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Heat shock proteins (HSPs) are a large family of molecular chaperones, which have

shown to be implicated in various hallmarks of cancer such as resistance to apoptosis,

invasion, angiogenesis, induction of immune tolerance, and metastasis. Several studies

reported aberrant expression of HSPs in liquid biopsies of cancer patients and this has

opened new perspectives on the use of HSPs as biomarkers of cancer. However, no

specific diagnostic, predictive, or prognostic HSP chaperone-based urine biomarker has

been yet discovered. On the other hand, divergent expression of HSPs has also been

observed in other pathologies, including neurodegenerative and cardiovascular diseases,

suggesting that new approaches should be employed for the discovery of cancer-specific

HSP biomarkers. In this study, we propose a new strategy in identifying cancer-specific

HSP-based biomarkers, where HSP networks in urine can be used to predict cancer.

By analyzing HSPs present in urine, we could predict cancer with approximately 90%

precision by machine learning approach. We aim to show that coupling the machine

learning approach and the understanding of how HSPs operate, including their functional

cycles, collaboration with andwithin networks, is effective in defining patients with cancer,

which may provide the basis for future discoveries of novel HSP-based biomarkers

of cancer.

Keywords: heat shock proteins, biomarkers, cancer, urine, machine learning

INTRODUCTION

Heat shock proteins (HSPs) are molecular chaperones that are classified into families such as
HSP70, HSP90, HSP40, HSPB, HSP110, and chaperonins (1). Members of HSP families are located
in different cellular compartments such as cytosol, nucleus, lysosome, endoplasmic reticulum, and
mitochondria (1–3). Several studies reported high levels of HSP70, HSP90, HSP40, HSPB, and
chaperonins in plasma, serum, and plasma-/urine-derived exosomes of the patients in different
types of cancer compared to healthy individuals (3–15). This has opened new perspectives on
the use of HSPs as biomarkers of cancer. However, abnormal expression of HSPs has also been
observed in several other pathologies including cardiovascular and neurodegenerative diseases (16–
18). For example, Li and his colleagues showed that high expression of HSP70 in plasma positively
correlated with heart failure (19). Therefore, new strategies should be used for the identification
of cancer-specific HSP biomarkers. Since HSPs are tightly linked to the stress response, level of
individual HSPmembers in the clinical samples may not be enough for precise prediction of cancer.
Herein, we used a machine learning approach for the identification of HSP-based urine biomarkers
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of cancer. We show that coupling machine learning approach
and the understanding of how HSPs operate in networks may be
effective in diagnosing cancer. To the best of our knowledge, this
is the first study that explores HSP secreted in urine for prediction
of cancer and the primary study to assess the relationships
between different HSP networks and cochaperones for the
discovery of clinically useful HSP-based biomarkers of cancer.

METHODS

We used publicly available mass spectrometry dataset that
contains samples from 231 donors (20). Urine samples were
derived from the patients with gastric cancer (GC) (n = 47),
esophageal cancer (EC) (n = 14), lung cancer (LC) (n = 33),
bladder cancer (BC) (n = 17), cervical cancer (CCA) (n = 25),
colorectal cancer (CRC) (n = 22), and benign lung diseases
(LDs) such as chronic obstructive pulmonary disease (COPD)
(n = 17) and pneumonia (PM) (n = 23) as well as from the
healthy volunteers (Control, CTL) (n = 33) (20). Urine samples
were centrifuged at 200,000 g for 70min and absolute protein
amounts were measured by liquid chromatography with tandem
mass spectrometry (LC-MS/MS) and presented as intensity-
based fraction of total (iFOT; displayed in 105) representing
normalized intensity for each protein (20). HSPs such as HSP70,
HSP90, HSP40, HSP27, HSP110, chaperonins, and cochaperones
were included in the analysis (Supplementary Table 1). Proteins
that have > 30% of 0.0099 (missing values) were excluded from
the analysis.

The expression level for each protein was measured for CTL
and six groups of cancers (LC, BC, CCA, CRC, EC, and GC).
Since the data were not normally distributed, nonparametric tests
were used. The procedure was divided into two stages such as the
Kruskal–Wallis (KW) test for all the proteins followed by a post-
hoc Dunn’s test using CTL as reference (21). Bonferroni multiple
comparison test (MCT) correction in its multistep variant,
known as Holm–Bonferroni correction, was also used (22).

The cancer prediction model was trained on HSP and
their cochaperones to isolate their effects in cancer prediction.
Taking into account that HSPs are located in different
cellular compartments as well as exist in different forms
(constitutive/stress-inducible) and require cochaperones for their
functional cycles, while also working in networks, we introduced
into the model various combinations of simple ratios and
multiplication strategies. For example, to isolate the effect of
HSP90 homologs, we used the relationship between the level
of cytosolic HSP90 homolog to the level of mitochondrial
HSP90 homolog in a simple ratio of HSP90AA1/TRAP1,
constitutive HSP90 isoform to stress-inducible HSP90 in a
simple ratio of HSP90AB1/HSP90AA1, cochaperone level to
the HSP90α level in a simple ratio of FKBP4/HSP90AA1, etc.
(Supplementary Table 2). As a result, a cancer prediction model
was created using XGBoost with a tree booster. A binary
classification model was built to discriminate the cancer patients
(LC, BC, CCA, CRC, EC, and GC) from the non-cancer group
(LD and CTL). The performance of the method was evaluated
through 10-fold stratified cross-validation. By splitting the data

into 10-fold, iteratively training in 9-fold and testing on the
remaining fold, we mimic the effect of 10 distinct datasets. This
enables us to estimate the generalization error of our model
and prevent overfitting, therefore ensuring that the model would
generalize well to new data. Bayesian optimization was used to
tune hyperparameters. We computed features importance using
the gain metric, which measures the loss reduction of adding
a split with that feature. Let ξl be the set of features at the lth

step tuning:

1. Start the first iteration with all the features (ξ1).

a. Initialize the Bayesian optimization:

i. Randomly, select n1 points {φ1, . . . , φn1} located within
user defined boundaries:

1. Train with hyperparameter set φi and evaluate
the model using K-fold cross-validation with log-
loss.

b. Perform the Bayesian optimization:

i. Sequentially, select n2 points:

1. φj is the point that maximizes the upper
confidence bound of the posterior distribution
of the Gaussian process by given the data points
{φ1, . . . , φj−1} for j > n1.

c. Of the n1 + n2 combinations tried, select the set of
hyperparameters that minimize the log-loss such that 21 =

argmin{φ1 , ..., φn1+n2 }
log loss.

d. For each of theK models with parameters21 trained in the
K-fold cross-validation, extract the feature importance and
then compute the average for each feature.

e. Remove all the features whose importance is equal to
the minimum.

2. For iteration l:

a. Initialize the Bayesian optimization and randomly select n1
new points.

b. Probe all {21, . . . , 2l−1} the points.
c. Perform the Bayesian optimization by sequentially

selecting n2 points.
d. Select 2l = argmin{φ1 , ..., φn1+n2+l− 1}

e. Perform feature selection
f. Stop if there is only one feature left or all the features have

the same importance, otherwise, continue

3. Stop when reach zero feature.
4. Select ξk, 2k corresponding to the minimum log loss across

all the iterations.

RESULTS

Heat shock proteins and cochaperones including HSP90AB1,
TRAP1, FKBP4, HSPA9, HSPB5, CCT1, and CCT5 were
identified as differentially expressed proteins (Table 1). CCT1,
CCT5, and FKBP4 showed significantly lower expression in the
cancer patients compared to the healthy volunteers, whereas
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TABLE 1 | Differentially expressed HSPs and cochaperones in the urine of the cancer patients compared to healthy volunteers by Dunn’s test with Holm–Bonferroni

correction.

Cancer

type

CCT1 CCT5 FKBP4 HSPB5 HSP90AB1 HSPA9 TRAP1

Test

statistic

p-value Test

statistic

p-value Test

statistic

p-value Test

statistic

p-value Test

statistic

p-value Test

statistic

p-value Test

statistic

p-value

LC −3.6 1.69E-03 −4.1 2.41E-04 −5.0 4.04E-06 0.25 1.00 −2.2 0.119 4.3 1.02E-04 3.5 2.28E-03

BC −1.9 0.125 −2.9 1.02E-02 −4.1 1.36E-04 −0.56 1.00 0.61 1.00 4.3 8.80E-05 3.5 2.76E-03

CCA −3.9 5.92E-04 −3.4 2.37E-03 −2.7 1.19E-02 2.7 4.07E-02 −0.68 1.00 1.9 7.84E-02 2.8 1.70E-02

CRC −3.4 2.47E-03 −3.8 6.56E-04 −4.3 8.05E-05 −1.9 0.278 −2.7 3.77E-02 2.1 7.84E-02 1.9 0.119

EC −2.8 1.53E-02 −2.3 4.77E-02 −0.84 0.402 −1.1 1.00 0.58 1.00 3.1 7.18E-03 3.3 3.69E-03

GC −1.4 0.164 −1.2 0.216 −3.4 1.91E-03 0.76 1.00 −2.7 3.77E-02 2.2 7.27E-02 3.4E-02 0.973

LC, lung cancer; BC, bladder cancer; CCA, cervical cancer; CRC, colorectal cancer; EC, esophageal cancer; GC, gastric cancer; HSPs, heat shock proteins.

HSPA9 and TRAP1 showed a significantly higher expression
in patients with cancer compared to the control group for
the most cancer types. HSPB5 showed significantly higher
expression only in the CCA patients compared to the healthy
volunteers (Table 1). HSP90AB1 showed a significantly lower
expression in the patients with GC and CRC compared to CTL
(Table 1).

Remarkably, the cancer predictionmodel trained onHSPs and
cochaperones resulted in 90% precision and a balanced accuracy
of 84.61% (accuracy of 87.041%) averaged over the 10 cross-
validation test folds (Figure 1A). In order to identify proteins,
which positively contributed to the cancer prediction model, we
have implemented the Shapely Addictive Explanations (SHAP)
approach. Low levels of HSP90AB1/TRAP1, HSPA6/TRAP1,
and HSP90AA1/TRAP1 in urine increase the probability of the
patient having cancer, whereas low levels of CCT2/HSP90AB1
and HSPB1∗HSPA9 in urine are strongly associated with non-
cancer groups (Figure 1C). In order to assess the differences in
the level of HSPs across different types of cancer, we constructed
a heatmap, representing the z-score of HSPs for each patient
(Figure 1B). HSP90AA1 and HSPD1 showed to be highly
expressed in BC; HSPB1 andHSBP5 in CCA; ST13, DNAJA1, and
HSPA8 in LC; FKBP4 and HSPA8 in EC (Figure 1B). HSPA2 and
HSPA4 did not seem to be affected in different types of cancer
(Figure 1B).

Higher levels of both constitutive and stress-inducible HSP90
isoforms in relationship tomitochondrial HSP90 isoform TRAP1
are associated with benign lung diseases such as PM and
COPD, whereas a higher level of TRAP1 to HSP90AA1 and
HSP90AB1 is associated with lung cancer (Figures 1D,E). In
contrast to patients with PM, a low level of CCT5 and high
levels of HSPA9∗TRAP1 and CCTs/HSP90AA1 are associated
with LC (Figure 1E; Supplementary Figure 1A). Furthermore,
lower expression of HSP90AA1/TRAP1 and HSP90AB1/TRAP1
positively contributed to LC compared to higher expression
of HSP90AA1/TRAP1 and HSP90AB1/TRAP1 in the COPD
patients (Figure 1E; Supplementary Figure 1B). Overall, urine
samples contain cancer-specific HSP signatures. Therefore,
these HSP signatures may be used to distinguish cancer from
noncancer patients and patients with benign disease as well as
they may be further used to identify specific types of cancer;
however, this requires further investigation.

DISCUSSION

Heat shock proteins are ubiquitously expressed as molecular
chaperones, which support tumor growth and survival (23).
Cells possess various families of HSPs with distinct functions,
often working in collaboration to perform proper folding and
degradation of client proteins (24, 25). Several studies reported
altered expression of HSPs in malignant cells compared to their
normal cell counterparts (3–15). Furthermore, overexpression
of HSPs has been linked with tumor aggressiveness, metastasis,
and poor prognosis (2, 24, 26–29). In this study, we aimed at
exploring the potential of HSPs in urine as biomarkers of cancer.
We showed that HSP chaperone networks can be used to predict
cancer with ∼90% precision in 10-fold cross-validation. We
highlighted that understanding of HSP chaperone system and the
notion of how HSPs operate are critical for prediction of cancer.

Our approach started with an identification of differentially
expressed HSP proteins in different types of cancer compared to
healthy volunteers. We showed that different HSP members are
up- and down-regulated in different types of cancer, suggesting
that a specific type of cancer has distinct HSP signatures
(Table 1). We then developed a cancer prediction model, which
reflected the way how HSP chaperone networks work. The
model is based on the notion that HSP networks work in
collaboration with each other as well as with cochaperones
and that there also may be some shift in the proportion of
different HSP homologs in the cancer patients compared to the
healthy individuals and the benign patients, leading to all of
these changes being captured by machine learning approach.
Using this approach, we could predict cancer with 90% precision
(Figure 1A). Furthermore, our cancer prediction model could
discriminate between various types of cancer based on the
expression of distinct HSPs in urine samples, which may help in
diagnosing specific subtypes of cancer among a heterogeneous
group of tumors, such as lymphoma or breast cancer. In this
regard, Klimczak et al. (30) used The Cancer Genome Atlas
and KM plotter databases to show that expression of six HSPs
including HSPA2, DNAJC20, HSP90AA1, CCT1, CCT2, and
CCT6A can be used to predict prognosis in patients with breast
cancer (30). Furthermore, upregulation of distinct HSPs was
associated with either estrogen receptor-positive, progesterone
receptor-positive, or human epidermal growth factor receptor
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FIGURE 1 | HSPs in urine as biomarkers of cancer. (A) Confusion matrix for the cancer prediction model. (B) Heatmap of z-score normalized HSP expression levels in

the urine of the patients with different types of cancer. Values were clipped to the 1st percentile of the z-scores and to the 97th percentile to minimize the effect of

outliers. (C) HSPs and cochaperones in cancer and non-cancer patients. Negative values indicate a positive contribution of specific proteins to the probability that a

patient has cancer. Positive SHAP values indicate that the corresponding values of the proteins are associated with lower chances of the patient having cancer. For

simplicity, we presented HSPA2+HSPA6+HSPA8+HSPA12+HSPA5 as “HSP70” and DNAJA1+DNAJA2+DNAJC11+DNAJB1+DNAJC5+DNAJC13 as “DNAJ”.

(D,E) SHAP summary plots for the cancer prediction model. HSPs in urine were used to identify the critical proteins and the protein ratios in patients with benign lung

disease (LD) such as PM and COPD (D) and LC patients (E). HSPs, heat shock proteins; PM, pneumonia; COPD, chronic obstructive pulmonary disease; LC, lung

cancer; SHAP, Shapely Addictive Explanations.

2-positive breast cancers (30). Therefore, the identification of
type-specific HSP signatures in a heterogeneous group of tumors
warrants further investigation.

It is also interesting to see the changes in HSPs between
patients with benign lung disease and lung cancer patients

(Figures 1D,E). Patients with lung disease have a higher level
of cytoplasmic HSP90 homologs (HSP90AA1 and HSP90AB1)
in relationship to mitochondrial HSP90 homolog (TRAP1),
whereas patients with lung cancer have a higher level of TRAP1 to
the level of cytoplasmic HSP90 (Figures 1D,E). Furthermore, the
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level of HSP70 to its cochaperone DNAJ/HSP40 does not seem
to change between benign lung disease and cancer in contrast
with a higher level of ST13 to DNAJ associated with lung cancer
(Figures 1D,E). During the HSP70 functional cycle, ST13, also
known as Hsc70-interacting protein (Hip), preferentially binds
to the ADP-bound state of HSP70–peptide complexes, slowing
the release of ADP from HSP70-nucleotide binding domain,
thus, promoting degradation of HSP70 clients (24, 31, 32). This
may suggest that HSP70 is predominantly “freezed” in its high-
affinity ADP state in lung cancer patients and that the role of
Hip should be further investigated in the context of cancer.
The levels of CCTs also seem to influence the shift from lung
disease to lung cancer (Figures 1D,E; Supplementary Figure 1).
This provides a good example of the specific HSPs that made
a positive contribution to shifting a balance from the benign
disease state to cancer. Further understanding of HSP changes
between benign disease and cancer may potentially provide
clues for the discoveries of novel HSP-based biomarkers and
therapeutic targets.

In conclusion, coupling the machine learning approach and
understanding of how HSPs operate, including their functional
cycles as well as collaboration with and within networks, are
certainly effective in identifying specific types of cancer, which
may form the basis for future discoveries of novel HSP-based
biomarkers of cancer.

CONCLUSION

Heat shock proteins are molecular chaperones that are aberrantly
expressed in cancer patients and shown to be implicated in the
various stages of cancer development. We hypothesized that
HSPs in urine can be used to predict cancer. We show that
HSPs can be used to identify cancer patients with nearly 90%
precision based on HSP signatures in urine. We highlighted

that understanding of HSP networks and how HSP operates in
cells are crucial for the identification of HSP-based biomarkers
of cancer. Further understanding of the HSP chaperone system
may help in the development of effective type-specific biomarkers
of cancer.
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Stołtny P, et al. Concentrations of antibodies against heat shock protein 27
in the sera of women with ovarian carcinoma. Int J Gynecol Cancer. (2009)
19:1516–20. doi: 10.1111/IGC.0b013e3181bf425b

10. Oka M, Sato S, Soda H, Fukuda M, Kawabata S, Nakatomi K, et
al. Autoantibody to heat shock protein Hsp40 in sera of lung cancer
patients. Jpn J Cancer Res. (2001) 92:316–20. doi: 10.1111/j.1349-7006.2001.
tb01097.x

11. Bodzek P, Partyka R, Damasiewicz-Bodzek A. Antibodies against Hsp60 and
Hsp65 in the sera of women with ovarian cancer. J Ovarian Res. (2014)
7:30. doi: 10.1186/1757-2215-7-30

12. Hamelin C, Cornut E, Poirier F, Pons S, Beaulieu C, Charrier P,
et al. Identification and verification of heat shock protein 60 as a
potential serum marker for colorectal cancer. FEBS J. (2011) 278:4845–
59. doi: 10.1111/j.1742-4658.2011.08385.x

Frontiers in Medicine | www.frontiersin.org 5 October 2021 | Volume 8 | Article 7434769

https://www.frontiersin.org/articles/10.3389/fmed.2021.743476/full#supplementary-material
https://doi.org/10.1007/s12192-008-0068-7
https://doi.org/10.1016/j.tranon.2020.100995
https://doi.org/10.1158/1055-9965.EPI-06-0005
https://doi.org/10.3233/CBM-181683
https://doi.org/10.1620/tjem.236.97
https://doi.org/10.3109/13547500903261347
https://doi.org/10.22034/APJCP.2017.18.3.599
https://doi.org/10.1111/IGC.0b013e3181bf425b
https://doi.org/10.1111/j.1349-7006.2001.tb01097.x
https://doi.org/10.1186/1757-2215-7-30
https://doi.org/10.1111/j.1742-4658.2011.08385.x
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Albakova et al. HSPs in Urine as Cancer Biomarkers

13. Campanella C, Rappa F, Scium,è C., Marino Gammazza A, Barone R,
Bucchieri F, et al. Heat shock protein 60 levels in tissue and circulating
exosomes in human large bowel cancer before and after ablative surgery.
Cancer. (2015) 121:3230–9. doi: 10.1002/cncr.29499

14. Wyciszkiewicz A, Kalinowska-Łyszczarz A, Nowakowski B, Kazmierczak
K, Osztynowicz K, Michalak S. Expression of small heat shock proteins
in exosomes from patients with gynecologic cancers. Sci Rep. (2019)
9:9817. doi: 10.1038/s41598-019-46221-9

15. Chanteloup G, Cordonnier M, Isambert N, Bertaut A, Hervieu A,
Hennequin A, et al. Monitoring HSP70 exosomes in cancer patients’
follow up: a clinical prospective pilot study. J Extracell Vesicles. (2020)
9:1766192. doi: 10.1080/20013078.2020.1766192

16. Campanella C, Pace A, Caruso Bavisotto C, Marzullo P, Marino Gammazza A,
Buscemi S, et al. Heat shock proteins in Alzheimer’s disease: role and targeting.
Int J Mol Sci. (2018) 19:2603. doi: 10.3390/ijms19092603

17. Wojsiat J, Prandelli C, Laskowska-Kaszub K, Martín-Requero A, Wojda
U. Oxidative stress and aberrant cell cycle in Alzheimer’s disease
lymphocytes: diagnostic prospects. J Alzheimer’s Dis. (2015) 46:329–
50. doi: 10.3233/JAD-141977

18. Kilic A, Mandal K. Heat shock proteins: pathogenic role in atherosclerosis
and potential therapeutic implications. Autoimmune Dis. (2012)
2012:502813. doi: 10.1155/2012/502813

19. Li Z, Song Y, Xing R, Yu H, Zhang Y, Li Z, et al. Heat shock protein 70 acts
as a potential biomarker for early diagnosis of heart failure. PLoS ONE. (2013)
8:e67964. doi: 10.1371/journal.pone.0067964

20. Zhang C, LengW, Sun C, Lu T, Chen Z,Men X, et al. Urine proteome profiling
predicts lung cancer from control cases and other tumors. EBioMedicine.

(2018) 30:120–8. doi: 10.1016/j.ebiom.2018.03.009
21. Dolgun A, Demirhan H. Performance of nonparametric multiple

comparison tests under heteroscedasticity, dependency, and
skewed error distribution. Commun Stat Simul Comput. (2017)
46:5166–83. doi: 10.1080/03610918.2016.1146761

22. Blakesley RE, Mazumdar S, Dew MA, Houck PR, Tang G,
Reynolds, et al. Comparisons of methods for multiple hypothesis
testing in neuropsychological research. Neuropsychology. (2009)
23:255–64. doi: 10.1037/a0012850

23. Calderwood SK, Gong J. Heat shock proteins promote cancer: it’s a protection
racket. Trends Biochem Sci. (2016) 41:311–23. doi: 10.1016/j.tibs.2016.01.003

24. Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI,
Sapozhnikov AM. HSP70 multi-functionality in cancer. Cells. (2020)
9:587. doi: 10.3390/cells9030587

25. Murphy ME. The HSP70 family and cancer. Carcinogenesis. (2013) 34:1181–
8. doi: 10.1093/carcin/bgt111

26. Albakova Z, Mangasarova Y, Sapozhnikov A. Heat shock
proteins in lymphoma immunotherapy. Front Immunol. (2021)
12:660085. doi: 10.3389/fimmu.2021.660085

27. Kluger HM, Chelouche Lev D, Kluger Y, McCarthy MM, Kiriakova G, Camp
RL, et al. Using a xenograft model of human breast cancer metastasis to
find genes associated with clinically aggressive disease. Cancer Res. (2005)
65:5578. doi: 10.1158/0008-5472.CAN-05-0108

28. Balogi Z, Multhoff G, Jensen TK, Lloyd-Evans E, Yamashima T,
Jäättelä M, et al. Hsp70 interactions with membrane lipids regulate
cellular functions in health and disease. Prog Lipid Res. (2019)
74:18–30. doi: 10.1016/j.plipres.2019.01.004

29. Juhasz K, Lipp, A.-M., Nimmervoll B, Sonnleitner A, Hesse J, et al. The
complex function of hsp70 in metastatic cancer. Cancers. (2013) 6:42–
66. doi: 10.3390/cancers6010042

30. Klimczak M, Biecek P, Zylicz A, Zylicz M. Heat shock proteins create a
signature to predict the clinical outcome in breast cancer. Sci Rep. (2019)
9:7507. doi: 10.1038/s41598-019-43556-1

31. Li Z, Hartl FU, Bracher A. Structure and function of Hip, an attenuator
of the Hsp70 chaperone cycle. Nat Struct Mol Biol. (2013) 20:929–
35. doi: 10.1038/nsmb.2608

32. Rousaki A, Miyata Y, Jinwal UK, Dickey CA, Gestwicki JE, Zuiderweg
ER. Allosteric drugs: the interaction of antitumor compound
MKT-077 with human Hsp70 chaperones. J Mol Biol. (2011)
411:614–32. doi: 10.1016/j.jmb.2011.06.003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Albakova, Norinho, Mangasarova and Sapozhnikov. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Medicine | www.frontiersin.org 6 October 2021 | Volume 8 | Article 74347610

https://doi.org/10.1002/cncr.29499
https://doi.org/10.1038/s41598-019-46221-9
https://doi.org/10.1080/20013078.2020.1766192
https://doi.org/10.3390/ijms19092603
https://doi.org/10.3233/JAD-141977
https://doi.org/10.1155/2012/502813
https://doi.org/10.1371/journal.pone.0067964
https://doi.org/10.1016/j.ebiom.2018.03.009
https://doi.org/10.1080/03610918.2016.1146761
https://doi.org/10.1037/a0012850
https://doi.org/10.1016/j.tibs.2016.01.003
https://doi.org/10.3390/cells9030587
https://doi.org/10.1093/carcin/bgt111
https://doi.org/10.3389/fimmu.2021.660085
https://doi.org/10.1158/0008-5472.CAN-05-0108
https://doi.org/10.1016/j.plipres.2019.01.004
https://doi.org/10.3390/cancers6010042
https://doi.org/10.1038/s41598-019-43556-1
https://doi.org/10.1038/nsmb.2608
https://doi.org/10.1016/j.jmb.2011.06.003~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


What Makes Artificial Intelligence
Exceptional in Health Technology
Assessment?
Jean-Christophe Bélisle-Pipon1*, Vincent Couture2, Marie-Christine Roy3,
Isabelle Ganache4, Mireille Goetghebeur4 and I. Glenn Cohen5

1Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada, 2Faculty of Nursing, Laval University, Quebec, QC,
Canada, 3École de Santé Publique, Université de Montréal, Québec, QC, Canada, 4Institut National D’Excellence en Santé et en
Services Sociaux (INESSS), Montréal, Québec, QC, Canada, 5Harvard Law School, Cambridge, MA, United States

The application of artificial intelligence (AI) may revolutionize the healthcare system, leading
to enhance efficiency by automatizing routine tasks and decreasing health-related costs,
broadening access to healthcare delivery, targeting more precisely patient needs, and
assisting clinicians in their decision-making. For these benefits to materialize, governments
and health authorities must regulate AI, and conduct appropriate health technology
assessment (HTA). Many authors have highlighted that AI health technologies (AIHT)
challenge traditional evaluation and regulatory processes. To inform and support HTA
organizations and regulators in adapting their processes to AIHTs, we conducted a
systematic review of the literature on the challenges posed by AIHTs in HTA and
health regulation. Our research question was: What makes artificial intelligence
exceptional in HTA? The current body of literature appears to portray AIHTs as being
exceptional to HTA. This exceptionalism is expressed along 5 dimensions: 1) AIHT’s
distinctive features; 2) their systemic impacts on health care and the health sector; 3) the
increased expectations towards AI in health; 4) the new ethical, social and legal challenges
that arise from deploying AI in the health sector; and 5) the new evaluative constraints that
AI poses to HTA. Thus, AIHTs are perceived as exceptional because of their technological
characteristics and potential impacts on society at large. As AI implementation by
governments and health organizations carries risks of generating new, and amplifying
existing, challenges, there are strong arguments for taking into consideration the
exceptional aspects of AIHTs, especially as their impacts on the healthcare system will
be far greater than that of drugs and medical devices. As AIHTs begin to be increasingly
introduced into the health care sector, there is a window of opportunity for HTA agencies
and scholars to consider AIHTs’ exceptionalism and to work towards only deploying
clinically, economically, socially acceptable AIHTs in the health care system.
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INTRODUCTION

Health technology assessment (HTA) is key to the introduction of
artificial intelligence (AI) applications in health. HTA generally
requires a systematic examination of health technologies’ features,
effects, and/or impacts allows for the appraisal of clinical,
economic, social, organizational and ethical implications (Banta
and Jonsson 2009; Kristensen et al., 2017; O’Rourke et al., 2020).
While regulatory assessment often is conducted by supranational
(e.g., European Medicines Agency, EMA) and national (US FDA,
Health Canada) regulators, HTA is mostly conducted at regional,
provincial or state-based level and represents the main gateway for
a health technology (e.g., drugs, vaccines, medical devices) to be
widely administered to patients (Vreman et al., 2020; Wang et al.,
2018). A health technology that is positively evaluated by a health
regulator or an HTA agency signals significant support for its use,
causing clinicians, patients, hospital administrators and third-party
payers (such as public or private health insurers) to consider
deploying and reimbursing this technology in their health care
system or setting (Allen et al., 2017;Wild, Stricka, and Patera 2017).
However, AI is not just another health technology, and many
commentators view its assessment as complex and particularly
challenging (Harwich and Laycock 2018; Mason et al., 2018; Shaw
et al., 2019). For instance, AI health technologies (AIHT)
implementation within the healthcare system is often done in a
fairly short timeframe after their development (months rather than
years as for drugs and vaccines), with the result that there is not yet
as much evidence of their effectiveness and impacts as would be
required by traditional HTA for many other health technologies
(Babic et al., 2019). Moreover, AI systems deployed within the
healthcare system continue to learn and evolve over time based on
the data they process (Reddy 2018); this is in contrast, for example,
with drugs whose formulation, dosage and routes of administration
are regulated, and to be modified for use in clinical context and
service delivery, often require new approval by HTA. In addition,
AI systems require to be trained on and use vast amounts of
(potentially sensitive) data (about patients, research participants,
clinicians, managers, health care systems, etc.) that raise issues of
privacy, (cyber)security, informed consent, data stewardship and
control over data usages (Wang and Preininger 2019; Dash et al.,
2019; Sun and Medaglia 2019; Bartoletti 2019).

The application of AI in health is expected to transform the way
we diagnose, prevent and treat as well as the way we interact with
technologies (Patel et al., 2009; Hamet and Tremblay 2017; The
Lancet 2017). This may advance healthcare by enhancing efficiency
by automatizing routine tasks and decreasing health-related costs
(Shafqat et al., 2020), broadening access to healthcare delivery
(Harwich and Laycock 2018), targeting more precisely patient
needs (Jameson and Longo 2015), and assisting clinicians in
their decision-making (Lysaght et al., 2019; Smith 2020). For
these benefits to materialize, governments and health authorities
must efficiently regulate AI, and conduct appropriate health
technology assessment (HTA). However, the very definition of
AI in health is still the subject of discussion, debate and negotiation
among both researchers and government authorities. AI in the
health sector can be broadly defined as a field concerned with the
development of algorithms and systems seeking to reproduce

human cognitive functions, such as learning and problem-
solving (Tang et al., 2018) with (current and anticipated) uses
that include (without being limited to) supporting medical
decision-making (Ahmed et al., 2020), pharmacovigilance
(Leyens et al., 2017), and prediction and diagnosis
(Noorbakhsh-Sabet et al., 2019). In fact, some AIHTs have
already been approved by the FDA, such as AI-powered devices
to diagnose eye diseases (Samuel and Gemma Derrick 2020). Risks
and harms of AI in healthcare are described at all levels, from the
clinical encounter (e.g., adverse effects of an AIHT that can spread
to entire patient populations, inexplicability of anAI-basedmedical
decision, issues with assigning responsibility for adverse events,
and patients’ loss of trust in their provider) to society as a whole
(e.g., furthering inequalities due to algorithm training on biased
data) (Sparrow and Hatherley 2019). Interestingly, one indication
that current HTA processes are not yet well adapted is the fact that
a significant number of AIHTs are benefiting from regulatory fast-
track and do not undergo HTA review, a situation that is
particularly noticeable in the United States (Benjamens et al.,
2020; Gerke et al., 2020; Tadavarthi et al., 2020).

Even though AI solutions offer great potential for improving
efficiency, health organizations are confrontedwith a vast array of AI
solutions that have not yet been subject to extensiveHTA (Love-Koh
et al., 2018). Moreover, many authors have highlighted that these
new technologies challenge traditional evaluation processes as well
as the assessment of the ethical, legal and social implications (ELSI)
that AIHTs may entail (He et al., 2019; Racine et al., 2019; Shaw
et al., 2019; Ahmad et al., 2020; Benjamens et al., 2020), thus further
impeding the already insufficient evaluative processes of AI health
technologies (AIHTs). To inform and support HTAorganizations in
adapting their evaluation processes to AIHTs, we conducted a
systematic review of the literature on the ethical, legal and social
challenges posed by AIHTs in HTA. The present article was guided
by this question: what makes artificial intelligence exceptional in
health technology assessment? To our knowledge, this is the first
review on this topic. After describing the methodology of the review,
we will provide a comprehensive overview of AI-specific challenges
that need to be considered to properly address AIHTs’ intrinsic and
contextual peculiarities in the context of HTA. This will lead to point
possible explanations of this exceptionalism and solutions for HTA.
Overall, this review is intended to build insights and awareness and
allow to inform HTA practices.

METHODOLOGY

To map the exceptional challenges posed by AIHTs in HTA, we
conducted a literature search for articles indexed in PubMed,
Embase, Journals@Ovid, Web of Science and the International
HTA database. Our review is part of a larger literature review
addressing the full range of ethical, legal, social and policy
implications that impact HTA processes for AIHTs. Therefore,
the search strategy focused on three concepts: AI, HTA and ELSI.
Table 1 presents the search equations by theme for each reviewed
database. In terms of definition of AI, we sought to remain
agnostic and did not use specific definitions of AI. Instead, we
used an inductive approach using a series of keywords (see
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Table 1) to identify and collect articles that mention using or
discussing AIHTs. The construction of the research strategy and
the choice of equations was supported by librarians.

The initial search (as of December 27, 2020) returned a total of
366 articles, which were uploaded in Covidence. JCBP and VC
conducted a careful analysis of the titles and abstracts that lead to

TABLE 1 | Search strategy.

Concepts Terms

AI PB � [(Artificial Intelligence) OR (Machine Learning) OR (Deep Learning) OR (Natural Language Processing) OR (Chatbot*)
OR (Carebot*) OR (Big Data)]
OR
[Artificial intelligence OR Big Data (MeSH Terms)]

EM; OJ; WoS � (Artificial Intelligence) OR (Machine Learning) OR (Deep Learning) OR (Natural Language Processing) OR
(Chatbot*) OR (Carebot*) OR (Big Data)
iHTAd � (Artificial Intelligence)
AND

HTA PB � (Health Technology Assessment) OR (HTA) OR (Technology Assessment)
OR
[Technology Assessment, Biomedical (MeSH Terms)]
EM; OJ; WoS � (Health Technology Assessment) OR (HTA) OR (Technology Assessment)
iHTAd � [Empty]
AND

ELSI PB � (ESLI) OR (Ethic*) OR (Bioethic*) OR (Moral*) OR (Legal*) OR (Law) OR (Societ*) OR (Polic*) OR (Governance) OR (Trust)
OR (Mistrust) OR (Jurisprudence) OR (Public Policy)
OR
(Bioethics OR Ethics OR Jurisprudence OR “Public Policy” [MeSH Terms])
EM;OJ;WoS � (ESLI) OR (Ethic*) OR (Bioethic*) OR (Moral*) OR (Legal*) OR (Law) OR (Societ*) OR (Polic*) OR (Governance)
OR (Trust) OR (Mistrust) OR (Jurisprudence) OR (Public Policy)
iHTAd � [Empty]

Legend. PB � PubMed; EM � Embase; OJ � Journals@Ovid Full Text; Databasel; WoS � Web of Science; iHTAd � International HTA.

TABLE 2 | Selection criteria.

Specifics

Date 2016–2020 (5 years)
Language English; French
Study design Descriptive; Experimental; Opinion/Perspective; Empirical Research; Literature Review
Type of publication Original research; Commentary; Editorial

FIGURE 1 | PRISMA Flowchart. AI � artificial intelligence; ELSI � ethical, legal, and social implications; HTA � health technology assessment.
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excluding 307 articles, and JCBP conducted the subsequent
analysis of main texts allowed to select 29 articles for review
(see Table 2 for selection criteria). In case of doubt or ambiguity,
articles were discussed with MCR to decide on inclusion or
exclusion. In addition to this sample, in January 2021, a
snowball process helped identify 17 additional papers that
fitted the selection criteria. Figure 1 presents our review
flowchart following PRISMA’s guidelines (Moher et al., 2009).
Documents were thematically analyzed (Braun and Clarke 2006)
with the help of NVivo 12. In the present article, we focus on the
theme “exceptionalism of AI in HTA”. Additional themes will be
published in subsequent papers.

RESULTS

What follows is a presentation of the key considerations that have
been raised in the reviewed literature regarding AI’s peculiarities,
and the challenges they raise, in the context of HTA. Twenty eight
articles from the total sample discussed these peculiarities and
challenges, which are presented as exceptional features of AI by
authors. The “exceptionalism” of AIHTs can be broken down into
five main aspects (see Figure 2): 1) AIHT’s distinctive features; 2)
their systemic impacts on health care and the health sector; 3) the

increased expectations towards AI in health; 4) the new ethical,
social and legal challenges that arise from deploying AI in the
health sector; and 5) the new evaluative constraints that AI poses
to HTA. Table 3 presents a summary of the key considerations
for each aspect.

Artificial Intelligence Health Technologies’
Distinctive Features FromTraditional Health
Technologies
AIHT’s exceptionalism is associated with the technology’s
definitional and foundational nature. Distinctive features
include AIHTs’ ambiguous definition; the fact that AIHTs
may or may not continue to evolve; and the need to keep
AIHTs up to date to reap the benefits and avoid the risks
of harms.

Ambiguous Definition of Artificial Intelligence Health
Technologies
According to Gerke et al. (2020), AIHTs are different from
traditional health technologies for three reasons: their capacity
to continuously learn, their potential for ubiquity throughout the
health care system, and the opaqueness of their
recommendations. However, AIHTs suffer from ambiguities

FIGURE 2 | The five main aspects of artificial intelligence health technologies’ exceptionalism.
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TABLE 3 | A summary of the five main aspects of AIHT’s exceptionalism.

Key considerations
(In italic

key sub-considerations)

Examples from the
reviewed sample

1. AIHT’s Distinctive Features from
Traditional Health Technologies

AIHTs are different from traditional health technologies because
of their capacity to continuously learn, their potential for ubiquity
throughout the health care system, the opaqueness of their
recommendations and the ambiguity of their definition
(Ambiguous Definition of AIHTs)

Locked AIHTs could become outdated potentially from the
moment they are prevented from evolving. Thus, locking AIHT
may cause it to become outdated and increase chance of
contextual bias in real-life contexts

Locked algorithms will always yield the same result when it is fed
by the same data. They are not per se safer and may require new
regulatory approvals, though they are easier to assess than
unlocked algorithms. Unlocked or adaptive algorithms improve
over time, which demands that their safety and security must be
continually re-evaluated. ‘Lifecycle’ regulation seems to be key in
addressing these concerns, but for the most part burden lies on
the regulators to adjusted their assessment of an AIHT in light of
the evolving evidence, which is very resource intensive and for
which HTA agencies are not yet equipped to conduct. (Locked
and Unlocked AIHTs)

Algorithms will need to be regularly updated (at high or even
prohibitive prices) due to advances in medical knowledge and
access to new datasets or at the risk of their usage becoming
malpractice. Updating or replacing an AIHT will involve additional
post-acquisition costs to the clinics and hospitals that purchased
them. The difficulty of managing the consequences of an outdated
algorithm outweighs those of a drug or other health product that
must be withdrawn from the market (The Update Problem)

2. Systemic Impacts on Health AI may have systemic effects that can be felt across an
entire health care system, or across health care systems in
several jurisdictions, initiating extensive and lasting
transformations that are likely to affect all actors working in,
using or financing the health system. In addition, AIHTs can
have systemic real-world consequences for patients and
non-ill or non-frequent users of the health care system.
However, AI will not address everything that has to do with
the overall well-being of people (Disruptive for Both the
Healthcare Sector and for Individuals)

AI’s role in health surveillance, care optimization, prevention,
public health, and telemedicine will cause AIHTs to affect non-ill
or non-frequent users of the health care system

An AIHT trained on medico-administrative data in a context
where physicians have often modified their billing to enter the
highest paying codes for clinical procedures would cause the
algorithm to infer that these codes represent the usual, standard,
or common practice to be recommended, thus introducing a
bias in the algorithm and leading to a cascade of non-cost
effective recommendations

Mistakes due to AIHTs used in clinical care and within the health
care system have the potential to widely affect the patient
population, suggesting that it is all the more necessary that all
algorithms should submitted to extensive scrutiny. In addition,
“tropic effects” (i.e., code embedded propensity towards certain
behaviors or effects) may increase the risk of inappropriate
treatment and care, and may result in importing AIHT-fueled
standards and practices that are exogenous and non-
idiosyncratic to local organizations. Furthermore, the large-scale
systematization of certain behaviors may end up resulting in
significant costs and harms (Harms, Tropism and Framing Effect)

Some authors suggest AIHTs should be regarded as a “health
system transformation lever” for improving health care and a key
enabler of learning healthcare systems (LHS) (AI as a
Transformation Lever for the Health Sector)

3. Increased Expectations The “automation bias” describes the belief that an AI-generated
outcome is inherently better than a human one. This is reinforced
by the technological imperative, i.e., the pressure to use a new
technology just because it exists (Belief that Since a Result
Comes from AI it is Better)

These high expectations toward AIHTs form the basis of the
inevitability of AI in health. However, the concept of AI chasm
refers to the phenomenon that while AIHTs are very promising,

The adoption and impact of AIHTs are unlikely to be uniform or to
improve performance in all health care contexts because of the
technology’s distinctive features, its systemic effects on health
care organizations and the human biases associated with the
use of these technologies. AIHTs can significantly affect and
highlight particularities of workflow and design of individual
hospital systems, causing them not to respond in an intended
way. Therefore, AIHTs represent great challenges for deciding
whether marketing authorization is justified

(Continued on following page)
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with respect to their definition and purpose as there is no agreed-upon
definition that may help build an adapted and efficient policy and
regulatory infrastructure (Pesapane et al., 2018). The drawback of AI
exceptional features and of the high variability that exists among AI
systems is that it poses definitional problems that affect AIHTs’
regulation and slow down their deployment in the healthcare
sector (Love-Koh et al., 2018; Haverinen et al., 2019). Compared
with traditional health technologies (such as drugs, vaccines and
medical devices), AIHTs are not static products and have the
capability to learn and improve over time (Parikh, Obermeyer, and
Navathe 2019; Dzobo et al., 2020). AIHTs are therefore in stark
contrast with most technologies in medicine, which are fairly

well defined and usually implemented when they are fairly well
understood.

Locked and Unlocked Artificial Intelligence Health
Technologies
Contributing to the distinctiveness of AIHTs in the health sector,
self-learning and self-adaptation propensities clash with current
regulatory frameworks and clinical practices (Alami et al., 2020;
Fenech et al., 2020). It is easier to evaluate “locked”AIHTs, which
are much more comparable to current health technologies (which
cannot by themselves evolve). Currently, the majority of FDA-
approved AIHTs have their capability to evolve locked (Dzobo

TABLE 3 | (Continued) A summary of the five main aspects of AIHT’s exceptionalism.

Key considerations
(In italic

key sub-considerations)

Examples from the
reviewed sample

very few will actually be successful once implemented in clinical
settings and can help rebalance the expectations. HTA agencies
have an important role to play here to contain this phenomenon
(Inevitability of AI in Healthcare)

AI is currently in an era of promises rather than of fulfillment of
what is expected from it. Possible consequences of this hype can
be very significant but HTA agencies and regulators have an
important role to play (Navigating the Hype)

4. New Ethical, Legal and Social
Challenges

AIHTs present new ethical, legal and social challenges in the
context of health care delivery; by calling into question the roles of
patients, HCPs and decision-makers; and by conflicting with
medicine’s ethos of transparency

Patients who compare very well with historic patient data will be
the ones benefiting the most from AIHTs, calling for caution with
regards to patient and disease heterogeneity

Key AIHT-stemmed ethical challenges in care delivery are: AI-
fostered potential bias; patient privacy protection; trust of
clinicians and the general public towards machine-led medicine;
new health inequalities (Health Care Delivery)

Practical and procedural ethical guidance for supporting HTA for
AIHTs has not yet been thoroughly defined. For instance,
distributive justice role in HTA for AIHT is not well specified

AI being unlike most other health technologies, it forces the
questioning of the very essence of humans. It also raises new
existential questions regarding the role of regulators and public
decision-makers AIHTs unparalleled autonomy intensifies ethical
and regulatory challenges (Existential Questions)

AI-stemmed existential questionning includes the reflection that
more and more clinicians are having about the proper role of
healthcare professionals and what it means to be a doctor, a
nurse, etc. And from the patients’ perspective, what it means to
be cared for by machines and to feel more and more like a
number in a vast system run by algorithms

AIHTs are often opaque, which poses serious problems for their
acceptance, regulation and implementation in the health care
system. AI’s benefits for health care will come at the price of
raising ethical issues specific to the technology (Challenging
Medical Ethics’ Ethos)

5. New Evaluative Constraints AIHTs raise new evaluative constrains at the technological level
due to the data and infrastructure required (Data-Generated
Issues)

New constraints also appear at the clinical level because of the
greater variation in AIHTs performance between the test
environment and the real-word context than those of drugs and
medical devices (Real-World Usages and Evidential Issues)

The adoption and impact of AIHTs are unlikely to be uniform or to
improve performance in all health care contexts because of the
technology’s distinctive features, its systemic effects on health
care organizations and the human biases associated with the
use of these technologies. Therefore, AIHTs represent great
challenges for deciding whether marketing authorization is
justified, and it forces to question whether marketing
authorization at the 10,000 foot level for the product is
appropriate and efficient as opposed to for more specific uses
closer to the impacted communities and the point of deliveryThis high level of complexity requires a special regulation of AIHT,

specifically adapted to its complexity (Undeveloped Regulatory
Infrastructure and Processes)
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et al., 2020; Miller, 2020). A locked algorithm will always yield
the same result when it is fed by the same data, therefore it
does not change overtime with uses. Locked algorithms are not
per se safer. They could be more harmful than “unlocked” or
“adaptive” algorithms if they end up yielding erroneous results
(based on legacy training data that are outdated), misleading
patient care or systematizing biases (Prabhu 2019). Thus, a locked
AIHT may require new regulatory approvals if during real-
world usage significant and unexpected patterns of results
are observed (i.e., stable and expected process produces
outcomes unexpected because of incorrect priors about the
data fed into an AIHT) or if it is deemed necessary to update
the algorithms to match advances in medical knowledge
(Gerke et al., 2020; Miller, 2020). There also is the issue of
when AIHT is used (or not used) on new populations that
differ from the training data, which raises questions about how
the training data upon which an AIHT was developed and
whether certain populations may be unduly excluded from
benefiting from its development and implementation.
Therefore the concept of locked may be misleading and
should not be conveyed as safer (Babic et al., 2019).
Unlocked or adaptive algorithms that improve over time is
the future according to some (Prabhu 2019) as they will
outperform humans (Dzobo et al., 2020). But some issues
are to be expected. Unlocked AIHT may change as they
process new data and yield new outcomes without the
knowledge or oversight of its users, which demands that
their safety and security must be continually re-evaluated
(Abràmoff et al., 2020). Also, unlike traditional healthcare
technologies and locked algorithms, unlocked AIHTs are more
vulnerable to cyber-attacks and misuse that can cause the
algorithm to generate problematic and highly damaging
outputs (Babic et al., 2019; Miller, 2020).

The Update Problem
Another consideration that helps AIHT qualify for being an
anomalous technology in the health sector is that the
algorithms will need to be regularly updated (at high or even
prohibitive prices) due to advances in medical knowledge and
access to new datasets or at the risk of their usage becoming
malpractice. To allow a rigorous analysis of the safety, efficiency,
and equity of a given AIHT, it is necessary that the locked or
unlocked state of the algorithm is always known to regulators and
end-users (Char et al., 2020). Such transparency is necessary
since due to the very distinct ethical and clinical implications
that locked or unlocked AIHTs may generate. The update
problem implies that a locked AIHT could quickly become
outdated—potentially from the moment it is prevented from
evolving (with or without supervision)—and that this could
generate important risks as a result of the deployment and use
of AIHTs in real-life contexts (Abràmoff et al., 2020). Although
not all algorithms may need to evolve or be updated in the short
term, at some point in time, updating or replacing an AIHT will
involve additional post-acquisition costs. Post-acquisition
updates and costs may seem counter-intuitive considering the
distinctive characteristics attributed to AI, such as self-learning
and continuous improvement. This may lead for certain

organizations (in particular, in less affluent contexts or in
periods of economic turmoil) not to deploy updates which will
result in the uses of outdated algorithms and therefore sub-
optimal benefits (if not harms) for some patients or services
(Prabhu 2019). Since AIHT are considered as being more
pervasive than physical technologies (such as drugs and other
health products), some are arguying that managing the
consequences of an outdated algorithm outweigh those of
traditional health technologies (Babic et al., 2019; Prabhu
2019); even if it is very difficult to withdraw effectively a drug
from the market, it is still possible to do so, while it may be much
more challenging for AIHTs that are less visible, interpretable and
tangible and more likely to be embedded in a hospital’s or health
system’s IT systems.

Systemic Impacts on Health
Characteristic of disruptive technologies, AIHTs are said to have
significant and systemic impacts on the healthcare sector. From
the outset, what emerges is that AI has a capacity for
information analysis that surpasses what is currently
available from health professionals, healthcare managers or
even from learning health systems (LHS) (Cowie 2017;
Pesapane et al., 2018; Char and Burgart 2020). AI is geared
towards changing healthcare practices by facilitating a better
integration of innovations and of best practices that will yield
optimal care delivery (Grant et al., 2020). These systemwide
impacts may lead to both risks of harms and opportunities to
optimize the health care system that must be taken into
consideration in HTA.

Disruptive for Both the Healthcare Sector and for
Individuals
Contrary to many health technologies, AI may have systemic
effects that can be felt across an entire health care system, or even
more so across health care systems in several jurisdictions (Dzobo
et al., 2020). Gerhards et al. (2020) go as far as stating that AIHTs
(especially those using machine learning) can yield significant
changes to an entire healthcare system. These changes might not
necessarily come from expected technological disruptions, but
might come from the adaptation of the healthcare setting to
certain methods and processes relying on AIHTs. This adaptation
may initiate extensive and lasting transformations that are likely
to affect all actors working in, using or financing the health
system (Gerhards et al., 2020). The clinical use of some AIHTs
may have the effect of transforming local health care
administration practices by incorporating exogenous priors
embedded within the technology. For instance, if a payer
(public or private insurer) decides that a given AIHT
recommendation become a precondition for reimbursement
(i.e., making other care no longer reimbursable), this may
have significant impacts on the way care is delivered, and will
reduce patients’, clinicians’ and administrators’ autonomy in
making shared and appropriate decisions when the human-
recommended care is different than a new gold standard based
on AI on data and priors (Vayena, Blasimme, and Cohen 2018).
There is therefore a process of importing practices, potentially
very different, which can strongly contrast with local habits and
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norms, requiring both adaptation and an impact assessment of
these exogenous practices on the host environment.

AIHTs can have systemic real-world life-and-death
consequences for patients (Miller, 2020), especially as AI
will span across the life continuum from birth to death
(Dzobo et al., 2020). AIHTs, unlike most drugs or medical
devices, will also affect non-ill or non-frequent users of the
health care system, be they due to AI increasing role in health
surveillance, care optimization, prevention and public health,
telemedicine (Love-Koh et al., 2018; Pesapane et al., 2018;
Char and Burgart 2020). AI can help “democratizing health
care” (i.e., in the sense of facilitating access) by extending care
into patients’ homes (Reddy et al., 2020), places where more
individualized and personalized care can be facilitated. While
being increasingly present in patient care, AI will not address
everything that has to do with the overall well-being of people.
Some aspects less related to illness, such as spirituality and
sociality, will most likely not be resolved and supported by AI
systems (Dzobo et al., 2020). Therefore, a systematic response to
using AI in health care may systemically neglect important
aspects of care.

Harms and Tropism
Mistakes due to AIHTs used in clinical care and within the health
care system have the potential to widely harm the patient
population. Some AI systems, especially in primary care
settings, can have impacts on the entire population of a
hospital or clinic (such as an AI-powered patient triage). This
makes some people say that it is all the more necessary that all
algorithms should be submitted to extensive scrutiny, with an
increased attention on validation in clinical settings before they
can be deployed in medical practice (Dzobo et al., 2020). In
addition, a key challenge in implementing AI is that, without a
comprehensive understanding of health needs (especially those
not covered by AI), there is a risk of fragmenting healthcare
delivery by silo use of AI systems. Such silo use may lead to
weakening health systems capacity and efficiency in addressing
patients needs.

AIHTs can have tropism effects on the healthcare system that
may shape and normalize certain practices and expectations that
are not necessarily accepted, widespread, cost-effective or
standard in new contexts. An example of this would be an
AIHT trained on medico-administrative data in a context
where physicians have often modified their billing to enter the
highest paying codes for clinical procedures, causing the
algorithm to infer that these codes represent the usual,
standard, or common practice to be recommended (Alami
et al., 2020). Thus, the algorithmic inference would be biased
because the procedure billed maximizes the clinician’s
remuneration, but potentially was not the one performed; this
can lead to a cascade of non-cost effective recommendations.
Such tropism effects may increase the risk of inappropriate
treatment and care, and may result in importing AIHT-fueled
standards and practices that are exogenous and non-idiosyncratic
to local organizations and that may perpetuate latent biases in
training data that are not present in certain health systems or
contexts of care (Abràmoff et al., 2020; Alami et al., 2020; Miller,

2020). Therefore, the large-scale systematization of certain
behaviors or inclinations may end up resulting in significant
costs and harms for organizations and health systems as well for
patients and HCPs (Alami et al., 2020; Hu et al., 2019). For
example, higher sensitivities to clinical thresholds could lead to
overdiagnosis or overprescription, while lower sensitivities could
result in undiagnosed and untreated segments of the population;
it is in the potential scope of the impacts that exceptionalism lies
and must be carefully assessed in HTA (Alami et al., 2020; Topol
2020).

AI as a Transformation Lever for the Health Sector
According to Alami et al. (2020), instead of seeing AIHTs as a
collection of distinct technologies, they should be regarded as a
“health system transformation lever.” AI can serve as a strategic
lever for improving health care and services access, quality and
efficiency. Used in such way, AI could have significant society-
wide impacts, including technological, clinical, organizational,
professional, economic, legal, and ethical.

AI can become a key enabler of learning healthcare systems
(LHS) to achieve their full potential (Babic et al., 2019), especially
since AIHTs are themselves learning systems (Ho, 2020). AIHTs
and LHS can complement each other as both strive when there
are porous boundaries between research and development and
with clinical and organizational practices. Using data from the
health care system, AI can learn and recalibrate both its
performance and behaviors, and over time inform and refine
the practices of the health care system (Babic et al., 2019). AI can
allow for ongoing assessment of accuracy and usage and
continuous risk monitoring (Ho, 2020).

AI, as a lever, can also have a systemic impact of putting
forward the response to needs for which there are ready-to-use
technologies, causing to pay little attention to serious unmet
needs (Alami et al., 2020). According to Grant et al. (2020), AI
may represent the “next major technologic breakthrough” in
health care delivery, offering endless possibilities for improving
both patient care and yielding health care system-wide
optimizations. However, this blurring of boundaries poses
significant problems for adequate regulatory design and should
not be taken lightly (Babic et al., 2019).

Increased Expectations Towards Artificial
Intelligence
Another key feature of AI exceptionalism is the increased
expectations placed on AIHTs compared to other health
technologies. According to Vollmer et al. (2020), AI systems
often bear a misleading aura of obvious cutting-edge technology,
which falsely limits the perceived need for careful validation and
verification of their performance, clinical use, and general use
once they begin to be used in routine clinical practice. The
implications for HTA are three-pronged.

Belief that Since a Result Comes From an Artificial
Intelligence It Is Better
A large part of the explanation for AI exceptionalism comes in
particular from the belief that an AI-generated outcome is
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inherently better than a human one (Char and Burgart 2020).
This phenomenon, known as the automation bias, describes the
fact that slowly but surely, AI is establishing itself as an authority
over current practices and error-prone healthcare professionals.
Part of this is reflected in the fact that it is now recognized as a
problem that a person who disagrees with a result or
recommendation generated by an AI must justify their
opposition with much more data than those used by the AI to
achieve that result (Char and Burgart 2020). The technological
imperative—i.e., the mere fact that a sophisticated technological
intervention exists creates pressure to use it because it is perceived
to be superior to conventional practices, despite the
risks—reinforces this belief and AI in medicine is currently
having its technological imperative moment (Carter et al., 2020).

Inevitability of Artificial Intelligence in Healthcare
These high expectations toward AIHTs form the basis of the
inevitability of AI in health. To the point where AI is seen as
inevitably the future of medicine (Dzobo et al., 2020). Self-
learning and the ability to perform arduous and repetitive
tasks explains the growing interest for a greater place of AI in
standard medical care. There are high hopes and, according to
many commentators, good reasons to think that in a near future,
virtually all physicians will be assisted by AI applications to
expedite certain tasks and, in the median term, due to
continuous learning, AIHTs might outperform humans in a
wide range of areas (Dzobo et al., 2020; Abràmoff et al.2020;
Gerke et al., 2020). It is not only for clinical or therapeutic reasons
that AI seems to be inexorable; there is also competition within
the AI ecosystem. The growing importance of AI and its
inevitability also stems from the competition between political
decision-makers from different jurisdictions to widely deploy AI
in order not to lag behind others (Gerhards et al., 2020).
Considering all the interests at stake, the massive investments
and accelerated development of AI, the question is no longer
whether AI will be part of routine clinical care, but when (Reddy
et al., 2020).

Although the technological imperative is strong and that AI in
health is very attractive and seems inevitable, caution is called for.
In this regard, AI chasm is a powerful concept to rebalance and
help manage expectations of overly rapid deployment and
ubiquity of AI in health care (McCradden et al., 2020). AI
chasm refers to the phenomenon that while AIHTs are very
promising, very few will actually be successful once implemented
in clinical settings. HTA agencies have an important role to play
here to contain this phenomenon and reduce its frequency and
spread (McCradden et al., 2020). One of the roles of evaluation
and regulation is precisely to finely consider the implications of
these technologies to overcome this phenomenon. This requires
not only an analysis of technical efficiency and performance, but
also an oversight of empirical and ethical validation to ensure the
rights and interests of patients. This requires the development of
regulatory tools that are well adapted to AIHTs so that there are
clear procedures and processes to properly evaluate and screen
AIHTs (Alami, Lehoux, Auclair, Guise, et al., 2020; Abràmoff
et al., 2020). This is necessary to avoid ethical drifts and
unacceptable (economic, health, social) costs that may be

caused by technologies that are not adapted to the needs and
specificities of a clinical or organizational context, or by milieus
feeling pressure to deploy a technology and adapt its practices in a
way that ultimately does not benefit patient care or sound health
care management (Michie et al., 2017; Abràmoff et al.2020).

Navigating the Hype
AI is currently in an era of promises rather than of fulfillment of
what is expected from it (Michie et al., 2017). This new science
has yet to move beyond average outcomes on individuals to actual
personalized benefits based on their situation, characteristics, and
desired outcomes. It is important to remain critical and vigilant
with respect to the rush to adopt these new technologies, possibly
more so than politicians are at present (Cowie 2017). Especially
when thought leaders’ perspectives echo public wonderment and
aspirations that AI transforms human life (Miller, 2020). With
their development and implementation being largely driven by a
highly speculative market and by proprietary interests, AIHTs are
largely embedded into biocapital (Carter et al., 2020). That is to
say, a vision of medical innovation that is based not on the actual
creation of value, but on selling a certain vision of the future. It is
through the sale of imaginary evoking unparalleled performance
and disproportionate benefits to encourage all AI players to
engage in the massive implementation of AI despite its
uncertainties and shortcomings (Carter et al., 2020). That
being said, in a study reported by Vayena et al. (2018), half of
the surveyed American healthcare decision-makers expect that
AIHTs will both improve medicine and fail meeting hyped
expectations. Miller (2020) sums up the present phenomenon
as follows: “No matter how sanguine the gurus touting game-
changing AI technologies are, and no matter how much
caregivers and patients hope that their benefits to medical
practice and outcomes are not hype, all parties must remain
vigilant.”AIHTs are in their phase of promises and hype, which is
creating inconsequent expectations (Reardon 2019).

The consequences of these unreasonable expectations can be
very significant. For instance, patients’ unsound expectations
regarding the clinical outcomes of AIHTs can negatively affect
their care experience (Alami et al., 2020). Certain areas of care,
such as breast cancer, are particularly fertile ground to AI
companies’ hype and promises (Carter et al., 2020), because
it resonates with patient unfulfilled demands. The
counterweight to these expectations is not yet in place as,
despite all the hype, the science of AI is still young and
possibly not yet mature, including gaps in clinical validation
and perhaps imprecise health recommendations (Dzobo et al.,
2020). HTA agencies and regulators have an important role to
play, particularly in developing a regulatory infrastructure that
is as exceptional as technology can be for health and as powerful
as the “unfounded hype” can be, to use Mazurowski (2019)
expression.

New Ethical Challenges
There seems to be broad agreement that AIHTs present new
ethical challenges (Vollmer et al., 2020). According to Michie
et al. (2017), AIHTs presents “new challenges and new versions of
old challenges” which require new evaluative methods and
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legislative motivation to address health data and AIHT-specific
ethical and regulatory issues.

Health Care Delivery
Reddy et al. (2020) identified three key AIHT-stemmed ethical
challenges in care delivery: AI-fostered potential bias, patient
privacy protection and trust of clinicians and the general public
towards machine-led medicine. AI is also prone to generating
new health inequalities; perhaps more potent than its ability to
reduce existing ones (Fenech et al., 2020). An important caveat in
terms of health care equity comes from the fact that those who
compare very well with historic patient data will be the one
benefiting the most from AIHTs. A cautious attitude is therefore
called for with regards to patient and disease heterogeneity, taking
into account that patterns detected by AI are largely deduced
from smaller historical data sets (Dzobo et al., 2020). In addition
to the current disparities, digital literacy and access to
technologies are adding up, so that if nothing is done, large
segments of the population may be excluded from enjoying the
benefits of AIHTs, resulting in significant issues of justice (Fenech
et al., 2020).

Existential Questions
According to Fenech et al., 2020, AI is unlike any other health
technology, due to its capability of being a general-purpose
technology forcing to question the very essence of humans.
This technology is particularly sensitive for the healthcare
sector as it raises new existential questions that regulators and
public decision-makers must now face. One of such key
existential challenge for HTA, according to Haverinen et al.
(2019), is that AI is becoming a new decision-maker. This
adds an actor with a decision-making role on the fate of
patients and the health care system in addition to the role of
HCPs and increases the complexity of performing comprehensive
HTA. For Ho (2020), a distinctive ethical concern that stems from
AIHT is the technology’s unparalleled autonomy, which
intensifies ethical and regulatory challenges, especially in terms
of patient safety. While this obviously raises questions about
liability (who is at fault for harm, and who is responsible for
explaining it and being accountable to patients), it also requires
thorough thinking about appropriate ways to ensure that care is
humane and respects the dignity of persons (Pesapane et al., 2018;
Vayena et al., 2018; Fenech et al., 2020).

Challenging Medical Ethics’ Ethos
Exceptionalism also stems from the fact that the field of medicine
is structured around the transparency and explainability of
clinical decisions, which poses serious problems for the
acceptance, regulation and implementation of (too often
inexplicable) AI in the health care system (Reddy et al., 2020).
As Miller (2020) points out that technology insertion is never
neutral, both the success of AI in health care and the integrity and
reputation of health care professionals depend on the alignment
between the ethos of medical ethics and the ability of AIHTs
(notwithstanding its benefits and performance) to respond to the
challenges that its very characteristics pose to the health care
system (Reddy et al., 2020). It is therefore widely acknowledged

that AI will have considerable benefits on health care (optimized
process, increased quality, reduced cost, and expanded access)
that will come at the price of raising ethical issues specific to the
technology (Abràmoff et al., 2020). This moral cost and related
ethical considerations partly explain that the field of AI ethics has
recently “exploded” as academics, organizations and other
stakeholders have been rushing to examine the ethical
dimensions of AI development and implementation (Fiske
et al., 2020). However, some are skeptical, such as Fenech
et al. (2020) who was warning that data ethics is fashionable.
While Bærøe et al. (2020) go as far as arguing that “exceptional
technologies require exceptional ethics” and that “an intentional
search for exceptionalism is required for an ethical framework
tasked with assessing this new technology”.

New Evaluative Constraints
According to Dzobo et al. (2020), by being very distinct from
more traditional technologies, AI must be regulated differently.
Zawati and Lang (2020) argue that the uncertainty regarding AI
decisional processes and outcomes make AIHTs particularly
challenging to regulate. Regulators, policy-makers and HTA
agencies are faced with unprecedented complexity for
evaluating and approving AI (Alami et al., 2020). AIHTs raise
new evaluative constrains, be they technological, clinical,
organizational, that affect how ethical, legal and social
dimensions may be tackled (Gerke et al., 2020). Evaluation
constraints are related to data, real-world uses and the
embryonic nature of the regulatory infrastructure and processes.

Data-Generated Issues
AI uses larger than ever volumes of data generated by individuals,
governments, and companies, and according to Fenech et al.
(2020), the greater complexity of health data raise new questions
about the governance of data use and storage, especially as AI
technologies are only effective and relevant with up-to-date,
labelled, and cleaned big data. In addition to data, the
hardware infrastructure will need to be updated over time,
requiring major financial investments to maintain the use of
AI in the healthcare system (Dzobo et al., 2020). However, too few
technical studies are helping to appreciate and help managing
AIHTs’ complexity. In most studies, contextual, clinical and
organizational considerations, implementation and uses of the
technology are neglected, which complicates regulators’
assessment as they are mostly informed about the significance
of AI applications’ technical performance (Alami et al., 2020).
Caution should therefore be exercised, particularly since the
complex ethical and regulatory issues involved deserve careful
consideration before deploying these technologies in routine
clinical care (Prabhu 2019).

Real-World Usages and Evidential Issues
AIHTs raise new regulatory challenges in part due to the greater
variation in their performance between the test environment and
the real-word context than those of drugs and medical devices.
According to Gerke et al. (2020), AIHTs have potentially more
risks and less certainty associated with their use in real-world
contexts, which is central to regulatory concerns. However, most
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AIHTs have not been objectively validated in and for real-world
usages (Alami et al., 2020). In that sense, one important caveat is
that the adoption and impact of AIHTs are unlikely to be uniform
or to improve performance in all health care contexts (Gerke
et al., 2020). This is attributable concurrently to the technology
itself (and its distinctive features that renders it disruptive), to the
contexts of implementation (the systemic impact of the
technology across the health care system, and clash with local
practices) and to the human biases associated with the use of these
technologies (inability to reason with AI-provided probabilities,
small samples and noise induced extrapolation and false patterns
identification, and undue risk aversion) (Gerke et al., 2020). For
regulatory authorities, these represent great challenges for
deciding whether marketing authorization is justified. But it is
also puzzling for hospital, clinic and health care system
purchasers to determine whether an AIHT will actually add
value and increase performance of care and service delivery.
There is a lot to be studied and understood on the broad
systemic policy implications of AIHTs in real-world context of
care and services (Alami, Lehoux, Auclair, de Guise, et al., 2020).

Undeveloped Regulatory Infrastructure and
Processes
AIHTs’ exceptional characteristics have significant regulatory
implications as regulation is emerging, but at a far slower pace
than technological changes, which are virtually infinite (Char and
Burgart 2020). Regulative complexity is furthered by the fact that
existing standards (e.g., those of the Food and Drug
Administration, European Medicines Agency, Health Canada)
do not translate well for self-evolving technologies (Dzobo et al.,
2020; Shaffer 2020; Topol 2020). This definitional deficit
complicates the regulation of this technology and the
implementation of appropriate policy infrastructure (Pesapane
et al., 2018). Recent approvals of algorithms highlighted some
limitations of existing regulatory standards and processes
(Haverinen et al., 2019; Parikh et al., 2019). These
considerations are threefold and concern the levels of
requirements, the speed of AIHT developments and the
equilibrium posture that regulators must adopt.

A challenge for existing regulatory regimes lies in the extensive
information requirements on both the nature and effects of health
technology, as well as clinical data on efficacy and patient safety,
and population and societal impacts. However, regulators have
yet to develop an infrastructure and processes that are
appropriate and optimal for AI, and this requires more
knowledge about how algorithms work (Dzobo et al., 2020).
This complicates the problem because AI is a less transparent
and explainable technology than drugs or medical devices can be
(Abràmoff et al., 2020; Reddy et al., 2020). Privacy concerns are
also important and there is yet no public agreement regarding
data collection and sharing for commercial purposes, nor
regarding for-profit data ownership (Michie et al., 2017). This
calls for finding collective responses to these considerations,
which must accompany the work of structuring HTA practices
and infrastructures by regulators (Fenech et al., 2020).

Another dimension putting pressure on regulation is the speed
of development. For regulating a fast-changing and unpredictably

sector such as AI, time is of the essence to ensure that regulatory
standards and practices are relevant (Pesapane et al., 2018).
Currently, regulation has to constantly catch up with the
private sector which leads to important gaps in terms of
ethical examination of AIHTs (Shaffer 2020). Since, most
developments are done by the private sector and HTA
processes are not yet well designed and optimized, there is a
problem of scrutiny (Abràmoff et al., 2020). So to keep up,
regulation must be as fast as technological developments in
AI, therefore it requires to conduct assessment and oversight
at an unprecedented pace (Haverinen et al., 2019). However, this
need to proceed quickly, in particular to match the private sector’s
pace, must be put into perspective with the very acceptability of a
significant presence of commercial interests in the big data and
AIHTs sector.

Achieving the right balance is delicate for HTA agencies
between accelerating the development of HTA policies and
procedures and not falling prey to the sirens of AIHT’s hype
(Cowie, 2017; Miller, 2020). Regulators want to see the health care
system reap AI’s benefits quickly, but if their assessment is too
hasty and the implementation of the first generations of AIHTs
encounters difficulties or, worse, generates adverse effects, social
and professional acceptability may be shattered and further delay
the deployment of AI in healthcare. According to Reddy et al.
(2020), it could need a single serious adverse incident caused by
an AIHT to undermine the public’s and HCP communities’
confidence. Considering that AI’s acceptance is still fragile,
and that AI is expected to have an expanded presence in all
aspects of the health care system, HTA agencies will have to be
extra careful in considering the ethical and regulatory
implications of IA. If not well managed, these considerations
will become major barriers that will play against the deployment
of AI in healthcare (Pilotto et al., 2018; Vayena et al., 2018; Bærøe
et al., 2020).

DISCUSSION

The current body of literature appears to portray AI health
technologies as being exceptional to HTA. This exceptionalism
is expressed along five dimensions. Firstly, the very nature of the
technology seems to be the primary cause of the difficulty in
fitting AIHTs into current HTA processes. Thus, the still
ambiguous definition and the consequences of its changing
and evolving nature pose new challenges for its assessment.
Secondly, the scope of its impact far surpasses those of current
health technologies. AIHTs will have impacts that extend
significantly beyond the targeted patients and professionals. It
is therefore in the interest of HTA agencies to consider the
disruptive effects on individuals as well as on the entire health
care system. Hence, the importance for HTA to consider the
potential harms, the systematization of biases and to anticipate
the clashes between current practices that are working well and
the framing effect that will come with the deployment of AIHTs.
But also, AI can act as a transformational lever that, beyond the
risks of AI in healthcare, appears to be capable of redressing and
reorienting the healthcare system to better respond to the full
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range of healthcare needs, to create synergies so that the of
learning healthcare systems are operational and to take this
opportunity to adjust the regulatory design. Third, the advent
of AI in healthcare comes with a lot of high expectations. The
quality of outcomes generated by AIHTs is expected to be higher
than that of current human-driven processes. This positive
perception of the added value of AIHTs in the healthcare
system makes AI in healthcare appear inevitable. However,
while the technology is currently casted as exceptional and
highly promising, some caution should be kept towards the
current hype, which should prompt regulators to be prudent
towards unreasonable expectations. Fourth, AIHTs are
challenging HTA from an ethical perspective as AI has a
strong potential to generate greater inequity whether arising
from algorithmic decisions or in access to AIHTs. The fact
that AIHTs are becoming new decision-makers, due to their
autonomy, raises important issues of patient safety as well as
liability. In fine, medical ethics’ ethos is even shattered since, with
AI, ethical dilemmas seem to be amplified, calling potentially for
ethical standards revamping that would be as exceptional as the
technology. Finally, AI technologies in health are increasing
regulatory complexity and are pressuring current HTA
structure and processes. The new evaluation constraints relate
to data, real-world uses and the rather embryonic nature of AI-
ready regulatory infrastructure and processes. Therefore, be they
the extensive information requirements on both AIHTs’ features
and effects for regulatory review, the speed of AIHTs’
developments, and the need to regulate quickly, but in a way
that benefits the entire population.

A key point emerging from the views of the authors reviewed is
that exceptionalising views of AIHTs, in the context of HTA,
appear to come as much from the technology itself as they do
from the broader social, cultural, and political contexts
surrounding AI in the health sector. In other words, AIHTs
are exceptional because of their technological characteristics and
potential impacts on society at large. This is quite consistent with
HTA, which seeks to assess the diversity of impacts of a
technology. It is therefore quite reasonable that a technology
with multi-dimensional impacts on society severely affects a
process that is based on these same dimensions. The key
takeaway may be that, to adapt and remain relevant, HTA
must continue to focus on and strengthen these evaluative
processes, which must be capable of a comprehensive
assessment of the technical, social, cultural, ethical and health
dimensions.

Interestingly, no author in the reviewed sample clearly
promoted the idea that AI is an unexceptional technology for
HTA. Many reasons could explain this phenomenon. First, the
hype is still very strong when it comes to AIHT (Mazurowski
2019; Carter et al., 2020). Thus, it is possible that discussions
about AI (un)exceptionalism are not yet ripe to mark the
literature. This can be seen in the literature reviewed, which,
without focusing on the limits of exceptionalism, currently has its
strongest criticisms on AI hype. This leads us to think that hype
and exceptionalism may be linked: hype feeds on exceptionalism
while the latter needs hype to surface and to strike a chord within
the literature and the rhetoric about AI in health. Second, trivially,

this may be because there is less incentive to write (and publish)
on the advent of a new technology in health by stating that
nothing is new under the Sun (Caulfield 2018). Third, AIHTsmay
be so recent in the HTA pipeline that HTA as not yet addressed all
the dimensions of AIHT.

Even if AI’s exceptionalism appears significant in the current
body of literature, there is some caveats to promoting AI
exceptionalism in HTA. First, two authors noted some
limitations to AI exceptionalism. Michie et al., (2017) pointed
out that AIHTs are not only raising new challenges, they also bear
issues that are common to existing health technologies. This is
echoed by Char et al. (2020) who acknowledge the phenomenon,
but puts a limit to the enthusiasm for AI exceptionalism in health
when it comes to AIHTs sporting some features similar to
standard health technologies. Second, currently, the literature
discussing AI exceptionalism is still piecemeal, and it would be
relevant for future research to address the issue by looking more
holistically at the full range of issues posed by AI (i.e., outside the
sole realm of HTA). There is still some space to apprehend and
analyze the exceptionality of AIHTs’ in HTA and the implications
this has for both the evolution of HTA and the development and
use of AIHTs. The literature is still quite young, and this can be
observed from the fact that some highly discussed considerations
in the broader AI ethics and AI in medicine literatures have not
been discussed in the body of literature at review. For example,
the more structural implications related to data-generated
issues—privacy, data stewardship and intellectual property
(Bartoletti 2019; Cohen and Mello 2019)—or to issues
pertaining to informed consent, patient autonomy and human
rights (Sparrow and Hatherley 2019; Cohen 2019; Racine et al.,
2019; Ahmed et al., 2020), or to human-machine comparison in
medical decision making and diagnosis (London 2019) have not
been explored in the studied subset. A comprehensive exploration
of the themes generally associated with health technologies will
provide a better understanding of and clarity on whether AIHTs
are exceptional or not. Third, exceptionalism in the context of
health innovation is not a new topic. New health interventions or
discoveries often generate a lot of hype, and the sector is hungry
for predictions about the next revolution in healthcare (Emanuel
andWachter 2019). Twenty years ago, the health sector was living
the “genomic revolution” and was assessing the exceptional
implications of genetics in healthcare (Suter 2001). As AIHT’s
literature mature, it may continue to be centered on its
exceptionality; but it is also plausible to consider that, as with
the genetic revolution in the early 2000s and the
nanotechnologies in the 2010s, AI exceptionalism will pass
what Murray (2019) calls its “sell-by date”. Thus, AI
exceptionalism may end up following a rather similar pattern
where the hype will slowly wear off as the health sector will
becomemore accustomed to the technology; better understand its
actual strengths, limitations, and capabilities.

Therefore, possibly it is a matter of time before a coherent
body of literature addresses the limits of an exceptionalist view of
AI in health and HTA. At the same time, if the AI revolution
really takes off, exceptionalism will no longer be an important
consideration. Indeed, as regulatory systems, the healthcare
system and human agents (clinicians, patients, regulators,
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managers, etc.) adapt, exceptionalism will probably pass and
habituation will make AI in health the new normal, as after
any major disruption that lasts over time. However, it may be of
interest to the AI, HTA and health regulation communities and
scholars to remain vigilant about AIHTs’ exceptionalism (by
means of the manifestation of its five dimensions) in health
and HTA.

Another avenue that the literature could explore is whether the
exceptionality arises from the technology (i.e., AI) or the sector of
application (i.e., health)? In other words, is it AI that is
exceptional in health or rather health that is a sector of
exception for AI? Healthcare is possibly the most regulated
sector that AI has come across so far. Health’s exceptionality
may explain the significant regulation in the healthcare sector
(i.e., attention given to this sector in terms of regulation, ethics,
law, and society) (Daniels 2001; Bird and Lynch 2019), while no
other sector has an assessment process that has the breadth and
systematism of HTA. Therefore, it would be interesting to reverse
the question at the very basis of this review and consider how, for
the AI ecosystem, health is per se exceptional and calls for
additional and distinct norms, practices and contingencies that
need to be considered to develop and implement an AIHT.
Thereby, in addition to offering insights and guidance to
communities strongly engaged in HTA, our results can also
help the AI research and development sector better
understand the unique evaluative considerations that exist in
the health sector. The five dimensions raised by our paper
can help guide those developing AIHTs to better understand
and respond to the specific expectations and priors that
underlie the use, administration and acceptability of health
technologies. This can potentially help better align AIHT
developers’ desire to create value with HTA agencies’ value
appreciation and thus facilitate the congruence between
technology development and healthcare priorities (Chalkidou
2021).

More broadly, the literature review raises key institutional
questions, in terms of the exceptional issues posed by AI, such as
which body is best placed to incorporate the new and added
concerns that AIHTs raise? Is it the (supra)national regulators
(e.g., EMA, FDA, Health Canada and the like which are mostly
responsible for evaluating safety, efficacy, and quality concerns)
or the HTA bodies (who are more concerned with appropriate
use, implementation, coverage and reimbursement)? Can certain
issues (e.g., the ethical and social ones) be better addressed by one
body versus another? A possible limitation of the literature review
is that overall the authors do not generally make a clear
distinction between the regulatory processes (those of the
FDA, EMA, and Health Canada that aim to allow the
marketing of AIHTs) and the HTA (which focus on assessing
implementation, optimal use, and whether or not to recommend
reimbursement by third-party payers), so it was not possible to
specify the unique considerations that arise specifically for either
or both. One thing is for certain, the exceptional challenges of
AIHT further raise the importance, for regulators and health
technology assessors, to consider the impacts of AI uses in
healthcare in a holistic way. This points to pivoting current
rather linear regulatory and HTA process towards a “lifecycle”

approach, which would allow for a better consideration of the five
exceptional dimensions of AIHT. This may sound demanding,
but AIHTs already represent additional evaluative burdens,
especially when it comes to long-term real-world usages (e.g.,
when AIHT are used on new populations or for new purposes
that differ from the data on which it was trained, or simply behave
differently fromwhat was expected at the time of the regulatory or
HTA assessment) and the difficulties of withdrawing AIHT from
the market. This calls for more cooperation between regulators
and HTA agencies, but also hint towards a global health
technology governance reform to allow increased scrutiny
capability, and also to help AIHT regulatory and HTA
assessment adjust overtime (i.e., by using a lifecycle approach)
based on the evolving (clinical, economic, social, ethical)
evidence.

In any case, there is a strong argument for taking into
consideration the exceptional aspects of AIHTs, especially as
their impacts on the healthcare systemwill be far greater than that
of drugs and medical devices (Vayena et al., 2018; Babic et al.,
2019). As AI applications begin to be much more readily
introduced into the health care sector, there is a window of
opportunity for HTA agencies and scholars to consider the broad
spectrum of impacts that AIHTs may generate (Bostrom and
Yudkowsky 2011; Helbing 2015; Burton et al., 2017; Herschel and
Miori 2017; Knoppers and Mark Thorogood 2017). AI
implementation by governments and health organizations
carries risks of generating new and amplifying existing,
challenges due to a shift from the current mostly human-
driven systems to new algorithm-driven systems (Vayena
et al., 2018; Zafar and Villeneuve 2018; Reddy et al., 2020).
Hence the need to address the distinct (without the need for
them to be exceptional) characteristics of AIHTs to inform HTA
developments in a way to ensure that only clinically,
economically, socially acceptable AIHTs are deployed in the
health care system.

CONCLUSION

Therefore, is it possible to assert that there is such thing as an AI
exceptionalism in HTA? It may be too early to be decisive on
this issue, although the literature reviewed seems to point in
this direction. Our review of the literature has allowed to
identify five dimensions through which AIHTs are
exceptional, from an HTA standpoint: nature, scope,
increased expectations, new ethical challenges and new
evaluative constrains. Most importantly, what underlies the
promises of AI, the hype, and the exceptionalism is that we are
mostly in an era of speculation; while some applications have
begun to work their way into the healthcare system, the much-
anticipated revolution is still a ways off. It is the test of time that
will determine the veracity and breadth of the exceptionalist
perspective. But whether or not exceptionalism proves to be
valid, HTA must certainly adapt to the massive arrival of AI in
health. This must be done by considering and responding to the
five dimensions of exceptionalism and their many implications
that can undermine the appropriateness, efficiency, and
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relevancy of current and future HTA infrastructure and
processes. Our results should help inform where HTA
stakeholders need to pay special attention and adapt their
policy architecture and processes so that they become agile
to adopt a regulatory posture capable of appreciating the
distinct characteristics and impacts that AIHTs pose in the
health sector.
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Background: It is often difficult to diagnose pituitary microadenoma (PM) by MRI alone,

due to its relatively small size, variable anatomical structure, complex clinical symptoms,

and signs among individuals. We develop and validate a deep learning -based system

to diagnose PM from MRI.

Methods: A total of 11,935 infertility participants were initially recruited for this project.

After applying the exclusion criteria, 1,520 participants (556 PMpatients and 964 controls

subjects) were included for further stratified into 3 non-overlapping cohorts. The data

used for the training set were derived from a retrospective study, and in the validation

dataset, prospective temporal and geographical validation set were adopted. A total of

780 participants were used for training, 195 participants for testing, and 545 participants

were used to validate the diagnosis performance. The PM-computer-aided diagnosis

(PM-CAD) system consists of two parts: pituitary region detection and PM diagnosis.

The diagnosis performance of the PM-CAD system was measured using the receiver

operating characteristics (ROC) curve and area under the ROC curve (AUC), calibration

curve, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive

value (NPV), and F1-score.

Results: Pituitary microadenoma-computer-aided diagnosis system showed 94.36%

diagnostic accuracy and 98.13% AUC score in the testing dataset. We confirm the

robustness and generalization of our PM-CAD system, the diagnostic accuracy in

the internal dataset was 96.50% and in the external dataset was 92.26 and 92.36%,

the AUC was 95.5, 94.7, and 93.7%, respectively. In human-computer competition, the

diagnosis performance of our PM-CAD system was comparable to radiologists with >10
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years of professional expertise (diagnosis accuracy of 94.0% vs. 95.0%, AUC of 95.6%

vs. 95.0%). For the misdiagnosis cases from radiologists, our system showed a 100%

accurate diagnosis. A browser-based software was designed to assist the PM diagnosis.

Conclusions: This is the first report showing that the PM-CAD system is a viable tool

for detecting PM. Our results suggest that the PM-CAD system is applicable to radiology

departments, especially in primary health care institutions.

Keywords: pituitary microadenoma, magnetic resonance imaging, deep learning, algorithm, computer-aided

diagnosis

INTRODUCTION

A pituitary microadenoma (PM) is a tumor<10mm in diameter.
PMs can occur in either sex. As many as 10% of the population
may have a microadenoma, but most do not cause symptoms (1,
2). However, some PMs cause symptoms by secreting hormones
that exert harmful consequences, for example, in Cushing’s
disease, acromegaly, infertility, and hyperprolactinemia (1). Due
to its small size and variable anatomical structure among
individuals, the diagnosis of PM is not easy by applying the
technique of MRI alone (3). Manual analysis of MRI data is
usually biased and time-consuming, and the diagnostic accuracy
is closely related to the experience of radiologists. A shortage
of experienced radiologists may cause a delay in diagnosis
and compromise the overall quality of service to patients with
PM (4, 5). Deep learning has the potential to revolutionize
disease diagnosis and management by improving the diagnostic
accuracy of PM while reducing the workload of radiologists.
The development of a convolutional neural network (CNN) has
significantly improved the performance of image classification
and object detection (6). Recent reports showed that a computer-
aided diagnosis (CAD) system can accurately diagnose patients
with pituitary adenoma from MR images (7–9). In this work,
we have developed and validated an image-based deep learning
model to aid the detection of PM.

MATERIALS AND METHODS

Ethical Approval
This study is approved by the research ethics committee of
the Institute of Basic Research in Clinical Medicine, The
Third Affiliated Hospital of Sun Yat-sen University ([2020]02-
089-01). This research is registered at the Chinese Clinical
Trials Registry (http://www.chictr.org.cn/index.aspx) with the
number ChiCTR2000032762.

Data Collection and Pre-procession of MRI
Data
The original intention to develop and validate the technique
of deep learning algorithms assisting PM diagnosis was
prompted by several misdiagnosed PM cases in our hospital
(Supplementary Figure 1). We developed and validated an
automatic diagnosis model for the detection of PM. The training
set was a retrospective study, the data were extracted from
January 2012 to September 2019 at The Third Affiliated Hospital

of Sun Yat-sen University (TianHe and LuoGang hospital). The
validation set 1 was a prospective temporal validation using
data from October 2019 to April 2021 at The Third Affiliated
Hospital of Sun Yat-sen University. Validation sets 2 and 3 are
geographic prospective external validation with data from two
additional hospitals (Sun Yat-sen Memorial Hospital of Sun Yat-
sen University, and The Second Affiliated Hospital of Harbin
Medical University) from March 2020 to April 2021. All data
were recruited using the same inclusion and exclusion criteria.

The workflow diagram for the overall experimental design is
in Figure 1 and Supplementary Figure 2. Inclusion criteria were
participants suffered from infertility (defined as the inability of
a sexually active couple to achieve pregnancy within a year or
more with regular unprotected intercourse) and at least exhibited
one or more of the following clinical symptoms/signs (menstrual
irregularity, amenorrhea, galactorrhea, premature ejaculation,
erectile dysfunction, or hypogonadism). Exclusion criteria
were as follows: lactation, pregnancy, with primary thyroid,
adrenal and/or gonadal diseases, malignant tumors, pituitary
macroadenoma, sellar/pituitarymasses or cyst, congenital disease
of the pituitary gland, pituitaries, and MR images without
complete pituitary scan or with too many MRI artifacts. Further
examination was performed on the participants. We measured
serum hormone levels of the participants (such as prolactin,
adrenocorticotrophic hormone, follicle-stimulating hormone,
luteinizing hormone, serum thyroid-stimulating hormone, and
growth hormone) and performed a pituitary MR examination
on those participants. Patients with functional and non-
functional PM and patients with normal pituitary function were
included for further deep learning analysis. The coronal dynamic
enhancement T1-weighted imaging (T1WI) sequences of MRI
(DICOM) from those participants were downloaded with a
standard image format according to the software and instructions
of the manufacturer. All pituitary images were read by two junior
neuroradiologists (with <10 years of professional experience)
and one senior neuroradiologist (with >10 years of professional
experience), and the final diagnosis was mutually agreed upon
by all three neuroradiologists have then proceeded for further
investigation. In the training set, all images present with PM or
normal pituitary images were selected by four general radiologists
(>5 years of professional experience) and reviewed by two
neuroradiologists (with >10 years of professional experience).
All images of coronal dynamic enhancement T1WI sequence
were used for the validation set without additional human
intervention. MRI was performed with a 1.5 or 3.0 T MRI unit
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FIGURE 1 | Workflow diagram for the overall experimental design. The detailed workflow diagram of the validation datasets are in Supplementary Figure 2. PM,

pituitary microadenoma; MRI, magnetic resonance imaging. The Third Affiliated Hospital of Sun Yat-sen University as hospital 1. Sun Yat-sen Memorial Hospital of Sun

Yat-sen University as hospital 2, and The Second Affiliated Hospital of Harbin Medical University as hospital 3.

(GE, Philips company, Amsterdam, the Netherlands) in the head-
first supine position, 380ms/12.5ms (repetition time /echo time),
and 1 or 3mm thick sections. Six medical fellows in the division
of clinical endocrinology were involved in collecting patient
clinical information, and the dataset was reviewed and verified
by two endocrinologists.

Model Structure (Overview of Our PM-CAD
System)
The pipeline of our PM-CAD system is shown in
Supplementary Figure 3, and it consists of two parts: (1)
pituitary region detection and (2) PM diagnosis. All programs
are implemented with Python (https://www.python.org/)
language on PyTorch (https://pytorch.org/) platform. In
pituitary region detection, we develop a pituitary detection
model based on Faster R-CNN (10) [with ResNet-50 FPN
(11) as its backbone]. The input MR image is processed
by this model to generate classification and regression
maps, which have been further used to extract the pituitary
bounding box in MR images. The pituitary bounding box is
used to crop the pituitary region patch from the MR image
(Supplementary Method A). In PM diagnosis, we proposed a
novel CNN (namely, PM-CAD) to diagnose the PM from the
cropped MR images. All the cropped pituitary region images are
resized to 256 × 256, normalized into (0,1), and processed with
histogram matching normalization (HM) for the enhancement
of microadenoma features. In the PM-CAD system, we modify
the ResNet architecture to preserve fine-grained features during
forward propagation. An attention module is used to further

improve the discriminativeness of feature representation. To
handle the overfitting problem, HM normalization, intensity
shift data augmentation, and label-smoothing loss are used
(Supplementary Method B). The training procedure is stopped
after 500 epochs (iterations through the entire dataset) due to
the absence of further improvement in terms of both the area
under receiver operating curve (AUC) and label-smoothing loss
(Supplementary Figure 4).

Model Discrimination and Calibration
A total of 1,520 participants were included for the further study.
We partitioned the data into three non-overlapping sets, with
780 participants for model development, 195 participants for
model testing (developing and testing dataset as 8:2), and 545
participants for model validation. To reduce the time bias, the
training set was a retrospective study from January 2012 to
September 2019. The validation set was a prospective validation
from October 2019 to April 2021. The detailed statistics for each
set are summarized in Figure 1 and Supplementary Figure 2.

Evaluation of the Diagnosis Performance
of Our PM-CAD System and Statistical
Analysis
In the testing set, we used accuracy, sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV),
and F1-score to evaluate our PM-CAD system. The validation set
A had been used to evaluate the generalization ability and stability
of our PM-CAD system. The receiver operating characteristics
(ROC; showing both true-positive rate and false-positive rate for
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diagnosis performance) curves and AUC were used in testing,
internal and external validation sets (12, 13). We also used binary
logistic regression methods to re-fit the prediction probability
data rooted in PM-CAD, and calibration curves were used to test
the fitting ability of the model (14). Validation set B consists of
100 participants and has been used to compare the performance
of the PM-CAD system to general radiologists. A wide range
of performance metrics has been adopted, such as diagnosis
accuracy, sensitivity, specificity, PPV, NPV, F1-score, weighted
error, positive likelihood ratio (PLR), negative likelihood ratio
(NLR), and AUC (12). A weighted error was used for further
analysis, specifically, a penalty weight of 2 was assigned to
false-negative cases and a penalty weight of 1 was assigned
to false-positive cases (12). Six radiologists were recruited for
this study. Radiologists 1 and 2 have professional experience
of <5 years, Radiologists 3 and 4 have professional experience
between 5 and 10 years, and Radiologist 5 and 6 have professional
experience over 10 years. Each radiologist readMR images of 100
participants independently. The Bland-Altman plot was used to
evaluate the interobserver consistency of pituitary MRI finding
independently measured by the six radiologists. The diagnostic
accuracy of those radiologists was evaluated, and the experience
of each radiologist in reading images of the cranial and pituitary
MR or CT is shown in Supplementary Table 1. In validation set
C, we tested the diagnosis accuracy of our PM-CAD system on
three cases misdiagnosed by radiologists. Descriptive statistics
included mean (SD) for continuous variables and proportions
for categorical variables. All the metrics were calculated using
Python-3.9.5 (https://www.python.org/), and R-4.0.3 (15) was
used to provide visual analyses.

Browser-Based Software Application
A browser-based software was designed to assist the diagnosis
from pituitary MR images. Once pituitary MR images (DICOM
files) are uploaded to the software, PM diagnosis outputs can
be presented.

RESULTS

Study Participants
A total of 11,935 infertility participants were initially recruited
for this project. After applying the exclusion criteria, 1,520
participants (556 PM patients and 964 controls subjects) were
included for further study whereby we have partitioned data
from 975 participants (340 PM patients and 635 control subjects)
for the training set, such as 780 participants (19,573 images)
for development set and 195 participants (4,927 images) for the
testing set. In the validation set, 545 participants (13,239 images)
were recruited for the study. The validation set A consisted
of 163 PM patients and 279 control subjects came from three
hospitals. The validation set B consisted of 100 participants
(50 PM patients, and 50 control subjects). In validation set C,
we tested the diagnosis accuracy of our PM-CAD system on
three misdiagnosed PM cases. The detailed statistics for each
set are summarized in Figure 1 and Supplementary Figure 2.
Among patients with PM, there were 397 cases of non-functional

PMs and 159 cases of functional PMs. The clinical and baseline
characteristics of these participants are shown in Table 1.

Performance of PM-CAD System
The PM-CAD system consists of two parts: pituitary region
detection and PM diagnosis. In pituitary region detection, we
use the well-known average precision (AP) as the evaluation
metric. We achieved an AP of 0.9783 at an intersection-of-union
(IOU) threshold of 0.5 (Supplementary Method A). For testing
the accuracy of PM diagnosis, 975 participants have been used for
the development and testing set (Supplementary Method B).We
showed that our PM-CAD system achieved an AUC of 98.13%
(Figure 2A), an F1-score of 92.09%, an accuracy of 94.36%, a
sensitivity of 96.97%, a PPV of 87.67%, a specificity of 93.02%,
and an NPV of 98.36% on the testing set. The calibration curve of
the testing set is listed in Figure 3A, the intercept on the testing
is −6.098, and the probability weight W is 10.069. We employed
PM-CAD for further investigation.

PM-CAD System Application in the
Validation Set (Internal and External
Datasets)
We used the internal and external datasets to validate the
robust generalization performance of our PM-CAD system. The
system was further tested in 442 participants from three different
hospitals (Validation set A). The PM-CAD system achieved
the diagnosis performance of AUC (95.46%) (Figure 2B), F1-
score (97.30%), accuracy (96.50%), sensitivity (97.83%), PPV
(96.77%), specificity (94.12%), and NPV (96.00%) in hospital
1. In hospital 2, the AUC is 94.72% (Figure 2C), F1-score
is 93.62%, accuracy is 92.26%, sensitivity is 90.72%, PPV is
96.70%, specificity is 94.83%, and NPV is 85.94%, respectively.
The diagnosis performance is AUC (93.70%) (Figure 2D), F1-
score (93.71%), accuracy (92.36%), sensitivity (91.11%), PPV
(96.47%), specificity (94.44%), and NPV is (86.44%) in hospital
3 (Table 2). The ROC curve is described in Figures 2B–D. The
calibration curve of the validation set A is in Figures 3B–D,
the intercept is−4.26,−3.465, and−2.963, respectively. And the
probability weight W was 9.928, 11.06, and 9.909, respectively.
The classification confusion matrices report the number of true
positive, false positive, true negative, and false negative, which
are resulted in Supplementary Table 2. We showed that our
PM-CAD system achieves excellent diagnostic performance in
internal and external datasets.

Performance of the PM-CAD System vs.
Radiologists
An independent validation set B (100 participants: 50 PM
patients and 50 controls from hospital 1) was used to compare
the performance of the PM-CAD system vs. radiologists.
For this comparison, six radiologists were recruited. The
diagnosis performance of PM-CAD system is F1-score (93.88%),
accuracy (94.00%), sensitivity (92.00%), PPV (95.83%), specificity
(96.00%), and NPV is (92.31%) (Supplementary Table 3).
In contrast, the performance of our best radiologist #6 is
F1-score (94.95%), accuracy (95.00%), sensitivity (94.00%),
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TABLE 1 | Description and characteristics of the training and validation datasets.

Characteristics Training set Validation set

Development set Testing set Temporal validation

(hospital 1)

Geographical validation

(hospital 2)

Geographical validation

(hospital 3)

Patients Controls Patients Controls Patients Controls Patients Controls Patients Controls

Full cohort 274 506 66 129 104 142 58 97 54 90

Sex [No. (%)]

Male 56 (20.4) 98 (19.4) 13 (19.7) 30 (23.3) 19 (18.3) 25 (17.6) 12 (20.7) 22 (22.7) 10 (18.5) 17 (18.9)

Female 218 (79.6) 408 (80.6) 53 (80.3) 99 (76.7) 85 (81.7) 117 (82.4) 46 (79.3) 75 (77.3) 44 (81.5) 73 (81.1)

Age (Mean ± SD) 30.92 ± 6.56 31.26 ± 7.36 30.82 ± 6.02 30.58 ± 6.04 30.79 ± 6.86 30.66 ± 5.50 31.43 ± 7.61 30.86 ± 5.46 29.81 ± 4.78 30.14 ± 5.35

BMI (Mean ± SD) 23.07 ± 2.50 23.09 ± 2.52 22.85 ± 2.38 23.91 ± 2.48 23.20 ± 2.40 22.67 ± 2.31 23.42 ± 2.79 23.21 ± 2.57 23.27 ± 2.50 23.48 ± 2.66

Blood biochemical indices (Mean ± SD)

PRL, uIU/mL 1,184.92 ±

1,353.99

321.14 ±

144.32

1,142.82 ±

1,332.77

302.21 ±

150.47

1,121.06 ±

1,362.23

301.31 ±

152.69

1,053.70 ±

1,346.33

329.89 ±

149.50

1,150.89 ±

1,280.17

304.69 ±

162.74

ACTH, pmol/L 5.69 ± 2.46 5.61 ± 1.80 5.48 ± 3.57 5.34 ± 1.82 5.91 ± 4.06 5.29 ± 2.03 5.40 ± 1.71 5.17 ± 1.69 5.35 ± 1.54 5.12 ± 1.70

FSH, mIU/mL 4.73 ± 2.32 4.72 ± 2.04 5.02 ± 2.27 4.53 ± 2.01 5.17 ± 1.94 4.47 ± 2.26 5.53 ± 2.10 4.58 ± 2.07 5.14 ± 2.26 4.49 ± 2.00

LH, mIU/mL 4.24 ± 2.02 4.39 ± 1.93 4.34 ± 2.32 4.32 ± 1.82 4.97 ± 2.22 4.12 ± 1.98 5.80 ± 2.13 4.34 ± 1.75 4.79 ± 1.84 4.38 ± 1.79

TSH, uIU/mL 2.07 ± 0.93 2.48 ± 1.21 2.10 ± 0.89 2.19 ± 1.08 2.02 ± 0.81 1.92 ± 0.84 1.99 ± 1.47 1.96 ± 0.85 1.90 ± 0.79 2.08 ± 0.87

MRI examination and PM Functional diagnosis [No. (%)]

Normal pituitary of MRI scan – 506 – 129 – 142 – 97 – 90

PM of MRI scan 274 – 66 – 104 – 58 – 54 –

Non-functional PM 194 (70.8) – 47 (71.2) – 75 (72.1) – 42 (72.4) – 39 (72.2) –

Functional PM 80 (29.2) – 19 (28.8) – 29 (27.9) – 16 (27.6) – 15 (27.8) –

PRL-PM 76 – 17 – 24 – 15 – 15 –

ACTH-PM 3 – 2 – 3 – 0 – 0 –

GH-PM 1 – 0 – 2 – 0 – 0 –

TSH-PM 0 – 0 – 0 – 1 – 0 –

Data are mean (S.D.) or a number of individuals (%). BMI, Body Mass Index; PRL, Prolactin; ACTH, adrenocorticotrophic hormone; FSH, Follicle-Stimulating Hormone; LH, Luteinizing Hormone; TSH, Serum Thyroid-stimulating Hormone;

GH, Growth hormone; MRI, Magnetic Resonance Imaging; PM, pituitary microadenoma.—means the participants did not calculate.
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FIGURE 2 | The ROC curves of testing and validation set A1 (Internal dataset), validation set A2 and A3 (external dataset). The model has achieved excellent

diagnosis performance in internal and external data sets. (A) The AUC of the testing set was 98.13%. (B) The validation set A1 is a temporal internal dataset, the AUC

was 95.46%. (C,D) In the geographical external dataset, the AUC of the validation set A2 and A3 was 94.72 and 93.70%, respectively. AUC, area under the ROC

curve; ROC, the receiver operator curve.

PPV (95.92%), specificity (96.00%), and NPV is (94.12%)
(Supplementary Table 3). The ROC curves are shown in
Supplementary Figure 5A, the AUC of the PM-CAD system was
95.56% and outperformed our six radiologists (best radiologist
#6 as 95.00%), at the same false-positive rate, the true positive
rate of the PM-CAD system was higher than six radiologists
(Supplementary Figure 5A). Weighted error scoring (10) was
incorporated during modeling and evaluation, the PM-CAD
system produces a weighted error of 10.00%, which is far below
the average weighted error of 21.67% achieved by six radiologists
(Supplementary Figure 5B). The difference of NLRs or PLRs
(10) between our PM-CAD system and radiologists is shown in
Supplementary Figures 5C,D, ourmodel demonstrates excellent
diagnostic performance. The classification confusion matrices
report the number of true positive, false positive, true negative,
and false negative resulted for the PM-CAD system and
radiologists in Supplementary Table 4. Thus, we showed that the
diagnosis performance of our PM-CAD system is comparable
to general radiologists with more than 10 years of professional

experience. A Bland-Altman plot was used to analyze the
interobserver consistency of the six radiologists’ independent
measurements of the pituitary MRI finding. The 95% limits of
agreement were −0.4500 to 0.4300, −0.2958 to 0.2558, −0.1860
to 0.2060, −0.1860 to 0.2060, −0.1860 to 0.2060, and −0.2060 to
0.1860, respectively, indicating high interobserver consistency.

Further Assessment for the Diagnosis
Performance of the PM-CAD System
We sampled three double positive cases of PM (both diagnosed
by radiologists and PM-CAD system), which underwent surgical
treatment, the double positive cases were confirmed by a
subsequent pathological examination (one case of Cushing’s
disease, one case of Acromegalia, and one case of prolactinoma;
Supplementary Figure 6A).

A false-negative diagnosis leads to delay in treatment of PM,
PM-CAD system showed 100% diagnosis accuracy of detecting
three clinically misdiagnosed PM cases which subsequently
underwent surgical treatment (two cases of Cushing’s disease and
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FIGURE 3 | The Calibration curves of testing and validation set A1 (Internal dataset), validation set A2 and A3 (external dataset). The calibration curves of the

predicted probability from our PM-CAD vs. the observed probability for PM in (A) the testing set, (B) the validation set A1, (C) the validation set A2, and (D) the

validation set A3. We used logistic regression to rebuild the prediction probability from our CNN model. The intercepts on the testing and verification set A are −6.098,

−4.26, −3.465, and −2.963, respectively. And the probability weight W is 10.069, 9.928, 11.06, and 9.909, respectively. CNN, convolutional neural network;

PM-CAD, Pituitary microadenoma-computer-aided diagnosis.

one case of thyroid-stimulating hormone, TSH, secreting PM;
Supplementary Figure 6B). The diagnosis of thE misdiagnosed
PM was confirmed by histopathology examination and
relevant clinical information (Supplementary Figure 6 and
Supplementary Table 5).

Browser-Based Software Application
The browser-based software was designed to assist the PM
diagnosis of pituitary MR images from different hospitals,
which is hosted at http://www.pituitarymicroadenoma.com.
Even without graphics processing unit (GPU) acceleration, the
application takes only 1–2 s to analyze all MR images from a
patient. Once DICOM files (the coronal dynamic enhancement
T1-weighted imaging (T1W) sequence) are uploaded to
the software, PM diagnosis outputs can be presented. The
software interface is presented in Supplementary Figure 7. In a
prospective study, we have tested the efficacies of our PM-CAD
in the division of endocrinology in our hospital. Our results

indicate that the PM-CAD system is an excellent screening test
for the presence of PM. Over a period of 1 month, our PM-CAD
system was able to detect the presence of 11 PM patients with a
97% accuracy rate (of 48 infertile patients and 25 patients with
pituitary MR examination).

DISCUSSION

In this work, we developed a deep learning system (namely,
PM-CAD) to diagnose PM from MRI. As we know, it is
the first attempt to focus on PM diagnosis by using deep
learning, although similar works have been proposed for pituitary
adenoma (7–9, 16). Diagnosis of PM is challenging due to its tiny
size and various anatomical structure (1–3). We found that our
PM-CAD system can accurately diagnose PM fromMRI without
additional information, the system achieves a 96.5% diagnostic
accuracy, which is comparable to radiologists with over 10 years
of professional expertise.
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TABLE 2 | The diagnosis performance of the PM-CAD system in the validation set A (internal and external datasets).

Evaluation metrics Validation set A

(set A1: internal dataset,

hospital 1)

Validation set A

(set A2: external dataset,

hospital 2)

Validation set A

(set A3: external dataset,

hospital 3)

AUC (95% CI) 0.9546 (0.9028–0.9923) 0.9472 (0.8978–0.9858) 0.9370 (0.8821–0.9802)

Sensitivity 0.9783 (0.9237–0.9974) 0.9072 (0.8312–0.9567) 0.9111 (0.8324–0.9608)

Specificity 0.9412 (0.8376–0.9877) 0.9483 (0.8562–0.9892) 0.9444 (0.8461–0.9884)

Accuracy 0.9650 (0.9203–0.9885) 0.9226 (0.8687–0.9594) 0.9236 (0.8674–0.9613)

PPV 0.9677 (0.9086–0.9933) 0.9670 (0.9067–0.9931) 0.9647 (0.9003–0.9927)

NPV 0.9600 (0.8629–0.9951) 0.8594 (0.7498–0.9336) 0.8644 (0.7502–0.9396)

F1 score 0.9730 (0.9381–0.9912) 0.9362 (0.8912–0.9666) 0.9371 (0.8903–0.9682)

AUC, the area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.

Several previous works have attempted to analyze pituitary
adenoma using MRI. Ugga et al. (9) used a machine
learning method to extract MRI-based radiomics to predict the
proliferative index of pituitary macroadenomas. Qian et al. (7)
employ a CNN network to diagnose pituitary adenoma from
MRI, they evaluated a 149 participants dataset, which includes
pituitary macroadenoma and microadenoma. Wang et al. (16)
created an automated segmentation method for the sellar region,
several tools to extract invasiveness-related features of pituitary
adenoma and evaluate their clinical usefulness by predicting the
tumor consistency. In this study, we focus on the diagnose of PM
from the PM-CAD system with a large dataset. We show that our
PM-CAD system outperforms the model developed by Qian et al.
(7). Because of our PM-CAD system can specifically extract PM
features from pituitaryMR images and trained withmore data. In
addition, our model was validated in three hospitals and showed
excellent generalization ability.

Strengths and Limitations
Our work has the following strengths. First, we showed that
this PM-CAD system is a rapid, reliable tool to diagnose PM
with a high accuracy in both internal and external datasets.
Second, PM diagnosis requires experienced radiologists, but the
exhausting workload raises the misdiagnose rate. Our PM-CAD
system can be used as an assistant tool to reduce the workload
of radiologists. Our PM-CAD system achieves comparable
diagnostic accuracy to experienced radiologists and can make
a decision in 1–2 s. Third, medical resources are not evenly
distributed, that is, experienced radiologists mostly worked
in economically developed areas hospitals while economically
underdeveloped areas are lack experienced radiologists (4, 5).
Our online accessible PM-CAD system can provide PM diagnosis
to these areas and improve their PM diagnostic capabilities. Last,
training a radiologist is costly and time consuming. It usually
takes more than 10 years to train a qualified radiologist (4, 5). Our
PM-CAD system is trained from annotated data and takes few
time (about 30 s per patient) to improve its performance when
more data are provided.

Our PM-CAD system remains several problems to be solved.
First, although our PM-CAD system achieves a 96.5% diagnostic
accuracy, this implies that 3.5% of cases may potentially be

misdiagnosed in practice. To further improve the diagnosis
performance of the PM-CAD system, more data should be
collected and used to train our models. Second, when more new
data are available, it would be better than our PM-CAD system
can perform model self-update, a continual learning approach
can be introduced to keep our system learning. Third, MRI scan
data are unique to patients, with privacy concerns, these data are
not allowed to distribute out of the hospitals. Therefore, our PM-
CAD system cannot be fine-tuned in a specific hospital. In future
work, we will use a federated learning framework to fine-tune our
models in a privacy-preserving manner.

CONCLUSIONS

In summary, we have developed a deep learning-based system
(namely, PM-CAD) to detect PM from MRI. A Total of 1,520
participants datasets have been used to train, validate, and test
our system. Our PM-CAD system achieves a diagnostic accuracy
comparable to radiologists with over 10 years of professional
expertise. In the study, our PM-CAD system shows excellent
generalization ability. Results from this work highlight the
potential applications of deep learning on the diagnosis of
patients with PM. With the rapid development of computing
power, deep learning algorithms can surpass the gold diagnosis
standard for the detection of PM. Machine learning for the
diagnosis of PM will serve as an important component in
improving patient care and outcomes.
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Supplementary Method | A detailed description of PM-CAD Model. PM-CAD,

Pituitary microadenoma-computer-aided diagnosis.

Supplementary Figure 1 | Cases of 4 misdiagnosed pituitary microadenomas.

(A) 4 consecutive pituitary MRI scans over a period of 20 months in a

misdiagnosed patient with pituitary microadenoma. The radiologists have not

detected the pituitary microadenoma during the first 3 MRI examinations. A

functional microadenoma has been localized by the subsequent ACTH

examination of the inferior petrosal sinus in the region of right pituitary gland. On

the 4th MRI scanning, two microadenoma are detected by radiologist. (B)

Additional 3 cases of misdiagnosed microadenoma. Patient 1 has a very small

microadenoma with a diameter < 3mm. Patient 2 has an irregularly shaped

microadenoma. Patient 3 has two microadenoma (with diameters of 2.8mm and

6.1mm, respectively) and the smaller one was misdiagnosed. The comprehensive

clinical data for patients were listed in Supplementary Table 1. ACTH,

Adrenocorticotropic Hormone; MRI, magnetic resonance imaging; T1WI-COR, T1

weighted imaging-coronal. MRI bar = 5mm. The yellow arrow and the area inside

the red circle represent adenomas.

Supplementary Figure 2 | Workflow diagram for the validation datasets. PM,

pituitary microadenoma; MRI, magnetic resonance imaging.

Supplementary Figure 3 | Overview of our PM-CAD system. (A) First the MR

images are fed into our PM-CAD system for automatic diagnosis. The proposed

PM-CAD system consists of two models: (B) the pituitary detection model

localizes the pituitary region in cerebral MRI. The MR images are processed with

multiple convolutional layers and two maps (classification map is used to predict

the center and the regression map is used to refine the height and width of the

rectangle box) are produced to predict a rectangle box enclosing the pituitary

region. The pituitary rectangle region is cropped, stacked, and then fed into the

PM diagnosis model. (C) It employs the proposed PM-CAD model to extract

features. A softmax layer is employed to transform the feature into the presence

probability of PM. CAD, computer-aided diagnosis; MRI, magnetic resonance

imaging; MR, magnetic resonance; PM, pituitary microadenoma.

Supplementary Figure 4 | Performance of the PM-CAD system on the training

datasets. (A) Accuracy curves achieved by the PM-CAD system on the

development and testing datasets. (B) Cross entropy loss curves achieved by the

PM-CAD system on the development and testing datasets. We train the PM-CAD

system for 500 epochs.

Supplementary Figure 5 | The PM-CAD system outperforms 6 radiologists in

AUC of PM diagnosis. (A) ROC and AUC: ROC curve shows the true positive

rates (sensitivity) with respect to different false-positive rates (1-specificity). The

ROC curve shows that the PM-CAD system outperforms 6 radiologists. The AUC

of PM-CAD system is 95.6% better than our best radiologist#6 (AUC 95.0%). (B)

Weighted error. A penalty weight of 2 is applied to false-negatives and a penalty

weight of 1 is assigned to false-positives. The PM-CAD system produces a

weighted error of 10%, whereas the radiologists produce a weighted error of

21.67%. (C,D) The negative likelihood ratio and the positive likelihood ratio: The

negative likelihood ratio is defined as the false-negative rate over the true negative

rate, so that a decreasing likelihood ratio < 1 indicated increasing probability the

absence of PM. The positive likelihood ratio is defined as the true positive rate

over the false-positive rate, so that an increasing likelihood ratio > 1 indicated

increasing probability the diagnosis of PM. The confidence intervals show that the

PM-CAD system demonstrates statistically better screening performance in terms

of both negative likelihood ratio and positive likelihood ratio than radiologists.

Radiologist 1 & 2: with < 5 years professional experience, Radiologist 3 & 4: with

5 - 10 years professional experience, Radiologist 5 & 6: with > 10 years

professional experience. PM, pituitary microadenoma; receiver operating

characteristics (ROC); the area under ROC curve (AUC).

Supplementary Figure 6 | The MRI and histological validation of double positive

and false-negative cases. (A,B) 3 double positive and 3 false-negative cases,

which were functional PM, as confirmed by subsequent pathological examination.

The comprehensive clinical data for these patients are listed in

Supplementary Table 5. PM, pituitary microadenoma; MRI, magnetic resonance

imaging; AI, Artificial intelligence; HE, hematoxylin and eosin; ACTH,

adrenocorticotropic hormone; GH, growth hormone; TSH, thyroid stimulating

hormone; PRL, prolactin. MR bar = 5mm. Pathology bar =100µm. The yellow

arrow indicates a pituitary microadenoma.

Supplementary Figure 7 | The browser-based software to aid the diagnosis of

PM. As long as we upload the pituitary MR images (DICOM), the software will tell

you whether the patient suffering from PM disease. This browser based tool can

be accessed at http://82.157.181.77/.

Supplementary Table 1 | The workload of radiologists with different professional

experience in human-computer competition. All participating radiologists are
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general radiologists (no specialization). Workload analysis was performed on the

participating radiologists for 1 year.

Supplementary Table 2 | Confusion Matrices for testing and validation of dataset

A (internal and external datasets). Data are numbers of images. a, true-positive; b,

false-positive; c, false-negative; d, true-negative.

Supplementary Table 3 | The diagnostic performance for Human-computer

competition according to temporal validation set B (n = 100). Unless otherwise

specified, data are percentages, with numbers of images in parentheses and 95%

confidence intervals in brackets. F1 score, the harmonic mean of PPV and

sensitivity. NPV, negative predictive value; PPV, positive predictive value.

Radiologist 1 & 2, < 5 years professional experience; Radiologist 3 & 4, 5 - 10

years professional experience; Radiologist 5 & 6, > 10 years professional

experience.

Supplementary Table 4 | Confusion Matrices for Human-computer competition

according to temporal validation set B (n = 100). Data are numbers of images. a,

true-positive; b, false-positive; c, false-negative; d, true-negative.

Supplementary Table 5 | The patient clinical data in

Supplementary Figures 1, 6. PM, pituitary microadenoma; BMI, Body Mass

Index; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; HR, Heart

Rate; TSH, Serum Thyroid-stimulating Hormone; FT4, Free T4; FT3, Free T3;

TSTO, Testosterone; PRL, Prolactin; PRGE, Progesterone; LH, Luteinizing

Hormone; E2, Estradiol; GH, Growth hormone; IGF-1, Insulin-like Growth factor-1;

COR, cortisol; ACTH, adrenocorticotrophic hormone; PZC24, 24-hour urine free

cortisol; IPSS, inferior petrosal sinus sampling; MRI, Magnetic Resonance

Imaging. FT3 (range 3.5–6.5 pmol/L). FT4 (range 11.5–22.7 pmol/L). TSH (range

0.55–4.78 uIU/mL). TSTO (range female 0.5–2.6, male <50 years 4.94–32.01

nmol/L). FSH (range female 2.5–10.2, male 0.95–11.95 mIU/mL). PRL, (range

female 59–619, male 72.66–407.4 uIU/mL). PRGE (range female 0.5–4.5, male

0.2–1.040 nmol/L). LH (range female, 1.9–12.5, male 0.57–12.07 mIU/mL). E2

(range female, 71.6–529.2, male 40.4–161.5 pmol/L). GH (range <8 ng/mL).

IGF-1 (range 116–358 ng/mL). COR (8 Am range 118.6–618 nmol/L 0.4 Pm range

85.3–459.6 nmol/L). ACTH (8 Am range <10 pmol/L). PZC24 (range 153.2–789.4

nmol/ 24-h)—means the patient did not measured.
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A main goal of Precision Medicine is that of incorporating and integrating the vast

corpora on different databases about the molecular and environmental origins of disease,

into analytic frameworks, allowing the development of individualized, context-dependent

diagnostics, and therapeutic approaches. In this regard, artificial intelligence andmachine

learning approaches can be used to build analytical models of complex disease aimed at

prediction of personalized health conditions and outcomes. Such models must handle

the wide heterogeneity of individuals in both their genetic predisposition and their social

and environmental determinants. Computational approaches to medicine need to be

able to efficiently manage, visualize and integrate, large datasets combining structure,

and unstructured formats. This needs to be done while constrained by different levels

of confidentiality, ideally doing so within a unified analytical architecture. Efficient data

integration and management is key to the successful application of computational

intelligence approaches to medicine. A number of challenges arise in the design of

successful designs to medical data analytics under currently demanding conditions of

performance in personalized medicine, while also subject to time, computational power,

and bioethical constraints. Here, we will review some of these constraints and discuss

possible avenues to overcome current challenges.

Keywords: precision medicine, machine learning, data integration, meta-data mining, computational intelligence

1. INTRODUCTION

Contemporary biomedical research and medical practices are increasingly turning into data-
intensive fields, for which computational intelligence approaches, such as those based on artificial
intelligence and machine learning (AI/ML) methods are becoming the norm. Due to the
specific nature of these fields, the integration and management of the ever-growing volumes of
heterogeneous data involved, often presents a number of challenges. These challenges become even
more relevant in the light of the importance that AI/ML are gaining, establishing themselves at the
core of the state-of-the-art in biomedical research and clinical medicine (1–3), as well as public
health and healthcare policy (4–6).

From the standpoint of biomedical research, a number of large, data-intensive collaborative
projects, such as the International Hap Map project (7, 8), The Cancer Genome Atlas (TCGA)
(9–12), the 1000 Genomes (1000G) study (13–16), the GTEX consortium (17–19), and the Human
Cell Atlas (HCA) (20, 21), and others are establishing novel frameworks for the molecular study
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of health and disease. Such frameworks are firmly supported
by robust database management and integration strategies that
are allowing them to develop into central tools for basic and
translational biomedical research.

Relevant as genomics and high throughput molecular studies
are for biomedicine, there are other relevant players in the
medical data arena. Among the more important in the present
context are large scale clinical and phenotypic studies. Large
clinical cohorts creating data-intensive outputs are of course not
new, but the extent of their outreach and the complexity of
the resulting data sets are growing exponentially fast. Starting
from large scale clinical surveys, such as the Framingham Heart
study (22, 23), the Wellcome Trust Case Control Consortium
(24) and moving unto efforts like the UK Biobank that combines
large scale clinic and phenotypic data with ultra-high-throughput
genomic testing (25–28) that for the last 15 years has been
generating massive data corpora used for their own means but
also encouraging and feeding other data-intensive analytical
efforts from genetic disease association (29) to brain imaging
(30) to psychology (31) and social determinants of health (32),
to name just a few instances. It goes without saying that the
impact that these projects have reached on the basic and clinical
settings, but also in the epidemiology and public health areas has
been enormous.

In the context of AI/ML, however, the focus is shifting
into translating the astronomical amounts of data generated
ultimately into products and policies able to impact both the
patients’ and the general public health. This has been, for
instance, one of the central goals of the U.S. initiative in
Personalized Medicine (33, 34). That is, how to develop analytic
strategies—many of them founded on automated learning,
essential, given the size of complexities of current health-related
data corpora—to pass from large scale, heterogeneous data to
useful (even actionable) medical information (35).

Aside from large scale, even multi-national efforts—such as
the ones in the consortia just discussed—, another area of
intensive interest regarding data-mining in medicine has been
the development of analytical strategies to effectively mine the
ever growing body of Electronic Health Records (EHR), that has
been perceived as a largely forgone and under-utilized data source
(6, 36–39).

One main challenge in knowledge discovery from EHRs
is that electronic medical records are highly heterogeneous
data sources with a complex array of quantitative, qualitative,
and transactional data. Disparate data types include ICD
codes (mainly used for pricing and charging hospital
procedures), biochemical and lab tests, clinical (text-based)
notes, historical archives of medical interventions, therapies
and even pharmaceutical deliveries. These data sources are
often captured by dozens of individuals (sometimes with
biased criteria) for each instance. Hence EHR data is quite
difficult to analyze, in particular if one is looking (as is often the
case if AI/ML techniques are being considered) multi-patient
institutional and even multi-centric levels.

In brief, EHRs were not developed to be used as a resource for
automated learning so they are not designed with data structures
in mind. Since EHRs are first and foremost adapted for clinical

and hospital logistics, data modeling and learning will often
face challenges related to structural heterogeneity from their
early stages, either by adapting existing EHR strategies or by
re-designing them (40–44).

In the quest for more efficient healthcare interventions, based
on information-optimized clinical practice and policy, AI/ML
will certainly play a key role in going from amedicine approach—
based mainly in the skills of the well-trained clinician—
to one based also in detailed (often automated) analysis
of the individualized interplay of molecular interactions and
physiological traits with environmental and even social elements,
thus, delivering the promise of personalized medicine (1, 2, 45,
46). The development of this analytic approach to personalized
medicine (often termed Precision Medicine) involves a number of
theoretical frameworks from systems biology to computational
biology, biomedical informatics, and computational medicine.
This is so, since health and healthcare are multi-dimensional
in nature, hence, their study must consider information at the
genetic, molecular, clinical and population levels. Health and
healthcare analytics, however, must also evaluate and assess how
to cope with the complexity and natural biases of the plethora of
medical-related databases in which said molecular, clinical, and
epidemiological data resides. This, again, points out to the need
of customized, scalable computational and analytical tools for
pattern discovery and hypothesis generation and testing. AI/ML
is turning into a cornerstone of personalized medicine (6, 47–49).

In order to present a panoramic view on how these and other
challenges may be overcome toward an optimized application of
machine learning and artificial intelligence to analyze biomedical
and health-related data in a Precision Medicine context, the rest
of this work will proceed as follows: The next section (The role of
data in training good AI/ML models) will establish the necessity
to have proper data as input to machine learning and AI models
useful in Precision Medicine. We will discuss how having very
large data corpora (a.k.a Big Data) is great, but often carries with
it the so-called curse of dimensionality and the need to perform
feature selection, i.e., to select relevant pieces of information
among very large and complex databases. We will also elaborate
on the challenges created by diverse and heterogeneous data
types and sources, bringing problems, such as class imbalance
(study groups of sometimes extremely disparate sizes, that are
problematic to analyze for many machine learning algorithms).

The following section (Precision medicine: transforming
biomedical evidence with data analytics) will outline how the
tenets of computational intelligence and machine learning may
be used to advance medicine turning it (even more) into a full-
evidence based science. We will see that in order to impact
biomedical research, clinical practice and public policy, AI/ML
approaches could be helpful to extend our capacities to generate
biomedical knowledge, contribute to knowledge dissemination,
translate personalized medicine into clinical practice and even
empowering the patients. In order to develop, large scale data
analytics in medicine should be able to become translational, i.e.,
moving faster from research environments to clinical settings
to ultimately benefit the patients. Then, we will move on in
the next section, to discuss the main challenges involved in
the use of computational learning toward Precision Medicine.
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FIGURE 1 | A workflow for data integration for AI/ML modeling in precision medicine. 1 A wide variety of data sources with diverse features exists. Hence, different

approaches to data collection and pre-processing are needed 2 . 3 Integrating such diverse and heterogeneous data is one of the grand challenges to the

successful application of AI/ML approaches to Precision Medicine. Overcoming such challenges will bring important improvements to Precision Medicine 4 .

These include processing heterogeneous and unstructured data,
working on collaborative and cloud-based resources, developing
standards for data sharing and collaboration, implementing
software solutions to support large scale data analytics under the
biomedical and clinical diverse data ecosystems.

Section 5 will deal with one of the main challenges involved in
the quest to effectively implement AI/ML in Precision Medicine:
Data Integration. Biomedical and clinical knowledge deals with
a plethora of phenomena, ranging from the molecular to the
socio-political. Currently, we have technologies to massively
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measure or infer data from most of these domains. How
to make sense of these different dimensions to turn them
into a coherent, intelligible body of knowledge useful for the
researchers, but more importantly, for practising clinicians, the
healthcare providers and the patients is an extremely challenging
endeavor. Interestingly, a source of information that is becoming
key for AI/ML approaches in Precision Medicine is metadata.
Metadata, i.e., auxiliary data sources often used to define other
data types. Having one’s genome sequence is of little use if we
do not have a proper annotation file; and knowledge of the
zip code or educational level of a patient may provide actual
clues for their personalized treatment. Since many data types are
actually pre-processed prior to the analysis, it is also relevant to
know how has the data been treated prior to its current form.
Information of this kind is also considered metadata. Metadata
is, hence, becoming more and more relevant. Managing such
large amounts of personal data (what can be more personal for
us than our healthcare data?), however, does not come without
a price. Ethical and legal considerations pose no small problem
if one is to provide fair and minimally invasive use of the data,
especially if it is of a sensible or private nature. Some of these
issues are discussed in section 6. Section 7 is devoted to present
the Data Management Plan, a document that will be extremely
useful to set the guidelines of any data-intensive project being
a research protocol, a clinical trail or a healthcare management
design. Finally, in section 8, we present some Conclusions
and Perspectives.

2. THE ROLE OF DATA IN TRAINING GOOD
AI/ML MODELS

The current development of highly sophisticated and often quite
effective AI/ML and the accompanying proliferation of large scale
data sources in the biomedical setting, has raised the expectations
regarding the many potential benefits that can be derived from
the marriage of good methods + good data. However, in order for
these large amounts of data to be useful in producing goodAI/ML
models, size is not the only thing that matters, a question that is
often overlooked (50, 51).

Clinical and biomedical data comes in a wide variety of
sizes, forms, and formats; it is often complex, heterogeneous,
poorly annotated, and often unstructured. Now, each of these
issues: size, variety, formatting, complexity, heterogeneity, bad
annotation, and lack of structure, pose a challenge to effective

AI/ML modeling (see Figure 1 section 1 ) (52).
Regarding size, for instance, even when we often deal with

big data—usually considered an advantage—, it is common
that these data sources suffer from the so-called curse of
dimensionality (CoD), a situation in which the number of
variables or features is much larger than the number of
experimental samples or realizations. CoD is particularly evident
in the case of genomic and transcriptomic analyses for which
the number of genes or transcripts is in the order of tens
of thousands whereas the number of samples is rarely larger
than a few hundreds or a few thousands at most. Even more

complex is the scenario when one is measuring, for instance,
chemical modifications, such as DNA methylation; the current
experimental protocols allow for the simultaneous measures of
five thousand hundred or more methylation probes (52).

CoD leads to the p >> n problem in machine learning
(53): increased data dimensionality may cause AI/ML methods
to suffer from overfitting. Overfitting, in turn, implies that the
methods are highly accurate on training data while showing
low performance on generalization or handling unseen data.
Potentially good methods will fail to deliver in real life
applications. One approach to deal with the CoD is performing
data dimensionality reduction prior to training the ML methods.
The most common means of data dimensionality reduction
are feature extraction in which data is projected from a high
dimensional space to a lower dimensional space and feature
selection that reduces dimensions by identifying a relevant or
informative subset of the original set of features (54).

Feature extraction methods, such as principal component
analysis (PCA) and other methods based on eigenvalue
decompositions, non-negative matrix factorization (NNF), t-
distributed stochastic neighbor embedding (t-SNE) and others,
allow for easier data visualization, exploration, and compression,
as well as latent factor profiling. On the other hand, feature
selection methods consists in one or more of the following
strategies: data filtering (DF), data wrapping (DW), and data
embedding (DE). The purpose the former (DF) is to select a
subset of relevant features in a model independent fashion an
include methodological approaches, such as ANOVA, Pearson’s
correlation, information theoretical measures, such as entropy
and mutual information, constrained regressions, and maximal
relevance minimal redundancy (mRMR) methods. DWmethods
look for the best combination of features trained by a particular
predictive model and include the recursive feature elimination
(RFE), jackstraw and the Boruta-Random Forests (BRF). DE are
a combination of DF and DW that works by performing feature
selection while building a predictive model, perhaps the best
known example of DE method is the least absolute shrinkage and
selection operator (LASSO) and its extensions, such as the elastic
net algorithm (52).

Data variety/diversity and data heterogeneity also result
problematic for the implementation of AI/ML modeling
in Precision Medicine. Heterogeneity emerges from many
situations, such as substantially different types of variables
(or different coding) in the various data sets (think of
EHRs from different hospitals), mismatched distributions or
scaling including disparate dynamic ranges (say we have
combined expression data from microarrays and RNASeq
technologies), diverse data modalities (continuous signals,
counts, intervals, categories, pathways, etc., derived from
molecular and imaging experiments) and formats (say European

versus American reporting standards) (Figure 1 section 2 ).
Integrating heterogeneous data types may be done naively, by
just concatenating features from disparate data sources, but this
reduce the number of working to the use of decision tree (DT)—
like models that suffer from overfitting. An alternative would
be to use penalized regression (e.g., elastic nets) with several
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regularization strategies, though thismay in turn bring challenges
regarding interpretability of results (51, 52). Better results may
be obtained by resorting to block-scaling (55) or multiple kernel
learning methods (56).

Due to the complexity intrinsically associated to biomedical
and clinical data, but also due to difficulties in subject/sample
procuration and in data acquisition (data generating/sampling
technologies may fail) it is common to have problematic
circumstances, such as missing data (from instances not
measured or measured defectively), class imbalance (widely
different sample sizes in different feature groups) and even rarity
(an extreme form of class imbalance) (57). There are several
learning strategies to cope with missing data and class imbalance,
ranging from the so-called listwise deletion (i.e., completely
deleting the problematic sample from the study), imputation
(i.e., inferring the missing value from expectation methods from
the sample-wise profiles or even from feature-wise profiles)
suing methods, such as k-nearest neighbor replacement, full
conditional specification, stochastic gradient boosted trees, and
other ensemble regression frameworks (52).

Class imbalance is another problematic-yet-pervasive
situation in large scale data analytics (LSDA) of biomedical
and clinical data. This fact becomes quite relevant since the
most machine learning methods, such as support vector
machines, random forests, and artificial neural networks
assume balanced class distributions. Hence, these classifiers
tend to overestimate patterns from the majority class, and
underestimate those features characteristic of the minority class
or classes. To overcome this limitation a class of ML approaches
termed class imbalance learning (CIL) methods have been
developed. CIL algorithms can be based on data sampling (e.g.,
random undersampling, bootstrap sampling, etc.); on algorithm
modifications incorporating the inherent biases or skewness
in the learning steps (e.g., weightedSVM, weigthedELM) or in
ensemble learning in which several ML methods are applied and
the results are consensed or averaged (52, 58).

Furthermore, even if most of these problematic issues may
be solved, at least partially, with the analytic approaches just
discussed, two relevant issues remain. First, real life datasets often
have not one, but several (even all) of these challenging features.
The ML methods useful to tackle some of these limitations may
have poor performance due to others. Leveraging alternatives by
evaluating the pros and cons may not be trivial. Second, every
one of the methods for LSDA in imperfect/real-life datasets has
its own set of assumptions and limitations. AI/ML researchers
in biomedicine should be very aware of this and very cautious
when combining methods and taking conclusions. However, as
we will see in the next section, advancing biomedical and clinical
research by using AI/ML approaches often worth all the efforts.

3. PRECISION MEDICINE:
TRANSFORMING BIOMEDICAL EVIDENCE
WITH DATA ANALYTICS

Since the later years of the 20th century, following the pioneering
work by Cochrane, Eddy, and others (59–62) efforts have been

directed toward building a systematic approach to medical
and public health decisions, one founded not on anechdotic
or individual expertise, but rather in the light of a full
inspection of the existing clinical and biomedical research. This
approach, called Evidence-Based Medicine (EBM) (63) aimed
at the comprehensive use of all the accumulated scientific and
clinical evidence to develop health related interventions and
policy. At that time EBM was founded on anecdotal clinical
experience, published case reports, meta-analyses and systematic
reviews, and randomized controlled trials (64, 65). No high-
throughput molecular or individual disaggregated information
was considered at the time; even the already existing large-
scale epidemiological data was not exploited fully due to data
availability constraints (66, 67).

Even if the EBM paradigm has been superseded for various
reasons, perhaps its main relevance resided in bringing to
attention the fact that, as a rule, healthcare-related decisions
should be supported by objective, stringent evidence rather
than being left to the subjective opinion of some individual
professional, expert as they may be. With the advent of larger,
well-curated data corpora and more powerful ways to analyze
the data and transforming it into useful information, EBM ideals
have been embraced and incorporated into what has been called
Precision Medicine (68–71).

Aside from the spectacular changes in information
technologies in recent times, another main booster of this
transformation was the genomic revolution driven by the human
genome project (HGP) (72–74). The promises of the HGP,—
many of them still undelivered (75)—pointed out to data-based
biomedicine (particularly the identification of genetic variants
behind the diseased phenotypes), as a key player to identify
targets and customize pharmacological and other therapeutic
interventions leading to a dramatic improvement of population
and individual health (76, 77).

In view of this emerging paradigm, what is the role that
AI/ML may play in its establishment as the standard approach
in biomedical research, clinical practice and public policy?
It has been argued (2, 6, 78) that there are at least four
development avenues in which LSDA may impact healthcare:
(i) LSDA may enlarge the capacity to generate new biomedical
knowledge, (ii) LSDA may provide a support for healthcare-
related knowledge dissemination, (iii) LSDA can become a tool
for translating personalized medicine initiatives into clinical
practice (for instance, by integrating molecular and EHR data
on a single framework), and (iv) LSDA supplemented with
simplified user interfaces can become a vehicle for empowering
of the patients, helping them play a more active role in their own
healthcare decision making.

In order to deliver such benefits, LSDA needs to be able to
address questions, such as how to deal with highly unstructured
heterogeneous data (say from EHRs) via high-performance
computational techniques for quantitative analytics, but also for
data mining, literature mining, and natural language processing
algorithms over integrated pipelines. Particularly challenging are
the scenarios related to clinical practice since they would be
ideally processing such enormous amounts of unstructured data
in cuasi-real time, if LSDA is intended to be beneficial for the
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individual patient (79, 80). In the following sections, we will
discuss some of the opportunities and limitations of applying
AI/ML (often in the form of LSDA) in health-related settings.

3.1. Personalized Medicine: From Data
Lakes to Patient Beds
LSDA and AI/ML may also play a role in supporting the clinical
practitioners to keep up-to-date with the current scientific
literature in their fields, an issue that has been struggling
attending physicians for a while. In brief, if a medical doctor
wants to treat their patients with the current best available
therapeutic options, difficulties arise in trying to define what is
currently considered better. As is known, the available scientific
literature regarding a single medical speciality has been already
overwhelming. The situation becomes much worse when one
is dealing with multi-morbid patients since clinical guidelines
and algorithms are often aimed at the single condition scenario
(81–85).

Embracing the computational learning paradigm, the
clinician may be armed with a new set of tools allowing
for suggestions/surveys supported by real-time patient data
analytics integrating, both the complexity of the patient’s genetic
background, environmental conditions, and the corresponding
comorbidities with the current literature standards of care
(Figure 1 section 3 ) (6, 33, 46, 86–88).

Aside from standard biomedical and clinical data, LSDA
allows to further integrate occupational, social, physiological,
and even behavioral information of the individual patient
(available in social network, wearable devices, and other cloud-
based resources) (89–92) to enhance the clinical profiles. To
reach this point, however, there are important conundrums
to be solved. In particular, novel computing and analytical
frameworks should be designed to find patients’ similarities
and differences, but also to discover patterns highlighting their
connections and discrepancies with the aim of calculating, for
instance, personalized disease risk profiles, akin to polygenic
risk scores, but under a much more general view—engulfing
all the already discussed data types—allowing for individualized
proactive medicine (93–95).

Hence, by integrating phenotype and disease-history based
approaches, LSDA aims to advance personalized disease
prediction, improve healthcare management and even contribute
to an overall positive impact to individual wellness (Figure 1

section 4 ) (96–100). In doing so, AI/ML approaches are
collaborating to a shift in the emphasis of clinical medicine from
a disease-centered view to a patient-based practice (101, 102),
a paradigm that has been long known since Hippocratic times
and has been resumed a hundred years ago by the Spanish
endocrinologist Gregorio Marañón who stated that there are no
diseases but patients.

The panorama we have just discussed seem to be quite
promising, indeed AI/ML and LSDA have already brought
relevant advances toward Personalized Medicine (34, 70, 103).
However, a consensus has not been reached as to how to integrate
the large scale data of EHR, themany heterogeneous databases on
molecular, phenotypical and environmental information derived

from large scale experimental, clinical and epidemiologic studies
and the individual-wise data gathered from disparate sources,
such as social networks and wearable devices to develop a
personalized approach to medicine? (46, 48, 104–106).

4. CHALLENGES TO COMPUTATIONAL
LEARNING IN PRECISION MEDICINE

Of the many challenges posed to AI/ML by ever-growing health
and biomedicine data sources, one of them is paradoxically
related to what is often perceived as its main driving force. Having
large amounts of data is obviously beneficial for computational
learning algorithms, the more data you have, the more robust
your classifiers, regressions, and mining strategies will be.
However, as the tendencies move toward Precision Medicine,
we can see how some major sources of primary biomedical
information, such as genomics (in particular next generation
sequencing) and imaging are becoming progressively cheaper
(107–109), hence allowing their widespread use, nevertheless the
computational costs of processing and analyzing the data are, for
obvious reasons, growing fast (110–114).

Hence, aside from the already discussed challenges of
database structural heterogeneity and data type integration,
a number of major limitations for the development of
AI/ML in biomedicine belong to the computer systems
domain (115). Those challenges are, for instance, in the
development of consolidation, characterization, validation, and
processing standards for the data; creating ontologies and
knowledge relationships for entities, such as genes, drugs,
diseases, symptoms, patients, and treatments, as well as their
corresponding entity-relationship schemes (116–119).

Along these lines, recent advances in AI, in particular those
directed to Natural Language Processing (NLP) have been
incorporating tools of semantic web analysis, such as conceptual
relational networks (120, 121), semantic-syntactic classification
(122), and similarity mapping (123). The problem, again, is
a matter of throughput: effective implementation (training,
in particular) of such NLP tools is only enabled if one has
extremely large data corpora being accessed on a concurrent
fashion (124). The vast majority of hospitals, research labs and
even pharmaceutical development facilities do not currently
have access to the storage and computational power resources
needed to perform these analyses. The current alternative to local
processing is, of course, cloud computing (125–127). However, as
we will see in the next subsection, performing LSDA in medical
and biomedical data in the cloud is not a problem-free solution.

4.1. Precision Medicine, Machine Learning
and Cloud Computing
The use of cloud computing in the analysis of clinical, biomedical
and healthcare data has many advantages: (i) it helps to
solve the issue of processing large amounts of data in real
time (128, 129), (ii) may provide scalable, cost-efficient data
analytics solutions (130). Cloud computing, however, brings
some technical difficulties, such as the ones related to high-
throughput data transfer infrastructures, distributed computer
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power over very large non-parallelizable tasks and perhaps
the main challenge (that we will discuss more in depth in
a forthcoming section) which lies in adapting the current
distributed storage and processing paradigms in big data, while
simultaneously allowing for full confidentiality of the data (since
some of it may be highly sensible in nature) (131).

However, a number of cloud computing resources are
becoming a standard for several omic studies, as it can be
exemplified by Basespace a cloud-based sequencing analysis
environment by Illumina, by the EasyGenomics platform of
the Beijing Genomics Institute (BGI) and by European-based
Embassy clouds as part of the Elixir Collaboration, by the
NGScloud2 over Amazon Web Services (AWS) or by Galaxy-
Kubernetes integrated workflows to name but a few instances
(132–139).

It is worth noticing that standard cloud computing
designs using distributed systems, grid computing, parallel
programming, and virtualization on top of multi-layered
environments (134, 140) are becoming adopted in LSDA in
precision medicine due to their applications in the development
of robust and secure distributed analysis (132). Indeed, as
we already mentioned, cloud computing in LSDA may be
implemented under several paradigms, such as: Platform as a
Service (PAAS) (141–143), Infrastructure as a Service (IAAS)
(144, 145), and Software as a Service (SAAS) (35, 146, 147).

These different standards for cloud computing have their
particular pros and cons when applied to LSDA in Precision
Medicine; for instance PAAS designs are suited for in-house
software development or to integrate already designed libraries
that can be implemented either by the user or by the cloud
provider. Here we can mention healthcare, biomedicine, and
bioinformatics services by providers, such as Google App
Engine, Microsoft Azure MapReduce Hadoop, and others. In
contrast, IAAS providers commonly offer high performance
computing and massive storage facilities (sometimes calledHPC-
farms or data centers) including only the minimum operating
system/computing environment requirements: this is often the
case of general plans offered by companies, such as AmazonWeb
Services, HP Cloud, Rackspace, and Joyent (148–151).

Of these different paradigms, SAAS results as the more
complete, as well as the more costly and less flexible. In
SAAS the user is able to perform LSDA via pre-established
(sometimes customized) applications sitting on a remote
cloud infrastructure. This provides almost immediate access
and usability with minimum installation and customization
requirements from the user. However, due to these very reasons,
the user has less control over the specifics of both, the computing
environment and the actual algorithms used to perform analysis.
The risk is that some of the more sophisticated methods will
develop into black boxes. A somewhat intermediate solution is
what can be called Code-as-a-service that is, SAAS with full access
to the code (often only by specific requirement of the user).
This is the case of the Cloud BioLinux service (152). The Cloud
BioLinux suite has a set of pre-installed services, like a Galaxy
server (153), access to the BioPerl programming language (154),
BLAST (155), R/Bioconductor (156), Glimmer (157), ClustalW

(158), and other general purpose (mostly bioinformatic-related)
libraries/packages/environments (35, 159, 160).

Aside from molecular biology and genomics oriented
applications, SAAS has also been developed in areas, such as
medical diagnostics. In this regard, one can mention DXplain,
one of the earliest developed decision support systems available.
DXplain that was created by scientists, physicians, and software
engineers at Massachusetts General Hospital http://www.mghlcs.
org/projects/dxplain. DXplain may be used as a search engine
(akin to a searchable eBook) providing the concise yet detailed
description of more than 2,600 medical conditions, indexed
by their main signs and symptoms, as well as their etiology,
pathology, and prognosis. More relevant to this discussion is
the use of DXplain as a case analytics tool, processing a set of
clinical findings (signs, symptoms, laboratory data) as an input
to a computational intelligence engine that computes a ranked
list of diagnoses related to the given clinical manifestations.
Furthermore, DXplain provides supports its suggestions with
evidence sources, suggests what further clinical information
would be useful to collect for the conditions under consideration,
and displays a list of relevant clinical manifestations (161,
162). IBM’s Watson Health constitutes another example of a
(commercial) SAAS system aimed to support clinical decision
making by the use of computational intelligence methods
www.ibm.com/watson-health/ (163). However, many researchers
and clinicians have become skeptical of the tool due to initial
over-promises from the company (164). Many other diagnostic
support applications have been developed, most of them aimed
at commercial use such is the case of ISABEL https://www.
isabelhealthcare.com/ (165, 166) and others. However, due to
commercial restrictions, their AI/ML assessment and their use in
LSDA has been rather restricted (167, 168).

In the end, each health/biomedical/clinical research team
will have to make a choice between these different levels
of cloud services depending on its availability of technical
staff (computational biologists, data scientists, statisticians,
bioinformaticians, software engineers, and so on), the computer
literacy and involvement of the biomedical researchers and the
clinicians, the scope and extension of the projects and other
constraints, including financial issues, local infrastructure, and
confidentiality matters (169–173).

It is also needed to take into account that some LSDA
applications in health and biomedicine demand usually high
computing resources. One alternative that is gaining relevance
recently is the design of hybrid servers combining traditional
CPUs with Graphical Processing Units (GPUs). The use of
GPUs on cloud-based environments is indeed favored, given
their massively parallel architechture (MPA). MPA results
advantageous not only for actual computations, but also for
input/output (I/O) operations (174). An important fraction
of GPU-based applications in computational biology and
biomedicine are implemented under (175–177). However, it
remains a challenging endeavor to develop and implement
parallelization algorithms, efficient enough to make sense of
heterogeneous data sources, such as the ones coming from omic
technologies, from EHRs, population surveys (127, 178).
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Aside from the already mentioned cloud-based solutions,
most research and clinical institutions will need to build some
local infrastructure and algorithmics suited for their particular
needs. In the search for semi-automation and reproducibility,
some relevant general tasks are better managed by resorting
to specialized software and algorithmic suites developed with
building workflows and pipelines in mind. We will present some
of the more widely used of such suites or packages for LSDA
useful in Precision Medicine in the following subsection.

4.2. Software Resources for Computational
Medicine
Whether implementing local, cloud-computing, or hybrid
solutions, choices need to be made regarding appropriate
algorithms and software for data pre-processing, processing, and
analytics. A number of general purpose approaches have been
developed, such is the case of the suite of R-based algorithms
and programs in the Bioconductor repositories (156), the
pipeline management tools, such as Snakemake (179, 180)
and Taverna (181) or the cloud-based development suites
Helastic (182) and BioNimbus (183).

For sequence analytics, a central player for quite some
time has been the genome analysis toolkit (GATK) by the
Broad Institute (184, 185). The GATK suite has been developed
for LSDA of genome sequencing data mainly focused on
high-accuracy variant discovery and genotyping useful in the
clinical and biomedical research environments (186). Other
computational omic analysis tools useful in the context
of Precision Medicine include dRanger for the automatic
identification of somatic rearrangements in Cancer (187),
Athlates for the determination of HLA immuno-genotypes
from exome sequencing data (188), the Trinity suite for De
Novo RNA-Seq analysis (189), the Hail library for scalable
(bio-bank scale) genomic data exploration (190), and the GWAS
analysis suite Plink (191), to name but a handful instances.

More broadly applicable suites have been also developed,
such as GenePattern (192, 193), the running/development
platform Galaxy (153, 194, 195). Biological function databases
like Gene Ontology (196, 197) and its generalizations (198,
199), the MONA (multi-level ontology analyses) programs (200),
and other medium-to-high level analysis tools, such as the
network analysis suite Cytoscape (201) or the structural
biology libraries BioDAS (202) to mention but a handful of the
many available options.

Aside from genomics and purely molecular/omic studies,
other computational tools have been developed and widely
used in the biomedical and clinical settings. Such is the
case of CellProfiler for image analysis and processing
(203) that has been proved to be quite useful for machine
learning applications (204, 205). Automating data throughput
in biomedical and clinical applications may also be useful even
for relatively low demand tasks under certain circumstances; for
example, automated RT-PCR data processing as implemented in
ARPA (Automated RT-PCR analysis) turned out to be crucial
for testing efforts during the COVID-19 pandemic (206). AI/ML

modeling based on facilitated access data may indeed become a
key tool to tackle with current and future pandemics (207).

Moving on to clinical applications, some of the most popular
computational tools for managing clinical data (particularly with
clinical trials in view) are OpenClinica (208), the Integrated
Data Repository Toolkit IDRT (209) and the VISTA trials
suite (210), and the comorbidity risk assessment tool comoR
(211). Tools for the management of high-throughput day-to-
day clinical records commercial and academic/open source have
flourished in recent times. Some of themore widely adopted open
source software solutions are OpenEMR (212), OpenMRS (213),
WorldVistA (214). Some of these tools are actually enabling
capacities to allow for the implementation of data mining and
computational learning on their databases (54), however, as
previously discussed, caution must be taken when using EHR
data for automated discovery since a number of potential biases
and confounders may arise (215, 216).

There are also some R-packages useful to manage EHR
data. Such is the case of EHR: an Electronic Health Record
and Data Processing and Analysis Tool https://cran.r-project.
org/web/packages/EHR/index.html (217, 218), as well as rEHR
https://github.com/rOpenHealth/rEHR (219).

Other software solutions from the R ecosystem useful
in the LSDA applications in the clinical practice include
babsim.hospital, a hospital resource planner and simulator
https://cran.r-project.org/web/packages/babsim.hospital/index.
html (220); bp a blood pressure analytics tool https://cran.r-
project.org/web/packages/bp/index.html; and card a toolkit to
evaluate the autonomic regulation of cardiovascular physiology
via integrating electrocardiography, circadian rhythms, and the
clinical risk of autonomic dysfunction on cardiovascular health
data https://cran.r-project.org/web/packages/card/index.html
(221).

Other software packages include radtools a set of utilities
to extract and analyze medical image metadata https://cran.r-
project.org/src/contrib/Archive/radtools/ (222); psrwe a library
useful to incorporate real-world evidence (RWE) into regulatory
and health care decision making https://cran.r-project.org/web/
packages/psrwe/index.html (223, 224); clinDataReview
https://cran.r-project.org/web/packages/clinDataReview/index.
html an environment to support exploratory analysis of data
in clinical trial settings, patientProfilesVis a tool to
create patient profile visualizations for exploration, diagnostic
or monitoring purposes during a clinical trial https://cran.r-
project.org/web/packages/patientProfilesVis/index.html; and
even healthyR a full suite to review common administrative
hospital data. Although this latter application does not seem to
be related to LSDA in Precision Medicine, it is not uncommon
the application of AI/MLmethods to administrative data to infer,
for instance, social determinants of health.

5. DATA INTEGRATION: CURRENT
CHALLENGES

Computational limitations in LSDA for Precision Medicine are
gradually being overcome. Deeper challenges, however, arise
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when we consider the question of how to develop coherent
ways to make sense of the data, that is how to build models
and analytical frameworks that allow biomedical scientists and
clinicians to use all these currently available data types and
resources in the best possible way as diagnostic and prognostic
tools (225). In the context of genomics (and other omics)
in biomedicine, important international efforts along these
lines have been developed, such is the case of the ELIXIR-
EXCELERATE collaboration (136), the STATegra project (226,
227), the SeqAhead consortium (228), and others (229, 230).

It must be stressed that most of the efforts of these—extremely
relevant—endeavors are directed toward the integration of
information on themolecular side of the spectrum of biomedical
related data. Data integration at this level provides mathematical
and relational models able to give a mechanistic description of
the interplay between the molecular components of the cells
(225, 231). This is of course fundamental to understand the
rise of cellular and tissular phenotypes from its biochemical
origins, but may result insufficient to account for the rise of
disease in organs, individuals, and even populations. Recent
advances have been done to extend these efforts to encompass
LSDA on biological databases incorporating individual EHR
data (232), as well as social and environmental information
[the so-called social determinants of health (233)]; perhaps even
incorporating constraints representing healthcare policy within
a precision medicine framework (93, 234). Advances in AI will
surely play a central role in the development of such integrated
frameworks (235).

In this context, data integration allows the use of multiple data
sources with several different (eve disparate) pieces of evidence
to build (hopefully) interpretable models of the systems under
study (236). Since these broad array of data sources may have
quite different structures, levels of granularity and, in the case of
quantitative measurements, different distributions and dynamic
ranges, data integration is indeed a demanding endeavor, briefly
subsumed in the question how can we put together these data
sources to improve knowledge discovery? (237). Hence, being
able to perform complex queries, build heterogeneous models
and develop hierarchically nested data retrieval operations on
multiple databases are core goals for data integration strategies
useful for AI/ML models in Precision Medicine (235, 238–241).

LSDA in Precision Medicine is driven by two major sets
of goals. On the one hand, we aim to develop high level
intuition (HLE) from inductive analyses, via statistical learning
and causal inference techniques. HLE may serve to sketch
guidelines for current and future experimental and clinical
research (242). On the other hand, AI/ML approaches may be
useful for automated reasoning (AR), i.e., the non-supervised
or semisupervised extraction of non-trivial patterns in dynamic
databases (243–245).

5.1. The Need for Guidelines and
Standardization to Support Precision
Medicine
Machine learning and artificial intelligence approaches able
to live up to these envisioned objectives will depend on the

underlying data resources to a great extent. We will need,
not only high throughput carefully curated databases, but also
inter-operable data strategies. By creating integrated/integrable
databases related to Precision Medicine we will enhance our data
discovery and data exploitation capabilities, refine our algorithms
for statistical assessment of data-driven discovery and improve
our data standardization. Regarding data standards, there have
been some advancements from the early days of the MIAME
requirements (246, 247) for genomic data formats, now updated
for next generation sequencing data (248) and even for single
cell RNASeq experiments (249); to some more recent efforts for
meta-data standardization (250, 251).

Focused efforts toward data standardization with AI/ML
approaches in mind have been recently advanced. For instance,
a multi-institutional group has recently compiled a document
establishing guidelines on Minimum information about clinical
artificial intelligence modeling by means of the MI-CLAIM
checklist (252). MI-CLAIM has been developed as a tool
to make reporting of AI/ML algorithms in medicine more
transparent. This approach looks to solve issues related to
interpretability, opaque documentation and scope of AI/ML
methods in medicine. It consists of six parts: (i) Study design, (ii)
Separation of data into partitions for model training and testing,
(iii) Optimization and final model selection, (iv) Performance
evaluation, (v) Model examination and (vi) Reproducible
pipeline. Central to this standard is the MI-CLAIM checklist
[Table 1 in (252)].

Aside from methods, standards need to be developed for
all different aspects involved in biomedical data analytics
and computational intelligence. From the patients/subjects
to the clinical and analytical research, to academic and
industrial approaches and back to the patients and clinicians.
The National Patient-Centered Clinical Research Network
(PCORNET) initiative https://pcornet.org/ of the US has
been developed as a national resource where health data,
research expertise, and patient insights are available to deliver
fast, trustworthy answers that advance health outcomes (253).
PCORNET was designed as a distributed data research
network (DRN) built to facilitate multi-site observational and
interventional research across the diverse (existent-at-the -time
and future) clinical data research networks and other relevant
players in the health data ecosystem.

By standardizing procedures, formats and approaches
PCORNET looks up to deliver greater sample size and power
of the studies, the ability to analyze the effects of the differences
in practice and assessing heterogeneity in treatments and
populations. It included the creation of a Data Standards
Security and Network Infrastructure (DSSNI) task force aimed to
identify the minimal data standards and technical specifications
for data to be effectively shared and disseminated effectively.
These actions will be directed to optimize the evaluation and
improving quality assessment of the research projects and to
maximize their concurrent impact (254). Other task forces
within PCORNET are devoted to issues, such as Governance,
Data privacy, Ethics, and regulation, Health system interactions,
Patient and consumer engagement, Patient-generated outcomes,
Clinical trials, Rare diseases, Biorepositories, and Obesity. These
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task forces (and other that are being added as they develop) are
supervised by PCORNET’s Project Management Office operating
under a network-like structure rather than as a traditional
hierarchical organization. The development and functioning
of the approach are subject to continuous assessment and
evaluation via the Foundational Data Quality model founded on
the premises of optimal data curation (255).

A related initiative put forward by the National Center for
Biomedical Computing of the US is the I2B2 (Informatics
for Integrating Biology and the Bedside) https://www.i2b2.
org/index.html. I2B2 was developed with the aim of enabling
effective collaboration for precision medicine, through the sharing,
integration, standardization, and analysis of heterogeneous
data from healthcare and research; through engagement and
mobilization of a life sciences-focused open-source, open-data
community.. I2B2 was created as part of the NIH roadmap
to advance precision medicine to provide the community of
clinical investigators with a toolbox to integrate medical records,
clinical data, and genomic technologies all at once (256). One
of the foundations of I2B2’s approach to data interoperability is
data-model harmonization based on ontological representations,
particularly those facilitating the involvement of subjects/patients
and clinicians aside from biomedical researchers (257). The
extent of influence of these actions is designed to further improve
the way subjects are enrolled and followed-up in research study
protocols, clinical trials and observational cohorts (258).

Ontologies are useful to provide a conceptual framework. In
the case of automated and semi-automated data mining methods
in biomedicine it is desirable to have a standardized language,
easily translated into machine-readable text. This is precisely
the aim of the Biological Expression Language (BEL). BEL is
presented as a language for representing scientific findings in the
life sciences in a computable form. BEL is designed to represent
scientific findings by capturing causal and correlative relationships
in context, where context can include information about the
biological and experimental system in which the relationships were
observed, the supporting publications cited and the process of
curation https://bel.bio/. The elementary elements of BEL are
known as BEL-assertions that are built as intermediate steps
connecting natural language (as presented in say, academic
writing or medical records) into machine-readable expressions.
Such expression will then be computable with applications in
tasks, such as logical modeling in database learning, systems
biology verification studies or next generation EBM to name a
few (259–261). Implementing language standards, such as BEL
may prove beneficial, since it has been shown, for instance,
that different approaches to process clinical notes using natural
language analytics substantially affects the performance of
predictive models in intensive care settings (262).

The biomedical data ecosystem is turning so complex that
new standards are needed even to define what we call evidence.
The large amounts of seemingly anecdotal data that are being
produced nowadays have brought to attention issues like the so-
called real world evidence (RWE). RWE refers to data regarding
the use, or the potential benefits or risks, of a drug derived
from sources other than randomized clinical trials (263). Large
sampling spaces are behind RWE move from anecdotal to

referential. However, not all the real world information should
be treated as RWE. In this regard, there is a growing need
for methods to assess when are these data sources rigorous
and trustworthy enough as to be useful as a guideline or to
be considered actual evidence. These issues result particularly
relevant toward the definition of clinical pipelines in digital
therapeutics (loosely defined as evidence based therapeutics
basedon software applications to prevent, manage or treat a
disease or medical condition) (264), often related with data
obtained from wearables and other subject-based sources.

Data standardization is becoming central not only in the
medical research, and personalized clinical practice settings. It
has been recently discussed how clinical trial data sharing is
essential for reproducibility of the findings, for visibility of the
results, to improve subsequent trails or advanced clinical trial
stages, to perform digital comparisons of effectiveness (which are
much faster and cheaper than their traditional counterparts); but
also to speed results reporting, to enable continuous learning and
even to support the emergence of startups or enterprise ventures,
among other issues (265). In order for shared data to be optimally
usable, there is an obvious need for standardization.

Data is, of course, not the only issue that needs to be assessed
and validated toward the widespread implementation of AI/ML
approaches in Precision Medicine. Eaneff and coworkers have
recently argued for the need of algorithmic stewardship for AI/ML
technologies in the medical setting. In this regard, an algorithmic
steward would be a person or group within a healthcare
or biomedical research institution responsible for tasks, such
as creating and maintaining an algorithmic inventory of the
methods used in the institution, monitoring ongoing clinical use
and performance of such computational tools, evaluating the
safety efficacy and fairness of the methods and so on (266).

Data and methods constitute the most visible items within
the biomedical analytics ecosystem; metadata, is however,
progressively gaining a more relevant role for AI/ML in Precision
Medicine, as it contains, in many cases, hints for the automated
labeling or classification (even if approximate) tasks that will be
further improved by the use of computational intelligence and
statistical learning approaches (87, 267). We will further discuss
this issue in the next subsection.

5.2. An Ocean of Metadata
Metadata has become a central player in contemporary LSDA
endeavors in many fields, including biomedicine; particularly
relevant for AI/ML approaches. For this reason, aiming for
high quality, well-formatted and standardized metadata has
become quite relevant (268). Indeed, a number of biomedical
data analysis teams and consortia are encouraging the use of
standardized metadata guidelines, exemplified, for instance by
a checklist of relevant issues to consider when building and
publishing companion metadata (250, 269, 270); since such
metadata could be instrumental to implement data analytics, as
well as AI/ML toward a precision medicine approach (267, 271).

Metadata may result also quite useful to enhance the
statistical analysis, probabilistic models and training of learning
machines. Using metadata to generate best priors may improve
the outcomes of query optimization by resampling and
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bootstrapping (272–274), regularization of sparse datasets (275),
as well as auxiliary source for multi-variate Bayesian analysis
(200, 276, 277), multi-dimensional analyses on datasets with
disparate dynamic ranges (278–281) among other instances
(282–286).

Integrating multiple data and metadata sources takes even
further the need to design, develop, and implement analysis
algorithms able to handle heterogeneous data in the presence
of noise accumulation, spurious correlations and incidental
endogeneity, keeping a balance between statistical accuracy,
computational efficiency, and interpretability (287–289).

LSDA approaches must be developed having in mind the
presence of spurious correlations among unrelated covariates,
challenging statistical inference by creating false positive findings
(290). Incidental endogeneity occurs when a number of unrelated
covariates become correlated via random correlations of their
residual noises. A statistical approach to overcome some of these
issues is the development of novel regularization methodologies
(291–293) but also the use of outside cross-validation via
independence screening tests (294, 295) that may be precluded
by data unavailability from independent sources.

Taking these issues into account may require new models
to implement metadata reporting standards (296, 297).
Standardizing the way metadata is reported and retrieved in
the biomedical and clinical settings will result critical for the
development of generalistic machine learning approaches that
make full use of these uniform data structures (298–300). It
has been recently discussed that ignoring or bypassing such
standards may jeopardize full research projects (301–303).

6. ETHICAL AND LEGAL CHALLENGES
FOR COMPUTATIONAL MEDICINE

Aside from the methodologic and logistic issues already
discussed, integrating data sources aiming at LSDA in the context
of Precison Medicine also brings out concerns related to the
ethical and legal problems that may arise, for instance related to
privacy and confidentiality. Regarding the purely technological
aspects of this problem, most of the members of the community
of data analyst in healthcare and biomedicine are actually
confident that these can be solved with security and encryption
approaches already used to protect personal financial data (6,
46, 304). Aside from privacy concerns, managing sensitive data
implies having several layers of access to the data. This is so
since some sensitive personal data may be extremely useful
for population level studies needed to develop personalized
medicine. However, even if it is unlikely that full disclosure of
sensitive biomedical and clinical information is needed, there
is a fraction—that need to be determined and agreed-upon
in advance—of potentially sensitive information that results
fundamental for the development of personalized medicine, not
just for the individual in particular but also population and
sub-population-wise (305).

Then a conundrum arises as how to accommodate smooth
clinical and biomedical data widespread with efficient privacy
practices. The goal here is to implement stringent rules that

maximize data yield while preserving anonymity and data
protection. Data specialists have proposed several strategies to
accomplish this goal. Currently one of the most favored is
centered in mining designs based on the so-called minimally-
invasive queries (MIQs) designed ex-profeso to preclude (and
in due case disclose/document) any abuse of sensitive data
(306). In some sense MIQ approaches mimic and extend the
practices that have been long held by the international health
insurance community while dealing with privacy in the EHRs
via guidelines, such as the Health Insurance Portability and
Accountability Act (HIPPA). Aside from its enormous legal
and bioethical consequences, HIPPA adoption induced the
development of data protocols in biomedical informatics that
will result useful—even if as a starting point—for the LSDA
under the Precision Medicine paradigm. Full implementation
of optimized data usage/protection protocols is still underway,
however, important advances have been made (307–310).

Reaching an optimal balance between information protection
and efficient data mining outputs presents itself as a complex
endeavor: some experts from the biomedical ethics community
advocate for a careful case-by-case analysis, though admittedly
this will be too complex to be implemented in general purpose
LSDA workflows. As an alternative to this it has been suggested
that multi-level data encryption (311, 312) can be applied in such
a way that only authorized personnel will have the decoding keys
to have access of the different levels of information (313).

In order to lessen the burden of encryption, encryption
must be selective so that only personal identifiers and other
private features (that may help disclose such identifiers) should
be encrypted. Quasi-identifiers (QIDs), such as location, ethnic
profiling, age and employment information, and highly-specific
genomic data may be subject to certain low-level encryption
by following differential privacy standards (314, 315). Some
caution needs still to be taken since individual QIDs may not be
informative enough to disclose identity, but theremay bemining-
integration procedures that may be able to do so by arranging
coupled queries as it has been already discussed in the context of
large scale genomic and transcriptomic studies (316–318).

Aside from genomic sources, other data types that may be
used as potential QIDs in the context of biomedical informatics
include, for instance, photographs: it has been discussed that
from image (and imaging) data, AI approaches are able to infer
barcodes from cranial and facial morphological features, skin
pigmentation, eye color, retina patterns, iris structure, as well as
hair type and color (108, 317, 319–322).

These are but a handful examples of how biomedical and
clinical data features may turn into QIDs potentially posing
ethical dilemmas to LSDA in the context of Precision Medicine.
In this context and with the advent of powerful AI/ML
approaches, a question arises as to which queries are valid and
which ones are not from the standpoint of ethics, privacy and
confidentiality. It is expected that as AI/ML methods become
more powerful, methodological adjustments should evolve to
balance safety and non-triviality of the queries with the impact
of the analyses. This call for an organized implementation
of such features via standardized query tools compliant with
the agreed (potentially also evolving) ethical standards of the
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community (313). This translates into further challenges for the
computational tools for data mining and analysis that may be
designed with hierarchical multi-layered data structures in mind
from the start.

Protected health information (PHI) is a relevant issue in this
regard since it potentially allow for individual identification.
Developing methods to effectively de-identify sensible data, such
as the one included in free-text clinical notes may become part
of the solution to the ethical challenges of high throughput data
mining in the clinical and biomedical settings. With this in mind,
Norgeot and collaborators developed a customizable open source
de-identification software called Philter (323). Philter https://
github.com/BCHSI/philter-ucsf has shown to outperform well-
known methods, such as the ones in the Physionet https://www.
PhysioNet.org/physiotools/deid/ and Scrubber https://scrubber.
nlm.nih.gov/files/ suites. Subject de-identification in clinical
notes and similar documents since such corpora often contain
detailed information about the state of individual patients, the
evolution of their disease conditions, specific theraputics and
outcomes. That kind of information that will result key for the
development of Precision Medicine, but at the same time may
pose privacy challenges unless effective de-identified.

In view of the advances in AI/ML and the ethical challenges
that come as a consequence of these advances, design changes
are needed not only in the analytics. Research protocols,
clinical trials and documented medical procedures, for
instance, must be revised since the personal decision to
share or not personal healthcare information or participating
in large scale biomedical research cohorts may change at
the light of AI/ML advances. Hence, informed consent
procedures may need to be adapted. This implies reframing
the current paradigm for the protection of individual privacy
and adopting ways to educate patients/participants on how
the data collected may affect them and the what extent
their data can or cannot be protected, contextualising
this in terms of the potential benefits for them and for
others (317).

It has been discussed that re-educating about the way they
view their own data also implies increasing their involvement
with how their data may be used to affect them and others.
Indeed, one of the central tenets of Personalized Medicine
is making healthcare, personal. In this regard, it is worth
discussing the role that data portabilitywill play in individual and
collective decisions (324, 325). Integrating data analytics, privacy
protection and data portability is, in brief, one of the current open
problems in computational medicine and medical informatics
(326–328).

Given all the twists and subtleties just discussed in
the context of LSDA for Precision Medicine, it has been
considered advantageous to document in all detail (or as
comprehensively as possible given the particular context) how
data is gathered, archived, processed, analyzed, disseminated,
and used in each research study, clinical trial, or large-scale
clinical follow-up. Guidelines have been currently advised as
how to elaborate such a document termed a data management
plan (DMP). We will briefly discuss on these matters in the
next section.

7. THE IMPORTANCE OF A GOOD DATA
MANAGEMENT PLAN

In view of all the complexities associated with projects managing
and analyzing large amounts of potentially sensitive data,
writing down a comprehensive document with all the associated
information, a data management plan document is considered
advantageous (329–332). The purpose of the DMP is to establish
guidelines about how the data will be treated during the course
of the project and even what will happen after the project
is finished. The DMP considers what will be done with the
data from its collection, throughout the organization, pre-
processing, and analysis stages. It considers data quality controls,
database preservation, and documentation techniques used, as
well as usage restrictions and conditions for the further use,
dissemination and sharing, embargoes, and limitations.

The DMP document has been established to be compliant
with the legal requirements for all involved institutions and
funding agencies. It should specify what types of data are to be
collected, the recommended (sometimes preferred, sometimes
mandatory) formats to handle and preserve the data. It
results relevant to mention the software requirements and
computational resources used to store, process, analyze, and
visualize the data. The expected volume and structure of the
databases, as well as its sources, traceability and metadata
information (329). The DMP must also mention the intended
data preservation strategies, database organization (e.g., naming
conventions, dictionaries, reports’ systems, etc.), identification
and de-identification procedures. It is also advisable to establish
guidelines for database curators—in some cases, even for
auditors—(for instance regarding data integrity, quality controls
and data standardization). All these entries of the DMP must be
compliant with normative and organizational principles detailed
in the so-called Project Data Policy (PDP) section of the DMP.
The PDP may include information on legal, administrative and
even ethical restrictions to be considered when managing the
data. In some cases, this has to make it extensive to associated
software and metadata (331).

The data dissemination policy section of the DMP states how,
when and whom will have access to the data and under what
circumstances. It is recommended that a subsection assigning
personal roles and responsibilities of the associated personnel
is included to ensure good data governance. The DMP is, in
brief a dynamic instrument that plays a normative role, but
also serves as a registered account on the whole data workflows
and procedures throughout the project. Hence, a good DMP
contributes to a secure and smooth functioning of the whole
LSDA project (333, 334).

8. CONCLUSIONS AND PERSPECTIVES

Artificial Intelligence and Machine Learning (AI/ML)
approaches have proven to be extremely relevant tools for
the large scale analysis of biomedical and clinical data; central
for the development of Personalized Medicine. Useful as they
are, implementing AI/ML methods in the highly demanding
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medical applications, it is not an easy endeavor. A number of
caveats, shortcomings and subtle points have to be taken into
account (and in many cases, circumvented) in order to provide
appropriate solutions for the individual and public health care to
fully benefit from these emerging paradigms.

In this work, we have discussed about some of the central
challenges, problems, and drawbacks found in the applications
of the methods and designs of large scale data analytics within
clinical and biomedical environments, in particular under a
Precision Medicine perspective.

Some relevant points can be briefly summarized as follows:

• Precision Medicine has been recently presented as an
emergent paradigm to approach healthcare in a more
predictive, preventative, personalized, participatory way
(sometimes also called P4 Medicine). Precision Medicine has
strong ties with data intensive approaches, as well as with
machine learning and artificial intelligence.

• To deliver the promise of Precision Medicine, computational
learning approaches are to be nurtured by well-curated and
nifty integrated data ecosystems.

• Data resources in the biomedical research, clinical and
healthcare environments are becoming extremely large, and
are complex, unstructured and heterogeneous, hence difficult
to deal with individually, even more so to be integrated into a
coherent framework.

• The universe of diverse data sources needs to be collected, pre-
processed, processed, modeled, and integrated to construct
such coherent frameworks useful for Precision Medicine (see
Figure 1). This is much easier said than done.

• In order for machine learningmodels to give good results their
input needs to be good data. Transforming existing data into
optimized forms for AI/ML is essential.

• If medicine is to become personalized, we must embrace
diversity, heterogeneity, biases, class imbalance, and other
intrinsic features of individuals. There is a need to develop
methodologies to rigorously operate under these constraints.

• To develop, implement, optimize, and improve on these
methods, a number of challenges needs to be overcome. These

include technical limitations, computational aspects (both
software and hardware/infrastructure), mathematical and
modeling issues, and even ethical, legal, and policy matters.

• We have presented and discussed some of these challenges,
aiming at showing the state of the art in these different fields.

• We have introduced the need for data intensive endeavors,
from the research arena to the clinical setting and the
healthcare institution level to design and implement a data
management plan to consider the issues that may arise and
planning ahead for their solution.

We are convinced that the development and implementation
of tailor-made (or at least well-customized) approaches, in
terms of robust statistical and computational algorithms,
supported by optimized frameworks for data acquisition, storage,
management, and analytics, but also by well-integrated software
solutions and guided by solid ethical policies compliant with
a deep respect for privacy, confidentiality, and individuality; is
an ambitious but attainable goal. Hence, by combining state of
the art computational learning methods and techniques with the
best data acquisition and management practices the promise of
AI/ML in Personalized Medicine may be delivered.
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A quantitative method for the evaluation of facial swelling in rats with middle cerebral

artery occlusion (MCAO) was established using a mathematical method for the first time.

The rat model of MCAO was established via bilateral common carotid artery ligation.

Three groups of rats with the same baseline were selected (model group, positive drug

group, and control group) according to their behavioral score and body weight 24 h after

surgery. Drug administration was initiated on post-MCAO day 8 and was continued for

28 days. Mobile phones were used to collect facial images at different time points after

surgery. In facial image analysis, the outer canthi of both eyes were used as the facial

dividing line, and the outer edge of the rat’s face was framed using the marking method,

and the framed part was regarded as the facial area (S) of the rats. The histogram created

with Photoshop CS5 was used to measure the face area in pixels. The distance between

the outer canthi of both eyes (Le) and vertical line from the tip of the nose to the line

joining the eyes was recorded as H1, and the line from the tip of the nose to the midpoint

of the line joining the eyes was recorded as H2. The facial area was calibrated based

on the relationship between H1 and H2. The distance between the eyes was inversely

proportional to the distance between the rats and mobile phone such that the face area

was calibrated by unifying Le. The size of Le between the eyes was inversely proportional

to the distance between the rats and mobile phone. This was used to calibrate the face

area. When compared with the control group, the facial area of the model group gradually

increased from postoperative day 1 to day 7, and there was a significant difference in the

facial area of the model group on postoperative day 7. Hence, positive drugs exhibited

the effect of improving facial swelling. H1 and H2 can reflect the state of turning the head

and raising the head of the rats, respectively. Facial area was calibrated according to the

relationship between H1 and H2, which had no obvious effect on the overall conclusion.

Furthermore, mobile phone lens was used to capture the picture of rat face, and the

distance between the eyes and H1 and H2 was used to calibrate the facial area. Hence,

this method is convenient and can be used to evaluate subjective judgment of the human

eyes via a quantitative method.

Keywords: ischemic stroke, occlusion of the middle cerebral artery, artificial intelligence, facial swelling, rat

models
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INTRODUCTION

An important pathogenesis of ischemic stroke, which is a major
disease that threatens human health, is the cascade of cerebral
artery embolism and consequent inflammatory response (1,
2). The middle cerebral artery occlusion (MCAO) model is
a clinically common simulation of ischemic stroke, which is
less invasive and exhibits the closest resemblance to human
ischemic stroke (3). Specifically, bilateral common carotid artery
ligation and reperfusion is often employed in rats or mice to
establish MCAO rat models for simulating the clinical features
of ischemic stroke and performing pharmacodynamic evaluation.
In the course of a routine rat MCAO model establishment and
drug evaluation experiment, we determined that facial swelling
occured in each group of rats after surgery, and the changes in
facial swelling in each group exhibited certain characteristics as
the duration of drug intervention increased. To avoid subjective
evaluation via gross examination, we attempted to develop a
convenient method for quantitatively evaluating facial swelling
characteristics of the model rats. Furthermore, we employed
some mathematical methods to maximally reduce the bias
due to human manipulation to provide a multi-dimensional
quantitative index for future pharmacodynamic evaluation (4, 5).

MATERIALS AND METHODS

Materials
Thirty male specific-pathogen free (SPF)-grade 10-week-old
Sprague-Dawley rats weighing 220–270 g were purchased from
Beijing Vital River Laboratory Animal Technology Co., Ltd.
(license number: SCXK (Beijing) 2016-0006) and housed in
SPF-grade animal facilities. Donepezil hydrochloride tablets
were purchased from Zhejiang Huahai Pharmaceutical Co., Ltd.
(NMPA approval no. H20183417, lot number: 1426J20004). The
positive drug used in this study was donepezil hydrochloride
tablets, which was often used as a positive drug in vascular
dementia and cerebral ischemia experiments (6).

Methodology
MCAO Procedure and New Findings
The rats were anesthetized with 1 ml/100 g of 4% chloral
hydrate via intraperitoneal injection and 1-cm incisions were
made on the left and right regions of the neck. Blunt
dissection of the superficial fascia was performed wherein the
superficial fascia and intermuscular space among the digastric,
sternocleidomastoid, and omohyoid muscles were separated. The
bilateral common carotid arteries and vagus nerve were exposed.
Furthermore, the common carotid artery and vagus nerve were
carefully separated and two sutures were passed through the
common carotid artery at the proximal and distal ends. The
sutures were retained on the lateral side of the wound. The
wound was sutured and ligation was maintained for 10min,
followed by 10min of reperfusion. These steps were repeated
three times. After the last reperfusion, the sutures were removed
from the wound and the common carotid artery was permanently
ligated with double sutures, and the right common carotid artery
was ligated in the same manner as the left one. During the

period from postoperative day 1 to day 35 at the end of the
experiment, the model group showed significant facial swelling
compared with the normal group that did not undergo surgery
(Figure 1).

Grouping and Drug Administration
Twenty-four rats that underwent MCAO were bifactorally
grouped according to behavioral scores and body weight after
postoperative 24 h. After excluding rats with different baseline
values, three groups of six rats, each with the same baseline
values, were selected and classified into model group and positive
drug group, and six rats that did not undergo MCAO were
assigned to the control group. In the positive drug group,
donepezil hydrochloride tablet was administered by gavage at
a dose of 0.5 mg/(kg.d), and the model and control groups
were provided equal volumes of distilled water via gavage daily.
Administration was commenced on post-MCAO day 8 and was
continued for 28 days.

Facial Image Acquisition and Analysis Process
To further analyze the characteristics of facial swelling, we
acquired facial images using a camera at different time points
after each group of rats recovered autonomous behavior after
performing MCAO. The experiment was divided into two stages.
The first stage was from MCAO to the period before the
administration of drugs. This stage lasted a total of 7 days, and
facial images were collected on postoperative days 1, 3, 5, and
7. The second phase was from grouping and administration
to the end of the experiment, and facial images were acquired
on postoperative days 8, 12, 16, 20, 24, and 28. The drug
administration was commenced on day 8 (Figure 2).

The body and head of the rat were fixed with both hands
during acquisition, and attempts were made such that the face
of the rat faced the camera during photography. In particular,
the head elevation angle and head rotation restriction were
maintained as consistent to the maximum extent each time.
Three images were acquired for each rat, and the image with the
best angle and clarity was selected for calculation during analysis.
The acquisition device was HUAWEI YAL-AL10, a mobile phone
camera. The resolution of the camera at the time of photography
was set as 72 × 72 DPI, and the image size was 3,000 × 4,000
pixels. The acquired images were imported into Photoshop CS5.
The facial images were analyzed using the outer canthi of both
eyes as the facial segmentation line. Furthermore, the outer edges
of the face of the rat were boxed using markers and the boxed
portion was considered as the total facial area (facial area, S) of
the rats. Finally, the facial area was measured in pixels using the
histogram in Photoshop CS5 (Figure 3). The distance between
the outer canthi of both eyes (Le) and vertical line from the
tip of the nose to the line joining the eyes was recorded as
H1, and the line from the tip of the nose to the midpoint of
the line joining the eyes was recorded as H2. The length was
measured in pixels using the histogram tool in the software
(4, 5). Thus, by following this method (4, 5), we acquired facial
images of each group of rats at each postoperative time point
(Figure 3).
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FIGURE 1 | Comparative pictures of facial swelling after surgery in rats treated with middle cerebral artery occlusion.

FIGURE 2 | Schematic of the flow of facial image acquisition and analysis after cerebral ischemia in rats.

Facial Image Calibration Methods
We didn’t anesthetize the rats or install any assembly equipment
to make the whole process as easy as possible. Therefore, in the
process of taking photos, there would be uncontrollable factors
such as the distance between the lens and the target and the
head swing of rats in different directions, but we found that these
problems can be corrected by simple mathematical methods.
During the facial image acquisition process, we determined

that the distance of the camera lens from the target object,
the lifting or lowering of the head of the rat, and frontal and
head-turned images affected the facial image acquisition and
results. To minimize this interference, we utilized a simple
mathematical principle (4, 5) for calibration (Figure 4). When
the lens is turned away from the face of the rat, the distance
Le between the outer canthi of the eyes decreases and point
S decreases accordingly. When the face of the rat is lifted,
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FIGURE 3 | Images of facial recognition at different time points after surgery in the model group of rats.

FIGURE 4 | Schematic of the calibration method using mathematical interpretation of head–facial variables.

H1 shortens and S decreases, while Le is assumed to be
constant. Conversely, when the head of the rat is lowered, H1
and S increase while Le is assumed as constant. When the

rat is facing the lens, H1 = H2, and when the rat turns its
head, either to the left or to the right, H2 > H1. When this
occurs, the facial area S of the rat also appears to increase
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FIGURE 5 | Schematic of each parameter of rat face. Red denotes the area of the face recognized (S).

or decrease with respect to H1 and H2, while Le is assumed
as constant.

As described above, the vertical length H1 from the tip of the
nose to the line connecting the two eyes is indicated by the blue
line, and the length H2 from the midpoint between the two eyes
to the tip of the nose is indicated by the red line as shown in
Figure 5.

Statistical Analysis
Statistical analysis was performed with SPSS (version 22.0). All
data were expressed as mean ± SD. The comparisons between
multiple groups were analyzed by one-way ANOVA, and group
comparisons were analyzed using Student’s t test. A P < 0.05 was
considered statistically significant.

RESULTS

Calibration of the Distance Between the
Lens and Target Object
As the distance between the camera and subject decreases, the
subject’s face area increases. Conversely, as the distance between
the camera and object increases, the face area decreases. To
ensure that the technique is adaptable for use in experiments, the
operator did not fix the distance between the lens and target when
capturing. Hence, Le, H1, and S decreased as the lens moved
away from the target. Specifically, in this case, we considered
the basic principles of digital and aesthetic anatomy wherein
the interocular distance is determined by the brow bone and is
fixed for the same types of rats. Therefore, we can determine
the distance of the lens from the target object while taking a
picture based on the size of the Le of the same type of rats. When
the lens is turned away from the face of the rat, the distance

Le between the outer canthi of the eyes decreases and point S
decreases accordingly. Similarly, we can normalize Le of the same
type of rats and use it to convert the area under the same Le to
eliminate the changes in the absolute value of facial area due to
the varying distance of the lens.

As described in Figure 6, we normalized the interocular Le of
the same rats at different time points and converted the facial
area of the rats as described above. The results indicated that
there was no significant change in trend between the groups at
different time points after calibration compared with that before
calibration (Figures 6A–D). However, the absolute value of facial
area changed, which is also consistent with our description above.
After performingMCAO, themodel group showed an increase in
facial area from postoperative day 3 compared with the control
group. Furthermore, a significant difference (p < 0.05) was
observed on postoperative day 7 as the postoperative duration
increased (Figures 6E,F).

The experimental results in Figure 7 indicate that the S
values of the different groups during the administration differ
before and after Le calibration. On day 1 after dosing (day 8
after performing MCAO), the model group showed a significant
increase in facial area compared with the normal group (p <

0.05). On day 5 after administration (day 12 after performing
MCAO), the model and positive drug groups exhibited a
significant increase in facial area compared with the normal
group (p < 0.001). However, the active control group exhibited
a lower facial area than the model group. From day 9 (day 16
after MCAO) to day 21 (day 28 after MCAO), the facial area of
the model group was higher than that of the normal group. This
indicates that bilateral common carotid artery ligation during
MCAO can lead to facial swelling in rats. This can be relieved
after the administration to the positive drug group.
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FIGURE 6 | Comparison of parameter S in each group before and after Le calibration in the postoperative to pre-dosing phase. Comparison of S values in each group

before and after Le calibration: (A) on day 1 after surgery, (B) on day 3 after surgery, (C) on day 5 after surgery, (D) on day 7 after surgery. Curves of changes in S

values at different time points in the two groups: (E) before calibration and (F) after calibration. Model group compared with control group, *p < 0.05. control group: n

= 6, model group: n = 11.

Calibration of Head Rotation
When grasping rats, head rotation often occurs. In this case,
we considered the occurrence of head rotation when H1 <

H2 according to Figure 4. Figure 8 shows pictures of model
group No. 4 rat acquired at different time points. The H1

value of the rat is very close its H2 value. The pictures in
first line of Figure 4 indicate that the lower part of the rats
is more symmetrical at each time point. Furthermore, we
considered that the No. 4 rat’s face was facing the camera lens
in this case.
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FIGURE 7 | Comparison of parameter S before and after Le calibration in each group after dosing to the end of the experiment. Comparison of S values before and

after Le calibration: (A) on experiment day 8 (day 1 after dosing), (B) on experiment day 12 (day 5 after dosing), (C) on experiment day 16 (day 9 after dosing), (D) on

experiment day 20 (day 13 after dosing), (E) on experiment day 24 (day 17 after dosing), (F) on experiment day 28 (day 21 after dosing); S value change curves of

different groups, (G) before Le calibration, and (H) after Le calibration. Compared with the normal group, *p < 0.05; **p < 0.01; ***p < 0.001. Model group: n = 5,

control group: n = 6, positive drug group: n = 6.

Frontiers in Medicine | www.frontiersin.org 7 February 2022 | Volume 9 | Article 73766264

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Liu et al. Facial Image Processing and Cerebral Ischemia

FIGURE 8 | Demonstration of the head angle calibration effect. Row 1 shows rat #4 in the model group, H1 and H2 are close at all time points, and the face of the rat

faces the front in all cases. Row 2 shows rat #5 from the investigational drug group, H2 is close at various time points, and the head angle is approximate.

Wemeasured H1 and H2 parameters for each rat in the model
group after surgery until drug administration. By acquiring
pictures at successive time points, we observed that the mean
values of H1 and H2 did not differ significantly at each time
point (Figure 9A). Therefore, we concluded that the calibration
of H1 and H2 was weaker than that of Le described above. To
further assess the effect of this parameter on facial recognition, we
measured H1 and H2 from the model and active control groups
at each time point between the administration of the drug and
end of the experiment. A comparison of the results indicate that
H1 and H2 were identical (Figures 9B,C).

Lifted Head vs. Lowered Head Calibration
The distance between the tip of the nose and line between the
eyes decreased when the head was tilted upward. Conversely, the
distance between the tip of the nose and line between the eyes
increased when the head was tilted downward. During this time,
the distance between the eyes remained constant (assuming the
lens was at the same distance from the target) (Figure 8). As
shown in Figure 8, rat #5 in the active control group exhibited
similar H2 values at the two different time points, and the angle
of head elevation was also very close.

We calibrated the facial area of each rat in the model group
from the postoperative to the pre-dosing phase in the order
of mirror depth (Le), head rotation (H1 vs. H2), and head
lifting (H1). Specifically, first, Le was calibrated based on the
uncalibrated facial area (S) to obtain the calibrated area (leftmost
bar of each part of Figure 10). Then, S data were calibrated
according to the relationship between H1 and H2, and each rat
was calibrated such that the area of each rat corresponded to the
area when it was facing the camera (middle bar of each figure
in Figure 10). Finally, based on S calibrated in the second step,
H1 of all rats was normalized to obtain the final calibrated facial
area of rats (H1 in each part of Figure 10). The results indicate
that the deviation of S for each rat in the group decreased as
calibration was progressively performed, thereby indicating that
the calibration led to further representation of the objective facial
area of the rat.

DISCUSSION

In this study, during the process of MCAO model construction
and subsequent drug evaluation, we unintentionally determined
that the model rats exhibited facial swelling compared with the
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FIGURE 9 | Comparison of H1 and H2 parameters for each group at different stages of the experiment. H1 and H2 dynamics curves for each rat: (A) in the model

group after surgery and before administration; (B) in the model group between the beginning of administration and end of the experiment; (C) in the active control

group between the beginning of administration and end of the experiment. Model group: n = 5, positive drug group: n = 6.
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FIGURE 10 | Effect of different calibration methods on S in the model group in the postoperative to pre-dosing phase. Model group: n = 5.

control rats. To objectively evaluate the degree of facial swelling
in rats, we used the most common photography method (mobile
phone photography), which is flexible and can be performed at
any time during the experiment. After image acquisition, we used
Photoshop, common commercially available image processing
software, for parameter measurements.

Anatomy is the basis of medicine and biology. With advances
in technology, computer techniques have been increasingly
applied to anatomy (7) such as digital pathology, image
digitization, and three-dimensional scanning of the head.
Furthermore, computer techniques are applied in plastic surgery
and treatment of vascular diseases in the maxillofacial region
(8). To enhance the representation of facial swelling features,
we referred to anatomical and plastic surgery-related concepts
to compute and analyze acquired images via custom parameter
settings and calibration principles. Regarding the acquired
images of the variable rat faces, we utilized the anatomy of the

skull to capture the invariant brow bone of the same rats and used
the distance between the eyes as one of the calibration methods
to eliminate differences due to the distance between the lens
and target. Simultaneously, we also adopted basic mathematical
principles to determine the deviation due to the head tilting or
head rotation of rats to perform a simple quantitative analysis.
By performing a series of calibration analyses and comparisons,
we concluded that the size of S was most closely related to the
depth of the lens. Furthermore, as the distance between the rat
and lens decreased, the interocular distance Le between the eyes
increased and S increased at that time. Therefore, Le calibration
is extremely critical in data analysis. Conversely, the calibration
of H1 and H2 slightly affects the change in the size of S.

A literature search was conducted to address the biological
explanation of the phenomenon of facial swelling after MCAO
(9). However, to the best of our knowledge, there are no reports
on the phenomenon of facial swelling in rats after MCAO.
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Several studies reported that shoulder-hand syndrome occurs
after stroke, with one of its typical features corresponding to
hand swelling. It has also been reported that stroke patients tend
to exhibit deep vein thrombosis (10), and one of its classical
clinical signs involves swelling of the affected limb. Based on
these results, we hypothesized that facial swelling can occur in
patients with cerebral ischemia. After reviewing the literature and
based on our previous research experience, we believe that the
causes of facial swelling after cerebral ischemia are as follows: (1)
a sharp decrease in cerebral blood flow due to bilateral common
carotid artery ligation (11), which in turn increases intracranial
pressure. Some clinical trials have shown that inadequate venous
drainage triggered by bilateral radical neck dissection can cause
intracranial hypertension, which leads to facial swelling. It is
hypothesized that carotid artery ligation affects venous return.
This in turn results in facial swelling. (2) Bilateral common
carotid artery ligation can lead to cell swelling and tissue edema
(12), and patients with hypoxic–ischemic brain damage are
more likely to exhibit cerebral edema (13). Additionally, acute
intracranial pressure elevation (14) can cause periventricular
leukomalacia. (3) Clinically, the middle cerebral artery (MCA)
trunk exhibits a higher chance of stenosis or even occlusion than
the anterior and posterior cerebral arteries (15). This is mainly
because the MCA trunk has a higher blood flow and is more
prone to atherosclerotic plaques and mural thrombi. Hence, this
results in luminal narrowing (16). Conversely, occlusion of the
superior cortical branch of the MCA can lead to contralateral
involvement and impaired circulation (17). (4) The craniofacial
and temporal fascia contain rich blood supply (18), which is
derived from the common carotid artery, superficial temporal
artery, facial artery, and maxillary artery, which are accompanied
by veins and intertwined into a network at the terminal branches
of the internal carotid artery. Therefore, some patients with
severe stenosis of the extracranial segment of the internal carotid
artery (more than 70% stenosis) can be treated by mandibular
carotid endarterectomy (19, 20). The swelling of the maxillofacial
region, which is observed using contrast techniques, is associated
with compensatory thickening of the facial arteries (21). (5)
Swelling of the maxillofacial region is closely associated with the
onset of inflammation. Furthermore, facial swelling is observed
in chronic angioneurotic edema (22), which is mainly due to
capillary dilation, congestion, and exudation in deep connective
tissue, and it is accompanied by inflammatory cell infiltration
(23). Conversely, the tissues of the eyelids, upper and lower lips,
and cheeks are relatively loose and are easily observed when
edema occurs.

The positive drug used in this study was donepezil
hydrochloride tablets. They are routinely used in clinical

practice and can reversibly inhibit acetylcholine hydrolysis by

acetylcholinesterase, thereby increasing the concentration of
acetylcholine and exerting therapeutic effects by enhancing the
function of cholinergic nerves. During the 28-day period of
control administration to MCAO-treated rats, we observed that
the drug had some ameliorative effect on facial swelling in the
model rats after surgery. However, its effector mechanism is
not known.

In addition, we analyzed the ocular characteristics of rats in
the acquired images, including the eye area and proportion of
the face occupied by the eyes (data not shown in this paper) and
observed that the eyes of rats can protrude early and atrophy
later after MCAO. This is also related to the fact that the blood
supply to the eyes mainly comes from the branches of the internal
carotid artery and cases of exophthalmos in stroke patients have
been reported. Bilateral common carotid artery ligation leads to
an increase in intraocular pressure of the body, which results in
protrusion and atrophy of the eyes.

In summary, in this study, we established a simple and easy
method to significantly replace the existing subjective scoring
methods for edema and provide new ideas for future applications
based on the analysis of facial swelling in stroke patients.
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Background: This study aimed to develop and validate machine learning (ML)-based

prediction models for lung metastasis (LM) in patients with Ewing sarcoma (ES), and to

deploy the best model as an open access web tool.

Methods: We retrospectively analyzed data from the Surveillance Epidemiology and

End Results (SEER) Database from 2010 to 2016 and from four medical institutions to

develop and validate predictive models for LM in patients with ES. Patient data from

the SEER database was used as the training group (n = 929). Using demographic

and clinicopathologic variables six ML-based models for predicting LM were developed,

and internally validated using 10-fold cross validation. All ML-based models were

subsequently externally validated using multiple data from four medical institutions (the

validation group, n = 51). The predictive power of the models was evaluated by the

area under receiver operating characteristic curve (AUC). The best-performing model

was used to produce an online tool for use by clinicians to identify ES patients at risk

from lung metastasis, to improve decision making and optimize individual treatment.

Results: The study cohort consisted of 929 patients from the SEER database and

51 patients from multiple medical centers, a total of 980 ES patients. Of these, 175

(18.8%) had lung metastasis. Multivariate logistic regression analysis was performed with

survival time, T-stage, N-stage, surgery, and bone metastasis providing the independent

predictive factors of LM. The AUC value of six predictive models ranged from 0.585 to

0.705. The Random Forest (RF) model (AUC = 0.705) using 4 variables was identified

as the best predictive model of LM in ES patients and was employed to construct an

online tool to assist clinicians in optimizing patient treatment. (https://share.streamlit.io/

liuwencai123/es_lm/main/es_lm.py).
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Conclusions: Machine learning were found to have utility for predicting LM in patients

with Ewing sarcoma, and the RF model gave the best performance. The accessibility

of the predictive model as a web-based tool offers clear opportunities for improving the

personalized treatment of patients with ES.

Keywords: Ewing sarcoma, lung metastasis, machine learning algorithms, multicenter, web calculator

INTRODUCTION

Ewing sarcoma (ES) is an aggressive sarcoma with a high
propensity for local recurrence and distant metastasis in children
and adolescents (1, 2). ES is the second most common primary
bone malignancy, accounting for 5% of all child and adolescent
cancers (3). ES frequently involves the diaphysis region of long
bones (4). Despite the development of new treatment regimens,
ES has a high likelihood of tumor metastasis, leading to a

TABLE 1 | Baseline of patients with SEER database and multicenter data.

level Overall (N = 980) Multicenter (validation group, N = 51) SEER (training group, N = 929) p

Race (%) Black 39 (4.0) 0 (0.0) 39 (4.2) <0.001

Other 126 (12.9) 51 (100.0) 75 (8.1)

White 815 (83.2) 0 (0.0) 815 (87.7)

Age [mean (SD)] NA 22.39 (16.45) 24.96 (18.97) 22.25 (16.30) 0.252

Sex (%) Female 418 (42.7) 23 (45.1) 395 (42.5) 0.828

Male 562 (57.3) 28 (54.9) 534 (57.5)

Primary. Site (%) Axis bone 431 (44.0) 27 (52.9) 404 (43.5) 0.394

Limb bone 317 (32.3) 13 (25.5) 304 (32.7)

other 232 (23.7) 11 (21.6) 221 (23.8)

Laterality (%) left 374 (38.2) 21 (41.2) 353 (38.0) 0.894

Not a paired site 296 (30.2) 15 (29.4) 281 (30.2)

right 310 (31.6) 15 (29.4) 295 (31.8)

T (%) T1 351 (35.8) 20 (39.2) 331 (35.6) 0.008

T2 429 (43.8) 25 (49.0) 404 (43.5)

T3 39 (4.0) 5 (9.8) 34 (3.7)

TX 161 (16.4) 1 (2.0) 160 (17.2)

N (%) N0 841 (85.8) 44 (86.3) 797 (85.8) 0.312

N1 80 (8.2) 6 (11.8) 74 (8.0)

NX 59 (6.0) 1 (2.0) 58 (6.2)

M (%) M0 662 (67.6) 30 (58.8) 632 (68.0) 0.225

M1 318 (32.4) 21 (41.2) 297 (32.0)

surgery (%) No 413 (42.1) 25 (49.0) 388 (41.8) 0.381

Yes 567 (57.9) 26 (51.0) 541 (58.2)

Radiation (%) No 757 (77.2) 29 (56.9) 728 (78.4) 0.001

Yes 223 (22.8) 22 (43.1) 201 (21.6)

Chemotherapy (%) No/Unknown 58 (5.9) 0 (0.0) 58 (6.2) 0.125

Yes 922 (94.1) 51 (100.0) 871 (93.8)

Bone.metastases (%) No 831 (84.8) 40 (78.4) 791 (85.1) 0.271

Yes 149 (15.2) 11 (21.6) 138 (14.9)

Lung.metastases (%) No 795 (81.1) 41 (80.4) 754 (81.2) 1

Yes 185 (18.9) 10 (19.6) 175 (18.8)

times [mean (SD)] NA 30.56 (22.65) 29.71 (22.40) 30.61 (22.67) 0.782

worsening prognosis and resulting in a poor 5-year survival
rate of only 20–45% (4, 5). In a retrospective study of 975
patients with ES, 5-year survival and 5-year relapse-free survival
rates for patients with localized disease were 70 and 55%,
respectively, but only 33 and 21% for those with distant
metastasis disease (6).

Although diagnostic imaging techniques have improved
dramatically during the past 30 years, metastatic status can
only be detected in approximately 20–25% of ES patients
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TABLE 2 | Baseline table of patients in the Ewing sarcoma lung metastasis group vs. the no lung metastasis group.

Level Overall (N = 929) No (N = 754) Yes (N = 175) p

Race (%) Black 39 (4.2) 27 (3.6) 12 (6.9) 0.105

Other 75 (8.1) 64 (8.5) 11 (6.3)

White 815 (87.7) 663 (87.9) 152 (86.9)

Age [mean (SD)] NA 22.25 (16.30) 22.10 (16.35) 22.88 (16.10) 0.569

Sex (%) Female 395 (42.5) 329 (43.6) 66 (37.7) 0.18

Male 534 (57.5) 425 (56.4) 109 (62.3)

Primary.Site (%) Axis bone 404 (43.5) 316 (41.9) 88 (50.3) 0.13

Limb bone 304 (32.7) 253 (33.6) 51 (29.1)

other 221 (23.8) 185 (24.5) 36 (20.6)

Race (%) Black 39 (4.2) 27 (3.6) 12 (6.9) 0.105

Other 75 (8.1) 64 (8.5) 11 (6.3)

White 815 (87.7) 663 (87.9) 152 (86.9)

T (%) T1 331 (35.6) 304 (40.3) 27 (15.4) <0.001

T2 404 (43.5) 312 (41.4) 92 (52.6)

T3 34 (3.7) 20 (2.7) 14 (8.0)

TX 160 (17.2) 118 (15.6) 42 (24.0)

N (%) N0 797 (85.8) 676 (89.7) 121 (69.1) <0.001

N1 74 (8.0) 37 (4.9) 37 (21.1)

NX 58 (6.2) 41 (5.4) 17 (9.7)

M (%) M0 632 (68.0) 632 (83.8) 0 (0.0) <0.001

M1 297 (32.0) 122 (16.2) 175 (100.0)

surgery (%) No 388 (41.8) 271 (35.9) 117 (66.9) <0.001

Yes 541 (58.2) 483 (64.1) 58 (33.1)

Radiation (%) No 728 (78.4) 593 (78.6) 135 (77.1) 0.739

Yes 201 (21.6) 161 (21.4) 40 (22.9)

Chemotherapy (%) No/Unknown 58 (6.2) 45 (6.0) 13 (7.4) 0.585

Yes 871 (93.8) 709 (94.0) 162 (92.6)

Bone.metastases (%) No 791 (85.1) 672 (89.1) 119 (68.0) <0.001

Yes 138 (14.9) 82 (10.9) 56 (32.0)

times [mean (SD)] NA 30.61 (22.67) 32.40 (22.83) 22.89 (20.31) <0.001

(3), with the lung being the most common metastatic site
(5, 7, 8). Computed tomography (CT) scans of the chest are
usually carried out to detect lung metastasis. However, given
the high cost, radiation damage, and low efficiency of detection
of metastatic nodules, new strategies are urgently required to
accurately predict the development of lung metastasis in patients
with ES (9, 10).

Machine learning (ML) has emerged as a powerful
computer-based method of data mining and analysis and
has been extensively applied as a “prediction tool” in a
multitude of different scientific, engineering, and medical
scenarios (11–15). ML has been shown to detect more
interactions between variables, and to be more accurate
than conventional statistical methods (14, 16). ML algorithms
have been applied to model clinical outcome and to improve
cognition of tumor growth and progression (17). However,
although numerous ML-based predictive models of tumor
development have been reported, no study has been
conducted in predicting lung metastasis associated with
Ewing Sarcoma.

The Surveillance Epidemiology and End Results (SEER)
database contains data for around 26% of the United States
population and is commonly used to study rare diseases since it
overcomes the obstacle of inadequate case numbers (18–20). We
constructed several ML-based models of LM in patients with ES,
using the SEER database. External validation was subsequently
performed using data from multiple medical centers to predict
the probability of LM with the aim of improving individualized
patient management. The best model was uploaded as a web-
based tool.

MATERIALS AND METHODS

Study Population and Data Selection
Data were sourced from the SEER database and
four medical institutions in China: Liuzhou People’s
Hospital, Second Affiliated Hospital of Jilin University,
Xianyang Central Hospital, and Second Affiliated
Hospital of Dalian Medical University, respectively. This
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TABLE 3 | Univariate and multifactorial logistic regression analysis of risk factors for lung metastasis in patients with Ewing sarcoma.

Variables Univariate OR (95% CI) p value Multivariate OR (95% CI) p value

Age (years) 1.000 (0.991–1.010) 0.968 / /

Survival time (month) 0.980 (0.973–0.988) <0.001 0.988 (0.979–0.997) <0.01

Race

White Ref Ref Ref Ref

Black 1.939 (0.960–3.914) 0.065 / /

Other 0.872 (0.529–1.439) 0.593 / /

Sex

Male Ref Ref Ref Ref

Female 0.804 (0.579–1.116) 0.192 / /

Primary site

Limb bones Ref Ref Ref Ref

Axis of a bone 1.359 (0.937–1.970) 0.106 / /

other 0.924 (0.585–1.460) 0.735 / /

Laterality

Left Ref Ref Ref Ref

Right 1.148 (0.784–1.681) 0.479 / /

Other 1.004 (0.676–1.491) 0.984 / /

T

T1 Ref Ref Ref Ref

T2 3.461 (2.214–5.410) <0.001 2.701 (1.690–4.317) <0.001

T3 8.025 (3.8074–16.917) <0.001 4.037 (1.773–9.194) <0.01

TX 4.071 (2.415–6.864) <0.001 3.146 (1.778–5.566) <0.001

N

N0 Ref Ref Ref Ref

N1 5.570 (0.3457–8.975) <0.001 5.102 (3.048–8.540) <0.001

NX 2.255 (1.245–4.084) <0.01 1.411 (0.734–2.715) 0.302

Surgery

No Ref Ref Ref Ref

Yes 0.278 (0.196–0.394) <0.001 0.451 (0.309–0.658) <0.001

Radiation

No Ref Ref Ref Ref

Yes 1.241 (0.858–1.795) 0.251 / /

Chemotherapy

No Ref Ref Ref Ref

Yes 0.794 (0.419–1.504) 0.479 / /

Bone metastases

No Ref Ref Ref Ref

Yes 3.403 (2.326–4.977) <0.001 1.685 (1.090–2.605) <0.05

retrospective study did not use personal identifying
information and thus did not require informed
patient consent or Institutional Ethics Committee
Board approval.

Patients selected from the SEER database (2010–2016) who
were diagnosed with ES originating in bone, as identified by
ICD-O-3/WHO 2008 morphology code 9260d, composed
the “training” group. Criteria for exclusion were more than
one primary tumor and incomplete clinicopathological
information. The “validation” group was composed of ES
patient data obtained from four hospitals in different regions

of China, from 2010 to 2018. All cases featured complete
clinicopathological data and follow-up information and no
other primary tumors. Demographic and clinicopathological
variables included in both groups were: race, age, sex, primary
site, laterality, T-stage, N-stage, M-stage, surgery, radiation,
chemotherapy, bone metastasis, and survival times. For
consistency with SEER database records, “race” in the
Chinese medical records was classified as “other”. Detailed
treatments, such as surgery, radiation, and chemotherapy
were classified as Yes or No, and were not recorded in the
SEER database.
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FIGURE 1 | Average area under the curve (AUC) values of 10-fold cross-validation. RF, Random forest predictive model; DT, Decision tree; XGB, Extreme gradient

boosting; GBM, Gradient boosting machine; MLP, Multilayer perceptron; LR, Logistic regression; AUC used as an indicator of performance, RF model achieved the

best predictive performance while the MLP model showed the lowest.

Establishment and Evaluation of Prediction
Models
Using demographic and clinicopathological data, we explored
the effect of variables (p < 0.05) in univariate analysis, in
the multifactorial regression model, and in predictive models
based on the ML algorithms. Six different ML algorithms were
applied independently to develop predictive models of LM in
patients with ES, as follows: Random Forest (RF), Logistic
regression (LR), Extreme gradient boosting (XGB), Gradient
boosting machine (GBM), Multilayer perceptron (MLP), and
Decision tree (DT) (21, 22). For the training process of

the ML algorithms using python (version 3.8), we employed
10-fold cross-validation to avoid overfitting (23). We also
calculated the average value of the area under receiver operating
characteristic curve (AUC) to evaluate the predictive power of
each model.

The ML algorithms were subsequently applied to the
validation group and the AUC was again calculated to evaluate
the predictive performance of all models. The higher the AUC
value, the better the model. Finally, the best-performing model
was designed as a web-based tool for predicting the likelihood of
LM in ES patients.
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FIGURE 2 | External validation of machine learning algorithms. RF, Random Forest; DT, Decision tree; XGB, Extreme gradient boosting; GBM, Gradient boosting

machine; MLP, Multilayer perceptron; LR, Logistic regression; AUC, area under the curve.

As a model inspection technique, permutation feature
importance can be used for any fitted estimator (24–26). Thus, a
total of 100 independent training simulation results were applied
to assess the most important variables in each predictive model
using permutation feature importance analysis. We further
assessed the relative contribution of four key clinical variables
to LM predictive models using spearman correlation of features
analysis and plotted a correlation heat map.

Statistical Analysis
All data were extracted from the SEER database via the
SEER ∗ Stat software (version 8.3.6). All analyses were
performed using python (version 3.8). The baseline
variables between the training group and validation group
were compared using Student’s t tests and Pearson chi-
square test. A two-sided p < 0.05 was deemed to have
statistical significance.
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FIGURE 3 | The relative importance of variables for the prediction of LM using ML algorithms. Surgery, T-stage and N-stage ranked in the top three in all prediction

models, with bone metastasis ranked fourth.

RESULTS

Baseline Characteristics
A total of 980 patients with ES were enrolled in this study; 929
patients originating from the SEER database were assigned to
the training group; and 51 patients from four medical centers
in China were assigned to the validation group (Table 1). There
were significant differences between the two groups in terms of
race, T-stage, and radiation (p < 0.05). In the validation group,
all patients were classified under race as “others”. The proportion
of radiation was significantly higher in the validation group than
in the training group. In addition, more patients were diagnosed
as TX in the training group. The remaining variables were not
significantly different in both groups (Table 1). Lung metastasis
occurred in 185 (18.9%) cases, the median age of the patients
was 22.25 years (SD = 16.3), more than 85% of the patients
were Caucasian and 534 (57.5%) patients were male. Comparison
of the baseline data between the lung metastasis group and
no lung metastasis group, revealed significant differences for
the following factors: T-stage, N-stage, M-stage, surgery, bone
metastasis, and survival time (p < 0.001). The demographic and
clinicopathological variables of all 980 patients are summarized
in Table 2.

Univariate and Multifactorial LR Analysis of
LM
The following variables were shown to have significant
correlation with the development of LM in univariate analysis
(p < 0.05): survival time, T-stage, N-stage, surgery, and bone
metastasis (p < 0.001) (Table 3). Multifactorial LR analysis based
on the variables (p < 0.05) in univariate analysis, demonstrated

that T- stage (T2, OR = 2.7018, 95% CI = 1.690–4.317; T3,
OR = 4.0378, 95% CI = 1.773–9.194; TX, OR = 3.1468, 95%
CI = 1.778–5.566), N1 stage [vs. N0 stage, N1, (OR = 5.102,
95% CI = 3.048–8.540)], and bone metastasis (OR = 1.685,
95% CI = 1.090–2.605) were independent negative predictors
of LM while survival time (OR = 0.988, 95% CI = 0.979–
0.997) and surgery (OR = 0.451, 95% CI = 0.309–0.658) were
positive predictors.

Predictive Performance of Machine
Learning (ML) Algorithms
Six ML-based models for predicting LM in ES patients were
developed based on the training group data. The average AUC of
the six models determined by 10-fold cross-validation is shown
in Figure 1, with the RF model achieving the best performance
(AUC = 0.775). When the models established in training were
subjected to external validation (Figure 2), the RF model still
achieved the best performance (AUC = 0.705) in predicting LM
and was accordingly selected as the design for a web-based,
predictive tool.

Influence of Variables on Prediction
Performance
In consideration of clinical utility (Figure 3), we focused on
four variables (T-stage, N-stage, surgery, and bone metastasis)
to construct ML-based predictive models for LM in ES patients.
Although there were slight differences in the importance of
variables identified by each model; three factors, such as surgery,
T-stage and N-stage, consistently ranked in the top three,
and bone metastasis ranked fourth. The relative importance of

Frontiers in Medicine | www.frontiersin.org 7 April 2022 | Volume 9 | Article 80738276

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Li et al. Machine Learning Ewing Sarcoma

FIGURE 4 | Results of Pearson correlation of features analysis between all variables showing no obvious correlation between every two variables.

variables in predicting LM using the RF model decreased in
the order: surgery > T-stage > N-stage > bone metastasis.
Analysis using spearman correlation of features approach
revealed no significant positive correlation between any variable,
and a negative correlation between surgery and the other
three variables, indicating that all variables were independent
(Figure 4).

Design of a Web-Based Tool for Predicting
LM in ES Patients
The best-performing RF model was used to design a web-based
tool to assist clinicians in predicting lung metastasis in ES

patients (https://share.streamlit.io/liuwencai123/es_lm/main/es_
lm.py) (Figure 5).

DISCUSSION

Multi-modal therapy of metastatic disease based on
chemotherapy, surgery, and radiation would be improved
dramatically by the availability of reliable methods for predicting
metastasis (27, 28). Many mathematical models of tumor
malignancy employ multivariate regression or correlation
analysis, which usually require the variables to be independent
and linear (29–32). In addition to traditional univariate and
multivariate analysis, we used multiple ML algorithms, which
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FIGURE 5 | The web-based tool designed for predicting lung metastasis in patients with Ewing sarcoma.

are widely applied in healthcare data analysis, to construct
predictive models of LM in ES patients. We found that the
RF model provided the best performance. RF is a commonly
used ML algorithm that has a proven track record in handling
large complex nonlinear datasets (33, 34). We subsequently
designed a rapid web-based clinical tool, which is based
on the RF model, for predicting lung metastasis in patients
with ES.

Patient survival time was positively related to LM in univariate
analysis. However, when considering clinical practice, survival
time has no meaning for patients initially diagnosed with ES, and
it is difficult to assess the survival time of a part of the patient
population. Thus, survival time was not considered as a variable
in ML models.

In the present study, four clinical variables: surgery, T-
stage, N-stage, and bone metastasis were found to be the most
important factors for predicting LM status by ML algorithms.
We identified surgery as a protective factor against LM. To
our knowledge, this factor has not been included previously
in LM risk prediction models. Surgery is not only a vital
form of treatment, but also plays a significant diagnostic role,
which enables more accurate TNM staging and prognosis
of ES patients. Surgery ranked first in order of importance
in most of the predictive models developed in the present
study, while T-stage (tumor size) ranked in the top two in
all models investigated and was highly predictive of LM,

similar to previous reports (35, 36). Large tumor volume
indicates a longer growth cycle, resulting in a more proliferative
and aggressive state, thus increasing the occurrence of lung
metastasis. The correlation heat map showed that the T-
stage correlated negatively with surgery since radical surgical
treatment is difficult for large tumors, and lung metastasis is
more likely.

Extensive investigations have consistently demonstrated that
patients with regional node involvement were more prone to
develop distant metastasis (37–41). Since the lung is associated
with an abundance of lymphatic vessels, a tumor is more likely to
metastasize to the lung when lymph nodes are positive. However,
due to the scarcity of lymphatic vessels in bone tumor, it is
conventionally accepted that dissemination to lymph nodes is
uncommon (4, 42). Applebaum et al., for example, found that
only 6.3% (91/1,452) of cases featured lymph node involvement
(37). In contrast, our study revealed a much higher rate of lymph
node metastasis, approximately 18.9% (185/980).

Importantly, our ML-based models revealed that bone
metastasis was an important predictor of LM in ES patients,
ranking fourth in importance behind surgery, T-stage and N-
stage variables. Of the 138 patients in the two combined cohorts
(training group and validation group) who had bone metastasis,
40.6% (56/138) also displayed lung metastasis. This figure was
significantly higher than the number of patients who showed LM
without bone metastasis (15%, 119/791).
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Our present study of ML-based models for predicting LM
in ES patients contained certain limitations which, nonetheless,
serve as a guide for future improvements. Firstly, the information
accessed from the SEER database was to a certain degree limited.
Clinical information, such as the precise surgical treatment,
surgical margin status, tumor marker, vascular invasion,
radiation dosage, and chemotherapymodalities were unavailable,
which limits the predictive value of the developed models.
Secondly, the data from the SEER database was retrospective,
which may introduce bias in data selection. However, while
cognizant of these limitations, our study affirmed that ML-based
prediction models can effectively identify the likelihood of LM
in patients with ES by inspection of clinical factors such as
surgery, N-stage, T-stage, and bone metastasis. The RF model
performed best according to ROC analysis and was subsequently
used to produce a web-based tool designed to help clinicians
identify ES patients with lung metastasis, improve decision
making and optimize individual treatment. Increased case data
and multicenter studies are anticipated to lead to improvements
in predictive performance.

CONCLUSION

Machine learning algorithms were applied to develop a
prognostic tool for predicting the risk of LM in patients with
ES. A RF model performed best and was engineered as a

web-based tool for use by clinicians to improve patient diagnosis
and treatment.
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Coronavirus disease 2019 (COVID-19) is known as a contagious disease and caused

an overwhelming of hospital resources worldwide. Therefore, deciding on hospitalizing

COVID-19 patients or quarantining them at home becomes a crucial solution to manage

an extremely big number of patients in a short time. This paper proposes a model

which combines Long-short Term Memory (LSTM) and Deep Neural Network (DNN)

to early and accurately classify disease stages of the patients to address the problem

at a low cost. In this model, the LSTM component will exploit temporal features while

the DNN component extracts attributed features to enhance the model’s classification

performance. Our experimental results demonstrate that the proposed model achieves

substantially better prediction accuracy than existing state-of-art methods. Moreover,

we explore the importance of different vital indicators to help patients and doctors

identify the critical factors at different COVID-19 stages. Finally, we create case studies

demonstrating the differences between severe and mild patients and show the signs

of recovery from COVID-19 disease by extracting shape patterns based on temporal

features of patients. In summary, by identifying the disease stages, this research will

help patients understand their current disease situation. Furthermore, it will also help

doctors to provide patients with an immediate treatment plan remotely that addresses

their specific disease stages, thus optimizing their usage of limited medical resources.

Keywords: COVID-19, wearable data, neural networks, uncertainty quantification, pattern extraction

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), manifests as a wide range of symptoms, including fever, cough,
fatigue, breathing difficulties, loss of smell and taste, and pneumonia1. It spreads rapidly from
infected people to others through close contact or small exhaled droplets. The pandemic is now
causing havoc in countries around the world, with more than 282 million cases and around 5.41
million deaths, as of late December 2021 reported by WHO (2021). This deluge of patients is
overwhelming hospitals everywhere, especially in some developing countries where vaccines are
not sufficient, and it is difficult to cope with the need to conduct extensive disease testing programs
and treat huge numbers of patients in a very short period. It is therefore vital for medical staff to be

1https://en.wikipedia.org/wiki/Coronavirus_disease_2019
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able to identify patients COVID-19 disease stages before making
the decision to hospitalize them. Severe patients need to be
hospitalized quickly and receive a higher priority in dedicated
treatment, while patients with milder symptoms might only need
to self-quarantine at home. Fast and reliable techniques to detect
and identify the disease stages are thus the focus of active research
by scientists and medical technologists.

Vaira et al. found that anosmia and ageusia associated with
fever (>37.5◦C) are common onset symptoms that can be an
early signal of a COVID-19 infection (discussed by Heerfordt
and Heerfordt, 2020; Ortiz-Martínez et al., 2020; Vaira et al.,
2020; Walker et al., 2020), therefore, investigated the use of
Google Trends to study the loss of smell and smoking cessation
and predicted COVID-19 incidence. Wang et al. (2020) built a
deep convolutional neural network model to detect COVID-19
from chest X-ray images. Most of the existing work focused on
early disease detection, but few works were proposed to identify
the disease stages and develop useful insights for patients who
must quarantine at home. We therefore propose to explore the
problem of disease stage identification, because this will help
doctors decide the most appropriate treatment plans for patients
at each stage, allowing them to optimize their usage of scarce
resources when the hospital is under pressure. Besides, since our
work would help create a low-cost, efficient self-monitor solution
that can be used by everyone, it is beneficial, especially for people
who are quarantined at home.

Interestingly, there have been some huge improvements in
wearable technologies over the last few years, with a number
of wearable devices being widely introduced that enhance our
everyday life. For example, smartwatches such as Fitbit2 are
helping us to track our sleep patterns and daily activities,
encouraging us to maintain a healthier lifestyle. Smart Shirt
is another example of this trend that is beginning to play an
important role in our information infrastructure, supporting
healthcare systems for monitoring vital signs efficiently and
cost-effectively with the universal interface of clothing (Park
and Jayaraman, 2003). The possibilities are seemingly unlimited:
chip-integrated sensors are being used to monitor a number
of physical medicine applications (Bonato, 2005). Sensors have
already been developed specifically for COVID-19 applications,
including an automatic sanitizer tunnel that detects a human
being using an ultrasonic sensor from a distance of 1.5 feet and
disinfects him/her using a sanitizer spray (Pandya et al., 2020).
Quer et al. (2020) used wearable sensors to differentiate COVID-
19 positive vs. negative cases in symptomatic individuals,
pointing out that wearable devices are easy to access for most
people. The fast development of wearable technologies makes
it possible to be utilized to identify COVID-19 disease stages.
However, existing studies are all either (i) mainly limited to
the detection of COVID-19, with no attempt to identify the
stages of the disease; (ii) not designed to analyze variations in
the associated factors per COVID-19 stage; or (iii) unable to
provide a comprehensive view of the disease for layman readers.
Therefore, we seized this opportunity to investigate data-driven

2https://www.fitbit.com

approaches to COVID-19 through wearable technologies in an
attempt to bridge this gap. This paper introduces a wide-ranging
set of data-driven approaches to identify infected patients’ stages
using wearable technologies. Specifically, this work aims to
accurately and early infer from wearable data obtained from
sensing devices attached to COVID-19 patients whether the
COVID-19 patients are in mild, moderate, severe, or recovery
stages in an earlier stage. We achieved this by introducing a
model that utilizes a Long-short TermMemory (LSTM) network
and a Deep Neural Network (DNN) to aggregate and jointly
exploit temporal stream data from wearable devices and attribute
stream from characteristics of patients. It is worth mentioning
that our comprehensive experimental evaluation shows the
improved performance achieved by our model compared to
existing machine learning (ML) classification methods, which
can only use one of the data streams. By identifying these patients
in earlier stages, medical professionals will be able to take swift
action if the patient requires early hospitalization or if it is safe for
them to continue to self-quarantine at home. In addition, we also
compare the lifestyles between severe and mild patients, allowing
us to investigate and evaluate factors that impact the recovery of
the patients. Specifically, the work aims to address the following
three research questions (RQs):

• RQ1: Can we build an accurate ML model to predict COVID-
19 stages and identify whether a patient will progress to a more
severe stage in an earlier stage?

• RQ2:Which set of factors are associated with the severity of a
patients symptoms? What can we learn from these factors in
association with COVID-19 stages?

• RQ3:What signs signify recovery or deterioration in COVID-
19 patients?

Overall, three novel contributions are made in this research:

1. We develop a classification model with uncertainty
quantification to identify the major COVID-19 disease
stages. Our model is able to recognize patients’ disease stages
in a timely manner because we utilize data from the wearable
device, which is more responsive to disease stages than the
subject’s senses.

2. Our work provides useful insights into the progression of
COVID-19 disease and vital indicators at each stage. The
research input is from a data source (a wearable device like a
smartwatch) that everyone can access and use on their own.
Our approach is data-driven and can mitigate human bias
substantially.

3. We investigate factors associated with COVID-19 severity and
recovery. We also create case studies (1) demonstrating the
differences between severe and mild patients and (2) showing
the signs of recovery from COVID-19 disease using a shape-
based pattern extraction model.

The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 discusses our methodology, including
an overview of the data preparation, stage identification model,
feature importance, and pattern extraction model. Section 4
shows our evaluation and experimental results. Section 5 presents

Frontiers in Big Data | www.frontiersin.org 2 April 2022 | Volume 5 | Article 80199882

https://www.fitbit.com
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Guo et al. Data-Driven Insights From Wearable Technologies

TABLE 1 | List of features specific to heart rate variability (HRV).

Feature name Meaning

bpm Heart rate

mxdmn Difference between highest and lowest cardio interval

values

sdnn Standard deviation of normal heartbeat intervals

rmssd Root mean square of successive differences for

consecutive intervals

pnn50 Percent of RR-intervals that fall outside a 50 ms range of

the average

mode Most common cardio interval length

amo Mode amplitude

lf Power of low frequency waves

hf Power of high frequency waves

vlf Power of very low frequency waves

lfhf Ratio of low to high frequency waves

total_power Total power of HF, LF, and VLF waves generated by the

heart

rr_data (time-based) Intervals in milliseconds between consecutive heart beats

some limitation in our study. Finally, we offer conclusions in
Section 6.

2. RELATED WORK

Here, we survey recent related studies on battling the COVID-19
crisis. These studies fall into two broad scientific areas: machine
learning (ML) and remote monitoring utilizing the Internet of
Things (IoT).

ML Research: Researchers have attempted different methods to
battle COVID-19. Assaf et al. developed a model that used white
blood cell count, time from symptoms to admission, oxygen
saturation, and blood lymphocyte count to predict if a patient is
at high risk for COVID-19. Their prediction model can be useful
for efficient triage and in-hospital allocation, better prioritization
of medical resources, and improving overall management (Assaf
et al., 2020). Ahamad et al. (2020) developed a model that
applies ML algorithms to reveal potential COVID-19 patients
by analyzing their age, gender, fever, and history of travel. By
extracting 11 blood indices through a random forest algorithm,
Wu et al. (2020) built an assistant discrimination tool that
can identify suspected patients using their blood test results.
Barstugan et al. (2020) and Elaziz et al. (2020) choose to use
image-based diagnosis (CT images) building Support Vector
Machine and K-Nearest Neighbors algorithms for predicting
suspected COVID-19 infection.

Remote monitoring research: However, these studies’ data
sources, such as CT images or blood test results, would often
need to be collected by trained professionals. With COVID-19
patients number rising, we see a shortage of medical resources
worldwide and make clinic visits bear more risk as suspected
patients gather for examination. Therefore, many people prefer
to use the Internet of Things (IoT) to diagnose COVID-19

to avoid the risk of infection. Singh et al. demonstrated that
IoT implementation could help infected patients with COVID-
19 identify symptoms rapidly and greatly reduce healthcare
costs (Singh et al., 2020). Islam et al. (2020) suggested that
wearable devices could provide real-time remote monitoring and
contact tracing features, which can be used to improve healthcare
systems’ current management schemes. For example, Maghdid
et al. (2020) designed an artificial intelligence-enabled framework
that analyzes signals from a smartphone’s sensor signal. It helped
to diagnose the severity of pneumonia to predict the COVID-19
infection.

Most prior works were focusing on the early prediction or
detection of COVID-19 infection. As the epidemic escalates
dramatically every day, we want to further conserve healthcare
resources by identifying different stages of COVID-19 patients.
For example, diagnosed early and moderate stage patients
could adopt self-quarantine treatment in time, saving valuable
resources that can then be utilized by patients with severe
COVID-19 stage.

3. METHOD

3.1. Data Preparation
3.1.1. Dataset Description
We used an open dataset provided by Welltory 3 The dataset
comprises multivariate data records from 186 COVID-19
patients experiencing different stages. The data includes variables
such as heart rate, sleeping patterns, daily activities, heart rate
variability (HRV), blood pressure, patient demographics (age,
gender, country, etc.), environmental information, and other
patient facts (smoking, alcohol, other background diseases, etc.).
We focus on the HRV information measured using wearable
devices. HRV is also popular in many clinical and investigational
research such as diabetes (Benichou et al., 2018), brain emotion,
stress, anxiety (Goessl et al., 2017; Mather and Thayer, 2018), or
cardiology related (Sessa et al., 2018). Table 1 provides detailed
descriptions of HRV specific features, where rr_data (intervals
in milliseconds between consecutive heartbeats) is a sequence
data with a length of 100. In addition, we also selected ordered
categorical variables with values from 1 to 6 recording the
intensity of seven common COVID-19 symptoms that were in
the HRV survey dataset: breath, confusion, cough, fatigue, fever,
pain, and bluish.We believe these variables can better assist in the
task of prediction, but we only focus on the other HRV variables
for the subsequent analysis.

Since each patient may be recorded multiple times, the stage
of disease may be different from one recording period to the
next. For example, some patients who were mild patients at the
beginning of the record may become severe patients a week later.
So, in the task of predicting the stage of disease, we remove
the user code and predict the disease status for each record. All
patients have a total of 1,480 complete records. Each record will
be associated with a label by a survey from Welltory, identifying
the corresponding patient’s current stage. Figure 1 summarizes
the number of stages per disease stage category.

3https://github.com/Welltory/hrv-covid19
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FIGURE 1 | Distribution of four disease stages. Each patient may span

multiple disease stages due to the progression of the disease.

3.1.2. Feature Expansion
To make the most of the information in the data, we enrich our
feature set based on temporal and statistical properties. First,
for the variable time series, intervals in milliseconds between
consecutive heartbeats (represented by rr), we computed a variety
of statistics for this sequence, such as its variance (rr_var),
skewness (rr_skew), kurtosis (rr_kurt), maximum (rr_max),
minimum (rr_min), median (rr_median), mean (rr_mean),
interquartile range (rr_iqr), etc. These features are popular and
widely used in many research such as heart rate analysis (Bolanos
et al., 2006) or brain waves recognition (Campisi and La Rocca,
2014). Besides, we divide each day into four periods and further
create four one-hot variables: morning, day, evening, and night.
That is, if a row of data for a patient is recorded in the morning,
then the variable morning for this record is 1, while the other
three variables are all 0. Another variable we created is called
day_after_test (days a.t.), and its value depends on the number
of days each patient has been infected with COVID-19.

In addition, we obtain two new temporal sequence data using
the transformation of rr_data. Suppose the original heartbeat
interval is RR = {x1, x2, ..., xT}, we transform this time series
by computing lag difference (DI) and the absolute deviation
from the mean (DM), in order to remove temporal dependency
and to eliminate the trend and seasonality of the time series.
Mathematically, the two newly constructed time-series are as
follows:

DI = {x2 − x1, x3 − x2, ..., xT − xT−1},

DM = {|x1 − x|, |x2 − x|, ..., |xT − x|},
(1)

where T = 100 and x is the mean of the original rr sequence.
To make these three sequences (RR, DI, and DM) have the same
length 100, we add the average of the last three numbers of the
DI sequence at the end of the DI sequence. All the features we
expanded are listed in Table 2. Thus, we end up with a total

TABLE 2 | List of self-generated features (time-based and statistical features).

Domain Feature name Source

Time-based DI Lag difference of rr sequence

DM Absolute deviation from the mean of rr sequence

Statistical rr_var Variance of rr sequence

rr_skew Skewness of rr sequence

rr_kurt Kurtosis of rr sequence

rr_max Maximum of rr sequence

rr_min Minimum of rr sequence

rr_median Median of rr sequence

rr_mean Mean of rr sequence

rr_iqr Interquartile range of rr sequence

morning One-hot variables Imorning

day One-hot variables Iday

evening One-hot variables Ievening

night One-hot variables Inight

daysa.t. Number of days of COVID-19 infection

of 32 attribute features and 3 temporal features for the task of
predicting disease stages.

3.1.3. Data Pre-processing
There are somemissing values in the dataset. It is either due to the
network issues when the data is collected or the users choose not
to answer some survey questions for any reason. To fill out the
missing values, we used MissForest (Stekhoven and Bühlmann,
2012), a non-parametric iterative imputation technique based
on the Random Forest algorithm which is proved capable of
handling missing values of different data types. Additionally,
we normalized the data to avoid scales influencing between
features. Letmin{Xi,1 :N} andmax{Xi,1 :N} are the minimum and
maximum values of the attribute feature Xi for all N samples.
The min-max normalization values of feature Xi is computed as
follows:

X
′

i,j =
Xi,j −min{Xi,1 :N}

max{Xi,1 :N} −min{Xi,1 :N}
, j = 1, 2, ...,N (2)

Where N = 1,480 is the sample size.
Similarly, for the temporal sequence features, we use min-max

normalization to normalize the data for all samples at each time
point. Letmin{Xk,t,1 :N} andmax{Xk,t,1 :N} are the minimum and
maximum values of the temporal feature Xk for all N samples
at time t. The min-max normalization values of feature Xk is
computed as:

X
′

k,t,j =
Xk,t,j −min{Xk,t,1 :N}

max{Xk,t,1 :N} −min{Xk,t,1 :N}
, j = 1, 2, ...,N,

t = 1, 2, ...,T
(3)

Where N = 1,480 is the sample size and T = 100 is the length of
the temporal sequence.
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3.2. Model for Disease Stage Identification
3.2.1. Theoretical Model
We formulate the problem of identifying disease stages as amulti-
class classification problem. From a feature matrix X of a patient,
we need to build a classifier f that classifies whether the patient is
inMild, Moderate, Severe, or Recovery stage.

In this task, our classification model utilizes two data streams
described in Section 3.1: temporal stream and attribute stream.
A temporal stream has temporal characteristics or sequential
order. The temporal streams can be real-time, so if our model
is embedded in wearable devices in the future, it will be
very helpful for early-stage detection. The attribute stream has
no temporal characteristics such as demographic information,
patient’s background disease, etc. Formally, assume that the
datasetD of sizeN is defined asD= {(Xi,Yi), i = 1, ...,N}, where
Yi is the class label and Xi = (Xt

i ,X
a
i ), represents the i-th sample

of the combination of the temporal stream (denoted as Xt) and
attribute stream (denoted as Xa). The developed classification
model f parameterized by θ will classify disease stages based on
input streams as the following equation:

stages ≃ f (θ ,H2(8(H1(X
t),Xa))), (4)

where H1 and H2 are latent feature extractors, which are two
types of neural networks in our model, 8 is an aggregation
function that fuses the latent features from H1(Xt) with attribute
stream data Xa.

3.2.2. Network Design and Data Fusion Strategy
As mentioned earlier, the two input streams of the model are the
temporal stream and the attribute stream. The LSTM network
is suitable for temporal stream since it is a type of recurrent
neural network (RNN) and addresses the problems of vanishing
and exploding gradient in general RNNs. Hochreiter (1998).
Therefore, in Equation (4), we choose H1 as an LSTM based
network to learn latent features from the temporal stream Xt . For
the attribute stream Xa, after combining them with the outputs
of the LSTM based network, we use H2, a network of multiple
fully-connected layers (DNN), to extract their latent features
for the final disease stage classification. The DNN is chosen to
force the network to explore all the possible relationships of both
attribute streams and temporal streams. This is also an approach
to combining DNN with LSTM to obtain a novel end-to-end
neural network.

Figure 2 shows the overall model which composes of two
subnetworks, LSTM and DNN. The two subnetworks are merged
to predict the final disease stages. Suppose each patient has D
input sequences with a common time length T. An LSTM passes
forward over the entire temporal data sequences. We use the
hidden size H = 1 in the LSTM, so later we can use an affine
layer to map the hidden outputs to one-dimensional data of the
same dimensional size as the attribute data. The LSTM unit is
composed of a cell state ct , a so-called memory cell, a hidden state
ht , an input gate i, a forget gate f , an output gate o, and an input
modulation gate g. They are called gates because they control the
flow through the LSTM. The four gates will be computed at each
time step for cell and hidden state updates. The following is the

outline formula of LSTM:
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ct = f ⊙ ct−1 + i⊙ g

ht = o⊙ tanh (ct)

(5)

where σ and tanh are the sigmoid function and tanh function,
respectively. W is the weight matrix. ct , ht , and xt are the cell
state, hidden state, and temporal input at time step t, respectively.
⊙ represents element-wise multiplication.

After running the forward of the LSTM network, T hidden
state outputs, {h1, h2, ..., hT}, are returned and evenly sampled
with a 20% probability to enhance generalization capability and
avoid overfitting, that is, we uniformly sample T1 hidden states
from the T hidden states and T1 = 1/5 T. Next, the combined
hidden states are flattened to the temporal latent features thanks
to the subsequent Affine layer to concatenate with the attribute
stream. The temporal latent features have a final projected size
T0 = 5, which is equivalent to putting the temporal latent
features into 5 additional latent attribute features. Let’s define
ht = H1(Xt) as the final 5 latent features of the temporal stream
and xa as the sample values for the original attribute stream Xa.
The concatenation of these two streams is defined as follows:

hc = 8(ht , xa) = ht ⊕ xa (6)

where ⊕ is the concatenation operator. Then, the concatenated
stream hc is fed into a deep neuron networkH2 which consists of
five fully connected layers with number of neurons 1,024, 1,024,
2,048, 1,024, and 1,024, respectively. The output of the model is
the predicted probability of being in each disease stage for each
sample. Finally, the predicted classification of disease stages y is
obtained by the following:

y = argmax f (θ ,H2(h
c)) (7)

The network uses Leaky ReLU activation function and dropout
rate of 30% to enhance the robustness of the model and reduce
the computational cost. The learning rate is set to 0.001 and
the batch size is set to be the same as the sample size. We use
the Adam optimizer, gradient descent algorithm, and softmax
cross-entropy loss function to optimize the network.

3.2.3. Uncertainty Quantification of the Model
We perform resampling from our existing samples to quantify
the built predictive model’s uncertainty. This method is also
known as Bootstrap, published by Bradley Efron in Efron (1979).
We employ the Bootstrap method because 1) it is invariant
under re-parametrization; 2) it does not require the population
distribution assumption; 3) it is driven by repeated resampling
of data and does not depend on theoretical calculation; 4) it
can provide the point estimation and assess the accuracy of the
estimation when the traditional statistical method fails.
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FIGURE 2 | Overview of COVID-19 stage classification model, where N=1,480 represents the sample size, T=100 represents the common length of temporal

sequence, D=3 represents the number of temporal sequences, H=1 represents the size of hidden state output by LSTM, T1=20 represents sampling size of the T

hidden states, T0=5 represents the final projected size of temporal features in the time dimension, and V=32 represents the number of attribute features.

We present details of the uncertainty quantification algorithm
inAlgorithm 1. Overall, the intuition of the algorithm is to create
new samples, then obtain the prediction output. This process is
repeated many times to result in a distribution of output which
helps to quantify the model’s uncertainty. In order to generate
new samples, bootstrapping technique which was introduced by
Efron (1979) is utilized. Here, we summarize its workflow in
Figure 3:

• Treat the original sample as if it were the population.
• Draw from the sample, at random with replacement, for B

times (B is the number of bootstraps).

Given the value of confidence interval (C.I) α%, we will
retrain our model from the newly generated samples, perform
classification, and obtain a α% confidence interval of the
predicted outcomes.

3.2.4. Baseline Models and Comparison Metrics
To verify the effectiveness and advantages of our proposed
approach, we compare the classification results on the test dataset
with several classical ML and deep learning models using a
five-fold cross-validation approach. The baseline models are as
follows:

1. Logistic regression (Logit): a multinomial logistic regression
model was used to predict the probabilities of different
outcomes for our multi-class problem (Kwak and Clayton-
Matthews, 2002).

Algorithm 1 Bootstrap method to construct 95% C.I.
(Confidence Interval)

function compute_boot_CI ()
Input: Input Train dataset X, label y, Test dataset X∗, model f
Output: 95% C.I. (lc, uc), c = 1, 2, 3, 4 and c is the class index.

1. For Bootstrap j = 1, ...,B

• Generate bootstrap sample Xj, yj from dataset X and label y
with replacement.

• Train model f with bootstrap sample Xj, yj.
• Feed test dataset X∗ to the above trained model and

calculate the prediction outputs
pjc, c = 1, 2, 3, 4.

2. Let lc and uc be the 0.025 and 0.975 percentile of (p1c, ..., pBc)

return (lc, uc), c = 1, 2, 3, 4

2. Support vector machine (SVM) (Chang and Lin, 2011):
various types of kernels were tried and the kernel with the best
result was finally chosen.

3. Attribute-based K-nearest neighbors (KNN) (Peterson, 2009):
various number of the k nearest neighbors were tried and the
k with the best result was finally chosen.

4. Long short-term memory: a popular extension of artificial
recurrent neural network (RNN) architecture. It was first
introduced by Hochreiter and Schmidhuber (1997).

Frontiers in Big Data | www.frontiersin.org 6 April 2022 | Volume 5 | Article 80199886

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Guo et al. Data-Driven Insights From Wearable Technologies

FIGURE 3 | Workflow of bootstrap method to construct 95% confidence intervals.

5. Deep Neural Network: it consists of five fully connected
layers with a number of neurons 1,024, 1,024, 2,048,
1,024, and 1,024 respectively, and with the same
activation function, dropout rate, learning rate,
batch size, optimizer, algorithm, and loss function as
our model.

For comparison metrics, we use standard metrics such as
accuracy, precision, recall, f1-score, and multi-class AUC (area
under ROC curve) to compare the performance of the
models. It is worth noting that the inputs to these traditional
models above can only be one of the data types and they
cannot directly utilize both temporal data and attribute data
jointly, so our model is expected to perform better than
these models.

3.3. Feature Importance
To measure the importance of features, we perform the
permutation feature importance algorithm on all the temporal
and attribute features in turn to break the relationship
between the feature and the true outcome. The permutation
feature importance algorithm is described in Algorithm 2. This
algorithm is based on our proposed classification model f .
The general idea is that if a feature is essential for a stage,
then shuffling or removing its values increases the model error
for that stage because in this case, the model relied on the
feature for the prediction. On the other hand, a feature is
unimportant for a stage if shuffling or removing its values
leaves the model error for that stage unchanged because, in this
case, the model ignored the feature for the prediction (Fisher
et al., 2019). Therefore, we can rank the losses of the built
models after removing one variable at a time to select the
most influential features. This approach is applied in Section
4.2 to uncover factors associated with different COVID-19
disease stages.

Algorithm 2 Permutation feature importance

function compute_feature_importance ()
Input: Feature X, label y, model f
Output: Output Feature importance FI

1. Estimate the original model error eorig = L(y, f )
2. For feature j = 1, ..., p

• Generate feature matrix Xperm by removing feature j in the
data X. This breaks the association between feature j and
true outcome y.

• Estimate error eperm = L(y, f (Xperm)) based on the
predictions of the permuted data.

• Calculate permutation feature importance FIj =

eperm/eorig .

3. Sort features by descending FI.

return FI

3.4. Model in a Case Study: Shape-Based
Pattern Extraction Model for Signs of
Recovery
In the classification of time series, a subsequence is called
Shapelets (Ye and Keogh, 2009) if it maximally represents a
class in some sense. Grabocka et al. (2014) introduced an
implementable method to learn time-series shapelets. In one
of our case studies 4.4, we try to find shapelets from HRV
data that can differentiate between unrecovered patients and
recovered patients. For signs of recovery, the patterns are two
groups of shapelets that can linearly separate the recovered from
unrecovered patients. Suppose xi, i = 1, 2, . . . ,N is the i − th
original time series data of length T, and sk, k = 1, 2, . . . ,K is one
of the proposed shapelets with length l. It is easy to know that in
a time series, there are exactly T − l + 1 segments as long as the
starting index of the sliding window is incremented by one. The
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distance between xi and sk is defined as follows:

d(xi, sk) = min
t∈{1,2,...,T−l+1}

||xi,t : t+l − sk||
2
2, (8)

where xi,t : t+l is the subsequence of xi from time t to time t + l.
Since, in our study, the classification task is binary (recovery and
unrecovered). Let us define the target variable, i.e., the patient’s
recovery status Yi, i = 1, 2, . . . ,N:

Yi =

{

1 if the i− th patient has recovered

0 if the i− th patient has not recovered,
(9)

Then, the predicted status of the i− th patient is as follows:

Ŷi = W0 +

K
∑

k=1

d(xi, sk)Wk, (10)

where Wk, k = 0, 1, . . . ,K, are the weights of learning,
representing the classification hyperplane. By minimizing the
logistic loss function with weight regularization terms, we
can learn both the optimal shapelet and the optimal linear
hyperplane. The loss function is shown in Equation (11):

L =

N
∑

i=1

l(Yi, Ŷi)+ λ||W||22, (11)

where

l(Yi, Ŷi) = −Yilogσ (Ŷi)− (1− Yi)log(1− σ (Ŷi)), (12)

and σ is the sigmoid function.
In the optimization process, a stochastic gradient descent

(SGD) approach is adopted. Note that because SGD needs all the
functions to be differentiable, an approximation of the minimum
function (8) is used. This function is called the Soft Minimum
function (Grabocka et al., 2014) and is shown in Equation (13).

d̂(xi, sk) =

∑T−l+1
t=1 di,k,te

αdi,k,t

∑T−l+1
t′=1 eαdi,k,t′

, (13)

where

di,k,t = (xi,t : t+l − sk)
2. (14)

By applying the above method to the patient’s HRV time series
data, we aim to find a sequence pattern that can show signs of
patient recovery to the greatest extent possible. Our results are
shown in Section 4.4.

4. EXPERIMENTAL RESULTS

4.1. Infected Stage Classification
Performance Evaluation
We randomly split up the data prior to modeling so that all
models can use the same data splits. Each time, the models are
trained on 4-folds (80% of the data) and tested on 1-fold (20% of

the data). These 5-folds take turns being the test dataset to ensure
that each sample can be classified. We perform a comprehensive
comparison of model classification results. We add up the
confusion matrices of the five experiments to obtain the total
confusion matrix, which is therefore based on the result of all
samples, as shown in Figure 4. For the five evaluation metrics,
accuracy, precision, recall, f1-score, and multi-class AUC, we use
the average results of the five experiments as the final evaluation
results, which are listed in Table 3.

On the one hand, we can see the improvement in
classifications of our proposed model from the confusion matrix.
Our model has less misclassification of disease stages compared
to othermodels. On the other hand, the detailed results inTable 3
also show the advantages of our model. To be specific, the three
models Logit, KNN, and SVM are comparable, having accuracy
scores of about 0.66 to 0.79 and AUC of about 0.74 to 0.84. The
LSTM model gives poor results due to the fact that it only uses
temporal data. DNN model is the second-best model with an
accuracy score of 0.903 and AUC of 0.924. Our proposed method
has the highest scores under all five metrics, with an accuracy
score of 0.914 and AUC of 0.935.

Figure 5 are box plots that present uncertainty quantification
of the disease stage predictions of our proposed model for
some randomly selected patients (Patient 151, 110, 29, and 182).
The narrow box plot indicates the narrow 95% C.I., which
presents low uncertainty in the prediction. We observe that for
patient 29, all the C.I.s are quite narrow, while for all other
patients, the C.I.s for certain stages are wider, which shows high
prediction uncertainty. Even though there is high uncertainty in
the prediction of certain disease stages, the 95% CI for each stage
classification has shown that the probability of the classified stage
(final prediction on each patient) always has a higher probability
value than other stages. It means that our predictive model
successfully identifies the disease stages with the performance
results provided in Table 1.

4.2. Uncovering Factors Associated With
COVID-19 Disease Stages
In this section, we focus our analysis on features from wearable
data instead of other factors which have been discussed through
news channels such as background diseases or body symptoms.
We use a random permutation of values shown inAlgorithm 2 to
calculate feature importance values for each feature based on the
ratio of the model’s errors between permutations. After obtaining
the importance values, these values are rescaled to the range [0–1]
to make them comparable. The results are shown in Figure 6. For
each stage, the important features are ranked from high to low.
The high importance feature means that prediction performance
is highly dependent on this feature.

Figure 6 shows that for mild andmoderate stages, the number
of days from onset symptoms (days a.t.) is the most important
since it ranks top among all variables. It means for mild and
moderate patients, HRV variables have not yet shown very
obvious characteristics, while the number of sick days can best
determine the patients at this stage. This phenomenon is more
reliable for mild patients since the number of sick days is far
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FIGURE 4 | Total confusion matrix for COVID-19 disease stage classification based on 5-fold cross-validation.

TABLE 3 | Infected stage classification results of models based on 5-fold cross-validation.

Model Accuracy Precision Recall F1-score AUC

LSTM Only 0.397 0.410 0.397 0.355 0.556

Logit 0.661 0.666 0.661 0.650 0.741

KNN 0.763 0.761 0.763 0.759 0.816

SVM 0.792 0.791 0.792 0.787 0.839

DNN Only 0.903 0.905 0.903 0.903 0.924

Our Model (LSTM+DNN) 0.914 0.917 0.914 0.914 0.935

The bold values indicate the best result for each metric.

FIGURE 5 | 95% confidence interval of the prediction probabilities for the current stage of COVID-19 patients.

more important than the second-ranked variable. This result can
be explained that in the early days of COVID-19 infection, most
people have mild symptoms. For severe patients, the number
of sick days is no longer important, the average time between
each heartbeat, rr_mean, occupies the most important position,
even though it is very unimportant in other stages. It indicates

that the rr_mean of severe patients is very different from those
patients in other stages. In other words, if the condition of a
patient gets worse, it will be most clearly reflected by rr_mean.
For recovery patients, the total power of waves generated by
the heart (total_power) and the number of sick days (days a.t.)
are important variables. This shows that, on the one hand,
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FIGURE 6 | Feature importance for COVID-19 stages. The higher the value is, the more important the feature is.

it takes a certain number of days for patients to recover; on
the other hand, a significant change in the total power of the
waves generated by the heart is most indicative of the recovery
phase.

If we focus on different frequency wave power generated
by the heart (high-frequency: hf , low-frequency: lf , very-low-
frequency: vlf ), we can also find something valuable. In the mild
stage, no such variables are important. However, in moderate
stage, the importance of all the three along with the ratio of low
to high frequency waves (lfhf ) rank relatively high. Therefore,
compared to the patients in the mild stage, the wave power of
each frequency of patients in the moderate stage has changed
obviously. Besides, for severe patients, the frequency waves that
are most different from other stages are low-frequency waves (vlf ,
lf ). While for recovered patients, the frequency wave that is most
different from other stages is a high-frequency wave (hf ).

4.3. Case Study: Severe Patients vs. Mild
Patients
Since heart rate variability (HRV) is popular in many healthcare-
related research, we chose to explore it to compare daily patterns
of severe patients vs. mild patients. The variables for comparison
are the average time between each heartbeat (rr_mean), the
percent of RR-intervals that fall outside a 50 ms range of the
average (pnn50), and the total power of high-frequency waves,
low-frequency waves, and very-low-frequency waves generated
by the heart (total_power). All the data is normalized with the
min-max technique to make them comparable. In addition, we
choose data from 5 days before the onset of symptoms to 16
days after the onset of symptoms to show the difference between
different stages in the most critical time. We use polynomial
regression to do curve fitting and trending analysis separately.
At the same time, 95% confidence intervals of fitted curves are
shaded. We can find something interesting in the results shown
in Figure 7.

We noticed that the highest value of the total_power curve
and its confidence interval did not exceed 0.3. This range of
total_power is relatively narrow since we have scaled all the
data to the unit interval. It indicates that for people who have
COVID-19 symptoms, whether he or she is in the mild stage
or the severe stage, the total power of waves generated by the
heart is lower approximately a few days before and 2 weeks

after the onset. For these three comparative variables, rr_mean,
pnn50, and total_power, their curves have a similar pattern.
In general, after the symptom onset date, all three variables
of severe patients are higher than those of mild patients. The
higher value of average time between each heartbeat of severe
patients means that their average heart rate is slower than that of
mild patients. Furthermore, severe patients usually have higher
pnn50. In other words, for severe patients, the outlier heartbeats,
heartbeats whose intervals are farther apart from the average
interval, occupy a larger proportion. It reveals that the heart
rhythm of severe patients is more irregular than that of mild
patients. Besides, compared to mild patients, heart-generated
wave power of severe patients is stronger.

Following the time dimension, we can also find the different
development of the above variables during the illness of mild and
severe patients. Curves of patients in severe stage show a trend
of increasing after decreasing. The curve of patients in mild stage
also decreases at the beginning, while gradually stabilized after
the curve rose and then again has a decreasing trend at about 12
to 14 days. This may be because the immune regulation of mild
patients does not allow them to rise endlessly, which may also be
a feature of gradual recovery. We can also see that after about 13
days, the 95%CI of the curves of both severe andmild patients are
relatively narrow, which gives us more confidence to believe that
severe and mild patients have indeed evolved in two directions.

4.4. Case Study: Signs of Recovery
In this case study, we try to find the most discriminate
patterns that classify best the recovered stage and other stages.
These patterns will signify the sign of recovery instead of the
progressing disease. In addition, HRV data for the evening hours
is used for analysis to avoid the influences of daytime activities
of patients. We use the HRV sequence variables, which are the
interval between consecutive heartbeats(RR), its lag difference
sequence(DI), and its sequence of absolute deviation from the
mean(DM) to extract the patterns. The methods for creating DM
and DI can be found in Section 3.1.2. All three time series are
normalized and combined to explore the discriminate patterns of
recovery signs (See Section 3.4).

Figure 8 presents the extracted patterns that best discriminate
the sign of recovery (top two subplots) and sample patterns from
the patients (bottom four subplots). First, the heartbeat interval
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FIGURE 7 | Comparison of mild vs. severe patients based on three variables: Total power, Mean RR, and PNN50.

FIGURE 8 | Signs of recovery. The left and right columns present time series shapelets that differentiate between unrecovered patients and recovered patients,

respectively. The red shapelet (RR) is the original heartbeat interval. The yellow shapelet (DI) is the differencing transformation of the heartbeat interval. The blue

shapelet (DM) is the deviation of the heartbeat interval from the mean value.

data RR (in red) shows a decreasing trend for recovery cases
than an increasing trend for other stages. Second, the heartbeat
interval differencing data DI (in yellow) shows a sine-shaped
pattern in the recovered group while it is a concave-parabola
shape for unrecovered samples. Last, the absolute deviation from
the mean data DM (in blue) shows a gradually decreasing trend

in the recovered stage compared to a convex parabola shape in
unrecovered situations. We can conclude a frequent change from
these shapelets and an inconsistency of the COVID-19 patients.
On the other hand, it shows an overall decreasing trend of the
HRV data for the recovered patients in the evening. The subplots
of the four patients show portions highlighted by different colors
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representing different time series. These portions are the ones
that are closely similar (having short Dynamic Time Warping
(DTW) (Sakoe and Chiba, 1978) distance in latent space) to
the extracted shapelets and contribute to identifying signs of
recovery.

5. LIMITATION

There are a few limitations in our study coming from the selected
dataset. The number of patients in the study is 186, and they
are not randomly selected. So, they are not representative of
the entire population. However, this situation usually happens
in healthcare data science research since it is time-consuming
and expensive to obtain full data from a large population for
the initial study. In addition, the uncertainty quantification
of the model is down with the assumption that the set of
observations is from an independent and identically distributed
population. Moreover, some of the recorded data like coughing,
having diabetic disease, etc., are self-reported, which have their
own limitation. Self-reported information may not be accurate,
depending on how honest the patients were when they did the
survey.

6. CONCLUSION

In this work, we propose a novel predictive model to categorize
COVID-19 patients into multiple stages (mild, moderate, severe,
and recovered), using a wearable device dataset. Our predictive
model exploits temporal stream data and attribute stream data
simultaneously for disease stage classification and is able to
identify severe patients in an earlier stage even if the symptoms
seem to be “mild” or “moderate.” In addition, we apply
bootstrap methods to perform uncertainty quantification for

the predictive model, and the experimental results demonstrate
our predictive model’s higher classification accuracy than other
existing baseline approaches. Furthermore, we investigate each
feature’s importance to uncover its association with COVID-19
using a model-agnostic approach. Lastly, we investigate two cases
in detail: 1) the first one is used to illustrate the comparisons
between mild patients and severe patients. 2) the second one is
used to analyze the signs of recovery. We observe that there are
fluctuating HRV patterns in severe patients, but a more stable
pattern and a clear trend in mild patients or recovering patients.
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Background: Uterine cervical neoplasms is widely concerned due to its high incidence
rate. Early diagnosis is extremely important for prognosis. The purpose of this article
is evaluating the efficacy of Raman spectroscopy in the diagnosis of suspected uterine
cervical neoplasms.

Methods: We searched PubMed, Embase, Cochrane Central Register of Controlled
Trials (CENTRAL), and Web of science up to September 1, 2021. By analyzing the true
positive (TP), false positive (FP), true negative (TN) and false negative (FN) of six included
study, we evaluated the pooled and grouping sensitivity, specificity, positive, and
negative likelihood ratios (LR), and diagnostic odds ratio (DOR), with 95% confidence
intervals (CI), based on random effects models. The overall diagnostic accuracy of
Raman spectrum was evaluated by SROC curve analysis and AUC.

Results: After screening with inclusion and exclusion criteria, a total of six study were
included in the study. The pooled sensitivity and specificity was 0.98 (95% Cl, 0.93–0.99)
and 0.95 (95% Cl, 0.89–0.98). The total PLR and NLR were 21.05 (95% CI, 8.23–53.86)
and 0.03 (95% CI, 0.01–0.07), respectively. And the AUC of the SROC curve which
show the overall diagnostic accuracy was 0.99 (0.98–1.00).

Conclusion: Through analysis, we confirmed the role of Raman spectroscopy (RS) in
the diagnosis of suspected uterine cervical tumors.

Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/], identifier
[CRD42021284966].

Keywords: Raman spectroscopy, uterine cervical tumors, diagnostic efficacy, meta-analysis, translational
medicine

INTRODUCTION

The incidence rate of uterine cervical tumors is the fourth of female cancer. According to statistics,
there were about 570,000 uterine cervical tumors patients and 310,000 deaths worldwide in 2018.
Among them, China and India are the hardest hit areas of uterine cervical tumors, accounting for
nearly two-thirds of the cases (1). Early diagnosis of cervical cancer and cervical intraepithelial
neoplasia and early treatment are effective means to improve the survival rate of cervical
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cancer patients. Although there are screening tools such as
cytological smear (TCT) and human papillomavirus (HPV)
detection, the average sensitivity and specificity are not
satisfactory (2).

More than 10 years ago, TCT was an effective tool for
detecting and preventing uterine cervical tumors. However, the
European guidelines for quality assurance of uterine cervical
tumors screening (Abstract literature of the Second Edition)
released in 2010 pointed out that the false positive rate of
cytology is high, which will bring excessive medical treatment and
additional economic losses (3). Therefore, HPV DNA detection
was recommended due to its high sensitivity. But HPV DNA
detection also had the problems of time-consuming and high
price. Colposcopy had good sensitivity (>90%), but its specificity
was poor (<50%), and the false positive rate was higher, which
often lead to unnecessary biopsy. Histopathological examination
is the gold standard for the evaluation and diagnosis of
cancer, but it includes chemical fixation, dehydration, clearance,
infiltration, paraffin embedding, sectioning, and hematoxylin
eosin (H&E) staining. It takes about 1 week, which is time-
consuming and expensive.

Raman spectroscopy is a new and reliable technology, which
can analyze the molecular structure of substances and the
chemical composition of human tissues (4). In medical research,
Raman imaging has been successfully applied to nasopharyngeal
carcinoma (5), gastric cancer (6), lung cancer (7), esophageal
cancer (8), renal cell carcinoma (9), brain tumor (10) and so
on. Raman technology has been used in the study of uterine
cervical tumors for decades. The existing literature has proved
that the specificity and accuracy of Raman spectroscopy in the
diagnosis of uterine cervical tumors can reach more than 90%,
which is no less than the traditional hematoxylin-eosin (HE)
staining. Compared with HE staining, Raman technology has
the advantages of no staining, no fixation, less demand for
professionals, faster and so on, which provides another feasibility
for the diagnosis of uterine cervical tumors (11). In conclusion, if
Raman spectroscopy can be applied to cervical cancer, we have
every reason to believe that it can carry out early diagnosis of
cervical cancer and improve the screening rate of cervical cancer
and the survival rate of patients. This Meta-analysis reviews the
application of Raman spectroscopy in cervical cancer.

METHODS

Literature Research
This meta-analysis searched PubMed, Embase, Cochrane Central
Register of Controlled Trials (CENTRAL), and Web of science
to ensure that all potentially eligible articles are included (last
search: September 1, 2021). We combined all the relevant medical
subject heading (MeSH) terms of uterine cervical tumors and
Raman spectrum: [(Uterine Cervical Neoplasms) OR (Cervical
Neoplasm, Uterine) OR (Cervical Neoplasms, Uterine) OR
(Neoplasm, Uterine Cervical) OR (Neoplasms, Uterine Cervical)
OR (Uterine Cervical Neoplasm) OR (Neoplasms, Cervical) OR
(Cervical Neoplasms) OR (Cervical Neoplasm) OR (Neoplasm,
Cervical) OR (Neoplasms, Cervix) OR (Cervix Neoplasms) OR

(Cervix Neoplasm) OR (Neoplasm, Cervix) OR (Cancer of the
Uterine Cervix) OR (Cancer of the Cervix) OR (Cervical Cancer)
OR (Uterine Cervical Cancer) OR (Cancer, Uterine Cervical) OR
(Cancers, Uterine Cervical) OR (Cervical Cancer, Uterine) OR
(Cervical Cancers, Uterine) OR (Uterine Cervical Cancers) OR
(Cancer of Cervix) OR (Cervix Cancer) OR (Cancer, Cervix)
OR (Cancers, Cervix)] AND [(Spectrum Analysis, Raman) OR
(Raman Spectrum Analysis) OR (Raman Spectroscopy) OR
(Spectroscopy, Raman) OR (Analysis, Raman Spectrum) OR
(Raman Optical Activity Spectroscopy) OR (Raman Scattering)
OR (Scattering, Raman)]. All potential studies were included with
no other limitation. The meta-analysis has been registered in
PROSPERO (CRD42021284966).

Selection Criteria and Exclusion Criteria
Articles like review articles, comments, report, letters will be
eliminated from the study. Criteria as follows: (I) without animal
tissues in the experiments; (II) reported the use of RS in
uterine cervical tumors; (III) used histopathology to confirm
the diagnosis; (V) reported the true positive (TP), false positive
(FP), true negative (TN) and false negative (FN), based on which
the sensitivity and specificity values can be calculated. After
screening, a total of six study were included in the study.

Data Extraction
Two independent investigators extracted a range of data from
each study using a standardized data-collecting form: article
title, first author, publication year, nationality. All relevant data
is contained within the 6 included articles (12–17). Then the
primary parameters, which mean the diagnostic value, including
TP, FP, TN, and FN. And we can use these parameters to calculate
the sensitivity and specificity values. The data obtained were
summarized in Table 1.

Statistical Analysis
We calculated the primary data of TP, FP, TN, FN from articles
included, then calculated sensitivity, specificity, positive and
negative likelihood ratios (LR), based on random effects models.
We used Review Man 5.3 and Stata/SE 15.1 to generate the forest
plots in order to show sensitivity and specificity.

Meanwhile, Summary Receiver Operator Characteristics
(SROC) curves was generated to assess the combination of
sensitivity and specificity by Stata/SE 15.1. To assess publication
bias, we generated funnel plot using Stata/SE 15.1. In the
meantime, we found that articles in uterine cervical tumors
include in vivo and in vitro studies. Therefor we conducted a
subgroup analysis according to these studies.

Risk of Bias (Quality) Assessment
Two independent investigators used the Quality Assessment of
Diagnostic Accuracy Studies (QUADAS-2) guidelines by Review
Manager 5.3 to evaluate the quality of included studies. And
the risk of bias of included studies was shown in Figures 1A,B.
To assess publication bias, we plotted funnel plots and Egger’s
regression test using Stata/SE 15.1. The funnel plots and Egger’s
regression test included in the study are shown in Figures 1C,D.

Frontiers in Medicine | www.frontiersin.org 2 May 2022 | Volume 9 | Article 82834695

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-828346 May 4, 2022 Time: 11:42 # 3

Shen et al. Cervical Neoplasms With Raman Spectroscopy

TABLE 1 | Characteristics of the included studies.

References Country N1 N2 N3 TP FP FN TN Sensitivity Specificity Diagnostic algorithm Sample Spectra

Daniel et al. (12) India Vitro 25 36 U 23 9 2 27 92% 75% LDA Fresh tissue
slices (20 µm)

784.12 nm

Daniel et al. (13) India Vitro 145 64 U 143 2 2 62 99% 97% PC-LDA Fresh tissue
slices (20 µm)

784.12 nm

Lyng et al. (14) Ireland Vitro 10 20 398 195 2 3 198 98% 99% PC-LDA FFPP(10 µm) 514.5 nm

Shaikh et al. (15) India Vivo 31 30 154 80 4 0 70 100% 95% PC-LDA Cervix in vivo 785 nm

Shaikh et al. (16) India Vivo 20 6 146 61 3 6 76 91% 96% PC-LDA Cervix in vivo 785 nm

Jing et al. (17) China Vitro 11 11 22 11 1 0 10 100% 91% ORR (NADH/FAD) Fresh tissue
slices (4 µm)

430 nm

U, unknown; N1, number of patients; N2, number of healthy; N3, number of tested spectra; FFPP, Formalin-fixed paraffin preserved, PCA, principal component analysis;
LDA, linear discriminate analysis; PC-LDA, Principal-component linear discriminant analysis.

FIGURE 1 | The graphical display of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) of the included studies. (A) Risk of bias and applicability
concerns evaluation of included studies in pool. (B) Risk of bias and applicability concerns evaluation of included studies individually. (C) Funnel plot of publication
bias in Raman diagnosis of cervical cancer. (D) Egger’s regression test of publication bias in Raman diagnosis of cervical cancer. (E) Sensitivity analysis in Raman
diagnosis of cervical cancer.
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As shown in the Figure 1D, P = 0.420, less than 0.05, and Egger’s
regression test indicates that there is no publication bias.

And we conducted a sensitivity analysis. In Figure 1E, the
results showed that none of the studies had an impact on
this meta-analysis.

RESULTS

Search Results
The process of included articles screening was presented in
Figure 2. 403 potential articles were searched at first (including
PubMed, n = 106, Web of science, n = 186, Embase, n = 111),
in which included 198 duplicate records. Among the rest of 205
articles, 38 articles excluded due to: they were review, meeting or
letters. Go a step further by browsing the 167 potentially relevant
studies, 126 records excluded due to they were cytological study
(n = 79), serological research (n = 28), medicine efficacy study
(n = 11), animals research (n = 8). By reading the rest of
41 articles, 24 reports excluded due to they were biochemical
assessment (n = 12), failed to give concrete date (n = 6) and
irrelevant to the subject (n = 6). After careful perusing, 5
articles excluded due to failed to mention TN, FN, TP, FP and
6 excluded because of cervical precancer. Ultimately, 6 studies
included in this review.

Characteristics of the Included Studies
Table 1 carefully described the particular characteristics of the 6
included articles. Among the 6 articles, 5 were published between
2014 and 2018, the rest of article was published in 2007. There
are a total of 242 patients and 167 normal people in the included
articles, and the total number of spectra incorporated was 720
(two articles didn’t provide the number of spectra). In terms of
the nationalities, four studies were from India, other two studies
were from China and Ireland, respectively. As for diagnostic
algorithm, one article calculated ORR (NADH/FAD), another
article used linear discriminate analysis (LDA), and the other
four articles utilized Principal-component linear discriminant
analysis (PC-LDA). In term of spectra, two studies applied 785
nm, other two studies applied 784.12 nm, and the other two
studies applied 430 and 514.5 nm, respectively. All of six studies
utilized tissue to research, two studies were in vivo, therefor their
samples were cervix in vivo, and the other four studies were
in vitro, so their samples were ex vivo tissues. Three of four studies
in vitro obtained fresh tissue slices, the rest of one study obtained
Formalin-fixed paraffin preserved tissue.

Pooled Data Analysis
The sensitivity and specificity were calculated to assess diagnostic
accuracy of all the six studies. And the forest plot of pooled
sensitivity and specificity was shown in Figure 3. The sensitivity
which meant the detection of uterine cervical tumors by RS,
ranged from 0.91 (95% CI, 0.82–0.97) to 1.00 (95% Cl, 0.95–
1.00) and the pooled sensitivity was 0.98 (95% Cl, 0.93–0.99).
The sensitivity of all the six studies was more than 0.90, which
was mean that the missed diagnosis rate of RS for uterine
cervical tumors is very low. The specificity ranged from 0.75

(95% CI, 0.58–0.88) to 0.99 (95% Cl, 0.96–1.00), and the pooled
specificity was 0.95 (95% Cl, 0.89–0.98). It should be noted
that except for one study with sensitivity of 0.75, specificity
of the other five studies were more than 0.90. In a word, the
ability of RS to distinguish cancer from normal people was
worthy of recognition.

The total PLR and NLR were 21.05 (95% CI, 8.23–53.86) and
0.03 (95% CI, 0.01–0.07), respectively. And the AUC of the SROC
curve which show the overall diagnostic accuracy was 0.99 (0.98–
1.00). The plots were shown in Figure 3C.

Subgroup Analysis
Vivo Group
Two studies (15, 16) showed the research of RS to uterine
cervical tumors in vivo which had a total of 87 samples and 300
tested spectra. The sensitivity of two studies was 1.00 (95% Cl,
0.95–1.00) and 0.91 (95% Cl, 0.82–0.97), respectively, and the
specificity was 0.95 (95% Cl, 0.87–0.99) and 0.96 (95% Cl, 0.89–
0.99), respectively. Since the number of study included in this
group is less than 4, data analysis cannot be done in STATA. All
of the data and grouping situation were shown in Figure 4.

Vitro Group
Four studies (12–14, 17) showed the research of RS to uterine
cervical tumors in vitro which had a total of 322 samples and
420 tested spectra (two articles didn’t provide the number of
spectra). The sensitivity of four studies ranged from 0.92 (95% Cl,
0.74–0.99) to 1.00 (95% Cl, 0.72–1.00), and the pooled sensitivity
was 0.98 (95% Cl, 0.89–1.00). The specificity ranged from 0.75
(95% Cl, 0.58–0.88) to 0.99 (95% Cl, 0.96–1.00), and the pooled
specificity was 0.97 (95% Cl, 0.94–0.99). Total PLR and NLR
were 33.38 (95% Cl, 15.00–74.28) and 0.02 (95% Cl, 0.00–0.12),
respectively. The SROC curve was described and the AUC was
0.99 (0.98–1.00). All of the plots of vitro group were shown in
Figure 5.

DISCUSSION

Mahadevan-Jansen et al. first researched uterine cervical tumors
in vivo and in vitro by RS in 1998 (18). That means the research
of uterine cervical tumors by RS has had more than 20 years
history. Related articles research different substances, such as
fresh cervical tissues, cervical cells, blood serum and so on.
According to searching, this study is the first meta-analysis
attempt to analyze the meaning of RS for uterine cervical tumors
by researching fresh cervical tissues, and we intend to confirm its
diagnostic accuracy by means of this study.

Meta-analysis showed that RS had high diagnostic accuracy
for uterine cervical tumors. The sensitivity of all included
articles was more than 90%, and the specificity of most included
articles (except for one 75%) were also more than 90%. In the
subgroup analysis, the sensitivity and specificity also achieved
high standard, that meant whether RS analyze uterine cervical
tumors tissues in vivo or in vitro both showed high diagnostic
accuracy. This is strong evidence to explain the diagnostic effect
of RS in uterine cervical tumors. Although there are only two
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FIGURE 2 | PRISMA 2020 flow diagram.

literatures in vivo subgroup analysis, but for new technologies,
such high sensitivity and specificity deserve our attention, and we
look forward to seeing more research. And from the perspective
of the combination of engineering with medicine, such new
technologies and new ideas really deserve our attention.

RS also was used in researching uterine cervical tumors
by cervical cells and blood serum except fresh cervical tissue.
Sitarz et al. (19) studied the cervical cells of 96 women after
TCT and HPV testing. They evaluated Glycogen levels in
cells of all study groups to prove that RS can also diagnose

HPV infected cells. Karunakaran et al. (20) found that the
accuracy of RS in diagnosing uterine cervical tumors and normal
people using single cells, cell clusters and DNA were 93.84,
74.26, and 92.21%, respectively. Lu et al. (21) studied the
serum of 150 women and detected the levels of SCCA and
OPN in the serum by RS. This is a convenient and efficient
method which maybe a new screening measure for uterine
cervical tumors.

With the prevalence of TCT and HPV examination,
pathological biopsy is widely used in clinic and is considered as
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FIGURE 3 | The pooled date analysis of Raman spectroscopy (RS) in uterine cervical tumors. (A) The forest plot of pooled sensitivity and specificity of Raman
spectroscopy to diagnose uterine cervical tumors of all the six studies. (B) The pooled PLR and NLR of Raman spectroscopy in diagnosis of uterine cervical tumors.
PLR, positive likelihood ratios; NLR, negative likelihood ratios. (C) The SROC curve of Raman spectroscopy in diagnosis of uterine cervical tumors. SROC, summary
receiver operator characteristics.

FIGURE 4 | The subgroup analysis of vivo group and vitro group.
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FIGURE 5 | The pooled date analysis of Raman spectroscopy (RS) in uterine cervical tumors in vitro group. (A) The forest plot of pooled sensitivity and specificity of
Raman spectroscopy to diagnose uterine cervical tumors of four studies. (B) The pooled PLR and NLR of Raman spectroscopy in diagnosis of uterine cervical
tumors. PLR, positive likelihood ratios; NLR, negative likelihood ratios. (C) The SROC curve of Raman spectroscopy in diagnosis of uterine cervical tumors. SROC,
summary receiver operator characteristics.

FIGURE 6 | Meta-regression analysis on year, country, diagnostic algorithm, spectra.
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the gold standard of cervical cancer, what are the
outstanding advantages of Raman technology? In other words,
how should Raman technology position itself in clinical
application?

After reading a lot of literature, people generally believe
that the outstanding advantage of Raman microscope lies
in its timeliness, such as real-time images, convenience and
rapidity, reducing the demand and burden of pathologists and
so on. According to the current research progress, Raman
technology does not seem to be enough to make us think
that it can replace postoperative pathology. However, with the
rapid development of modern science and technology, there is
an emerging technology called handheld Raman spectrometer,
which can quickly and quantitatively detect the anti-cancer drug
5-fluorouracil (5-FU) in serum (22). We have every reason to
expect that this technology can be innovated and applied to
clinic as soon as possible, such as handheld portable Raman
device. This device is smaller, imaging is faster, it is more
convenient to determine the scope of lesions, reduce the burden
of pathologists, and shorten the time waiting for intraoperative
freezing during surgery, so as to realize efficient diagnosis
in cost and time.

There are some limitations in this article. First and foremost,
the heterogeneity was high. In order to explore the reasons
for this result, we conducted a sensitivity analysis, and the
results have been analyzed in Figure 1E. Excluding the
included literature one by one did not have a great impact on
heterogeneity. And meta regression, grouped by year, country,
analysis tool, and Raman wave number, respectively, P-values
are greater than 0.05, it means no great significance (Figure 6).
We believe that the most likely reason is that there is too
few research included due to the lack of current research.
Second, because the vast majority of studies do not strictly
abide by the double-blind test rules when conducting Raman
test, there are some errors in the screening of patients, which
may affect the analysis results. Third, one of the documents
was published in 2007, and the rest were studied in recent
8 years. We don’t know whether microscope technology
has developed greatly during this period. However, because
there are few articles in conformity, we did not rule it out,
and we think this meta can better explain the diagnostic
effect of Raman technology in cervical cancer in the past
15 years. If someone continues to choose research in the
follow-up, they can directly choose the literature from this
time. Fourth, there are only two literatures in vivo subgroup
analysis. Too few may not directly indicate the effectiveness

of Raman technology, which needs more sample size and
literature research.

CONCLUSION

Due to the high cost and expense of RS, there are not
many related studies at present. But in the existing research,
it is believed that RS does play an important role in the
diagnosis of uterine cervical tumors. This is a satisfactory
result which predicts the emergence of a new and efficient
diagnostic technology.

Through this meta-analysis, we can confidently believe
that Raman spectroscopy has high specificity and sensitivity
in the diagnosis of uterine cervical tumors, and we have
reason to believe that Raman spectroscopy will become an
efficient diagnostic method of uterine cervical tumors in the
future. However, more research and evidence are needed to
fully demonstrate the role of Raman spectroscopy in the
diagnosis of uterine cervical tumors before it is used in
clinic. We are also looking forward to more samples and
more researches.
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Background: The prevalence of NAFLD is increasing annually. The early diagnosis

and control are crucial for the disease. Currently, metabolic indicators are always used

clinically as an auxiliary diagnosis of NAFLD. However, the prevalence of NAFLD is not

only increased in obese/metabolic-disordered populations. NAFLD patients with thin

body are also increasing. Only using metabolic indicators to assist in the diagnosis

of NAFLD may have some deficiencies. Continue to develop more clinical auxiliary

diagnostic indicators is pressing.

Methods: Machine learning methods are applied to capture risk factors for NAFLD

in 365 adults from Zhejiang Province. Predictive models are constructed for NAFLD

using fibrinolytic indicators and metabolic indicators as predictors respectively. Then the

predictive effects are compared; ELISA kits were used to detect the blood indicators of

non-NAFLD and NAFLD patients and compare the differences.

Results: The prediction accuracy for NAFLD based on fibrinolytic indicators [Tissue

Plasminogen Activator (TPA), Plasminogen Activator Inhibitor-1 (PAI-1)] is higher than

that based on metabolic indicators. TPA and PAI-1 are more suitable than metabolic

indicators to be selected to predict NAFLD.

Conclusions: The fibrinolytic indicators have a stronger association with NAFLD than

metabolic indicators. We should attach more importance to TPA and PAI-1, in addition

to TC, HDL-C, LDL-C, and ALT/AST, when conducting blood tests to assess NAFLD.

Keywords: non-alcoholic fatty liver disease (NAFLD), TPA, PAI-1, machine learning, support vector machine (SVM),

predictive model
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has become one
of the most common liver diseases, affecting about 25% of
the general population worldwide, in which Asia (27%) has
higher prevalence rates comparing with North America (24%)
and Europe (24%) (1, 2). As the largest country in Asia, the
prevalence of NAFLD in China is also increasing annually
(3). NAFLD is closely related to metabolism (4), so metabolic
indicators are often used to assist the diagnosis of NAFLD
in the clinic. Total cholesterol (TC), high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-
C), alanine transaminase/aspartate transaminase (ALT/AST),
and body mass index (BMI), and other indicators of metabolism,
are all regarded as important factors related to the risk of
NAFLD and contribute to the diagnosis (5–7). However, there
are still some shortcomings in using only metabolic indicators
as predictors of NAFLD. A paper published in “The Lancet” (8)
pointed out that even thin people are not immune to fatty liver
disease. Of the total incidence of NAFLD, 40% of patients with
NAFLD had normal BMIs (18.5–23.9), and 20% of non-obese
people had NAFLD. This inspired us to find more evidence in
addition tometabolism for the accurate diagnosis of NAFLD.Our
research focused on the fibrinolytic indicators.

The physiological balance of TPA/PAI-1 plays an essential
role in regulating blood patency and preventing atherosclerosis
(9). Also, plasma TPA and PAI-1 are associated with many
metabolic diseases including NAFLD, heart disease, and diabetes
mellitus (DM) (10–12). Jin found that plasma PAI-1 levels were
significantly increased in children with increased severity of
steatosis, lobular inflammation, ballooning, and fibrosis (13).
Furthermore, PAI-1 was strongly correlated with plasma lipids
and insulin resistance indices (13). By analyzing 210 Taiwanese
NAFLD patients and 420 gender- and age-matched control
groups, Chang found that based on univariate analysis, TG,
BMI, LDL, HDL, ALT, AST, TPA, and PAI-1 are all related to
NAFLD (14). However, less research provided good predictive
accuracy for NAFLD diagnosis based on fibrinolytic or metabolic
indicators. And there was little research on comparing the
impacts of these indicators on NAFLD diagnosis quantitatively.

In this study, we applied machine learning (ML) which
has been increasingly used in the field of liver disease and
liver transplantation (15) to construct the predictive models for
NAFLD based on those blood indicators, and obtained good
predictive accuracy. It also compares the accuracy of prediction,
looking for which indicators are more suitable for NAFLD
diagnosis, fibrinolytic indicators, or metabolic indicators? We
collected the datasets of 365 patients who had blood tests and
NAFLD labels from the Traditional Chinese Medicine hospital of
Zhejiang Province. The support vector machine (SVM) method
was applied to the dataset to construct a predictive model for
NAFLD based on the indicators above. SVM has been used to
identify molecular markers of hepatocellular carcinoma (HCC)
(16), but no one has yet used it to screen NAFLD auxiliary
diagnostic indicators. We compared the prediction accuracy
for NAFLD diagnosis based on fibrinolytic indicators (TPA
and PAI-1) with the prediction accuracy based on metabolic

indicators (TC, HDL-C, LDL-C, ALT/AST), screened the more
accurate one.

MATERIALS AND METHODS

Screen and Compare Diagnostic Indicators
Subjects

Ethics Statement

Ethics statement Written informed consent was obtained
from each participant, and the study was approved by the
Committee for the protection of human subjects of The First
Affiliated Hospital, Zhejiang Chinese Medical University. The
corresponding ethical approval code (2018-K-061-01).

Inclusion Criteria

This study investigated 365 adult individuals aged 18–65 on
whom we had complete data. They are from the health
examination center of the Traditional Chinese Medicine hospital
of Zhejiang Province. The following subjects were excluded:

(1) pregnant or lactating women;
(2) who has one of the following diseases: heart, brain, blood,

lung, kidney, endocrine, mental, viral hepatitis, tuberculosis,
AIDS, scarlet fever, drug-induced hepatitis, autoimmune liver
disease, Wilson’s disease, and liver cancer;

(3) who has taken anticoagulants in the last half month.

365 adult individuals who met the inclusion and exclusion
criteria were divided into the Normal group (n = 99) and
the NAFLD group (n = 299) according to the B-ultrasound
results for follow-up analysis. Detailed clinical data can be found
in Supplementary Table 1.

Methods
The following variables are included in our model: gender, age,
body mass index (BMI), body height, TPA, PAI-1, TC, HDL-C,
LDL-C, ALT/AST. These input variables were linearly scaled to
the range [0, 1] and weremapped into a high-dimensional feature
space. For details, see Table 1.

Comparisons between the two groups (NAFLD vs. non-
NAFLD) were conducted using Student t-tests for continuous
variables and Pearson tests for categorical variables.

SVM methods were taken to construct predictive models
for NAFLD. SVM is a very popular supervised machine
learning classifier widely used in classification or discrimination
analysis. For non-linear and complicated relationships in high-
dimensional variables, SVM is usually more effective than
Logistic and other ordinary statistical methods. In this research,
the relationship between NAFLD and blood indicators is
complicated and no regular mathematical function can precisely
describe the mechanisms between NAFLD and blood indicators.
So SVM is suitable for our topic.

We introduce briefly the idea of svm. Let Xi denote the input
variables such as TPA, PAI-1, BMI and so on in our case, and
yi denote the lable of each sample. The purpose of SVM model
is to find a function ωTXi + b to predict the lable as accurate
as possible. It implement the following optimal problem to solve
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TABLE 1 | The characteristic clinical data between the NAFLD and non-NAFLD

patients.

Characteristic Non-NAFLD (n = 99) NAFLD (n = 266)

Gender (n, %) Female (79, 79.8%) Female (55, 20.7%)

Male (20, 20.2%) Male (211, 79.3%)

Age, meidan (IQR) 40 (35, 48) 42 (37, 51)

tpa, meidan (IQR) 5,956.28 (3,923.5,

8,163.93)

9,239.07 (6,383.61,

11,975.68)

pai-1, meidan (IQR) 15,384.16 (13,605.38,

18,530.64)

32,095.67 (23,665.17,

37,275.04)

PAI-1/TPA, meidan (IQR) 2.66 (1.88, 3.88) 3.31 (2.22, 5.25)

BMI, meidan (IQR) 22.08 (20.07, 23.86) 26.37 (24.69, 28.31)

TC, meidan (IQR) 4.19 (3.8, 4.77) 4.8 (4.27, 5.44)

TG, meidan (IQR) 0.9 (0.68, 1.12) 1.68 (1.19, 2.37)

HDL-C, meidan (IQR) 1.49 (1.29, 1.67) 1.09 (0.97, 1.28)

LDL-C, meidan (IQR) 2.08 (1.77, 2.44) 2.65 (2.18, 3.1)

ALT, meidan (IQR) 14 (11, 18) 26 (19, 38)

AST, meidan (IQR) 16 (14, 18) 21 (17, 26)

AST/ALT, meidan (IQR) 1.17 (0.94, 1.34) 0.8 (0.63, 1)

NAFLD, metabolic associated fatty liver disease; IQR, interquartile range.

the function.

min
ω,b

1

2
‖ ω ‖2 +C

∑L

i=1
ξi,

s.t. yi
(

ωTXi + b
)

≥ 1− ξi, ξi ≥ 0;

We attached different weights to the two categories, i.e., the
objective function was replaced by

min
ω,b

1

2
‖ ω ‖2 +C

∑L

i=1
wiξi.

Each ωi for normal cases (NAFLD label yi = 1) had a common
value denoted by ω, while each ωi for NAFLD cases (NAFLD
label yi = −1) had another common value denoted by ω. We
adjusted the value of ω and ω based on particular cases. For
practical problems, we take ω > ω if we believe the risk induced
by misclassifying a label -1 sample as label 1 is larger than that
induced by misclassifying a label 1 sample as label 0. Otherwise,
we take ω < ω.

We used the LIBSVM package (http://www.csie.ntu.edu.
tw/~cjlin/libsvm) to implement the soft margin SVM model.
The Gauss kernel function was applied in our study, which
gives the highest accuracy for our test. The receiver operating
characteristic (ROC) curve was used to assess the predictive
performance of our SVM models. We generated the ROC
curve by drawing the true-positive rates vs. false-positive rates
over a range of thresholds. Each threshold is a cutoff, if an
individual’s output probability in the SVM is greater than this
cutoff, he is judged as NAFLD, otherwise, he is judged as
non-NAFLD. For each threshold, we calculated a pair of true-
positive rates and false-positive rates. When the thresholds
ranged stepwise from 0 to 1 by step size 0.01, we obtained

the whole ROC curve. The area under the curve (AUC)
was used as a measure of the predictive performance of our
SVM models. The following Figure 1 is the technical line of
machine learning.

RESULTS

The Results of Screen and Compare
Diagnostic Indicators
Basic Statistical Analysis Results of TPA and PAI-1
In the dataset of 365 cases, the patients’ ages ranged from 25 to 65
years old, 266 patients had NAFLD, and 99 patients were normal.
We used a t-test to compare the TPA, PAI-1, and TPA/PAI-1
between the NAFLD group and the non-NAFLD group. TPA,
PAI-1, and TPA/PAI-1 exhibited a significant difference (P <

0.05) between the two groups. The mean of TPA and PAI-1 in the
NAFLD group was higher than that in the non-NAFLD group.
However, the mean of the ratio TPA/PAI-1 in the non-NAFLD
group was significantly higher than that in the NAFLD group
(P < 0.05). The results are summarized in Table 2. The results
showed that no matter whether it was the plasm level of TPA,
PAI-1, or TPA/PAI-1, there were significant differences between
the NAFLD and the non-NAFLD patients, which suggests that
the plasma levels of TPA, PAI-1, or TPA/PAI-1 have the potential
to be regarded as indicators for NAFLD diagnosis.

Predictive Results for NAFLD Using Metabolic

Indicators as Predictors
First, we standardized the TC, HDL-C, LDL-C, and BMI data.
In order to better assess the performance of the SVM predictive
model for NAFLD, we first constructed the Logistic aggression
model to predict NAFLD using the standard TC, HDL-C, LDL-
C, and BMI data. The Logistic model was implemented in
SPSS 25.0 but the predictive accuracy was <30%. Then we
used the standard data to construct SVM predictive models for
NAFLD. The results of the SVM model were summarized in
Table 3. Error_1 was used to denote the misclassification rate
of predicting normal samples as NAFLD samples and Error_2
was used to denote the misclassification rate of predicting
NAFLD samples as normal samples. The results show that in the
experiment, the accuracy of the SVMmodel is much higher than
that of the Logistic model, suggesting the SVM model is more
suitable for the predictive study.

Predictive Results for NAFLD Using Fibrinolytic

Indicators as Predictors
As above, we first constructed the Logistic model using the
standardized TPA and PAI-1 as predictors but found that the
predictive accuracy was not more than 40%. Next, we constructed
an SVM model using the standardized TPA and PAI-1 as input
variables. And we found that the predictive accuracy was much
higher than that of the Logistic model. The results are shown
in Table 4. These results suggest that, similar to metabolic
indicators, the use of the SVM model to predict fibrinolytic
indicators is more accurate.
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FIGURE 1 | The technical line of our research.

TABLE 2 | Comparison of TPA1, PAI-1 between the NAFLD and non-NAFLD

patients.

Group Mean ± std t-statistic P

TPA1 NAFLD group 9,596.64 ± 4,190.25 7.76 0.000

Non-NAFLD group 6,311.64 ± 3,344.76

PAI-1 Group Mean ± std t-statistic p

NAFLD group 31,438.98 ± 8,124.59 22.16 0.000

Non-NAFLD group 16,589.63 ± 4,461.35

TPA/PAI-1 Group Mean ± std t-statistic p

NAFLD group 0.33 ± 0.18 −2.59 0.01

Non-NAFLD group 0.40 ± 0.22

TPA, plasma plasminogen activator; PAI-1, plasminogen activator inhibitor-1; Std,

standard deviation.

TABLE 3 | Prediction performance using BMI, TC, HDL-C, and LDL-C as factors.

Error_1 Error_2 Total accuracy

Training set 37% 5% 85.35%

Testing set 39% 8% 85.87%

BMI, body mass index; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol;

LDL-C, low-density lipoprotein cholesterol.

The Comparison of the Prediction of Metabolic and

Fibrinolytic Indicators
Interestingly, we found that the predictive accuracy based on TPA
and PAI-1 was significantly higher than that based on TC, HDL-
C, LDL-C, and BMI. To better see the difference, we drew the

TABLE 4 | Prediction performance using TPA and PAI-1 as factors.

Error_1 Error_2 Total accuracy

Training set 15% 4% 92.58%

Testing set 10% 8% 91.48%

TPA, plasma plasminogen activator.

PAI-1, plasminogen activator inhibitor-1.

two ROC curves (Figure 2). The red curve is the ROC curve
using TPA and PAI as predictors and the AUC is 0.91; the blue
curve is the ROC curve using TC, HDL-C, LDL-C, and BMI
as predictors and the AUC is 0.75. The difference was obvious.
From the above results, we inferred that TPA and PAI-1 are more
suitable than TC, HDL-C, and LDL-C for predicting NAFLD.
TPA and PAI-1 have deeper links with NAFLD than TC, HDL-C,
and LDL-C do.

We also want to know whether TC, HDL-C, and LDL-C can
be complementary to TPA and PAI-1 to achieve better prediction
results (in other words, whether TPA and PAI-1 miss some
valuable information contained in the TC, HDL-C, and LDL-C
data) when predicting NAFLD. Thus, we combined the TPA and
PAI-1 data with the TC, HDL-C, and LDL-C data to construct
an SVM model. The predictive results are in Table 5. The results
show that compared with the prediction performance using BMI,
TC, HDL-C, and LDL-C as factors, after adding TPA and PAI-
1, the prediction accuracy of metabolic indicators is greatly
improved. However, the prediction accuracy of the SVM model
did not increase significantly compared with TPA and PAI-1
alone as a predictor. These indicate that the blood levels of TPA
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FIGURE 2 | The comparison of ROC curves of SVM based on fibrinolytic indicators and metabolic indicators.

TABLE 5 | Prediction performance using TPA, PAI-1, TC, HDL-C, LDL-C, and BMI

as indicators.

Error_1 Error_2 Total accuracy

Training set 13% 4% 93.57%

Testing set 8% 5% 92.65%

and PAI-1 can be regarded as highly effective indicators to assist
the diagnosis of NAFLD, independent of metabolic indicators.

The Robustness of Our SVM Model
To check the robustness of our SVM model based on TPA and
PAI-1, we took different percentages of training samples in the
total 365 cases. The percentage varied from 25 to 75% and we
obtained the corresponding accuracy of predicting NAFLD as
in Figure 3.

The results show that in different percentages of training
samples, the prediction accuracy of training samples and test
samples are both high (over 90%), which indicates our SVM
model based on TPA and PAI-1 was stable and trustable.

DISCUSSION

NAFLD is characterized by the significant accumulation of
lipids, such as TG, TC, HDL- C, LDL-C in hepatocytes and
serum, indicating that altered lipid metabolism is crucial

in the pathogenesis of NAFLD (17). NAFLD is a broad-
spectrum disease, including simple steatosis in the early stage,
non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, and
even liver cancer in the late stages (18). The pathogenesis
of NAFLD has been widely accepted by the “multiple-hit”
hypothesis because NAFLD pathogenesis involves many
influence factors, such as diet, genetic, environmental,
and metabolism that progress through different stages
during the occurrence and development of NAFLD (19).
Although the number of patients with NAFLD is large
and the harm is great, the exact mechanism of NAFLD is
still unclear.

TPA and PAI-1 are mainly a pair of biological regulatory
factors synthesized and secreted by vascular endothelial cells.
Fibrinolytic system balance is affected by many factors, such
as blood lipids, blood glucose, stress, gender, and age. And
it is associated with obesity, insulin resistance, diabetes,
dyslipidemia, and premature aging (13, 20, 21), which all are
coexisting conditions of NAFLD. All this suggests that TPA
and PAI-1 may be related to the metabolism and hepatic
functions of NAFLD patients, but the specific mechanism is
currently unknown.

What’s more, by reviewing the literature, we found that the
imbalance of TPA and PAI-1 activity is of great significance
in metabolism, chronic liver disease and has different
manifestations in different stages of the disease (22). And
Based on our results, the prediction accuracy of NAFLD
using TPA and PAI-1 as predictors was higher than that
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FIGURE 3 | The predictive accuracy for training samples and testing samples vs. the percentage of training samples.

using TC, HDL-C, LDL-C, and ALT/AST as predictors. These
discoveries all further suggest that the plasma level of TPA
and PAI-1 may be used as new indicators for the diagnosis
of NAFLD.

Nowadays, the gold standard for the NAFLD diagnosis
is the liver biopsy (23), But liver biopsy cannot be used
routinely, since it is an invasive and expensive procedure. In
clinical diagnosis, we often use liver B ultrasound combined
with clinical symptoms and metabolic indicators to diagnose
NAFLD (24). Through the study, we propose that changes to
the fatty liver fibrinolytic system are one of the key links in
NAFLD progress. The change to the fibrinolytic system was
even more significant for NAFLD than the internal metabolic
indices such as liver and kidney function. Therefore, we
propose that TPA and PAI-1 should be included in normal
physical examinations. Further, studies of fibrinolytic activity
and drug development may be important for understanding the
mechanism and treatment of NAFLD. Based on the perspective
of the fibrinolytic system, in-depth discussion on its prediction of
NAFLDmay play an important role in improving the mechanism
of NAFLD.

However, this study also has some shortcomings. In this
observation object, our inclusion criteria are B ultrasound
diagnosis, so it is difficult to distinguish the stratification
of NAFLD disease and Unable to analyze changes in
the fibrinolytic system during the disease progression.
Therefore, in the following study, we look forward to
using H1-MRS, controlled attenuation parameter, through
human or animal and cell experiments to analysis of its
internal mechanism.

CONCLUSION

In summary, TPA and PAI-1 are also effective indicators for
the Chinese to assist in the diagnosis of NAFLD. Its diagnostic
accuracy may be higher than metabolic related indicators. We
do hope that this study can promote the further development of
clinical NAFLD diagnosis and provide valuable guidance for the
non-invasive diagnosis of NAFLD.
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Objective: Active abdominal arterial bleeding is an emergencymedical condition. Herein,

we present our use of this two-stage InterNet model for detection of active abdominal

arterial bleeding using emergency DSA imaging.

Methods: Firstly, 450 patients who underwent abdominal DSA procedures were

randomly selected for development of the region localization stage (RLS). Secondly,

160 consecutive patients with active abdominal arterial bleeding were included for

development of the bleeding site detection stage (BSDS) and InterNet (cascade network

of RLS and BSDS). Another 50 patients that ruled out active abdominal arterial bleeding

were used as negative samples to evaluate InterNet performance. We evaluated the

mode’s efficacy using the precision-recall (PR) curve. The classification performance of a

doctor with and without InterNet was evaluated using a receiver operating characteristic

(ROC) curve analysis.

Results: The AP, precision, and recall of the RLS were 0.99, 0.95, and 0.99 in the

validation dataset, respectively. Our InterNet reached a recall of 0.7, the precision for

detection of bleeding sites was 53% in the evaluation set. The AUCs of doctors with and

without InterNet were 0.803 and 0.759, respectively. In addition, the doctor with InterNet

assistant could significantly reduce the elapsed time for the interpretation of each DSA

sequence from 84.88 to 43.78 s.

Conclusion: Our InterNet system could assist interventional radiologists in identifying

bleeding foci quickly and may improve the workflow of the DSA operation to a more

real-time procedure.

Keywords: abdominal arterial bleeding, digital subtraction angiography, deep learning, automatic detection,

two-stage model
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INTRODUCTION

Active abdominal arterial bleeding is a medical emergency that
may lead to haemorrhagic shock or circulatory instability if
left untreated (1–5). Clinicians experience difficulty in dealing
with this complicated condition (2, 5, 6). Most cases of
active abdominal arterial bleeding are medically treated by
correcting coagulation abnormalities or through endoscopy (7–
9). Nonetheless, these methods can fail in some patients with
significant bleeding, in which cases endovascular treatment is
desired (3, 10–14). Due to its advantages of reduced morbidity
and mortality, endovascular treatment using digital subtraction
angiography (DSA) is now preferred over open surgery (5, 11,
15–17).

Rapid and accurate diagnosis of arterial bleeding by an
interventional physician via DSA remains challenging (1).
Human limitations in a crowded tertiary hospital include
staff shortage, excess workload, and, especially, a lack of
knowledge among radiologists regarding arterial bleeding.
Under these circumstances, an automated system is needed
to alleviate the tedious task of screening out incidental
findings and allowing physicians more time to interact with
patients and other health care providers. Further, such a
system would help address the lack of expert radiologists in
rural and community hospitals. What’s more, the bleeding
could be subtle in some cases. It is difficult to identify
subtle bleeding by human quickly, and it is more difficult
for junior doctor. So, one of the important values of our
system is to shorten diagnosis time and to reduce the rate of
missed bleeding sites. Deep learning approaches have provided
exciting solutions medical image in medical image detection.
The diagnosis of bleeding involves a typical computer visual
task of classification of radiological images into bleeding
and non-bleeding categories and detection of bleeding sites.
However, computer-assisted automated detection of active
abdominal arterial bleeding from DSA images has not been
previously reported.

In current practice, a captured video sequence is reviewed
offline by the physician to identify bleeding sites before the
intervention is performed. A usable AI (artificial intelligence)
system should be able to replace this offline review with
automated detection of bleeding sites. Thus, our system was
designed and evaluated based on this first goal. However, the
current workflow must ultimately be improved to a more
real-time system ideally. If the automated system detects
bleeding sites correctly in most frames and at the video
frame rate, there might be no need for an offline review.
The physician could directly view the highlighted bleeding
sites in real-time and perform the surgery, which would
reduce the surgery time. In this work, we proposed a two-
stage deep learning model (named InterNet) for real-time
detection of active abdominal arterial bleeding using emergency
DSA imaging. We hypothesized that the InterNet can detect
active abdominal arterial bleeding at a faster speed and
higher sensitivity.

MATERIALS AND METHODS

Data Acquisition
Firstly, 450 patients who underwent abdominal DSA procedures
were randomly selected from our PACS system for development
of the region localization stage (RLS). Secondly, 160 consecutive
patients with active abdominal arterial bleeding who underwent
endovascular treatment between January 2013 and January 2020
were retrospectively included for development of the bleeding
site detection stage (BSDS) and InterNet (cascade network of
RLS and BSDS). These 160 patients had clinical signs of active
abdominal arterial bleeding: blood from a postoperative drainage
tube, haematuria, haematochezia, hypotension, tachycardia, or
a low hemoglobin level. Another 50 patients who underwent
abdominal DSA procedures that ruled out active abdominal
arterial bleeding were randomly selected and used as negative
samples to evaluate InterNet performance.

A standard transfemoral approach was used in all
angiographic procedures. A sheath introducer was placed
in the right or left common femoral artery using the Seldinger
technique. Selective angiography of the abdominal aortic
branches was performed using a 5-Fr catheter in all patients.
Super selective angiography of the tiny branches was performed
using a microcatheter.

DSA images usually contain multiple sequences, and each
sequence consisted of 30–50 video frames at six frames
per second. All data were stored in Digital Imaging and
Communications in Medicine (DICOM) format. All data
were manually annotated using LabelImge software (GitHub,
Inc., San Francisco, CA, USA). The bleeding sites and
angiographic regions were manually segmented and annotated
by two radiologists. The segmented images were then reviewed
by another experienced radiologist. Any disagreements in
segmentation were resolved through consensus among the
three radiologists.

Dataset Splitting
A total of 546 sequences from 450 patients were used for
RLS development. These patients were randomly split into a
training dataset (80%) and a validation dataset (20%). From
the 160 patients with active abdominal arterial bleeding, 182
sequences from 90 patients were classified into the BLDS training
dataset; 49 sequences from 20 patients were classified as a
validation dataset for stability and generalizability of the RLS and
BSDS cascade network (InterNet). Sixty-seven sequences from
50 actively bleeding patients and 80 sequences from 50 patients
without active bleeding were classified as an independent testing
dataset for InterNet.

Deep Learning Model Development
The entire program was performed with Pytorch version 1.2
(Pytorch, Warsaw, Mazowieckie, Poland) as the backend, on a
desktop computer equipped with an Intel (R) Xeon(R) Silver
4110 system (Intel Inc., Santa Clara, CA, USA), 64 GB RAM, and
a GeForce RTX 2080Ti GPU (Nvidia, Santa Clara, CA, USA). The
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InterNet detection system was developed to automatically detect
bleeding sites on DSA images using a two-stage process, first
localizing the angiographic region from the original frame image
(RLS), followed by bleeding site detection on the cropped image
(BSDS). The framework of our two-stage detection system is
schematized in Figure 1. The RLS was based on the sparseness of
bleeding sites in a sequence and within a frame image. ResNet50
was used as the backbone for our two-stage deep learning
model framework.

Multi-scale features were extracted to create feature maps,
and the region proposal networks (RPNs) were applied to
generate region proposals via classification and regression (18).
The proposed regions underwent non-maximum suppression
to filter the highly overlapping regions. Region pooling unified
the various-sized regions to the same size. The resulting region
candidates were put through the Region Based Convolutional

Neural Networks (R-CNN). The targets were classified, and
the bounding boxes underwent a second regression to achieve
the final target detection. Moreover, we applied the feature
pyramid networks (FPN) on the framework of our two-stage
detection system (19). The cost and benefit of using the FPN
compared to the approach without FPN was also evaluated. The
detailed network structure of multi-scale features extraction is
schematized in Figure 2.

To tune the detection system, we adjusted the size of the
input image. According to the detection performance, we chose
the optimal value of the key parameter of “resize.” To avoid
overfitting, we used common techniques to augment the data.
Contrast-limited adaptive histogram equalization (CLAHE) was
applied to reduce the intensity range, followed by random
shift and rotation to augment the orientation and position of
the bleeding site samples (20). Perturbation of intensities and

FIGURE 1 | Overview diagram of the proposed two-stage deep learning approach (InterNet). The system first detected the angiographic region from the original frame

image. The output of the RLS was used as input in the next stage of redundancy reduction. RPN, region proposal network; ROI, region of interest; FC, fully connected

layer; Bbox, bounding box.
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FIGURE 2 | Detailed network structure diagram of feature pyramid network (FPN). We adopted FPN with a ResNet-50 backbone for InterNet. FPN is an outstanding

detector for many visual tasks and can identify objects at multi-scales. RPN, region proposal network; ROI, region of interest; FC, fully connected layer; bbox,

bounding box; RCNN, Region Based Convolutional Neural Networks.

contrast and a random median filter were applied to improve the
distribution of the samples.

Performance Assessment Between
Doctors With and Without InterNet
Assistant
To evaluate the benefit of InterNet, we compared the
classification efficiency between doctors in terms of patients
with InterNet assistant using the independent testing
dataset. The classification performance and elapsed time
were recorded.

Statistical Analyzes
We evaluated the model’s efficacy using the precision-recall
(PR) curve, which is commonly used to show the compromise
between precision and recall. By moving along the curve, various

compromises between precision and recall can be acquired,
enabling us to choose between the two. A high recall indicates
a higher rate of detection (fewer false negatives), and a high
precision indicates a lower rate of false positives. The average
precision (AP) was used to evaluate the detection precision of
the deep learning algorithms. A prediction is considered to be
true positive if Intersection over Union (IoU) > 0.5, and false
positive if IoU < 0.5. The frame-per-second (FPS) rate of each
test was calculated to evaluate whether the bleeding sites could
be tracked in real-time. The classification performance of a
doctor with and without InterNet was evaluated using a receiver
operating characteristic (ROC) curve analysis. The area under
the curve (AUC), sensitivity, and specificity were calculated. The
differences in elapsed time for a doctor with and without InterNet
were compared using the Mann-Whitney U-test. Statistical
analyses were performed using R (version 3.3.4, http://www.
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TABLE 1 | Effect of feature pyramid networks of the detection system.

Baseline Baseline + FPN

AP (%) 58.1 60.3

FPS 4.2 5.0

AP, Average Precision; FPS, frames per second.

TABLE 2 | Effects of changing resize parameters of the detection system.

Baseline + FPN Baseline + FPN

(Resize 1,024 × 512) (Resize 1,333 × 800)

AP (%) 60.3 64.5

Precision 0.514 0.531

Recall 0.683 0.703

FPS 5.0 3.9

FPN, Feature Pyramid Network; AP, Average Precision; FPS, frames per second.

Rproject.org). The threshold for statistical significance was set at
a two-sided p < 0.05.

RESULTS

We used the area calculated from the segmented mask of each
positive DSA image to represents the amount of bleeding. The
mean bleeding site area of the 67 sequences from 50 actively
bleeding patients in the independent testing dataset is 938.4 ±

1,707.1 square millimeter. Among the 50 patients, the bleeding
locations of 24 cases are in kidney; 19 cases are in digestive tract;
three cases are in spleen; two cases are in uterus; and two cases
are in other organs.

The AP, precision, and recall of the RLS were 0.99, 0.95,
and 0.99, respectively. This means that the angiographic region
could be correctly recognized in 99 out of 100 testing images.
The P-R curve of the RLS on the validation dataset is shown in
Supplementary Figure 1.

The baseline system showed an AP of 58.1% and FPS rate
of 4.2, while the network with FPN showed improved AP of
60.3% and FPS rate of 5.0. The detection results for the system
on the validation dataset with and without FPN are shown in
Table 1. The key parameter of “resize” was found to be optimal
at 1,333 × 800. The AP reached 64.5% with this input image
size, while the FRS showed a slight decrease from 5.0 to 3.9.
The model including Baseline + FPN and resize 1,333 × 800
was selected as the final structure for our InterNet system. The
effect of changing the resize parameters of the detection system
is shown in Table 2. The InterNet P-R curve for the evaluation
dataset is shown in Figure 3. For the task of detection, a high
recall was more desirable than a high precision. Therefore, we
picked a spot with a recall of 0.7 and precision of 0.53.

Table 3 and Figure 4 summarize the classification
performance of a doctor with and without InterNet. The doctor
with InterNet showed a superior performance to that of the
doctor without InterNet. The AUCs of doctors with and without

FIGURE 3 | The precision–recall curve of the InterNet. The average precision

of the InterNet was 64.5 on the evaluation dataset. We selected a spot with a

recall of 0.7 and a precision of 0.53.

TABLE 3 | Classification performance of a doctor with and without InterNet.

Doctor with Doctor without

InterNet assistant InterNet assistant

AUC 0.803 0.759

Sensitivity (%) 88.06 73.13

Specificity (%) 72.50 78.75

Accuracy (%) 80 76

PPV (%) 73.00 74.00

NPV (%) 88.00 78.00

Time (second/sequence) 43.78 84.88

AUC, area under the receiver operating characteristic curve; PPV, positive predict value;

NPV, negative predict value.

InterNet were 0.803 and 0.759, respectively. In particular, the
doctor with InterNet assistant showed a substantially increased
sensitivity, from 73.17 to 88.06%. In addition, the doctor with
InterNet assistant could significantly reduce the elapsed time for
the interpretation of each DSA sequence from 84.88 to 43.78 s
per sequence (p < 0.01; Figure 5). Examples of the prediction
results obtained by our proposed InterNet are shown in Figure 6.

DISCUSSION

Given the efficacy and safety of transcatheter arterial
embolization compared with open surgery for the treatment
of active abdominal arterial bleeding (5, 11, 15–17), accurate
and rapid detection of bleeding sites is the key to success of
transcatheter arterial embolization. In this study, we built an
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FIGURE 4 | Receiver operating characteristic (ROC) curve for doctor without

and doctor with InterNet assistant. Doctor with InterNet assistant showed a

superior performance to that of doctor without InterNet assistant. The AUCs of

doctor with and doctor without InterNet were 0.803 and 0.759, respectively.

automated system based on a deep neural network model to
detect active abdominal arterial bleeding on DSA images. Our
InterNet system could help doctors in making a faster and
more accurate interpretation. To our knowledge, this is the first
system to automatically detect active arterial bleeding sites in
DSA images.

In this study, we adopted two-stage deep learning for
detection of active abdominal bleeding sites. In RLS, the
angiographic region is proposed for detecting potential bleeding
sites. In this stage, our detection system located a specific region
to reduce the interference from other regions. The output of the
RLS was used as input in the next stage of redundancy reduction.
A practical benefit of RLS is that any data sequence, whether
positive or negative, can be used for training the network for
angiographic region extraction. This along with the ease of ROI
labeling creates ample data to train a robust algorithm to extract
the angiographic regions from the original frame images.

In the current study, we adopted FPN with a ResNet-50
backbone for the InterNet, because FPN is an outstanding
detector for many visual tasks. FPN is capable of multi-scale
feature extraction, which fits well with the task of detecting
bleeding sites that have large variations in their sizes and shapes.
FPN has a top-to-bottom pathway in addition to the bottom-to-
top pathway of a regular neural network; hence, the semantic
information from the top levels helps enhance the detailed
information in the lower layers, leading to a powerful multi-scale
capacity (19). In our study, the baseline system with FPN showed
a relatively higher compared without FPN (60.3 vs. 58.1%).

FIGURE 5 | Elapsed time of doctor without and doctor with InterNet assistant.

Doctor with InterNet assistant significantly reduced the elapsed time for the

interpretation of each DSA sequence from 84.88 to 43.78 s per sequence.

Embolization requires the localization of bleeding sites, which
can be easily missed by a physician. For our abdominal bleeding
detection task, a low false negative rate is more desirable than a
low false positive rate, since for a physician, it is easy to miss both,
a bleeding spot and to rule out one. For this task of detection, a
high recall was more desirable than a high precision. Therefore,
we picked a spot with a recall of 0.7. At a recall of 0.7, the
precision for detection of bleeding sites was 53% in the evaluation
set. A recall of 70% means that the bleeding spot will be revealed
to the physician in two of the three frames. A precision of 53%
means that, on an average, for every correctly detected bleeding
site, there will be<1 false detection. This false positive rate should
be acceptable and not divert much of the physician’s attention.
The doctor with InterNet performed superiorly to the doctor
without InterNet. In addition, the doctor with InterNet assistant
could significantly reduce the elapsed time for the interpretation
of each DSA sequence.

In present-day DSA surgery, after the DSA sequences are
acquired, the physician reviews the sequence offline to detect the
bleeding sites before performing the intervention. This workflow
does not require our system to have real-time performance to
replace the physician’s effort of detecting bleeding sites. A more
advanced use of the system would be to improve the workflow
of the DSA operation to a more real-time procedure, thus
eliminating the need for offline review and discussion. Ideally,
the physician would look at the overhead monitor and observe
the DSA images with overlaid marks of automatically detected
bleeding sites (Supplementary Figure 2). To achieve this, it is
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FIGURE 6 | Three sample results from InterNet. (A–C) Are images from a patient with subrectal arterial branch bleeding; (D–F) are images from a patient with

bleeding from a right colonic artery branch; (G–I) are images from a patient with a bleeding branch of the inferior artery of the right kidney. The red boxes represent the

ground truth bleeding bounding boxes; the green box represents the detected bleeding bounding box.

best for the system to reach six frames per second—the frame
rate of the captured imaging sequence. The frame rate achieved
with Python in this study is close to 4 frames per second, and
it is conceivable that a product based on optimized C++ code
should reach six frames per second without much difficulty. In
such a system, the physician could watch the video sequence in
real-time. The system will produce some false positives, with an
average of one false positive every two frames due to a precision
of 53%. The bleeding sites in ∼1 of 3 frames will not be marked
due to a recall rate of 70%. Despite these imperfections, at an FRS
of 4, the physician should be able to mentally make up the gap
frames and eliminate the false marks with ease.

In recent years, many deep learning approaches have been
developed for medical imaging analysis (21–23). A few studies
have applied deep learning in DSA imaging. Alexander et
al. trained a CNN system to automatically segment saccular
aneurysms (pre- or post-coiling) and surrounding vasculature
from DSA images (24). Yufen used residual density to generate
a DSA image from a single live image without mask data
acquisition, thus avoiding the appearance of motion artifacts in
the image (25). To date, no study has applied the deep learning
system for the detection of bleeding in DSA. We suspect that

the difficulty in obtaining sufficient data is an important factor
limiting its application to DSA. In this study, we applied deep
learning for the detection of bleeding on DSA for the first
time. Further applications of deep learning in DSA should be
proposed and evaluated in future work. Deep learning may play
an important role in surgery.

The main clinical applications of the proposed method
are as followings. First, with the help of the current system,
the physician would reduce the rate of missed bleeding sites,
especially when the bleeding is subtle. Missed bleeding sites could
lead to poor outcomes, and some patients may need a second
procedure. Therefore, our system has the potential to improve
the prognosis of patients. Second, the deep learning system
developed in this study has the potential to shorten operation
time, which may also reduce the radiation dosage to doctors and
patients during the operation (26). Third, the automated system
in our study would help address the lack of expert radiologists in
rural and community hospitals. The CT Angiography (CTA) is
also a common method for diagnosing active bleeding abdomen
bleeding. Compared to CTA, DSA play import roles not only
in diagnosis but also in appropriate management of abdomen
bleeding. Most of the cases included in current study were
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performed emergency DSA surgery, therefor very few patients
underwent CTA before DSA due to limited time. For the 50
actively bleeding patients in the independent testing dataset
for InterNet, only seven patients underwent CTA before DSA
surgery. The two radiologists did not view their CTA results when
identify the bleeding sites. Thus, the CTA examination would not
influence the research results in this retrospective study.

This study has several limitations. Firstly, this was a
retrospective study design at a single institute. The number of
images with bleeding sites included in the test set was also not
very large. Secondly, only DSA imaging of one manufacture was
included. Based on current results, we could not sure whether
the method could be generalized to various DSA sequences
from various manufactures. Therefore, our system should be
validated in multicentre studies of a larger scale. Thirdly, only
abdominal bleeding was included. Other types of bleeding
(neck or thoracic bleeding) were not included because of their
low incidences.

In this study, we presented a two-stage model InterNet for
active abdominal bleeding detection using deep learning with
DSA data. This work has created a usable system to automatically
detect bleeding sites in DSA sequences. Our developed InterNet
system could help doctors in achieving a faster and more
accurate interpretation. A prospective clinical trial is necessary
to determine the effectiveness of this system and whether it will
ultimately improve patient care and outcomes.
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Objective: We created predictive models using machine learning algorithms for

return-to-work (RTW) in patients with traumatic upper extremity injuries.

Methods: Data were obtained immediately before patient discharge and patients were

followed up for 1 year. K-nearest neighbor, logistic regression, support vector machine,

and decision tree algorithms were used to create our predictive models for RTW.

Results: In total, 163 patients with traumatic upper extremity injury were enrolled, and

107/163 (65.6%) had successfully returned to work at 1-year of follow-up. The decision

tree model had a lower F1-score than any of the other models (t values: 7.93–8.67,

p < 0.001), while the others had comparable F1-scores. Furthermore, the logistic

regression and support vector machine models were significantly superior to the

k-nearest neighbors and decision tree models in the area under the receiver operating

characteristic curve (t values: 6.64–13.71, p< 0.001). Compared with the support vector

machine, logistical regression selected only two essential factors, namely, the patient’s

expectation of RTW and carrying strength at the waist, suggesting its superior efficiency

in the prediction of RTW.

Conclusion: Our study demonstrated that high predictability for RTW can be achieved

through use of machine learning models, which is helpful development of individualized

vocational rehabilitation strategies and relevant policymaking.

Keywords: upper extremity injury, return-to-work, vocational rehabilitation, support vector machine, machine

learning, occupational health

INTRODUCTION

Occupational accidents are the most common causes of arm and hand injuries in China. A previous
dataset, collected in Chinese cities with concentrated industrial development, showed that 85.4%
of patients acquired their injuries in manufacturing industries; severe injuries commonly resulted
from working with food, furniture, non-metallic minerals, and wood products (1).

A return-to-work (RTW) is the goal of rehabilitation for patients with work-related injuries.
There have been numerous factors for successful RTW in patients with traumatic upper extremity
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(UE) injury in other countries (2, 3), including sociodemographic
factors (e.g., age, educational level, and income), severity/location
of injury (e.g., type of injury, joint injury, amputation), and
function of the involved UE (e.g., strength, finger dexterity,
and participation in purposeful tasks). Although these factors
have enriched our understanding of what may influence patient
employment after injury, there are two major limitations that
should be addressed. First, it is impractical for rehabilitation
service providers to collect extensive data from every patient
to predict RTW in clinical settings. Therefore, it is important
to create predictive models with higher prediction performance
using a smaller number of factors. Second, RTW is not a purely
biomedical process; on the contrary, many relevant cultural
factors may be involved. Over the past decades, although some
epidemic studies have reported the prevalence of hand injury and
its prognostic factors in China (1), few authors have investigated
which factors may contribute to patients’ successful RTW or
long-term absence from work after a standard rehabilitation
program. It may also limit stakeholders in formation of
appropriate policies, such as which patients should be endorsed
for sick leave extension.

Conventional statistical methods, such as parametric tests of
groupmeans, logistical regression, the Kaplan-Meier method and
Cox regression analysis, were used to explore and find predictors
for RTW. However, the performance of RTW prediction based
on predictor thresholds has not been examined in most studies;
this could bring into question how the factors can correctly
predict RTW in a specific time frame. Machine learning makes
classifications and predictions based on probabilistic modeling
and has been widely employed to solve industrial problems, such
as prediction of project safety performance at construction sites
(4). Recently, this approach has attracted researchers’ attention in
the biomedical and healthcare fields (5), in hopes of predicting
brain disorders using neuroimaging data (6) or classifying the
risk of developing a sudden illness, such as stroke (7). Lee
and Kim (8) created machine learning models to predict RTW
for vocational rehabilitation patients injured in an industrial
accident; a high prediction performance was found, as indicated
by high areas under the receiver operating characteristic (ROC)
curves. Machine learning is still a novel approach for vocational
rehabilitation, and more research is warranted in additional
patients after an occupational accident.

We conducted a prospective cohort study in Shanghai,
enrolling patients after traumatic UE injury due to occupational
accidents, and all patients were followed up for 1 year. Four
commonly examined algorithms, namely, k-nearest neighbors
(kNN), logistic regression, support vector machine (SVM), and
decision tree, were used to select the factors of importance for
RTW. The predictability of the four models was then evaluated.

MATERIALS AND METHODS

Study Design and Participants
This was a prospective cohort study from January 2016 to
December 2017, which enrolled patients after traumatic UE
injury, admitted to Shanghai YangZhi Rehabilitation Hospital
for treatment.

Patients were enrolled in the cohort if they met the following
criteria: patients with traumatic UE injury, such as bone fracture
and tendon injury; work-related injury identified by the Shanghai
Municipal Human Resources and Social Security Bureau; age
≥18 years; first-ever rehabilitation experience after injury. We
excluded patients if they met any of the following criteria:
comorbid injuries in any other body region or did not complete
the rehabilitation. This study was approved by the Research
Committee of the Shanghai YangZhi Rehabilitation Hospital
(No. YZ2016-097). Written informed consent was obtained from
all patients.

Data Description
Patient demographics, injury information, RTW expectation,
physical work demands, functional assessments, and a self-rating
scale for the severity of post-traumatic stress disorder (PTSD)
were assessed by two occupational therapists before patient
discharge. These data, with a total of 27 variables, were further
used for machine learning modeling.

Patient demographics included age, sex, marital status, and
educational level. For injury information, time since injury in
number of days, injured hand dominance (i.e., dominant, non-
dominant, or bilateral), and injury location (i.e., finger, wrist,
forearm, elbow, upper arm, shoulder, or multiple locations) were
collected. The intensity of chronic pain due to injuries was
measured using a visual analog scale ranging from zero to ten.
Zero indicated no pain at all, while 10 signified pain as bad
as possible.

Patients were asked about their expectation of RTW using
a 5-point Likert scale ranging from zero to four. One and
four represented no expectation and complete expectation,
respectively. Likewise, patients’ family members were asked to
rate the extent to which they expected patients to return to work.
If the patients’ family members were not reachable, the patients
answered this question. We also surveyed employers’ attitudes
toward RTW because they are crucial. However, employers
are not usually reachable, and patients were asked to rate
the extent to which their employers expected RTW, based on
previous communications.

Physical work demands were classified as sedentary, light,
medium, heavy, or very heavy, according to work intensity and
frequency. Grip and pinch strength were measured using a Jamar
hand dynamometer (9). The EvalTech system (BTE, Hanover,
Germany) was used to measure the lifting strength of the bilateral
UEs and the carrying strength at the waist and shoulder level.
Hand dexterity was quantified by the Purdue Pegboard Test,
which involved counting the number of objects inserted during
the five subtests (10). The capacity of injured UEs to engage in
purposeful and skillful tasks was evaluated using the Chinese
version of the Disabilities of the Arm, Shoulder, and Hand
(DASH) score (11). The DASH is a self-rated questionnaire
that measures the severity of disability and symptomology when
performing a given task. The DASH score ranges from 0 to 100,
with a higher score indicating a more severe UE disability. The
severity of PTSD symptoms was evaluated using the Chinese
version of the PTSD Checklist–civilian version (PCL-c), with a
higher score indicating more severe symptoms of PTSD (12).
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TABLE 1 | Univariant logistic regression result comparison between RTW and non-RTW patients.

Variables RTW (n = 107) Non-RTW (n = 56) t, Mann-Whitney, χ
2 Univariant logistic regression

Statistic p OR p

Age (years) 37.4 ± 9.7 39.3 ± 10.9 1.12 0.265 0.982 0.263

Sex

Male 79 38 0.65 0.421 0.748 0.422

Female 28 18

Marital status

Married 90 47 <0.01 1.000 0.986 0.976

Single 17 9

Educational level

Illiteracy 1 3 −2.58 0.010 1.713 0.007

Primary school 10 8

Junior middle school 47 29

High middle school 35 14

College diploma or higher 14 2

Time since injury (days) 142.1 ± 76.4 172.9 ± 91.4 2.28 0.024 0.996 0.029

Injured hand dominance

Dominant 53 27 1.60 0.512 0.845 0.553

Non-dominant 51 25

Bilateral 3 4

Injury location

Finger 67 21 11.50 0.057 0.813 0.025

Wrist 18 14

Forearm 5 7

Elbow 5 4

Upper arm 2 2

Shoulder 8 5

Multi-location 2 3

Pain intensity 3.0 ± 2.0 3.2 ± 2.2 0.70 0.486 0.946 0.484

Patient’s expectation of RTW 2.6 ± 1.0 2.0 ± 1.1 −3.17 0.002 1.661 0.001

Family’s expectation of RTW 2.6 ± 1.0 2.0 ± 1.2 −2.84 0.005 1.647 0.002

Employer’s expectation of RTW 2.5 ± 0.9 2.0 ± 0.9 −3.26 0.001 1.909 0.001

Physical work demands

Sedentary 1 0 −0.35 0.724 0.947 0.741

Light 21 12

Medium 40 17

Heavy 27 18

Very heavy 18 9

Grip strength of the injured UE (kg) 10.2 ± 8.9 17.8 ± 12.0 −4.56 <0.001 1.072 <0.001

Grip strength of the healthy UE (kg) 36.2 ± 10.5 33.2 ± 10.5 −1.72 0.087 1.027 0.088

Pinch strength of the injured UE (kg) 5.7 ± 3.2 3.7 ± 2.8 −3.79 <0.001 1.236 <0.001

Pinch strength of the healthy UE (kg) 10.1 ± 4.7 9.3 ± 4.4 −1.08 0.161 1.047 0.289

Lifting strength of the injured UE (kg) 27.3 ± 16.8 17.0 ± 12.6 −4.06 <0.001 1.055 <0.001

Lifting strength of the healthy UE (kg) 47.8 ± 18.9 42.1 ± 17.6 −1.88 0.062 1.017 0.065

Carrying strength at waist (kg) 27.0 ± 12.7 16.3 ± 12.0 −5.20 <0.001 1.075 <0.001

Carrying strength at shoulder (kg) 21.8 ± 11.3 12.5 ± 9.2 −5.30 <0.001 1.094 <0.001

Purdue pegboard test

Injured hand 12.2 ± 4.2 9.5 ± 5.4 −3.36 0.001 1.128 0.001

Healthy hand 16.2 ± 1.8 15.7 ± 2.1 −1.57 0.119 1.150 0.120

Both hands 11.2 ± 4.2 8.3 ± 4.7 −3.98 <0.001 1.169 <0.001

Injured + healthy + both 39.6 ± 8.6 33.5 ± 10.9 −3.67 <0.001 1.069 <0.001

Assembly 28.2 ± 10.3 22.5 ± 12.7 −2.90 0.005 1.045 0.003

DASH 34.5 ± 19.3 43.8 ± 17.3 3.00 0.003 0.974 0.004

PCL-c 35.4 ± 12.7 39.8 ± 13.9 2.03 0.044 0.975 0.047

All variables were compared between patients who returned to work and those who did not. Independent sample t-tests (t) were used for continuous data, while Mann-Whitney tests

were used for ordinal data. The differences on categorical data were checked by using Chi-square tests (χ2 ). In addition, univariant logistic regression tests were employed to investigate

whether variables were individually predictive for RTW. Only those variables which showed significant predictability were included for machine learning modeling. In this table, continuous

data are expressed as mean± SD, ordinal and nominal data are expressed as a number. RTW, return to work; OR, odds ratio; UE, upper extremity; DASH, Disability of the Arm, Shoulder

and Hand; PCL-c, Post-traumatic Stress Disorder Checklist–civilian version.

Frontiers in Medicine | www.frontiersin.org 3 July 2022 | Volume 9 | Article 805230121

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Bai et al. Return-to-Work Prediction Using Machine Learning

All patients were followed-up for 1 year by a social worker
via telephone. A successful RTW case was defined as a patient
who returned to work for at least one month in the first year
after discharge.

Machine Learning Modeling
In this study, kNN, logistic regression, SVM, and decision
tree algorithms were used to train predictive models for the
dependent outcome (i.e., RTW at 1-year follow-up), which was
defined as binary. Univariant logistic regression tests indicated
that 17/27 variables (Table 1) were significantly predictive of
RTW; these were then selected as input variables for model
training. In view of the small sample size (n = 163), overfitting
could be easily induced, regardless of the algorithm, if a large
number of variables were input. Therefore, we further selected
the best subsets of variables for kNN, logistic regression, and
SVM using an exhaustive feature search. Specifically, the variable
number of subsets started from one and all possible subsets with
one variable were created. Then, the models were trained with
all subsets, and the one with the most optimal performance was
selected. Finally, the variable number of subsets was increased,
and the optimal subset updated. The search was stopped if
the performance of the models did not improve, even as more
variables were input. The aforementioned search was not applied
for decision tree model training because this algorithm can select
the most relevant variables automatically, according to their
importance, and discard irrelevant variables.

In the validation method, data were separated into two
datasets for model training (70%) and validation (30%).
Because of the limited sample size, random separation could
produce substantially varied and unreliable model performance.
Therefore, each model was trained 100 times to obtain its
performance distribution, which was then compared among the
models. The F1-score, which is the harmonic mean of precision
and recall, was used to evaluate the performance of models
on validation datasets. This was done even with the imbalance
of outcome classes, due to 65.6% of our included patients
successfully RTW. Optimal hyperparameter combinations were
selected using a grid search method. The scikit-learn toolkit
(version 0.24.0) was used for model training and validation (13).

Statistical Analysis
Statistical analysis was performed using SPSS22 (IBM, NY, and
USA) with a level of significance of 0.05. Initially, the baseline
differences between RTW and non-RTWpatients were compared
using independent t-tests, Mann-Whitney tests, or chi-square
tests when appropriate. Second, univariate logistic regression was
used to determine whether individual variables were predictive
of RTW. Third, to evaluate performance of the four models,
F1-scores and areas under the ROC were compared using one-
way repeated measures analysis of variance (ANOVA), and
post-hoc analyses were conducted using paired t-tests with the
Bonferroni correction (corrected alpha threshold= 0.05/6). One-
way ANOVAwas used to examine whether the F1 score from 100
training sessions was significantly different from sets with larger
numbers of training sessions.

RESULTS

A total of 179 adult inpatients with traumatic UE injury were
enrolled. Ultimately, 163 patients were successfully followed up,
of which 107 (65.6%) successfully returned to work by 1-year.
Comparisons between RTW and non-RTW patients indicated
significant differences in many variables that were also predictive
of RTW (Table 1). A one-way repeated measures ANOVA
indicated a significant difference in the F1-score among the four
models (F = 47.61, p < 0.001), as shown in Figure 1. Post-hoc
analysis by paired t-tests found that the decision tree model had
a lower F1-score than any of the others (t values ranging from
7.93 to 8.67, all p < 0.001, survived Bonferroni correction), and
the rest of the comparisons were not significant (t values ranging
from 0.92 to 1.73, p-values ranging from 0.087 to 0.361). In terms
of the factors selected for modeling, time since injury, carrying
strength at the waist, carrying strength at the shoulder, Purdue
pegboard test score (injured hand), and Purdue pegboard test
score (both hands) were five optimal variables for kNN, two
variables (patient’s expectation of RTW and carrying strength
at the waist) for logistic regression, and four [injury located
at fingers, patient’s expectation to RTW, carrying strength to
shoulder, and Purdue pegboard test score (both hands)] for SVM.

The ROC analysis results are shown in Figure 2. One-way
repeated measures ANOVA indicated significant differences
among the four models (F = 95.48, p < 0.001). Post-hoc
analysis indicated that the logistic regression and SVM models
had comparable areas under the ROC (t = 0.13, p = 0.896)
and were significantly superior to the kNN and decision tree
models (t values ranging from 6.64–13.71, all p < 0.001, survived
Bonferroni correction). In addition, the area under the ROC
curve of the kNN model was also significantly larger than that
of the decision tree model (t = 6.70, p < 0.001, surviving
Bonferroni correction).

In view of limited computational resources, each model was
trained 100 times. To evaluate the effect of the number of training
sessions on performance estimation, number of training sessions
was manipulated from 5 to 10,000. As shown in Figure 2B, the
F1-score was relatively precise when larger numbers of training
(e.g., 500, 2,000, and 10,000) were applied, regardless of the
algorithms. In contrast, small numbers of training sessions (e.g.,
5, 10, and 30) yielded substantially variable and much lower
F1-socres than larger training sets. One-way ANOVA suggested
that F1-scores resulting from 100 training sessions were not
significantly different from 500, 2,000 or 10,000 training sessions
for the kNN (F= 0.110, p= 0.954), logistical regression (F= 1.88,
p = 0.131), SVM (F = 1.95, p = 0.119), and decision tree (F =

0.285, p= 0.836) models, indicating that 100 times was sufficient
for model training (Figure 2).

DISCUSSION

We demonstrate that machine learning models can be used
for RTW prediction in Chinese patients after traumatic UE
injuries, indicating high predictive performance. Although both
logistical regression and SVM displayed better performance than
the others, logistical regression required a smaller number of
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FIGURE 1 | Comparison on F1-scores of the four models. The left histograms show the distribution of the F1-score, and the right bar chart shows a direct

comparison on the F1-scores of kNN (0.816 ± 0.041), Log (0.820 ± 0.044), SVM (0.823 ± 0.044) and DT (0.774 ± 0.059). The error bars represent one standard

deviation of uncertainty. kNN, k-nearest neighbors; Log, logistic regression; SVM, support vector machine; DT, decision tree.

FIGURE 2 | Comparison on the areas under the ROC of the kNN (0.723 ± 0.064), Log (0.766 ± 0.054), SVM (0.766 ± 0.053) and DT (0.665 ± 0.070) and the effects

of the number of trainings on F1-scores. The error bars in (A) represent one standard deviation of uncertainty. The shaded regions in (A,B) represent one standard

error of the mean. kNN, k-nearest neighbors; Log, logistic regression; SVM, support vector machine; DT, decision tree; ROC, receiver operating characteristic curve.

factors, suggesting its high efficiency. We also discovered a large
number of factors which were in line with previous studies
associated with RTW (2, 14). Our machine learning models
selected several important factors, such as carrying strength at
the waist, patient’s expectation of RTW, and Purdue pegboard test
score (both hands).

RTW factors following various work-related injuries have
been analyzed using traditional statistical methods (2, 3, 15). Our
study is the first to use machine learning models to predict RTW
in patients after a traumatic UE injury. Logistical regression and
SVMwere the two best algorithms for predicting RTW. Recently,
prediction of risk level classification, differential diagnoses, and
prognoses of various diseases have been investigated using

machine learning models with excellent performance (6, 7, 16).
In particular, SVM has shown superior performance (6, 8), which
is in line with our findings. While the black-box problem of
SVM is a complex mathematical formulation, it is difficult to
interpret the model. Most recently, Rudin (17) argued that when
addressing practical problems, designing inherently interpretable
models is the way forward, rather than trying to explain black box
models. By contrast, logistical regression classifies samples based
on probability which is easily interpreted. Although comparable
performance was obtained with SVM and logistic regression,
logistic regression required only two factors, namely, the patient’s
expectation of RTWand carrying strength at the waist, suggesting
its superior efficiency.
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Shi et al. (2) reported that the severity of injury as well as
pre-injury income were consistent factors for RTW. Recently,
Marom et al. reported additional factors contributing to RTW,
such as compensation, educational level, self-efficacy, work
demands, pain, and physical capacity (3). In our study, pre-injury
income was not included because most patients refused to
disclose their financial status. Instead of assessing the severity
of the injury, a series of functional assessments were conducted
for three reasons. First, the initial severity of hand injury is only
partially correlated with functional performance, which is more
relevant to the probability of RTW after injury (18). Second, our
patients had different single or multiple locations of injury, and
it was difficult to evaluate the severity using a uniform score.
Third, this study was conducted in a rehabilitation hospital and
functional assessments were of practical convenience. Among
these functional assessments, carrying strength using both hands
was an important factor for RTW. A possible explanation
might be that most of our patients were manual workers from
manufacturing industries, for whom carrying strength is an
essential demand to return to previous work (19). In addition,
the patient’s expectation of RTW was a critical factor selected by
both logical regression and SVM. These findings were in line with
those by Heijbel et al. (20) that individuals with expectations of
RTWhad an approximately eight times higher possibility of RTW
than those without that expectation.

The main goal of rehabilitation for occupational injuries
is to improve overall functional capacity and ultimately
facilitate RTW. Accurate prediction of RTW is helpful for
individualized vocational rehabilitation treatment plans. For
instance, work-hardening training is crucial for patients who
have a high probability of returning to previous work; in contrast,
patients who are not likely to return to work, due to severe
functional impairments, have to seek supported employment,
duty modification, or job transition assistance (21, 22). Most
recently, Lee and Kim (8) used similar algorithms to predict
whether patients could RTW successfully after an industrial
accident. Specific assessments of body function were missing in
their study. We focused only on patients with traumatic UE
injuries; in particular, a series of functional assessments for UEs
were included for modeling, making our findings more specific
to the targeted population.

We provide a novel direction for stakeholders when
formulating policies relevant to occupational RTW. An RTW
policy is designed to help injured workers to return to work in
a safe and timely manner, which is beneficial for both employers
and the workers themselves. Our machine learning models can
obtain a patients’ probability of RTW based on this previous
dataset. Therefore, stakeholders can assign more individualized
policies to workers after an injury. Currently, all occupational
injury workers identified by the Shanghai Municipal Human
Resources and Social Security Bureau can be approved for one-
year sick leave with compensation. However, this policy may
not be appropriate without consideration of individual body
function. For instance, those with worse body function usually
have a lower probability of RTW and should be endorsed for
sick leave extensions. However, a shorter period was adequate for
those with a higher probability of RTW.

This study has some limitations. First, our sample size
was small, which may lead to overfitting, even though some
modeling strategies have been employed to compensate for
this disadvantage. Second, expectations of RTW were assessed
using a 5-point Likert scale, which may not be adequate to
represent the full construct of expectation. More standardized
assessments with better construct validity are recommended for
use in future studies, such as the questionnaire used by Sampere
et al. (23). Third, only four commonly used machine learning
algorithms were investigated, and higher predictability may have
been yielded by others.

CONCLUSION

RTW can be highly predicted by machine learning models,
of which both logistic regression and SVM demonstrated high
predictability. In particular, logistical regression selected for
only two essential factors: a patient’s expectation of RTW and
carrying strength at the waist. The selected factors can be
considered the most relevant factors for prediction of RTW after
traumatic UE injury. Predictive models could contribute to the
development of tailor-made vocational rehabilitation programs.
Furthermore, machine-learning-based predictive models provide
a novel direction for stakeholders while formulating policies
relevant to occupational RTW.
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Causal inference is a broad field that seeks to build and apply models that learn the

effect of interventions on outcomes using many data types. While the field has existed for

decades, its potential to impact healthcare outcomes has increased dramatically recently

due to both advancements in machine learning and the unprecedented amounts of

observational data resulting from electronic capture of patient claims data by medical

insurance companies and widespread adoption of electronic health records (EHR)

worldwide. However, there are many different schools of learning causality coming from

different fields of statistics, some of them strongly conflicting. While the recent advances

in machine learning greatly enhanced causal inference from a modeling perspective,

it further exacerbated the fractured state in this field. This fractured state has limited

research at the intersection of causal inference, modern machine learning, and EHRs that

could potentially transform healthcare. In this paper we unify the classical causal inference

approaches with new machine learning developments into a straightforward framework

based on whether the researcher is most interested in finding the best intervention for

an individual, a group of similar people, or an entire population. Through this lens, we

then provide a timely review of the applications of causal inference in healthcare from the

literature. As expected, we found that applications of causal inference in medicine were

mostly limited to just a few technique types and lag behind other domains. In light of this

gap, we offer a helpful schematic to guide data scientists and healthcare stakeholders in

selecting appropriate causal methods and reviewing the findings generated by them.

Keywords: electronic health record, causal inference, machine learning, healthcare, treatment effects, review,

potential outcome framework, patient population

INTRODUCTION

In healthcare, it is important to distinguish between association and causation when we study
treatment effects on patient outcomes. Association between two variables is non-directional and
implies that the two variables are correlated. In contrast, causation is directional and indicates that
one variable causes the other. In clinical studies, we are more interested in causal analysis to reveal
whether a treatment causes a desired outcome.

Using observational data to infer causal treatment effects has become popular in the past
decade due to two pivotal advances: the increasingly available patient data captured in Electronic
Health Records (EHRs) and machine learning techniques that can efficiently and intelligently
analyze large-scale data. On the data side, health care providers worldwide have widely adopted
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EHRs (1, 2), which capture patients’ clinical and demographic
information during interactions with health systems. In addition
to EHRs, patient claims data are increasingly available to improve
models in the healthcare domain (3). On the algorithm side,
machine learning models such as artificial neural networks
are powering online search engines, shopping websites, and
recommender systems (4). These machine learning models are
increasingly used to improve causal inference algorithms.

In the past, many different schools of learning causality
coming from different fields of statistics resulted a fractured state
of causal inference, creating confusion about which algorithm
to use in a study. Recently, the intersection of causal inference,
machine learning, and patient data has formed a new front in
clinical research. Accordingly, many traditional causal inference
models have been improved and many new models have been
proposed. While this has enhanced the number of model options
to select from in causal inference studies, it has also led to even
greater confusion about which type of algorithm is appropriate
for a given application. Lack of systematic knowledge of which
approaches are promising in theory vs. the approaches that
have been validated through real world applications further
complicates the debate.

There are different stakeholders in healthcare, including
healthcare providers, administrators, clinical researchers, data
scientists, and many others. While data scientists, computer
engineers, and biomedical statisticians may be less prone to such
confusion, the fractured state in this field makes it difficult for
other participants to understand the many different types of
models and intuitively interpret the model results. We believe
it is imperative to address this confusion for all healthcare
participants to unlock the massive potential to improve patient
outcomes that could be obtained by studying the causal effects
of interventions from large-scale, representative, observational
patient data that is now available.

In this review, we start by explaining the broad and
heterogenous fields of causal inference. We then distill all of
these techniques down into a simple unified framework of three
algorithm families, based on size of the target patient population
that the causal effect estimation will be applied to. This simple
unified frame based on the size of the target patient population
is important: while statisticians in medical informatics may not
necessarily group the algorithms this way, it is beneficial for
frontline healthcare professionals such as doctors and nurses to
understand the drug effect in the context of its target population,
and the effect’s variance and bias characteristics when the drug
is applied to the treated patient. From the perspective of this
unified framework, we then review all existing applications of
causal inference in healthcare in the literature, and identify key
components of causal inference that are, as of now, lacking in
the healthcare domain. Finally, we use these insights to create an
intuitive schematic to guide researchers and stakeholders through
the process of selecting an appropriate causal inference technique
based on their study objectives.

This review is an extension of several works in previous
literature on observational causal inference. For example, the
authors in Yao et al. (5), Guo et al. (6), and Ding and Li (7)
reviewed causal inference in general but without a focus on

clinical settings. The authors in Landsittel et al. (8) offered a
narrative review of basic concepts of causal inference but did
not consider new developments in this field. Prior reviews (9–
11) have narrowly focused on the matching method of causal
inference, while in this paper we expand to include a much
broader algorithm types.

We conclude this section by providing below a summary of
all the approaches we review, with respect to their variance-bias
trade-off, advantages, disadvantages, and how widely they are
applied in clinical studies.

CAUSAL INFERENCE ASSUMPTIONS,
FRAMEWORKS, AND
TARGET-POPULATION INTERVENTION
SIZES

Confounding Variables
Causal inference differs from associative studies due to the
modeling of confounding variables (covariates), defined as
variables that affect both the treatment and the outcome. In
associative studies which focus on patient outcome estimates,
confounding variables are modeled in an inclusive manner
because the inclusion of these variables in the model improves
estimate accuracy. In contrast, causal inference which reveals
the causal relationship between treatments and patient outcomes
models the confounding variables in an exclusive manner in that
their effects are removed through various approaches we review
in this paper.

Assumptions
In the literature, several assumptions are widely adopted in causal
inference (12). The unconfoundedness assumption, also known
as ignorability, states that all confounding variables are observed
in the data. In practice, domain experts often examine as many
patient variables as possible, including their demographic and
clinical characteristics, so that this assumption can be met.
The common support or positivity assumption states that any
patient has a non-zero probability of being present in any of the
treatment groups. The validity of this assumption can be checked
by calculating the patients’ propensity scores (12). The Stable
Unit Treatment Value assumption (SUTVA) states that a patient’s
outcome only depends on the treatment this patient receives, and
not affected by the outcome or treatment of any other patients.
The consistency assumption links the potential outcomes to the
observed data and implies that the potential outcome under an
observed exposure is precisely the outcome that is observed (13).

Bias-Variance Tradeoffs Based on
Target-Population Intervention Sizes
Researchers, clinicians, and other healthcare stakeholders may
wish to know the treatment effects at different population
levels for different purposes. For example, they may want
to evaluate the overall effectiveness of the treatment on the
whole population. They may want to understand treatment
effect differences in different subpopulations to identify the
subpopulation where the treatment is the most effective or least
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effective. When they treat an individual patient, they may want
to know the individual-level treatment effects considering the
patient’s unique medical benefits and risks.

Driven by such needs, researchers conduct causal inference at
different target-population intervention sizes: at one end of the
spectrum is the Average Treatment Effect (ATE) that captures
the treatment effect for a population at large; at the other
end is the Individual Treatment Effect (ITE) that captures the
treatment effect heterogeneity across individuals; in between is
the conditional average treatment effect (CATE) that captures the
treatment effect for subpopulations.

In clinical practices, at the receiving end of any treatment are
individual patients. Correspondingly, different treatment effects
(ATE, CATE, and ITE) are eventually applied to individual
patients. Therefore, it is important to understand the variance-
bias tradeoff of the estimate at different target-population
intervention sizes: if we use ATE as the treatment effect for an
individual patient, the bias will be high due to effect heterogeneity
across patients in the population, but the variance will be low due
tomore data being used in the inference; in contrast, if we use ITE
for a patient, the bias will be low, but the variance will be high.

As the rest of the paper shows, ATE provides the best
option and fosters estimate efficiency for the whole population,
but may not provide the most accurate estimate for any
individual patient. ITE maximally leverages the data, but risks
being uninterpretable to clinical practitioners. CATE represents
a balance between bias and variance and tracks the clinical
definition of patient subgroups.

Two Frameworks
There are two widely accepted frameworks in the literature
for causal inference: the structural causal model (SCM) (14–
16) and the potential outcome framework (POF) (12, 17, 18).
SCM consists of two components, the causal graph and the
structural equations. A causal graph is a directed acyclic graph
(DAG) where the edges represent causal relationships, and the
nodes represent variables including treatments, outcomes, and
covariates that may or may not be observed. Causal effects can
be quantitatively specified through a set of structural equations.

The DAG and structural equations together provide a
comprehensive theory of causality and seamlessly tie essential
concepts and methodologies in causal inference (14, 19, 20).
In addition, it can possibly deal with cases where confounders
cannot be measured. For example, in Barter (21), the author
used the blood type as an instrument variable—defined as a
variable that affects the outcome only through the treatment
variable—to estimate the average survival benefit from receiving
a liver transplant.

The other framework, called the potential outcome
framework, centers on the concept of potential outcomes.
In the simplest term, potential outcomes are all the possible
outcomes for a patient under all possible treatments, with each
outcome corresponding to a treatment. Note that only one
potential outcome can be observed for a given patient at a
given time. We call the potential outcome that would have been
observed had the treatment been different the counterfactual
or the missing outcome. In the simplest case, there is only

one treatment to consider. A patient can be either given the
treatment, i.e., assigned to the treated group, or given no
treatment, i.e., assigned to the control group. Under the potential
outcome framework, the treatment effect is the difference
between the potential outcome if the patient is treated and that if
the patient is not treated.

CSM and POF are not competing frameworks but can
be unified (22). Despite this fact, the two frameworks have
differences in what causal questions they are best suited to handle.
Given its strong theoretical grounding, CSM is ideally suited to
identifying unknown causal and confounding variables, as well
as facilitating explanation. While it is useful to identify all the
variables in the causal graph and their causal connections, the
primary objective in healthcare is often to estimate the actual
effect of a given treatment. POF is best suited for generating
these estimates, because comparing potential outcomes eases the
removal of confounding effects and enables a natural connection
to traditional statistical analyses. For this reason, POF is more
widely adopted for healthcare research and will be the focus of
this review.

CAUSAL INFERENCE METHODS BY
TARGET-POPULATION INTERVENTION
SIZES

In this section we review causal inference approaches in the
literature under the potential outcome framework and the
assumptions stated in Section Causal Inference Assumptions,
Frameworks, and Target-Population Intervention Sizes. We
organize our review by the approaches’ target-population
intervention size: from ATE for the whole population to CATE
for subpopulations and ITE for individual patients.

We first explain some key notations. Suppose we are interested
in the causal effect of a treatment A on outcome Y . The potential
outcome denoted by Ya is the outcome that we would observe
under a possible treatment A = a. In a binary treatment case, a
can possibly take on two values a ∈ {0, 1}, where 0 indicates the
patient is not treated and 1 indicates the patient is treated. We
denote the confounding variables by X. For simplicity, we only
focus on the binary treatment case in this paper.

Estimate ATE for the Whole Population
In the binary treatment case, the ATE estimate for the population
can be calculated as

τ = E
(

Y1 − Y0) = E
(

Y1) − E
(

Y0) (1)

It is the difference between the expected potential outcomes of the
population if everyone is treated (A = 1) and if no one is treated
(A = 0).

Note that ATE cannot be directly calculated from equation (1)
because only one of the potential outcomes, either Y1

i or Y
0
i , can

be directly observed for patient i, nor can it be directly calculated
from the expected outcomes of the treated and control groups,

E
(

Y1 − Y0) 6= E (Y|A = 1) − E (Y|A = 0) (2)
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due to the existence of confounding variables X. In general,
the distribution of confounding variables is different in the
treated and control group. If their expected outcomes are directly
compared to calculate treatment effects without adjusting for
confounding variables, the calculated treatment effects would
be biased.

Propensity Score-Based Approaches
Propensity score of a patient is the conditional probability that
this patient with X = x is assigned to the treated group. It is
expressed as

π (x) = Pr (A = 1 |X = x) ,

and can be estimated using models such as logistic regression
(12). We can use the propensity score in three different ways
to balance the covariate distribution between the treated and
control group and thus make the two groups comparable.

The first way is to create new control and treated groups using
propensity score matching (12, 23). The most straightforward
approach is greedy one-to-one matching: one patient from
the control group is matched to one patient from the treated
group based on their propensity scores. Data of unmatched
patients gets thrown away. The covariate distribution of the
matched control and treated group is balanced. Then we can
calculate the difference of the expected outcomes of the two
new groups as the average treatment effect (ATE). In contrast to
equation (2), the equation below is now correct due to balanced
covariate distributions,

E
(

Y1 − Y0)

balanced
= E (Y|A = 1)balanced − E (Y|A = 0)balanced

In addition to one-to-one matching, propensity score is used
in other similar algorithms to create matched groups. These
algorithms differ from each other in whether patients are chosen
with or without replacement (24), whether matching is optimal,
greedy (24), one-to-one, or one-to-many (25), and what metric is
used to measure similarity between two patients (11, 23, 26, 27).

The second way of using propensity scores, known as Inverse
Probability of Treatment Weighting (IPTW) (28), is to assign
different patients with different weights in the calculation of ATE.
For patient i, the weight is calculated as

wi =
Ai

P(Ai = 1|Xi)
+

1− Ai

1− P(Ai = 1|Xi)
.

From this equation, we can see that if patient i is in the treated
group (Ai = 1), the weight assigned to this patient is wi =

1
P(Ai=1|Xi)

= 1
π(xi)

. If the patient i is in the control group (Ai = 0),

the weight then becomes wi = 1
1−P(Ai=1|Xi)

= 1
1−π(xi)

. The

weight of a patient in a group is just the inverse probability of this
patient being assigned to this group. The ATE of the population
can then be calculated as

τ̂ =
1

n1

∑

iwiy
1
i −

1

n0

∑

iwiy
0
i

where y1i (y0i ) is the observed outcome for patient i if this
patient is treated (untreated), n1 and n0 are the number

of patients in the treated and control group, respectively.
Intuitively, the IPTW approach balances covariate distributions
between the two groups by giving the patients underrepresented
(overrepresented) in a group higher weight (lower weight).

The third way of using propensity score in ATE estimate
is to stratify the population into subpopulations based on the
propensity scores of the patients (29). The treatment effect from
each subpopulation is then calculated and combined to estimate
the ATE of the whole population.

Propensity score-based approaches are intuitive, easy to
understand, and capable of producing an unbiased ATE estimates
if the propensity score is correctly estimated. If the propensity
models are misspecified (for example, the function form in the
logistic regression is wrong), the propensity score estimates and
subsequent ATE estimates would be biased.

Outcome Regression-Based Approaches
One fundamental challenge in causal inference is themissing data
problem: only one of the potential outcomes is observable for
a given treatment and patient. Regression models can be used
to estimate the missing outcomes, thus solve the missing data
problem (17, 30).

Here we outline how outcome regression models are used
in ATE estimates but leave the detailed review of these models
to Section Estimate ITE for Individual Patients. Suppose the
outcome regression function for the control and treated group is
m0(X) andm1(X), respectively. Once the two functions are fitted,

the missing potential outcomes can be predicted as Ŷ0 = m0(X)

and Ŷ1 = m1 (X). The average treatment effect for the population
can be estimated as,

τ̂ = E
(

Y1 − Y0) =
1

n0 + n1

n0+n1−1
∑

k=0

(Ŷ1
k
− Ŷ0

k
) (3)

which first calculates the difference between the two predicted
outcomes of each patient, then averages these differences over
all the patients in both groups. Note that m0(X) and m1(X)
can either take on the same function form, in which case the
treatment assignment variable A must be explicitly included
in the model as one of the independent variables, or take
on different function forms, in which case A is excluded in
the model.

Outcome regression models do not require an estimate of
propensity scores. However, misspecification of the regression
model (for example, the regression function form is wrong) can
lead to biased treatment effect estimates.

Doubly Robust Estimator
Both the outcome regression and the propensity model can be
misspecified. A combination of the two models, known as a
Doubly Robust Estimator (DRE), is proposed in Robins et al. (31)
and Funk et al. (32). It calculates the expected outcome for the
treated and control group as

E
(

Y1) =
1

n0 + n1

n0+n1−1
∑

i=0

{

AiYi

πi (Xi)
−

Ai − πi (Xi)

πi (Xi)
m1 (Xi)

}

(4)
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and

E
(

Y0
)

=
1

n0 + n1

n0+n1−1
∑

i=0

{

(1− Ai)Yi
1− π i (Xi)

−
Ai − πi (Xi)

1− π i (Xi)
m0 (Xi)

}

(5)

respectively. Then the ATE can be estimated as E
(

Y1
)

−

E
(

Y0
)

. Essentially, this DRE is an IPTW estimator augmented by

term Ai−πi(Xi)
πi(Xi)

m1 (Xi) in Equation (4) and term Ai−πi(Xi)
1−π i(Xi)

m0 (Xi)

in equation (5). For this reason, it is also called an augmented
IPTW estimator.

Another type of DRE is the Targeted Maximum Likelihood
Estimator (TMLE), initially proposed in Laan and Rubin (33)
and further studied in Schuler and Rose (34). In this approach,
an outcome regression model is first used to estimate E(Y|A,X),
which is then updated using estimated propensity score π(X)
in the so called “targeting” step, yielding a better estimate
E∗(Y|A,X). Average treatment effect can be calculated as
E∗

(

Y1
)

− E∗
(

Y0
)

.
As implied in the name, DREs have a nice doubly robust

property that ensures the ATE estimate is unbiased if only
the outcome regression model or only the propensity model is
correct. These models also tend to be more efficient than just the
IPTW estimators.

Estimate CATE for Subpopulations
In some cases, researchers may be interested in treatment effects
for subpopulations, which can be calculated through CATE
estimates. These subpopulations can be learned directly from the
data or defined by several criteria, ranging from demographic
strata or existing clinical heuristics with the goal of creating
groups for which the treatment effect and goals are expected to
be similar.

Direct and Indirect Stratification
CATE can be calculated via population stratification. The idea
is to first stratify the population on f (X), i.e., a function of
patient covariates X, into subpopulations. Then CATE for each
subpopulation is calculated as the difference between the two
expected potential outcomes within that subpopulation. As in
Morgan and Winship (35), it is mathematically expressed as

τCATE = E
(

Y
∣

∣A = 1, f (X)
)

− E
(

Y
∣

∣A = 0, f (X)
)

Function f (X) can take on different forms. In the basic form
f (X) = X, the population is stratified directly on covariate
X as described in Imbens and Rubin (36), which we call
direct stratification. With this approach, the covariates within
each stratum (subpopulation) are similar in values across
different patients. Suited for scenarios where subpopulations
are predefined, this approach provides simple and transparent
interpretation of the subpopulation but may lead to data sparsity
in some stratum or violation of the positivity assumption.
Function f (X) can take on a more complex function form, which
we call indirect stratification. If f (X) = π(X), the population
is stratified on propensity scores (12, 29). This approach
alleviates the data sparsity problem, but the interpretation of
subpopulations is less intuitive.

Data Driven Determination of Subpopulations
A subpopulation can be viewed as a subspace in the multi-
dimensional covariate space. A data driven approach
to calculate CATE partitions the covariate space into
subspaces in a way that the treatment effect heterogeneity
across subspaces is maximized. The resulting subspaces (or
subpopulations) reflect the heterogeneity of the underlying
data. Some subspaces may be wider or narrower in certain
dimensions than others depending on how quickly the
treatment effect changes along these dimensions, which is a
desired property.

Machine learning models, due to their flexibility, are well-
suited for this approach. One of such estimators is proposed
in Athey and Imbens (37) based on the classification and
regression tree (CART) (38). While a CART model minimizes
a predefined loss function in associative studies, it maximizes
heterogeneous treatment effect across leaves when used in causal
inference. Different sets of samples are used for constructing
the tree and for estimating the treatment effect for each
subpopulation. Because of this, the approach is called an
honest estimation.

In contrast to the approach in Athey and Imbens (37) where
only one decision tree is used, the approach proposed by Breiman
(39) estimates treatment effects based on the random forest
model consisting of multiple decision trees (40).

These machine learning-based models are non-parametric
and thus robust to model misspecification. They can capture
the heterogeneity structure in the underlying data and
reduce the variance of effect estimates in a subpopulation.
However, the complexity of such models makes the results
less explainable compared to simpler ones, creating obstacles
for the medical community to widely adopt these models in
clinical applications.

Estimate ITE for Individual Patients
Treatment effects can be different not only across
subpopulations, but across different patients as well. Due
to the existence of such heterogeneity at individual patient level,
ITE estimates are important for personalized medicine and
have been increasingly gaining attention in healthcare (41).
In the strictest sense, the ITE estimate is conditioning on an
individual’s characteristics so can be regarded as CATE. However,
in this work, we review ITE as a distinct algorithm category
separated from CATE. This decision emphasizes the fact that
ITE targets individual patients, while CATE targets subgroups
of patients.

Intuitively, ITE can be calculated as the difference between
the two potential outcomes for a patient. One of the potential
outcomes is missing but can be estimated with an outcome
regression model, where the potential outcome is the dependent
variable and the covariates are the independent variables. In
essence, such an outcome regression model fits a function to
estimate the regression surface (or outcome surface) in the
covariate space using observed patient outcome samples. Note
that the function used in outcome regression can be linear, non-
linear, or even non-parametric, depending on the underlying
data structure. There are two approaches to fit the model, based

Frontiers in Medicine | www.frontiersin.org 5 July 2022 | Volume 9 | Article 864882130

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Shi and Norgeot Learning Causal Effects: A Review

on whether the samples from the treated and control group are
pooled together in the training step.

One Regression Function
To estimate ITE, we can fit one regression function using pooled
samples from both the treated and the control group and regard
the treatment assignment A as one of the independent variables,
as shown in the equation below,

E (Y|X,A) = m (X,A) (6)

where m (X,A) estimates the potential outcome conditioned on
X and A. Then the ITE estimate for patient i is calculated
as m (Xi, 1)− m(Xi, 0). One example of such a model is the
Bayesian Additive Regression Trees (BART) introduced in Hill
(42), Chipman et al. (43), and Chipman et al. (44), where the
authors constructed a set of trees using ensemble learning, and
imposed a prior regularization to constrain each tree to be a
weak learner. Another example is proposed in Foster et al. (45),
where the authors used a random forest to fitm (X,A) to estimate
ITE. The approach proposed in Nie and Wager (46) fits a single
outcome surface first to isolate the impact of the treatment on the
outcome, then fits a regression model where the ITE is the only
independent variable.

The models fitting one outcome surface are well-suited for
scenarios where the treatment effect is small. The analysis in
Wendling et al. (47) validates the performance of the BART
model using synthetic data based on two major healthcare
databases in the United States and concludes that the smaller the
ITE is (i.e., the closer the outcome surfaces are between the two
treatment groups), the better suchmodels perform. Thesemodels
perform poorly if there are complex interactions between the
treatment assignment and covariates, which makes the outcome
surface f (·) very different for the treated and control groups. Such
model drawbacks are studied in detail in Alaa and Schaar (48)
and Hahn et al. (49).

Two Regression Functions
Instead of fitting one regression function, one can fit two separate
functions for the treated and control groups to calculate ITE. In
this case, the treatment variable does not need to be included
as one of the independent variables in the model because the
outcome difference between the two groups is captured with
different model parameters. The two regression functions can be
expressed as

E
(

Y1|X
)

= m1 (X) (7)

and

E
(

Y0|X
)

= m0 (X) (8)

for the treated (A = 1) and control (A = 0) group, respectively.
The ITE estimate for patient i is then calculated as m1 (Xi) −

m0 (Xi). Different base learners can be used form0(X) andm1(X),
as proposed in Athey and Imbens (37), Lu et al. (50), Powers et
al. (51), and Künzel et al. (52).

The approach fitting two outcome surfaces separately is suited
for the scenarios where the outcome surface is very different for
different treatment groups. The downside of this approach is that
some common patterns between the two groups get lost during
model fitting. A multitask-learning estimator introduced in Alaa
and Schaar (48) and Alaa and Schaar (53) fits two outcome
surfaces separately but attempts to recover common underlying
patterns between the treated and control group through a joint
optimization for the two groups.

Estimate Error Bound
Several theories proposed in the literature study the error of
the ITE estimate. The authors in Shalit et al. (54) derived a
theoretical upper bound for the error, which is a sum of the
standard generalization-error in the representation space and
the error resulted from the distance between the two treatment
group covariate distributions induced by the representation.
An extension of this work (named context-aware importance
sampling re-weighing) is proposed in Hassanpour and Greiner
(55) to theoretically address the selection bias in observational
datasets, leading to a solution that weights the samples in such a
way that the covariate distribution imbalance between the treated
and control group is reduced. Related to the theoretical works
above, practical solutions based on deep learning were proposed
to incorporate in the loss function the dissimilarity of the learned
representations for the treated and control groups so that the
error induced by such dissimilarity can be reduced (56–58).

CLINICAL APPLICATIONS OF CAUSAL
INFERENCE

Although there are a large number of causal inference techniques
in the literature as we reviewed above, these techniques are
not applied equally to solve real-world clinical problems. In
this section, we review the patterns of how the various causal
inference approaches are used in published clinical studies.

Reporting Methods
In searching for published application papers of causal inference
models, we follow the applicable guidelines in accordance with
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) (59). The modified PRISMA flow
charts for each category of causal inference models are in
the Supplementary Material. Note that although we follow the
PRISMA guidelines whenever deemed applicable to make our
search systematic, the review in this section is not a systematic
review in the strictest sense, as our goal is not to answer
a well-defined and narrowly focused clinical question, but to
gain general understanding of the application landscape of
causal inference.

Results
Below we list the most relevant published clinical applications
for each of the causal models we have identified. If the
application list is too long (more than 15 publications), we
just list below the top 15 most cited ones according to Google
Scholar due to space limitations. The total number of applications
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identified with the inclusion and exclusion criteria is given in the
Supplementary Material.

Applications of ATE Estimators for the Whole

Population
Propensity score-based models have been applied to study the
effect of interruption of sedation on the death of the patient
in Requena et al. (60), the effect of corticosteroids on mortality
for patients with influenza A (H1N1pdm09) in Delaney et al.
(61), the cardiovascular, bleeding, and mortality risks in elderly
Medicare patients treated with certain drugs in Graham et al.
(62), the association of animal and plant protein intake with all-
cause and cause-specific mortality in Song et al. (63), the effect
of nasal cannula therapy failure on mortality in Kang et al. (64),
the prevalence of sarcopenia in COPD and its impact on health in
Jones et al. (65), the safety and efficacy of digoxin in Ziff et al. (66),
clinical outcomes after transapical or transfemoral transcatheter
aortic valve replacement in Blackstone et al. (67) and many other
health related issues in Chang et al. (68), Bangalore et al. (69),
Kost and Lindberg (70), Grool et al. (71), Snowden et al. (72),
Han et al. (73), and Prati et al. (74).

Applications of outcome regression-based models in clinical
studies have been rare. In fact, we did not find any applications of
this approach that meet our search criteria.

Doubly robust estimators have been widely applied in real-
world clinical studies to determine the effect of sepsis on late
mortality in Prescott et al. (75), the effect of proton pump
inhibitors use on risk of death in Xie et al. (76), cardiovascular
risks of testosterone replacement therapy in men with androgen
deficiency in Cheetham et al. (77), the effectiveness of influenza
vaccines among elderly people in Izurieta et al. (78), whether
antifungal de-escalation leads to adverse outcome in Bailly et al.
(79), the association of the use of transthoracic echocardiography
with 28-day mortality in Feng et al. (80), the effect of
risk assessment on clinical outcomes in Chaffee et al. (81),
comparison of children currently and previously diagnosed with
autism in Blumberg et al. (82), whether there is a causal link
between the Magnet status of a hospital and the central-line-
associated bloodstream infections in Barnes et al. (83), as well as
a range of health-related issues from association of aspirin with
hepatocellular carcinoma and liver-related mortality to effect of
angiotensin on hemoglobin levels in Breslau et al. (84), Simon et
al. (85), Ajmal et al. (86), Millett et al. (87), Reed et al. (88), and
Kawasaki et al. (89).

Application of CATE Estimators
CATE estimators using stratification have been widely applied in
clinical studies, for example, to analyze the adverse outcomes of
underuse of β-Blockers in elderly patients in Soumerai et al. (90),
the rate of mortality in patients receiving drug-eluting stents and
undergoing coronary-artery bypass grafting in Hannan et al. (91),
the effect of Hydroxychloroquine and tocilizumab therapy on
mortality in COVID-19 patients in Ip et al. (92), medical therapy
on long-term outcome in patients with myocardial infarction
(93), the impact of female sex on clinical outcomes for Atrial
Fibrillation in Kuck et al. (94), and a range of other clinical issues
(95–104).

There are very few applications of the data driven approach in
clinical studies. The recursive partitioning approach (37) is used
to study the effect of fluoxetine in patients with a recent stroke in
Graham et al. (105), the effect modification in a study of surgical
mortality in Lee et al. (106).

Application of ITE Estimators
The applications of ITE estimators are very rare in the literature.
The BART model is used to predict the papillary thyroid
carcinoma in Guo et al. (107) and to study the consequences of
contact with the criminal justice system for health in Esposito et
al. (108).

Methods
Search Strategy
Here we describe the search strategy we use to find the published
clinical applications of a causal approach. First, we identify
the paper in which the model is proposed. If multiple models
hence multiple papers exist—there might be model variations,
extensions, or improvements—we pick a paper that generated
the most citations in Google scholar. We then search in Google
Scholar for all the publications citing the identified paper,
which we call the anchoring paper, and apply the inclusion
and exclusion criteria described below to determine what papers
should be included in the application list of the causal approach.

Note that this search strategy is not exhaustive and is not
intended to be a scoping review. Using the anchoring paper, we
can only identify a subset of the application papers in a causal
inference category. Our goal is not to precisely count the number
of all applications, but to understand the extent to which different
causal models are applied clinically. Accordingly, our strategy is
to sample a limited number of publications, but in a systematic
way, so that our search is manageable but still reflective of the
application landscape in this field.

Inclusion and Exclusion Criteria
For each category of the causal inference approach, we search
for publications that cite the anchoring paper in Google Scholar.
In the returned result, we exclude any records not in the
healthcare domain, which are those that do not contain any of
these keywords: medicine, hospital, patient, clinics, healthcare,
physician, and disease. We then screen the titles and abstracts
of the remaining papers and exclude those not pertaining to
applications. Most of the papers eliminated in this step are about
models and algorithms related to the causal inference model
described in the anchoring paper. The papers remaining after
this step are clinical applications that cite the anchoring paper.
However, the anchoring paper can be cited in many ways: it
can be mentioned in the related work section; it can be cited in
the discussion section; or it can be used to derive findings and
insights. We proceed to read the papers that are cited more than
10 times, focusing on the section where the anchoring paper is
cited. We include the paper in the final application list if the
model in the anchoring paper is used as themethod (or one of the
methods) to draw conclusions, derive findings, or gain insights.
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TABLE 1 | Summary of causal inference approaches in healthcare.

Target-

Population

intervention

sizes

Estimator

types

Models and algorithms Advantages Disadvantages Variance Bias Clinical

application

patterns and

references

Propensity scores-based,

propensity score matching

and IPTW

Simple, transparent,

mimic clinical trials

Model can be

misspecified

Widely used

(60, 68)

Whole population ATE Outcome regression,

variations of G-computation

No need to estimate

propensity score

Model can be

misspecified

Low High Few

applications

Doubly robust estimator,

targeted maximum

likelihood estimator

Efficient, doubly robust

property

Yield biased estimate if

both models are

misspecified

Widely used

(75, 84)

Direct stratification Easy to interpret Data sparsity proble Widely used

(90, 95)

Sub population CATE Indirect stratification,

propensity score-based

approach

Robust, easy to satisfy

positivity assumption

Subpopulation hard to

interpret

Medium Medium

Data driven, tree based

algorithms

Low variance within

subpopulation

Subpopulation hard to

interpret

Medium Medium Few

applications

(105, 106)

Fit one outcome surface,

BART model etc

Capture common

underlying data

structure

Not flexible, especially

when the outcome

surfaces are very

Few

applications

(107, 108)

Individuals ITE different in distinct

groups

High Low

Fit two outcome surfaces Flexible, allow for

different data structure

in groups

Does not capture

common data pattern

in two groups

Observations
Apattern emerged from surveying and analyzing the applications
of causal models in healthcare: although state-of-the-art
machine learning-based approaches have been consistently used
to improve causal inference techniques algorithmically and
generated excitement in the medical research community, these
approaches have not been widely adopted in clinical studies.
In contrast, simpler approaches based on propensity scores
have been widely applied to solve real-world clinical problems.
This conclusion is evident from the citation numbers in the
Supplementary Material: while the number of machine learning
applications, such as those based on models in Rubin (30)
and Athey and Imbens (37), is in single digit at most, the
number of applications based on propensity scores (12) is
in hundreds.

We suggest several potential explanations for the wider
adoption of propensity score-based approaches. First, the gold
standard for causal inference in healthcare has long been the
Randomized Controlled Trial (RCT). Propensity score-based
approaches provide methods that mimic RCTs while using large-
scale, observational data. Secondly, as we mapped out in Table 1,
propensity score-based approaches offer relatively low variance
at the risk of higher bias, which is consistent with medical
applications where the goal to minimize patient harm outweighs
the potential to increase benefits for a few. Third, there is an
issue of timing, newer methods have simply been in existence
for a shorter period of time and therefore have had less chance
for adoption. However, this answer is least satisfying because
many of the newer machine learning approaches have been

successfully applied in many other fields such as gaming, online
shopping, and advertising (4). Additionally, many machine
learning-based causal models have been around for a long time.
For example, as of the time this paper is written, the BARTmodel
(44) has existed for over a decade, and yet we have not seen
many clinical applications of it. A fourth potential reason for
lower adoption of purely machine learning based approaches is
method explainability. In healthcare, where lives are frequently
at stake, the requirement for methods that are explainable to a
wide audience are significantly higher than other fields, where
effectiveness alone may be sufficient.

We believe that lower historical adoption of more modern
observational causal inference approaches is sensible, but that
it also represents a gap in the field, especially given the
potential promise of more personalized medicine using ITE-type
estimators. This gap could potentially be closed in the near future
by collaborative pairing of biostatisticians and machine learning
scientists with clinicians.

FLOWCHART FOR ALGORITHM
SELECTION

In this section we provide a guide in Figure 1 to help
the healthcare community choose which algorithm to use in
estimating treatment effects based on the target-population
intervention sizes, domain knowledge about the treatment, and
track record of healthcare applications of the algorithm. While
every problem is unique, and individual judgement must always
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FIGURE 1 | Treatment effect estimator selection guide based on target-population intervention size and prior knowledge. Colors in the figure indicate bias-variance

tradeoff. Light blue: high bias and low variance; blue: medium bias and variance; dark blue: low bias and high variance. Person icons under each estimator illustrate

the composition of the targeted population.

be exercised, this flowchart can act as a starting point to
determine which algorithmic approachmay be most appropriate.

DISCUSSION

In this paper we reviewed the literature on causal inference
with a focus on clinical settings, in light of recent advances

in machine learning and large scale EHR adoption.
With this review, the algorithm selection guide, and
the summary table, we hope to help researchers and
healthcare stakeholders gain better understanding of causal
inference and make informed decisions on what estimator
to use in their daily practices when many choices are on
the table.
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We have observed that sophisticated causal models based on
state-of-the-art machine learning have not been widely applied in
clinical studies for amyriad of reasons such as lack of similarity to
RCTs and explainability (Section Clinical Applications of Causal
Inference), computational intractability of these models, and the
healthcare participants being highly conservative when adopting
new models. To address the same issue and improve model
transparency, a MI-CLAIM check list in Norgeot et al. (109) was
proposed regarding the study design of projects, preparation and
usage of data, model selection, performance evaluation, model
validation, and data pipelines. Our review stresses the importance
to follow these guidelines to promote trust on sophisticated
models among clinical practitioners.

There are some limitations of the review. First, it may not be
exhaustive and include every approach. Causal inference is a very
broad topic.While we can limit our review to a specific topic to be
exhaustive, it is also important to survey the entire field of causal
inference, thus sacrificing the completeness to some degree.
Second, causal inference approaches are grouped into ATE,
CATE, and ITE categories in this review. These categories might
not be mutually exclusive. Such classification, however, does
provide an intuitive way for medical professionals to understand
causal inference from patient perspectives. Third, there are
certain limitations of using citations to rank the applications. For
instance, an algorithm applied in clinics might not have been
published. Additionally, for a recent work, the citation number
might be low, and might not accurately reflect the application
potential of the work. Fourth, Table 1 and Figure 1 do not cover
all the details of choosing an algorithm, nor do they lead a
user to a specific algorithm. They were designed to provide all
healthcare participants with an initial but intuitive guide on what
family of algorithms to choose for their studies. Finally, our
search to find published applications of causal models may not be
exhaustive. The search results show that the application disparity
of different models is so huge that a different (and potentially
more comprehensive) search strategy will unlikely change our
conclusions and insights in any significant way.

There is a view in the literature that causal inference
is just plain statistical inference, especially after the causal
assumptions and parameters are identified (110). The role of
causal inference with respect to statistical analysis remains a
debate. This debate is out of scope for this paper. We refer

to the reviewed models as causal inference models without
endorsing any particular view on this matter, but simply use
this name to refer to the statistical inference models that reveal
causal relationships.

In summary, we reviewed a diverse and complex field
of causal inference applied in health care. We distilled the
many approaches into three algorithmic families based on the
target-population intervention size. We explained the approach
type, population size, and bias-variance tradeoff. We then
investigated the clinical application of each of the approaches.
We finally consolidate all the information into an algorithm
selection guide for both researchers and other healthcare
stakeholders to decide on which algorithm is applicable to
their studies.
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A Novel Bayesian General Medical
Diagnostic Assistant Achieves
Superior Accuracy With Sparse
History

A Performance Comparison of 7 Online Diagnostic
Aids and Physicians

Alicia M. Jones and Daniel R. Jones*

Eureka Clinical Computing, Eureka Springs, AR, United States

Online AI symptom checkers and diagnostic assistants (DAs) have tremendous potential

to reduce misdiagnosis and cost, while increasing the quality, convenience, and

availability of healthcare, but only if they can perform with high accuracy. We introduce

a novel Bayesian DA designed to improve diagnostic accuracy by addressing key

weaknesses of Bayesian Network implementations for clinical diagnosis. We compare

the performance of our prototype DA (MidasMed) to that of physicians and six other

publicly accessible DAs (Ada, Babylon, Buoy, Isabel, Symptomate, and WebMD) using

a set of 30 publicly available case vignettes, and using only sparse history (no exam

findings or tests). Our results demonstrate superior performance of the MidasMed DA,

with the correct diagnosis being the top ranked disorder in 93% of cases, and in the top

3 in 96% of cases.

Keywords: Bayesian medical diagnosis, symptom checkers, general medical diagnostic assistant, diagnostic

performance, Bayesian network, comparison of physicians with AI decision support, AI medical diagnosis,

diagnostic decision support system

INTRODUCTION

Online AI symptom checkers and diagnostic assistants (DAs) have tremendous potential to reduce
misdiagnosis and cost, while increasing the quality, convenience, and availability of healthcare,
but only if they can perform with high accuracy (Millenson et al., 2018; Van Veen et al., 2019;
Rowland et al., 2020). Machine Learning (ML) and Bayesian Networks (BNs) are promising
technologies in healthcare, but both have limitations for general medical diagnosis. Despite major
advances in the application of ML to narrow biomedical applications (Beede et al., 2020; Liu
et al., 2020; McKinney et al., 2020), challenges remain for its application to general medical
diagnosis, including the inability to model causal inference (Velikova et al., 2014; Richens et al.,
2020), semantic relationships including subtypes (“is-a” and “part-of”), logic, and heuristics;
and lack of interpretability. Furthermore, challenges remain in training or educating DAs with
electronic medical record (EMR) data, including proper interpretation of incomplete or missing
data (Nikovski, 2000), unreliable labels and label leakage, bias (Ghassemi et al., 2020), and the fact
that EMRs are designed to document and support care and reimbursement and to minimize legal
risks, rather than to describe disorders.
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The use of Bayesian approaches for medical diagnosis is well-
documented, from early expert systems (Yu et al., 1988; Shwe
et al., 1990; Barnett et al., 1998) to today’s chatbot triage and
symptom checkers (Zagorecki et al., 2013; Baker et al., 2020).
But thus far they have fallen short of the desired accuracy
despite incremental improvements (Lemmer and Gossink, 2004;
Antonucci, 2011; Richens et al., 2020). In previous studies such
DAs have underperformed physicians in diagnostic accuracy
(Semigran et al., 2015, 2016; Millenson et al., 2018; Chambers
et al., 2019; Yu et al., 2019). For example, Semigran et al. (2015)
evaluated the performance of 23 symptom checkers using case
vignettes, and found they ranked the correct diagnosis first 34%
of the time, and in the top 3 in 51% of cases. In a subsequent
paper (Semigran et al., 2016) compared symptom checkers to
physicians, and showed much better performance for physicians,
who ranked the target diagnosis #1 in 72.1% of cases, vs. only
34% for the symptom checkers. A more recent paper (Baker
et al., 2020), using 30 of the case vignettes tested in Semigran
et al. (2015) and Semigran et al. (2016), reported performance
comparable to physicians: the Babylon system ranked the target
diagnosis #1 for 70% of the vignettes and in the top 3 for 96.7%,
compared to 75.3 and 90.3%, respectively, for physicians. But
even the benchmark of obtaining physician diagnostic accuracy
leaves much to be desired, with reported physician diagnostic
error rates of 10–24% or greater (Graber, 2012; Meyer et al., 2013;
Baker et al., 2020). Diagnostic errors are the leading cause of paid
malpractice claims (28.6%), and are responsible for the highest
proportion of total payments (35.2%) (Tehrani et al., 2013).
Diagnostic errors were almost twice as likely to be associated with
patient death as other types of errors (e.g., treatment, surgery,
medication, or obstetrics errors). Almost 70% of diagnostic errors
occurred in the outpatient setting (Tehrani et al., 2013).

BNs model causal inference using Bayes’ theorem. They offer
a formal method for representing an evolving process of refining
the posterior probabilities of outcomes based on the likelihood of
relevant data. This approach is particularly suitable for diagnosis,
where clinicians formulate an initial differential diagnosis based
on the patient chief complaint, and then proceed to refine the
diagnosis based on additional data obtained from the patient
interview, exams, tests, and treatment outcomes. In this iterative
process, each differential diagnosis ranks the likelihood of each
contending disorder, and provides priorities for the next data
items to ascertain.

Given a joint random variable X = X1, . . . ,XN , a Bayesian
Network (BN) offers a compact representation of its local
conditional probability distributions (Koller and Friedman,
2009). Formally, a Bayesian Network is defined as a pair BN
= (G, P), where G is a directed acyclic graph (DAG) and P
is the joint probability distribution of X as specified by the
conditional probability tables (CPTs) of the graph nodes. The
graph G = (V, E), is comprised of nodes or vertices V and
directed arcs or edges E ⊆ V × V. Each node in V represents
a distinct random variable in X, and each arc in E represents
the conditional probability of the child node given its parent.
Every node is conditionally independent of its non-parent non-
descendants, given its parents. It follows that the joint probability
distribution P(X) reduces to the product of the conditional

probability distributions at each node (local Markov property),
and can be written as:

P (x1, . . . , xN) =

N
∏

i=1

P(xi|πi) (1)

where πi is the state of the joint variable defined by the elements
of X that are the parents of Xi (Fagiuoli and Zaffalon, 1998;
Antonucci, 2011).

The size of the CPT describing the joint probability
distribution at a node grows exponentially with the number
of inputs (parents). For problems involving a large number of
variables and/or dense graphs, computational complexity and/or
lack of sufficient data can make this approach impractical.
The leaky noisy-OR function (Henrion, 1987; Antonucci, 2011)
is a popular technique for reducing the input parameter
requirements from exponential to linear (for binary variables).
It does so by assuming the parent nodes are conditionally
independent given their joint child. With this assumption, the
joint probability distribution of the child node simplifies to:

P (xi|πi) = 1− (1− ni)
∏

xj∈πi

(

1− P(xi|xj)
)δj (2)

where P(xi|xj) is the conditional probability of the child node
given parentXj, and δj = 1 if xj = true and 0 if it is false. Equation
(2) can be interpreted as meaning that Xj only affects change
when it is present. Ignoring the (1 − ni) term for a moment,
we see this is simply the probability formula for the union of
independent events, i.e., P

(
⋃

i Ai

)

= 1 −
∏

i

((

1− P(Ai

))

. The
variable ni is a noise term, which is optionally a function of Xi,
and represents unmodeled causes of Xi assumed to be present.

A classifier can be defined in conjunction with a BN by
assigning each node to 1 of 3 types: (1) input, data, features,
or evidence; (2) outputs or class labels; and optionally (3)
intermediate or hidden nodes. Given K possible outputs,
y1, . . . , yK , and L inputs, x1, . . . , xL, the classifier selects the
output node ŷ such that

ŷ = argmaxi∈{1,...,K}P(yi|x1, . . . , xL) (3)

where argmax selects the maximum argument, i.e., the output
node that maximizes P(yi|x1, . . . , xL). Using Bayes Theorem and
assuming the output nodes are mutually independent, Equation
(3) reduces to

ŷ = argmaxi∈{1,...,K}P(yi) · P
(

x1, . . . , xL|yi
)

(4)

where P
(

yi
)

is the a priori probability of yi. In the special case
where the variablesXi are independent, we obtain the naïve Bayes
classifier (Koller and Friedman, 2009)

ŷ = argmaxi∈{1,...,K}P(yi) ·
L

∏

j = 1

P
(

xj|yi
)

(5)

It is important to keep in mind the assumptions that lead to
the simplifications of Equations (4) and (5). Medical diagnosis
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FIGURE 1 | Diagnostic BN hierarchy (A) Generic fragment where each node represents a risk factor (R) disease (D), pathophysiological state (P), or findings (F); (B)

BN fragment for liver cirrhosis.

is one domain in which these assumptions are not always valid,
resulting in excessively degraded classification.

In a medical diagnostic BN (Figure 1) the input nodes
represent all known risk factors and findings (i.e., symptoms,
examination results, and test results), while the output nodes
are all possible diagnoses. There may also be intermediate
nodes representing pathophysiological states or mechanisms. As
indicated by the causal arrows, risk factors increase the likelihood
of diseases; diseases cause other diseases, pathophysiological
states, and findings; physiological states cause findings (and
sometimes other physiological states); and findings may cause
other findings. For a given set of patient inputs we want to
determine the most probable diagnoses using both forward and
backward inference.

The characterization of nodes as risk factors, findings,
pathophysiological states, and disorders can be governed
by somewhat arbitrary nosological distinctions. For example,
dehydration is a pathophysiological state with multiple findings
(e.g., decreased urine output, dry mucus membranes, dizziness,
hypotension), and can be caused by multiple disorders such as
acute gastroenteritis and uncontrolled diabetes. But dehydration
is also used as a diagnosis when other causal disorders are ruled
out, and it can be attributed to, e.g., prolonged exertion in
heat without sufficient hydration (a risk factor). The findings
of dehydration can be attributed to its causal disorders, but
they tend to cluster as a distinct subpopulation in patients with
the causal disorders that develop dehydration. The distinction
between risk factors and findings can also be ambiguous. For
example, obesity is both a risk factor for developing type II
diabetes and also a finding of diabetes and other metabolic

disorders. And while some findings can cause other findings, it’s
important not to confuse temporal progression with causality.
For example, in an infectious disorder, fever may precede a rash,
but doesn’t cause it.

Figure 2 shows typical diagnostic BN configurations. In
Figure 2A a disorder causes 2 findings (F1, F2). These
findings may be considered conditionally independent, as in
pulmonary embolus (PE) causes cough and syncope (the 2
symptoms result from distinct pathophysiologic pathways); or
they may be conditionally dependent, as in pulmonary embolus
causes cyanosis and syncope (both result from a common
pathophysiologic pathway of a PE subset, massive embolism
causing circulatory obstruction). In Figure 2B two marginally
independent disorders cause a single finding, e.g., pneumonia
and acute bronchitis both cause cough. In Figure 2C, two
causally related disorders each cause the same finding, e.g.,
chronic hepatitis causes cirrhosis and both disorders cause
hyperbilirubinemia and jaundice; or acute bronchitis precipitates
a COPD flare and both cause cough. In Figure 2D, two causally
related disorders each explain a distinct subset of the patient
findings, e.g., deep vein thrombosis causes pulmonary embolus,
with patient findings leg edema (caused by DVT) and dyspnea
(caused by PE).

BNs have been a popular choice for medical diagnosis because
of their ability to model complex domains and to provide a
sound basis for their inference. Compared to pure ML solutions,
BNs can incorporate derived medical knowledge (e.g., published
studies, textbooks, expert opinion), and do not require huge
raw datasets. Fundamental problems with traditional Bayesian
implementations include:
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FIGURE 2 | Typical diagnostic BN configurations. (A) A disorder causes 2 findings; (B) Independent disorders both cause a finding; (C) Causally related disorders

cause the same finding; (D) Causally related disorders each explain a subset of the patient findings.

• Severe scalability problems due to the large number of nodes
required for a diagnostic network with a large number
of diagnoses and/or findings (Cheng and Druzdzel, 2000;
Heckerman, 2013). A general medical diagnosis BN (e.g., for
primary care) may have thousands of diagnoses and tens
of thousands of findings. The richer the model, the larger
and more complex the DAG becomes, and the more data is
required to populate the CPTs. Furthermore, high accuracy
requires that many of the findings be modeled as continuous
or categorical random variables which can make the CPTs
very large.

• Inability to model large-scale knowledge representations
(Koller and Pfeffer, 1997). The BN DAG represents a single
semantic dimension (causality), but other relationships are
required to represent the diagnostic process. Of specific
interest in diagnosis is the ability to model inheritance
hierarchies. For example, to diagnose “brain tumor or
neoplasm” or one of its many subtypes, a conventional BN
would require the parent disorder and all of its descendants to
each independently be represented in the DAG. This presents
not only complexity issues but also defies basic diagnostic
heuristics, e.g., that “brain tumor” shouldn’t “compete” in
the differential diagnosis with its child, “dominant temporal
lobe tumor”.

• Failure to capture the semantic overlap or partial synonymy
among findings. Semantic overlap is an inevitable byproduct of
a complex ontology. When semantic overlap occurs, findings
cannot be considered independent, and they jointly fail to
deliver the same diagnostic power that is implied by the
assumption of independence. For example, if a chest x-ray
shows left atrial enlargement (LAE), then an echocardiogram
showing LAE may provide slightly more information since
it has a higher specificity, but not as much as if the x-ray
had not been discerned. Similarly, if we first discerned that
the echocardiogram shows LAE, then the x-ray has little
to no additional diagnostic value. The effect of semantic
overlap in a system that assumes findings are independent
can cause overconfidence or premature closure, leading the
system to conclude that a specific disease is the correct
diagnosis when in fact there is insufficient evidence for that
claim. One approach that has been proposed to partially
address this problem is to introduce an intermediate node

that represents the collective effect of a set of correlated
findings (Yu et al., 1988; Nikovski, 2000; Velikova et al.,
2014).

• Failure to capture higher order statistics among finding
nodes of a given disorder, e.g., how findings vary with
duration of symptoms, age, gender, and other risk
factors. For example, gender per se has little effect on the
likelihood of psoriatic arthritis (PA), but males with PA are
significantly more likely to present with involvement of a
single joint.

• Failure to capture causal relationships among disorder
nodes (Richens et al., 2020). The assumption that a
patient’s findings must be explained by a single disorder
rather than the simultaneous occurrence of multiple
causally linked disorders can cause underconfidence
(diffidence), leading the system to fail to rank the
correct diagnosis or diagnoses as the top disorder(s)
even after sufficient information was presented for that
claim. For an in-depth discussion of diffidence and over-
confidence detection in diagnostic systems, see (Hilden et al.,
1978).

MATERIALS AND METHODS

This paper describes the MidasMed DA, a prototype system
based on a novel BN with improved diagnostic modeling. A
comprehensive description of the diagnostic engine that powers
the MidasMed DA is outside of the scope of this paper.
However, we provide highlights of the solution architecture
and key innovations that address the fundamental limitations
of traditional implementations listed above, and advance the
state-of-the-art in AI diagnosis.

The solution architecture consists of the following
key components:

• A rich semantic model that captures entity data and
relationships among entities of the medical ontology that
is largely independent of implementation constraints. The
semantic model is instantiated as an object-oriented model for
efficient diagnostic computations.

• A diagnostic engine that for each diagnostic request
dynamically generates a sparse BN, and then applies a Bayesian
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classifier to generate a differential diagnosis. The classifier
implements disorder subtype hierarchies to recursively and
efficiently generate a differential diagnosis with the maximum
disorder specificity supported by the data. For example, if
warranted by the data, the system will report “anteroseptal
acute myocardial infarction” instead of the less specific
“acute myocardial infarction.” Note that for many disorders,
optimum treatment depends on knowing the specific subtype.

• A “Best Next Finding”module that generates a set of additional
findings to discern (from the patient or clinician) in order to
most quickly and economically refine the diagnosis.

The semantic model describes the medical ontology and the
relationships among its concepts using statistical, logical, and
heuristic data. The model can be edited and viewed using a
web-based content management system (CMS), and is stored
in a semantic SQL database. A constructor algorithm generates
an object-oriented model from the semantic assertions in the
database, resulting in a Data Transfer Object (DTO). The
DTO may be serialized for storage and transport to the server
running the diagnostic engine. The DTO represents an in-
memory object-oriented image of the semantic model that
enables rapid and efficient diagnostic computation in real-time.
The DTO abstractly represents the global BN, although other
(more efficient) data structures are used to hold the node objects.
Each node encapsulates all the information it needs to discover
its graph neighbors via pointers to other nodes.

Our diagnostic model focuses primarily on the following
aspects: (1) dependencies among disorders, (2) subtype relations
within a disorder family, (3) the characterization of each
disorder in terms of its relevant findings and risk factors, (4)
statistical correlation and semantic overlap among findings, and
(5) finding contingency hierarchies stemming from the relative
semantic scope of each finding and the linear progression of the
diagnostic interview. Each of these topics in described in the
following sections.

Inter-disorder Dependency
Disorder dependency is important to model because a patient
may present with symptoms of both a causal disease and its
complication(s). For example, a patient might present with deep
venous thrombosis (DVT) in a leg, combined with symptoms
of pulmonary embolus, a life-threatening complication of DVT.
In cases where the initial cause is insidious or insufficiently
bothersome, or when the cause and its complication(s) occur
in rapid succession, the causal disorder may not have been
previously diagnosed. We do not want the classifier to “punish”
a disorder for not explaining findings of its co-presenting
dependent disorder(s); rather, such combinations of findings
often provide high confidence for the diagnosis of a combination
of causally linked disorders. Therefore, our classifier is designed
to identify single disorders or clusters of dependent disorders
that best explain the patient findings. Of course two independent
disorders may also jointly explain the patient findings; however,
the probability of such an event is generally much lower.

We used the term Multi-Disease Model (MDM) to describe
a classifier that detects and accounts for clusters of dependent

disorders in the differential diagnosis. One of the consequences of
MDM is that co-occurring dependent disorders may each explain
some of the same finding(s). We therefor need a mechanism
for describing how the joint interaction among disorders affects
the presentation of their common findings. We use the term
equivalent sensitivity to describe the sensitivity of a finding that
is relevant to multiple dependent disorders that are all assumed
to be present (with appropriate extensions for categorical and
continuous findings). To illustrate this case, suppose D1 causes
D2, and both share common a finding F1 with sensitivities s1,1 =
P(F1|D1) and s1,2 = P(F1|D2). The cluster consisting of D1 and
D2 has 3 configuration: {D+

1 , D
−
2 }, {D

−
1 , D

+
2 }, and {D+

1 , D
+
2 },

where the+/– indicate whether the disorder is present or absent.
When both disorders are present, F1 will have an equivalent
sensitivity for the configuration that depends on (a) the nature
of F1, (b) the sensitivities s1,1 and s1,2, and (c) whether or not F1
arises in D1 and D2 due to shared or distinct pathophysiological
mechanisms. For example, if F1 is body temperature, D1 causes
hypothermia and D2 causes fever (an admittedly unusual case),
then we would expect the patient temperature (given that she
has both D1 and D2) to be s1,1 < s1 < s1,2. On the other
hand, if D1 and D2 both cause fever, and due to the same
underlying mechanism, then we expect s1, ≈ max(s1,1, s1,2). But
if D1 and D2 both cause fever due to different mechanisms,
we might expect s1 > max(s1,1, s1,2). Now suppose F1 is time
to diagnosis, with the corresponding question “How long ago
did your symptom(s) begin?”. If D1 has a gradual onset with a
distribution centered on “months to years”, whileD2 has a shorter
onset, say “days to weeks” then the equivalent sensitivity will
satisfy s1 ≈ max(s1,1, s1,2), because the patient will most likely
associate the beginning of the problem with the onset of D1,
which started first.

To formally describe MDM, consider a cluster of dependent
disorders. To qualify, each cluster member must have at least
one link to another cluster member, and must explain at least
one abnormal patient finding. A disorder may belong to at most
one cluster, for if it belonged to multiple clusters those would be
merged into a single cluster. A disorder with no dependencies is
called a singleton (cluster of size 1). Let D1, . . . , DN be members
of cluster C, and F1, . . . , FM be the known patient findings. The
configurations of C are all permutations of the cluster disorders
in which some are present and others are absent. For the net
probability of C (all configurations) we have:

P
(

C
∣

∣f1, . . . , fM
)

=
∑

j

P
(

C+
j

∣

∣

∣
f1, . . . , fM

)

=
∑

j

I(C+
j ) ·

M
∏

i = 1

sij

(6)

where I(C+
j ) is the joint incidence (prior probability) of the

disorders in C+
j co-occurring, and sij is the equivalent sensitivity

for finding Fi in C+
j . The probability of cluster disorder Dk is

the sum of the probabilities of all configurations in which it is
present, i.e.,

P
(

Dk

∣

∣f1, . . . , fM
)

=
∑

j

P
(

C+
j

∣

∣

∣
f1, . . . , fM

)

· δjk (7)
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where δjk = 1 if Dk ∈ C+
j and 0 otherwise. While the total

number of configurations may be very large (since C may be
large) this does not present a computational problem, since the
vast majority of configurations can be discarded using pruning
heuristics with negligible effect on the accuracy of the cluster
probability computation. Note that given the set of all contending
diagnoses across all clusters, the cluster probabilities sum up to
1.0 but the disorder probabilities do not, due to co-occurrence
among the disorders.

Disorder Subtype Hierarchies
The ability to model disorder subtypes is important in diagnosis,
because disorder subtypes may have different prognoses and/or
require different treatments (e.g., viral vs. bacterial meningitis).
We use the term subtypy to define a framework for describing the
disorder inheritance hierarchy. Note that inheritance hierarchies
in diagnosis are statistical and not directly analogous to
the programming concept of object-oriented inheritance. In
diagnosis, the ancestor represents a statistical aggregate of its
descendants or variants, and while it may be convenient to think
of a subset of findings as manifest in the parent and passed on
to the children, there are usually variations in how these findings
are expressed (or not) in each child. For example, conjunctival
injection is always present in infectious conjunctivitis, and
inherited to both subtypes gonococcal (bacterial) conjunctivitis
and viral conjunctivitis. However, conjunctival hemorrhages are
more common in the viral variant, while eyelid edema and
purulent discharge are more common the bacterial variant.
Furthermore, a Gram stain of the gonococcal conjunctivitis
discharge may identify Gram-negative diplococci, but it is
irrelevant to the viral variant. So the Gram stain test finding is
relevant to the parent (infectious conjunctivitis), but not to its
viral child. In summary, a child attribute is always represented by
the parent, but not necessarily vice versa, and the manifestation
in the parent is a statistical aggregate of its children.

Because each parent represents the statistical aggregate of its
children, and the probability of each child varies based on the
patient findings, we must compute all sensitivities dynamically
for each new set of patient findings, and we must do so by
starting at the very bottom of the hierarchy tree (the “leaves”
or childless disorders). To see why this is the case, consider a
simple example with parent disorder meningitis and its children
viral and bacterial meningitis. The prior probability (incidence)
of meningitis in the U.S. is ∼9.25e-5. Approximately 82% of
cases are viral and 18% bacterial. Consider the finding “CSF
culture positive for bacteria.” This finding is relevant to bacterial
meningitis with sbm ≈0.95 and is not relevant to viral meningitis,
so we assign a noise sensitivity, e.g., svm =0.02, and compute the
sensitivity in the parent as the weighted sum: sm = (Ivm · svm +

Ibm · sbm)/Im = 0.82 · 0.02 + 0.18 · 0.95 = 0.187. Now suppose
this finding was determined to be positive in the patient. The
posterior relative probability of the children is now Pvm = Ivm
· svm = 0.82 · 9.25e-5 · 0.02 = 1.152e-6 and Pbm = Ibm · sbm
= 0.18 · 9.25e-5 · 0.95 = 1.58e-5. The relative probability of the
children has changed from 0.82/0.18 to 0.07/0.93, and sm = 0.07
· 0.02 + 0.93 · 0.95 = 0.88. Similarly, if the finding was negative
in the patient then Pvm = Ivm · (1− svm)= 0.82 · 9.25e-5 · 0.98=

7.43e-5, Pbm = Ibm · (1 − sbm) = 0.18 · 9.25e-5 · 0.05 = 8.32e-7,
the relative probability ratio is 0.99/0.01 and sm = 0.99 · 0.02 +

0.01 · 0.95= 0.03.
From the end user perspective it is desirable for the diagnostic

process to proceed from the general to the specific (e.g., from
“stoke or TIA” to “cortical posterior cerebral artery stroke,
dominant”) progressively as more of the relevant patient findings
are discerned. To do so, we use a heuristic called Child Better
than Next that replaces a parent disorder by all its direct children
provided that the relative probability of at least one of the
children exceeds that of the next disorder in the differential
diagnosis stack. This requires the disorders to be ranked by
descending relative probability, and for the stack to be resorted
after each replacement.

Disorder Findings Dependencies
Each finding is modeled as binary, discrete multi-valued
(categorical), or a continuous random variable. We use the
term “finding” broadly to include risk factors, and distinguish
between them by selecting the appropriate interaction model
(e.g., reflecting direction of causality) when computing their
impact on disorder probabilities.

While some findings may justifiably be modeled as
conditionally independent for a given disorder (Naïve Bayes),
this is not the case in general. Frequently, findings vary with
other findings that are not directly relevant to the index disorder.
In such cases we can write:

P
(

f1|D
)

= P
(

f1|f2, . . . , fL,D
)

(8)

where F1 is relevant to D and P
(

f1|D
)

can be described by a
multidimensional probability distribution, with factor findings
F2, . . . , FL that are not necessarily directly relevant to D, but
act as factors in the computation of its finding probabilities.
Common factor findings are age, gender, and time-to-diagnosis;
however, many findings have their unique factor findings. For
example, Figure 3 depicts the distribution of serum glucose for
diabetic ketoacidosis (DKA) as a function of factor findings
“current pregnancy” and “recent heavy alcohol consumption”.

Inter-findings Dependencies
Failure to capture semantic overlap or disjunction can cause
significant distortion unless inter-finding dependencies are
properly managed. At the root of the problem is the basic
concept of finding diagnostic power. The diagnostic power of a
finding represents how much information it contributes to the
likelihood of a disorder relative to contending disorders. That is,
given what we already know about the likelihood of a disorder
from its prior probability (incidence) and previously ascertained
findings, how much additional information does a new finding
provide? We define diagnostic power using a measure called
the probability factor (PF), which is the ratio of the probability
of the finding in the disorder relative to its prevalence in the
general population. Table 4 in Supplementary Materials shows
how this measure relates to other popular measures that quantify
the discriminating power of a finding.

To illustrate the problem of semantic overlap, consider a
patient complaining of pain, edema (swelling), and erythema
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FIGURE 3 | This figure (image captured from our CMS) shows random serum glucose modeled as a log normal distribution for (peak distributions left-to-right): normal

(healthy), chronic diabetes mellitus, and DKA. The overlay table in the top left shows multifactorial distributions of serum glucose for DKA as a function of factor

findings “current pregnancy” and “recent heavy alcohol consumption”.

(redness) at the knee. These findings collectively represent
aspects of knee joint inflammation in rheumatoid, traumatic,
or reactive arthritis. Note however that these findings are not
correlated or even jointly relevant for all disorders that cause
knee pain. For example, L4 lumbar disc herniation can cause knee
pain, but not edema or erythema.

We address semantic overlap by defining an intermediate
node called an xopathy (a generalization of terms such
as neuropathy, dermopathy, or arthropathy). The xopathy
framework enables us to represent a set of findings that are
conditionally dependent with respect to an index disorder using
an interim aggregate node. The xopathy sensitivity represents the
incidence of the xopathy in the population of patients with the
disorder. The xopathy sensitivity can also be interpreted as the
conditional probability that one or more of the xopathy findings
is present given the index disorder.

Let D represent a disorder with conditionally dependent
findings F1, . . . , FL. We construct an xopathy Xop with
the findings as its members, and each having a sensitivity
si = P(fi|xop). We are also given the xopathy sensitivity,
sXop = P(xop|D). Our goal is to compute dynamic sensitivities
s∗1 , . . . , s

∗
K , K ≤ L for each known finding that satisfy

P
(

f1, . . . , fK |D
)

=

K
∏

i=1

s∗i (9)

The actual algorithms for computing {s∗i } are beyond the scope
of this paper. However, we provide a brief outline of the process
with key equations.

Step 1: Compute the independent xopathy diagnostic power
(probability factor), PFindep, as the product of the finding PFs.
This represents the diagnostic power we would introduce into
the disorder probability computation if we assumed the findings

were independent. As noted earlier, PFindep will generally be
greater than the desired diagnostic power when the findings
are correlated.

PFindep
(

Xop
)

=

K
∏

i=1

PF
(

fi
∣

∣Xop
)

(10)

where
(

fi
∣

∣Xop
)

= si/ni, ni is the prevalence of Fi in the general
population, and si is the finding sensitivity relative to the xopathy.
Note that the findings are independent relative to the xopathy
(but not the disorder), which allows us to use the Naïve Bayes
assumption in Equation (10).

Step 2: Determine the maximum allowed PF for this xopathy,
PFmax

(

Xop
)

. If PFindep exceeds PFmax then apply compression
to decrease finding sensitivities. We denote the compressed
sensitivities {s̈i}. The compression algorithm must satisfy several
constraints, such as preserving the relative magnitude of the
original sensitivities (si > sj → s̈i > s̈j), and ensuring that

positive findings remain so
(

si
ni

> 1 →
s̈i
ni

> 1
)

.

Step 3: Reflect the xopathy sensitivities to the disorder. The
sensitivities {s̈i} represent the conditional probability of the
findings on the xopathy, but what we really want is sensitivities
conditioned on the disorder per Equation (9). Let x0 = sXop =

P(xop|D), ŝ =
(

∏K
i = 1 s̈i

)
1
K
, and n̂ =

(

∏K
i=1 ni

)
1
K
, where ŝ and

n̂ represent the geometric means of {s̈i} and {ni}, respectively.
For simplicity, in this derivation we’re interpreting si as the
probability of the finding Fi in its known state. If the finding is
negative then si = 1− P(Fi is positive).

We initialize the algorithm as follows:
{

s̃1 = x0 · ŝ+ (1− x0) · n̂

x1 = x0 ·
ŝ
s̃1

(11)
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Note that s̃1 is the expected sensitivity over the two mutually
exclusive disorder subpopulations: the xopathy population with
prior probability x0, and the complementary population with
prior probability (1 − x0). With each discerned finding, the
probability that the patient belongs to the xopathy subpopulation
changes. If the finding was positive the xopathy probability
increases and if it was negative it decreases.

Similarly, for the remaining iterations, j = 2, ..,K we have:

{

s̃j = xj−1 · ŝ+ (1− xj−1) · n̂

xj = xj−1 ·
ŝ
s̃j

(12)

Similar to ŝ, we define š =
(

∏K
i = 1 S̃i

)
1
K
as the geometric mean of

the raw disorder sensitivities computed in Equation (12). Finally,
we normalize the

{

s̃j
}

using the scaling factor R = š
ŝ
in order to

preserve the xopathy diagnostic power achieved in Step 2. The
final sensitivities {s∗i } for Equation (9) are:

{

s∗i = R · s̈i for R ≤ 1.0
s∗i =

R·s̈i
1+s̈i(R−1) for R > 1

(13)

The second form of s∗i in Equation (13) uses the function f (x) =
R·x

1+x(R−1) to guarantee that the sensitivity never exceeds 1.0.While
previous work has described the use of intermediate nodes to
express the aggregate sensitivity of correlated findings (Yu et al.,
1988; Nikovski, 2000; Velikova et al., 2014), we are unaware
of other successful attempts to express the diagnostic power
and sensitivity of the intermediate node as independent finding
sensitivities for the disorder per Equation (9). This process is
critical to avoid semantic disjunction in MDM computations. To
see why this is the case, consider dependent disorders D1 and D2.
Suppose findings F1 and F2 are relevant to both disorders, but
are only conditionally dependent with respect to D1. If we were
to replace F1 and F2 by an xopathy node Xop(F1, F2) as a finding
of D1, then the disorder cluster {D1, D2} would have 3 findings
instead of 2, thus creating semantic disjunction and rendering the
equivalent sensitivities incorrect.

Finding Contingency Hierarchies
The finding contingency hierarchy represents a formalization of
the “drill-down” conventions of the medical interview. The top
finding (e.g., “chest pain”) is usually followed by more specific
findings like quality or character of the pain (e.g., sharp, dull,
stabbing, burning, pressing), exacerbating factors (e.g., cough or
exercise), relieving factors (e.g., drinking water or sitting up), etc.
For many “top level” findings like chest pain or skin rash there
may be tens of additional secondary or contingent findings that
need to be discerned to obtain a clear picture of the disease state.

We say that finding Fc is contingent on Fp (and Fp is a
prerequisite of Fc) if Fc has no meaning unless Fp has been
discerned. Usually, Fc won’t have any meaning unless Fc takes
on specific state(s). For binary findings, this condition is always
that the prerequisite finding must be positive. For example, we
can’t ask about chest pain quality if the patient has denied
chest pain. Note that a prerequisite finding may have multiple
contingents, and that a contingent findingmay also havemultiple

prerequisites. Furthermore, contingencies may be chained or
nested to multiple levels.

In some cases the contingency chain must be queried in a
specific order to create a coherent interview that makes sense
to the patient. For example, if the patient complains of a skin
lesion, we cannot ask “How deep is the ulcer?” unless we first
determine that the lesion is, indeed, an ulcer. Similarly, if the
patient complains of abdominal pain, there is no point asking “Is
the pain relieved by antacids?” (suggests a peptic ulcer) unless
we first discern that the pain is located in the upper abdomen.
Similarly, we cannot ask “Which came first, the abdominal pain
or the nausea & vomiting?” until we have discerned that both
findings were reported.

Finding contingency chains present an interesting dilemma,
namely, what probability to assign to contingent findings whose
prerequisites are irrelevant to an index disorder. To illustrate this
scenario, suppose the patient presents with 2 positive findings,
F1 and F2 and that there are 3 contending disorders, D1, D2, and
D3. Suppose F1 is relevant to all 3 disorders and F2 is relevant
only to D1 and D2. For simplicity assume all disorders have
the same incidence, all findings have a sensitivity of 0.3 to all
relevant disorders, and that all findings have a noise sensitivity
of 0.02. The relative probabilities of the disorders at this point
are P(D1)/P(D2)/P(D3) = 0.32/0.32/0.3 · 0.02. The relative
probability of D3 has decreased by approximately an order of
magnitude. Now suppose F2 has contingent finding F21that is
positive in the patient, and only relevant to D1. The updated
relative probabilities are P(D1)/P(D2)/P(D3) = 0.33/0.32 ·

0.02/0.3 · 0.022. The decrease of P(D2) relative to P(D1) seems
justified, because given F2, D1 matches the finding pattern better
thanD2. However,D3 has essentially been punished twice for not
explaining the prerequisite finding. Each time we query another
finding in the F2 contingency chain the relative probability of
D3 will decrease by the probability factor 0.3/0.02, and very
quickly D3 will be discarded from consideration. We use the
term “don’t care” finding to mean a positive contingent finding
for a prerequisite that is irrelevant to the index disorder. In
our example, F21 is a “don’t care” condition for D3. We further
stipulate that the relative probability of a disorder should be
minimally impacted by its “don’t care” findings. The solution we
implemented was to derive a weak positive sensitivity to “don’t
care” findings.

The MidasMed Diagnostic Engine and Web
App
The diagnostic engine is implemented as a web server that
receives stateless diagnostic requests from a client, and returns a
response consisting of a probability ranked differential diagnosis
and a ranked list of the best next findings to discern. The first
step is to generate a list of all valid diagnoses that explain at
least one abnormal patient finding. The disorder list is used to
create a dynamic sparse BN. It is sparse, because it contains only
valid diagnoses for the given request. As described earlier, the
conditional probabilities for each parent disorder are represented
as statistical aggregates of the children. Note that there is
no need to compute the entire finding conditional probability
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FIGURE 4 | Illustration of recursive BN computations for disorder cluster and subtype fragments. (A) Cluster fragment for patient findings F1 and F3 and disorder

subtype ancestors. (B) Subtypy tree for disorder D3. (C,D) D3 in original network has been replaced by its children D31 and D32 to compute the cluster probabilities

with the two children.

distribution, only the probability of the patient value. A recursive
computation is then initialized with the ancestor disorders of
each subtype family. MDM computations are applied, and the
disorders are placed in a stack and ranked by descending relative
probability. The Child Better than Next heuristic is then applied
recursively (starting at the top of the disorder stack), by replacing
the next qualified parent and all its siblings by all their children,
updating the relative probabilities, and resorting the stack. Note
that only the MDM cluster containing the parent(s) needs
to be recomputed with each replacement. The resulting final
differential diagnosis offers the user the appropriate diagnostic
subtype specificity for the known findings.

Figure 4 illustrates a fragment of a single iteration in this
recursive process. Figure 4A shows a cluster fragment for patient
findings F1 and F3. Note that F3 is relevant to both D2 and D3,
so it will require an equivalent sensitivity for configurations in
which both disorders are present. In the next iteration (if the
Child Better than Next criterion is satisfied) D3 will be replaced
by children D31 and D32. In the following iteration D31 and D32

(siblings) will be replaced by all their children (D311, D312, D321,
and D322). Note that the network in Figure 4A depicts causality
(e.g., D1 causes D2 and D3), while the network in Figure 4B

depicts disorder subtypes (e.g.,D3 is a supertype ofD31 andD32).
Subtypes of a single parent (siblings) are considered mutually
exclusive, so P(D31) is computed using the configurations of the
cluster in Figure 4C. However, the probabilities of the dependent
disorders (D1 and D2) are computed from the configurations

of both Figures 4C,D, by summing the probabilities of all
configurations in which they appear. Similarly, in the next
recursion, configurations will be computed withD311,D312,D321,
and D322.

The innovations described above combine to produce a
nuanced approach to diagnosis that we assert results in
substantially greater accuracy than existing solutions in that the
differential diagnosis probabilities are more consistent with the
evidence available to support them. We further assert that with
diagnostic guidance based on Bayesian probabilities, heuristics,
and estimated costs, the differential diagnosis converges to the
correct diagnosis more efficiently, potentially translating into
time and cost savings.

Our prototype system (MidasMed) currently recognizes a
limited subset of 200 common adult primary care disorder
subtype families (760 total diagnoses) spanning a variety of
systems (respiratory, dermatology, neurology, musculoskeletal,
etc.), and 4,000 findings (We estimate these encompass
approximately half of the disorders a competent primary
care physician should be able to recognize.). The semantic
network is defined using statistical and logical analysis of
epidemiological data, case series, journal articles, textbooks, and
other online resources.

MidasMed includes a user-friendly web app for both patients
and clinicians using dual vocabularies and default application
settings for the two distinct user groups. For example, by
default patients and lay caregivers are presented only with
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history questions in lay terminology, while professional users are
asked all finding types (including exam and test results) using
professional terminology. The user interface is interactive, and
is designed to give the user maximum flexibility and control.
Throughout the encounter, patient findings can be augmented,
edited or deleted. The user can choose from 3 ways of entering
new findings to refine the initial differential:

1. Search: The user selects her own findings from a global
findings list.

2. Guide Me: MidasMed asks a short series of the best next
questions to discern.

3. Drill Down: The user selects a disorder from the differential
diagnosis to view, rank, and select undiscerned findings for
that disorder. This allows the user to focus on a condition of
particular concern due to urgency or severity, and answer the
questions that will most efficiently rule it in or out.

Experimental Paradigm
In this research we compare the performance of MidasMed
to that of physicians and six other publicly accessible online
diagnostic aids: Ada, Babylon, Buoy, Isabel, Symptomate, and
WebMD. To facilitate a comparison with previous studies,
we used a set of publicly available case vignettes (Semigran
et al., 2015) that were tested on 23 symptom checkers in 2015,
physicians (Semigran et al., 2016) and on three physicians and
the Babylon DA in 2020 (Baker et al., 2020). The vignettes are
available online in the format of Table 1. (See Table 5 in the
Supplementary Materials for a complete list of vignettes and also
a link to the vignettes file).

As in the previous studies (Semigran et al., 2015; Baker et al.,
2020), we used only the information from the “Simplified (added
symptoms)” column of the vignette file, and excluded vignettes
based on conditions on which MidasMed had not yet been
educated (in conformance with the methodology of Baker et al.,
2020). This resulted in a test set of 30 vignettes, the same number
used in Baker et al. (2020). We note that none of the vignettes
had been used in the training, education or parameterization
of MidasMed.

We regarded the diagnosis presented in the “Diagnosis”
column of the vignette file as the true or “target” diagnosis, except
in 2 cases where no final diagnosis was provided but was clearly
implied (the implied diagnosis was used), and 2 cases where
multiple causally linked disorders were implied by the vignette
history (either implied diagnosis was accepted). We did not find
descriptions of how these problematic vignettes were treated in
the previous articles. These exceptional cases are clearly identified
in Table 5 in the Supplementary Materials.

In two cases the diagnosis provided for the vignette seemed
inadequately substantiated by the simplified vignette history
in our clinical opinion. For presumed consistency with the
previously reported research, we nonetheless regarded it as
the target diagnosis. These cases are also identified in the
Supplementary Materials (Table 5).

MidasMed is an incomplete prototype, and therefore has not
been publicized or promoted, but is publicly accessible (for a
limited time) for evaluation and feedback at midasmed.com,

and the vignette cases created for this article are publicly
accessible via the application for anyone to view and experiment
with (see instructions in the Supplementary Materials). At this
writing, MidasMed recognizes only 200 adult disorder families.
A complete list of supported diagnoses can be found in the app at
midasmed.com from the Options (hamburger) menu.

For this study we used all of the adult vignette cases from the
source file on which MidasMed has been educated, plus three
pediatric cases for which the presentation is very similar to that in
adults. Since MidasMed only accepts patient ages ≥ 18, the ages
of the three pediatric patients were transposed to 18 years.

All the other DAs evaluated are publicly promoted as
diagnostic aids for the general public. (One limits the age to≥ 16,
for which the age of the two younger patients was also transposed
to that minimum age). Since none of the vignettes are based
on rare disorders, we assumed the other DAs to be capable of
recognizing all the target diagnoses.

The data for physicians and the Babylon DA were taken from
Baker et al. (2020), and were not independently replicated in this
study. For each of the other diagnostic assistants one of us (D.
Jones, MD, board certified in emergency medicine with 25 years’
primary care experience) entered only the “Simplified (added
symptoms)” findings for each vignette into the online DAs (See
the Supplementary Materials for links to all the DAs). Note that
these simplified vignettes were designed to reflect only the history
findings and observations that a patient could enter. For each
DA we recorded (a) the fraction of cases for which the target
diagnosis was #1 in the list of diagnoses provided; and (b) the
fraction for which the target diagnosis was in the top 3 disorders
of the list.

RESULTS

The results of our research are presented in Table 2.

Limitations Regarding Our Results
Although MidasMed aspires to be a complete diagnostic aid
for both patients and clinicians, and therefore includes the
physical examination and test findings required to definitively
diagnose the disorders on which it has been educated, only
history findings were entered in this study. The objective here
was to quantify the ability to identify the correct diagnosis based
on sparse patient histories, as are readily available directly from
patients online.

With only 30 cases, the statistical reliability of the results is
low, as reflected in the broad confidence intervals. The original
study for which the vignettes were created (Semigran et al., 2015)
included 45 vignettes, but only the 27 adult plus 3 pediatric
disorders on which MidasMed has been educated were tested
in this study, and only 30 in the study (Baker et al., 2020) that
produced the physician and Babylon data reported here.

It is possible that as the breadth of disorders covered
by MidasMed is increased, and the correct diagnosis
must compete with a greater number of similar disorders,
accuracy will decline. However, since (a) the disorders
presently covered by MidasMed were selected because
they are among the most common, and (b) the vignette
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TABLE 1 | Sample vignette.

Diagnosis Vignette Simplified (added

symptoms)

Requires emergent care (n = 15)

Appendicitis A 12-year-old girl presents with sudden-onset severe generalized abdominal pain

associated with nausea, vomiting, and diarrhea. On exam she appears ill and has a

temperature of 104◦F (40◦C). Her abdomen is tense with generalized abdominal pain,

nausea, tenderness and guarding. No bowel sounds are present.

12 y/o f, sudden onset

severe abdominal pain,

nausea, vomiting,

diarrhea, T = 104

TABLE 2 | Performance comparison summary results for 7 DAs and physicians.

Physician or DA Vignettes tested Target diagnosis ranked #1 Target diagnosis in the top 3

Fraction Percent (%) 95% CIe Fraction Percent (%) 95% CIe

Physiciansa 90b 68/90b 75.3 65.4–84.0 81/90b 90.3 81.9–95.3

Ada 30 22/30 73.3 54.1–87.7 27/30 90.0 73.5–97.9

Babylona 30 21/30 70.0 50.6–85.3 29/30 96.7 82.8–99.9

Buoy 21c 11/21 52.4 29.8–74.3 15/21 71.4 47.8–88.7

Isabeld 30 15/30 50.0 31.3–68.7 21/30 70.0 50.6−85.3

MidasMed 30 28/30 93.3 77.9–99.2 29/30 96.7 82.8–99.9

Symptomated 30 21/30 70.0 50.6–85.3 26/30 86.7 69.3–96.2

WebMDd 30 20/30 66.7 47.2–82.7 28/30 93.3 77.9–99.2

All DAs 201 138/201 67.7 61.8–75.0 175/201 87.1 81.6–91.4

Top 3 DAsf 90 71/90 78.9 69.0–86.8 82/90 91.1 83.2–96.1

aThe Babylon and physician tests were not replicated in this study, but were transcribed from Baker et al. (2020), which used the same methodology.
b In the Babylon study three physicians were tested, but only percent data were reported; therefore 95% CI’s were computed assuming a total of 90 vignettes (30 per doctor).
cFor 9 of the 30 disorders presented, Buoy gave no proposed diagnoses; only triage recommendations (e.g., “Contact a medical professional” or “Call 911!”).
d Isabel, Symptomate, and WebMD are the only DAs tested both in the original paper (Semigran et al., 2015) and this study.
eCI intervals were computed using Clopper-Pearson exact method for binomial probability distributions.
fFor a larger sample size to compare with physicians, we combined the top 3 DAs we tested (Ada, MidasMed, and Symptomate).

diagnoses are mostly common disorders, adding the less
common disorders is unlikely to hinder the recognition of
the vignette disorders. Rather, it will be difficult (probably
impossible) to correctly identify an uncommon disorder
(e.g., bronchiectasis or idiopathic pulmonary fibrosis) as the
most likely diagnosis based on only sparse vignette histories
such as were used here, some of which contain only 3 or 4
common findings.

It was difficult to make perfectly fair comparisons of the
different DAs due to differences in their user interface (UI)
approaches. For example, some apps (e.g., MidasMed, Ada) offer
an “unknown” option for (virtually) every follow-up question
queried, making it easy to limit the information entered strictly
to the items provided in the simplified vignettes. However, other
DAs (e.g., Buoy, Symptomate), presented follow-up questions
that required an affirmative or negative answer to proceed.
In those cases (i.e., when forced to provide information not
in the vignette), we attempted to err in the direction of
aiding the DA under test, by answering as a typical patient
with the target disorder would most likely answer. In a few
cases, it was not possible to enter all history items for a
specific vignette because an item was both (a) not accessible
in the DAs search facility (despite trying multiple synonyms),
and (b) not queried via follow-up questions presented by
the DA.

DISCUSSION

Canadian physician Sir William Osler (1849–1919), “the father
of modern medicine,” is known for saying, “Listen to your
patient, he is telling you the diagnosis.” This message repeats in
the medical school maxim, “90% of the diagnosis comes from
the history, 9% from your examination, and 1% from tests”
(Gruppen et al., 1988; Peterson et al., 1992). This maxim has been
forgotten in today’s over-stressed healthcare system. Too rushed
to take a comprehensive history, doctors often compensate by
ordering test panels, referring to specialists, and scheduling
more follow-up visits; “Next patient, please.” Patients on the
receiving end are justifiably frustrated and open to alternatives.
But with the growing role of telehealth, where the ability to
perform exams or order stat tests is limited, patient history should
regain its role as the primary factor in the diagnostic equation.
There is also a broader trend toward democratizing access to
medical information, or “eHealth” via phone apps, wearables, and
inexpensive measurement devices, giving patients more control
over care options.

In this study we performed a prospective validation of a novel
Bayesian diagnostic assistant (MidasMed), and compared it to
five online DAs (Ada, Buoy, Isabel, Symptomate, and WebMD)
and to the accuracy previously reported for the Babylon DA and
physicians. MidasMed was able to identify the correct diagnosis
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as most likely with 93% accuracy, significantly outperforming
physicians (75%) on the same vignettes (Baker et al., 2020).

We attribute the superior performance of MidasMed to
a diagnostic model that moves beyond the “leaky noisy
OR gate” assumption of conditional independence among
the BN nodes (Henrion, 1987), and to reducing semantic
overlap and disjunction that are common in the medical
literature and can lead to significant distortion in estimated
probabilities of the outcomes. These simple vignettes and
our scoring technique did not give MidasMed credit for
diagnosing co-present causally related disorders. In particular,
it is noteworthy that for the two vignettes that imply the
causal co-occurrence of multiple disorders, MidasMed produced
estimated relative probabilities for these disorders whose sum
approaches 200%, implying a high likelihood of co-occurrence
(See the Supplementary Materials, for instructions to access the
cases online).

It appears from our results that the accuracy of online DAs
has improved significantly in the 6-year interim since the original
paper (Semigran et al., 2015) evaluated the study vignettes.
In that paper, the best-performing symptom checker listed the
target diagnosis first only 50% of the time, and in the top
three only 67% of the time; and the average performance of
19 symptom checkers in that study for the top 1 and top
3 was only 34 and 51%, respectively. Whereas in this study,
the best performance was 93% (top 1) and 97% (top 3); and
the average DA performance was 68 and 86%, respectively,
showing significant improvement. Furthermore, in this study the
performance of the top three DAs combined was 78.9% (top 1)
and 91.1% (top 3), comparing very favorably with physicians
(75.3 and 90.3%, respectively). Note that in the later comparison
we use the 90 vignette aggregates, with similar narrower
confidence intervals.

We note several differences in test methodology that may
have contributed to the apparent accuracy improvements relative
to Semigran et al. (2015) for previously tested DAs. First, in
Semigran et al. (2015), all data was entered by non-clinicians,
who may not have been as facile at matching symptoms to
their various DA synonyms as the physician-testers in this
study and in Baker et al. (2020). However, that method may
give a better estimate of “read world” performance with real
patients seeking diagnosis. Second, responses to “mandatory”
questions (without which the interview does not proceed, but
are not answered by the vignette) may have been entered
inadvertently in a way that “punished” the target diagnosis,
whereas in this study we explicitly answered such questions
to favor the target diagnosis. Third, in Semigran et al. (2015)
all 45 vignettes in the source file were used to test all
DAs without verifying support for the target diagnosis. These
factors may have contributed to the lower scores in the
earlier study.

Future Work
At this time MidasMed recognizes a limited set of disorders
spanning all organ systems, but lacks comprehensive coverage for
any specific system. To complete our technology validation, we
plan next to expand its education to in-depth coverage of a major
organ system (e.g., gastrointestinal and hepatobiliary disorders),
and verify that (a) it continues to recognize most disorders as
the likely diagnosis based on history alone, (b) it recognizes all
disorders with high accuracy when exam findings and tests are
included, and (c) it guides the user efficiently from the initial
differential to the definitive diagnosis by optimizing a preset
criterion (e.g., diagnostic utility-to-cost ratio). When sufficient
data has been acquired, we will apply statistical reliability
measures (e.g., Hilden et al., 1978) to assess the confidence and
diffidence of the DA’s probability estimates.

Although the goal of this paper was limited to the
comparison of the diagnostic accuracy of currently available
online diagnostic assistants using standardized vignettes, we hope
in future work to present our diagnostic innovations in greater
detail, and to explicitly measure and compare the accuracy
contribution of individual algorithmic innovations (e.g., our
modeling of dependencies among findings, modeling of subtypy
relationships among disorders, use of continuous probability
distributions, etc.).

In this work, to facilitate an apples-to-apples comparison with
prior results, we tested on a small set of case vignettes previously
tested in Semigran et al. (2015, 2016), Baker et al. (2020).We hope
in future work to test across multiple DAs using larger sets of
test cases.
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Automated detection of knee
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Background: Cystic lesions are frequently observed in knee joint diseases

and are usually associated with joint pain, degenerative disorders, or acute

injury. Magnetic resonance imaging-based, artificial intelligence-assisted cyst

detection is an effective method to improve the whole knee joint analysis.

However, few studies have investigated this method. This study is the first

attempt at auto-detection of knee cysts based on deep learning methods.

Methods: This retrospective study collected data from 282 subjects with knee

cysts confirmed at our institution from January to October 2021. A Squeeze-

and-Excitation (SE) inception attention-based You only look once version 5

(SE-YOLOv5) model was developed based on a self-attention mechanism

for knee cyst-like lesion detection and differentiation from knee effusions,

both characterized by high T2-weighted signals in magnetic resonance

imaging (MRI) scans. Model performance was evaluated via metrics including

accuracy, precision, recall, mean average precision (mAP), F1 score, and

frames per second (fps).

Results: The deep learning model could accurately identify knee MRI scans

and auto-detect both obvious cyst lesions and small ones with inconspicuous

contrasts. The SE-YOLO V5 model constructed in this study yielded superior

performance (F1 = 0.879, precision = 0.887, recall = 0.872, all class

mAP0.5 = 0.944, effusion mAP = 0.945, cyst mAP = 0.942) and improved

detection speed compared to a traditional YOLO model.

Conclusion: This proof-of-concept study examined whether deep learning

models could detect knee cysts and distinguish them from knee effusions.

The results demonstrated that the classical Yolo V5 and proposed SE-Yolo V5

models could accurately identify cysts.
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knee joint, cyst, effusion, magnetic resonance imaging, deep learning
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Introduction

Benign cysts are frequently encountered during body
examinations or advanced knee imaging. Cysts can be
categorized into various types, including Baker’s cysts, proximal
tibiofibular joint cysts, meniscal cysts, and intraosseous cysts
at the insertion of the cruciate ligaments (1). Intra- and
periarticular cyst-like lesions are secondary phenomena likely
to be observed in painful or osteoarthritis (OA) affected
knees (2). They are strongly associated with intra-articular
pathologies or complications of various disorders, such as
trauma, meniscus injury, infection, inflammatory arthritis, and
malignant lesions (3). Cysts and joint effusion are also key
features in two semi-quantitative assessments of knee OA, the
Whole-Organ Magnetic Resonance Imaging Score (WORMS)
and the MRI Osteoarthritis Knee Score (MOAKS) (4, 5).
Such fluid accumulation may range from benign to minimally
symptomatic and poses a diagnostic dilemma if one is unaware
of the potential diagnoses and pitfalls (3). Therefore, it is crucial
to develop an appropriate differential diagnosis of knee cystic
lesions to guide further evaluation and treatment of OA.

Magnetic resonance imaging is commonly used to confirm
whether lesions are cystic due to its superior soft-tissue
contrast and multi-planar imaging capabilities compared to
other imaging modalities (1). MRI can help delineate the
location of lesions concerning anatomic structures and, with the
application of contrast, determine if lesions are cystic or solid
(6). Typically, cysts located around the knee are encapsulated
fluid collections with low T1-weighted signals and high T2-
weighted signals on MR scans, similar to benign intra-articular
fluid collections, effusions, or certain types of soft-tissue tumors
(7–10). Radiologists and clinicians must familiarize themselves
with the MRI features of the cyst and cyst-like lesions to
accurately diagnose the disease, develop treatment plans, and
manage patients more effectively.

Artificial intelligence and deep learning are increasingly
utilized in the medical field both in medical imaging and
biomedical analysis (11, 12). The role of AI in medical
imaging of knee joints has been described in many
primary publications (13), with an emphasis on OA-related
research, such as auto-segmentation of knee joint tissue
(14, 15), and auto-detection of cartilage lesions, meniscus
injuries, and anterior cruciate ligament tears (16–19). The
deep learning models for such detection demonstrated
relatively superb accuracy, ranging between 70 and 100%
across various studies, suggesting that such methods
exhibit the potential to rival human-level performance in
decision-making tasks related to the MRI-based diagnosis
of knee injuries. These methods promote the growth
of medical enterprises and help create more intelligent
medical services.

Most of the current deep learning research on the knee
joint focuses on knee OA and acute knee injuries, but few

studies have examined knee joint cysts, cyst-like lesions,
or joint effusion. In 2018, a deep convolutional neural
network (CNN) was applied to the segmentation of knee
joint anatomy, achieving dice coefficients between 0.7 and 0.8
for both joint effusion and Baker’s cyst for each joint (20).
A more recent study constructed a dense neural network
(CNN) for detecting effusions, defined as nonzero MOAKS-
ES scores, from limited MRI scans (21). It was demonstrated
that NNs could classify knee effusions from low-resolution
images with similar accuracy to human radiologists, suggesting
that automated evaluation of scans from low-cost, low-field
scanners could help assess knee effusions. Other than these
two publications, there is no other literature on applying
deep learning to cyst detection. It remains unclear whether
deep learning techniques can detect cysts and distinguish
them from effusions.

Most of the current deep learning research about knee joints
focuses on knee osteoarthritis and acute knee injuries, and very
few studies examine knee joint cysts, cyst-like lesions, or joint
effusion. In 2018, a deep convolutional neural network was
applied to the segmentation of knee joint anatomy in a study
published by Liu et al. (20). Using the deep learning model,
20 subjects in sagittal frequencies selected fat-suppressed 3D
fast spin echo sequences were segmented using 12 different
joint structures, and a Dice coefficient between 0.7 and 0.8
was achieved for both joint effusion and Baker’s cyst for
each joint. This is the first attempt at deep learning used on
joint effusions and cysts. In 2022, Harvard University Bragi
Sveinsson carried out a study that created a dense NN (CNN) for
detecting effusions, defined as nonzero MOAKS-ES scores, from
limited MRI scans (21). Additionally, it was proved that neural
networks can classify knee effusions with similar accuracy to that
offered by human radiologists utilizing low-resolution images,
suggesting that automated assessment of images from low-cost,
low-field scanners may be useful for assessing knee effusions.
Other than the two publications mentioned above, there are no
other literature reports on the application of deep learning to
cyst detection. It is not clear whether deep learning technology
can be used to detect cysts and the performance of identifying
them from effusions.

The present study introduced a deep learning model for the
auto-detection of knee cystic lesions to address this knowledge
gap. It evaluated the model’s performance in differentiating
knee cysts from knee effusions, which could facilitate the
early diagnosis and prevention of knee cysts in mass detection
by clinicians. To our knowledge, this is the first attempt at
automatically detecting knee cysts and distinguishing them from
knee effusions using deep learning methods. Because of the
limited amount of data, Mosaic augmentation was used in
data preprocessing to increase the volume of training data. To
enhance the ability to detect cysts of various sizes, Yolo-V5
was used as a backbone network alongside a featured pyramid
architecture for detection. An attention mechanism, the SE

Frontiers in Medicine 02 frontiersin.org

153

https://doi.org/10.3389/fmed.2022.928642
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-928642 August 3, 2022 Time: 17:3 # 3

Xiongfeng et al. 10.3389/fmed.2022.928642

TABLE 1 Patient demographics (mean ± s.d.).

Basic information Total subjects (n = 282) Female (n = 192) Male (n = 90) P-value

Age(years) 52.87± 13.22 52.95± 13.18 52.95± 13.24 –

Height(cm) 164.60± 7.63 164.19± 7.63 164.61± 7.64 0.085

Weight(kg) 68.75± 11.87 68.75± 11.90 68.81± 11.90 0.239

BMI(kg/m2) 25.30± 3.55 25.30± 3.55 25.36± 3.73 0.720

Left/Right 143/139 101/91 42/48 –

module, was added to the model to enhance the contribution
of information-rich features in the feature extraction process.

Materials and methods

The Institutional Review Board of the Second Hospital of
Jilin University approved this retrospective study (No. SB2021-
012).

Patient data selection

All knee MRIs were acquired at the Second Hospital of
Jilin University between January 2021 and October 2021. An in-
house RIS/PACS search engine was used to identify candidates
who met the following inclusion and exclusion criteria. The
inclusion criteria were: (I) MRI scan of the knee for space-
occupying lesions or swelling, or pain in a knee joint; (II)
patient is over 18 years old; and (III) a formal description of a
cystic lesion or uncertain space-occupying lesion in the written
radiology report. The exclusion criteria were: (I) patient not
consenting to usage of their data; (II) patient is under 18 years
old; (III) patient with fracture of a knee joint; (IV) images with
excessive movement or beam hardening artifacts as described
in the report; and (V) images with knee surgery implants. For
patients with more than one MRI examination, only the most
recent MR scan was selected.

Data were retrieved for subjects diagnosed with knee cysts
or effusions on the imaging report. If there was uncertainty
about including a case, a decision was made after reviewing the
original image. A total of 282 cases were included in the final
analysis. Patient demographics are listed in Table 1. A detailed
data selection flowchart is outlined in Figure 1.

Data process

Magnetic resonance imaging was performed on a GE
Discovery MR750 3.0T scanner using a sagittal proton density-
weighted fat suppression sequence (PD-FS) [Field of view
(FOV) = 160 mm × 160 mm; matrix = 512 × 512; number
of slices = 20; voxel resolution = 0.35 × 0.35 × 4.5 mm; slice

thickness = 3.5 mm; interslice gap = 4.5 mm; repetition time
(TR) = 2,600 ms; echo time (TE) = 34.0 ms; flip angle = 90◦].
A total of 5,640 sagittal PD-FS images from all subjects were
included in this dataset.

Digital Imaging and Communications in Medicine
(DICOM) images were converted to one-channel grayscale
PNG images to standardize the format of the image files before
training. Images were then rescaled to 256 × 256 pixels, and
pixel values were normalized between 0 and 1. Two physicians
verified that no information related to knee cyst enlargement
and effusion was lost in the PNG format images.

Subsequently, regions of interest (ROIs) of cyst lesions
and effusions were annotated using the LabelImg image data
annotation software by two resident physicians under the
supervision of the chief physician. If the annotation was
questionable, the final determination was decided by negotiation
with the review panel. Background information surrounding the
ROIs was removed whenever possible. Annotation files were
stored in Pascal-VOC format during the process. Subsequently,
the images and their associated annotation files were divided
into a training set, a validation set, and a test set in a ratio of
6:2:2 in the enhanced data set through a Python script. The data

FIGURE 1

Flowchart of subject inclusion/exclusion and data selection.
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FIGURE 2

(A) Distribution of cyst category. (B) Distribution of centroids of cysts and effusions. (C) Size distribution of cysts and effusions.

FIGURE 3

SE-YOLOv5 model architecture for cyst detection.

distribution of each lesion category and characteristic is shown
in Figure 2.

Deep learning model structure

A Squeeze-and-Excitation (SE) inception attention-based
YOLO v5 algorithm (Yolo V5-SE) was adopted to detect
knee cyst targets. Similar to the general Yolo v5 algorithm,
the architecture of our model was composed of four parts,
input, backbone, neck, and prediction, with adjustments in
the input and neck parts. In the input preprocessing stage,
the images were resized to 640 × 640 × 3, and mosaic data
augmentation was applied to increase the number of training

samples. Through operations such as flipping, zooming, and
color gamut modification, this strategy allowed smaller cyst
elements to be detected in a smaller field of sensation, thus
enhancing the likelihood of detecting small targets. A couple of
SE-inception modules were added after the Concat module in
the neck structure (22). The architecture of the model is shown
in Figure 3.

Model training and evaluation

During model training, the learning rate was set to 0.0001
to accelerate model convergence. Stochastic gradient descent
(SGD) was used for hyperparameter tuning, and the learning
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rate momentum was set to 0.90, considering the small number
of samples in the cystic lesion dataset. A cosine annealing decay
strategy was used for a learning rate change. Cross-entropy was
used as the loss function for the model, with batch size set
to 8 and training epochs set to 300. The training process was
controlled by the early stop method. The training was stopped to
prevent over-fitting when the loss value of the validation set did
not decrease within 15 epochs. The environment configuration
used in the experiment is shown in Table 2.

Validation metrics, including accuracy, precision, recall,
mean average precision (mAP), and F1 score, were calculated
and visualized in Python to evaluate model performance in cyst
and effusion detection (Figure 4). The formulas for the metrics
are described below.

Precision = (TP)/(TP+ FP) (1)

Recall = (TP)/(TP+ FN) (2)

IoU =
area of overlap
area of union

(3)

TABLE 2 The environment configuration used in the experiment.

Environment Detail

Central Processing Unit(CPU) Intel i7-8700k

Opertating system Window 10

Graphic Processing Unit(GPU) NVIDIA Geforce GTX1080i 11G

Pytorch version Pytorch1.8.1 Opencv 4.5.0

AP =
∫ 1

0
P(R)dR (4)

mAP =
1
C

C∑
i

= 1AP(i) (5)

F score = 2 ∗ (}precision ∗ recall)/(}precision+ recall) (6)

True positives (TP) denote correctly identified cysts, false
positives (FP) denote incorrectly identified cysts, and false
negatives (FN) denote missed cysts. AP describes average
precision; P(R), which denotes the precision P of different recall
rates R, corresponds to the P–R curve’s area under the curve.
The constant C in Eq. 5 has a value of 2, representing cysts
and effusions as two separate lesions. The number of average
precisions (AP) in each category, which is the number of APs
in each category when intersection over union (IoU) is 0.5, is
denoted as the mean average precision (mAP). Among these
metrics, mAP is the most comprehensive index for evaluating
model performance, with higher mAP values corresponding to
better model performance.

Furthermore, we compared the performance of our Yolo
V5-SE model with that of a general Yolo V5 model by
comparing the validation metrics. All statistical tests were
performed with SPSS Statistics 26.0 (IBM Corp, Armonk,
NY, United States).

Results

Figure 2A shows that the proportion of effusions and cysts
was relatively balanced, suggesting that model performance was

FIGURE 4

Validation metrics for SE-YOLO V5. The horizontal axis denotes the number of iterations.
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unlikely to be biased by an imbalanced class distribution. Few
lesion centroids were concentrated near the image center, and
the distribution of lesion targets was fairly uniform (Figure 2B).
Small target lesions accounted for many lesions (Figure 2C).

Validation metrics demonstrated that the model’s
performance gradually steadied with the training process,
indicating that the model converged quickly and yielded
good performance. To assess model performance, our
proposed SE model was compared against a classical model,
YOLOv5, on a series of performance metrics (Table 3).
The SE-YOLO V5 model we presented was superior in
all performance metrics (F1 = 0.879, precision = 0.887,
recall = 0.872, all class mAP0.5 = 0.944, effusion mAP = 0.945,
cyst mAP = 0.942). The fps for SE-Yolo v5 was 90.9,
suggesting that it could handle more images per unit
time. The P–R curves and confusion matrices for these
two models are shown in Figures 5, 6. Figure 7 shows

TABLE 3 Performance metrics of the SE model and the
traditional model.

Metrics SE-Yolo V5s Yolo V5s P-value

All class F1 score 0.879± 0.002 0.832± 0.010 0.002**

All class Precision 0.887± 0.011 0.843± 0.012 0.011*

All class Recall 0.872± 0.014 0.821± 0.018 0.018*

All class mAP 0.5 0.944± 0.002 0.898± 0.011 0.002**

Cyst F1 score 0.875± 0.004 0.819± 0.016 0.005**

Cyst Precision 0.873± 0.012 0.822± 0.017 0.014*

Cyst Recall 0.878± 0.006 0.818± 0.027 0.021*

Cyst mAP 0.5 0.942± 0.005 0.893± 0.019 0.011*

Effusion F1 score 0.883± 0.006 0.843± 0.005 0.001**

Effusion Precision 0.902± 0.011 0.864± 0.008 0.014*

Effusion Recall 0.865± 0.022 0.822± 0.009 0.037*

Effusion mAP 0.5 0.945± 0.001 0.901± 0.004 <0.001***

*P < 0.05; **P < 0.01; ***P < 0.001.

example model prediction results compared to the ground
truth, indicating that cyst lesions were correctly detected and
distinguished from effusions.

Discussion

This proof-of-concept study aimed to demonstrate the
feasibility of a deep learning system for the auto-detection and
classification of knee cysts. The SE-YoloV5 attention model
was constructed, trained, and evaluated on clinical MR images.
Analysis of model performance indicated that this approach
promises to improving diagnostic accuracy.

Deep learning offers excellent performance for segmenting
multi-tissue knee joints and detecting ACL, cartilage, or
meniscus injuries (15–17). However, few papers have addressed
cysts and effusions of the knee joint, which are associated
with high morbidity and could also serve as biomarkers for
degenerative disorders or acute injuries, like knee osteoarthritis
and meniscus injuries. Considering the importance and the
potential pitfalls of knee cyst diagnosis, it is beneficial to
develop an auto-diagnostic system for cyst detection, which
may be used as a primary or supplementary tool to speed up
diagnosis and enhance accuracy. Two papers have explored
the application of deep learning in cyst segmentation and
effusion estimation (20, 21); Zhou et al. (20) demonstrated
the application of deep learning in Baker’s cyst and joint
effusion auto-segmentation and achieved a dice coefficient
of 0.736. Raman reported the feasibility of classifying knee
effusion based on neural networks, which could achieve an
average accuracy of 62%, comparable to a radiologist in
a small test dataset (21). Other than the two publications
mentioned above, there are no other literature reports on
the application of deep learning to cyst detection. To our

FIGURE 5

P-R curves of YOLO V5 and YOLO V5-SE.

Frontiers in Medicine 06 frontiersin.org

157

https://doi.org/10.3389/fmed.2022.928642
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-928642 August 3, 2022 Time: 17:3 # 7

Xiongfeng et al. 10.3389/fmed.2022.928642

FIGURE 6

Confusion matrices of YOLO V5 and YOLO V5-SE.

FIGURE 7

Example prediction outcomes of YOLO V5 and YOLO V5-SE compared with the ground truth.

knowledge, this paper is the first to use deep learning in
knee cyst detection.

Cyst detection is an object detection task in nature. Object
detection is a primary computer vision task that entails
determining where particular objects are in an image and
classifying them. YOLO, a new algorithm deployed in 2015 (23),
redefined object recognition as a regression problem that can be

performed in a single neural network. Yolo has been updated
to version five and is regarded as the state-of-the-art algorithm
for object detection (24). It has been applied in many daily life
aspects, such as the detection of surface knots (25) and real-time
vehicles (26), as well as in various medical fields, including face
mask recognition (27), breast tumor detection and classification
(28), and chest abnormality detection (29). This study showed
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that the basic deep learning model Yolo V5 could handle the
cyst-detection task, attaining F1, precision, and mAP scores
of 0.832, 0.843, and 0.821, respectively. After the attention SE
module was added to the Yolo V5 model, the resulting attention-
based model SE-Yolo V5 achieved better accuracy and higher
speed of 0.879, 0.87, and 0.944 for F1 score, precision, and mAP,
respectively. Small target lesions accounted for a significant
proportion of our dataset, but the proposed model was also
capable of detecting them accurately, as illustrated in Figure 7.

This paper aimed to demonstrate the feasibility of utilizing
deep learning in general knee cyst detection. Despite its promise,
there are several limitations to the presented model. First,
there are many cyst types, such as Baker’s cysts, meniscal
cysts, and intraosseous cysts at the insertion of the cruciate
ligaments, but these different cyst sub-types were not explicitly
classified in this study. Neither did we verify whether deep
learning performed equally well in these sub-groups. We may
enroll more kinds of knee cysts in the future and evaluate
the model’s performance on different cyst types. Second, our
data was relatively limited, and model performance was not
compared with human diagnosis. Nevertheless, the model
prediction proved efficient and reliable, suggesting that the
model may become a valuable tool for radiologists and
clinicians, subject to further study and multi-center validation.
Third, the cysts were easily classified based on the reports
or images, but there was no general standard for diagnosing
inherent effusions, which might be a caveat for the model,
radiologist opinions, and the ground truth labels. Last but
not least, the uncertainties and interpretability of the model
should be mentioned, and we will explore them in further
studies. To explore the model in the external datasets or
public datasets.

Conclusion

This proof-of-concept study examined whether deep
learning models could detect knee cysts and distinguish them
from knee effusions and demonstrated that the classical Yolo V5
and proposed SE-Yolo V5 models could identify cysts with high
accuracy. This study suggested that cutting-edge deep learning
methods constitute a promising avenue of research to develop
AI-assisted auto-detection systems to facilitate radiological and
clinical diagnosis of knee pathologies.
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Recent years have seen an increase in the application of machine learning to

the analysis of physical and biological systems, including cancer progression. A

fundamental downside to these tools is that their complexity and nonlinearity

makes it almost impossible to establish a deterministic, a priori relationship

between their input and output, and thus their predictions are not wholly

accountable. We begin with a series of proofs establishing that this holds

even for the simplest possible model of a neural network; the e�ects of

specific loss functions are explored more fully in Appendices. We return to

first principles and consider how to construct a physics-inspired model of

tumor growth without resorting to stochastic gradient descent or artificial

nonlinearities. We derive an algorithm which explores the space of possible

parameters in a model of tumor growth and identifies candidate equations

much faster than a simulated annealing approach. We test this algorithm on

synthetic tumor-growth trajectories and show that it can e�ciently and reliably

narrowdown the area of parameter spacewhere the correct values are located.

This approach has the potential to greatly improve the speed and reliability

with which patient-specific models of cancer growth can be identified in a

clinical setting.

KEYWORDS

cancer, neural networks, white-box machine learning, interpretability, parameter

optimization

1. Introduction

The application of neural networks to the modeling of cancer has seen a flood of

interest in recent years (Sanoob et al., 2016; Hsu et al., 2018; Ghazani et al., 2021; Kwak

et al., 2021; Kumar et al., 2022). The hope is to be able to use patient-specific data to

generate accurate predictions of tumor growth and treatment response, in order to guide

the clinician in their prognosis and choice of treatment regime (Rockne et al., 2019;

Kumar et al., 2022). From a modeling perspective, a tumor is a system of interacting

objects (tumor cells, fibroblasts, etc.) which influence each other’s behavior according
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to certain rules. It should therefore be possible to use tumor-

growth data to derive a system of equations to describe the

trajectory of cancer, which can then be extrapolated into the

future to predict the course of a particular disease. Over the

last few years, neural networks have become the natural first

choice of most scientists when tasked with extracting such

equations from large datasets (Benzekry, 2020; Kurz et al.,

2021). However, when we resort to machine learning to build

models and predict the behavior of any system, we sacrifice

a crucial attribute: explainability. The sheer vastness of a

neural network, which may contain many tens of thousands

of continually-adjusted interacting weights, makes the effort of

deducing the impact of any single component on a network’s

output almost impossible. In addition, we must consider the

neural network’s various nonlinearities, which interfere with

any attempt to construct an analytically solvable description

of its processes (and thus to account for its decision-making).

One example is the common Rectified Linear Unit (ReLU),

and its many cousins [the parameterized ReLU (Xu et al.,

2015), the “leaky” ReLU (Maas et al., 2013), etc.], which may

or may not act on an input as it makes its way through the

system. Any attempt to construct a gradient of the output

with respect to the input will have to contend with the

resulting discontinuities. Less analytically troublesome, but still

exhausting, are backpropagation algorithms: ADAM (Kingma

and Ba, 2014), for instance, adjusts each weight not simply in

response to its current effect on the output but to all of its past

effects, which will create a new set of complex nonlinearities in

any differential equation aimed at describing a the workings of

a network.

The best that can be hoped for, then, is to gain a

“general idea” of the effect of each network attribute, using

hyperparameter tuning (Yuan et al., 2021). This is an obviously

risky approach: sampling a few points in the hyperspace of all

possible hyperparameter values does not give us a complete

picture of the dependence of the output on our choice of values.

Without a complete picture of this dependence, we can never be

sure that the relationships predicted by a network reflect physical

reality or are simply a product of its own internal calibration.

This is the crucial issue, and why, as long as a neural network

remains a “black box,” its output can never be fully understood

or trusted, especially in a clinical setting where the results of a

model may guide cancer treatment and thus affect a patient’s

length and quality of life. A lack of explainability is a significant

impediment to the adoption of machine learning and other

computational approaches in a clinical setting. It also hinders

the clinician’s ability to fully interact with and analyse ML-

derived predictions: not knowing where they come from, it is

very difficult to rigorously deduce what any set of values assigned

to a tumor “mean,” or to “sanity-check” them against clinical

expertize. To reliably incorporate computational methods into

cancer treatment, we must either develop some picture of the

workings of a neural network, or move away from stochastic

gradient descent altogether, to an algorithmic approach whose

decision-making processes are transparent and accountable. A

great deal of interesting work has been done in recent years

to achieve this first goal, attempting to render explainable the

workings of black-box neural networks (Rudin, 2019; Kazhdan

et al., 2020; Dujon et al., 2021; Magister et al., 2021). The general

approach of such papers is either to deduce the emergent rules

of the neural network from its behavior, or to induce such strong

biases in its workings that it is naturally directs to the correct

area of parameter hyperspace (as with the physics-inspired

neural networks discussed in Karniadakis et al., 2021). Such a

posteriori attempts to harness or constrain the chaotic nonlinear

workings of a neural network, however, are no replacement

for an a priori understanding of its rules and aims. Without

this, no result derived from such a network can be considered

mathematically rigorous, which becomes an increasingly serious

problem as the area of application approaches the hard sciences.

The aim of this paper is to explore the difficulties inherent in this

promising research, and to place some mathematical limits on

the degree to which black-boxes can be truly, a priori explained.

We also develop a computational method of fitting a model to

cancer-growth data which is built around explainability first and

foremost, excising nonlinearity and stochasticity where possible,

and find that such a method can usefully direct and improve the

efficiency of standard machine-learning techniques.

This paper is laid out as follows. We demonstrate first that

it is impossible to truly account for the workings of even the

simplest imaginable neural network, and then introduce an

alternative “white-box” algorithm which can be used to quickly

and reliably identify candidate equations for tumor growth. By

using this algorithm, we can explainability identify the region

of “parameter space”—and thus, in a sense, the “type” of tumor

growth—appropriate to a particular disease. After this step has

been applied, we are no longer “fighting blind,” and may leave

more detailed fitting to neural networks. With this algorithm,

we can both significantly reduce the time taken to fit patient-

specific models of tumor growth and provide meaning to their

parameters. The goal of explainability, then, does not have to

slow down machine learning techniques, but can aid them in

their search for appropriate models.

2. Materials and methods

2.1. Theory: The barriers to an analytically
explainable neural network

In the following section we consider a idealized

mathematical model of the graph neural network during

its training process, without activation functions and with

inductive biases sufficient to describe a physical system of N

interacting objects. Each object within the system is represented

by a node with two properties: the input “representation” value
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xi (which may represent size, position, age, etc.), and the target

property, whose true value is y′i. By considering many values

of xi and y′i, we aim to learn the relationship yi(x1, x2, ...xN )

between them; the goal is to produce a value of yi as close as

possible to y′i on the training data. All properties in this model

are one-dimensional for simplicity, but the mathematics behind

it may easily be extended to multidimensional systems. Since we

are describing observable quantities, we assume all properties

are real.

A real graph neural network will use several layers of

interconnected weights and activation functions to represent the

relationship between any two objects; a separate computational

layer will then learn how each object aggregates the information

it receives from the rest of the system. In ourmodel, we condense

this operation into a single relationship, which we assume is of

the form

yi =
∑

jks

wijksx
k
i x

s
j (1)

where 1 ≤ j ≤ N and k, s in principle range over all

integers, so that we are considering the product of two Taylor

expansions. In practice, because we cannot store infinite sums,

we choose some combinations of j, k, s to describe our system.

wijks are coefficients which we will adjust according to a loss

function. This form encodes a number of physical assumptions:

firstly, that the relationship yi is continuous and differentiable;

secondly, that it consists of a number of sub-relationships yij,

which combine additively; and thirdly, that the relationship yij,

which describes the effect of object j on object i, is dependent

only on the properties of those nodes (i.e., on xi and xj) and

on no others, i.e., that each object interacts with every other

object independently. Less obvious is that we are assuming the

relationship is also local. Though we presumably have many

values of xi from different time-points, the relationship yi

depends on the value of the representations {xi} only at a single

time-point. The system does not know about its previous states,

and is assumed to have time-translational symmetry.

Having given the weights wijks some initial values, we now

adjust them continuously according to their contribution to our

loss function L, which describes the total “wrongness” of our

current guesses:

∂wijks

∂t
= −α

∂L

∂wijks
(2)

We say the system has converged when no further

adjustments remain to be made, i.e., when

∂wijks

∂t
=

∂L

∂wijks
= 0 (3)

for all weights.

What is the impact of our choice of loss function on the value

of the relationships
{

yi
}

at convergence? We will use a slightly

modified and generalized version of the loss function used by

Cranmer et al. (2020), and include one “error” term designed

to penalize divergence from target values, and another term,

commonly referred to as the “regularization” term (Xu et al.,

2015), designed to penalize the overall complexity of the system.

The general form of our loss function is

L =
∑

i

∣

∣yi − y′i
∣

∣

m
+ β

∑

ijks

∣

∣

∣
wijks

∣

∣

∣

n
(4)

Clearly, there are three adjustable hyperparameters here: the

positive integers m, n, and the real and positive β . For the loss

function closest to that used by Cranmer et al., m = 1 and

n = 2, it can be shown that there are two possible values for

convergence, depending on the value of the parameter β and

the target value y′i. The proof is as follows and is based on a

self-consistency argument.

We have at convergence

∂L

∂wijks
=

∂
∣

∣yi − y′i
∣

∣

∂yi

∂yi

∂wijks
+ 2βwijks = 0 (5)

and
∂
∣

∣yi−y′i
∣

∣

∂yi
= 1 if yi ≥ y′i and−1 otherwise, i.e.,

∂
∣

∣yi−y′i
∣

∣

∂yi
=

yi−y′i
∣

∣yi−y′i
∣

∣

, and
∂yi

∂wijks
= xki x

s
j , so we have convergence when

∂L

∂wijks
=

yi − y′i
∣

∣yi − y′i
∣

∣

xki x
s
j + 2βwijks = 0 (6)

i.e., if yi ≥ y′i we have (yi − y′i)(x
k
i x

s
j + 2βwijks) = 0, and if

yi < y′i we have (yi− y′i)(x
k
i x

s
j − 2βwijks) = 0. So convergence at

yi = y′i is possible for any value of wijks.

For yi ≥ y′i we also have a solution for convergence atwijks =

−
xki x

s
j

2β . Now we can use our self-consistency argument, because

yi is defined by its contributing weights: thus this solution is

possible if

yi =
∑

jks

wijksx
k
i x

s
j =

∑

jks

−
x2ki x2sj

2β
≥ y′i (7)

which is to say we can have a different kind of convergence—

what we will call “information-free” convergence—at yi =

∑

jks−
x2ki x2sj
2β provided that y′i ≤

∑

jks−
x2ki x2sj
2β ≤ 0 for all

j, k, s combinations used to describe our system. An identical

argument for the yi < y′i case allows such information-free

convergence at yi =
∑

jks

x2ki x2sj
2β if y′i >

∑

jks

x2ki x2sj
2β ≥ 0.

In summary, then, if
∣

∣y′i
∣

∣ ≤

∑

jks x
2k
i x2sj

2β , then convergence is

only reached at yi = y′i for all i, with no restriction placed upon

the weights wijks. We refer to this as “absolute convergence.”
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If any target value falls outside of those restrictions (i.e.,
∣

∣y′i
∣

∣ >

∑

jks x
2k
i x2sj

2β for any i), then in addition to absolute

convergence, we have a second possibility: that relationship

yi may converge at
∣

∣y′i
∣

∣ =

∑

jks x
2k
i x2sj

2β . This is, of course, a

completely meaningless value, independent of y′i and indeed of

any individual property of the node i. This is why we refer to

this possibility as “information-free” (I-F) convergence. It, too,

places no restriction on the value of the weights; the system is

not guaranteed to be made any simpler, which of course would

be little reassurance, given that the relationship it describes is

essentially “random.”

From this, we see that we can mitigate the possibility of I-F

convergence by setting

β ≪

∑

jks x
2k
i x2sj

2

thus widening the range of values of y′i within which only

absolute convergence is possible; and I-F convergence is avoided

entirely by setting β = 0. What, then, is the point of having

a regularization term in this model at all, if not for its original

intended purpose of making the result ‘simpler’? The answer is

that it makes convergence faster. The speed of convergence of

this loss function is determined by

∂L

∂t
=

∑

ijks

∂L

∂wijks

∂wijks

∂t
= −α

∑

ijks

(
∂L

∂wijks
)2 (8)

as the weights are adjusted according to
∂wijks

∂t =

−α ∂L
∂wijks

within our model. In the limit β → 0, ∂L
∂t →

−
∑

i α(
yi−y′i
∣

∣yi−y′i
∣

∣

)2 = −
∑

i α, i.e., decline is constant and at

a rate proportional to α and to the number of objects in the

system. Conversely, in the limit β → ∞, L → β
∑

ijks w
2
ijks

and ∂L
∂t → −α

∑

ijks 4β
2w2

ijks
= −4αβL, so L = L0e

−4αβt , and

convergence is exponential with time.

This example is simple but illustrative: even within this toy

model, the loss function does not have an intuitive effect on

convergence values. For the general even-power case m = n,

it can be shown similarly (proof in Appendix, Section 1) that

at convergence,

yi =
y′i

1+ β
1

n−1

∑

jks

(

xki x
s
j

)
n

n−1

(9)

with a corresponding equation for weights. We see now the

scale on which the value of β should be considered: what governs

the final output guess is the ratio β
1

n−1

∑

jks

(

xki x
s
j

)
n

n−1
. In the limit of

large n, since n is even, the denominator tends to
∑

jks

∣

∣

∣
xki x

s
j

∣

∣

∣
,

which wemay think of as the “sum of the total information in the

subsystem i.” In that limit, the effect of increasing β is blunted

by the fact that the relevant quantity is its n − 1-th root. In the

limit β
1

n−1 ≪
∑

jks

(

xki x
s
j

)
n

n−1 , we recover absolute convergence,

yi → y′i; in the limit β
1

n−1 ≫
∑

jks

(

xki x
s
j

)
n

n−1 , all weights in the

subsystem i and the output guess yi tend to zero. There is no

possibility of information-free convergence to a non-zero value.

This would seem, then, to be a much more appropriate choice

of loss function. In Appendix (Section 1), we briefly discuss the

general even-power m, n case, the case m = n = 2, and in

Appendix (Section 3) we note the behavior of the more niche

subcase of elastic regularization (Li et al., 2020).

Until now, we have discussed the effect of loss function

hyperparameters on convergence values within an idealized

linear model of a neural network. We will now attempt

to incorporate the structure of a real neural network

into our model—i.e., that of layers of nodes mediated by

activation functions.

We model a simple two-layer network. We have two inputs,

xi and xj, which are fed into a hidden layer of nodes. The node

indexed by k within this layer has output

vk = akixi + akjxj + bk (10)

and our final guess y (we will drop the subscript i for the

moment) is made by combining the outputs of the hidden layer,

each fed through an activation function:

y =
∑

k

ckφ
(

vk
)

+ δ (11)

for the activation function used in the rectified linear unit,

φ (x) = max (x, 0). We will use the loss function (4) with

m = n = 2 which has bounded error, no information free-

convergence, and whose error decays exponentially with time

(proof in Appendix, Section 1). Here, it becomes:

L =
(

y− y′
)2

+ β
∑

k

a2ki + a2kj + b2k + c2k + δ2 (12)

At convergence we obtain a self-consistency equation for the

node outputs vk:

vk =

(

y− y
′
)2

β2

(

x2i + x2j + 1
)

φ
(

vk
)

(13)

This imposes either vk = 0 or, for vk > 0,
∣

∣y− y′
∣

∣ =
β

√

x2i +x2j +1
, i.e. a minimum error at convergence that tends to

infinity with β . Further, constructing the guess y directly from

our convergence equations for ck, we obtain the result (full proof

in Appendix, Section 2) that for target guesses within the range

∣

∣y′
∣

∣ <
β + 1

√

x2i + x2j + 1
(14)

Frontiers in BigData 04 frontiersin.org

164

https://doi.org/10.3389/fdata.2022.941451
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Coggan et al. 10.3389/fdata.2022.941451

convergence is impossible. Even taking the limit β → 0

cannot eliminate this effect entirely, and the range to which

it applies widens without bound as β → ∞. This is worth

restating: in the simplest realistic model of a neural network

that incorporates activation functions, there are ranges of

representations and target values—unalterable input data—for

which convergence becomes mathematically impossible, and the

learning process will never terminate. In practice, of course,

real networks do not converge only when the gradient of the

loss function with respect for each weight is precisely zero: we

will consider the network converged when the magnitude of

the gradient of each weight has reached some small value ε.

From the standpoint of the white-box modeler, unfortunately,

this is hardly any better. If there is some large number Nw

of weights in the system, then all we can say with certainty is

that convergence occurs somewhere within a high-dimensional

hyperspace of volume (2ε)Nw , which leaves us with a very large

number of possible configurations of the system, of which the

“correct” one will be chosen stochastically. The system has

become unexplainable once again.

How do we build an algorithmwhich does not run into these

analytical difficulties, and has explainability as its central goal? If

our aim is to construct a procedure that can correctly analyze a

physical system, whose workings are completely mathematically

transparent, and which is guaranteed to converge, our analysis

above suggests we should move away from the realm of gradient

descent and nonlinear units entirely, and begin from first

principles. We follow this approach in the section below.

2.2. A white-box algorithm for
characterizing tumor growth

Suppose that we have chosen some i, j, k, s combinations

to describe our system, so that we assume relationships are of

the form

yi =
∑

jks

wijksx
k
i x

s
j =

∑

m

fimzim (15)

where we have condensed the weights wijks and terms xki x
s
j

corresponding to the combinations
{

(i, j, k, s)
}

into Mi weights

and terms fim, zim corresponding to the object i. We will assume

that we have samples of {xi} and
{

y′i
}

for all objects, and for

several configurations of the system. In all methods discussed

above, we considered each timepoint independently; here we

will combine them, and attempt to find the coefficients
{

fim
}

which produce the most accurate guesses across all timepoints

and objects.

This raises two immediate concerns. One is a degrees-of-

freedom issue: if we have Mi coefficients, then we can only

guarantee accuracy at Mi time-points. However, if we actually

have deduced the physical laws obeyed by our system, this

should not matter; the correct relationships will hold at all time-

points and not just the ones they were determined from. If we

have chosen the wrong terms zim, our guess yi(t) will diverge

from the target values y′i(t) at times far away from those used to

deduce the coefficients.

The second problem is one of “interpretability.” In theory, if

we haveMi time-points, we have as many equations as variables,

and we can determine our coefficients by simple linear algebra:

if we define a vector
−→
Y ′

i of target values such that (
−→
Y ′

i)j = y′i(tj)

and a matrix Zi given by (Zi)jk = zij(tk), such that each row

describes the value of a single term at each time-point, then our

coefficients are straightforwardly given by solving the equation

(Zi)
T ·

−→
F i =

−→
Y ′

i (16)

for a vector
−→
F i whose entries are the coefficients fim.

However, this would involve the calculation of thematrix inverse

of (Zi)
T , which is both computationally fraught and analytically

problematic. There is no easy general formula for the inverse of

an N-by-N matrix, and so it is all but impossible to discern how

the values of our chosen terms influence our final coefficients.

Once we introduce the matrix inverse into our algorithm, it

becomes a black box once again; it is impossible to construct,

say, a useful differential equation in a single datapoint zij(tk), if

that term is incorporated into a matrix which is then inverted.

Instead we use Cramer’s rule, first written down in 1,752 and

of which there are many proofs widely available (including that

in Brunetti, 2014). The coefficients are given by

fim =

∣

∣

∣
Sim

∣

∣

∣

∣

∣

∣
Zi

∣

∣

∣

where square brackets indicate determinants and the matrix Sim
is defined by

(Sim)jk =

{

zij
(

tk
)

, j 6= m;

y′i
(

tk
)

, j = m

}

(17)

This produces coefficients which exactly solve, for all chosen

timepoints tk (which we assume are randomly chosen from a

dataset of possible observations),

yi(tk) =
∑

m

fimzim(tk) = y′i(tk) (18)

The great benefit of this technique is that a determinant is linear

in all values it involves. By avoiding the matrix inverse, we have

ensured that the coefficient is differentiable in every element of

data that contributes to it, and thus the effect of each piece of

data on our conclusions is exactly quantifiable. This part of the

algorithm is a completely “white box.”

The above procedure predicts the coefficients
{

fim
}

that best

describe the system when presented with a set of terms {zim}; we

must still develop a process for choosing between sets of terms.
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The simplest and best procedure is simply to try each possible

set of terms sequentially and choose the set of terms {zim} which

has the lowest error according to the loss function

L =
∑

i,t

(

yi(t)− y′i(t)
)2

(19)

where the sum is over all timepoints in the dataset, not

simply the randomly-chosen timepoints used to deduce the

coefficients. This is a straightforward way of determining the

“goodness of fit” of our model, and has no hyperparameters,

because we have eliminated the regularization term. Here,

there is a much easier, more intuitive way of measuring

the complexity of our system: the number of terms in our

polynomial description,Mi, which we control directly.We could

make our loss function Ln instead of L2 for n ≥ 2 and

even; clearly, this would have the effect of valuing a polynomial

description with a large number of small errors over one with

a small number of large errors, which may be desirable or not

depending on the needs of the clinician.

We must, therefore, try each set of terms sequentially,

however naive an approach that may initially seem. Any attempt

to navigate the space of possible terms {zim} through stochastic

gradient descent using the loss function L is doomed to failure,

since we cannot move in infinitesimal increments through zim,

but must jump between discrete sets of input data combinations,

which may involve changes in value so large as to render

gradients useless. Further, in order to determine the gradient of

the loss function with respect to an input term zim, we must

also consider its effect on the entire set of deduced coefficients
{

fim
}

, which will require twomatrix determinant evaluations for

every coefficient. At this point, the calculation of the gradient

at each point becomes much more computationally expensive

than simply calculating the loss for each set of terms, which is

guaranteed to terminate, since the space it is exploring is finite.

A brief analysis of cost, and an additional generalizabilitymetric

assessing the suitability of a particular description-length Mi, is

included in Appendix (Section 4).

2.3. Experiment: Fitting models of tumor
growth

We now investigate the advantages of this algorithm when

applied to real-world cancer data. For the remainder of this

paper we will be following the work of Kühleitner et al. (2019).

In this paper, the authors considered longitudinal time-series

data of the growth of a tumor. Human breast cancer cells were

injected into nude mice, and the resulting tumor volume v(t)

was observed over 114 days, in a study by Worschech et al.

(2009) (shown in Figure 1). Kühleitner et al. (2019) aimed to find

the best parameter fit for a Bertalanffy-Pütter model from the

FIGURE 1

Experimental data showing the growth of tumor volume with

time, in a mouse model of human breast cancer, taken from

Kühleitner et al. (2019).

observed tumor data; that is to fit the non-negative parameters

p, q, a, b in the first-order differential equation

dv

dt
= pva − qvb (20)

The Bertalanffy-Pütter model (Ohnishi et al., 2014) is a

general class of tumor-growth model which encompasses other,

more specific tumor models, including the Verhulst model

(Verhulst, 1838) (a = 1.0, b = 2.0) and the Gompertz model

(a = 1.0, b > 1.0) (Gompertz, 1833). Per Kühleitner, it has been

experimentally observed that tumors tend to shrink when they

become very large; to ensure this behavior, only exponent-pairs

a < b are considered. They were examined at intervals of 0.01,

so that (a = 0.01n, b = a + 0.01m) for all valid non-negative

integers n,m that placed (a, b) within the highlighted range.

For every exponent-pair, the authors fitted the best coefficient-

pair (p, q) through a painstaking process of stochastic gradient

descent and simulation (simulated annealing), using the same

L2 loss function (2), otherwise known as the sum of squared

error (SSE), defined in our algorithm. Having chosen a trial pair

(p, q), they solve the equation numerically over 144 days, sum

the square of the errors, make a partially-stochastic adjustment

to (p, q), and simulate again. Their final best fit was (p =

5 · 10−4, q = 5.6 · 10−7, a = 1.62, b = 2.44), obtained

at a cost of roughly 1 week of CPU time. Our objective is to

repeat this study by applying our algorithm to fit coefficients

of the Bertalannfy-Pfutter model to this data using SSE as our

loss function. We make these choices for ease of comparison,

but the algorithm could in theory work with any differential-

equation model and any loss function. If we were to use a

stochastic differential equation (SDE), for example, we could

generate a maximum likelihood function for a model defined

by a given set of parameters, which would allow us to use
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likelihood-dependent loss functions, such as the Akaike and

Bayesian Information Criteria.

3. Results

3.1. Identifying regions of good fit with
real-world data

We have a single output guess, y′i(t) = y′(t) = dv
dt
,

obtained using numpy.gradient’s (Cranmer et al., 2020) first-

order approximations at each timepoint instead of by precise

and repeated simulation; we have a single input representation,

xi(t) = x(t) = v(t), the observed tumor volume. Because we

are fitting to a known model here instead of unknown dynamics,

we do not need to involve the generalizability metric or decide

between numbers of terms; instead we can simply try each (a, b)

pair sequentially, deduce our coefficients (p, q) using Cramer’s

rule, and output an error L using the sum of the squares of

the errors of the gradient at each timepoint according to that

prediction. As we are only deducing two coefficients, we choose

two timepoints at random; to make sure our predictions are an

accurate reflection of the entire dataset, we repeat the procedure

above 20 times for each (a, b) pair (to ensure that each datapoint

has a 95% chance of being selected at least once), and choose

the deduced coefficient pair (p, q) with the lowest error. We

consider all exponent-pairs at 0.01 intervals where a < b ≤ 3.0,

the highest value considered by Kühleitner et al. (2019). Our

algorithm runs very quickly on a standard laptop (requiring

just under seven minutes to terminate), and efficiently explores

the space of possible parameters for the roughly 45,000 possible

exponent pairs, returning the accuracy surface. Because we only

have two coefficients to fit per exponent pair, this surface can

be visualized in three dimensions (see Figure 2); this is an

advantage of the Bertalanffy-Pütter model.

Because our target values are imprecise approximations to

the true growth rate, the algorithm cannot perfectly identify

the actual accuracy minimum. However, this surface shows us

intuitively how the model behaves in various regions of the

(a, b) space. We can see, for example, that the model behaves

asymptotically badly as the exponents increase past 2.5, and that

no effort should be expended trying to identify (p, q) pairs there.

We can also see a “valley” of low error in the center, which

might be understood as a “region of good fit,” where exponent

pairs generally describe the system well. We can also use this

algorithm to identify regions of overfit, by plotting the best

values of p and q obtained at each point in (a, b) space (see

Figure 3).

We see that all regions where a, b < 1.0 should be ignored,

as the coefficients “hit a wall” as soon as that threshold is passed:

they become rapidly unstable (and, in the case of q, unphysically

negative) with respect to small changes in exponent pairs, which

suggests that region provides a poor model of the system, since

any good mathematical model of a biological system should

FIGURE 2

Sum of squared error from extrapolation from fitted (p, q) values

for each exponent-pair value; color simply corresponds to

height for highlighting purposes.

not be so acutely sensitive to small changes in its terms. This

allows us to narrow down the promising region of (a, b) in

space to the section of the valley where a, b > 1.0, and we can

explore that region further using precise simulation to identify

the best coefficient-pair (p, q). Further, we have a good idea

of where those coefficients should lie: for the authors’ final

best exponent pair (a = 1.62, b = 2.44) we obtain (p =

3 · 10−4, q = 3 · 10−7) to their (p = 5 · 10−4, q = 5.6 ·

10−7), which is remarkably close given that their gradients are

derived from careful simulation and ours from crude first-order

approximation. We have narrowed down the space of possible

hyperparameters by several orders of magnitude in a matter of

minutes; what remains can then be explored more precisely.

3.2. Recovering parameters from
synthetic data

We can test the algorithm’s accuracy further by using this

surface to identify trial parameters, generate synthetic data using
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FIGURE 3

Fitted p (above) and q (below) values for each exponent-pair

value. The colorbar corresponds to SSE—purple datapoints have

lower error, yellow ones higher. The varying limits come from

the fact that, to generate each plot, we randomly choose 2,500

points out of 45,000 to display.

those parameters, and using the algorithm to retrieve them. We

assume that every set of (a, b, p, q) parameters with SSE smaller

than that of the “official” Kühleitner solution is biologically

realistic, as it fits the tumor growth trajectory at least as closely.

We limit ourselves to the region a, b > 1.0 and obtain about

5,000 possible sets of parameters, from which we select 1,000 at

random. Using the initial tumor volume as our starting point,

for every chosen (a, b, p, q) we extrapolate forward according to

equation (20).

We then take the tumor volumes at the same timepoints as

the original data, to mimic its sparsity. We generate an accuracy

surface for each trajectory according to the procedure above

(This process took roughly 36 h using the University College

London DPS machines). For each “synthetic tumor,” we denote

the exponent-pair used to generate it as (a∗, b∗), and calculate

FIGURE 4

For 1,000 synthetically generated test cases, we calculate

whether the correct exponent-pair occurs within the

lowest-SSE “x” percent of the space. In most cases the algorithm

can isolate roughly two-fifths of the original space which may

then be explored in more detail for a closer-fitting solution.

the fraction of the parameter space 1.0 <= a, b =< 3.0 with an

assigned SSE lower than that calculated for (a∗, b∗). This gives

us a neat metric for the degree to which the algorithm “narrows

down” the parameter space, depending on how confident the

modeler wishes to be that the “correct” parameter values—

insofar as any biological system can be said to have a single

correct set of underlying parameters—lies within the identified

region. Our results are shown in Figure 4. For 999 out of

1,000 trajectories, (a∗, b∗) has an SSE higher than 57% of the

parameter space; for 990 trajectories, we can narrow down to

46% of the space, for 950, to 37%; for 900, to 32%; and for 800

to 27%. We see a “threshold effect,” demonstrated below: in the

vastmajority of cases the space can be narrowed down to roughly

two-fifths of its original area.

3.3. The e�ect of noise on algorithmic
e�cacy

We can also explore the effect of noise on this accuracy,

by separating our 1,000 trajectories into five groups of 200 and

injecting random noise at each timepoint. For a noise level of

0.01, for example, at each timepoint a random fraction of the

tumor volume between 1 and −1% is drawn from a normal

distribution and added to the tumor volume. Gradients are then

computed and the algorithm is run as previously; we again

calculate the proportion of the parameter space with an SSE

lower than that assigned to the correct exponents (a∗, b∗). Our

results are shown in Figure 5. We see that the “thresholding”

effect, by which the correct parameters can be narrowed down
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FIGURE 5

The e�ect of randomly-generated noise on algorithm accuracy.

to a certain proportion of the space with near-certainty, holds

up to a noise level of roughly 0.02.

4. Discussion

By attempting to build an algorithm that can interpretably

explain the unknown dynamics of an interacting system, we have

found an approach that can quickly and easily explore the space

of parameters of a differential equation which incorporates a

variety of models of tumor growth. On synthetic tumor-growth

data, the algorithm can reliably (with a probability of 95%) more

than halve the region of parameter space that requires finer

searching using less rigorous, more computationally expensive

machine learning methods. There is good reason to think the

algorithm can be usefully applied to more general models of

cancer growth, so long as there are enough datapoints that

the compromise of first-order gradient estimation can be safely

made. In fact, above approach does not require the underlying

equation to be first-order, or indeed to be a differential equation

at all; it works for any form, any number of terms, and any

number of objects. It provides a first-approximation to the

behavior of the system, without the expense of simulation, and

it does so without nonlinearity or the use of hyperparameters.

It can therefore be applied to a variety of contexts, medical

and otherwise.

An important aspect of the above procedure, at least

as it applies to cancer modeling, is that it identifies not

simply one good fit to the equation—as stochastic gradient

descent does—but instead identifies several thousand candidate

equations and ranks them by “goodness of fit.” This is

particularly useful to us because a tumor is not a purely

deterministic or mathematical object: it does not obey a single

equation for all time, and its behavior is likely best modeled

as a combination of, or a movement through, the candidate

equations suggested by the algorithm. The ability to narrow

down the space of model parameters to describe a particular

tumor—perhaps successively, through more and more granular

exploration—will be of use to clinicians trying to classify and

predict the behavior of cancers. Even leaving aside explainability

considerations, our algorithm can more than halve the space

which must be explored to fit parameters to the tumor using

stochastic gradient descent, which is a vital efficiency gain when

trying to provide personalized predictions at scale. There are a

wide range of complex interacting-differential-equation models

of cancer growth to which this algorithm might usefully be

applied (for instance, Nave, 2020; Hori et al., 2021; Mascheroni

et al., 2021; Nave and Elbaz, 2021), although the algorithm could,

again, in principle be used to describe any dynamical system.

In addition to this, across patients, the accuracy surface
may provide a useful tool for characterizing particular kinds
of cancer, or the effects of certain treatments. It may be that
further study reveals that there is a link between the best regions

of (a, b) space to describe a tumor and some aspect of its

growth or behavior. The ability to associate a set of best-fit

(p, q, a, b) parameters to a particular tumor also suggests the

possibility of new set of survival metrics, which may correlate

directly the prognosis of human patients. This merits further
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FIGURE 6

Diagram of the algorithmic procedure for the preliminary investigation of physical systems. In this example, we are using an N-term polynomial

with M trials each.

investigation. A full diagram of the procedure is included

in Figure 6.

A technical aspect of the algorithm worth drawing attention

to is its susceptibility to underflow errors, which arises from its

calculation of the ratio of two determinants. This is not an issue

in any of the cases discussed above, but rapidly compromises any

current attempt to apply the algorithm to large systems or to use

many terms. If we haveM terms in our description, for example,

each of the order 10−n, then the coefficients will be ratios

of two numbers of order 10−nM . Given that standard Python

floating-point precision cannot accurately represent numbers

smaller than about 10−39 (Rajaraman, 2016), neither n nor M

have to become very large before we run into accuracy issues.

Further work could implement the algorithm using an arbitrary-

precision arithmetic program designed specifically to compute

matrix determinants, such as Arb (Johansson, 2017). The

algorithm also requires its input data to be sufficiently detailed

that the compromise of first-order gradient approximation is

worth making. On datasets such as that attached to Laleh et al.

(2022), where most trajectories are composed of six or fewer

datapoints, attempts to fit exponents result in flat, highly noisy

surfaces with no significant curvature. Mouse or in vitromodels,

which can be monitored more or less continuously without

the need for painful and invasive scans on human subjects,

are our likeliest sources of useful data. However, as scanning

methods become more advanced over the next decade (Rockne

et al., 2019)—less invasive, less painful, and cheaper to perform

regularly on human patients—tumor-volume trajectories will

become denser and more amenable to mathematical analysis,

and the context in which this algorithm is useful will move from

the experimental to the clinical.

5. Conclusion

This paper describes an interpretable method for quickly

surveying the parameter space of various differential-equation

models. It is precisely the complexity and nonlinearity of
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neural networks which make them so useful in problems of

classification or recognition, but when human lives are at stake,

it is important to develop methods of generating predictions and

informing treatments that are built around explainability and

a priori justification. Clinicians and patients must understand

as much as possible where their information is coming from,

and mathematical models derived from computational methods

must be rigorous. Moreover, as our work on Kühleitner et al.

(2019) shows, it is not even clear that immediately resorting

to machine learning makes anything faster. Slow brute-force

adjustment is an inefficient approach when a straightforward

algorithm can narrow down the space of possible parameters,

and suggest thousands of candidate equations, in a matter of

minutes. In addition to the detailed machine learning work

currently being done in the field of mathematical oncology (see

for instance Bekisz and Geris, 2020), a different approach is

needed—the unification of mathematics and machine learning

to create a rigorous, explainable justification for the directions

in which neural networks should be sent. We suggest the use of

this first-order “exploration algorithm” as a first line of defense

when modeling the behavior of cancer, to provide an initial

understanding of the behavior of a model across its parameter

space and significantly reduce the time taken to fit predictive

equations. A return to first principles in cancer modeling may

yield significant optimization.
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Background: Ultrasound (US) is a valuable technique to detect degenerative

findings and intrasubstance tears in lateral elbow tendinopathy (LET). Machine

learning methods allow supporting this radiological diagnosis.

Aim: To assess multilabel classification models using machine learning models

to detect degenerative findings and intrasubstance tears in US images

with LET diagnosis.

Materials and methods: A retrospective study was performed. US

images and medical records from patients with LET diagnosis from

January 1st, 2017, to December 30th, 2018, were selected. Datasets

were built for training and testing models. For image analysis, features

extraction, texture characteristics, intensity distribution, pixel-pixel co-

occurrence patterns, and scales granularity were implemented. Six different

supervised learning models were implemented for binary and multilabel

classification. All models were trained to classify four tendon findings

(hypoechogenicity, neovascularity, enthesopathy, and intrasubstance tear).

Accuracy indicators and their confidence intervals (CI) were obtained for all

models following a K-fold-repeated-cross-validation method. To measure

multilabel prediction, multilabel accuracy, sensitivity, specificity, and receiver

operating characteristic (ROC) with 95% CI were used.

Results: A total of 30,007 US images (4,324 exams, 2,917 patients) were

included in the analysis. The RF model presented the highest mean values

in the area under the curve (AUC), sensitivity, and also specificity by each

degenerative finding in the binary classification. The AUC and sensitivity

showed the best performance in intrasubstance tear with 0.991 [95% CI, 099,

0.99], and 0.775 [95% CI, 0.77, 0.77], respectively. Instead, specificity showed
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upper values in hypoechogenicity with 0.821 [95% CI, 0.82, −0.82]. In the

multilabel classifier, RF also presented the highest performance. The accuracy

was 0.772 [95% CI, 0.771, 0.773], a great macro of 0.948 [95% CI, 0.94,

0.94], and a micro of 0.962 [95% CI, 0.96, 0.96] AUC scores were detected.

Diagnostic accuracy, sensitivity, and specificity with 95% CI were calculated.

Conclusion: Machine learning algorithms based on US images with LET

presented high diagnosis accuracy. Mainly the random forest model shows

the best performance in binary and multilabel classifiers, particularly for

intrasubstance tears.

KEYWORDS

AUC curve, diagnosis, random forest, tennis elbow, ultrasound

Introduction

Lateral elbow tendinopathy (LET) (1), also known as tennis
elbow (2), is one of the most frequent musculoskeletal disorders
(3). The common extensor tendon, specifically the extensor
carpi radialis brevis, is directly involved in the development of
this condition (4). LET is a potentially debilitating condition
causing significant pain and disability for periods of 12 months
or more (5), and in some cases, also generates disruptive sleep
(6). This condition is estimated to affect 3.3–3.5 per 1,000 by year
(7), affecting individuals during their most productive period (8)
and increasing in tennis players with a prevalence of over 40–
50% (9). Effective treatment for this tendinopathy is uncertain,
with controversial scientific evidence that provides more than
40 modalities (10) in 200 clinical trials and several systematic
reviews (11).

Although LET remains primarily a clinical diagnosis (12),
the ultrasound (US) findings in common extensor tendon
have been well documented in asymptomatic persons (13–17)
and LET individuals with tendon structural changes (18–22).
However, the degree of these tendon structural changes is highly
diverse, with different levels of accuracy (19, 23), making the
interpretation of the US imaging a real radiological challenge.
For example, a met analysis reported that the US sensitivity
and specificity in the detection of common extensor tendon
ranged between 64 and 100% and 36 and 100%, respectively
(24). Furthermore, this high variability can increase even more if
different types of degenerative findings are considered, such as
hypoechogenicity, bone changes, neovascularity, calcifications,
cortical irregularities (25), and tear (thickness) (26), increasing
the lack of precision in the diagnosis by US images. To
date, there is still no consensus about what parameters should
be considered for the evaluation of changes in the tendon
matrix (27).

Recently, artificial intelligence has shown the potential to
revolutionize the accuracy of diagnosis by developing a series
of classification models (28) and by reducing medical diagnosis

variability (29–31). The algorithms based on machine learning
and convolutional neural network have been successfully used in
pattern recognition in different clinical contexts and specialties,
such as neurology (32–34), pulmonary (35–37), cardiovascular
(38–42), and oncology (43–51), improving diagnosis accuracy,
weighted errors, false-positive rate, sensitivity, specificity, and
the area under the receiver operating characteristic curve (AUC)
(52). In radiology, machine learning and convolutional neural
network algorithms have been used to detect and classify injury
patterns in fractures, cartilage defects, meniscal and anterior
cruciate ligament tears, and spinal metastases (53, 54) with
excellent performance indices.

Most of the studies mentioned above have used computed
tomography scan, magnetic resonance imaging, and X-rays as
an image-generating source. For example, fracture detection
using a computed tomography scan has been used by Tomita
et al. (55) with deep neural networks for automatic detection of
osteoporotic vertebral fractures, obtaining an accuracy of 89.2%.
Another author (56) that also studied automated detection of
posterior-element fractures with deep convolutional networks
obtained an AUC of 85.7%. There is also some experience using
automatic classification and detection of calcaneus fracture
with an accuracy of 98% (57). Couteaux et al. (58), Bien
et al. (59), and Roblot et al. (60) developed algorithms to
automatically detect knee meniscal tears using convolutional
neural networks and deep learning assisted with magnetic
resonance imaging, obtaining AUC scores of 90.6, 84.7, and
92%, respectively. A similar performance was obtained by
authors in (61), where cartilage lesion detection algorithms were
developed, reaching accuracy levels of 91%. In radiography,
different applications are considered, such as deep learning
classification algorithms for the detection of ossification areas of
the hand to estimate skeletal maturity (62), obtaining accuracy
results similar to an expert radiologist (63). Another publication
evaluated knee osteoarthritis in 3,000 subjects (5,960 knees)
from the Osteoarthritis Initiative dataset using deep learning
techniques. They achieved an AUC of 93%, although the
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FIGURE 1

Flowchart of data selection and subjects used in the study. Abbreviations: MRI, magnetic resonance imaging; CT, computed tomography scan;
LET, lateral elbow tendinopathy; US, ultrasound.

diagnosis is highly dependent on the practitioner’s subjectivity,
just like US methods (64). As noted earlier, however, US imaging
has not been frequently used as an image-generating source.

Machine learning for the medical US continues to
be an opportunity (65), especially in musculoskeletal
disorders since the US is highly operator-dependent (66)
and the applications are dictated by adequate front-end
beamforming, compression, signal extraction, and velocity
(67), requiring significant training to acquire a level of
competence in clinical diagnosis (68) because the images
contain multiplicative noise (69). Baka et al. (70) proposed
a model to learn the appearance of the bone interface
using US images and random forest methods, obtaining a
precision of 86%. Another group proposed an algorithm
to segment vertebral US images into three regions with
a classification rate of 84.7% (71). In tendon, literature is
uncommon yet. In 2017, the University of Salford from the
United Kingdom reported in an international conference
an automatic method to detect and classify Achilles tendon
injuries using decision trees, non-linear support vector
machines, and ensemble classifiers (69). Kapinski in 2018
(72) reported a novel method for continuous evaluation
of reconstructed Achilles tendon healing based on the
responses of intermediate convolutional neural network
layers. Note that the task of detecting and classifying different
conditions as described above can be considered simple
since they are based on binary results (an anomaly can
only be present or not) (54). This study differs from others
that use deep learning or convolutional neural networks
because it uses a multilabel, fast, and simplified classifier to

find different degenerative patterns simultaneously, such as
hypoechogenicity, neovascularity, bony irregularities, and
fibrillar disruptions. Currently, no scientific publications
have identified ultrasonographic findings using artificial
intelligence algorithms.

This article aims to assess multilabel classification
models using machine learning algorithms to detect
degenerative findings and intrasubstance tear in US images
with LET diagnosis.

Materials and methods

Study design

This study was designed as a retrospective and multicentric
study. It was written following the Strengthening the Reporting
of Observation studies in Epidemiology (STROBE) guideline
(73). All patients records with an elbow US exam at MEDS Clinic
in Santiago, Región Metropolitana, Chile. This study started on
March 1st, 2019.

Subjects

Only images of the common extensor tendon were
considered. We selected US images and medical records
from patients with a LET diagnosis from January 1st, 2017,
to December 30th, 2018. The inclusion criteria were: (1)
clinical diagnosis of LET established by orthopedists, sports
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FIGURE 2

Patient evaluation position and an ultrasound (US) finding,
respectively. (A) Probe positioning in the elbow in the US
exploration of the extensor tendon complex. (B) US imaging
shows intrasubstance tear in extensor tendon complex.

medicine physicians, or any musculoskeletal specialists, (2)
US exam made in the medical center of interest, (3) US
exam reported by any musculoskeletal radiologist with more
than 10 years of experience, and (4) no race or age
restriction. Consecutively, exclusion criteria were: (1) US-
guided procedures, such as corticoid, stem cell, and platelet-
rich plasma injections, (2) previous LET surgery, and (3)
duplicate or not distinguishable images, were removed from
the dataset. Figure 1 provides the flowchart to select the
subjects.

Ultrasound assessment of common
extensor tendon

All common extensor tendons were assessed using an
Aplio 500 US system (Toshiba America Medical Systems,
Inc, Tustin, CA, USA) equipped with a multifrequency linear
transducer was used. A frequency of 18 MHz was chosen. The
images were stored as Digital Imaging and Communications in
Medicine (DICOM) files and reviewed on a picture archiving
and communication system (PACS).

All patients with LET diagnosis were examined in a seated
position with flexion elbow in 90 grades with the wrist pronated,
and the arm was resting on a table (14).

Greyscale and color Doppler US imaging are standard
methods used for assessing tendon structural changes (74).
Following the literature recommendations, four common
prevalent degenerative findings were selected from US exams,
such as hypoechogenicity, neovascularity, enthesopathy, and
intrasubstance tear (75). A focal hypoechoic region was
defined as being rounded and not associated with tendon
disruption. Neovascularity was assessed as the presence of blood
flow on color Doppler. Enthesopathy was evaluated as bony
abnormalities at the tendon insertion. A linear intrasubstance
tear was defined as a linear hypoechoic focus associated with
discontinuity of tendon fibers (76–80). Every finding was
evaluated with a binary score as present or absent. We recorded
when an exam presents more than one degenerative finding.
Figure 2A shows the evaluation position, and Figure 2B
represents US finding, in this case, an intrasubstance tear.

Datasets: Ultrasound image and
database

Several recommendations were followed for data (images)
pre-processing, object detection, and feature extraction (81–
83). Two datasets (A and B) were built for training and
testing models. The pre-processing step considers eliminating
any elements that generated noise in the images, such as
uneven lighting, different sizes, or image portions without
information (84). Object detection is a specific injury area of
interest for the analysis. However, in this case, we considered
the common extensor tendon image. Feature extraction is an
important step in the construction of any pattern classification
and aims at the extraction of the relevant information that
characterizes each class (85). According to the 7th International
Conference on System Engineering and Technology 2017,
texture analysis and classification in US medical images can use
feature extraction and texture characteristics for determining
echo pattern characteristics (86). One of the most used are
intensities distribution (mean intensity and standard deviation),
pixel-pixel co-occurrence patterns, and scales granularity.
Then the shape contour was extracted where the texture
of the pixels was quantified. The US images were labeled
manually with four degenerative findings classification outputs
findings (hypoechogenicity, neovascularity, enthesopathy, and
intrasubstance tear) (65) and complementary patient data such
as sex, age, and side of the injury (right or left). The final process
consists of a combination between the patient’s information and
image analysis. Dataset A was image prediction and contained
data extraction from 95 morphology characteristics, shapes,
and texture variables, where one image corresponding to one
diagnostic (30.007 rows). Dataset B was the patient prediction
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FIGURE 3

Study workflow. Abbreviations: BR, binary relevance model; CC, classifier chains model; DBR, dependent binary relevance model; NST, nested
stacking model; RF, random forest; STA, staking generalization; AUC, area under the curve.

TABLE 1 Ultrasound findings comparison between sexes.

Demographic characteristics/
degenerative findings

Female (N = 1717)
Mean ± SD; n (%)

Male (N = 2607)
Mean ± SD; n (%)

p-value Total (N = 4324)
Mean ± SD; n (%)

Age 47.18 ± 11.00 45.99 ± 11.03 <0.001a 46.46 ± 11.03

Right side of the injury 1179 (68.88) 1790 (68.66) 0.98 2969 (68.66)

HE 1201 (69.94) 1730 (66.35) 0.0119b 2931 (67.75)

NV 636 (37.04) 999 (38.31) 0.4093 1635 (37.79)

E 599 (34.88) 915 (35.09) 0.9411 1514 (35.00)

IST 582 (33.89) 880 (33.75) 0.9521 1462 (33.80)

HE, hypoechogenicity; NV, neovascularity; E, enthesopathy; IST, intrasubstance tear. ap-value < 0.001. bp-value < 0.01.

and included 380 variables from data extraction, such as median,
standard deviation, minimal, and maximal, where one exam
corresponds to one diagnostic (4.321 rows). Figure 3 represents
the study workflow process.

Machine learning and statistical
analysis

Supervised learning was used because most machine
learning applications for US involve them. Both datasets
were implemented into binary and multilabel classification
algorithms in six machine learning methods: Binary relevance
model, classifier chains model, nested stacking model,
dependent binary relevance model, staking generalization,
and random forest.

All models were trained to classify four tendon findings
(hypoechogenicity, neovascularity, enthesopathy, and
intrasubstance tear) in images with LET diagnosis. First,
each pattern was recognized individually and then the four
finding simultaneously. Different metrics were conducted to
assess the classification of machine learning models. A K-fold-
repeated-cross-validation (KFRCV) with ten as the number
of folds was used. After this process, means and confidence
intervals (CI) values were obtained.

Data were analyzed using R version 3.6.2 (R Foundation
for Statistical Computing). The following packages were used:
“EBImage” for characteristics extraction, “mlr” for each machine
learning algorithm, and “randomForest” for the random
forest (87–89). Additionally, to measure multilabel prediction
(classification) were used multilabel accuracy, sensitivity,
specificity, and receiver operating characteristic (ROC) (90).
Also, we included a positive predictive value. Differences in US
findings between women and men were assessed for significance
using the T-test and chi-squared test. The significance level was
considered p < (0.05) and 95% CI for all metrics.

Results

Common extensor tendinopathy

A total of 30,007 US images, 6.9 on average in 4,324 exams,
and medical records from 2,917 patients with a LET diagnosis
were included in the data analysis in this study. Patients’ age
was presented with a minimum value of 7 and a maximum of
91 years. Women are older than men in 1 year 47.18 ± 11.00
(p < 0.001) and also, they presented statistical differences in
hypoechogenicity finding in comparison with men (p = 0.01).
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TABLE 2 The area under the curve (AUC), sensitivity, and specificity [95% CI] values of six machine learning classifiers based on degenerative
findings in datasets A and B.

Dataset Measure Model HE [95% CI] NV [95% CI] E [95% CI] IST [95% CI]

A AUC BR 0.806 (0.81, 0.81) 0.901 (0.900, 0.902) 0.7482 (0.747, 0.749) 0.963 (0.963, 0.964)

CC 0.810 (0.81, 0.81) 0.897 (0.896, 0.898) 0.6954 (0.689, 0.701) 0.961 (0.960, 0.963)

DBR 0.804 (0.8, 0.81) 0.892 (0.891, 0.893) 0.6488 (0.647, 0.650) 0.956 (0.954, 0.958)

NST 0.806 (0.81, 0.81) 0.901 (0.900, 0.902) 0.7463 (0.745, 0.747) 0.963 (0.963, 0.964)

RF 0.928 (0.93, 0.93) 0.974 (0.973, 0.974) 0.8993 (0.898, 0.9) 0.991 (0.990, 0.991)

STA 0.806 (0.81, 0.81) 0.847 (0.846, 0.848) 0.688 (0.686, 0.689) 0.935 (0.934, 0.936)

SE BR 0.577 (0.58, 0.58) 0.704 (0.703, 0.704) 0.6568 (0.656, 0.657) 0.760 (0.759, 0.760)

CC 0.578 (0.58, 0.58) 0.702 (0.701, 0.703) 0.6234 (0.619, 0.627) 0.759 (0.758, 0.76)

DBR 0.576 (0.58, 0.58) 0.699 (0.698, 0.7) 0.594 (0.593, 0.595) 0.756 (0.754, 0.757)

NST 0.577 (0.58, 0.58) 0.704 (0.703, 0.704) 0.6556 (0.654, 0.656) 0.760 (0.759, 0.760)

RF 0.607 (0.61, 0.61) 0.741 (0.740, 0.741) 0.7522 (0.751, 0.752) 0.775 (0.774, 0.776)

STA 0.577 (0.58, 0.58) 0.676 (0.676, 0.677) 0.6187 (0.617, 0.619) 0.744 (0.743, 0.744)

SP BR 0.729 (0.73, 0.73) 0.697 (0.696, 0.697) 0.5913 (0.590, 0.591) 0.703 (0.702, 0.70)

CC 0.732 (0.73, 0.73) 0.695 (0.694, 0.696) 0.5719 (0.569, 0.574) 0.702 (0.701, 0.703)

DBR 0.728 (0.73, 0.73) 0.692 (0.691, 0.693) 0.5548 (0.554, 0.555) 0.700 (0.699, 0.701)

NST 0.729 (0.73, 0.73) 0.697 (0.696, 0.697) 0.5906 (0.590, 0.591) 0.703 (0.702, 0.704)

RF 0.820 (0.82, 0.82) 0.732 (0.732, 0.733) 0.6469 (0.646, 0.647) 0.715 (0.714, 0.716)

STA 0.729 (0.73, 0.73) 0.670 (0.670, 0.671) 0.5692 (0.568, 0.569) 0.691 (0.690, 0.691)

B AUC BR 0.830 (0.83, 0.83) 0.925 (0.923, 0.927) 0.7811 (0.778, 0.784) 0.960 (0.957, 0.963)

CC 0.830 (0.83, 0.83) 0.906 (0.901, 0.911) 0.7228 (0.714, 0.731) 0.964 (0.961, 0.966)

DBR 0.788 (0.79, 0.79) 0.846 (0.842, 0.85) 0.6477 (0.643, 0.652) 0.965 (0.963, 0.967)

NST 0.830 (0.83, 0.83) 0.926 (0.925, 0.928) 0.781 (0.777, 0.784) 0.960 (0.957, 0.963)

RF 0.888 (0.89, 0.89) 0.965 (0.964, 0.966) 0.8517 (0.849, 0.854) 0.986 (0.985, 0.987)

STA 0.829 (0.83, 0.83) 0.870 (0.866, 0.873) 0.7222 (0.717, 0.726) 0.937 (0.935, 0.940)

SE BR 0.606 (0.61, 0.61) 0.764 (0.762, 0.765) 0.6821 (0.679, 0.684) 0.804 (0.801, 0.806)

CC 0.606 (0.61, 0.61) 0.752 (0.749, 0.755) 0.6444 (0.638, 0.650) 0.807 (0.804, 0.809)

DBR 0.592 (0.59, 0.59) 0.714 (0.712, 0.717) 0.5957 (0.592, 0.598) 0.807 (0.805, 0.809)

NST 0.606 (0.61, 0.61) 0.765 (0.763, 0.766) 0.6821 (0.679, 0.684) 0.804 (0.801, 0.806)

RF 0.624 (0.62, 0.63) 0.789 (0.787, 0.790) 0.7279 (0.725, 0.73) 0.821 (0.820, 0.823)

STA 0.605 (0.6, 0.61) 0.729 (0.727, 0.732) 0.6441 (0.640, 0.647) 0.789 (0.787, 0.791)

SP BR 0.723 (0.72, 0.73) 0.660 (0.658, 0.661) 0.5983 (0.597, 0.599) 0.654 (0.653, 0.656)

CC 0.723 (0.72, 0.73) 0.653 (0.651, 0.655) 0.5779 (0.574, 0.580) 0.656 (0.654, 0.657)

DBR 0.695 (0.69, 0.7) 0.630 (0.628, 0.632) 0.5516 (0.550, 0.553) 0.656 (0.655, 0.658)

NST 0.723 (0.72, 0.73) 0.660 (0.659, 0.662) 0.5983 (0.597, 0.599) 0.654 (0.653, 0.656)

RF 0.763 (0.76, 0.76) 0.675 (0.673, 0.676) 0.623 (0.621, 0.624) 0.663 (0.662, 0.665)

STA 0.723 (0.72, 0.73) 0.639 (0.637, 0.641) 0.5776 (0.576, 0.579) 0.647 (0.645, 0.648)

AUC, area under the curve; SE, sensitivity; SP, specificity; HE, hypoechogenicity; NV, neovascularity; IST, intrasubstance tear; E, enthesopathy; BR, binary relevance model; CC, classifier
chains model; NST, nested stacking model; DBR, dependent binary relevance model; STA, staking generalization; RF, random forest.

The total of exams presented at least one degenerative finding.
US features are summarized in Table 1.

Machine learning models for a binary
classifier

Table 2 shows the binary classification performance
(AUC, sensitivity, and specificity) for both datasets (A
and B) in each of the six machine learning algorithms.

Main degenerative findings in LET (hypoechogenicity,
neovascularity, enthesopathy, and intrasubstance tear) were
considered under analysis. Focusing on AUC sensitivity and
specificity, most models performed with variability among
them. Results were described in most cases with a minimal
range of 95% CI, demonstrating a robust performance
for all models. Notably, the RF model obtained the best
results. For example, Table 2 shows dataset A, where
random forest presented the highest mean values in AUC,
sensitivity, and also specificity by each degenerative finding.
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The AUC and sensitivity showed the best performance
in IST with 0.991 [95% CI, 0.99, −0.99], and 0.775 [95%
CI, 0.77, −0.77], respectively. Instead, specificity showed
upper values in hypoechogenicity with 0.821 [95% CI, 0.82,
−0.82].

A similar situation occurred for dataset B, which showed
slightly lower values for the same findings and models.
The RF model also demonstrated the best performance for
all measures and degenerative features. Table 2 showed
the highest AUC and sensitivity values for ISR 0.937
[95% CI, 0.93–0.94] and 0.82 [95% CI, 0.82, −0.82].
Hypoechogenicity also presented better specificity than
other degenerative findings with 0.763 [95% CI, 0.72,
−0.72].

Machine learning models for a
multilabel classifier

In the previous results section, the machine learning models
assessed a binary classification for each degenerative finding.
Now, these methods used a multilabel classifier to identify
the four types of tendon findings simultaneously in both
datasets. In this scenario, the diagnosis presented different
accuracy levels in all machine learning models. When the
diagnosis was based on the combination of degenerative
findings, the random forest algorithm again presented the
best performances among the selected models. Table 3 shows
that the random forest in dataset A presented the highest
multilabel accuracy value of 0.772 [95% CI, 0.771, 0.773].
Similarly, in the condition represented in dataset B, these results
show that the model performs well in testing environments
without presenting overfitting issues. Multilabel accuracy
value was 0.723 [95% CI, 0.721, 0.726]. Additionally, high
macro and micro-AUC scores are observed in RF models
in both datasets. These results could be explained due to
the balance between sensitivity and specificity shown in RF
models. Particularly, micro-AUC observed in dataset A of
0.962 [95% CI, 0.962–0.963] and 0.942 [95% CI, 0.941–
0.943] in dataset B results are essential because aggregating
the contributions of all classes to compute the average
metric.

Diagnosis performance

Figure 4 represents dataset A, and the results show
the relation between sensitivity vs. 1-specificity across
each degenerative finding using the random forest model.
In this figure, the plot shows the higher discriminant
capacity of diagnosis detection. Most of the lines are
located progressively closer to the upper left-hand corner
in ROC space. The intrasubstance tear shows the most
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FIGURE 4

The receiver operating characteristic (ROC) curves for RF model for dataset A. Abbreviations: RF, random forest; HE, hypoechogenicity; NV,
neovascularity; IST, intrasubstance tear; E, enthesopathy; Macro, macro-AUC; Micro, micro-AUC.

significant discriminate capacity in comparison with
the other tendon injuries. However, the enthesopathy
finding presented the lowest discriminate capacity in this
model.

Discussion

This study is one of the first to present multilabel
classification models using machine learning algorithms
to detect degenerative findings and intrasubstance tear in
US images with LET diagnosis. This retrospective analysis
explicitly considered one of the most extensive series of
extensor carpi radialis brevis US images, and our machine
learning-based tool for diagnosis of LET was trained using
the largest dataset so far. The most notable outcomes in
this study were obtained by incorporating several machine
learning models based on diagnosis know condition. Excellent
results and highest values for all degenerative findings were
detected in the binary classification performance. Moreover,
when the US diagnosis was based on the combination

of degenerative findings using a multilabel classifier, the
accuracy values presented strong performance too. Our results
showed that the random forest algorithm presented the
best diagnosis performance, in both binary and multilabel
models. These results demonstrate that the implementation
of tools derived from artificial intelligence can be used
to support the imaging for tendinopathies. Collaborative
work between the radiologist and the algorithm could
improve the precision of the results, especially if the
institution does not have a radiologist specializing in the
musculoskeletal area.

Traditionally, US has been demonstrated as a cost-
effective tool for detecting abnormalities patterns in tendon
structures. Additionally, there is evidence to support the use
of US in the detection of LET. A meta-analysis published
in 2014 determined that diagnostic test accuracy appears
to be highly dependent on numerous variables, such as
operator experience, equipment, and stage of pathology.
However, US has variable sensitivity and specificity (sensitivity:
64–100%; specificity: 36–100%), decreasing the clinical
diagnosis precision (24). Another article published in
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the same year reported specifically the sensitivity and
specificity for each abnormal US finding using traditional
detection method. The hypoechogenicity presented the
best combination of diagnostic sensitivity and specificity.
It is moderately sensitive sensitivity: 0.64 [95% CI, 0.56,
0.72] and highly specific specificity 0.82 [95% CI, 0.72,
0.90]. Additionally, neovascularity specificity 1.00 [95%
CI, 0.97, 1.00)], calcifications specificity 0.97 [95% CI,
0.94, 0.99], and cortical irregularities specificity 0.96 [95%
CI, 0.88, 0.99] have strong specificity for chronic lateral
epicondylalgia (25). Our results, particularly for intrasubstance
tear detection using the binary algorithm classification
in both datasets, demonstrated a superior performance
to the traditional US diagnosis methods. In the case of
multilabel accuracy, the performance for both indicators
was lowest results of specificity and sensitivity than the
binary method. This situation could be explained because
it is difficult to find a function that minimized the error for
more classes. In other words, it increases the variability of the
response variable.

For example, in the binary classification, the enthesopathy
presented the lowest performance of the six machine learning
classifiers. Notably, in the dependent binary relevance model
from dataset B, our analysis showed that AUC was 0.647
[95% CI, 0.64, 0.65]. This result is quite similar to other
reports with a sensitivity of 0.65 and specificity of 0.86 for
this finding (77). However, our best result in the binary
classification was detecting intrasubstance tear injuries using
random forest algorithms. The performance showed an AUC
of almost 1.0 (0.99) [95% CI, 0.99, 0.99] in contrast with
the traditional US methods diagnosis for detecting common
extensor tendon tear in the lateral with lower performances
in sensitivity, specificity, and accuracy with 64.52, 85.19, and
72.73%, respectively (26).

However, one of our research strengths is the execution
of machine learning models using multilabel detection for
tendon injury findings. To date, few experiences had been
published in the musculoskeletal area using artificial intelligence
for tendon pattern detection. Some previous experiences
have used Automatic ROI Detection and Classification of
the Achilles Tendon ultrasound Images (69), and deep
learning models for automatic tracking of the muscle-tendon
junction or even measuring muscle atrophy (91). Other
disciplines have also used other classification techniques such
as neural networks or deep learning convolutional neural
networks for image detection, demonstrating excellent results.
However, CNN and DL have some drawbacks that should
be analyzed when developing predictive models. First, it
has been shown that DL requires large datasets to obtain
better performance. To handle this, transfer learning is
commonly used. However, DL architectures should also
be re-trained and model parameters should be optimized,
looking out for possible overfitting patterns. Second, DL

architectures rely on the high computational performance,
and it takes longer to prove results. In this sense, they
are more complex to implement, especially in a clinical
environment with a high demand for care, so improving
diagnostic speed without compromising diagnostic accuracy
is crucial for patients and the health system. Therefore,
machine learning algorithms are advantageous when speed
is of interest. In this case, the execution times of the
proposed method were very low, allowing it to be easily
implemented in a hospital scenario and re-trained with
new data that is daily generated. Finally, the multilabel
classification model differs from other algorithms most
commonly used in image diagnosis due to the simplicity of
its implementation.

This study also has some limitations. Firstly, our images
come from the same institution, and patients presented
similar socioeconomic conditions. Secondly, we included all
static US images from common extensor tendon US per
patient, not considering real-time and other structures or
tissues. Thirdly, we included tendons with a definitive LET
diagnosis, and we did not compare inter and intraobserver
variability between radiologists. Fourthly, we considered all
images without a region of interest, such as most of the
publications. Nevertheless, in a short time, it could be a potential
advantage. Finally, we did not repeat the US diagnosis to reduce
retrospective bias. However, our radiologist presented more
than 10 years of experience.

In conclusion, the random forest model presented the
highest sensitivity and specificity in binary and multilabel
classifiers for degenerative findings in the common extensor
tendon. In particular, intrasubstance tear detections obtained
the best performance. Machine learning models could be used
to support the US diagnosis of LET.
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Background: Adenomyosis is a common gynecological disease in women.

A relevant literature search found that approximately 82% of patients

with adenomyosis chose to undergo hysterectomy. However, women of

childbearing age are more likely to undergo surgery to preserve the uterus.

Because it is difficult to determine the extent of adenomyosis, it is almost

impossible to resect adenomyotic tissue and retain the uterus at the

same time.

Materials and methods: Following ethics approval and patient consent,

tissue samples were resected and prepared to create frozen slices for

analysis. One slice was subjected to H&E staining while the remaining slices

were photographed with Coherent Anti-Stokes Raman Scattering (CARS),

Second-Harmonic Generation (SHG) microscopy, and Raman spectroscopy.

Comparative observations and analyses at the same positions were carried

out to explore the diagnostic ability of CARS, SHG, and Raman spectroscopy

for adenomyosis.

Results: In adenomyotic tissue, we found two characteristic peaks at 1,155 and

1,519 cm−1 in the Raman spectrum, which were significantly different from

normal tissue. The substances shown in the CARS spectrum were represented

by peaks of 1,519 cm−1. SHG microscopy showed a distribution of collagen at

the focus of the adenomyosis.

Conclusion: This study represents a novel analysis of Raman microscopy,

CARS, and SHG in the analysis of adenomyotic lesions. We found the

diffraction spectrum useful in determining the focal boundary and the

diagnosis of adenomyosis in the tested samples.
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Introduction

Adenomyosis refers to the invasion of endometrial glands
and stroma into the myometrium and the maintenance of
functional changes such as periodic hyperplasia, exfoliation,
and bleeding. The cause of the disease is unknown (1).
It can lead to symptoms such as increased menstruation,
prolonged menstruation, and progressive aggravated
dysmenorrhea (2). A prior study by Di Donato and co-
authors found that 21.8% of patients with endometriosis
have adenomyosis. Patients with concurrent adenomyosis
have been found to be older, and have a greater pain
intensity and depth of infiltration of endometriosis (3).
Furthermore, a diagnosis of adenomyosis in these patients
has been shown to negatively impact postoperative pain
following surgical treatment (4). Adenomyosis can be divided
into two types: focal and diffuse. The uterus is uniformly
enlarged in diffuse adenomyosis. Focal lesions, known as
adenomyosis, grow locally and have no obvious boundary
with surrounding tissue, which makes them difficult to
resect during surgery. A population sample paper found
that about 82% of patients with adenomyosis choose to
undergo hysterectomy (5). However, total hysterectomy
is obviously not feasible for women with reproductive
needs. Uterine-sparing surgery is an alternative surgical
treatment, but it is difficult to determine the scope and focus
of adenomyosis as it is often mixed with the surrounding
normal myometrium; it is therefore almost impossible to
completely remove adenomyotic tissue while preserving
the uterus (6). At present, the main methods of diagnosing
adenomyosis are clinical symptoms and ultrasonography, and
the gold standard of diagnosis is postoperative pathology,
that is, H&E staining. However, H&E staining takes
time and requires a pathologist. Identifying the lesion
boundary to aid successful removal therefore represents a
significant challenge for surgeons during uterine-sparing
surgery (7).

Currently, utilizing engineering technology alongside
medicine has proven popular. Among them, the application
of optical microscopy in medicine is emerging. Coherent
Anti-Stokes Raman scattering (CARS) is a third-order non-
linear optical process based on the coherent excitation of
molecular vibrations (8), which can obtain the molecular
composition and distribution information of the sample
to be tested according to the vibrational characteristics
of the material molecules. Second-harmonic generation
(SHG) microscopy has emerged as a powerful modality
for imaging fibrillar collagen in a diverse range of tissues
because it is highly sensitive to the collagen fibril/fiber
structure (9).

Optical microscopy has been successfully applied to
gastric cancer (8), colorectal cancer (9), human meningioma
(10, 11), liver cancer (12), lung cancer (13), and other

diseases. There have been a large number of studies on
cervical cancer (14), ovarian cancer (15), endometrial
carcinoma (16), and reproduction (17) in obstetrics and
gynecology. Compared with the time-consuming traditional
H&E staining method, the biggest advantage of optical
microscopy lies in its convenience and efficiency. Notably,
the prior application of Raman Microscopy in determining
the lesion range in a cohort undergoing surgical treatment for
brain cancer provided possible parallels to the identification
and resection of tissue boundaries in adenomyosis patients
(18). Our hypothesis therefore became: can the focus and
scope of adenomyosis be determined through optical
microscopy to meet the needs of women of childbearing
age and to perform adenomyosis surgery with uterine
preservation?

This study describes the first use of a Raman microscope,
CARS, and SHG to study adenomyotic lesions.

Materials and methods

Sample preparation

This is a prospective study from February 2021 to
March 2022. We randomly selected 10 patients (five
normal and five with adenomyosis) who underwent
surgery in the First Affiliated Hospital of Dalian Medical
University. The adenomyosis patients were determined
by preoperative ultrasound examination. After cutting
off the uterus during the operation, we retain several
pieces of tissue (in case of adenomyosis, parts of the
adenomyosis lesion and the rest of normal muscle tissue
will be retained) and place them in liquid nitrogen tanks
for cold storage, in order to preserve the cell activity for
the convenience of subsequent experiments. Patients with
adenomyosis provided both adenomyotic and normal
tissue samples while non-adenomyosis patients provided
normal tissue samples. Finally, a total of 20 adenomyotic
tissue samples and 20 normal samples (including five
adenomyosis patients’ normal samples) were included in
this study. Adenomyosis samples were from patients who
underwent total hysterectomy due to adenomyosis, and
normal in vitro samples of the control group were from
normal uterine muscle tissues of patients who underwent
total hysterectomy owing to non-malignant diseases (to
prevent tumor tissues from affecting the results), such
as hysteromyoma and uterine prolapse. All patients
signed the informed consent form under the informed
consent of the research process after surgery, allowing
us to conduct experiments on their in vitro tissues. This
experiment was certified by the ethics Association of
the First Affiliated Hospital of Dalian Medical University
(IRB number: PJ-KS-KY-2022-257).
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FIGURE 1

Layout of the optical system of the Raman micro-spectrometer.

After sample preparation, we took 40 fresh tissues
(20 normal tissues and 20 adenomyosis tissues) about
1 × 1 cm in size from 10 uteruses (five normal tissues
and five adenomyosis tissues), and made continuous
frozen sections for each tissue. From each tissue, three
10 µm sections (slices) were cut. The three slices of the
same tissue were numbered 1, 2, and 3. All “Slices 1”
underwent H&E staining, and Slices 2 and 3 were directly
observed under a non-linear optics microscope without any
staining treatment.

H&E

Two experienced pathologists observed all H&E-stained
slices to provide a diagnosis of either adenomyosis or normal
tissue; their corresponding Slices 2 and 3 were imaged by CARS
and Raman microscope, respectively.

Raman spectra

Raman spectra were obtained using a commercial Raman
micro-spectrometer (Renishaw, InVia system) at 532 nm
excitation wave number, which was focused onto the muscles
using a 50× (NA = 0.75) objective for an integration
time of 10 s. Cosmic ray was removed after acquiring
each spectrum using the Renishaw WiRE 4.4 software. The
experimental setup and its schematic illustration are shown in
Figure 1.

Because the Raman microscope displays spectrum images
of substances in a limited range, different substances display
different Raman signals, so the carrier glass carrying tissue slices
will inevitably display their own Raman signals. At this time, the
glass is measured separately to display the Raman signal of the
glass itself as a reference (red in Figure 2), so that the peak value
of the glass and the characteristic peak value of adenomyosis can
be distinguished.

We first identified the characteristic wave number range
in the range of 500–3,000 cm−1. As shown in Figure 2, the

FIGURE 2

900–1,600 cm-1 Raman spectra of normal, adenomyosis, and
glass (normal, adenomyosis, and glass from top to bottom).

characteristic wave number is about 1,200 and 1,500 cm−1, so
we set the wave number range at 900–1,600 cm−1 to facilitate
the experiment.

Anti-stokes Raman scattering and
second-harmonic generation

Figure 3 shows a schematic of the CARS system for non-
linear optical imaging. Briefly, a mode-locked 80 fs Ti:sapphire
laser (MaiTai, Spectra Physics, Santa Clara, USA) is tuned to
800 nm with pulse width at an 80 MHz repetition rate and
divided into two parts by a polarization beam splitter. One
beam works as the pump beam; the other beam is used to
pump a photonic crystal fiber to produce the Stokes beam for
CARS imaging. Two beams are combined at the dichroic mirror.
The combined beams are sent into a multiphoton scanning
microscope (Olympus, FV1200) and focused on the sample by
an objective (10×, NA 0.4; UplanApo, Olympus, Tokyo, Japan).
The average power of 75 mW is used for the pump and the probe
beam. The CARS and SHG signals pass through a bandpass filter,
respectively, before being detected by the PMT.

Results

All Slice 1 samples were viewed under the microscope before
imaging for records (Figure 4A). Since Slices Nos. 1, 2, and 3
were cut continuously by a slicer, any differences can be ignored.
We observed images with CARS and SHG at the same position
of Slices 2. Examples of images are adenomyosis lesions imaged
by CARS and SHG (Figure 4).

Figure 4A shows the contrast diagram of H&E staining. The
lesions shown in the figure are the subject of this study. The
“Y” structure pointed by the white arrow in the figure is the
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FIGURE 3

Optical path of the CARS system (M, mirror; DM, Dichroic Mirrors; F, Filter; FM, Flip Mirror; PMT, photomultiplier tube).

FIGURE 4

Shows the images of adenomyosis lesions under different microscopes (→: Ectopic uterine gland). (A) An H&E staining section. (B) DIC
(differential interference contrast microscope) imaging. (C) SHG imaging. (D) CARS imaging (∗: fibro-collagen proliferation).

ectopic endometrial structure in the myometrium, namely, the
uterine gland. As shown in Figure 4A, the uterine gland is a
single tube gland with branches at its end, mainly composed of
secretory cells.

Figure 4B shows the differential interference contrast
microscope (DIC imaging). DIC imaging is an image directly
observed by the naked eye without staining. From the DIC
imaging, we can see the sense of uneven layers in the image,
vaguely seeing the ectopic uterine gland (the position indicated
by the white arrow), but the peripheral structure is not clear.

In the Figure 4C CARS microscope presents the outline of
the ectopic uterine gland perfectly. It can be seen that under
the CARS microscope, the glandular part of the uterine gland
is not imaged (the position indicated by the white arrow),
and the image intensity of the surrounding interstitial part is
relatively light, while the intensity of the surrounding muscle
layer is relatively high. We used a 720 nm filter in CARS. The
Raman wave number range corresponding to the 720 nm filter
just includes our second characteristic peak of 1,519 cm−1.
Therefore, we determined that the imaging substance of CARS
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was consistent with the representative substance of the second
characteristic peak in Raman imaging.

Figure 4D shows the SHG image. Interestingly, SHG,
unlike CARS imaging, showed stronger intensity in the uterine
gland and its surrounding fibro-collagen proliferation section.
The SHG microscope is widely used to image various fibrous
collagens. 3D also clearly shows the distribution of collagen
around the lesion. It can be seen that fibro-collagen proliferation
exists around the uterine gland (∗Marking section).

In the range of 900–1,600 cm−1, the characteristic wave
number of adenomyosis is more obvious and allows a clear
distinction between the Raman spectrum curve of normal tissue
and adenomyosis (Figure 2). In the following experiment,
we used adenomyosis tissues from different patients, and the
characteristic peaks appeared at 1,155 and 1,519 cm−1.

Discussion

In this report, we used Raman, DIC, CARS, and SHG
microscopes to directly image tissue sections without
staining, and took HE staining images at the same
location for comparison.

CARS microscopy, probing vibrations of molecular
bonds for image contrast, and the high vibrational Raman
cross sections of many hydrogen carbon bonds make
the technique suitable for imaging polymers (19). CARS
microscopy derives its contrast from intrinsic molecular
vibrations in a sample; the CH group of membrane and
cortical cytoskeleton proteins are the basis of CARS imaging
(20). In the absence of staining (Figure 4C), CARS can
clearly show the outline of the ectopic uterine gland and
its boundary with surrounding tissue structure compare
with Figure 4A, which has been stained with H&E. SHG
visualizes highly ordered tissue structures, which are non-
centrosymmetric like type I collagen fibers (21). As shown
in Figure 4D, there is obvious fibro-collagen proliferation
around the uterine gland, which is caused by bleeding of
adenomyosis (22).

According to previous experiments, the characteristic
curve of cervical cancer is concentrated at 720, 785, 1,095,
1,258, and 1,579 cm−1 (23–25). This is different from the
representative peaks of adenomyosis (1,155 and 1,519 cm−1)
found in our study. Most studies regarding Raman microscopy
in adenomyosis focus on the serological aspects of patients
(26). During our literature search, only one such direct
histological study was found. In this article (27), Wang et al.
identified a peak different from that of normal tissue at
1,173 cm−1 in adenomyosis, believing the peak is induced
by delta (C—O) shifts. Our initial peak was found to
be 1,155 cm−1. Considering Wang and co-authors used a
light source of 785 nm compared to our own source at
532 nm, we consider that this finding is broadly consistent.

However, our finding of the additional peak at 1,519 cm−1 in
adenomyosis samples represents a novel finding. To understand
our novel finding, we reviewed the existing literature to
identify biological macromolecules and concurrent Raman wave
numbers (Table 1). First, after an extensive literature search
and integration, we created a corresponding table between
Raman wave numbers and biological macromolecules (14, 16,
28–30). From Table 1, we can see that most representative
substances with similar wave numbers are the same (however,
there may be errors caused by different measurements).
The corresponding substance of 1,516 cm−1 is amide II,
considering some errors caused by different experimental
conditions (temperature, tissue freshness, etc.) and instrument
measurements, so our first hypothesis about the characteristic
peak at 1,519 cm−1 was amide II. Of particular interest to
our findings, two prior lung cancer studies using Raman
microscopy found characteristic carotenoid Raman peaks at
1,152 and 1,518 cm−1 with the Raman peaks in lung cancer
patients lower than those in normal subjects. The authors
suggested these findings reflected C–C and conjugated C=C
bond stretch (24, 31). In our study, characteristic peaks were
found at 1,155 and 1,519 cm−1 in adenomyosis tissue, which
is very similar to the characteristic peaks of carotenoids at
1,152 and 1,518 cm−1 in the previous two studies. Carotenoids
represent the main source of Vitamin A in the body and
provide anti-oxidation, immune regulation, anti-cancer, and
anti-aging effects. Our findings representing similar peaks
may support a possible relationship between carotenoids and
adenomyosis; however, this remains speculative and requires
additional investigation.

The outstanding advantages of Raman spectroscopy
lie in its label-free nature and timeliness, which reduce
the waiting time of intraoperative pathology and the
burden upon pathologists at the surgery. Currently, Hand-
Held Raman technology has been successfully applied
to detect air components and diagnose plant diseases
(32–34). There are also a large number of intraoperative
boundary studies of brain tumors in medicine (18).
Currently, there is no research regarding Hand-Held
Raman technology on disease or surgery in obstetrics
and gynecology. Our results suggest a possible further
role for Hand-Held Raman microscopy in assisting
the intraoperative diagnosis of adenomyosis and the
localization of lesion boundaries to improve potential
surgical outcomes in patients. Similarly, handheld SHG
technology are also areas that have not been studied
and discussed. The results of this study also found the
potential utility in determining the location of adenomyosis
lesions. SHG also confirmed the proliferation of fibro-
collagen caused by bleeding around adenomyosis lesions.
The application of these two microscopes in surgery will
further help to determine and diagnose the location of
adenomyosis lesions.
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TABLE 1 Wave number of biomacromolecules.

Assignment Raman shift (cm−1)

DNA 481, 784, 788, 826

DNA/RNA 1,231, 1,320

Saccharides 1,370

Monosaccharide 898

Disaccharide 898

Polysaccharide 477

Glycogen 933, 1,003, 1,025, 1,150

Amylaceum 540

Collagens 859, 1,032, 1,303, 1,309, 1,325, 1,332, 1,339, 1,445

Phosphatidylinositol 415, 519, 576

Phospholipid 1,085, 1,032, 1,078, 1,445, 1,745

Cholesterol 548

Cholesteryl ester 538, 614

Lipid 877, 968, 1,125, 1,057, 1,060, 1,095, 1,124, 1,275, 1,309, 1,369, 1,437, 1,447, 1,450, 1,452

Glycerol 630

Nuclein 1,299, 1,340, 1,578

Tyrosine 640, 642, 643, 821, 823, 830, 835, 849, 853, 855, 859, 1,170, 1,616

Methionine 695

Aspartate 1,700

Glutamate 1,700

Tryptophan 745, 752, 758, 880, 1,208, 1,365, 1,374, 1,376, 1,552, 1,560, 1,561, 1,616, 1,618, 1,618

Proline 814, 821, 853, 855, 880, 918, 928, 933, 935, 936, 1,043, 1,066, 1,447

Hydroxyproline 821, 853, 876, 1,588

Valine 928, 933, 935, 936, 1,066

Phenylalanine 1,000, 1,002, 1,003, 1,004, 1,030, 1,104, 1,582, 1,583, 1,588, 1,602

Cysteine 495–516

Protein 933, 951, 1,158, 1,369

Phosphorylated protein 968, 970

Pyrimidine ring 766

Uracil 780, 784

Cytosine 784, 1,175, 1,290, 1,506

Thymine 784

Guanine 1,175, 1,369

Adenine 721, 1,335

Porphyrin 1,369

C-C skeleton 928, 938, 1,130, 1,561

C-C stretching (collagen) 817

C-C stretching (phenylalanine) 1,339

C-H stretching (protein) 1,295

C-N stretching (protein) 1,053, 1,128

C-O stretching (protein) 1,053

C-O stretching (lipid) 1,723, 1,738, 1,792

Ribose vibration 867, 915

Antisymmetric vibration of phosphoric acid 1,185–300

Antisymmetric phosphate stretching vibration 1,230

Amide I 1,600, 1,601, 1,624, 1,637, 1,640, 1,645, 1,654, 1,655, 1,658, 1,660, 1,664, 1,670, 1,685, 1,697

Amide II 1,516, 1,570

Amide III 1,234, 1,236, 1,243, 1,246, 1,255, 1,275, 1,285, 1,302

β-Carotenoids 1,152, 1,518, 1,520
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Conclusion

In this experiment, a Raman microscope, CARS, and
SHG were used to study adenomyosis, which demonstrated
the role of non-linear optics in diagnosing adenomyosis and
distinguishing lesion boundaries. Moreover, the combination
of CARS and SHG microscopes produces more extensive and
complementary information.
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Background: Interstitial lung disease (ILD) defines a group of parenchymal

lung disorders, characterized by fibrosis as their common final

pathophysiological stage. To improve diagnosis and treatment of ILD,

there is a need for repetitive non-invasive characterization of lung tissue by

quantitative parameters. In this study, we investigated whether CT image

patterns found in mice with bleomycin induced lung fibrosis can be translated

as prognostic factors to human patients diagnosed with ILD.

Methods: Bleomycin was used to induce lung fibrosis in mice (n_control = 36,

n_experimental = 55). The patient cohort consisted of 98 systemic

sclerosis (SSc) patients (n_ILD = 65). Radiomic features (n_histogram = 17,

n_texture = 137) were extracted from microCT (mice) and HRCT (patients)

images. Predictive performance of the models was evaluated with the area

under the receiver-operating characteristic curve (AUC). First, predictive

performance of individual features was examined and compared between

murine and patient data sets. Second, multivariate models predicting ILD were

trained on murine data and tested on patient data. Additionally, the models

were reoptimized on patient data to reduce the influence of the domain shift

on the performance scores.

Results: Predictive power of individual features in terms of AUC was highly

correlated between mice and patients (r = 0.86). A model based only on

mean image intensity in the lung scored AUC = 0.921 ± 0.048 in mice and

AUC = 0.774 (CI95% 0.677-0.859) in patients. The best radiomic model based
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on three radiomic features scored AUC = 0.994 ± 0.013 in mice and validated

with AUC = 0.832 (CI95% 0.745-0.907) in patients. However, reoptimization

of the model weights in the patient cohort allowed to increase the model’s

performance to AUC = 0.912 ± 0.058.

Conclusion: Radiomic signatures of experimental ILD derived from microCT

scans translated to HRCT of humans with SSc-ILD. We showed that the

experimental model of BLM-induced ILD is a promising system to test

radiomic models for later application and validation in human cohorts.

KEYWORDS

radiomics, preclinical imaging, interstitial lung disease, lung fibrosis, systemic
sclerosis, bleomycin

Introduction

Interstitial lung disease (ILD) defines a group of chronic,
etiologically different parenchymal lung disorders, characterized
by fibrosis as their common final pathophysiological stage.
The prognosis of the most prevalent and severe subtypes,
idiopathic pulmonary fibrosis (IPF) and ILD associated with the
autoimmune disease systemic sclerosis (SSc), is as poor as that
of untreated oncologic diseases (1, 2). Globally, non-malignant
lung diseases including ILD rank third on the mortality scale (3).

Experimental models of fibrosing ILD are paramount for the
identification of cellular and molecular key drivers of disease
and as preclinical test systems for novel targeted drugs (4). The
preferred and best characterized preclinical model of ILD is
the murine model of bleomycin-induced lung fibrosis, which
reflects important features of human ILD such as apoptosis of
epithelial cells, influx of inflammatory cells into the interstitium,
followed by activation of fibroblasts with increased deposition of
extracellular matrix (ECM) proteins (5, 6).

Conventional endpoint measures of lung fibrosis involve
histological and biochemical analyses, which, however, have
certain disadvantages. To recapitulate the dynamic process of
fibrosing ILD at multiple time points and to account for the
high interindividual variability, large numbers of animals are
required to reach significant statistical power (7). Additionally,
lung biopsies are only rarely performed in human ILD (8,
9) and biopsy may not be representative for the whole
lung pathology. Upcoming alternative outcome measures for
translational ILD research include imaging methodologies. An
integral part of the routine clinical management is medical
imaging, particularly high-resolution computed tomography
(HRCT), which allows non-invasive, highly sensitive, time-
and spatially resolved visualization of the entire lung changes
(10) and a correlative estimation of lung function (11).
Similarly, in preclinical models of ILD, small animal microCT
is increasingly recognized as a valuable assessment tool (4,
7). In the model of bleomycin-induced experimental ILD,

the relative comparability of both imaging and molecular
changes with human ILD (5, 12–15) support its suitability for
translational ILD research.

The need for innovative, directly transferable, and readily
applicable readouts in ILD have prompted the herein presented
translational study on the potential value of the model of
bleomycin-induced lung fibrosis as experimental “radiomic
toolbox” for human ILD. Radiomics is a powerful strategy for in-
depth analysis of pathologic tissue phenotypes by computational
extraction of quantitative imaging features from medical images
(16, 17). Radiomic features provide objective information on
tissue shape, intensity, and texture on a molecular scale as
demonstrated by studies on tumor biology showing correlation
with tissue-based genomics and proteomics data (18–21). As
image-derived tissue surrogates, their potential use as virtual
biopsies could make radiomics analyzes an ideal tool for clinical
decision support in ILD especially since radiomic features have
also been shown to predict disease outcome and response to
therapy (18, 19, 22–25). However, compared with oncology
(18, 20–22), research into the potential of radiomics in non-
malignant lung diseases is limited (26–30).

Nevertheless, the available literature on human lung
pathologies, including chronic obstructive pulmonary disease,
radiation-induced pneumonitis and connective tissue disease-
related ILD showed that texture-based analysis of CT images
can be superior compared to the visual or histogram-based
measures for diagnosis (28, 31, 32). Few studies investigated
the use of radiomics in experimental settings. Eresen et al. used
MRI radiomics for prediction of response to vaccine therapy in
a mouse model of pancreatic ductal adenocarcinoma (33, 34).
Nunez et al. analyzed suitability of MRI radiomics for diagnosis
of preclinical GL261 glioblastoma (35). Other researchers
focused on radiomic-based prediction of liver metastases or liver
fibrosis in mice (36, 37).

To date no study has shown the value of animal models in
radiomics research. We are not aware of any studies reporting
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transferability of radiomic patterns from experimental model
to clinical setting. Establishing a link between preclinical and
clinical radiomic patterns could enormously facilitate testing
a vast range of hypotheses in an experimental setting. Such
a link is currently missing. In this analysis, we evaluate
if radiomic features and models can be translated from
experimental to human ILD.

Materials and methods

Study design and data sets

Details of the study design and data sets are shown in
Figure 1. In short, we investigated whether radiomic patterns
indicative of ILD in mice were also present in human disease.

The preclinical model of bleomycin (BLM)-induced lung
fibrosis was used to mimic human ILD. The experimental cohort
consisted of 91 8-week-old female mice (C57BL/6J-rj, Janvier
Labs). ILD was induced in 55 mice via intratracheal instillation
of bleomycin (2 U/kg; Baxter 15,000 I.U.) as described in (6,
14, 38). The 36 control animals received equivalent volumes of
0.9% NaCl solution. Mice were randomized into the different
experimental groups and instillation was performed blinded.
Pulmonary micoCT scans were performed at different days

(days 3, 7, 14, 21, 28, and 35) after bleomycin instillation to
reflect different disease stages. Different mice were scanned at
every time point as the animals were euthanized after image
acquisition. Scanning mice at different time points after fibrosis
induction did not serve a particular purpose in this work.
Such design was chosen because this experimental data was
also used in other studies which examined temporal aspect of
fibrotic development.

A cohort of 98 SSc patients being followed at the
Department of Rheumatology, University Hospital Zurich
represented the validation data set. All included patients met
the following criteria: diagnosis of SSc according to the Very
Early Diagnosis of Systemic Sclerosis (VEDOSS) (39) or the
2013 American College of Rheumatology//European League
against Rheumatism (ACR/EULAR) classification criteria (40),
and availability of an HRCT scan. Patient characteristics are
provided in Table 1.

The extent of lung fibrosis was defined as presence
of reticular changes or honeycombing within whole lung
volume (Figure 2). All visual analyses were performed by a
senior radiologist (TF) using a standard picture archiving and
communication system workstation (Impax, Version 6.5.5.1033;
Agfa-Gevaert) and a high-definition liquid crystal display
monitor (BARCO; Medical Imaging Systems).

FIGURE 1

Study design. The mice data set (n = 91) was used to discover radiomic patterns predictive of ILD. The discovered patterns were tested in the
human validation data set (n = 98). 55 mice were given Bleomycin to induce ILD, whereas 36 mice were given NaCl and served as the control
group. The mice were euthanized at day 3, 7, 14, 21, 28, and 35 and scanned with a microCT scanner. Afterward, classification models were
trained to predict occurrence of ILD based on images acquired from the scanner. The 98 patients from the validation data set were
retrospectively collected. All patients were scanned with HRCT and graded according to the Goh scale of pulmonary fibrosis. The radiomic
models built using mice data were tested in patients.
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TABLE 1 Summary of patient’s demographics and clinical baseline
characteristics.

Characteristics Zurich Cohort (n = 98)

Age (year) 60.0 ± 19.0

Sex

Male 21 (21.4%)

Female 77 (78.6%)

Disease duration (year)* 5.0 ± 8.6

SSc subset (LeRoy 1988)

Limited cutaneous SSc 41 (41.8%)

Diffuse cutaneous SSc 37 (37.8%)

No skin involvement 20 (20.4%)

Skin involvement

Limited cutaneous 34 (34.7%)

Diffuse cutaneous 36 (36.7%)

No skin involvement 23 (23.5%)

Only sclerodactyly 5 (5.1%)

Autoantibodies

Anti-centromere positive 26 (26.5%)

Anti-topoisomerase I positive 35 (35.7%)

Anti-RNA polymerase III positive 8 (8.2%)

Anti-PMScl positive 15 (15.3%)

FVC (% predicted) 91.0 ± 37.0

DLCO (% predicted) 70.0 ± 35.0

FEV1 (% predicted) 92.0 ± 27.0

Pulmonary hypertension 18 (18.4%)

PAPsys (MmHg) 24.5 ± 9.8

6 min walk distance (m) 530.0 ± 172.5

SpO2 before 6-MWT (%) 97.0 ± 1.0

SpO2 after 6-MWT (%) 95.0 ± 6.8

Borg scale (unit) 3.0 ± 2.0

Extent of lung fibrosis on CT

None 33 (33.7%)

Present 65 (66.3%)

Ground glass opacification 25 (25.5%)

Reticular changes 64 (65.3%)

Tractions 38 (38.8%)

Honeycombing 21 (21.4%)

Bullae 3 (3.1%)

Radiological subtype#

NSIP 55 (56.1%)

UIP 9 (9.2%)

DIP 1 (1.0%)

Immunomodulatory therapy§ 42 (42.9%)

Continuous variables are described as median ± interquartile range and categorical
variables are present as absolute numbers with relative frequencies (percent).
*Disease duration of SSc was calculated as the difference between the date of baseline CT
and the date of manifestation of the first non-Raynaud’s symptom.

Pulmonary hypertension was assessed by echocardiography or right heart
catheterization.
#Radiological subtypes were only determined for SSc patients with ILD.
§Immunomodulatory therapy included prednisone, methotrexate, rituximab,
cyclophosphamide, mycophenolate mofetil, hydroxychloroquine, tocilizumab, imatinib,
azathioprine, adalimumab, leflunomid, cyclosporine.
PAPsys, systolic pulmonary artery pressure; FVC, forced vital capacity; FEV1, forced
expiratory volume in 1 second; DLCO, diffusing capacity for carbon monoxide; 6-MWT,
6-min walk test; UIP, usual interstitial pneumonia; NSIP, non-specific interstitial
pneumonia; DIP, diffuse interstitial pneumonia.

Imaging and extraction of radiomic
features

Pulmonary microCT scans were acquired in free-
breathing mice with prospective respiratory gating using
Bruker SkyScan 1176. The following scan parameters were
used: tube voltage 50 kV, tube current 500 µA, filter Al
0.5 mm, averaging (frames) 3, rotation step 0.7 degrees,
sync with event 50 ms, X-ray tube rotation 360 degrees,
resolution 35 µm, and slice thickness 35 µm. Images were
reconstructed with NRecon reconstruction software (v.1.7.4.6;
Bruker) using the built-in filtered back projection Feldkamp
algorithm and applying misalignment compensation, ring
artifact reduction, and a beam hardening correction of
10% to the images.

HRCT scans were acquired using Siemens scanners
(SOMATOM Definition AS, SOMATOM Definition Flash,
SOMATOM Force, SOMATOM Sensation 64, SOMATOM
Sensation 16, Biograph 64, LightSpeed Pro 16, LightSpeed
VCT). The scans were acquired in an inspiration (breath
hold) mode. The median slice thickness was 1 mm (range
0.6-2 mm) and the median tube voltage was 120 kVp
(range 80-150 kVp). The reconstruction kernels included
B60f, B70f, and Bl64.

The contouring of whole lungs was performed manually
in mice and semi-automatically in patients (region growing
algorithm followed by manual correction) by two experienced
examiners (JS and MB). Left and right lungs were contoured
independently and then both contours were merged to generate
a single contour including both lungs.

Feature extraction from CT images was performed with
Z-Rad, an IBSI-compliant (41), in-house developed Python
software. CT scans of mice and patients were interpolated to
an isotropic resolution of 0.15 mm and 2.75 mm, respectively.
The interpolation resolutions were chosen to achieve similar
ratio of voxel size to average lung volume in mice and patients.
The region of interest (ROI) for feature extraction was defined
as the right and the left lung considered as a single organ.
Only intensity values within the range from −1,000 HU to
200 HU were considered. We used a fixed bin size of 50 HU.
The radiomic features describing image intensity (histogram,
n = 17) and texture (n = 137) were extracted for each mouse
and patient. The texture features were based on gray level
co-occurrence matrix (GLCM, n = 26), gray level run length
matrix (GLRLM, n = 16), gray level distance zone matrix
(GLDZM, n = 16), gray level size zone matrix (GLSZM, n = 16),
neighboring gray level dependence matrix (NGLDM, n = 16),
and neighborhood gray tone difference matrix (NGTDM, n = 5)
to capture wide variety of intensity patterns. Additionally,
GLCM and GLRLM features were extracted with two different
feature aggregation methods - with and without merging. In
total, 154 features were extracted. The list of radiomic features
is provided in the supplement.
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FIGURE 2

Example CT scans of healthy lungs and lungs affected with lung fibrosis. (A) microCT image of a healthy mice lung, (B) microCT image of a
mice lung with lung fibrosis, (C) HRCT image of a healthy human lung, (D) HRCT image of a human lung with lung fibrosis. Lung contours
marked in different colors show the extent of intra- and interobserver variability in lung segmentations for these two cases.

Statistical analysis

For every radiomic feature, robustness against intra- and
interobserver variability was examined. This was realized
with estimation of the corresponding intraclass correlation
coefficients (ICC). Specifically, we used consistency of ICC
(1, 3) according to the Shorut and Fleiss naming convention
(42). Features with ICC ≥0.75 for intra- and interobserver
settings in both mice and humans were considered stable and
were retained. The rest of the features were excluded from
further analysis.

Univariate predictive power of the radiomic features was
evaluated by estimation of the area under the receiver operating
characteristic curve (AUC). To facilitate comparison of the
AUC values between mice and patient data sets, we adopted a
convention that AUC is equal to the probability that a radiomic
feature value of a randomly chosen patient from the positive
group is greater than the value of a randomly chosen patient
from the negative group. This allowed us to distinguish between
features that were characterized by comparable predictive power
but a different direction of the effect, for example, AUC = 0.3 in
mice and AUC = 0.7 in patients. The linear association of the
AUC scores between mice and patient groups has been evaluated
with Pearson correlation coefficient.

Three model architectures were considered for evaluation of
model transferability from mice to patients: (1) a model based on
mean image intensity (MEAN), (2) a model based on first four

moments of intensity distribution (mean, standard deviation,
skewness, and kurtosis; MSSK), and (3) a machine learning
model based on logistic regression (ML). While the first two
models are based on predefined radiomic features, the machine
learning model employed embedded feature selection methods.
All models were built on the mice data and were validated in
the patient data.

Feature selection and model tuning was realized within
4-times repeated 5-fold cross-validation. The first step of
the feature selection procedure was dimensionality reduction
by removing features that were highly linearly correlated
(Pearson’s r). The correlation threshold was one of tunable
hyperparameters. The second step of feature selection was
fitting a model and selection of most important features from
this model which were then fed to the final classifier. In
the case of a logistic regression model, the feature selection
was realized with another logistic regression. In the case of,
extra-trees model, most important features were extracted
from a gradient tree-boosting model. The number of extracted
features in both cases was one of tunable hyperparameters.
For model tuning, we used 500 randomized hyperparameter
samples. The optimized models were validated in patients.
Additionally, the models were re-optimized in patients to
evaluate transferability and predictive power of the discovered
radiomic signatures rather than the models themselves.
Furthermore, this allowed to reduce the influence of covariate
shift between the data sets.
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For visualization, statistical analysis, model building, and
model testing, the following open-source Python packages were
used: Matplotlib (43), NumPy & SciPy (44), Pandas (45), and
scikit-learn (46).

Results

Influence of intra- and interobserver
delineation variability on radiomic
features

Intra- and interobserver delineation variability were
evaluated separately in mice and patient data sets using 15
randomly selected cases per data set. Intraobserver variability
was assessed based on delineations done by JS. Interobserver
variability was assessed based on delineations provided by JS,
CB, and MBr. Figure 3 shows the proportion of the unstable
features per feature class. In mice, 7 features from the initial
set of 154 were considered unstable (ICC < 0.75) and were

excluded from the further analysis. In patients, all features were
stable (ICC ≥ 0.75) so no further features were excluded.

Discriminative power of radiomic
features is highly correlated between
mice and patient data

The next steps in our analysis were the investigation
of univariate discriminative power of radiomic features
and the correlation of AUC scores between mice and
patients. ICC analysis was performed to compare two feature
aggregation methods of GLCM and GLRLM features. As
both feature aggregation methods rendered highly correlated
results (ICCGLCM = 0.99, ICCGLRLM = 0.83), only one feature
aggregation per feature class method was kept for further
analysis to reduce feature redundancy.

Univariate predictive power of radiomic features in terms of
AUC is presented in Figure 4A. On average, features describing
image intensity tended to perform better than texture-based
features. Radiomic features were on average more predictive

FIGURE 3

Influence of intra- and interobserver delineation variability on radiomic features stability. Proportion of unstable features stratified by feature
type.
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FIGURE 4

Relationship between predictive power of radiomic features in
mice and patient data sets. (A) AUC distribution stratified by
feature type (histogram, gray level co-occurrence matrix (GLCM,
n = 26), gray level run length matrix (GLRLM, n = 16), gray level
distance zone matrix (GLDZM, n = 16), gray level size zone
matrix (GLSZM, n = 16), and neighboring gray level dependence
matrix (NGLDM, n = 16). (B–H) Correlation of the AUC between
mice and patient groups.

in mice than in patients. Most predictive features in mice
achieved AUC = 0.988, whereas in patients AUC = 0.896. The
complete list of feature predictive performance is provided in
the supplement.

Univariate predictive power of the features was highly
correlated between murine and patient groups (Figure 4B)
with Pearson’s r = 0.86. Very high correlation was observed
for histogram-, GLCM-, GLRLM-, and NGLDM-based features
(Figures 4C–E,H). GLSZM- and GLDZM-based features
exhibited more variability (Pearson’s r < 0.6; Figures 4F,G). T
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Radiomic patterns predictive of
interstitial lung disease translate from
experimental interstitial lung disease to
patients

To analyze transferability of radiomic patterns and models
from mice to patients we built and validated four classes of
models: (1) a model based on mean image intensity (MEAN),
(2) a model based on first four moments of intensity distribution
(mean, standard deviation, skewness, and kurtosis; MSSK), and
(3) a machine learning model based on logistic regression (ML).
The models were trained on mice data and tested in patients.
Additionally, the models were reoptimized in patients, that is,
retrained using the features from the mouse models. The results
and comparison of model performance is shown in Table 2.

All models achieved high diagnostic performance in mice.
The baseline MEAN model scored AUC = 0.921 which left
little room for improvement. Nevertheless, the MSSK and
the ML models exceeded AUC = 0.990 resulting in almost
perfect classification performance. Testing model performance
in patients resulted in AUC scores varying from 0.754 (MEAN)
to 0.832 (ML). Model re-optimization in patients allowed to

improve the predictive performance of all models. ROC curves
associated with model tuning, testing, and re-optimization
together with the underlying features are presented in Figure 5.
ROC curves show that re-optimization gave little improvement
for the MEAN and the MSSK models as testing and re-
optimization curves followed similar characteristics. On the
other hand, machine learning models improved significantly in
this process. The corresponding re-optimization ROC curves
detached from the testing curves to position between tuning and
testing curves.

Substantial differences in distribution of radiomic features
included in the models in terms of location and dispersion are
presented in Figure 6. Most of the features exhibit patterns of
the same direction in both mice and patient data sets, that is,
either rising or falling trend from healthy to ILD.

Discussion

In this analysis, we report that radiomic features and
models can be translated from experimental to human ILD.
Collectively, our data suggest that well characterized and

FIGURE 5

Model performance and underlying radiomic features. ROC curves and bar plots of the underlying features. V1 - mean (histogram), V2 -
standard deviation (histogram), V4 - skewness (histogram), V5 - kurtosis (histogram), V16 - root mean square (histogram), V108 - gray level
non-uniformity normalized (GLSZM), V141 - dependence count non-uniformity (NGLDM).
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FIGURE 6

Comparison of feature distribution between mice and patient groups stratified by the ILD stage. V1 - mean (histogram), V2 - standard deviation
(histogram), V4 - skewness (histogram), V5 - kurtosis (histogram), V16 - root mean square (histogram), V108 - gray level non-uniformity
normalized (GLSZM), V141 - dependence count non-uniformity (NGLDM).

representative animal models could represent valuable systems
for defined hypothesis testing in radiomics research, particularly
for evaluating links with pathophysiology or studying responses
to targeted therapies in rare diseases with low number of patients
and limited access to tissue samples.

Radiomic features proved to be highly indicative of
experimental- and SSc-ILD. Furthermore, we observed strong
linear correlation in terms of discriminative power between
features extracted from mice microCT scans and patient HRCT.
We also showed that multivariate models of ILD translated well
from mice to patient data sets. Nevertheless, we observed the
differences between the data sets in terms of feature classes that

were predictive. In mice, most of the feature groups contained
features that reached similar maximum AUC scores. On the
other hand, in patients we observed that even though histogram-
based features achieved high discriminative power, some texture
features were more predictive. This difference could be caused
by inferior quality of microCT compared to HRCT. For this
reason, the assessment of microCT done by our radiologist
might have also been mainly led by first order characteristics
rather than texture. Furthermore, the ILD manifestations can
differ depending on the etiology. As a result, the observed
differences may be caused by the limitation of the bleomycin-
induced ILD being an imperfect model of SSc-ILD. In any case,
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our results are in line with the available literature on human lung
pathologies including chronic obstructive pulmonary disease,
radiation-induced pneumonitis or connective tissue disease-
related ILD, which showed that texture-based analysis of CT
data can be superior compared to the visual or histogram-based
measures for diagnosis (28, 31, 32).

Analysis of feature weights in the MEAN and the MSSK
models showed that higher values of the mean and standard
deviation of the image intensity and lower values of skewness
and kurtosis correspond to larger risk of ILD. Effectively, this
means that presence of ILD shifts the intensity distribution
from a typical “healthy” positively skewed intensity distribution
toward higher intensity values with a more symmetric
distribution and thin tails. The best performing model (ML)
relied on three radiomic features: the root mean square
(histogram), gray level non-uniformity normalized (GLSZM),
and dependence count non-uniformity (NGLDM). Significant
improvement of machine learning models by re-optimization
may suggest the existence of similar predictive radiomic patterns
in training (mice) and test (patients) data sets in presence of
domain shift between both groups.

The presented study has a few limitations. First, the
differences in scanning parameters between microCT and
HRCT cause a significant domain shift between experimental
and patient data sets. Although, we were able to recover
the predictive power of the analyzed multivariate models by
re-optimization in the patient cohort, and by that confirm
transferability of the underlying radiomic signatures, better
calibration of the microCT scanner and selection of scanning
parameters could potentially improve the transferability.
Second, our study focused on CT-derived radiomics approaches,
since HRCT scans are part of the routine work-up of ILD
patients. Other imaging modalities such as nuclear imaging or
MRI, although currently rarely performed in ILD (10), could
be evaluated for radiomic analyses to assess whether they might
provide additional or complementary information.

Conclusion

Radiomic signatures of experimental ILD derived from
microCT scans translated as prognostic factors to HRCT of SSc-
ILD. By this we showed that the well-established experimental
model of BLM-induced ILD is a valuable system to test
defined hypotheses in radiomics research for later validation
in human cohorts.
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Background: The estimation of post-mortem interval (PMI) is one of the

most important problems in forensic pathology all the time. Although many

classical methods can be used to estimate time since death, accurate and

rapid estimation of PMI is still a difficult task in forensic practice, so the

estimation of PMI requires a faster, more accurate, and more convenient

method.

Materials and methods: In this study, an experimental method, lab-on-chip,

is used to analyze the characterizations of polypeptide fragments of the lung,

liver, kidney, and skeletal muscle of rats at defined time points after death (0,

1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, and 30 days). Then, machine learning

algorithms (base model: LR, SVM, RF, GBDT, and MLPC; ensemble model:

stacking, soft voting, and soft-weighted voting) are applied to predict PMI with

single organ. Multi-organ fusion strategy is designed to predict PMI based on

multiple organs. Then, the ensemble pruning algorithm determines the best

combination of multi-organ.

Results: The kidney is the best single organ for predicting the time of

death, and its internal and external accuracy is 0.808 and 0.714, respectively.

Multi-organ fusion strategy dramatically improves the performance of PMI

estimation, and its internal and external accuracy is 0.962 and 0.893,

respectively. Finally, the best organ combination determined by the ensemble

pruning algorithm is all organs, such as lung, liver, kidney, and skeletal muscle.

Conclusion: Lab-on-chip is feasible to detect polypeptide fragments and

multi-organ fusion is more accurate than single organ for PMI estimation.

KEYWORDS

forensic pathology, machine learning, multi-organ fusion, lab-on-chip, post-mortem
interval
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1. Introduction

Post-mortem interval (PMI), also called time since death,
is the elapsed time between the death of an organism and the
initiation of an official investigation (1). It is very important
for the investigation of death in civil and criminal cases to
accurately infer the time of death, such as civil investigation
of life insurance fraud, identifying the victim and suspect,
and accepting or rejecting the suspect’s alibi (2). Traditional
inference methods of PMI are usually based on corpse
temperature (3) and early corpse phenomena such as livor
mortis (4), rigor mortis (5), and post-mortem turbidity of cornea
(6); it is difficult to precisely confirm the time since death,
because these methods are rough, subjective, and empirical, as
well as are greatly affected by environmental factors (7).

With the development of biomolecular technology,
detection methods based on nucleic acid (1, 8, 9), metabolites
(10, 11), and microorganisms (2, 12, 13) have been widely
used in the past few decades. Some studies suggested that
the genes, such as GAPDH2, ACTB2, 18S rRNA, miR-1,
and miR-133a, are suitable indicators for estimating PMI
(14–16). The level of the metabolite, which was detected by
nuclear magnetism, mass spectrometry, and spectrograph, also
provided a new direction for PMI inference at the tissues level
(17–20). A further investigation into microorganisms of human
and animal remains to study microbial community succession
after death (21–24). In addition, with the development of
imaging technology, post-mortem computed tomography (25),
microCT (26), and visible and thermal 3D imaging (27) have
also been used to infer the time since death. These technologies
provide valuable ideas and methods for PMI estimation in
forensic practice.

Protein is one of the biological macromolecules, an
essential component of the organism, and participates in every
cellular process. In recent years, proteins, in particular, have
been evaluated for their potential to aid PMI delimitation.
Sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE)/western blotting (28, 29), immunohistochemistry
(30, 31), and mass spectrometry (32, 33) were widely used to
estimate the time since death. Although these approaches have
shown some success and promise, there are certain limitations
with these existing approaches, e.g., tedious operations, money-
wasting, and slow. More importantly, there is no mature method
to predict PMI accurately.

In the present study, a new experimental method, called
lab-on-chip, is used to analyze protein and its degradation
fragments, i.e., polypeptides. This method utilizes the Agilent
2,100 Bioanalyzer in combination with the protein LabChip
kit, which simplifies the process of bioanalytical investigation
and provides a system with standardized analysis handling and
data processing (34). Although lab-on-chip cannot identify a
polypeptide as a particular protein, the technology has been
proven to be available for examining snake venom composition

(35) and soybean cultivars in previous studies (36). It can
perform molecular mass, migration time, peak height, peak area,
relative concentration, and percentage of overall protein content
and generate complete multi-peak spectrums of a sample. In
addition, lab-on-chip is fast with minimal sample consumption,
high throughput, and automatic quantitation (37), which means
it is more appropriate for estimating PMI in practical work. At
the same time, the abovementioned advantages also contribute
to the united use of lab-on-chip and machine learning.

In the past decades, most studies have applied a single
organ, such as the degradation of rat muscle proteins, used to
estimate PMI by Zissler et al. (38). Although the two organs
were used to estimate the time since death in the study by Mona
Mohamed Abo El-Noor, the results of the heart and kidney
were not analyzed jointly (39). In recent years, researchers from
other fields have discovered that multi-organ fusion based on
machine learning is more helpful to cancer diagnosis (40) and
preclinical drugs than single organ (41). Hence, it is a beneficial
trial that exploits multi-organ fusion and machine learning in
estimating PMI. In the current study, lab-on-chip will analyze
the polypeptide fragments in the lung, liver, kidney, and skeletal
muscle of rat after death. We compare the performance of
machine learning based on single and multiple organs to
estimate the time since death and obtain the best prediction
model based on multiple organs, which provides a new idea for
forensic death time estimation.

2. Materials and methods

This study’s workflow mainly involves the following
(Figure 1). (1) Lab-on-chip analysis of the post-mortem
degradation of polypeptides from the lung, liver, kidney,
and skeletal muscle of rat at defined time points; (2) Base
models (LR, SVM, RF, GBDT, and MLPC) and ensemble
models (stacking, soft voting, and soft-weighted voting) evaluate
the single organ’s performances to predict PMI; and (3)
The ensemble model based on a multi-organ fusion strategy
evaluates multi-organ performances to predict PMI.

2.1. Equipment, reagents, and supplies

A two-place balance (AX223ZH/E, OHAUS, China),
vortex finder (VXMNFS, OHAUS, China), thermocell mixing
block (MSC-100, Aosheng, China), heraeus sepatech (2-16PK,
Sartorius, Germany), climate chamber (RX2-260B, Ningbo,
China), and Agilent 2,100 Bioanalyzer (Agilent Technologies,
Waldbronn, Germany) were used.

Deionized water for protein extraction, a Agilent Protein
230 LabChip R© kit (Agilent Technologies, CA, USA), and
dithiothreitol (DTT, 1 M; Solarbio, Beijing, China) were used
for the preparation of denaturant.
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FIGURE 1

The workflow of this study.

2.2. Animal sample

This study was approved by the Institutional Animal Care
and Use Committee of Shanxi Medical University. Animals
received humane care in conformity with the principles in the
Guide for the Care and Use of Laboratory Animals protocol,
published by the Ministry of the People’s Republic of China. This
study was carried out in compliance with the ARRIVE guideline
and evaluated and approved by the Institutional Animal Care
and Use Committee of the Shanxi Medical University of China.

A total of 84 healthy male Sprague–Dawley rats, 10–
12 weeks, weighing 200–230 g (provided by Animal Center of
Shanxi Medical University) were housed in a cage with rat chow
and water under a 12-h light–dark cycle at 22–25◦C at a relative
humidity of 40–60%. After 2 days, rats were sacrificed after
pentobarbital anesthetization via cervical dislocation. The lung,

liver, kidney, and right hind limb gastrocnemius muscle of each
rat were harvested (200 mg ± 2 mg) at the fixed time points of
0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, and 30 days (n = 6 rats)
after sacrifice, and a total of 336 samples were placed in liquid
nitrogen for quick freezing and stored at –80◦C until analysis.

For external validation, 28 rats were taken according to
the methods of the abovementioned experimental process. Each
time point took two rats.

2.3. Water-soluble protein extraction
and samples preparation

Analysis was performed according to the protocol provided
by the manufacturer. A volume of 200 mg of the lung, liver,
kidney, and skeletal muscle tissues were ground, added to
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deionized water containing 1% phenylmethylsulfonyl fluoride
(PMSF) according to the ratio of 1:3.5 (w/v), then incubated on
ice for 60 min, and centrifuged at 12,000 × g (15 min, 4◦C).
A volume of 4 µl solution per sample was diluted by mixing
with 2 µl of the sample buffer with a reducing agent (DTT).
The diluted solution and ladder (Agilent) were heated for 5 min
at 95◦C and then diluted with 84 µl H2O. Samples and ladder
were loaded on the protein chip and measured immediately. To
confirm the protein extraction process or the protein analysis
process by lab-on-chip had avoided errors as much as possible,
quality control samples were prepared.

2.4. Microfluidic LoaC electrophoresis

The protein profile of rat skeletal muscle using microfluidic
capillary gel electrophoresis with laser-induced fluorescence
(LIF) detection was carried out on the Bioanalyzer Agilent 2,100
using the Protein 230 Kit (Agilent Technologies, Waldbronn,
Germany), which allows the separation of proteins from 14 to
230 kDa. According to the protocol, 4 µl of each tissue sample
was mixed with 2 µl denaturing solution (35 mM dithiothreitol)
in 0.5-ml tubes and denatured at 100◦C for 5 min, incubated in
ice for 2 min, and centrifuged for 15 s. Pure water was added to
100 µl, and samples were vortexed. Then, 6 µl of samples were
added to each well of the chip. For the analysis, three biological
replicates were used for each sample.

All reagents were provided with each LabChip kit, including
the standard protein ladder containing different proteins
with known concentrations and molecular weights that can
be used for semi-quantitative analysis. The Agilent 2,100
Bioanalyzer separates and calculates the protein fragments
based on the microfluidic capillary gel electrophoresis with
LIF detection, where fluorescence intensities of proteins are
measured. The migration times of polypeptide fragments were
used to estimate the respective protein bands’ molecular
weights, and the height was calculated to semi-quantify each
protein fragment’s concentration. Data analysis performed with
the Agilent 2,100 Expert software automatically determines
molecular weight, concentration, and percentage of the sample’s
total individual proteins.

2.5. Confirmation of polypeptide
fragments and data preprocessing

All protein electrophoresis chromatography analyses were
performed by “comparison” and “overlap” operations in the
software to calibrate, identify, and adjust peaks according to
the lower and upper markers. The same polypeptide fragments
of each organ can be marked as the same number according
to the molecular mass of these peptides, from minor to major.
Numerical data such as protein molecular mass, peak height,
and migration time are outputted for subsequent analysis.

It is essential to confirm the polypeptide fragments, which
could be used as an indicator to estimate the PMI. The
present study acquired the raw data through Agilent 2,100
Expert software, and all CSV data were imported into MS
Excel. Then, the polypeptide fragments detected in five out of
six biological replicate samples were identified as meaningful
indicators for estimating PMI. The deviation of migration times
less than 2% was considered the same polypeptide fragment in
different samples.

Then, the datasets of each organ with 84 rats have been
randomly divided into two, namely, the training dataset, which
was made up of 70% of the dataset, and the testing dataset, also
named internal validation, which comprised the remaining 30%,
and standardized. For the external validation of 28 rats, the same
data preprocessing was applied as mentioned earlier.

2.6. Machine learning

2.6.1. Feature importance evaluated for
machine learning

Feature selection, or feature ranking, reduces data
processing time and memory requirements for machine-
learning algorithms to deal with the essential predictors. In
the present study, feature importance was evaluated through
the least absolute shrinkage and selection operator (LASSO)
(42), recursive feature elimination (RFE) (43), sequential
forward selection (SFS), and sequential back selection (SBS)
(44, 45).

2.6.2. Sub-model training and evaluation for
PMI using different organs

Five machine learning algorithms, including Logistic
Regression (LR), Support Vector Machine (SVM), Random
Forest (2), Gradient Boosting Decision Tree (GBDT), and
Multilayer Perceptron Classier (MLPC), were implemented to
predict PMI in the present study. The robustness and efficiency
of 20 sub-models according to the four feature selection
methods cross-match five machine learning algorithms are
analyzed for each organ. The performance comparison analysis
was performed by sequencing accuracy, precision, recall, and
area under the ROC curve (AUC) of internal and external
validation according to the order from good to wrong. And then,
the ranking scores of all metrics were summed for each sub-
model. Finally, the optimal classification model was determined
by comparing the scores of 20 sub-models of each organ. It
should be noted that the principle of this scoring method is to
combine internal and external verification and comprehensive
consideration of multiple evaluation indicators. Therefore, we
believe that the model with the highest score has the highest
comprehensive efficiency, which means that the model may not
be the best in all indicators.
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2.6.3. Ensemble model development and
evaluation for PMI based on single organ

Ensemble learning can improve the classifier’s performance
by combining the trained sub-models contribution to solving
the same classification problem in some studies (46). In the
present study, there are three ensemble models, namely, stacking
(47), soft voting (48), and soft-weighted voting (49), used to
estimate the PMI based on the single organ. The accuracy,
precision, recall, and AUC were calculated separately.

2.6.4. Multi-organ fusion strategy and
ensemble pruning algorithm

A framework that is suitable for multi-organ fusion analysis
is proposed in this study. First, each organ’s best combinations of
feature selection methods and sub-models were combined into
a pipe. Four pipelines are used as four sub-models to complete
each organ’s feature selection and PMI prediction. Then, four
parallel pipelines were performed to predict PMI by the
abovementioned three ensemble models. In this step, the four
organs are fused to predict PMI. Finally, the ensemble models
based on multi-organ fusion were compared with the optimal
sub-models and ensemble models based on single organ.

After getting the best model, the ensemble pruning
algorithm was applied to ensure the best combination of an
organ. The ensemble pruning algorithm is a technique where
the model starts with all possible members being considered
and removes members from the ensemble until no further
improvement is observed. This could be performed in a greedy
manner where members are removed one at a time and only
if their removal results in a lift in the performance of the
overall ensemble.

3. Results

3.1. Characterization of polypeptide
fragments after death

A total of 45 polypeptide fragments were identified with
different migration times in the lung, liver, kidney, and skeletal
muscle samples (Table 1). These polypeptide fragments may
be highly correlated with the PMI, and 21, 22, 19, and 23
polypeptide fragments were found in the lung, liver, kidney, and
skeletal muscle tissues, respectively (Figure 2A). Among these
polypeptide fragments, 4 polypeptide fragments were detected
in four organs, 7 polypeptide fragments were present in three
organs, and 14 polypeptide fragments were present in two
organs (Figure 2B). There were three polypeptide fragments
specific to the kidney and lung but seven to the liver and skeletal
muscle.

After further analysis of the data, we found that the
content of the abovementioned polypeptide fragments was
highly homogeneous in the samples with the same PMI

TABLE 1 The polypeptide fragments in the lung, liver, kidney, and
skeletal muscle samples.

Polypeptide Molecular
mass

(−X ± SD)

Migration
time

(−X ± SD)

Organsa

1 14.25 ± 0.45 20.68 ± 0.08 Lub , Lic , Kd ,
Me

2 15.53 ± 0.30 20.95 ± 0.05 M

3 17.61 ± 0.34 21.34 ± 0.06 M

4 19.65 ± 0.62 21.81 ± 0.13 K

5 25.58 ± 0.73 21.94 ± 0.15 Li

6 22.62 ± 0.83 22.36 ± 0.16 Li, K

7 23.84 ± 0.38 22.56 ± 0.07 M

8 24.54 ± 0.37 22.66 ± 0.06 Lu, Li

9 25.63 ± 0.69 22.93 ± 0.15 K, M

10 26.83 ± 0.35 23.12 ± 0.08 Lu, Li, M

11 29.43 ± 0.50 23.57 ± 0.14 Lu, K

12 31.68 ± 0.64 23.91 ± 0.10 K, M

13 32.92 ± 0.75 24.08 ± 0.12 Lu, Li, K

14 35.47 ± 0.91 24.40 ± 0.10 Lu, Li, M

15 39.65 ± 0.94 25.02 ± 0.18 Lu, Li, K, M

16 43.68 ± 0.82 25.59 ± 0.11 Lu, Li, K, M

17 45.15 ± 1.21 25.86 ± 0.17 Li

18 47.34 ± 0.91 26.19 ± 0.12 K

19 50.20 ± 1.11 26.46 ± 0.13 Lu, Li

20 51.97 ± 0.47 26.69 ± 0.09 K, M

21 53.06 ± 0.65 26.86 ± 0.08 Li

22 55.43 ± 0.43 27.15 ± 0.04 Li

23 57.44 ± 1.10 27.32 ± 0.16 Lu, K, M

24 58.43 ± 1.11 27.54 ± 0.18 Li, K, M

25 62.89 ± 0.70 28.08 ± 0.08 M

26 71.58 ± 1.57 28.80 ± 0.27 Lu, Li, K

27 74.83 ± 1.49 28.99 ± 0.16 Lu, M

28 78.23 ± 1.25 29.29 ± 0.07 M

29 82.13 ± 1.08 29.68 ± 0.09 Li

30 84.57 ± 0.77 29.88 ± 0.07 K

31 85.91 ± 0.98 29.90 ± 0.09 Lu, M

32 91.34 ± 1.04 30.30 ± 0.09 Lu

33 93.95 ± 1.91 30.59 ± 0.16 Lu, Li, K, M

34 104.86 ± 1.01 31.59 ± 0.08 Li

35 111.46 ± 5.41 32.09 ± 0.52 M

36 121.23 ± 1.82 32.98 ± 0.17 M

37 123.73 ± 2.40 33.23 ± 0.20 K, M

38 131.39 ± 1.01 33.90 ± 0.09 Li

39 135.25 ± 2.04 34.20 ± 0.17 Lu, Li

(Continued)
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TABLE 1 (Continued)

Polypeptide Molecular
mass

(−X ± SD)

Migration
time

(−X ± SD)

Organsa

40 141.40 ± 1.35 34.71 ± 0.15 Lu, M

41 144.59 ± 2.03 35.04 ± 0.18 Li, M

42 154.94 ± 1.46 35.78 ± 0.11 Lu, K

43 179.02 ± 1.05 37.28 ± 0.07 Lu, Li, K

44 217.22 ± 0.98 39.60 ± 0.07 Lu

45 225.04 ± 3.44 40.08 ± 0.21 Lu

aOrgans with polypeptide fragments.
bLu represents lung.
cLi represents liver.
dK represents kidney.
eM represents skeletal muscle.

(Figures 2C, D). The results showed no significant difference
among the biological replicates, providing that the experimental
operation was stable and reliable. In addition, the polypeptide
fragments showed different peak heights at different PMIs
(Figures 2E, F), which highly correlated with PMI.

To further clarify the correlation between peptide fragment
content and PMI, the earlier data were clustered using TB tools.
It can be found from the clustering heat map that the death
time of this experiment could be divided into five different
stages according to the content of polypeptide fragments in
the lung. Specifically, 0 and 3 days, 1 and 2 days, 5, 18, and
21 days, 7, 12, and 15 days, and 9, 24, 27, and 30 days were
divided together (Figure 3A). Similarly, the samples can be
distinguished into 5, 4, and 5 different periods according to
the content of polypeptide fragments in the liver, kidney, and
skeletal muscle (Figures 3B–D).

3.2. Performance of sub-models based
on different organs

3.2.1. Evaluating the sub-models by accuracy,
precision, recall, and AUC

To compare the predictive accuracy of four different
organs in inferring the PMI, a total of 80 combined results
were generated by cross-combining of four feature selection
methods (e.g., LASSO, RFE, SBS, and SFS) and five machine
learning algorithms (e.g., LR, SVM, RF, GBDT, and MLPC)
(Figure 4A).

The accuracy, precision, recall, and AUC of sub-models
with four organs are summarized in Figures 4B–E. As is
shown in Figure 4B, the internal validation accuracy ranges
of the lung, liver, kidney, and skeletal muscle were 0.462
(RFE + GBDT and SFS + GBDT)–0.769 (SBS + RF and
SFS + RF), 0.231 (LASSO + SVM)–0.692 (SFS + RF),
0.577 (SFS + GBDT)–0.808 (LASSO + RF and SFS + RF),
and 0.346 (RFE + GBDT)–0.769 (RFE + RF, SFS + SVM,

and SFS + RF), respectively. Their external verification
accuracies were 0.286 (SFS + GBDT)–0.679 (LASSO + RF and
LASSO + MLPC), 0.179 (LASSO + MLPC)–0.536 (SFS + RF),
0.429 (SFS + GBDT)–0.714 (LASSO + RF and SFS + RF),
and 0.321 (SFS + GBDT)–0.679 (RFE + RF, SBS + RF, and
SFS + RF), respectively. Similarly, the analysis of Figures 4C–
E shows that the model with the kidney as the detection
sample performs best in precision, recall, and AUC evaluation
indexes.

The abovementioned results indicated that the liver is the
worst, and the kidney is the best to predict PMI among the four
organs. As for the feature selection methods, the four feature
selection methods cannot clearly distinguish the advantages and
disadvantages. These results further show that LASSO, RFE,
and SFS help determine feature subsets, which means that
feature selection methods are necessary for different organs. It
is particularly interesting that RF, the best machine learning
algorithm in all organs, has advantages over other machine
learning algorithms in predicting PMI, as mentioned earlier,
while GBDT performed worst in the lung, kidney, and skeletal
muscle. The four organs’ remaining indicators were similar
results (Figures 4B–E).

3.2.2. Screening optimal model by the ranking
principle

The ranking scores principle described in the “Sub-models
training and evaluation for PMI using different organs”
section was used to compare the sub-models of each organ
comprehensively. As is shown in Table 2, the best model
combination in the lung and liver is SFS + RF, with scores
of 146 and 149, respectively. The optimal sub-model of the
kidney is LASSO + RF, which has a score of 149. The best sub-
model of skeletal muscle is RFE + RF, which has a score of
139.

We found that the kidney is more suitable than other organs
to predict PMI, comparing the performance of the best models
for each organ. In optimal sub-models of four organs, 0.808 and
0.714 are the highest internal and external validation accuracies
based on LASSO-RF of the kidney (Figure 5E), respectively.
In Figure 5F, the confusion matrix of external verification of
the kidney showed that eight samples were misjudged, and
many miscalculations in the prediction results of the kidney
were found at 0–2 days and 12–18 days after death. Next, the
internal validation of the lung and skeletal muscle is 0.769
based on SFS-RF. The former’s accuracy of external validation
is 0.607 lower than the latter, which is 0.679 (Figures 5A,
G). The liver is the worst organ to predict PMI; the accuracy
is 0.692 and 0.536 in internal and external validation using
SFS-RF, which is the best classification model for the liver
(Figure 5C). As shown in Figures 5B, D, H, there are 11,
13, and 9 samples of the lung, liver, and skeletal muscle,
respectively, which were wrongly judged in their external
verification.
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FIGURE 2

The characteristics of polypeptide fragments in different organs at different times after death. (A) The numbers of polypeptide fragments in
different organs. (B) Co-expression analysis of polypeptide fragments in different organs. (C) The gel-like image of polypeptide fragments in
skeletal muscle at the same time points after death. This figure is the simulated gel electrophoresis figure automatically given by Agilent 2,100
Bioanalyzer according to the molecular weight. Lanes 1–8 represent the gel diagram of eight skeletal muscle samples in 0 day after death. The
migration time (s) is set on the side of the gel image. The purple bands at the top and the green bands at the bottom are the upper/lower ladder,
which is the standard, respectively. The remaining blue bands are the detected protein fragments. The shade of the blue band represents the
content of each protein fragment. (D) The electropherogram of skeletal muscle at the same time points after death in the microfluidic chip
electrophoresis (LoaC) system. Multi-peak spectrums overlaid of different rats at the same time points after death, and there was no significant
difference in peak height and number of peaks in the superposition of multi-peak spectra at the same time point after death of different rats. It is
worth noting that there is a peptide peak around 24.5s in all samples at the same time point after death. (E) The gel-like image of polypeptide
fragments in skeletal muscle at different time points after death. This figure is the simulated gel electrophoresis figure automatically given by
Agilent 2,100 Bioanalyzer according to the molecular weight. Lanes 1–14 represent the gel diagram of 14 time points of skeletal muscle samples
within 0–30 days after death. The migration time (s) is set on the side of the gel image. The purple bands at the top and the green bands at the
bottom are the upper/lower ladder, which is the standard, respectively. The remaining blue bands are the detected protein fragments. The
shade of the blue band represents the content of each protein fragment. (F) The electropherogram of skeletal muscle at different time points
after death in the microfluidic chip electrophoresis (LoaC) system. The peak heights showed significant differences and a new peptide peak
appears near 24.5 s by comparing multi-peak spectrums at different time points after death.
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FIGURE 3

The clustering heat map based on the peak heights of polypeptide fragments in different organs. (A) Lung samples could be divided into five
different stages, 0 and 3 days, 1 and 2 days, 5, 18, and 21 days, 7, 12, and 15 days, and 9, 24, 27, and 30 days were divided together, respectively.
(B) Liver samples could be divided into five different stages, 1 and 2, 3, and 5 days, 7 and 21 days, 12 days, and 0, 9, 15, 18, 24, 27, and 30 days
were divided together, respectively. (C) Kidney samples could be divided into four different stages, 0 to –3 days, 5, 7, and 9 days, 12, 15, 18, 21,
and 24 days, and 27 and 30 days were divided together, respectively. (D) Skeletal muscle samples could be divided into five different stages,
0–2 days, 3, 5, and 7 days, 9, 12, 15, and 21 days, 18 and 27 days, and 24 and 30 days were divided together, respectively.

3.3. Performance of the single organ
based on ensemble models

Considering that different prediction models have different
prediction performances in four organs, this experiment will
cross-combine the four feature selection methods and three
ensemble models mentioned earlier to establish an ensemble
model to improve the performance of PMI estimation in a single
organ.

The performance of the ensemble models of four organs is
shown in Figure 6A. In the validation of the lung, LASSO + soft-
weighted voting generated the highest accuracy of 0.808 in
the internal validation, while LASSO + soft voting generated
the highest accuracy of 0.643 in the external validation. The
best accuracy of internal validation based on the liver is 0.654,
which was obtained by RFE + soft voting and RFE + soft-
weighted voting. The accuracy of RFE + soft-weighted voting for

external validation of the liver had reached 0.464. For kidneys,
the accuracy for internal validation of LASSO + soft voting,
LASSO + soft-weighted voting, SFS + soft voting, and SFS + soft-
weighted voting was 0.808, while the optimal accuracy for
external validation of LASSO + soft voting and RFE + stacking
was 0.679. The highest accuracy for internal validation of
skeletal muscle was 0.769, and the combined strategies were
RFE + soft voting and RFE + soft-weighted voting, respectively.
Furthermore, the external validation accuracy of SFS + soft
voting and SFS + soft-weighted voting for skeletal muscle is
0.643. The details of the precision, recall, and AUC have similar
results, as shown in Figure 6A.

According to the ranking principle described in the “Sub-
models training and evaluation for PMI using different organs”
section, the optimal ensemble model of each organ was screened
in this experiment. The best ensemble model in the lung is
LASSO + soft-weighted voting with ranking scores of 89, and
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FIGURE 4

The performance of sub-models generated by cross-combination of four feature selection methods and five machine learning algorithms
based on single organ. (A) Workflow of cross-combination of four feature selection methods and five machine learning algorithms to establish
sub-models to predict PMI based on the lung, liver, kidney, and skeletal muscle. (B) The heat map on the left show accuracy of internal
validation of sub-models based on lung, liver, kidney and skeletal muscle, and the heat map on the right shows the accuracy of external
validation. (C) The heat map on the left show precision of internal validation of sub-models based on the lung, liver, kidney, and skeletal muscle,
and the heat map on the right shows the precision of external validation. (D) The heat map on the left show recall of internal validation of
sub-models based on the lung, liver, kidney, and skeletal muscle, and the heat map on the right shows the recall of external validation. (E) The
heat map on the left shows AUC of internal validation of sub-models based on the lung, liver, kidney, and skeletal muscle, and the heat map on
the right shows AUC of external validation.

the internal and external validation accuracies were 0.808 and
0.571, respectively (Table 3). Specifically, the optimal ensemble
model of RFE + soft-weighted voting based on the liver was 89.5,

and the internal and external validation accuracies were 0.654
and 0.464, respectively. The internal and external verification
accuracies for the kidney are 0.808 and 0.679, respectively, based
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TABLE 2 The scores of sub-models generated by cross-combination
of four feature selection methods and five machine learning
algorithms.

Model Lung Liver Kidney Skeletal
muscle

LASSO + LR 107.5 76 128 50.5

LASSO + SVM 100 15 99.5 47.5

LASSO + RF 135.5 83 149 59

LASSO + GBDT 59.5 57.5 27 19.5

LASSO + MLPC 137 29 93.5 64.5

RFE + LR 104.5 113.5 110 107

RFE + SVM 48 70.5 92.5 93.5

RFE + RF 132 135.5 112 139

RFE + GBDT 18.5 48.5 46 14

RFE + MLPC 53 125 51.5 96

SBS + LR 64.5 109.5 65 115.5

SBS + SVM 60.5 71 62 111.5

SBS + RF 118 119 93.5 116.5

SBS + GBDT 20.5 32.5 65.5 25.5

SBS + MLPC 69 87.5 102 104.5

SFS + LR 71 130.5 83 130.5

SFS + SVM 99.5 96 91.5 122.5

SFS + RF 146 149 143 134.5

SFS + GBDT 19.5 37 11 22

SFS + MLPC 116 94 54.5 106.5

on LASSO + soft voting, which has the highest score of 76. The
best ensemble model of skeletal muscle is SFS + soft-weighted
voting, which scored 81, and the internal and external accuracy
were 0.731 and 0.643, respectively.

In the present study, each organ’s ensemble model was
compared with the best sub-model of the same organ to
determine whether the integrated model can improve the
PMI prediction performance. Compared with SFS-RF, the
best sub-model of the lung, although all metrics of internal
validation are slightly improved, its external validation metrics
significantly decreased according to LASSO + soft-weighted
voting (Figures 6B, C). The RFE + soft-weighted voting model
based on the liver predicts PMI with the most indicators
lower than the best sub-model except for the AUC of internal
and external validation (Figures 6D, E). Compared with
the optimal kidney sub-model, the LASSO + soft voting
model weakly improves the precision and AUC of internal
validation (Figures 6F, G). By comparing SFS-soft-weighted
voting with SFS-RF of skeletal muscle, the former only has feeble
improvement in AUC of internal validation and precision of
external validation (Figures 6H, I).

The abovementioned results indicated that the SFS + RF
was the optimal model for predicting PMI based on the kidney.

However, the single organ ensemble model could not effectively
improve the PMI prediction performance. Therefore, in the
multi-organ fusion based on ensemble model construction, the
optimal sub-model performance will be compared with other
models’ performance in predicting PMI.

3.4. Performance of multi-organ fusion
based on ensemble models

Since the single-organ ensemble strategy cannot improve
the prediction efficiency of PMI, we further focus on the multi-
organ integration strategy. Figure 7A shows the appropriate
multi-organ fusion model establishment steps for estimating
PMI. In brief, the best combinations of feature selection
methods and sub-models in the lung, liver, kidney, and
skeletal muscle were piped based on a multi-organ fusion
strategy. Then, the ensemble model with the highest scores
was selected by comparison. Finally, the ensemble pruning
algorithm integrates multi-organ data based on the optimal
model for PMI estimation.

By comparing the multi-organ integration model’s internal
and external verification accuracies, the soft voting fusion
strategy has an absolute advantage with the internal and external
verification accuracies of 0.962 and 0.893, respectively. In
contrast, the staking model had the worst performance, and its
internal and external validation accuracy is even lower than the
single-organ optimal model based on the kidney, with only 0.692
and 0.679. The performance of soft-weighted voting was similar
to that of soft voting, with internal and external validation
accuracies of 0.923 and 0.893 (Figures 7B, C).

Although the AUC values of the internal and external
validation of the three fusion strategies are all higher than 0.97,
the confusion matrix results show that some samples are still
misjudged according to the external validation (Figures 7D–I).
The sample prediction error is mainly more than 15 days after
death, indicating that if the prediction results show that the
PMI exceeds 15 days, the prediction accuracy decreases and the
credibility decreases.

The ensemble pruning algorithm showed that the optimal
combination of multiple organs was four organs, i.e., lung, liver,
kidney, and skeletal muscle, used in the present study to infer
the PMI. Furthermore, soft voting and soft-weighted voting can
significantly improve the prediction performance of PMI based
on the multi-organ fusion strategy (Table 4).

3.5. Comparison of lab-on-chip and
traditional protein detection methods

To further clarify the superiority of the analysis method
and its application value in forensic practice, we summarize
the main improvements of the proposed approach compared
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FIGURE 5

The performance and confusion matrix of the optimal sub-models with the lung, liver, kidney, and skeletal muscle. (A) The optimal sub-model
of the lung is SFS + RF. The accuracy, precision, recall, and AUC of internal validation are 0.769, 0.810, 0.798, and 0.948, respectively. The
accuracy, precision, recall, and AUC of external verification of this model are 0.607, 0.690, 0.607, and 0.919, respectively. (B) The confusion
matrix of SFS + RF for the lung shows that the external validation samples were completely predicted correctly only at 1, 3, 9, and 24 days. The
external validation predictions were wrong at 15 days after death. There was a misjudgment in the samples at other PMI. (C) The optimal
sub-model of the liver is SFS + RF. The accuracy, precision, recall, and AUC are 0.692, 0.732, 0.750, and 0.900, respectively. The accuracy,
precision, recall, and AUC of external verification are 0.536, 0.574, 0.536, and 0.865, respectively. (D) The confusion matrix of SFS + RF for the
liver shows that the external validation samples of Liver were completely predicted correctly at 1, 3, 12, and 21 days. The external validation
predictions were wrong at 0, 24, and 30 days after death. There was a misjudgment in the samples at other PMI. (E) The optimal sub-model of
the kidney is LASSO + RF. The accuracy, precision, recall, and AUC are 0.808, 0.760, 0.786, and 0.962, respectively. The accuracy, precision,
recall, and AUC of external verification are 0.714, 0.798, 0.714, and 0.939, respectively. (F) The confusion matrix of LASSO + RF for the kidney
shows that the external validation samples of Kidney were completely predicted correctly at 3, 5, 9, 21, 24, and 30 days, and there was a
misjudgment in the samples at other PMI. (G) The optimal sub-model of skeletal muscle is RFE + RF. The accuracy, precision, recall, and AUC
are 0.769, 0.762, 0.786, and 0.951, respectively. The accuracy, precision, recall, and AUC of external verification of this model are 0.679, 0.649,
0.679, and 0.912, respectively. (H) The confusion matrix of RFE + RF for skeletal muscle shows that the external validation samples of skeletal
muscle were completely predicted correctly at 0, 2, 3, 5, 12, 21, and 24 days, The external validation predictions were wrong at 9 and 27 days
after death. There was a misjudgment in the samples at other PMI.
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FIGURE 6

The prediction performance of ensemble model and best sub-model based on single organ. (A) Histogram performance of internal and external
validation of four organs cross-combining of four feature selection methods and three ensemble models. (B) Radar map of SFS-RF and
LSAAO-soft-weighted voting based on internal validation of lung. (C) Radar map of SFS-RF and LSAAO-soft-weighted voting based on external
validation of lung. (D) Radar map of SFS-RF and RFE-soft-weighted voting based on internal validation of liver. (E) Radar map of SFS-RF and
RFE-soft-weighted voting based on external validation of liver. (F) Radar map of LSAAO-RF and LSAAO-soft voting based on internal validation
of kidney. (G) Radar map of LSAAO-RF and LSAAO-soft voting based on external validation of kidney. (H) Radar map of RFE-RF and
SFS-soft-weighted voting based on internal validation of skeletal muscle. (I) Radar map of RFE-RF and SFS-soft-weighted voting based on
external validation of skeletal muscle.

to the traditional methods. And the terms include whether
the required instruments are expensive, whether the detection
methods are cumbersome, and the length of analysis time. The
results show that the present study’s detection method and
analysis strategy have good application prospects for estimating
PMI (Table 5).

4. Discussion

Protein is one of the important components of an organism,
so forensic pathologists have always used the analysis of
protein degradation after death as an auspicious tool to
determine PMI. Previous studies have shown that some specific
proteins and their degradation products (e.g., desmin, cTnT,

and calpain 1) could be used as markers for specific time
intervals of post-mortem decomposition (50). In contrast, many
protein detection methods have tested their applicability for
predicting PMI. However, these technologies are complex, time-
consuming, and expensive, but more importantly, the accuracy
is not enough to infer PMI (51).

In the present study, the lab-on-chip combines Agilent
2,100 biological analyzer and the Protein 230 Plus LabChip
kits, enabling the separation of polypeptides in the 14–
230 kDa range. This technique allows the analysis of 10
samples in 30 min and avoids all the cumbersome post-
electrophoresis procedures required for SDS-PAGE analysis,
including staining, destaining, and storage, and does not need
additional image analysis equipment. It is worth noting that
the technology can directly display the results as gel-like images
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TABLE 3 The scores of ensemble models based on four organs.

Model Lung Liver Kidney Skeletal
muscle

LASSO + stacking 39.5 15.5 54.5 17

LASSO + soft
voting

78.5 17 76 26

LASSO + soft
weighted voting

89 30 71.5 21.5

RFE + stacking 24 56.5 60.5 45.5

RFE + soft voting 38.5 70 46 69.5

RFE + soft
weighted voting

41 89.5 45 80.5

SBS + stacking 28 52 41.5 36.5

SBS + soft voting 42.5 51 49.5 68.5

SBS + soft
weighted voting

45.5 54.5 49.5 67

SFS + stacking 50.5 65 23 46.5

SFS + soft voting 64 61.5 41.5 64.5

SFS + soft
weighted voting

83 61.5 65.5 81

and electrophoretograms. It also can output the characteristics
of each polypeptide peak as numerical data, such as molecular
mass, peak height, and migration time. More importantly, the
technology can simultaneously analyze multiple polypeptides
or their degradation fragments of a sample. With this high-
throughput advantage, this technology will help establish a
human sample database and then realize the prediction of
human samples with unknown PMI in the future.

The results of this study showed that the prediction accuracy
of the kidney was the highest, followed by the lung and
skeletal muscle, and that of the liver was the lowest when
applying sub-models based on a single organ to predict PMI.
The reason may be that the kidney, as a deep organ in the
organism, is less affected by the outside world and less protease.
The lung and skeletal muscles are greatly affected by the
external environment because of gas exchange and relative
superficial organs. The result of the liver was the lowest mainly
because the detoxification organ of the organism contains many
proteolytic enzymes.

According to the results mentioned in the “Performance of
the single organ based on ensemble models” section, we found
that the performance of ensemble models based on single organ
is worse than that of the sub-model. When generating ensemble
models, some fundamental principles should be considered. The
first is diversity, which means the machine learning algorithm
participating in ensemble learning should have enough diversity
to obtain ideal prediction performance. The second is prediction
performance, which means the individual machine learning
algorithm should be as high as possible (52, 53). In the

present research, we have used multiple models to ensure
the diversity of algorithms. However, the disadvantage is
that we have not deleted the worst-performing sub-models,
such as GBDT, which may lead to the low accuracy of the
integrated model.

In the current study, we designed a multi-organ fusion
strategy combining multiple organs to predict PMI. The soft-
voting and soft-weighted voting model based on multi-organ
fusion strategy improved the predictive performance of internal
and external verification. The results show that the soft-voting
model drastically improved the accuracy of internal verification
from 0.808 to 0.962 and the accuracy of external verification
from 0.714 to 0.893. The reason may be that the essence of
a multi-organ fusion strategy is to fuse and analyze multiple
training datasets to fit different base models. It helps to integrate
the characteristics of different organs better and increases
the amount of data (53). Another possible reason is that we
choose the optimal sub-model of the four organs in the multi-
organ fusion strategy to have enough diversity to obtain ideal
prediction performance (54).

Through this study, we also found significant differences in
the predictive power of different ensemble models, which means
it is necessary to compare and screen them. Compared with
the Lu et al.’s study, they used the same four organs combined
with mass spectrometry and multi-organ fusion to predict PMI,
with an accuracy of 0.93 based on a stacking ensemble (55).
However, the performance of the stacking ensemble was not
satisfactory in our research. On the contrary, the accuracy of
soft voting reached 0.96, which may be related to the different
analytical techniques.

Ensemble pruning methods, called ensemble selection
methods, aim to reduce ensemble models’ complexity. These
methods search for a subset of ensemble members that performs
to some extent as well as the original ensemble (56). This method
can reduce the size of the ensemble model, save training time,
and improve accuracy and robustness (57). Hence, in our study,
we also used the ensemble pruning algorithm to select the
optimal subsets of base models for multi-organ fusion, which
also means that we can determine the optimal multi-organ
combination for the estimation of PMI. Finally, we obtained that
the optimal organ combination is the lung, liver, kidney, and
skeletal muscle for predicting time since death. This result after
pruning also suggests that we should try to use more organs to
find the best organ combination to infer future PMI.

In forensic medicine, estimating the PMI is influenced by
many internal and external factors such as temperature and
humidity, body weight, and disease. The limitations should be
avoided in future studies, such as considering more influencing
factors and increasing the number of human samples. Although
the current experiment involves an idealized condition, we have
proven a new analysis method, lab-on-chip combined with a
machine learning algorithm, could use to predict the PMI.
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FIGURE 7

Performance of multi-organ fusion strategy to predict PMI. (A) Framework of multi-organ fusion strategy to predict PMI. (B) Accuracy, precision,
recall, and AUC of internal validation for stacking are 0.692, 0.740, 0.774, and 0.979, respectively. Accuracy, precision, recall, and AUC of internal
validation for soft voting are 0.962, 0.964, 0.964, and 0.991, respectively. Accuracy, precision, recall, and AUC of internal validation for
soft-weighted voting are 0.923, 0.94, 0.929, and 0.993, respectively. (C) Accuracy, precision, recall, and AUC of external validation for stacking
are 0.679, 0.668, 0.679, and 0.978, respectively. Accuracy, precision, recall and AUC of external validation for soft voting are 0.893, 0.94, 0.893,
and 0.99, respectively. Accuracy, precision, recall, and AUC of external validation for soft-weighted voting are 0.893, 0.94, 0.893, and 0.992,
respectively. (D) The ROC curve of internal and external validation for the stacking model based on multi-organ fusion strategy. (E) The
confusion matrix of external validation for the stacking model, the mispredictions occurred 7 to 12 days and 18 to 24 days after death. (F) The
ROC curve of internal and external validation for the soft voting model based on multi-organ fusion strategy. (G) The confusion matrix of
external validation for the soft voting model. The external validation samples were predicted incorrectly at 7, 9, and 24 days of PMI. (H) The ROC
curve of internal and external validation for the soft-weighted voting model based on multi-organ fusion strategy. (I) The confusion matrix of
external validation for the soft-weighted voting model. The samples were mispredicted at 7, 9, and 24 days.
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TABLE 4 The summary of all the optimal models is based on single organ sub-models, single organ ensemble models, and multi-organ fusion
strategy.

Organ Best model Internal validation External validation

ACCa PREb RECc AUC ACC PRE REC AUC

Lung SFS + RF 0.769 0.81 0.798 0.948 0.607 0.690 0.607 0.919

LASSO + soft weighted voting 0.808 0.827 0.833 0.949 0.571 0.536 0.571 0.941

Liver SFS + RF 0.692 0.732 0.75 0.9 0.536 0.574 0.536 0.865

RFE + soft weighted voting 0.654 0.56 0.595 0.924 0.464 0.474 0.464 0.901

Kidney LASSO + RF 0.808 0.76 0.786 0.962 0.714 0.798 0.714 0.939

LASSO + soft weighted voting 0.808 0.767 0.786 0.974 0.643 0.683 0.643 0.94

Skeletal muscle RFE + RF 0.769 0.762 0.786 0.951 0.679 0.649 0.679 0.912

SFS + soft weighted voting 0.731 0.738 0.786 0.966 0.643 0.735 0.643 0.91

Multi-organ fusion Stacking 0.692 0.74 0.774 0.979 0.679 0.668 0.679 0.978

Soft voting 0.962 0.964 0.964 0.991 0.893 0.94 0.893 0.99

Soft weighted voting 0.923 0.94 0.929 0.993 0.893 0.94 0.893 0.992

aACC represents accuracy.
bPRE represents precision.
cREC represents recall.

TABLE 5 Comparison of lab-on-chip and traditional protein detection methods.

Lab-on-chip Traditional methods

Western-blotting ELISA Protein mass spectrometry

Operations Simplify Complex Complex Complex

Sample consumption Minimal Major Major Minimal

Expenditure Cheap Cheap Cheap Expensive

Speed Less than 30 min Slow Fast Slow

Equipment Only 2,100 Bioanalyzer Variety Few Variety

Identify particular protein No Yes Yes Yes

Quantitation Automatic Semiquantitative Semiquantitative Automatic

High throughput Yes No No Yes

Data processing Use machine learning Manual analysis Manual analysis Use machine learning

Predict performance Excellent Poor Poor Good

Witnessed inspections Yes No Yes No

Furthermore, the multi-organ fusion strategy can significantly
improve the performance of PMI prediction.
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Background: Triple-negative breast cancer (TNBC) is proposed at the beginning of

this century, which is still the most challenging breast cancer subtype due to its

aggressive behavior, including early relapse, metastatic spread, and poor survival.

This study uses machine learning methods to explore the current research status

and deficiencies from a macro perspective on TNBC publications.

Methods: PubMed publications under “triple-negative breast cancer” were searched

and downloaded between January 2005 and 2022. R and Python extracted

MeSH terms, geographic information, and other abstracts from metadata. The

Latent Dirichlet Allocation (LDA) algorithm was applied to identify specific

research topics. The Louvain algorithm established a topic network, identifying the

topic’s relationship.

Results: A total of 16,826 publications were identified, with an average annual

growth rate of 74.7%. Ninety-eight countries and regions in the world participated

in TNBC research. Molecular pathogenesis and medication are most studied in

TNBC research. The publications mainly focused on three aspects: Therapeutic

target research, Prognostic research, and Mechanism research. The algorithm and

citation suggested that TNBC research is based on technology that advances TNBC

subtyping, new drug development, and clinical trials.

Conclusion: This study quantitatively analyzes the current status of TNBC research

from a macro perspective and will aid in redirecting basic and clinical research

toward a better outcome for TNBC. Therapeutic target research and Nanoparticle

research are the present research focus. There may be a lack of research on TNBC

from a patient perspective, health economics, and end-of-life care perspectives. The

research direction of TNBC may require the intervention of new technologies.

KEYWORDS

machine learning, bibliometric analysis, Latent Dirichlet Allocation, triple-negative breast
cancer, Nanoparticle research
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Highlights

- All Triple-negative breast cancer (TNBC) publications in the
PubMed database from 2005 to 2021 were included in the analysis.

- Triple-negative breast cancer research mainly focused on three
aspects: Therapeutic target research, Prognostic research, and
Mechanism research.

- Therapeutic target research and Nanoparticle research are the
present research focus.

- The Latent Dirichlet Allocation (LDA) algorithm we built is a
convenient tool that can help researchers discover changes in
research focus from medical text big data.

1. Background

Breast cancer currently accounts for 30% of newly diagnosed
malignant tumors in women and causes 15% of women to die from
cancer (1). For the first time, Perou described the intrinsic molecular
subtypes of breast cancer and described Triple-negative breast cancer
(TNBC) in 2000 using complementary DNA microarray technology
(2). Furthermore, TNBC is the most aggressive subtype of breast
cancer, accounting for about 10–20% of breast cancer cases (3, 4).
TNBC is still unsatisfactory in diagnosis and treatment.

Bibliometrics is a quantitative analysis method of academic
publications, which can discover the progress of discipline research
from a macro perspective and provide support for future research
directions (5). TNBC-related literature information analysis is scarce.
Teles et al. (6) conducted a bibliometric study of 1,932 publications
in 2018 to study nanomedicine research’s global trend on TNBC.
However, the inclusion criteria of this study are too broad, and the
analysis methods are insufficient to analyze the status quo of the
TNBC study. Unfortunately, bibliometric studies on TNBC remain
insufficient due to the lack of practical language analysis tools to
integrate metatext data.

Natural Language Processing (NLP) is a computing technology
used to analyze human language, a part of machine learning (7).
Various algorithms have been successfully applied to deal with
medical information (8). Latent Dirichlet Allocation (LDA) is
bibliometrics’s most classical topic modeling method to present many
unstructured texts and information (9, 10). LDA can perform topic
analysis on texts (5). We recently constructed LDA and NLP methods
to analyze more than 23,000 rectal cancer-related publications
between 1994 and 2018. We have found the research deficiencies
in the last 25 years and predicted the future research focus (11).
Therefore, through the use of mature LDA methods and machine
learning techniques to discover the current research from a macro
perspective, at the same time discover the missing research topics in
the past, and predict potential research breakthroughs in the future.

We analyzed all past TNBC publications indexed by PubMed
under Triple-negative breast cancer in the present study. We
improved our algorithm based on previous research and conducted
a more detailed analysis of all TNBC publications with more visual
expression to highlight current research focus in TNBC, research
deficiencies, and specific areas with future opportunities.

Abbreviations: TNBC, triple-negative breast cancer; NLP, natural language
processing; LDA, Latent Dirichlet Allocation.

2. Materials and methods

2.1. Research design

The study design was based on the basic rules of bibliometrics, as
shown in Figure 1 for a flowchart (12, 13). The study used a two-stage
structured approach to bibliometric analysis and visual assessment
of published scientific literature. Provide an understanding based on
the data and the researcher’s professional background. The PubMed
database1 is a biomedical specialty database that provides multiple
search strategies and is a free, publicly available database. For
this research, the PubMed database, which contains an application
programming interface (API) that can export abstracts, was used, and
publications containing abstracts were downloaded for analysis.

2.2. Inclusive and exclusive criteria

Table 1 shows the steps to obtain full TNBC-related publications
in the PubMed database. All publications under Triple Negative
Breast Cancer were downloaded between January 1, 2005, and
January 1, 2022. There are 17,562 publications. Missing data,
conference abstracts, conference proceedings, book reviews, and
news items were excluded, and 17,338 publications were ultimately
included in the bibliometric analysis (Figure 1A). Details of inclusion
and exclusion are shown in Table 2. After excluding non-English
publications and incomplete abstracts, the final 16,826 publications
were analyzed by the LDA algorithm to obtain the focus changes and
their relevance of research topics in publications in this field. The
whole record of search results is downloaded in XML format via R’s
easyPubMed package. Data extracted from R2 and Python3, including
publication year, abstract, study types, geographic information, and
Medical Subject Headings (MeSH) terms, were obtained.

2.3. LDA and algorithms and analytical
methods

Latent Dirichlet Allocation was used to identify more specific
research topics in each article. Python was used to model the topics
by analyzing the abstracts of all indexed articles in the record.
Topics were set at 50. The criteria for selecting the number of topics
were perplexity, redundancy, and legibility. Based on the algorithmic
calculation of topic probability, we finally determined the topic to
which each article belongs. Next, we manually checked the names
of each glossary based on the abstract. Finally, we used the Louvain
algorithm and Gephi to perform cluster analysis to establish a topic
network to determine the relationship between topics (14). We
identified the two topics with the highest attribution probability in
each publication, counted the number of simultaneous occurrences
in each document, and established links between topics.

All the original data were uploaded and publicly available,
including all retrieval methods, algorithm codes, and raw literature
data in this article (Figure 1A). The literature search and download

1 https://pubmed.ncbi.nlm.nih.gov/

2 https://www.r-project.org/, version:4.1.1

3 https://www.python.org/, version 3.7.1
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FIGURE 1

The number of publications on triple-negative breast cancer (TNBC) has increased rapidly in recent 17 years. (A) Using the search terms “triple-negative
breast cancer” in the PubMed database, download publications through the R pubquery package. Missing data or when the publication was a meeting
abstract, proceedings paper, a correction, a book review, or a news item were manually excluded, and finally, 17,338 publications were included in the
general analysis. Latent Dirichlet Allocation (LDA) analyzed 16,826 publications. (B) Publications analyzed by LDA, Python. Data were visualized using
Excel. The number of publications is shown yearly, and y = 3.8931x2 .3677 (R2 = 0.9906) is the fitted function.

code can be obtained on R by easyPubMed package4. The R
code is publicly available on GitHub5. We have uploaded relevant
Python code on GitHub6, Zenodo7 and LDA code (Supplementary
LDA coding-updated). The network visualization in this article
is carried out using the software package Gephi8. This study
used publicly published data and did not need approval by the
relevant institutional review board or ethics committee. A step-
by-step instruction is provided in the Supplementary material
to facilitate the reader to understand further the research details
(Supplementary information 1).

4 https://cran.r-project.org/web/packages/easyPubMed/index.html

5 https://github.com/christopherBelter/pubmedXML

6 https://github.com/mxdwangdali11/guid-to-Bibliometric-LDA-Analysis

7 https://doi.org/10.5281/zenodo.7461925

8 https://gephi.org/, version 0.9.2

3. Results

3.1. The number of publications in TNBC
research increases every year

We identified and analyzed 16,826 publications from January
2005 to 2022 (Figure 1B). The annual growth trend aligns with
the fitting curve y = 3.8931x2.3677 (R2 = 0.9906). An average of
1,019 publications are published each year, with an average annual
growth rate of 74.7%. It is expected that 3,650 publications will
be published in 2022. Among all publications, 1,646 journals have
publications on TNBC. We identified the ten most popular journals
that published 3,118 publications, accounting for 18.0% of all
publications (Supplementary Table 1). Therefore, emphasizing posts
from these key journals helps us keep up with the latest trends. Breast
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Cancer Research and Treatment, PLoS One, and Scientific Reports are
the top three journals with 690, 427, and 331 publications.

3.2. The proportion of clinical trials in
TNBC publications has increased every
year

To explore the research fields of TNBC, we first divided the
publications into nine categories according to the fields provided
by the database from 2010 in cancer research and set them as 100
per cent (Figure 2). We found that clinical trials and multicenter
studies accounted for 25% of publications. The proportions of reviews
and meta-analyses increased from 35% in 2011 to 50% in 2021.

Since high-quality meta-analysis is generally considered a clinically
guiding study, it is reasonable to expect that the publication of TNBC
meta-analysis will increase. Many clinical trials of TNBC have been
improved and will continue to improve its clinical practice.

3.3. The United States and China have the
highest number of publications in the field
of TNBC

To further understand the global TNBC research situation, we
analyzed the geographic information by research institutions. We
found that 98 countries or regions worldwide have publications on
TNBC (Figure 3A). The top 10 countries’ publications accounted

TABLE 1 Triple-negative breast cancer (TNBC) publications assortment steps.

Exploration steps Query on PubMed Description

1 Triple negative breast cancer (“triple negative breast neoplasms”[MeSH Terms] OR (“triple”[All Fields] AND “negative”[All Fields] AND
“breast”[All Fields] AND “neoplasms”[All Fields]) OR “triple negative breast neoplasms”[All Fields])

2 Data duration (2005:2021[pdat])

TABLE 2 Inclusive and exclusive criteria.

Parameter of selection
of a publication

Inclusion criterion Exclusion criterion Rationale for inclusion–exclusion

Language English Other languages The working language of the LDA algorithm is English. Other
languages are not recognized

Publication date 2005–2021 Publications before 2005 and after
2021

Not included in the 2022 publication as it has not been fully
published

Publication type All Missing data, meeting abstract,
proceeding paper, book review,
news item

As the LDA algorithm is unsupervised machine learning, the
analysis must include abstract as the text editor. In addition to
incomplete content, try to include research articles and reviews.

Funding sponsor All No exclusion This parameter does not affect the selection criterion

Affiliation/organization All No exclusion This parameter does not affect the selection criterion

Funding All No exclusion This parameter does not affect the selection criterion

Country All No exclusion Publication from each country has its significance

FIGURE 2

Clinical trials and multicenter studies have a large proportion of research. We divide publications into eight categories according to the types provided in
the database. Data were shown by percentage.
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for 78.2%, indicating a pronounced head effect. Moreover, more
than half of the publications were derived from the United States,
China, Korea, and Italy, accounting for 25.0%, 21.8%, 5.4%, and
4.9% of all publications, respectively (Figure 3B). This phenomenon
reminds us that the vast majority of the global population
has participated in TNBC research, especially in the northern
hemisphere.

3.4. Molecular pathogenesis and
medication are most studied in TNBC
research

MeSH terms can represent the research content of the
publications. A total of 6,288 MeSH terms appeared 248,250 times in
all 16,826 publications, indicating that the studies covered multiple

aspects (Supplementary Table 2). The top 10 cited MeSH terms are
listed in Figure 4. Both pathology and metabolism have appeared
more than 7,000 times, suggesting that the research on TNBC focused
on exploring its molecular pathogenesis. In addition, 5 of the top
10 cited MeSH terms are directly related to medication research.
Therefore, we infer that pathogenic mechanism and medication
research will continue to focus on TNBC research in the foreseeable
future.

3.5. LDA results: TNBC research focus on
therapeutic target research, prognostic
research, and mechanism research

The topic network analyzed by LDA and Louvain algorithm
highlights the areas where interrelated topic clusters appear

FIGURE 3

Global triple-negative breast cancer (TNBC) research differs significantly between regions. (A) The global distribution of TNBC publications in the recent
17 years is shown. We extracted the country information based on the first publication’s affiliation. (B) Top 10 countries with the highest publication
numbers in TNBC research.
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FIGURE 4

Molecular pathogenesis and medication are most studied in triple-negative breast cancer (TNBC) research. Each publication contains several Medical
Subject Headings terms to describe the research content roughly. R was used to analyze the themes of the publications through Medical Subject
Headings terms. The figure shows the most researched topics in the last 16 years.

simultaneously and provides remarkable insights into the
relationships between the essential topics of interest. We divided
publications into 50 topics. The results of the LDA analysis suggest
that all TNBC-related studies are mainly focused on three clusters,
i.e., Therapeutic target research, Prognostic research, and Mechanism
research (Figure 5). However, few studies on hospice care, patient
perspective, surgical treatment of metastasis, and economics are
available.

The Therapeutic target research cluster contains 3,465
publications. The research focuses on Therapeutic target research,
Protein expression, and Chemotherapy research. This cluster is
particularly close to the other two clusters, indicating that the
relationship between essential clinical integration and TNBC
basic research is very close. We also found that clinical trials can
quickly transform basic research into clinical practice to improve
patient prognosis.

In the Prognostic research cluster, Survival related research and
Demography research are the most studied topics. There are 1,275
publications on Prognostic research, which account for the most
significant proportion and are closely related to the other two
topics, indicating that prognostic research is the research focus.
Interestingly, we found that Demography research and Methylation
research are highly connected, weighing 359. We further analyzed
and found that TNBC methylation differs significantly among
races with different genetic backgrounds, and long-term survival
studies are lacking.

In the Mechanism research cluster, we found that Apoptosis
research, Growth factors study, and Nanoparticle research are the
three most researched topics. In addition, The research cluster
contains 21 topics, accounting for up to 42%, covering everything
from basic medical research to clinical research.

3.6. LDA results: Therapeutic target
research and Nanoparticle research are
the research focus

To understand the changes in research focus, we visualized the
LDA results and generated a heat map showing the changes in
all 50 research topics of TNBC obtained by the LDA algorithm
(Figure 6). The number of publications on therapeutic target research
and nanoparticle research has increased dramatically, with 15.4% and
15.7%. These results indicate these two are research focus in the
future.

3.7. LDA and citation analysis results:
TNBC research is based on technology
that advances TNBC subtyping, new drug
development, and clinical trials

Highly cited publications often represent the emergence of
outstanding contributions, leading knowledge, or examples in the
field. Attention was paid to the citations of publications within
the TNBC field. All publications with a total of 490,599 citations,
among which the top ten publications with the highest internal
citations are listed inTable 3, the publication with the highest internal
citations, 1,293, and the total citations of these 10 publications
are 21,550. These publications focus on three categories, clinical
characteristics of extensive population studies (15–17), clinical trials
of new medications (18–21), and subtyping studies of TNBC (22–24).
They represent researchers focused on discovering new molecular
targets and developing multiple therapies such as Atezolizumab and
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FIGURE 5

Latent Dirichlet Allocation (LDA) identified that the triple-negative breast cancer (TNBC) research is focused on three areas Therapeutic target research,
Prognostic research, and Mechanism research. Topic cluster network studied by Latent Dirichlet Allocation: inter-and intra-relationships. Therapeutic
target research (green), Prognostic research (orange), and Mechanism research (purple) are three major clusters in TNBC research. The circle size
represents the number of publications on each topic; the line’s thickness represents the weight of the connection between each topic.

Nab-Paclitaxel for treatment. Therefore, under the guidance of this
research model, similar studies in the future can get more citations.
On the other hand, combined with the steady increase of MeSH
terms year by year, the lack of drastic changes suggests that TNBC
research presents a stable and mature research model, that is, new
drug development based on TNBC typing, target drug development,
and clinical trials.

4. Discussion

We analyzed 16,826 publications in the field of TNBC from 2005
to 2022 using machine learning and NLP. Furthermore, we visualize
and analyze the results from a macro perspective. Over the past
17 years, we found that TNBC-related publications have increased
from none to 16,826 in 2021, with more extensive research content.
TNBC research focuses on Therapeutic target research, Prognostic
research, and Mechanism research. Research topics have changed
over the years, and the current research focus is expected to be
Therapeutic target research and Nanoparticle research, according to
our LDA results.

Bibliometrics is a compelling analysis method to obtain
information from massive texts quantitatively, and there are very few

bibliometrics analyses on TNBC such as VOSviewer, Bibliographic
Items Co-occurrence Matrix Builder (BICOMB), and CiteSpace.
However, with the development of the publishing industry, these
tools have difficulty applying to massive publication analysis due
to their architecture, insufficient computer memory, and sharing
protocols. Therefore, our research uses the LDA algorithm based on
Python, an unsupervised topic model. Furthermore, our topic model
is based on the publication’s abstract, not on the keywords. It is
easy to use with negligible memory consumption and can analyze
massive publications.

We found that Therapeutic target research has always been
research-focused because TNBC lacks effective therapeutic targets
and has high heterogeneity (24, 25). Our research found that
this part contains a variety of attempts, DNA repair research,
immune checkpoint research, and protein expression. We
only found 137 publications related to immune checkpoint
research, and immunotherapy research is not closely related
to the prognosis and mechanism research of TNBC. Several
clinical studies are being carried out, including IMpassion130,
KEYNOTE-355, and Impassion 131 (26–28). Some positive
results can reduce the risk of death by up to 35%. However,
more important is the research on the underlying mechanism
and the exploration of various influencing factors, especially
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FIGURE 6

Therapeutic target research and Nanoparticles research are research focus. Heatmap presents the change of 50 research topics of triple-negative breast
cancer (TNBC). Latent Dirichlet Allocation (LDA) generated all data. The topics marked in red are the research focus. The lighter the color in the figure,
the more publications.

the extracellular matrix, hypoxia, and immune cell infiltration
(29). In addition, immune checkpoint research has just started
for five years, according to our results, and several medications
have already been applied in the clinic. This research trend will
continue, and immunotherapy will become a safe and effective
treatment option.

The research scope of the TNBC mechanism is pervasive,
covering the immune microenvironment and subtypes of TNBC.
The successful subtyping provides a solid theoretical basis for
the precision therapy of TNBC (30). Gene sequencing technology
allows us to fully understand the mutation rate of TNBC,
which is about 1.68 bp/Mb (31). Mutations occur in genes in
multiple key signaling pathways such as PI3K/Akt/mTOR pathway,
RAS/RAF/MEK pathway, JAK/STAT pathway, DNA repair pathway,
and cell cycle checkpoint (32–34). Therefore, various treatments
targeting the signal pathways are currently undergoing clinical trials.
Some inhibitors have been used as potential medications for TNBC
treatment, including PI3K, MEK, PARP, EGFR, VEGF, and AR
inhibitors (32).

Triple-negative breast cancer subtyping has always been the
focus of research. There is no unified standard based on the TNBC
genome and cell heterogeneity. The first classification was based on
Lehmann’s gene expression analysis of breast cancer and constructed
a “triple negative classification” and six subclassifications (24). In
2016, Lehmann’s further research found that immunomodulatory
(IM) patients are more likely to benefit from checkpoint inhibitor
therapy (35). With the advancement of technology, such as the
emergence of single-cell RNA sequencing, spatial transcriptomics,
and radionics, and the further expansion of data volume, new
technologies have provided new insights into the typing of TNBC
and proposed guidance for treatment. Xie’s research established a new
prognostic model through the comprehensive analysis of multiple
cell death patterns on more than 1,000 breast cancer patients, which
can predict the clinical prognosis and drug sensitivity after TNBC
surgery (36). In addition to technological progress, an in-depth
understanding of the oncological course, mechanism of occurrence
and development, and algorithm advances will provide a more
detailed classification of TNBC.
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TABLE 3 Top 10 publications of triple-negative breast cancer (TNBC) based on internal citations and Latent Dirichlet Allocation (LDA) results.

Reference title
DOI

References Internal citation Total citation LDA results

J Clin Invest. 2011 Jul; 121 (7): 2750-67
https://doi.org/10.1172/jci45014

Identification of human triple-negative breast
cancer subtypes and preclinical models for
selection of targeted therapies (24)

1,293 3,205 Protein expression

Clin Cancer Res. 2007 Aug 1; 13 (15 Pt 1): 4429-34
https://doi.org/10.1158/1078-0432.ccr-06-3045

Triple-negative breast cancer: clinical features
and patterns of recurrence (23)

1,220 3,025 Subtype research

N Engl J Med. 2010 Nov 11; 363 (20): 1938-48
https://doi.org/10.1056/nejmra1001389

Triple-negative breast cancer (21) 1,062 2,501 Therapeutic target research

J Clin Oncol. 2008 Mar 10; 26 (8): 1275-81
https://doi.org/10.1200/jco.2007.14.4147

Response to neoadjuvant therapy and long-term
survival in patients with triple-negative breast
cancer (20)

700 1,909 Prognostic research

Cancer. 2007 May 1; 109 (9): 1721-8
https://doi.org/10.1002/cncr.22618

Descriptive analysis of estrogen receptor
(ER)-negative, progesterone receptor
(PR)-negative, and HER2-negative invasive breast
cancer, the so-called triple-negative phenotype: a
population-based study from the California
cancer Registry (17)

550 1,483 Demography research

Clin Cancer Res. 2007 Apr 15; 13 (8): 2329-34
https://doi.org/10.1158/1078-0432.ccr-06-1109

The triple negative paradox: primary tumor
chemosensitivity of breast cancer subtypes (16)

515 1,472 Subtype research

Nat Rev Clin Oncol. 2016 Nov; 13 (11): 674-690
https://doi.org/10.1038/nrclinonc.2016.66

Triple-negative breast cancer: challenges and
opportunities of a heterogeneous disease (15)

485 1,280 Therapeutic target research

N Engl J Med. 2018 Nov 29; 379 (22): 2108-2121
https://doi.org/10.1056/nejmoa1809615

Atezolizumab and Nab-Paclitaxel in Advanced
Triple-Negative Breast Cancer (19)

358 2,064 Immune checkpoint research

Lancet. 2014 Jul 12;384 (9938): 164-72
https://doi.org/10.1016/s0140-6736(13)62422-8

Pathological complete response and long-term
clinical benefit in breast cancer: the CTNeoBC
pooled analysis (18)

335 2,113 Neoadjuvant chemotherapy

Ann Oncol. 2011 Aug; 22 (8): 1736-47
https://doi.org/10.1093/annonc/mdr304

Strategies for subtypes–dealing with the diversity
of breast cancer: highlights of the St. Gallen
International Expert Consensus on the Primary
Therapy of Early Breast Cancer 2011 (22)

311 2,498 Therapeutic target research

On the other hand, studies on operations and radiotherapy
were rarely reported, especially for re-operations related to local-
regional recurrence risk or distant metastasis. Many studies suggest
that surgery is essential in treating distant metastases of cancers,
such as colorectal cancer (37). In addition, many studies on other
cancers, including pancreatic and colorectal cancer, demonstrated
that the tumor microenvironment, especially the extracellular matrix,
has been found to play an essential role in cancer metastasis, local
recurrence, and chemotherapeutic drug resistance (38, 39). Many
potential drugs are used due to their ability to target the extracellular
matrix, such as PEGPH20 (an enzyme that targets matrix hyaluronic
acid), pegilodecakin (a PEGylated IL-10) (40, 41). However, the study
on extracellular matrix in TNBC is insufficient so far.

Although the research on TNBC has made significant progress
in many aspects, the present research also found some research
deficiencies on TNBC. There is a lack of research on TNBC from
patients’ perspectives, health economics, and hospice care. Although,
at present, the 5 years overall survival rate of most tumors has been
dramatically improved, helping tumor patients with psychological
issues re-enter society will become a new important research topic
(42). TNBC patients are more likely to relapse and metastasize than
other breast cancer subtypes, resulting in more significant mental and
economic pressure on patients and their families. Studies on patients
with more prolonged survival can better understand TNBC and even
other long-term survival tumors (43). In the future, we will face more
challenges for patients with a long survival period of 5–10 years (44).

There are some limitations in the present study. Besides
PubMed, several other databases, including Scopus, Web of Science,
and Embase, could be used for bibliometric research. Although
PubMed contains the highest quality peer-reviewed research and
excludes irrelevant, non-peer-reviewed publications, the literature
will provide detailed and comprehensive knowledge if other
databases are explored simultaneously. Secondly, we considered that
all publications publish more positive research results. Negative
results and clinical participants’ perspectives are naturally more
difficult to be published. With the development of complete medical
record texts, publication databases, and improved algorithms, it is
reasonable for machine learning to play a more active auxiliary role in
future clinical practice. The data presented in this study will hopefully
help scientists understand the current status of TNBC research and
design more relevant basic and clinical research projects.

5. Conclusion

We analyzed 16,826 TNBC publications through the NLP
Method. TNBC research shows insufficiencies, especially in long-
term survival-related research, and a lack of research from patients’
perspectives. The publications mainly focused on three aspects:
Therapeutic target research, Prognostic research, and Mechanism
research. The research direction of TNBC may require the
intervention of new technologies.
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High-accuracy detection of 
supraspinatus fatty infiltration in 
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Background: The supraspinatus muscle fatty infiltration (SMFI) is a crucial MRI 
shoulder finding to determine the patient’s prognosis. Clinicians have used the 
Goutallier classification to diagnose it. Deep learning algorithms have been 
demonstrated to have higher accuracy than traditional methods.

Aim: To train convolutional neural network models to categorize the SMFI as a 
binary diagnosis based on Goutallier’s classification using shoulder MRIs.

Methods: A retrospective study was performed. MRI and medical records from 
patients with SMFI diagnosis from January 1st, 2019, to September 20th, 2020, 
were selected. 900 T2-weighted, Y-view shoulder MRIs were evaluated. The 
supraspinatus fossa was automatically cropped using segmentation masks. A 
balancing technique was implemented. Five binary classification classes were 
developed into two as follows, A: 0, 1 v/s 3, 4; B: 0, 1 v/s 2, 3, 4; C: 0, 1 v/s 2; D: 0, 
1, 2, v/s 3, 4; E: 2 v/s 3, 4. The VGG-19, ResNet-50, and Inception-v3 architectures 
were trained as backbone classifiers. An average of three 10-fold cross-validation 
processes were developed to evaluate model performance. AU-ROC, sensitivity, 
and specificity with 95% confidence intervals were used.

Results: Overall, 606 shoulders MRIs were analyzed. The Goutallier distribution 
was presented as follows: 0 = 403; 1 = 114; 2 = 51; 3 = 24; 4 = 14. Case A, VGG-19 model 
demonstrated an AU-ROC of 0.991 ± 0.003 (accuracy, 0.973 ± 0.006; sensitivity, 
0.947 ± 0.039; specificity, 0.975 ± 0.006). B, VGG-19, 0.961 ± 0.013 (0.925 ± 0.010; 
0.847 ± 0.041; 0.939 ± 0.011). C, VGG-19, 0.935 ± 0.022 (0.900 ± 0.015; 0.750 ± 0.078; 
0.914 ± 0.014). D, VGG-19, 0.977 ± 0.007 (0.942 ± 0.012; 0.925 ± 0.056; 0.942 ± 0.013). 
E, VGG-19, 0.861 ± 0.050 (0.779 ± 0.054; 0.706 ± 0.088; 0.831 ± 0.061).

Conclusion: Convolutional neural network models demonstrated high accuracy 
in MRIs SMFI diagnosis.
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Introduction

Rotator cuff tears (RCTs) are among the most critical 
musculoskeletal conditions of the shoulder (1). This prevalence affects 
worldwide (2), resulting in direct and indirect economic burdens for 
patients and healthcare systems (3). Furthermore, this progressive 
degenerative condition (4) affects both sexes, and its incidence in the 
general population increases with age (5).

Image medical analysis plays a significant role in diagnosis and the 
optimal detection of the tear magnitude, allowing therapeutic 
planning resolutions, including physical therapy and surgical repair 
(6). Many imaging techniques have been developed for the detection 
of RCTs. Magnetic resonance imaging (MRI) presents the highest 
diagnostic value (sensitivity and specificity) for detecting any lesion 
(7, 8), especially for evaluating the integrity of the rotator cuff in tear 
size. Another essential radiological aspect of assessing the MRI 
shoulder is atrophy and fatty infiltration. Patients with a low stage of 
fatty infiltration have significantly better outcomes than those with a 
severe condition, since patients who present a re-tear are the most 
affected (9, 10).

For this reason, to determine the magnitude the SMFI, Goutallier 
et al. proposed a classification with five stages ranging from 0 to 4 (11). 
However, the original proposal has been adapted with MRI by Fuchs 
et al. (12) using three stages, combining stages zero and one as normal, 
two as moderate, and three with four as severe fatty infiltration. In the 
MRI adaptation of the classification, there has been controversy 
regarding the ideal technique for grading (13).

One of the most significant challenges in image diagnosis is 
reducing the variability between observers in assessing rotator cuff 
muscle quality on MRI (14). Recent studies have implemented the use 
of Artificial Intelligence (AI), Machine Learning (ML), and 
particularly Deep Learning (DL) techniques to improve the accuracy 
of diagnosis, helping radiologists with the interpretation of imaging 
data (15). This process has been facilitated by developing AI and ML 
tools and incorporating these into the diagnostic support of medical 
images (16). Also, as it is common to have small datasets in medical 
imaging, transfer learning using well-trained non-medical ImageNet 
datasets has shown promising results for medical image analysis in 
recent years. Some of the most used DL architectures in medical 
imaging analysis (17) include Inception-v3 (18), ResNet-50 (19), and 
VGG-19 (20).

Random forest (RF) and DL techniques, such as convolutional 
neural network (CNN), have been used to identify the segmentation 
of rotator cuff muscles on MRI (21). Also, automatic algorithms have 
been implemented to detect supraspinatus muscle atrophy (22), and 
detection of supraspinatus tears on MRI (23). However, such 
algorithms have not yet been implemented to detect this structure’s 
fatty infiltration level. Incorporating these artificial intelligence tools 
would improve diagnostic precision and patient prognosis. Kim (22) 
demonstrated CNNs’ ability to segment the supraspinatus muscle and 
supraspinatus fossa to calculate their ratio in an MRI dataset. Similarly, 
Ro and collaborators (24) developed a model that analyzes the muscle 
proportion in the supraspinatus fossa and quantifies fatty infiltration 
in MRI through Otsu thresholding (25). The Otsu thresholding is used 
to create pixel clusters from grayscale images and optimizes the pixel 
intensity value to establish foreground and background. In this case, 
the foreground would be fat, and the background would be muscle. 
This method is highly influenced by the difference in pixel intensity 

due to fatty infiltration level. This was addressed by computing a 
standard deviation for every Goutallier level. Using this method, Otsu 
thresholding showed 0.06; 4.68; 20.10; 42.86; and 55.76 for grades 0, 
1, 2, 3, and 4, respectively. Finally, in the context of RCT and fatty 
infiltration imaging analysis, Taghizadeh (26) developed a 
convolutional neural network model to automatically quantify and 
characterize the degeneration of rotator cuff muscles from CT images. 
The backbone of this model is the U-Net architecture, which can 
segment muscle fossa into a pre-morbid state. Most convolutional 
neural network models have been used to segment regions of interest, 
including supraspinatus, infraspinatus, and subscapular muscles. 
Since Goutallier’s grade scale is a qualitative method and diagnoses 
are highly influenced by clinicians’ and experts’ intuitive judgment, 
literature has claimed that classification of Goutallier’s grade via DL 
methods is not an easy task (24).

To assess this hypothesis, this study aims to build a DL architecture 
to classify patients as “risky” or “not risky” based on the Goutallier’s 
supraspinatus fatty infiltration classification from shoulder MRI to 
help clinicians and medical staff in decision-making. Results 
demonstrate that DL models provide high accuracy and classification 
accuracy (discriminatory capacity) for Goutallier’s supraspinatus fatty 
infiltration levels.

Materials and methods

Study design

This study was designed as a retrospective and one site study. It 
was written following the Strengthening the Reporting of Observation 
studies in Epidemiology (STROBE) guideline. All patients record were 
obtained from a MRI exam at MEDS Clinic in Santiago, Región 
Metropolitana, Chile. This study started on September 25th, 2020.

Datasets characteristics

The dataset used in this work comprises MRI and medical records 
from patients with an SMFI diagnosis who underwent examinations 
from January 1st, 2019, to September 20th, 2020. MRI images were 
saved in DICOM format, a widely used file format in medical imaging 
contexts. This format can save images, patient information, and study 
characteristics in one file. Each MRI image in the data set is obtained 
from a shoulder T2-weighted Y-view. The patient data were 
anonymized before being analyzed descriptively.

The initial dataset contained 900 MRI studies. But 669 images had 
valid annotations. Then, a musculoskeletal radiologist labeled the 
images based on Goutallier’s fatty infiltration level. Two labeled images 
were excluded due to missing label records, and one was excluded 
because it was not conclusive for fatty infiltration analysis. After this 
process, 666 images were selected to perform manual segmentation. 
Sixty images had pixel configuration errors, and thus no segmentation 
could be done. The final dataset consists of 606 images, Figure 1.

To perform the labeling process, we developed a simple Python 
software, Figure  2, that reads a folder with all the images to 
be  annotated and then shows the MRI image one at a time. The 
radiologist selects the diagnosis for that MRI image. The program 
creates a two-field JSON file with the decision made for the 
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professional for each image. One field is the image ID, and the other 
is the label record selected by the radiologist. These labels are our 
study’s ground truth.

Statistical analysis

Dataset was analyzed and statistical tests were computed. For the 
analysis, python (with libraries such scipy) were used. Normality tests 
were performed. Statistical differences between groups were computed 
using the Mann–Whitney U test or t-test. A value of p of 0.05 was used 

to measure statistical significance. Descriptive analysis over the age of 
the patients was also performed and presented as mean and standard 
deviation (m ± sd). Percentages and frequencies are presented as 
statistical description for categorical.

Models’ performances were computed and compared using 
accuracy, sensitivity, specificity, and AU-ROC. A binary classifier 
outputs one of two possible values for a given input, 0 or 1. For every 
input there is an actual expected output, which is also 0 or 1. Table 1, 
also known as confusion matrix, shows the four possible 
outcome situations.

We computed accuracy, sensitivity, specificity as follows:

 • Accuracy: (TN + TP)/(TN + FP + FN + TP)
 • Sensitivity (True positive rate): TP/(TP + FN)
 • Specificity: TN/(TN + FP).

Area under the receiver operator curve or (AU-ROC) is a measure 
of the performance of the classifier regardless the threshold defined to 
translate probability scores to class decision. The horizontal axis 
corresponds to recall, or sensitivity, and the vertical axis corresponds 
to the precision, computed as TP/(TP + FP). As both axes are limited 
to 1, the maximum value of the area under the curve inside the square 
is 1, therefore, the closer to 1 the better the classifier. A random 
classifier will have an AU-ROC equal to 0.5.

In the case of the model performance, 95% confidence interval 
over the mean for the metrics, such as accuracy, sensitivity, specificity, 
and AU-ROC.

Data preparation

The data preparation consisted of two main steps. First, the correct 
labeling of each image and the manual segmentation of the region of 

FIGURE 1

Flowchart for dataset selection.

FIGURE 2

Custom software interface.
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FIGURE 4

Data preparation.

interest (ROI). All data in DICOM file format was processed with the 
MicroDICOM software to export images to PNG format. This allowed 
us to use fewer computational resources, as extracting images on the 
fly was unnecessary. Also, some Python libraries, such as 
PySimpleGUI, used to create the custom labeling software, only accept 
PNG format as input. We set the exported image resolution to the 
same as the original to avoid further mismatches between the image 
and its segmentation mask.

Regarding the segmentation of the ROI, the original DICOM files 
were used to create manual segmentation (identify the ROI in each 
image). The segmented areas were the supraspinatus fossa and the 
supraspinatus muscle. Figure 3 shows a sample segmentation. Panel 
(a) displays the original image, panel (b) the manually created 
segmentation masks, and panel (c) the segmented area masks. Each 

MRI image was segmented using the ITK-Snap software (27). At the 
end of the data preparation process, we obtained the original MRI 
images in PNG format, the segmentation masks, and label 
information for every image. The data preparation workflow is shown 
in Figure 4.

The definition and fatty infiltration criteria

We based our criteria on Goutallier’s fatty infiltration definitions. 
The original paper proposed five levels of fatty infiltration (zero to 
four) about the qualitative presence of fat in the muscle. A level of zero 
means there is no fat in the muscle. As fatty infiltration increases, 
Goutallier’s scale assigns a greater value. A level four means that there 
is more fat than muscle present. Figure 5 shows a representative MRI 
for every Goutallier’s fatty infiltration level.

As shown in Table 2, we studied DL techniques’ discriminatory 
(binary classification) power using five cases. In each case, we defined 
a positive and negative class composed of different Goutallier levels. 
Samples that belonged to the positive class were labeled as 1. Samples 
that belonged to the negative class were labeled as 0. The base case 
(case A) was used to assess the classification accuracy of no or low 

TABLE 1 Confusion matrix.

Classifier
Predicted

0 1

Actual
0 True Negative (TN) False Positive (FP)

1 False Negative (FN) True Positive (TP)

FIGURE 3

Manual segmentation process. Original, manual segmentation from ITK-Snap, and mask result, in figures (A–C), respectively.
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fatty infiltration (Goutallier 0 and 1) against high fatty infiltration 
(Goutallier 3 and 4). Goutallier level 2 is not considered in this case. 
This allowed us to assess whether the DL techniques can differentiate 
between no-fatty and high-fatty infiltration cases. Cases B to E is used 
as a sensitivity analysis of the classification capacity of the 
DL techniques.

Based on the above definition of cases, a sample that belonged to 
class 1 (positive) was considered “risky.” A sample that belonged to 
class 0 (negative) was considered “no risky.” A few random samples 
from class 0 and class 1 are shown in Figure 6 for the case A. This 
classification is used since we aimed to help clinicians make decisions 
about proper treatment for patients based on the quality of the 
supraspinatus muscle. In every case, the positive and negative classes 
were different.

Model development and training

Three models based on well-known architectures were trained: 
VGG-19, Inception-v3, and ResNet-50, and compared their 
performance in terms of classification accuracy. For every model, the 
learning rate and average time were processed. Figure 7 shows the 
general training workflow. In terms of the architecture, the 
convolutional layers for every model remained the same as in the 
original, and only the classifier was modified. We replaced the last 
layer of every model with a 1,000-unit wide and SoftMax activation 
function with a single neuron with a sigmoid activation function 
because our problem was binary classification. In the case of VGG-19, 
we also reduced the size of the most outer fully connected layer from 
4,096 neurons to 2048, which helped to avoid overfitting, Figure 8. 
We used transfer learning from ImageNet weights to train the models. 
The backbone of the original architecture was used as a feature 
extractor, and its layers were frozen. Then, only the fully connected 
layer parameters were optimized. In addition, every model architecture 
was created to admit three-channel images (RGB) as input. 
We simulate an RGB image from a gray-scale MRI by copying the 
same channel two times. Then, the three versions of the same single 
channel were stacked into a three-channel image.

Stratified k-fold cross validation

As we had a small dataset, stratified k-fold cross-validation was 
performed (28, 29). This method allowed us to use most of the data 

FIGURE 5

Representative MRI for each Goutallier’s fatty infiltration scale. Level 0,1, 2, 3, and 4, are shown in sub-image (A–E), respectively.

TABLE 2 Class designation in every case for fatty infiltration levels.

Case

Fatty infiltration levels 
in

Set size

Negative 
class

Positive 
class

Negative 
class

Positive 
class

A 0, 1 3, 4 517 38

B 0, 1 2, 3, 4 517 89

C 0, 1 2 517 51

D 0, 1, 2 3, 4 568 38

E 2 3, 4 51 38
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FIGURE 7

Training workflow.

for training and reduce the impact of the data selection in the 
results as would happen in a 20/80 random split, for example. 
We choose k equals to 10 and thus, 10 subgroups from the original 
data were created. That the cross-validation process is stratified 
means that every subgroup maintains the same class distribution of 
the original dataset. In each of the 10 training runs nine groups 
were used for training and one group for validation. We repeat three 

times the complete process of creating the 10 subgroups and 
running the training process. The performance of the model is 
calculated as the average of 30 training runs, and the confidence 
intervals for each were also found. The training and validation 
process based on stratified k-fold cross-validation follows the 
methodology described in (28, 29) when models are trained using 
small datasets.

FIGURE 6

Random samples from class 0 and class 1 for the case A.
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Random data split

Additional to the assessment of the DL models using stratified 
K-fold cross validation, we evaluate the DL architectures using a new 
data set which has not been used during the training process. To do 
so, we trained the DL architectures using a random train/validation/
test (70%/20%/10%, respectively) split. Downsampling of the majority 
class is performed over the training data only. The learning rate was 
set to 1e-06, 1e-04 and 1e-03 for VGG-19, Resnet50, and Inception 
V3, respectively. We train the model for 30 epochs and compute its 
accuracy, specificity, and sensitivity using the external new test data 
set (10% of the existing data) not used in training.

Augmentation and data balancing 
techniques

The data was highly imbalanced. This could lead the model to 
learn better from the most represented class than the minority class or 
lead to a highly overfitted model. We performed a balancing technique 
on the minority class to avoid or minimize these problems. In every 
10 cross-validation processes, we over-sample the minority class on 
the training set until both classes have approximately the same 
number of samples. The validation set in the K-fold cross validation 
process remains imbalanced to validate the model similar to the real-
world collection of images. Data augmentation was also performed on 
every image from the training set that was fed to the model. 
Augmentation is accomplished by rotating any grade value in ±35° 
and horizontally flipping with a probability of 0.5.

Training and optimization of 
hyper-parameters

All the DL models were trained using the Adam optimizer in 
standard configuration (weight decay = 0.9; beta = 0.999) for 50 

epochs. The training process was stopped if there were no 
improvements in the last 10 epochs, and the best performance was 
saved. We only optimized the learning rate.

Before we fed the DL model with data, the region of interest was 
obtained from the segmentation mask for every image. This process is 
carried out automatically by the algorithm. It took the original image 
and the corresponding mask and cropped the region of interest. Then, 
only the ROI was fed to the DL models. The size of the input image 
was determined by the model’s architecture requirements, which are 
224 [px] squared images for the VGG-19 and the ResNet-50 
architectures, and 299 [px] squared images for the InceptionV3. The 
cropped image was resized to meet those requirements.

Results

Statistical analysis results

A total of 606 patients (55% were males) with 606 MRI with RCTs 
were included in our analysis. The patient’s average age was 
55.1 ± 13.2 years. Data demonstrated the presence of all different 
Goutallier levels in imagological exams. An asymmetrical Goutallier 
distribution was found. More than 82% of the images belong to the 0 
and 1 grades, showing an imbalance toward low fatty infiltration, as 
follows: Goutallier 0 (66.50%); Goutallier 1 (18.81%), Goutallier 2 
(8.42%), Goutallier 3 (3.96%), and Goutallier 4 (2.31%). Also, the 
female group has more samples in higher grades than the male 
without statistical significance. The distribution of patient data is 
shown in Table 3.

Model performance

The learning rate used in every case and model and the average 
processing time were identified in Table 4. The shortest time was 
registered in the E case, using the Inception-v3 model with 

FIGURE 8

Diagram of the VGG/19 architecture.
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TABLE 4 Learning rate and average processing time (C.I. 95%) for every 
case and model.

Case Model
Learning 

rate
Processing 

time
Max. 

epochs

A VGG-19 10−6 3.51 ± 0.20 31.6 ± 3

ResNet-50 10−4 2.35 ± 0.22 20.7 ± 3.3

Inception-v3 10−3 1.55 ± 0.14 11.8 ± 2.5

B VGG-19 10−6 3.83 ± 0.27 33.1 ± 2.5

ResNet-50 10−3 1.12 ± 0.34 6.8 ± 2.2

Inception-v3 10−3 1.40 ± 0.19 9.3 ± 2.3

C VGG-19 10−6 3.87 ± 0.35 33.3 ± 2.9

ResNet-50 10−5 2.91 ± 0.22 26.9 ± 2.8

Inception-v3 10−4 2.98 ± 0.53 22.3 ± 2.9

D VGG-19 10−6 3.20 ± 0.25 27 ± 3.2

ResNet-50 10−5 3.09 ± 0.46 25.9 ± 2.9

Inception-v3 10−3 1.40 ± 0.01 8.8 ± 2.0

E VGG-19 10−3 0.42 ± 0.03 11.6 ± 3.0

ResNet-50 10−4 0.86 ± 0.20 22.5 ± 3.6

Inception-v3 10−4 0.34 ± 0.14 9.4 ± 4.0

0.34 ± 0.14 h. These results depend on the maximum number of 
epochs that the model runs until reaching its best validation loss, and 
thus, the training process is stopped and the training ends. In some 
cases, it is less than 50 epochs. In addition, the smaller the total size of 
the training set, the less time it takes to complete the training process. 
The E case has only 89 samples in total. On the other hand, the longest 
recorded time was registered in the VGG-19 model in the C case with 
3.87 ± 0.35 h.

The DL architectures demonstrated outstanding performance 
using a shoulder MRI dataset. With a 10-fold cross-validation process, 
data was randomly divided into 10 non-overlapping folds. Nine folds 
were used as training sets and one as a validation set. The process was 
repeated three times; thus, three runs were obtained. This led to an 
average of 30 training loops.

Figure 9 shows the validation loss and AU-ROC curves for every 
model at every run. The three architectures show a decreasing 
validation loss at every epoch. At the beginning of the training 
process, the VGG-19 loss validation starts at 0.739 ± 0.006, 
0.632 ± 0.007, and 0.631 ± 0.005 in the first, second, and third runs, 
respectively. Then, in the end, the validation loss was reduced to 

0.225 ± 0.0053. In the case of Inception-v3, there is noticeably different 
behavior in one of the runs. This up-and-down loss value for the 
validation set could probably be explained due to the randomness in 
the process and the fact that the model could find a local minimum 
near the end. In any case, the last epoch showed an improvement in 
the validation loss value, and thus, it was recorded. Table 5 shows the 
starting value for the validation loss for every model. The model was 
run for a maximum of 50 epochs. We track the evolution of the loss 
function value. If the loss function did not decrease during 10 epochs, 
then the training process was terminated, and the results 
were computed.

The results confirm an optimized loss function. The loss function 
converges to zero as the learning progresses in the validation  
processes.

The model returns a value between 0 and 1, corresponding to the 
likelihood that the image belongs to the positive class. The value is 
then converted to binary based on a threshold. As the threshold value 
in our study, we utilized 0.5. The class will be considered positive if the 
model outputs a value greater than that. In contrast, if the model 
outputs a value lower than that threshold, the decision will 
be categorized as negative. One can compute the false positive and 
true positive rates under thresholds. The ROC curves in Figure 9 
demonstrate the high performance of the models for various threshold 
values. The closer the curve is to (0.0, 1.0), the better the performance. 
To quantify curves, the area under the ROC curve was used. For our 
case A, VGG-19, ResNet-50, and Inception-v3 achieved 0.991 ± 0.003, 
0.992 ± 0.003, and 0.991 ± 0.004, respectively for the area under the 
ROC curve (AU-ROC). Also, as shown in Figure 10, VGG-19 and 
ResNet-50 models showed the better performance when comparing 
precision-recall curves. When analyzing the per class prediction, the 
three models showed better performance in the negative class than in 
the positive class, which has fewer samples. Table  6 shows the 
confusion matrix for each model.

Subgroup analysis

A subgroup analysis was developed to determine the best 
combination of binary classes for Goutallier fatty infiltration level 
detection. Accuracy, sensitivity, specificity, AU-ROC, and loss 
performance for every single convolutional neural network model 
after three runs of 10 training cycles each are shown in Table 7. 
The reported metrics values shown are based on the results 
obtained from the repeated cross validation process. The process 
allowed us to have several validation groups and hence estimate 

TABLE 3 Quantity and proportions of sex by Goutallier’s level.

Goutallier Level N (%)

Female Male Value of p

N (%)
Age mean 

(SD)
N (%)

Age mean 
(SD)

N Age

0 403 (66.50) 140 (35) 53.06 (10.55) 263 (65) 49.24 (13.13) 0.477 ***

1 114 (18.81) 74 (65) 61.50 (10.37) 40 (35) 63.58 (8.17) 0.465 0.371

2 51 (8.42) 31 (61) 66.65 (9.53) 20 (39) 66.40 (10.13) 0.447 0.992

3 24 (3.96) 16 (67) 68.88 (7.74) 8 (33) 64.25 (7.59) 0.424 0.230

4 14 (2.31) 13 (93) 67.31 (7.33) 1 (7) N.A. 0.354 0.8

Total 606 (100) 274 (45) 58.47 (11.67) 332 (55) 52.42 (13.81) 0.483

Mann–Whitney or t-test were used to compute the significance (alpha 0.05). ***, statistically significant
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the mean and the confidence level of each model in every 
experiment. Since DL models tend to learn the training data well, 
we do not report the training accuracy. Instead, we provide the 
evolution of the Loss Function, which depicts how the training 
error (learning process of the model) evolves. We also clarify this 
in the revised manuscript.

Excellent performance for the three architectures in every case 
was demonstrated. In three out of four cases, all model configurations 
had AU-ROC values higher than 0.91 on average and thus performed 

well when classifying fatty infiltration levels. In the base case, the 
models got an AU-ROC mean value of over 0.99, the highest among 
the cases. Here, models had to separate lower to no fatty infiltration 
images from high to extreme fatty infiltration levels, which were very 
dissimilar. In addition, sensitivity and specificity for this case are more 
homogeneous among models. This means that the models perform 
well when classifying negative and positive samples as the false 
positive rate and true positive rate are over 0.92, except for 
Inception-v3, which has a lower value for sensitivity. On the other 
hand, the same architecture showed a higher specificity, with a mean 
value of 0.981.

Random split performance

We also trained the model using a random train/validation/test 
split (training size: 413, validation size: 104, testing size: 58). Only the 
training data was down-sampled in order to account for unbalanced 

FIGURE 9

Loss and receiver operator curve plots for VGG-19, ResNet-50, and Inception-v3 models for base case (A). The results for the first, second, and third 
run are in color green, orange and blue, respectively.

TABLE 5 Confidence intervals (95%) for the starting validation loss in 
each run.

Model Run 1 Run 2 Run 3

VGG-19 0.739 ± 0.006 0.632 ± 0.007 0.631 ± 0.005

ResNet-50 0.379 ± 0.024 0.403 ± 0.031 0.400 ± 0.047

Inception-v3 0.239 ± 0.050 0.265 ± 0.037 0.243 ± 0.068

241

https://doi.org/10.3389/fmed.2023.1070499
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Saavedra et al. 10.3389/fmed.2023.1070499

Frontiers in Medicine 10 frontiersin.org

FIGURE 10

Mean Precision-recall curves for VGG-19, ResNet-50, and 
Inception-V3 models for the base case (A).

labels. As shown in Table 8, all models showed similar performance 
in the final testing data split (10% of the data) as the observed in the 
stratified k-fold cross-validation method, reaching, for instance for the 
VGG-19 model, 0.931, 1.0, and 0.925 for the accuracy, sensitivity, and 
specificity, respectively. This demonstrates the usability of DL 
techniques and that the models are not likely to be  overfitted as 
demonstrated in the stratified k-fold process and in the 10% final 
random data split process. During the process of reviewing this paper, 
we were able to collect 20 more images. We added those images to the 
previous dataset and performed a random split experiment. We 
computed the performance of every model using this new dataset.

Discussion

This research is one of the first to demonstrate the capabilities of 
the DL models to classify SMFI in patients with RC conditions. The 
imagenological analysis considered an extensive novel shoulder 
T2-weighted MRI (30). This retrospective analysis applied various DL 
models, including the VGG-19, ResNet-50, and 
Inception-v3 architectures.

All diagnostics metrics demonstrated excellent results, achieving 
a high binary classification performance in every class of the Goutallier 
level. Distinctly high accuracy, sensitivity, and specificity among 
different architectures belonging to neural networks were found, 
specifically when the diagnosis was based on case A, that is, the 
negative class (Goutallier 0 or 1) and the positive class (Goutallier 
3 or 4).

Traditionally, the scapular Y-view of the MRI, particularly the 
lateral-most T1 sagittal, is the most reliable indicator of the 
supraspinatus muscle status and is used for identifying FI (31). 
However, current standard shoulder protocols include sagittal oblique 
T2-weighted sequences to evaluate these findings (32). Despite that, 
recent data support ML methods’ crucial function in identifying 
various structures in medical images (33). For this reason, 
we  proposed evaluating the most extensive collections of T2 
MRI sequences.

The approach we described allows a practical solution when the 
grading system of FI is presented, reducing diagnostic uncertainty. 
Other experiences using artificial intelligence have been published. 
We  highlight the exciting work Ro et  al. (24) carried out. They 
implemented a novel model using only 250 patients (all of whom were 
diagnosed with atrophy and fatty infiltration of the supraspinatus 
muscle) to analyze the occupation ratio using a DL framework. They 
calculated the amount of FI in the supraspinatus muscle using an 
automated region-based Otsu thresholding technique. Their method 
allows segmenting the supraspinatus muscle and fossa, which lets 
them figure out the occupation ratio without automatically classifying 
the Goutallier level.

In our case, results demonstrated that artificial intelligence tools, 
particularly the VGG-19 architecture, can be used to support shoulder 
MRI diagnosis. Few studies in the musculoskeletal radiology literature 
have addressed the evaluation of RC muscles using these methods 
(34). Even though supervised deep learning with CNNs has been 
highly successful in medical imaging, particularly in MRI (35). 
However, based on the CNN tool, different studies have determined 
the need to count with more analysis to detect the supraspinatus 
muscle’s fatty infiltration (22).

TABLE 6 Confusion matrix of VGG-19, Resnet-50, and Inception-V3 
models for the case A validation set.

VGG-19 Predicted

0 1

Actual 0 1,512 39

1 6 108

Resnet-50 Predicted

0 1

Actual 0 1,520 31

1 9 105

Inception-V3 Predicted

0 1

Actual 0 1,522 29

1 15 99
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Also, we identified some limitations. Firstly, our results used a 
binary classification method, even though the classification 
proposed by Goutallier presents five types of fatty infiltration. 
However, the binary performance showed great classification 
results, with an AUC of 0.991 [95% CI, ± 0.003] for the low to 
nonfatty infiltration against severe to extreme fatty infiltration 
(VGG-19 model). Therefore, a Fuch-type classification (12) could 
be more accessible to learn than a Goutallier-type classification. 
For this reason, it is necessary to have future studies that use 
multilabel classification methods. In addition, since the number of 
samples (images) in the data set was small, a training and validation 
set were created for the cross-validation process, however. The 
training and validation process used in this study follows related 
papers which faced similar data limitations (22, 24). To further 
assess the model performance, we used a training/validation/test 
random data split using 70%/20%/10% (train size: 413 validation 
size: 104, testing size: 58) for training, testing and validation, 
respectively. This allowed us to further confirm the good model 
performance in predicting class 0 and 1. In the future, more data is 
needed to further test the proposed models.

On the other hand, when we included category two (Goutallier 
type 2), the analysis reduced the capability to classify correctly. 
However, better performance was achieved when the type two class 
was added to the negative class. As in other publications, the present 
study was an image analysis; clinical factors and the patient’s history 

were not considered (24). Another essential point is that using these 
AI tools requires teamwork between clinical practitioners and 
engineering. Interdisciplinary work is necessary to improve 
people’s health.

In conclusion, CNN models, particularly VGG-19, showed 
outstanding performance in classifying SMFI using shoulder 
T2-weighted MRI in patients with RC conditions. AI models could 
be used to support the radiological diagnosis.
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TABLE 7 Mean train loss, validation loss, accuracy, sensitivity, specificity, and AU-ROC for every case and model (C.I. 95%).

Case Model Train loss
Validation 

loss
Accuracy Sensitivity Specificity AU-ROC

A VGG-19 0.225 ± 0.053 0.096 ± 0.010 0.973 ± 0.006 0.947 ± 0.039 0.975 ± 0.006 0.991 ± 0.003

ResNet-50 0.394 ± 0.099 0.123 ± 0.011 0.976 ± 0.006 0.925 ± 0.053 0.980 ± 0.006 0.992 ± 0.003

Inception-v3 0.474 ± 0.154 0.102 ± 0.009 0.974 ± 0.007 0.869 ± 0.085 0.981 ± 0.006 0.991 ± 0.004

B VGG-19 0.345 ± 0.045 0.246 ± 0.014 0.925 ± 0.010 0.847 ± 0.041 0.939 ± 0.011 0.961 ± 0.013

ResNet-50 0.563 ± 0.184 0.187 ± 0.022 0.936 ± 0.012 0.779 ± 0.057 0.963 ± 0.009 0.948 ± 0.017

Inception-v3 0.332 ± 0.094 0.214 ± 0.012 0.933 ± 0.010 0.802 ± 0.039 0.956 ± 0.008 0.951 ± 0.013

C VGG-19 0.453 ± 0.057 0.310 ± 0.016 0.900 ± 0.015 0.750 ± 0.078 0.914 ± 0.014 0.935 ± 0.022

ResNet-50 0.605 ± 0.037 0.507 ± 0.008 0.896 ± 0.015 0.756 ± 0.079 0.909 ± 0.015 0.913 ± 0.025

Inception-v3 0.587 ± 0.048 0.372 ± 0.013 0.914 ± 0.011 0.659 ± 0.056 0.939 ± 0.012 0.912 ± 0.019

D VGG-19 0.299 ± 0.056 0.153 ± 0.018 0.942 ± 0.012 0.925 ± 0.056 0.942 ± 0.013 0.977 ± 0.007

ResNet-50 0.631 ± 0.040 0.405 ± 0.010 0.928 ± 0.013 0.872 ± 0.066 0.932 ± 0.012 0.964 ± 0.012

Inception-v3 0.494 ± 0.168 0.150 ± 0.011 0.941 ± 0.011 0.808 ± 0.078 0.950 ± 0.010 0.975 ± 0.007
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Inception-v3 0.696 ± 0.028 0.665 ± 0.008 0.678 ± 0.057 0.550 ± 0.103 0.766 ± 0.088 0.722 ± 0.072

TABLE 8 Accuracy, sensitivity, and specificity for case A and all DL models 
using a random training/validation/test data split.

Accuracy Sensitivity Specificity

VGG-19 (Case A) 0.931 1.0 0.925

ResNET50 (Case A) 0.948 0.8 0.962

Inception V3 (Case A) 0.965 0.8 0.981
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