y-axis
represents survival probability.
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increase in the risk score (Figure 6A). The median frequency of
gene mutation in the low-risk group (i.e. 16) was higher than that
in the high-risk group (i.e. 12) (Figure 6B). The median frequency
of gene mutation in the low-risk group was higher than that in the
high-risk group. The median UBQLN4 expression of the genes
driven by genomic instability in the low-risk group was 12.39
(mean, 13.12), whereas that of the high-risk group was 11.85
(mean, 12.16) (Figure 6C). From Figure 6, we can conclude
that the frequency of the gene mutation and genomic instability
are negatively correlated with the risk score of the patients.

Relationship Between the Prognostic Model and Known
Mutant Genes Such as TP53
Figure 7 shows the heat map after the cluster analysis. Figure 7A
presents the lncRNA expression heat map of the GS type (GS-
like) and GU type (GU-like). Figure 7B presents a significant
difference in the mutation frequency between the two groups (p <
0.014). A significant difference was found in the expression of the
visible gene LUNAR1 (p < 0.05) (Figure 7C). As presented in
Figure 7D, the Kaplan–Meier curve showed that the survival time
of patients in the GU-like group was significantly prolonged, with

FIGURE 9 | Histogram of the mutation frequency of common mutation genes in the train, test and overall groups. The X-axis represents the high- and low-risk
groups, and the red on the Y-axis represents the ratio of samples with corresponding gene mutations.

TABLE 1 |Clinical characteristics of patients from the TARGET database included
in the validation study.

Children (n = 155)

Sex
Male 79
Female 76

NPM mutation
Yes 7
No 143

FLT3 PM
Yes 11
No 144

FLT3/ITD positive?
Yes 13
No 142

CNS disease
Yes 10
No 145

Life status
Alive 79
Dead 76

Abbreviation: PM, point mutation; CNS, central nervous system
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a median survival time of 1.340 years, which was higher than that
in the GS-like group (0.666 years). This means that patients with
higher mutation frequencies have better overall survival (OS).
Thereafter, the Kaplan–Meier curves of different gene mutations
in the GS (GS-like) and GU (GU-like) groups were drawn. In
Figure 8, among the first six genes with the highest mutation
frequency, only the unstable gene group and the mutant TP53-
positive group had a synergistic effect on the survival curve (p <
0.001). The specific reason is not clear, which may be related to
the chemical resistance and high risk of recurrence of TP53
mutation (Döhner et al., 2010; Stengel et al., 2017; Welch,
2018; Barbosa et al., 2019). The effect of other gene mutations

on the survival rate of gene instability had no clinical significance.
Thereafter, we drew the bar chart of the mutation frequency of
common genes in the train, test and overall groups. Figure 9
shows no significant difference in the expressions of mutant
DNMT3A, FLT3, IDH2, NPM1, RUNX1, and TP53 among the
groups, indicating that the known prognostic genes do not affect
the prediction of high and low risk in the prognostic model and
that the risk score can be used as a prediction tool independent of
the current prognostic-related genes.

4.3 Applicability of the Model in Child
Patients
The clinical characteristics of child samples from the TARGET
database are summarized in Table 1. The Kaplan–Meier curve in
Figure 10 shows that the median survival time of children is
3.67 years, which is higher than that of adults. In conclusion, the
prognosis of the children group was significantly better than that
of the adult high-risk group, and no significant difference was
found between the children and adult low-risk groups. This
finding suggested that the prediction model was not suitable
for disease prediction and evaluation in children.

4.4 External Verification
Patients with relatively short survival time (OS ≤ 30 days) were
excluded. Asmentioned in 4.2.5.2 of the Results section, highmutant
TP53 expression could most independently affect OS. Patients with
high TP53 mutation expression were also removed from the
analysis. Finally, we performed a prognostic analysis in the
validation cohort, which consisted of 123 samples with complete
survival information and transcriptome data. The clinical
characteristics are summarized in Table 2. The model was
applied to stratify these patients into low-risk and high-risk
groups. The median survival times of the low- and high-risk
groups were 2.89 and 1.19 years, respectively, which indicated

FIGURE 10 | Comparison of the children group from the TARGET database with the high- and low-risk subgroups of the adult group. In the Kaplan–Meier curve,
the X- and Y-axes represent the time and probability of survival, respectively.

TABLE 2 | Clinical characteristics of patients from GSE106291 included in the
validation study.

High risk (n = 56) Low risk (n = 67) P

Age 0.908562
≥60 27 33
<60 29 34
Sex 0.192443
Male 26 39
Female 30 28
RUNX1_mutation 0.642099
Yes 11 11
No 45 56
RUNX1-RUNX1T1_fusion 0.476547
Yes 1 4
No 55 63
Treatment response 0.641233
resistant 19 20
sensitive 34 43
Life status 0.115523
Alive 15 27
Dead 41 40

Abbreviation: RUNX1, runt-related transcription factor 1; RUNX1T1, rUNX1 partner
transcriptional co-repressor 1. Significant P value is in bold typeface.
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that the validation efficiency of the model in an external cohort is
acceptable (Figure 11).

4.5 LncRNA Expression Pattern Verification
in AML Cell Lines
To determine the expression patterns of LINC01436,
AC073534.2 and LINC02593 in various AML cells, we

performed a FISH assay in four AML cell lines that may
represent common clinical conditions. The results showed
that LINC01436 was more expressed in MV4-11, but less
expressed in Kasumi-1, AC073534.2 was significantly reduced
in THP-1 and MV4-11 cells and LINC02593 was less found in
all cell lines, but in Kasumi-1 (Figure 12). FLT3-ITD mutation
is correlated with poor prognosis, and AML1–ETO fusion gene
is associated with good survival in clinical practice. The above

FIGURE 11 | Using the method of LNCipedia (Volders et al., 2019) and catRAPID (Armaos et al., 2021), transcripts are clustered into genes. (A,B) indicate the
presence of protein nucleic-acid-binding domains or RNA recognition motifs in LINC01436 and LINC02593. (C) Kaplan–Meier curves of high- and low-risk groups in the
validation cohort. The X- and Y-axes represent the time and probability of survival, whereas the red and blue lines represent the high- and low-risk groups, respectively.
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expression pattern of lncRNA may indicate their role in
prognosis.

5 DISCUSSION

AML is a serious threat to human health. However, a quantitative
index to predict the prognosis of AML is still lacking. Previous
studies on AML have mainly focused on mutant genes, namely,
FLT3, IDH2, NPM1, RUNX1, TP53, and DNMT3A (Ofran, 2014;
Sudhindra and Smith, 2014; Ohgami et al., 2015; Papaemmanuil
et al., 2016), miRNA (Ali Syeda et al., 2020) and mRNA (Blagden
and Willis, 2011). Researchers have extensively investigated the
expression patterns of mRNAs and miRNAs, and many mRNAs
or miRNAs have been identified as prognostic markers for patients
with AML (Ge et al., 2019; Ibraheem et al., 2019; Elsayed et al., 2020).
In recent years, a new class of noncoding RNA (lncRNA) has
gradually become a research hotspot in various cancer fields (Ferrè
et al., 2016; Paraskevopoulou and Hatzigeorgiou, 2016; Qian et al.,
2019). RNA, which lacks protein-coding ability, is defined as
noncoding RNA, which accounts for >98% of the human gene
sequence. Approximately 90% of the noncoding sequences are
transcribed, producing numerous noncoding transcripts, in which
RNA with a length of more than 200 nucleotides is also known as
lncRNA (Jathar et al., 2017). Some studies have reported the
abnormal expression of lncRNAs in the occurrence and
development of AML and found that some lncRNAs could be
highly related to the prognosis (Garzon et al., 2014). Although some
previous studies have confirmed a series of differences in the
expression of lncRNAs in AML, the research on the value of
lncRNA in predicting the clinical prognosis of AML is still
limited. Except for our study, according to the expression and
mutation degrees of FLT3, DNMT3A, TP53 and other genes and
chromosome changes, cases are classified as low, middle and high
types; as a result, the survival time of patients was roughly estimated
(Infante et al., 2018). However, a good quantitative model to analyse

the survival of patients has not yet been established. Therefore, this
study attempted to construct a prognostic risk model of lncRNA in
patients with AML, to determine a potentially clinically applicable
lncRNA prognostic model and to examine its high repeatability and
practicability in different clinical groups.

Based on the mutation data of 149 samples, we used R language
to divide the patients into a high and a low mutation group.
Thereafter, differential lncRNA expressions of the high and low
mutation groups were screened. We screened out seven lncRNAs
related to prognosis, namely, AL645608.6, LINC01436, AL645608.2,
AC073534.2, LINC02593, AL512413.1, and AL645608.4, using
univariate Cox regression analysis and established the prognostic
risk model formula based on multivariate Cox regression. Among
them, the regression coefficient of LINC01436 was greater than 0,
which was negatively correlated with the survival time, whereas the
regression coefficients of two lncRNAs (AC073534.2 and
LINC02593) were less than 0, which were positively correlated
with the survival time. We extracted the regression coefficients of
lncRNAs through multivariate Cox analysis and constructed three
prognostic risk models composed of lncRNAs. Of the three
lncRNAs, LINC01436 has been reported in gastric cancer, lung
cancer and other diseases (Yuan et al., 2019; Lu et al., 2020; Xu et al.,
2020; Zhang et al., 2020). However, no studies have investigated
AC073534.2 and LINC02593. Furthermore, we used the prognostic
model to calculate the risk score of each sample according to the
median risk score. The sample was divided into high- and low-risk
groups. We used R language to draw relevant heat maps, ROC
curves and Kaplan–Meier curves. The ROC curve showed that the
prognostic model was stable for predicting the 1-year and 5-year
survival of patients with AML, indicating that the model has a good
predictive ability. Moreover, under different clinical characteristics,
theOS rate of the high-risk groupwas significantly lower than that of
the low-risk group, indicating that the prognostic model can
distinguish patients with different prognoses. Therefore, we are
certain that the prognostic model can be used as an independent
prognostic marker with a high clinical value.

FIGURE 12 | FISH staining in LINC01436, AC073534.2, and LINC02593 in AML cell lines HL-60, U937, MV4-11, and Kasumi-1 (original magnification ×630).
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However, this study has some limitations. First, our AML
sample size and clinical data are limited. Second, our research
results are preliminary, mainly based on a previously published
dataset for secondary mining and analysis and thus lacks
functional verification of lncRNAs. Therefore, further
prospective studies are needed to verify our findings.

In conclusion, we have developed a lncRNA prognostic model
that is significantly related to the prognosis of patients with AML.
This model can accurately stratify patients and help determine
whether patients are more active in treatment. Moreover, the
predictive ability of the prognostic model is not influenced by
clinicopathological factors such as age and sex; therefore, it has
good applicability. Compared with the known prognostic
biomarkers, the developed model is more convenient and
intuitive in predicting the prognosis of patients with AML. If
our prognosis model can be combined with the known
biomarkers of AML molecules like FLT3-ITD, C-KIT
mutation, et al. we can further screen high-risk groups and
guide the clinical formulation of individualised treatment
plans. Therefore, we believe that the prognostic model has a
wide application prospect.
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A Prognostic Model Based on mRNA
Expression Analysis of Esophageal
Squamous Cell Carcinoma
Ke Liu1,2, Ye-Lin Jiao3, Liu-Qing Shen2, Pan Chen2, Ying Zhao2, Meng-Xiang Li1,2,
Bian-Li Gu2, Zi-Jun Lan2, Hao-Jie Ruan1, Qi-Wei Liu2, Feng-Bo Xu2, Xiang Yuan2, Yi-Jun Qi2*
and She-Gan Gao1,2*

1School of Information Engineering, Henan University of Science and Technology, Luoyang, China, 2Henan Key Laboratory of
Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital,
The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China,
3Department of Pathology, Luo Yang First Peoples’s Hospital, Luoyang, China

Background: The aim of this study was to identify prognostic markers for esophageal
squamous cell carcinoma (ESCC) and build an effective prognostic nomogram for ESCC.

Methods: A total of 365 patients with ESCC from three medical centers were divided into
four cohorts. In the discovery phase of the study, we analyzed transcriptional data from
179 cancer tissue samples and identified nine marker genes using edgeR and rbsurv
packages. In the training phase, penalized Cox regression was used to select the best
marker genes and clinical characteristics in the 179 samples. In the verification phase,
these marker genes and clinical characteristics were verified by internal validation cohort (n
= 58) and two external cohorts (n = 81, n = 105).

Results: We constructed and verified a nomogram model based on multiple clinicopathologic
characteristics and gene expression of a patient cohort undergoing esophagectomy and
adjuvant radiochemotherapy. The predictive accuracy for 4-year overall survival (OS) indicated
by the C-indexwas 0.75 (95%CI, 0.72–0.78), whichwas statistically significantly higher than that
of the American Joint Committee on Cancer (AJCC) seventh edition (0.65). Furthermore, we
found two marker genes (TM9SF1, PDZK1IP) directly related to the OS of esophageal cancer.

Conclusion: The nomogram presented in this study can accurately and impersonally
predict the prognosis of ESCC patients after partial resection of the esophagus. More
research is required to determine whether it can be applied to other patient populations.
Moreover, we found twomarker genes directly related to the prognosis of ESCC, which will
provide a basis for future research.

Keywords: esophageal squamous cell carcinoma, marker gene, nomogram, prognosis, dimensionality reduction (DR)

INTRODUCTION

Esophageal cancer (EC) is a very common digestive tract tumor with the sixth highest mortality rate
in the world, and there are about 150,000 deaths from EC in China every year. (Rubenstein and
Shaheen, 2015; Liang et al., 2017) The histological types of EC mainly include esophageal squamous
cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). In 2018, more than 570,000 people
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worldwide were diagnosed with EC, and more than 500,000
people died of EC in the same year. (Enzinger and Mayer,
2003) Most of the new cases and deaths in the world occur in
less developed areas. (Gao et al., 2018) Histologically,
approximately 90% of EC cases in China are ESCC.
(International Agency for Research on Cnacer, 2012) ESCC is
characterized by high aggressiveness and poor prognosis. (Qi
et al., 2012) Despite various comprehensive treatments, including
surgery, radiotherapy, and chemotherapy, the 5-year survival rate
of patients is still less than 22%. (Zhao et al., 2012) The significant
geographical variation in incidence means that environmental
and genetic factors could play major roles in the development of
EC. Smoking and drinking are as known as risk factors for EC,
whereas high consumption of vegetables and fruits is likely to
prevent EC. (Ando, 2015; Owen et al., 2018; Wu et al., 2018)

At present, the tumor-node-metastasis (TNM) staging system
ignores the important clinical factors of tumor prognosis, and the
great difference in clinical course leads to the inaccuracy of TNM
staging, so it is necessary to establish a new ESCC prognosis grading
system. (Cao et al., 2016; Duan et al., 2016) A nomogram can
successfully quantify risk prediction by incorporating and illustrating
important factors for tumor prognosis. (Wierda et al., 2007; Zhang
et al., 2018; Sun et al., 2019) Compared with the TNM staging
system, a nomogram can not only predict the survival of all types of
cancer patients more accurately but also quantify the outcome of
survival prediction by using clinical factors and other factors
affecting the prognosis of cancer. Thus, the nomogram is a new
prognostic criterion that produces a quantified risk probability of
clinical survival by creating a linear graph of the prediction model
instead of the traditional method. (Mariani et al., 2005; Sternberg,
2006; Wang et al., 2006) We hypothesized that combining multiple
clinicopathologic characteristics and signature gene expression levels
can improve the prediction result of ESCC, but there remains a
paucity of reliable genetic markers. TGF-β1 is an efficient prognostic
biomarker for ESCC patients. HER-2 can be used as a potential
molecular marker for ESCC molecular typing. But, HER-2 is not an
efficient prognostic biomarker and potential therapeutic target for
Iranian ESCC patients. (Heidarpour et al., 2020) Using the partial
likelihood of the Cox model, we recently excavated a gene set that is
closely related to the overall survival (OS) of ESCC patients.

To the best of the authors’ knowledge, this paper presents the
first ESCC nomogram model based on multiple clinicopathologic
characteristics and gene expression of a patient cohort undergoing
esophagectomy and adjuvant radiochemotherapy. Furthermore,
we used an independent cohort from The Cancer Genome Atlas
(TCGA) database for external validation. Another independent
cohort of 105 ESCC patients was employed to verify the
effectiveness of the gene that we found. This study also
compared the nomogram with the TNM staging system,
proving that the model is more effective in survival prediction.

MATERIALS AND METHODS

Patient Selection
We downloaded transcriptome sequencing data of 179 ESCC
samples from the GEO database (GSE53625) (Li et al., 2014). This

set of samples, which served as the primary cohort, was from the
Chinese Academy of Medical Sciences (CAMS). For internal
validation, we used a computer to randomly select 58 samples
from the primary cohort and denoted this set as the internal
validation cohort.

For external validation, we first selected samples from the
open-access and public TCGA database. Transcriptome
sequencing data and follow-up data of 81 samples were
downloaded from the TCGA database and denoted as the
external validation one cohort. A second cohort of 105 ESCC
samples for external validation included 38 samples from Anyang
Cancer Hospital (ACH), The Fourth Affiliated Hospital of Henan
University of Science and Technology, and 67 samples from
Henan Key Laboratory of Cancer Epigenetics (HKLCE), The
First Affiliated Hospital of Henan University of Science and
Technology. This cohort was denoted as external validation
two cohort.

Follow-Up and Classification of Cause of
Death
Most of the patients were followed up for 48–72 months. In this
study, the statistics were made according to the 4-year survival
period. Survivors over 48 months after surgery were counted as
living, and survival periods greater than 48 months were
calculated as 48 months.

Study Design
We divided this study into three phases to identify and validate
OS-related clinical characteristics and gene sets in ESCC patients.
During the discovery phase, we processed the transcriptome
sequencing data of the primary cohort to obtain 16,738 genes
and then selected important gene sets through two algorithms.

FIGURE 1 | Research flowchart, HKLCE, The First Affiliated Hospital of
Henan University of Science and Technology. EdgeR and rbsurv algorithm,
School of Information Engineering, Henan University of Science and
Technology.
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During the training phase, a penalized Cox regression model was
used to identify the best gene sets (Figure 1). During the
verification phase, the gene sets that we chose were validated
in the internal validation cohort, external validation one cohort,
and external validation two cohort. These three cohorts included
patients from multiple medical centers.

Meanwhile, We used qPCR to verify external validation
sample 2, in order to obtain results widely used in clinical
practice, formalin fixed paraffin embedded samples were used
with a minimum tumor cell composition of 80%. Our research
program was approved by the ethics committees of the research
centers, and 105 samples were reassessed and confirmed by
pathologists.

Dimension Reduction Process
Initially, GSE53625 data were processed with the annotation
package to obtain expression spectrum and probe ID. The gene
expression value was combined with the annotation file to obtain
the complete gene expression value, and the edgeR package was
used to find the differential gene. Then, the rbsurv package was used
to calculate the dimensionality reduction of the differential gene
(max.n.genes = 10, n. iter = 10, n. fold = 3, n. seq = 3, seed = 1,234).

Construction and Validation of the
Nomogram
For the development of the nomogram, we found a number of
clinical characteristics that have been shown to be associated with
survival as a prognostic characteristic. (Sun et al., 2019) These
clinical characteristics (p < 0.05) included Age, Sex, Smoking,
Drinking, Tumor grade, Tumor location, T stage, N stage, TNM
stage, Arrhythmia, Pneumonia, Anastomotic leak, and Adjuvant
therapy. For each clinical characteristic, we used a multivariate
Cox proportional risk model to evaluate the projected 4-year OS.
Nomogram validation was divided into the following three stages.
First, internal validation was conducted using the internal
validation cohort, and the C-index was estimated by analyzing
the area under the curve of the receiver operating characteristic
curve. Next, by means of regression analysis, the correction curve
was obtained to judge whether the predicted survival probability
was consistent with the observed survival probability. (Qiu et al.,
2017) The calibration curve adopted Bootstrap resampling (1,000
resampling). Last, external validation was conducted using the
external validation cohorts, and Cox regression analysis was
performed using the total score of each patient as an
independent characteristic. The C-index and calibration curve
were obtained by regression analysis.

Statistical Analyses
Overall survival was defined as the time from the date of initial
treatment until the date of death because of ESCC or the date of
the last follow-up. The OS curve was estimated by the Kaplan-
Meier method and compared with the log-rank test stratified by
prognostic factors. The rbsurv packages were used to reduce the
dimensions of the data within RStudio Version 1.1.463 software.
We built a nomogram in a previous study. On the basis of
multivariate Cox analysis results, this nomogram was compiled

by R through survival and the RMS software package. (Frank and
Harrell, 2014)

RESULTS

Clinicopathologic Characteristics of
Patients
The research flowchart is shown in Figure 1. The demographics
and clinical characteristics of patients with ESCC are presented in
Table 1. In the primary cohort, the median follow-up time was

TABLE 1 | Demographics and clinicopathologic characteristics of patients with
ESCC.

Characteristics N Primary cohort (n = 179)

Hazard ratio CI95 p-value

Age — 1.62 1.1–2.39 0.015
<60 91 References — —

≥60 88 1.6 1.1–2.3 0.02
Sex — 0.81 0.5–1.31 0.393
Female 33 Reference — —

Male 146 0.78 0.49–1.3 0.307
Smoking — 0.75 0.5–1.11 0.147
No 65 Reference — —

Yes 114 0.75 0.37–1.1 0.145
Drinking — 0.86 0.58–1.27 0.449
No 73 Reference — —

Yes 106 1.43 0.79–2.6 0.455
Tumor location — 1.17 0.86–1.6 0.309
Lower 62 Reference — —

Middle 97 1.1 0.74–1.7 0.562
Upper 20 1.7 0.9–3.1 0.101

Tumor grade — 1.24 1.03–1.48 0.020
Moderately 98 References — —

Poorly 49 1.63 1.07–2.5 —

Well 32 0.99 0.57–1.7 —

T stage — 1.28 0.97–1.69 0.077
T1 12 References — —

T2 27 1.1 1.25–2.0 0.863
T3 110 1 0.7–2.3 0.935
T4 30 1.7 0.72–4.0 0.226

N stage — 1.44 1.18–1.76 <0.001
N0 83 Reference — —

N1 62 1.30 0.64–2.6 0.002
N2 22 1.27 0.49–3.3 0.017
N3 12 1.82 0.66–5 0,004

TNM stage — 2.12 1.47–3.05 <0.001
I 10 Reference — —

II 77 1.75 0.55–5.8 —

III 92 3.6 1.14–11.5 —

Arrhythmia — 1.10 0.71–1.71 0.667
No 126 Reference — —

Yes 43 1.1 0.73–0.17 —

Pneumonia — 1.46 0.74–2.89 0.278
No 164 Reference — —

Yes 15 1.4 0.72–2.8 031
Anastomotic leak — 1.34 0.62–2.9 0.450
No 127 Reference — —

Yes 12 1.3 0.63–2.7 0.504
Adjuvant therapy — 1.38 0.92–2.07 0.115
No 45 Reference — —

Unknown 30 2.7 1.4–5.1 0.003
Yes 104 2.3 1.3–3.9 0.003
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34.7 months (range, 23.4–45.9 months). For the external
validation two cohort, of 140 patients with ESCC who
received partial esophagectomy during the study period, 105
met the inclusion criteria to enter this study. The median
survival time of these 105 patients was 35 months (95% CI,
27.9–42 years). Table 1 lists the demographic and
clinicopathological characteristics of patients in the primary
cohorts.

Independent Prognostic Factors in the
Training Set
The results of the univariable analysis are shown in Table 1.
Younger age (<60 vs. ≥60 p = 0.015) and TNM stage I (I vs. II
vs. III p < 0.001) were associated with better prognosis.
In addition, age (p = 0.015 vs. p = 0.037) and TNM stage
(p < 0.001 vs. p = 0.001) were correlated with OS in both the
primary cohort (n = 179) and the internal validation
cohort (n = 58).

Selection of Gene Set
In total, nine genes were excavated by two algorithms, the edgeR
package and rbsurv package. First, heatmap and similarity
analysis were performed for these genes. Heatmap
demonstrating unsupervised hierarchical clustering of nine
genes for patients from primary cohort (Figure 2A). These
nine genes were clustered into four groups with obvious
differences, among which TM9SF1, CKAP2 and PDZK1IP1

were independently grouped. CKAP2 and TM9SF1 were
highly expressed in the left half, while PDZK1IP1 was highly
expressed in the right half. Correlation analysis of the nine genes
found that they were directly related to each other except for
TM9SF1 and PDZK1IP1 (Figure 2B). Three stars in Figure 2B
represent p values less than 0.001. Figure 2 shows that TM9SF1
and PDZK1IP1 are independent prognostic factors and can be
used as marker genes.

Next, we used univariate and multivariate Cox analyses to
discriminate the marker genes in the primary cohort (n = 179).
The results are shown in Table 2. In the univariate cox analysis,
all nine genes were correlated with survival, and six genes with
p-value less than 0.001 were selected for multivariate Cox
analysis. Multivariate Cox analysis demonstrated that
PDZK1IP1 (high expression vs. low expression, p = 0.031)
and TM9SF1 (high expression vs. low expression, p < 0.001)
were independent risk factors for OS (Table 2). Therefore,
PDZK1IP1 and TM9SF1 were defined as gene sets directly
related to prognosis.

To classify gene expression values, we determine cutoff values
using ggplot2 packages in the primary cohort. The results are
listed in Appendix Figure 3A and Figure 3C (TM9SF1 cutpoint =
12.4, PDZK1IP1 cutpoint = 14.78). A violin plot of the marker
genes was drawn using primary cohort. The expression value of
PDZK1IP1 gene was high in normal, which is significantly
different from cancer (Figure 3D, p < 0.001). TM9SF1 gene
has high expression value in cancer, which is significantly
different from normal (Figure 3B, p < 0.001).

FIGURE 2 | The heatmap and similarity analysis of the expression of nine genes for patients from primary cohort. (A) Heatmap demonstrating unsupervised
hierarchical clustering of nine genes for patients from primary cohort. (B) Similarity analysis of the expression of nine genes for patients from primary cohort.
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Independent Prognostic Factors in the
Primary Cohort
Univariate Cox analysis results show that, in the primary cohort, the
prognostic factors that predicted poor OS were age ≥60 years, TNM
stages II and III, high expression of TM9SF1, and low expression of
PDZK1IP1. We performed a multivariate Cox analysis of gene set
and clinical clinicopathologic characteristics. The results are listed in
Appendix Figure 4. Multivariate Cox analysis demonstrated that age
(p = 0.031), TNM (p = 0.004), PDZK1IP1 (p = 0.001), and TM9SF1
(p = 0.001) were independent risk factors for OS.

Nomogram Development and Validation
The results of multivariate cox analysis were used to establish a
nomogram for the predicted 4-year OS (Figure 5A). As age, TNM,
PDZK1IP1, and TM9SF1 were independent risk factors for survival
in multivariate Cox analysis, these variables were incorporated into
the nomogram. In the internal validation, the predictive accuracy for
4-year OS as indicated by the C-index was 0.75. The 4-year OS
probabilistic calibration chart shows that the actual observation
results have a high correlation with the prediction results of the
nomogram (Figure 5B).

TABLE 2 | Univariate and multivariate Cox analysis of the expression of nine genes for patients from primary cohort (n = 179).

Characteristics Univariate cox analysis Multivariate cox analysis

Hazard ratio 95% CI p-value Hazard ratio 95% CI p-value

ABLIM1 0.5 0.34–0.73 <0.001 0.75 0.48–1.16 0.191
CKAP2 2.14 1.24–3.71 0.006 — — —

CRCT1 0.46 0.30–0.70 <0.001 0.80 0.50–1.28 0.349
ERBB3 0.46 0.31–0.68 <0.001 0.67 0.43–1.04 0.075
EXPH5 0.4 0.22–0.72 0.002 — — —

LYPD3 0.35 0.19–0.64 <0.001 0.52 0.26–1.03 0.059
PDZK1IP1 0.3 0.14–0.61 <0.001 0.38 0.16–0.91 0.031
SPRR2B 0.45 0.27–0.75 0.002 — — —

TM9SF1 2.13 1.44–3.14 <0.001 2.09 1.38–3.17 <0.001

The bold values denoted in Table 2 represent selected marker genes in this study.

FIGURE 3 | PDZK1IP1 and TM9SF1 were defined as marker genes (A,C)Cutpoint of the marker genes was obtained. (B,D) Violin plot showed that the expression
value of PDZK1IP1 gene was high in normal, TM9SF1 gene has high expression value in cancer.
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FIGURE 4 | Multivariate cox analysis of the gene set and clinicopathologic characteristics from primary Cohort (N = 179).

FIGURE 5 | Nomogram and calibration curve of ESCC patients. (A) To use the nomogram, each variable has a patient’s assignment on its axis, and a line is drawn
upward to determine the number of points for each variable’s value. The sum of these points is located on the total points axis, and then a perpendicular line is then drawn
downwards to the survival axis to determine the 1-year, 3-year, and 4-year OS probability. (B) The calibration curve for the prediction of 4-year OS based on the internal
validation cohort. (C) The calibration curve for the prediction of 4-year OS based on the external validation two cohort. In (B) and (C), the OS prediction of
nomogram probability is plotted on the x-axis, and the real OS is plotted on the y-axis.
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The nomogram was externally verified by the calibration plot
in Figure 5C as well as by calculating the bootstrap C statistics of
105 patients in the external validation two cohort. In the external
verification stage, the C-index of the 4-year OS nomogram was
predicted to be 0.72 (Figure 5C), indicating that the model has a
higher discrimination ability. The calibration curve shows that
the calibration effect of the nomogram is good; the 4-year OS
showed maximum consistency between the actual observation
and the nomogram prediction.

Performance of the Nomogram in
Stratifying Risk of Patients
We determined the truncation by dividing the patients in the training
cohort into four subgroups based on their total scores (score: 0 to 126,
127 to 189, 190 to 229, and ≥230), where each subgroup corresponds
to a different prognosis (Table 3). After applying the cutoff values to
sort patients in each cohort, stratification into different risk subgroups
resulted in significantly different Kaplan–Meier curves for survival
outcomes in each group (Figures 6A–C). The survival curve for
subgroups sorted according to TNM stage showed worse
performance as shown by the survival rate of stage I being lower
than that of stage II (Figure 6F). The grouping result by the
nomogram score was observably better than that by TNM stage
(p < 0.0001 vs. 0.00019, 0.0093 vs. 0.01, <0.0001 vs. 0.025).

At the same time, we performed sub-group analysis of
adjuvant therapy and TNM stage in the primary cohort,
stratification into different risk subgroups allowed significant
distinction between Kaplan-Meier curves for survival outcomes
within each TNM stage, age and adjuvant therapy (Figure 7).

Validating the Marker Genes
In order to verify the stability of the marker genes, we performed
validation analysis in the primary cohort and two external
validation cohorts. In the primary cohort, we divided the 179
samples into a high TM9SF1 expression group with 56 samples

and a low TM9SF1 expression group with 123 samples (p < 0.001;
Figure 6G). Similar analyses showed that 18 samples with high
TM9SF1 expression had poorer prognosis than 63 samples with
low TM9SF1 expression in the external validation one cohort (p =
0.0021; Figure 6H), and similar results were found in the external
validation two cohort (p = 0.0077; Figure 6I).

For another marker gene, in the primary cohort, we successfully
divided the 179 samples into a high PDZK1IP1 expression group
with 28 samples and a low PDZK1IP1 expression group with 151
samples (p = 0.0014; Figure 6J). Similar analyses showed that 71 high
PDZK1IP1 expression patients had better prognosis than 10 low
PDZK1IP1 expression patients in the external validation one cohort
(p = 0.071; Figure 6K), and 52 high PDZK1IP1 expression samples
had better prognosis than 53 low PDZK1IP1 expression samples in
the external validation two cohort (p = 0.0085; Figure 6L). Together,
these results indicate that PDZK1IP1 and TM9SF1 can be defined as
marker genes directly related to prognosis.

DISCUSSION

Due to the significant heterogeneity of ESCC in individual patient
survival, the prediction of survival using the TNM staging system
is inaccurate. (Sun et al., 2019) It is necessary to develop a new
ESCC prognosis grading system. Therefore, we aimed to develop
a nomogram model that uses gene expression values to predict
long-term survival in patients with operable ESCC.

In this study, we determined that age and TNM stage were
independent prognostic factors through univariate and
multivariate Cox analyses of clinical characteristics. Age and
TNM staging were highly consistent with previous studies on
ESCC risk factors. Meanwhile we used edgeR package to screen
differential genes and selected nine significant genes by using the
rbsurv package in the discovery phase. Then we narrowed the
selection down to two marker genes in the training phase. Finally,
we verified the marker genes using an internal validation cohort
and two external validation cohorts, which included samples
from the GEO database and the TCGA database. According to
the cutoff value of marker genes, we can divide ESCC cases into
two subgroups with significantly different high or low risk of
death. ESCC patients with high expression of PDZK1IP1 had
worse prognosis than those with low expression, suggesting that
PDZK1IP1 was a negative factor for ECmortality (Figures 6G–I).
In contrast, TM9SF1 expression levels were correlated with better
prognosis, suggesting that TM9SF1 was a positive factor for EC
mortality (Figures 6J–L). There have been reports that the TGF-
β1,HER-2 and Smad4 are associated with the development of
ESCC, and the low quality of HER-2 as a prognostic biomarker in
ESCC. (Heidarpour et al., 2020) HER-2 expressed in a variety of
tumor tissues including primary breast tumors and tumors from
small bowel, esophagus, kidney and mouth. The effect of
PDZK1IP1 and TM9SF1 on ESCC is not clear. PDZK1IP1
expressed at significant levels only in a single epithelial cell
population, the proximal tubular epithelial cells of the kidney
as well as diffusely expressed in various carcinomas originating
from kidney, colon, lung and breast. There are reports that
PDZK1IP1 interacts with Smad4 and thereby suppresses the

TABLE 3 | Point assignment and prognostic score.

Variable name Score Estimated
4-year OS (%)

Age, years — —

<60 0 —

≥60 32 —

TNM stage —

I 0 —

II 54 —

III 93 —

TM9SF1 expression — —

High 0 —

Low 51 —

PDZK1IP1 expression —

High 100 —

Low 0 —

Total prognostic score
0–126 — 70
127–189 — 44
190–229 — 24
≥230 — 12
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TGF-β signaling pathway. (Ikeno et al., 2019) TM9SF1 Plays an
essential role in autophagy. There are reports that TM9SF1 as a
collaborative EBAG9 interactor, which regulates epithelial-
mesenchymal transition (EMT) in cancer cells (Miyazaki et al., 2018).

Therefore, PDZK1IP1 and TM9SF1 are defined as marker genes
directly related to prognosis. These two marker genes may have
clinical significance for customized follow-up and treatment of ESCC
patients.With these twomarker genes, low-risk patients can avoid the
toxic side effects of adjuvant therapywhereas high-risk ESCCpatients
can receive more rigorous monitoring and treatment regimens to
prevent their condition from worsening (Cao et al., 2016).

The nomogram aimed to estimate 1-year, 3-year, and 4-year
OS probabilities based on the multivariate Cox proportional risk
model, which includes TNM staging, age, and two mRNA

expression values for postoperative measurements of cancer
tissue. In the validation phase, we demonstrated that the
nomogram was an excellent model for predicting 1-year, 3-year,
and 4-year OS for ESCC patients, and we demonstrated that the
accuracy was better than TNM staging. The predicative accuracy of
our nomogram model in primary cohort is the best one among
PDZK1ID1, TM9SF1, Age, TNM as single predictors with C-index
of 0.75, 0.701, 0.659 and 0.65 (Table 4). All of the aforementioned
predictors have greater C-index compared with age with a C-index
of 0.532. In external cohort one and cohort two, similar results were
obtained. In addition, the two clinicopathologic characteristic and
the mRNA expression values of two genes incorporated into
nomogram should be recorded by every clinician for ESCC
patients to increase their clinical effectiveness.

FIGURE 6 | (A–C) Survival from primary cohort by nomogram score groups, (D–F) survival from each cohort by TNM stage, (G–I) survival from each cohort of
TM9SF1, and (J–L) survival from each cohort of PDZK1IP1.
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In this study, the proposed nomogram was verified to avoid
overfitting of themodel and to determine the generalization of the
model. (Iasonos et al., 2008) The predicted value of the calibration
diagram was highly consistent with the actual value, which
proved the accuracy and repeatability of the nomogram.
Furthermore, the model was validated using the TCGA
database (external validation one cohort), which included
patients from Asia, North America, South America, and
Europe, making it possible to use and promote the model
globally, regardless of race, regional lifestyle, and economic
factors. In the verification phase, the C-index of the model
was obviously better than the TNM staging system. Using the
model, the OS rate prediction ability was slightly worse in the
external validation one cohort (Figure 6B) compared to the
primary cohort (Figure 6A) and the external validation two
cohort (Figure 6C). Subsequently, applying threshold values to

divide each cohort into four different risk subgroups resulted in
significant differences in Kaplan–Meier curves for survival results
in every group. The discrimination ability of the primary cohort
(C-index, 0.75 for nomogram vs. 0.68 for TNM staging system;
0.07 difference) and external validation two cohort (0.72 for
nomogram vs. 0.64 for TNM staging system; 0.08 difference)
were similar. When using the TNM staging system, the survival
curve of patients with stage II did not reach the significance level
(Figures 6D–F). Additionally, there were some intersections
among the OS rate lines of different nomogram score groups
(Figure 6C) and TNM stage groups (Figure 6F). We think that
sample size is the most important reason for these indistinctions
between different nomogram score groups and TNM stage
groups.

In recent years, researchers have used nomograms to predict
ESCC, and this study has several advantages over previous

FIGURE 7 | Risk group stratification within each TNM stage (stages, (A–C); (D), all patients), group according to whether receive adjuvant therapy (E,F) and group
by age (G,H).
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studies. First, to avoid specificity, we confirmed the gene markers
in samples frommultiple medical centers. Second, the majority of
previous studies did not consider mRNA in ESCC. Marker genes
play an important role in the development of ESCC, and their
differential expressions are associated with the development of
ESCC. Finally, we adopted a combinatorial strategy in our study,
which is different from previous studies that used only one
algorithm to select markers. The purpose of the combinatorial
algorithm is to reduce the possibility of missing or ignoring
important marker genes.

The limits of this study includes the following points. First,
we used limited sample sizes in the training and test cohorts
that results in some discrepancy. Second, all ESCC patients in
primary cohort are Chinese origin contrasting with ESCC
patients from TCGA in external cohort one across world.
Therefore, the predictative power of our nomogram model
in ESCC patients from TCGA is less efficient compared with
primary and external cohort two. We speculate that the
different predicative capability is ascribed to regional
difference of ESCC cases. Third, our nomogram predicts
overall survival well for subgroup patients with or without
adjuvant therapy, indicating that it is not appropriate for
decision-making on adjuvant therapy (Supplementary
Figure S1). The underlying causes are not clear at present
and warrants further study to investigate.

In summary, the nomogram presented in this study can
accurately and impersonally predict the prognosis of ESCC
patients after partial resection of the esophagus. More research
is required to determine whether it can be applied to other patient
populations. Moreover, we found two marker genes directly
related to the prognosis of ESCC, which will provide a basis
for future research.
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TABLE 4 | Prognostic ability and accuracy of ESCC.

Factor Primary cohort External cohort 1 External cohort 2

p-value C-index p-value C-index p-value C-index

Nomogram <0.0001 0.75 0.0093 0.695 <0.0001 0.72
PDZK1ID1 0.00014 0.701 0.071 0.661 0.0086 0.639
TM9SF1 <0.0001 0.659 0.0021 0.52 0.0077 0.656
Age 0.015 0.532 0.4 0.376 0.061 0.596
TNM 0.00019 0.65 0.01 0.6 0.025 0.630

To further evaluate the predictive capacity and accuracy Nomogram. The higher C-index score represent the better prognostic performance of the system.
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miRNA-TF-mRNA Regulatory
Networks in Uterine Fibroids
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Uterine fibroids (UF) are the most common benign gynecologic tumors and lead to heavy
menstrual bleeding, severe anemia, abdominal pain, and infertility, which seriously harm a
women’s health. Unfortunately, the regulatory mechanisms of UF have not been
elucidated. Recent studies have demonstrated that miRNAs play a vital role in the
development of uterine fibroids. As a high-throughput technology, microarray is utilized
to identify differentially expressed genes (DEGs) and miRNAs (DEMs) between UF and
myometrium. We identified 373 candidate DEGs and the top 100 DEMs. Function
enrichment analysis showed that candidate DEGs were mainly enriched in biological
adhesion, locomotion and cell migration, and collagen-containing extracellular matrix.
Subsequently, protein-protein interaction (PPI) networks are constructed to analyze the
functional interaction between DEGs and screen hub DEGs. Subsequently, the expression
levels of hub DEGs were validated by real-time PCR of clinical UF samples. The DGIdb
database was used to select candidate drugs for hub DEGs. Molecular docking was
applied to test the affinity between proteins and drugs. Furthermore, target genes for 100
candidate DEMs were predicted by miRwalk3.0. After overlapping with 373 candidate
DEGs, 28 differentially expressed target genes (DEGTs) were obtained. A miRNA-mRNA
network was constructed to investigate the interactions between miRNA and mRNA.
Additionally, two miRNAs (hsa-miR-381-3p and hsa-miR-181b-5p) were identified as hub
DEMs and validated through RT-PCR. In order to better elucidate the pathogenesis of UF
and the synergistic effect between miRNA and transcription factor (TF), we constructed a
miRNA-TF-mRNA regulatory network. Meanwhile, in vitro results suggested that
dysregulated hub DEMs were associated with the proliferation, migration, and
apoptosis of UF cells. Our findings provided a novel horizon to reveal the internal
mechanism and novel targets for the diagnosis and treatment of UF.

Keywords: uterine fibroids, miRNA-TF-mRNA, regulatory network, bioinformatics, biomarkers

INTRODUCTION

Uterine fibroids (UF) are recognized as the most common benign tumors of the female internal
genitalia (Pitter et al., 2013). The cumulative incidence of UF in women before the age of 50 is as high
as 70% (Walker and Stewart, 2005). Despite their benign nature, UF still causes a variety of
symptoms, such as pelvic pressure, uterine bleeding, anemia, or infertility (Islam et al., 2013), and is
mainly treated through surgery and drugs (Zhang L. et al., 2021), such as hysterectomy, leading to
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devastating effects on approximately two 200,000 per year in
United States (Cardozo et al., 2012). Unfortunately, their origins
and internal mechanism have not been characterized so far
(Andersen and Barbieri, 1995). Therefore, it is urgent to reveal
the pathogenesis of UF and identify novel biomarkers for early
screening, diagnosis, and individualized precision therapy.

At the post-transcriptional level, microRNAs (miRNAs) are
single-stranded RNA molecules (approximately 18–25
nucleotides long) and negatively regulate gene expression at
the post-transcriptional level through binding to
complementary sites in the 3ʹ-untranslated regions (3′UTR) of
target genes, resulting inmessenger RNAs (mRNAs) translational
arrest or degradation (Rupaimoole and Slack, 2017). The above
processes are similar to the regulation mechanism of
transcription factors (TFs) through binding to a TF binding
site in the promoter region, which suggests that they share a
mutual binding mechanism. Recently, there has been increasing
evidence that miRNA can regulate more than 30% of the
encoding genes in mammals and play a vital role in the
pathogenesis and development of various human diseases,
including UF (Ali et al., 2020). For example, downregulated
miR-139-5p contributed to the progression of UF through
collagen Ⅰ deposition and p38 phosphorylation (Ahn et al.,
2021). The caspase-3 cleavage and elongation factor-2
phosphorylation were activated by miR-21, leading to UF cell
apoptosis and stalled translation (Fitzgerald et al., 2012).
Furthermore, transfected leiomyoma cells with miR-150–5p
mimics had stronger migrational ability and secreted more
collagen through p27Kip1 activation and Akt inhibition (Lee
et al., 2019). Hence, miRNA–mRNA regulatory networks are
strongly associated with tumorigenesis and progression of UF.
However, the specific microRNAs in UF and their potential role
on target genes or transcription factors (TFs) regulatory networks
have remained unrevealed.

Benefiting from bioinformatics and high-throughput
sequencing technology’s rapid development, network-based
methods emerge and expand our knowledge of regulatory
relationships among genes (Fu and Dong, 2018). Regulatory
networks have been widely applied to screen pathogenic genes,
elucidate miRNAs’ functions, and provide targeted drugs for
disease treatment for subsequent experimental verification (Hu
et al., 2017). As shown in Scheme 1, differentially expressed genes
(DEGs) and miRNAs (DEMs) in UF tissues versus normal
myometrium tissues were identified through analyzing two
mRNA microarrays (GSE593 and GSE18096) and one miRNA
microarray (GSE159959) downloaded from gene expression
omnibus (GEO) databases. Subsequently, we performed
functional annotation, enrichment analysis, and established
protein-protein interactions (PPI) and drug-hub DEGs
networks. Real-time PCR (RT-PCR) and molecular docking
were used to check the DEG expression based on human
tissue samples for diagnosis and screen effective target-drugs
respectively. Furthermore, 28 differentially expressed target genes
(DETGs) out of the top 100 DEMs were obtained from the
intersection between predicted target genes and DEGs.
MiRNA-target gene regulatory networks associated with UF
were established and provided the interactions that have not

yet been reported. Hub DEMs’ functional annotation and
pathway enrichment analysis were also implemented. We
identified the interaction between TFs and hub DEMs to
reveal a common regulatory mechanism. Combining with the
above bioinformatics results, we designed mimics and inhibitors
of hub DEMs and evaluated their functions on the proliferation,
migration, and apoptosis of UF cells. Taken together, our study
looked forward to providing a novel horizon for UF treatment
through unscrambling the miRNA-TF-mRNA regulatory
network, resulting in the avoidance of irretrievable harm to
female reproductive health.

MATERIALS AND METHODS

Data Extraction
UF-related expression profiles for miRNA (GSE159959) and
mRNA (GSE593) and GSE18096) were collected from the
gene expression omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/). The associated information from the above
three datasets was shown in Figure 1A. Due to the different
process platforms of the included datasets, we normalized these
data using R’s limma package.

Analysis of DEMs and DEGs
The normalized expression datasets were analyzed using the
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) for
comparison between UF tissues and matched myometrium
tissues. The screening criteria were set as p-value <0.05 and
|log2-fold change (FC)| > 1, the top 100 regulated miRNAs were
selected as DEMs. With the same threshold, the upregulated
and downregulated overlapping DEGs were obtained between
GSE593 and GSE18096. The DEMs and DEGs in the respective
profiles were visualized in volcano plots. Furthermore,
heatmaps of DEMs and DEGs were visualized by TB tools,
which is a toolkit that integrates various biological data-
handling tools.

Construction of the PPI Network and
Analysis of Modules
The online STRING database (https://string-db.org) was used to
visualize the positive functional interaction between DEGs and
the threshold (combined scores ≥0.4). Cytoscape software vision
3.8.2 was utilized to screen the upregulated and downregulated
DEGs and construct the PPI network. Additionally, molecular
complex detection (MCODE) v1.5.1.16 (Bader and Hogue, 2003)
was used to identify hub genes with the following cut-off criteria:
degree cut-off = 2, max. depth = 100, node score cut-off = 0.2, and
k-Core = 2.

Functional Enrichment Analysis
To further clarify the functional annotation of DEGs and hub
genes, Gene Ontology (GO) functional annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis were conducted in the Sangerbox database
(http://sangerbox.com/Tool). GO functional analysis was mainly
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classified into cellular components (CC), biological processes
(BP), and molecular functions (MF).

Drug-Hub Gene Network Analysis
In order to explore the target drugs of hub genes, the drug-gene
interaction database (DGIdb, https://dgidb.genome.wustl.edu/)
was used, which is the online tool for drug-gene predication.
Finally, Cytoscape was used to construct a drug-gene network.

HomologyModeling andMolecular Docking
Recently, artificial intelligence brought revolutionary changes to
the field of protein structural biology through convolutional
neural networks. As an AI prediction tool, Alphafold (https://
alphafold.ebi.ac.uk/), as an AI prediction tool, predicts highly
accurate protein structures competitive with experiments based
on their amino acid sequence. Therefore, despite the crystal
structures of human BIRC5 and TYMS having yet to be solved
in the RCSB protein data bank (PDB), we adopted Alphafold to
build the structure of STAT6 through in silico modelling. From
the amino acid sequence of human BIRC5 and TYMS (accession
numbers: O15392 and P04818, respectively) from the UniProt-
KB database (http://www.uniprot.org/) and predicted protein
structures starting from the sequence through AlphaFold v2.0.
The stereochemical quality of the predicted model was evaluated
by the local distance difference test (LDDT) score in the
AlphaFold database.

Molecular docking simulation is a technique to predict the
first-rank orientation of small-molecules to macromolecule
targets to form stabilized complexes. Associated small-
molecules were both downloaded from the Pubchem database
(https://pubchem.ncbi.nlm.nih.gov). The AutoDockTools and
PyMol were applied to preprocess the input file, including
hydrogenation and deletion of crystallographic water and
ligands. Molecular docking between small-molecules and
BIRC5, TGFBR2, and TYMS binding pockets was performed
by Autodock Vina with default parameters. The predicted
binding interaction geometries of irinotecan (aka irinotecan
hydrochloride) and BIRC5 or TYMS were visualized and the
docking affinity between small-molecules and protein targets was
scored. The optimal docking conformation and related results
were analyzed by PyMol.

Prediction of Target Genes for DEMs and
Construction of miRNA-Target Gene
Regulatory Network
MiRWalk3.0 (http://zmf.umm.uni-heidelberg.de/apps/zmf/
mirwalk3/) is an online tool to predict the downstream target
genes of DEMs. Then, differentially expressed target genes
(DETGs) were obtained by overlapping the predicted genes
and DEGs for further analysis. In addition, the miRNA-target
gene regulatory networks were visualized by Cytoscape. Among

SCHEME 1 | The schematic workflow of current study.
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the DEMs in this network, we selected the DEMs with the highest
number of regulatory genes ranking top two as the hub DEMs.

Functional and Pathway Enrichment
Analysis of Hub DEMs
To further analyze the function of hub DEMs, GO and KEGG
pathways were performed using miRPath v3.0 (http://snf-515788.
vm.okeanos.grnet.gr/). An adjusted p < 0.05 was considered
significantly enriched.

Establishment of the miRNA-TFs-Target
Gene Networks
It has been confirmed that TF-mediated transcriptional
regulation and miRNA-mediated post-transcriptional
regulation are tightly coupled, which implies that they share a
common regulatory mechanism (Lewis et al., 2005).
Transcription factors and miRNAs are known to regulate each
other as well as their target genes. Therefore, further research on
the regulatory relationship between TFs and miRNAs can help

FIGURE 1 | (A) Characteristics of mRNA and miRNA expression profiles of UF. The before and after normalization and volcano plots of (B) GSE593, (C)
GSE159959 and (D) GSE18096.
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elucidate the underlying mechanism of tumorigenesis and
progress. Based on the hub DEMs, we predicted the potential
TFs via the iRegulon plug-in (Lewis et al., 2005). Relevant
parameters were as follows: enrichment score threshold = 5.0,
ROC threshold for AUC calculation = 0.05, rank threshold =
5,000, minimum identity between orthologous genes = 0.05, and
maximum FDR on motif similarity = 0.001. The Cytoscape
software was subsequently utilized to visualize miRNA-TF-
target gene regulatory networks.

Tissue Samples
Ten cases of UF tissue and matched normal myometrial tissue
samples were collected from patients who underwent
myomectomy in Xiangya Hospital from January 2021 to
January 2022, aged 36–49 years old. All patients had regular
menstruation without other complications, and they did not take
hormone drugs within 3 months before surgery. All samples were
taken with the consent of the patients, and informed consent was
signed. Consent was granted by all women included in the study,
and informed consent was signed. Tissues were stored at −80°C
immediately after harvest until further use. The pathological
diagnosis of the tissue was confirmed by at least two
independent pathologists.

Hematoxylin-Eosin Staining
The tissues were fixed for 24 h and dehydrated with gradient
alcohol. Paraffin-embedded tissues were prepared and
subsequently cut into 5 µm slices, which were then stained
using the H&E staining kit (Beijing Solarbio Science and
Technology Co., Ltd., Beijing, China). The pathological
changes in UF were observed and captured with five random
images under a light microscope (Leica DMi6-M, Leica
Microsystems Co., Ltd.).

Isolation and Culture of Human Leiomyoma
Cells and Myometrial Smooth Muscle Cells.
The human UF tissue was washed three times with PBS solution
and minced into small pieces (3–6 mm3) with sterilized eye
scissors. To obtain single-cell suspensions, the tissue fragments
were incubated with Dulbecco’s modified eagle media (DMEM,
Hyclone, United States) medium supplemented with 4 mg/ml
type I collagenase (Sigma-Aldrich, United States) and 1 mg/ml
DNase I (Sigma-Aldrich, United States) at 37°C in a humidified
incubator with 5% CO2 for 2 h. Subsequently, the suspensions
were passed through a 40-μm cell strainer (Corning,
United States) to eliminate undigested tissue. The primary
cells were cultivated in DMEM medium containing 10% fetal
bovine serum (FBS, Gibco, United States), 100 U/ml penicillin,
and 100 μg/ml streptomycin at 37°C in a 5% CO2 incubator.
Cultured human primary cells were passaged every 4–6 days and
analyzed at the third passage for further study.

Cell Transfection
To explore the function of DEMs in leiomyoma cells, the primary
cells were seeded in 6-well plates at an appropriate density. When
cells were in log-phase growth, cell transfection was performed

with negative control (NC) or hub DEM mimics or inhibitors
(50 nM) using Lipofectamine 3000 (Invitrogen, United States).
The sequences were synthesized by GenePharma (Shanghai,
China).

RNA Extraction and RT-PCR Validation
RNA was extracted from tissues using the TRIZOL method
(TransGen Biotech, Beijing, China) and the RNA was reverse
transcribed into cDNA according to the instructions of the
NovoScript® II reverse transcriptase (Novoprotein, Shanghai,
China). MiRNA was extracted using the miRNA extraction kit
(Tiangen, Beijing, China) and reversely transcribed into cDNA
through the polyA tailing method. RT-PCR was carried out by
using SYBR® Green MasterMix (Takara, Japan) for hub DEGs
and miRNA universal SYBR qPCRMaster Mix (Vazyme Biotech,
Nanjing, China) for hub DEMs in an ABI PRISM® 7500 Sequence
Detection System (Applied Biosystems Inc: Foster City, CA). RT-
PCR reaction system: For hub DEGs, 45 s at 95°C, 40 cycles for
30 s at 95°C, 45 s at 60°C, 60 s at 72°C and a final cycle for 10 min
at 72°C; For hub DEMs, 5 min at 95°C, 40 cycles for 10 s at 95°C,
30 s at 60°C. Fluorescence values were collected. Replicate wells
were set up for each sample. GAPDH and U6 were used as the
internal reference for hub DEGs and DEMs detection,
respectively, and the experiment was repeated three times
independently. The mean CT value was calculated. Relative
quantification (ΔΔCT method) was applied for semi-
quantitative analysis, and the target gene expression was
represented by 2−ΔΔCT values. The sequences of the primer
were synthesized by Sangon Biotech (Shanghai, China).

CCK-8 Assay
Cells were transfected for 48 h and then inoculated into 96-well
plates at a density of 4 × 103/well. The cell proliferation was
measured at 1–3 days, respectively. At each time point, 10 μl of
CCK-8 solution (New Cell and Molecular Biotech, Jiangsu,
China) was added to each well and incubated in the incubator
for 2 h. Finally, the absorbance at 450 nm, as the optical density
(OD) of the samples, was detected by spectrophotometry at
different time points.

Cell Migration Assay
After 24 h of transfection of mimic or inhibitor, we trypsinized
and resuspended to obtain a single cell suspension. The upper
layer of the Transwell chamber was added with FBS-free
suspension at a cell density of 3 × 104/well. The lower layer
was added with 20% FBS medium to drive cell migration. After
24 h of culture, we used cotton swabs to remove the nonmigrated
cells in the upper chamber, and migrated cells in the lower
chamber were fixed and stained with 0.1% crystal violet. Five
randomly selected microscopic views were recorded through a
light microscope and analysed by ImageJ software to count the
number of cell migrations.

Apoptosis Detection
To determine the effect of hub DEMs on the apoptosis of
leiomyoma cells, cells were harvested and centrifuged for
annexin V-FITC/PI apoptosis detection (Boster Biotech Co.,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8567455

Peng et al. miRNA-TF-mRNA Network in UF

139

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ltd., Wuhan, China) after 24 h of transfection. After being
washed twice, transfected cells were incubated with 5 µl of
488-annexin V and 5 µl of PI for 15 min at room temperature
and protected from light. Subsequently, the flow cytometer (BD,
United States) was applied to detect the apoptosis rates in each
group. The apoptosis rate = sum of the early and late
apoptotic rates.

Statistical Analysis
Statistical analysis was carried out using SPSS 16.0 statistical
software. Data was expressed as mean ± SD, and the differences
between the two groups were compared using the independent
sample t-test. The differences between the two groups were
compared using the independent sample t-test, and the
differences were considered statistically significant at p < 0.05.

RESULTS

Identification of DEGs and DEMs in UF
Before screening DEGs and DEMs in UF, the three independent
expression datasets processed on different platforms were

normalized. Based on the mentioned threshold, differential
expression analysis was applied to obtain DEGs and DEMs.
1185 and 2054 DEGs and 229 DEMs were identified in
GSE593, GSE18096, and GSE159959, respectively. To shrink
the scope of DEM screening, DEMs whose |log2 FC| ranked in
the top 100 were chosen as candidate DEMs. As shown in Figures
1B–D, 2A–C, volcano plots and heatmaps exhibited the overall
distribution of DEGs and DEMs for UF versus normal
myometrium. Furthermore, a total of 397 candidate DEGs
were identified by Venn diagram (Chen and Boutros, 2011)
analysis through the intersection of these two mRNA datasets
(Figure 2D). Excluding DEGs with inconsistent expression
trends in these two datasets, 373 genes containing 192
upregulated and 181 downregulated genes were obtained as
candidate DEGs.

PPI Network Construction and Module
Analysis
To identify potential interactions among 373 candidate DEGs,
the PPI network was constructed using the STRING database
and visualized by Cytoscape (Figure 3A). The network included

FIGURE 2 | Heatmap of (A) GSE18096. (B) GSE593, (C) GSE159959. (D) Venn diagram of screening DEGs form mRNA expression profile.
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297 nodes (genes) and 1,111 edges (interactions). Furthermore,
hub DEGs was validated by MCODE, and then we obtained 8
cluster modules. As indicated in Figure 3B, the highest-rated
module included 24 nodes (genes) and 99 edges (interactions).
The 24 hub DEGs included 19 upregulated and 5
downregulated genes.

Enrichment Analysis of DEGs and Hub
Genes
To further reveal the vital function and biological pathways of
DEGs and hub DEGs. We performed GO and KEGG analysis of
373 candidate DEGs and 24 hub DEGs. As illustrated in
Figures 4A–D, for the BP-correlated category, DEGs were
mainly enriched in biological adhesion, locomotion and cell
migration; for CC-correlated category, DEGs were primarily
involved in collagen containing extracellular matrix (ECM), an
intrinsic component of the plasma membrane and cell surface;
and for the MF-correlated category, DEGs were principally
concerned with extracellular matrix structural consitituent,
growth factor binding and signaling receptor binding.
Furthermore, KEGG pathway results demonstrated that DEGs
primarily participated in ECM-receptor interaction, focal
adhesion, and the PI3K-AKT pathway.

As for hub DEGs, BP-enriched terms included external
encapsulating structure organization and collagen fibril
organization; CC-enriched terms were involved in
supramolecule complexes and collagen trimers; MF-enriched

terms referred to extracellular matrix structural consitituent
and structural molecule activity. KEGG results contained
ECM-receptor interactions and pathways in cancer
(Figures 5A–D).

Drug-Gene Networks
To seek effective target-drugs for hub DEGs, drug-gene
interactions, including 75 potential drugs for UF, were
obtained through the DGIdb database. For ease of reading,
drug-gene networks were visualized by Cytoscape (Figure 6).
However, the underlying mechanism between most potential
drugs and hub DEGs remains unrevealed.

Molecular Docking
Molecular docking was applied to further screen potential drugs
and elucidate possible molecular mechanisms. The crystal
structure of human BIRC5 and TYMS was predicated by
Alphafold v2.0 based on AI technology. As shown in Figures
7A,B, the stereochemical quality of the predicted structure was
evaluated by the LDDT score. Autocdock Vina was used for drug-
protein molecular docking to screen the optimal potential target
drugs. The Affinity score can be used as a standard to judge the
merits of docking. The high absolute value of the score indicated
stronger binding between small molecules and proteins. The
docking scores of potential drugs were presented in
Figures 7C–F and suggested that irinotecan had the strongest
binding affinity towards BIRC5 (7.0–8.6 kcal/mol, |interval
score|) and TYMS (7.7–10.0 kcal/mol, |interval score|). The

FIGURE 3 | PPI network and module analysis. (A) 373 DEGs were visualized in the PPI network. (B) Module analysis using MCODE.
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perfect conformation exhibited that irinotecan interacted with
residues of BIRC5 (THR21 and HIS45) and TYMS (ARG50,
ILE108, ASN226 and TYR258) through hydrogen bonds. After
screening, irinotecan was found to be the optimal drug for
intervention of both BIRC5 and TYMS and was used to treat
UF patients in low doses.

Validation of Hub DEGs by RT-PCR
Based on UF and matched normal myometrial tissues in patients
at our hospital, we validated the expression level of hub DEGs
through RT-PCR (Figures 8A, B). Compared with normal
myometrium, the expression levels of ASPM, SDC1, SNAI2,
GINS1, CCNB2, KIAA0101, BIRC5, BUB1, TYMS, FOXM1,
DTL, KIF20A, COL3A1 were increased, which was consistent
with microarray analysis results. Moreover, the expression levels
of TGFBR2, ITGA6, CYR61, ITGB4, COL11A2, COL4A5,
COL4A6, and COL4A4 were decreased in comparison to
normal myometrium. There were no significant differences in
COL13A1 and COL5A2 expression.

Prediction of Target Genes for DEMs and
miRNA–Target Gene Regulatory Network
Establishment
Recent research indicated that tumorigenesis and development
were regulated by miRNAs through binding with pairing bases of
3′UTR, resulting in target mRNAs degradation. Therefore,
predication of target mRNAs can contribute to revealing the
function and internal mechanism of DEMs. MiRWalk 3.0 was

used to predict the target genes of DEMs. A total of 1,507 genes
were identified as the potential target genes of the DEMs. After
intersecting with 373 candidate DEGs, 28 overlapping genes were
identified as DETGs for further analysis (Figure 9A). The
miRNA-target gene regulatory network was visualized using
Cytoscape. As indicated in Figure 9B, triangle represents
DEMs, orange ellipses represent upregulated DETGs, and
purple ellipses represent downregulated DETGs. The
regulatory network included 21 DEMs, 16 upregulated DETGs,
and 12 downregulated DETGs. The DEMs were ranked by the
number of regulated DETGs, and the top two were identified as
hub DEMs. In vitro and vivo experiments validated the
upregulated hsa-miR-181b-5p and hsa-miR-381-3p as well as
five screened DETGs.

Functional and Pathway Analysis of Hub
DEMs
GO and KEGG pathway analysis were performed to elucidate the
function of hub DEMs through miRPath v3.0. As illustrated in
Figures 9C–F, these hub DEMs were enriched in ion binding,
cellular nitrogen compound metabolic process, organelle,
biosynthetic process and transcription, DNA-templated in the
BP terms; Organelle and cellular component in CC terms; Ion
binding, nucleic acid binding transcription factor activity and
molecular function in MF terms. Furthermore, KEGG results
indicated that hsa-miR-181b-5p and hsa-miR-381-3p involved in
amphetamine addiction and TGF-β signaling pathway and
proteoglycans in cancer respectively.

FIGURE 4 | Function annotation and KEGG analysis of DEGs in UF. (A) BP-terms; (B) CC-terms; (C) MF-terms; (D) KEGG pathways.
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Construction of the miRNA-TF-Target Gene
Regulatory Network
The transcriptional regulatory relationships among these
miRNAs, TFs, and target genes were identified through the
iRegulon plug-in. Then, miRNA-TF-target gene networks were
established through Cytoscape software. In the transcriptional
regulatory network, hsa-miR-181b-5p consisted of 2 TFs (STAT3
andONECUT1) and hsa-miR-381-3p consisted of 2 TFs (FOXA1
and KAT2A) (Figures 10A, B).

Validation of Hub DEMs
In order to assess the expression of miR-181b-5p and miR-381b-
3p in UF, RT-PCR was performed in UF tissues compared to
normal myometrial tissues (n = 5). Consistent with our analysis of
hub DEMs, we found that miR-181b-5p and miR-381b-3p were
markedly upregulated in UF tissues compared to normal
myometrium tissues (Figure 10C).

The Effect of HubDEMs onCell Proliferation
In the functional verification section, the hub DEMs, mimics, and
inhibitors were transfected into UF cells. The CCK-8 assay was
used to examine the effects of hsa-miR-181b-5p and hsa-miR-
381-3p on cell proliferation. As demonstrated in Figures 11A,B,
overexpression of both hub DEMs enhanced the proliferation of
UF cells compared with NC mimics, while hsa-miR-181b-5p and
hsa-miR-381-3p inhibitors could reverse the above results.

The Effect of Hub DEMs on Cell Migration
Although UF is a benign tumor with poor metastatic ability, it
may locally migrate. Therefore, the evaluation of cell migration
still reflects hub DEMs’ function. Many studies have also shown
that UF cells have the metastatic ability. After transfection with
hsa-miR-181b-5p and hsa-miR-381-3p mimics, the number of
migrational cells was higher than NC mimic group. On the
contrary, the metastatic ability of transfected cells with hsa-
miR-181b-5p and hsa-miR-381-3p inhibitors was remarkably
reduced, with fewer cells crossing through the membranes.
Above, results suggested that there were positive correlations
between the metastatic ability of UF cells and hsa-miR-181b-5p
and hsa-miR-381-3p expression (Figure 11C)

The Effect of Hub DEMs on Cell Apoptosis
Although surgical excision is the undisputed treatment for benign
tumors, apoptosis of tumors induced by non-invasive procedures
can effectively avoid operative trauma and tends to improve the
outcome. MiRNA therapeutics provides a novel horizon for
tumor treatment. To verify whether hub DEMs’ silence can
induce UF cells’ apoptosis, we transfected NC, hsa-miR-181b-
5p, and hsa-miR-381-3p inhibitors to UF cells. As indicated in
Figure 11D. Downregulation of hsa-miR-181b-5p and hsa-miR-
381-3 could significantly contribute to cell apoptosis through
comparison of cell apoptosis rates in each group by flow
cytometry.

FIGURE 5 | Function annotation and KEGG analysis of hub DEGs. (A) BP-terms (B) CC-terms; (C) MF-terms; (D) KEGG pathways.
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DISCUSSION

As the most common benign tumor of the female reproductive
system, the worldwide prevalence of UF has been increasing
year by year (Pitter et al., 2013). Although UF is rarely
malignant, it is often associated with menstrual changes,
abdominal pain, abortions, and infertility (Giuliani et al.,
2020). In addition, hysterectomy caused by UF seriously
reduces the quality of life and places a heavy burden on basic
social services such as health care (Cardozo et al., 2012). Unlike
other types of cancer that have clear origins, there is a long-
standing debate about whether the origin of UF is the immature
smooth muscle cell derived from the uterine wall or the walls of
uterine vessels (Akhter et al., 2021). Therefore, UF treatment
cannot be applied to other tumor targets, indicating that
screening of hub miRNAs and mRNAs associated with UF is
urgently needed. Besides, the synergistic effects of TFs and
miRNAs have become a new hot research topic for
uncovering the etiology of diseases (Ciebiera et al., 2020).
Unfortunately, to our knowledge, there is no correlated
report establishing miRNA-TF-mRNA regulatory networks of
UF. As pioneers, we first revealed internal interactions among
miRNAs, TFs, and then mRNAs and revisited UF therapy from
a novel perspective.

From the mRNA expression profile, 373 candidate DEGs were
screened by taking the intersection of the two mRNA datasets.
The sangerbox database was utilized to reveal the function and
signaling pathway of DEGs. In the results of enrichment analysis,
DEGs were closely associated with extracellular matrix structural
constituents and biological adhesion, which was consistent with
histopatological features of UF. Moreover, KEGG analysis also
indicated that pathways enriched by DEGs are involved in ECM-
receptor interaction, focal adhesion, and the PI3K-AKT pathway.
In these DEGs, cysteine-rich angiogenic inducer 61 (CYR61) was
widely reported to be correlated to UF (Sampath et al., 2001)
(Arslan et al., 2005). Interesting, as an insulin-like growth factor
(IGF)-binding protein, CYR61 degradation could promote IGF2
binding to IGF1R, leading to proliferation acceleration, ECM
formation, and apoptosis inhibition (Sarkissyan et al., 2014).

To reduce the scope of DEGs, we established a PPI network
and screened 24 hub DEGs, each containing 5 upregulated DEGs
and 19 downregulated DEGs. Although most of these genes were
subtypes of collagen, these data are also in line with the most
striking pathological feature of UF (Bulun, 2013), excessive
accumulation of ECM composed of collagen, resulting in
irregular bleeding, pelvic pain, and compression. The ECM
provides a microenvironment for cell adhesion, proliferation,
and migration. Unfortunately, the internal interaction between

FIGURE 6 | Drug-hub DEGs regulatory networks. Cyan circles, potential target drugs; Orange circles, upregulated DEGs; Purple circles, downregulated DEGs.
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FIGURE 7 | Homology Modeling and Molecular Docking. The crystal structure and evaluation of (A) BIRC5 and (B) TYMS. The best docking position between
irinotecan and (C) BIRC5 or (D) TYMS was indicated. The absolute value of affinity between predicated small molecules and (E) BIRC5 or (F) TYMS was exhibited.
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ECM and UF cells remains unknown and is a hot issue to
investigate deeply. Furthermore, as an essential transcriptional
activator, aberrant SNAI2 can induce cell proliferation, invasion,

and the epithelial-mesenchymal transition (EMT) process in a
variety of malignancies (Casas et al., 2011). In gastric and lung
cancers, abnormal expression of SNAI2 is associated with poor

FIGURE 8 | (A) HE staining of UF tissues and myometrium. (B) Validation of hub DEGs expression in UF by RT-PCR.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 85674512

Peng et al. miRNA-TF-mRNA Network in UF

146

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


prognosis (Wang et al., 2021). Studies also indicated that the
increased expression level of SDC1 could promote the growth,
invasion and metastasis of tumor cells (Cao et al., 2021). FOXM1
plays a critical role in the regulation of cell proliferation,
migration, and angiogenesis (Liu et al., 2021). It has been
found that FOXM1 plays a vital role in mitosis, and its
abnormal expression can cause spindle defects, which can
delay mitosis and ultimately participate in the development of
cervical (Li et al., 2021), liver (Nandi et al., 2021), lung (Liang
et al., 2021) and other cancers. To validate the expression level of

hub DEGs, we performed RT-PCR based on collected samples
from our hospital. Most of the results on gene expression were in
accordance with microarray results and provided corroborative
evidence for our analysis.

Although limited drugs, such as GnRH (Dababou et al., 2021),
mifepristone (Bi et al., 2021), are widely used in the treatment of
UF, they lack a well-defined target and always bring patients side-
effects (for example, recidivation after drug withdrawal).
Therefore, target drugs for UF urgently need to be discovered
to avoid physical injury caused by hysterectomy. Based on

FIGURE 9 | (A) Screen of DETGs of DEMs. The intersection of DEMs and predicted target genes by miRwalk3.0. (B) The miRNA-mRNA regulatory network.
Triangles, DEMs; Orange circles, upregulated DETGs; Purple circles, downregulated DETGs. Function annotation and KEGG analysis of hub DEMs. (C) KEGG
pathways; (D) CC-terms; (E) MF-terms; (F) BP-terms.
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predicted hub DEGs, 75 target drugs approved by the FDA were
discovered through the DGIdb database. As a natural polyphenol
with anti-tumor property, resveratrol is a potent inhibitor of the
progesterone X receptor (PXR) and may inhibit UF cell
proliferation by decreasing estrogen and progesterone levels or
antagonizing their receptors (Singh et al., 2011). In addition,
ocriplasmin is applied to treat vitreomacular adhesions through
the hydrolysis of collagen (Al-Nawaiseh et al., 2021). Considering
the large number of target drugs for BIRC5 and TYMS, we
utilized molecular docking to select the best candidates.
Interestingly, irinotecan had the strongest binding to BIRC5
and TYMS through hydrogen bond formation. We hoped that
the above results could give clinicians more novel therapeutic
strategies.

Over the last few decades, miRNAs became one of the most
discussed issues and was deemed as a biomarker to achieve early
screening and clinical treatment. Especially in recent years, the
advent of the first miRNA drug (miravirsen) rekindled the topic
of morbigenous miRNA screening (Zhang et al., 2021). Certainly,
miRNAs are involved in the regulation of multiple activities of
UF. We identified DEMs based on the GSE159959 dataset and
obtained 28 DEGTs through overlapping between target genes
predicted by miRwalk3.0 and DEGs. Additionally, the miRNA-
mRNA regulatory network was constructed and miR-181b-5p
and miR-381-3p were identified as hub DEMs. The function
analysis of hub DEMs indicated that they were enriched in ion
binding, cellular nitrogen compound metabolic processes,
organelles, biosynthetic processes, and transcription.
Furthermore, the KEGG pathway analysis exhibited hsa-miR-
181b-5p and hsa-miR-381-3p involved in amphetamine
addiction and TGF-β signaling pathway and proteoglycans in
cancer respectively.

Dysregulated miR-181b-5p was observed in various cancers
and influenced the function of tumor cells. A previous study
demonstrated that upregulated miR-181b-5p could promote cell
proliferation, migration, and invasion by targeting PARK2 via the
PTEN/PI3K/AKT pathway in cholangiocarcinoma (Jiang et al.,
2021). Additionally, miR-181b-5p is also closely linked to drug
resistance for gallbladder carcinoma (Wu et al., 2019). The

potency of ginsenoside Rg3 could be abolished by miR-181b-
5p through enhancing autophagy flux via the CREBRF/CREB3
pathway (Wu et al., 2019). Wu et al. also reported that miR-181b-
5p was verified to be a biomarker for pituitary adenoma (Wu
et al., 2017). Similarly, miR-181b-5p upregulation was involved in
head and neck cancer pathogenesis (Nurul-Syakima et al., 2011).
Nakajima G et al. found that miR-181b-5p was overexpressed in
colon cancer tissues and promoted the occurrence and
development of tumors by regulating cell signal transduction
and cell cycle (Nakajima et al., 2006). Taken together, we have
reasons to believe that miR-181b-5p plays a vital role in
tumorigenesis and the progression of UF.

MiR-381-3p was reported as an oncogenic regulator involving
in a wide range of cancers. Zhao et al. indicated that miR-381-3p
overexpression could accelerate cell proliferation and colony
formation, which further initiates renal tumor deterioration
and poor prognosis (Zhao et al., 2020). A gynecologic cancer-
associated study also elucidated that miR-381-3p had a positive
correlation with uterine corpus endometrial carcinoma (Zheng
et al., 2021). Furthermore, some studies showed that miR-381-3p
was upregulated in glioma (Li et al., 2016), osteosarcoma (Li et al.,
2016), synovial sarcoma (Hisaoka et al., 2011) and epithelioid
sarcoma (Papp et al., 2014). Therefore, we hypothesized that
miR-381-3p may become a clinical diagnostic and therapeutic
target of UF. Definitely, due to spatial heterogeneity in tumor
tissue, miR-381-3p was regarded as a tumor suppressor in gastric
cancer (Gao et al., 2022), breast cancer (Yu et al., 2021) and
bladder cancer (Li et al., 2019). We performed in vitro
experiments to examine the function of miR-381-3p on UF,
and the results verified our hypothesis.

To investigate the synergistic effect of TFs, miRNA-TF-mRNA
regulatory networks of miR-181b-5p and miR-381-3p were
established. miR-181b-5p and 2 TFs, STAT3 and ONECUT1,
were verified to be coregulators of CBX8, PDK4, NFIB, BNC2,
and DTNA. miR-381-3p and 2 TFs, FOXA1 and KAT2A, were
verified to be coregulators of GOLM1, TENM1, PDE10A,
CADM1, and BNC2. These two networks provided a novel
horizon to explain synergistic interactions between miRNAs
and TFs and potential combined treatments for UF.

FIGURE 10 | ThemiRNA-TF-mRNA regulatory networks of (A) hsa-miR-181-5p (2 TFs) and (B) hsa-miR-381-3p (2 TFs). (C) Expression of themiR-181b-5p, miR-
381b-3p in UF tissues (n = 5) compared to normal myometrium tissues (n = 5), as assessed by reverse transcription–quantitative polymerase chain reaction.
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RT-PCR was carried out to detect hub DEG expression in
myometrium and uterine fibroids, RT-PCR was carried out.
Compared with normal myometrium, the expression levels of
ASPM, SDC1, SNAI2, GINS1, CCNB2, KIAA0101, BIRC5,
BUB1, TYMS, FOXM1, DTL, KIF20A, COL3A1 were increased,
which was consistent with microarray analysis results. Moreover,
the expression levels of TGFBR2, ITGA6, CYR61, ITGB4,

COL11A2, COL4A5, COL4A6, COL4A4 were decreased in
comparison to normal myometrium. There were no significant
differences in COL13A1 and COL5A2 expression.

Furthermore, in order to explore the effect of hub DEMs on UF
cell proliferation, migration, and apoptosis, hsa-miR-181-5p and
hsa-miR-381-3p were overexpressed or silenced and delivered into
UF cells. CCK-8 demonstrated that hsa-miR-181-5p and hsa-miR-

FIGURE 11 | The proliferation of UF cells regulated by (A) overexpression or (B) slience of hub DEMs was detected by CCK-8 assay. (C) The migrational ability of
UF cells regulated by overexpression or slience of hub DEMs was detected by Transwell. (D) The apoptosis rates of UF cells regulated by overexpression or slience of
hub DEMs was detected by AV/PI assay.
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381-3p overexpression enhanced cell proliferation and migration
in uterine fibroids cells compared with NC mimics, while silencing
of hsa-miR-181-5p and hsa-miR-381-3p reversed the above results.
Furthermore, we examined UF cells transfected with hub DEMs’
inhibitor. Downregulation of hsa-miR-181b-5p and hsa-miR-381-
3p could significantly contribute to cell apoptosis in comparison of
cell apoptosis rates of NC inhibitor by flow cytometry. Therefore,
the function of hsa-miR-181b-5p and hsa-miR-381-3p deserves
further study to elucidate the internal mechanism in UF.

Certainly, our study inevitably has some limitations. Although
we performed in vitro experiments through overexpression and
silence of hub DEMs, in vivo experiments could better simulate
tumorigenesis and progression of UF to verify their function.
Additionally, we did not assess the expression of target genes
upon transfection. Therefore, our further study will conduct RT-
PCR to evaluate the expression of target genes and establish an
animal model to reveal the underlying mechanism of hub DEMs
in UF. Screening chip data from the same platform can effectively
avoid batch effects. In addition, miRNA is a type of noncoding
RNA that includes lncRNAs, circRNAs etc. Whether other
noncoding RNAs also play a vital role in UF is worth
discussing. We hope to discover more noncoding RNAs as
specific biomarkers to enhance the accuracy of early screening
and improve patients’ outcomes.

CONCLUSION

In conclusion, we identified some specific biomarkers (DEGs and
DEMs) associated with the diagnosis and prognosis of UF based
on bioinformatics analysis. Next, hub DEGs were confirmed by
RT-PCR of clinical UF samples. Furthermore, we first established
miRNA-TF-mRNA regulatory networks of UF and screened hsa-
hsa-miR-181-5p and hsa-miR-381-3p as hub DEMs that are
associated with regulation of cell proliferation, migration, and
apoptosis in UF through in vitro validation. Our study provided

several novel biomarkers to reveal possible mechanisms and was
believed to be helpful for the diagnostic and therapeutic strategy
of UF.
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Background: Colon cancer is one of the most common cancer types, although it has
certain unique genetic features. This study aimed to develop a unique score for assessing
prognosis and immunotherapy efficacy using integrated multi-omics analysis.

Methods: Isobaric tagging for relative and absolute quantification (iTRAQ) based
proteomic analysis was used to screen differentially expressed proteins (DEP) between
tumor and normal samples. DEP mRNA obtained from TCGA were clustered into different
categories to show landscape-related prognosis and function. Following that, DEG was
extracted from DEP mRNA, and the DEP-related score (DEPRS) was constructed to
investigate the difference in immunotherapy prognosis and sensitivity. Finally, WCGNA,
random forest, and artificial neural networks were used to screen for key genes. The
prognostic value and protein level of these genes were validated.

Results: A total of 243 DEPs were identified through iTRAQ analysis, and the
corresponding DEP mRNA was clustered into three. Following a series of tests, 1,577
DEGs were identified from overlapped DEP mRNA clusters and were classified into three
gene clusters. The two types of clusters described above shared comparable
characteristics in terms of prognosis and function. Then, it was established that a high
DEPRS indicated a poor prognosis and DEPRS had significant associations with TMB,
MSI status, and immunotherapeutic response. Finally, the key genes HART3 and FBLN2
were identified and were found to be implicated in immunotherapy and prognosis.

Conclusion: The development of a DEPRS based on multi-omics analysis will aid in
improving our understanding of colon cancer and guiding a more effective immunotherapy
strategy. DEPRS and key genes are used as biomarkers in the clinical evaluation of
patients.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer in the
world, and it has a significant impact on both the global economy
and patients’ lives. Tumor metastasis is the cause of death in half
of all patients with CRC (Siegel et al., 2019). Globally, 1,400,000
new cases and 700,000 CRC-related deaths were reported in 2018
(Bray et al., 2018). Colon cancer (CC) accounts for approximately
70% of all CRC (Ahmed, 2020), and CC can be classified into two
distinct diseases: left-sided colon cancer (LCC) and right-sided
colon cancer (RCC). Due to their unique embryonic origins, LCC
and RCC exhibit a variety of clinical characteristics, including
drug sensitivity. Additionally, in our previous study, we
established the genetic distinction between LCC and RCC in
terms of immunotherapy and prognosis (Guo et al., 2021). Based
on difference in LCC and RCC, we want to develop a novel
prognosis system that isn’t effected by tumor site.

Tumorigenesis results from the interplay of multiple factors.
With a better understanding of the etiology and pathogenesis of
CC, as well as treatment strategies such as surgery and
chemoradiotherapy, the survival rate of CC has significantly
improved. Several limitations to single therapy and prognostic
evaluation of CC, however, have contributed to the high
mortality rate associated with advanced CC. At John Hopkins
University, Le et al. (2015) discovered that mCRC patients with
mismatch repair-deficient (dMMR) or microsatellite instability-high
(MSI-H) can benefit from immune checkpoint inhibitors (ICIs).
Thus, researchers have evaluated immunotherapy for CC (Le et al.,
2015). Numerous studies have established that immunotherapy can
benefit a significant number of dMMR/MSI-H patients.
Microsatellite stability (MSS) tumors, in theory, have less
immune cell infiltration and expression of immune-related genes
than MSI tumors. Then, as a result of increased immunocyte
infiltration, MSI tumors express neoantigen more easily, making
themmore sensitive to immunotherapy (Lin et al., 2020). Mismatch
repair (MMR), on the other hand, can recognize and fix mutation
errors, hence preventing themutant protein from leading to a tumor.
Defects inMMR-related genes result in impaired repair function and
the accumulation of numerous altered genes throughout the DNA
synthesis process. Tumor mutation burden (TMB) is enhanced by
DNA impairment, and genome stability is affected to some extent.
Previous research has shown that increased TMB may promote the
translation of mutant proteins and stimulate the generation of
neoantigens via major histocompatibility complex (MHC)
binding (Sha et al., 2020). Meanwhile, elevated TMB can improve
the immunogenicity of MSI tumors, resulting in a better
immunotherapy outcome than before. Previous research also
reports that 97% of MSI-H tumors have TMB ≥10 mutations/
Mb (Chalmers et al., 2017). Additionally, a portion of MSS tumors
contains a high concentration of TMB, which promotes the
enrichment of activated CD4 and CD8 T cells, hence enhancing
the tumor’s response to ICIs (Ghorani et al., 2020). Numerous
studies have demonstrated that TMB can be a reliable predictive
index of antitumor response to ICIs (Jiang et al., 2021).

Progress in genomic technology, which began with the
completion of the Human Genome Project in 2003, has been
accelerated by the advent of transcriptome analysis, biochips

(Kozal et al., 1996), and high-throughput sequencing (Reuter
et al., 2015). Transcriptome sequencing is currently one of the
most widely used high-throughput sequencing technologies, with
next-generation sequencing being the most popular (Mosele
et al., 2020). Following an integrated analysis of sequencing
results, numerous tumor pathological mechanisms have been
defined at the molecular level. These findings have aided the
development of tumor treatment strategies, with the ultimate goal
of translating laboratory findings to the clinic. Currently, the
implementation of single transcriptomic analysis has some
limitations. For example, there are numerous molecular stages
involved in the translation of mRNA to proteins. Certain
aberrations in this process may impair protein stability and
disrupt the relationship between mRNA and protein levels.
The combination of proteomics and transcriptome analysis can
accurately uncover the biological mechanisms and clinical
transformation of tumors. (Ross et al., 2004) established the
concept of quantitative proteomics, a critical component of
proteomics research. It is capable of identifying and quantifying
all proteins expressed from a single genome or a mixture (Graves
and Haystead, 2002). Isotope-based quantitative proteomics has
been widely used to analyze specific tumor biomarkers.
Numerous isotope-based quantitative proteomics technologies
have been developed, including isotope-coded affinity tags
(ICATs) (Gygi et al., 1999) and stable isotope labeling of amino
acids in cell culture (Ong et al., 2002). Compared with these
technologies, isobaric tags for relative and absolute quantification
(iTRAQ), developed in 2004 by AB SCIEX, offer significant
advantages, including better sensitivity and efficiency (Ross et al.,
2004). iTRAQ technology allows for simultaneous labeling of up to
eight samples, which may then be analyzed quantitatively using
liquid chromatography tandem-mass spectrometry (LC-MS/MS).
iTRAQ has been applied to different types of samples, and has
yielded significant results, most notably in cancer research. iTRAQ-
based studies have identified biomarkers in CRC (Bai et al., 2020),
breast cancer (Jézéquel et al., 2019), bladder cancer (Zhang et al.,
2017), and other cancers, establishing a solid foundation for further
research and analysis of tumor pathogenesis using this technology.

In this study, we first used iTRAQ to analyze six paired samples
between the CC and matched samples. After identifying the protein
that differed significantly between tumor and normal samples, we
obtained mRNA expression data from the TCGA and Gene
Expression Omnibus (GEO) databases. To the best of our
knowledge, there was rare research that apply differentially
expressed protein-related RNA (DEP mRNA) to analyze CC.
Surprisingly, there was a significant variation in prognosis and
immunocytes infiltration between different DEP mRNA types.
The DEP mRNA may then play a unique role in the
immunologic microenvironment, influencing whether or not CC
patients benefit from immunotherapy. To assess the characteristics of
DEP mRNA, we extracted intersecting differentially expressed genes
(DEG) from a public database and divided them into three gene
clusters. Following that, the DEGs were used to develop a specific
system referred to as theDEP-related score (DEPRS), whichwas used
to grade them and compare the high- and low- score groups in terms
of prognosis, TMB, MSI status, and immunotherapy sensitivity. This
analysis presents a novel and effective strategy for predicting the
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prognosis of CC and evaluating the therapeutic effects of
immunotherapy, without affect by LCC and RCC. Simultaneously,
we identified important genes based on DEPRS using weighted gene
co-expression network analysis (WGCNA), random forest, and
artificial neural networks to better direct clinical work.

MATERIALS AND METHODS

The workflow of this whole study was offered in the Figure 1.

Collection of Clinical Samples
All human tumor samples and matched adjacent normal samples
were collected from patients diagnosed with CC at the Harbin
Medical University Cancer Hospital in October 2020. Patients
were diagnosed with adenocarcinoma by endoscopy and had not
undergone any preoperative chemotherapy or radiotherapy.
Tissue samples were immediately stored in liquid nitrogen
after resection. This study was approved by the Ethical
Committees of Harbin Medical University Cancer Hospital,
and patients signed an informed consent form.

Colon Cancer Transcriptome Data
Download and Preprocessing
In this study, we downloaded 629CCRNA-sequencing data from two
high-throughput sequencing platforms; 473 cases from TCGA and
156 cases from GEO (GSE103479) (http://www.ncbi.nlm.nih.gov/
geo/). The above data included information about each patient’s
somatic mutation, primary tumor site, clinical stage, and survival
status. The tumorwas characterized as RCCwhen it was located in the
cecum, ascending colon, and hepatic flexure of the colon. The primary

location of the tumor was the splenic flexure of the colon, descending
colon, sigmoid and recto-sigmoid junction and were defined as LCC.
After excluding patients with incomplete survival data, 444 samples
were included in the study; TCGA 322 and GEO 122. We obtained
the normalized matrix files from GEO for the microarray data. For
data from TCGA, we downloaded the RNA-sequencing data (FPKM
value) of gene expression, which was then converted into transcripts
per kilobase million (TPM) values for combined analysis. To adjust
the batch effect caused by non-biotechnology deviation, the “Combat”
function of the R package “SVA” was used.

Unsupervised Clustering Based on
Differentially Expressed Protein-Related
mRNA
iTRAQwas used to examine six pairs of left- and right- colon cancer
and matched normal samples, and 243 DEPs (|log2foldchange| >
0.5, p-adj < 0.05) were identified (Detail iTRAQmethod and protein
information in Supplementary Data). Then, DEPs related mRNA
expression levels were extracted from the integrated data set. The
DEP mRNA was used to distinguish between tumor types. The
hierarchical agglomerative cluster was used to cluster all tumor
samples in the R package “ConsensusClusterPlus” (Wilkerson and
Hayes, 2010). Cluster count and membership were identified
through unsupervised analysis using stability evidence. To ensure
the cluster’s stability, the analysis was repeated 1,000 times.

Gene Set Variation Analysis
To compare the biological processes of DEPmRNA in distinct tumor
types, we utilized the R package “GSVA” to perform enrichment
difference analysis. GSVA uses a nonparametric and unsupervised
method to estimate the variation pathway and enrichment of

FIGURE 1 | Workflow of whole analysis.
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biological processes across several expression datasets. Following that,
we downloadGeneOntology (GO) andKyoto Encyclopedia ofGenes
and Genomes (KEGG)-related databases from the MSigDB database
(http://softwar.broadinstiture.org/gsea/msigdb/) to finish the GSVA
analysis. The heat map displays the significantly distinct pathway in
the analysis results (p-adj < 0.05).

Evaluation and Difference of Immune
Infiltration in Different Types of DEP mRNA
To estimate immunocyte infiltration of samples, the R package
“GSVA” was used to analyze single-sample gene-set enrichment
analysis (ssGSEA). We acquired information on immune cell
marker gene expression from Charoentong’s Charoentong et al.,
2017 research and calculated the enrichment coefficients, which
showed the relative abundance of immune cells in samples.
Finally, we compared immune infiltration patterns across
various DEP mRNA clusters.

Identification of Differentially Expressed
Genes Between Differentially Expressed
Proteins mRNA Clusters
R package “Limma” was used to identify DEGs (p-adj < 0.01) in
different DEP mRNA clusters (Ritchie et al., 2015). Following
that, numerous sets of DEGs were obtained, and the intersection
was used to extract their expression in all samples for
subsequence processing. The intersecting DEGs were analyzed
using the R package “clusterProfiler” (Yu et al., 2012), which
included GO and KEGG functional annotations analysis.

Construction of Differentially Expressed
Proteins Related Scores
We developed an algorithm and defined it as DEPRS, for
quantification of DEP mRNA-related types in LCC and RCC.
The entire process was as follows: Firstly, the intersecting DEGs

FIGURE 2 | (A) Correlation among DEP mRNA in CC. The circle size represents the effect of each regulator on the prognosis. The range of values calculated by
Log-rank test was p < 0.001, p < 0.01, p < 0.05, and p < 0.1, respectively. The green dots in the circle represent favorable prognostic factors; Purple dots in the circle
represent prognostic risk factors. The lines linking regulators indicate interactions, and their thickness shows correlation strength between genes. Negative correlation is
marked in blue and positive correlation in red. (B)Consensusmatrixes of all CC samples for appropriate k value (k = 3), displaying the clustering stability using 1,000
iterations of hierarchical clustering. All samples were clustered into three subtypes. (C) Survival analyses for the three DEP mRNA cluster based on 1,051 patients with
CC from GEO cohorts including 96 cases in cluster-A, 98 cases in cluster-B, and 55 cases in cluster-C. Kaplan-Meier curves with Log-rank p-value = 0.031 showing
significant survival difference among the three DEP mRNA patterns. The DEP mRNA cluster A had significantly better overall survival than the other two clusters. (D) A
heat map showing the unsupervised clustering of DEP mRNA in all CC samples. Columns represent samples. A heatmap visualizing the clinical parameters. Red
represents activation and blue represents inhibition. CC cohorts were used as sample annotations. (E–G) Results of GSVA enrichment analysis showing different tumor
types in the three DEPmRNA patterns. Red represents activation and blue represents inhibition. (E)DEPmRNA cluster A vs DEPmRNA cluster B; (F)DEPmRNA cluster
A vs DEP mRNA cluster C; (G) DEP mRNA cluster B vs DEP mRNA cluster C.
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were subjected to univariate Cox proportional hazard regression
analysis (COX) using the R package “glmnet” (Friedman et al.,
2010). The gene that had a significant effect on prognosis was
standardized. Based on these DEP mRNA-associated DEGs, the
unsupervised clustering method was used to cluster all patients
for further analysis. Meanwhile, we performed principal
component analysis (PCA) to identify the key components of
these genes to construct a DEP mRNA-related gene signature.
Principal component 1 and principal component 2 were chosen
as the signature scores. Finally, we used an approach comparable
to the gene expression level index to calculate each patients’
DEPRS: DEPRS= ∑PCA1i+∑PCA2i (i is the expression of DEP
mRNA-related DEGs). The best cut-off value for dividing high
and low DEPRS groups for prognosis was obtained using the R
package “maxstat” (Laska et al., 2012).

Prediction of Immunotherapy Sensitivities
Immunotherapy sensitivities were estimated in the high and low
DEPRS groups from two perspectives: immune checkpoint-related
genes immunophenoscores (IPS) and open-label immunotherapy
cohort. Various immune-related genes, including effector cells,
immune suppressor cells, MHC molecules, and
immunoregulatory cytokines were used to determine
immunogenicity. Machine-learning algorithms can accurately
estimate and quantify immunogenicity. The IPS of CC in TCGA
was downloaded from the TCIA database (https://tcia.at/). Then, we
compared the immunophenoscore differences between high and low
DEPRS groups in immunotherapy, to predict immunotherapy
sensitivities. Simultaneously, a thorough search for gene
expression profiles in publicly available immunotherapy cohort of
metastatic urothelial tumors (IMvigor210: http://research-pub.gene.

FIGURE 3 | (A) PCA for the transcriptome profiles of three DEP mRNA clusters showing significant differences in transcriptome between different clusters. (B) The
abundance of each TME infiltrating cell in the three DEP mRNA clusters. The upper and lower ends of the boxes represent interquartile range of values. The lines in the
boxes represent the median value, and the colored dots represent outliers. The asterisks represent the statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001). (C) The
venn diagram showing the overlapping genes between the three clusters. (D) GO enrichment analysis of the overlapping gene signatures. (E) KEGG enrichment
analysis of the overlapping gene signatures.
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com/IMvigor210CoreBiologies) Mariathasan et al., 2018 was
performed. Data were pretreated using the R package
“IMvigor210CireBiologies.” The RNA-SEQ data was filtered and
normalized using the R package “edgeR,” and transformed using
voom in the R package “limma.” In addition, we downloaded and
organized prognostic status and therapeutic effect data. Based on the
above computation, the DEPRS for each sample in this cohort was
calculated and divided into high and low score groups to
compare the difference in therapeutic response between the two
groups.

Identification of Key Genes
To screen and identify DEP-related prognostic key genes in LCC
and RCC, two methods were used: weighted gene co-expression
network analysis (WGCNA), random forest, and artificial neural
network. First, we used the combination of DEP mRNA and
DEPRS to run the WGCNA. To transform the adjacency matrix
(AM) to a topological overlap matrix with DEGs, the appropriate
power index was selected. The higher the value of the mean
connectivity, the more the network conforms to the scale-free

characteristics. According to the relationship between soft
threshold (power) and mean connectivity, the minimum index
when the R2 of scale-free network reaches 0.8 was taken as the
appropriate index. Then, a correlation between gene consensus
modules and DEPRS was established, and gene significance (GS)
was defined as the mediated p-value of each gene (GS = lgP) in a
linear regression between gene expression and the scores.
Subsequently, GS >0.6 genes in the module with the highest
positive correlation coefficient with DEPRS were screened.
Following that, the random Forest software package was used
to classify all DEP mRNA. The parameter mtry (Optimal variable
number of binary trees in the nodes) was set to 6, and the optimal
number of trees included in the random forest was 49. After
constructing the random forest module, the dimensional
importance value (IV) was determined using the module’s
decreasing accuracy method (Gini coefficient method). Genes
with a length of more than two were treated as special genes to
construct subsequent modules. Unsupervised hierarchical cluster
analysis was performed on these specific genes and a heat map
was generated to demonstrate their classification effect. Following

FIGURE 4 | (A) Consensus matrixes of TCGA-COAD cohorts for appropriate k value (k = 3), displaying the clustering stability using 1,000 iterations of hierarchical
clustering. TCGA samples were clustered into three subtypes based on the DEGs among three DEP mRNA clusters. (B) Kaplan–Meier curves showing the overall
survival across the gene clusters. The log rank test showed an overall p = 0.040. (C) A heat map showing the expression of DEGs in different gene clusters. Heat map
colors indicate relative DEGs expression levels. (D) Kaplan–Meier curves showing the overall survival in high-DEPRS and low-DEPRS groups. The log rank test
showed an overall p < 0.001. (E) The Sankey diagram displaying the distribution of patients with primary tumor sites, DEP mRNA clusters, gene clusters, and DEPRS.
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that, we classified these genes into high and low expression
groups based on their median expression and categorized
them as gene scores (low expression as 0, high expression as
1). On significant variables, the R package “Neuralnet” was used
to construct an artificial neural network model. The model’s
hidden layer parameter was set to 5, and the outcomes of weight
score multiplied by gene score were used to construct a
classification model for HDEPRSG and LDEPRSG. The R
package “pROC” was used to create the receiver operating
characteristic curve (ROC), as well as calculate the area under
the curve to confirm classification performance. Finally, the
specific gene was obtained from an intersection of the
particular gene and the screened gene. To repeatedly validate
the important gene at the protein level, we downloaded the
proteomics cohort in the TCGA COAD sample (including 29
normal samples and 64 tumor samples) from The Clinical
Proteomic Tumor Analysis Consortium (CPTAC) (https://
proteomics.cancer.gov/programs/cptac). Additionally, we
investigated the prognostic significance and expression of
key genes.

Statistical Analyses
All the statistical analyses were performed using R-version 4.0.5.
The Wilcoxon test and Kruskal-Wallis test were used to compare
two groups, and more than two groups respectively. The
prognosis curve was constructed using the Kaplan-Meier
plotter, and the log-rank test was used to determine whether
there was a statistically significant difference in prognosis.
Spearman correlation coefficient was used to measure the
relationship between variables. The mutation gene status in
different groups was demonstrated using the R package
“maftool” (Mayakonda et al., 2018). p < 0.05 was considered
statistically significant.

RESULTS

Differentially Expressed Proteins mRNA
Landscape in Colon Cancer
The CC samples and matched normal samples were subjected to
iTRAQ analysis. Then, 243 DEPs (|log2foldchange| > 0.5, p-adj <

FIGURE 5 | (A) Differences in DEPSR among the three DEP mRNA clusters in TCGA cohort. Statistical comparisons were made using Kruskal-Wallis test (p <
0.001). (B) Differences in DEPSR among three gene clusters in TCGA cohort. Statistical comparisons were made using Kruskal-Wallis test (p < 0.001). (C) The
scatterplots show positive correlation between DEPRS and TMB. The Spearman correlation between DEPRS and TMBwas 0.18 (p = 0.0025). (D) Kaplan–Meier curves
showing the overall survival based on TMB and DEPRS. Log rank test, p < 0.001. (E) Correlations between DEPRS and the universal landscape of immune cell
interaction in TME as determined using Spearman analysis. Negative correlation is shown in blue and positive correlation is shown in red.
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0.05) were identified and the corresponding mRNA data were
extracted from the integrated dataset. The network was used to
depict the comprehensive DEP mRNA landscape. Univariate
COX analysis was used to investigate all of the DEP mRNAs,
and the interaction between themwas demonstrated (Figure 2A).
As shown in the figure, there was an explicit negative association
between the favorable factor and risk factor. Next, Following that,
all CC samples were clustered using the R package
“ConsensusClusterPlus” based on 243 DEP mRNA, and 3
clusters were identified (Figure 2B).

A Kaplan-Meier (K-M) curve was used to compare the prognosis
of various DEP mRNA clusters. We found that DEP mRNA cluster
B had a significantly worse prognosis than the other two clusters (p =
0.031) (Figure 2C). Then, DEP mRNA expression in the three
clusters was shown using a heat map, and the expression of the 3
clusters was significantly different (Figure 2D). The KEGG-related
GSVA was used to investigate the biological function of these DEP
mRNA clusters. When cluster A was compared to cluster B, we
observed that DEP mRNA cluster B was significantly more
abundant in carcinogenic activation pathways, such as small cell
lung cancer, renal cell carcinoma, adherens junction, and TGF-β
pathway (Figure 2E). Then, GSVA analysis between clusters A and
C revealed that cluster A enriched for a variety of pathways not

previously associated with it, including ECM receptor interaction,
chemokine pathway, and calcium signaling pathway (Figure 2F). In
comparison to clustering C, DEP mRNA cluster B enriched for a
variety of carcinogenic activation pathways including the MAPK
signaling pathway, focal adhesion, etc. (Figure 2G). As a result of the
aforementioned finding, DEP mRNA cluster B was found to have
theworst prognosis among three clusters and an enrichment analysis
with numerous carcinogenic pathways.

Differentially Expressed Genes Selected
from Differentially Expressed Proteins
mRNA Clusters
The PAC clustering method was used to confirm the DEP mRNA
clustering result previously obtained. As a result of the PCA
grouping, three distinct DEP mRNA groups were identified,
indicating the consistency and accuracy of the test (Figure 3A).
The DEP mRNA cluster B showed a poor prognosis and was
associated with the cancer signaling pathway. The ssGSEA was
used to evaluate each sample to determine the link between the three
clusters and immune infiltration. Surprisingly, an investigation of
immunological infiltration revealed that DEP mRNA cluster B was
significantly abundant in immune cells such as MDSC, activated

FIGURE 6 | (A) The profile of DEPSR among different MSI status. The Kruskal-Wallis test was adopted to make statistical comparisons between different MSI
status (p < 0.001). (B) Proportion of patients with different MSI status in high DEPES and low DEPRS groups. The proportion of MSS and MSI-L patients in the low
DEPRS group was significantly lower than that in the high DEPRS (p < 0.05). The groups were compared using the Kruskal-Wallis test. (C,D) Awaterfall diagram showing
the top 20 driver genes with the highest mutation frequency in low DEPRS (C) and high DEPRS (D) groups.
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B cell, activated CD4 T cell, and natural killer cell (Figure 3B).
However, when compared to clusters A and C, cluster B showed no
advantage in terms of survival time. To further investigate the
differences in the immunological microenvironment of DEP
mRNA, the R package “Limma” was used to identify DEG
between different DEP mRNA clusters. There were 1,577
overlapping DEGs (Figure 3C). Additionally, using the R
package “clusterProfiler” the DEGs were subjected to GO and
KEGG analysis. In GO enrichment, the overlapped DEGs were
enriched in immune response (Figure 3D), while in KEGG they
were enriched in inflammation-related pathways and carcinogenic
pathways (Figure 3E).

Construction of Differentially Expressed
Proteins Related Score
To conduct in-depth research on the various expression types of
DEP that contribute to the differences in the immune
microenvironment, the TCGA-COAD sample was re-divided
into three gene clusters based on overlapping DEGs
(Figure 4A). To determine the survival difference between the
three gene clusters, a prognostic analysis was performed.
Although the results presented on the survival curve weren’t
perfect, but the novel gene clusters were shown the significant
difference of prognosis among different clusters (p = 0.04)
(Figure 4B). Following that, the DEGs expression in distinct
gene clusters and DEP mRNA clusters was visualized using the
heat map (Figure 4C). Taking into account the complexity and
variability of individual differential protein expression patterns
and the subsequent identification of important genes, we
developed a novel algorithm called DEPRS to quantify the
DEP mRNA expression in individual patients. The optimal
cut-off value was determined using the R package “maxstat,”

and patients were divided into high DEPRS and low DEPRS
groups (HDEPRSG and LDEPRSG). As shown in the prognostic
analysis, LDEPRSG had a better prognosis than HDEPRSG (p <
0.001) (Figure 4D). Following that, a Sankey diagram illustrating
the distribution of patients with tumor sites, DEP mRNA cluster,
gene clusters, and DEPRS was displayed (Figure 4E). As
indicated in Figure 4E, CC was divided into LCC and RCC,
which were further divided into three DEP mRNA clusters.
Following that, the DEP mRNA clusters were stratified into
three gene clusters. Surprisingly, samples in the DEP mRNA
cluster B and gene cluster B were classified as having a high
DEPRS score, indicating a poor prognosis. A portion of DEP
mRNA cluster B occupied a section of gene cluster B, but partial
samples in DEP mRNA cluster A were retained in gene cluster A
distributed in low DEPRS, which was associated with a better
prognosis. It was indirectly demonstrated that multiple clustering
modes produced consistent results. Following the above result,
the difference between LCC and RCC wasn’t distinct that means
the DEPRS model own the special advantage to ignore tumor site.

Differentially Expressed Proteins Related
Score and Correlation Analysis of Somatic
Mutation
To further illustrate the relationship between DEPRS and the
preceding two cluster modes, we examined the correlation
between the obtained clusters and DEPRS. There was a
significant difference in DEPRS between various DEP mRNA
clusters (Figure 5A). The DEP mRNA cluster B had had a much
higher median DEPRES value than the other two clusters. Then,
when compared to other clusters, gene cluster C had significantly
increased DEPRS (Figure 5B). Because the DEG was shown to be
enriched in immune-related pathways, we examined the correlation

FIGURE 7 | (A–F) Comparison of immunosuppressive checkpoints expression between high DEPRS expression and low DEPRS expression groups. The
expression of PD-1 (A), PDCD1LG2 (B), CD274 (C), CTLA4 (D), HAVCR2 (E) and LAG3 (F) was higher in high DEPRS than in the low DEPRS expression group (all p <
0.05). Statistical comparisons were done using the Wilcoxon test. (G) Proportion of patients with different treatment outcomes in high DEPRS and low DEPRS. The
proportion of CR/PR patients in high DEPRS was lower than that in low DEPRS (21 vs 33%). (H) Comparison of DEPRS between different treatment outcome
groups (p = 0.071). (I) The relationship between IPS and DEPRS groups in patients (p = 0.0044).
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between TMB and DEPES. There was a significant correlation
between TMB and DEPRS using association analysis (Coefficient:
R = 0.018, p = 0.0025) (Figure 5C). With an increase in DEPRS, the
distribution of gene clusters followed a significant rule. TMB showed
an increasing tendency as DEPRS increased, indicating that patients
with high TMB have a poor prognosis. According to the preceding
data, gene cluster A had a low DEPRS and a low TMB, indicating a
better prognosis. Additionally, we examined the effect of TMB and
DEPRS integration on prognosis. All samples were stratified into
high- and low- TMB subgroups. K-M curves were used to analyze
the combined effect of TMB and DEPRS on prognosis. Within the
same DEPRS status, the group with a high TMB had a worse
outcome than the group with a low TMB. Nonetheless, TMB status
did not affect the DEPRS predictive ability of prognosis, such that
patients with high DEPRS invariably had a poor prognosis
(Figure 5D). We also created a correlation map to visualize the
DEPRS and immune cell interaction in TME, owing to the
relationship between TMB and DEPRS. It is demonstrated
unequivocally that the characteristics of DEPRS were highly
correlated with high levels of immunocyte infiltration
(Figure 5E). We aimed to determine the association between

MSI status and DEPRS because it was critical for
immunotherapy sensitivity. MSI-H differed significantly from
MSS and MSI-L in this study, indicating that MSI-H was
associated with a high DEPRS (Figure 6A). Consistent with this
finding, 23% ofMSI-H patients had high DEPRS compared with 6%
with low DEPRS (Figure 6B). In addition, we compared the
differences in somatic variation driver genes between individuals
with high and low DEPRS. The top 20 driver genes exhibiting the
highest mutation frequency were selected (Figures 6C,D). The
mutation rate of the majority of driver genes was higher in the
HDEPRSG than in the LDEPRSG.

Assessment of Differentially Expressed
Proteins Related Score in Predicting
Immunotherapy Efficacy
The purpose of this study was to compare immunotherapy
sensitivity parameters in two DEPRS groups. For immune
checkpoints, PD-1, PDCD1LG2, CD274, CTLA4, HAVCR2, and
LAG3 were significantly expressed in HDEPRSG than LDEPRSG
(p < 0.05) (Figures 7A–F). Therefore, the parameters indicated that

FIGURE 8 | (A) Relationship between the error rate and number of classification trees. (B)Gini coefficient method used to screen specific genes (IV >2). There were
HTRA3, S100A8, NNMT, FBLN2. (C) Results of neural network visualization. (D) A heat map showing differences among the four genes between high DEPRS and low
DEPES. Red color indicates positive expression and blue indicates negative expression. (E) The predictive value of the artificial neural network model based on four key
genes in immunotherapy efficacy (AUC, 0.886, 95% CI: 0.854–0.914).
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different groups responded differently to immunotherapy.
Additionally, we demonstrated the stability of DEPRS as a
predictor of immunotherapeutic efficacy in a public
immunotherapy cohort. The relationship between DEPRS and
treatment outcome was shown in Figure 7G. The results showed
that the stable disease (SD)/progression disease (PD) proportion was
significantly higher in the highDEPRS than in the lowDEPRS group
(79 vs 67%) and that SD/PD patients had a higher DEPRS than the
complete response (CR)/partial response (PR) group (p =0.071)
(Figure 7H). On the other hand, the relationship between IPS and
DEPRS was used to estimate the predictive potential of DEPRS. The
IPS, which measures immunogenicity, was a significant difference
between DEPRS groups, with the IPS in the high DEPRS group
being lower than the IPS in the low DEPRS (p = 0.0044) (Figure 7I).
Based on these findings, we hypothesized that DEPRS may possess
the ability to predict prognosis and immunotherapy efficacy.

Identification of Key Genes in Differentially
Expressed Proteins Related Score
The random forest module was constructed to identify key genes
based on DEPRS, and Figure 8A depicts the relationship between

reference model error and the number of decision trees (Figure 8A).
A total of 49 decision trees were selected since the error rate was the
lowest and the most relatively stable. The IV > 2 genes (HTRA3,
S100A8, NNMT, and FBLN2) were chosen for further analysis using
the Gini coefficient method (Figure 8B). Unsupervised hierarchical
cluster analysis was used to study these specific genes, and the
resulting heat map was sued to illustrate the relationship between
their expression and DEPRS status (Figure 8C). The expression of
these four genes was significantly increased in the high DEPRS
group. Next, these four genes were used to construct a neural
network prediction model as illustrated in Figure 8D. The ROC
curve was used to determine the sensitivity of the module, and the
AUC value was 0.886 (Figure 8E). The results suggested that the
neural network prediction model based on four specific key genes
produced satisfactory results and that HDEPRSG was more
accurately classified than LDEPRSG. On the other hand, a gene
co-expression network based on DEPRS was constructed to identify
the key DEP mRNA. By selecting number 5 as the appropriate soft
threshold (Figure 9A), a scale-free co-expression network was
constructed (Figure 9B), yielding six modules. The brown
module had the highest correlation with DEPRA (coefficient =
0.83, p < 0.001) (Figure 9C). After interacting with the four

FIGURE 9 | (A) To achieve a scale-free co-expression network, the power index = 5 was chosen as the appropriate soft threshold. (B) The branches of the
dendrogram correspond to six different gene modules. (C) The correlation between gene modules and DEPRS. Each cell contains corresponding correlation coefficient
and p-value. (D) Significant positive correlation betweenmodule membership and gene significance (Correlation coefficient = 0.86, p < 0.001). (E,F)Kaplan-Meier curves
showing the overall survival of the two key genes FBLN2 (p = 0.032) (E) and HTRA3 (p = 0.032) (F). Red represents high expression, and blue represents low
expression. (G) The difference in OS between high and low FBLN2 expression groups (p < 0.001). (H) The difference in FBLN2 expression between cancer tissues and
normal tissues at protein level.
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special genes identified by the neural network, two key genesHTRA3
and FBLN2 were obtained. The K-M curves were used to
demonstrate that the high expression of two genes was associated
with a poor prognosis (Figures 9E,F). At the protein level, high
FBLN2 expression was associated with a poor prognosis (p < 0.001)
(Figure 9G), and FBLN2 expression was significantly higher in
tumor samples than in normal samples (p < 0.001) (Figure 9H).

DISCUSSION

Numerous studies have analyzed single transcriptome, resulting in a
lack of stability for estimating prognosis and immunotherapy. In
comparison, multi-omics integration research has several distinct
advantages in the field of tumor research. To the best of our
knowledge, integration of proteomics and transcriptomics
research is rare in CC. In this study, iTRAQ analysis was used to
identify DEPs, and then extract DEP mRNA expression from a
publicly available database. The construction of the DEP mRNA
clusters and gene clusters confirmed that various clusters had
significant differences. Then, DEPRS were further established to
confirm the stability of prognosis prediction and immunotherapy
sensitivity for DEP mRNA-related DEGs and its evaluation ability
didn’t be affected by LCC and RCC. Finally, key genes that may offer
potential clinical value for immunotherapy were identified.

Currently, immunotherapy is considered a novel treatment for
cancer. Excepted PD-1, more and more immunotherapy markers
were discovered and TMB is an emerging one. TMB refers to the total
number of somaticmutations in the tumor genome that it can be used
to show the ability of nonsynonymous mutation. It also indirectly
reflect the function of tumor producing neoantigen. High levels of
neoantigen can easily be recognized by the autoimmune system, and
lead to stimulation of CD8+ T cells to trigger immune response
(Schumacher and Schreiber, 2015). Studies have shown that tumors
with high TMB have high number of natural killer (NK) cells and
T cells in their tumor microenvironment which indirectly show
patients may receive good efficacy of immunotherapy. However,
using TMB alone to evaluate the curative effect of immunotherapy
is not highly effective. Therefore, researchers have attempted to find
other indicators that can be integratedwithTMB for the assessment of
immunotherapy efficacy. In clear cell renal cell carcinoma, TNFSF14
was highly expressed in the high-TMB group, and the copy number of
TNFSF14 was significantly correlated with classical immunocyte
infiltration (Xu et al., 2020). A previous study showed that the
mutation of ZFHX3 was significantly associated with high TMB
and neoantigen load. In addition, the mutation of ZFHX3 showed a
strong relationship with high-level T cell infiltration and immune-
related genes (Zhang et al., 2021). In cutaneousmelanoma, high TMB
reflects good prognosis and low grade pathology, increased
macrophage M1 and M2, and decreased ratio of Treg cell to
memory B cells (Kang et al., 2020). In head and neck squamous
cell carcinoma, low TMB level indicates better prognosis than high
TMB level, and high immunocyte infiltration (Zhang et al., 2020). In a
clinical trial in which patients with advanced melanoma received
ipilimumab or tremilimumab treatment, patients in high TMB group
(>100 nonsynonymous codingmutations) had longer overall survival
(OS) (Snyder et al., 2014). A similar finding was obtained in a Chinese

clinical trial on advanced gastric cancer. They found that TMB-H
patients showed strong response to toripalimab, and patients who
showed double positive TMB-H and PD-had better immune response
and improved survival rate (Wang et al., 2019). The integration of
TMB and a single gene may be an effective strategy for evaluating
immune response to immunotherapy. In our study, we integrated
integration proteome and transcriptome data to develop DERPS
which can combined with TMB to facilitate evaluation of the
prognosis of patients. When patients kept the same level of
DEPRS, the high TMB level may remind patients own a bad
outcome (Figure 5D).

As shown, immunotherapy effectively controlled MSI-H tumors,
and TMB served as an important indicator of immunotherapy
efficacy in MSI-H patients. The best cut-off point range of TMB
was 37–41 mutations/Mb in MSI-H CRC patients (Schrock et al.,
2019). TMB not only can be used as an auxiliary reference index for
MSI tumor response to immunotherapy, but also as an indicator of
MSI status. Study indicates that tumors lacking the mismatch repair
protein duo MLH1/PMS2 always have a lower TMB than those
tumor lacking a different protein heterodimer, MLH2/MSH6. Then,
even tumor loss the same mismatch repair protein, the different
origin of tumor may affect the TMB level (Salem et al., 2020). In our
study, MSI-H tumors showed high DEPRS expression (Figures
6A,B), and expression of PD-1, CD174, CTLA4 and other parameter
also shown high level in high DEPRS (Figures 7A–F), but tumors
with high DEPRS expression had poor response to immunotherapy
(Figure 7G). Borrowing this novel score system, we innovatively
combined the two parameters to estimate response to
immunotherapy. Previous studies mainly emphasize the
heterogeneity between LCC and RCC, but the score system own
its stability to assess prognosis and efficacy of immunotherapy which
didn’t affected by tumor site (Figure 4E). On one hand, further
studies are needed to explore the detailed mechanism of TMB and
MSI status in CC. On the other hand, our next step try to look for
similar gene characters in significant different LCC and RCC, in
order to offer accurate evaluation for patients.

To identify the key genes influencing the prognosis and response
to immunotherapy,multiple algorithmswere applied to screen genes
based on DEPRS and DEP mRNA. Two key genes, Fibulin 2
(FBLN2) and HtrA serine peptidase 3 (HTRA3) were identified.
HTRA3 was found to be a trimeric protein belonging to the homo-
oligomeric serine proteases family. Functionally, HTRA3 was found
to play an important role in mitochondrial homeostasis, cell death,
and signal transduction (Clausen et al., 2002). A previous study
reported that HTRA3 is a pro-apoptotic protein which also
suppresses tumor formation. For example, in non-small cell lung
cancer, over-expression of HTRA3 inhibited TGF-β1 to suppress
tumor metastasis (Zhao et al., 2019). However, persistent expression
ofHTRA3 results in poor prognosis of CRC. Indeed, high expression
of HTRA3 in CRC tumor stroma was associated with adverse
outcomes such as high tumor budding (Forse et al., 2017).
Evidence from studies has shown that high expression of HTRA3
was correlated with poor prognosis in oral squamous cell carcinoma
(Moriya et al., 2015). In this study, we identified another key gene,
FBLN2. This gene encodes fibulins which is a protein belonging to
the extracellular matrix (ECM) glycoprotein family. All FBLN family
protein contain epidermal growth factor (EGF)-like domains and a
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C-terminal structure. Bases on this protein structure, they interact
with other proteins to execute their functions (Gallagher et al., 2005).
Many studies have shown that FBLN2 can bind to many ligands and
function as a scaffold protein in the ECM (Yi et al., 2007). Given that
FBLN2 functions in the ECM, downregulation of FBLN2 can
promote the migration and invasion of tumor cells thereby
causing damage to the basement membrane (Klingen et al.,
2021). Furthermore, being a secretory metalloproteinase,
ADAMTS-12 participates in tissue remodeling and cell migration.
It interacts with FBLN2 to suppress the invasiveness of breast cancer
cells. Interestingly, ADAMTS-12 was found to promote tumor
development in breast cancer cells lacking FBLN2 by regulating
metalloproteinase (Fontanil et al., 2014). In contrast, another study
found that FBLN2 promoted tumor growth by interacting with
activated β integrin receptor in CRC (Vaes et al., 2021). Consistent
with the above finding, high expression level of these two genes
(FBLN2 andHTRA3) was linked to worse prognosis in colon cancer
(Figures 9E,F), and FBLN2 was found to be significantly
differentially expressed in CC (Figure 9H). Further research is
needed to clarify their roles during the development of CC.

In summary, this study integrated omics tools ranging from
proteomics to transcriptomics to estimate the prognosis and
response to immunotherapy. HART3 and FBLN2 were found
to be the key genes that can offer predictive role for
immunotherapy in CC. Our study provides a reliable method
for establishing a quantitative model that can be adopted to
explore the pathogenesis of CC. This model may offer its own
value to help clinical practice and not affected by tumor site.
Then, the application of the model in clinical practice requires
further investigation.
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Identification and Validation of a
Prognostic Immune-Related Gene
Signature in Esophageal Squamous
Cell Carcinoma
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Esophageal carcinoma (EC) is a common malignant cancer worldwide. Esophageal
squamous cell carcinoma (ESCC), the main type of EC, is difficult to treat because of
the widespreadmorbidity, high fatality rates, and low quality of life caused by postoperative
complications and no specific molecular target. In this study, we screened genes to
establish a prognostic model for ESCC. The transcriptome expression profiles of 81 ESCC
tissues and 340 normal esophageal mucosal epithelium tissues were obtained from The
Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) cohorts. The
transcriptome expression datasets of 19 esophageal squamous carcinoma cell lines were
downloaded from Cancer Cell Line Encyclopedia (CCLE). The R software Limma package
was used to identify 6,231 differentially expressed genes and 647 differentially expressed
immune-related genes between normal and ESCC tissues. Gene functional analysis was
performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG). Weighted gene co-expression network analysis (WGCNA) was used to screen out
18 immune-related prognostic genes. We then established the prognostic and risk
signature using these genes, and the patients were divided into low-risk and high-risk
groups. Compared with high-risk group patients, the low-risk group patients had longer
overall survival. M1 macrophages and resting dendritic cells were differentially distributed
between the low-risk and high-risk groups and were related to patient survival. We also
examined the functional immune cell and immune molecule levels in low-risk and high-risk
group patients, with significant differences in the tumormicroenvironment between the two
groups. To further verify the accuracy of the prognostic risk model, we performed area
under the ROC curve (AUC) analysis. The AUC value was 0.931 for the prognostic risk,
which was better than the microsatellite instability (MSI) and Tumor Immune Dysfunction
and Exclusion (TIDE) scores. In conclusion, we found 18 immune-related prognostic genes
related to the occurrence of ESCC and established a prognostic model for predicting
disease severity.
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INTRODUCTION

Esophageal carcinoma (EC) is a common malignant cancer
worldwide. In 2018, about half of all new or fatal global cases
of EC originated in China. Esophageal squamous cell carcinoma
(ESCC), the main type of EC, is more difficult to treat because it is
frequently diagnosed at a late stage (Sung et al., 2021; Wanqing
Chen et al., 2021). At present, radiotherapy and chemotherapy
are still the main treatments for unresectable advanced EC.
Neoadjuvant and molecular targeted therapies are also
commonly combined with traditional treatments to extend
patient survival (Kakeji et al., 2021). In addition, with the
great promise of immune checkpoint inhibitors, such as PD-1,
PD-L1, CTLA-4, researchers have started using immunotherapy
for advanced EC (Sadanand, 2021). In the KEYNOTE-181
clinical trial study, pembrolizumab had a higher total effective
rate and better safety profile compared with chemotherapy. The
above results indicated that pembrolizumab should be considered
as the new standard of second-line treatment for patients with
Combined Positive Score (CPS) ≥10 (Kojima et al., 2020).
However, the response rate to EC immunotherapy treatments
must urgently be improved to reduce drug resistance and increase
patient survival time. The immunotherapy for EC patients is
obstructed and long.

For EC patients, especially those with advanced disease, it is of
practical significance to better distinguish patients who will
potentially respond to immunotherapy. The immune-related
gene prognostic index is a recently emerging algorithm that
calculates the score of each patient based on the expression
levels of related genes. It can be used to predict the patient’s
immunotherapy response and prognostic risk index (Yue Chen
et al., 2021). In this study, we obtained tumor-related
differentially expressed genes by comparing gene expression
levels in ESCC tissues and normal esophageal mucosa tissues.
We obtained immune-related differential genes by comparing
them with immune genes databases. The hub immune-related
genes, obtained by weighted gene co-expression network analysis
(WGCNA), were used to establish the prognostic and risk
signature by immune-related gene prognostic index. Finally,
we verified the changes in the immune status of the low-risk
and high-risk patient groups and the accuracy of predicting the
prognosis and immunotherapy response of ESCC patients.

MATERIALS AND METHODS

Data From the Cancer Genome Atlas,
Genotype-Tissue Expression Cohorts and
Cancer Cell Line Encyclopedia
The transcriptome expression profiles of 81 ESCC tissues were
downloaded from TCGA and the corresponding clinical
information (https://portal.gdc.cancer.gov/). The 340 normal
esophageal mucosal epithelium samples were obtained from
GTEx cohorts (https://www.gtexportal.org/home/index.html).
The transcriptome expression datasets of 19 esophageal
squamous carcinoma cell lines (TE1, TE4, TE5, TE6, TE8,

TE9, TE10, TE11, TE14, TE15, KYSE30, KYSE70, KYSE140,
KYSE150, KYSE180, KYSE270, KYSE410, KYSE510, and
KYSE520) were downloaded from CCLE (http://www.
broadinstitute.org/ccle/home). Using R software to integrate
TCGA and GTEx data, 274 normal esophageal mucosa
samples and 81 ESCC samples were selected for further
analysis. The immune-related gene list was downloaded from
the ImmPort dataset (https://immport.org/home).

Differentially Expressed Genes in TCGA and
GTEx Cohorts
The Limma package in R was used to screen the differentially
expressed genes in ESCC and normal esophageal mucosa
samples. A fold change >2 and p-value < 0.05 were the
screening conditions (Law et al., 2014).

Enrichment Analysis
The ClusterProfiler, org. Hs.eg.db, enrichplot, ggplot2, and
GOplot packages in R were used to perform functional
enrichment analyses of the differentially expressed genes. The
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis results are shown in circular maps
(Bindea et al., 2009). The Gene Set Enrichment Analysis (GSEA)
was performed to analyze the distribution trend in gene table
sorted by phenotypic correlation.

Screening of Immune-Related Prognostic
Genes
The WGCNA package in R was used for the cluster analysis of
immune-related differentially expressed genes and screening of
prognostic differentially expressed genes. Kaplan-Meier (KM)
survival curve analysis was used to further verify the accuracy of
the impact of these genes on prognosis (Langfelder and Horvath,
2008).

CIBERSORT
CIBERSORT is a useful tool for evaluating the abundance of
various immune cell types in the tumor microenvironment. A
p-value < 0.05 was a selective condition, and 73 ESCC samples
were obtained for further analysis (Newman et al., 2015).

Receiver Operating Characteristic Analysis
and COX Regression Analysis
The area under the ROC curve (AUC) was used to calculate the
predictive ability of the ESCC prognosis model and the COX
regression analysis was used to calculate the risk coefficients of
ESCC patients. The effect was compared with conventional
indexes (Kamarudin et al., 2017).

Cell Culture
Human ESCC cell lines (TE13, EC109) and normal human
esophageal epithelial cells (HEEC) were provided by
cardiovascular thoracic surgery department of Tianjin Medical
University General Hospital. Cells were cultured with RPMI-1640
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containing 10% Fetal Bovine Serum (FBS). All cells were
maintained in a humidified chamber containing 5% CO2 at 37°C.

RNA Isolation and Quantitative Real-Time
Polymerase Chain Reaction
Total RNA of cultured cells was isolated with RNAiso Plus
(TaKaRa) and reverse-transcribed to cDNA with PrimeScript
Strand cDNA Synthesis Kit (TaKaRa). Quantitative real-time
polymerase chain reaction (qRT-PCR) was performed with TB
Green Premix Ex Taq II (TaKaRa). The primer sequences are
shown in Supplementary Table S1. Relative gene expression was
determined by the comparative 2−ΔΔCT method.

RESULTS

Differentially Expressed Genes and
Immune-Related Genes in Normal and
ESCC Tissues
The flow chart of the study is shown in Figure 1. We downloaded
the transcriptome expression profiles of 95 ESCC tissues and 340
normal esophageal mucosal epithelium samples from TCGA and
GTEx cohorts, then performed batch integration analysis on the
data. Finally, 274 normal esophageal mucosa samples and 81
ESCC samples with 34,350 genes were selected for further
analysis (Supplementary Data S1). Differentially expressed

FIGURE 1 | Flow chart of this study.
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genes were screened by Limma. Overall, 6,231 genes were found
to be differentially expressed between ESCC and normal tissues.
Of these, 3,008 genes were downregulated and 3,223 genes were
upregulated in ESCC tissues relative to normal tissues.

Next, we downloaded the list of 6,196 immune-related genes
from the ImmPort dataset and screened for any differentially
expressed genes among them. There were 647 differentially
expressed immune-related genes, with 418 upregulated and
229 downregulated in ESCC tissues relative to normal tissues.

The differentially expressed genes are shown in Supplementary
Table S2. The heatmaps of differentially expressed immune-
related genes and other differentially expressed genes are
shown in Figure 2A; Supplementary Figure S1, respectively.

Immune reactions and viral infections may be the main factors
that maintain the malignant state of ESCC. GO and KEGG analyses
were performed on the differentially expressed immune-related
genes, with the results showing that the first eight most
significant GO terms enriched were all related to immune

FIGURE 2 | Differentially expressed immune-related genes in ESCC and normal tissues. (A) The heatmap of different immune-related genes. (B) KEGG analysis
results. (C) GO analysis results.
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response. Additionally, three of the first eight KEGG terms enriched
were related to immune response and three were related to viral
infection. The enriched KEGG terms, B cell receptor signaling
pathway, cytokine-cytokine receptor interaction, and chemokine
signaling pathway, were consistent with the enriched GO terms,
such as immune response-activating cell surface receptor signaling
pathway, immune response-activating signal transduction, and
regulation of immune effector process (Figures 2B,C).

Independent Prognostic Genes Screened
by WGCNA in ESCC Patients
Pearson’s correlation coefficient was used to cluster the immune-
related differentially expressed genes in ESCC and normal tissues.

The outliers were all removed, and the clustering tree was built
(Figures 3A,B). Next, the adjacency matrix and topological overlap
matrix were constructed. The six most important modules reflecting
the combined function ofmultiple genes were identified based on the
clustering tree and the adjacency and topological overlap matrices
(Figure 3C). The blue module with 202 genes and the turquoise
module with 222 genes were highly related to the development of
ESCC, so these modules were selected for further analysis. Then, we
combined gene expression data and patient survival information to
calculate the relationship between gene expression levels and days of
survival. We identified 18 genes that were related to ESCC patient
prognosis, 11 of which were related to good prognosis (RELB,
HNRNPL, ITCH, ILF3, PSMC4, CBL, SKP2, DHX33, PRKDC,
ZMYND11, and CCDC88A) and seven that were related to poor

FIGURE 3 | Identification of the independent prognostic genes by WGCNA. (A) Analysis of the scale-free index and mean connectivity for various soft-threshold
powers. (B)Dendrogram of all different genes clustered based on themeasurement of dissimilarity. (C) The heatmap of the relationship betweenmodule eigengenes and
tissue types. (D) Forest plot of the relationship between gene expression and the risk of survival time.

FIGURE 4 | Kaplan-Meier survival curves of the 18 prognostic genes (A–R).
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prognosis (PSME2, PSMD6, GBP2, RABEP2, ZC3HAV1, GRN, and
STC2) (Figures 3D, 4A–R).

A Prognostic Risk Model for ESCC
The 81ESCC selected sampleswere randomly divided into two groups,
training and test. Then, the risk coefficients of 18 prognostic geneswere
calculated by COX regression analysis. The sum of the product of risk
coefficient and expression level for each genewas used to determine the
risk degree of ESCC. The R survival package was then used to establish
the prognostic risk model. Finally, we found that the prognostic risk
model composed of seven of the 18 prognostic genes hadhigh accuracy
(PSMD6, RABEP2, GRN, STC2, ITCH, ILF3, and PSMC4). The
expression levels of PSMD6, RABEP2, GRN, and STC2 were related
to a poor ESCC prognosis, while the expression levels of ITCH, ILF3,
and PSMC4 were related to a good ESCC prognosis. According to the
prognostic risk model, we divided the training and test groups into
high-risk and low-risk subgroups. For the training group, patients in
the low-risk group had better survival rates, with similar results in the
test group (Figures 5A,B). Independent prognostic analyses were then
performed on the training and test groups. The results suggested that
the risk score was related to ESCC prognosis in both groups (Figures
5C,D). We performed GSEA to verify the accuracy of the established
prognostic risk model in predicting ESCC prognosis. There were
significant differences in GSEA enrichment between the high-risk
and low-risk groups. TheGSEA enrichment in the high-risk groupwas
mainly related to immune disease and immune response, while this
enrichment in the low-risk group was mainly related to tumor disease
and tumorigenesis (Figures 5E,F). The gene mutations between the
high-risk and low-risk groups were also different (Supplementary
Figure S2).

The Distribution of Immune Cells and
Functional Molecules in ESCC Patients
To examine the immune status of low-risk and high-risk group
patients, CIBERSORT was used to evaluate the distribution of 23
immune cell types in the ESCC tumor microenvironment. The
proportions of immune cells in the low-risk and high-risk groups
are shown in Figure 6A. There was abundant immune cell
infiltration in both the high-risk and low-risk groups. We then
compared the immune cell composition between these groups,
finding increased levels of M1 macrophages and resting dendritic
cells in the high-risk groups (Figure 6B). Accordingly, we
analyzed the relationship between the immune cell
composition and survival time, observing that high levels of
resting memory CD4 T cells, M0 macrophages, and regulatory
T cells were related to a better survival time (Figures 6C–E). High
infiltration of M1 macrophages, M2 macrophages, CD8 T cells,
and resting dendritic cells showed opposite effects, suggesting
that M1 macrophages and resting dendritic cells were increased
in malignant ESCC patients and related to a poor prognosis
(Figures 6F–I). Interestingly, high levels of M1 and M2
macrophages were related to poor prognosis, while high
amounts of M0 macrophages showed the opposite. These data
imply that the different states of macrophages are related to ESCC
prognosis.

The presence of functional immune cells and functional
molecules in the high-risk and low-risk groups were also
compared. The results showed that a large number of
functional immune cells and functional immune molecules
were increased in the high-risk group (Figure 7A).
Consistent with these data, high levels of functional

FIGURE 5 | Establishment of a prognostic risk model for ESCC. The Kaplan-Meier survival time was analyzed in the (A) training group and (B) test group. The
independent prognostic analysis was analyzed in the (C) training group and (D) test group. (E,F) show the GSEA enrichment between the high-risk and low-risk groups.
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immune cells and functional immune molecules were related
to poor survival. In particular, patients with low levels of
Chemokine receptors (CCR), immune checkpoint molecules,
plasmacytoid DC (pDCs), dendritic cells (DCs), and T cell
co-stimulation had better survival than those with high levels
(Figure 7B).

The Immune-Related Gene Prognostic
Index Could Predict the Prognostic Status
and Immunotherapy Response of ESCC
Patients
We examined the Tumor Immune Dysfunction and Exclusion
(TIDE) scores of the high-risk and low-risk groups to further

analyze the difference of immune status between the two
groups. The results showed that the TIDE scores were
higher in the high-risk group than in the low-risk group
(Figure 8A). The dysfunction score of high-risk patients
was higher than that of low-risk patients, while the
exclusion score showed the opposite trend (Figures 8B,D).
These data indicate that the immune escape risk and poor
prognosis were higher in the high-risk group. The high degree
of microsatellite instability (MSI) in the high-risk group also
confirmed this phenomenon (Figure 8C). After comparing the
area under the ROC curve (AUC) for the risk score, TIDE
score, and Tumor Inflammation Signature (TIS) score, we
found the TIDE score to have the best ability of predicting
survival time in ESCC patients (Figure 8E). The risk score had

FIGURE 6 | (A) Heatmap and (B) distribution of immune cells in the low-risk and high-risk groups of ESCC patients. The immune cell types related to good
prognosis are shown in (C–E). The immune cell types related to poor prognosis are shown in (F–I).
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a good predictive effect on the 1, 2, and 3-years survival of
ESCC patients, and the AUCs were 0.852, 0.842, and 0.931,
respectively (Figure 8F). In conclusion, we found 18 immune-

related prognostic genes related to the occurrence of ESCC and
used several of them to establish a prognostic model for
predicting disease severity.

FIGURE 7 | Levels of functional immune cells and functional molecules in ESCC patients. The levels of functional immune cells and functional molecules are shown
in (A), and the Kaplan-Meier survival analysis is shown in (B).
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The Expression Levels of seven Prognostic
Genes
We analyzed the relative mRNA expression levels of seven
prognostic genes in the normal human esophageal epithelial
cell (HEEC) and two ESCC cell lines (TE13, EC109) by qRT-
PCR. As shown in Figure 9A, there were obvious differences in
the expression of these genes. Meanwhile, we analyzed the
expression of seven prognostic genes in 19 ESCC cell lines in
the CCLE database. We found that the expression trends of these
seven genes in poorly differentiated (TE5, TE9, KYSE70,
KYSE150, KYSE410) and well differentiated (TE1, TE4, TE6,
TE10, TE15, KYSE30, KYSE180, KYSE270, and KYSE510) ESCC
cell lines were nearly consistent with our previous analysis
(Figures 9B,C).

DISCUSSION

With the emergence of immune checkpoint inhibitor therapies,
the treatment options for cancer patients have significantly
increased. For ESCC patients, the results of the KEYNOTE-
181 clinical trial study highlighted the outstanding
achievements of immunotherapy (Kojima et al., 2020). For
patients with advanced ESCC, distinguishing the risk degree of
individual patients and their response to immunotherapy could

better improve the treatment effects. However, there is still no
clear molecular targeting index to indicate ESCC severity, nor is
there a corresponding prediction model to infer the response of
patients to immunotherapy. In this study, we aimed to address
this problem by screening prognostic genes and establishing a
prognostic immune response model for ESCC. The complex
tumor microenvironment is affected by many factors, and the
synergistic effect of many genes can affect tumor progression.
Through module analysis, WGCNA eliminates the offset of a
single factor and obtains important modules related to disease to
further analyze important modules and obtain key genes related
to prognosis (Langfelder and Horvath, 2008). Using this method,
we obtained 18 differentially expressed immune-related genes, 11
of which were associated with a good ESCC prognosis. The other
seven genes showed the opposite. Multiple prognostic hub genes
still cannot easily prompt the prognosis and risk of ESCC
patients. To solve this problem, a prognostic risk model was
established using the immune-related gene prognostic index,
which could effectively predict the prognostic risk and
immune response of ESCC patients (Huang et al., 2021).

The prognostic risk model contained seven genes (PSMD6,
RABEP2, GRN, STC2, ITCH, ILF3, and PSMC4). PSMD6
encodes a member of the protease subunit 26S family that is part
of a multicatalytic proteinase complex with a highly ordered
structure composed of two complexes, a 20S core, and a 19S

FIGURE 8 | The evaluation of prognostic risk model. The (A) TIDE scores, (B) dysfunction scores, (C)MSI, and (D) exclusion scores were analyzed in the low-risk
and high-risk groups of ESCC patients. (E) ROC analysis of the risk model, TIDE scores, and TIS scores. (F) ROC analysis of the 1, 2, and 3-years survival of ESCC
patients.
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regulator. PSMD6 colocalizes withDNAdamage foci and is involved
in the ATP-dependent degradation of ubiquitinated proteins, and
PSMC4 is involved in the non-ATPase subunits of the 19S regulator
lid (Jacquemont and Taniguchi, 2007). The effect of PSMC4 and
PSMD6 expression in tumor progression is still unclear. RABEP2 is a
recently identified protein required for the formation of collateral
vessels during development, which is possibly why it can promote
the development of an ESCC tumor (Aghajanian et al., 2021). GRNs
are a family of secreted, glycosylated peptides that are cleaved from a
single precursor protein with 7.5 repeats of a highly conserved 12-
cysteine granulin/epithelin motif. Research has suggested that GRN

can promote ESCC progression via the autocrine-dependent
FAM135B/AKT/mTOR signaling pathway (Dong et al., 2021).
STC2 encodes a secreted homodimeric glycoprotein that is
expressed in a wide variety of tissues and may have autocrine or
paracrine functions. A previous study regarded STC2 as a predictive
marker for lymph node metastasis in ESCC (Kita et al., 2011).
Moreover, it was reportedly involved in breast, gynecologic, gastric,
colorectal, liver, and respiratory cancers (Li et al., 2021). ITCH is a
regulator of lymphocyte differentiation and the immune response.
Mutations in this gene are involved in the development of multi-
system autoimmune diseases (Kleine-Eggebrecht et al., 2019).

FIGURE 9 | The expression of seven prognostic genes in HEEC and ESCC cell lines. (A) The relative mRNA expression levels of seven prognostic genes in HEEC
and two ESCC cell lines (EC109, TE13) by qRT-PCR. (B) The expression levels of seven prognostic genes in poorly differentiated and well differentiated ESCC cell lines.
(C) The heatmap of seven prognostic genes expression in 19 ESCC cell lines.
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Studies have reported that circulating ITCH may have an inhibitory
effect on ESCC by regulating the Wnt pathway (Yan et al., 2020).
ILF3 has been reported to contribute to the development of various
cancers (Hu et al., 2013; Cheng et al., 2018; Liu et al., 2019). High
expression of ILF3 was shown to be involved in the metabolic
alterations in ESCC patients, especially for the intermediate
metabolites of the glycolysis pathway (Zang et al., 2021).
Through survival analysis, we found that the expression of
PSMD6, RABEP2, GRN, and STC2 were related to a poor ESCC
prognosis, while the expression of ITCH, ILF3, and PSMC4 were
related to a good prognosis. The immune prognosis analysis model
established with these genes was reliable.

According to this immune prognostic risk model, we divided
ESCC patients into low-risk and high-risk groups. We then
analyzed the relationship between immune cells and the
degree of malignancy of ESCC patients. We found the level of
resting DCs to be elevated in malignant ESCC patients and
related to poor prognosis. DCs are considered to be key
antigen-presenting cells (APCs) that are mainly used to
control the initiation of T cell-dependent immune responses
(Saiz et al., 2018). Resting DCs are present in a variety of
tissues, with their main role being to bind and internalize
antigens. However, their role in antigen presentation and
activation of T cells is limited. The transformation of resting
DCs into activated DCs is affected by a variety of factors that
regulate the expression of costimulatory and adhesion molecules.
Through this process, the capacity for antigen uptake is lost and
the ability of potent T cell stimulation is acquired (Montoya et al.,
2002; Probst et al., 2005; Steptoe et al., 2007). Studies have shown
that resting DCs are abnormally distributed in a variety of
tumors, including clear cell renal cell carcinoma (Pan et al.,
2020), colorectal cancer (Li et al., 2020), lung adenocarcinoma
(Zhang et al., 2021), and colon cancer (Cui et al., 2021). This also
illustrates the important role of resting DCs in tumorigenesis and
development.

As a plastic and pluripotent cell population, macrophages
exhibit significant functional differences under the influence of
different microenvironments in vivo and in vitro (Artyomov
et al., 2016). According to the activation state and function,
macrophages can be divided into M1 and M2 (Yunna et al.,
2020). M1 type macrophages secrete pro-inflammatory
cytokines and chemokines and participate in the positive
immune response. M2 type macrophages have only weak
antigen presentation ability and downregulate the immune
response by secreting inhibitory cytokines such as IL-10 and
TGF-β (Orecchioni et al., 2019; Anderson et al., 2021). Our
results show that the various macrophage stages have different
effects on the prognosis of ESCC patients, which is consistent
with the previously described findings in the field. Therefore,
the distribution of immune cell types can affect the disease
malignancy of ESCC.

The TIDE score is an advanced method to predict the
sensitivity of tumors to immune checkpoint treatment by
using gene expression information. The TIDE score
calculated by the software consists of two parts:
dysfunction score and exclusion score. The calculation
principle of the dysfunction score is that genes with

immune disorders have a higher weight, and it can be
obtained by multiplying by the expression level. The
exclusion score is obtained by multiplying the weight of
immune rejection genes by the expression level (Wang
et al., 2020). The TIDE score has been confirmed to have
higher accuracy in evaluating the efficacy of PD1 and CTLA4
monoclonal antibody treatment (Kim et al., 2021). The TIS
score was an important index to evaluate the reactivity to PD1
monoclonal antibody treatment by calculating the levels of
inhibited T cells in the tumor microenvironment (Danaher
et al., 2018).

MSI refers to the phenomenon that new microsatellite alleles
appear in the tumor from a change to the microsatellite length
caused by the insertion or deletion of a repeat unit (Vilar and
Gruber, 2010). MSI has been widely confirmed in colon cancer
(Boland and Goel, 2010), and its mechanism mainly relies on the
lack of a DNA mismatch repair system. MSI has also been
detected in other cancer types, including gastric cancer (Ratti
et al., 2018), endometrial cancer (Latham et al., 2019), and
ovarian cancer (Evrard and Alexandre, 2021). TIDE, TIS, and
MSI are classic indicators of tumor microenvironmental
immunity and tumor evaluation, with TIDE and TIS focusing
on T cell function and MSI focusing on genetic changes.
However, these indicators could not fully reflect the complex
microenvironment of the tumors. In our study, compared with
the TIDE and TIS scores, the immune prognostic and risk model
was a better predictor of survival time. This model is possibly a
better prediction method for the prognosis and immune response
of ESCC patients.

CONCLUSION

Here, we found 18 immune-related prognostic genes related to
the occurrence of ESCC and used several of them to establish a
prognostic model for predicting disease severity.
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Molecular Characteristics of m6A
Regulators and Tumor
Microenvironment Infiltration in Soft
Tissue Sarcoma: A Gene-Based Study
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Background: N6-methyladenosine (m6A) methylation played a key role in tumor growth.
However, the relationship between m6A and soft tissue sarcoma (STS) was still unclear.

Methods: The characterization and patterns of m6A modification in STS (TCGA-SARC
and GSE17674) were analyzed comprehensively through bioinformatics and real-time
polymerase chain reaction (RT-PCR). The effects of different m6A modification patterns on
prognosis and immune infiltration of STS were further explored. Differentially expressed
gene (DEG) analysis was performed. Moreover, anm6Ascore was constructed by principal
component analysis (PCA). In addition, two immunotherapy datasets (IMvigor210 and
GSE78220) and a sarcoma dataset (GSE17618) were used to evaluate the m6Ascore.

Results: Huge differences were found in somatic mutation, CNV, and expression of 25
m6A regulators in STS. Two modification patterns (A and B) in STS were further identified
and the m6A cluster A showed a better clinical outcome with a lower immune/stromal
score compared with the m6A cluster B (p < 0.050).In addition to , most STS samples from
m6A cluster A showed a high m6Ascore, which was related to mismatch repair and a
better prognosis of STS (p < 0.001). In contrast, the m6A cluster B, characterized by a low
m6Ascore, was related to the MYC signaling pathway, which led to a poor prognosis of
STS. A high m6Ascore also contributed to a better outcome of PD-1/PD-L1 blockade
immunotherapy.

Conclusion: Themodification patterns of 25m6A regulators in the STSmicroenvironment
were explored comprehensively. The novel m6Ascore effectively predicted the
characteristics of the tumor microenvironment (TME) and outcome in STS and
provided novel insights for future immunotherapy.
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INTRODUCTION

Since m6A was first detected in poly (A) RNA in 1974, this RNA
modification has been found to regulate huge numbers of
biological processes in many fields (Alarcón et al., 2015).
Currently, m6A regulators could be divided into three types:
adenosine methyltransferases (writers), demethylases (erasers),
and binding proteins (readers) (Cao et al., 2016). Dysfunction of
these regulators would contribute to incomplete m6A
modification, which further regulated tumor development and
progression (Delaunay and Frye, 2019). For instance, increased
expression of ALKBH5 caused by hypoxia could accelerate
mammosphere growth in cancer stem cells (Zhang et al.,
2016). Furthermore, high expression of ALKBH5 also
contributed to the inhibition of the progression of bladder
cancer (Yu et al., 2021). A recent study demonstrated that
overexpression of YTHDF1 could promote the growth of
hepatocellular carcinoma through autophagy (Li et al., 2021a).
Moreover, METTL3 was also found to accelerate tumorigenesis in
glioblastoma cells (Cui et al., 2017). Although the role of m6A
regulators in other tumors was widely studied recently, the
relationship between m6A and STS remained unclear. Hence,
it was of great importance to evaluate the role of m6A in STS.

Being rare mesenchymal malignancies with heterogeneity,
STSs have been paid more attention in the last few decades
(Stiller et al., 2013). The latest research calculated that nearly
13,130 new STS cases and 5,350 deaths would be detected in
America (Siegel et al., 2020). However, the current treatment of
STS is still surgery combined with radiotherapy, which led to
distant metastasis in 25% of STS patients, and the metastasis rate
rose to about 50% in high-grade STS (Brennan, 2005). Therefore,
it was important to explore novel strategies against STS.

Immunotherapy, mainly consisting of PD-1/L1 and CTLA-4,
has emerged as a promising treatment for cancer. However, the
responsiveness to those immune checkpoint blockade (ICB) was
low and few tumors were reported to effectively respond to ICB,
which disappointed clinicians and patients (Topalian et al., 2012).
The TME has been reported to be correlated with many tumor
activities including tumor angiogenesis and growth (Hanahan
and Coussens, 2012). As a key part of the TME, several immune
cells have been observed to affect the progression and the
response to cancer immunotherapy. Recent research revealed
that excluded T cells could inhibit the tumor response to ICB
(Mariathasan et al., 2018). Moreover, a recent study reported that
decreased YTHDF1 expression was found to enhance the
antitumor ability of CD8 (+) T cells in the mouse model
(Wilkerson and Hayes, 2010). Although many components of
the TME have been reported to be associated with tumor
progression and immunotherapeutic effects, these studies were
usually based on individual immune components and were not
related to them6Amodification. Therefore, integrative analysis of
m6A modification in the STS microenvironment and exploring
effective markers to predict the therapeutic effect of ICB were
urgently needed.

In this study, clinical and transcriptome data of STS from
TCGA (The Cancer Genome Atlas) and GEO (Gene
Expression Omnibus) databases were collected. Genetic
variation and expression of m6A regulators in STS were
further analyzed. The Search Tool for Recurring Instances
of Neighboring Genes (STRING) database was used to detect
connections among m6A regulators (Han et al., 2019). Then,
two different m6A modification patterns were identified using
consensus cluster analysis (Wilkerson and Hayes, 2010), a
method that has been widely used in bioinformatics.
Moreover, significantly different prognoses, immune
infiltration, and pathways of STS were detected between
these two m6A modification patterns. In addition, the
m6Ascore accurately evaluated the prognosis and
immunotherapy response of the tumor, which brought
novel insights into the immunotherapy of STS.

METHODS

Sample and Data Collection
TCGA-SARC with 265 STS samples and the corresponding
clinical information, somatic mutation, and CNV were
collected from UCSC-XENA (http://xena.ucsc.edu/). Here, we
chose somatic mutation data to explore the somatic mutation of
m6A regulators in STS, while CNV data were to explore the
difference in CNV of m6A regulators in STS. Transcriptome data
were used to explore the expression of m6A regulators between
STS and adipose tissue and for further bioinformatics analysis.
GSE17674 with 62 samples (Hugo et al., 2016) and GSE17618
(Savola et al., 2011) including 44 STS samples were collected from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The
human genome annotation GTF file was collected from the
gencode platform (https://www.gencodegenes.org/). GPL570
was used for GSE17618 and GSE17674. Robust multi-array
average (RMA) normalization was performed in GSE17674
and GSE17618, while transcripts per kilobase million (TPM)
normalization was performed in TCGA-SARC. Basic
information on these three datasets were shown in
Supplementary Table S1. Three pairs of STS samples and the
adjacent normal tissue were collected from Zhongnan Hospital of
Wuhan University. This study was also approved by the
institutional ethics board of Zhongnan Hospital of Wuhan
University.

Immunotherapy datasets IMvigor210 (anti-PD-L1) including
298 samples with complete clinical information and GSE78220
(anti-PD-1) (Hugo et al., 2016) including 27 samples with
complete clinical information were collected from a previous
study (Mariathasan et al., 2018) and GEO database, respectively.
IMvigor210 was normalized by the trimmed mean of M-values,
and GSE78220 was normalized by FPKM (Fragments Per
Kilobase Million). A total of 25 m6A regulators were selected
based on recent studies (Zhang et al., 2020; Chen et al., 2021). The
flowchart of this study is displayed in Supplementary Figure S1.
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Cell Culture
Human skeletal muscle cell line (HSMC) and sarcoma cell line
(A673) were collected from the American Type Culture
Collection. A673 was cultured in RPMI 1640 medium
(Hyclone) with 10% fetal bovine serum (Gibco) and 1%
antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin).
HSMC was cultured in DMEM (Hyclone) medium with 10%
fetal bovine serum and 1% antibiotics (100 U/ml penicillin and
100 μg/ml streptomycin). The cells were maintained in an
incubator set to 37°C with 5% CO2 and passaged regularly.

Real-Time Polymerase Chain Reaction
The total RNA of cell lines and tissue was extracted by the Trizol
method (Invitrogen), and then, the RNA was reverse transcribed
by using a reverse transcription kit (Roche) to obtain cDNA; the
experimental operation was carried out according to the
instructions of Trizol and the reverse transcription kit. RT-
PCR was performed according to the instructions. The primer
sequence of each m6A regulator is shown in Supplementary
Table S2.

Identification of Different
N6-Methyladenosine Modification Patterns
in Soft Tissue Sarcoma Through Consensus
Cluster Analysis
The 25 m6A regulators included 15 readers (IGF2BP1, IGF2BP2,
IGF2BP3, YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2,
FMR1, HNRNPA2B1, HNRNPC, RBMX, LRPPRC, ELAVL1,
and EIF3A), eight writers (METTL3, METTL14, WTAP,
VIRMA, RBM15, RBM15B, ZC3H13, andCBLL1) and two
erasers (FTO and ALKBH5). Different m6A modification
patterns in STS were determined by consensus cluster analysis
in R software according to the expression of these m6A in TCGA-
SARC. Furthermore, the aforementioned process was repeated
1,000 times to obtain a stable clustering effect by using the
ConsensusClusterPlus R package (Wilkerson and Hayes, 2010).

Differentially Expressed Gene Analysis,
Protein–Protein Interaction Analysis, and
Connectivity Map Analysis
Gene signatures of different m6A modification patterns were
identified based on DEG analysis using the limma package
(Ritchie et al., 2015) in R software. DEGs were also analyzed
between normal samples and STSs in GSE17674. The
Benjamini–Hochberg method (Storey, 2002) was used here to
adjust multiple hypotheses. Adjust p < 0.050 and logFC > 1 or
logFC < −1 were considered significant. The Connectivity Map
used a genome-wide transcriptome system to comprehensively
describe the biological status of the disease, physiology, and drug
induction and further linked genes, drugs, and pathways (Lamb
et al., 2006). The DEGs were further uploaded to the cMap
database for drug prediction. p < 0.05 indicated statistical
significance. In addition, 25 m6A regulators were used for PPI
analysis and further visualized by Cytoscape (Shannon et al.,
2003). The confidence level was 0.4.

Characteristics of the Soft Tissue Sarcoma
Microenvironment Based on Different
N6-Methyladenosine Modification Patterns
CIBERSORT algorithm was used to evaluate the immune
infiltration of TCGA-SARC (Chen et al., 2018). The
permutations of the signature matrix were 1,000. The immune
and stromal scores of STSs were evaluated by the ESTIMATE
package (Yoshihara et al., 2013).

Functional Enrichment Analysis
To further explore the differences in enrichment pathways among
different m6Amodifications, all genes from TCGA-SARC were used
for gene set enrichment analysis (GSEA) based on different m6A
modification patterns (A and B). Moreover, the clusterProfiler
package (Yu et al., 2012) was used to screen significant pathways
using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) based on 25 m6A regulators and m6A
modification-related DEGs, respectively. False discovery rate <0.05
and p < 0.05 were considered significant.

Construction of the m6A Score
In order to quantify the modification patterns of m6A in STS, we
constructed an m6A score learning from a previous study
(Sotiriou et al., 2006). The specific procedures were as follows:
first, the consensus cluster analysis was used to divide patients
into several clusters according to DEGs between different m6A
modification patterns; second, the prognostic DEGs were
screened based on univariate Cox regression analysis; and
finally, after z-score normalization, principal component
analysis (PCA) was used to construct m6A score based on
prognostic DEGs using principal component 1 as the signature
score. The formula of the m6A score is shown as follows:

m6Ascore � ∑pc1m −∑pc1n,

where m represents the expression of prognostic DEGs with
hazard ratio (HR) < 1, while n represents the expression of
prognostic DEGs with HR > 1.

Statistical Analysis
Statistical Product and Service Solutions software (SPSS 22.0) and
R 3.6.2 were used for data analysis. The Maftool package
(Mayakonda et al., 2018) was used to display the mutation
landscape in TCGA-SARC, while the RCircos package
(Krzywinski et al., 2009) was used to show the variation of 25
m6A regulators on human chromosomes. Pearson correlation
analysis was performed using the corrplot package (https://cran.
r-project.org/web/packages/corrplot/index.html) to assess the
relationship among different m6A regulators and different
immune cells, respectively. Cox regression analysis (Harrell
et al., 1996) was performed along with Kaplan–Meier curve
analysis to identify the prognostic m6A regulators and DEGs,
respectively. For the survival analysis, a survival package was used
and a cut-off point was set using the survminer package (Ranstam
and Cook, 2017). Furthermore, different datasets were separately
divided into different groups based on low and high m6A score,
and prognostic differences were explored. All heatmaps were
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shown using the Pheatmap package (Wang et al., 2014) in R
software. The survival rate was compared by the logrank test.
Meanwhile, the receiver operating characteristic (ROC) curve for
predicting the prognosis of TCGA-SARC and GSE17618 was
performed by using the timeROC package (Blanche et al., 2013).
PCA was performed using the FactoMineR package (Lê et al.,
2008). The Kruskal–Wallis test was performed to compare
differences between groups. All significance levels were p < 0.05.

RESULTS

Landscape of N6-Methyladenosine
Variation in Soft Tissue Sarcoma
Somatic mutations in TCGA-SARC are shown in Figure 1A. Of
the 237 samples, 176 were detected to have somatic mutations,
accounting for 76.3% of the total. Furthermore, the mutation
frequency of TP53, ATRX, and TTN was 36, 16, and 11%,

FIGURE 1 | Landscape of somatic mutations and CNV of m6A regulators in STS. (A) Summary of somatic mutations in STS; (B) variant classifications of mutations
in STS; (C) summary of somatic mutations of m6A regulators in STS; (D) CNV of 25 m6A regulators in STS; and (E) locations of different m6A regulators in human
chromosomes.
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respectively. The summary of variant classification and type is
also shown in Figure 1B. The major variant classification, type,
and single-nucleotide variant type were missense mutation,
single-nucleotide polymorphism, and C-T transition,
respectively. Considering the widespread somatic variation that
existed in STS, the somatic mutations of m6A regulators are also
shown in Figure 1C. Among 237 samples, only 12 samples had
m6A mutations with low mutation frequency. The CNV
alteration of 25 m6A regulators is also shown in Figure 1D.
CNV generally occurred in every m6A regulator. Among them,
ZC3H13 (66%), EIF3A (47%), FTO (54%), RBMX (49%), and
FMR1 (47%) were found to have higher frequency of CNV gain.
ELAVL1 (41%), ALKBH5 (40%), YTHDF1 (37%), HNRNPA2B1
(36%), and IGF2BP3 (35%) had higher frequency of CNV loss.
Figure 1E also displays the location of different m6A regulators.
We also explored the expression of these regulators at the cellular
and tissue levels (Figure 2 and Supplementary Figure S2). The
result turned out that a wide difference in m6A expression existed
in STS. Compared with normal samples, ALKBH5, CBLL1, and

IGFBP1 showed lower expression while most of the m6A
regulators showed high expression. Considering huge
differences in expression among the m6A regulators, we
further compared the difference in m6A expression between
normal samples and STSs in GSE17674, and the results were
consistent with the abovementioned trend (Figure 3A). PPI was
used to show interactions between m6A regulators, and the result
isshown in Figure 3B. These m6A regulators were well connected
to each other. The correlation plot of each m6A regulator is also
displayed in Figure 3C. Most of the m6A regulators were
correlated with each other, which was consistent with the
result of PPI. In addition, univariate Cox analysis indicated
that IGF2BP1 (p < 0.001), IGF2BP2 (p = 0.001), IGF2BP3
(p = 0.003), YTHDF2 (p < 0.001), HNRNPA2B1 (p = 0.002),
HNRNPC (p = 0.002), RBMX (p = 0.002), and VIRMA (p =
0.044) were significantly correlated with the prognosis of STS.
The abovementioned result is also shown in Figure 3D.In
addition, , GO and KEGG pathways based on 25 m6A
regulators were analyzed, and the results are shown in

FIGURE 2 | Expression of 25 m6A regulators between STS and normal adjacent tissue. (A–Y) Expression of different m6A regulators between normal adjacent
tissue and STS samples. p < 0.05*, p < 0.01**, p < 0.001***, and p = 0****.
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Figure 3E. These genes were enriched in RNA modification-
associated pathways. Since widespread variation and expression
of m6A regulators existed in STS, m6A regulators might play an
important role in the progression and prognosis of STS.

Identification of Two N6-Methyladenosine
Modification Patterns in Soft Tissue
Sarcoma
To further analyze the effect of m6A modification on STS, we
performed a consensus cluster analysis in TCGA-SARC. Twom6A
modification patterns (A and B) were identified, and the result of

clustering is shown in Figure 4A. The corresponding cumulative
distribution function plot and delta area plot for clustering are also
shown in Supplementary Figures S3A, B. m6A cluster A had 140
STS samples, while m6A cluster B had 125 samples. The heatmap
of m6A expression among different modification patterns is also
shown in Figure 4B. Among them, FMR1 (p < 0.001), HNRNPC
(p = 0.001), IGF2BP1 (p < 0.001), IGF2BP2 (p < 0.001), IGF2BP3
(p < 0.001), YTHDC1 (p < 0.001), YTHDC2 (p < 0.001), YTHDF1
(p = 0.006), YTHDF1 (p = 0.013), METTL14 (p < 0.001), METTL3
(p = 0.001), RBM15 (p < 0.001), RBM15B (p = 0.010), WTAP (p =
0.010), and ALKBH5 (p = 0.010) were significantly differentially
expressed in m6A cluster A and B. As in Figure 4C, the result of

FIGURE 3 | Expression, interactions, prognosis, and functional annotations of 25 m6A regulators in STS. (A) Expression of different m6A regulators between
normal samples and STS samples using the GSE17674 dataset; (B) PPI analysis of 25 m6A regulators; and (C) correlation plot among 25 regulators using Pearson
correlation analysis. p <0.010 indicated statistical significance. (D) Univariate Cox regression analysis for 25 m6A regulators in STS samples; (E) functional annotations
for 25 m6A regulators. p <0.05*, p <0.01**, p <0.001***, and p = 0****; ns, no significance.
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PCA also indicated that the consensus cluster well differentiated
m6A cluster A and m6A cluster B. The result of survival analysis
based on m6A clusters A and B is subsequently shown in
Figure 4D. m6A cluster A had a significantly improved
prognosis of STS than m6A cluster B (p = 0.004). The Cox
regression analysis also indicated that different m6A clusters
were correlated with the prognosis of STS (p = 0.004). The 5-
year survival rate of m6A cluster A (63.5%) was significantly better
than that of m6A cluster B (46.1%) with p = 0.038. The GSEA was
also performed, and the result is shown in Figures 4E–H. Pathways
associated with better prognosis were significantly enriched in
m6A cluster A including DNA replication [false discovery rate
(FDR) = 0; enrichment score (ES) = 0.721] and mismatch repair
(FDR = 0; ES = 0.662). In contrast, pathways including
epithelial–mesenchymal transition (EMT, p = 0, FDR = 0.001,
ES = −0.390) and MYC signaling pathway (p = 0, FDR = 0.003, ES
= −0.360) were enriched in m6A cluster B, which often led to
poorer outcome of STS. Full lists of enriched pathways are shown
in Supplementary Tables S3, S4. The aforementioned analysis
revealed that different m6A modifications were associated with
different pathways, which further affected the prognosis of STS.

Characteristics of N6-Methyladenosine
Modification Patterns in the Soft Tissue
Sarcoma Microenvironment
In order to understand the influence of m6Amodification patterns
on the STS microenvironment, the immune cell infiltration in

TCGA-SARC is shown in Figure 5A. The correlation plot of each
immune cell is also displayed in Figure 5B. CD8 T cells and
follicular helper T cells had higher correlation with other cells. The
relationships between 22 kinds of immune cells and different m6A
modification patterns were analyzed by the Kruskal–Wallis test,
respectively (Figure 5C). m6A cluster A showed higher infiltration
of M1 macrophage, CD8 T cell, and NK cell, while the M2
macrophage showed higher infiltration in m6A cluster B. M2
macrophage (p < 0.050), mast cell activated (p < 0.050), mast
cell resting (p < 0.0001), neutrophils (p < 0.050), and T cell CD4
memory activated (p < 0.010) were significantly correlated with
different m6A modification patterns in STS. In addition, the
immune and stromal scores of m6A cluster A/B were separately
calculated, and the results are shown in Figures 6A,B. Compared
with m6A cluster A, m6A cluster B was characterized by a
significantly higher immune score (p < 0.050) and stromal score
(p < 0.010). Survival analysis of different m6A modification
patterns in different immune scores and stromal scores was
subsequently performed, and the results are shown in Figures
6C,D. Significant prognostic differences were found in different
m6A modification patterns and immune/stromal score (p <
0.0001). The Cox regression analysis also showed that different
m6A modification patterns were significantly correlated with the
prognosis of STS in different immune scores (p = 0.001) and
stromal scores (p < 0.001), respectively. In addition, differences in
the microenvironment between m6A cluster A/B and normal
adjacent tissue were also explored in GSE17674. As shown in
Supplementary Figure S4A, consensus clustering analysis also

FIGURE 4 | Identification of two m6A modification patterns in STS. (A) The result of consensus clustering analysis in STS; (B) heatmap of expression of 25 m6A
regulators in m6A clusters A and B; (C) the result of PCA, indicating two distinct clusters were identified; (D) survival plot of two clusters in TCGA-SARC (p = 0.0039); (E)
enriched pathways in m6A cluster A: DNA replication; (F) enriched pathways in m6A cluster A: mismatch repair; (G) enriched pathways in m6A cluster B:
epithelial–mesenchymal transition; and (H) enriched pathways in m6A cluster B: MYC target.
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identified two distinct m6A modification patterns. The immune
score of both m6A clusters A and B was higher than that of normal
tissue with p = 0.159 and p = 0.034, respectively (Supplementary
Figures S4B,C). The aforementioned results suggested that
different m6A modification patterns affected the immune
infiltration in the STS microenvironment, which further affected
the prognosis of STS.

Construction of m6A Score
A total of 328 DEGs between different m6Amodification patterns
were determined. The full list of 328 DEGs is shown in
Supplementary Table S5. Among them, 227 genes were
upregulated in m6A cluster A while 101 genes were
upregulated in m6A cluster B (Figure 7A). The GO and
KEGG enrichment analysis was also performed, and the
results are shown in Supplementary Tables S6, S7. Similar to
the result of m6A regulators, these DEGs were enriched in the p53
signaling pathway (p = 0.002), ECM–receptor interaction (p =
0.005), and PI3K-Akt signaling pathway (p = 0.023), which were
closely related to the progression of STS. The heatmap of these
DEGs in STS is also shown in Figure 7B. Cmap was analyzed
according to these 328 DEGs, and the results are shown in
Supplementary Table S8. Imatinib (p = 0.001) and
furazolidone (p = 0.025) were regarded as important targets
treating STS. Univariate Cox regression analysis was further
performed to identify prognostic genes among these 328
DEGs. Of the 328 DEGs, 90 of them were identified as
prognostic genes (p < 0.050). Furthermore, 58 genes were

identified as protective genes due to HR < 1, while 32 genes
were regarded as risk genes based on HR > 1. The full list of
prognostic DEGs is displayed in Supplementary Table S9. The
relationships between DEGs and these prognostic genes are
visualized in a Sankey diagram in Figure 7C. To our surprise,
all protective DEGs, upregulated in m6A cluster A, were from
m6A cluster A. Contrary to m6A cluster A, all risk DEGs,
upregulated in m6A cluster B, belonged to m6A cluster B.
This was also consistent with the result of the survival
analysis. To further evaluate the stability of m6A modification
patterns, consensus cluster analysis was performed based on 328
DEGs, and two distinct gene clusters A and B were identified
(Figure 7D). The corresponding cumulative distribution
function plot and delta area plot for clustering are also shown
in Supplementary Figures S5A, B. Among them, 92.9% samples
of gene cluster A were from m6A cluster A while 66.7% samples
of gene cluster B were from m6A cluster B, which also implied
that the identification of m6A modification patterns was
relatively stable. The survival plot between different gene
clusters is also shown in Figure 7E. Gene cluster A had a
better prognosis of STS than gene cluster B (p = 0.027), which
was also consistent with the survival result of m6A clusters. The
Cox regression analysis indicated that different gene clusters were
significantly correlated with the prognosis of STS (p = 0.029). The
5-year survival rates of gene clusters A and B were 66.0 and 50.0%,
respectively. Due to the significant difference in immune
infiltration and prognosis between m6A modification patterns,
m6A score was constructed to quantify the modification pattern

FIGURE 5 | Effects of different m6A modification patterns on the immune infiltration of STS. (A) Immune infiltration of each sample in TCGA-SARC. (B) Correlation
plot of each immune cell in TCGA-SARC. (C) Comparison of immune cell infiltration among m6A clusters A and B.
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of each STS sample. Then, STS samples were divided into high-
and low-m6A score groups. Similar to what we found in gene
clusters, 75.7% samples of highm6A score were fromm6A cluster
A while 78.4% samples of low m6A score were from m6A cluster
B. The survival plot between high and low m6A score is also
shown in Figure 7F. A high m6A score had a better prognosis of
STS than a low m6A score (p < 0.0001). The Cox regression
analysis indicated that different m6A scores were significantly
correlated with the prognosis of STS (p < 0.001). The m6A score
was also compared in different m6A clusters and gene clusters,

and the result is shown in Figures 7G,H. The high-m6A score
group showed a significantly better outcome than the low-m6A
score group (p < 0.0001), and the result was the same in gene
cluster A (p < 0.001). In addition, in Supplementary Figure S6,
the area under the curve (AUC) of m6A score for prediction of
the 1-, 3-, and 5-year survival of STS was 0.77, 0.71, and 0.68,
respectively. Finally, a Sankey diagram was performed to
summarize the correlation between m6A clusters, gene
clusters, m6A score, and prognosis of STS (Figure 7I). It
could be clearly seen that m6A cluster A, gene cluster A, and

FIGURE 6 | Effects of different m6A modification patterns on the immune infiltration of STS. (A) Comparison of immune score among m6A clusters A and B; (B)
Comparison of stromal score among m6A clusters A and B; (C) survival analysis of different immune scores among m6A clusters A and B (A: m6A cluster A, B: m6A
cluster B, LSS, low immune score, and HSS, high immune score); and (D) survival analysis of different stromal scores amongm6A clusters A and B. (A: m6A cluster A, B:
m6A cluster B, LIS: low stromal score, and HIS, high stromal score); p <0.05* and p <0.01**.
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high m6A score were correlated with a better prognosis of STS
while m6A cluster B, gene cluster B, and low m6A score were
related to a poorer prognosis of STS. The aforementioned results
indicated that the m6A score could accurately distinguish the
m6A modification patterns and predict the prognosis of STS.

m6A score Could Predict Immunotherapy
Response
Considering thatm6A score could well predict the prognosis of STS,
we further explore whether m6A score could effectively predict the

response to ICB in IMvigor210 and GSE78220 datasets. For the
IMvigor210 dataset, 298 samples were divided into high-m6A score
(n = 243) and low-m6A score groups (n = 55). The result of the
survival analysis turned out that a high m6A score showed a better
prognosis than a low m6A score (Figure 8A, p = 0.036). The
corresponding Cox regression analysis also revealed that different
m6A scores were significantly correlated with the prognosis of each
sample in IMvigor210 (p = 0.037). Furthermore, the relative percent
of complete response (CR), partial response (PR), progression
disease (PD), and stable disease (SD) in high- and low-m6A
score groups were compared, and the results are shown in

FIGURE 7 |Construction of m6Ascore. (A) Volcano plot of DEGs betweenm6A cluster A and B; (B) the heatmap of the expression of DEGs in m6A cluster A and B;
(C) the relationship between DEGs and these prognostic genes visualized as a Sankey diagram; (D) the result of consensus clustering analysis in STS based on 328
DEGs; (E) survival plot of gene clusters A and B in TCGA-SARC (p = 0.027); (F) survival plot of high and low m6A score in TCGA-SARC (p < 0.0001); (G) comparison of
m6A score among m6A clusters A and B; (H) comparison of m6Ascore among gene clusters A and B; and (I) the relationship between m6A clusters, gene cluster
survival status, and m6A score visualized as a Sankey diagram.
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Figures 8B–D. 53.4% of the high-m6A score group had PD, while
67.2% of the low-m6A score group had PD, and patients with SD
had higher m6A score than patients with PD (p = 0.001). The ROC
analysis for the prediction of the response to anti-PD-L1 is shown in
Figure 8E, and the AUC was 0.646. For the GSE78220 dataset, 27
samples were divided into high-m6A score (n = 3) and low-m6A
score groups (n = 24). Survival analysis was further performed
between different m6A score groups. Similar to IMvigor210, the
high-m6A score group showed a better prognosis than the low-
m6A score group (p = 0.069, Figure 8F). The corresponding Cox
regression analysis also revealed that different m6A scores were
associated with the prognosis of each sample in GSE78220 (p =
0.018). The relative percent of CR, PR, and PD in the high-m6A
score group were all 33.3%, while in the low-m6Ascore group, the
proportion was 16.0, 48.0,, and 36%, respectively (Figures 8G,H).
Them6A score did not show a significant difference among samples

with different immunotherapy responses (Figure 8I), which could
be due to the small sample size of GSE78220. The ROC curve for
prediction of the response to anti-PD-1 is shown in Figure 8J, and
the AUC was 0.792.In addition, the independent sarcoma dataset
GSE17618 was used for the validation of the m6Ascore. GSE171618
dataset was divided into high- (n = 23) and low-m6A score groups
(n = 21). As in Figure 8K, the high-m6A score group showed a
better prognosis than the low-m6A score group (p = 0.030). The
corresponding Cox regression analysis also indicated that different
m6A scores were significantly correlated with the prognosis of STS
in GSE17618 (p = 0.034). The 5-year survival rates of the high- and
low-m6A score groups were 55.9 and 29.3%, respectively. The AUC
for prediction of the 3-, 5-, and 10-year survival of STS was 0.64,
0.66, and 0.84, respectively (Figure 8L). The event-free survival
curve between high and low m6A score is also displayed in
Supplementary Figure S7. Similar to the result of overall

FIGURE 8 | The m6Ascore predicted immune response in immunotherapy datasets and validation of m6Ascore. (A) Survival plot of high and low m6A score in the
IMvigor210 dataset (p = 0.036); (B) relative percent of immune responses in high and low m6A score in the IMvigor210 dataset; CR, complete response; PR, partial
response; SD, stable disease; PD, progressive disease; (C) relative percent of CR/PR and SD/PD in high and low m6A score in the IMvigor210 dataset; CR, complete
response, PR, partial response, SD, stable disease, PD, progressive disease; (D) box plots of m6Ascore in different immune responses in the IMvigor210 dataset;
(E) ROC curve for prediction of immune response in the IMvigor210 dataset; (F) survival plot of high and lowm6A score in the GSE78220 dataset (p = 0.069); (G) relative
percent of immune responses in high and low m6A score in the GSE78220 dataset; CR, complete response; PR, partial response; PD, progressive disease; (H) relative
percent of CR/PR and SD/PD in high and lowm6A score in the GSE78220 dataset; CR, complete response; PR, partial response; PD, progressive disease; (I) box plots
of m6A score in different immune responses in the GSE78220 dataset; (J) ROC curve for prediction of immune response in the GSE78220 dataset; (K) survival plot of
high and low m6A score in the GSE17618 dataset (p = 0.030); and (L) ROC curve for prediction of the 3-, 5-, and 10-year survival of STS in the GSE17618 dataset.
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survival, the high-m6A score group had a better prognosis (p =
0.074). The corresponding Cox regression analysis also indicated
that different m6A scores were significantly correlated with the
event-free survival of STS in GSE17618 (p = 0.070). In general, our
study revealed a non-negligible role of m6Amodification in the STS
microenvironment, which could well predict the response to PD-1/
PD-L1 immunotherapy.

DISCUSSION

Due to diverse histopathological classification, STS has not been fully
understood so far, which received widespread attention (Trojani
et al., 1984). A previous study constructed an m6A-related risk
model to predict the prognosis of STS (Hou et al., 2020). However,
different m6A modification patterns were not analyzed
comprehensively. Recent studies also revealed the significant role
of m6A modification in gastric cancer and pancreatic cancer (Zhou
et al., 2021). However, systematic analysis of the m6A modification
in STS was still rare.

The CNV analysis indicated that ZC3H13 and ELAVL1 had the
highest variant frequency. A recent study also indicated that
ZC3H13 could inhibit colorectal cancer through Ras-ERK
pathways (Zhu et al., 2019). Moreover, ELVAL1 knockout mice
were also found to have lower tumor growth in a previous report
(Chang et al., 2014). Therefore, our findings suggested that these
regulators might also play a key role in STS progression. Besides,
96% of m6A regulators were found to have significantly different
expressions between STS and normal samples, which was
consistent with a former study that m6A regulators expressed
differently in colorectal cancer based on bioinformatics analysis
(Zhang et al., 2021a). These results also suggested that m6A
regulation might exist in various types of cancer. Univariate
Cox regression analysis showed that IGF2BP1 and YTHDF2
were top significantly correlated with the poor prognosis of
STS. Previous studies also found that IGFBP2 could accelerate
the migration of tumor cells by regulating LEF1 and SNAI2 (Zirkel
et al., 2013). Moreover, IGF2BP1 was also regarded as a risk factor
in neuroblastoma (Bell et al., 2015). YTHDF2 was also related to
the poor prognosis of glioma in Lin et al.’s (2020) research, and the
latest research implied that stabilized YTHDF2 could enhance the
growth capacity of glioblastoma (Fang et al., 2021). These studies
were consistent with our results, which also revealed the potential
prognostic value of IGFBP1 and YTHDF2 in STS.

Furthermore, two m6A modification patterns in STS were
identified. m6A cluster A was correlated with DNA replication,
mismatch repair, and a better prognosis, while m6A cluster B was
related to MYC, EMT signaling pathways, and a poor prognosis. As
an important part of the cell cycle, stable DNA replication was key to
the normal activities of cells. Dysfunction of DNA replication might
result in the occurrence of diseases. For example, abnormal
replication of MCM10 would lead to NK cell deficiency (Mace
et al., 2020). A recent study also reported that DNA replication stress
could be used to enhance the antitumor ability in squamous cell
carcinoma (Zhang et al., 2021b). In addition, mismatch repair
(MMR) was also known for its tumor suppressor function. For
instance, dysfunction ofMMR genes would lead to Lynch syndrome,

which was susceptible to cancer including ovarian cancer (Zhang
et al., 2021b). MMR deficiency was also related to the occurrence of
endometrial cancer (McDougal et al., 2021). The MYC gene was a
proto-oncogene, which has been studied formany decades (Cole and
McMahon, 1999). A recent study showed that MYC could be
regulated by USP16, which further inhibited prostate cancer
progression (Ge et al., 2021). MYC was also found to participate
in angiogenesis (Meškytė et al., 2020). EMT was considered to be
related to tumor metastasis. A previous study reported that EMT
induced by HOXA10 contributed to gastric cancer metastasis (Song
and Zhou, 2021). These studies supported our results, which
provided novel insights into the role of m6A modification in
STS. The immune cell infiltration analysis showed that M1
macrophage, CD8 T cell, and NK cell were enriched in m6A
cluster A while M2 macrophage was enriched in m6A cluster B.
M1 macrophages were generally thought to inhibit tumor growth
while M2 macrophages were found to promote tumor progression,
which was also proved in many studies. For example, M1
macrophage could inhibit colon cancer growth (Engström et al.,
2014). In Jackute et al.’s (2018) study, low infiltration of M2
macrophages was correlated with an improved prognosis of lung
cancer. Improved CD8 T cell infiltration was also considered to be
correlated with a better prognosis (Li et al., 2021b). As a part of
innate immunity, NK cells also played an anti-tumor role. Recent
research reported that NK cells could inhibit lung tumor growth in
micemodels (Yamamoto et al., 2018).In addition, bothm6A clusters
A/B showed higher immune scores than normal tissue. This may be
due to the local inflammatory and immune response of tumor tissue,
which recruits more immune cells, while there is no tumor-mediated
immune cell aggregation in normal tissue. For example, a recent
study revealed that macrophages could be recruited for breast cancer
by increasing CCL2 (Wolfsberger et al., 2021). A former study also
indicated that many neutrophils were recruited in non-small-cell
lung cancer (Mollaoglu et al., 2018). Our findings were consistent
with these studies, indicating that the m6A cluster A was related to a
strong anti-tumor immune response while m6A cluster B was
related to a suppressed anti-tumor immune response.

The result of Cmap analysis showed imatinib and furazolidone
as important drugs for treating STS. A recent study illustrated that
furazolidone could induce apoptosis in lung cancer by
downregulating NF-kappa B (Yu et al., 2020). Furazolidone was
also found to prevent the growth of hepatoma cells by enhancing
reactive oxygen species (Sun et al., 2015). Furazolidone was also
found to be a potential drug for the treatment of acute myeloid
leukemia by enhancing the expression of p53 (Jiang et al., 2013).
Imatinib was found to improve the prognosis of gastrointestinal
stromal tumors (Kurtovic-Kozaric et al., 2017). A recent study also
implied that imatinibmight slow down the progression of leukemia
(Druker et al., 2001). Given the important role these drugs played
in other tumors, they might also become promising drugs for STS
treatment. We further identified two gene clusters based on DEGs
between m6A clusters A and B. Similar to our m6A cluster
modification patterns, gene cluster A showed a better prognosis
of STS, which also validated that our previous m6A modification
patterns were reliable. The m6Ascore was significantly higher in
m6A cluster A and gene cluster A, respectively.Moreover, the AUC
of m6Ascore for predicting the 1-, 3-, and 5-year survival of STS
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was 0.77, 0.71, and 0.68. In addition, the survival results of
validation dataset GSE17618 also showed that a high m6Ascore
was related to a better prognosis, and the AUC for predicting the 3-
, 5-, and 10-year survival was 0.64, 0.66, and 0.84, respectively.
These results demonstrated that the m6A score could identify
different m6A modification patterns and be used as a potential
prognostic indicator in STS.

Our results also showed that m6A score could predict the
response to immunotherapy. A high m6A score was correlated
with a better immunotherapy response. Previous studies focused
on suppressing macrophages to obtain a better immunotherapy
response (Dong et al., 2021) and adding nanoparticles into the
TME to further strengthen the anti-tumor ability (Yang et al.,
2021). These studies mainly changed the immunotherapy
response by affecting the components of the TME. However,
biomarkers to directly predict the response of immunotherapy
were still rare. Here, we reported the AUC of m6A score for
prediction of immune response to PD-1/L1 was 0.646 and 0.794,
respectively. Therefore, our m6A score could also be a promising
predictor for tumor immunotherapy. In addition, the m6A score
was also validated by an independent sarcoma dataset, which also
proved that the m6A score was reliable.

Our research also had some limitations. More immunotherapy
datasets were needed to validate the m6A score. In addition, more
clinical trials were also needed to further validate the drugs and
cancer-related pathways we screened in this study.

CONCLUSION

In general, the m6A modification patterns in the STS
microenvironment were comprehensively analyzed. An m6A
score to evaluate different m6A modification patterns was
established through integrative analysis. A high m6A score
showed a better prognosis of STS, while a low m6Ascore led
to a poor prognosis of STS. In addition, the m6A score was
validated by an independent dataset successfully and accurately
predicted the prognosis of STS, which could be a promising
predictor for cancer immunotherapy.
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Identification of a Pyroptosis-Related
Gene Signature for Predicting the
Immune Status and Prognosis in Lung
Adenocarcinoma
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Background: Pyroptosis is a form of programmed cell death triggered by the rupture of cell
membranes and the release of inflammatory substances; it is essential in the occurrence and
development of cancer. A considerable number of studies have revealed that pyroptosis is
closely associated to the biological process of several cancers. However, the role of pyroptosis
in lung adenocarcinoma (LUAD) remains elusive. The purpose of this study was to explore the
prognostic role of pyroptosis-related genes (PRGs) and their relationship with the tumor
immune microenvironment (TIME) in LUAD.

Methods: Gene expression profiles and clinical information were downloaded from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A
prognostic PRG signature was established in the training set and verified in the
validation sets. Functional enrichment and immune microenvironment analyses related
to PRGs were performed and a nomogram based on the risk score and clinical
characteristics was established. What is more, quantitative real-time PCR (qRT-PCR)
analysis was applied in order to verify the potential biomarkers for LUAD.

Results: A prognostic signature based on five PRGs was constructed to separate LUAD
patients into two risk groups. Patients in the high-risk group had worse prognoses than those
in the low-risk group. The signature was identified as independent via Cox regression analyses
and obtained the largest area under the curve (AUC = 0.677) in the receiver operating
characteristic (ROC). Functional enrichment and immune microenvironment analyses
demonstrated that the immune status was significantly different in the two subgroups and
that immunotherapy may be effective for the high-risk group. Furthermore, qRT-PCR analysis
verified that serum PRKACA and GPX4 could serve as diagnostic biomarkers for LUAD.

Conclusion: Overall, a risk signature based on five PRGs was generated, providing a
novel perspective on the determinants of prognosis and survival in LUAD, as well as a basis
for the development of individualized regimes.

Keywords: lung adenocarcinoma, pyroptosis, bioinformatics analysis, TCGA, PRKACA, GPX4, immune checkpoint
genes
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1 INTRODUCTION

According to the latest global cancer statistics, lung cancers remain
one of the most commonly diagnosed cancers, and they have the
highest incidence of deaths worldwide (Sung et al., 2021). Lung
adenocarcinoma (LUAD) is the most common histological subtype
of non-small cell lung cancer (NSCLC), which also occupies almost
80% of lung cancer cases (Gridelli et al., 2015). Despite progress in
surgery, targeted therapy, chemotherapy, and radiotherapy, the 5-
year overall survival (OS) rate for lung cancer remains only around
21% (Siegel et al., 2021). Currently, therapeutic regimens for
individual LUAD patients are based mainly on specific factors
such as radiomic features, tumor-node-metastasis (TNM) staging,
tumor subtypes, and the differentiation grade. With the rapid rise in
precision medicines, novel therapeutic schedules, especially
immunotherapies and targeted therapies, have been proposed to
prolong the lives of LUAD patients (Bronte et al., 2010; Saito et al.,
2018). However, only a portion of patients have received benefits
from them, leaving an urgent need to explore potential biomarkers
for efficient and prognostic predictions.

Pyroptosis, also known as inflammatory “necrosis,” is an
inflammatory caspase-dependent cell death type triggered by the
cell rupture and the release of many proinflammatory factors,
including IL-1β, IL-18, ATP, and HMGB1 (Fang et al., 2020;
Tang et al., 2020). It has been demonstrated that the process of
pyroptotic cell death is mediated mainly through GSDMD
(gasdermin D)-dependent activation regulated by caspase 1/4/5/11
(Shi et al., 2015). Activated caspases cleave the hinge region between
the N- and C-terminal domains of GSDMD, releasing the segment
with lethal activity and leading to pyroptosis (Ding et al., 2016).
Several studies have indicated that pyroptosis was both a friend and a
foe of cancers (Nagarajan et al., 2019; Xia et al., 2019; Fang et al.,
2020). On the one hand, the inflammatory mediators released and
several signaling pathways are bound up with the tumorigenesis and
their chemotherapeutic drugs resistance. On the other hand, as a type
of programmed cell death, pyroptosis can suppress the emergence
and progression of tumors. In NSCLC, a high level of GSDMD
expression was shown to be linked with invasive features, including
more advanced TNM stages and larger tumor sizes (Burdette et al.,
2021). Recent studies have identified pyroptosis-related gene (PRG)
signatures for the prognosis of ovarian cancer and gastric cancer
(Shao et al., 2021; Ye et al., 2021), while the performance of PRGs in
LUAD has not yet been clarified.

Given the existing findings, we know that pyroptosis is critical to
the development of tumors and to antitumor processes; however, its
precise functions in LUAD have not been explored as extensively. In
the present work, we aimed to construct a scoring model based on
PRGs to predict the prognosis of LUAD and explore the latter’s
relationship with immune checkpoint genes (ICGs), hoping to find
additional therapeutic targets.

2 MATERIALS AND METHODS

2.1 Data Acquisition and Processing
The lung adenocarcinoma RNA-seq (FPKM) data and the
corresponding clinical information were obtained from the

TCGA database (https://portal.gdc.cancer.gov/). The cohort
consisted of 497 tumor tissues and 54 normal tissues, with the
complete clinical information of 486 patients (tumor = 439,
normal = 47) extracted as a training set. The Ensemble IDs
were transformed into gene symbols via the use of the
“rtracklayer” and “dplyr” R packages, and the pieces of clinical
information were merged into a single matrix for further analysis.
To increase the reliability of the study, two Gene Expression
Omnibus (GEO) datasets, i.e., GSE31210 and GSE50081 (both
using the GPL570 platform), which contained the microarray-
based expression data of LUAD patients and the relevant clinical
information (n = 536), were extracted for validation from the
GEO website (https://www.ncbi.nlm.nih.gov/geo/). In this study,
we also identified 79 ICGs from a review of the literature (Pardoll,
2012; Hu et al., 2021), most of which were ligands, receptors or
important molecules in immune checkpoint pathways
(Supplementary Table S1).

2.2 Identification of Differentially Expressed
Pyroptosis-Related mRNAs
A total of 33 PRGs were extracted from prior reviews (Ye et al.,
2021) and are presented in Supplementary Table S2.
Differentially expressed PRGs (DE-PRGs) were identified in
the training cohort between normal and tumor tissues, using
the “limma” R package with thresholds of p < 0.05.

2.3 Establishment and Validation of the
Pyroptosis-Related Prognostic Gene
Signature
To identify the prognostic genes among all PRGs, we further
employed Cox regression analysis with the “survival” R package
to assess the links between each gene and survival status in the
training cohort. To avoid omissions, we set 0.2 as the cut-off
p-value, and seven survival-related genes were screened for
further analysis. Subsequently, multivariate Cox regression
analysis was conducted to narrow down the candidate genes
based on the lowest Akaike information criterion (AIC).
Ultimately, five PRGs and their coefficients were retained. A
prognostic risk score was created for each patient via the
following formula: Risk score = ∑Coef (PRGs) * Exp (PRGs),
where Exp (PRGs) is the relative expression of the candidate
PRGs, and Coef (PRGs) is the regression coefficient. Based on the
median value of the risk score, patients in the training set were
divided into the high-risk group and the low-risk group. The OS
between the two groups was compared by means of
Kaplan–Meier analysis with the “survival” and “survminer” R
packages. The predictive performance of the model was further
validated in two GEO datasets (GSE31210 and GSE50081).
Samples in the validation cohort were separated into high-risk
and low-risk groups based on the formula for the risk score
derived from the training dataset, respectively. The receiver
operating characteristic (ROC) curve was used to assess the
prognostic performance through the “timeROC” R package.
The area under the curve (AUC) of each cohort was calculated
for detailed evaluations.
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2.4 Independent Prognostic Analysis of the
Risk Score
We extracted the clinical information (age, gender, AJCC stage,
TNM stage, tobacco history, and anatomical location) of patients
in the training cohort. These elements were analyzed in company
with the risk score in our regression model, employing univariate
and multivariable Cox regression models. Furthermore, a time-
dependent ROC curve was used to evaluate the predictive
accuracy for OS by different clinicopathological factors and
risk scores by means of the “survivalROC” package.

2.5 Development of a Predictive Nomogram
A nomogram incorporating the signature and clinical parameters
was developed via the “rms” R package to predict the overall
survival of LUAD patients. Then, the calibration curves and ROC
curves were plotted to assess the predictive accuracy of the
nomogram.

2.6 Functional Enrichment Analysis of PRGs
Depending on the median risk score, patients in the training
cohort were stratified into two subgroups. The differentially
expressed genes (DEGs) between the low- and high-risk
groups were filtered at the specific threshold (|log2FC| ≥ 1 and
FDR < 0.05). To clarify the biological functions of the prediction
model, gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were performed,
based on the DEGs, by applying the “clusterProfiler” R
package with the criteria of p < 0.05 and FDR < 0.05. The
“gsva” R package was also employed to conduct the ssGSEA
to calculate the scores of infiltrating immune cells and to assess
the activity of immune-related pathways.

2.7 Evaluation of the Immune Status
Between the Two Subgroups
To further explore the link between the prediction model and the
immune system, the single-sample gene set enrichment analysis
(ssGSEA) method was utilized to quantify the overall immune
status of the two subgroups by analyzing the expression profiles of
the 29 immune signature gene sets. Subsequently, the ESTIMATE
algorithm was performed to calculate stromal and immune
scores, determining the levels of stromal and immune cell
tumor infiltration. Thereafter, correlations between the risk
score and several key ICGs, such as PD-L1, CTLA4, LAG-3,
and so on, were evaluated. Spearman correlation analyses were
used to examine the relationship among the risk score, the
stromal and immune scores, and the expression of ICGs.

2.8 Protein Levels of NRGs in the HPA
Database
The Human Protein Atlas (HPA) is a database containing all of
the human proteins in cells, tissues and organs, where all images
of tissues are stained via immunohistochemistry. To compare the
protein expression levels related to the prognostic signature, we

extracted the immunohistochemical images of the candidate
PRGs from the HPA database (https://www.proteinatlas.org/).

2.9 Cell Lines and Cell Culture
Three LUAD cells—namely A549, H1299, and H1650—and one
normal epithelial cell line (HBE) were purchased from the Cell
Bank of the Chinese Academy of Sciences (Shanghai, China) and
cultured in an RPMI-1640 medium (HyClone, Logan, UT,
United States) with 10% fetal bovine serum at 37°C in a
humidified atmosphere with 5% CO2.

2.10 Real-Time Quantitative
Reverse-Transcriptase Polymerase Chain
Reaction Analysis
Total RNA was extracted by TRIzol reagent (Thermo Fisher
Scientific, Carlsbad, CA, United States) according to the
protocol and reverse-transcribed to cDNA through the use
of random primer amplification. Real-time qRT-PCR analysis
was carried out using Platinum SYBR Green qPCR SuperMix-
UDG kits (Life Technologies, Gaithersburg, MD,
United States). Primers used for the qRT-PCR analysis were
performed as follows. Glyceraldehyde 3-phosphate
dehydrogenase (GADPH) levels were used to normalize
PRKACA and GPX4 expression. Relative expression was
calculated using the ΔΔCt method.

Statistical Analysis
All statistical analyses were performed using R language (Version
4.1.0). The Kaplan–Meier method with a two-sided log-rank test
was performed to compare the OS of patients between the two
subgroups. To determine the independent risk characteristics,
univariate and multivariate Cox analyses were applied.
Correlation coefficients between two non-bivariate normally
distributed variables were computed via Spearman analyses.
The hazard ratios (HRs) and the 95% confidence intervals of
the aforementioned elements were estimated in order to quantify
the strength of these associations. All statistical tests were two-
tailed. The overall flowchart is shown in Figure 1.

3 RESULTS

3.1 Defining the Differentially Expressed
PRGs in LUAD
The expression of the 33 PRGs in LUAD and normal lung tissues
was first obtained by means of the TCGA dataset. Following
differential expression analysis of the training set, 27 PRGs were
either upregulated or downregulated in LUAD. More definitely,
the expression of IL6, NLRC4, CASP5, IL1B, CASP1, NLRP3,
NLRP1, PYCARD, IL18, PRKACA, TNF, and NOD1 was raised,
while the expression of AIM2, TIRAP, PLCG1, GSDMD, CASP4,
GPX4, CASP8, GSDME, PJVK, CASP3, CASP6, GSDMA,
GSDMB, NLRP7, and GSDMC was declined in LUAD in
comparison with normal tissues (Figure 2A, FDR < 0.05).
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3.2 The Establishment and Verification of a
Pyroptosis-Related Prognostic Model
Univariate Cox regression analysis was first applied in order to
verify the candidate PRGs associated with prognosis (p < 0.2)
(Figure 2B), and multivariate Cox regression analysis further
identified five PRGs, namely IL6, NOD1, NLRC4, PRKACA, and
GPX4, based on the lowest AIC (1,059.83) (Figure 2C). The
formula is shown as follows: risk score = (−0.019 * expression
level of IL6) + (−0.110 * expression level of NOD1) + (−0.205 *
expression level of NLRC4) + (−0.059 * expression level of
PRKACA) + (−0.005 * expression level of GPX4). We
classified the LUAD cases into low-risk (n = 220) and high-
risk (n = 219) groups depending on the median risk score. The
risk score distribution, survival status, and gene expression
pattern of the two groups are presented in Figure 3A. As the
risk score raised, the patients’ risk of death also increased and the
survival time reduced. The Kaplan–Meier analysis revealed that

LUAD patients in the high-risk group had shorter OS (Figure 3C,
p = 1.496e-05), with AUCs of 0.683, 0.659, and 0.776 in the 1-
year, 3-year, and 5-year ROC curves, respectively (Figure 3D).

3.3 Validation of the Signature in Two GEO
Datasets
To evaluate the accuracy and stability of the prognostic signature,
two GEO datasets (GSE31210 and GSE50081, both based on
GPL570, Supplementary Table S3) were performed as external
validations. Patients in the validation cohort were classified into
low-risk and high-risk groups depending on the formula for the
risk score derived from the training cohort, respectively
(Figure 3B). Similarly, in the validation cohort, better OS
belonged to the patients with low-risk scores (Figure 3E, p =
4.737e-05), with AUCs of 0.68, 0.619, and 0.625 in the 1-year, 3-
year, and 5-year ROC curves, respectively (Figure 3F).

Gene Forward primer Reverse primer

GAPDH ACAACTTTGGTATCGTGGAAGG GCCATCACGCCACAGTTTC
PRKACA CAAGGAGACCGGGAACCACTA CATTCAGGGTGTGTTCGATCTG
GPX4 GAGGCAAGACCGAAGTAAACTAC CCGAACTGGTTACACGGGAA

FIGURE 1 | The flowchart of the study.
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3.4 Risk Factors Predictive of Survival in
LUAD
Univariate and multivariate Cox regression analyses were applied
to evaluate whether the risk score derived from the signature
could function as an independent prognostic factor, using the
“survival” package. As shown in Figure 4A, the AJCC stage (p <
0.001), T stage (p < 0.001), N stage (p < 0.001), M stage (p =
0.043), and risk score (p < 0.001) were significantly related to OS
in the univariate Cox regression analysis, with only the AJCC
stage (p = 0.001) and risk score (p < 0.001) also being significantly
related to OS in the multivariate Cox regression analysis
(Figure 4B). Furthermore, a time-dependent ROC curve was
performed to testify as to the predictive accuracy. According to
the results, the AUC of the risk score was 0.677, which was higher
than the AUC of the T stage, N stage, and M stage and similar to
the AUC of the AJCC stage (Figure 4C), indicating that the
prognostic risk model was relatively reliable. To sum up, the
prediction model could be regarded as an independent prognostic
factor for LUAD patients.

3.5 Construction of a Predictive Nomogram
To predict the patients’ survival time accurately, nomograms are
usually applied by calculating the nomogram score based on each
prognostic elements included in the nomogram (Balachandran
et al., 2015). In this study, we established a nomogram to evaluate

the probabilities of 1-year, 3-year, 5-year, and 10-year survival by
using the risk score and other clinicopathological elements, like
gender, AJCC stage, TNM stage, tobacco history, and anatomical
location (Figure 5A). Calibration curves were also plotted and
showed a high degree of consistency between the actual and the
predicted 1-year, 3-year, 5-year, and 10-year survival when
compared to the reference line (Figure 5B). Then, we
observed that the AUC of the nomscore calculated from the
nomogram was 0.711, which was greater than the riskscore (AUC
= 0.677) (Figure 5C). Furthermore, the AUC of the nomscore in
the 1-year, 3-year, 5-year, and 10-year ROC curves reached 0.726,
0.759, 0.885, and 0.923 (Figure 5D). These results suggested that
the prediction efficiency would be more accurate and reliable
when the risk score was jointed with other clinicopathological
parameters.

3.6 Functional Enrichment Analysis
To further elucidate the biological functions and pathways of DE-
PRGs in pyroptosis, the “limma” R package was applied in order
to extract the DEGs between the two groups. FDR < 0.05 and |
log2FC | ≥ 1 were statistically significant. Altogether, 820 DEGs
were identified in the TCGA cohort. Among them, 343 genes
were highly expressed in the high-risk group, while the other 477
genes were low expressed. Subsequently, based on the DEGs, GO
enrichment analysis and KEGG pathway analysis were
performed. The top GO terms were “hormone metabolic

FIGURE 2 | Establishment of the prognostic model. (A) The boxplot showed the differentially expressed PRGs between normal and tumor tissues of LUAD. (B,C)
Univariate and multivariate Cox regression identified the PRGs associated with prognosis.
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FIGURE 3 | The accuracy of the prognostic model. (A,B) The gene expression pattern; distribution of risk scores between the two groups; distribution of survival
status in the training cohort (A) and validation cohort (B). (C,E) K-M survival curves of OS in the training cohort (C; p = 1.496e-05) and validation cohort (E; p = 4.737e-
05). (D,F) The ROC curve representing patients’ survival for different numbers of years in the two cohorts, AUC of 1-year, 3-year, and 5-year OS were 0.683, 0.659, and
0.776 (respectively) in the training cohort (D), and were 0.68, 0.619, and 0.625 (respectively) in the validation cohort (F).

FIGURE 4 | Evaluation of the prognostic accuracy of the model and other clinicopathological characteristics. (A,B) Univariate and multivariate Cox regression
analyses of the risk score and other clinical parameters (age, gender, AJCC stage, anatomic location, tobacco history, T, N, and M). (C) ROC curves for the risk score
(AUC = 0.677) and other clinical features.
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FIGURE 5 | Construction and assessment of a nomogram. (A) The nomogram of 1-year, 3-year, 5-year, and 10-year OS on basis of the risk model and other
clinical features. (B) Calibration plots used for evaluating the consistency between the actual and the predicted 1-year, 3-year, 5-year, and 10-year OS. (C) ROC curves
for the nomscore (AUC = 0.711) and other elements. (D) The ROC curves of nomscore for predicting OS. The AUC of 1-year, 3-year, 5-year, and 10-year OSwere 0.726,
0.759, 0.885, and 0.923 respectively.

FIGURE 6 | Functional enrichment analyses depending on the signature. The bubble graphs for GO enrichment analysis (A) and KEGG pathway analysis (B) were
displayed. The bigger the bubble, the richer the genes, and the darker the red, the more pronounced the difference.
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process” in the biological process (BP), “neuronal cell body” in
the cellular component (CC), and “receptor ligand activity” in the
molecular function (MF), respectively (Figure 6A). According to
KEGG analysis, “neuroactive ligand−receptor interaction,”
“cytokine−cytokine receptor interaction,” “steroid hormone
biosynthesis,” and “chemical carcinogenesis—DNA adducts”
were the main pathways (Figure 6B). On the whole, the
results implied that the DEGs were mainly correlated with the
immune response, receptor interaction, and chemical
metabolism.

3.7 Comparison of the Tumor Immune
Microenvironment Between Groups
Based on the ESTIMATE algorithm, we successfully obtained
the immune scores, stromal scores, and estimate scores. The
immune scores were distributed between −934.47 and
3,190.06 and represented a significant difference between
the subgroups (Figure 7A, p < 0.001). Thereafter, we
applied ssGSEA to quantify the immune activation level
between the two subgroups by analyzing the expression
profiles of the 29 immune signature gene sets. As shown in
Figure 7B, the levels of immune cell infiltration, especially of
B cells, CD8+ T cells, neutrophils, T helper 1 (Th1) cells,
tumor-infiltrating lymphocytes (TILs), and regulatory T

(Treg) cells, were generally lower in the high-risk group
than in the low-risk group. Moreover, the levels of 13
immune pathways displayed a similar distribution between
the two groups. Furthermore, from the previous literature, 79
ICGs were extracted (Supplementary Table S1). After
removing the HLA related genes, 60 genes remained, in
which 51 out of 60 ICGs have expression values. The
results of the Spearman correlation analyses between the
risk score and the ICGs revealed that the signature may be
closely related to immunotherapy. As shown in Figure 7C,
most of the ICGs were highly expressed in the low-risk group,
except for PVR, which may be a promising therapeutic target.
We then validated our results through the use of clinical
specimens from the HPA. The OS and the histological
expressions of PRKACA and GPX4 in normal and tumor
tissues were exhibited, in accordance with the results front
(Figures 8A,C–E,G,H).

3.8 qRT-PCR Analysis
We validated this result by applying the qRT-PCR analysis to
three LUAD cell lines and a normal lung cell line. We found
that the mRNA expression level of PRKACA was higher in the
normal cell line than in the cancer cell lines, and for GPX4 it
was the opposite, consistent with our results above
(Figures 8B,F).

FIGURE 7 | Analysis of the immune status of LUAD. (A) The correlation between the risk score and the immune score was displayed (p < 0.001). (B) Differential
distribution of enrichment scores of 16 immune cells types and 13 immune-related pathways between the low-risk (blue box) and high-risk (red box) groups via ssGSEA.
(C) Boxplots of the expression level of ICGs between the two subgroups (low-risk: blue; high-risk: red). Only the expression level of PVR was positively correlated to the
risk score.
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4 DISCUSSION

Lung cancer is one of the leading causes of cancer morbidities and
the most common cause of cancer-related deaths worldwide
(Sung et al., 2021). For early-stage LUAD patients, surgery is
the recommended treatment (Vansteenkiste et al., 2014), whereas
chemotherapy, radiotherapy, immunotherapy, and targeted
therapy are recommended for advanced LUAD patients
(Hirsch et al., 2017). Several studies have demonstrated a
strong association between TMB and the clinical benefits of
receiving immunotherapy (Proto et al., 2019; Samstein et al.,
2019). Moreover, TIME is closely correlated with the efficacy of
immunotherapy (Frankel et al., 2017; Lei et al., 2020), suggesting
that immunotherapy may be more effective for high-risk patients
based on the risk model.

Pyroptosis is a type of programmed cell death triggered by a
family of inflammatory caspases that plays as a double-edged
sword in the tumorigenesis and therapeutic mechanisms, which
has been newly recognized in recent years. Pyroptosis was found
to release inflammatory factors and stimulate normal cells,
leading to transformation into tumor cells (Karki and
Kanneganti, 2019). Having said that, pyroptosis can also
promote tumor cell death and restrain proliferation and
migration of cancer cells, making pyrolysis itself a hopeful
prognostic and therapeutic target for cancer (Zheng and Li,
2020). A pyroptosis-related signature has been established to
predict prognosis in ovarian cancer (Ye et al., 2021). While, the

role of PRGs in LUAD has not yet been identified; thus, our study
aimed to explain it.

In the present study, 33 PRGs were systematically analyzed
to identify those associated with OS. Following the differential
expression analysis, univariate Cox regression analysis, and
multivariate Cox regression analysis, five optimal mRNAs,
namely IL6, NOD1, NLRC4, PRKACA, and GPX4, were
screened out for the pyroptosis-related prognostic
signature. In our study, GPX4 and PRKACA were found to
be elements of the prediction model. Previous literature
indicated that GPX4, an antioxidant enzyme that
participate in repairing oxidative damage to lipids, was an
important negative regulator of the pyroptotic cell death
pathway (Kang et al., 2018; Russo and Rathinam, 2018;
Kajarabille and Latunde -Dada, 2019). PAKACA is a
catalytic subunit alpha of protein kinase A activated by
cAMP that closely related to the progression of tumor
(Chao et al., 2021). Increased transcription of PRKACA has
been detected in patients of breast cancer that resistant to
trastuzumab, which becomes a routine treatment for HER2-
positive breast cancer (Moody et al., 2015). This suggests that
PRKACA may perform as a biomarker for cancer and a
prognostic indicator. The five PRGs’ signature was testified
to be an independent indicator for LUAD prognosis.
Following this, a prediction model depending on the PRGs’
signature was constructed. The AUC of the signature could
reach 0.776 in the training set when predicting 5-year survival.

FIGURE 8 | Validation of PRKACA and GPX4. (A,E) The prognostic differences of PRKACA (p = 1.586e-02) and GPX4 (p = 4.586e-03) between the high-risk and
low-risk groups were investigated. (B,F) Relative mRNA levels of PRKACA and GPX4 were displayed via qRT-PCR. PRKACA was highly expressed in normal tissues,
and GPX4 showed the opposite. (C–D,G–H) Protein expression of the two candidate genes in the HPA database. (C–D) Protein expression of PRKACA. (G–H) Protein
expression of GPX4.
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Until now, the mechanism of pyroptosis has not been fully
discovered. What we know is that as tumors progress, multiple
cell death modes may be concurrent and interact with one
another (Fritsch et al., 2019). Generally, pyroptosis features
the release of many proinflammatory factors and the rupture
of cell plasma membranes (Zheng and Li, 2020). We analyzed the
DEGs between two subgroups and discovered they were mainly
involved in receptor ligand activity and metabolic processes,
implying that dying cells may induce complex metabolic
processes. According to the GO and KEGG analyses results,
we have reason to suppose that pyroptosis plays a vital role in
the regulation of the tumor microenvironment.

Cancer immunotherapies targeting immune checkpoints have
been proven to improve OS in various cancers (Dyck and Mills,
2017; Li et al., 2019). Thus, exploring novel targets and
developing new schemes for antitumor therapy are always
main tasks within current medicine. In this study, we hoped
to discover the association between the signature and TIME.
Based on the ESTIMATE algorithm and ssGSEA, we could
speculate that in the high-risk group there is an overall lesion
of immune functions. Previous researches revealed that Treg cells
were recruited into the human tumor microenvironment and
inhibited T cell immunity to abolish the therapeutic efficacy of
PD-L1, CTLA-4, and the TGF-β blockade, regardless of whether
they were live or apoptotic (Zou, 2006; Maj et al., 2017; Principe
et al., 2021). Surprisingly, the level of Treg cells was higher in the
low-risk group than in the high-risk group, which indicated that
immunotherapy may be effective for the high-risk group.
Furthermore, we detected the correlation between the risk
score and the expression levels of ICGs. The results
demonstrated that the level of poliovirus receptor (PVR,
CD155) was higher in the high-risk group. PVR, a member of
the nectin-like family of adhesion molecules, has been proved to
decrease the expansion and function of tumor antigen-specific
CD8+ T cells. PVR also has a high affinity to TIGHT, which is a
promising new target for cancer immunotherapy (Shibuya et al.,
1996; Kucan Brlic et al., 2019; Chauvin and Zarour, 2020).
According to these findings, immunotherapy based on PVR
may be promising for LUAD patients applicable to the model.

Despite the prognostic value of the signature, this study still
encountered several limitations which must be considered. First,

our report was retrospective and based on public databases,
devoid of certain crucial clinicopathological information.
Second, the way in which pyroptosis modulates the precise
process of LUAD is unclear. Moreover, further biochemical
experiments, such as immunohistochemistry, cell function
experiments, and so on, need to be conducted to confirm the
findings.

5 CONCLUSION

In conclusion, a prognostic signature of five PRGs was established
in LUAD and validated in the GEO datasets to explore the role of
pyroptosis in tumor malignancy. These PRGs were also
associated with TIME, as well as helping to predict potential
therapeutic regimens for LUAD. Further studies are necessary in
order to verify these results in our study.
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B-Raf proto-oncogene serine/threonine-protein kinase (BRAF) is frequently altered in
multiple cancer types, and BRAF V600 mutations act as a prime target for precision
therapy. Although emerging evidence has investigated the role of BRAF, the
comprehensive profiling of BRAF expression, alteration and clinical implications across
various cancer types has not been reported. In this study, we used the TCGA dataset,
covering 10,967 tumor samples across 32 cancer types, to analyze BRAF abnormal
expression, DNA methylation, alterations (mutations and amplification/deletion), and their
associations with patient survival. The results showed that BRAF expression, alteration
frequency, mutation site distribution, and DNA methylation patterns varied tremendously
among different cancer types. The expression of BRAF was found higher in PCPG and
CHOL, and lower in TGCT and UCS compared to normal tissues. In terms of pathological
stages, BRAF expression was significantly differentially expressed in COAD, KIRC, LUSC,
and OV. The methylation levels of BRAF were significantly lower in LUSC, HNSC, and
UCEC compared to normal tissue. The expression of BRAF and downstream gene (ETS2)
was negatively correlated with methylation levels in various cancers. The overall somatic
mutation frequency of BRAFwas 7.7% for all cancer samples. Most fusion transcripts were
found in THCA and SKCM with distinct fusion patterns. The majority of BRAF mutations
were oncogenic and mainly distributed in the Pkinase_Tyr domain of THCA, SKCM,
COADREAD, and LUAD. The BRAFmutations were divided into five levels according to the
clinical targeted therapy implication. The results showed level 1 was mainly distributed in
SKCM, COADREAD, and LUAD, while level 3B in THCA. The overall BRAF CNV frequency
was about 42.7%, most of which was gain (75.9%), common in GBM, TGCT, and KIRP. In
addition, the forest plot showed that increased BRAF expression was associated with poor
patient overall survival in LIHC, OV, and UCEC. Taken together, this study provided a novel
insight into the full alteration spectrum of BRAF and its implications for treatment and
prognosis.
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INTRODUCTION

The B-Raf proto-oncogene serine/threonine-protein kinase
(BRAF) is located on chromosome 7q34 and encodes a
protein which belongs to the RAF family (ARAF, BRAF, and
CRAF) of serine/threonine protein kinases. As a direct
downstream effector of RAS, BRAF protein plays an important
role in regulating the mitogen-activated protein kinase (MAPK)/
extracellular signal-regulated kinase (ERK) signaling pathway,
which mediates a variety of essential cellular processes, including
cell growth, proliferation, differentiation and survival
(Ritterhouse and Barletta, 2015; Song et al., 2020; Xu et al., 2020).

Mutations in BRAF, most frequently the valine (V) to glutamate
(E) substitution at residue 600 (V600E), are identified as cancer-
causingmutations in thyroid carcinoma (THCA) and skin cutaneous
melanoma (SKCM). As an oncogenic driver, BRAF V600 mutations
account for approximately 60% of all BRAF mutations in cancer
patients. In contrast to wild-type BRAF, the constitutively active
BRAF V600E mutation dramatically enhances kinase activity in an
RAS-independent manner and is independent of protein
homodimerization to switch to the highly active state (Samatar
and Poulikakos, 2014; Alos et al., 2020). Up to now, the second-
generation BRAF inhibitors vemurafenib (PLX4032) and dabrafenib
(GSK2118436) were approved by the United States Food and Drug
Administration (FDA) for the treatment of patients with metastatic
melanomas harboring BRAF V600 mutations (Karoulia et al., 2017).
Point mutations are not the only alterations found in BRAF. Fusion
transcripts arising from translocations have been identified in
melanoma, prostate cancer, gastric cancer, etc. (Palanisamy et al.,
2010). The oncogenic potential of BRAF fusions has been attributed
to the lack of a crucial N-terminal domain that mediates BRAF
autoinhibition. Owing to the deletion of the N-terminal inhibitory
domain, gene fusions lead to constitutive dimerization of BRAF
protein aberrantly activating the downstream MAPK signaling
pathway (Cremolini et al., 2019; Kratz and Deming, 2019).

Since previous studies of BRAF gene alterations in cancers are
limited to a single cancer type and/or insufficient sample sizes, an
integrative analysis across a variety of tumor types to investigate
its function is of particular importance. In this article, we
comprehensively analyzed the large dataset from The Cancer
Genome Atlas (TCGA) to fill in the gaps. We first systematically
profiled BRAF expression, methylation, gene alterations, and its
clinical and therapeutic implications across 32 TCGA cancer
types covering 10,967 tumor samples. In addition, the survival
associations between BRAF expression and prognosis in distinct
cancer types were conducted to explore its potential therapeutic
implication. In general, our study provided a novel insight into
the full alteration spectrum of BRAF and its implications for
treatment and prognosis in diverse tumor types.

MATERIALS AND METHODS

Data Acquisition and Reanalysis Using
Bioinformatics Tools
The essential bioinformatics tools used in this research could be
found in Supplementary Table S1. Tumor Immune Estimation

Resource (TIMER2.0) is a comprehensive resource for the
systematical analysis of immune infiltrates across diverse cancer
types (Li et al., 2020). We studied the differential expression of
the BRAF gene between tumor samples and adjacent normal tissues
across all TCGA tumors by using the “Gene_DE” module of the
TIMER2.0 database. The transcripts per million (TPM) values of
transcription factors were log2-converted. For certain cancer types
without adjacent normal tissues, we further explored Gene
Expression Profiling Interactive Analysis 2 (GEPIA2) portal to
investigate the BRAF mRNA expression difference between tumor
samples and matched TCGA normal and Genotype-Tissue
Expression (GTEx) data. Additionally, the GEPIA2 data portal
was also used to generate violin plots of BRAF expression across
pathological stages for all TCGA cancer types. The log2 (TPM +1)
transformed expression data were applied for the violin plots here.
GEPIA2 is an interactive web server for analyzing the RNA
sequencing expression data from the TCGA and the GTEx
projects and provides customizable functions such as tumor/
normal differential expression analysis, survival analysis, and so on
(Tang et al., 2019). Next, we analyzed the methylation difference of
BRAF and its downstream genes of the MAPK signaling pathway
between tumor samples and adjacent normal tissues in various
TCGA cancer types by using the “TCGA Cancer-Methylation”
module in the Gene Set Cancer Analysis (GSCALite) platform.
Furthermore, the correlation between methylation and gene
expression of BRAF and downstream genes was also visualized by
the GSCALite platform. GSCALite is a web-based analysis platform
that integrates cancer genomics data to analyze gene methylation,
drug sensitivity, and so on (Liu et al., 2018).

The cBioPortal is an open-access portal that provides an interactive
investigation of multidimensional cancer genomics and clinical data
(Gao et al., 2013). In this study, we selected the “TCGA PanCancer
Atlas Studies” covering 10,967 samples across 32 cancer types to further
explore BRAF alterations.Datafiles including copy-number alterations,
mutations, mRNA Expression, Log2 copy-number values (CNV), and
clinical data were downloaded from cBioportal. The BRAF mRNA
expression data were performed based on RSEM (batch normalized
from Illumina HiSeq_RNASeqV2) and then log10 transformed. For
the BRAF CNV data, the log-ratio value represents: 2 = amplification;
1 = gain; 0 = diploid; -1 = shallow deletion; and −2 = deep deletion. In
addition, BRAF fusion data were collected from the TCGA Fusion
Gene Database, which enables researchers to query cancer-associated
transcript fusions in an interactive manner (Hu et al., 2018).

The Kaplan-Meier plotter is an open-access online database
that enables researchers to assess the effect of a candidate gene on
survival analysis in pan-cancer (Gyorffy, 2021). The correlations
between BRAF mRNA expression and clinical prognosis across
various cancer types were analyzed with the “Start KM Plotter for
pan-cancer” module. Data including hazard ratio (HR), p-value,
and 95% confidence interval (CI) were collected to draw the forest
plots to summarize survival analysis.

Statistical Analyses
The statistical analysis was performed with Graphpad PRISM
software Version 8.0. Student’s t-test, Cox regression analysis,
and linear regression analysis were conducted when appropriate.
p < 0.05 was defined as a statistically significant difference.
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FIGURE 1 | BRAFmRNA expression and DNAmethylation in TCGA tumor tissues. (A) BRAFmRNA expression across different cancer types by TIMER2. The log2
[TPM (Transcripts per million)] was applied for the log-scale. (B) Differential expression of BRAF between tumors samples and normal tissues using combined data from
TCGA and GTEx datasets based on the GEPIA2 portal. BRAF expression was up-regulated in CHOL and PCPG, but down-regulated in TGCT and UCS. The log2 (TPM
+ 1) was applied for log-scale. (C) Differential expression of BRAF in different pathological stages of COAD, KIRC, LUSC, and OV. The log2 (TPM + 1) was applied
for log-scale. (D) Bubble map depicting the methylation difference of BRAF and its downstream genes between tumors and normal samples. Blue dots indicate down-
regulated methylation in tumors. Red dots indicate up-regulated methylation. (E) Bubble map exhibiting correlations between methylation and gene expression of BRAF
and its downstream genes. Blue dots denote down-regulated methylation in tumors. Blue dots represent the negative Spearman correlation coefficient, and red dots
represent the positive. *p < 0.05; **p < 0.01; ***p < 0.001.
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RESULTS

Expression and Methylation Level of BRAF
in Pan-Cancer
Aberrant expression of BRAF gene has been demonstrated in
various cancer types (Wang et al., 2021; Zhao et al., 2021).
Previous studies on BRAF expression in cancer have used
inconsistent research methods and have been limited to small
sample sizes and/or to single or limited cancer types. In this study,
we conducted a more comprehensive analysis of BRAF
expression in pan-cancer. At the outset, we explored the
mRNA expression pattern of BRAF between tumor samples
and adjacent normal tissues in pan-cancer by TIMER2.0
(Figure 1A). Compared with the corresponding adjacent
normal tissues or metastatic lesions, significantly differential
expression of BRAF was found in 14 cancer types, with 9 tumor
types up-regulated (cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), cholangiocarcinoma
(CHOL), colon adenocarcinoma (COAD), esophageal carcinoma
(ESCA), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
stomach adenocarcinoma (STAD) and uterine corpus endometrial
carcinoma (UCEC)) and 5 tumor types down-regulated (breast
invasive carcinoma (BRCA), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), SKCM,
THCA). After adding GTEx normal tissue samples as a control,
we further investigated BRAF differential expression by GEPIA2. As
shown in Figure 1B, BRAF expression was up-regulated in
pheochromocytoma and paraganglioma (PCPG) and CHOL,
down-regulated in testicular germ cell tumors (TGCT) and
uterine carcinosarcoma (UCS). We further analyzed the
correlation between BRAF expression and pathological stages in
pan-cancer. As shown in Figure 1C, we found that BRAF
expression was correlated with pathological stages in several
tumor types, including COAD, KIRC, LUSC, and ovarian serous
cystadenocarcinoma (OV) (p < 0.05).

A growing body of evidence has suggested that DNA
methylation is strongly correlated with gene alteration in
cancers (Wang et al., 2020; Zhang et al., 2020). Therefore, we
searched the methylation profiles of BRAF and its downstream
genes in TCGA cancers by using the GSCALite database (Figures
1D,E). The results indicated that the methylation of BRAF was
down-regulated in LUSC, head and neck squamous cell
carcinoma (HNSC), and UCEC. Then, we evaluated the
correlation between methylation and BRAF expression in pan-
cancer. The results revealed that the expression profiles of BRAF
and downstream genes were generally negatively correlated with
methylation in various cancers.

BRAF Somatic Mutation Patterns in
Pan-Cancer
The overall somatic mutation frequency of BRAF was 7.7% for all
cancer samples (848/10,976) and 7.0% for all patients (767/
10,953) across the 32 TCGA cancer types. And the detailed
information on 848 BRAF somatic mutations was shown in
Supplementary Table S2. The sample size of each tumor type

varied from 36 (CHOL) to 1,084 (BRCA), and the cancer types
with a small sample size might not reflect the general spectrum of
BRAF mutation status (Supplementary Table S3). As shown in
Figure 2A, the most frequent cancer types with BRAF mutations
were THCA (59.3%), SKCM (53.6%), colon adenocarcinoma/
rectum adenocarcinoma (COADREAD) (10.6%), LUAD (7.2%)
and UCEC (4.7%). Instead, almost no BRAF mutations were
observed in kidney chromophobe (KICH), acute myeloid
leukemia (LAML), LIHC, TGCT, thymoma (THYM), and
uveal melanoma (UVM).

Based on the Pfam database (http://pfam.xfam.org/protein/
braf_human), BRAF harbors 3 functional domains, including the
RBD domain (156-227 aa), C1_1 domain (235-280 aa), and
Pkinase_Tyr domain (458-712 aa). The 848 BRAF somatic
mutations were observed in various cancer types and widely
distributed across different functional domains of the BRAF gene.
The most common one was the Pkinase_Tyr domain (722
samples), followed by the other domains whose functions were
barely known (75 samples), the C1_1 domain (11 samples), and
the RBD domain (8 samples). Fusions (32 samples) were also
observed in BRAF somatic mutations across all cancer types. The
location distribution of BRAF mutations was dramatically
different among numerous cancers. Mutations in THCA,
SKCM, COADREAD, and LUAD were most frequently
distributed in the Pkinase_Tyr domain. However, mutations in
UCEC were predominantly located in the other domains
amounting to half of the total mutations. Furthermore, fusions
were mainly distributed in THCA and SKCM (Figure 2B and
Supplementary Table S4).

Fusion genes generated by cleavage and re-splicing at the
genome level are often the targets for tumor diagnosis and
treatment. We analyzed fusion transcripts of BRAF across
various cancer types by using the TCGA Fusion Gene
Database (Figure 3). BRAF fusion transcripts were detected in
THCA (17), SKCM (9), prostate adenocarcinoma (PRAD) (3),
pancreatic adenocarcinoma (PAAD) (2), READ (2), LIHC (1),
LUSC (1), STAD (1), KIRP (1), brain lower-grade glioma (LGG)
(1) and bladder urothelial carcinoma (BLCA) (1). The highest
number of fusion transcripts was found in THCA (three
SND1_BRAF, one BRAF_SND1, one AGK_BRAF, one
BRAF_AGK, one MACF1_BRAF, one BRAF_MACF1, one
FAM114A2_BRAF, one BRAF_ FAM114A2, one
CCNY_BRAF, one MKRN1_BRAF, etc.). AGK_BRAF and
BRAF_AGK were also detected in SKCM. The vast majority of
these BRAF fusion transcripts were classified as in-frame, while
three BRAF fusion transcripts (one BRAF_HIBADH and one
HIBADH_BRAF in SKCM, one TMPRSS2_BRAF in PRAD)
were classified as out-of-frame and three (one BRAF_MRPS33
in BLCA and one in STAD, one BRAF_CUL1 in KIRP) were
classified as CDS-5UTR.

According to functional impact on protein coding, these 848
BRAF somatic mutations could be classified into four categories:
missense (778 mutations), truncating (32 mutations), fusion (32
samples), and in-frame (6 mutations) (Supplementary Figure
S1A). The 600aa in the Pkinase_Tyr domain was the most
mutated position, which was observed in 590 samples (545
samples with V600E, 39 with V600M, 4 with V600G, 1 with
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V600_K601delinsE and 1 with V600_R603del). Mutations at
V600E were primarily distributed in THCA samples (284/545)
and SKCM samples (193/545) (Supplementary Figure S1B–C).
V600E is known to be oncogenic and serves as target for BRAF
inhibitors approved by FDA, while other mutation types
(V600M/G) are likely oncogenic. Other tumors with mutations
at this position were COADREAD (48 samples), LUAD (9
samples), glioblastoma multiforme (GBM) (5 samples), KIRP
(2 samples), BLCA (1 sample), LGG (1 sample), CHOL (1
sample) and HNSC (1 sample). Studies on their role in
COADREAD and LUAD are underway (Planchard et al.,
2017; Kopetz et al., 2019) and its function remains little
known in other cancer types.

Based on the oncogenic effect and predictive significance, the
848 BRAF somatic mutations could be classified into four
categories. As shown in Figure 4A, 616 (72.6%) BRAF

mutations were oncogenic, 98 (11.6%) likely oncogenic, 1
(0.1%) inconclusive and 133 (15.7%) unknown. Although a
major portion of BRAF somatic mutations was distributed in
the functional categories, there were still some mutations in the
unknown class deserving further study to characterize the
potential functional significances of these mutations. As
displayed in Figure 4B, mutations distributed in the
functional categories comprised the majority of BRAF
mutations in several cancers such as THCA, SKCM,
COADREAD, and LUAD. However, more than two-thirds of
mutations belonged to the unknown class in UCEC, LUSC,
BRCA, and STAD.

The 848 BRAF mutations could be divided into five levels by
the clinical targeted therapy implication, containing level NA
(193 mutations), level 4 (22 mutations), level 3B (326 mutations),
and level 3A (14 mutations), and level 1 (293 mutations). Only

FIGURE 2 | BRAF mutation distribution in various cancer types and protein functional domains. (A) BRAF mutation frequency across 32 TCGA cancer types. (B)
BRAF mutation distribution in different protein functional domains in all and top 10 tumor types. Abbreviation: aa: amino acid.
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level 1 mutations are indicated for targeted therapy with FDA-
approved drugs. All level 1 mutations were found in SKCM (236),
COADREAD (48), and LUAD (9). These mutations (including
V600E, V600M, and V600G) were concentrated in 600aa of the
Pkinase_Tyr domain. Although all mutations in THCA belonged
to oncogenic (289/302)/likely oncogenic (13/302), all of them
were in level 3B (301/302) and level NA (1/302) without
treatment implications (Figures 5A,B).

BRAF CNVs in Different Tumor Types
The overall BRAF CNV frequency was about 42.7% (4,684/10,967
samples). The majority of BRAF CNV types were gain (3,555
samples), followed by shallow deletion (972 samples), application
(133 samples), and deep deletion (24 samples). The most
common tumor types with BRAF CNVs were GBM (81.3%),
TGCT (69.1%), ESCA (63.7%), OV (62.9%), adrenocortical
carcinoma (ACC) (62.0%), KIRP (61.1%), UCS (59.6%) and
LUSC (59.5%). By contrast, THYM (16.3%), PCPG (15.7%),
LAML (12.0%), UVM (8.8%) and THCA (5.2%) harbored a
relatively low BRAF CNV frequency (Figure 6A). Among the
848 samples with BRAF mutations described above, 276 also had
BRAF CNV changes, of which 236 with gain, 23 with
amplification, 14 with shallow deletion, and 3 with deep
deletion. SKCM had the highest numbers of amplification or
gain among different cancer types. Meanwhile, SKCM and LUSC

were the two cancer types with the highest numbers of shallow
deletion, and deep deletion only occurred in THCA (Figure 6B,
Supplementary Table S2).

BRAF mRNA expression was compared across 32 TCGA
cancer types and exhibited a relatively consistent trend,
suggesting that there may be a common mechanism to
promote BRAF expression. Based on the interquartile range,
BRAF expression was widely distributed in COADREAD and
SKCM, and narrowly distributed in UVM and mesothelioma
(MESO), which may be attributed to the fact that some cancer
types had more than one subtype and therefore more genetic
diversity (Supplementary Figure 2A). In addition, we explored
the correlation between BRAFmRNA expression and CNVs. The
results showed that there was a positive correlation between
BRAF mRNA expression and CNVs in pan-cancer (r =
0.1716, p < 0.0001) (Supplementary Figure 2B).

Combined BRAF Alterations (CNVs and
Mutation) Across Various Cancer Types
The combined BRAF alteration (CNV and mutation) frequency
in all cancers was about 8.3% (905 of 10,967 samples). As shown
in Figure 7A, BRAF alteration frequency among various cancer
types was dramatically different. While KICH, TGCT, THYM,
and UVM had neither BRAF mutation nor BRAF CNVs, BRAF

FIGURE 3 | Gene fusions of BRAF across different cancer types.
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alterations were most frequently observed in THCA (59.6%) and
SKCM (53.8%), in which mutation was more common than
CNV, with BRAF mutation rates of 57.4 and 49.3%,
respectively. Other cancers with dominant BRAF mutation but
at much lower mutation rate included COADREAD (10.4%),
LUAD (7.2%), UCEC (4.7%), BLCA (3.2%), STAD (3.0%), LUSC
(2.9%), CHOL (2.8%) and DLBC (2.1%). Amplification was more
common in OV (7.7 vs. 0.3%), SARC (1.6 vs. 0.4%) and LGG (1.4
vs. 0.6%). Deep deletion was mainly distributed in LAML (1.5%),
SARC (1.2%) and ESCA (1.1%).

BRAFmutation location and its CNVs occurrence appeared to
be associated. 201 of 664 (30.3%) mutations in the Pkinase_Tyr
domain and 21 of 75 (28%) mutations in the other function-
unknown domain were accompanied by copy gain. Amplification
was mainly distributed in the Pkinase_Tyr domain. Mutations in
the RBD domain and C1_1 domain rarely had concurrent CNVs
(Figure 7B).

BRAF Expression and the Prognosis of
Cancer Patients
In order to assess the clinical significance of BRAF expression,
we analyzed patient survival in pan-cancer and showed that
increased BRAF expression was associated with poor patient
overall survival (OS) in LIHC, OV, and UCEC. Interestingly,
increased BRAF expression was correlated with better
prognosis in BRCA, HNSC, and KIRC (Figure 8A). In
addition, survival analysis between BRAF expression and
patient relapse-free survival (RFS) across various cancer
types exhibited that increased BRAF expression was
associated with poor RFS in LIHC, LUSC, and UCEC,
while high BRAF expression was correlated with better RFS
in BRCA and OV (Figure 8B). The contradictory results in
OV may be attributed to insufficient sample size and diverse
genetic backgrounds.

FIGURE 4 | BRAF mutation classification by functional impacts. (A) BRAF mutations based on functional impacts on all tumors together. (B) Functional impact
class distribution of BRAF mutations in pan-cancer and the top 8 cancer types.
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DISCUSSION

In this study, we profiled the characteristics of BRAF in 32 TCGA
cancer types by using the cBioPortal tool and the results showed
that BRAF expression, methylation, mutations, locations, and
CNVs dramatically differed among diverse cancer types, which
had significant clinical implications.

DNA methylation, characterized as a methyl group added to
cytosines in cytosine-guanine (CpG) dinucleotides, is one of the
key epigenetic modifications involved in the regulation of gene
expression (Müller and Győrffy, 2022). An existing body of
evidence indicates that aberrant DNA methylation leads to
activation of oncogenes and silencing of tumor suppressor
genes, contributing to tumorigenesis and progression
(Klutstein et al., 2016). In a recent study by Noreen et al.
(2019), the silencing of Tet methylcytosine dioxygenase 1
(TET1) oxidative DNA demethylase mediated by BRAF V600E
mutation was responsible for the initiation of colon cancers with
CpG-island methylator phenotype (CIMP). Furthermore,

Weisenberger’s group (Weisenberger et al., 2006) also
identified the tight association between BRAF mutation and
CIMP in colorectal cancers. Our results indicated that the
methylation of BRAF and downstream genes were correlated
with tumor occurrence. Thus, the potential roles of BRAF
mutation in the regulation of DNA methylation and tumor
initiation deserve further investigation.

Gene fusions originating from the concatenation of two
separate genes caused by trans-splicing events or chromosomal
translocations may provide fundamental insights into
tumorigenesis and progression (Mertens et al., 2015). In this
analysis, the distribution patterns of gene fusions involving BRAF
varied in pan-cancer. THCA harbored the highest number of
fusion transcripts, of which SND1_BRAF was the most common
one, while other cancer types such as LIHC, LUSC, STAD, KIRP,
LGG, and BLCA had equally few fusion transcripts. The ectopic
expression of SND1_BRAF could increase the phosphorylation
levels of MEK/ERK and cell proliferation (Jang et al., 2015).
However, MEK inhibitors display expected response rates of up to

FIGURE 5 | BRAF mutation distribution according to clinical therapeutic implications. (A) BRAF mutation distribution based on the OncoKB therapeutic evidence
levels among diverse cancer types. (B) OncoKB therapeutic evidence levels distribution of BRAF mutation in pan-cancer and the top 8 tumor types.
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70% of patients with higher BRAFV600, while a randomized
phase 2 trial showed no differences in overall survival (Algazi
et al., 2020). Combination treatments with BRAF fusions and
MEK inhibitors may propose a novel insight to evaluate the
effectiveness of chemotherapy in cancers.

Mutations in the Pkinase_Tyr domain accounted for most of
BRAF single nucleotide or insertion/deletion (indel) mutations.
However, the Pkinase_Tyr domain was far more critical in terms
of targeted therapy with BRAF inhibitors as approximately 90%
of BRAF mutations in SKCM occurred in this region, particularly
the BRAF V600E mutation in exon 15. Mutations in this region
have been shown to be predictive markers for effective BRAF
inhibitors therapy for SKCM in clinical practice (Chapman et al.,
2011; McArthur et al., 2014), with significantly longer survival

compared to traditional combination chemotherapy.
Vemurafenib (PLX4032) and dabrafenib (GSK2118436) were
approved by the FDA for the treatment of melanoma patients
with BRAF V600E mutation in August 2011 and May 2013,
respectively, (Bollag et al., 2012; Hauschild et al., 2012), marking a
significant milestone in precision medicine for advanced
melanoma. However, due to the complicated pathogenesis of
cancer, most patients develop acquired resistance after several
months of monotherapy (Shi et al., 2014), combination therapy
holds promise as an effective therapeutic strategy. Compared with
BRAF inhibitors alone, combining BRAF and MEK inhibitors
have been demonstrated to enhance antitumor activity and delay
the emergence of drug resistance in patients who have melanoma
harboring BRAF V600E mutations, without increased overall

FIGURE 6 | BRAF Copy Number Variant (CNV) distribution across all and selected top 8 cancer types. (A) BRAF CNV frequency in 32 TCGA cancer types. (B)
BRAF CNV distribution in pan-cancer and the top 8 cancer types for the cases with EGFR mutations.
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toxicity (Robert et al., 2019). In addition, studies assessing triple
therapy, BRAF, and MEK inhibitors in combination with
immunotherapies, are ongoing (Gutzmer et al., 2020). The
BRAF mutation rate of SKCM in this TCGA cohort appeared
to be consistent with previous reports and V600E mutations
accounted for approximately 95% of all V600 mutated SKCM
tumors (Cancer Genome Atlas Network, 2015). For other less
frequent BRAF mutations in SKCM, except for the V600K
mutation, targeted therapy generated inconsistent results
(Menzer et al., 2019). It is clear that different BRAF mutations
have different implications, and only those resulting in
hyperactivated RAF in MAPK signaling pathway may benefit
from BRAF targeted therapy (Yao et al., 2015).

The BRAF V600E mutation in THCA was mainly distributed
in papillary thyroid cancer (PTC) and anaplastic thyroid
carcinoma (ATC). As previously reported (Chou et al., 2022;
Fallahi et al., 2022), PTC and ATC harbored drastically different

clinical outcomes while the 5-year survival rate approached 100%
in PTC and only 7% in ATC. So, the researches to discover the
function of BRAF V600E mutation in ATC are important.
Interestingly, the combination therapy of dabrafenib and
trametinib was already approved by the FDA in May 2018 for
ATC patients with BRAF V600E mutation based on phase II
clinical trial (Haddad et al., 2018; Subbiah et al., 2018; Park et al.,
2021). Furthermore, the correlation between the BRAF V600E
mutation and high-risk clinicopathological features of PTC has
been identified in some studies, especially when coexisting with a
TERT promoter mutation could remarkably increase
transcriptional activities (Liu et al., 2017). As for the PTC
patients, studies on BRAF inhibitors have mainly focused on
radioactive iodine refractory differentiated thyroid cancer, and
relevant clinical trials are in progress (NCT02145143;
NCT04462471; NCT04940052; NCT01947023; NCT04554680;
NCT05182931).

FIGURE 7 | BRAF alterations and distribution in pan-cancer. (A) BRAF alteration (mutations and CNVs) frequency across 32 TCGA tumor types. (B) BRAF CNVs
distribution along with mutations located in different protein functional domains.
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Although BRAF mutation is an oncogenic driver in multiple
cancers, a single-agent BRAF inhibitor has limited clinical efficacy
in BRAF V600E-mutated COADREAD patients (Kopetz et al.,
2015). This has been attributed predominantly to the rapid
reactivation of the MAPK pathway through the epidermal
growth factor receptor (EGFR) (Prahallad et al., 2012).
Interestingly, combination therapy of BRAF inhibition
(encorafenib) and anti-EGFR monoclonal antibodies
(cetuximab) has been well validated and approved by FDA in
BRAF V600E-mutated metastatic COADREAD patients

(BEACON CRC) (Kopetz et al., 2019). Compared with the
cetuximab and traditional irinotecan-based chemotherapy,
doublet-therapy with encorafenib and cetuximab showed a
significant survival benefit, as well as triplet-therapy group
with binimetinib (MEK inhibitor). Nowadays, single or
combination treatments of encorafenib have been explored in
various BRAF mutant cancers, such as SKCM, PAAD, LUAD,
COADREAD, THCA, and other advanced solid tumors in a
clinical trial (NCT05003622; NCT04390243; NCT05195632;
NCT04673955; NCT04061980; NCT03973918). Regarding the

FIGURE 8 | Correlation between the BRAF expression and patient survival. (A) Forest plot of the association between BRAF expression and overall survival (OS)
based on Kaplan-Meier Plotter. (B) Forest plot of the association between BRAF expression and relapse-free survival (RFS) based on Kaplan-Meier Plotter.
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expected efficiency of immune checkpoint inhibitors, patients
treated with BRAF inhibitors and pembrolizumab or nivolumab
are validated in ongoing clinical trials (NCT05217446;
NCT04044430; NCT04017650). Although OV and LUAD
harbored similar alteration frequencies, the functional profiles
of BRAF in these two cancers were quite different, with different
amplification and mutation patterns. Studies have shown that
BRAF inhibitors alone or in combination with MEK inhibitors
are effective as a second-line treatment in patients with
BRAFV600-mutated LUAD (Mazieres et al., 2020). BRAF
mutation may be a good prognostic factor in OV (Kaldawy
et al., 2016), and additional studies will be required to further
characterize the clinical significance.

In this study, we profiled BRAF expression, fusion transcript,
alteration, and the prognostic and clinical implications across 32
TCGA cancer types. However, some limitations needed to be
mentioned. Firstly, some rare tumor types did not have sufficient
sample sizes to capture the full BRAF expression and alteration
spectrum to establish moderate associations. The low frequency
of BRAF mutation or amplification also made this analysis
challenging. Moreover, it was mainly a pan-cancer
investigation without in-depth dive into each cancer type.

CONCLUSION

Our study provides a comprehensive view of BRAF expression,
alteration, and clinical prognostic implications across 32 cancer
types covering more than ten thousand tumor samples. While
some BRAF alternations are involved more in carcinogenesis,
others are more therapeutic. Some cancer types have a higher
BRAF alternation frequency and its abnormal expression is

associated with prognosis. Genomic profiling of BRAF may
guide its use in targeted therapy.
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Background: Colorectal cancer (CRC) is a heterogeneous disease with many

somatic mutations defining its genomic instability. Alternative Splicing (AS)

events, are essential for maintaining genomic instability. However, the role of

genomic instability-related AS events in CRC has not been investigated.

Methods: From The Cancer Genome Atlas (TCGA) program, we obtained the

splicing profiles, the single nucleotide polymorphism, transcriptomics, and clinical

information of CRC. Combining somatic mutation and AS events data, a genomic

instability-related AS signature was constructed for CRC. Mutations analyses, clinical

stratification analyses, and multivariate Cox regression analyses evaluated this

signature in training set. Subsequently, we validated the sensitivity and specificity

of this prognostic signature using a test set and the entire TCGA dataset. We

constructed a nomogram for the prognosis prediction of CRC patients.

Differentially infiltrating immune cells were screened by using CIBERSORT.

Inmmunophenoscore (IPS) analysis was used to evaluate the response of

immunotherapy. The AS events-related splicing factors (SF) were analyzed by

Pearson’s correlation. The effects of SF regulating the prognostic AS events in

proliferation and migration were validated in Caco2 cells.

Results: A prognostic signature consisting of seven AS events (PDHA1-88633-ES,

KIAA1522-1632-AP, TATDN1-85088-ES, PRMT1-51042-ES, VEZT-23786-ES, AIG1-

77972-AT, and PHF11-25891-AP) was constructed. Patients in the high-risk score

group showed a higher somatic mutation. The genomic instability risk score was an

independent variable associatedwith overall survival (OS), with a hazard ratio of a risk

score of 1.537. The area under the curve of receiver operator characteristic curve of

the genomic instability risk score in predicting the OS of CRC patients was 0.733.

Furthermore, a nomogram was established and could be used clinically to stratify

patients to predict prognosis. Patients defined as high-risk by this signature showeda

lower proportion of eosinophils than the low-risk group. Patients with low risk were

more sensitive to anti-CTLA4 immunotherapy. Additionally, HSPA1A and FAM50B

were two SF regulating the OS-related AS. Downregulation of HSPA1A and FAM50B

inhibited the proliferation and migration of Caco2 cells.
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Conclusion: We constructed an ideal prognostic signature reflecting the

genomic instability and OS of CRC patients. HSPA1A and FAM50B were

verified as two important SF regulating the OS-related AS.

KEYWORDS

colorectal cancer, genomic instability, alternative splicing, splicing factor, overall
survival

Introduction

Colorectal cancer (CRC) is the second most common cancer

diagnosed in women and the third most common in men (Dekker

et al., 2019). It is the second leading cause of cancer deaths (Keum

and Giovannucci, 2019). In 2020, 1,148,515 new cases of CRC were

diagnosed, and about 576,858 individuals died from malignancy

(Sung et al., 2021). CRC is a multifactorial disease characterized by

molecular and clinical heterogeneity (Nguyen et al., 2020).

Therefore, it is urgently necessary to explore novel biomarkers

for improving the clinical outcome of CRC patients.

Alternative splicing (AS) is one of the essential post-

transcriptional regulatory mechanisms and contributes to

enriching the protein diversity from a limited number of genes

(Baralle and Giudice, 2017; Sciarrillo et al., 2020). Increasing

evidence has suggested that aberrant alternative splicing (AS)

events regulate cell proliferation, invasion, apoptosis,

angiogenesis, and drug resistance, resulting in the progression of

CRC (Chen et al., 2021). Alternatively spliced CD44 variants have

been identified to promote intestinal tumorigenesis induced by the

activation of Wnt signaling (Guo and Frenette, 2014). In

chemoradiation-resistant colon cancer cells, exon skipping is

significantly increased (Xiong et al., 2016). Alternative splicing

isoforms of vascular endothelial growth factor A (VEGFA), UDP

glucuronosyltransferase family 1 member A complex locus

(UGT1A), pregnane X receptor (PXR), and KRAS are potential

therapeutic targets for CRC (Audet-Delage et al., 2017; Canavese

et al., 2017; Eilertsen et al., 2019).

Genomic instability, an important prognostic factor of cancer, has

been reported to be a hallmark of cancer (Duijf et al., 2019). The

instability is multifaceted at several different levels, ranging from

simple deoxyribonucleic acid sequence changes to chromosomal

aberrations. The molecular mechanisms underlying genomic

instability implicate numerous levels of gene regulation, such as

transcriptional and post-transcriptional regulation (Chen et al.,

2022). Studies indicated that 92–94% of human genes undergo AS

(Wang et al., 2008). In addition, multiple AS events have been

identified to be associated with genomic instability (Liu et al.,

2020; Sebastian et al., 2020a). The dysregulated AS disturbs

genome integrity resulting in tumorigenesis (Öther-Gee Pohl and

Myant, 2022). However, whether the AS events could reflect the

genomic instability and overall survival (OS) of CRC is currently

unknown.

In this study, we compared the differential AS events

between genomic stable and unstable patients. We

developed a new prognostic model combining AS profiles

and somatic mutation profiles in CRC tumor tissues. In

addition, we explored the related splicing factors and

infiltrating immune cells in this prognostic model. Our

studies identified the potential molecular signature as

genomic instability-associated CRC biomarkers, which may

be helpful to assess the clinical outcomes of CRC patients

accurately.

Materials and methods

Data collection

Clinical information, RNA-seq data, and somatic

mutation data of CRC cohorts were obtained from The

Cancer Genome Atlas (TCGA) database (https://tcga-data.

nci.nih.gov/). AS events from CRC patient samples (n = 442)

were collected from TCGAspliceSeq database (http://

bioinformatics.mdanderson.org). The SpliceSeq tool was

used to analyze AS profiles and assess the splicing

patterns of mRNA in CRC. The Percent Splicing index

(PSI), ranging from zero to one, was used to quantify AS

events. AS events with PSI values >75% were selected. The AS

events were visualized by using the R package: UpSetR (v1.

4.0).

Screening of the genomic instability-
related alternative splicing events

A computational framework was performed to analyze

genomic instability-related AS events by combining the PSI

values of the AS events and somatic mutation profiles

(Figure 1). The somatic mutation quantity of each patient

in TCGA database were calculated with “varscan”. We then

ranked each patient’s somatic mutations number in

descending order, then defined the top 25% (n = 98) and

the last 25% (n = 97) of the patients as genomic

unstable (GU) group and genomic stable (GS) group,

respectively. To filter differentially expressed AS events

which were defined as genomic instability-related AS

events, the significance analysis of microarrays (SAM)

method was used to compare the PSI values between these

two groups (p < 0.05).
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Identification of survival-associated
alternative splicing events and the
prognostic signature construction

Univariate Cox analysis was performed to determine the

survival-associated genomic instability-related AS events. To

remove high correlations among the seven AS events, we used

the LASSO (Least absolute shrinkage and selection operator)

regression. Multivariate Cox regression analyses were performed

to estimate the independent predictor function of each AS event.

Finally, we calculate the risk score using the following formula:

Risk score � ∑
n

i
PSIi × βi, where β denotes the regression

FIGURE 1
Study flowchart.
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coefficient of each event. Then the median of risk score was

defined as a cut-off value distinguishing the high-and low-risk

groups. The LASSO regression was performed with “glmnet” and

“survival” R package. The multivariate Cox regression analyses

were performed with “survival” R package.

Validation of the prognostic signature

To provide additional support to our findings, the 433 CRC

patients were randomly divided into a training set (n = 217) and a

test set (n = 216) using the R package “caret” (Table1 summarizes

the clinicopathological characteristics of the CRC patients). First,

each set of CRC patients was divided into high-risk and low-risk

groups using the same formula to compute the risk score.

Kaplan–Meier survival curve and Log-Rank test were used to

compare overall survival between the high-risk and low-risk

groups in the training set. The survival receiver operating

characteristic (ROC) package (R 4.0.3) was then used to assess

the ability of the prediction model. Univariate and Multivariate

Cox regression were conducted to calculate the high-risk score’s

hazard ratio (HR). Subsequently, we validated the prognostic

signature in the test set and the entire TCGA dataset (n = 433).

Kaplan–Meier, Cox, and ROC analyses were carried out as

described above.

Immune cell analysis

We used the CIBERSORT algorithm (http://cibersort.

stanford.edu/) to estimate the 22 kinds of infiltrating

immune cells in CRC tissue. A total of 163 cases were

included for further analysis with p-values <0.05. The

median risk scores classified these cases into high-risk (n =

81) and low-risk (n = 82) groups. The R package “vioplot” was

used to draw the differential immune cells types between these

two groups. The survival curve was generated using the R

package “survival”. The P- value is calculated based on the log-

rank. Immunophenoscore (IPS) data were obtained from The

Cancer Immunome Atlas (TCIA) database (https://tcia.at/),

predicting the response to cytotoxic T lymphocyte antigen 4

(CTLA4) and programmed cell death protein 1 (PD-1)

blockers (n = 433). According to the median risk scores

classified these cases into high-risk (n = 216) and low-risk

(n = 217) groups. The differential effective immunotherapy

responses between high-risk and low-risk groups were

analyzed by the chi-square test and visualized by R package

“vioplot”.

Correlation network of survival associated
alternative splicing events and splicing
factors construction

A total of 404 splicing factor genes were identified in a

previous study(Seiler et al., 2018). The mRNA profile data of

the splicing factors (SF) in CRC were obtained from the TCGA

database. Correlations between the splicing factor expression

and prognosis-related AS events were visualized and analyzed

by Cytoscape 3.7.2. In Univariate Cox regression, a p-value

of <0.05 and correlation coefficient >0.1 were identified as

statistically significant.

TABLE 1 Clinicopathological information of the patients with CRC in TCGA.

Covariates Type Total
(n = 433)

Test set
(n = 216)

Training set
(n = 217)

p-value

Age (%) ≤65 178 (41.11%) 88 (40.74%) 90 (41.47%) 0.9541

>65 255 (58.89%) 128 (59.26%) 127 (58.53%)

Sex (%) Female 204 (47.11%) 101 (46.76%) 103 (47.47%) 0.9594

Male 229 (52.89%) 115 (53.24%) 114 (52.53%)

Tumor stage (%) Stage I-II 244 (56.35%) 123 (56.94%) 121 (55.76%) 0.8317

Stage III-IV 178 (41.11%) 87 (40.28%) 91 (41.94%)

Unknow 11 (2.54%) 6 (2.78%) 5 (2.3%)

T stage (%) T1-2 86 (19.86%) 44 (20.37%) 42 (19.35%) 0.8662

T3-4 346 (79.91%) 171 (79.17%) 175 (80.65%)

Unknow 1 (0.23%) 1 (0.46%) 0 (0%)

M stage (%) M0 318 (73.44%) 163 (75.46%) 155 (71.43%) 0.6089

M1 60 (13.86%) 28 (12.96%) 32 (14.75%)

Unknow 55 (12.7%) 25 (11.57%) 30 (13.82%)

N stage (%) N0 259 (59.82%) 129 (59.72%) 130 (59.91%) 1

N1-2 174 (40.18%) 87 (40.28%) 87 (40.09%)
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Cell culture and transfection

Caco2 cells were purchased from ATCC (Manassas, VA,

United States) and cultured with a DMEM-High glucose medium

(HyClone, Logan, UT, United States) supplied with 10% fetal

bovine serum (FBS, Lonsera, UY). and 50 U/ml Penicillin-G,

50 µg Streptomycin (Thermo Scientific, Cambridge, MA,

United States). Cell cultures were maintained at 37°C in a

humidified atmosphere of 5% CO2.

The small interfering RNA of HSPA1A and FAM50B and

negative control were purchased from TsingkeBiotechnology

(Beijing, CHN). For the siRNA experiments, cells were

seeded in 6-well plates at a density of 5 x 10̂4 cells/well

and medium was replaced with serum-free medium once

confluence reached ~80%. Subsequently, 160 pmol siRNA

(80 pmol of each siRNA when two siRNAs were co-

transfected) was mixed with 200 μl serum-free medium

containing 8 μl Lipofectamine RNAiMAX Reagent

(Invitrogen, United States) and added to the cells. In the

following experiments, the cells were divided into four

groups: control siRNA (NCi) group, HSPA1A siRNA

(HSPA1Ai) group, FAM50B siRNA (FAM50Bi) group,

HSPA1A siRNA + FAM50B siRNA (HSPA1Ai +

FAM50Bi) group. The oligonucleotide sequences were as

follows: siRNA-HSPA1A sense strand, 5′- GCCAUGACG

AAAGACAACATT-3′ and antisense strand, 5′-UGUUGU

CUUUCGUCAUGGCTT -3’; siRNA-FAM50B sense strand,

5′-GCUGGUACGAGAACAATT -3′ and antisense strand,

5′-UUGUUCUUCUCGUACCAGCTT -3’. The primer

sequence used were listed in Table2.

RNA isolation and real-time qPCR

Total RNA of siRNA infected cells was extracted using

RNAiso Plus (Takara), according to the manufacture’s

protocols. Subsequently, the isolated RNA was reverse

transcribed into cDNA with PrimeScriptTM Reagent Kit

(Takara). The reaction mixture for qPCR containing SYBR

(BAOGUAGN, China) was prepared according to the

manufacture’s protocols. RT-PCR was performed in a PCR

system with HSPA1A, FAM50B, and 36B4 primers. Relative

gene expression was calculated using the 2−△△CT method,

using 36B4 mRNA expression as reference gene. Each

sample was analyzed at least three times.

Cell proliferation experiments

Caco2 cells were seeded in 96-well plates (Corning, NY,

United States) (3*10̂3 cells/well) and transfected with siRNA

for 24 h. Then these cells were cultured for 4 days, and the cell

proliferation was measured using a CCK8 reagent (Beyotime,

Beijing, CHN).

Wound healing assay

The Caco2 cells were seeded in 6-well plates at a density of

5 × 10̂4 cells/well. After 24 h of siRNA transfection, wounds

were made in center of the well using a sterile 10ul pipette

tip. Images of five randomly-selected scratched fields were

captured on an inverted light microscope (ZEISS,

Oberkochen, BE, GER) at 0 and 24 h. Magnification, X200.

Wound areas were measured by Image J, and calculated the

wound healing percentage.

Transwell assay

Cells were added to the upper chambers of the Transwells

(Cornning, NY, United States) at a density of 5 × 10̂5 cells/

well and transfected with siRNA. After 24 h, medium in the

lower chamber of a transwell was exchanged for complete

medium and medium in the upper chamber of a transwell was

exchange for serum-free medium. After the cells were

cultured in transwell for 24 h, cells on the lower layer of

the membrane were fixed by 4% paraformaldehyde (Sangon,

Shanghai, CHN) for 10 min, then stained using Crystal Violet

Staining Solution (Beyotime) for 30min. The cells number

was counted by using an inverted microscope (ZEISS) and

five fields were randomly selected to count the cells.

Magnification, ×200.

Statistical analysis

Statistical analyses were performed using the statistical

package GraphPad Prism, version 8.0 (California,

United States). All results are expressed as mean ± SEM.

Student’s t-tests were used to compare results between two

groups, and One-way ANOVA was used to compare

differences among multiple groups. Results were

considered statistically significant at *, #, p < 0.05.

TABLE 2 Primers used in this study.

Name Primer (59–39)

HSPA1A Forward: CATCATCAGCGGACTGTACCA

Reverse: TGCAAACACAGGAAATTGAGAAC

FAM50B Forward: AAGAGGTTCTCGGCGCATTAC

Reverse: CGGGCCTTCATGTCGTTCA

36B4 Forward: CAGCAAGTGGGAAGGTGTAATCC

Reverse: CCCATTCTATCATCAACGGGTACAA
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FIGURE 2
Overview of AS events in TCGA CRC cohort. (A) Upset plot for all AS events. AS, alternative splicing; RI, retained intron; ME, mutually exclusive
exons; ES, exon skipping; AT, alternative terminator; AP, alternative promoter; AD, alternative donor site; AA, alternative acceptor site. (B) Survival
probability of different somatic mutation group. (C) Heat map of genomic instability-related AS events. TCGA, The Cancer Genome Atlas; CRC,
Colorectal cancer.
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FIGURE 3
Prognosis-related AS events in this study. (A)Upset plot for survival-related genes. (B) The Bubble plots of survival-associated AS events in CRC.
(C,D) Optimal survival-related AS events selection in the LASSO regression model. (E) Heat map of the seven optimal survival-related AS events.
LASSO, least absolute shrinkage and selection operator.
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Results

Screening of genomic instability-related
alternative splicing events in colorectal
cancer patients

There are seven types of AS events: Mutually Exclusive

Exons (ME), Retained Intron (RI), Alternate Donor site

(AD), Alternate Acceptor site (AA), Alternate Terminator

(AT), Alternate Promoter (AP), and Exon Skip (ES). In this

study, 442 CRC patients were included. Seventy-four ME

events in 74 genes, 1655 RI in 1184 genes, 1691 AD events in

1316 genes, 2006 AA events in 1576 genes, 3973 AP events in

2330 genes, 4710 AT events in 2783 genes, and 8416 ES

events in 4436 genes. In TCGA-CRC, ES events were the

most frequent type of spliced signatures, followed by AT and

AP events, and ME was the least frequent (Figure 2A). Next,

we divided TCGA CRC patients into high-somatic mutation

and low- somatic mutation groups according to the median

of the somatic mutation counts of each patient. As shown in

Figure 2B, the three-year OS was significantly lower in

patients with higher level of somatic mutation (p = 0.032),

demonstrating a key role of genomic instability in the OS of

CRC patients. Furthermore, we defined patients with the top

25% (n = 98) and the last 25% (n = 97) of somatic mutation

counts as genomic unstable (GU) group and genomic stable

(GS) group, respectively. The mean somatic mutation

numbers of GS and GU groups were 88 and 2058,

respectively. A heat map of the top 40 different AS events

is showed in Figure 2C.

Construct a genomic instability-related
alternative splicing signature for overall
survival in the training set

We screened the AS events related to the OS of CRC

patients. The results showed that 114 AS events were

significantly associated with OS in CRC patients (Figures

3A,B). Then Lasso Cox regression analysis was used to

further select the AS events related to the OS and

prognosis of CRC patients (Figures 3C,D). Then, the risk

score was calculated for each AS event (Table3). Seven AS

events: PDHA1-88633-ES, KIAA1522-1632-AP, TATDN1-

85088-ES, PRMT1-51042-ES, VEZT-23786-ES, AIG1-

77972-AT, and PHF11-25891-AP were identified as

independent risk factors for OS in CRC using multivariate

Cox regression. Moreover, two AS events (PRMT1-51042-

ES, VEZT-23786-ES) had positive coefficients suggesting

that high expression of these two AS events were

associated with poorer prognosis as risk factors. In

contrast, the remaining AS events (PDHA1-88633-ES,

KIAA1522-1632-AP, TATDN1-85088-ES, AIG1-77972-AT,

and PHF11-25891-AP) had negative coefficients suggesting

that their upregulated expression were associated with better

survival as protective factors. Next, a genomic instability-

related AS events prognostic signature was established by

quantifying the PSI of the seven AS events and their

coefficients from the multivariate Cox regression analysis.

Risk Score = (−6.779 × PSI of PDHA1-88633-ES) + (−2.957 ×

PSI of KIAA1522-1632-AP) + (−36.891 × PSI of TATDN1-

85088-ES) + (3.553 × PSI of PRMT1-51042-ES) + (5.388 ×

PSI of VEZT-23786-ES) + (−4.116 × PSI of AIG1-77972-AT)

+ (−9.906 × PSI of PHF11-25891-AP). The heatmap of the

seven AS events is shown in Figure 3E.

The alternative splicing signature was
associated with genomic instability in
colorectal cancer patients

To verify whether the AS signature was associated with

the somatic mutation pattern, we compared the expression of

UBQLN4, a biomarker for driving genomic instability

(Jachimowicz et al., 2019), between the two different risk

groups in the three sets. As shown in Figures 4A–C, the

expression of UBQLN4 and somatic mutation count was

higher in the high-risk groups than in the low-risk group, in

which the p values were 0.02 in the training set, 0.063 in the

test set, and 0.0024 in the entire TCGA set. These results

TABLE 3 Details of the selected AS events based on multivariate Cox analysis.

AS event Coefficient HR 95% CI p-value

KIAA1522-1632-AP −2.957 0.052 0.003–1.048 0.054

PDHA1-88633-ES −6.779 0.001 1.77E-05–0.073 0.001

TATDN1-85088-ES −36.891 9.52E-17 2.58E-27–3.51E-06 0.003

AIG1-77972-AT −4.116 0.016 0.0004–0.670 0.030

PRMT1-51042-ES 3.553 34.913 3.040–400.990 0.004

VEZT-23786-ES 5.388 218.699 9.810–4875.360 0.001

PHF11-25891-AP −9.906 4.99E-05 3.24E-08–0.077 0.008
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implied that the AS signature score was associated with

genomic instability. Furthermore, DNA somatic mismatch

repair (MMR) genes associated with genomic instability

(Baross-Francis et al., 1998). We then analyzed the

genomic alterations of seven DNA mismatch repair genes

(MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2) in the

two different risk score groups. As shown in Figure 4D, the

gene expression of PMS2 and MLH3 were significantly

higher in the high-risk group. These results reconfirm that

our prognostic signature was associated with genomic

instability.

FIGURE 4
Relationship between the genomic instability-related AS signature and somatic mutation patterns of CRC patients. (A–C) The distribution of
somaticmutation count and UBQLN4 expression of the training set (A), the test set (B), and the entire TCGA set (C). (D)Boxplots comparing the seven
DNA mismatch repair genes expression between high- and low-risk groups. *p < 0.05 high-risk group vs. low-risk group. Statistical analysis was
performed using the Mann-Whitney U test.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Ding et al. 10.3389/fbioe.2022.841034

226

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.841034


Predictability evaluation of genomic
instability-related alternative splicing
signature in colorectal cancer patients

We performed Kaplan-Meier analysis and constructed a

ROC curve to verify the prognostic efficiency of the AS

signature in the training set (Figures 5A,B). The risk score

distribution curves showed that higher risk score patients in

CRC had a shorter survival time. Kaplan-Meier survival

curve analysis verified that patients with higher risk scores

had poorer OS, p < 0.001. Moreover, the AUC value of the

predictive accuracy of the model was 0.773. To further

validate the prognostic significance of the genomic

instability AS signature, we calculated the genomic

instability AS signature scores of the test set and the

entire TCGA set and constructed the respective ROC

curves. In the test set, the survival of the low-risk group

was significantly longer than that of the high-risk group, with

an AUC value of 0.710. (Figures 5C,D). Similar results were

also obtained in the entire TCGA set, where the AUC of the

ROC curves was 0.733 (Figures 5E,F). These results

suggested that genomic instability-related AS signature

had a good survival prediction efficacy.

The genomic instability-related alternative
splicing signature was independent of
other clinical factors

To evaluate whether the genomic instability-related AS

signature could act as an independent prognostic factor of

clinicopathological features, univariate and multivariate Cox

FIGURE 5
Kaplan-Meier curves and ROC curves of the prognostic ASmodels. (A,C,E) Kaplan-Meier plots of the genomic instability-related AS signature in
the training set (A), the test set (C), and the entire TCGA set (E). (B,D,F) The ROC curves for overall survival of the genomic instability-related AS
signature in three datasets, respectively. ROC, Receiver operating characteristic.
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FIGURE 6
The independent prognostic analysis of the genomic instability-related AS signature. Construction of the nomograph model in patients with
CRC. (A–C) Forest plots of univariate cox regression in the training set, test set, and the entire TCGA set. (D–F) Forest plots of multivariate cox
regression in the three datasets. (G) The nomograph model predicting 1-, 2-, and 3-year survival in patients with CRC based on age, sex, TMN stage,
and risk score.
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FIGURE 7
Overview of the infiltrating immune cells in CRC. (A) Bar plot showing the proportion of the 22 types of immune cells. (B) Heat map of the
immune cells proportion between the high- and low-risk groups. (C) Comparison of each immune cell type in the two risk groups. (D) Kaplan-Meier
estimates of overall survival of patients with low or high eosinophils expression. (E) Violin plots of the IPS in two risk groups. IPS, immunophenoscore.
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FIGURE 8
The splicing factors are associated with prognostic AS signature. (A) Splicing correlation network in CRC. The triangles represent the survival-
related SF. The red and green ovals represent SREs that increase and decrease risk, respectively. Red and green lines represent the positive and
negative correlations of connected triangles, respectively. SRE, alternative splicing events; SF, splicing factor. (B) ROC analysis of overall survival and
disease-free survival for the AS signature-related splicing factors in patients with CRC. SF, splicing factor.
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regression analyses were performed, adjusting for age, sex, and

pathologic stage in the three data sets (training, test, and TCGA

data set) (Figures 6A–C). The univariate Cox regression results

showed that with the OS, genomic instability AS signature and

tumor stage were significantly correlated in these three data sets

(p < 0.001). The prognostic significance of each data set was also

retained in multivariate Cox regression analyses. For other

clinical features, only sex had a significant correlation with the

genomic instability-related AS signature in the test set using

univariate Cox regression analyses (p = 0.035) (Figures 6D–F).

Moreover, to make this model more practicable in the clinic, we

constructed a nomograph model based on the risk score, tumor

stage, age, and sex to predict the 1-, 2-, and 3- year survival of

patients with CRC (Figure 6G).

Tumor-infiltrating immune cells were
associated with the prognostic alternative
splicing signature

To investigate the relationship between tumor-infiltrating

immune cells and the prognostic AS signature, we used

CIBERSORT to identify tumor-infiltrating immune cells in

163 CRC patients. Detailed tumor-infiltrating immune cell

information on each patient was illustrated in Figure 7A.

Furthermore, according to the risk score, we divided these

patients into high-risk and low-risk groups (Figure 7B). As

shown in Figure 7C, compared with the low-risk group, the

high-risk group had a lower proportion of eosinophils (p =

0.007). Additionally, we explored the relationship between the

proportion of eosinophils and clinicopathological information of

CRC patients. Next, we used a ROC curve to verify the prognostic

efficiency of eosinophils expression, and the results showed that

higher eosinophils expression had higher OS rates (p = 0.052)

(Figure 7D). We also explored the association between

immunotherapy efficiency between the high-risk and low-risk

groups. As shown in Figure 7E, patients with low risk were more

sensitive to targeting CTLA4 treatment. For PD-1 alone or in

combination with CTLA4 treatment, there were no significant

differences between the two risk groups. Therefore, these data

implied that our prognostic AS signature might facilitate

immunotherapy results prediction.

Exploring the regulatory network of
regulating the prognostic alternative
splicing signature

Due to the unavailability of inhibiting AS specifically, we

explored the regulatory network for regulating the prognostic AS

signature and tried to find a target regulating OS-related AS. We

constructed a splicing-regulatory network to further determine

whether the prognostic AS events were regulated by specific

splicing factors in CRC. As shown in Figure 8A, eight splicing

factors (SNRPN, HSPA1A, HSPB1, BAG2, BCAS1, DDX3Y,

MSI1, and FAM50B) were significantly correlated with

survival-associated AS events, and more than half of the

survival-related AS events were regulated by more than one

splicing factor. Furthermore, we assessed the function of these

splicing factors in the prognosis of CRC patients (Figure 8B). The

result showed that patients with lower HSPA1A expression levels

and FAM50B expression levels had longer OS rates; the p-values

were 0.008 and 0.02, respectively. Although the p-value

approached insignificance, lower FAM50B expression also

showed longer disease-free survival rates (p = 0.092).

Validation the effect of HSPA1A and
FAM50B in Caco2 cells proliferation and
migration

We continued to validate the effect of SF regulating the

prognostic AS events in the proliferation and migration of

Caco2 cells. The mRNA levels of HSPA1A and FAM50B were

decreased after specific siRNA transfection in Caco2 cells

(Figure 9A). As detected by the CCK8 proliferation assay,

gnomically inhibiting HSPA1A or FAM50B decreased the

proliferation of Caco2 significantly (Figure 9B). Wound

healing and transwell assays were used to examine the effect

of HSPA1A and FAM50B on the migration of Caco2 cells. It was

found that both in the HSPA1Ai group, and FAM50Bi group, the

Caco2 cells exhibited decreased proliferation and migration

(Figures 9C,D). The results suggest that downregulation of

HSPA1A and FAM50B inhibited Caco2 proliferation and

migration.

Discussion

CRC remains a leading cause of cancer-related death in the

world (Siegel et al., 2020). The diagnosis and treatment of CRC

have been improved dramatically, but the mortality rate

continues to be high, especially in advanced patients (He

et al., 2021). With sequencing technology development, new

genomic markers have been proposed to guide CRC patients’

“personalized” treatment. For example, a multitude of genomic

instability-associated events, including SNPs, circular RNAs,

long non-coding RNA, and microRNAs, have been reported

as predictors of clinical outcomes in CRC patients (Weigl et al.,

2018; Ghafouri-Fard et al., 2021; Long et al., 2021).

Recently, the critical roles of AS in maintaining genomic

instability have been revealed. Metastasis-associated antigen 1, an

oncogenic chromatin modifier, may affect chromosomal

instability by regulating related RNA splicing (Liu et al.,

2020). MarcoH2A1, a replication stress-protective histone, and

its alternative splicing was associated with X chromosome
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genomic stability (Sebastian et al., 2020b). Despite reports of

recent advances in the identification of aberrant splicing events in

CRC (Liu J. et al., 2018; Lian et al., 2020), there have been no

relevant studies on AS signatures relative to genomic instability

in CRC. Herein, we identified a group of genomic instability-

related AS events in CRC and revealed their significance in

predicting patient survival.

Following this line, we derived a prognostic signature based

on the differential AS events. We combined single nucleotide

polymorphism profiles with somatic mutation profiles of CRC

FIGURE 9
Downregulation of HSPA1A and FAM50B inhibits the proliferation and migration of Caco2 cells. Caco2 cells were transfected with control
siRNA, HSPA1A siRNA, and FAM50B siRNA, respectively, or co-transfected with HSPA1A siRNA and FAM50B siRNA. (A) The mRNA levels of HSPA1A
and FAM50B in Caco2 cells after transfection. (B) Cell proliferation were assessed by CCK8 assays (n ≥ 4). (C and D) The cell migration was detected
by scratch (C) and transwell assays (D) (n = 3). * p < 0.05 vs. NCi group. #p < 0.05 vs. HSPA1Ai + FAM50Bi. Data are mean ± SEM.
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and identified seven genomic instability-related AS events

(PDHA1-88633-ES, KIAA1522-1632-AP, TATDN1-85088-ES,

PRMT1-51042-ES, VEZT-23786-ES, AIG1-77972-AT, and

PHF11-25891-AP) to construct our prognostic signature in

the training set. The high-risk groups had higher

UBQLN4 expression and somatic mutation count in the

training set, which indicated that our prognostic signature was

available to estimate genomic instability. Furthermore, twoMMR

genes, PMS2 and MLH3, were also higher in the high-risk group,

which revalidated that our prognostic signature was associated

with genomic instability. For the PMS2, Kasela, Mariann et al.

found that lower expression with higher repair efficiencies

(Kasela et al., 2019) indicated that the low-risk group might

have better repair efficiencies. Narayanan, Sumana et al. had also

found that low expression of PMS2 and MLH3 had significantly

improved 5-year OS in CRC patients (Narayanan et al., 2019),

which indicated that our low-risk group might have a better OS.

We proposed an ideal prognostic model and verified this

model using both the test and the entire TCGA sets. This model

showed a great performance in the risk stratification of CRC

patients and a good potential in predicting the prognosis of CRC

(AUC of the ROC curve was >0.7). Subsequently, we evaluated
whether this genomic instability-related AS signature could be an

independent prognostic factor. The multivariate Cox regression

analysis revealed that patients with a higher risk score had poorer

outcome, which was also validated in the test and the entire

TCGA dataset. Finally, we established a nomogram combining

the genomic instability-related AS signature with the tumor stage

to enhance the convenience and accuracy of the prediction

model.

Among the seven genomic instability-related AS events,

PRMT1-51042-ES and VEZT-23786-ES were two positively

coefficient AS events. Protein arginine methyltransferase 1

(PRMT1), the founding member of the PRMT family, has

been reported to be associated with histone methylarginine

and transcription activation (Yang and Bedford, 2013).

Consistent with our results, previous studies have shown that

a PRMT1 spice isoform could serve as a biomarker of poor

prognosis in CRC (Mathioudaki et al., 2008; Yao et al., 2021).

Vezatin, adherens junctions transmembrane protein (VEZT) has

been identified as a tumor suppressor gene in gastric cancer (Li

et al., 2015). Nevertheless, the function of VEZT variants in CRC

is still unclear.

Conversely, PDHA1-88633-ES, KIAA1522-1632-AP, TATDN1-

85088-ES, AIG1-77972-AT, and PHF11-25891-AP were AS events

inversely correlated with the OS. Downregulation of PDHA1, a gate-

keeper enzyme-linked between glycolysis and themitochondrial citric

acid cycle, has been associatedwith poor survival in gastric cancer and

esophageal squamous cancer (Liu Z. et al., 2018; Liu et al., 2019). The

KIAA1522 gene was discovered via a sequencing project of human

cDNA encoding large proteins (Nagase et al., 2000). Recently, studies

have indicated that KIAA1522may act as an oncogene for non-small

cell lung cell cancer (NSCLC) and breast cancer (Liu et al., 2016; Li

et al., 2018). As a highly conserved nuclease, TatD DNase domain

containing 1 (TATDN1), a member of the TATD family, has been

found upregulated in hepatocellular carcinoma (HCC) and cisplatin-

resistant NSCLC (Shen et al., 2019; Wang et al., 2019). Androgen-

induced gene 1 (AIG1) is a transmembrane protein that regulates

cytosolic calcium concentrations (Nickel et al., 2016). Previous studies

have determined AIG1 may serve as a new biomarker for the

diagnosis and prognostic evaluation of HCC and is associated

with the thiopurine treatment of acute lymphoblastic leukemia

(Choi et al., 2019). The deletion and methylation of PHD finger

protein 11 (PHF11) were associated with chronic lymphocytic

leukemia and Ewing sarcoma, respectively (Parker et al., 2011;

Alholle et al., 2013). While the roles of these inversely correlated

AS events in CRC remain largely unknown and require further

research.

Tumor-infiltrating immune cells play essential roles in cancer

development and progression. Ye et al. found that CD66b+ tumor-

associated neutrophils, Tregs, and CD163+tumor-associated

macrophages were significantly correlated with prognosis in CRC

patients (Ye et al., 2019). In this study, we identified the differential

infiltrating immune cells in CRC patients with the prognostic AS

signature and found that the high-risk group showed a lower

proportion of eosinophils than the low-risk group. In addition,

patients with higher eosinophils had higher OS rates. Consistent

with our findings, several studies have reported that eosinophil

accumulation was associated with better survival in CRC patients

(Pretlow et al., 1983; Harbaum et al., 2015; Prizment et al., 2016). A

study of 381 primary CRC patients by Harbaum et al. found that the

number of peritumoral eosinophils significantly impacted on the

prognosis of CRC patients by assessing peritumoral eosinophils and

intratumoral eosinophil counts (Harbaum et al., 2015). Similarly,

another study involving 441 CRC patients in the United States

observed that the tumor-stromal eosinophil count was an

important favorable prognostic factor in CRC (Prizment et al.,

2016). The anti-tumorigenic mechanisms of eosinophils in CRC

include direct and indirect effects. The direct killing is achieved

via degranulation and release of eosinophil-specific proteins, such

asmajor basic protein, eosinophil cationic protein, eosinophil-derived

neurotoxin, and granzymes (Legrand et al., 2010; Varricchi et al.,

2018). Instead, indirect killing refers to a combination of cytokine-

mediated effects, including interleukin (IL)-2, IL-5, IL-4, IL-8, and IL-

17E (Benatar et al., 2010; Gatault et al., 2015). Whether our genomic

instability-relatedAS signature could affect the anti-tumor function of

eosinophil in CRC also requires further validation in vitro and in vivo.

Recently, tumor immunotherapy has become a new paradigm.

Inhibition of CTLA or PD-1 monoclonal antibodies is the most

promising treatment approach for many cancers, including the

microsatellite instability (MSI) -high advanced CRC (Messersmith,

2019). We then explored the predictive value of the prognostic AS

signature in immunotherapy. The results showed that the IPS-

CLTA4 score was significantly increased in the low-risk. Indeed,

AS may play a ‘double-edged sword’ role in immunotherapy (Öther-

Gee Pohl and Myant, 2022). Some AS variants can produce
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neoantigens to increase CD8+ T-cell immunogenicity (Smart et al.,

2018). On the other hand, an alternatively spliced variant of

CD19 could consult the resistance of CAR-T treatment (Sotillo

et al., 2015). In this study, our prognostic AS signature had the

potential ability to predict the efficacy of IPS-CLTA4 in CRC patients.

Although we have no direct evidence to show that these seven

screened AS events could affect the immunotherapy sensitivity,

two AS events related genes, PRMT1 and PHF11, had revealed

that they were associated with immune cells. PRMT1 is highly

expressed in T helper cells, and the inhibition of PRMT1 could

attenuate the suppressive functions of regulatory T cells (Kagoya et al.,

2019). PHF11 plays an essential role in producing IgE by activated

B cells (Ikari et al., 2014). These suggested thatmaybeAS events could

affect the immunotherapy sensitivity. Further studies are required to

elucidate these comprehensively.

The splicing factors (SFs) play a critical role in regulating AS

events (El Marabti and Abdel-Wahab, 2021). Previous studies have

demonstrated that serine and arginine-rich splicing factor

6 regulates AS to mediate CRC progression (Wan et al., 2019),

and SET domain containing 2, histone lysine methyltransferase

(SETD2) modulated AS events during intestinal tumorigenesis

(Yuan et al., 2017). Thus, we further explored the relationship

between survival-related AS events and the expression of splicing

factors in CRC. Eight SFs, including SNRPN, HSPA1A, HSPB1,

BAG2, BCAS1, DDX3Y, MSI1, and FAM50B, were associated with

survival-related AS events. Among these SFs, HSPA1A and

FAM50B were associated with OS in CRC. We found that

patients with lower HSPA1A expression levels had higher OS

rates, which was consistent with previous studies (Xing et al.,

2021). As a member of the heat shock proteins (HSPs) family,

heat shock protein familyA (Hsp70)member 1A (HSPA1A) exerted

cytoprotective and immunological functions (Wang et al., 2021).

Recently, Huang et al. (2021) found that HSPA1A could regulate

two types of AS events (SNX5-58744-AT and SNX5-587745-AT),

which were correlated with distant metastasis, through the “Class Ⅰ
MHC mediated antigen processing and presentation” pathway in

mesothelioma. Our study also found that patients with lower

FAM50B expression levels also had higher OS. Loss of FAM50B

(also known as Family with sequence similarity 50, member B)

expression has also been identified in almost 4% of cancers in the

TCGA database. Silencing FAM50B can reduce cellular fitness and

cause apoptosis and dysregulation of transcription (Thompson et al.,

2021). It has been validated that as a splicing factor, FAM50B serves

an independent prognostic factor in glioblastoma (Qiu et al., 2021).

In order to assess the impact of HSPA1A and FAM50B in the

progression of CRC, we performed functional analysis on

Caco2 cells. The results showed that both individual and

simultaneous HSPA1A and FAM50B knockdown showed

proliferation and migration inhibition function.

Though our study provides significant insights to explore the

relationship between genome instability and CRC patients’

prognosis, some limitations should also be considered. First, as

the TCGA database is the only available database providing the

alternative splicing events data, an external examination is

unpracticable. In the future, we hope an external examination

could be conducted. Second, additional studies will be necessary

to unravel the biological roles of these AS events in vivo and in vitro.

In conclusion, we developed and validated a risk prognostic

signature comprising seven genomic instability-related AS events,

which could serve as an independent prognostic biomarker for the

survival of CRC patients and reflect the change in the

microenvironment of CRC. HSPA1A and FAM50B play an

important role in the proliferation and migration of Caco2 cells.

Our data suggest that this genomic instability-related AS signature

and its regulatory network may have important implications for

developing new therapeutic targets and individualized therapy in

patients with CRC.
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Glossary

AS Alternative splicing

AD Alternate Donor site

AA Alternate Acceptor site

AT Alternate Terminator

AP Alternate Promoter

AUC Area under curve

AIG1 Androgen-induced gene 1

CRC Colorectal cancer;

ES Exon Skip

GU Genomic unstable

GS Genomic stable

HCC Hepatocellular carcinoma

HR Hazard ratio

HSPA1A Heat shock protein family A (Hsp 70) member 1A

LASSO Least absolute shrinkage and selection operator

MMR Mismatch repair

ME Mutually Exclusive Exons

NSCLC Non-small cell lung cell cancer

OS Overall survival

PXR Pregnane X receptor

PSI Percent Splicing index

POLE Polymerase ε
PRMT1 Protein arginine methyltransferase 1

PHF11 PHD finger protein 11

RI Retained Intron

ROC Receiver operating characteristic

SAM Significance analysis of microarrays

SNP Single nucleotide polymorphism

SF Splicing factors

SETD2 SET domain containing 2, histone lysine

methyltransferase

TATDN1 TatD DNase domain containing 1

TCGA The Cancer Genome Altas

UGT1A UDP glucuronosyltransferase family 1 member A

complex locus

VEZT Vezatin, adherens junctions transmembrane protein.
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By characterizing metabolic and
immune microenvironment
reveal potential prognostic
markers in the development of
colorectal cancer

Liangliang Liao1†, Yongjian Gao1†, Jie Su2 and Ye Feng1*
1China-Japan Union Hospital of Jilin University, Changchun, China, 2The First Hospital of Jilin
University, Changchun, China

Colon adenocarcinoma (COAD) is one of the deadliest cancers in the world and

survival rates vary significantly between early and advanced stage patients.

Therefore, the identification of the pathogenesis in the development of COAD

and prognostic markers is urgently demanded. Herein, we collected RNA-seq

and somatic mutation data of COAD for statistical analysis. Clinical stage-

specific differentially expressed genes (DEGs) and tumor development-

dependent DEGs were identified. By characterizing the metabolic and

immune features of COAD between stages, we found that the energy supply

and inflammatory response of advanced tumors were suppressed. Next, the

ETS1, AR, GATA1, GATA2, SREBF1, FOXP3, STAT4, and NFKB1 were identified to

drive the metabolic and immune-related pathways in the development of

COAD. The three potential prognostic markers (HOXC8, IRF7, and CXCL13)

were identified based on Cox regression analysis. Additionally, immune

infiltration analysis revealed that the resting CD4+ T cell was significantly

related to the overall survival (OS) of COAD patients. Collectively, the

specific metabolic and immune characteristics of advanced patients and the

identified prognostic biomarkers will contribute to the development of

precision medicine.

KEYWORDS

clinical stages, somatic mutation, metabolic and immune, prognostic markers,
transcriptional regulation

Introduction

Colorectal cancer is one of the deadliest cancers in the world, killing nearly a million

people every year (Labianca et al., 2010; Dekker et al., 2019). Although advances in

diagnosis and treatment methods improve the prognosis of early-stage patients, it is still

an important cause of cancer-related deaths (Lech et al., 2016). The locations where

tumors often occur are divided into proximal colon, distal colon, and rectum, and the ratio

of patients reaches 4:2:3 (Cheng et al., 2011). With the development of diagnostic

technology, the number of young patients diagnosed with colon cancer increase.
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Recent study data suggest that the overall five-year relative

survival rate for COAD patients exceeds 60%, it varies

depending on the clinical stages. Therefore, the dynamic

changes in the physiological mechanisms involved in the

development of COAD need to be urgently determined.

In the process of tumor development, it is accompanied by

metabolic reprogramming to support tumor cells’ demand for

proliferation and metastasis (DeBerardinis and Chandel, 2016).

Genetics and environmental are important driving factors of cell

metabolism (Boroughs and DeBerardinis, 2015; Pavlova and

Thompson, 2016). Among them, different tumor stages have

specific physiological environments (La Vecchia and Sebastian,

2020). To explore metabolic reprogramming during tumor

development, it is necessary to use gene expression to

measure metabolic pathway activity (Puram et al., 2017).

So far, the diagnosis of colorectal cancer still relies on

colonoscopy, but the treatment methods have developed

significantly. In recent years, immune checkpoint therapy have

become hot spots in cancer treatment. For example, a novel

treatment for colorectal cancer was proposed based on the

immune checkpoint PD-1/PD-L1 (Yaghoubi et al., 2019).

However, not all COAD patients show complete response to

PD-1, and there are some adverse reactions (Wu et al., 2019).

Hence, in this work, we explored the immune cell landscape and

the activity of immune-related pathways in the development

of COAD.

In this study, we collected RNA-seq and mutation data of

colorectal tumors and normal samples from The Cancer Genome

Atlas (TCGA) database to identify metabolic and immune

characteristics in the development of COAD. Transcriptional

regulatory networks were constructed to identify drive factors

that play important roles in immune and metabolic pathways.

Potential prognostic markers identified by Cox regression

analysis were used to construct survival risk models for

COAD. Moreover, immune infiltration analysis revealed the

immune landscape of COAD.

Materials and methods

Data collection

First, we downloaded the gene expression data (including

tumor samples and normal samples), somatic mutation data and

clinical information of COAD patients from the TCGA database

(Tomczak et al., 2015). The hallmark, KEGG, GO Biological

Process andmetabolic pathway gene sets were collected from The

Molecular Signatures Database (MSigDB (Liberzon et al., 2015),

http://www.gsea-msigdb.org/gsea/msigdb/) database. Further,

the transcription factors (TF)-TG data for human were

downloaded from the TRRUST (Han et al., 2018) (https://

www.grnpedia.org/trrust/) and ORTI (Vafaee et al., 2016)

databases (http://orti.sydney.edu.au/about.html). The signature

profiles of leukocyte were collected from the CIBERSORTx

(Newman et al., 2015) (https://cibersortx.stanford.edu/)

database.

Differential expression analysis

Here, in addition to considering the difference in gene

expression between all the tumor sample and the normal

sample collected from TCGA, the difference in gene

expression between the tumor sample and the corresponding

normal sample in each clinical stage was also considered.

Differentially expressed genes were identified using the R

package Limma (Ritchie et al., 2015). We considered the

genes with |log2FC| > 1.5 and p-value < 0.01 as the

differentially expressed RNAs (DEGs).

Statistical analysis of mutation data

The somatic mutation data of COAD collected from TCGA

was used to describe the mutation of signature genes. Then, the R

package maftools (Mayakonda et al., 2018) was used for the

statistical and visualization of mutation location, mutation form,

mutation frequency and other information for these signature

genes.

Gene set level analysis

For the metabolic gene sets collected from the MSigDB

database, gene set variation analysis (Hanzelmann et al., 2013)

(GSVA) was used to calculated the enrichment score of each

stage of COAD in metabolic pathway by R package GSVA

(v1.36.3). GSVA is a non-parametric, unsupervised algorithm.

Further, the ten pathways and biological pathways related to

immune checkpoints, antigen presentation, and immune

activation or suppression were extracted from hallmark,

KEGG and GO Biological Process gene sets. Using the

appealed GSVA algorithm, the activity score of each stage of

COAD in these immune-related pathways was calculated.

Construction of transcriptional regulatory
network

First, we used the analysis of variance (ANOVA) algorithm to

calculate the metabolic genes and immune-related genes

specifically expressed between samples grouped in stages. We

defined the metabolic and immune-related DEGs specifically

expressed between samples grouped by stage as stage-MDEGs

and stage-IDEGs. Next, stage-MDEGs and stage-IDEGs were

extracted for the construction of transcriptional regulatory
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network based on the TF-target gene data collected from

TRRUST and ORTI databases. The TF-target gene

relationship pairs related to stage-MDEGs and stage-IDEGs

were extracted. Further, the Pearson correlation coefficient (R)

between the genes of each pair was calculated and the cutoff of

the p-value and R were set to 0.05 and 0.2. Moreover, the TFs-

target genes network was constructed using Cytoscape (Shannon

et al., 2003) (3.7.0) tool. The topological properties of the network

then were calculated and the top genes of degree were identified

as key drive factors.

Functional enrichment analysis

First, the genes whose expression was affected through the

transcriptional regulatory mechanism was collected. The R

package clusterprofiler (Yu et al., 2012) was used to perform

GO functional enrichment on these genes. We set

p-value<0.05 to screen for significantly enriched biological

pathway. The relationship between these biological pathways

and the corresponding genes was depicted using the R package

circlize (Gu et al., 2014) (v0.4.10).

Identification of prognosis markers

Based on the appealed transcriptional regulatory network

research, the TF and target genes were used as candidate

factors for the identification of prognostic markers of COAD.

First, the univariate COX regression was used to screen for the

prognostic related genes using patient’s survival data

including survival state and overall survival (OS) of COAD

(the cutoff of p-value was 0.05). The patients of COAD were

randomly sub-grouped into the training set and test set in

accordance with the ratio of 7:3. Further, the train set were

used to construct multivariate COX regression model (Fisher

and Lin, 1999). The reliability of the survival prediction model

was described by the receiver operating characteristic curve

(ROC), and the area under the curve (AUC) was calculated.

The PH hypothesis test was also used to calibrate the model.

The gene that p-value of the Schoenfeld Individual test greater

than 0.05 was reserved for the reconstruction of the

multivariate cox regression model. Moreover, we used the

nomogram algorithm to build a COAD survival risk

prediction model.

Calculation of risk score

First, we calculate the risk score of each patient for COAD

based on the linear combination of the expression values

weighted by the coefficients of the multivariate Cox regression

analysis:

Risk score (i) � ∑
n

k�1βkpeki (1)

Where n represents the number of prognostic-related genes, i

represents the order of genes, and k represents the order of

patients. The regression coefficient and gene expression value are

represented by β and e respectively. Then, we calculated the risk

scores of the samples and divided the samples into high-risk and low-

risk categories based on the median risk score. The Kaplan-Meier

survival curve (Ranstam and Cook, 2017) was used to describe the

patient’s survival probability of high- and low-risk group, and

calculated the statistical difference with the bilateral log-rank test

(Guyot et al., 2012). Besides, the above survival analysis process was

also carried out in an independent data set (GSE38832 (Tripathi et al.,

2014)) to confirm the robustness and stability of prognostic markers.

Results

Stage-specific transcriptional and
mutational landscape in Colon
adenocarcinoma development

The key to the treatment of colorectal cancer is early detection

and timely diagnosis (The, 2018). Therefore, exploring the

dynamic changes of molecules in the development of COAD

was beneficial to reveal the driving mechanism of the

physiological state of patients in different stages. We developed

a pipeline to explore the dynamic molecular mechanisms in

COAD development (Supplementary Figure S1). First,

differential expression analysis revealed that 9,859 DEGs

(3,047 up-regulation and 6,812 down-regulation) were identified

between tumor samples and para-cancerous samples of COAD

(Figure 1A). The top 10 up-regulated genes were marked. Among

them, WNT2 is an important component in the WNT signaling

pathway and promotes tumor angiogenesis in colon cancer

(Unterleuthner et al., 2020). With the development of tumors,

the prognosis of advanced patients will be severely disrupted

(Huang et al., 2020), which was also effective for COAD. We

found that the prognosis of COAD patients is consistent with its

clinical stage and that advanced patients were associated with the

worst OS (Figure 1B). Further, to explore the specific expression of

biomolecules in patients of four clinical stages, we have statistically

tested the DEGs of each clinical stage. The 2326 DEGs (868 up-

regulation and 1,461 down-regulation) in stage I, the 7,857 DEGs

(1,959 up-regulation and 5,898 down-regulation) in stage II, the

3,976 DEGs (1,147 up-regulation and 2,820 down-regulation) in

stage III, and the 4,200 DEGs (1,320 up-regulation and

2,880 down-regulation) in stage IV were identified. By

integrating the DEGs identified in the overall tumor sample

and the DEGs identified in each clinical stage, 33 up-regulated

genes and 117 down-regulated genes were identified in different

stages (Figure 1C), which indicated that molecular and functions

have been reprogrammed during the development of COAD. For
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the 33 up-regulated genes, we used COAD mutation data to

describe their mutation landscape (Figure 1D). Among them,

according to the current mutation data, there are no somatic

mutations in the genomic positions of 10 genes. We found that

ENC1 has the top mutation frequency (Figure 1D), and it was

significant co-occurence with GRHL3, RHPN1 and E2F7 at the

mutation level (Supplementary Figure S2). Moreover, previous

studies have shown that ENC1 promotes the progression of

FIGURE 1
Stage-specific transcriptional andmutational landscape in COAD development. (A) The results of the DEGs between thewhole tumor sample of
COAD and the normal sample are displayed by volcano plot. The x-axis represents log2 (Fold Change). The y-axis displays -log10 (p value). (B)
Kaplan-Meier (KM) curves depict the survival of patients in four stages for COAD. Log-rank test is used to calculate statistical significance. (C) Venn
diagram shows the intersection of up-regulated genes between clinical stages and overall tumor samples. (D) The waterfall chart shows the
mutation information of genes that are continuously up-regulated in the development of COAD, and themutation type of each gene in each sample
is displayed.
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FIGURE 2
Stage-specific metabolic and immune activity. (A) The enrichment scores of the 85 metabolic pathways calculated by GSVA in the five
categories (stage I, stage II, stage III, stage IV, normal samples) are displayed by the heat map. (B–C) Boxplot shows the glycolysis and OXPHOS
pathway scores of each sample in the five categories. ANOVA is used to assess statistical differences between groups. (D) The distribution of
enrichment scores for 85 metabolic pathways in the five categories is shown by violin chart. (E) The heat map shows the enrichment scores of
each immune-related pathway in the five categories.
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colorectal cancer through JAK2/STAT5/AKT axis-mediated

epithelial-mesenchymal transition and stemness (Cui et al., 2021).

Stage-specific metabolic and immune
activity

In the process of tumor development, tumor cells undergo

metabolic reprogramming to adapt to changes of the environment

(Sun et al., 2018). To characterize the dynamic changes of

metabolism in the development of COAD, GSVA was used to

calculate the activity of 85 metabolic pathways collected from the

MsigDB database in four clinical stages. We found that tumor

tissue have activated energy supply compared with normal tissues

(Figure 2A), which was consistent with previous studies showing

that the activated metabolic microenvironment could supply

tumor proliferation and metastasis (Wang et al., 2021). In

different stages of tumor development, there are obvious

differences in the activity of metabolic pathways. The activities

of glycolysis and oxidative phosphorylation (OXPHOS) have been

FIGURE 3
Key factors drive the reprogramming of metabolism and immunity. (A) Transcriptional regulatory network of metabolism-related genes that
continue to be specifically expressed in the development of COAD. The triangle represents TF, the circle represents the target gene. Genes that
continue to be specifically expressed in the development of COAD are marked in yellow. (B) The top 10 GO items enriched by genes in the (A)
network. The interaction between genes and the GO items is shown. (C) Same as in (A) but for immune-related genes that continue to be
specifically expressed in the development of COAD. (D) Same as in (B) but for genes in the (C) network.
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significantly enhanced in stage III (Figures 2B,C), which may be

related to the proliferation of tumor cells at this stage.

Furthermore, we analyzed the activity distribution of metabolic

pathways between normal tissues and tumors of various stages.

The global metabolic activity of normal tissues was higher than

that of tumor tissues of each stage (Figure 2D), which indicates that

tumor cells could selectively activate specificmetabolic pathways to

adapt to the development of this stage. For example, tumors in

stage IV have high purity and metastasis to distant organs (Koo

et al., 2020), and the reduction of glycolysis and the enhancement

of OXPHOS were important metabolic characteristics of this stage

for COAD (Figures 2B,C), which may be related to the increase in

oxygen supply caused by the formation of blood vessels in local

tissues. With the development of tumors, the immune

microenvironment of tumors has also changed. We found that

there were significant differences in the activity of the immune

signaling pathways between the early and late stages of COAD

(Figure 2E). In stage I and II of COAD, IL6/STAT3 signaling

pathway, TGF-β signaling and FC receptor response have strong

activity, which revealed the inflammatory activation of the

immune response in the early stage of the tumor. Taken

together, these results suggested that the development of COAD

was accompanied by metabolic reprogramming and variation of

the immune microenvironment.

FIGURE 4
Identification of prognostic related genes in COAD. (A) Forest plots for multivariate Cox risk regression models. (B) PH hypothesis test of
HOXC8, IRF7, andCXCL13. x-axis represents survival time, and y-axis represents Schoenfeld residuals. (C) The nomogram shows the prediction of 1-
year and 3-years survival risk for patients of COAD. (D) Calibration curve of nomogram.
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Key factors drive the reprogramming of
metabolism and immunity

TFs play an important role in gene expression by regulating

the initiation and intensity of gene transcription (Lambert et al.,

2018). To identify the driving factors that regulate metabolism

and immune activity in the development of COAD, the

transcriptional regulatory networks were constructed. Based

on metabolism-related genes, 23 TFs and 30 target genes were

identified and 46 TF-target gene units were formed (Figure 3A).

By analyzing the topological properties of the network, we have

identified the top 5 TFs (ETS1, AR, GATA1, GATA2, and

SREBF1) of degree. The ETS1 has been shown to be a

driving factor for the progression of majority cancers

(Dittmer, 2015; Chen et al., 2019) and its down-regulation

inhibits the progression of colorectal cancer (Gu et al., 2019).

These results indicated that ETS1, AR, GATA1, GATA2, and

SREBF1 could be used as biomarkers in the development of

COAD. In addition to metabolic pathways, the results of

functional enrichment analysis showed that genes involved

in the transcriptional regulatory network were significantly

enriched in the transcription of non-coding RNA and cell

differentiation (Figure 3B). In the immune-related

transcriptional regulatory network, 55 TFs and 48 target

genes constituted the 129 TF-target gene units (Figure 3C).

The ETS1 also the top gene of degree in this network. The

remaining four high degree TFs were FOXP3, STAT4, AR, and

NFKB1. Among them, the FOXP3 was closely related to the

differentiation of T cells and was lineage-defining TF for

regulatory T cells (Ono, 2020). Moreover, we found that the

genes in the immune-related transcriptional regulatory

network were significantly enriched in the activation and

differentiation of immune cells (Figure 3D). Taken together,

these results suggested that the ETS1 and AR were the driving

factors of metabolic and immune reprogramming in the

development of COAD.

FIGURE 5
Construction of risk scoring model. (A) The figure shows the risk scores, survival status, and expression of prognostic markers for the train set
samples. (B) The Kaplan-Meier curves for the survival of high-risk and low-risk groups in the train set. (C) Same as in (A) but for the test set samples. (D)
Same as in (B) but for two groups in the test set.
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Potential prognostic signature for Colon
adenocarcinoma

The driving factors that play an important role in the

development of COAD by regulating cell metabolism and

immunity may determine the prognosis of patients. To identify

potential prognostic markers of COAD, we integrated the

statistical analysis pipeline from previous studies in this work

(Dang et al., 2021; Le et al., 2021). The univariate Cox regression

algorithm was used to fit the relationship between gene expression

and patient’s survival based on train set (including survival status and

survival time). In this step, 11 genes were identified and significantly

related to the patient’sOS. Further, these geneswere used to construct

the multivariate Cox regression model. We found that three genes

including HOXC8, IRF7, and CXCL13 could be used as a potential

prognostic signature for COAD (Figures 4A,B). To identify the best

predictive time point for the survival prediction model, we divided

the 1–3 years period into four periods and evaluated the prediction

results using receiver operating characteristic curve (ROC).We found

that the risk prediction result reached themaximumarea under curve

(AUC) value of 0.69 in the 912.5 days (Supplementary Figure S3).

Based on these three prognostic markers, 1-year and 3-years survival

risk prediction models of COAD were constructed and visualized

through the nomograph (Figure 4C). The results of the calibration

curve proved the stability of the risk prediction model (Figure 4D).

Moreover, the risk scoring model was constructed as follows: risk

score = -0.06 *HOXC8 + 0.37* IRF7 -0.13* CXCL13. The risk scores

of the training and test set samples were calculated and they were

divided into high risk and low risk groups based on the median risk

score. We found the obvious expression difference of the three

prognostic signature between the high/low-risk groups

(Figure 5A) and the patients of high-risk score had poor

prognosis (Figure 5B). The test set also showed the same

prediction results as the train set (Figures 5C,D). Moreover, in the

set of GSE38832 series, 122 samples were divided into two groups

according to the upper quartile of risk scores (Figure 6A). Similarly,

patients with high-risk scores had poorer OS (Figure 6B). All these

suggesting that the HOXC8, IRF7, and CXCL13 contributed to the

prediction of the patient’s prognosis for COAD and could be used for

clinical diagnosis.

Immune cell components relate to the
patient’s survival risk

Previous studies have shown that the immune

microenvironment plays an important role in the development

of tumors (Hinshaw and Shevde, 2019; Lei et al., 2020). To identify

the immune characteristics in the development of COAD, the

CIBERSORTx tool was used to calculate the immune cell

composition of samples for COAD and normal. For the

22 immune cell fraction matrices obtained, we found that

COAD patients had immune infiltration compared with normal

samples and there was no significant difference in immune

infiltration between the clinical stages of tumors (Figure 7A).

Further, the content of major histocompatibility complex

(MHC) was calculated. We found that the gene encoding

MHC-II molecule has a lower expression level in Stage IV, but

a higher expression level in stage I and II (Figure 7B), which may

explain the loss of immunogenicity in advanced patients of CAOD.

Moreover, we evaluate the correlation of the immune cell fraction

and risk score for patients of COAD.We found that the fraction of

resting CD4+ T cell, activated M CD4+ T cell, and Treg were

significantly related to the patient’s survival risk (Figures 7C–E).

FIGURE 6
External data verify the robustness and stability of prognostic markers. (A) The figure shows the risk scores, survival status, and expression of
prognostic markers for the GSE38832 set. (B) The Kaplan-Meier curves for the survival of high-risk and low-risk groups in the GSE38832 set.
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Based on the median of each immune cell component, the patients

of COAD were divided into two groups (high/low-fraction). For

the resting CD4+ T cell, the patients with low-fraction of resting

CD4+ T cell were related to poor patient’s prognosis (Figure 7F),

suggesting that resting CD4+ T cell may be a protective factor for

COAD. Taken together, all these indicate that immune infiltration

and tumor immunogenicity were closely related to the

development and patient’s survival of COAD.

FIGURE 7
Immune cell components relate to the patient’s survival risk. (A) The immune cell composition of each sample is displayed by heat map. The
column label represents the clinical stage of the sample. (B) The expression levels of genes encoding MHC II molecules in each clinical stage are
shown by boxplot. ANOVA is used to calculate statistical significance. (C–E) The correlation between the risk score and the fraction of the resting
CD4+ T cell, activated M CD4+ T cell, and Treg. (F) Kaplan-Meier curves for survival in high/low-fraction groups of the resting CD4+ T cell. Log-
rank test was used to calculate statistical significance.
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Discussion

In this work, we have revealed the metabolic and immune

characteristics in the development of COAD by integrating

multi-omics data analysis. We found that COAD patients with

different clinical stages had significant prognostic differences and

advanced patients had the worst prognosis. For each clinical

stage, stage-specific genes are identified and integrated analysis

reveals 33 up-regulated genes and 117 down-regulated genes in

all clinical stages. Combined with the somatic mutation data of

the patients, the mutation landscape of these genes in COADwas

revealed. Furthermore, stage-specific metabolic and immune

activity were revealed through functional enrichment analysis.

We found that energy metabolism (including glycolysis and

OXPHOS) contributed to the development of COAD and is

the basis for the changes in the physiological mechanism of each

clinical stage. By constructing transcriptional regulatory

networks, we have identified the key factors driving the

development of COAD by disturbing metabolic and immune

pathways. Moreover, we have identified three prognostic markers

(HOXC8, IRF7, and CXCL13) of COAD based on the Cox

regression algorithm and constructed a risk score model for

the assessment of patient survival risk. By combining the

patient’s immune infiltration and survival data, we found that

the resting CD4+ T cell can be used as a protective factor for the

patient.

Colorectal cancer is the fourth most deadly cancer in the

world, causing nearly 900,000 deaths each year (Dekker et al.,

2019). Since the disease only has symptoms in the late stages, it is

necessary to identify its development mechanism and potential

biomarkers. In recent years, there were majority studies on

biomarkers and prognostic markers of COAD (Pellino et al.,

2018; Patel et al., 2019). For example, Razi et al. revealed

DCLK1 as a marker of stem cell regulates tumor progression

and invasion from the perspective of ceRNA mechanism (Razi

et al., 2021). Pankaj Ahluwalia et al. simply used KM analysis and

Cox regression algorithm to identify prognostic markers of

COAD (Ahluwalia et al., 2019). We focused on the

development of tumors and were committed to revealing its

dynamic physiological mechanisms. The clinical stage of COAD

patients was revealed to be significantly related to the prognosis,

indicating that the clinical stage could partly reflect the

development of the tumor.

In the transcriptional regulatory network, we have identified

hub TFs for metabolism and immune regulation of COAD. The

ETS1 and AR were the driving factors both of metabolic and

immune pathway, suggesting that ETS1 and AR could be used as

potential biomarkers for COAD. We found that patients with

COAD have global immune cell infiltration compared with

normal tissues and the wide heterogeneity of immune cells in

each clinical stage, which is consistent with previous studies (Ge

et al., 2019).

Conclusion

In summary, our research revealed the metabolic and immune

characteristics in the development of COAD, and identified potential

biomarkers through biological network analysis. Three potential

prognostic markers were identified. Through immune infiltration

analysis, the immune landscape of COAD was revealed and the

resting CD4+ T cell was identified as a protective factor.
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Cells in danger of being erroneously attacked by leucocytes express PD-L1 on

their surface. These cells activate PD-1 on attacking leucocytes and send them

to death, thus curbing erroneous, autoimmune attack. Unfortunately, cancer

cells exploit this mechanism: By expressing PD-L1, they guard themselves

against leucocyte attack and thereby evade immune clearance. Checkpoint

inhibitors are drugs which re-enable immune clearance of cancer cells by

blocking the binding of PD-L1 to PD-1 receptors. It is therefore of utmost

interest to investigate these bindingmechanisms. We use three 600 ns all-atom

molecular dynamics simulations to scrutinize molecular motions of PD-1 with

its binding partner, the natural ligand PD-L1. Usually, atomicmotion patterns are

evaluated against whole molecules as a reference, disregarding that such a

reference is a dynamic entity by itself, thus degrading stability of the reference.

As a remedy, we identify semi-rigid domains, lending themselves asmore stable

and reliable reference frames against which even minute differences in

molecular motion can be quantified precisely. We propose an unsupervised

three-step procedure. In previous work of our group and others, minute

differences in motion patterns proved decisive for differences in function.

Here, several highly reliable frames of reference are established for future

investigations based on molecular motion.
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molecular dynamics, checkpoint inhibitor, immune therapy, oncology, drug design,
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1 Introduction

1.1 Medical background and clinical
significance

Immune system T-cells detect cancer cells as they develop,

and normally kill them (Smith-Garvin et al., 2009). However,

some cancer cells have developed mechanisms to escape this

important, immune–mediated clearance (Chen and Mellman,

2013) as follows: T-cells present a suicide tool (PD-1) on their

surface. In healthy individuals, this tool is activated (by PD-L1)

only if a T-cell should erroneously attack healthy tissue. PD-1 is

therefore called an “immune-checkpoint”.

However, some cancer cells also express PD-L1 on their

surface. They exploit the above checkpoint mechanism, abusively

activate the immune checkpoint molecules (Dong et al., 2002)

and thereby escape destruction. By increased expression of PD-

L1 and/or the release of immunosuppressive factors cancer cells

may survive even in a “hot”, immune-cell enriched surrounding.

Checkpoint inhibitors are drugs blocking the binding

between PD-1 and its natural ligand, PD-L1. Clinical trials

have proved their efficacy (Brahmer et al., 2012; Kwa and

Adams, 2018). More recently a phase III trial in metastatic

triple negative breast cancer patients showed a distinct

improvement in progression-free survival and overall survival

(Brahmer et al., 2018). This demonstrates the significance of the

target (PD-1) being expressed when a PD-L1 antibody is used

(Schmid et al., 2018; Cortés et al., 2019).

In order to further improve these promising therapies, a

better understanding of the molecular mechanism of the PD-1

receptor is necessary.

1.2 Rationale for multi-level clustering

To evaluate minute movements within molecular dynamics

trajectories, all frames need to be fitted to a certain

intramolecular region (i.e. domain) at a reference frame (point

in time). Such a fitting domain should not significantly deform

itself over time (along a trajectory), in order to serve as a stable

reference against which very small and intricate movement

patterns outside this domain can be detected.

In previous work, domains for fitting were usually selected

manually, based on secondary structure, such as beta-strands,

beta-sheets or alpha helices. We detect such stable regions in an

unsupervised procedure from the computed dynamics itself. In

particular for example, if parts of beta-strands participate in the

binding mechanics to be evaluated, they should not at the same

time be part of the domain to which fitting is performed.

A most direct approach would be clustering according to

small changes in distance between pairs of atoms over the whole

trajectory. However, it is known that molecular systems tend to

switch between metastable states, each of which may pertain over

considerable parts of the simulation. During such a metastable

state, some pairs of atoms might remain in close vicinity, with

little variation of their distances. For example, atoms in some

loop, which assumes a certain conformation characteristic for

this and only this meta-state. Clustering only during this meta-

state would send these pairs into the same cluster. However, as

the system switches to another meta-state, the very same pairs of

atoms could be detached from each other, become members of

different neighborhoods and end up in different clusters if

clustering would be performed only over this second meta-

state. In consequence, one single pass of clustering over the

whole trajectory might particularly conceal minute patterns of

motion, being of focal interest. Separate clustering of segments of

a trajectory is likely to take account of such minute differences

between meta-states and exclude these regions from semi-rigid

domains to be obtained.

Deriving rigidity directly and unsupervised from the

simulation is considered a promising advantage and basis for

future MD-studies.

1.3 Molecular structures

The molecular structure of the immune checkpoint PD-1 is

shown in Figure 1, generated with VMD (Humphrey et al., 1996;

Hsin et al., 2008; Cross et al., 2009) from PDB (Burley, 2013)

entry 4ZQK (Zak et al., 2017). Since 4ZQK does not contain the

complete structure of PD-1, we have modelled the missing parts

in silico already in our previous work (Roither et al., 2021). The

immune checkpoint receptor, PD-1, consists of several beta

strands in tight mutual binding and respective loops in

between, see Table 1. These loops protrude loosely from a

rather compact beta core and offer versatile modes of

interaction and binding. In particular, the residues 70 to 77,

comprising the CC′-loop, are crucial for interaction with the

natural ligand PD-L1 (Kundapura and Ramagopal, 2019), see

Figure 2. Details of this interaction have been investigated

experimentally by Zak (Zak et al., 2015) and in molecular

dynamics studies by Liu (Liu et al., 2017) and our group

(Roither et al., 2020; Tomasiak et al., 2020; Roither et al.,

2021; Tomasiak et al., 2021).

In the present work we draw on previous experience with the

same system (Roither et al., 2020; Roither et al., 2021) but focus

on unsupervised clustering, using a very efficient algorithm

(Kenn et al., 2016) previously developed for MHC-molecules

and T-cell receptors (Kenn et al., 2014).

2 Materials and methods

Molecular preparation and technical details of the molecular

dynamics (MD) simulation have already been reported (Tomasiak

et al., 2021). In Sections 2.1, 2.2, we briefly recapitulate essential
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points for completeness. The remaining subchapters Sections

2.3.1–2.3.5 refer to evaluation methods specific for this work.

2.1 Preparation of molecular complexes

Structural data for MD simulations were downloaded from

the protein data bank (PDB, https://www.rcsb.org/) using the

following entries: PDB-ID 4ZQK for the PD-1/PD-L1 system

(resolution: 2.45 Å) (Zak et al., 2015) and PDB-ID 5GGS for the

PD-1/pembrolizumab Fab fragment complex (resolution: 2.0 Å)

(Lee et al., 2016). Missing residues in the crystal structure of the

endogenous ligand PD-L1 in complex with the extracellular

domain of PD-1 (PDB-ID 4ZQK), were added from the PD-

1/pembrolizumab system (PDB-ID 5GGS), the N loop was taken

from the PD-1/nivolumab system (PDB-ID 5WT9), see Roither

et al. (Roither et al., 2020) for further preprocessing details. For

determining the protonation states at pH 7.0 the H++ Server was

used (http://biophysics.cs.vt.edu/) (Gordon et al., 2005). The

assignment of strands, sheets, and loops was made following

the classification of the Protein Feature View applet available

within the 4ZQK record of the PDB (see Figure 1B).

2.2 All-atom molecular dynamics

As described previously (Tomasiak et al., 2021) all-atom MD

simulations were performed with GROMACS 2021.2 (Hess et al.,

2008), using the Amber99sb-ildn force field (Lindorff-Larsen et al.,

2010) and an explicit watermodel. For the simulation box a rhombic

dodecahedron was chosen with a minimum distance of 2 nm

between the respective molecules and the box boundaries. The

PD-1/PD-L1 complex consists of 4099 atoms and 240 residues,

and the complex was solvated in TIP3P water (Jorgensen et al.,

1983). Solute molecules were replaced by sodium and chloride ions

to reach a physiological salt concentration of 0.15 mol/L.

For the energy minimization the method of steepest-descent

was chosen. Before production runs the systems were

equilibrated at NVT and NPT for 100 ps (time step 2 fs) each.

In the NVT equilibration run the temperature was set to 310 K

using a Berendsen-thermostat (Berendsen et al., 1984) with a

time constant of 0.1 ps and position restraint MD. Equilibration

in NPT ensembles was performed under the control of a

Berendsen-barostat (Berendsen et al., 1984) set to 1 bar with a

time constant of 1.0 ps.

All independent production runs had a simulation time of

600 ns with a time step of 2 fs using the LINCS algorithm (Hess,

2008) for constraining bonds to hydrogen atoms. For the van der

Waals interactions a single cut-off of 1.47 nmwas used and a cut-off

distance of 1.4 nm for the short-range neighbor list in the Verlet

scheme (Verlet, 1967) for neighborhood search. For electrostatic

interactions the particle-mesh Ewald (PME) algorithm (Darden

et al., 1993) was applied with a cut-off of 1.4 nm. Temperature

coupling was done with the velocity-rescaling algorithm (Bussi et al.,

2007) at a temperature of 310 K and for pressure coupling at 1 bar

the Parrinello Rahman algorithm (Parrinello and Rahman, 1981)

was used with a time constant of 2 ps. 30000 frames for each run

were obtained by saving coordinates, velocities, forces, and energies

FIGURE 1
Molecular structure of immune checkpoint molecule PD-1. (A) Cartoon representation of the extracellular domain of PD-1. A two-layer β
sandwich is formed by two β sheets GFCC’ (colored yellow, orange, red,magenta) and ABED (colored violet, blue, cyan, green) with loops connecting
the respective β strands (colored silver). (B) Sequence of the residues of PD-1. The β strands of the protein are depicted as yellow boxes and the
connecting loops as arrows. The figures were prepared using VMD version 1.9.3 (Humphrey et al., 1996).
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every 20 ps to a trajectory file. Three independent 600 ns MD

simulations with different initial velocities were carried out for

each system, summing up to a total simulation time of 600 ns *

3 = 1.8 μs.

Prior to the evaluation, all frames of each given trajectory

were fitted to the first frame of the trajectory, according to

minimum root mean square deviation (RMSD) at time t. In

mathematical terms, the Cartesian coordinates xi of all atoms i

were translated and rotated towards minimum RMSD of the

backbone within β-strands and α-helices:

RMSD(t) � ⎡⎣ 1
Nbb

∑
Nbb

i�1

����xi(t) − xi(0)
����2⎤⎦

1/2

→ Min (1)

where xi(t) is the position of atom i at time t. For the precise

regions of secondary structure elements (β-strands and α-
helices), see Tables 1, 2. Nbb is the total number of backbone

atoms (N, Cα, CO) contained therein. Finally, the first 100 ns of

each trajectory were discarded to get rid of initial phase trends,

leaving 500 ns with Nt = 25000 frames for each trajectory to be

further analyzed.

2.3 Obtaining semi-rigid domains

Semi-rigid domains for a given trajectory were obtained in a

two-step process: First, “spatial clustering” was performed by

grouping Cα-atoms showing similar movements into each of the

clusters. Evidently, such a clustering does not need to (and will

not) yield exactly the same clusters if spatial clustering is

performed for different subsections of Nf frames each (called

“segments” in the following) of a trajectory: Some pairs of Cαs

will stay together in a given cluster over many segments, others

will not (Kenn et al., 2014). This fact is exploited to perform

“time-wise clustering” as a second step, by constructing new

clusters from those Cαs which stay together within spatial clusters

across successive segments with maximum fidelity. Such groups

of atoms form clusters even more stable over time and are hence

TABLE 1 Residues and secondary structure of PD-1. The assignment of strands and loops was chosen according to the classification of the Protein
Feature View applet available within the 4ZQK record of the PDB. The domains were named following canonical Ig-strand designations (Zak et al.,
2015). ResIDS and ResIDE indicate the starting and the ending residue ID of the according domain within chain B of 4ZQK. Res#S and Res#E indicate
the starting and the ending residue number of a domain (continuous numbering for the whole complex in the respective PDB file).

Domain ResIDS ResIDE Amino acid sequence 4ZQK

Res#S Res#E

NtermA′ loop 25 35 LDSPDRPWNPP 116 126

A′ strand 36 38 TFS 127 129

A’A loop 39 40 PA 130 131

A strand 41 45 LLVVT 132 136

AB loop 46 49 EGDN 137 140

B strand 50 55 NATFTCS 141 146

BC loop 56 61 FSNTSE 147 152

C strand 62 70 SFVLNWYRM 153 161

CC′ loop 71 75 SPSNQ 162 166

C′ strand 76 82 TDKLAAF 167 173

C’D loop 83 94 PEDRSQPGQDSR 174 185

D strand 95 99 FRVTQ 186 190

DE loop 100 104 LPNGR 191 195

E strand 105 110 DFHMSV 196 201

EF loop 111 118 VRRRNDS 202 209

F strand 119 129 GTYLCGAISLA 210 220

FG loop 130 132 PKA 221 223

G strand 133 136 QIKE 224 227

GG′ loop 137 139 SLR 228 230

G′ strand 140 145 AELRVT 231 236

G’rest loop 146 149 ERRA 237 240

PD-L1 binding domain 70 77 MSPSNQTD 161 168

Pembrolizumab binding domain 74 99 NQTDKLAAFPEDRSQPGQDCRFRVTQ 165 190

NtermA′ loop 25 35 LDSPDRPWNPP 116 126

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Kenn et al. 10.3389/fbioe.2022.838129

254

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.838129


termed “semi-rigid domains” (Kenn et al., 2016). The total

number of frames used from a trajectory, Nt, is partitioned

into Ns segments, with Nt = Ns * Nf. We used Ns = 500 and

Nf = 50, corresponding to 1 ns per segment and a frame length of

20 ps.

Note that time-wise clustering is a special mode of consensus

clustering (Monti et al., 2003), since the same clustering

algorithm is applied to different parts of a trajectory and a

consensus between these results is finally adopted.

2.3.1 Spatial clustering
One crucial aspect of collective motion of atoms is captured

by the variability (standard deviation) of mutual distances (Kenn

et al., 2014), usually termed STDDV. We use it as an

approximation for “motional distance” between two Cαs i and

j, and denote it for brevity by Dij defined as

Dij �
���������������������
Nf

Nf − 1
〈(dij − 〈dij〉)2〉

√

(2)

where dij �
����xi − xj

���� is the Euclidean distance in a given (time-

wise) frame and 〈〉 denotes averaging over all Nf frames for

which clustering is intended, see Figure 3. Note that distances

are not affected by any fitting of the trajectory to a reference

frame.

For actual spatial clustering (over segments or over the whole

trajectory) we consider Cα atoms only and follow the concept of

Bernhard and Noé (Bernhard and Noé, 2010). Each Cα,i is

assigned a membership in cluster m, expressed as a real

number 0≤ ci,m ≤ 1, with zero meaning no membership and

1 standing for full membership. According to Bernhard and

TABLE 2 Residues and secondary structure of PD-L1. The assignment
of strands, loops and helices was chosen according to the
classification of the Protein Feature View applet available within the
4ZQK record of the PDB protein data bank. The domains were named
following canonical Ig-strand designations (Zak et al., 2015).
Res#S and Res#E indicate the starting and the ending residue
number of a domain (continuous numbering for the whole
complex in the respective PDB file).

Domain ResIDS ResIDE Amino acid
sequence

Res#S Res#E

NtermA loop 18 26 AFTVTVPKD 1 9

A strand 27 31 LYVVE 10 14

AB loop 32 35 YGSN 15 18

B strand 36 41 MTIECK 19 24

BH1 loop 42 48 FPVEKQL 25 31

Helix1 49 52 DLAA 32 35

H1C loop 53 53 L 36 36

C strand 54 59 IVYWEM 37 42

CC′ loop 60 61 ED 43 44

C′ strand 62 68 KNIIQFV 45 51

C’C″ loop 69 70 HG 52 53

C″ strand 71 72 EE 54 55

C″H2 loop 73 73 D 56 56

Helix2 74 82 LKVQHSSYR 57 65

H2D loop 83 84 QR 66 67

D strand 85 87 ARL 68 70

DH3 loop 88 88 L 71 71

Helix3 89 94 KDQLSL 72 77

H3E loop 95 95 G 78 78

E strand 96 101 NAALQI 79 84

EH4 loop 102 104 TDV 85 87

Helix 4 105 109 KLQDA 88 92

F strand 110 117 GVYRCMIS 93 100

FG loop 118 120 YGG 101 103

G strand 121 131 ADYKRITVKVN 104 114

Grest loop 132 132 A 115 115

FIGURE 2
Immune checkpoint molecule PD-1 and binding partners.
Cartoon representation of the extracellular domain of PD-1 bound
to the endogenous ligand PD-L1 (transparent blue). The figure was
prepared using VMD version 1.9.3 (Humphrey et al., 1996).
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Noé, theNα Cα atoms of the backbone are optimally decomposed

into k clusters by minimizing the following target function:

q(c) � ∑
k

m�1
∑
Nα

i�1
∑
Nα

j�1
cimcjmDij � tr(cTDc) → min (3)

In the formulation of Bernhard and Noé, memberships

were assumed to be real numbers. This works successfully in

the end but affords tremendous computational expense. In our

previous work (Kenn et al., 2014) we were able to improve

Bernhard’s and Noé’s method by showing mathematically that

the membership coefficients, cim, have in fact to be crisp,

i.e., {0, 1}. Knowing this in advance drastically speeds up

the minimization specified in Eq. 3. Since a given atom can

only fully belong to one and only one cluster (no fragmentary

membership), optimization can draw on single atom moves

between clusters. We applied such a fast random search with

single atom moves, followed by exhaustive searches to obtain a

global optimum. Each lap of clustering was performed

100000 times and the result with the best target function

retained. For computational details, parameter studies and

thorough evaluations of accuracy and performance we refer to

our previous work (Kenn et al., 2016).

As a result, spatial clustering yielded crisp memberships,

c(s)i,m � {0, 1}, for Cα-atom i, in cluster m, within segment s, see

Figure 4. Note that 1≤ i≤Nα, 1≤m≤ k and 1≤ s≤Ns.

2.3.2 Time-wise consensus clustering
To arrive at a consensus we start with defining dissimilarity

Δij between two Cα -atoms i and j as:

Δij � 1
Ns

∑
Ns

s�1
Δ(s)
ij � 1

Ns
∑
Ns

s�1
⎛⎝1 − ∑

k

m�1
c(s)im · c(s)jm

⎞⎠ (4)

with Δ(s)
ij � 0 if atoms i and j belong to the same cluster C(s)

m in

segment s and Δ(s)
ij � 1 otherwise. Summing up Δ(s)

ij over all

segments (s) yields the number of segments within which i and j

are not within the same cluster (Monti et al., 2003). Note that the

number of segments is an upper bound, e.g. atoms i and j may

reside “not in the same cluster” in 30 segments out of 500. The

precise choice of segment length has only minor impact on the

results. Shorter segment lengths (e.g., 25 frames per segment)

yield a similarity matrix of higher resolution, but entails only

minute changes in the final results. Naturally, a minimum length

of segments is required to obtain a reliable estimate of variances.

Division by the number of segments (Ns) finally renders a

FIGURE 3
Matrix of standard deviations of atom distances over whole trajectories, shown as scaled color image (SCI). (A): Trajectory t1 for complex 4ZQK,
consisting of receptor PD-1 and PD-L1 as ligand, showing enhanced similarity within two large areas (receptor and ligand, respectively). Note that
numbering starts with ligand PD-L1 with residue-ID = 18 (lower left corner), corresponding to residue number i= 1 in both axes of the SCI shown. PD-
L1 extends over 1 ≤ i ≤ 115. The N-terminal end of PD-1 starts with residue-ID = 25 and extends over residues 116 < i < 240 towards the right
upper corner. Elements of secondary structure are denoted right to the SCI (Zak et al., 2017), with their extensions indicated by horizontal grey
shaded bars. Standard deviations Dij [nm], computed according to Eq. 2, for values see color bar. (B): trajectory t2. (C): trajectory t3.
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FIGURE 4
Clustering standard deviations of distance variation (STDDV) with k = 7 over the whole trajectory t1. The best out of 100000 trials in the search
forminimum target function is shown. Each cluster (1–7) is shown in a separate color, see the color bar. The sizes of clusters 1 to 7were 44, 39, 39, 36,
34, 32 and 16. Elements of secondary structure are indicated by grey shaded bars and corresponding labels.

FIGURE 5
Similarity matrix after temporal consensus clustering trajectory t1, shown as scaled color image (SCI). Complex 4ZQK, consisting of receptor
PD-1 and PD-L1 as ligand, showing enhanced similarity within two large areas (receptor and ligand, respectively). Note that numbering starts with
ligand PD-L1 with residue-ID = 18 (lower left corner), corresponding to residue number i= 1 in both axes of the SCI shown. PD-L1 extends over 1 ≤ i ≤
115. The N-terminal end of PD-1 starts with residue-ID = 25 and extends over residues 116 < i < 240 towards the right upper corner. Elements of
secondary structure are denoted right to the SCI (Zak et al., 2017), with their extensions indicated by horizontal grey shaded bars. Spatial clusters: 7.
Note that the number of spatial clusters influences the similarity matrix and is given as input for computation. Consensus (0–500) indicates in how
many (out of 500) timewise segments two Cα atoms belonged to the same spatial cluster (no matter which cluster that was). Consensus shown
normalized to 0–1, see Eq. 5 and color bar.
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normalized measure of dissimilarity between i and j, relating to

the whole trajectory (e.g., 30/500 = 0.06). This dissimilarity lends

itself as a proxy for “distance” between atoms in this second lap of

clustering (consensus clustering). Since cluster memberships are

crisp, c(s)im ∈ {0, 1}, the concept above can also be expressed more

formally (but less intuitively) via a product of memberships, see

the second part of Eq. 4. Dual to dissimilarity, a similarity-matrix

can be obtained via

Cij � 1 − Δij (5)

see the example displayed in Figure 5. Note that similarity, as

defined above, will be used synonymously with “consensus” in

the framework of consensus clustering. Naturally, Cα atoms in

close succession along the backbone appear close to the diagonal

and show high consensus, see the color bar.

Another very illustrative way to display consensus between

atoms is a circular plot, see Figure 6. All Cα-atoms are arranged in

a circle and a threshold, Δth, has to be chosen. Whenever the

dissimilarity between two atoms is smaller than the threshold

(Δij ≤Δth), these are connected by a line. Thus, connected atoms

show small fluctuation in their distance over time.

2.3.3 Second lap of clustering based on
consensus

The dissimilarity matrix Δij was then subjected to

agglomerative clustering (Ward, 1963; Jain et al., 1999),

evaluating two methods for comparison, “average” and

“complete” (Mathworks, 2021). They differ in their mode of

linkage, i.e., the way, how the distance between two given

(intermediate) clusters is computed: Method “average” takes

the mean distance between individuals in different clusters to

represent the distance between both clusters. Conversely, method

“complete” adopts the largest of those between-cluster distances

as the distance between the two clusters.

FIGURE 6
Circular plot of small variations of inter-atom distances for PD-1 complexed with PD-L1. Trajectory 2, spatial clusters k = 7. Residues numbered
within each chain according to PDB convention. Around the circular plot, elements of secondary structure are indicated. Left: threshold for link to be
drawn: Δth � 0.04 � 20/500. Right: Δth � 0.1 � 50/500.

FIGURE 7
Agglomerative clustering according to inter-atomic time-
wise consensus. Spatial clustering (k = 7 clusters) within each of
500 time-wise segments. Consensus among these 500 results of
clustering was converted into distances and subjected to
agglomerative clustering with distance model “average”. For
reasons of clarity we call the results of agglomerative clustering
“groups” in the following—to distinguish from the results of spatial
clustering (“clusters”). Agglomerative clustering was terminated at
NG = 24 groups. The dashed line indicates NG = 7 groups, as an
example.
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The methods “average” and “complete” are both appropriate

for Euclidean as well as for non-Euclidean distances, which we

worked with, after all. A third method (“single”) would also be

appropriate for non-Euclidean distances, however it tends to

yield a large number of small clusters, what seemed inappropriate

for the structure of our molecules. Other methods are restricted

to Euclidean distances.

Agglomerative clustering yields a tree-like-structure

(dendrogram), an example is shown in Figure 7. At the left

vertical axis Cα atoms are arranged and colored according to

cluster membership, the residue-index being irrelevant here. The

horizontal axis shows dissimilarity, in our case values between 0

(each Cα-atom against itself) and a maximum equal to the

number of segments, Ns, into which the trajectory was split

(e.g., 500). Note that this maximum applies to the methods

chosen in this work but need not apply to other clustering

methods, such as “Ward” for example.

Clustering starts at bottom, with each atom representing a

cluster of its own (leaves of the tree). Then clustering proceeds

upwards (from left to right in Figure 7), in each step joining two

clusters, selected among all pairs according to minimum

distance. Note that there is no universal definition of

“distance” between two clusters but one has to choose among

several variants, i.e., “average” or “complete” in this work. Note

that “distance” appears on the horizontal axes in Figure 7. As a

result, any emerging cluster contains the sum of atoms contained

in both of its predecessors. Finally, the algorithm terminates with

a cluster containing all atoms, at the root of the tree.

The tree is then retraced from the root towards the leaves

(from right towards left in Figure 7), along decreasing

dissimilarity. Whenever a bifurcation is crossed, the number

of clusters increases, one by one. One may proceed until a

preselected number of clusters, NC, is encountered (e.g. NC =

7 in Figure 7) and thus obtain a corresponding ”cut-point” in

terms of dissimilarity, see the dashed line. Quantitatively, the cut-

point is computed as the median of those two levels of

dissimilarity that have been passed though latest during

recovery. In Figure 7, the final cut-point for display was

selected at NC = 24 groups (left, bottom border of tree). This

number of clusters was chosen to accommodate several large,

compact domains within the molecule (such as beta-sheets) as

well as several smaller parts, such as freely moving loops. This

intention has been fulfilled as clearly reflected in Figures 4, 8.

These clusters represent a partition of all atoms into a given

number (NG) of groups {G1,G2...GNG}, as shown in Figure 9.

These groups are shown in different colors.

2.3.4 Estimating the stability of clusters across
trajectories

Above we have explained spatial clustering within

consecutive segments of a single trajectory and then how to

perform agglomerative clustering into domains, based on time-

wise stability of these spatial clusters. Resulting clusters were

called “semi-rigid”. Finally, we evaluate how much clusters differ

between independent trajectories of the same molecular system.

This comparison yields an estimate of cluster-stability on an

upmost level, and was performed as follows.

For a trajectory t, NG time-wise consensus clusters

{G(t)
1 ,G(t)

2 ...G(t)
NG

} were obtained, with t � 1, 2, 3, since three

trajectories were generated. Let cluster-memberships of atom i

in cluster m within trajectory t be denoted by G(t)
im � {0, 1}, with

1≤ i≤Nα, 1≤m≤NG and 1≤ t≤ 3. When comparing results of

agglomerative clustering between trajectories, the following

problem arises: During agglomeration, emerging labels

(identity numbers) of clusters may depend on minute, even

somewhat random differences between trajectories. For

example, if an existing cluster is to be joined with its “nearest”

neighbor cluster, there might be two (or even more) neighbors

FIGURE 8
Number of atoms and variability of distance variation within groups from agglomerative clustering. 4ZQK, trajectory t1, parameters k = 7 and
NG = 24, similar to Figure 7. (A) Size of group (number of atoms). (B) Homogeneity within groups shown by a boxplot of distance variations between
pairs of atoms within each group (mean, quantiles, extremes).
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almost equally “near”. As a consequence, even minute differences

between trajectories in such a case induce different decision paths

“which cluster wins”, and branch into different joining-

operations for each trajectory. Since any new cluster generated

(by joining) receives the next available cluster-label in sequence, a

certain cluster-label may refer to two physically different groups

of atoms in each trajectory. All in all, even though agglomerative

clustering may produce nicely compatible physical groups of

atoms, the labels of those groups might (and usually will) result

totally permuted.

Therefore, after agglomerative clustering two trajectories, a

so called “assignment problem” arises (Ramshaw and Tarjan,

2012): How should pairs of corresponding clusters be identified

on an algorithmic basis?

In short, we proceeded as follows: We used the “Hungarian

Algorithm”, drawing on the special target function given in Eq. 7.

The value given by this target function represents the metric

between trajectories. A vivid display is given in Figure 10,

including a description how estimates come about for specific

groups of Cα atoms.

In mathematical detail, the following procedure was

performed: For each trajectory, NG (e.g., NG = 24) groups are

obtained, and out of NG! possible pairings the best matching has

to be determined, labels permuted accordingly, and re-assigned.

Only on this basis, a comparison—cluster by cluster—is

meaningful.

The assignment problem has been mathematically solved

(Kuhn, 1955), based on the “Hungarian algorithm”, was put in

a more general frame by Edmunds and Karp (Edmonds and

Karp, 1972), and is now available in the MATLAB routine

“matchpairs” (Duff and Koster, 2001): The user has to specify

a so called “loss function” which quantifies the “loss”

compared to a perfect match between two sets of clusters

{G(t1)
1 ,G(t1)

2 ...G(t1)
NG

} and {G(t2)
1 ,G(t2)

2 ...G(t2)
NG

}. Note that a

comparison is feasible only if both sets contain the same

number of clusters, NG. For example, when evaluating the

disparity between a pair of clusters {G(t1)
i ,G(t2)

j }, one may use

the symmetric difference

L(t1 ,t2)
ij �

∣∣∣∣∣(G(t1)
i ∪ G(t2)

j )∖(G(t1)
i ∩ G(t2)

j )
∣∣∣∣∣ (6)

as a proxy for a so called loss function, with | | meaning the

number of elements in a group (cardinality). If both sets contain

the very same atoms, the loss L = 0, if they do not share a single

atom, the loss L(t1 ,t2)ij � |G(t1)
i ∪ G(t2)

j |, i.e., it equals the total

number of atoms in both groups. For intermediate cases, L

FIGURE 9
Atom groups resulting from agglomerative clustering consensus. 4ZQK, trajectory t1, parameters k = 7, cutoff NG = 24 groups. Note that the
groups were internally numbered in order of descending size and each cluster is indicated by the color along the color bar to the right. To visually
represent as many as 24 groups, 4 panels were generated for groups 1–6 (A), 7–12 (B), 13–18 (C) and 19–24 (D). Note also that each cluster does not
need to appear as coherent field in thematrix, since remote atoms in the peptide chainmay belong to one and the same cluster, as shown in the
circular graph, Figure 6. To identify a single cluster, all fields of the same color within one given panel have to be considered together. All in all, the
picture reflects the intricate connections of intra-molecular motions. Elements of secondary structure are indicated by grey shaded bars and
corresponding labels.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Kenn et al. 10.3389/fbioe.2022.838129

260

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.838129


represents the number of atoms contained in just one of both sets

but not in the other (exclusive or-condition).

Solving the assignment problem allows to re-label clusters in

a way that clusters with the same index go in pairs (common

index m replaces i, j) and this pairing entails minimum overall

loss. For this optimum assignment, losses are added over all

clusters to obtain the total clustering disparity between both

trajectories:

D(t1 ,t2) � ∑
Ng

m�1

∣∣∣∣(G(t1)
m ∪ G(t2)

m )∖(G(t1)
m ∩ G(t2)

m )
∣∣∣∣ (7)

Note that the solution of the assignment problem is not

commutative, i.e. D(t1 ,t2) ≠ D(t2 ,t1), i.e. it makes a difference in

results which trajectory comes first.We shall call it “reference” in the

following, e.g. trajectories t2 and t3 may be mapped on reference t1.
Optimized re-assignment and joint labelling of clusters

allows to boil down each cluster to its “stable kernel”, Km,

made up by those atoms belonging to the “same” cluster in all

three trajectories considered:

K(t1 ,t2 ,t3)
m � G(t1)

m ∩ G(t2)
m ∩ G(t3)

m , m � 1, ..., NG (8)

Such kernels may be displayed within 3D representations of

the molecular complexes.

2.3.5 Relating groups to molecular structures
For each atom i, its kernel-membership ki is known, with

1≤ ki ≤NG. This allows for visualization of such groups within

3D representations of the molecular complex. From the

memberships we generated Tcl-commands (Welch et al.,

2003) to color these groups in VMD (Humphrey et al., 1996),

see also the figures shown in the results section.

3 Results

3.1 Results for whole trajectories

Applying the methods explained above we obtained results

for the complex 4ZQK (PD-1 + PD-L1). First, standard

deviations Dij of pair-distances were computed over each

whole trajectory, with Nf = Nt in Eq. 2. Figure 3 shows the

result for trajectories t1, t2 and t3. Considerable differences

between trajectories t1, t2 and t3 can be seen.

Second, spatial clustering was performed over whole

trajectories, see an example in Figure 4 for t1 and k = 7. Note

that clustering in any case assigns each atom to one of the

clusters, even if its STDDV to quite many other atoms are

large, see the conspicuous stripes in shiny yellow in Figure 3.

As a consequence, clusters obtained this way inevitably also

house atoms not intended to be parts of semi-rigid domains.

3.2 Results for segmental clustering

Next, time-wise clustering was performed. Figure 5 shows the

similarity matrix with values between 0 and Ns, indicating how

often time-wise consensus clustering found two Cα atoms within

the same cluster. Note that clusters are neither numbered nor

labelled in this step, i.e., they do not have unique identifiers

related to their “inhabitants” in terms of physical atoms. For

example, the pair of Cα,128 and Cα,237 may be together in cluster

4 in time-wise segment 129 and together in cluster 5 in time-wise

segment 237. This would yield a consistency count of 2 (out of

500). Naturally, the number of segments,Ns, poses an upper limit

of consistency, expressing that these two atoms were in the same

cluster in all segments.

As consensus relates to linked mobility, most strong linkages

were seen within each molecule (chain) of the complex,

i.e., within PD-1 and within PD-L1. This resembles the fact

that beta-strands cooperatively fold into beta-sheets, and

corresponding atoms move in a more concerted way.

However, some weaker linkage is also present between both

molecules, see the parts in orange for residues of PD-1 towards

multiple parts of PD-L1: these regions show consensus. A few Cα

FIGURE 10
Visual representation of group-matching. Comparison of two
sets of 7 Cα groups resulting for trajectory t2 (horizontal axis) and
trajectory t1 (vertical axis). Group numbers are assigned with
decreasing group size (7–1). Values given in matrix elements
were evaluated via Eq. 6 and represent the loss function L(t1 ,t2)ij ,
i.e., the number of Cα atoms not contained in both groups. Low
losses indicate good matching between groups and are colored
blue, see the color bar. Diagonal elements represent a matching
according to group size only, e.g., L11 = 6 indicates that only 7 Cα

atoms are not members of these both groups (1–1). Elements off
the diagonal represent putative losses if group labels were
permuted, e.g., L12 = 87 indicates that 87 Cα atoms would
mismatch in a putative comparison between group 1 from t1 and
group 2 from t2. One can see that for groups 1 to 5, the original
labelling (according to group size) is already optimum. Conversely,
groups 6 and 7 have to be interchanged for optimum match.
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atoms at the start (i.e., the N-terminal loop) of the ligand even

show close relation to this region of PD-1, with consensus around

0.8 (appearing yellow).

Posing a threshold on dissimilarity, e.g., Δij ≤Δth, a circular

plot can be obtained, see Figure 6. Pairs of atoms are connected

by lines to indicate consensus if they appear in different clusters

in a fraction of segments smaller than Δth. For example, selecting

Δth � 0.06 � 30/500, connects atoms only if they end up in

different clusters in no more than 30 (time-wise) segments,

out of 500. Naturally, the larger the dissimilarity threshold,

Δth, is chosen, the more connection lines populate the circular

plot. Moreover, weak similarities, such as those between PD-1

and PD-L1, become visible only if large dissimilarities are

tolerated (right panel of Figure 6). They faint away in quite a

large percentage of frames.

The above results display concordance (i.e., similarity in

movements) between atoms, as it results directly from time-

wise consensus clustering, based on pairs of Cα atoms. These

pairwise results (consensus matrix) were subjected to a further

step of analysis, agglomerative clustering, see Figure 7. Note that

choosing a certain number of clusters, e.g. NG = 24, does not

change anything of the algorithm, it just defines the level of cutoff

through the tree where splitting into groups is considered as

result. Note that dissimilarities between clusters may well exceed

the upper limit of dissimilarities Δij between single atoms.

Clusters resulting from agglomerative clustering are

different in size (number of atoms), see Figure 8. The box

plot indicates variability within groups, based in the standard

deviations of inter-atom distances used as the key target for

spatial clustering. Groups from agglomerative clustering may

also be displayed in matrix form, see Figure 9. Like in

Figure 5, atoms are numbered consecutively, as they occur

in the 4ZQK complex in PDB. Elements of secondary

structure have been annotated to hint at possible relations

to atomic mobility. In addition, these groups were visualized

in circular graphs, see Figure 11.

Agglomerative clustering starts with each atom

representing its own cluster and then joins existing

clusters. By proceedings upwards level by level, it creates a

tree of larger and larger clusters, ending up in one maximum

cluster above all others. This tree may be pruned at any level

to yield different numbers of clusters. For comparison with

clustering STDDVmatrices according to Bernhard (Bernhard

and Noé, 2010), see Figure 4, we display the agglomerative

result pruned at NG = 7, see Figure 12. Note that colors have

been selected to match those of Figure 4, in order to be

directly comparable.

3.3 Stability of clusters across trajectories

Note that all visualizations shown so far pertained to one

single trajectory and a given set of clustering-parameters (k, NG).

It is interesting, however, to evaluate differences in results

between trajectories. To these ends we utilized the disparity

D(t1 ,t2) between pairs of trajectories, defined in Eq. 7.

Discrepancies in agglomerative clustering between pairs of

trajectories were 22, 40 and 28 for (t1, t2), (t1, t3) and (t2, t3),

FIGURE 11
Circular graph of semi-rigid domains from agglomerative
clustering time-wise consensus. 4ZQK, trajectory t1, parameters
k = 7, cutoff NG = 24 groups. Connective lines colored according
to Cα indices.

FIGURE 12
Atom groups for agglomerative clustering with cutoff NG =
7 groups. Complex 4ZQK, trajectory t1, parameters k = 7, cutoff
NG = 7 groups. For easy comparison with Figure 4, each cluster is
shown in a separate color, see color bar. Colors were
selected to match those of Figure 4, for direct comparison.
Elements of secondary structure are indicated by grey shaded bars
and corresponding labels.
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respectively (see Table 3). Comparing three trajectories naturally

leads larger discrepancies. For comparison, we also added the

results for agglomerative clustering in 7 groups, concordant with

the preceding Bernhard-clustering. Note that considering more

groups increases the chance for residues to switch between

groups, and concomitantly discrepancy increases, however, for

generating the final consensus, the more discrepant smaller

clusters were disregarded, see below.

Finally, however, we also created a consensus between

trajectories by estimating “kernels” of atoms belonging to the

same cluster in all three trajectories, see Eq. 8. Note that the

labelling of agglomerative groups originally varies randomly

between trajectories and has to be consolidated as described

in the methods section. Such a consolidated numbering—and a

corresponding coloring—was used to outline the kernels within a

3D model of the molecular complex, see Figure 13. These kernels

are considered as the “semi-rigid domains” aimed at.

4 Discussion

We applied the method of spatio-temporal clustering to the

PD-1/PD-L1 complex, aiming at identifying semi-rigid domains

within these molecules. Such domains are considered a highly

important basis for coming computational research since any

detection of minute movement patterns requires to fit molecular

configurations to stable kernels. Minute and interesting

movement patterns, e.g., of active loops, may then be

characterized with reference to such kernels.

During the course of an MD-simulation, larger portions

(“domains”) of a molecule might collectively move slowly but

move broadly back and forth in amplitude. Inside such a domain,

however, single amino acids and even more single atoms oscillate

at much higher frequencies. The goal is to separate these two

types of movement occurring on different spatial and time scales:

semi-rigid domains as a whole should go along with the larger but

slower movements, while housing those many tiny oscillations of

their “inhabitant“ atoms. As a result, a single atom performs both

motions in superposition—small oscillations at high frequency,

superimposed on larger andmuch slower collective motions of its

corresponding domain. Both types of motion in combination

influence the distances to its neighbor atoms.

In a non-supervised approach, one can only draw on the variation

of distances as such, without knowing their origin (tiny oscillations of

single atoms or large-scale movement of whole domains). Clustering

atoms with respect to variations of pair-distances will therefore yield

different results (clusters), when performed on different (time-wise)

parts of a trajectory. Finally, however, a smart clustering algorithm

should yield larger clusters “moving” in accordance with those larger

domains, each of these holding much the same groups of atoms as

inhabitants (members) over time.

For a start, we computed the standard deviations of distance

variations (STDDV) matrices of whole trajectories (Figure 3).

Since these matrices did not reveal prominent structures which

TABLE 3 Disparity in groups between trajectories. All results refer to k = 7 clusters for Bernhard clustering. Agglomerative clustering was performed
for 7 and 24 groups, respectively. For each comparison between trajectories, discrepancies in agglomerative clustering are given as numbers of
residues within different groups together with corresponding percentages of all residues (240). Note that, for a comparison between three
trajectories (right part of table), disparities evaluated according to Eq. 7 depend on the choice of the reference trajectory, listed in position 1—as a
coincidence, these results are all equal (44 and 68). Comparing 3 trajectories, means to include differences between 3 pairs of trajectories: For
example, an atom counts as disparity if it resides in different clusters for (t1, t2) even if it resides in corresponding clusters in (t1, t3) and (t2, t3). As a
consequence, disparities between triples of trajectories appear larger than those between pairs.

Groups Trajectory comparison

(t1, t2) (t1, t3) (t2, t3) (t1, t2, t3) (t2, t1, t3) (t3, t1, t2)

7 40 (16.7%) 28 (11.7%) 22 (9.2%) 44 (18.3%) 44 (18.3%) 44 (18.3%)

24 52 (21.7%) 44 (18.3%) 41 (17.1%) 68 (28.3%) 68 (28.3%) 68 (28.3%)

FIGURE 13
3D-Visualization of semi-rigid domains resulting from spatio-
temporal consensus clustering and consensus over trajectories.
Groups obtained from agglomerative clustering were
consolidated over 3 trajectories to obtain “kernels”,
representing semi-rigid domains. The 5 largest kernels are colored
and shown as surface representations. Note that kernels in red,
grey and yellow belong to PD-1 while kernels in blue and ochre
belong to PD-L1.
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could be clustered right away, we adopted a refined, three-step

procedure. Moreover, distinct differences between trajectories

became apparent in these matrices. We have to conclude that the

system obviously inhabited different configurational sub-spaces

in each trajectory, and simulation time has to be extended in

coming studies to closer approach ergodicity and visit all

portions of configuration space appropriately.

In the present work, matrices with different properties

were studied. The STDDV-matrix does not reflect distances as

such but rather variations in distance and therefore in general

will not fulfil the triangle inequality. Incidentally, the

Bernhard algorithm does not require fulfillment of the

triangle inequality. In the second step of our algorithm we

computed the dissimilarity matrix, Eq. 4, which fulfills the

triangle inequality. This was a main reason for us to adopt this

multi-step procedure.

To refine clustering we adopted a three-step procedure: First,

clustering according to distance variation, but separately over short

segments of the trajectory. Second, these results were consolidated

over all segments of the trajectory by characterizing consensus for

each pair of atoms: the percentage of time-wise segments in which

these two atoms shared (resided in) the same cluster. Note that this

second step yielded but pairwise information (consensus matrix),

visualized in various forms (Figures 5, 6). Third, we performed

agglomerative clustering to derive domain-like regions of coherence,

the final result, shown in Figure 13. Note that cluster memberships

after agglomerative clustering are in general different from those

obtained by spatial clustering in the first lap.

The most intuitive approach would have been

agglomerative hierarchical clustering, (Kaufman and

Rousseeuw, 1990; Teukolsky et al., 2007). In a preliminary

examination of the STDDV matrices (Figure 3) we found

that an important precondition of agglomerative clustering

is only poorly satisfied by MD data: Atoms may switch

between clusters quite freely, without severely changing

the target-function (minimum distance variability within

clusters). This may easily deteriorate agglomerative

clustering, and therefore we refrained from it as a first

step. However, in future studies it would be interesting to

mend this drawback, possibly by selecting more

sophisticated models for linkage between clusters (others

than “average” or “complete”). Also, agglomerative

clustering allows to optimize the cut-off (i.e. the number

of groups, NG) according to formal criterions such as

consistency (Mathworks, 2021). Linkage and cut-off could

be systematically evaluated and optimized.

The achievement of the present work is the unsupervised

consolidation of quite large domains within the molecular

complex, despite considerable movements of its member

atoms. Results were additionally consolidated by repeating the

entire analysis for three independent trajectories and considering

the overlap between these three replicates of a cluster as the final,

reliable rigid domain. Based on these semi-rigid domains, subtle

movements of active regions may be evaluated in future studies,

scrutinizing the molecular basis of receptor activation and action

of drugs, including checkpoint blockers in oncology.
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