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Editorial on the Research Topic

Methods and applications in respiratory physiology

The Research Topic Methods and Applications in Respiratory Physiology focus on

various methods and techniques applied to Respiratory Physiology. Methods and

Applications in Respiratory Physiology welcomed contributions on new or existing

methods and protocols that look at the respiratory system under organ, tissue,

cellular, subcellular, and molecular lenses. The networking within the system and

with other organs and functions of the organism was also highly appreciated. The

overall type of contributions encompassed: (i) Methods: Including either existingmethods

that are significantly improved or adapted for specific purposes or new methods, which

may also include primary (original) data; (ii) Protocols: Should provide a detailed

description, with pitfalls and troubleshooting, and be of immediate use to the readers.

The protocols must be proven to work. (iii) Perspective or General Commentaries on

methods and protocols relevant for physiology research; and (iv) Reviews and mini-

reviews of current methods and protocols highlighting the important future directions of

the field. Hence, contributions based on biological, biochemical, biophysical, engineering,

mathematical, behavioral and clinical approaches were encouraged. As a natural result,

this Research Topic encompasses interesting topics from the whole lung down to the

subcellular level, from biology to mathematics and physics, from models to new devices

(Agrawal et al.; Aymerich et al.; Caldeira et al.; Gattarello et al.; Prisk; Krause-Sorio et al.;

Sarabia-Vallejos et al.; Alapati and Shaffer; Barbas; Bayat et al.; Biselli et al.; Cao et al.; Choi

et al.; Demoulin et al.; Godbole et al.; Guérin et al.; Kim et al.; Miserocchi et al.; Nof et al.;

Patel et al.).

Aymerich et al. present a portable, low-cost and specific device for maximal

inspiratory and expiratory pressures that could greatly facilitate monitoring of

patients at point-of-care sites. Detailed technical information to easily reproduce the

device is freely released and its design is available according to the open-source hardware

approach. Considering that many lung models can be found in the literature, and

pathophysiology and interactions between lungs and ventilators present challenges for
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modeling efforts not yet thoroughly solved, Agrawal et al.

developed a damaged-informed lung ventilator model relying

in mathematizing ventilator pressure and volume waveforms.

Their model has enough flexibility to reproduce commonly

observed variability in clinical (human) and laboratory

(mouse) waveform data, providing high fidelity estimates of

pulmonary pathophysiological conditions. Demoulin et al.

introduce a physical analog to assess surgical face mask

airflow resistance during tidal ventilation. The physical analog

was made of a plaster cast dummy head connected through a

pneumotachograph to a series of bellows inflated/deflated by a

ventilator. They measured the added respiratory mechanical load

due to ten surgical masks tested in four different ways. Nof et al.

describe a multicompartmental human airway on-chip platform

to serve as a preclinical in vitro benchmark underlining regional

lung crosstalk for viral infections pathways. The platformmimics

key elements of the respiratory system including nasal passages

that serve as the alleged origin of infections, the mid-bronchial

airway region, and the peripheric acinar zone. The authors share

detailed methodologies for fabricating, assembling, calibrating,

and using the platform, including open-source fabrication files.

Sarabia-Vallejos et al. combine micro computed-tomography

(micro-CT) and computational geometry algorithms to evaluate

the regional distribution of key morphological parameters

throughout the whole rat lung. They found that regional

porosity, alveolar surface density and surface-to-volume ratio

present a uniform distribution in normal lungs that is unaffected

by gravitational effects. They also introduce a new dehydration

protocol including methanol-PBS solution before dehydration

that avoids the sample shrinking commonly found in ethanol-

based protocols. Synchrotron radiation imaging methods are

clearly described by Bayat et al. It offers unique properties of

coherence, employed in phase-contrast imaging, and high flux as

well as a wide energy spectrum. These properties allow the

quantitative determination of lung morphology, and map

regional lung ventilation, perfusion, inflammation, aerosol

particle distribution and biomechanical properties with

microscopic spatial resolution. Barbas discusses the use of

thoracic-computed tomography (CT) in the assessment and

treatment of patients with acute respiratory distress syndrome

(ARDS) and COVID-19 pulmonary disease. Other than helping

to correctly diagnose ARDS, CT can assist the adjustment of

positive end-expiratory pressure, ideal tidal volume, and to

position the patient during invasive mechanical ventilation.

CT has been the most sensitive imaging technique to pinpoint

pulmonary involvement in COVID-19 patients. Choi et al.

applied CT image matching to assess the degree of pulmonary

motion in idiopathic interstitial disease such as interstitial

pneumonia (UIP) e nonspecific interstitial pneumonia (NUIP)

patients. They report that lung motion quantified by image

registration-based lower lobe dorsal-basal displacement may

be used to assess the degree of motion reflecting limited

motion owing to fibrosis in UIP and NUIP subjects.

Gattarello et al. studied pigs mechanically ventilated for 48 h

and divided them into two groups: high or low pleural pressure.

They assessed respiratory mechanics, hemodynamics, fluid,

sodium, and osmotic balance at specific time points along the

experimental duration. As a conclusion, the mechanical power

and pleural pressure were positively associated with

hemodynamic support maneuvers, increased sodium and fluid

retention, and pulmonary edema. Interestingly, Miserocchi et al.

report that the tendency to develop lung edema in edemagenic

conditions, i.e., work in the face of hypoxia, is directly

proportional to the ratio of lung capillary blood volume to the

diffusion capacity of the alveolar membrane, as suggested by an

estimate of the mechanical properties of the respiratory system

with the forced oscillation technique. Cao et al. searched three

online electronic databases, yielding seven studies, and report

that elevated central venous pressure (CVP) and brain natriuretic

peptide (BNP) levels are associated with extubation failure in

critically ill patients and further suggest that BNP levels are more

valuable than CVP levels in predicting extubation outcomes.

Efficiency of pulmonary gas exchange has long been assessed

using the alveolar-arterial difference in partial pressure of oxygen

(A-aDO2). However, this measurement is invasive and unsuitable

for serial measurements, since it requires arterial blood

sample(s). According to Prisk, recent technological advances

provide for portable and rapidly responding measurements of

PO2 and PCO2 in expired gas, which combined with the usual

determination of arterial oxygen saturation via pulse oximetry

(SpO2) make practical a non-invasive surrogate measurement of

A-aDO2. In fact, the approach shares the underlying basis of the

measurement of gas exchange efficiency and simplifies the

determination of the oxygen deficit. Godbole et al. advance

that lung resection surgery carries significant risks of

postoperative pulmonary complications (PPC). The authors

prospectively determined the utility of resting measurements

of physiologic dead space (VC) and physiologic dead space to

tidal volume ratio (VD/VT) in predicting PPC in patients who

underwent robotic-assisted lung resection and found that

preoperative resting VD was significantly elevated in patients

with PCC. They advance that the increase in resting VDmay be a

potentially useful predictor of PCC in patients under similar

conditions.

Inspiratory muscle training (IMT) may improve respiratory

and cardiovascular functions in obstructive sleep apnea (OSA).

However, the available IMT protocols cannot be completed by

some OSA patients. Hence, Krause-Sorio et al. describe a new 13-

week OSA-friendly protocol for IMT and applied it to five

sedentary OSA patients. The practice and subsequent 65%

IMT resistance targets resulted in inspiratory strength gains

that reached a steady-state by the end of 10 weeks of training

and no report of adverse effects. Patel et al. present an extensive

review concerning methods and applications in respiratory

physiology and pathophysiology of neuromuscular and chest

wall disorders. The authors cover respiratory muscles,

Frontiers in Physiology frontiersin.org

Zin 10.3389/fphys.2022.1039039

6

https://www.frontiersin.org/articles/10.3389/fphys.2021.724046/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.808588/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.853317/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.755468/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.825433/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.829534/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.867473/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.743153/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.811129/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.858046/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.757857/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.803641/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.737493/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.838414/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1039039


reduction in respiratory resistance and elastance, obesity,

respiratory mechanical loads and reactional compensation,

dyspnea, muscle fatigue, cough, respiratory muscle failure,

evaluation of respiratory muscle function, airflow limitation,

control of ventilation, sleep quality, oximetry and

capnography, gene therapy, electrical and magnetic muscle

stimulation, respiratory mechanics in neuro muscular diseases.

Additionally, they present future promising research fields.

Guérin et al. describe pathophysiological aspects of ARDS

such as impairment of lung microvasculature, loss of alveolar

aeration as a result of lesions to the small peripheral airways, as

evidenced by high-resolution imaging techniques, atelectrauma,

expiratory flow limitation, pattern of airway opening pressure

disclosed in the inspiratory volume-pressure curve, functional

interplay between airway opening pressure and expiratory flow

limitation, and individualization of PEEP settings. Another

review article by Biselli et al. addresses the use of respiratory

mechanics in basic science to investigate asthma and chronic

obstructive pulmonary disease (COPD), discusses the use of lung

mechanics in clinical care and its role in the development of

mechanical ventilators. Finally, they explore some or the difficult

questions that intensive care personnel still face when managing

respiratory failure.

The assessment of mitochondrial function in organs and

tissues is essential to better understand their biochemistry,

physiology, and pathophysiology. The evaluation of

mitochondrial function is usually accomplished in isolated

mitochondria, permeabilized fibers, or cells. These techniques

are very well-defined in several types of tissue, e.g., heart,

kidney, liver, adipose tissue, and brain. On the other hand,

assessment of lung mitochondrial function presents difficulties

associated with obtaining isolated, intact, coupled, and

functional mitochondria. The methodological difficulty of

obtaining viable lung mitochondria derives mainly from an

elevated fatty acid content, low number of mitochondria in the

cell, fibrous and air-filled tissue, and the required amount of

tissue. To solve this issue, Caldeira et al. present an isolation

protocol specific for lung tissue mitochondria and detail the

mitochondrial function pertaining to several respiratory

complexes.

Electrical impedance tomography (EIT) is an evolving

technique that monitors physiological functions based on

temporal changes in electrical conductivity in different tissues.

Kim et al. measured tidal volumes by EIT in rabbit pups and

compared the measurements to those provided by a mechanical

ventilator. Three groups of animals were used: untreated

(preterm), surfactant-treated (preterm) and control (term

puppies). In all instances the results provided by EIT and

mechanical ventilator were not different.

In a review article, Alapati and Shaffer address the use of inert

liquids for respiratory support and as a vehicle to deliver

biological agents to the respiratory system. They cover the

respiratory support with inert liquids, clinical and non-clinical

studies using inert liquids, and drug/gene product

administration.

In conclusion, the studies published in this Research Topic

confirm the broad range of methods and techniques used to

address respiratory function in health and disease.
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The measurement of maximal inspiratory (MIP) and maximal expiratory (MEP) pressures

is a widely used technique to non-invasively evaluate respiratory muscle strength in

clinical practice. The commercial devices that perform this test range from whole

body plethysmographs to portable spirometers, both expensive and include a wide

range of other respiratory tests. Given that a portable, low-cost, and specific option

for MIP and MEP measuring device is not currently available in the market. A

high-performance and easy-to-build prototype has been developed and the detailed

technical information to easily reproduce it is freely released. A novel device is

based on an Arduino microcontroller with a digital display, an integrated pressure

transducer, and three-dimensional (3D) printed enclosure (total retail cost e80). The

validation of the device was performed by comparison with a laboratory reference

setting, and results showed accuracy within ±1%. As the device design is available

according to the open-source hardware approach, measuring MIP/MEP can greatly

facilitate easily available point-of-care devices for the monitoring of patients and, most

important, for making this lung function measurement tool affordable to users in

low- and middle-income countries.

Keywords: open-source hardware, measuring devices, respiratory monitoring, lung function, inspiratory and

expiratory pressures, low cost devices, low and middle income countries, point-of-care

INTRODUCTION

Measurement of maximal inspiratory (MIP) and maximal expiratory (MEP) pressures is an easy,
non-invasive, and rapid test to assess the strength of the respiratory muscles (American Thoracic
Society/European Respiratory Society, 2002; Caruso et al., 2015). MIP is the maximum negative
pressure that can be generated by forced inspiration. It is generated by maximum contraction of
the diaphragm and intercostal muscles which tend to increase the volume of the rib cage and
consequently lung volume. MEP is the maximum positive pressure that can be generated on
forced expiration when the abdominal muscles push the diaphragm and the internal intercostals
up, thus tending to reduce the thorax and lung volumes. This test of breathing muscles is a
routine procedure in the diagnosis of certain pulmonary diseases, specifically in patients with
suspected respiratory muscle weakness. Some examples of very prevalent diseases which alter
MIP/MEP values are chronic obstructive pulmonary disease (COPD), neuromuscular diseases,
such as multiple sclerosis, or chronic heart failure (Laghi and Tobin, 2003; Kelley and Ferreira,
2017; Nambiar et al., 2018; Laveneziana et al., 2019).
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Traditionally, the MIP/MEP test has been performed in
lung function labs by means of whole-body plethysmography
equipment, which is very expensive (>e50,000). In recent
years, several companies have invested in the development of
portable solutions, mainly regarding spirometry tests. Although
the cost of these portable spirometers is significantly lower
than the whole-body plethysmograph equipment, the devices
are still too expensive (∼e2,000) for low- and middle-
income countries (LMICs). Interestingly, affordable and easy-
to-use open-source hardware electronics, such as Arduino,
or distributed digital manufacturing strategies, such as three-
dimensional (3D) printing, have become disruptive tools to
design new research and medical devices in a cost-effective
way without compromising the quality of the performance.
Moreover, the development and commercialization of very
accurate, easy-to-install, compensated, and/or amplified low-cost
pressure sensors has also been a key fact for the expansion of this
type of low-cost application. Accordingly, the objective of this
work was to develop and test a portable, low-cost, and easy-to-
build device to specifically measure MIP and MEP by using the
technologies mentioned above. The aim was not to simply design
a performance device but, following an open-source hardware
approach (DePasse et al., 2016; Eslambolchilar and Thimbleby,
2016; Pearce, 2017), to freely release all the detailed technical
information required to easily replicate the device. Hence, this
new device is intended to expand the accessibility of a respiratory
function test, applicable at the point of care (Beyette et al., 2011),
that otherwise would require much more expensive equipment.

METHODS

The components and materials employed were chosen according
to the rationale of developing a device very simple to replicate
with easy-to-find components, mostly through e-commerce. The
device consists of a development board with a microcontroller,
a liquid crystal display (LCD) screen, a pressure transducer, a
rechargeable 9V battery block, a switch, a power supply base,
and a customized enclosure produced by using any conventional
3D printer.

Electronic Components
The board chosen for this device is the Arduino Mega 2560
due to higher memory capacity to run the developed program
than other Arduino boards (256 kB of FLASH memory and
8 kB of SRAM instead of 32 and 22 kB, respectively of the well-
known Arduino UNO). The selected LCD touch screen (Open
Smart 3.2-inch touch screen TFT LCD Shield) is compatible
with the Arduino Mega 2560 and has a resolution of 240 ×

400 pixels. The use of a touch screen avoids the need for
buttons or any other external component to select the parameters
for the measurement. The pressure transducer employed is a
piezoresistive strain gauge. Considering that MIP and MEP
values range from−100 cmH2O to more than+140 cmH2O, the
SSCDRNN160MDAA5 (Honeywell pressure sensor, Charlotte,
NC, US), with a differential pressure range of ±163 cmH2O was
chosen. This sensor is provided with in-factory calibration.

Driving Code
The operating code was developed with the Arduino Integrated
Development Environment (Arduino IDE, Somerville, MA,
US), which supports the C and C++ languages. The diagram
of the developed code is shown in Figure 1. Briefly, a
measuring session starts by asking the user to select running
a MIP or MEP measurement, and then data acquisition
starts immediately (see user manual in the Supplementary File

“Technical_Description”). The acquisition lasts 5 s and is carried
out with a sampling frequency of 70Hz. After 5 s of data sampling
(70Hz), the device screen shows the corresponding pressure-
time curve and the MIP/MEP value (computed as the maximum
pressure sustained for 1 s) (Laveneziana et al., 2019), asking
the user whether the maneuver should be accepted or not and
whether a new maneuver will be carried out. After subsequent
repeated maneuvers, the device shows all previously accepted
maneuvers and indicates whether the quality control criterion to
select the final result has been achieved: The maximum value of
three maneuvers that vary by <10% (Laveneziana et al., 2019).

Three-Dimensional Enclosure
The device is designed to have two independent blocks. The first
one is the hand-held framework (to be used by the MIP/MEP test
technician) containing the electronics and digital display of the
measurement process and results. The second one is a hand-held
mouthpiece support to contain a disposable mouthpiece for the
patient. Both blocks are connected through a 1-m length (3mm
ID) silicone tube. The mouthpiece framework incorporates two
small holes. One of them communicates the airway opening
(mouthpiece) to the pressure transducer through the silicon tube.
The other orifice allows a small air-leak moving from/to the
airway to the room air, which is required to prevent the closure
of the glottis during forced inspiration and to decrease use of the
oral muscles during forced expiration (Laveneziana et al., 2019).

Open Source Description
Detailed information of the circuits, electrical connections,
driving code, and files for 3D printing are provided in
Supplementary File “Technical_Description.zip.”

Device Testing
The accuracy of the device was tested in a conventional way
(Beyette et al., 2011) by comparing its performance with a
reference laboratory setting based on a specifically calibrated
and well-characterized pressure transducer. The signal of a
reference transducer (Honeywell 26PC Series) was sampled
with an AD/DA board and LabVIEW software, and stored for
subsequently computing MIP/MEP with a Python 3 script of
the same algorithm within the Arduino in the device under test.
This allowed to precisely check all the measuring steps carried
out by the Arduino setting in the device. For the performance
test, the pressure outlet of the device mouthpiece framework was
sensed simultaneously by the device sensor and the reference
setting sensor. Two subjects from the technical staff who were
familiar with the MIP/MEP measurements performed a series of
64 maneuvers with different intensities to mimic the ample range
of values found in clinical practice. The degree of agreement
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FIGURE 1 | Flow diagram of the maximal inspiratory (MIP) and maximal expiratory (MEP) pressures device.

between measures obtained by the designed device and reference
equipment was carried out by Bland–Altman analysis. Moreover,
a linear regression plot was carried out for evaluating the device
vs. the reference equipment measurements.

RESULTS

An image of the assembled prototype is shown in Figure 2.
This figure (bottom) also shows a view of one of the screens of
the device appearing during the acquisition of an MEP signal.
Importantly, Table 1 summarizes the components cost of the
prototype which amounted to e80.

The results obtained when the device was evaluated
by comparison with a laboratory reference setting are

presented in Figure 3 by means of the Bland–Altman
(top) and linear regression (bottom) plots. The obtained
average difference in MIP/MEP values from the prototype
and the lab reference setting was 0.13 cmH2O (range of
agreement from −0.86 to 1.12 cmH2O), which corresponds
to ±1% accuracy. Therefore, the developed device is fully
suitable to perform MIP and MEP measurements within
clinical ranges.

DISCUSSION

Following the aim of this methodological work, we have
designed and tested a low-cost device for measuring MIP/MEP
and provided full open-source technical details allowing any
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FIGURE 2 | (Top) Inside view of the MIP and MEP device prototype showing

the operator enclosure, the pressure transducer, and the liquid crystal display

(LCD) screen [on top of the Arduino controller (not visible)]. (Center) Complete

external view of the device showing the operator hand-held block and the

mouthpiece block for the patient, connected through a silicone flexible tube.

(Bottom) Example of one of the screens during device operation, showing the

result of an MEP maneuver test (time course of expiratory pressure, MEP

result, and option to allow the user to accept or reject this specific maneuver).

interested user to directly reproduce or modify it according to
the specific requirements.

The standard MIP/MEP test is aimed at non-invasively and
selectively assessing the strength of inspiratory and expiratory

TABLE 1 | Retail cost of components used in the device.

Component Price Units Total

Arduino Mega 2560 35 e 1 35 e

LCD 20 e 1 20 e

Transducer 10.36 e 1 10.36 e

PCB copper sheet 4.57 e 1 4.57 e

PLA (for 3D printer) 20 e/kg 0.25 kg 5 e

Silicone tube 0.47 e/m 1m 0.47 e

Switch 1.29 e 1 1.29 e

Power supply base 0.83 e 1 0.83 e

Total 77.52 e

FIGURE 3 | (Top) The Bland–Altman plot showing the difference between

values measured by the prototype and the reference equipment, as a function

of the measured values for both MIP (negative values) and MEP (positive

values). Green line is the prototype bias and blue-red lines indicate the limits of

agreement. (Bottom) Linear regression of the values obtained with the

developed device and the laboratory reference.

muscles. Correct performance of this technique requires
following the indications published by medical societies, such
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as the American Thoracic Society (ATS) and the European
Respiratory Society (ERS) that agreed to establish a standard
protocol, which was published in 2002 (American Thoracic
Society/European Respiratory Society, 2002) and was updated
by the ERS in 2019 (Laveneziana et al., 2019). In practice,
MIP/MEP measurements are obtained in the seated position
of patient. Maximum inspiratory (Mueller maneuver) and
maximal expiratory (Valsalva maneuver) measurements should
be supervised by a trained technician, who must ask the patient
to exert his/her maximal effort. Both forced inspiratory and
expiratory muscle efforts should ideally be maintained for at
least 1.5 s, allowing that maximum pressure is measured for a 1-s
period. The MIP/MEP device should give a visual feedback of the
patient maneuver by displaying the pressure-time curve and the
value of the 1-s average maximum pressure. After observing the
pressure-time curve along the maneuver, the technician should
determine whether it has been satisfactorily performed. Finally,
the maximum value of three correctly performed maneuvers
which vary by <10% is the retained figure (Laveneziana et al.,
2019). The algorithm implemented in the designed device
follows these recommendations and guides the technician along
a clear and user-friendly procedure. Moreover, the low-cost
device presented herein covers all the potential wide range of
pressures that can be found in both healthy young people and
in patients with severe dysfunction of respiratory muscles, with
high accuracy (Figure 3).

The MIP/MEP measurement technique is in fact very
simple from both conceptual and technical viewpoints.
Indeed, it is based on recording pressures at the mouthpiece,
computing the average of high pressures along a 1-s of stable
inspiratory/expiratory effort, and providing the variability
among values in subsequent maneuvers to select the maximum
value among several representative muscle efforts. The design
and construction of the device illustrate how fruitful could be a
multidisciplinary approach. In fact, common projects carried out
following a collaborative scheme have already produced several
examples of low-cost open-source devices for both research and
treatment (Farré et al., 2019a,b; Garmendia et al., 2020; Osuna
et al., 2021).

The novelty of the device described here is that it is low-
cost and easy-to-build from fully disclosed technical information.
Indeed, other simple devices with a similar function were
described but the technical details allowing their simple
replication by other potential users were not provided (Smith and
Royall, 1992; Hamnegård et al., 1994; Maruthy and Vaz, 1999;
Torres-Castro et al., 2019). Accordingly, this device is of interest
for two potential application scenarios. On the one hand, it may
facilitate the affordable provision of a considerable number of

devices to be used as point-of-care tools (Pearce, 2012). Indeed,
MIP/MEP measurements have potential interest for monitoring
respiratory muscle strength as a biomarker of progress/recovery
in extremely prevalent diseases, such as COPD and heart failure.
Having affordable MIP/MEP devices available for extended home
monitoring of patients may allow for carrying out clinical studies
that otherwise would not be possible. On the other hand, the
device described in this work opens the opportunity to provide
a low-cost tool to patients and doctors in low- and middle-
income countries (LMICs). In this regard, it is interesting to
mention that the low-tech components required to build the
device make it possible that its construction and maintenance
are performed by teams of engineers in LMICs (De Maria et al.,
2014; Mackintosh et al., 2018). It is also noteworthy that the
collaborative approach followed in this study, consisting of co-
creation and design thinking (Ranger andMantzavinou, 2018) by
teams in Mozambique and Barcelona may help toward moving
the design focus from the developed country perspective to that
of the LMIC team and to potentially stimulate the development
of local industry (Clifford and Zaman, 2016).
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Background: Ventilator-induced lung injury (VILI) via respiratory mechanics is deeply
interwoven with hemodynamic, kidney and fluid/electrolyte changes. We aimed to
assess the role of positive fluid balance in the framework of ventilation-induced
lung injury.

Methods: Post-hoc analysis of seventy-eight pigs invasively ventilated for 48 h with
mechanical power ranging from 18 to 137 J/min and divided into two groups: high
vs. low pleural pressure (10.0 ± 2.8 vs. 4.4 ± 1.5 cmH2O; p < 0.01). Respiratory
mechanics, hemodynamics, fluid, sodium and osmotic balances, were assessed at
0, 6, 12, 24, 48 h. Sodium distribution between intracellular, extracellular and non-
osmotic sodium storage compartments was estimated assuming osmotic equilibrium.
Lung weight, wet-to-dry ratios of lung, kidney, liver, bowel and muscle were measured
at the end of the experiment.

Results: High pleural pressure group had significant higher cardiac output (2.96 ± 0.92
vs. 3.41 ± 1.68 L/min; p < 0.01), use of norepinephrine/epinephrine (1.76 ± 3.31 vs.
5.79 ± 9.69 mcg/kg; p < 0.01) and total fluid infusions (3.06 ± 2.32 vs. 4.04 ± 3.04 L;
p < 0.01). This hemodynamic status was associated with significantly increased sodium
and fluid retention (at 48 h, respectively, 601.3 ± 334.7 vs. 1073.2 ± 525.9 mmol,
p < 0.01; and 2.99 ± 2.54 vs. 6.66 ± 3.87 L, p < 0.01). Ten percent of the infused
sodium was stored in an osmotically inactive compartment. Increasing fluid and sodium
retention was positively associated with lung-weight (R2 = 0.43, p < 0.01; R2 = 0.48,
p < 0.01) and with wet-to-dry ratio of the lungs (R2 = 0.14, p < 0.01; R2 = 0.18,
p < 0.01) and kidneys (R2 = 0.11, p = 0.02; R2 = 0.12, p = 0.01).

Conclusion: Increased mechanical power and pleural pressures dictated an increase
in hemodynamic support resulting in proportionally increased sodium and fluid retention
and pulmonary edema.

Keywords: ventilation-induced lung injury, mechanical ventilation, fluid balance, sodium retention, non-osmotic
sodium
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INTRODUCTION

It is well known that positive pressure mechanical ventilation
is associated with hemodynamic impairment and sodium and
water retention (Drury et al., 1947). In the late 70 s, Hemmer
and Suter suggested the use of vasoactive drugs rather than
fluid infusions to achieve adequate perfusion while preventing
fluid overload (Hemmer and Suter, 1979). In daily clinical
practice, both fluids and cardiovascular drugs are commonly
used to compensate for the detrimental hemodynamic effects of
mechanical ventilation, despite the common notion that positive
fluid balance is associated with worse outcomes (Mendes et al.,
2020). However, it is not clear to what degree this is a simple
association or a cause-effect relationship.

In a series of animal experiments aimed to elucidate
some of the mechanisms of ventilator-induced lung injury
(VILI), the animals often required large amounts of fluids and
catecholamines to prevent hemodynamic collapse (Collino et al.,
2019; Vassalli et al., 2020). This approach is similar to what
it is routinely done in clinical practice: to maintain adequate
hemodynamics the fluid infused into the patient can amount
to several liters (Boyd et al., 2011). This is generally (and
unfortunately) assumed to be an aesthetic rather than a harmful
phenomenon, and at least not the primary cause of clinical
worries (Vignon et al., 2020).

We hypothesized that an increased fluid balance may worsen
the pulmonary function and VILI development, hence, the
primary objective of the present study was to investigate whether
the applied pleural pressure and positive fluid balance have a
synergistic role in dictating the VILI severity, quantified by the
increase of lung weight.

MATERIALS AND METHODS

In the present post-hoc analysis, data of seventy-eight pigs from
two previous experimental studies investigating the relationship
between mechanical power and VILI (Collino et al., 2019; Vassalli
et al., 2020) were analyzed (see Supplementary Material). In the
first study 36 pigs [weight (mean ± SD): 23.3 ± 2.3 kg] were
ventilated for 48 h with tidal volume equal to the functional
residual capacity, respiratory rate 30 bpm and different levels of
PEEP: 0, 4, 7, 11, 14, and 18 cmH2O. The applied mechanical
power ranged between 18 to 120 J/min (Collino et al., 2019).

In the second study, 42 pigs (mean weight 24.2 ± 2.0 kg)
were ventilated for 48 h and were randomized into six groups,
3 of which at low (15 J/min) and 3 at high mechanical power
(30 J/min). In each group, the targeted mechanical power was
reached with different combinations of PEEP, tidal volume and
respiratory rate. In the whole cohort, the tidal volume ranged
from 0.5 to 3.8 L, the respiratory rate from 5 to 44 bpm and the
PEEP from 5 to 25 cmH2O (Vassalli et al., 2020).

Management of Experimental Animals
In both experiments, anesthesia was induced and maintained
with propofol, midazolam and sufentanil. After intubation,
volume-control mechanical ventilation was initiated with tidal

volume 6 mL/kg, PEEP 5 cmH2O and a respiratory rate to
maintain PaCO2 between 35 and 45 mmHg.

The animals had the following devices: endotracheal tube (size
7/7.5 mm); urinary catheter (5 Fr); adult esophageal catheter (8
Fr) Smartcath with esophageal balloon (the correct positioning
of the esophageal catheter was checked by an end-expiratory
occlusion test); central venous catheter (5 Fr) in the jugular
vein, ultrasound-guided; swan-Ganz catheter (5 Fr) through
an introducer (7 Fr) in the jugular vein, ultrasound guided;
arterial PiCCO catheter (5 Fr) in the femoral artery, ultrasound
guided. The target temperature was maintained throughout the
experiment between 38 and 39◦C (normal central temperature
of pigs), by using a thermic blanket. Glycaemia was measured
throughout the experiment, if values lower than 60 mg/dL were
observed, dextrose 40% was initiated and maintained at the
lowest infusion rate, in order to ensure glycemic levels between
60 and 100 mg/dL.

At the end of the experiment the animal was euthanized,
autopsy was performed and lung, kidney, liver, muscle and
bowel samples were sent to the pathology department. Six lung
samples were collected for each lung (basal-ventral, basal-dorsal,
central-ventral, central dorsal, apical-ventral, apical-dorsal) and
one sample for the other organs. Wet-to-dry ratio was calculated
as follow: each sample (~2 g of weight) was weighted before and
after being heated and dried in an oven at 50 degrees, during 24 h.

Both studies were approved by the local ethic committee
(nr. 16/2223 and nr. 18/2795, Niedersächsisches Landesamt
für Verbraucherschutz und Lebensmittelsicherheit LAVES,
Oldenburg, Niedersachsen, Germany) (Collino et al., 2019;
Vassalli et al., 2020).

Animal Experiments and Study Groups
For the purpose of this study, the animals were divided in two
groups according to the median value of the calculated pleural
pressure (Pplmean) (Gattinoni et al., 2003):

Pplmean =
Pawmean ·

ECW

ERS

where Pawmean is the mean airway pressure, ECW is the chest-wall
elastance, and ERS is the total elastance of the respiratory system.
Pleural pressure was chosen as the study variable because it is
the most established determinant of hemodynamic changes, in
mechanical ventilation.

Measured Variables
Respiratory mechanics: plateau pressure, PEEP, tidal volume
and esophageal pressure were recorded hourly, as well as their
derived variables: total/chest-wall/lung elastances and total/lung
mechanical power.

Hemodynamic variables: heart rate, pulmonary/systemic
blood pressure, cardiac output, pulmonary/systemic vascular
resistances were measured every 6 h.

Laboratory variables: sodium concentration (in plasma and
urine) and osmolarity (in plasma) were measured at 0, 6,
12, 24, and 48 h.

Sodium retention (Na+ret ; mmol) was computed at
each timepoint as the infused sodium minus the sodium
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excreted by urine (see Supplementary Material for detailed
explanation and equation).

Fluid balance (Vret) was computed as the amount of infused
fluids minus the urinary output.

Fluid Management
Maintenance fluid consisted of 1–2 mL/h of Sterofundin
infusion throughout the experiment. Additional fluids were
administered in form of Sterofundin or Gelafundin ISO 4%
fluid challenge (250 mL in 5–10 min) if: MAP < 60 mmHg;
clinical signs of hypoperfusion (raised lactates, skin mottling,
decreased urine output); hemodynamic monitoring dynamic
indices (pulse pressure variation > 13% or systolic volume
variation > 12%). Norepinephrine was initiate if the animal was
not fluid responsive.

Calculation of Sodium Infusion
Milliliters of infused solutions times the sodium content of
normal saline (0.154 mmol/mL), Sterofundin (0.145 mmol/mL)
and Gelafundin ISO 4% (0.151 mmol/mL). All fluids were
included in the analysis either if they were infused as fluid
challenge, maintenance or for drug dilution.

Calculation of Retained Sodium and
Fluids
Retained sodium: amount of infused fluid times the sodium
concentration of the specific fluid (normal saline 154 mmol/L,
sterofundin 145 mmol/L and gelafundin ISO 4% 151 mmol/L),
minus the amount of urine in milliliters times the urinary sodium
concentration:

Na+ret = [Na+]inf × Vinf − [Na+]u × Vu

where [Na+]inf (mmol/L) is the sodium concentration of the
infused fluids, Vinf (L) is the amount of fluid infused during an
experiment interval, [Na+]u (mmol/L) and Vu (L) are the urine
sodium concentration and volume during the same interval. We
only included the fraction of dissociated sodium, and excluded
the sodium bound to drug molecules.

Fluid balance (Vret) was computed as the amount of infused
fluids minus the urinary output:

Vret = Vinf − Vu

where Vinf (L) is the infused fluid and Vu (L) is
the urinary output.

Two-Compartment Kinetic Model and
Mass Balance Equations
To investigate the sodium distribution between
intracellular/extracellular compartments and the non-osmotic
sodium storage, the following assumptions were made: (1)
extracellular and intracellular compartments equal 20 and
40% of the pig body weight (Svensson et al., 2020); (2) the
osmotic concentration between the two compartments is equal
and the equilibrium is maintained by means of water shifts;
(3) the count of milliosmoles in the extracellular fluid at the

end of any timepoint must be equal to the initial amount of
milliosmoles plus the milliosmoles due to the retained sodium
(Na+ret × 2); (4) the milliosmoles exceeding this equilibrium
were classified as missing sodium (Na+miss), i.e., sodium stored
in a non-osmotic form.

Figure 1 depicts the two-chamber kinetic model we applied
to assess the distribution of sodium and fluids across the
body compartments. At baseline, the extracellular (ECVbas) and
intracellular (ICVbas) volumes were assumed to be in osmotic
equilibrium (Osmbas), i.e., the osmolar concentration (Osmbas)
was equal in ECVbas and ICVbas (Figure 1A). As shown in
Figure 1B, the net retained sodium and fluid (infused minus
excreted) are confined within the extracellular volume, i.e., before
the osmotic equilibrium (ECVbeq). In this condition, the osmotic
and sodium concentrations are higher in the extracellular volume
and therefore, to reach the osmotic equilibrium, water must
shift from the intracellular to the extracellular compartment.
Furthermore (Figure 1C), we assumed the osmotic concentration
to be equal between compartments (ECVaeq and ICVaeq) and
the osmotic equilibrium is achieved through the fluid shift
from compartments.

The following equations were used to calculate osmolarity,
extracellular and intracellular volumes, fluid shift and sodium
concentration:

(1) We computed the osmolarity (Osmbeq) and the
extracellular volume (ECVbeq) before the osmotic equilibrium as
shown in Figure 1B, according to the following equations:

[Osm]beq = ([Osm]bas × ECVbas + 2Na+ret)/(ECVbas + Vret)

ECVbeq = ECVbas + Vret

Where [Osm]bas is osmolarity at baseline, ECVbas is the
baseline extracellular volume, Na+ret is the net retained sodium
and Vret is the fluid retained.

(2) We computed the osmolarity at equilibrium ([Osm]aeq)
and the fluid required to reach it (Vshift) with the following
equations (Figure 1C):

[Osm]aeq = ([Osm]beq × ECVbeq + [Osm]bas × ICVbas)

/(ECVbas + ICVbas + Vret)

Vshift = ([Osm]beq × ECVbeq − [Osm]aeq × ECVbeq)/[Osm]aeq

Where ICVbas is the baseline intracellular volume.
(3) We computed the new values of extracellular (ECVaeq)

and intracellular (ICVaeq) volumes after the osmotic equilibrium
(Figure 1C):

ECVaeq = ECVbeq + Vshift

ICVaeq = ICVbas − Vshift
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FIGURE 1 | Two-chamber kinetic model to assess the distribution of sodium and fluids across the body compartments.

(4) The following modified mass balance equations were used
to calculate the expected sodium concentrations in plasma before
([Na+]beq) and after ([Na+]aeq) the osmotic equilibrium:

[Na+]beq = ([Na+]bas × ECVbas +Na+ret)/(ECVbas + Vret)

[Na+]aeq = ([Na+]bas × ECVbas +Na+ret)/(ECVbas + Vret + Vshift)

where [Na+]bas is sodium plasma concentration at baseline.
(5) Finally, we used the following equation to assess the

amount of sodium that justifies the difference between the
measured and the calculated sodium concentration after osmotic
equilibrium (Na+miss):

Na+miss = [Na+]bas × ECVbas +Na+ret − [Na+]act

×(ECVbas + Vret + Vshift)

where [Na+]act is the actually measured concentration of sodium
at a specific experimental time.

Statistical Analysis
Data are reported as mean ± standard deviation. Baseline and
end-experiment differences between groups were assessed by
Student’s t-test. The strength of the relationship between variables
was tested with linear regression. We evaluated the effect of
time and accounted for the repeated measures design by using
a linear mixed effects model, where the fixed effect was the
pleural pressure group and the random effect the animal ID. Two-
tailed p-values < 0.05 were considered statistically significant. All
analyses were performed with R for Statistical Computing 4.0.2.

RESULTS

In Table 1 we reported the respiratory mechanics measured in
both groups: all mechanical variables, except for respiratory rate
and lung elastance, differed between the groups throughout the
experiment. The difference in pleural pressure was maintained
nearly unaltered throughout the experiment (see Supplementary
Figure 1). The amount of fluids and electrolytes infused in the
two groups is summarized in Supplementary Table 1.

Sodium Retention and Pleural Pressures
Sodium retention and fluid balance are presented in Figure 2
as a function of the experimental time. As shown, sodium
retention differed significantly between the groups and
increased significantly increased over time. The mean ± SD
end-experiment sodium retention was 601.3 ± 334.7 and
1,073.2 ± 525.9 mmol in the low and high pleural pressure
groups, respectively (p < 0.01). Similarly, the fluid balance
increased significantly over time, and was significantly larger
in the high pleural pressure group (at 48 h: 2.99 ± 2.54 vs.
6.66 ± 3.87 L; p < 0.01). The fluid balance in both groups
was similar to the difference in weight-gain measured at the
end of the experiment: 2.8 ± 1.8 vs. 5.5 ± 3.0 Kg; (p < 0.01).
The positive fluid balance derived by a combination of greater
amount of infused fluids and a decrease in urinary output: at the
end of the experiment 5.72 ± 2.40 vs. 8.76 ± 3.40 L (p < 0.01)
and 2.72 ± 0.89 vs. 2.10 ± 0.93 L (p = 0.01), respectively
(Supplementary Figure 2).

Sodium Retention and Hemodynamics
Table 1 shows the hemodynamic data from the two groups:
heart rate, central venous pressure and pulmonary pressures
were higher in the high pleural pressure group (all p < 0.01).
Cardiac output was higher in the high pleural pressure group, and
unexpectedly, it was significantly associated with greater sodium
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TABLE 1 | Respiratory mechanics and hemodynamics in high and low pleural pressure groups.

Variables Values at 0.5 h Means (averaged over the four time-points: 6,
12, 24, 48 h)

Low Ppl group High Ppl group p-value Low Ppl group High Ppl group p-value

Pleural pressure [cmH2O] 4.6 (1.5) 9.4 (2.0) < 0.01 4.4 (1.5) 10.0 (2.8) < 0.01

Plateau pressure [cmH2O] 25.4 (12.6) 35.4 (11.9) < 0.01 24.5 (8.3) 35.5 (10.4) < 0.01

PEEP [cmH2O] 7.9 (6.6) 15.3 (6.5) < 0.01 6.9 (5.1) 16.8 (6.6) < 0.01

Respiratory rate [bpm] 26 (11) 26 (10) 0.78 27 (11) 26 (10) 0.30

Tidal volume [mL] 438 (235) 391 (149) 0.31 447 (227) 375 (133) < 0.01

Total elastance [cmH20/L] 42.7 (19.0) 54.9 (22.5) 0.01 42.3 (12.6) 52.1 (17.0) < 0.01

Lung elastance [cmH20/L] 28.0 (19.2) 32.6 (20.0) 0.31 27.7 (12.1) 30.6 (14.1) 0.06

Mechanical power [J/min] 45.5 (26.1) 67.8 (27.3) < 0.01 42.9 (16.5) 70.8 (26.1) < 0.01

Lung mechanical power [J/min] 31.7 (26.2) 39.7 (22.8) 0.15 28.3 (14.7) 41.3 (19.5) < 0.01

Heart rate [bpm] 112 (29) 135 (24) < 0.01 97 (22) 113 (27) < 0.01

Systolic arterial pressure [mmHg] 100.1 (13.0) 103.0 (15.1) 0.38 104.7 (16.2) 103.3 (15.5) 0.43

Diastolic arterial pressure [mmHg] 60.1 (10.4) 64.2 (13.6) 0.14 57.0 (13.4) 55.6 (12.2) 0.37

Mean arterial pressure [mmHg] 75.7 (10.8) 80.2 (12.6) 0.10 73.5 (12.5) 73.0 (12.8) 0.73

Central venous pressure [mmHg] 8.9 (3.5) 12.0 (4.8) < 0.01 8.5 (4.1) 13.2 (5.1) < 0.01

Systolic pulmonary pressure [mmHg] 28.2 (8.3) 34.6 (8.6) < 0.01 26.8 (7.1) 36.3 (10.0) < 0.01

Diastolic pulmonary pressure [mmHg] 17.6 (6.9) 23.0 (6.7) < 0.01 16.0 (5.3) 23.2 (7.1) < 0.01

Mean pulmonary pressure [mmHg] 22.6 (7.3) 29.0 (7.0) < 0.01 21.4 (6.2) 29.7 (8.2) < 0.01

Wedge pressure [mmHg] 13.1 (5.8) 17.8 (7.3) < 0.01 11.8 (5.5) 17.4 (5.8) < 0.01

Cardiac output [L/min] 3.79 (1.03) 4.02 (1.24) 0.40 2.96 (0.92) 3.41 (1.68) < 0.01

Systemic vascular resistances [(dyn × s)/L] 1, 588 (427) 1, 526 (671) 0.64 1, 924 (601) 1, 600 (672) < 0.01

Pulmonary vascular resistances [(dyn × s) /L] 218 (122) 237 (112) 0.51 267 (126) 319 (170) < 0.01

Infused fluids [L] 0.41 (0.27) 0.73 (0.44) < 0.01 3.06 (2.32) 4.04 (3.04) < 0.01

Infused dose of norepinephrine [mcg/kg] 0.01 (0.02) 0.07 (0.09) < 0.01 1.76 (3.31) 5.79 (9.69) < 0.01

Data expressed as: mean (SD). p-value assessed with Student’s t-test. Number of animals at 0.5 h: 78. Number of animals at 6 h: 78; number of animals at 48 h: 65.

retention (Figure 3A). The systemic vascular resistances were
higher in the low pleural pressure group and associated with less
sodium retention, contrary to what was expected (Figure 3B). It
must be noted that cardiac output and vascular resistances were a
function of the infused fluids (Supplementary Figure 3) and the
dose of catecholamines (Supplementary Figure 4).

Sodium Distribution
In Figure 4A shows the measured vs. the expected sodium
concentration in the entire animal cohort, if all sodium and
fluids had remained within the extracellular space (before the
osmotic equilibrium), compared with the values obtained after
the osmotic equilibrium with the intracellular space. As shown,
the sodium concentration at 48 h calculated before and after
osmotic equilibrium would be 162.5 ± 21.2 and 151.8 ± 5.2
mmol/L, respectively, instead of the measured 145.6 ± 3.7
mmol/L. Osmolarity before and after osmotic equilibrium would
amount to 324.6 ± 31.4 and 306.5 ± 10.3 mOsm/L respectively,
compared with the measured 304.1± 10.0 mOsm/L (Figure 4B).
The calculated extracellular and intracellular volumes at 48 h
were 10.04 ± 3.37 and 9.12 ± 0.84 L, after shifting 0.40 ± 0.33 L
of water from the intracellular to the extracellular compartments
(Supplementary Figure 5).

According to the calculated sodium concentrations before and
after osmotic equilibrium, 74.9 ± 41.8 mmol of sodium out
of 765.8 ± 479.2 mmol of the total retained sodium have to

be removed from the extracellular volume to account for the
measured sodium osmotic equilibrium.

Contribution of Sodium Retention to
Lungs’ Weight and Wet-to-Dry Ratio
At the end of the experiment, the weight of the lungs
(463.2 ± 158.2 vs. 578.2 ± 162.6 g; p < 0.01) and the lung
wet-to-dry ratio (6.38 ± 0.73 vs. 6.72 ± 0.58; p = 0.04) were
significantly different between the low and high-pressure groups;
Supplementary Figure 6 shows the positive association between
pleural pressure, and lung-weight and wet-to-dry ratio.

An increase of sodium and fluid retention was positively
associated with a higher lung-weight (R2 = 0.48, p < 0.01;
R2 = 0.43, p < 0.01) and higher wet-to-dry ratio of lung
(R2 = 0.18, p < 0.01; R2 = 0.14, p < 0.01) and kidney (R2 = 0.12,
p = 0.01; R2 = 0.11, p = 0.02). No association was found between
sodium retention and the wet-to-dry ratio of liver, bowel and
muscle (see Supplementary Table 2). As shown in Figure 5, at
48 h the increasing amount of retained sodium was significantly
associated with an increase in lung-weight and wet-to dry-ratio.

DISCUSSION

The main findings of the present study are: (1) a higher pleural
pressure leads to an increase in fluid and sodium retention; (2)
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FIGURE 2 | Trend of retained sodium and fluid balance according to pleural pressure. Line-plot over the 48 h of the experiment. Statistic: linear mixed effects model.
Retained sodium: data available in 78 animals at 0 h and in 60 at 48 h (36 in low-pressure group and 24 in the high-pressure group). Fluid balance: data available in
78 animals at 0 h and in 62 at 48 h (38 in low-pressure group and 24 in the high-pressure group).

FIGURE 3 | Association between sodium retention and cardiac output (A) and systemic vascular resistances (B). Scatter-plot of measures obtained at 48 h.
Statistic: linear logistic regression. Data available in 58 animals for cardiac output and vascular resistances.

sodium and fluid retention were greater when cardiac output
was higher and the systemic vascular resistance was lower; (3)
about 10% of the retained sodium must be osmotically inactive to
account for the measured sodium and osmotic equilibrium, and
(4) pulmonary edema and the wet-to-dry ratio were positively
associated with the amount of retained sodium and fluid.

The effects of mechanical ventilation on the sodium
and fluid balance have been known since the first use
of positive pressure ventilation (Cournand and Motley,
1948). Mechanical ventilation with positive pressure is
an easy way to increase the intrathoracic pressure, whose
immediate effect is a decrease in cardiac output proportional
to the increase in intrathoracic pressure. We do not know

exactly, among tidal volume, mean airway pressure, driving
pressure or PEEP which is the main responsible for fluid
retention. Previous experiments strongly suggest, however,
that the PEEP level may play the most relevant role
(Marshall et al., 1982).

The mechanisms of sodium and water retention as a
consequence of decreased cardiac output and cardiac failure
were described decades ago (Pinsky et al., 1983). Other
mechanisms have been described to cause sodium and fluid
retention, as the amount of infused sodium and the chloride
dependent glomerulotubular feedback (Wilcox, 1983; Hansen
et al., 1998). In any case, however, these mechanisms cannot
operate alone in spontaneously breathing non-anesthetized
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FIGURE 4 | Measured and calculated sodium concentration and osmolarity before and after osmotic equilibrium. Line-plot over the 48 h of the experiment. Statistic:
linear mixed effects model comparing the “before” and “after” osmotic equilibrium values. Sodium concentration: data available in 78 animals at 0 h for the three
items, and in 65 at 48 h for measured sodium, 65 for expected sodium before equilibrium, and 55 for expected sodium after equilibrium. Osmotic concentration:
data available in 78 animals at 0 h in the three items, and in 65 for measured osmotic concentration, 55 for expected osmotic concentration before equilibrium, and
55 for expected osmotic concentration after equilibrium.

FIGURE 5 | End-of-experiment association between lung-weight and wet-to-dry ratio vs. retained sodium. Scatter-plot of measures obtained at 48 h. Statistic: linear
logistic regression. Data available in 62 animals for lungs’ weight and wet-to-dry ratio.

animals, which respond to the fluid load by a proportional
increase of urinary output.

Our experiments were designed to study the effects of
mechanical power on the lung parenchyma, collectively referred
to as VILI. As the experiments were performed in healthy
animals, the intensity of ventilation and the thoracic pressure
required to produce lung damage were substantially elevated.
Hemodynamics were severely compromised immediately after
the increase in intrathoracic pressure, and, as a consequence,
we observed a significant decrease in sodium excretion
and urine volume contraction. This homeostatic response
was maintained during the experiment as sodium retention

and fluid balance increased linearly until the end of the
experiment (Figure 2).

As discussed earlier, the decrease in cardiac output is
the generally recognized mechanism that explains sodium
retention by activating several hormonal pathways. Schrier
(1988) proposed a unifying theory for volume regulation, where
the arterial central volume is the regulating variable, through the
baroreceptors, of the body fluid volume. Accordingly, an increase
in intrathoracic pressure may lead to a decrease in cardiac
output and in turn to a decrease in arterial intrathoracic volume.
Surprisingly, however, we found that the cardiac output and
sodium retention in our experiments were positively associated,
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i.e., the higher the cardiac output, the larger the amount of
retained sodium. This is exactly the opposite of what we may
expect from Schrier’s unifying theory, and in general, from
what is observed in cardiac failure. We believe that the possible
explanation of our observations may depend on two primary
factors. First of all, in order to maintain the circulation according
to the strict protocol, the study doctors were administering large
volumes of fluids, primarily guided by the arterial pressure.
And second, there was a large time lag between the circulatory
support interventions, which were a continuous process, and
when we obtained the hemodynamic and sodium balance data
at the fixed 6-h intervals. Therefore, a possible explanation is
that the animal reacted immediately to the abnormal increase in
pleural pressure with a decrease in cardiac output, and possibly
systolic arterial pressure, to which the immediate response
was to infuse fluids and cardiovascular drugs according to the
study protocol. This phenomenon is depicted in Supplementary
Figure 7, where a constant systolic arterial pressure is maintained
over a wide range of fluid or norepinephrine infusion rates.
Despite the large infused volume, it is likely that only a fraction
remained in the vascular compartment to adequately correct the
central arterial volume. Thus, the decrease in the central arterial
volume maintained the hormonal and kidney pathways that were
activated to enhance sodium and water retention.

Although several studies have investigated the theory and
practice of sodium distribution (Titze et al., 2014), the literature
related to the distribution of the infused sodium is surprisingly
scanty. Actually, the technology required to assess the destiny of
the infused sodium require measurements of body compartments
as well as the tracing the electrolytes of interest. In our experiment
we did not measure body compartments nor did we trace the
infused sodium. However, we attempted to determine whether a
general understanding on sodium distribution could be obtained
by utilizing the measured osmolarity and sodium concentrations.
Over the past decades, several formulas have been proposed
to estimate changes in plasma sodium after infusing sodium
solutions (Fazekas et al., 2013). These are primarily based on
the concept of exchangeable sodium and potassium and assume
that all the sodium ultimately retained after urinary elimination
is confined within the extracellular compartment. This concept,
however, was challenged in recent years by a precise study of
the sodium balance in long term human experiments. It was
proposed that part of the sodium is retained in compartments
where it has no osmotic action (Olde Engberink et al., 2017), e.g.,
in the glycosaminoglycan of bone, cartilage, and skin (Titze, 2009;
Hofmeister et al., 2015; Olde Engberink et al., 2015).

In our experiment we were able to separately analyze the
distribution of sodium and osmotically active solute particles
between the extracellular and intracellular compartments. With
this approach, at the end of the experiment, we observed the
following: (a) an increase in the extracellular compartment
of 111.4% (from 4.75 to 10.04 L) due to the retained
volume after the infusions (92.4%) and to the volume shift
from the intracellular fluid (7.6%; 0.40 L) (Supplementary
Figure 5), (b) a 3.4% decrease in intracellular volume (9.50–
9.18 L) (Supplementary Figure 5), and (c) 9.8% (74.0 mmol)
of the retained sodium was not justified by the measured

sodium and osmotic concentrations. This could be due to
possible inaccuracies in our mass balance calculations or,
alternatively, to accumulation of sodium in the non-osmotic
storage compartments recently described (Olde Engberink et al.,
2017). However, a similar percentage of “missing sodium”
was computed by analyzing previous experiments performed
in a different center by different personnel with a different
experimental setup (Langer et al., 2012). Also in this case, the
possible non-osmotic storage accounted for the 13.6% of the
infused sodium (see Supplementary Material for the analysis).

The most striking results, however, are the clinical
consequences of sodium and fluid retention in the framework
of VILI. Actually, the present work was based on two large
experiments aimed at investigating whether the level of
mechanical power induced a proportional level of lung injury
(Collino et al., 2019; Vassalli et al., 2020). Several data were
acquired in both experiments: the lung-weight and wet-to-
dry ratio showed a trend toward a greater increase in pigs
with higher mechanical power, without achieving statistical
significance in the single experiments. A significant association
between lung-weight and mechanical power was reached only
analyzing the data of the experiments together. Considering the
data as a whole, it is likely that what we call "VILI" should be
intended as a combination of structural changes of the lung,
inflammatory reaction and pulmonary edema, in recognition of
the hemodynamic effects on the lung structure and function. The
latter, regardless the structural changes, may be exacerbated by
the need for large fluid volumes to be infused in order to maintain
the circulation during high pressure/volume ventilation.

CONCLUSION

In conclusion, increasing the intrathoracic pressure led to a
significant increase in sodium and fluid retention, which may play
a significant role in VILI induced by excessive mechanical power.
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Motivated by a desire to understand pulmonary physiology, scientists have developed
physiological lung models of varying complexity. However, pathophysiology and
interactions between human lungs and ventilators, e.g., ventilator-induced lung injury
(VILI), present challenges for modeling efforts. This is because the real-world pressure
and volume signals may be too complex for simple models to capture, and while
complex models tend not to be estimable with clinical data, limiting clinical utility. To
address this gap, in this manuscript we developed a new damaged-informed lung
ventilator (DILV) model. This approach relies on mathematizing ventilator pressure
and volume waveforms, including lung physiology, mechanical ventilation, and their
interaction. The model begins with nominal waveforms and adds limited, clinically
relevant, hypothesis-driven features to the waveform corresponding to pulmonary
pathophysiology, patient-ventilator interaction, and ventilator settings. The DILV model
parameters uniquely and reliably recapitulate these features while having enough
flexibility to reproduce commonly observed variability in clinical (human) and laboratory
(mouse) waveform data. We evaluate the proof-in-principle capabilities of our modeling
approach by estimating 399 breaths collected for differently damaged lungs for tightly
controlled measurements in mice and uncontrolled human intensive care unit data in
the absence and presence of ventilator dyssynchrony. The cumulative value of mean
squares error for the DILV model is, on average, ≈12 times less than the single
compartment lung model for all the waveforms considered. Moreover, changes in the
estimated parameters correctly correlate with known measures of lung physiology,
including lung compliance as a baseline evaluation. Our long-term goal is to use the DILV
model for clinical monitoring and research studies by providing high fidelity estimates of
lung state and sources of VILI with an end goal of improving management of VILI and
acute respiratory distress syndrome.

Keywords: ventilator-induced lung injury, ventilator waveform, mathematical model, acute respiratory distress
syndrome, statistical inference
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INTRODUCTION

Mechanical ventilation is a life-saving therapy for patients who
are unable to perform gas exchange by breathing on their
own. When used incorrectly, mechanical ventilation has the
potential to worsen lung injury through barotrauma, volutrauma,
and atelectrauma that are collectively referred to as ventilator-
induced lung injury (VILI). Furthermore, while the patient
and ventilator always interact, when the patient and ventilator
are dyssynchronous—known as ventilator dyssynchrony (VD)—
the timing and delivery of a mechanical breath in response
to a patient effort may lead VILI and poor outcomes (Sottile
et al., 2018a). There are conditions or syndrome such as
acute respiratory distress syndrome (ARDS) that carry a high
mortality rate and may be exacerbated, or even caused, by
VILI (Ware and Matthay, 2000; Phua et al., 2009; Force et al.,
2012; Amato et al., 2015). Therefore, identifying lung-protective
ventilation to reduce VILI is both important and challenging
because the oxygenation needs are often in opposition to
safe ventilation, leading to a complex interplay between the
underlying pulmonary pathophysiology, ventilator mechanics,
and patient-ventilator interactions (Chiumello et al., 2008;
Gilstrap and MacIntyre, 2013; Blanch et al., 2015; Yoshida
et al., 2017). The current standard of care dictates a formulaic
application of low tidal volumes to reduce overdistension and
positive end-expiratory pressure to maintain patency. This
approach reduces VILI but does not prevent it in all cases and
is not personalized (Network, 2000; Grasso et al., 2007; Khemani
et al., 2018). While such protocols have provided measurable
improvements in outcomes, the formulaic approach could
potentially be improved through personalization of individual
respiratory mechanics and VD (Bein et al., 2013).

Modern mechanical ventilators produce data in the form
of time-dependent pressure, volume, and flow waveforms that
contain a wealth of information about pulmonary physiology,
patient-ventilator interactions, and ventilator settings. These data
can be used to troubleshoot and optimize mechanical ventilation
(Corona and Aumann, 2011; Mellema, 2013). However,
ventilator waveforms are typically analyzed heuristically by
visual inspection and, therefore, the outcome of such an analysis
is limited by individual expertise and experience (Corona and
Aumann, 2011; Mellema, 2013). A quantitative interpretation
of these complex signals could increase diagnostic accuracy and
repeatability while facilitating the application of personalized
lung-protective ventilation. One simple example of waveform
quantification that is currently used in clinical care is the driving
pressure, which serves as a readout of both patient condition
and ventilator settings (Amato et al., 2015). In the current study,
we seek to develop a model that can systematically mathematize
the pathophysiologic knowledge clinicians use to interpret lung
conditions from ventilator waveform data as well as knowledge
about the processes governed by the ventilator.

The analysis we present herein is a departure from traditional
modeling methods that link measured pressures and flows
through physiologically-based parameters, such as the well-
recognized single-compartment model that lumps the spatially
heterogeneous lung mechanical properties into single values of

resistance and compliance (Chiew et al., 2011; Hamlington et al.,
2016; Mori, 2016; Mellenthin et al., 2019). In the traditional
models, the entirety of the pressure and volume dynamics emerge
from the hypothesized physiological mechanics. Due to this
straightforward formulation, the single-compartment model is
computationally efficient but often not be able to reproduce
all of the features in waveform data, such as patient-ventilator
interaction. This is because the model lacks the complexity to
allow such complex dynamics to emerge. Given the complexity
of patient-ventilator interactions and pathophysiology present in
real human ventilator data, it is unlikely that a two-parameter
model that does not incorporate ventilator information will be
capable of representing the information that a clinician may
want about lung state and pathophysiology. On the other hand,
more complicated formulations, including multi-compartment
models, use many states and redundant parameters that cannot
be uniquely estimated, causing identifiability problems where
there is no unique solution, or more often no convergent solution
for parameter values. As such, those models require expensive
data to estimate that are not currently available for human
subjects, and require substantial computational resources. Even
then, complex multi-compartment models might not produce
all the relevant features present in the pressure and volume
waveform data (Rees et al., 2006; Bates, 2009; Reynolds et al.,
2010; Molkov et al., 2014, 2017; Roth et al., 2017; Nguyen et al.,
2014; Serov et al., 2016; Ellwein Fix et al., 2018). Because of these
limitations, both types of models might have a limited use in
clinical settings, as the model needs to be useful for a clinician
and estimable in real time.

Our approach offers the potential to overcome these
limitations and provides both identifiability and fidelity by
using mathematical models with interpretable parameters to
recapitulate pressure and volume signals. This high fidelity is
due, in part, to the limited dependence between the pressure
and volume models. The relationship between components of the
pressure and volume waveforms are then used to define specific
physiologic features, just as the quasi-static compliance is defined
from the observed ratio of tidal volume and driving pressure.

Human ventilator waveform data represent several generating
processes, lung physiology, ventilator mechanics, interventions,
patient-ventilator interactions, and health care process model
effects (Hripcsak and Albers, 2013b; Rossetti et al., 2021). In
general, physiological models alone might be missing substantial
contributing sources within the data. There are many potential
approaches to manage this problem. One approach would be
to include models for the lungs and the ventilator to capture
the mechanics of the ventilator, the lungs, and their coupled
interaction. Here, instead, we are incorporating both lung and
health care process model (ventilator) effects into a single unified
model with targeted features captured by lumped parameters.
Our model is not a mechanistic model but it is not built arbitrarily
either. It is built constructively starting with a lung waveform
without pathophysiology or health care processes effects (e.g.,
the ventilator). We added in limited, e.g., compared to a neural
network or other nonlinear regression model, flexibility to the
model according to features that the team deemed connected to
pathophysiology or health care process model effects. The model
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parameters are not like Fourier components that are active during
the entire breath, but rather are time-limited breath deformations
that are hypothesized to relate to particular types of damage,
damage inducing phenomena, and ventilator interactions and
effects. It is in this way that the model is constructively anchored
to physiology and health care process effects.

Therefore, in this manuscript, our objective is to build a
model that takes as baseline “healthy” breaths, and then adds
terms that correspond to deviations from healthy breaths whose
hypothesized sources include VILI, VD, and pathophysiological
features of ventilator waveforms. By estimating the model, we
identify the presence and severity of deviations from normal in
a way that has a physiologically-based hypothesis attached to
it. In essence, this is a proof-in-principle model development
manuscript with underlying constraints such that the model
could potentially be of use with real clinical data. In future
studies, we will tie these phenotypes to lung injury severity, VD,
and the pathogenesis of VILI. We anticipate that this approach
will eventually find applications in real-time clinical readouts
of ventilation safety, long-term monitoring to detect changes in
patient condition, and as a quantitative outcome measure for
clinical trials.

In the current proof-in-principle study, our team identifies
clinically important features in typical volume and pressure
waveform data. We then define the models for volume and
pressure waveforms as the sum of a set of terms through which
we modularly capture physiologically relevant features. The
pressure and volume models are coupled via the respiratory rate.
This approach allows independent modeling of the waveform
components so that clinical, physiologic, and ventilator-based
knowledge can be used to constrain the model. We named
this model the damage-informed lung-ventilator (DILV) as
it contains information about both lung physiology and
ventilator dynamics. To demonstrate the model’s flexibility,
the volume and pressure models are qualitatively validated in
a simulation study where we show various relevant features
that are commonly observed in health and disease. We then
identify the parameters that may correspond to interpretable
pathophysiology by using the DILV model to generate pressure-
volume data and qualitatively assessing the effects of parameter
changes. Finally, in a quantitative verification, we demonstrate
that the model can accurately and uniquely represent laboratory
and clinical ventilator data, which includes mouse model
and human-intensive care unit (ICU) ventilator data in the
absence and presence of VD (Sottile et al., 2018a,b). Through
a comprehensive comparison between the DILV model and
the single-compartment model, we demonstrate that our
approach can accurately determine lung compliance as a baseline
evaluation. Temporal changes in the model parameters are
compared to other assessments of injury severity and qualitative
features of the pressure and volume waveforms.

MATERIALS AND METHODS

Mechanical ventilation is characterized by three measured state
variables which vary over time: volume, pressure and flow.

These time-dependent signals have diverse features arising from
pulmonary physiology, the ventilator, and health care process
effects such as clinical interventions, and patient-ventilator
interaction (Albers and Hripcsak, 2010; Hripcsak and Albers,
2013a,b). The flow is the time-derivative of volume and so
the volume variable contains the same information about the
underlying lung mechanics but in a different representation
(Bates, 2009). In this study, we focused on two state variables,
volume and pressure.

In the simplest ventilation modes, one variable is primarily
controlled by the ventilator, e.g., pressure or volume, while the
other variable, e.g., volume or pressure, is free to vary, referred
to as pressure-controlled ventilation (PCV) or volume-controlled
(VCV), respectively. In this case, only the “free” variable contains
direct information about the respiratory mechanics of the patient
(Tobin, 2001; Bates, 2009). Moreover, in some models there
is a rigid coupling between the controlled and free states that
often limits the model flexibility, precluding the model from
reproducing some features that are present in the clinical data.
For example, the single-compartment model performs a linear
transformation between pressure and volume variables due to the
fixed coupling defined as the sum of linear resistive and elastic
contributions (Bates, 2009; Smith et al., 2015; Hamlington et al.,
2016). We, therefore, do not explicitly couple the controlled (also
known as an independent) and free (also known as a dependent)
variables such that the volume and pressure models will be
independent of one another. Modern clinical ventilators also have
an expansive set of other modes, the most notable of which are the
patient-triggered modes where the ventilator’s action is triggered
by patients such as inspiratory effort. These modes can be very
lung-protective, but they can also lead to complex forms of VD
that are difficult to model. Patient-triggered modes are the most
commonly used modes for humans unless the human is given
neuromuscular blockades (Sottile et al., 2018b).

Identifying Important Features in the
Volume and Pressure Waveform
The volume waveform can have two characteristic features as
shown schematically in Figure 1A. These features might reflect
lung condition when volume is the free variable such as in
PCV, otherwise these may be controlled via ventilator (Corona
and Aumann, 2011; Mellema, 2013). The first feature is the
inspiration, denoted as A in Figure 1A, which continues until
the amount of gas delivered in that breath is reached (the tidal
volume). The pressure and lung elastic recoil are at equilibrium.
The second feature is expiration, denoted as B in Figure 1A.
Depending on the ventilator settings and lung condition, the
gradient of the rising and falling signals can vary across patients
and in the same patient over time. Therefore, the model must be
able to represent these features independently. Accordingly, the
gradients of inspiration and expiration of volume are features that
are variable and estimable in the volume model.

The characteristic shape of the pressure waveform can vary
more dramatically than the volume waveform as shown in the
hand drawn Figure 1B. When pressure is a free variable, such
as in VCV, the pressure waveform has several important features
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FIGURE 1 | Graphical representation of theoretical volume and pressure waveforms. (A) The volume signal generally has two distinct features. The rising and falling
of the volume signal during inspiration and expiration, respectively, are denoted as features A and B. (B) The pressure signal can typically have multiple features in the
waveform that contain useful information. The gradient of the rising signal in which pressure continues to increase during inspiration can have two distinct features,
denoted as features A1 and A2. These two features define the gradient of the rising signal before and after the inflection point such that there may be abrupt
increases (breath 1) or decreases (breath 2) in the signal gradient. The shape of the plateau pressure is captured using features B1 and B2 such that there may be a
peak at the beginning (B1-breath 2) and/or at the end (B2-breath 2) of the plateau. Finally, the gradient of the falling signal is captured using feature C that represents
the expiration process. The baseline pressure is known as positive end-expiratory pressure (PEEP), and often used in ARDS patients to maintain an open lung
(Cavalcanti et al., 2017). Note that the breaths were drawn to highlight the features which might contain useful information about lung condition and ventilator-patient
interaction when the respective variable is free. If the variable is controlled, e.g., volume during VCV, the waveform features represent ventilator settings.

that convey information about lung condition and ventilator-
patient interaction. Based on observation of a large number
of recorded breaths, we identified five important features in
the pressure waveform. Features A1 and A2 in Figure 1B
determine the gradient of the inspiration. The time-varying graph
of inspiration can have two distinct modes where the gradient
of the signal may increase (Figure 1B, breath 1) or decrease
(Figure 1B, breath 2) during inspiration. These features are
hypothesized to correspond to the volume-dependent decrease
in lung compliance (breath 1) or an increase in compliance due
to recruitment (breath 2) (Smith et al., 2015; Hamlington et al.,
2016). Note that this interpretation is only valid if the flow rate is
constant during inspiration (Grasso et al., 2004).

Features B1 and B2 (Figure 1B) are related to the shape of the
waveform at the start and end of the plateau pressure, which is a
period of constant pressure. There may be peaks at the beginning
(B1) and/or at the end (B2) of the plateau pressure, which are
hypothesized to correspond to inspiratory flow resistance and
patient effort, respectively (Bates, 2009; Mellema, 2013). Feature
C in Figure 1B corresponds to the gradient of expiration. We
also model the constant baseline pressure, known as the positive
end-expiratory pressure (PEEP), because it is a key independent
variable in ARDS management (Guerin, 2011; Cavalcanti et al.,
2017). Note that in hybrid ventilation modes, there may be
scenarios where both pressure and volume variables are partially
controlled and so, in those cases, both the waveforms can be
confounded in additionally complex ways and would require
more nuanced interpretation.

Constructing the Damage-Informed
Lung Ventilator Model
Once we define the physiological and ventilation-related relevant
features in the waveform data, we formulate the model for
volume and pressure signals. During this process, we have chosen

minimal number of parameters while ensuring that the model
should have the ability to address the deep complexity present in
the waveform data due to complex pathophysiology and patient-
ventilator interactions. Additionally, the parameters have little
overlap as they are not active at the same time within a given
breath, and many of the parameters control only specific aspects
of a given deformation such as a peak value. In this way, while we
add parameters, they act locally along a breath and are tied to a
deformation shape and timing that is hypothesized to be related
to pathophysiology.

Construction of the Volume Model
Irrespective of the state variable, the models have periodic
dynamics with a frequency defined by the respiratory rate
(breaths/min) that should be the same in pressure and volume
waveform models. In addition to this constraint, the volume
model has two additional features, the rate of inspiration and
expiration (A and B in Figure 1A, respectively). Volume model
development begins by modeling the respiratory rate with a
sinusoidal function (fs1):

fs1 = sin (2πθt − φ1)− b1. (1)

Here, the respiratory frequency (breaths/s) is set by θ and t
represents time in seconds while parameter φ1 allows to control
the starting point in the respiratory cycle. To control the rate of
inspiration or expiration while maintaining the periodicity, we
create a periodic rectangular waveform function fb1 by combining
the sinusoidal function with hyperbolic tangent function:

fb1 =
1
2

{
tanh

(
a1fs1

)
+ 1

}
. (2)

To control the smoothness of the rectangular waveform, we
added a smoothing parameter a1. The other terms (1/2, +1)
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are added to generate a rectangular waveform that has a zero-
base value and unit amplitude. To control the duty cycle of the
rectangular waveform that sets inspiratory:expiratory (I:E) ratio,
we used parameter b1 such that the zero value of b1 corresponds
to 1:1 I:E ratio. Figure 1A shows additional model features: the
rate of inspiration (A) and expiration (B). To represent these rates
independently, we define the volume (V) using the rectangular
waveform as a base waveform:

V = Av
(
fv1 + fv2

)
, (3)

where fv1 term produces the inspiration part of the volume signal
(feature A):

fv1 (i+ 1) =
{

1
β1

fb1 (i+ 1)+
(

1−
1
β1

)
fv1 (i)

}
; i = 1 : n,

fv1 =
[
fv1 (1) fv1 (2) . . . fv1 (i) . . . fv1 (n)

] fb1

max(fv1)
, (4)

and fv2 term produces the expiration part of the volume signal
(feature B):

fv2 (i+ 1) =
{

1
β2

fb1 (i+ 1)+
(

1−
1
β2

)
fv2 (i)

}
; i = 1 : n,

fv2 =
[
fv2 (1) fv2 (2) . . . fv2 (i) . . . fv2 (n)

] fb1

max(fv2)
. (5)

Here, β1 and β2 control the gradient of the inspiration and
expiration, respectively, while Av controls the amplitude of the
volume waveform. Figure 2A shows the volume waveform (top
plot) and the constitutive terms added through with Eqs 1–5.
Note that the expiration part of the breath (feature B) is generally
spontaneous and could be model using a logarithmic function.
We have opted for the current form of the model so that it can be
converted into the ordinary differential equations-based model
relatively easily in future studies where we plan to use Bayesian
interference schemes (Gelman et al., 2013).

Construction of the Pressure Model
The pressure model has five explicit features that might be used to
understand lung health and ventilator settings. These features are

FIGURE 2 | Simulated response of various terms that make up the damage-informed volume (V ) and pressure model (P). (A) A periodic rectangular waveform fb1 is
used to create terms fv1 and fv2 through which the gradient of the rising (feature A) and falling (feature B) signals in the volume waveform are controlled, respectively.
Equations 1–5 were used to simulate the response within each term with parameter values θ = 0.3, a1 = 200, b1 = 0.7, φ1 = 0, β1 = 30, β2 = 10, and Av = 1. (B) A
periodic rectangular waveform (fb2) serves as a basis of the pressure model. The overall shape of the pressure waveform, which defines the gradient of the
inspiration and expiration signals, is formed using fp13 comprised of the rising signal of fp11 (A2) and falling signal of fp12 (C). The shape of the plateau pressure is
defined by fp24, where the output of fb2 is processed via fp21, fp22, and fp23 to produce peaks at the beginning (B1) and end (B2) of the plateau pressure. The shape
of the rising signal at low volume (A1) is defined by fp33, where a short pulse is produced via fp31 and reshaped via fp32. Note that the amplitude terms Ap1, Ap2, and
Ap3 control the amplitude of fp13, fp24, and fp33, respectively. Equations 6–18 were used to simulate the response of each term with parameter values θ = 0.3,
a2 = 200, b2 = 0.7, φ2 = 0, a3 = 10, b3 = 0.9, φ3 = –0.6, β3 = β4 = 5, β5 = 1.001, β6 = 1.1111, Ap1 = 1, Ap2 = 0.5, Ap3 = 0.5, and Ap4 = 0. Note that the model
variability shown here is independent of the ventilator mode.
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depicted in Figure 1B. Features A1 and A2 capture the gradient
of the rising signal during inspiration at low (A1) and high (A2)
volume and might be correlated with lung compliance. Features
B1 and B2 capture the shape of the peaks at the beginning (B1)
and end (B2) of the plateau pressure and might reflect changes in
inspiratory flow resistance and patient effort, respectively. Finally,
feature C captures the rate of change of the pressure during
expiration. To build a model that can capture all these features
and be able to estimate parameters reliably and uniquely, we used
a modular approach to build the components of the pressure
model where each component is controlled by set parameters that
form those components.

The pressure model construction begins like the volume
model, with a sinusoid. Because volume and pressure are
coupled through their period (respiratory rate), we enforce
this constraint by requiring that both models have the same
respiratory frequency (θ) in their base periodic sinusoid:

fs2 = sin (2πθt − φ2)− b2. (6)

Because the pressure may lag or lead the volume depending
on the ventilator mode, we include a phase shift term, φ2 in
the sinusoid. To account for variations in the duty cycle of the
rectangular waveform, we added the parameter b2 that defines the
I:E ratio. We then create a rectangular waveform fb2 as we did for
the volume model using the hyperbolic tangent:

fb2 =
1
2

{
tanh

(
a2fs2

)
+ 1

}
. (7)

The smoothness of the rectangular waveform is controlled via the
parameter a2. The five key features in pressure are represented
with three additional terms: (i) fp13 defines the rates of pressure
change during inspiration and expiration, (ii) fp24 determines
the peaks at the beginning and end of the pressure plateau, and
(iii) fp33 specifies the gradient of the initial rising signal during
inspiration, leaving us with the full the pressure model (P):

P = fp13 + fp24 + fp33 + Ap4. (8)

The constant parameter Ap4 corresponds to the baseline pressure
value (PEEP). The rates of pressure change during inspiration
and expiration (see A2 and C in Figure 1B, respectively) are:

fp13 = Ap1
(
fp11 + fp12

)
, (9)

where fp11 term produces the rising part of the pressure signal:

fp11 (i+ 1) =
{

1
β3

fb2 (i+ 1)+
(

1−
1
β3

)
fp11 (i)

}
; i = 1 : n,

fp11 =
[
fp11 (1) fp11 (2) . . . fp11 (i) . . . fp11 (n)

] fb2

max(fp11)
,

(10)
and fp12 term produces the falling part of the pressure signal:

fp12 (i+ 1) =
{

1
β4

fb2 (i+ 1)+
(

1−
1
β4

)
fp12 (i)

}
; i = 1 : n,

fp12 =
[
fp12 (1) fp12 (2) . . . fp12 (i) . . . fp12 (n)

] fb2

max(fp12)
.

(11)
Here, β3 and β4 control the gradient during inspiration and
expiration, respectively. The next set of features, the peaks at the
beginning and end of plateau pressure (B1 and B2 in Figure 1B),
are represented by:

fp24 = Ap2
fp23

max(fp23)
, (12)

where fp21 and fp22 terms create the initial shape of peaks at the
plateau pressure:

fp21 (i+ 1) =
1
β5

{
fp21 (i)+

{
fb2 (i+ 1)− fb2 (i)

}}
; i = 1 : n,

fp21 =
[
fp21 (1) fp21 (2) . . . fp21 (i) . . . fp21 (n)

]
, (13)

fp22 = fp21 fb2, (14)

and fp23 term further reshapes both the peaks:

fp23 (i+ 1) =
1
β6

{
fp23 (i)+

{
fp22 (i+ 1)− fp22 (i)

}}
; i = 1 : n,

fp23 = abs
([

fp23 (1) fp23 (2) . . . fp23 (i) . . . fp23 (n)
])
. (15)

The parameters β5 and β6 control the shape of both the peaks,
which are present at the plateau pressure. Finally, the gradient of
the initial rate of inspiration (Figure 1B, A1) is modeled by:

fp33 = Ap3
fp32

{
1−

(
fp11 + fp12

)}
max

[
fp32

{
1−

(
fp11 + fp12

)}] , (16)

where a short pulse is produced via fp31:

fp31 = sin (2πθt − φ3)− b3, (17)

and reshaped via fp32 term:

fp32 =
1
2

{
tanh

(
a3fp31

)
+ 1

}
. (18)

The position, shape and gradient of the rising signal, produced
by fp33 term are controlled using the parameters φ3, b3 and
a3, respectively. Figure 2B shows the pressure waveform and
the constitutive terms added through Eqs 6–18. The pressure
waveform (top plot) composed of the three terms fp13, fp24,
and fp33 that capture the gradient of the inspiration (A2) and
expiration signals (C), the shape of the plateau pressure (B1
and B2), and the shape of the rising signal at low volume
(A1), respectively.
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Mouse Mechanical Ventilation
Experiments
Three 8 to 10-week-old female BALB/c mice (Jackson
Laboratories, Bar Harbor, ME, United States) were studied under
University of Colorado, Anschutz Medical Campus Institutional
Animal Care and used Committee (IACUC)-approved protocol
(#00230). The mice weighed 18.6, 19.1, and 19.9 g. Anesthesia
was induced with an intraperitoneal (IP) injection of 100 mg/kg
Ketamine and 16 mg/kg Xylazine, a tracheostomy was performed
with a blunted 18 ga metal cannula, and ventilation was started
on the flexiVent small animal ventilator (SCIREQ, Montreal, QC,
Canada). Anesthesia was maintained with 50 mg/kg Ketamine or
50 mg/kg Ketamine with 8 mg/kg Xylazine at 30 min intervals
along with 50 µL IP 5% dextrose lactated Ringer’s solution. Heart
rate was monitored via electrocardiogram.

Baseline ventilation, consisting of a tidal volume
(Vt) = 6 ml/kg, PEEP = 3 cmH2O, and respiratory rate
(RR) = 250 breaths/min, was applied for a 10 min stabilization
period with recruitment maneuvers at 3 min intervals. Pressure
and volume were recorded with a custom flowmeter based
on our previously published design (Jawde et al., 2018). Four
types of ventilation were recorded for analysis: (1) VCV-PEEP0,
consisting the baseline ventilation with PEEP = 0 cmH2O,
(2) VCV-PEEP12 that was the baseline ventilation with
PEEP = 12 cmH2O, (3) HighPressure-PEEP0 that consisted of a
inspiratory pressure (Pplat) = 35 cmH2O and PEEP = 0 cmH2O
with RR = 60 breaths/min, and (4) PCV-PEEP0 with Pplat = 10
and PEEP = 0 cmH2O with RR = 70 breaths/min. After the
initial measurements of the healthy lung, lung injury was
induced with a 0.15 ml lavage with warm saline (Mellenthin
et al., 2019). This fluid was pushed into the lung with an
additional 0.3 ml air, and suction was applied to the tracheal
cannula with an approximate return of 0.05 ml. The mouse
was then ventilated for 10 mins with the HighPressure-PEEP0
settings. The sequence of four measurement ventilation patterns
(above) was repeated, then the mouse received 0.8 mg/kg IP
pancuronium bromide to suppress respiratory efforts, and the
measurements were repeated again.

Human Data Collection
Between June 2014 and January 2017, 140 adult patients admitted
to the University of Colorado Hospital medical intensive care
unit (MICU) at risk for or with ARDS and requiring mechanical
ventilation were enrolled within 12 h of intubation (Wheeler and
Bernard, 2007). At risk patients were defined as intubated patients
with hypoxemia and a mechanism of lung injury known to cause
ARDS, who had not yet met chest X-ray or oxygenation criteria
for ARDS. To facilitate the capture of continuous ventilator
data, only patients ventilated with a Hamilton G5 ventilator
were included. Patients requiring mechanical ventilation only for
asthma, COPD, heart failure, or airway protection were excluded.
Additionally, patients less than 18 years of age, pregnant, or
imprisoned were excluded. The University of Colorado Hospital
utilizes a ventilator protocol that incorporated the ARDS network
low tidal volume protocol with the low PEEP titration table.
The Colorado Multiple Institutional Review Board approved this
study and waived the need for informed consent.

Baseline patient information including age, gender, height,
and initial P/F ratio were collected. Human patient data shown
in Figures 6A–C belong to a 62 years old female with an initial
P/F 70, height 165 cm, and weight 127 kg. The data shown in
Figures 6D–F belongs to a 47 years old male, initial P/F 230,
height 177 cm, and weight 96.9 kg. Continuous ventilator data
were collected using a laptop connected to the ventilator and
using Hamilton Data Logger software (Hamilton, v5.0, 2011) to
obtain pressure, flow, and volume measurements. Additionally,
the DataLogger software allowed collection of ventilator mode
and ventilator settings based on mode [i.e.: set tidal, respiratory
rate, PEEP, and fraction inspired oxygen (FiO2)]. Data were
collected until extubation or for up to 7 days per patient.

Parameter Estimation Methodology
The damage-informed lung ventilator model is a complex
model and we estimate its parameters for mouse and human
clinical ventilator data. In clinical situations, the patient data
are variable and often nonstationary because of interventions,
patient-ventilator interactions, changes in health, etc., leading to
complex parameter estimation issues. Moreover, the model we
develop here is not likely to be structurally identifiable (Westwick
and Kearney, 2003; Schoukens et al., 2016; Albers et al., 2019c).
However, formally computing identifiability properties here is
subtle because many parameters in the model functionally
affect only part of the breath. This feature helps facilitate the
convergence of parameter estimates and potentially leads to the
uniqueness of those estimates, although because the DILV model
is neither linear nor convex, there is no guarantee of unique
global optima and no way of guaranteeing that the optimal
solution we compute is a, or the, global optimum. Nevertheless,
this feature—parameters being active at different times during a
breath—also makes formal structural identifiability calculations
complex to compute. These complexities force us to address
four issues, (1) computational estimation methodology, (2)
management of parameter identifiability issues and parameter
selection methods, (3) uncertainty quantification, and (4)
estimation evaluation methodology.

Computational Estimation Methodology
Our needs require an estimation methodology that allows us
to estimate states and parameters of the model effectively and
the respective uncertainties in the estimated parameters. While
stochastic methods, e.g., Markov Chain Monte Carlo (MCMC)
(Gelman et al., 2013), might guarantee to find global minima
and quantifying uncertainty in the estimated parameters values,
they are generally quite slow. On the other hand, deterministic
methods, e.g., Nelder-Mead optimization (Nelder and Mead,
1965), are substantially faster and by choosing many initial
conditions, we are still able to quantify the uncertainty of a
solution. In particular, here we infer parameters with a standard
class of deterministic, multivariate, constrained nonlinear
optimization methods, interior-point methods (Bertsimas and
Tsitsiklis, 1997; Nocedal, 2006), a choice that is not critical among
constrained, nonlinear optimization algorithms. As such, we
focus on a smoothing task that employs deterministic nonlinear
optimization methods that work well with careful parameter
selection and constraints and can be used to quantify uncertainty.
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Management of Parameter Identifiability and
Parameter Selection Methods
Irrespective of the estimation methodology, identifiability
failure—non-uniqueness of non-convergence of solutions—can
occur. In particular, the DILV model is likely not identifiable.
To mitigate this problem, we use three different approaches
to minimize impacts of identifiability failures while estimating
parameters for a given waveform data. First, the model was
constructed such that each parameter in the model contributes
to the specific feature in the volume and pressure curves, allowing
the parameter to be estimated relative to the specific, time-limited
feature by definition. Second, we constrain the ranges of all
parameters to lie within physically possible values. And third, we
do not estimate every parameter in all circumstances but rather
limit parameters estimated to those relevant for a given setting
and fix many low-impact, low-sensitivity parameters (Law et al.,
2015; Asch et al., 2016; Albers et al., 2019b).

In more detail, the DILV model includes two state variables,
volume and pressure with one overlapping parameter, the
frequency of the breath (θ). The volume model has six parameters
(a1, b1, φ1, β1, β2, and Av). The pressure model has fourteen
parameters (a2, b2, φ2, a3, b3, φ3, β3, β4, β5, β6, Ap1, Ap2,
Ap3, and Ap4). Many of these parameters can effectively be
uniquely estimated because they operate on a particular part of
the waveform, e.g., parameters that control the gradient of the
rising signal (β1, β3) and falling signal (β2, β4) and amplitudes
of the waveforms (Av, Ap1). Nevertheless, there are parameters
that are not necessarily uniquely estimable, e.g., parameters that
control feature A1 (a3, b3, φ3, and Ap3) and features B1 and B2
(β5, β6, and Ap2).

Uncertainty Quantification
Because we use deterministic optimization methods whose final
solution depends on the initialization, we quantify uncertainty
by randomly sampling a set optimization initialization for the
parameters we estimate from a uniform distribution within a
bounded interval (upper and lower bounds) centered around
initial values (Smith, 2013; Albers et al., 2019a). The boundaries
of the intervals were chosen to exclude parameter variation that
was unrealistic. The upper and lower boundaries of the intervals
were chosen by computing parameters that provide a qualitative
agreement between the model and the measured response. The
optimal parameter estimate is then represented as a probability
density in a similar way as is created using MCMC, allowing
us to understand how informative, unique, and uncertain a
given parameter solution set is. Additionally, we have uncertainty
for individual breaths—we estimate every breath many times
computing an uncertainty in by-breath parameter estimation—
and uncertainty due to variation in many breaths over time. This
allows us to both resolve and quantify single-breath features, and
how those features vary over time, for different breaths, and even
between individuals.

Estimation Evaluation Methodology
The output of this computational method is a distribution of
optimal solutions. Through this distribution, we understand
the robustness of the solution and the uncertainty of the

solution. If the distribution of solutions has multiple modes
with similar error then we can conclude that there are multiple
plausible solutions. Similarly, if the distribution of solutions
is narrow or wide with similar errors, we can conclude that
the model either does or does not depend highly on a given
parameter. And finally, it is the distribution of parameter
solutions that define the phenotype computed by the model in the
sense that the distribution of parameters explains the by-breath
characterization of the patient. We verify a model’s ability to
represent data by computing the mean squared error between
the model computed with parameter values taken as the medians
of the optimally computed solution and the data. There is
uncertainty in these MSE values too, and if one model has a
lower MSE value than another with non-overlapping uncertainty
in MSE, we conclude that the model with the lower median MSE
more accurately represents the data.

RESULTS

In this section, we qualitative and quantitative validate the
DILV model using numerical simulations and measured
data, respectively.

Qualitative Model Validation, Parametric
Descriptions, and Simulated Model
Variability
The first step in model validation is the qualitative validation
(Jolliffe and Stephenson, 2012) that involves demonstrating the
model has enough flexibility to recapitulate the key features
that are often seen in clinically collected volume and pressure
waveform data. We then identify the parameters that correspond
to hypothesized lung physiology by analyzing simulated pressure
and volume waveforms.

Volume Model Flexibility
The volume model flexibility is demonstrated in Figure 3 where
we vary the rates of inspiration (feature A) and expiration
(feature B) through the terms fv1 and fv2, which are controlled
by parameters β1 and β2 (Figures 3A,B), respectively. The full
variability of terms fv1 and fv2 is shown in Supplementary
Figure 1. Additionally, the amplitude of the volume waveform
is controlled by Av (Figure 3C), variations in respiratory rate
are controlled by θ (Figure 3D). Finally, the I:E ratio, the
starting point of the breath in the breathing cycle and the
smoothness of the waveform are set by b1, φ1, and a1 as shown
in Supplementary Figure 2, respectively.

Pressure Model Flexibility
The pressure model flexibility is demonstrated in Figure 4 where
we vary the five features of the pressure waveform via respective
parameters: variation in the rate of change of the pressure before
(A1 in Figure 1B) and after (A2 in Figure 1B) the inflection point
during inspiration; the shape of the peaks at the beginning (B1 in
Figure 1B) and end (B2 in Figure 1B) of the plateau pressure; and
variation in the rate of change of the pressure during expiration
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FIGURE 3 | Demonstrating the volume model flexibility by varying parameters that alter characteristic features of the volume waveform. The gradient of the rising and
falling signals can be altered using the (A) β1 and (B) β2 parameters, respectively. Increased values of these parameters increase the transient time for the signal to
reach the same volume level. (C) The amplitude of the waveform can be altered using the parameter Av. (D) Changes in the respiratory frequency (θ) change the
period of the breath. The output of the model (V ) was calculated using Eqs 1–5 while considering θ = 0.3, a1 = 200, b1 = 0.7, φ1 = 0, β1 = 30, β2 = 10, and Av = 1.
The respective variation in the functions that make the volume model is shown in Supplementary Figure 1 for each case. Note that the model variability shown
here is independent of the ventilator mode.

(C in Figure 1B). In brief, these features are controlled by the
following parameters.

The initial gradient of the pressure during inspiration (A1)
is controlled by the a3 parameter such that higher values of a3
result in a slower rising signal (Figure 4A). The full variation that
these terms are capable of is shown in Supplementary Figure 3.
The shape of the initial gradient signal (A1) before the inflection
point can be altered using the b3 parameter (Supplementary
Figure 4A) and the amplitude of the initial gradient alteration
is controlled by the Ap3 parameter (Supplementary Figure 4B).
By setting Ap3 parameter to zero, feature A1 can be removed
from the pressure waveforms. The rate of inspiratory pressure
after the inflection point (A2) is specified by β3 such that higher
values of β3 result in a slower rising signal (Figure 4B). The
shapes of the peaks at the beginning (B1) and end (B2) of
the plateau pressure are controlled by several parameters. The
overall shape of the peaks is controlled by the β5 (Figure 4C)
and the sharpness of these peaks can be further altered by
β6 (Supplementary Figure 4C). The amplitude of the peaks

is controlled by Ap2 (Supplementary Figure 4D). By setting
Ap2 parameter to zero, features B1 and B2 can be turned
off. Additional control of features B1 and B2 can be achieved
in combination with parameter β3 shown in Supplementary
Figures 4E,F. The rate of pressure decrease during expiration
(C) is specified by β4 such that higher values of β4 result in
a slower falling signal (Figure 4D). Finally, the amplitude of
the plateau pressure can be altered using the Ap1 parameter
(Supplementary Figure 4G). The I:E ratio is defined by the b2
parameter in the same way that parameter b1 controls the I:E ratio
in the volume model (Supplementary Figure 2A). A summary of
model parameters is provided in Table 1.

Qualitatively Relating the Model
Parameters With the Lung Function
Parameters
In order to be able to use the DILV model parameters to infer
lung health, it is required that we set up the initial framework
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FIGURE 4 | Demonstrating the pressure model flexibility by altering relevant features in the pressure waveform. The initial gradient of the pressure signal during
inspiration at low volume (feature A1) is controlled by (A) the a3 parameter. (B) The gradient of the rising signal after the inflection point (feature A2), is controlled by
the β3 parameter. (C) The shapes of the peaks at the beginning (feature B1) and at the end (feature B2) of the plateau are regulated by the β5 parameter when
Ap4 = 0.5. (D) The gradient of the falling signal (feature C) during expiration can be modified by the β4 parameter. Equations 6–18 were used to simulate the
response of the pressure model while considering θ = 0.3, a2 = 200, b2 = 0.7, φ2 = 0, a3 = 10, b3 = 0.9, φ3 = –0.6, β3 = β4 = 5, β5 = 1.001, β6 = 1.1111, Ap1 = 1,
Ap2 = 0.5, Ap3 = 0.5, and Ap4 = 0. The respective variations in the terms that make the pressure model are shown in the Supplementary Figure 3 for each case.
Note that the model variability shown here is independent of the ventilator mode.

to correlate the model parameter with the lung condition, given
the model parameters are not physiological parameters but
rather chosen to control specific features in the waveform data.
On this account, the DILV model is anchored to physiology
through variations or deviations from nominal breath waveforms
that are hypothesized to relate to lung conditions observed in
mechanical ventilation data collected in lab and clinical settings.
Throughout the manuscript, we list the proposed physiological
interpretations of the parameters – a short description of how
the model parameters contribute to the model is provided in
Table 1 – but here we will go into interpretative depth regarding
the qualitative correlation between model parameters and the
fundamental characteristics of the lung such as compliance and
resistance. In this qualitative interpretation, we consider only one
variable (volume in PCV and pressure in VCV) while assuming
the other waveform does not change breath-to-breath (pressure
in PCV and volume in VCV).

We first show how the changes in the volume model
parameters can be qualitatively related to changes in lung

compliance and resistance when the volume variable is free. For
that, we focus on three model parameters that might have direct
physiological meaning: β1, β2, and Av. The first parameter, β1
might be inversely correlated with lung compliance as higher
values of β1 result in a lower inspiratory flow rate (Figure 3A
and Supplementary Figure 5A). During PCV, the inspiratory
flow rate will decrease with reduced compliance or increased
resistance. A second parameter, β2, controls the gradient of
expiration and is captured as feature B in Figure 1A. Higher
values of β2 result in a longer expiration (cf. Figure 3B and
Supplementary Figure 5A) and so β2 is directly proportional to
the expiratory time constant, which is the product of resistance
and compliance. Finally, parameter Av controls the amplitude of
the volume waveform and for the same pressure waveform (in
PCV) indicates a direct correlation with compliance (Figure 3C
and Supplementary Figure 5A). In VCV, parameter Av would
present the tidal volume, which is set by the ventilator.

The pressure model has five parameters that may reflect
aspects of lung compliance during VCV: a3, b3, β3, Ap1, and
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TABLE 1 | Interpreting damaged-informed lung ventilator model parameters.

Parameter Model relevance Physiological relevance (with increased values)

Volume model

θ Number of breaths/s. Higher values result in a higher number of breaths/s –

a1 Smoothness of the square waveform (fb1). Higher values result in a sharper transition –

b1 I:E ratio. Higher values result in smaller inspiration cycle –

81 Starting of the inspiration point. Higher value results in a more delayed response –

β1 Gradient of the rising signal. Higher values result in a slower rising signal Lower compliance and/or higher resistance

β2 Gradient of the falling signal. Higher values result in a slower falling signal Higher expiration time constant

Av Peak amplitude Higher overall compliance

Pressure model

b2 I:E ratio. Higher values result in a smaller inspiration cycle –

a2 Smoothness of the square waveform. Higher values result in a sharper transition –

82 Starting of the fb2 function. Higher value results in a more delayed response –

a3, b3 Gradient of the pressure signal at low volume. Higher values result in a slower rise Higher low volume compliance

83 Starting of the inspiration point. Higher value results in a more delayed response –

β3 Gradient of the rising signal after inflection point. Higher values result in a slower rising signal Higher high-volume compliance

β4 Gradient of the falling signal. Higher values result in a slower falling signal –

β5, β6 Shape of plateau. Higher value means a sharper peak Associated with ventilator desynchrony

Ap1 Peak amplitude Lower high-volume compliance

Ap2 Amplitude of the peaks at the plateau

Ap3 Higher values increase the amplitude of fp33 function Moves upper inflection point up

Ap4 Pressure base line value PEEP

The parameters that are correlated with known measures of lung physiology are in bold.

Ap3. The parameter a3, which controls feature A1 (Figure 4A),
may be directly correlated with low-volume compliance as
higher values of a3 result in slower pressure rise at low volume
while maintaining the shape of the gradient (Supplementary
Figure 5B). Additionally, parameter b3 can also be used to
control feature A1 (Supplementary Figure 5B) and is directly
related to the low-volume compliance. A third parameter, β3
controls the rate of pressure increase above the inspiratory
inflection point (A2), and higher values of β3 result in slower
pressure increase (Supplementary Figure 5B), indicating β3
might be correlated with high-volume compliance during VCV.
A fourth parameter, Ap1, defines the plateau pressure with higher
values of Ap1 yielding higher plateau pressures (Supplementary
Figure 5B), indicating an inverse correlation between Ap1 and
compliance during VCV. Finally, change in the upper inflection
point (UIP) can be directly related to the Ap3 parameter such
that higher values of Ap3 increase the UIP pressure as shown
in Supplementary Figure 5B. During PCV, these (and other)
parameters may be directly controlled via a ventilator.

It is important to note that these interpretations are qualitative
and valid only when a change is observed in one of the variables
(volume or pressure) while the other waveform (pressure
or volume) is held fixed. In cases where both the volume
and pressure waveforms change simultaneously, additional
interpretation is needed to establish the relationships between
pressure and volume parameters. For example, in the pressure
signal, interpretation of feature A2 with respect to A1 will be
valid only during the constant flow signal (Grasso et al., 2004).
Similarly, when there is a change in the amplitude of volume and
pressure simultaneously, we use the Av/Ap1 to assess compliance.

Damage-Informed Lung Ventilator Model
Quantitative Verification for Experimental
Mouse Model Ventilator Data
To demonstrate the effectiveness of the DILV model, we now
quantitatively validate the model by estimating parameters for
data sets corresponding to different phenotypes—e.g., injured
versus healthy. We then show that differences in the estimated
parameter values reflect different phenotypic states in a manner
that is consistent with expected changes due to acute lung injury.
Here we consider data from PCV and VCV, in healthy and
lung-injured mice, and in the absence and presence of VD.

In Pressure Controlled Ventilation, the Model
Outcomes Align With the Injury Status and Single
Compartment Model
Figures 5A,B, panel 1 shows two different pressure-controlled
breaths recorded in a healthy mouse (green) and after a lung
injury induced by injurious lavage and mechanical ventilation
(orange). The pressure-volume loops (Figure 5C) show a
reduction in lung compliance and an increase in hysteresis
that is characteristic of acute lung injury. The DILV model
estimated states (dashed-dot lines) show the same trends. The
estimated parameter values and the respective uncertainty for
individual breaths are shown in Table 2 with bold indicating
physiological relevance.

In the volume model, the injured lung showed a lower
inspiratory flow rate, quantified by an increase in β1, and a faster
expiration, quantified by a reduction in both β2 and Av than
the healthy lung model estimates. Given that the inspiratory
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FIGURE 5 | Volume and pressure models’ responses closely agree with the experimental data from the representative mice in healthy and injured condition. (A–C) In
Panel 1, the measured breaths of first mouse are shown in healthy and injured conditions (solid lines) while the damaged-informed lung ventilator (DILV) model
response is shown in dashed lines. Equations 1–18 were used to generate the best-fit model response using estimated mean parameter values shown in Table 1,
respectively. (D–G) In Panel 2, three representative breaths of mouse two is shown here, which are corresponding to three different lung conditions (solid lines) while
the damaged-informed lung ventilator model response is shown in the dashed-dot lines. For these breaths, histograms of the initial guesses and estimated
parameters are shown in Supplementary Figure 6A. The response of the single-compartment model is shown in dashed-dashed lines. (F–I) The cumulative values
of mean squares errors (MSE) of the two models are compared here. These values corresponded to sixty breaths for healthy no ventilator dyssynchrony (VD) and
injured no VD cases while ten breaths for injured VD case. For each case and breath, the estimated parameter values and MSE are shown in the Supplementary
Figures 6B–D. All the data shown here was collected in PCV (see “Materials and Methods”).

pressures remain unchanged, this suggests a reduction in lung
compliance, and the associated decrease in the expiratory time
constant (See Table 1).

Physiologic interpretation of the pressure model is limited
because of the use of PCV. In this case, the pressure signal is
prescribed by the piston ventilator and the observed differences
between the healthy and injured lungs are a result of the ventilator
control system algorithms. Hence, the respective changes in the
parameters’ values, such as an increase in parameters a3 and β3
correspond to the changes in the ventilator dynamics and not
in the respiratory mechanics. These results make an important
point: it is essential to see the relative change in the parameters
that control these features and to synthesize the model-based
inference in a holistic fashion, instead of focusing on any one
parameter or feature in isolation.

To analyze changes in lung mechanics in a manner that
accounts for ventilator settings, we define the lung compliance
Cd = Av/Ap1 (Table 2), which is the ratio of volume and pressure
model amplitudes. As expected, Cd decreases with injury.
Furthermore, Cd shows a strong correlation with compliance
(Cs) calculated with the single-compartment model (Table 2;
Mellema, 2013).

Damaged-Informed Lung Ventilator Model Accurately
Captures Mouse Model Data With Ventilator
Dyssynchrony While the Single-Compartment Model
Is Unable to Capture This Variability
In the previous section, we demonstrate that the DILV model
can accurately estimate a single breath. We did not, however,
validate that the model has enough flexibility to account
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TABLE 2 | Estimated model parameters obtained from the optimization scheme for the results shown in Figure 5 (Panel 1) and Figure 6 (human patient 1) correspond
to the mouse and human data, respectively.

Figure 5 (Panel 1) Figure 6 (Patient 1)

Parameters Healthy Injured Beginning Ending

θ 0.66 ± 0.000 0.66 ± 0.000 0.34 ± 0.000 0.35 ± 0.000

a1 9.67 ± 0.385 15.41 ± 0.397 7.51 ± 0.258 7.57 ± 0.282

b1 0.59 ± 0.006 0.53 ± 0.006 0.66 ± 0.000 0.63 ± 0.000

81 0.09 ± 0.007 –0.01 ± 0.007 0.42 ± 0.003 0.51 ± 0.002

β1 112.97 ± 9.733 458.95 ± 8.179 10.96 ± 0.223 12.53 ± 0.240

β2 28.35 ± 10.490 10.60 ± 10.590 12.42 ± 0.051 12.64 ± 0.039

Av 1.03 ± 0.006 0.70 ± 0.003 402.61 ± 0.368 337.08 ± 0.531

a2 52.06 ± 1.440 32.11 ± 1.514 27.39 ± 0.118 17.73 ± 0.163

b2 0.80 ± 0.002 0.66 ± 0.001 0.67 ± 0.000 0.66 ± 0.000

82 0.34 ± 0.002 0.09 ± 0.002 0.35 ± 0.002 0.32 ± 0.001

a3 2.55 ± 0.334 5.11 ± 0.205 7.71 ± 0.183 18.37 ± 0.146

b3 1.00 ± 0.002 0.53 ± 0.003 0.91 ± 0.000 0.90 ± 0.000

83 0.00 ± 0.002 0.00 ± 0.005 0.15 ± 0.001 0.14 ± 0.001

β3 50.00 ± 0.388 100.84 ± 0.262 7.25 ± 0.157 12.88 ± 0.147

β4 18.54 ± 0.239 11.93 ± 0.193 1.95 ± 0.121 2.52 ± 0.064

β5 – – 1.0014 ± 0.0001 1.0048 ± 0.0001

β6 – – 1.1262 ± 0.0012 1.0771 ± 0.0055

Ap1 35.53 ± 0.018 35.02 ± 0.017 16.58 ± 0.018 11.64 ± 0.008

Ap2 – – 3.80 ± 0.011 2.48 ± 0.022

Ap3 14.00 ± 0.081 9.60 ± 0.077 3.90 ± 0.022 4.10 ± 0.016

Ap4 0.06 ± 0.035 0.00 ± 0.021 19.98 ± 0.011 17.91 ± 0.004

Cs 0.030 0.019 26.80 31.40

Cd 0.029 0.020 24.28 28.96

The error values were determined using the standard error of the mean for individual breaths. To quantify uncertainty in parameter estimates, each individual breath was
estimated 1,000 times. The parameters that are correlated with a known measure of lung physiology are in bold. Here, Cs and Cd are lung compliance values extracted
by fitting the single-compartment model to data (Cs) and from the damaged-informed lung ventilator model (Cd) = Av/Ap1.

for large variations in the waveform data, or that the DILV
model can estimate a large number of breaths reliably while
maintaining unique and consistent solutions of parameters
values for each breath. To show these characteristics, we
estimate a large number of breaths for the second mouse in
three different lung conditions: (1) healthy breaths without
VD, (2) injured breaths without VD, and (3) injured breaths
with VD (See “Materials and Methods”). In the 1st and
2nd cases, we selected sixty breaths in a sequence from the
random location out of 424 and 128 breaths, respectively. In
the 3rd case, we manually selected ten breaths out of 332
breaths that had VD from the data set containing breaths
with and without VD. Here, we define VD as any substantial
respiratory effort because the flexiVent small animal ventilators
do not allow the subject to trigger a breath. A representative
breath for each case is shown in Figures 5D–G, panel
2 along with the DILV model response at the optimum
parameter values, which are listed in Supplementary Table 1.
Histograms of the initial guesses and estimated parameters
are shown in the Supplementary Figure 6A. We observed
minor variability in most of the estimated parameters values for
individual breaths, suggesting that those features are modularly
controlled by the respective parameter. We do observe high
variability in some parameters (a1, β1, a3, and β3) due
to the low sensitivity of the model for those parameters
(Supplementary Figure 6A).

To demonstrate what is gained by the DILV model we
compare it to single-compartment model (Bates, 2009) estimated
resistance and compliance to estimate the same breaths for
each case (Figure 5, panel 2). The single-compartment model
has substantially larger estimated mean squares errors (MSE)
and these errors increase as the mouse lung condition worsens
and in the presence of VD (Figures 5H,I and Supplementary
Figures 6B–D). Consequently, in terms of lung compliance
values, the two models’ outcomes closely agree in the healthy
lung case but then diverge somewhat for the injured lung and
more substantially during VD (Supplementary Figures 6E–G).
These discrepancies have their root in the limited ability of the
single-compartment model to estimate VD (Figures 5F,G), errors
that are quantified by the MSE between model estimates and
data (Supplementary Figures 6B–D). Note that the calculated
compliance values include the effects of muscle effort, which
explain the differences in compliance with and without VD in the
same injured mouse.

In Volume-Controlled Ventilation, the Pressure Model
Outcomes Align With the Injury Status and the Single
Compartment Model
Above we verified the DILV model using data sets collected
during PCV, where the estimated volume model parameters
reflected the lung dynamics since the volume was the free
variable. We now consider data collected during VCV so that
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the estimated pressure model parameters reflect changes in lung
condition. Here, we consider variations in PEEP during low
tidal volume ventilation (VCV). The pressure model indicates
a reduction in compliance in the injured lung as quantified by
lower values of parameters a3, b3, and β3, and elevated estimates
of in Ap1 (Table 1, Supplementary Figure 7, and Supplementary
Table 1). In contrast to the PCV results shown in Figure 5,
differences in parameter estimates between healthy and injured
lungs in the pressure model were much larger compared to those
estimated differences in the volume model. This is expected since
the tidal volumes were approximately equal during VCV, and
the reduction in compliance is reflected in increased pressure.
This effect can be inferred by analyzing the Av/Ap1 ratio showing
a reduction in the injured cases at both the PEEP settings
(Supplementary Table 1). We also note that the healthy lung
becomes stiffer at PEEP = 12 cmH2O due to strain stiffening.
In contrast, the injured lung becomes more compliant at high
PEEP, which our previous studies in this injury model attribute
to recruitment (Mellenthin et al., 2019).

Damage-Informed Lung Ventilator Model
Quantitative Verification for Intensive
Care Unit Patient-Ventilator Data
The DILV model is intended to be used with both laboratory
data and clinical ventilator data where standard models, such
as the single-compartment model, cannot recapitulate all of the
potentially relevant waveform features. To show the clinical
applicability of the DILV model we consider waveform data of
two ICU patients, the first—patient 1—includes waveform data
without VD and the second—patient 2—has waveform data with
VD. For each case, we estimate each individual breath 1,000
times to quantify uncertainty in parameter estimates for each
of 263 breaths to quantify uncertainty in parameter estimates
across many breaths. These data were recorded near extubation
when ARDS had nearly resolved. For both patients, the ventilator
was operating in patient-triggered mode, a ventilator mode
that is not possible in our mouse ventilators but is commonly
used in the ICU.

Intensive Care Unit Data-Driven Verification in the
Absence of Ventilator Dyssynchrony (Patient 1)
For patient 1, we selected a sequence of 130 breaths without VD
at a random location out of 1,829 breaths and performed
parameters estimation breath by breath. The sequence
of breaths starts at PEEP = 20 cmH2O and switches to
PEEP = 18 cmH2O at breath number 68. Figures 6A–C shows
two representative breaths along with the DILV model response
at the optimum parameter values (Table 2). Histograms of
the initial guesses and estimated parameters are shown in
the Supplementary Figure 8A for the respective breaths. For
all the model parameters, we observed unimodal estimated
parameter distributions with low variance, suggesting that each
parameter controls a specific feature of the waveform. We also
estimated each breath using the single-compartment model
and substantially higher MSE compared to the DILV model
(Figures 6G,H). Note that in Figures 6G–J, an MSE ratio less

than one indicates that the DILV model produced waveforms
that were more similar to the measured data.

Pressure-volume (PV) loops for these cases (Figure 6C)
suggest that lung compliance is increased by the prescribed
change in PEEP. We found that the model-estimated parameters
indicate an increase in compliance (the Av/Ap1 ratio) with a
reduction in PEEP (Table 2). The increased compliance at lower
PEEP agrees with the single-compartment model (Bates, 2009)
response (Supplementary Figures 8B,C) and also the patient
outcome (successful extubation). Moreover, a significant increase
in parameters a3 and β3 suggested the same (Table 2). The
prescribed reduction in PEEP was reflected in a reduction in Ap4.

Intensive Care Unit Data-Driven Verification in the
Presence of Ventilator Dyssynchrony (Patient 2)
In the cases where VD is present a more thorough parameter
interpretation is needed to quantify and understand the patient-
ventilator interaction. To show this, from patient 2’s data we
randomly selected 133 breaths out of 3,201 breaths that showed
mild to severe flow limited VD. Two representative breaths for
this case are shown in Figures 6D–F along with the DILV model’s
estimate of these breaths at the optimum parameter values
(Supplementary Table 1) and the single compartment model fit.
Histograms of the initial guesses and estimated parameters for
these breaths are shown in the Supplementary Figure 9A.

PV loops for these breaths (Figure 6F) suggest that lung
compliance is increased prior to extubation compared to earlier
in the ICU course. This qualitative observation is supported
by the increased Av/Ap1 ratio (Supplementary Table 1) that
is a measure of compliance. However, it is important to note
that this compliance includes the additional effects of VD.
To further demonstrate the importance of the DILV model,
we compared the DILV model’s estimate of the breaths with
the single-compartment model (Bates, 2009) estimates for each
breath. The single-compartment model estimates of the breaths
have substantially higher MSE values for patient 2 compared
to patient 1 (Figures 6G–J) due to the presence of VD.
Accordingly, we expect large errors in the compliance values
estimated with the single-compartment model (Supplementary
Figures 9B,C). These results agree with the fact that the DILV
model can estimate the volume and pressure waveform data more
accurately, especially when the waveforms have high variability,
as in the case of patient 2 with VD.

The mouse data verification showed that the DILV model
is able to estimate most of the parameters for individual
breaths. It is also important to quantify uncertainty across many
breaths and in different patients. Analyzing the variability in the
estimated parameters over several breaths might capture the lung
condition’s heterogeneous nature, including many potentially
different and differently damaging breaths that show VD. In
the ICU, there are no controlled experiments, and patients
simultaneously experience many types and severities of VD,
different interventions, heterogeneous injurious insults, etc. As
such, we expect to see minor variability in parameter estimates
when many breaths of a patient are approximately the same
compared to large variability in the parameter estimates when
breaths are heterogeneous. For example, we observed a low
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FIGURE 6 | Damaged-informed lung ventilator model can accurately follow breaths of the ICU patients with ARDS without and with dyssynchrony. Measured
representative breaths of (A–C) patient 1 without dyssynchrony and (D–F) patient 2 with flow limited dyssynchrony are shown in solid lines, while the DILV model
inferred response is shown in the dashed-dot lines. The response of the single-compartment model is shown in dashed-dashed lines. Histograms of the initial
guesses and estimated parameters are shown in the Supplementary Figure 8A. For all the breaths in each case, the corresponding ratio of mean squares errors
(MSE) between the DILV model and the single-compartment model is shown in panels (G–J), respectively, while histograms are shown in Supplementary
Figures 9, 10. The response of the DILV model was determined using Eqs 1–18 to generate the best-fit model response using estimated mean parameter values
shown in Table 1 and Supplementary Table 1. All the data shown here were collected in human-triggered mode (see “Materials and Methods”).

variability in all the volume model parameters over several
breaths with the exception of Av for patient 1, indicating
that the volume waveforms’ characteristic shape remains the
same at different time points except for variations in tidal
volume. This contrasts with what we observed for patient 2
where VD drove heterogeneity and substantial deviations from
more normal breaths (Supplementary Figures 10, 11). More
importantly, parameters associated with patient-VD can be
used to infer the presence of VD. In patient 2, we observed
increases in the β5, β6, and Ap2 parameters which align with
the visual determination of VD in those breaths (Supplementary
Figures 10, 11).

Taken together, these results suggest that the DILV
model can reproduce a wide variety of waveform data and
is capable of extracting hypothesis-driven, clinically-relevant
information from the waveforms that might facilitate a systematic
interpretation of the dynamics of the injured lung.

DISCUSSION

In this work, we developed a new damage-informed lung
ventilator model that represents pressure and volume waveform
data by reconstructing the waveforms from hypothesis-driven
modular subcomponents. We then preformed a proof-in-
principle verification that the model can potentially represent
hypothesized damage in humans and mice. The model accurately
estimated pressure and volume waveforms data and consistently
distinguished healthy from injured lungs based on parameter
estimation. Furthermore, we directly incorporate clinical and
physiologic knowledge regarding important and observable
features into the model that might be associated with the lung
pathophysiology—the subcomponents of the model represent
hypothesis-driven deviations from normal breaths. We also
analytically define lung compliance in terms of model parameters
and demonstrate changes in compliance values that agree with
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experimentally induced lung injury. This is a proof of principle
work where our objective was to develop a ventilator waveform
data-based lung model and demonstrate that the model has the
potential to be used both with the laboratory and clinical data
and infer lung condition.

To demonstrate what is gained with this novel approach,
we present a comprehensive comparison between the DILV
model and the single-compartment model for a wide range
of ventilator waveforms related to different lung conditions
and patient-ventilator interactions. We include pressure- and
volume-controlled ventilation in healthy and lung-injured mice
and in humans in the absence and presence of VD. Through this
comparison, we establish that the DILV model can reproduce
the features present in the waveform data and report lung
compliance values that agree with lung condition (Figures 5, 6
and Supplementary Figures 6–11). This is primarily possible
because of our unique waveform-based approach that enabled
the model to have enough flexibility. At the same time, the
model is limited using prior knowledge so as not to have the
capability to estimate every possible variation in PV waveforms,
but rather is constrained to estimate the features of the ventilator
data that are the most clinically impactful. This approach lives
between a machine learning approach, where the model is
flexible enough to estimate every feature and must then discern
which features are important through regularization to prevent
overfitting, and the fully mechanistic lung modeling approach
where the observed physiology must emerge from the proposed
lung mechanics. It is possible that taking this middle path will
help advance all approaches.

The most direct application of the DILV modeling approach is
to quantify the qualitative physiological interpretation of pressure
and volume data. An experienced clinician or physiologist
can infer the status of a patient, the safety of ongoing
ventilation, the presence of VD, and other important details
from visual inspection. However, we currently do not yet have
methods to identify all of these characteristics in ventilator
data quantitatively. The entire waveform may be utilized and
this provides a rich repository of data that is challenging
and time-consuming to use for diagnosis and treatment. In
contrast, summarizing the waveform data in scalar values for
resistance and compliance may cast aside important details
such as identifying dyssynchrony. Our approach may offer
a methodology for condensing the pressure-volume data to
track changes in injury severity over time, and estimate
injury phenotypes (Supplementary Figures 10, 11). A similar
phenotype study on a large dataset could be used to categorize
and understand lung injury, serve as outcome measures
for interventions, and describe the impacts of dyssynchrony
(Sottile et al., 2018a) and VILI (Chiumello et al., 2016;
Aoyama et al., 2018).

Lung injury diagnosis and decision-making are based in
part on the interpretation of the pressure, volume, and flow
waveforms. However, different pathophysiologic mechanisms
can lead to the same observed waveform features. For example,
increased driving pressure could be a result of derecruitment
(alveolar collapse) or alveolar flooding (Gattinoni et al., 1987;
Smith et al., 2020). In other words, the human-based inference

using limited waveform data can be ill-posed. The DILV
modeling and parameter estimation approach could allow to
estimate a large number of breaths efficiently with unique
solutions (Supplementary Figures 10, 11). We could therefore
use the DILV model to estimate over many similar but varied
breaths, and might be able to better triangulate the most
probable pathophysiologic drivers because the primary driver of
damage will likely be present, and significant, despite inter-breath
variations. At the same time, more extraneous details will not be
consistently expressed in every breath.

Note that in the DILV model, an explicit coupling between
pressure and volume signals is absent. We have intentionally
taken this approach to preserve flexibility so that we can
accurately recapitulate a wide variety of clinically and
experimentally observed features in the pressure and volume
signals, including the effects of VD (Figures 5F,G, 6D–F).
Such flexibility in the model outcome is not always possible
with rigid coupling between pressure and volume data, as we
have shown by comparing the DILV model response with the
single-compartment model. This is not to say that pressure and
volume are totally independent in the DILV model because we
utilize the same respiratory rate for both. In addition, we show
that the ratio of a volume and pressure model parameter (Av
and Ap1) describes lung compliance. In future studies, we will
link additional specific components of the pressure and volume
waveforms through physiologically relevant parameters such as
the nonlinearity of lung elastance or inspiratory and expiratory
flow resistance. Alternatively, a compartment-based model could
be used to incorporate the physiologic coupling between pressure
and volume data by utilizing the outputs from the DILV model
presented here as inputs for compartment models. If the DILV
model is used to preprocess the data before analysis using a
compartment model, it is possible to formulate the problem
entirely of ordinary differential equations, opening up a range
of more efficient inference machinery (Bertsimas and Tsitsiklis,
1997; Nocedal, 2006; Albers et al., 2019b).

Finally, our work here has several notable limitations. First,
this is a model development work, where we built a new lung
model and showed that the model can accurately recapitulate
waveforms and estimate accepted physiological parameters such
as compliance as a baseline evaluation. This is sufficient for proof-
in-principle that the model can capture physiologic differences.
However, establishing that the model can accurately differentiate
more specifically defined phenotypes will require validation on
much larger laboratory and clinical populations. Moreover, to
tie the model outputs to injury phenotypes, the pathogenesis of
VILI, etc., we will have to establish the concordance between
the model estimates of human and mouse-model data in
similar settings and validate the phenotypes, etc., within the
mouse lung. This work will be done in the following steps:
hypothesize damage-related feature(s) within human ventilator,
estimate model for humans and extract contextual clinical
information (e.g., lung injury source), create mouse model data
with a context similar to the human data, estimate the model
for mice, validate concordance of model estimates between
humans and mice, validate the damage severity and cause
within the mice.
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Second, the human data in this study were collected using
a specific ventilator (Hamilton G5) operated in a pressure-
controlled volume targeted mode. For the wider applicability of
the model, additional data verification is required across different
ventilators and ventilation modes. Third, in this work we did
not explicitly relate our model parameters with the physiological
or morphometric data. We rather pose hypotheses about the
presence and physiological meaning of waveform features that
deviate from normal instead of observing the deviant features
emerging from lung physiology. For this interpretation, we
relied on the expertise of a laboratory ventilation expert (BS)
and a critical care physician (PS). However, it is likely that
differing opinions will exist among experts. Collecting and
synthesizing such information will require a different qualitative
study. Moreover, there may be differing opinions regarding what
should and should not be included in the model. This does not
negate our novel methodology or the DILV model. In fact, the
model was constructed with these issues in mind to be flexible,
allowing for the testing of differing hypotheses mind. These issues
suggest future work is necessary to understand better and verify
clinically important features. Alternatively, we may instead seek
to link model features to patient outcomes, thus establishing
the important characteristics of the model by linking those
parameters to outcomes. Fourth, in this manuscript, we have
incorporated the human waveform data that has flow limited
VD to demonstrated that the DILV has enough flexibility to
recapitulate waveforms that have patient-VD. In order to identify
and phenotype different types of VD, further model update and
evaluation will be required, and this work in progress.

In summary, we developed a data-driven lung and ventilator
model that can reproduce the commonly observed features in
pressure and volume waveforms during mechanical ventilation.
The performance of the model was verified with experimental
and clinical data in healthy and injured lungs to demonstrate
model efficacy in robustly estimating parameters. These
parameters are hypothetically linked to both physiologic
and ventilator-based mechanisms. Furthermore, the model
outputs yield a pulmonary system compliance that is in good
agreement with single compartment model estimates and, as
expected, compliance decreases with acute lung injury. This
methodology represents a departure from many lung modeling
efforts, and suggests future directions of work that can provide
another pathway for better understanding lung function during
mechanical ventilation and can potentially form a bridge between
experimental physiology and clinical practice.
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Pulmonary Gas Exchange Efficiency: 
The Oxygen Deficit
G. Kim Prisk * and John B. West 
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The efficiency of pulmonary gas exchange has long been assessed using the alveolar-
arterial difference in PO2, the A-aDO2, a construct developed by Richard Riley ~70 years 
ago. However, this measurement is invasive (requiring an arterial blood sample), time 
consuming, expensive, uncomfortable for the patients, and as such not ideal for serial 
measurements. Recent advances in the technology now provide for portable and rapidly 
responding measurement of the PO2 and PCO2 in expired gas, which combined with the 
well-established measurement of arterial oxygen saturation via pulse oximetry (SpO2) 
make practical a non-invasive surrogate measurement of the A-aDO2, the oxygen deficit. 
The oxygen deficit is the difference between the end-tidal PO2 and the calculated arterial 
PO2 derived from the SpO2 and taking into account the PCO2, also measured from end-tidal 
gas. The oxygen deficit shares the underlying basis of the measurement of gas exchange 
efficiency that the A-aDO2 uses, and thus the two measurements are well-correlated 
(r2 ~ 0.72). Studies have shown that the new approach is sensitive and can detect the 
age-related decline in gas exchange efficiency associated with healthy aging. In patients 
with lung disease the oxygen deficit is greatly elevated compared to normal subjects. The 
portable and non-invasive nature of the approach suggests potential uses in first 
responders, in military applications, and in underserved areas. Further, the completely 
non-invasive and rapid nature of the measurement makes it ideally suited to serial 
measurements of acutely ill patients including those with COVID-19, allowing patients to 
be closely monitored if required.

Keywords: alveolar-arterial PO2 difference, A-aDO2, pulse oximetry, hypoxemia, Bohr effect

INTRODUCTION

For the lung to exchange gas (O2 from the inspired air into the blood, and CO2 from the 
blood to the expired gas), alveolar gas and pulmonary capillary blood must be  brought into 
close apposition across the thin alveolar-capillary membrane. Any degree of spatial mismatch 
between ventilation and perfusion [ventilation-perfusion (VA/Q) inequality] will lower the 
efficiency of the exchange of any gas, resulting in a difference between the partial pressure 
of a gas in the arterial blood leaving the lung, and gas in the exhaled breath (Rahn and 
Fenn, 1955; West, 1969).
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For O2 and CO2, the dissociation curves that describe the 
content of the gas in blood as a function of partial pressure, 
are markedly different. The sigmoidal shaped O2 dissociation 
curve rapidly flattens at higher values of PO2. Thus, the presence 
of any regions of the lung with a low VA/Q ratio will result 
in the addition of poorly oxygenated blood to the arterial 
circulation, but a compensatory increase in overall ventilation 
(from chemoreceptive responses) cannot add more oxygen to 
blood exiting regions of high VA/Q. In contrast, the quasi-
linear CO2 dissociation curve means that low and high VA/Q 
regions can compensate for each other. Thus, it is common 
to see patients with pulmonary disease with arterial hypoxemia, 
while having a normal arterial PCO2 (West and Luks, 2016).

A small increase in VA/Q inequality occurs with healthy aging 
(Cardus et al., 1997), and increased VA/Q inequality is a hallmark 
of virtually all pulmonary diseases (Hopkins and Wagner, 2017). 
Therefore, the measurement of the alveolar-arterial PO2 difference 
(A-aDO2) has long been a mainstay in assessing the disruption 
to pulmonary gas exchange caused by disease (Filley et al., 1954).

HISTORICAL CONTEXT OF MEASURING 
THE ALVEOLAR-ARTERIAL DIFFERENCE 
IN PO2

While conceptually simple, measuring the A-aDO2 is technically 
challenging. Richard Riley first showed that the PO2 in arterial 
blood could be  measured by equilibrating a small bubble of 
air with the blood and measuring the PO2 in the gas (Riley 
et  al., 1957). However, at the time, the technical difficulties 
of reliably sampling alveolar gas were overwhelming. To bypass 
this problem, Riley developed the construct of the “ideal alveolar 
PO2.” This was the alveolar PO2 in the lung that would have 
been present if there was no ventilation-perfusion inequality, 
the PCO2 in the alveolar gas was the same as that in arterial 
blood, and the respiratory exchange ratio was the same as 
that in the actual lung.

The ideal alveolar PO2 can be obtained from an arterial blood 
sample using the alveolar gas equation (Rahn and Fenn, 1955):

 
ideal PAO PIO PaCO R PaCO FIO R R2 2 2 2 2 1= − − ∗ ∗ −( ) / /

where A refers to alveolar, a to arterial, I  to inspired, and R is 
the respiratory exchange ratio, the CO2 production divided by 
the O2 consumption (generally assumed to be  0.8 at rest). The 
final term in this equation is often ignored as it typically has 
a magnitude of only a few mmHg. A more detailed description 
of Riley’s innovative approach can be found in West et al. (2020). 
This approach provides a number representing the alveolar PO2, 
and it does so without actually measuring alveolar gas.

THE ALTERNATIVE APPROACH OF THE 
OXYGEN DEFICIT

Compact, rapidly responding gas analysis devices are now 
readily available, allowing direct measurement of expired PO2 

and PCO2. The Riley construct utilizes the ideal alveolar PO2 
to obviate the need to make a “technically difficult” measurement 
to calculate the A-aDO2. The oxygen deficit (OD) comes from 
a direct measurement of expired gas partial pressures and uses 
a non-invasive means to determine what would otherwise be an 
invasive measurement, the arterial PO2.

The approach is to continuously measure expired O2 and 
CO2 while the patient breathes quietly on a mouthpiece while 
wearing a noseclip. The final concentrations measured just 
before the abrupt transition to inspired gas are taken as the 
end-tidal values of PO2 and PCO2. An example of the expired 
gas record is shown in Figure  1. The end-tidal values for 
partial pressure are a good reflection of the values within the 
alveolus (discussed in detail in reference West et  al., 2020) 
and are highly reproducible. Previous work has shown that 
the breath-to-breath within-subject standard deviation of normal 
subjects breathing air is ~1.4 mmHg for PO2 and ~0.7 mmHg 
for PCO2 (West et  al., 2020), with somewhat lower numbers 
when breathing a hypoxic gas. A trend plot of the last 30 
values of these (covering 1–2 min) provides a direct indication 
of whether the patient is in steady-state, an important 
consideration since highly variable breathing would result in 
considerable variation in end-tidal partial pressures for both 
O2 and CO2.

Having directly measured the alveolar partial pressure for 
O2 (and CO2), the A-aDO2 could be  measured directly by 
taking an arterial blood sample to measure arterial PO2. However, 
to make the process both rapid and non-invasive, arterial PO2 
is estimated from the arterial oxygen saturation (SaO2) as 
measured by pulse oximetry (SpO2) as determined simultaneously 
using a fingertip pulse oximeter. This is then used to determine 
the corresponding arterial PO2 from the Hill equation:

 PO P SaO SaO
n n
2 50 2 21= ∗ −( )/

where P50 is the PO2 at a saturation of 50%, and the SaO2 is 
expressed as the fractional saturation; range [0, 1]. PO2 is 
determined by taking the logarithm of the equation and 
solving algebraically.

The term n (commonly referred to as the “Hill-n”) is that 
required to match the sigmoidal shape of the O2-Hb dissociation 
curve, and a value of 2.7 is commonly used (Severinghaus, 
2002; Prisk and West, 2019). While a Hill-n of 2.7 provides 
an excellent fit to the experimentally determined values of 
saturation and PO2 over the entire range of saturation 
(Severinghaus, 1966; Prisk and West, 2019), in practice, only 
blood oxygen saturations in the range of 75–100% are likely 
to be  encountered in patients. Over this limited range, an 
improved fit to the experimental data is achieved with a 
Hill-n = 2.88 (Liu et  al., 2020).

The P50 of blood is normally ~27 mmHg, however this varies 
with alterations in PCO2, body temperature, base excess, and 
levels of 2,3-diphosphoglycerate (2,3-dpg; West and Luks, 2016). 
Because the end-tidal gas partial pressure reflects the alveolar 
PCO2, the leftward or rightward shift of the O2-Hb dissociation 
curve from a PCO2 different to the normal value of 40 mmHg 
(the Bohr effect) can be  accounted for. Using the Kelman 
routines (Kelman, 1966, 1968) an empiric relationship for P50 
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A

B

FIGURE 1 | Example of the screens displayed in the commercial version of the Alveolar Gas Meter (AGM100TM, MediPines Corp, Costa Mesa, CA). Data are taken 
from a spontaneously breathing patient suffering from COVID-19. (A) Continuous records of PO2 (red) and PCO2 (blue) over a 30-s period of quiet breathing (upper 
traces). Note that in this patient there is a steep alveolar plateau for O2 and CO2, indicative of marked heterogeneity in the lung. Below these are plots of end-tidal 
PO2 (red) and PCO2 (blue) over the preceding 150 s. The lower traces allow an assessment of whether the patient is in a steady state. This is also indicated by the 
Steady State indicator in the lower right of the screen. At the top of the screen are numerical values for the end-tidal partial presses of O2 and CO2, the respiratory 
quotient (RQ), respiratory rate (RR), barometric pressure (PBar), inspired PO2 (PIO2), pulse rate (PR) and arterial oxygen saturation via pulse oximetry (SpO2). In the 
center at the top is the calculated arterial PO2 (termed gPaO2, red text), and the O2 Deficit (the difference between end-tidal PO2 and calculated arterial PO2). (B) A 
screen summarizing the data from (A) without the graphical displays. The cartoon of the lung on the right shows the measured end-tidal PO2 (115 mmHg in this 
example), and the calculated arterial PO2 (gPaO2, 66 mmHg in this example), which together result in the oxygen deficit in traffic-light color-coded text (49 mmHg in 
this example). The operator may toggle between this screen and that in (A) as desired.
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assuming otherwise normal conditions for temperature, base 
excess and 2,3-dpg is determined (Prisk and West, 2019). This 
is used to correct for changes in alveolar PCO2, assuming this 
is equal to arterial PCO2, an equivalence that has been long 
established (Comroe and Dripps, 1944). Alterations in base 
excess, 2,3-dpg, or body temperature are not accounted for, 
because a blood sample is not obtained.

The difference between the calculated arterial PO2 and the 
measured end-tidal (alveolar) PO2 is termed the OD. This can 
be  thought of as a surrogate measurement of the A-aDO2. In 
the latter case the arterial value is measured, and the alveolar 
value estimated as described by Riley (above), while in the 
case of the OD, the alveolar value is measured, and the arterial 
value estimated. This should not be  confused with the “oxygen 
deficit” that provides a measure of the anaerobic contribution 
during exercise (Krogh and Lindhard, 1920; Medbo et al., 1988).

LIMITATIONS OF THE MEASUREMENT 
OF THE OXYGEN DEFICIT

In the normal lung there is variation in the regional alveolar 
PO2, and this is often exaggerated in lung disease. The expired 
gas is a mixture of gas from all regions of the lung, just 
as the arterial blood is a mixture of blood from all regions 
of the lung. Further as gas exchange continues throughout 
expiration, PO2 continues to fall. However, provided the 
end-tidal values are measured at functional residual capacity 
(FRC), the naturally occurring volume for end expiration 
at rest, the effect of ongoing gas exchange is minimal. Thus, 
the end tidal PO2 is a direct and useful measurement of 
the alveolar PO2 (West et  al., 2020).

The obvious challenge of determining the OD is the estimation 
of the arterial PO2 from the SpO2 given the shape of the 
O2-Hb dissociation curve which is very flat at higher values 
of PO2. At high values, even small errors in SpO2 translate 
into large differences in the calculated PaO2. However, this 
problem becomes smaller at lower values of SpO2 as the O2-Hb 
dissociation curve becomes steeper. A study addressing the 
likely errors in calculated PaO2 showed that for SpO2 values 
of 94% and below, the error in the calculated PaO2 was less 
than 5 mmHg (Prisk and West, 2019). Above a SpO2 of 94% 
the calculation of PaO2 was, as expected, unreliable. However, 
if SpO2 is greater than 94% while breathing air at sea level, 
then no major gas exchange impairment exists, and so there 
is no need to measure OD.

Because the approach considers the alveolar PCO2 as well 
as the PO2, the left or right shift in the O2-Hb dissociation 
curve from changes in alveolar PCO2 (the Bohr effect) can 
be  directly accounted for. This effect is the principal cause 
of shifts in the O2-Hb dissociation curve, and so the ability 
to correct for this is critical. Failure to do so would result 
in errors in the OD of >5 mmHg for SpO2 values of 94% 
(see figure  4 of Prisk and West, 2019 for details). Shifts in 
the O2-Hb dissociation curve from other causes (base excess, 
temperature, 2–3 dpg) are not taken into account with the 
non-invasive approach. These however, are much smaller, 

and produce only minor errors in the calculated OD (Prisk 
and West, 2019). A Monte Carlo simulation of the typical 
simultaneously present errors in the measurements of SpO2 
and alveolar PCO2 showed that the calculated OD had a 
slight negative bias (<5 mmHg) and typical variability of 
~5 mmHg at an SpO2 of 94%, with both of these values 
decreasing as SpO2 fell, showing the viability of the approach 
(Prisk and West, 2019).

OXYGEN DEFICIT IN NORMAL 
SUBJECTS

Initial studies in normal subjects were performed with the 
subjects breathing a hypoxic gas mixture (FIO2 = 0.125) to 
ensure that the SpO2 fell into the range in which OD could 
be reliably measured (SpO2 < 95%). A study of 20 young subjects 
(19–31 years) and 11 older subjects (47–88 years) showed a 
very small OD in the young cohort (~2 mmHg), which was 
increased in the older (~8 mmHg; West et  al., 2018b). The 
increase in OD with increasing age is consistent with the well-
known increase in the A-aDO2 with healthy aging (Raine and 
Bishop, 1963).

A more extensive subsequent study explored the effects of 
varying the inspired oxygen between the previously used hypoxic 
gas (FIO2 = 0.125) up to and including breathing air (FIO2 
values of 0.15, 0.175, and 0.21; Liu et  al., 2020). This study 
again showed a higher OD in the older cohort compared to 
the young, with the difference persisting at all values of inspired 
oxygen, including air. Importantly, there was no statistical 
difference in the measured values of OD between and FIO2 
of 0.125 and 0.175, although OD rose in both cohorts when 
the subjects were breathing air. The result is consistent with 
an expected reduction in the A-aDO2 as inspired PO2 is lowered 
due to minimization of the effect of VA/Q inequality as the 
saturation falls and gas exchange occurs on the steeper and 
more linear portion of the O2-Hb dissociation curve. The intra-
subject variability in the measured OD was large at high values 
of SpO2, and fell rapidly as SpO2 was reduced below 94%, 
consistent with the simulation studies performed (Prisk and 
West, 2019). The study showed that the OD was sensitive to 
the mild gas exchange impairment associated with healthy 
aging, even while breathing air, but that individual errors at 
high values of SpO2 meant that the measurement was not 
likely to be useful in individual subjects at SpO2 values above 94%.

A recent study has also demonstrated the validity of the 
non-invasive approach to measure a gas exchange deficit. A direct 
comparison between OD and arterial blood gas (ABG) was 
performed in 25 normal subjects during hypoxic exercise, showing 
a correlation between OD and A-aDO2 with an r2 = 0.71, and 
with a small bias between the two, with OD being on average 
5.2 ± 5.0 mmHg higher than A-aDO2 (Howe et  al., 2020). The 
non-invasive nature of the measurement serves to enable 
measurements in conditions in where it would be  challenging 
to perform ABGs, and in particular, serial ABGs. Recent examples 
are measurements performed in trained breath-hold divers before 
and after dives at an open-water dive site (Patrician et al., 2021a,b). 
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The studies showed a substantial but transient decrement in gas 
exchange efficiency as measured by increased OD, in some cases 
to nearly 70 mmHg. This was likely due to the development of 
pulmonary edema from the hydrostatically induced lung 
compression (lung-squeeze).

OXYGEN DEFICIT IN PATIENTS WITH 
LUNG DISEASE

A small initial study in a cohort of ambulant patients from 
a general pulmonary outpatient clinic with a variety of pulmonary 
diseases showed that the OD was greatly elevated in this group 
compared to normal, with an average OD of ~49 mmHg (West 
et  al., 2018a). When the OD was directly compared to the 
A-aDO2 measured by the collection of an ABG in 23 patients 
with an SpO2 of 95% or less, there was a high correlation 
(r2 = 0.72; West et  al., 2018c). There were similar strength 
correlations between the calculated PaO2 and that measured 
from the ABG, and between end-tidal PCO2 and that from 
the ABG. The calculated PaO2 was on average ~4 mmHg higher 
than that measured from the ABG. This study showed that 
the non-invasive approach provided a convenient, low cost, 
and accurate alternative to the use of an ABG to measure the 
magnitude of the gas exchange disruption in patients with 
pulmonary disease.

A recent case report highlighted the use of the non-invasive 
approach in determining the underlying cause of a gas exchange 
defects in a patient in whom ABGs could not readily be obtained 
(Amaza et al., 2021). This report served to highlight the potential 
of the non-invasive approach, and further showed that the 
approach was useful as a teaching tool.

In the context of the ongoing SARS-CoV-2 pandemic, a 
small preliminary study investigated the usefulness of the 

non-invasive approach to measuring the impairment of 
pulmonary gas exchange in patients with suspected COVID-19 
considered to be at risk of deterioration before obvious respiratory 
failure had ensued (McGuire et  al., 2021). Patients were either 
breathing air, or on supplemental low-dose oxygen, which was 
temporarily discontinued for ~10 min before measurements 
were taken. Of 13 patients studied, five were discharged home 
and the other eight were admitted based on physician decision 
using standard procedures. The OD was significantly greater 
in the patients who were admitted than in those who were 
discharged (OD 55 ± 20 vs. 32 ± 14 respectively, p = 0.041), 
suggesting that the measurement was a potentially useful means 
of assessing severity. Similarly, the oxygen deficit was significantly 
higher in the patients requiring supplemental O2 than in those 
who did not (65 ± 9 vs. 30 ± 1 respectively, p < 0.001) again 
suggesting that the non-invasive measurement of gas exchange 
impairment provided useful clinical insight in a rapid 
non-invasive manner.

DISCUSSION

The studies performed to date show that a non-invasive approach 
can be  used to quantitatively assess the gas exchange deficit 
in patients with pulmonary disease. The approach taken is in 
many respects comparable to the traditional measurement of 
the A-aDO2 first developed by Riley, and there is considerable 
physiological overlap in the measurements. This is shown in 
Figure 2 which shows the classic O2-CO2 diagram and highlights 
the aspects of the VA/Q inequality that the two 
methods encompass.

The traditional method of Riley focuses on the consequences 
of the presence of regions of low VA/Q that serve to add 
end-capillary blood with a low PO2 to the arterial blood 

FIGURE 2 | Classic O2-CO2 diagram with the ventilation-perfusion line joining the points for mixed venous blood and inspired gas. The traditional Riley analysis is 
based on the composition of arterial blood and ideal alveolar gas, and it is strongly biased by lung units with low ventilation-perfusion ratios that lie to the left of the 
ideal point (hatched area). By contrast, the new test also includes contributions from lung units with high ventilation-perfusion ratios that are located to the right of 
the ideal point. Modified from West et al. (2018a).
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(so-called venous admixture), the result being arterial 
hypoxemia and an increased A-aDO2. The measurement of 
oxygen deficit encompasses the effects of low VA/Q and 
high VA/Q, although the effect of high VA/Q regions on 
arterial PO2 is small because of the shape of the O2-Hb 
dissociation curve. The large overlap in the areas of influence 
of the two methods (Figure  2) means that the two 
measurements would be  expected to be  highly correlated, 
albeit not the same, and this was demonstrated with a 
strong correlation between measures of A-aDO2 and OD 
(West et  al., 2018c; Howe et  al., 2020).

It is reasonable to question what additional information is 
gained by measuring the OD as opposed to simply measuring 
SpO2. While both VA/Q mismatch and shunt will serve to 
decrease arterial PO2 (and thus SpO2) and increase OD, so 
too will hypoventilation. Because the alveolar PCO2 is also 
measured, hypoventilation can readily be  detected which may 
provide an important clinical distinction of the cause of 
hypoxemia in some patients. Further, the OD takes into account 
the effect of changes in PCO2 on the O2-Hb dissociation curve. 
Thus, the oxygen deficit directly addresses the efficiency of 
gas exchange, in the same way that the A-aDO2 does.

The important clinical measurement of the A-aDO2 has been 
performed using an invasive approach for ~70 years. However, 
its use has become less common in recent years, likely due 

to the cost, time required for the measurement, and the 
uncomfortable and invasive nature of the procedure. In contrast, 
the OD is a rapid, non-invasive measurement that can be readily 
performed on patients ranging from ambulatory to those on 
mechanical ventilation. The measurement takes only a few 
minutes, requiring only that the patient breathe quietly on a 
mouthpiece while wearing a noseclip for ~2 min, while wearing 
a fingertip pulse oximeter. The equipment is portable, making 
it suitable for use not only in the hospital, but in the field, 
and in underserved areas.
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Background: Inspiratory muscle training (IMT) may improve respiratory and
cardiovascular functions in obstructive sleep apnea (OSA) and is a potential alternative
or adjunct treatment to continuous positive airway pressure (CPAP). IMT protocols
were originally designed for athletes, however, we found some OSA patients could not
perform the exercise, so we aimed for a more OSA-friendly protocol. Our feasibility
criteria included (1) participants successfully managing the technique at home; (2)
participants completing daily practice sessions and recording data logs; and (3)
capturing performance plateaus to determine an optimal length of the intervention.

Methods: Five sedentary OSA patients participated in this feasibility study (three men,
mean age = 61.6 years, SD = 10.2). Using a digital POWERbreathe K4 or K5 device,
participants performed 30 daily inhalations against a resistance set at a percentage of
maximum, recalculated weekly. Participants were willing to perform one but not two daily
practice sessions. Intervention parameters from common IMT protocols were adapted
according to ability and subjective feedback. Some were unable to perform the typically
used 75% of maximum inspiratory resistance so we lowered the target to 65%. The
technique required some practice; therefore, we introduced a practice week with a 50%
target. After an initial 8 weeks, the intervention was open-ended and training continued
until all participants demonstrated at least one plateau of inspiratory strength (2 weeks
without strength gain). Weekly email and phone reminders ensured that participants
completed all daily sessions and logged data in their online surveys. Weekly measures
of inspiratory resistance, strength, volume, and flow were recorded.

Results: Participants successfully completed the practice and subsequent 65% IMT
resistance targets daily for 13 weeks. Inspiratory strength gains showed plateaus in
all subjects by the end of 10 weeks of training, suggesting 12 weeks plus practice
would be sufficient to achieve and capture maximum gains. Participants reported no
adverse effects.
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Conclusion: We developed and tested a 13-week IMT protocol in a small group of
sedentary, untreated OSA patients. Relative to other IMT protocols, we successfully
implemented reduced performance requirements, a practice week, and an extended
timeframe. This feasibility study provides the basis for a protocol for clinical
trials on IMT in OSA.

Keywords: sleep apnea, breathing, sleep, training, intervention, inspiratory muscle training, respiration, strength

INTRODUCTION

Over 10% of the population suffers from obstructive sleep apnea
(OSA), a disorder characterized by repeated pauses in breathing
during sleep due to collapsing of the upper airway (Peppard
et al., 2013; Marshall et al., 2014). The condition is a major
risk factor for cardiovascular disease including hypertension and
cardiovascular disease (Monahan et al., 2009; Peppard et al.,
2013; Javaheri et al., 2017; Whelton et al., 2018). Nightly use
of continuous positive airway pressure (CPAP), the standard
treatment for OSA, resolves the breathing disruptions and
improves some of the symptoms, but shows mixed results for
reducing blood pressure (BP) (Barbé et al., 2012; McEvoy et al.,
2016; Whelton et al., 2018). Furthermore, CPAP adherence is
often low, as patients experience it as intrusive and difficult
to wear throughout the night. In some patients, weight loss
and physical exercise improve daytime symptoms and breathing
during sleep, but as with other chronic conditions, more often
than not, stable long-term health behavior change in OSA is not
achieved (Aiello et al., 2016; Vranish and Bailey, 2016; Souza
et al., 2018; Carneiro-Barrera et al., 2019). Consequently, there
remains a need for complementary or alternative interventions
for treating OSA and its comorbidities.

One potentially beneficial intervention for people with OSA
is inspiratory muscle training (IMT). IMT is the practice
of strengthening respiratory muscles involved in inhalations
(Larson et al., 1988). Simplistically, OSA arises from a failure of
breathing, therefore training breathing may improve symptoms.
More specifically, since OSA involves the collapse of the upper
airways with inspiration during sleep, IMT may reduce the
number and/or severity of apneas by improving upper airway
muscle tone (How et al., 2007). In addition, IMT may also
improve cardiovascular symptoms, since studies in normotensive
adults and patients with OSA found significant reductions in
BP with IMT, and improved functional capacity in people with
heart failure (Ferreira et al., 2013; Vranish and Bailey, 2015, 2016;
Posser et al., 2016; DeLucia et al., 2018; Fernandez-Rubio et al.,
2020; Ramos-Barrera et al., 2020). The mechanism of IMT effects
on cardiovascular function is unknown, but may be due to either
associations between respiratory and cardiovascular activity, or
due to potential positive IMT-related effects on stress (Grossman
et al., 2001; HajGhanbari et al., 2013; de Abreu et al., 2017;
Fernandez-Rubio et al., 2020). Regardless of the mechanism, the
evidence suggests that IMT has the potential to improve both
breathing and cardiovascular symptoms in OSA.

Inspiratory muscle training can be performed systematically
using devices that provide quantifiable resistance targets and

instant performance feedback. These targets are usually set as
a percentage of the maximum inspiratory pressure that an
individual can generate, as measured by a sensor in the device.
The technique is akin to weight training where a set of repetitions
is performed using a fixed weight. As the respiratory muscles
gain strength, the IMT device allows the target resistance to
be increased, so the training adapts to the person’s current
strength. A common target resistance in IMT studies is 75%
of the maximum capacity, in a set of 30 repetitions performed
twice daily for 6 weeks (HajGhanbari et al., 2013). However,
such parameters are not achievable by all non-athletes or
people with other chronic conditions who may have limited
fitness or mobility. Therefore, modifications are needed for such
populations. For example, in IMT studies with older adults,
parameters vary from 4 to 8 weeks of training duration, 30–
80% target resistance, and between 5 and 7 weekly sessions
(Seixas et al., 2020). Although one research group developed
and successfully tested a protocol for people with OSA for
6 weeks, 75% of maximum target resistance performed twice daily
(Vranish and Bailey, 2016; Ramos-Barrera et al., 2020), several of
our participants required repeated practice sessions across several
days to learn the technique, and were still unable to inhale against
the 75% target resistance. Hence, they were unable to complete
the exercise. Other participants were reluctant to practice two
times a day. We speculate that compared to earlier studies, our
participants were sedentary with reduced capacity to perform the
resistance training, and that they had less time and motivation
to practice twice daily, since they were not retired. To develop
a protocol that was suited to our sedentary patient population,
we aimed to modify the previously tested parameters, such that
participants could successfully perform the practice and adhere
to the training schedule. Our objective was to develop a clinical
trial IMT protocol for untreated, sedentary OSA patients. Our
approach was to work with a small group of sedentary OSA
patients to test and adapt previously tested IMT parameters
based on subjective feedback and quantitative measures. We also
aimed to derive an empirical basis for a clinical trial duration.
Therefore, the trial began with an 8-week minimum duration
and continued until performance plateaued or until participants
reported unwillingness to continue.

Our feasibility criteria for the protocol included:

(1) All participants had to be able to successfully perform
the practice using the same settings (e.g., starting
resistance);

(2) Participants had to complete daily practice sessions;
(3) Participants had to complete the protocol until the end; and
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(4) Participants had to show sustained increases and eventually
plateaus in inspiratory strength.

METHODS

Participants
We recruited participants at the University of California, Los
Angeles (UCLA) campus and the local community via digital
and printed fliers. Inclusion criteria were a diagnosis of mild,
moderate, or severe OSA based on a two-night home sleep
study using a polysomnography device scored according to the
2012 American Academy of Sleep Medicine criteria (Ayappa
et al., 2008; Berry et al., 2012); aged 21–75; and no current
or previous sustained use of OSA treatment. Exclusion criteria
included a history of stroke, heart failure, or other major
cardiovascular disease, a history of diagnosed mental health
conditions other than unipolar depression or anxiety disorder,
respiratory illness other than OSA (including contraindications
for IMT such as pulmonary hypertension), cystic fibrosis,
presence of mass brain lesions, renal failure (requiring dialysis)
and drug abuse. While IMT is considered a low risk practice,
the resulting large negative pressure swings within the chest
(intra-thoracic decompression) hold a potential risk of sub-
atmospheric pressures in the chest, throat, inner ear, and sinuses
(McConnell et al., 2005). Therefore, exclusion criteria due to
IMT contraindications also included a history of spontaneous
pneumothorax, traumatic pneumothorax that was not fully
healed at the time of recruitment, burst eardrum or other
conditions of the eardrum, including recent eardrum surgery,
unstable asthma, and abnormally low perception of dyspnea.

The procedures were approved by the UCLA Institutional
Review Board. Participants provided written informed consent
signed digitally for initial remote activities and in written form
at the first in-person visit. There was no public involvement as
this was an early-stage study.

Screening
Participants initiated contact by phone, email, or text, whereupon
a researcher contacted them by phone. The telephone screening
involved assessing potential participants’ medical history,
including the assessment of the previously listed inclusion and
exclusion criteria. Potential participants then completed an
online survey assessing further details about medical history,
demographics, sleeping times, subjective sleep quality, and
daytime sleepiness. Participants who met the study criteria were
subsequently referred for a home sleep study.

Home Sleep Study
Home sleep studies were executed by a third party, SleepMed
(SleepMed Inc., Peabody, MA, United States), in conjunction
with the UCLA Sleep Disorders Center. Within 48 h of
enrollment into the study, participants received a phone call by a
SleepMed representative to schedule an appointment for delivery.
Upon receiving the portable SleepMed polysomnography device
[ARESTM Home Sleep Test system (Ayappa et al., 2008)] in the
mail, participants wore the device strapped to their foreheads

for two consecutive nights with a nightly minimum of 4 h.
The device recorded heart rate, breathing, oxygen saturation,
snoring from auditory recordings, and electroencephalogram
(EEG) during their sleep. The return packaging and paid postage
was included in the original shipment. After completion of
the second night, participants returned the device to SleepMed
by mail, where the data was uploaded and scored by a sleep
technologist in a draft report. This report was made available
to the research group and interpreted by the sleep physician of
our research group. The apnea hypopnea index (AHI) is the
sum of apneas and hypopneas during sleep per hour and was
derived from the SleepMed data. Mild sleep apnea is reflected
by 5–15 events per hour, moderate by 15–30 and severe by over
30 events per hour. The Respiratory Disturbance Index (RDI)
was computed from the number of apneas per hour, the number
of hypopneas per hour, and the number of respiratory effort-
related arousals (RERAs) per hour during sleep. Mild OSA is
indicated by an RDI score from 5 to 15, moderate 15 to 30, and
severe over 30. An OSA diagnosis was provided within 2 weeks
of the data upload. Participants subsequently received their sleep
report via a secure and password protected system from the
research group. If a diagnosis of OSA was made, participants were
eligible for the study.

Inspiratory Muscle Training
Inspiratory muscle training is performed by inhaling against
a resistance a given number of times. For the purposes of
controlling the intervention parameters and verifying the number
of repetitions, we used a device that would provide a consistent,
fixed resistance. POWERbreathe (POWERbreathe International
Ltd., Southam, United Kingdom) provides such palm-sized,
handheld devices for IMT. Previous studies have used the K3
model (Vranish and Bailey, 2016), but upon testing this model,
we were unable to manually adjust the resistance settings,
therefore we selected models K4 and K5 instead. Both are digital
devices and include software that logs and tracks performance
over time. Both models provide immediate feedback to the
user. These devices adapt the resistance to match the decline in
strength of each individual breath to allow for greater flow and
maximum volume. The target resistance was set as a percentage
of the maximum inspiratory strength based on the average of
three trials. A nose clip was used to prevent nasal breathing.
The participant was instructed to stand up with their backs
straight so they could maximally fill their lungs and expand their
rib cages. The mouthpiece was inserted between the lips upon
switching on of the device. Basic instructions were as follows:
“Thirty breaths reaching the target threshold should be completed
in the following way: inhalations should be fast, deep and noisy,
with the shoulders remaining relaxed. The diaphragm should be
expanding, and the lungs should be filled as much as possible. You
should feel the deep breaths stretching the rib cage and shoulder
muscles. Exhalations should be much slower and quieter than
inhalations. In order to prevent lightheadedness, the breath should
be held after each exhalation until you feel you need to breathe
in again. The IMT device displays a count-down from 30 to 0,
and only records inhalations that exceed the target resistance.” If
the participant was unable to reach the target resistance, another
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TABLE 1 | Protocol modifications after testing five OSA participants.

Component Standard Modified Rationale

Training period None 1 week at 50% resistance Training period allowed people to learn the technique correctly. Fifty
percent target provides resistance without being overly challenging.

Training materials None Online videos and paper
handout demonstrating
techniques and troubleshooting

Participants were able to address difficulties, especially in the first
2–3 weeks of training, as they were becoming familiar with the
technique. These materials improved people’s correct use of the device.

Target resistance 75% 65% We aimed for consistency across participants. The standard 75%
resistance were not attainable by all participants. However, 65% was
achievable by all participants. We concluded that sedentary OSA
participants may not be able to reach the standard target resistance
that is used by people who exercise.

Daily practice sessions Twice a day (more recent
studies once a day)

Once a day In order to maintain 100% adherence and consistency across
participants for the entire training period, we reduced the number of
training sessions a day to one. Some participants expressed concerns
about practicing twice a day, while none expressed concerns about one
session a day.

Duration 6 weeks 13 weeks (1 week 50% and
12 weeks 65%)

We determined the duration based on a plateau of strength increases
and participant acceptability.

trial was added to complete the 30 breaths. Each set required
5–10 min to complete.

Intervention
Prior to starting the training, a research team member worked
with the participants to test and adapt the IMT parameters.
Experiences with initial attempts to train participants on the use
of the device demonstrated that the maximum starting target
resistance settings for each individual participant varied, even
though each was calibrated to the maximum strength of the
individual. While some participants found it easy to start at
75% resistance or more, some struggled to complete even a few
breaths at this level. After discussions and feedback from the
participants, we made two adaptations: (1) Participants initially
practiced at a lower target resistance with the goal of learning
the technique without the performance pressure. Typically,
this required them to start with an inhale followed by a full
exhale in preparation of the intended forceful inhalation. This
allowed them to take a longer than usual sustained inhalation;
(2) We set the ongoing target at 65% of the maximum, a
level that was achievable for all participants. We found 65%
to be the highest resistance that all five participants were
able to perform.

We found that some participants had difficulties interacting
with the device and required more demonstrations and guidance.
Therefore, in addition to the instructions above, we provided in-
person training and created a video demonstrating the correct
technique that participants could watch at home. Participants
were also provided with a paper copy of instructions on usage
of the device and proper technique. The resulting protocol and
modifications are shown in Table 1. The daily session duration
was reported to be initially 10 min, and after a week of practice
reduced to typically 5 min.

Data Acquisition
Data entry of the IMT device data was completed by participants
at home via an online survey software with encrypted

connectivity using their unique study identifier. The variables
included inspiratory resistance in percent of the maximum,
strength index (cmH2O), volume in liters (L) and flow in liters
per second (L/s). Measures of interest included performance data
from the IMT device (target resistance, volume, and strength
index). Data acquired with the polysomnography device during
sleep included SaO2, which was also used for OSA diagnosis.
These sleep study data and reports were available online via
the SleepMed portal, but only de-identified data were recorded
locally by the research team. This included AHI and RDI scores.
Other measures of interest acquired from the sleep study and
subjective ratings provided during the online survey included
self-rated sleep quality ranging from 0 to 10 (poor to good), and
excessive daytime sleepiness (ESS) score.

Analysis
We computed descriptive statistics in Microsoft Excel, including
means, medians, standard deviations (SD), and range (minimum
to maximum). We used SPSS version 27 to test within-
group changes in sleep data, SaO2 and IMT device data using
the non-parametric Wilcoxon signed-rank test. Non-parametric
correlations were tested using Kendall’s tau. In addition, we
visualized individual data points for each participant, as well as
the group mean and standard deviation. The visualizations aided
the detection of the performance increases and plateaus, based on
which we adapted the duration of the intervention. We defined a
plateau as the absence of an increase in inspiratory strength for
three consecutive weeks.

Protocol Duration
We aimed to derive an empirical basis for trial duration, so the
trial duration began open-ended, with participants consenting to
participate for up to 8 weeks at a time. We aimed to continue
the intervention until we could no longer observe substantial
strength increases as measured with the IMT device, or until
participants reported unwillingness to continue. Our criterion
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was to end the protocol after all participants demonstrated a 3-
week period with no further increase in strength. This duration
differed between participants; therefore, the weakest participants
would serve as the criterion.

Based on difficulties of some participants to operate the device
and successfully perform the inspirations at the same time,
the target resistance was set to 50% for a practice week. This
allowed the participants to familiarize themselves with the device
use at home without struggling to also complete 30 breaths at
a higher resistance. At the beginning of the second week of
training, the target resistance was then increased to 65%. At the
beginning of each following week, a new maximum strength
was determined, and the 65% target re-calculated accordingly.
The target could only be increased, not decreased. If a lower
maximum strength was measured, the target was kept at the

previous level. Therefore, it was important that participants were
able to build strength from the beginning without struggling
with too high of a resistance. Once a week, the project director
reached out to participants by phone to discuss exercise progress
and answer questions, record subjective experiences and support
protocol adherence.

RESULTS

Five sedentary adults with OSA completed the protocol (three
men; two women; mean age = 62.2 years, SD = 10.5; mean
body-mass index = 33.9, SD = 4.3). All participants reported to
be willing and motivated to complete one daily session for the
initial 8 weeks. Since our criterion of all participants reaching

FIGURE 1 | Inspiratory muscle training (IMT) device data over the course of the intervention. Each colored line depicts a different participant, while the thick black line
reflects the group average with its standard deviation. Panels: maximum inspiratory strength index (A), respiratory volume in liters (B), and average inspiratory
strength (C) of five untreated OSA patients from baseline across 13 weeks of IMT. While participant 1 had a higher baseline on all measures and continued to
increase both resistance and strength until the end of the trial, the average of the group reached a ceiling effect in strength index after approximately 8 weeks (with
slight fluctuations) and after ca. 4 weeks in resistance.

FIGURE 2 | Inspiratory muscle training (IMT) device data for each participant per week. Note the fluctuations in strength index (top panel, right y-axis, red) despite
the flattening of the curve of the target resistance (top panel, left y-axis, blue) for participants 2–5. Only for participant 1, there was a steady increase in both
measures over the entire course of the intervention. The pattern of the flow curve (bottom panel, blue) corresponds to the pattern of the strength index (top panel,
red). For better visualization of the different scales, both are depicted in separate graphs. The volume curve (bottom panel, red) shows less fluctuations and no
overall gain across the training period.
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TABLE 2 | Descriptive statistics and within-group change of IMT device data from baseline to follow-up.

Baseline (week 0) 13-week follow-up Within-group change

Mean (SD) Range Mean (SD) Range Wilcoxon signed rank test

Target resistance (cmH2O) 40.0 (12.5) 24–56 61.2 (9.0) 51–75 S = 15, p = 0.04*

Strength index (cmH2O) 65.2 (17.2) 42–86 87.8 (17.8) 70–116 S = 13, p = 0.14

Flow (L/s) 3.7 (1.02) 2.3–4.9 5.0 (1.0) 4.1–6.6 S = 13.5, p = 0.1

Volume (L) 3.0 (1.1) 2.2–4.8 2.7 (1.1) 1.5–4.3 S = 3.5, p = 0.28

Baseline (pre-practice) 13-week follow-up

AHI 19.4 (14.2) 9–44 16.8 (8.7) 8–30 S = 5.5, p = 0.59

RDI 31.4 (15.8) 15–54 28.8 (9.8) 18–40 S = 4.0, p = 0.72

ESS 9.6 (8.3) 2–22 7.4 (6.5) 1–14 S < 0.0001, p = 1.0

SaO2 nadir (%) 84.9 (2.6) 82.3–87.8 84.4 (5.6) 76.3–90.4 S = 6.5, p = 0.79

SaO2 baseline (%) 94.9 (1.2) 93.3–96.2 94.8 (1.3) 93.3–96.0 S = 2.5, p = 0.79

Mean, SD, and range are shown for each time point. *p < 0.05.

FIGURE 3 | Sleep data for all five participants labeled 1 through 5. While apnea hypopnea index (AHI; A), respiratory disturbance index (RDI; B), oxygen saturation at
nadir (SaO2; C), and the all-night oxygen saturation average (SaO2; F) showed individual variation, subjective rating for daytime sleepiness (D; participants 1 and 2
overlap here) decreased and therefore improved, and rated sleep quality (E) improved in all five participants from baseline to post-IMT intervention.

a plateau had not been met after 8 weeks, all participants were
enrolled in a second open-ended period. After 13 weeks, all
participants had achieved a plateau. Therefore, we finalized the
intervention after 13 weeks. Week 0 reflects the practice week in

which participants practiced at 50% maximum resistance, which
was a low effort for all five participants. Week one subsequently
involved the first week of enhanced effort. Participants then
continued IMT until the end of week 13 (see Figure 1). Resistance
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FIGURE 4 | Inspiratory muscle training (IMT) effects on device performance in percentage change. Panels (A,B) show the percent change in target resistance
measured in cmH2O from 1 week to the next. For better visualization and due to the large drop from the first attempt until the end of the practice week (week 0),
panel (A) shows the data points at a different y-axis scale separately from panel (B) the following weeks. After 8–9 weeks, there was little to no change in target
resistance, i.e., participants were unable to increase their inspiratory strength further at that point. Note that this was not the case for participant 1, whose
performance was superior to the other 4. (C) The percent change of maximum strength index from 1 week to the next showed greater overall variability but except
individual peaks, the general trend evened on the lower end after 4–5 weeks. (D) The overall percentage of change in target resistance (measured in cmH2O) and (E)
maximum strength index from week 0 to week 13. (F) There was a significant association between target resistance and strength index change in percent from week
0 to week 13 as one would expect.

across the group still increased through weeks 6–8 and appeared
to plateau at week 10. Even though resistance stagnated before
week 10 for some participants, we still observed significant
individual variability in strength until the end of the 13 weeks.
Figure 2 depicts each participant’s time course of target resistance
relative to strength index (top panel) and volume relative to
flow (bottom panel). Technical difficulties were reported and
resolved in communication with the team members whenever
necessary, but participants reported no side effects or discomfort
throughout or after completion of the intervention.

All baseline and follow-up data are listed in Table 2: there were
no significant within-subject changes from baseline to 13-week
follow-up for AHI, RDI, ESS, SaO2 at nadir, and baseline SaO2
(ps > 0.59; Figure 3). There was a significant increase in target
resistance (cmH2O) from week 0 to week 13 (S = 15, p = 0.04),
but not in strength index (p = 0.27; see 13-week individual
data Figures 4A–C and pre-to-post differences Figures 4D,E).
The association between this 12-week increase in percent change
target resistance and strength index was marginal (τ = 0.8,

p = 0.05; Figure 4F). The IMT device data demonstrated that
participants gained an average of 15–20% in inspiratory muscle
strength over the course of 4 weeks (see Figure 1C).

DISCUSSION

We developed a protocol for IMT for sedentary adults with
untreated OSA. We found that a 1-week practice period at 50%
of maximum inspiratory resistance followed by 12 weeks at
65% with single daily practice sessions for a total of 13 weeks
was achievable, manageable, and resulted in an average of
15–20% inspiratory muscle strength improvement. This was
a significant increase, despite the small sample size. Target
resistance and strength index data varied greatly between weeks
in some patients. While the target resistance was fixed and
only attempts counted that exceeded the target, any observed
variation stemmed from patients taking stronger than necessary
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inspirations. We further established that initial IMT training
should be supplemented with online and other digital resources
and the opportunity to ask the research team members questions
directly, especially during the first 2 weeks of training. We found
increases in subjective daytime sleepiness, sleep quality, AHI, and
RDI. While these effects were not significant, they provide an
effect size for power calculations.

Our initial intention of participants performing two IMT
sessions a day was not well received by our sample. Participants
raised concerns about their ability to complete two sessions a
day. The single daily session, however, did not elicit concerns
and we observed 100% adherence across the 13 weeks, which was
one of our major goals. During these 13 weeks, each participant
completed a total of 91 IMT sessions involving 30 breaths each.
This high adherence was potentially influenced by the initial
rapport between participants and research team members, as well
as the weekly phone contact. No participant reported logistical
or motivation difficulties in performing the daily IMT practice,
therefore we suggest that adherence may be increased in a clinical
trial after participants are successfully introduced to IMT.

With regards to inspiratory muscle strength, our results
suggest that ceiling or plateau effects in strength index occur after
6 weeks of training in some participants, consistent with previous
published IMT studies. However, even in our small sample, there
was variability in baseline performance capacity. One of our
participants (Peppard et al., 2013) demonstrated a higher baseline
capacity and continued to increase until 13 weeks. It is therefore
possible that there is greater individual variability in both baseline
performance, practice effects, and end results, including ceiling
effects. The results from our sleep measurements demonstrate
sharp improvements for participant 1 and less pronounced
changes for the other four participants. However, only participant
1 had a greater than mild OSA severity. The subjective sleep
quality rating showed improvements for all participants with a
minimum of a 2-point improvement on a scale from 0 to 10.

While most existing IMT studies consist of 6 weeks of training
and symptom-tracking (HajGhanbari et al., 2013), our 12-plus-
1 week intervention was able to better detect potential ceiling
effects in the data tracked daily or weekly. For instance, our
results show the largest increases in average target resistance
across the group from the practice period until the end of week
2. The slope then flattened but continued to increase in minor
increments until the end of the intervention period. If we had
only focused on the first 6 weeks, it would be unclear whether
and with what increments the target resistance continued to
increase or whether it remained at a plateau. Additionally, the
extended intervention period allowed us to track and evaluate
individual performance over time. Participant number 3 reached
a target resistance of 57% after week 3 and was unable to increase
the resistance for the rest of the intervention, while participant
number 1 continued to increase the percentage in small steps

to the end with 75% being the highest final resistance of the
group. In terms of subjective experience, all participants reported
positive changes, so one question that can be addressed in a
clinical trial using a low-resistance control group, is whether
any symptom improvements will be related to the mere daily
practice (i.e., a placebo effect), or whether it was specific to the
inspiratory strength gains. Participants reported appreciating the
1-week practice period at a moderate target resistance (50%).
While this practice week may have induced a practice effect,
the strength gains were likely due to the familiarity with the
technique rather than muscle gain. We conclude that our adapted
IMT protocol is suitable for testing whether IMT might be a
beneficial alternative or complementary treatment to CPAP in
sedentary people with untreated OSA. Using these modifications,
we intend to perform a trial in which we randomize untreated
OSA patients to active vs. low-resistance intervention arms, and
investigate the effects of IMT on respiratory performance, sleep,
and cardiovascular symptoms.
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Direct analysis of isolated mitochondria enables a better understanding of lung
dysfunction. Despite well-defined mitochondrial isolation protocols applicable to other
tissues, such as the brain, kidney, heart, and liver, a robust and reproductive protocol
has not yet been advanced for the lung. We describe a protocol for the isolation
of mitochondria from lung tissue aiming for functional analyses of mitochondrial O2

consumption, transmembrane potential, reactive oxygen species (ROS) formation, ATP
production, and swelling. We compared our protocol to that used for heart mitochondrial
function that is well-established in the literature, and achieved similar results.

Keywords: lung mitochondria isolation, O2-consumption, ROS, ATP, mitochondrial assessment

INTRODUCTION

The assessment of mitochondrial function in organs and tissues is essential for a better
understanding of their biochemistry, physiology, and pathophysiology (Weissig, 2005; Picard
et al., 2011; Meyer et al., 2017; Murphy and Hartley, 2018). The evaluation of mitochondrial
function is usually accomplished in isolated mitochondria (Picard et al., 2011; Gedik et al., 2017;
Maciel et al., 2020, 2021; Caldeira et al., 2021) permeabilized fibers (Perry et al., 2013) or cells
(Perry et al., 2013). These techniques are very well-defined in several types of tissue, e.g., heart
(Gedik et al., 2017), kidney (Schulz et al., 2015), liver (Goudarzi et al., 2018), adipose tissue
(Matta et al., 2021), and brain (Marques Neto et al., 2020), presenting peculiarities and different
indications depending on the tissue and the purpose of the investigation. However, assessment of
lung mitochondrial function presents difficulties associated with obtaining isolated, intact, coupled,
and functional mitochondria. The methodological difficulty of obtaining viable lung mitochondria
derives mainly from an elevated fatty acid content, low amount of mitochondria in the cell, fibrous
and air-filled tissue, and the required amount of tissue (Spear and Lumeng, 1978; Kuznetsov
et al., 2008; Lanza and Sreekumaran Nair, 2009). Recently, we have shown that the isolation of
pulmonary mitochondria with preserved structure and function is possible by means of adaptations
of existing techniques and standardization of a specific method of isolation by differentiated
centrifugation (Caldeira et al., 2021). However, the differences related to mitochondrial isolation
procedures for obtaining these well-preserved pulmonary mitochondria have not been addressed
in detail, and the characteristics of reagents and equipment have not been fully described (Caldeira
et al., 2021). Therefore, the main objective of this article is to provide a practical step-by-step
user protocol upgraded to isolate pulmonary mitochondria. Our isolation protocol is founded
on the differentiated centrifugation method of mice lung homogenate. However, unlike the
classical procedures currently in use, we will use some innovative steps because of the intrinsic
characteristics of the tissue to obtain better and more functional isolated mitochondria. In addition,
we describe in detail the mitochondrial function pertaining to several respiratory complexes.
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MATERIALS AND EQUIPMENT

Materials and Reagents
1. Teflon beaker (BRAND R© beaker, PTFE, low form, catalog

number: Z322660; Merck, Darmstadt, Germany).
2. 50 ml Falcon tubes (FALCON R© Brand, 50 ml polypropylene

conical tube 30 mm × 115 mm style, catalog number:
352070; Coring Science Mexico, Col del, Mexico).

3. 14 ml round-bottom tubes (Thermo ScientificTM, NuncTM

14 ml round-bottom tube, catalog number: 150268;
Thermo Fisher ScientificTM, Waltham, MA, United States).

4. 1.5 and 2 ml microfuge tubes (Eppendorf Safe-Lock Tubes,
1.5 and 2 ml Eppendorf QualityTM, catalog numbers:
0030120086 and 0030120094, respectively; Eppendorf,
Hamburgo, Germany).

5. Syringe filter (Corning R© syringe filters, nylon membrane,
diameter 25 mm, pore size 0.2 µm, catalog number:
CLS431224; Merck, Darmstadt, Germany).

6. Adjustable volumetric pipettes: 10 and 100 µl; and
5 ml (PIPETMAN L P10L, 1–10 µl; PIPETMAN L
P100L, 10–100 µl; PIPETMAN L P1000L, 100–1,000 µl;
PIPETMAN L P5000L, 500–5,000 µl, metal ejector,
catalog numbers: FA10002M, FA10004M, FA10006M, and
FA10007, respectively; Gilson, Middleton, WI, United
States).

7. Dispenser pipette (BRAND R© pipette withdraw volume
3.5 ml, catalog number: 747755; Merck, Darmstadt,
Germany).

8. Hamilton syringe: 10 and 25 µl (Hamilton R© TLC
syringes. catalog number: Z264385 and Z264393,
respectively; Merck, Darmstadt, Germany).

9. Potter-Elvehjem PTFE pestle and glass tube (catalog
number: P7859; Sigma-Aldrich, San Luis, MO, United
States).

10. Silica glass cuvettes (Starna Scientific Ltd., Ilford,
United Kingdom).

11. 96-well white plate, polystyrene, High Bind, white flat-
bottom wells, non-sterile, white (catalog number: CLS3922;
Sigma-Aldrich, San Luis, MO, United States, Corning R©).

12. 96-well black plate, polystyrene, flat bottom, black
polystyrene, matrix active group High Bind, non-sterile
(catalog number: CLS3925; Sigma-Aldrich, San Luis, MO,
United States, Corning R©).

13. 4-Morpholinepropanesulfonic (MOPS) acid (catalog
number: M1254; CAS number: 1132-61-2; Sigma-
Aldrich, San Luis, MO, United States); stored at room
temperature (RT).

14. Adenosine 5′-diphosphate monopotassium salt dihydrate
(ADP, catalog number: A5285, CAS number: 72696-48-
1: Sigma-Aldrich, San Luis, MO, United States); stored
at−20◦C.

15. Adenosine 5′-triphosphate (ATP) assay mix (catalog
number: FLAAM; Sigma-Aldrich, San Luis, MO, United
States) stored at−20◦C.

16. AmplexTM Red Reagent (catalog number: A12222; Thermo
Fisher Scientific, Waltham, MA, United States) stored
at−20◦C.

17. Cyclosporin A (CsA, catalog number: 30024, CAS number:
59865-13-3; Sigma-Aldrich, San Luis, MO, United States)
stored at−20◦C.

18. Ethylene-bis(oxyethylene dinitrilo)tetraacetic acid
(EGTA, catalog number: E0396, CAS number: 67-
42-5; Sigma-Aldrich, San Luis, MO, United States)
stored at RT.

19. Glutamic acid potassium (glutamate, catalog number:
G1501, CAS number: 6382-01-0; Sigma-Aldrich, San Luis,
MO, United States) stored at RT.

20. Bovine serum albumin (BSA, catalog number: A6003, CAS
number: 9048-46-8; Sigma-Aldrich, San Luis, MO, United
States) stored at 4◦C. Critical: BSA is used to remove (bind)
free fatty acids; therefore, use BSA-free fatty acids.

21. Calcium chloride dihydrate (CaCl2, catalog number:
C3306, CAS number: 10035-04-8; Sigma-Aldrich, San Luis,
MO, United States) stored at RT.

22. Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
(FCCP, catalog number: C2920, CAS number: 370-86-5;
Sigma-Aldrich, San Luis, MO, United States) stored at 4◦C.

23. L-Ascorbic acid (ascorbate, catalog number: A5960, CAS
number: 50-81-7; Sigma-Aldrich, San Luis, MO, United
States) stored at 4◦C.

24. Magnesium chloride hexahydrate (MgCl2, catalog number:
M2393, CAS number: 7791-18-6; Sigma-Aldrich, San Luis,
MO, United States) stored at 4◦C.

25. L-(-)-Malic acid (malate, catalog number: M1000; CAS
number: 97-67-6; Sigma-Aldrich, San Luis, MO, United
States) stored at RT.

26. N-(2-Hydroxyethyl)piperazin-N′-(2-ethanesulfonic
acid)] (HEPES, catalog number: H7006; CAS number:
75277-39-3; Sigma-Aldrich, San Luis, MO, United
States) stored at RT.

27. N,N,N,N-Tetramethyl-p-phenylenediamine
dihydrochloride (TMPD, catalog number: T739;
Sigma-Aldrich, San Luis, MO, United States) stored at RT.

28. Potassium chloride (KCl, catalog number: P5405, CAS
number: 7447-40-7; Sigma-Aldrich, San Luis, MO, United
States) stored at RT.

29. Potassium dihydrogen phosphate (KH2PO4, catalog
number: P5655, CAS number: 7778-77-0; Sigma-Aldrich,
San Luis, MO, United States) stored at RT.

30. Sodium phosphate dibasic (Na2HPO4, catalog number:
S3264, CAS number: 7558-79-4; Sigma-Aldrich, San Luis,
MO, United States) stored at RT.

31. Succinic acid (succinate, catalog number: S3674, CAS
number: 110-15-6; Sigma-Aldrich, San Luis, MO, United
States) stored at RT.

32. Sucrose (catalog number: S7903, CAS number: 57-50-1;
Sigma-Aldrich, San Luis, MO, United States) stored at RT.

33. Trizma base (Tris, catalog number: T6066, CAS number:
77-86-1; Sigma-Aldrich, San Luis, MO, United States)
stored at RT.

34. Tetramethylrhodamine methyl ester perchlorate (TMRM,
catalog number: T5428, CAS number: 115532-50-8;
Sigma-Aldrich, San Luis, MO, United States) stored
at−20◦C.
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Recipes
1. Isolation buffer in mmol/l: sucrose 250; HEPES 10; EGTA

1, pH 7.4. Dissolve 85.58 g of sucrose, 2.6 g of HEPES, and
0.38 g of EGTA in 800 ml of ultrapure water. Adjust pH to
7.4 using 2 mol/l Tris, and bring the solution to 1 L and
store at 4◦C.

2. BSA isolation buffer: Dissolve 400 mg of BSA fat-free in
50 ml isolation buffer.

3. Electrolyte solution in mmol/l: Na2HPO4 374; KH2PO4
191; KCl 139.5; NaN3 15.38. Dissolve 2.655 g of Na2HPO4,
1.3 g of KH2PO4, and 0.52 g of KCl in 50 ml ultrapure water.
Add 0.05 g of NaN3 and a few crystals of AgCl to provide
a saturated solution. Filtrate the solution and store at 4◦C.
Caution: NaN3 is highly toxic.

4. Incubation buffer for respiration pyruvate/malate
(IBRP/M) in mmol/l: 125 KCl; 10 MOPS; 5 MgCl2; 5
KH2PO4;0.02 EGTA; 5 pyruvate/malate, pH 7.4. Add
6.25 ml of 1 mol/l KCl, 1 ml of 500 mmol/l MOPS,
0.1 ml of 1 mol/l MgCl2, 0.25 ml of 1 mol/l KH2PO4,
0.1 ml of 100 mmol/l EGTA, and 1 ml of 250/250 mol/l
pyruvate/malate. Adjust pH to 7.4 using 500 mmol/l Tris,
and bring the solution to 50 ml using ultrapure water and
filtrate it. Store at 4◦C.

5. Incubation buffer for respiration succinate (IBRS) in
mmol/l: 125 KCl; 10 MOPS; 5 MgCl2; 5 KH2PO4;0.02
EGTA; 5 succinate, pH 7.4. Add 6.25 ml of 1 mol/l KCl, 1 ml
of 500 mmol/l MOPS, 0.1 ml of 1 mol/l MgCl2, 0.25 ml of
1 mol/l KH2PO4, 0.1 ml of 100 mmol/l EGTA, and 1 ml of
250 mmol/l succinate. Adjust pH to 7.4 using 0.5 mol/l Tris,
and bring the solution to 50 ml using ultrapure water, and
filtrate it and store at 4◦C.

6. 100 mmol/l ADP: Dissolve 427 mg of ADP in 10 ml
of ultrapure water. Prepare 100 µl aliquots and store
at−20◦C.

7. 500 mmol/l ascorbate: Dissolve 880.65 mg of ascorbic acid
in 10 ml of ultrapure water. Prepare 100 µl aliquots and
store at−20◦C.

8. 10 mmol/l calcium chloride: Dissolve 55.49 mg of CaCl2 in
50 ml of ultrapure water and store at−20◦C.

9. 10 mmol/l cyclosporin A: Dissolve 12 mg of cyclosporin A
in 1 ml of absolute ethanol and store at−20◦C.

10. 0.1 mol/l EGTA stock solution: Dissolve 1.9 g of
EGTA in 30 ml of ultrapure water. Adjust pH
to 7.4 using 0.5 mol/l Tris and dilute to 50 ml.
Store at 4◦C.

11. 10 mmol/l FCCP stock solution: Dissolve 2.5 mg of FCCP
in 1 ml of absolute ethanol. Store at−20◦C. Dilute the stock
solution to 5 µM by adding 5 µl of 10 mmol/l FCCP in
10 ml of absolute ethanol. Prepare 20 µl aliquots and store
at−20◦C.

12. 0.25 mol/l Pyruvate/0.25 mol/l malate stock
solution: Dissolve 1.38 g of pyruvate and 1.68 g
of malate in 30 ml of ultrapure water and adjust
pH to 7.4 with 2 mol/l Tris. Dilute to 50 ml and
store at 4◦C.

13. 1 mol/l KCl stock solution: Dissolve 18.64 g of KCl in 250 ml
of ultrapure water and store at 4◦C.

14. 1 mol/l KH2PO4 stock solution: Dissolve 6.8 g of KH2PO4
in 30 ml of ultrapure water. Adjust pH to 7.4 using 0.5 mol/l
Tris and dilute to 50 ml. Store at 4◦C.

15. 1 mol/l MgCl2 stock solution: Dissolve 4.7 g of MgCl2 in
50 ml of ultrapure water and store at 4◦C.

16. 0.5 mol/l MOPS stock solution: Dissolve 10.46 g of MOPS
in 30 ml of ultrapure water. Adjust pH to 7.4 using 0.5 mol/l
Tris and dilute to 100 ml. Store at 4◦C.

17. 1 mmol/l rotenone stock solution: Dissolve 3.9 mg of
rotenone in 10 ml of absolute ethanol. Dilute the stock
solution to 500 µmol/l by adding 5 ml of 1 mM rotenone
in 5 ml of absolute ethanol. Prepare 200-µl aliquots and
store at −20◦C (critical step). Rotenone is light-sensitive.
The stock solution should be protected from direct light.

18. 0.25 mol/l succinate stock solution: Dissolve 2.02 g of
succinate in 30 ml of ultrapure water and adjust pH to 7.4
with 2 mol/l Tris. Dilute to 50 ml and store at 4◦C.

19. 150 mmol/l TMPD: Dissolve 49.3 mg of TMPD in 2 ml
DMSO. Prepare 10-µl aliquots and store at−20◦C.

20. 2 mol/l Tris: Dissolve 121.14 g of Tris in 500 ml of ultrapure
water. Dilute to 0.5 mol/l by adding 250 ml 2 mol/l Tris in
750 ml ultrapure water and store at RT.

21. 5 mmol/l TMRM stock solution: Dissolve 5 mg of TMRM
in 2 ml of DMSO. Store at−20◦C.

Equipment
1. Surgery scissors (ABC instrumentos cirúrgicos,

surgery scissors straight 12 cm, code: 321. Catalog
number: 10304850053).

2. Refrigerated highest-speed centrifuge (Mikro 200R;
Hettich, Tuttlingen, Germany).

3. Tissue homogenizer (T 25 Digital ULTRA-TURRAX R©,
catalog number: 3725000; Merck, Darmstadt, Germany).

4. Clark-type oxygen electrode and respirometer
MT200A (oxygen meter, 782, MT200A; Strathkelvin,
Motherwell, Scotland).

5. Spectrofluorimeter SpectraMax R© M3 (SpectraMax R© M3;
Molecular Devices, San Jose, CA, Untied States).

6. Centrifuges and rotors: Precool centrifuges and rotors
to 4◦C.

7. Oxygraph chamber: Adjust the temperature of the water
bath to 37◦C. Calibrate the Clarke-type oxygen electrode.
Procedures may vary from instrument to instrument.
Follow the manual for the oxygen electrode and chamber
you are using (Strathkelvin 782 2-channel Oxygen System
version 1.0; Strathkelvin, Motherwell, Scotland).

8. Spectrophotometer: Adjust the temperature of the cuvette
block to 37◦C.

Software
1. Strathkelvin 782 2-channel Oxygen System version 1.0

(Oxygenmeter, 782; Strathkelvin, Motherwell, Scotland).
2. SoftMax R© Pro Software (Molecular Devices, San Jose,

CA, United States).
3. GraphPad Prism 8.4.3 (San Diego, CA, United States).
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METHODS

Animals
CD-1 mice (25–30 g BW) were used. The animal study was
reviewed and approved by our institutional ethics committee on
the use of animals (Health Sciences Center, Federal University
of Rio de Janeiro (protocol 015/17) and followed the guidelines
of the Brazilian National Council for Animal Experimentation
Control, Ministry of Science, Technology, and Innovation
(CONCEA/MCTI), and the Guide for the Care and Use of
Laboratory Animals published by the United States National
Institutes of Health (8th edition, 2011).

Isolation of Mitochondria
The experimental protocol must be available after lung
mitochondrial isolation, because mitochondria are viable for
about 4 h only (critical step).

Collection of Tissue Samples (Timing Is 2–5 Min Per
Animal)
The mice were euthanized and underwent a bilateral
thoracotomy. The lungs were carefully removed en bloc
and immediately placed in a tube containing an ice isolation
buffer at 4◦C (see section “Recipes”) to remove excess blood.

Isolation of Mitochondria (Timing Is Approximately
40–90 Min)
The following steps are critical for the isolation of mitochondria
(critical step). Mistakes during mitochondria isolation are
irreversible and can spoil the running experiment. All processes
must be performed on ice. Centrifugation steps at 4◦C and buffers
should be precooled during processing. It is important to work
fast to avoid delays in tissue preparation (Figure 1).

a. Remove the adipose tissue and all large vessels using
scissors.

b. Mince the tissue into 1–2 g fragments and transfer each one
into a Teflon beaker with 10 ml BSA isolation buffer on ice.

c. Remove all remaining fat. The tissue must be thoroughly
minced, since the size of the sample directly affects the
subsequent homogenization step and eventually the yield of
mitochondria (critical step). Ensure the removal of all fats
that also affect the yield of mitochondria.

d. Split the minced tissue from one Teflon beaker into two 14-
ml round-bottom tubes. The tube should not contain more
than 2 ml tissue volume. Whenever necessary, use more 14-
ml round-bottom tubes.

e. Wash the minced tissue samples: fill the 14-ml round-
bottom tubes with 10 ml BSA isolation buffer, let the tissue
sink, remove the buffer, and repeat tissue washing until the
buffer is clear (the minced tissue would then contain no
blood). Usually, four or five washings are enough to obtain
a clean BSA isolation buffer. Hence, fill the 14-ml round-
bottom tubes up to 6 ml with isolation buffer. The optimal
tissue/buffer ratio is 1:3 or less. After mincing the tissue,
part of it precipitates and some pieces float because of the

air in the air spaces (critical step). Be careful in removing
the blood during washing to avoid tissue loss.

f. Homogenize the samples with the tissue homogenizer
(Ultra-Turrax) using two 10-s treatments at a shaft rotation
rate of 6,500 × g each. Perform the homogenization on
ice with slight movements of the centrifuge tube. Wait for
10 s between the homogenization steps to avoid heating of
the homogenizer and the samples, and to avoid foaming
(critical step).

g. Collect the samples and transfer them to a tissue glass
Potter-Elvehjem homogenizer. Homogenize the samples,
and stroke the suspension about 30–40 times. This
procedure can compromise mitochondrial integrity if not
done carefully (critical step). It Is recommended to precool
the glassware in an ice bath 5–10 min before starting the
procedure. Attention: The use of proteases, e.g., nargase,
during mitochondrial isolation, commonly performed in
other tissues such as the heart, ruins the whole process.

h. Centrifuge the homogenate at 700× g for 10 min at 4◦C.
i. Collect the supernatant in 2-ml microfuge tubes and

discard the pellets. Centrifuge the supernatant at 12,300× g
for 10 min at 4◦C.

j. Discard the supernatant and resuspend the pellet in 0.5 ml
of ice-cold isolation buffer by gentle pipetting, and collect
the mitochondrial suspensions in 2-ml microfuge tubes.
Avoid the formation of foam during the resuspension
process (critical step).

k. Centrifuge the supernatant in ice-cold isolation buffer at
10,300× g for 10 min at 4◦C.

l. Pool all the mitochondrial suspensions in one 2-ml
microfuge tube and repeat the previous step.

m. Resuspend the resulting pellet in 100–200 µl isolation
buffer and store it on ice. Resuspend the pellets carefully
by gentle pipetting to obtain a uniform suspension without
any visible clump (critical step).

n. Measure mitochondrial concentration using the Lowry or
BSA method.

Pause Point
At this point, the mitochondria are ready to be used in
experiments to explore their function. Use the preparation within
4 h for better functional responses. Store the mitochondrial
suspension on ice.

Note: The isolated mitochondria by this protocol can be
used in different oximeter equipment, and can be analyzed with
different software and methodologies.

Mitochondrial Oxygen Consumption
(Timing: Approximately 10–20 Min Per
Measurement)
In each experiment, use 200 µg of protein per ml for
good acquisition data. The oxygen consumption gives
information about the electron transport chain and the
oxidative phosphorylation of the mitochondria. By the addition
of substrates and inhibitors, or by uncoupling oxidative
phosphorylation, it is possible to modulate the rate of oxygen
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FIGURE 1 | Mitochondrial isolation. First, (a,b) lungs were removed in bloc from euthanized mice. (c) Lung tissue was minced with scissors and (d) washed with
BSA isolation buffer four to five times to eliminate blood. (e) The sample was homogenized with a high-speed tissue homogenizer and, again, with tissue glass
Potter-Elvehjem homogenizer carefully, to achieve cell disruption without compromising mitochondrial integrity (f). (g) The homogenate was centrifuged at 700 g for
10 min at 4◦C. (h) The pellet was discarded, and the supernatant was collected and submitted to differential centrifugation. Finally, (i) the resultant pellet containing
mitochondria was ready to be used in functional analyses.

consumption and gain further insight into the activity of each
complex of the electron transport chain.

At this point, mitochondrial complexes I (states 1, 2, and
3), II (state 3), and IV respiration with subsequent uncoupling
of oxidative phosphorylation were measured in a two-chamber
respirometer. With two different chambers, it is possible to
measure two different experimental groups at the same time,
observing results in mitochondrial function in parallel (critical
step). Moreover, the respiration of complex I and complex II can
be available in parallel using two different chambers.

a. Add 0.5 ml of IBRP/M buffer to the chambers. One can
opt to add IBRP/M without pyruvate/malate (or 5 mmol/l
glutamate/5 mmol/l malate, bypassing the critical step of
pyruvate decarboxylation, which is highly dependent on
NAD+) to measure the state 1 respiration of complex I
and to add IBRS plus 2 µmol/l rotenone to the other
chamber to measure complex II respiration. Make sure that
the magnetic stirrer moves constantly. Rotenone is sticky
and inhibits complex I respiration (critical step). Therefore,
we suggest washing each chamber that received rotenone
with a cardiac or liver tissue homogenate to assist the
removal of rotenone. Additionally, we recommend washing
the chamber three times with 70◦ alcohol, followed by three

washes with EDTA 100 mmol/l. Finally, wash 10 times
with MilliQ water.

b. Equilibrate the temperature and oxygen tension of the
buffer and close the chamber. Usually, 3–4 min are sufficient
until the oxygen concentration in the chamber remains
stable.

c. Start the recording of the oxygen concentration in
the chamber. Steady-state recording without drifts is
mandatory (critical step). Wait for 1–5 min to obtain a
stable baseline. A maximal drift of ±10 nmol O2/min is
considered acceptable once endogenous substrates could
be present in the preparation starting State 2 respiration
before the addition of the exogenous substrate. Add 200 µg
of mitochondrial protein using a Hamilton syringe and
record for 3 min. If one chooses to add IBRP/M without
pyruvate/malate, the state 1 of complex I is measured.
One should add pyruvate/malate 5 µmol/l, and the oxygen
concentration in the chamber will decrease because of
oxygen consumption by the mitochondria, which can be
referred to as state 2 complex 1 respiration. and record for
3 min (Figure 2).

d. Add 4 µl of 100 mmol/l ADP to obtain a final concentration
of 400 µmol/l using a Hamilton syringe and record oxygen
concentration for 3 min (Figure 2).
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FIGURE 2 | Representative tracings of mitochondria oxygen consumption. (A) Comparison between isolated mitochondria loading from heart (50 µg) and lung
(50 µg) tissues. (B) Comparison between isolated mitochondria loading from heart (50 µg) and lung (200 µg) tissues. Mitochondria represents the moment of the
addition of isolated mitochondria. Pyruvate/malate represents the time of addition of pyruvate 5 µmol/L/malate 5 µmol/L. ADP signals the time to add ADP
400 µmol/L. Ascorbate 3 mmol/L plus N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride (TMPD) 300 µmol/L indicates the addition of ascorbate and TMPD.
FCCP indicates the addition of carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone 30 nmol/L.

e. The decrease in oxygen concentration speeds up,
caused by stimulating mitochondrial respiration
with ADP (state 3). ADP-stimulated respiration
should be faster than baseline respiration, reflecting
good coupling of mitochondria (critical step). The
respiration could slow down and return to a rate
comparable to that of the baseline respiratory state,
as result of the conversion of all added ADP and
phosphate into ATP.

f. Add simultaneously 2 µl of 150 mmol/l TMPD and 6 µl
of 500 mmol/l ascorbate to obtain final concentrations
of 300 and 3 mmol/l, respectively. Record oxygen
concentration for 1 min. The oxygen concentration
will decrease faster than with ADP stimulation. TMPD
is an electron donor to complex VI, which is readily
reduced by ascorbate and oxidized by cytochrome
C (Figure 2).

g. Add 6 µl of 5 µmol/l FCCP to obtain a final
concentration of 30 nmol/l. Record oxygen
concentration for 1 min. The oxygen concentration
will decrease further. FCCP is an uncoupling
agent, which turns the mitochondrial membrane
permeable to protons and, therefore, eliminates the

chemiosmotic gradient. As a result, ATP synthesis is
disrupted (Figure 2).

h. Stop recording.
i. Calculate mitochondrial oxygen consumption using the

software Analysis (Strathkelvin 782 2-channel Oxygen
System version 1.0; Strathkelvin, North Lanarkshire,
Scotland) or similar. Calculate baseline oxygen
consumption 75 s after the addition of mitochondria.
Calculate state 2 complex I oxygen consumption
75 s after the addition of pyruvate/malate. Determine
ADP-stimulated respiration 30 s after the addition of
ADP. Determine complex VI respiration 30 s after
the addition of ascorbate/TMPD. Calculate maximal
uncoupled respiration rate 30 s after the addition of
FCCP.

Measurement of Adenosine
5′-Triphosphate Production (Timing:
Approximately 20 Min)
In the respiration chamber, repeat all the steps up to adding
4 µl of 100 mmol/l ADP to obtain a final concentration of
400 µmol/l. Then, record the ADP-stimulated respiration
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for 3 min. Thereafter, the incubation buffer containing
mitochondria should be transferred to an Eppendorf tube
and immediately supplemented with ATP assay mix (ATP
Bioluminescence Assay Kit; Sigma-Aldrich, St. Louis, MO,
United States) diluted to 1:5 (incubation buffer containing
mitochondria: ATP assay mix). Mitochondrial ATP production
was determined immediately after each respiration measurement
and compared with ATP standards using a 96-well white plate in
a spectrofluorometer (SpectraMax R© M3; Molecular Devices, San
Jose, CA, United States) at 560-nm emission.

Measurement of Mitochondrial ROS
(Timing: Approximately 30 Min)
The Amplex Red Hydrogen Peroxide Assay (catalog number:
A12222; Thermo Fisher Scientific, Waltham, MA, United States)
was used to determine mitochondrial ROS concentration.
Amplex Red reacts in 1:1 stoichiometry with peroxide in the
presence of horseradish peroxidase (HRP) and produces highly
fluorescent 95% resorufin. The incubation buffer containing
mitochondria should be transferred to an Eppendorf tube and
immediately supplemented with 50 µmol/l Amplex UltraRed
Reagent (Thermo Fisher Scientific, Waltham, MA, United States)
and 2 U/ml PierceTM horseradish peroxidase (HRP, catalog
number: 31491; Thermo Fisher Scientific, Waltham, MA,
United States). The supernatant was collected after 20 min of
incubation in the dark. Mitochondrial ROS concentration was
determined and compared with H2O2 standards using a 96-
well black plate and a spectrofluorometer (SpectraMax R© M3;
Molecular Devices, San Jose, CA, United States) at 540-nm
emission and 580-nm extinction (Maciel et al., 2020).

Measurement of Mitochondrial Swelling
The integrity of the mitochondrial membrane was assessed by
osmotically induced volume changes of the mitochondria
and spectrophotometric determination of the apparent
absorption of the suspension at 540 nm. A mitochondrial
suspension (200 mg/ml) was added to the respiration
medium in the absence of respiratory substrates, at 37◦C,
and under constant stirring. Mitochondrial swelling was
stimulated with 1 µl of calcium chloride at 20 µmol/l to reach
100 nmol/l in 200 µl of mitochondrial suspension. Swelling
was expressed as percentage of the absorption of the solution
containing mitochondria in the presence of cyclosporin A
10 µmol/l (mitochondrial swelling = 0%) in relation to that
absorbed after the addition of FCCP 1 µmol/l (mitochondrial
swelling = 100%).

Measurement of Mitochondrial
Transmembrane Potential (19m)
For 19m determination, the probe tetramethylrhodamine
methyl ester (TMRM, 400 nmol/l) was added to the respiration
solution containing 200 mg/ml of mitochondria and incubated
for 1 h at 4◦C before the experiment. 19m was estimated by
the fluorescence emitted by TMRM under 580-nm excitation.
19m was expressed as the percentage of fluorescence emitted
by TMRM-labeled mitochondria in the presence of cyclosporin

A (mitochondrial despolarization = 0%), relative to that emitted
after the addition of FCCP to fully depolarize the mitochondria
(mitochondrial despolarization = 100%).

Electron Leakage and ATP/ROS
Production Ratio
Electron leakage is the loss of the electron from the electron
transport chain to form superoxide (O2-). However, other
reactive oxygen species, such as hydroperoxyl radical (HO2) and
hydrogen peroxide (H2O2), might occur spontaneously (e.g.,
pH-dependent) or under the action of antioxidant enzymes
(e.g., superoxide dismutase). The site of initial leakage is often
considered to be a semiquinone radical (QH) or reduced flavin
(FMN and FAD) (A–B). To calculate the fraction of electrons
that leaked out of the respiratory chain, the rate of H2O2
formation (see section E) is divided by the rate of mitochondrial
O2 consumption (see section C). H2O2 production and oxygen
consumption rates must be expressed using the same units and
correspond to the same respiratory state (C–E). The ATP/ROS
reason should be measured to determine the formation of ROS
linked to O2 consumption. Thus, we were able to determine the
electron leakage inherent to ROS production (Santiago et al.,
2008; Murphy, 2009; Jastroch et al., 2010; Daussin et al., 2012).

Statistical Analysis
Three experimental groups were tested. The first one
corresponded to isolated mitochondria from hearts with a
protein load of 50 µg in each experiment. The second group
consisted of isolated mitochondria from lungs with a protein
load of 50 µg in each experiment. The third group contained
mitochondria isolated from lungs with a protein load of 200 µg in
each experiment. For graphic and statistical analysis, the software
GraphPad Prism 8.4.3 (San Diego, CA, United States) was used.
The significance of observed differences in mitochondrial oxygen
consumption and functions was evaluated by the parametric
one-Way ANOVA test followed by Tukey’s multiple comparisons
test. In all cases, p < 0.05 was considered to be significant.
Experimental values are reported as mean± standard deviation.

RESULTS

The differences between the present protocol and previous
protocols are shown in Table 1.

Mitochondrial Respiration
Figure 3A depicts that the mitochondrial oxygen consumption
by complex I under state 1 was smaller in lung mitochondria-
50 µg (1.43 ± 0.39 nmol O2/min/mg protein) than in heart
mitochondria (2.68 ± 0.46 nmol O2/min/mg protein, p = 0.006)
and in lung mitochondria-200 µg (2.52± 0.45 nmol O2/min/mg
protein, p = 0.01), which did not differ between them (p = 0.7).

As shown in Figure 3B, the mitochondrial oxygen
consumption by Complex I under state 2 is smaller in lung
mitochondria-50 µg (10.79± 3.3 nmol O2/min/mg protein) than
in heart mitochondria (33.51 ± 4.7 nmol O2/min/mg protein,
p = 0.001) and in lung mitochondria-200 µg (33.78 ± 7 nmol
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O2/min/mg protein, p = 0.006), which did not differ between
them (p = 0.99).

The mitochondrial oxygen consumption by complex
I under state 3 was smaller in lung mitochondria-50 µg
(26.75 ± 8.2 nmol O2/min/mg protein) than in heart
mitochondria (73.83 ± 8.38 nmol O2/min/mg protein, p = 0.01)
and in lung mitochondria-200 µg (61.67± 9.1 nmol O2/min/mg
protein, p = 0.0006), which did not differ, p = 0.99, as presented
in Figure 3C.

The mitochondrial oxygen consumption by complex II under
state 3 was smaller in lung mitochondria-50 µg (35.54± 11 nmol
O2/min/mg protein) than in heart mitochondria-50 µg
(100.5 ± 12.4 nmol O2/min/mg protein, respectively, p = 0.003),
and in lung mitochondria-200 µg (69.32 ± 11.3 nmol
O2/min/mg protein, p = 0.0053). However, the increase in
oxygen consumption by lung mitochondria-200 µg did not reach
the level of the heart mitochondria-50 µg (p = 0.009), as shown
in Figure 3D.

Figure 3E shows that the mitochondrial oxygen consumption
by complex IV was smaller in lung mitochondria-50 µg
(273.3 ± 59 nmol O2/min/mg protein) than in heart
mitochondria-50 µg (419.5 ± 43 nmol O2/min/mg protein,
p = 0.003) and lung mitochondria-200 µg (392.1 ± 72.4 nmol
O2/min/mg protein, p = 0.047), which did not differ between
them (p = 0.19). The mitochondrial oxygen consumption by
maximal oxygen uptake of uncoupled mitochondria was similar
in heart mitochondria-50 µg and lung mitochondria-50 µg
(402.5 ± 57.5 and 369.51 ± 72.8 nmol O2/min/mg protein,
respectively, p = 0.7). Lung mitochondria-200 µg showed similar
respiration to heart mitochondria-50 µg (393.45 ± 86.12 nmol
O2/min/mg protein, p = 0.17 vs. heart mitochondria-50 µg) and
p = 0.5 vs. lung mitochondria-50 µg) (Figure 3E).

Mitochondrial ROS Production
Mitochondrial ROS production by lung mitochondria-50 µg
(21.87 ± 9.6 nmol/loaded protein) was lower than that
by heart mitochondria-50 µg (66.08 ± 12.5 nmol/loaded
protein, p = 0.003) and lung mitochondria-200 µg
(63.64 ± 12.3 nmol/loaded µg protein, p = 0.0015), which
was similar (p = 0.87), as displayed in Figure 4A.

Mitochondrial Adenosine
5′-Triphosphate Production
Figure 4B shows that mitochondrial the ATP production by
lung mitochondria-50 µg (22.92 ± 9.12 µmol ATP/loaded
protein) was lower than that by heart mitochondria-50 µg
(91.62 ± 5.9 µmol ATP/loaded protein, p = 0.0001) and lung
mitochondria-200 µg (83.51 ± 9.49 µmol ATP/loaded protein,
p = 0.006), which was similar (p = 0.075).

Mitochondrial Swelling
The mitochondrial swelling of lung mitochondria-50 µg (68.5
± 19.7% maximum), heart mitochondria-50 µg (63.9 ± 13.8%
maximum), and lung mitochondria-200 µg (81.84 ± 15.35%
maximum) did not differ among them (p = 0.3), as depicted in
Figure 4C.
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FIGURE 3 | Mitochondrial respiration. (A) Baseline respiration (state 1 complex 1), (B) pyruvate/malate stimulation (state 2 complex 1) respiration, (C) adenosine
diphosphate (ADP) stimulation (state 3 complex 1) respiration. (D) Complex II respiration was stimulated with succinate and using the complex I inhibitor Rotenone.
(E) Complex IV respiration stimulated with N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride (TMPD) and ascorbate and maximal uncoupled oxygen uptake
induced by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) of isolated mitochondria from mice heart and lung. Heart mito (50 µg) represents the
group of isolated mitochondria from hearts. Lung mito (50 µg) indicates the group of isolated mitochondria from lungs with loading of 50 µg. Lung mito (200 µg)
signals the group of isolated mitochondria from lungs with loading of 200 µg. Each symbol represents one animal. The values are reported as mean ± standard
deviation. Horizontal square brackets indicate significantly different differences and the corresponding p-value.
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FIGURE 4 | Mitochondrial products and characteristics. (A) Reactive oxygen species (ROS) production, (B) adenosine triphosphate (ATP) production, (C)
mitochondrial swelling, (D) mitochondrial transmembrane potential (m1ψ), (E) electron leakage, and (F) ROS/ATP ratio of isolated mitochondria from mice heart and
lung. Heart mito (50 µg) represents the group of isolated mitochondria from hearts. Lung mito (50 µg) indicates the group of isolated mitochondria from lungs with
loading of 50 µg. Lung mito (200 µg) signals the group of isolated mitochondria from lungs with loading of 200 µg. Each symbol represents one animal. Data are
expressed as mean ± standard deviation. Horizontal square brackets indicate significantly different differences and the corresponding p-value.
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Mitochondrial 1ψ
The mitochondrial 1ψm of lung mitochondria-50 µg
(73.84 ± 29.3% maximum), heart mitochondria-50 µg
(59.46 ± 19.2% maximum), and lung mitochondria-200 µg
(77.51 ± 14.1% maximum) did not differ among them
(p = 0.52) (Figure 4D).

Mitochondrial Proton Leakage
Figure 4E shows that the mitochondrial proton leakage by
lung mitochondria-50 µg (1.04 ± 0.39 H2O2 production/O2
consumption), heart mitochondria-50 µg (0.84 ± 0.31 H2O2
production/O2 consumption), and lung mitochondria-200 µg
(0.97 ± 0.22 H2O2 production/O2 consumption) was similar
(p = 0.48).

Mitochondrial ATP/ROS Ratio
The mitochondrial ATP/ROS ratio of lung mitochondria-
50 µg (1.26 ± 0.19 H2O2 production/ATP formation), heart
mitochondria-50 µg (1.07 ± 0.42 H2O2 production/ATP
formation), and lung mitochondria-200 µg (1.39 ± 0.35 H2O2
production/ATP formation) did not differ (p = 0.54), as depicted
in Figure 4F.

DISCUSSION

We used herein a new protocol with specific and detailed
steps aiming to improve mitochondrial isolation from lung
tissue. It was abridgedly published (Caldeira et al., 2021) but
not tested against a well-documented and broadly used one
(Gedik et al., 2017). This new protocol improves the acquisition
of a robust and preserved sample of isolated mitochondria,
allowing a range of analyses with the same sample, increasing
mitochondria viability and experimental reproducibility. Here,
we describe step-by-step the instructions for lung mitochondria
isolation and warn for critical steps (steps of the procedure in
which the researcher must be extremely careful, or attentive,
with the procedure for the perfect execution of the isolation).
Before our improved method, there was no consensus concerning
protocols for mitochondrial isolation from the lung tissue (Zhang
et al., 2018). The isolation of mitochondria from lung tissue is
extremely difficult, because of the elevated fatty acid content and
low load of mitochondria in pulmonary cells (Spear and Lumeng,
1978). Therefore, the isolation buffer most contain a high amount
of fat-free BSA to be bound to free fatty acids. Noteworthy is that
the amount of fat-free BSA used to isolate mitochondria from
cardiomyocytes (Maciel et al., 2020) is half of that used to isolate
mitochondria from the lung.

The integrity of the membrane in the lung-isolated
mitochondria is of paramount importance (Zhang et al.,
2018). Consequently, we detailed each step of our protocol
very carefully. Because of lung intrinsic characteristic as an
air-filled organ, there are difficulties in stages that aim to mince
the tissue and remove the residual blood (Spear and Lumeng,
1978). The removal of blood (including hemoglobin) from
tissue is mandatory to avoid oxygen sequestration during O2-
consumption assay. This singular lung characteristic undermines
the isolation of mitochondria, resulting in low success rate

and small amount of mitochondria available for putatively
several functional tests (Spear and Lumeng, 1978). These issues
pertaining to an air-filled highly perfused organ were overcome
by our improved method. Thus, we showed that it is possible
to appropriately mince the lung and remove its blood content
without losing large amounts of sample.

We compared mitochondrial functional characteristics using
three experimental groups. The first one (control group)
comprised mitochondria isolated from the heart carrying 50 µg
of protein per experiment. Heart mitochondria are isolated
by means of a well-established broadly used protocol (Schulz
et al., 2015; Gedik et al., 2017; Maciel et al., 2020, 2021). The
second experimental group contained isolated lung mitochondria
carrying 50 µg of protein per experiment, the same loading
as isolated heart mitochondria. The third experimental group
consisted of isolated lung mitochondria at a concentration of
200 µg of protein per experiment. Mitochondrial respiration was
measured with a Clark-type electrode at 37◦C during magnetic
stirring and consistently demonstrated that the concentration
of lung-isolated mitochondria can affect the results. An
identical concentration of lung- and cardiomyocyte-isolated
mitochondria (50 µg) yielded smaller oxygen consumption by
lung mitochondria at baseline respiration (Figures 2A, 3A),
following pyruvate/malate (Figures 2A,B), ADP (Figures 2A,
3C), and TMPD/ascorbate (Figures 2A, 3D) titration. Taken
together, these data strongly indicate that the loading of the
lung mitochondria is not adequate using the 50 µg protein
concentration. Protein dosage is an indirect measure of the
concentration of mitochondria; therefore, a loading control that
assesses functionality is necessary (Maciel et al., 2020). For
such a purpose, the activation of mitochondrial complex IV
is commonly employed as a loading control (Schulz et al.,
2015; Gedik et al., 2017; Maciel et al., 2020, 2021), and we
observed that the oxygen consumption in complex IV was less
in isolated lung mitochondria loaded with 50 µg of protein
than in the group of isolated heart mitochondria. Interestingly,
heart isolated mitochondria presented similar values to those
from lung isolated mitochondria loaded with 200 µg of
protein (Figures 2B, 3). These data could suggest that lung
tissue yields fewer mitochondria, and that greater loading is
required to generate data comparable to those from heart tissue
mitochondria. However, we cannot exclude the possibility that
cardiac mitochondrion may have higher metabolism than lung
mitochondria (Zhang et al., 2018; Spear and Lumeng; 1978). On
the other hand, our FCCP-induced uncoupled respiration did
not differ between all groups, suggesting that the mitochondria
groups appear to have similar viability and behavior (Schulz
et al., 2015; Gedik et al., 2017; Maciel et al., 2020, 2021). Indeed,
200 µg of protein per experiment is an acceptable amount, and
our samples of isolated mitochondria had enough material to
grant the completion of several experiments. Other techniques
to analyze mitochondrial function, such as ATP production
(Figure 4A) and ROS formation (Figure 4B), display the same
trend. On the other hand, mitochondrial swelling (Figure 4C),
mitochondrial transmembrane potential (Figure 4D), electron
leakage (Figure 4E), and ROS/ATP ratio (Figure 4F) did not
show a significant difference among the three groups, perhaps
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because mitochondrial swelling is analyzed by light scattering
in the assay (Chapa-Dubocq et al., 2018). Mitochondrial
transmembrane potential is analyzed by the stimulation of a
fluorophore (Creed and McKenzie, 2019); and electron leakage
and ROS/ATP ratio are calculated from existing data that were
not challenged by experimental maneuvers (Santiago et al., 2008;
Murphy, 2009; Jastroch et al., 2010; Daussin et al., 2012).

Limitations
The lung is an extremely complex organ with regard to
the heterogeneity of cells. Our method does not contemplate
analyzing all 40 subtypes of cells found in the lung. However,
this heterogeneity is an intrinsic part of the lung, and all
methods of mitochondria isolation, for most diverse tissues,
contemplate entire organ isolation, because different cells form
a syncytium for the organ to work, e.g., the heart (Gedik
et al., 2017), kidney (Schulz et al., 2015), liver (Goudarzi
et al., 2018), adipose tissue (Matta et al., 2021), and brain
(Marques Neto et al., 2020).

CONCLUSION

Based on the method briefly described by Caldeira
et al. (2021), we developed an optimized and successful
technique for the isolation of mitochondria from lung
tissue. We extensively described the technical difficulties
concerning tissue quantity, tissue characteristics, tissue adjunct
components, time of isolation, and the use of proteinases.
Additionally, we described the experimental determination
of several mitochondrial functional characteristics, providing
information that might improve the reproducibility and
analysis of lung tissue mitochondria. Ultimately, the
method yielded a robust, maintained, and viable sample of
pulmonary mitochondria.
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Alveolar architecture plays a fundamental role in the processes of ventilation and
perfusion in the lung. Alterations in the alveolar surface area and alveolar cavity
volume constitute the pathophysiological basis of chronic respiratory diseases such
as pulmonary emphysema. Previous studies based on micro-computed tomography
(micro-CT) of lung samples have allowed the geometrical study of acinar units.
However, our current knowledge is based on the study of a few tissue samples in
random locations of the lung that do not give an account of the spatial distributions
of the alveolar architecture in the whole lung. In this work, we combine micro-CT
imaging and computational geometry algorithms to study the regional distribution of
key morphological parameters throughout the whole lung. To this end, 3D whole-lung
images of Sprague–Dawley rats are acquired using high-resolution micro-CT imaging
and analyzed to estimate porosity, alveolar surface density, and surface-to-volume ratio.
We assess the effect of current gold-standard dehydration methods in the preparation
of lung samples and propose a fixation protocol that includes the application of a
methanol-PBS solution before dehydration. Our results show that regional porosity,
alveolar surface density, and surface-to-volume ratio have a uniform distribution in
normal lungs, which do not seem to be affected by gravitational effects. We further show
that sample fixation based on ethanol baths for dehydration introduces shrinking and
affects the acinar architecture in the subpleural regions. In contrast, preparations based
on the proposed dehydration protocol effectively preserve the alveolar morphology.

Keywords: alveolar morphology, pulmonary porosity, alveolar surface density, surface-to-volume ratio, tissue
dehydration methods

INTRODUCTION

Ventilation and perfusion are vital processes to facilitate gas exchange at the alveolar level, which
is the primary function of the respiratory system. Pulmonary ventilation is defined as the process
where air enters and leaves the alveolar units, which supplies with O2 to the alveolus and removes
the expired CO2. Perfusion refers to the blood flow in the capillaries that surround the alveolar
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surface, which is fundamental for gas transport. The relationship
between both processes is one of the cornerstones of respiratory
physiology, as it not only allows us to understand the mechanisms
underlying respiration but also explains the genesis and evolution
of diseases such as hypoxemia and pulmonary emphysema,
among others (Bajc and Jonson, 2011; Jögi et al., 2011).

Ventilation and perfusion have long been associated with
the alveolar architecture, constituting another clear example
of the celebrated structure-function paradigm in physiology.
To maximize gas exchange between alveoli and capillaries,
the mammalian lung takes on a highly porous structure that
maximizes the perfused alveolar surface and, at the same time,
maximizes the alveolar airspace volume (Hsia et al., 2016).
Alterations in the balance between the alveolar surface and
the alveolar airspace constitute the pathophysiological basis of
chronic respiratory diseases such as pulmonary emphysema. In
emphysematous lungs, the rupture of alveolar walls results in a
marked decrease in the alveolar surface available for perfusion
and gas exchange and in the loss of alveolar tissue recoil,
ultimately deteriorating the respiratory function (Suga et al.,
2010). This highlights the importance of characterizing the
morphology of the alveolar tissue in the lung and elucidates
how it influences lung function and pulmonary performance
(Weibel, 2017).

From a morphological point of view, alveolar ventilation is
associated with porosity, defined as the ratio between the volume
of the alveolar cavity (airspace volume) divided by the nominal
(reference) volume of lung tissue. Similarly, perfusion can be
associated with alveolar surface density, defined as the ratio
between the alveolar surface area over the nominal volume of
lung tissue (Hsia et al., 2016). It is important to note that both
definitions are independent of each other, as the alveolar cavity
volume and surface are not necessarily related. Given its close
relationship with the gas exchange process, the study of the
spatial distribution of morphological parameters such as porosity
and alveolar surface density provides a quantitative evaluation
that can be related to ventilation and perfusion with regional
resolution (Soldati et al., 2014; Clark et al., 2019).

To date, the characterization of alveolar morphology has
been difficult due to its micrometric size and intricate
architecture. Advances in micro-computed tomography (micro-
CT) techniques have allowed the study of the shape and structure
of pulmonary acini with high resolution and less destructively
than traditional histological methods (Langheinrich et al., 2004;
Vasilescu et al., 2012b). Besides, micro-CT has enabled the
three-dimensional visualization of the acinar structure with
high accuracy, which motivated a volumetric characterization of
alveoli (Litzlbauer et al., 2006). Current morphometric studies of
the lung tissue have analyzed the acinar morphology in terms
of alveolar volume, alveolar diameter, surface-to-volume ratio,
and porosity, among other parameters (Parameswaran et al.,
2009; Vasilescu et al., 2012a; Concha et al., 2018; Sarabia-Vallejos
et al., 2019). In particular, porosity and alveolar surface density
emerge as insightful parameters in the study of diseases such
as pulmonary emphysema (Yuan et al., 2010), as they quantify
the evolution of abnormally large airspaces produced by alveolar
enlargement. In effect, septum rupture in emphysema results in

higher porosity and lower density of the surface area than those
found in normal lungs, which directly affects the ventilation–
perfusion ratio, making it challenging to exchange gases with the
bloodstream (Parameswaran et al., 2009).

While morphometric studies reported in the literature have
provided vital information about the structural parameters of the
lung parenchyma, current knowledge is based on a small number
of micrometric samples that are randomly located in the lung.
Such localized information does not provide information on the
spatial distribution of alveolar structural properties throughout
the organ (Hsia et al., 2010). Based on this limitation, the
scientific question that guides our work is: How is the regional
distribution of morphological parameters in the whole lung?
To answer this question, in this work, we combine micro-
CT image acquisition, advanced image processing techniques,
and computational geometry methods to unveil the three-
dimensional spatial distribution of porosity, alveolar surface
density, and surface-to-volume ratio in normal rat lungs. We also
assess the effect of current gold-standard dehydration methods
in the preparation of lung samples and their impact on related
morphological parameters and propose a novel fixation protocol
that considers the application of a methanol-PBS solution
before hydration.

MATERIALS AND METHODS

The bioethics committee of the Pontificia Universidad Católica
de Chile approved the following protocol. Nine adult Sprague–
Dawley rats (∼300 g, sex-matched) were randomly assigned
to three experimental groups according to the fixation method
(see below, each group with N = 3). Subjects were kept under
controlled humidity, light, and temperature conditions before
the lung in situ fixation step. Food and water were provided
ad libitum during this period.

Lung Sample Preparation
The preparation of lung samples consisted of three subsequent
steps: in situ fixation of the lung, ex vivo fixation of the lung,
and dehydration of the lung sample. For the in situ fixation stage
of the lung, we followed the protocol described by Hausmann
(2007). Subjects were anesthetized with an intraperitoneal
injection of ketamine and xylazine (30 mg−1 kg−1, Drag
Pharma Invetec S.A., Santiago, Chile, and 5 mg−1 kg−1, Alfasan,
Woerden, Holland, respectively). A cannula with a three-way in-
line valve was introduced through the trachea of each subject
in the supine position and was subsequently sealed using a cuff
to instill into the lungs a formalin phosphate-buffered saline (F-
PBS) solution at 4%. During the installation process, the pressure
across the respiratory system was maintained at 20 cm H2O for
30 min using a syringe with a pressure transducer (AG Cuffil,
Hospitech Respiration Ltd., Kfar Saba, Israel). Then, the three-
way valve was closed to maintain pressure in the lungs, and the
animal was refrigerated at 4◦C for 8 h.

For the ex vivo lung fixation step, subjects were removed from
the refrigerator, after which a median sternotomy was performed
to remove the lungs out of the rib cage. During the whole surgery,
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care was exercised to avoid puncturing the organ, preventing
leakage of the fixative solution. The left lung was dissected with
the left bronchus clamped and then immersed into an F-PBS bath
for 24 h. Only the left lung was further considered for analysis due
to the sample size restrictions imposed by the micro-CT platform.

For the dehydration step, three different drying methods were
assessed, which define the three experimental groups in this
study. The drying methods were:

• Standard alcohol fixation (SAF): This method is the gold
standard in histology and pathology (Hausmann, 2007;
Braber et al., 2010). The sample was immersed for periods of
2 h in subsequent baths with increasing ethanol graduations
(70, 80, and 90% ethanol in PBS), and finally in a 100%
ethanol bath for 12 h. After this, the lung was removed from
the last bath and left on a semi-covered plastic container to
let it dry under ambient conditions for 3 h, to eliminate the
remaining ethanol by evaporation.
• Modified alcohol fixation (MAF): Our research group

designed this method as an alternative to the SAF method.
First, the sample was immersed for 2 h in a 70% methanol-
PBS solution, which is the main difference between SAF and
MAF. Subsequently, the same steps described in the SAF
fixation method were performed. It is important to remark
that the action of methanol is different than ethanol. While
ethanol only removes water from the tissue, methanol
increases cellular permeability, thus allowing an enhanced
alcohol diffusion during the posterior dehydration step.
• Standard alcohol fixation and HMDS (SAF-HMDS):

This fixation method is recommended by the micro-CT
manufacturer (Bruker-MicroCT, 2016). The sample was
treated following the protocol in the SAF method. As a
final and additional step, the sample was immersed in a
hexamethyldisilazane solution (HMDS) for 2 h, after which
the sample was allowed to dry under ambient conditions on
a semi-covered plastic container for 3 h.

To characterize the volumetric change associated with the
drying methods, the displaced volume of fluid was measured
for each subject at the end of the dehydration stage and at the
beginning of the ex vivo fixation stage. From these volumes,
the lung volume ratio was calculated for each subject. Volume
ratio values below 100% imply that the fixation and dehydration
process resulted in sample shrinking.

Micro-Computed Tomography Scanning
Protocol and 3D Image Reconstruction
All lung samples obtained were scanned using a commercial
micro-CT (SkyScan 1272, Bruker Inc., Kontich, Belgium). During
imaging, the samples were placed on the sample plate with the
axial axis of the lung vertically aligned. The voltage and current
of the X-ray source were set at 10 kV and 250 µA, respectively.
Pulmonary tomographic images were obtained using two voxel
resolutions: isotropic 15 µm (low resolution) and isotropic 4 µm
(high resolution). The first low-resolution acquisition was used
as a scout scan to confirm that the sample fixation step did not
introduce errors such as regions with marked alveolar collapse.

The second high-resolution acquisition was used to generate
images with an accurate definition of the alveolar architecture.
Images were reconstructed using NRecon software (Bruker
Inc., Kontich, Belgium) where misalignment compensation,
ring artifact reduction, hardening, and Kuwahara filters were
used to improve the signal-to-noise ratio. The acquired images
were processed using median and Wiener filters to reduce the
inherent noise, as well as a mix of top-hat and bottom-hat
filters and histogram equalization to improve contrast, which
delivered 3D grayscale images of the lung. For the morphological
quantification of the images, grayscale images were segmented
using a threshold filter on the Hounsfield unit scale based on
the Otsu method (Xu et al., 2011) to obtain 3D binary images
of the alveolar microstructure (see Figure 1). The intensity value
in a voxel of the binary image was set equal to 1 if the voxel
corresponded to tissue, or to 0 if the voxel corresponded to air.

Three-dimensional cubic domains of representative volume
elements (RVE) with a border size of ∼500 µm were selected
from the enhanced images of the lung. During the selection
procedure, acinar regions were targeted, and zones with large
portions of bronchi or blood vessels were avoided. For each
experimental group, 9 RVEs were selected per subject (3 in
each region of the lung; basal, mid, and apical), resulting in
a population of 27 RVEs per group. RVE images were then
segmented to obtain binary masks, which were the basis for the
morphological analysis.

Morphological Analysis, and
Construction of 3D Porosity and Alveolar
Surface Density Maps
The following morphological parameters were calculated for
each RVE analyzed in this study: surface-to-volume ratio, mean
alveolar diameter, alveolar wall thickness, porosity, and alveolar
surface density. Parameter quantification was carried out using an
in-house code written in Matlab (MathWorks, Version R2017a,
Natick, MA, United States). The determination of the alveolar
diameter was performed using the Sphere-fit method (Lesouple
et al., 2021), which fits spheres within a point cloud using a least-
squares algorithm. From the spheres obtained, an active contour
algorithm was used to determine the surface and volume of the
alveolar cavity (Strzelecki et al., 2013; Aganj et al., 2018). The
ratio between these values allowed us to determine the surface-
to-volume ratio for each alveolar cavity. The thickness of the
alveolar wall was obtained by subtracting the alveolar radius of
two contiguous spheres and the separation between the centers of
these spheres. For each RVE, the global porosity was computed as
the ratio between the volume of the alveolar cavities and the total
RVE volume (reference volume).

Three-dimensional porosity maps were computed following
the workflow sketched in Figure 1. Using binary images as
a starting point, we constructed a moving 3D mask centered
around each voxel of the lung image. The value of voxels inside
the mask was set equal to 1, while voxels outside the mask
were set equal to 0. For each lung image voxel, the associated
mask was convoluted with the binary image to obtain the mask
tissue volume, measured as the total number of non-zero voxels
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FIGURE 1 | Workflow for the construction of alveolar porosity maps.

inside the mask. The mask airspace volume was computed as
the difference between the total mask volume and the mask
tissue volume. Finally, the porosity associated to one voxel in
the lung image was determined as the ratio of mask airspace
volume over the mask total volume. The final voxel porosity
took values between 0 and 1, where 0 corresponded to a region
only composed by airspace and 1 corresponded to a region
only occupied by tissue with no gas. To assess the dependence
on the choice of the mask size, we considered the results for
five different mask sizes (140, 105, 70, 35, and 17.5 µm) when
computing the porosity maps for the same segmented image.
The resulting porosity maps were used to construct frequency
histograms, which were then represented using kernel density
estimation techniques to enable a direct comparison between all
mask size cases.

Three-dimensional maps of alveolar surface-density maps
were computed based on the workflow sketched in Figure 2.
Using binary images as the starting point, the boundaries between
alveolar tissue and airspace were detected using the Canny
method for edge detection (Canny, 1986). To improve the
boundary accuracy, the Marching Cubes algorithm (Zhao et al.,
2018) was applied to obtain a smooth representation of the
tissue-airspace boundary. To compute the surface area of the
tissue-airspace boundary, we employed a level-set segmentation
method (Vasilescu et al., 2012a; Magee et al., 2013) implemented
in Matlab (Li et al., 2011). Finally, for each voxel in the lung
image, the tissue-airspace surface area inside the moving mask
around the voxel was obtained by convoluting the mask image
with the smoothed boundary image, from which the surface
density was obtained as the total surface area inside the mask
divided by the volume of the mask. To assess the dependence
of alveolar surface-density maps on the choice of the mask size,
a sensitivity analysis similar to the one described for the case of
porosity was carried out using the same mask size range.

Surface-to-volume ratio maps were constructed using the
information from alveolar surface-density and porosity maps. For
this purpose, let Aalv, Vairspace, and Vref be the alveolar surface
area, the alveolar airspace volume, and the reference volume
of the cubic sample to be analyzed (RVE or moving mask),
respectively. The surface-to-volume ratio (ρ ) is then defined as

the ratio of the alveolar surface area over the airspace enclosed by
this surface, i.e.,

ρ =
Aalv

Vairspace
. (1)

Considering a reference cubic region whose volume is Vref , the
alveolar surface area inside the reference volume can be estimated
from the alveolar surface density (η) as

Aalv = η · Vref , (2)

and the alveolar airspace volume for the same reference volume
can be obtained from the porosity value (φ ) as

Vairspace = φ · Vref . (3)

Substituting Eqs 2, 3 into the definition of surface-to-volume
ratio described in (1), we obtain the relation

ρ =
η

φ
. (4)

Using Eq. 4, surface-to-volume ratio maps can be constructed
from the porosity and the alveolar surface-density maps in a
voxel-wise way. Eq. 4 can also be used to estimate the surface-
to-volume ratio in the RVEs considered in the analysis.

To assess the regional distribution of alveolar porosity,
alveolar surface density, and surface-to-volume ratio, regions of
interest (ROI) were defined along the ventral-dorsal direction
of each subject, following a method similar to that used in the
regional characterization of lung deformation (Cruces et al., 2019;
Hurtado et al., 2020). The regions of interest are connected sets of
voxels selected from advancing planes in the selected direction,
to achieve 10 contiguous regions with the same volume. The
regional value of porosity and alveolar surface density is obtained
as the average of the values contained in each ROI.

Statistical Analysis
To detect significant differences in the morphological parameters
between the study groups, nine RVE samples were selected
per subject from randomly chosen sectors of the lung, which
generates a total of 27 RVE samples per group. The comparison
between groups was performed using the Mann–Whitney
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FIGURE 2 | Workflow for the construction of alveolar surface-density maps.

TABLE 1 | Alveolar morphological parameters for the representative volume elements (RVE) samples.

Group Surface-to-volume
ratio (mm−1)

Mean alveolar
diameter (µm)

Alveolar wall
thickness (µm)

Porosity Alveolar surface density
(µm−1)

Lung volume
ratio (%)

SAF (n = 27) 89.5 ± 10.9*† 29.48 ± 3.96*† 6.92 ± 0.86 0.51 ± 0.05*† 44.31 ± 1.91 56 ± 12*†

MAF (n = 27) 67.7 ± 8.8* 40.51 ± 4.82*# 7.09 ± 1.08 0.65 ± 0.05* 42.05 ± 0.72 87 ± 3*

SAF-HMDS (n = 27) 61.6 ± 5.5† 54.68 ± 5.18#† 7.02 ± 0.45 0.65 ± 0.03† 40.83 ± 1.53 92 ± 2†

*Statistical significance between SAF and MAF methods (p-value ≤ 0.05).
#Statistical significance between MAF and SAF-HMDS methods (p-value ≤ 0.05).
†Statistical significance between SAF and SAF-HMDS methods (p-value ≤ 0.05).

two-sided U test, considering a p-value of 0.05 corrected
by the Bonferroni method to allow the comparison between
multiple groups.

For the inter-group comparison of regional values of porosity
and alveolar surface density, three sections were selected per
anatomical region (apical, mid, or basal) in each subject,
which gives a total of nine samples for each ROI per group.
The comparison between the same ROI in different groups
was carried out using the Mann-Whitney two-sided U test,
considering a p-value of 0.05 corrected by the Bonferroni
method to allow the comparison of multiple groups. The error
bars in figures show the standard deviation. The variability
of porosity and alveolar surface density between different
anatomical sections in a single lung was assessed using the
analysis of variance (ANOVA) test for each of the subjects in
the experimental groups studied (SAF, MAF, and SAF-HMDS),
after confirming normality of the samples considered using the
D’Agostino and Pearson test.

RESULTS

Values for the surface-to-volume ratio, mean alveolar diameter,
alveolar wall thickness, porosity, alveolar surface density, and
lung volume ratio are reported in Table 1. The SAF group was
significantly different than the MAF and SAF-HMDS groups for
the surface-to-volume ratio, mean alveolar diameter, porosity,
and lung volume ratio. Further, the mean alveolar diameter of
the SAF-HMDS group resulted in significant differences when
compared to the SAF and MAF groups. No significant differences
were detected between the three groups for the case of the alveolar
wall thickness and the alveolar surface density.

Figure 3 shows the results from 3D micro-CT imaging
processing and the spatial morphological analysis for the whole

lung of a representative subject in the SAF-HMDS group.
Micro-CT images of the whole lung displayed major airway
and vasculature structures at the macroscopic level, as well as
delivered detailed information of bronchioli, respiratory ducts,
and acinar structures (see Figure 3A). The spatial distribution
of porosity and alveolar surface density were visually found to
be homogeneous throughout the entire domain of the lung (see
Figures 3B,C, respectively).

The regional distribution of alveolar porosity for the apical,
mid, and basal zones of the lung is shown in Figures 4A–C,
respectively. For the three areas analyzed, we found that the

FIGURE 3 | (A) Micro-computed tomography (CT) images of a lung in its
axial, sagittal, and coronal views, (B) porosity, and (C) alveolar surface density
maps for the SAF-HMDS group in the different anatomical planes.
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FIGURE 4 | Regional distribution of porosity in the ventral-dorsal direction for three regions of the lung: (A) apical zone, (B) mid zone, and (C) basal zone. Significant
differences (p-value ≤ 0.05) between the SAF and MAF, SAF and SAF-HMDS, MAF, and SAF-HMDS groups are indicated by ∗, †, respectively. Each group ROI
considered n = 9 samples.

regional porosity values of the SAF group are significantly
different (typically lower) than the values of the MAF and SAF-
HMDS groups, with some exceptions in the mid and basal zones.
No significant differences were found between the MAF and SAF-
HMDS groups. Regarding the spatial distribution of porosity,
uniform values were observed along the ventral-dorsal direction
in all the areas analyzed in the MAF and SAF-HMDS groups. In
contrast, a concave distribution is observed in the SAF group,
with a tendency to reduce porosity toward the most ventral
and dorsal areas.

The regional distribution of the alveolar surface density for the
apical, mid, and basal areas of the lung is shown in Figures 5A–C,
respectively. For the mid and basal cases, significant differences
were observed between the SAF and SAF-HMDS groups for
almost all ROIs. Furthermore, significant differences between the
MAF and SAF-HMDS groups are observed for half of the ROIs
in the same areas. In the three groups, a uniform distribution
of values is observed along the ventral–dorsal direction, for the
apical, mid, and basal zones.

The regional distribution of the surface-to-volume ratio for
the apical, mid, and basal lung zones is shown in Figures 6A–C,
respectively. With the particular exception of two ROIs, virtually
all the regional values of the SAF group were found to be
significantly different (higher) than the values of the MAF
and SAF-HMDS groups. No significant differences were found
between the MAF and SAF-HMDS. Furthermore, a uniform
distribution of values is observed along the ventral–dorsal
direction in all the areas analyzed for MAF and SAF-HMDS
groups. In contrast, a convex distribution is observed in the SAF
group, with a tendency to increase the surface-to-volume ratio
values toward the most ventral and dorsal areas of the lung.

When comparing the alveolar porosity in different sections
of a single lung, no significant differences were found between
the apical, mid, and basal sections for lungs in the MAF group
(see Figure 7 for a graphical account of the results in Subject 1
and Supplementary Table 1 for the ANOVA results). In contrast,
significant differences in alveolar porosity between anatomical
sections were found in all of the lungs in the SAF group. For the
case of alveolar surface density, no significant differences between
sections were detected in lungs of the MAF and SAF-HDMS

groups (see Figure 8 for Subject 1 and Supplementary Table 2
for the ANOVA results).

The effects of mask size on the generation of porosity and
alveolar surface density maps are reported in Supplementary
Figures 1, 2. For both, porosity, and alveolar surface density,
we observe that mask sizes above 70 µm result in unimodal
histograms with similar characteristics (see Supplementary
Figures 1F, 2F). In contrast, mask sizes smaller than 70 µm result
in density functions that are not consistent with larger size masks,
and that show oscillations in the range of smaller values. Figure 9
shows magnifications of a pleural sector for three representative
subjects from each group, where pleural thickening is observed
for the case representing the SAF group. In contrast, a thinner
pleural thickness is observed in the MAF and SAF-HDMS group
representatives.

DISCUSSION

In this work, we have studied the alveolar architecture of rat
lungs using micro-CT and advanced computational geometry
techniques. To the best of our knowledge, this work constitutes
one of the first attempts to characterize the three-dimensional
morphological parameters such as surface-to-volume ratio,
porosity, and alveolar surface density in the whole lung of
Sprague–Dawley subjects. One of the major findings is that
regional porosity, alveolar surface density, and surface-to-volume
ratio have a uniform distribution in normal lungs, which do not
seem to be affected by gravitational effects.

Structural studies based on micro-CT imaging have focused
on C57BL/6 murine lungs, both under normal and diseased
conditions (Parameswaran et al., 2009; Vasilescu et al., 2012a),
where the fixation procedure of the lung samples was similar
to that performed in the SAF group. In 10-week-old normal
mice, the mean alveolar diameter reported is 59 ± 2 µm
(Parameswaran et al., 2009), which is comparable to the mean
alveolar diameter found in the SAF-HMDS group in our work,
and in the order of magnitude of the other two groups. Previous
studies have shown that the alveolar volume and diameter in
mice are smaller than in rats (Faffe et al., 2002). It is worth
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FIGURE 5 | Regional distribution of alveolar surface density in the ventral-dorsal direction for three regions of the lung: (A) apical zone, (B) mid zone, and (C) basal
zone. Significant differences (p-value ≤ 0.05) between the SAF and MAF, SAF and SAF-HMDS, and MAF and SAF-HMDS groups are indicated by ∗, †, and #,
respectively. Each ROI datapoint represents the mean ± standard deviation of n = 9 samples.

FIGURE 6 | Regional distribution of surface-to-volume ratio in the ventral-dorsal direction for three regions of the lung: (A) apical zone, (B) mid zone, and (C) basal
zone. Significant differences (p-value ≤ 0.05) between the SAF and MAF, SAF and SAF-HMDS, and MAF and SAF-HMDS groups are indicated by ∗, †, respectively.
Each ROI datapoint represents the mean ± standard deviation of n = 9 samples.

FIGURE 7 | Single-lung (Subject 1) analysis of variability of alveolar porosity in different anatomical sections in Subject 1. Nomenclature: ∗p ≤ 0.05.

remarking that studies in mice use a higher tracheal pressure
(30 cm H2O) during in situ fixation than the pressure considered
in this work (20 cm H2O). More substantial tracheal pressures
result in a larger alveolar expansion in mice, which may explain
the similarity with the alveolar diameter values found in this
work. The morphological analysis performed by Vasilescu et al.
(2012a) in the same species delivered surface-to-volume ratio
values of 52 ± 3.7 and 47.7 ± 6 mm−1 in young (12-week-
old) and adult (91-week-old) subjects, respectively. These values
are smaller than the ones found in this study for all groups
(Table 1) but coincide in the order of magnitude. Similarly,
Xiao et al. (2016) studied the acini of A/J mouse in situ using

synchrotron-based micro-CT. They found surface-to-volume
ratio values of 79.8 ± 8.9 mm−1, which are very close to those
reported in this work in Table 1. We note that if the alveolus
cavity is idealized as a sphere, then the surface-to-volume ratio
is inversely proportional to the alveolar diameter. This, in turn,
would imply that larger values of surface-to-volume ratio are to
be expected in mice than in rats, which is not the case. Again, we
attribute these differences to the high tracheal pressure applied in
mice experiments (30 cm H2O), which results in larger alveoli
dimensions. We note that in our work, the choice of applying
an applied tracheal pressure of 20 cm H2O was made to target
physiological values of tidal volume, as a tracheal pressure of
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FIGURE 8 | Single-lung analysis of variability of alveolar surface density in different anatomical sections in Subject 1. Nomenclature: *p ≤ 0.05.

FIGURE 9 | Magnifications of grayscale micro-CT images for subpleural regions of three representative subjects: (A) SAF group, (B) MAF group, and (C) SAF-HMDS
group. The red scale bar corresponds to 100 µm.

30 cm H2O typically corresponds to total lung capacity in murine
subjects (Namati et al., 2006). The group of Litzlbauer et al. (2006)
measures the alveolar surface density from micro-CT images
using stereological methods for morphological quantification. In
their study, left porcine lungs were fixed by using ventilation
of formaldehyde vapors at 35 cm H2O. The alveolar surface
density was measured as the alveolar surface area divided by the
volume of interest, giving values close to the obtained in this
study (between 30.5 and 35.5 mm−1).

Three-dimensional maps displaying the distribution of
porosity in the lung were successfully constructed for all subjects
(see Figure 3B for a representative case). The resulting maps
showed a convergent distribution for mask sizes greater than
70 µm (see Supplementary Figure 1). Porosity in the pulmonary
parenchyma was found to be regionally uniform everywhere
in the lung and locally similar in the MAF and SAF-HMDS
groups (see Table 1 and Figure 4). These results suggest that the
spatial distribution of regional porosity is homogeneous and is
not subject to gravitational effects. This conclusion is supported
by previous studies, like the one reported by Hoffman et al.
(Mullan et al., 1997; Namati et al., 2006). They estimated the
air content on primate lungs in different anatomical regions,
observing that air content is uniformly distributed in the lung and
does not depend on the location of measurement. Another study
that supports this conclusion is the work of Hogg et al., where
16 parenchyma samples were randomly dissected from different
regions of frozen human lungs and analyzed using micro-CT

(McDonough et al., 2015). The alveolar density, defined as the
number of alveoli in a reference volume, was found to be uniform
regardless of their original location in the lung.

In our study, a marked reduction in alveolar porosity was
observed toward the subpleural regions in the SAF group (most
dorsal and ventral zones, see Figure 4). Further, in every single
lung of the SAF group, the porosity was found to be significantly
different depending on the lung region (see Figure 7 and
Supplementary Table 1). A careful examination of micro-CT
images in those regions for a representative subject of the SAF-
group revealed thickened alveolar septums, which is suggestive of
alveolar collapse (micro-atelectasis) (see Figure 9A). In contrast,
alveolar structures close to the pleura in representative subjects
of the MAF and SAF-HMDS groups do not display alterations
when compared to proximal acinar structures (see Figures 9B,C,
respectively). These observations, along with the strong volume
reductions observed in the SAF group (Table 1, lung volume
ratio), suggest that the decrease in regional porosity in the SAF
group is likely to be an artifact of the method rather than a
physiological condition.

Similarly to the case of porosity, three-dimensional maps
of alveolar surface density were obtained for all lung samples
(see Figure 3C for a representative case). The resulting maps
showed a convergent distribution for mask sizes greater than
70 µm (see Supplementary Figure 2). All three groups suggest
that the distribution of alveolar surface density is homogeneous
throughout the lung (see Figures 5, 8). Groups typically do
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differ in their assessment of ROI values. For example, significant
differences between the SAF and SAF-HMDS groups were found
in 21 out of 30 ROIs considered. More conclusive results were
found in the study of the regional surface-to-volume ratio, where
uniform distributions with similar values were found in the MAF
and SAF-HMDS groups. These results suggest that the surface-
to-volume ratio is homogeneous throughout the lung and does
not exhibit a gravitational dependence. In contrast, the SAF
group resulted in heterogenous distribution that largely deviated
from the values found in the MAF and SAF-HMDS groups.
We note that, since the surface-to-volume ratio is inversely
proportional to the porosity, we conclude that the seemingly
increasing values toward the most ventral and dorsal regions can
be regarded as artifacts in the alveolar architecture induced the
SAF method, based on the conclusions reached in the study of
regional porosity.

Throughout this work, three methods for dehydration have
been considered in the fixation of lung samples. The gold-
standard and most popular method in studies involving the
histological analysis and micro-CT imaging of murine lungs
has been the SAF method, which employs ethanol solutions for
the dehydration step (Puchtler et al., 1970; Hausmann, 2007;
Braber et al., 2010). However, in our work, we have shown
that the SAF method results in considerable lung shrinking
(Table 1) that markedly affects the alveolar architecture in
subpleural regions (Figure 9A). An alternative method is the
SAF-HMDS, which is predominantly used to prepare samples for
electron microscopy, with some applications in micro-CT sample
preparations. One advantage of the SAF-HMDS method is that
it allows a rapid drying that has been shown to preserve the
alveolar morphology without significant alterations (Bray et al.,
1993; Lee and Chow, 2012). However, the SAF-HMDS method
has important operational disadvantages and risks to the user, as
inhalation or skin exposure to HMDS is known to be hazardous
to health (Chou and Chang, 2007). Another disadvantage is
the management of HMDS residuals, as degradation results in
products that can be harmful to the environment and that require
special disposal procedures (Alleni et al., 1997). Here, we propose
and assess the use of the MAF method as an alternative in the
dehydration of lung samples. The MAF dehydration method has
been commonly employed in molecular biology to quantify the
presence of biomarkers and to detect specific genetic alterations
in organs/tissues (Noguchi et al., 1997; Anami et al., 2000).
However, to the best of our knowledge, its application in the
preparation of samples for micro-CT analysis is novel and has
not been reported in the literature. Our results show that the
application of a methanol-PBS solution before subsequent baths
of ethanol solutions in lung samples preserves their volume
(Table 1) and alveolar architecture everywhere in the lung, as
most of the morphological parameters analyzed in this work do
not display substantial differences between the MAF and SAF-
HMDS groups. We believe that the success of the MAF method
is related to the ability of the methanol bath to increase cellular
permeability, which then allows for enhanced diffusion properties
during the ethanol bath dehydration step (Puchtler et al., 1970).
We further note that methanol and PBS are safer in health terms
than HMDS [lethal dose (LD50) and lethal concentration (LC50)

values are considerably smaller for HMDS than methanol], and
their disposal can be done without special requirements (the
biodegradability of methanol is 99% while for HMDS is just
15.3%) (Sullivan and Cummins, 2005; Jang et al., 2019). Thus, we
conclude that the proposed MAF dehydration method represents
a convenient, sustainable, and safe procedure that does not alter
the alveolar morphology in treated lung samples.

Several aspects of this work can be improved in future
contributions. We have shown in our study that all fixation
methods lead to different levels of tissue shrinking, which
directly affects the alveolar architecture and the associated
morphological parameters. Recently, in vivo micro-CT imaging
of murine lungs has been reported (Lovric et al., 2017), where the
acinar structure was reconstructed with high precision in living
subjects. Future efforts on the morphological characterization
of the lung may benefit from these in vivo imaging techniques,
which may confirm or correct the values reported in this work.
Another limitation of our study was the use of a single airway
pressure level. Due to the elastic nature of the alveolar wall,
the morphological values described in this work are expected
to change in the event of different levels of airway pressure.
Besides, our results have been obtained using only three subjects
per group. While this small sample has allowed us to detect
significant differences between groups, larger populations of
Sprague–Dawley rats and other species should be considered in
future works to confirm and extend our conclusions. Finally,
in this work, we have advocated for the characterization of
alveolar porosity, which is a microstructural parameter that is
not commonly reported in respiratory physiology. We note,
however, that porosity plays a crucial role in describing the
mechanical response of porous biomaterials (Currey, 1988).
A recent theoretical study shows that porosity, along with the
alveolar wall elasticity, is the most relevant microstructural
parameter in the mechanical response of the lung parenchyma
(Concha et al., 2018; Concha and Hurtado, 2020). Further, the
study shows that an increase in porosity, which can be directly
associated with alveolar airspace enlargement, may signify a
loss of parenchymal elastance, a mechanical relationship that
has long been observed in lungs with pulmonary emphysema
(Nagai et al., 1991). Therefore, a deep understanding of the
porosity distribution in the whole lung plays a vital role in
the creation of microstructurally-informed constitutive models
(Eskandari et al., 2019; Álvarez-Barrientos et al., 2021) that
can predict the overall properties of the lung, as well as in
informing organ-level computational models of the respiratory
system (Eskandari et al., 2015).
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Acute respiratory distress syndrome (ARDS) is mostly characterized by the loss of aerated

lung volume associated with an increase in lung tissue and intense and complex lung

inflammation. ARDS has long been associated with the histological pattern of diffuse

alveolar damage (DAD). However, DAD is not the unique pathological figure in ARDS

and it can also be observed in settings other than ARDS. In the coronavirus disease

2019 (COVID-19) related ARDS, the impairment of lung microvasculature has been

pointed out. The airways, and of notice the small peripheral airways, may contribute to

the loss of aeration observed in ARDS. High-resolution lung imaging techniques found

that in specific experimental conditions small airway closure was a reality. Furthermore,

low-volume ventilator-induced lung injury, also called as atelectrauma, should involve

the airways. Atelectrauma is one of the basic tenet subtending the use of positive

end-expiratory pressure (PEEP) set at the ventilator in ARDS. Recent data revisited

the role of airways in humans with ARDS and provided findings consistent with the

expiratory flow limitation and airway closure in a substantial number of patients with

ARDS. We discussed the pattern of airway opening pressure disclosed in the inspiratory

volume-pressure curves in COVID-19 and in non-COVID-19 related ARDS. In addition,

we discussed the functional interplay between airway opening pressure and expiratory

flow limitation displayed in the flow-volume curves. We discussed the individualization of

the PEEP setting based on these findings.

Keywords: acute respiratory distress syndrome, airway closure, COVID-19, respiratory mechanics, expiratory flow

limitation, positive end-expiratory pressure

INTRODUCTION

Acute respiratory distress syndrome (ARDS), a non-cardiogenic pulmonary edema with lung
inflammation, loss of aeration, higher intra-pulmonary shunt, lower compliance of respiratory
system, and hypoxemia, is primarily driven by pneumonia, aspiration, and extra-pulmonary sepsis
(Bellani et al., 2016; Thompson et al., 2017). Before the COVID-19 pandemic, it accounted for
10% of intensive care unit (ICU) admissions and supported a 28-day median mortality rate of
about 35%, and >40% in the severe ARDS category (Bellani et al., 2016). With the COVID-
19 pneumonia, the number of ARDS cases exploded worldwide and the mortality remained
in the same range as that of non-COVID-19 (Grasselli et al., 2020; Matthay et al., 2020).
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The role of airways in the pathophysiology of ARDS has largely
remained unknown even though airway collapsibility in this
setting was suspected many years ago (Bindslev et al., 1980;
Hedenstierna and McCarthy, 1980). As discussed below, the
histological involvement of airways was marginally described in
ARDS. However, recent data suggest that airways may play a
role in the pathophysiology of both COVID-19 and non-COVID-
19 ARDS.

In this narrative review, we aimed to decipher the data
subtending the implication of airways in the pathogenesis of
ARDS and discuss some therapeutic approaches.

LUNG PATHOLOGY OF ARDS

Post-mortem examination of 7 patients in the 12 originally
described as ARDS by Ashbaugh et al. reported that the lungs
were heavier than normal and disclosed capillary congestion,
areas of alveolar atelectasis, interstitial and alveolar hemorrhage,
and hyalines membranes (Ashbaugh et al., 1967). The pulmonary
vasculature and the trachea-bronchial tree were free of
obstruction (Ashbaugh et al., 1967). Then, Katzenstein et al.
(1976) popularized the term of diffuse alveolar damage (DAD)
that has long been tightly associated with ARDS and thought
of as its pathognomonic pathological feature. DAD includes
lung epithelial and endothelial injury, lung edema, hyalines
membranes, and then proliferation of alveolar, interstitial, and
bronchial cells (Katzenstein et al., 1976). Three distinct phases
have been described during the ARDS course: the exudative
phase with lung edema formation, the fibro-proliferative stage,
and the fibrotic stage (Thompson et al., 2017). The transition
from phase 2 to phase 3 is not predictable, and the phase 3
may evolve toward either a complete recovery or a persistence
of post-aggressive fibrosis that may itself recover. Interestingly,
Thille et al. were able to describe these three phases from autopsy
lung examination in patients who died with ARDS in the ICU
(Thille et al., 2013). Over time, it turned out, however, that
DAD was not the main histopathological feature of ARDS. Libby
et al. in a meta-analysis of studies reporting on the open lung
biopsy in patients with ARDS found a 9% rate of DAD in the
1,205 pooled patients (Libby et al., 2014). The most frequent
diagnoses of the ARDS cause after lung histology assessment were
interstitial lung disease (25%) and infection (24%) (Libby et al.,
2014). In a subsequent study, which included 83 patients from
two ICUs with non-resolving ARDS, the rate of DAD diagnosed
on lung biopsies was 58% (Guerin et al., 2015a). Three factors
may contribute to a lower rate of DAD than expected: (1) part of
the DADmay have been related to ventilator-induced lung injury
and has decreased over time with the wider use of lung-protective
ventilation and lower tidal volume (Acute Respiratory Distress
Syndrome Network, 2000), (2) patients with an underlying lung
disease may present with the clinical ARDS figure (Guerin et al.,
2015b; Aublanc et al., 2017), and (3) DAD is more frequently
observed in non-resolving or fatal ARDS than in the other cases.

In patients with COVID-19, lung histopathology is close to
that pertaining to classic ARDS. A meta-analysis on 27 studies
providing the results of surgical lung biopsy or post-mortem

lung autopsy in 195 patients who died from COVID-19, found
DAD in 80% of the studies and heterogeneous histopathology
(Pannone et al., 2021). The severity of lung histopathology may
explain out-of-hospital cardiac arrest (Fanton et al., 2021). Copin
et al. described the pattern of organizing pneumonia in 6 patients,
associated with fibrin deposition in the bronchioles (Copin et al.,
2020), and Fox et al. emphasized on lung microangiopathy in
African-American subjects (Fox et al., 2020).

AIRWAY CLOSURE IN NORMAL HUMAN
PHYSIOLOGY

In normal humans, the lung deflates from total lung capacity
(TLC) down to 10% TLC due to its own elastic recoil. At zero
trans-pulmonary pressure (PL), the airways may be kept open
under the action of their internal structure and of the traction
of the surrounding lung parenchyma that stems from the lung
elastic recoil. The cartilaginous walls of the central airways
make them more likely to stay open while the patency of non-
cartilaginous peripheral airways depends on the radial traction of
the surrounding lung. At low lung volume, the elastic recoil is
less and so the radial traction is also less and hence the peripheral
airways are more likely to collapse. The pattern of deflation in
a static volume-pressure (VP) curve of a normal subject in the
sitting position is different in the absence or presence of airway
closure (Figure 1). Though the lung does not fully empty over
the vital capacity range in absence of airway closure (Agostoni
and Mead, 1964; Agostoni and Hyatt, 1986), the presence of
airway closure, which happens below functional residual capacity
(FRC), deviates the static lung VP curve to the left (Sutherland
et al., 1968) (Figure 1). With the use of the VP curve method,
different values of critical PL at which airways start closing have
been found across animal species and experimental preparations.
When airways start closing at 4 cm H2O PL in excised lungs dogs
(Glaister et al., 1973), they were found still open at negative PL
in in situ closed-chest lungs rabbits (Cavagna et al., 1967). In
closed-chest pigs, cats, dogs, and rabbits, the airways remain open
at PL of −8.3 (Bayle et al., 2006), −12.4 (Cavagna et al., 1967),
−11.9 (Cavagna et al., 1967), and −12.7 (Cavagna et al., 1967)
cmH2O, respectively. The closing volume is the lung volume at
which airways start closing and the closing capacity is the sum
of closing volume and residual volume. Both can be measured by
the single breath N2 washout after 100% oxygen inhalation as a
distinct phase IV (McCarthy et al., 1972). The closing capacity
increases with age and FRC is lower in obese than in non-obese
subjects (Figure 2). Therefore, airway closure is more likely to
occur at a younger age and in obese than in non-obese patients
(Figure 2).

When the airways of mammalians are closed, the lungs still
contain some air behind the closure in the amount of roughly 0.5
ml/100 g lung tissue (Greaves et al., 1986), meaning that alveoli
closed after the airways became closed. In a very elegant in vivo
experiment by Cavagna et al. in animals (Cavagna et al., 1967),
deflation lung VP curves were drawn during: (1) absorption of
pure oxygen after tracheal clamping and (2) withdrawal of air-
filled lungs from the trachea. The comparison of VP curves in
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FIGURE 1 | Deflation static volume-pressure (VP) curve of the lung, chest wall and whole respiratory system. FRC, functional residual capacity; CV, closing volume.

FIGURE 2 | Lung volumes as a function of total lung capacity (TLC) against age. The two horizontal broken lines are FRC seated in normal and obese subject and the

red broken line the trend of closing capacity with age. As closing capacity increases with age, an obese subject, in whom FRC is lower, would be likely to exhibit

airway closure at a younger age than a non-obese subject. Not shown here is the fact that FRC goes down with increasing body mass index.

both experimental conditions showed that terminal lung units
remained in continuity with the trachea till a negative PL in
order of −2 cm H2O happens, meaning that both airways and
alveoli have an elastic resistance to collapse. The mechanisms

of that resistance to collapse may result from the erectile effect
of vascular distension at low lung volume that tethered the
peripheral airways (Goldberg et al., 1975). The sequence of
closure, airways then alveoli, allows gas exchange to continue
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behind the closure. Once the alveoli are closed, atelectasis occurs
and reopening atelectatic lung requires greater PL than that
required for reopening closed airways.

When closing capacity becomes near to FRC (Figure 2), the
likelihood of tidal expiratory flow limitation (EFL) increases
with the ease of airways to get closed. In normal subjects, any
increase in expiratory driving pressure (alveolar pressure minus
atmospheric pressure) is followed by an increase in expiratory
flow for a given lung volume. EFL occurs whenever the expiratory
flow does not increase after an increase in expiratory driving
pressure. This feature is the expression of airway collapse that
occurs when the intraluminal pressure of the airways is lower
than the external pressure, which is the pleural pressure. Tidal
EFL heralds airway closure. Its measurement can be done by
the atmospheric method that consists in changing abruptly the
airway-to-atmospheric pressure gradient over one breath.

In normal subjects under mechanical ventilation and
general anesthesia, airway closure was measured at 4.5 cm
H2O PL in some studies (Hedenstierna and McCarthy, 1980)
and atelectasis was disclosed by using CT scan (Gunnarsson
et al., 1989). Both airway closure and atelectasis contributed
to gas exchange abnormalities that occurred early after
anesthesia induction in normal subjects (Rothen et al.,
1998).

AIRWAY CLOSURE IN ARDS

Causes
In patients with ARDS many factors can contribute to
airway closure:

1. Intraluminal factors:

a. The surfactant impairment in qualitative or quantitative
terms will reduce the surface tension at the air-liquid
interface in the terminal bronchioles and favor closure
(Albert, 2012; Coudroy et al., 2019).

b. Some fluidmay accumulate in the lumen of the airways and
in the alveoli, forming a foam that may completely or partly
obstruct the small airways lumen (Wilson et al., 2001).

c. Absorption atelectasis in the terminal lung units of lung
regions with low ventilation-to-perfusion ratio can result
from higher levels of FIO2 (Aboab et al., 2006).

2. Parietal factors:

a. Some bronchoconstriction may arise from the mediators
that are released during the acute inflammatory process
(D’Angelo et al., 2008).

3. External factors:

a. The loss of elastic recoil that results from elastic fibers
destruction will reduce the tethering effect of the radial
traction of the surrounding lung parenchyma.
b. The airways may be compressed by the higher mass of
the lung according to the spongemodel of ARDS (Gattinoni
et al., 2013).

Consequences
In turn, the reduction of airways lumen will increase the airway
flow resistance. Indeed, an increased airway flow resistance has
been described in ARDS (Wright and Bernard, 1989; Eissa et al.,
1991). However, this finding was related to the reduction in
aerated lung volume (Pelosi and Rocco, 2007). Functionally
speaking, ARDS is a restrictive lung disease with a reduction
in lung volumes. The FRC is lower than the expected normal
values and the reduction in FRC goes upwith the increased ARDS
severity (Cressoni et al., 2015). The baby lung important concept
originated from this finding (Gattinoni and Pesenti, 2005).

Another consequence of airway closure is that it would favor
the repeated opening and closure of the terminal respiratory units
from breath to breath that would further injure the lung. This low
volume barotrauma is another mechanism of ventilator-induced
lung injury (Muscedere et al., 1994). When it occurs in those
lung regions near to those consolidated and not re-openable,
considerable forces are applied that produce major lung stress
(Mead et al., 1970).

What is totally unknown in ARDS is the role of collateral
ventilation that should theoretically prevent some alveolar
collapse by feeding with air through the Köhn pores step by step
the neighborhood airways tree (Woolcock and Macklem, 1971;
Hogg et al., 1972).

Expiratory Flow Limitation and Airway
Closure
As mentioned above, tidal EFL and airway closure are
distinct phenomena and their temporal occurrence is not fully
understood. However, both have been described in patients with
ARDS. In a very elegant study using the atmospheric method
(Valta et al., 1994), tidal EFLwas found in 8 out of 10 patients with
ARDS under zero end-expiratory pressure (Koutsoukou et al.,
2000). In a subsequent study, the same authors found that tidal
EFL was present in 7 patients out of 13 on zero end-expiratory
pressure and was no longer present at positive end-expiratory
pressure (PEEP) 5 cm H2O in 2 patients and 3 others at PEEP
10 cm H2O (Armaganidis et al., 2000). It is not surprising that
some patients became not flow limited on PEEP if the latter is
above the critical pressure at which those airways would collapse.
These early pioneering studies were done when the principles of
lung-protective mechanical ventilation were not widely applied.
Furthermore, a PEEP of at least 5 cm H2O is now mandatory to
define ARDS according to the Berlin definition (Ranieri et al.,
2012); this minimal PEEP has to be set at the ventilator unless the
upper safety limit of plateau pressure is surpassed (a condition,
which occurs in late ARDS with a fibrotic lung or a very low baby
lung). In the current era of lung-protective ventilation, Yonis
et al. found that tidal EFLmeasured with the atmosphericmethod
was present in 13 out of 65 patients with ARDS under a PEEP
of 5 cm H2O in semi-recumbent position (Figure 3). Patients
with tidal EFL had higher body mass index, higher total PEEP,
and higher ICU mortality than patients without tidal EFL for
similar ventilator settings (Yonis et al., 2018). In a subsequent
study on 25 patients with ARDS enrolled in two centers, tidal
EFLmeasured with the atmospheric method was observed in 8 of
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FIGURE 3 | Confrontation of flow-volume and VP relationships in two patients with acute respiratory distress syndrome (ARDS). Flow–volume and pressure–volume

(PV) curves from two representative patients (#54 and #36) in the present study. Left: flow–volume loops during baseline mechanical ventilation and after

disconnecting (thin arrows) to the atmosphere. Upper: A patient with expiratory flow limitation (EFL) over the whole expiratory volume, meaning that the whole breath

happens in the closing volume. Lower: A patient without EFL. Thick vertical arrows indicate expiration (upward) and inspiration (downward) directions. The expiratory

time constant was measured during disconnection as the time required to exhale 63% of the insufflated volume. Right: Corresponding low-flow PV curves. Upper: An

early increase in pressure does not result in an increase in volume up to a point (vertical dashed arrow), at which the volume suddenly increases. This pattern is

consistent with airway reopening in this patient with EFL. The airway opening pressure was determined by visual inspection, and the compliance of the PV curve from

PEEP with the Paw was computed. Lower: A sustained increase in volume from the onset of pressurization indicates the absence of a critical airway opening pressure

in this patient without EFL. Paw, airway pressure; PEEP, positive end-expiratory pressure. Reprinted with permission of the American Thoracic Society. Copyright ©

2021 American Thoracic Society. All rights reserved. Cite: Yonis, Mortaza, Baboi, Mercat, Guérin/2018/Expiratory Flow Assessment in patients with ARDS. A

reappraisal/AJRCCM/198/Pages 131-134. The American Journal of Respiratory and Critical Care Medicine is an official journal of the American Thoracic Society.

them (Guerin et al., 2020). Patients with tidal EFL had higher lung
elastance than those without EFL (Guerin et al., 2020). It should
be noted that in experimental porcine models of ARDS (saline
lavage with surfactant depletion and oleic acid injection), tidal
EFL was not disclosed on zero end-expiratory pressure, casting
some doubts about the relevance of experimental models in their
extrapolation to human ARDS (Guérin et al., 2008).

Some fresh air has recently blown up onto the inspiratory VP
curves. Chen et al. showed in patients with ARDS during the
low inflation of the respiratory system that in some of them,
the lung volume did not change until a certain airway pressure
was reached and above which the volume suddenly increased
linearly with further pressure (Chen et al., 2018). A pattern like
this (Figure 3) suggests a critical opening pressure, which was
henceforth called airway opening pressure (AOP). To make this
finding more robust, the authors measured the compliance of the
ventilator circuit and found that the slope of the VP relationship

from the onset of inflation to AOP was equal to that of the
compliance of the circuit. Accordingly, from onset of inflation to
AOP air circulation happens within the ventilator circuit only. It
turned out that AOP was found in almost 30% of either classic
ARDS or COVID-19-related ARDS (Table 1). The prevalence
of AOP was even greater in obese, which is not surprising as
obesity increased the elastic load superimposed to the chest wall
(Coudroy et al., 2020). The static elastic chest wall compliance is
normal in obese, i.e., the chest wall is not stiffer, it is overloaded
(Behazin et al., 2010).

Simultaneous assessment of EFL and AOP in patients with
ARDS at PEEP 5 in semi-recumbent position found that both
are not synonymous (Guerin et al., 2020). EFL was observed
in 8 patients, 7 of them exhibiting AOP, and AOP was present
in 13 patients, meaning that 6 patients had AOP without EFL.
Patients with AOP had higher lung dynamic elastance and
higher mechanical power than patients without AOP and the

Frontiers in Physiology | www.frontiersin.org 5 January 2022 | Volume 12 | Article 81560186

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Guérin et al. Airway Closure and ARDS

TABLE 1 | Values of airway opening pressure in non-COVID-19 or COVID-19-related acute respiratory distress syndrome.

References Cause of ARDS Percentage of patients with AOP (N/total) Median or mean AOP (cmH2O)

Chen et al. (2018) Non-COVID-19 27 (8/30) 13

Yonis et al. (2018) Non-COVID-19 32 (21/65) NA

Maggiore et al. (2001) Non-COVID-19 33 (15/45) 5–20

Guerin et al. (2020) Non-COVID-19 52 (13/25) 9

Haudebourg et al. (2020) Non-COVID-19 10 (3/30) 5

Grieco et al. (2020) Non-COVID-19 30 (10/30) NA

Haudebourg et al. (2020) COVID-19 40 (12/30) 8

Stevic et al. (2021) COVID-19 33 (8/24) NA

Cour et al. (2021) COVID-19 22 (4/18) NA

Beloncle et al. (2020) COVID-19 24 (6/25) 8

Grieco et al. (2020) COVID-19 7 (2/30) NA

Pan et al. (2020) COVID-19 0 (0/12) NA

Brault et al. (2020) COVID-19 44 (12/27) 8

ARDS, acute respiratory distress syndrome; AOP, airway opening pressure; NA, not available.

same was true between patients with EFL and without EFL.
The additional lung tissue resistance measured with the airway
occlusion technique at the end of inspiration was higher in
patients with EFL than without EFL but did not differ between
patients with and without AOP, and the interrupter resistance,
i.e., the resistance in the conducting airways did not differ
between patients with EFL and without EFL. This may suggest
that EFL occurs in the most distal parts of the small airways.
AOP was also present in patients with COVID-19 related ARDS
as mentioned above but EFL was not explored in them.

X-ray techniques in the Synchrotron facilities can dynamically
image the lung in vivo in three dimensions at a resolution
of 20µm. Thanks to this technique, some light was shed on
airway closure. In rabbits, small airways closure occurred more
frequently when the lungs had been injured than in the animals
whose lungs were normal. Furthermore, airway closure can occur
at more than one site in a given small airway during mechanical
ventilation (Broche et al., 2019). Moreover, small airway closure
was observed either during inspiration or during expiration
in different lung areas (Fardin, 2019). One limitation of this
technique is that the animals received mechanical ventilation in
the erect position rather than the supine or prone position.

THERAPEUTIC ASPECTS

One pharmacological approach and one ventilator setting will be
discussed in this section as examples of therapeutic implications
of the previous considerations.

Bronchodilator Agents
Beta-2 adrenergic receptors agonists relax the smooth muscle
fiber within the airway wall of the cartilaginous airways in case of
bronchoconstriction and hence increase their lumen and reduce
airway resistance. If airway closure and/or EFL mostly result
from bronchoconstriction, its relief should make the airways
larger. Wright et al. found that aerosolized metaproterenol as
compared with placebo significantly reduced air-flow resistance

and increased dynamic lung compliance in 8 patients with ARDS
intubated and mechanically ventilated (Wright and Bernard,
1989). Pesenti et al. found that intravenous salbutamol reduced
air-flow resistance but did not change additional tissue resistance
in patients with ARDS (Pesenti et al., 1993). Koutsoukou
et al. found that nebulized salbutamol did not change the
amount of EFL in patients with ARDS (Koutsoukou et al.,
2000), a finding that is in accordance with the previous
results of Guérin et al. (lung tissue resistance higher in EFL
patients) (Guerin et al., 2020) and Pesenti et al. (no effect of
salbutamol on lung tissue resistance) (Pesenti et al., 1993). Beta-
2 adrenergic receptors agonists have not only bronchodilatating
properties in broncho-constricted airways but also contribute
to lung edema clearance. This results from the upregulation
of the apical Na/K ATPase in type II alveolar cells. From
this basis, Perkins et al. found that intravenous salbutamol
significantly reduced the extravascular lung water as compared
with a placebo group (Perkins et al., 2006) and improved
epithelial repair (Perkins et al., 2008) in patients with ARDS.
However, random controlled trials (RCTs) did not confirm
these physiological benefits. One trial was stopped early for
the safety concern of higher mortality in the salbutamol
group (Gao Smith et al., 2012). In another trial, aerosolized
albuterol did not change the patient outcome as compared with
placebo (Matthay et al., 2011). Therefore, the use of beta-2
adrenergic receptors agonists is not recommended in patients
with ARDS.

Setting PEEP
Positive end-expiratory pressure is an expiratory ventilator
setting that allows to maintain the lung recruitment generated
during the preceding inspiration or resulting from a voluntary
recruitment maneuver. During the tidal breathing setting, PEEP
should therefore be selected with the goal to minimize the
tidal recruitment/derecruitment, i.e., atelectrauma. However,
atelectrauma is linked to recruitability of the lung. In ARDS
patients with a high potential of recruitment, the risk of
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FIGURE 4 | Volume-Pressure curves of the respiratory system at PEEP of 5 (green), 10 (red), and 15 (blue) cmH2O in a patient with ARDS with EFL. The black broken

curve is the curve of the ventilator tubing used to define airway opening pressure (down black arrow AOP) at PEEP 5. ACP, airway closing pressure (down black arrow

ACP).

atelectrauma is higher than in those with a lower recruitability
at low PEEP (Caironi et al., 2009). Setting PEEP based on
the presence of airway closure indicators is therefore attractive.
As discussed above, the presence of AOP may reflect airway
closure and hence be used to set PEEP. At this point, some

considerations should be taken into account. Hickling provided
a comprehensive mathematical model of the series of events
that occurred during incremental PEEP starting from a totally
degassed lung up to 50 cm H2O plateau pressure followed by
decremental PEEP from this fully recruited lung to zero volume
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(Hickling, 2001). In this model, open-lung PEEP was defined
as the PEEP that maintained aerated 97.5% of the alveoli in
the most dependent parts of the lungs. The open-lung PEEP
was made dependent on both the superimposed pressure due to
gravity (0 cm H2O in the non-dependent and 14.5 cm H2O in the
dependent lung) and the critical closing pressure set in the 0–
4 cm H2O range. The critical opening pressure was the PL above
which alveoli suddenly increased volume. Given a 18.5 cm H2O
set open-lung PEEP and a 0–20 cmH2O range of critical opening
pressure, the PEEP level needed to maximize the compliance
was 19 cm H2O during incremental limb and 16 cm H2O during
decremental PEEP, and 20 and 16 cm H2O, respectively, for a
2 cm H2O critical closing pressure (Hickling, 2001). Therefore,
based on the computation of compliance, the open-lung PEEP
is lower during deflation than inflation. It has been shown that
the lung recruitment continued well above the “knee” (Gattinoni
et al., 1987) or lower inflection point on the inflation VP curve
(Crotti et al., 2001; Pelosi et al., 2001) and was a continuous
process during insufflation, so that the point at which on VP
curve the compliance started to decline would rather identify the
end of recruitment (Jonson et al., 1999). However, it is likely
that setting PEEP below this “knee” would be harmful to the
lung as it should not prevent atelectrauma (Downie et al., 2004).
Indeed, the “knee” correlates with the lower critical opening
pressure (Hickling, 1998). One could argue that setting PEEP
above AOP, being an opening pressure, makes sense if it is also
a closing pressure, i.e., a pressure at which airways start closing.
Due to the lung hysteresis, the closing pressure is different (e.g.,
lower) from the opening pressure. However, the identification of
such a critical closing pressure was not so clear in ARDS and
the “knee” was not an indication of airway closure when using
VP curves at different PEEP in patients with ARDS (Maggiore

et al., 2001). When performing slow deflation from zero end-
expiratory pressure at constant flow up to a complete closure in
an experimental model of ARDS, we found that airways remained
open over a substantial range of airway pressure (Bayle et al.,
2006), which is in line with the fact that EFL was not disclosed in
this kind of experimental setting. However, since AOP happens
and assuming it reflects airway reopening, airway closure should
have occurred during the preceding expiration. In the study on
25 patients with ARDS already mentioned, deflation VP curves
at constant low flow were performed (Guerin et al., 2020). In
the patient shown in Figure 4, who had EFL at PEEP 5 cm H2O,
the AOP was 14.6 cm H2O and increased with increasing PEEP,
indicating that the closure was not overwhelmed up to PEEP 15,
and indeed EFL was still present at that PEEP. On the deflation
VP curve, the closing pressure at PEEP 5 disclosed from an
unbiased analysis was lower than AOP (Figure 4).

In conclusion, airway closure happens in patients with ARDS,
but the location within the airway tree and the mechanisms
which originate in, need further investigation. Combining
AOP and EFL assessment may help better define the pattern
of airway closure and help better PEEP selection. Assuming
that EFL informs about small airway collapse, for a given
AOP, PEEP would be more likely to reopen the airways and
maintain lung volume in the presence than in the absence
of EFL.
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A large variety of disposable face masks have been produced since the onset of the 
COVID-19 pandemic. Decreased resistance to inspiration improves adherence to the use 
of the mask; the so called breathability is usually estimated by the measurement of air 
flow across a section of the tissue under a given pressure difference. We hypothesized 
that the mask pressure—flow relationship studied in conditions that mimic tidal breathing 
could allow a more comprehensive characterization of airflow resistance, a major 
determinant of mask comfort. A physical analog was made of a plaster cast dummy head 
connected through a pneumotachograph to a series of bellows inflated/deflated by a 
respirator. Pressure was measured at the mock airway opening over which the mask was 
carefully secured. The precision of the measurement equipment was quantified using two 
estimates of measurement error: repeatability coefficient (RC) and within-mask coefficient 
of variation (CVwm). The airflow resistance of 10 surgical masks was tested on 4 different 
days. Resistance means did not differ significantly among four repeated measures 
(0.34 hPa.s.L−1; 0.37 hPa.s.L−1; 0.37 hPa.s.L−1; and 0.37 hPa.s.L−1; p = 0.08), the estimated 
RC was 0.08 hPa.s.L−1 [95%CI: 0.06–0.10 hPa.s.L−1], and CVwm was 8.7% [95%CI: 
1.5–12.2%]. Multiple comparisons suggest the presence of a learning effect by which the 
operator reduced the error over the course of repetitive resistance measurements. 
Measurement precision improved considerably when the first set of measures was not 
taken into account [RC ~ 0.05 hPa.s.L−1 (95%CI: 0.03–0.06 hPa.s.L−1); CVwm~4.5% (95%CI: 
1.9–6.1%)]. The testing of the face mask resistance (R) appears simple and highly 
repeatable in conditions that resemble tidal breathing, once operator training was assured. 
The procedure adds further to the current standard assessment of breathability and allows 
estimating the maximal added respiratory load, about 10–20% of the respiratory resistance 
reported in heathy adult subjects.

Keywords: face masks, surgical masks, breathability, COVID-19, SARS-CoV-2, pressure-flow relationship, tidal 
breathing, airway resistance
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INTRODUCTION

The SARS-CoV-2 pandemic has led to the generalized use of 
face covering materials to minimize respiratory transmission of 
the disease. Saliva droplet projection was identified as the major 
route for respiratory transmission for which surgical masks appear 
to provide equally efficient protection compared to face piece 
respirators, although with furthering the knowledge in COVID 
mechanisms, aerosols may also represent a possible route especially 
at the bedside of COVID patients, where ambient air may contain 
high concentration of viral particles (Sommerstein et  al., 2020). 
In mask design, one attempts to determine an optimal compromise 
between efficient particulate filtration and ease of wear, referred 
to as breathability (Aydin et  al., 2020; Ju et  al., 2021), which 
is related to the added respiratory load. Breathability of surgical 
face masks usually is estimated in vitro from the pressure drop 
across a given section of the filtering tissue under conditions 
of unidirectional, constant air flux (Forouzandeh et  al., 2021), 
on which recommendations are based. The end point in conceiving 
any protection material is optimal compromise between filtering 
efficiency and breathability.

During tidal breathing, the added resistance may vary with 
flow amplitude or direction; however, we  are aware of little 
characterization of such properties. It would also be  helpful 
to be  able to quantify the magnitude of the added maximal 
load as a fraction of the subject’s respiratory resistance. The 
fact that, in the long term, mask comfort significantly contributes 
to a subject’s adherence to its use justifies more detailed studies 
of mask mechanics under conditions that resemble tidal breathing.

Such evaluation requires a set up under which the mask 
can be  subjected to rhythmic flow changes that mimic tidal 
breathing, while pressure and flow are being measured. This 
allows the determination of mask resistance to breathing. Once 
validated under controlled conditions with the reference surgical 
face mask, we  surmised that this set up could be  used to test 
any type of face protection. This is of special interest in view 
of the initial non-reusable masks shortage during the first 
months of the SARS-CoV-2 pandemic (Lepelletier et  al., 2020; 
Maher et  al., 2020; Forouzandeh et  al., 2021) that prompted 
the production of a variety of face protection. A recent paper 
proposed a computerized system to study mask breathability 
on a dummy head in dynamic conditions. The dynamic pressure 
difference across the mask was used to compare different types 
of materials (Yao et  al., 2019). The current study is intended 
to go a step further, i.e., to express the mask resistance by 
relating pressure to flow so as to have the potential to describe 
its time course, flow dependence, and magnitude relative to 
the subject’s own respiratory resistance.

The aim of this study was to determine the characteristics 
of surgical mask resistance using a physical analog under 
conditions that resemble physiological breathing and to quantify 
its precision under the same operating conditions over a short 
interval of time (repeatability). More specifically, it was intended 
to validate a model set up closer to real life than the current 
reference procedure measuring a pressure drop generated across 
a fabric surface at constant, unidirectional flow. This approach 
would also allow to estimate the maximal load to breathing 

offered by the mask as a fraction of the total respiratory 
resistance. During the tests, the mask covered the airway 
opening of a dummy head; standard measuring conditions, 
minimal leakage, and optimal reproducibility were insured by 
tightly fitting the mask to the cast. The resistance of a mask 
tissue section was also tested in order to assess breathability 
in conditions similar to the standard procedure (Forouzandeh 
et  al., 2021).

MATERIALS AND METHODS

Physical Analog
The device is illustrated in Figure  1. The mask support system 
consists of a plaster cast dummy head. Nostrils and mouth 
were connected from behind to a time cycled, pressure limited 
respirator (O’nyx Plus Pierre Medical SA, France) that delivers 
airflow to a set of identical bellows mechanically coupled 
through rails and springs. Both bellows exhibit the same 
excursion, hence identical volume change. Valve devices triggered 
by the respirator determine bi-directional flow, mimicking 
inspiration and expiration. The respirator is set to deliver a 
peak pressure of 40 hPa at a frequency of 25 cycle.min−1 and 
a peak flow of 1.5 L.s−1 (3 L.s−1 peak to peak). Experiments 
were performed under ambient conditions of pressure (950 hPa), 
temperature (22°C), and relative humidity (40%).

Pressure was measured at four different points behind the 
mask using a Honeywell 176 PC 14HD1 transducer previously 
calibrated using a slanted manometer. Flow was measured in the 
circuit close to the plaster head (Figure  1) using a Fleisch # 2 
pneumotachograph (Metabo Lausanne Suisse; Fleisch, 1956). The 
device is linear within 5 L.s−1 peak to peak. The flowmeter was 
attached to an identical pressure transducer and calibrated by 
the integral method (Varene et al., 1974). The frequency response 
of both transducers is matched within 1% of amplitude and 2° 
of phase up to 30 Hz (Duvivier et  al., 1991). Pressure (P) and 
flow (V’) signals were sampled at a frequency of 40 Hz and passed 
through a digital band pass filters (0.1–5 Hz) and fed to a lab-chart 
recorder (Power Lab 16/30 AD Instruments United  States). The 
signals were continuously displayed on a screen during the 
acquisition period and stored on disk for later analysis.

Protocol
A set of 10 surgical face masks (Foshan Xinbao Technology 
Co. Ltd., China, Zhejiang Longde Pharmaeutical Co. Ltd., 
China) was tested on the dummy head on 4 separate days 
by the same operator. The order of measurements was randomly 
determined prior to the study and kept throughout. The mask 
was applied to cover nose and mouth, the flexible metallic 
edge pinched over the nose bridge, and elastic bands adjusted 
around each ear lobe and retracted together at the back. The 
mask contours were then carefully secured on the plaster using 
adhesive tape (3M Micropore Professional Care 3M Deutschland 
GmbH). The mask tissue surface area available to airflow was 
180 cm2. Trials were first performed to examine mask contours 
for gross air leaks. Thereafter, the P – V′ acquisition was 
tracked for at least 1 min.
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Data Analysis
Resistance Computation
Each acquisition period included more than 2,400 sets of P 
and V′. The mask resistance (R) was computed from each set 
as the ratio of P to V′. Those V′ values ranging from −0.2 
to +0.2  L.s−1 were filtered out, since R computations using V′ 
close to 0 generated artefacts (e.g., Figure  2).

Among different models used to describe airway/respiratory 
resistance, a convenient and valuable expression relates R to 
V′ by linear regression (Peslin et  al., 1992). This empirical 
approach allows to take into account both linear (K1) and 
non-linear (K2) components of R such that:

 R K K V= + × ′1 2

K1 may also be  known as the resistance extrapolated at 
zero flow and K2 includes its flow dependent component, 
if any. The latter may frequently be  neglected under low 
ventilation regimen but may be  worth taking into account 
when ventilation is increased such as during exercise or 
cough. The analysis was performed on the whole data set 
as well as separately on inspiration and expiration using a 
Borland C++ program specifically developed to correlate 
resistance to flow.

Statistics
Statistical analysis was performed using Prism (GraphPad 
Software, LLC). For a given trial, the mean values of R, K1, 
and K2 were obtained. All intermediate calculations were carried 
out to full precision and rounded to three decimal places at 
the reporting stage. In order to estimate precision of mask 
resistance measurement performed by equipment, several 
estimates of measurement error have been assessed. Repeatability 

coefficient (RC) was used to express the precision in dimensional 
and within-mask coefficient of variation (CVwm) in 
non-dimensional terms.

Repeatability coefficient was calculated from the within-mask 
variance estimated using repeated measures ANOVA. It is the 
maximum difference that is likely to occur between repeated 
measurements which is defined by

 1 96 2. ×√ × sw

Where sw is the within-mask SD, a square root of within-mask 
variance (Bland and Altman, 1996; Bartlett and Frost, 2008).

In order to check whether the measurement errors for 
each mask do not depend on the magnitude of the 
measurement, we  performed Kendall correlation between 
SD for each mask (SDm) and each mask mean (Meanm). 
Assumption of sphericity was checked using Mauchly’s test. 
In the case of violation of sphericity assumption, the degrees 
of freedom and p-value were adjusted using Greenhouse–
Geisser epsilon correction. The normality of residuals was 
tested using the Kolmogorov–Smirnov test. In the case of 
violation of normality assumption, RC was calculated from 
within subject variance estimated from repeated measures 
of ANOVA, but CIs for RC were calculated using bootstrapping 
technique (Bartlett and Frost, 2008).

CVwm was calculated using the root mean square method 
(Hyslop and White, 2009) as

 CV
n
CVwm m%( ) = ×√ ∑





100
1 2

Where CVm
2 is the squared coefficient of variation of each 

mask’s repeated measurements and n is the number of 
repeated measurements.

FIGURE 1 | Sketch of the apparatus to measure resistance of the face mask secured on the dummy head. The respirator (1) is connected through a valve (2) and a 
resistor (3) to bellows (4) attached through rails and springs (5). The second bellow is connected through a pneumotachograph (6) to the mock airways. Pressure is 
measured at four different points behind the mask (7). Flow (8) and pressure (9) signals are fed to a chart lab recorder (10). Dark arrows indicate the direction of flow 
during inspiration.
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The effect of V′ direction was estimated by comparing 
respectively R, K1, and K2 between inspiration and expiration 
using Student paired t-test.

Additional Experiment: Tissue Airflow 
Resistance and Breathability
At the end of repeated measurements of mask resistance, 
breathability was also assessed under conditions similar to the 
standard procedure. A section of each mask was tightly fitted 
to a circular—26 cm2—support, so that the measurement could 
be  performed on the fabric under leak proof conditions. The 
support was connected to the respirator circuit in place of the 
dummy head and the acquisition performed as previously 
described. A statistical comparison was performed between this 
measurement and the 4th series of whole masks, after correcting 
for the estimated surface area available to flow (180 cm2).

RESULTS

P, V′, and R are plotted against time in Figure  2. The dotted 
lines in the R tracing indicate values discarded from the 
computation, i.e., corresponding to the V′ interval from −0.2 L.
s−1 to +0.2 L.s−1. R is plotted against V′ in Figure  3. Positive 
flow dependence is also indicated, mainly in inspiration. In 
addition, some looping between R and V′ is apparent in both 
inspiration and expiration.

The mask resistance data are summarized in Table  1. There 
were no evidence of relationship between measurement error 
and the magnitude of the measurement of each mask (Kendall’s 
τ = −0.25; p = 0.082). Overall residuals were normally distributed 
and Greenhouse–Geisser epsilon correction was applied as 
sphericity assumption was violated.

Repeated measures ANOVA did not show a significant 
difference among the four sets of measures (F = 3.1; p = 0.085). 
The estimated within-mask variance and sw were 0.0008 hPa.s.L−1 
and 0.028 hPa.s.L−1, respectively. The value of RC was 
0.078 hPa.s.L−1 [95%CI: 0.058–0.098 hPa.s.L−1] and that of CVwm 
was 8.734% [95%CI: 1.535–12.255%].

Multiple comparisons were performed in order to analyze 
all paired differences between resistance means. As can be seen 
from Table  2, the absolute mean differences between 1st set 
and any subsequent set are at least 3.5-fold greater compared 
to paired differences among sets 2 to 4.

When calculating the precision estimates from set 2–4, the 
estimated within-mask variance and sw were 0.0003 hPa.s.L−1 
and 0.017 hPa.s.L−1. The value of RC was 0.047 hPa.s.L−1 [95%CI: 
0.032–0.062 hPa.s.L−1] and that of CVwm was 4.525% [95%CI: 
1.906–6.108%].

The use of a mask tissue section showed significantly higher 
resistance compared to the 4th set of repeated measures (t = 2.7; 
p = 0.024).

When computing mask resistance separately during the two 
phases of the V′ cycle for sets 2–4, both R and K1 were 
found slightly but systematically lower in inspiration compared 
to expiration that resulted in a significant difference (R: t = −9.8; 

FIGURE 2 | Mask resistance (R), Flow (V′), and pressure (P) are plotted 
against time. The dotted lines on R tracing correspond to data rejected from 
the computation. Horizontal broken lines on V′ indicate the −0.2 L.s−1 to 
+0.2 L.s−1 interval beyond which R values are rejected. Positive V′ values 
indicate inspiration.

FIGURE 3 | Resistance (R) – Flow (V′) diagram. Positive flow dependence, 
more apparent in inspiration (positives values of V′) than expiration is indicated 
by dotted line. K1 (the resistance extrapolated at zero flow) is represented by 
the intersection with V′ axis. Also note some looping in the relationship during 
both inspiration and expiration.
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p = 0.00001, K1: t = −14.9; p = 0.0001) of these variables between 
the two phases of the respiratory cycle (Table  3). Concerning 
K2, this variable was significantly higher in inspiration compared 
to expiration (t = 21.4; p = 0.0000001).

DISCUSSION

Surgical mask air flow resistance has been measured on a 
dummy head under conditions that simulate quiet tidal 
breathing in an adult subject. Estimated precision of mask 
resistance measurement appear satisfactory, at least once 
adequate sealing procedure was assured. In fact, the first 
series R was lower than any of the further sets that all 
recovered the same 0.37 hPa.L−1.s value.

The model described here resembles the Sheffield dummy 
head that has been developed for the validation of filtering 
face pieces and respirators in the context of airway protection 
of workers in dusty environments (Mogridge et  al., 2016). 
To the best of our knowledge, the standard testing for tissue 
face mask breathability measures the pressure drop across a 
given tissue surface area, while a constant air flow is passed 

through (Konda et  al., 2020; Zangmeister et  al., 2020; Cortes 
et al., 2021; Forouzandeh et al., 2021). According to guidelines 
currently available in this country (AFNOR SPEC S76-001:2020), 
breathability should correspond to a flow at least 96 L.s−1 
through a tissue area of 1 m2 under a differential pressure 
of 1 hPa; that is, a resistance of 104 hPa.s.L−1.cm−2. From the 
current average measurements (Table 1), the resistance would 
be  65.2 hPa.s.L−1.cm−2 for the mask tested in situ and 
72.0 hPa.s.L−1.cm−2 for the isolated tissue. Corresponding 
breathability would be  153.35 L.m2.s−1 and 138.9 L.m2.s−1, 
respectively. Both estimates are largely above the recommended 
threshold (96 L.m2.s−1), but the whole mask value is significantly 
larger. This could be explained by small air leaks still occurring 
with measurement on the dummy head, despite the great 
care taken to insure optimal adhesion. Another possible 
explanation would be  related to some imprecision in 
determining the exact mask surface area available to airflow 
on the model. Alternatively, a different dynamic behavior 
between tissue alone and whole mask during the measurement 
could help explain the finding, as developed below.

The average 0.37 hPa.s.L−1 mask resistance measured here 
during simulated tidal breathing would represent an increased 
airway resistance of 20.6 and 16.8%, respectively in healthy 
adult males and females, based upon recent plethysmographic 
measurements (Koch et  al., 2013). A recent plethysmographic 
study in a similar population of healthy adults found an almost 
doubling of the airway resistance measured through a surgical 
mask (Lassing et al., 2020). For the sake of measuring conditions, 
however, the airway opening was connected to the breathing 
apparatus through a rigid face mask, likely excluding a significant 
surgical mask area available to airflow, hence magnifying the 
total airway resistance. Nevertheless, that the surgical mask 
resistance may impede breathing is also supported by 
measurements of FEV1 (Fikenzer et al., 2020). We are unaware 
of further direct assessment of airway resistance when breathing 
through a surgical face mask, but in vivo measurements using 
rhinomanometry and rhinospirometry in healthy subjects 
breathing through N95 respirators demonstrated a doubling 
of the nasal resistance (Lee and Wang, 2011). The data are 
in keeping with an airway pressure of 2–5 hPa reported at a 

TABLE 1 | Repeated measurements of mean resistance (hPa.s.L−1) for 10 masks (Set 1–4) and their tissue airflow resistance (Tissue).

Mask # Tissue Set 1 Set 2 Set 3 Set 4 Meanm SDm CVm

1 0.475 0.431 0.427 0.420 0.402 0.396 0.013 0.033
2 0.426 0.281 0.390 0.430 0.387 0.387 0.064 0.164
3 0.422 0.408 0.409 0.390 0.404 0.384 0.008 0.022
4 0.432 0.304 0.413 0.388 0.357 0.379 0.047 0.124
5 0.372 0.395 0.400 0.393 0.386 0.386 0.006 0.0153
6 0.382 0.351 0.387 0.342 0.402 0.387 0.0314 0.081
7 0.376 0.404 0.395 0.387 0.394 0.338 0.007 0.021
8 0.368 0.214 0.296 0.298 0.313 0.295 0.045 0.152
9 0.351 0.297 0.325 0.312 0.302 0.311 0.013 0.041
10 0.396 0.308 0.311 0.312 0.324 0.338 0.007 0.021
Means 0.400 0.338 0.375 0.367 0.367 0.360 0.024 0.067
SDs 0.038 0.070 0.047 0.047 0.040 N/A N/A N/A

Each row corresponds to the repeated measures of one mask. Means (SDs) = mean (SD) of each set; Meanwm (SDwm, CVwm) = mean (SD, CV) of each mask, calculated from set 1–4, 
calculated from set 1. All intermediate calculations were carried out to full precision and rounded to three decimal places at the reporting stage.

TABLE 2 | Pairwise comparisons matrix for resistance measurements.

Paired 
comparisons

Mean 1 Mean 2 Mean 
difference

95% CI of 
mean 

difference

Set 1 vs. Set 2 0.339 0.375 −0.036 −0.08225 to 
0.01055

Set 1 vs. Set 3 0.339 0.367 −0.028 −0.08446 to 
0.02852

Set 1 vs. Set 4 0.339 0.367 −0.028 −0.07444 to 
0.01925

Set 2 vs. Set 3 0.375 0.367 0.008 −0.01351 to 
0.02926

Set 2 vs. Set 4 0.375 0.367 0.008 −0.01398 to 
0.03048

Set 3 vs. Set 4 0.367 0.367 0.0004 −0.02804 to 
0.02879
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peak flow of 1.4 L.s−1 in subjects breathing through respirators 
masks (Louhevaara, 1984).

Performing repeated measurements of mask resistance using 
the current analog highlights several important points. Assuming 
no difference in resistance between 10 surgical masks from 
the same manufacturer, the estimates of repeatability should 
reflect precision of the measurements, provided they are repeated 
under the same conditions (Bland and Altman, 1999; Hyslop 
and White, 2009). The maximum difference that is likely to 
occur between four repeated mask resistance measurements 
(RC) was estimated to be  0.08 hPa.s.L−1 [95%CI: 
0.06–0.1 hPa.s.L−1] and the CVwm was estimated to be  9% 
[95%CI: 1.5–12.2%] pointing to the fact that the precision of 
the measurement process was satisfactory. However, analysis 
of all paired comparisons between resistance measures revealed 
that: (a) absolute differences between 1st set of measures are 
considerably higher (at least 3.5-fold) compared to any 
subsequent set and (b) all mean differences between 1st and 
any subsequent set were negative (Table  2). This suggests the 
existence of a learning effect by which the operator reduced 
the error over the course of repetitive resistance measurements. 
Indeed, measurement precision improved considerably when 
the first set of measures was not taken into account in the 
calculation of repeatability [RC ~ 0.047 hPa.s.L−1 (95%CI: 0.03–
0.06 hPa.s.L−1); CVwm ~ 4.5% (95%CI: 1.9–6.1%)]. Altogether, 
these results suggest that a great part of measurement error 
was operator-related, i.e., caused by imperfections in the sealing 
procedure. Owing to the fact that the mean resistance of the 
first series was lower than any further set (Table  1) and the 
mean difference between 1st and any subsequent was negative 
(Table  2), it is suggested that imperfections in the sealing 
procedure resulted from air leaks occurring during measurement. 
These observations highlight the requirement for a mask 
fixation training.

With the current analog, a careful examination of the 
pressure flow relationship can be  done under conditions that 
resemble tidal breathing. The difference between inspiration 
and expiration was significant for the resistance, even more 

so for K1, the resistance extrapolated at zero flow (Table  3). 
In addition, some degree of looping of the resistance 
flowdiagram—such as shown in Figure 3—was usually apparent. 
These observations, together with the significant K2 difference 
between inspiration and expiration may appear somewhat 
counterintuitive, should flow be  the sole determinant to the 
time variation of resistance. In fact, some change in mask 
shape and surface area was usually detectable—although to 
a variable extent—throughout the simulated breath. Most 
noticeable was the sudden bulging at onset of expiration, 
with the reverse motion in inspiration being somewhat limited 
by contact with the plaster cast. In fact, when the mask 
excursion was minimized by manually holding its edges, both 
looping and difference between inspiration and expiration 
were minimized (Figure 4). We therefore believe the observed 
mask surface area change and rate of change, as well as 
elastic/rheological properties and possibly minimal residual 
leakage should account for the difference between inspiration 
and expiration, as well as for the resistance—flow looping. 
Altogether, the observed flow dependence of the mask resistance 
was probably of trivial relevance under conditions of quiet 
breathing, and the usefulness of K2 may be  questioned in 
such circumstances. On the other hand, it was thought that 
it may be of help in more fully describing the mask mechanical 
properties and contribution to increasing work of breathing 
during exercise, where ventilation is significantly increased. 
Furthermore, it may be  worth applying to a more detailed 
analysis of V′ – R relationship during cough which is known 
to develop several folds increase in expiratory flow and thus 
promotes long distance aerosol dispersion through turbulent 
airflow (Sommerstein et  al., 2020).

It is a common observation that, once settled on his face, 
a subject may become oblivious to the presence of the mask; 
awareness of it resumes when more ventilation is required, 
for instance, by walking up the stairs. In a recent review of 
the literature assessing face mask or respirator during exercise 
however (Hopkins et  al., 2021), little effect of either type of 
equipment was reported on work of breathing or on arterial 

TABLE 3 | The mask resistance (R), the mask resistance extrapolated at zero flow (K1) and flow dependent component of resistance (K2) during inspiration and 
expiration, expressed as mean calculated from set 1–4.

Mask # R K1 K2

Inspiration Expiration Inspiration Expiration Inspiration Expiration

1 0.419 0.422 0.345 0.396 0.104 −0.026
2 0.370 0.375 0.289 0.351 0.109 −0.025
3 0.401 0.405 0.322 0.381 0.105 −0.024
4 0.363 0.369 0.287 0.355 0.094 −0.014
5 0.392 0.395 0.329 0.372 0.088 −0.023
6 0.369 0.373 0.303 0.355 0.090 −0.019
7 0.394 0.397 0.326 0.374 0.084 −0.023
8 0.279 0.282 0.221 0.264 0.082 0.018
9 0.306 0.312 0.242 0.312 0.085 −0.0003
10 0.312 0.316 0.251 0.308 0.083 −0.008
Mean 0.360 0.365* 0.291 0.347* 0.092 −0.018*
SD 0.046 0.046 0.042 0.040 0.010 0.008

All intermediate calculations were carried out to full precision and rounded to three decimal places at the reporting stage. *R, K1, and K2 inspiration vs. expiration p < 0.0001.
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oxygen saturation in healthy individuals. Dyspnoea did not 
appear to be  increased when external resistances were added 
to the breathing equipment in subjects exercising in laboratory-
controlled conditions. On the other hand, wearing a face mask 
may increase both respiratory load and dead space. Rebreathing 
may lead to minute increase in alveolar PCO2, a strong 
determinant of the sensation of air hunger (Banzett et  al., 
1990). Generally, various physiological mechanisms may 
be  triggered by wearing a face mask, altering breathing and 
breathing sensation. For instance, the increase in face skin 
temperature was found to be  associated with breathing 
discomfort in healthy subjects performing treadmill exercise, 
while wearing FFP respirators (Kim et al., 2016). The possibility 
may not be  excluded that face skin temperature may also 
increase as a result of a surgical mask and impact on breathing 
or breathing related sensations. That a neural pathway exists 
from facial thermoreceptors to respiratory motoneurons is 
demonstrated by the long known trigeminal diving reflex 
(Widdicombe, 2006). It is interesting that refinement in mask 
design may include assessment devices for breathing conditions 
(Liu et  al., 2019).

This study indicates that surgical mask airflow resistance 
may be  reproducibly measured under conditions of tidal 
breathing, when the mask has been carefully sealed on the 
dummy head. We are aware that the mask mechanics remains 
to be  evaluated under real-life conditions; i.e., while simply 
attached to the back of the head and ears. In this regard, 
the current estimates of surgical mask maximal mechanical 

load may be  quite helpful to test different ways of attaching 
the face protections. A further limitation of the current 
model relates to the range of flow limited to tidal breathing. 
This however may be  improved to generate ventilation 
regimens that encompass those occurring at exercise or 
during such respiratory manoeuvres as coughing or sighing, 
i.e., large air flow conditions favoring aerosol particle 
dispersion (Sommerstein et  al., 2020). We  also surmise that 
the current model could be implemented to study the change 
in resistance when the mask is exposed to hot and humidified 
air flow over a prolonged period, so as to more precisely 
estimate the mechanical deterioration with time. Studies may 
also be developed to compare different types of face protection. 
The more recent knowledge that aerosol dispersion of viral 
particles may be  a significant contributor to COVID-19 
transmission further deserves detailed assessments of less 
filterable and more resistive material such face 
piece respirators.

Altogether, the face mask tolerance in vivo is likely to 
depend not only on its own mechanical properties but also 
on other effects, such as the added dead space, let alone the 
respiratory condition of the subject. Improving breathability 
of face mask is critical to insure compliance with the protection 
and therefore to prevent dissemination of air borne 
viral infections.
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FIGURE 4 | Resistance (R) – Flow (V′) diagram during standard measuring 
conditions (top) and while the mask motion is prevented by manually holding 
its edges. The manoeuver is associated with disappearance of the looping of 
R vs. V′.
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Human Multi-Compartment
Airways-on-Chip Platform for
Emulating Respiratory Airborne
Transmission: From Nose to
Pulmonary Acini
Eliram Nof1†‡, Hikaia Zidan1‡, Arbel Artzy-Schnirman1†, Odelia Mouhadeb1,2,
Margarita Beckerman1, Saurabh Bhardwaj1, Shani Elias-Kirma1†, Didi Gur2,
Adi Beth-Din2, Shulamit Levenberg1, Netanel Korin1, Arie Ordentlich2 and
Josué Sznitman1*

1 Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel, 2 Israel Institute for Biological
Research, Ness Ziona, Israel

The past decade has witnessed tremendous endeavors to deliver novel preclinical
in vitro lung models for pulmonary research endpoints, including foremost with the
advent of organ- and lung-on-chips. With growing interest in aerosol transmission and
infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst
the global COVID-19 pandemic, the importance of crosstalk between the different lung
regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups
and physiology, are acknowledged to play an important role in the progression of the
disease from the initial onset of infection. In the present Methods article, we designed
and fabricated to the best of our knowledge the first multi-compartment human airway-
on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung
crosstalk for viral infection pathways. Combining microfabrication and 3D printing
techniques, our platform mimics key elements of the respiratory system spanning (i)
nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial
airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk
between the three components was exemplified in various assays. First, viral-load
(including SARS-CoV-2) injected into the apical partition of the nasal compartment was
detected in distal bronchial and acinar components upon applying physiological airflow
across the connected compartment models. Secondly, nebulized viral-like dsRNA,
poly I:C aerosols were administered to the nasal apical compartment, transmitted
to downstream compartments via respiratory airflows and leading to an elevation in
inflammatory cytokine levels secreted by distinct epithelial cells in each respective
compartment. Overall, our assays establish an in vitro methodology that supports the
hypothesis for viral-laden airflow mediated transmission through the respiratory system
cellular landscape. With a keen eye for broader end user applications, we share detailed
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methodologies for fabricating, assembling, calibrating, and using our multi-compartment
platform, including open-source fabrication files. Our platform serves as an early proof-
of-concept that can be readily designed and adapted to specific preclinical pulmonary
research endpoints.

Keywords: lungs, organ-on-chip, in vitro, preclinical models, inhalation, respiratory disease, microfluidics, SARS-
CoV-2

INTRODUCTION

The past decade has seen tremendous endeavors to deliver
novel preclinical in vitro lung models for pulmonary research
endpoints (Sakagami, 2006, 2020; Hittinger et al., 2015; Ehrmann
et al., 2020; Selo et al., 2021). The motivation for such
human-relevant in vitro respiratory models is multifold but
has been significantly thrusted by efforts to circumvent critical
hurdles prevalent in in vivo animal experiments. Notably,
animal models differ by important underlying discrepancies with
humans, spanning amongst other anatomical and physiological
differences between species (Hogg and Timens, 2009) to broad
divergences in immunological (Mestas and Hughes, 2004)
and genetic (Seok et al., 2013) responses to inflammatory
diseases. Not only do these dissimilarities translate to contrasting
delivery protocols when considering in vivo animal experiments
(Wylie et al., 2018), but the translational impact of in vivo
findings remains frequently questioned in characterizing human
diseases (van der Worp et al., 2010). Most significantly, the
gap between humans and animals constitutes an inevitable
barrier to new therapeutic development (Barnes et al., 2015a;
Prakash et al., 2017) and is underscored with as high as
80% failure on drug efficacy in human trials leveraging
molecules previously screened in rodent lungs (Miller and
Spence, 2017). This reality is of important concern as respiratory
diseases represent a growing worldwide healthcare burden
associated with high morbidity and mortality (Barnes et al.,
2015b; Wisnivesky and De-Torres, 2019); meanwhile, respiratory
therapies have seen much fewer drugs approved in past decades
than other areas of medicine (Barnes et al., 2015a) (e.g.,
cardiovascular, neurology).

In light of ongoing in vivo limitations, in vitro cell-based
assays have served as useful preclinical “gold standards” in
respiratory research. This has included transwell inserts,
where human-relevant cell cultures are grown on porous
membranes that recapitulate the luminal airway barrier
characteristics and, crucially, the air-liquid interface (ALI)
(Forbes and Ehrhardt, 2005; Nahar et al., 2013; de Souza
Carvalho et al., 2014; Nichols et al., 2014; Faber and McCullough,
2018; Lacroix et al., 2018). Yet, the most exciting progress
has arguably arisen from the field of microfluidic lung- and
organ-on-chips. Unlike traditional in vitro setups, airway-
on-chips enable the exchange and collection of media (e.g.,
analytics of inflammation) with the integration of continuous
perfusion from either the basal (i.e., fluid) and/or apical
(i.e., air) side of a porous membrane (Tenenbaum-Katan
et al., 2018). In recent years, microfluidic platforms that
recapitulate more intimately physiological and biological

functions have opened new opportunities for human disease
modeling, drug discovery and screening, as well as other
translational applications (Bhatia and Ingber, 2014; Benam
et al., 2015; Esch et al., 2015; Liu et al., 2017; Zhang et al.,
2018; Haddrick and Simpson, 2019; Mittal et al., 2019;
Shrestha et al., 2020; Artzy-Schnirman et al., 2021; Ma
et al., 2021). In turn, various commercial lung-on-chip
models (Ainslie et al., 2019) are now widely available to
the scientific and biopharmaceutical community. In parallel
recent microfluidic open-source designs of perfused ALI
models (Carius et al., 2021) have been made accessible
toward broader and simpler end-user applicability (Artzy-
Schnirman et al., 2019a). Altogether, the growing prevalence
of these human-relevant organ-on-chips has opened new
debates on whether preclinical in vitro research has reached
maturity in so far as to bypass in vivo animal validation studies
(Ingber, 2020).

Despite the aforementioned advances, lung-on-chips are
still overwhelmingly limited to models of single channels or
individual alveolar-like cavities that often forfeit anatomical
traits of the respiratory organ and corresponding respiratory
airflow physiology characteristics (Tenenbaum-Katan et al.,
2018; Artzy-Schnirman et al., 2021). Most recently, in vitro
cytotoxicity and inflammatory assays have highlighted more
realistic microfabricated tree-like anatomies of either bronchial
(Elias-Kirma et al., 2020) or alveolar (Artzy-Schnirman et al.,
2019b) airway networks. Nevertheless, by and large virtually
all existing microfluidic in vitro lung models still focus on
isolated airway assays that discard the anatomical continuity
between the distinct regions of the lungs, i.e., spanning the
extra-thoracic (i.e., nose-throat), conductive (i.e., bronchial)
and respiratory (i.e., alveolar) airways, and ensuing crosstalk
that can arise in vivo between one another. This latter
aspect becomes critical when addressing for example the fate
of inhaled aerosols and the so-called “journey” of airborne
particles along the respiratory tract (Artzy-Schnirman et al.,
2020); an area that has drawn considerable interest from
numerical in silico modeling efforts (Koullapis et al., 2019),
most notably with computational fluid-particle dynamic (CFPD)
simulations of respiratory airflows and aerosol transport,
but is otherwise notoriously challenging to mimic in vitro
(Artzy-Schnirman et al., 2019a).

The call for novel in vitro solutions has been further
strengthened amid the ongoing coronavirus disease 2019
(COVID-19) pandemic in deciphering the determinants
governing the aerosol transmission of respiratory viruses
(Leung, 2021; Wang et al., 2021). It is now established that
infection with the severe acute respiratory syndrome-related

Frontiers in Physiology | www.frontiersin.org 2 March 2022 | Volume 13 | Article 853317101

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-853317 March 2, 2022 Time: 18:34 # 3

Nof et al. Multi-Compartment Airways-on-Chip

coronavirus 2 (SARS-CoV-2) virus typically initiates in the
upper respiratory tract (e.g., nasal-oral cavities), highlighting
the nasal susceptibility to SARS-CoV-2 due to higher presence
of angiotensin-converting enzyme 2 (ACE2) expression in
the nasal epithelium with decreasing expression throughout
the lower respiratory tract (Hou et al., 2020). Yet, severe
symptoms of the disease are acknowledged to arise from
infection and associated inflammation of alveolar epithelial
cells in the distal lungs (Borczuk et al., 2020; Tay et al.,
2020). While infection could originally initiate in the deep
lungs via inhalation of fine virus-laden aerosols that may
directly deposit on the alveolar surfaces (Wang et al., 2021),
it has been hypothesized that deep lung viral infection likely
ensues from subsequent aspirations following early infection
in the naso-oropharyngeal region (Hou et al., 2020). In the
absence of definitive evidence, advanced human-relevant
in vitro pulmonary models that recapitulate key aspects of the
different lung regions could offer attractive opportunities
to shed new light on the mechanistic determinants at
the origin of the initial onset of respiratory infections in
the distal lungs.

Motivated by these broad questions, we introduce in the
present Methods article, to the best of our knowledge, the first
multi-compartment airway-on-chip model recapitulating key
anatomical and physiological components of the respiratory
regions. Our versatile platform (see Figure 1A) encompasses
three distinct chips mimicking, respectively, (i) nasal passages,
(ii) mid-bronchial airways, and (iii) distal alveolated airways
reminiscent of the pulmonary acinus. First, we detail the
engineering methods to microfabricate each distinct fluidic
compartment (i.e., nasal, bronchial and acinar) that may
be sequentially inter-connected to recreate crosstalk via
representative inhalation airflows. We next describe detailed
protocols to recreate human-relevant epithelial airways at the
ALI, pertinent to the cellular makeup of each respective lung
region. As a proof-of-concept of the multi-compartment’s
usability, we explore in vitro determinants of aerosol
transmission of respiratory viruses in several exemplary
assays. To this end, we isolate the nasal chip from the other
compartments and expose its epithelium with an instilled viral
suspension. Following infection of the nasal compartment as the
alleged site of initial COVID-19 infection in the lungs, bronchial
and alveolar compartments are then connected in series to
the nasal chip and subjected to inhalation airflows spanning
the nose to acini. We subsequently observe infection in both
distal epithelial compartments mediated via airflows. Finally, we
showcase the initial onset of an inflammatory response across the
respective airway barriers in each compartment upon inhalation
of nebulized viral-like dsRNA laden aerosols. Together, these
preliminary in vitro assays support the hypothesis of subsequent
aspiration as a potent mechanism for viral transmission
across the broader respiratory landscape. Overall, the Methods
presented herein underline the applicability of the multi-
compartment microfluidic platform toward a broad array
of preclinical in vitro respiratory research endpoints, where
airflow crosstalk and airborne transmission mechanisms are
presumed central.

MATERIALS AND METHODS

Device Design
The respiratory tract is an intrinsically complex and multi-scale
organ that exhibits a vast network of anatomical structures with
a distinct cellular makeup spread over length scales spanning
several orders of magnitude (Tenenbaum-Katan et al., 2018;
Artzy-Schnirman et al., 2021). By definition, all in vitro models
are limited in mimicking some but not all characteristics of the
in vivo environment; a realism that has been recently discussed
in some depth (Artzy-Schnirman et al., 2021). As with all in vitro
pulmonary assays, our designs do not claim to recreate the entire
airway pathlength from extra-thoracic regions (i.e., head) to the
pulmonary acini. Rather, our specific endpoints lie in capturing
some key anatomical and cellular features of the lungs’ relevant
airway regions; a strategy in line with delivering human-advanced
preclinical in vitro solutions to elucidate critical aspects relevant
to the airborne journey and aerosol transmission phenomenon
across the lungs (Artzy-Schnirman et al., 2019a). To this end, we
select the nasal passages, bronchial airways and acinar regions
as three compartments representative of the extra-thoracic,
conductive and respiratory regions, respectively (see Figure 1A).
Here, specifically, the apical partition of each chip compartment
is designed to recapitulate relevant geometrical features of each
lung region, and most critically where anatomical structures are
known to influence airflow mechanics (Sznitman, 2021). Below
we detail design considerations relevant to each compartment.

Nasal Compartment Design
The nose plays a vital role as the first exposure site between the
respiratory system and the external environment during normal
breathing (Figure 2A). The nasal passages’ complex, sinuous
geometry consisting of multiple pathways (i.e., turbinates) and
side chambers (i.e., sinuses) are optimized for the principal
tasks of filtering, heating, and humidifying inhaled air destined
for downstream transport to the lungs. Concurrently, during
such filtering process, the nasal passages can act as a prime
infection and replication site for viral airborne pathogens that
are trapped and deposit. Here, we developed the in vitro nasal
compartment chip based on the previously established Carlton-
Civic Standardized Nasal Model; an open-source standardized
human nose geometry (Liu et al., 2009). Over the years, the model
has been established as a geometric standard for both in vitro
and in silico investigations to overcome the challenge of limited
comparability between patient-specific nasal anatomies (Brüning
et al., 2020). We select a small enough yet relevant section of the
Carlton-Civic model (Figure 2B) that can fit on a glass slide but
also captures key elements of the nasal anatomy, and specifically
the turbinate structures that give rise to unique airflow patterns,
including recirculation zones and winding streamlines (Schreck
et al., 1993), as illustrated schematically in Figure 2A. Our in vitro
efforts are driven to integrate the most dominant anatomical
structures and airflow features, thus directly influencing the
initial site of viral infection and subsequent proliferation
pathways via the nasal compartment. In turn, the airflow rate
fed into the resulting polydimethylsiloxane (PDMS)-made nasal
compartment (Figure 2C) is selected following physiologically
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FIGURE 1 | Multi-compartment lung-on-chip platform. (A) The in vitro multi-compartment platform recapitulates three key elements of the flow physiology and
cellular makeup across the respiratory tract: (i) nasal passages, (ii) bronchial airways, and (iii) acinar airways, respectively. The platform’s “plug and play” modularity
may be leveraged toward various benchmark in vitro assays for human host-pathogen interaction studies, including investigations of viral airborne transmission.
(B) Schematic of the three individual chips (top view). From left to right: nasal, bronchial, and acinar airways, respectively. Inlets and outlets of apical chambers are
designated with light blue, and reservoir chambers marked with pink circles (reservoir inlets and outlets are not shown in the figure). (C) Example of the side view for
the nasal chip, composed of (1) an apical PDMS layer that captures relevant nasal passages (see top view in B); (2) a polyester-based (PET) porous membrane
between apical and basal layers, where epithelial cells are grown; (3) a basal PDMS layer containing a fluidic reservoir to supply media and essential nutrients needed
for cell culture.

relevant references for a typical adult breathing at rest (see details
on flow characteristics below and Figure 3).

Bronchial Compartment Design
The bronchial airway-on-chip compartment is based on a recent
design from our own group and previously introduced for in vitro
cytotoxicity assays following realistic in situ-like inhalation
exposure to immunogenic airborne particulate matter (Elias-
Kirma et al., 2020). Briefly, the bronchial geometry consists
of a planar, symmetric airway tree spanning three bifurcating
generations with a total of four distal branches (Figure 3B).
The underlying generic airway tree geometry is based on well-
established anatomical models of Weibel (1965) and Horsfield
et al. (1971). Representative of small bronchial airway branches
of the conducting region of the lungs, the model’s primary airway
diameter is 2.5 mm, along with an idealized constant planar
bifurcating angle of 60◦ across all generations. For further details
on the airway tree geometry (see Elias-Kirma et al., 2020).

Acinar Compartment Design
The acinar airway compartment is based on a recent microfluidic
airway-on-chip developed in our group (Tenenbaum-Katan et al.,
2018) and used to explore inflammatory endpoints following the

inhalation of lipopolysaccharide (LPS)-laden nebulized aerosols
to simulate bacterial infection in vitro (Artzy-Schnirman et al.,
2019b). The general acinar tree design features a multi-generation
asymmetrically bifurcating network with alveolated airways that
span several generations. Briefly, the device holds one inlet
airway splitting into six branching generations of 170 µm
width and 100 µm height channels, with spherical-like cavities
mimicking alveoli of 155 µm diameter; the dimensions of the
acinar airway chip are selected to match realistic anatomical
dimensions pertinent to the distal respiratory regions of the lungs
(Artzy-Schnirman et al., 2019b; Sznitman, 2021). Note that the
microfluidic chip provides equal airflow to each terminal end
of the model by adjusting the length of a channel connecting
the unified outlet of the device and the last generation of the
acinar tree (Figure 3C); this design guarantees equal airflow
at each terminal end of the acinar model (for further details,
see Artzy-Schnirman et al., 2019b).

Device Fabrication
The nasal and bronchial airway compartments were made using
3D-printed molds filled with polydimethylsiloxane (PDMS) that
were subsequently broken apart and removed once the PDMS
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FIGURE 2 | Design of the nasal compartment chip. (A) The nasal cavity features a complex network of turbinate airway passages. The Carlton-Civic Standard Nasal
model serves as the basis for our nasal chip design. Nasal flows are dominated by the turbinate structures giving rise to recirculating zones, as illustrated
schematically by airflow streamlines in the nasal passages. (B) We recapitulate elements of nasal flow characteristics in a PDMS compartment based on the generic
nasal model. A cross-section of the selected geometry is defined parallel to the bulk flow direction (i.e., beginning upwards through the nostril but then curves toward
the elongated axis of the trachea) and bound to a maximal size fitting a standard glass microscopy slide (i.e., 40 mm). (C) Schematic drawing depicts the resulting
nasal chip compartment, with inner cavities marked by dashed lines and labeled “inlet” and “outlet,” respectively, where holes are punched into the PDMS material to
connect tubing (see text for details).

was entirely cured. Molds were first created using computer-
aided design (CAD) (Solidworks 2020, Dassault Systems) before
exporting in raw, unstructured triangulated surface format (STL);
a format suitable for 3D printing and provided as open-source
files in Supplementary Material. STL mold files were prepared
(Preform, Formlabs) and subsequently 3D printed in-house via
stereo-lithography (Form 2, Formlabs) and made available in
the SM. Manufacturer post-print processing instructions were
followed, i.e., rinsing in isopropyl alcohol (IPA) and removal of
supports, except no post-curing was performed to avoid further
hardening the mold material. Liquid PDMS (Dow Corning,
Sylgard184) was mixed with a curing agent per the manufacturer’s
instructions (1:10 mass ratio) and poured into the molds.
Curing was done in ambient (i.e., room temperature) conditions
overnight. Subsequently, the 3D-printed mold material was
removed leaving a transparent PDMS phantom compartment.
Note that the airway inlet and outlet in the nasal compartment
are already part of the mold, whereas in the bronchial chip
compartment the inlet and outlet are created using a biopsy
punch of 1 mm size (Miltex, 3331; see Figure 1B).

Concurrently, the acinar airway tree compartment was
fabricated using standard soft-lithography techniques combined
with a modified method for master production using dry
reactive ion etching (DRIE) of silicon on an insulator
wafer to manufacture the small (< 100 µm) features
characteristic of the acinar model, as previously described
(Artzy-Schnirman et al., 2019b). Briefly, the resulting models

were used as a master template for PDMS casting. PDMS
mixed with the curing agent was poured on the template, and
baked for 1 h at ∼65◦C (or overnight at RT). Cured PDMS was
subsequently peeled from the mold and punched using a biopsy
punch of 1 mm size to create inlet and outlets (Figure 1B).

To assemble completely each individual compartment, a 10
µm thick polyethylene terephthalate (PET) membrane with
0.4 µm pore size (Corning, CLS3450) was bonded to the
PDMS channel compartment (i.e., apical compartment) using a
“stamping” technique such that channels were irreversibly sealed.
Thereafter, the structure was placed using the stamping method
on a PDMS well to be filled with culture media (i.e., basal
compartment). Finally, a microscope glass slide (Paul Marienfeld,
1000412) was cleaned with ethanol and bonded to the device’s
bottom side (reservoir), as shown in Figure 1C. The structure
was cured at 65◦C for 1 h to complete bonding. We note that
only the model’s apical side was sealed to the PET membrane
(without the PDMS-glass reservoir) when used for permeability
assays (see details below).

Flow Setup and Characterization
To establish the multi-compartment model’s relevance for
recapitulating physiological airflows in the apical compartments
of the three selected regions of the lungs, we conducted airflow
simulations using computational fluid dynamics (CFD), as shown
in Figures 3D–F. This approach gives prior qualitative and
quantitative insight into the airflow characteristics anticipated
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FIGURE 3 | Characteristic flow features in the multi-compartment airway-on-chip platform. (A–C) View of the inter-connected chip compartments, where the
reservoir, i.e., basal chamber, filled with pink media, and the geometry channel, i.e., apical chamber, filled with blue media are shown for imaging contrast only. (D–F)
Steady-state flow patterns are resolved in each of the three compartments using CFD simulations and visualized by plotting streamlines colored according to velocity
magnitude (see text for detail). Each compartment is subject to physiologically relevant flows (see Table 1), highlighting order of magnitude changes in the velocity
scales between each lung compartment, reminiscent of physiological pulmonary fluid dynamics. (D) Flow in the nasal compartment is characterized by recirculation
zones attributed to the turbinate pocket structure. (E) Poiseuille-like flows develop at the inlet of the bronchial model, subsequently splitting and weakened as is
typical of flow in a symmetrically bifurcating bronchial airway geometry. (F) Flow velocity contours in the acinar model, characterized by generation-level attenuation
in velocity and small, recirculating flows in the alveolar-like cavities (reproduced with permission from Tenenbaum-Katan et al., 2018).

across the individual airway compartments. Briefly, each of the
apical airway geometries was meshed with tetrahedral cells using
a commercial meshing software (ANSYS, ICEM v18) from the
CAD geometry files used in the device fabrication pipeline.
Next, a commercial flow simulation software (ANSYS, Fluent
v19.2) was used to solve the governing physical equations (i.e.,
mass continuity and momentum conservation) resolving the
airflow fields inside the airway volumes. Here, we simulated
steady-state airflow conditions (i.e., equivalent to a steady
inhalation) by imposing predefined flow rates (see Table 1) at
each compartment inlet and corresponding pressure conditions
at the outlets. These simplified conditions were chosen to mimic
average respiratory flow rates that may be anticipated within
these compartments based on either their respective volume
(e.g., the nasal chip’s volume relative to the entire nasal cavity)
or anatomical location along the respiratory tract (i.e., lung
generation number for the bronchial and acinar chips). While

more complex airflows can be introduced to more closely mimic
in vivo inhalation (e.g., see previous work modeling cyclic
ventilation at varying frequencies and flowrates; Nof et al., 2020),
we chose here a simplified approach analogous to the perfusion
setup employed in our exposure assays that features a nebulizer
providing a constant flow output (see details below).

We note here that our in silico results are limited to
simulations of the inhalation airflows anticipated in each
of the compartments and do not encompass Lagrangian
particle tracking or ensuing aerosol deposition characteristics.
We have previously explored, both in simulations and
experiments, characteristics of aerosol deposition of airborne
particles in similar bronchial (Elias-Kirma et al., 2020) and
alveolar (Fishler et al., 2015) airway models that address the
mechanistic determinants of aerosol deposition in airway-
on-chips. While particle shape, size and density are known to
significantly affect deposition patterns within the respiratory
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tract (Shachar-Berman et al., 2019, Shachar-berman et al.,
2020; Koullapis et al., 2021), an extensive study of particle
dynamics within our multi-compartment model lies beyond the
scope of this work.

To visualize airflow patterns and deliver intuition for possible
pathways of particulate matter within the respiratory flow,
interpolated streamlines are plotted in Figures 3D–F and colored
according to the magnitude of the velocity field. Briefly, in the
nasal chamber a recirculation zone is apparent and located in a
pocket formed by the turbinate structure (Figure 3D), thereby
extending airborne travel time due to reduced flow velocities
and longer travel paths inside the cavity before exiting via
the outlet port. These flow characteristics recapitulate some of
the complexity of nasal flows that may play a role in viral
transmission pathways, considering the nose is often regarded
as a hospitable replication site. However, we remark that under
natural breathing conditions in vivo, air does not directly transit
through tubes connecting the nose and other regions of the
human airways. In contrast, this represents an engineering
necessity and limitation featured within our platform that
introduce flow artifacts requiring careful further considerations.
In the nasal compartment, we see a short jet flow exiting the
tube-shaped inlet port resulting in a pair of vortical structures; a
well-known fluid dynamics’ characteristic of elongated tube flow
emptying into larger ambient spaces. While in vivo, the nasal
turbinate structures similarly divert flow via impaction, which
may lead to vortical or rotational flows, their relative location
and sizes likely differ significantly from those introduced here
in our platform, which artificially introduces a tube a short
distance from a turbinate-like shape within a small section of
the nasal cavity.

In the bronchial compartment (Figure 3E), airflow
enters through the top of the PDMS compartment before
branching twice through two generations of daughter branches
and converges again to exit through an outlet passage.
Flow characteristics in this airway structure are typical of
symmetrically bifurcating airway geometries (see above section
on the compartment design), with velocities reduced in more
distal airway generations as the flow is split into smaller (in cross-
section) but collectively larger (in volume) passages; a direct
outcome of mass conservation across a bifurcating tree structure.
Note that for small micron-sized aerosols subject to gravitational
sedimentation as the leading deposition mechanism, deposition
outcomes (not simulated here) have been recently shown to

TABLE 1 | Characteristic properties and flow parameters of the
multi-compartment airway-on-chip platform.

Compartment Units Nasal Bronchial Acinar

Inner volume V [mm3] 506.07 138.26 3.24

Total inner surface area S [mm2] 168.69 75.97 32.4

Height L [mm] 3 1.82 0.1

Flow rate Q [ml/min] 6.5 6.5 0.2

Inlet diameter D [mm] 1 1 1

Inlet Reynolds number Reinlet 10 10 0.3

Lung generation G - 12–14 20–23

follow a monotonically decreasing trend as velocity decreases
with each increasing airway generation number (Elias-Kirma
et al., 2020). Flow velocity contours in the acinar compartment
(Figure 3F) are similarly characterized by a gradual decrease
in velocity magnitudes with each increasing acinar generation.
Concurrently, small, recirculating flows in the alveolar-like
cavities are present along the alveolated airway channels. Further
details on the flow characteristics, including aerosol deposition,
in microfluidic acinar airways are available elsewhere using the
same geometry (Sznitman, 2021).

Due to high pressure buildup in the small tubing and syringe
tip ports (< 1 mm) used in our platform, we could not directly
provide high (> 1 ml/s) flow rates into the nasal compartment’s
inlet and instead chose a flow rate based on the downstream
bronchial compartment that would work well with ordinary
laboratory equipment such as a small syringe pump or peristaltic
pump (i.e., larger flowrates may for example require ventilators).
Thus, we selected a flow rate of 6.5 ml/min (see Table 1)
corresponding to a Reynolds number of ∼10 which is typical
for the mid-bronchial regions (e.g., 12th generation of the airway
tract). We note that the entire Carlton-civic standard nasal model
is∼13.2 ml in volume, while our nasal chip comprises 0.5 ml and
represents only 3.5% of the nasal chip volume. Assuming a linear
relationship between volume and flow rate (i.e., nasal airflow
during rest is laminar and incompressible (Zwicker et al., 2018)),
an input flowrate of 6.5 ml/min (i.e., 0.1 ml/s) to the nasal chip
would translate to approximately 3 ml/s in a full adult. Unilateral
(i.e., from one nostril) nasal airflow rates in adults are reported
to vary approximately between a resting rate of 80–200 ml/s
and upwards of 1,000 ml/s during physical exertion, with peak
Reynolds numbers ranging from several hundreds to thousands
(Li et al., 2017). Significant inter-individual nasal anatomical
variation results also in diverse air flow rates and due to the
cyclic rhythm of breathing (i.e., oscillations between inhalation
and exhalation), actual flowrates fluctuate between 0 (at the
reversal point between breathing phases) and the maximum
reported typical rates. Therefore, while the nasal flows used in our
experiments are typically lower than those expected in the nasal
passages, they lie nevertheless within the physiological range of
resting activity.

Next, flowrates in the bronchial and acinar chips are selected
based on typical average physiological flowrates under quiet
breathing conditions in an adult human (see Table 1 for selected
values at the inlet of each compartment). Airway generation
numbers in the bronchial (12–14) and acinar (20–23) chips
are given as approximative (Weibel, 1965). Equivalent Reynolds
numbers are calculated using the average flowrates, diameter of
inlet ports (1 mm), and the rheological properties of ambient air
(kinematic viscosity of 1.5 10−5 m2/s). A 6.5 ml/min (0.1 ml/s)
air flowrate through a 1 mm inlet translates to a Reynolds number
∼10, which is appropriate for the 12th generation bronchial
airway generation. Note that while the nasal and bronchial apical
compartments are connected directly (i.e., flow rate is conserved),
air flow continuing from the bronchial to the acinar apical
compartment is split by a flow diverter, which releases pressure
to the ambient environment thereby reducing the flowrate
into the acinar chip (see details below). Following the Y-joint

Frontiers in Physiology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 853317106

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-853317 March 2, 2022 Time: 18:34 # 8

Nof et al. Multi-Compartment Airways-on-Chip

diverter, flow measurements reflect a reduced input flowrate of
approximately 0.2 ml/min (i.e., 0.003 ml/s) corresponding to an
inlet Reynolds number of∼0.3 at the first generation of the acinar
tree and well in line with characteristic acinar flows (Sznitman,
2013, 2021). This implies that only 3% of the flow continues
past the Y-joint to the acinar compartment, due to the pressure
gradient between the open end (ambient, low pressure) and high
pressure from an increasingly smaller passage in the acinar chip.

Perfusion System
Each of the three airway compartments was connected
via silicone tubing (Cole-Parmer, EW- 95702-00), allowing
independent perfusion of maintenance media (i.e., culture
medium and air) or experimental inputs such as viral-laden
aerosols (apical side only; see results below) applied to the nasal
compartment and subsequently transmitted to bronchial and
acinar models (see Figure 4). During experiments, a Y-joint tube-
to-tube connector (Nordson Medical, Y210-1) was used to “bleed
off” or reduce the flowrate fed to the acinar model, based on the
physiologically relevant range (see Table 1) mimicking airflows at
such airway depths and in line with previous microfluidic efforts
(Sznitman, 2021).

For the convenience of cell culture maintenance and to
restrict the spread of potential infections, each compartment is
initially handled separately (see Figure 4B) before conducting
any experimental protocol (see below). Briefly, the apical
compartment (filled with blue dye for contrast visualization
in Figure 4) is accessible via two Luer ports connected via
silicone tubing to holes in the PDMS material, made with
a 1 mm biopsy punch and strengthened with either straight
(nasal compartment only) or 90 deg. bent 18-gauge syringe tips
(Techcon, TE720050B90) for robustness and protection from
tearing PDMS material. Note that the metal syringe tips are
stripped from their original plastic hubs and sterilized before
integrating with the model.

Closing all Luer ports to either apical or basal compartments
(see Figure 4C), is accomplished via insertion of male Luer
plugs (not shown) or clamps. While plugs (Nordson medical,
LP4-1) are robust and stable, simply bending the tubes and
applying a clamp (Nordson Medical, FSLLR-1), proved quicker
and more amenable to the maintenance of sterility necessary for
cell culture. Similarly, the basal compartment (filled with pinkish
dye in Figure 4) is accessed via two Luer ports connected via
silicone tubing to holes in the PDMS material and strengthened
with nylon, straight barbed tube-to-tube connectors (Nordson
Medical, N210-1); these latter connectors are of larger inner
diameter than the apical side’s syringe tips thus allowing for easier
perfusion of culture medium (see Figure 4C).

Cell Culture
To capture key aspects of the cellular makeup relevant to our
principal lung regions, we use well-established airway epithelial
cell lines (Selo et al., 2021). Our strategy thus provides a
human-relevant pulmonary benchmark that can be adapted
for and compared with future studies using primary cells
and patient-derived samples. We recall that cell lines afford
increased control over experimental parameters with reduced

genetic variation and facilitated culture requirements (Kaur and
Dufour, 2012) to culture, maintain and transduce, and thus
may, be used to mimic some of their tissue origin behavior
and characteristics (Masters, 2000). With that said, cell lines
still hold limitations that should be taken into consideration.
Notably, they have been shown to have genetic and phenotypic
alterations form their origin tissue (Alge et al., 2006; Pan et al.,
2009), compared to primary cells that are isolated directly
from the tissue of interest, and thus capture more closely
cellular heterogeneity.

As representative of our model compartments, we chose to
work with three cell lines originating from matching tissues:
(i) RPMI-2650 is an epithelial cell line derived from the
human nasal septum, (ii) Calu-3 are isolated from human lung
adenocarcinoma and resemble the bronchial epithelium (Kreft
et al., 2015a), and finally (iii) the alveolar epithelial hAELVi cell
line originated from alveolar type I cells (Kuehn et al., 2016).

To first evaluate cell line characteristics, we made use
of established epithelium integrity characterization methods,
in addition to staining techniques using 4′,6-diamidino-2-
phenylindole (DAPI) as nuclear stain, phalloidin as actin
filaments stain, along with tight junction anti-Zonula occludens-
1 (ZO-1) antibody followed by fluorescent secondary antibodies.
Initially, we conducted a standard evaluation in 24 transwells
for both liquid-liquid interface (LLI) and ALI conditions
(see Supplementary Figures 1–3) using cell inserts. Next,
we repeated such evaluations directly in our PDMS-made
airway-on-chip models (Figure 5). Comparing staining results
in both (ALI) inserts chip models reveals strong qualitatively
similar cell behavior across, suggesting compatible growth
conditions in the models.

MATERIALS AND INTEGRITY ASSAYS

Cells
RPMI2650 (ATCC, CCL-30) and Calu3 (ATCC, HTB-55)
were cultured in ATCC-formulated Eagle’s Minimum Essential
Medium (Biological Industries, 01-040-1A) supplemented with
fetal bovine serum (FBS) (Biological Industries, 04-127-1A)
to a final concentration of 10%, 1% L-glutamine (Biological
Industries, 03-020-1B) and 1% antimycotic antibiotics (Sigma-
Aldrich, A5955). The medium was changed every other day.
When cells reached 90% confluency, they were trypsinized,
using Trypsin EDTA Solution B (0.25%), EDTA (0.05%)
(Biological Industries, 03-052-1B), and used for maintenance or
experiments, as described below. hAELVi cells (InSCREENeX,
INS-CI-1015) were cultured in a small airway epithelial
cell growth medium (SAGM) BulletKit (Lonza CC-3118)
supplemented with 1% FBS and 1% penicillin/streptomycin (P/S)
(Life Technologies, 15140-122). Prior to seeding, flasks were
coated with coating buffer; (1% (v/v) fibronectin (Corning,
33016015) and 1% (v/v) collagen (Sigma, C4243) for 2 h in
37◦C or overnight in 4 ◦C. The medium was changed every 2–3
days. When cells reached 90% confluency, they were trypsinized
using Trypsin-EDTA (0.05%) (Gibco, 25300054) and used for
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FIGURE 4 | Airflow (apical) and fluidic perfusion (basal) setup for the complete multi-compartment airway-on-chip platform, including silicone tubing and connector
fittings. (A) Top view of the three airway compartments, with apical partitions connected in series by tubes. A Y-joint tube fitting allows partial bleeding of the airflow
between the bronchial and acinar compartments, necessary for reducing the flowrate to the acinar region to lie within a physiologically relevant range (see Table 1).
The basal partitions in each chip (filled with pink dye) are fitted with straight nylon tube-to-tube connectors. (B) Side view of a single chip (nasal model shown here)
highlighting the apical layer (filled with purple dye) atop the basal layer (filled with pinkish dye). Other than when perfusion between the consecutive models is
performed, ports remain closed using clamps fitted over a bent section of the tubing near the Luer port end piece. (C) Top view of a single representative chip (i.e.,
acinar compartment shown here) demonstrating the port and tubing configuration used outside of perfusion experiments (e.g., during incubation, microscopy, etc.).

maintenance or experiments, as described below. Cells were
incubated in humidified incubators at 5% CO2, 37◦C at all times.

For SARS-CoV-2 virus incubation (see assays below), the
Vero E6 (ATCC, Vero C1008, CRL-1586) cell line was used.
Briefly, cells were grown in Dulbecco’s modified Eagle’s medium
(Biological Industries, 01-055-1A) containing 10% Fetal bovine
serum (Biological Industries, 04-127-1A), MEM non-essential
amino acids (Biological Industries, 01-340-1B), 1% L-glutamine
(Biological Industries, 03-020-1B), 1% penicillin/streptomycin
(Biological Industries, 03-031-5C).

Viruses
SARS-CoV-2 viruses (GISAID accession EPI_ISL_406862) were
kindly provided by Bundeswehr Institute of Microbiology,
Munich, Germany. Virus stocks were propagated (4 passages)
and tittered on Vero E6 cells before it was used. Handling and
working with SARS-CoV-2 virus were conducted in a BSL3
facility in accordance with the biosafety guidelines of the Israel
Institute for Biological Research (IIBR).

Recombinant lentiviral particles were generated using a Lenti-
X Packaging Single Shots (VSV-G) System (Takara Bio USA,
#631275). This system produces replication-incompetent VSV-
G pseudotyped lentiviruses. The lentiviruses were generated
according to the manufacturer’s instructions. Briefly, the
expression vector for the fluorescent protein tdTomato (Takara
Bio USA, #632564) was transfected, in a Lenti-X Packaging Single
Shot, into the Lenti-X 293T packaging cells (Takara Bio USA,
#632180). After 48 h, the lentiviral supernatant produced by the
transfected packaging cells was collected and filtered through a
45 µm filter (Merck, Millipore SLHP033RS) to remove cellular
debris, and then used to transduce the devices.

Insert Cell Culture
RPMI 2650 (5 × 105 cells) and Calu-3 cells (1 × 105 cells) were
seeded on uncoated transwells polyester membranes (Corning
3470; growth area 0.33 cm2; pore size 0.4 µm), while hAELVi cells
(1 × 105 cells) were seeded on precoated transwells (as described
previously). All cells were seeded under liquid-liquid interface
(LLI) conditions. 200 µL of culture medium was perfused on the
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FIGURE 5 | Characterization of human-relevant cell lines mimicking relevant airway epithelial cells of the respective lung compartments. (A) Immunofluorescence
micrographic views for three cell lines: RPMI 2650 seeded in nasal models, Calu-3 seeded in bronchial models, and hAELVi seeded in acinar models, respectively,
and immunolabeled with: 4′,6-diamidino-2-phenylindole (DAPI) for nucleic acid staining (blue), phalloidin for actin filaments staining (red), anti-Zonula occludens-1
(ZO-1) (green), with an overlay view. The scale bar is 20 µm for all images. (B) Transport assay of fluorescein sodium salt (FluNa), a functional permeability test for
cellularized models, conducted ∼3 weeks post-seeding. RPMI 2650 shows high apparent permeability (Papp) value of 8 × 10–6 cm s–1 indicating poor barrier
properties, while Calu-3 and hAELVi yield low Papp values of 1 × 10–7 and 7 × 10–7 cm s–1, respectively, indicating effective airway barriers.

apical side and 500 µL through the basolateral side. The medium
was changed every second day. For ALI conditions, the medium
from the apical compartment was aspirated 2 days post-seeding,
and the cells were further fed from the basolateral compartment
with 500 µL of the medium.

Microfluidic Cell Culture
The devices were sterilized following three rounds of exposure
to ultraviolet light (254 nm), 15 min each. Afterward, the
apical side of acinar devices was incubated with coating buffer
for 2 h in 37◦C, 5% CO2, and 95% humidity, washed with
PBS, and seeded without drying the membrane. RPMI 2650
(1 × 106 cells ml−1), Calu-3 (1 × 106 cells ml−1), and 10
µL of hAELVi cells suspension were seeded on the apical side
of the membrane of the nasal, bronchial, and acinar airway
chips, respectively. All basolateral compartments were filled with
suitable growth medium. After 48 h of seeding, the apical
compartment was washed with fresh media to wash out non-
attached cells. Following 48 h in LLI conditions, the medium
from the apical compartment was aspirated, allowing the cells to
grow at ALI conditions. Next, the cells were supplied medium
once a week from the basolateral compartment by withdrawing
the liquid from the basolateral side and injecting fresh medium.

Transport Studies
Inserts and devices were seeded with cell cultures as described
above. The cells were allowed to grow for about 3 weeks (in
ALI when confluency is reached). Transport experiments were
then performed as previously described (Elbert et al., 1999).

Briefly, the cells were washed twice with prewarmed Krebs–
Ringer Buffer (KRB: NaCl 142.03 × 10−3 m, KCl 2.95 × 10−3

m, K2HPO4
∗3H2O 1.49 × 10−3 m, HEPES 10.07 × 10−3

m, d-glucose 4.00 × 10−3 m, MgCl2∗6H2O 1.18 × 10−3

m, CaCl2∗2H2O 4.22 × 10−3 m; pH 7.4), and incubated in
KRB for 45 min. Next, the medium was aspirated. Fluorescein
sodium salt (FluNa) (Sigma-Aldrich, F6377) was added to the
apical compartment (first diluted in KRB buffer for a final
concentration of 0.01 µg ml−1), and KRB was added to the
basolateral compartment. The devices were next placed in the
incubator, and 30 µL samples were taken every 30 min from
the basolateral compartment only and transferred into a 384-
well plate to measure FluNa concentrations. Sampled volumes
were refilled with 30 µL KRB. The samples in the 384-well plates
were measured with a Synergy H1 microplate reader (Agilent
BioTek, #1902191C) using wavelengths of 488 nm (excitation)
and 530 nm (emission).

Transepithelial Electrical Resistance
Measurement
Transepithelial Electrical Resistance (TEER) was measured as
previously described (Kuehn et al., 2016). Briefly, 24 h post
cells seeding on transwells, and every other day, per the routine
care, media was aspirated, the apical side was refilled with
200 µL prewarmed medium, and the basolateral compartments
were filled up to a final volume of 500 µL. Following 1 h
of incubation, TEER was measured in all samples using a
dedicated epithelial volt-ohm meter (Millicell ERS-2) equipped
with chopstick electrodes (Millicell, MERSSTX01). In transwells
grown under ALI conditions, media of apical compartment
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was aspirated immediately following the measurements. The
electrical resistance was calculated by subtracting the value
of blank inserts containing medium from all samples and
multiplication with the cultivation area of the inserts (i.e.,
0.33 cm2).

BIOCHEMICAL ASSAYS

Measurement of Viral RNA
A total of 200 mL of samples from each compartment were
added to LBF lysis buffer (supplied with the kit) and viral
RNA was extracted using RNAdvance Viral Kit (Beckman
Coulter) and further processed on the Biomek i7 Automated
Workstation (Beckman Coulter), according to the manufacturer’s
protocol. Each sample was eluted in 50 µL of RNase-free
water. Realtime RT-PCR assays, targeting the SARS-CoV-2 E
gene, were performed using the SensiFAST Probe Lo-ROX
One-Step kit (Bioline). The final concentration of primers
was 600 nM and the probe concentration was 300 nM.
Primers and probe for the E gene assay were taken from the
Berlin protocol published in the World Health Organization
(WHO) recommendation for the detection of SARS-CoV-
2. Thermal cycling was performed at 480◦C for 20 min
for reverse transcription, followed by 95◦C for 2 min, and
then 45 cycles of 94◦C for 15 s, 60◦C for 35 s. Cycle
Threshold (Ct) values were converted to calculated plaque-
forming unit (PFUs) with the aid of a calibration curve
tested in parallel.

Plaque Forming Unit Assay
Vero E6 cells were seeded in 12-well plates (5 × 105 cells/well)
and grown overnight. Dilutions of SARS-CoV-2 were prepared
in MEM containing 2% FCS with NEAA, glutamine, and P/S,
and used to infect Vero E6 monolayers (500 µL/well). Plates
were incubated for 1 h at 37◦C to allow viral adsorption.
Then, 1 ml/well of overlay [MEM containing 2% FBS and 0.4%
Tragacanth (Merck)] was added to each well and plates were
incubated at 37◦C, 5% CO2 for 48 h. The media was then
aspirated, and the cells were fixed and stained with 500 µL/well
of crystal violet solution (Biological Industries). The number of
plaques in each well was determined.

Cytokine Secretion Assay
Cell culture supernatants were assayed using ELISA for
Interleukin-6 (IL-6) (Thermo Fisher Scientific, #88-7066-
88) following the manufacturer’s instructions. Briefly, the
basal media of exposed inserts and models were collected,
centrifuged to discard precipitated cell fractions, and diluted if
necessary. Samples were added to pre-coated plates-conjugated
to capture antibodies and blocked to exclude non-specific
interactions. A detection antibody was added to generate
sandwich reaction. Avidin-HRP was added, followed by
TMB solution to generate detection reaction, which was
stopped using sulfuric acid (2N H2SO4) upon saturation of
calibration wells.

Immunofluorescence Microscopy
Directly after cell fixation using 4% PFA, cells were treated
with 0.05% Triton X-100 (Sigma–Aldrich, T8787) for 3 min
at room temperature (RT) to increase membrane permeability.
Afterward, cells were blocked for non-specific binding using 2%
BSA (MP Biomedicals, 02160069-CF) for 1 h at RT. For F-actin
staining, cells were incubated with Alexa Fluor 568 Phalloidin
(Thermo Fisher Scientific, A12380) diluted with PBS (ratio of
1:200) for 40 min at RT. For DAPI nucleic acid staining, cells
were incubated with DAPI solution (ThermoFisher Scientific,
D1306), diluted with PBS (ratio of 1:500) for 5 min at RT. For
tight junction protein-1 (ZO1) staining, cells were incubated
with the primary antibody rabbit anti-ZO1 (Thermo Fisher
Scientific, 617300) diluted with BSA (ratio of 1:200) overnight
at 4◦C, followed by incubation with secondary antibody Alexa
Fluor 488 anti-rabbit (Jackson ImmunoResearch, 111-545-144)
diluted with BSA (ratio of 1:500) for 1 h at RT. After each
step, cells were washed three times with PBS. Finally, fluorescent
immunostaining confocal microscopy imaging was performed
(Nikon Eclipse Ti with spinning disk).

RESULTS

Epithelium Integrity Characterization
We conducted two well-established integrity assays (Sakagami,
2020; Artzy-Schnirman et al., 2021) in 24 transwells to
evaluate epithelial barrier functionality. First, we measured
trans-epithelial electrical resistance (TEER) for a span of 3–
4 weeks during cell culture. This was followed by tracking
fluorescein sodium salt transport through the apical to basal
chamber, and subsequently extracting the apparent permeability
coefficient (Papp) across the airway epithelium. RPMI 2650
results revealed a culture of multi-layer clusters, with ambiguous
ZO-1 formation (Supplementary Figure 1), low TEER and high
Papp values (Supplementary Figures 4A,D), in accordance with
other in vitro characterization assays (De Fraissinette et al.,
1995; Psimadas et al., 2012). Conversely, Calu-3 and hAELVi
cells exhibited a uniform polarized monolayer, with clear tight
junction staining (Supplementary Figures 2, 3), corresponding
to high TEER (Supplementary Figures 4B,C) and very low Papp
values (Supplementary Figure 4D), underlining a functional
barrier and in line with previous works (Kreft et al., 2015a; Kuehn
et al., 2016). Furthermore, for all cell lines, we note that cultures
grown at the ALI showed comparatively higher TEER and Papp
values, in addition to visually clearer and smoother staining
resulting from a more polarized epithelial cell organization,
in contract with more noisy and blurry results for cultures
maintained in LLI; a well-known feature of epithelial airway cells
grown under more physiologically faithful conditions (Sakagami,
2020; Artzy-Schnirman et al., 2021).

Similarly, we examined cell behavior in our microfluidic
models, grown at ALI conditions for a period of 3 weeks.
We stained for DAPI, phalloidin, and ZO-1, in addition to
FluNa transport assays. The devices used for barrier functionality
evaluation consisted of the model’s apical compartment sealed
to the PET membrane, placed in 24 mm well (of a 6 well
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plate) in lieu of the basal compartment and medium reservoir,
rather than PDMS-glass reservoir. As previously described
(Figure 1), the upper side of the apical compartment is sealed
with PDMS (except for the openings in place at the inlet and
outlet holes); this setup is inconvenient for conducting routine
TEER measurements. However, in the present modified form, the
basal reservoir is readily accessible for media sampling necessary
for transport assays. Hence, we examined the models’ barrier
functionality with the permeability assay only, shown to correlate
with TEER behavior in transwell inserts. Similar to our previous
observations, RPMI 2650 in nasal models formed cell clusters,
blurry images, incomplete ZO1 staining and high Papp values.
This comes in contrast to confluent monolayer formation, unified
tight junctions, as well as low Papp values reported in both
bronchial Calu-3 models and acinar hAELVi models (Artzy-
Schnirman et al., 2019b; Figure 5B). We also compared barrier
characterization for chip models in LLI and observed similar
patterns to those seen in transwells (Supplementary Figure 4E).

Development of the Multi Compartment
Platform
The methods described herein establish our multi-compartment
airway-on-chip platform with endpoints aimed at recapitulating
three representative elements of the respiratory system
underlining both physiological (i.e., airflow patterns) and
biological (i.e., cellular) relevance. In what follows, we now
exemplify the usability of the platform for some selected, but
not exhaustive, in vitro endpoints linked to viral airborne
transmission of respiratory infections. In the first proof-of-
concept embodiment, we measured the transmission of the
SARS-CoV-2 through the platform, demonstrating the physical
capabilities of the platform for recapitulating in vitro an
attenuated viral transmission pathway through the respiratory
tract following infection in the nasal airways. The second
assay employed transduced non-replicating Lenti-X-Lentivirus
to isolate and measure the extent of airflow-mediated viral
deposition stemming from an initial infection site in the
nasal compartment. Finally, in the third proof-of-concept,
we measured the compartment-specific inflammatory cellular
response to inhaled viral transmission in the airways using a
non-replicating viral simulant (i.e., Poly I:C) and biochemical
analysis of cytokine secretion.

We underscore that in all three proof-of-concept assays, we
attempted to follow a realistic pulmonary infection pathway,
initiating in the nasal compartment as the acknowledged
initial exposure site. Subsequently, viral (or viral-like) laden
aerosols were sequentially transmitted to the bronchial
and acinar compartments subject to air flow-mediated
mechanisms (Figure 6).

Syndrome-Related Coronavirus 2
Deposition in the Multi-Compartment
Airways-on-Chip Platform
For this proof-of-concept assay, we used a human respiratory
virus (SARS-CoV-2) where airflow transmission was conducted
using a peristaltic pump (MRC, PP-X-575). The apical

compartment of the nasal device was first injected with SARS-
CoV-2 (1.2 × 106 PFU). Afterward, the apical compartments of
all devices were sequentially connected. The Peristaltic Pump
was connected to the apical compartment of the nasal device,
and airflow (6.5 ml/min) was applied for 10 min, a relatively
short exposure period chosen for safety precaution reasons.
Right afterward, apical compartments were washed with MEM
containing 2% FCS with NEAA, glutamine, and P/S, and samples
were analyzed for viral RNA and PFU.

Both viral RNA and PFU results (Figure 7) support
the plausible transmission of viral-laden aerosols from the
nasal to bronchial compartments, and subsequently to the
acinar unit. We note a stark reduction in viral load that
decreases monotonically across the compartmental pathways,
where most of the initial load reaches the first exposure site
in the nasal passages. The most drastic reduction in viral
presence seen in the acinar compartment likely results from
aerosol deposition and flow diversion arising at the Y-joint
(Figure 6). While the described in vitro assay supports and
demonstrates the multi-compartmental platform’s utility for
delivering viable and functional SARS-CoV-2 airborne particles
to the different compartments from a methodological and
experimental standpoint, we note that further investigations
would be nevertheless required to deliver a broader cellular
characterization to test the susceptibility of the cells to the
specific virus and the in vitro pathology of SARS-CoV-2, or
any other virus.

Transduced Lenti-X-Lentivirus for
Non-replicating Inhaled Viral
Transmission Simulation
In this next proof-of-concept assay, we used a transduced non-
replicating Lenti-X-Lentivirus to simulate initial viral exposure
and transport, isolating the pathways of invading particles in
our platform from the effects of replicative viral transmission.
We then measured deposition in the three compartments
under both physiological airflow and control (i.e., zero flow)
conditions, revealing the determining role of airflow-mediated
viral deposition in our platform (see Figure 8).

The exposure assay is conducted as follows: 150 µL of
lentiviral supernatant was injected into the nasal compartment
and set for 15 min (see Figure 6). Meanwhile, bronchial
and acinar models were connected, and the whole airways-
on-chip platform was assembled. Airflow (6.5 ml/min) was
applied using a peristaltic pump (Ismatec, ISM597D) to the
assembled devices, flowing from the nasal model to the bronchial
model and lastly through the acinar model for 72 h in a
humidified incubator. The experiment was terminated only 2 h
post flow arrest to allow the deposition under gravitational
sedimentation of any remaining airborne viral aerosols. In
parallel, as a control the nasal model was similarly exposed
to the transduced virus and connected in series with other
compartments (Figure 6), but no airflow was applied. The
devices were imaged using a tile scan with the Axio Observer
7 microscope (Zeiss). Images were processed using ZEN
Blue v2.3 (Zeiss).
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FIGURE 6 | Schematic of the experimental proof-of-concept protocols for inhalation assays. Exposure is limited first to the nasal compartment, either via direct
instillation of the virus or nebulized Poly I:C viral simulant. Following exposure, all three apical compartments are connected in series to airflow supplied via a
peristaltic pump. Note that airflow to the acinar compartment is reduced to a physiologically relevant range in the deep lungs (see Table 1). Each compartment is
analyzed separately for viral quantity, deposition sites, and cellular cytokine secretion to the basal media.
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FIGURE 7 | Functional viral transmission of SARS-CoV-2 in the multi-compartment airways-on-chip. Compartmental viral load was quantified via (A) real-time PCR
and (B) Plaque-forming units (PFU). In both assays, viral traces were detected in all three compartments, indicating the crosstalk in the chips. A monotonically
decreasing viral presence is measured across the model, with considerable reduction observed between nasal and bronchial compartments owing to high deposition
in the nasal compartment and tube connections. Further reduction in viral presence is measured in the acinar compartment, likely resulting from aerosol deposition in
conjunction with flow diversion resulting from the Y-joint. Data are the average of three experiments presented as mean and the standard deviation (SD).

Our imaging results show that epithelial cells expressing
fluorescent protein tdTomato were detected in all three
distinctive compartments (Figure 8), supporting the airflow-
mediated hypothesis toward transmission of primary viral load to
all regions. Concurrently, no fluorescence was detected in either
bronchial or acinar models when no airflow was applied, further
underscoring the central role of airflow-mediated transmission.

Poly I:C for Non-replicating Viral
Transmission Simulation
In a final proof-of-concept assay, we used Poly I:C, a synthetic
double-stranded ribonucleic acid (dsRNA) molecule, to examine
the initial cellular inflammatory response upon exposure to
virus components as a pathogen-associated molecular pattern
(PAMP). Poly I:C molecules are recognized by toll-like
receptor-3 (TLR-3) expressed on the surface of epithelial
cells, and elicit intracellular signaling pathways, subsequently

secreting inflammatory cytokines such as interleukin-6 (IL-6)
(Alexopoulou et al., 2001; Akira et al., 2006).

Using a standard compressor nebulizer (Bi-rich medical,
BR-CN116), we supplied aerosolized poly I:C to the nasal
compartment. The nebulizer cup (see the enlarged region in
Figure 9A) was filled with diluted (100 µg ml−1 in PBS) Poly I:C
solution and connected via silicone tubing and a 19-gauge syringe
tip to the nasal compartment’s inlet port. Following 4 min of
aerosol exposure, the nebulizer was turned off, and the platform
was left to stabilize for 15 min, during which the bronchial
and acinar compartments were connected in series (as shown
in Figure 6). Once the multi-compartment platform was fully
assembled, physiological airflow was perfused through the model
for 72 h using a peristaltic pump (Ismatec, ISM597D). Thereafter,
we placed the models in a –80◦C freezer to induce freeze-
burst of cells and discharge intracellular content. Subsequently,
we collected the basal media and quantified the inflammatory
cytokine interleukin 6 (IL-6) via Enzyme-Linked Immunosorbent
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FIGURE 8 | Viral deposition tracing using Lenti-X-Lentivirus, a transduced non-replicating virus. Epithelial cells in each of three compartments are infected with virus
expressing red fluorescent protein following exposure to physiological flow conditions. (A–C) Top row images (all the same scale) show cell-level magnification, while
the bottom rows (D–I) show stitched microscopy images to view each compartment entirely. (D–F) Infection supports the airflow crosstalk in the chip’s
multi-compartments, as the transfer of virus is witnessed in each compartment downstream from the nasal passages. The bottom row (G–I) shows the control
experiment, in the absence of any airflow applied, and showing thus the lack of airflow-mediated airborne transport. The figure represents one of three experiments
yielding similar results.

Assay (ELISA). Quantitative analysis (Figure 9B) showed poly
I:C induced elevation in IL-6 levels in all cell lines.

Calibration experiments (Supplementary Figure 5)
show significant increases in cytokine secretion following
direct poly I:C exposure across all cell lines, indicating
the biological compatibility of the platform and selected
cell populations for measuring inflammatory response to
poly I:C. Exposure to aerosols generated via nebulization
from equivalent concentrations of poly I:C follow similar
patterns of elevated cytokine secretions. However, repeated
experiments in RPMI2650 and hAELVi cells generated
larger statistical variance indicating a noisier signal.
The greater variability of aerosolized poly I:C molecules
coming into contact with the cultured epithelial cell
populations emphasizes the importance of flow-mediated
exposure phenomena for the transmission pathway and
the delicate caution needed for interpreting aerosol-based
in vitro assays.

DISCUSSION AND OUTLOOK

With the Methods presented herein, our multi-compartment
airways-on-chip is a versatile in vitro platform that can
be further modulated and adapted for the needs of a
wide variety of preclinical research endpoints, including for
example questions pertaining to respiratory viral transmission
in the human lungs. Specifically, we have provided all the
necessary source files, including 3D printing formats needed
to fabricate our platform (see Supplementary Data) and
perform subsequent calibrations. Our three experimental proof-
of-concept embodiments, spanning SARS-CoV-2, a transduced
Lentivirus, and dsRNA Poly I:C were selected to showcase several
biological and cellular capabilities of our platform as an attractive
proof of concept. These include recapitulating physiological
and biological characteristics of distinct respiratory tract key
regions, alongside the capability to assess viral laden and cellular
response in the different respiratory compartments and the
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subsequent IL-6 secretions across the three compartments. (A) Schematic of
the nebulization setup used to supply aerosolized poly I:C to the
multi-compartment model. Following exposure, cells are freeze-burst and their
media collected for (B) differentiated quantification of inflammatory cytokines
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immunosorbent assay (ELISA). In all models, an elevation of IL-6 levels can be
seen upon exposure to poly I:C compared to PBS exposure as a control. Bars
represent the average and error bars of the standard deviation (SD) (N = 3 for
PBS, N = 5 for poly I:C).

opportunity to mimic in vitro aspects of airborne crosstalk and
transmission in the lungs.

Much of our initial motivation has been rooted in a platform
for investigating transmission pathways, cell infection, and
inflammation initiation by airborne viruses such as SARS-Cov-
2. The compartmentalized, regional representations in each of
the three compartments can be leveraged and adapted further
for various in vitro assays to quantify regional differences in viral
exposure under the influences of varying exposure conditions,
aerosol dispersion characteristics and related airflow patterns and
importantly, distinct epithelial cell populations.

As a first step, we examined the platform’s compatibility for
harboring and transporting SARS-CoV-2, of heightened interest
amidst the ongoing global pandemic. Downstream transmission
of viral particles to distal compartments from an initially isolated
nasal compartment supports the model’s crosstalk for airflow-
mediated viral transmission, alongside a gradual reduction of
viral load. However, the use of SARS-CoV-2 in experiments
introduces tremendous safety risks and logistical burden (e.g.,
PPE, bio-safety rooms) that are intrinsically cumbersome when
developing a new in vitro platform intended for more general
virological studies. Furthermore, we hoped to demonstrate our
platform’s utility in laboratory settings that may lack the special
safety conditions necessary for handling such dangerous and
infections viruses. Consequently, in subsequent experiments, we
employed other, less harmful and non-replicating viral proxies
such as transduced lentivirus and the viral simulant poly I:C,
demonstrating our platform’s broader utility and opening the

way for experimental protocols such as aerosolization, that
would be limited by safety considerations when handling for
example SARS-CoV-2.

We exposed our model to transduced Lenti-X-Lentivirus to
estimate the initial dispersion and deposition of viral-laden
aerosols, identifying infected cells via fluorescence microscopy.
Fluorescent cells were imaged in all compartments, further
confirming the crosstalk between the compartments and the
existence of a viable transmission pathway. This experiment
tracked the viability of the cell monolayer covering the
whole model surface throughout and following the exposure
event, necessary for subsequent biochemical analyses of cellular
response. We note here that our assay demonstrates transmission,
deposition, and initial viral or viral-like exposure, while a study of
infection as well as the full biologic mode of action lies beyond the
scope of this methods paper.

Due to the safety limitations mentioned above, SARS-CoV-
2 and lentivirus were injected via a syringe to the nasal
compartment in both experiments, in contrast to in situ viruses
introduced into the respiratory system as aerosols, affecting
the transmission mechanism and deposition outcomes (Artzy-
Schnirman et al., 2019a). Acknowledging the importance of
aerosol effects, and in order to mimic transmission pathways
more realistically (Artzy-Schnirman et al., 2019a,b; Wang et al.,
2021), we used a nebulizer to create an aerosolized exposure of
poly I:C, a synthetic double-stranded ribonucleic acid (dsRNA)
molecule that can be handled in a biosafety room 2 in a safety
hood. Beyond its safer suitability for nebulization, poly I:C can
still be recognized by toll-like receptor-3 (TLR-3) in epithelial
cells, thus eliciting inflammatory response and secretion of
inflammatory cytokines. Quantifying such cytokines in each
compartment may enable to assess the local cellular stress,
dependent on each compartment’s particular physiology, airflow
pattern, and cellular composure.

Whereas our platform was designed to have a relatively small
height to improve optical clarity for microscopy, higher three-
dimensionality may be incorporated where imaging is less of
a priority or in tandem with more advanced three-dimensional
imaging technology. Additionally, more complex flow patterns
may be used for perfusing air in the apical compartments to
more realistically mimic human breathing, such as using a
programmable linear actuator or mechanical ventilator as done
in previous works (Nof et al., 2020, 2021).

In parallel, we note that human cell lines differ from cells
in vivo, both genotypically and phenotypically (Pan et al., 2009)
and thus exhibit different functionality. Amongst other, such
differences are embodied in the absence of cilia structure and
mucus production in both the nasal RPMI2650 (Christiane
Schmidt et al., 1998; Kreft et al., 2015b) and bronchial Calu-3
(Foster et al., 2000; Mathias et al., 2002; Fiegel et al., 2003) cell
lines, thereby leading to underestimating mucociliary clearance
on the distribution of the viral and viral-like particles in the three
compartments. In parallel, hAELVi cells are alveolar type I like
epithelial cells, and thus cannot produce surfactant (Ferguson
and Schlesinger, 2000); a unique composite of lipids and proteins
that play a crucial role in initial immunity (Ferguson and
Schlesinger, 2000; Glasser and Mallampalli, 2011), that may

Frontiers in Physiology | www.frontiersin.org 15 March 2022 | Volume 13 | Article 853317114

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-853317 March 2, 2022 Time: 18:34 # 16

Nof et al. Multi-Compartment Airways-on-Chip

further affect the ability of infectious particles to attain the
cells. Alternatively, primary patient-derived cells can be used
when patient variation response is of interest or to improve the
biological relevance of the cellular response assays at the cost
of throughput. Here, our choice for selecting cell lines lies in
their reliability, robustness, and non-patient-specific variability
in serving as a benchmark for end users (Hittinger et al., 2015;
Sakagami, 2020; Selo et al., 2021), in particular during preclinical
in vitro stages. Note nevertheless that cellular assays can be
adapted to include additional co-cultures, including but not
limited to immune cells in the apical compartment (Ainslie et al.,
2019; Artzy-Schnirman et al., 2019b) (e.g., macrophages) (Ainslie
et al., 2019), but also reconstructing an air-blood barrier (ABB)
with endothelial cells cultures on the basal side of the membrane
(Barnes et al., 2015a; Artzy-Schnirman et al., 2021).

Lastly, we raise the point that our in vitro platform
exhibits distinct cellularized airway compartments, connected via
silicon tubing exclusively during experimental procedures (see
section “Materials and Methods” above). The isolation of the
individual compartments during the preparation phase allows for
experimental easiness in maintenance as well as during cellular
differentiation, and finally during independent compartmental
viral load measurements. Furthermore, our platform’s modular
“plug and play” design leverages easier adoption and adaptability
for other preclinical research needs, specifically with the end user
in mind (Ainslie et al., 2019; Artzy-Schnirman et al., 2019a).
With such functionalities enabled during experimentation, we
note, however, here that these advantages come at the cost
of introducing various artifacts relative to the natural in vivo
lung environment, including foremost a discontinuity in the
epithelial lining that is anticipated to affect viral propagation
characteristics along a continuous airway tract (Leung, 2021;
Wang et al., 2021). Notably, this includes innate clearing and
defense mechanisms (Nicod, 2005) via mucociliary clearance in
the conducting regions of the lungs, as well displacements of the
surfactant-rich liquid lining layer in the deep respiratory regions.
With these limitations in mind, our in vitro efforts offer to the
best of our knowledge the first airway-on-chip attempt to deliver
a more comprehensive recapitulation of the broader lung regions
via key lung compartments that breaks away from current state-
of-the-art individual isolated lung-on-chip models (Benam et al.,
2015; Artzy-Schnirman et al., 2021).

Altogether, our efforts deliver an open-source in vitro multi-
compartment platform available to end users across the academic
and biopharmaceutical communities that can be utilized and

adapted further as a powerful tool in preclinical research
for investigating amongst other respiratory infections, host-
pathogen interactions as well as potential drug screens and
discovery endpoints.
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Synchrotron radiation offers unique properties of coherence, utilized in phase-contrast
imaging, and high flux as well as a wide energy spectrum which allow the selection
of very narrow energy bands of radiation, used in K-edge subtraction imaging
(KES) imaging. These properties extend X-ray computed tomography (CT) capabilities
to quantitatively assess lung morphology, and to map regional lung ventilation,
perfusion, inflammation, aerosol particle distribution and biomechanical properties, with
microscopic spatial resolution. Four-dimensional imaging, allows the investigation of
the dynamics of regional lung functional parameters simultaneously with structural
deformation of the lung as a function of time. These techniques have proven to be
very useful for revealing the regional differences in both lung structure and function
which is crucial for better understanding of disease mechanisms as well as for evaluating
treatment in small animal models of lung diseases. Here, synchrotron radiation imaging
methods are described and examples of their application to the study of disease
mechanisms in preclinical animal models are presented.

Keywords: pulmonary function, synchrotrons, computed tomography, respiration artificial, regional blood flow

INTRODUCTION

An ideal technique for imaging regional lung function should provide both high spatial
and temporal resolution, allow for quantitative measurements of functional parameters and
provide the ability to image the underlying lung morphology. Structural and functional
imaging data along with computational modeling have significantly contributed to our
understanding that lung function as a whole cannot be predicted by the sum of the behavior
of individual components, but results rather from the interaction of components at multiple
scales ranging from biomolecular and cellular to different lung regions, which leads to
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complex dynamic phenomena such as self-organization and
emergence (Suki and Bates, 2011). Human, animal and cell
culture studies have demonstrated that mechanical strain on the
lung tissue and alveoli, plays a crucial role in processes such
as lung growth and repair, surfactant release and inflammation
(Roan and Waters, 2011). However, capturing lung structure
and function simultaneously at small length scales remains
a very technically challenging goal in vivo, and despite
advances in both imaging technology and understanding of lung
mechanics over the past decades, still little is known about lung
micromechanics and how lung alveoli and acini deform during
breathing (Roan and Waters, 2011; Smaldone and Mitzner,
2012).

Conventional X-ray imaging with laboratory or clinical
sources, is based on absorption contrast. A multitude of
interesting methods and algorithms have been developed
for conventional micro-CT of the lung, with prospective
and retrospective gating, motion compensation, and
radiation dose reduction via sophisticated reconstruction
algorithms. These have been extensively reviewed previously
(Ashton et al., 2015; Clark and Badea, 2021). However,
conventional CT is limited by the low radiation flux
available in standard X-ray imaging systems, which
reduces the spatial and temporal resolution, particularly in
in vivo imaging.

Synchrotron radiation on the other hand, offers unique
properties of high flux, wide energy spectrum and coherence,
meaning that the photons are to a large degree spatially
and temporally in phase. The high flux as well as a wide
energy spectrum allow the selection of very narrow energy
bands of radiation, utilized in K-edge subtraction imaging
(KES) imaging. The coherence of the radiation is utilized
instead in phase-contrast imaging. Here, the distortion of
the X-ray wave front in the lung leads to strong edge
enhancement within the images due to interference of the
transmitted and refracted radiation. In weakly attenuating tissues
such as the lung, refraction can be orders of magnitude
greater than absorption, particularly at higher energies. The
propagation-based imaging technique (PBI) has proven to
be especially suited for lung imaging due to sharp edge
enhancement caused by the air-to-tissue interfaces in the lung
microstructures (4, 5).

Four-dimensional (4D) CT imaging, in which high-
resolution mapping of lung functional parameters is
recorded simultaneously with structural deformation of
tissue morphology as a function of time, provides the
basis for comprehensive modeling of the dynamics of lung
function, at spatial resolutions allowing the visualization
of alveoli. Recently, impressive results toward this goal
have been achieved using synchrotron radiation sources
(Cercos-Pita et al., DOI: 10.21203/rs.3.rs-970496/v1,
under review).

The physical instrumentation and optical methods of
these imaging techniques has been reviewed in detail recently
(Bayat et al., 2020). In this mini-review, methodological
aspects of KES-CT and propagation-based 4D-CT lung
microscopy are summarized.

ANIMAL PREPARATION

In vivo imaging with synchrotron radiation requires dedicated
instrumentation and remote control. The synchrotron beam is
a stationary horizontal fan so that the animal is subjected to
rotation up to 180–360◦/s as well as vertical displacement for
2D-projection imaging. While it is possible to acquire images
during free breathing, obtaining high resolution maps of regional
ventilation using this imaging method usually requires the
respiration to be controlled by mechanical ventilation while
the physiological parameters are continuously monitored and
recorded. Other global measurements of cardiovascular (e.g.,
ECG, invasive blood pressure) and respiratory function such
as respiratory mechanics (Bayat et al., 2009) or inert gas
multiple breath washout (Bayat et al., 2013) can be performed
in parallel to image acquisition using the experimental setup
(Figure 1). Mechanical ventilation can be ensured using ad hoc
systems allowing synchronization with the image acquisition
or commercial and even clinical mechanical ventilators (Porra
et al., 2016), as long as these devices can be remotely controlled
for example to pause respiration in inspiration or expiration
for imaging. Imaging the lung in static conditions in apnea
typically requires pauses of 1–3 s in lower-resolution KES
imaging and 10–60 s in higher resolution phase-contrast imaging.
Longer apnea durations in small animals require preoxygenation
followed by apneic oxygenation by high-flow O2 at the airway
opening, in order to avoid O2 desaturation during imaging
(Frumin et al., 1959).

Anesthesia is usually induced by intramuscular injection of
a mixture of ketamine and xylazine (rabbit, rat, mouse), or IV
injection of thiopental sodium via a catheter (22 G) introduced
into the marginal ear vein under local anesthesia (5% topical
lidocaine) in rabbits. Anesthesia is then maintained by IV
infusion (rabbit, rat) or IP injection (mouse) of a ketamine
and xylazine mixture. Anesthesia can also be maintained by
inhaled volatile anesthetics. Controlled mechanical ventilation
can be delivered through tracheal intubation or most often
tracheostomy with a polyethylene tracheal tube. For some
imaging protocols, after ensuring adequate depth of anesthesia,
muscle relaxation is induced by continuous IV infusion of
atracurium (rabbit) or IP pancuronium bromide (rat, mouse).
Depth of anesthesia is monitored by regularly assessing the
state of the pupils (rabbit) and heart rate. Because the
radiation beam is horizontal, the animal is typically placed
in a custom-made plastic holder for imaging in upright
position (Porra et al., 2004). However, local tomography
can also be performed in supine position in small animals
(unpublished data).

Physiological parameters, such as the ECG, respiratory
pressure and flow, arterial pressure, oxygen saturation, among
other parameters, can be monitored using an analog/digital
interface. This allows not only to monitor and record such
parameters in order to assess the physiological condition
and welfare of the animal, but also to collect scientifically
important data such as respiratory mechanics and hemodynamic
parameters. Parameters such as the ECG and respiratory
pressures also allow to trigger image acquisition in a prospectively
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FIGURE 1 | (A) Schematic of synchrotron radiation K-edge subtraction imaging (KES) setup; (B) sample composite images showing the Xe concentration
distribution repeatedly imaged by KES with 47 µm voxel size, in ovalbumin-sensitized Brown-Norway Rats challenged with inhaled ovalbumin. Scale bar represents
10 mm. Note the transient emergence of regional lung ventilation defects after ovalbumin challenge. Reproduced with permission from Layachi et al. (2013), Bayat
et al. (2021).

synchronized fashion with cardiac and respiratory function
(Fardin et al., 2021). Also, the inhaled fraction of O2 can be set
and inert or tracer gas administration switched remotely by the
image acquisition software or manually (Bayat et al., 2021) in
order to image regional lung ventilation.

K-EDGE SUBTRACTION COMPUTED
TOMOGRAPHY FUNCTIONAL LUNG
IMAGING

The K-edge subtraction computed tomography (KES-CT)
technique allows simultaneous imaging of the lung tissue
morphology, and the concentration (mass per unit of volume)
of inhaled Xenon gas within the airspaces. The instrumental
setup for this imaging modality has been reviewed in detail
previously (Bayat et al., 2020). This imaging technique uses
two monochromatic X-ray beams at slightly different energies
bracketing the K-edge of inhaled Xe (34.56 keV) for ventilation
imaging, or injected iodine (33.17 keV) for blood volume and
perfusion imaging. Visualization and quantitative measurement
of contrast concentration in the lung is based on the property
that the attenuation coefficient of a contrast element increases
severalfold when the energy of the incident X-ray beam exceeds
the K-edge of that element. X-rays from a synchrotron radiation
source are required because, as opposed to standard X-ray
sources, they allow the selection of monochromatic beams from

the full X-ray spectrum while conserving enough intensity for
imaging with sufficient temporal resolution. KES-CT imaging
is performed in parallel-beam geometry. Two CT images are
simultaneously acquired during the Xe inhalation maneuver,
using a solid state (Bayat et al., 2021) or a charge-coupled
device (CCD) detector (Layachi et al., 2013; Figure 1A). The
size of the field of view is determined by that of the radiation
beam and the detector resolution. For example, in a recent
study (Bayat et al., 2021) the horizontal beams were 98 mm
wide and 0.6 mm in height, and focused on a rabbit. In
that study, each CT image consisted in 720 projections over
360◦ per 1.5 s. CT images were reconstructed using a filtered
back projection algorithm with resulting voxel dimensions of
350 µm× 350 µm× 700 µm. At this voxel size, the distribution
of xenon gas within lung acini could be assessed in rabbits,
in order to investigate down to which length scale ventilation
remains inhomogeneous in normal lungs. Using fractal analysis,
it was demonstrated that ventilation becomes internally uniform
within regions about the size of rabbit lung acini (∼5 mm3)
(Bayat et al., 2021).

At a higher voxel resolution of 47 µm2, the acquisition
time is longer (∼10 s) (Figure 1B). Using the dual-energy KES
synchrotron imaging method, X-ray attenuation by tissue density
and Xe concentration is computed separately, using a custom
material decomposition algorithm as described previously (Bayat
et al., 2001). At this resolution, Layachi et al. (2013) found higher
eosinophil, monocyte and total cell densities within vs. outside
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FIGURE 2 | 4D microscopy of rat lung using a synchrotron X-ray source. High-intensity coherent X-rays generated from electrons orbiting in a storage ring, are
rendered monochromatic using bent silicon crystal optics, and detected by a PCO Edge 5.5 camera coupled to a Cerium-doped Lutetium Aluminum Garnet
(LuAG:Ce) scintillator and optics yielding an isotropic pixel size of 6 µm3. The in vivo anesthetized rat is mechanically ventilated while the electrocardiogram and
respiration are monitored and recorded. Reproduced from (Cercos-Pita et al., doi: 10.21203/rs.3.rs-970496/v1, under review).

lung regions where ventilation defects emerged following allergen
inhalation in ovalbumin-sensitized Brown-Norway rats.

K-edge subtraction computed tomography image acquisition
can be performed dynamically during a single (Bayat et al., 2021)
or in-between multiple inspirations or expirations (Bayat et al.,
2013). The resulting images can be used to compute a map
of regional ventilation based on the regional time-constant of
Xenon washin or washout. In the case of Xenon washin, as the
alveoli are gradually filled by the gas (Porra et al., 2004):

Ct = Cas

[
1− e−(t−t0)τ

]
where Ct is the gas concentration as function of time, Cas the
asymptotic concentration and τ the time constant. As ventilation
within a lung region increases, the time constant of regional Xe
washin or washout becomes shorter. Specific ventilation (sV̇), or
ventilation per unit of regional gas volume, is defined by:

sV̇ =
1
τ

A similar approach can be used to compute maps of regional
blood volume and perfusion (Suhonen et al., 2008).

The spatial resolution and contrast sensitivity of KES imaging
is mainly determined by the characteristics of the detection
system. For example, in studies performed using a solid-state
cooled germanium detector, a pixel size of 0.332 mm2 and a
sensitivity better than 0.1 mg/ml could be obtained. Smaller
pixel sizes of 47 µm2 have previously been achieved in in vivo
KES-CT imaging using a charge coupled device (CCD) detector
(Layachi et al., 2013). This makes KES a unique method because

of the high spatial resolution and absolute scale of the contrast
element distributions.

PHASE-CONTRAST FUNCTIONAL LUNG
IMAGING

The lung poorly attenuates X-rays. However, the numerous air-
tissue interfaces within the lung airways and alveoli result in
refraction and phase changes of the incident X-rays. Phase-
contrast X-ray imaging (PCI), uses the phase information in
addition to attenuation to enhance contrast within poorly-
attenuating structures (Bravin et al., 2013). This technique takes
advantage of the high degree of spatial coherence provided by
synchrotron X-ray sources. In addition to improving contrast,
this imaging approach has the advantage of reducing the
radiation dose in comparison to conventional X-ray attenuation
imaging (Lewis et al., 2005). The numerous air-tissue interfaces
crossed by the incident beam within the lung produce phase
gradient patterns which resemble random noise or “speckles,”
unlike the surrounding soft tissues (Kitchen et al., 2004).

Propagation-Based Imaging (PBI), is the simplest and most
widely used method because no X-ray optical devices are needed
(Figure 2). In this configuration a small X-ray source provides
a high spatial coherence, an essential condition to visualize
the phase effects. Another essential condition is a sufficient
distance between the object and the detector, which is chosen
as a function of the X-ray energy and the detector pixel
size. There are several methods for phase retrieval from the
observed intensity distribution, which also includes the effects of
absorption (Nesterets et al., 2015).
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FIGURE 3 | Quantitative mapping of lung tissue biomechanics in a live rat. (A) sample sequential X-ray phase-contrast CT images at successive time points,
reconstructed by retrospectively sorting of 250,000 individual 2 ms image projections with respect to the phase of heart contraction and breathing, yielding 78 time
points during the breath; (B) regional strain as a function of time computed within airspaces in the regions of interest of same color as in panel (A). The shaded area
represents within-ROI standard deviation; (C) a segmented airway with subtending conducting airways and terminal acinar structures at end-expiration in a live rat;
(D) sample regional strain map of airspaces in vivo in the same animal. Color bars indicate strain (δV/Vt0, where t0 is the start of the breath). Reproduced from
(Cercos-Pita et al., doi: 10.21203/rs.3.rs-970496/v1, under review).

Examples of the application of this imaging technique to study
regional lung deformation and function are discussed in a recent
review (Bayat et al., 2021). In vivo phase-contrast synchrotron
radiation tomography allows the measurement of regional lung
aeration with high contrast sensitivity, short acquisition times
compatible with in vivo imaging, and the ability to acquire
3D data at sub acinar spatial resolution. However, the spatial
resolution of static imaging approaches is limited by blurring
due to cardiac and vascular motion, which hinders the study of
aeration and deformation within individual alveoli.

This issue is addressed by 4DCT imaging. This approach
involves gating the acquisition of individual image projections
with the cardiac and respiratory motions. Moreover, the exposure
time of each image projection needs to be reduced as the
microscopic features of interest become smaller, which makes
4DCT microscopy technically challenging (Bayat et al., 2018).
The high photon flux and coherence of synchrotron radiation are
necessary for this technique, as well as accurate physiologic signal
acquisition and control software allowing precise triggering of
all components of the image acquisition process. Resolving
alveolar structure in the lung is particularly challenging due
to inhomogeneous speed and magnitude of the physiological
tissue motion. Acquiring abundant tomographic data can help
resolve this issue.

Under static lung inflation conditions, Lovric et al. (2017)
studied lung inflation patterns during diastole at the alveolar scale
in vivo, with a voxel size of 2.93 µm3, in anesthetized 9-day old
rats. They acquired 450 individual projections at 3 ms exposure
time, for a total acquisition time of 2 min (Lovric et al., 2017).
Their data demonstrate the feasibility of eliminating motion
artifacts due to cardiac activity and resolving alveolar structure
in vivo. Using a prospective cardiac gating technique, the authors
were able to image mouse lungs at 1.1 µm voxel size during static
breath hold conditions (Lovric et al., 2017). However, imaging
the lung in static conditions is less physiological and does not
allow capturing the full scope of local lung mechanics. This is
because the lung tissue is viscoelastic, meaning that its apparent
elastic properties depend on the rate of volume change (Suki and
Bates, 2011). Dynamic imaging techniques are therefore needed
to map lung biomechanics, ideally at spatial resolutions allowing
to resolve the pulmonary alveoli.

Recently, Cercos et al. investigated lung tissue deformation
induced by cardiac contractions and respiration in anesthetized
adult rats, showing the magnitude and regional inhomogeneity
in this deformation in intact in vivo lungs (Cercos-Pita
et al., DOI: 10.21203/rs.3.rs-970496/v1, under review). By
synchronizing image acquisition with both respiration and
cardiac activity, 250,000 projections with 2 ms integration
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time were retrospectively acquired over 180◦ in 8.8 min. Both
the respiratory and cardiac-induced motion could be resolved
using this technique in mechanically ventilated live rats, at
6 µm3, and 78 time points during a breath (Figure 3). This
study shows that 4D tomographic microscopy is a valuable
technique not only for assessing local lung structure but also for
quantitatively mapping local biomechanics at microscopic length
scales. The main limitations of the technique are the length of
data acquisition ranging up to several minutes, and the risk of
excessive radiation dose which can alter the underlying tissue
structures. Also, dynamic imaging limits the spatial resolution
due to motion blurring induced by breathing in addition to
cardiovascular motion. More sensitive detection devices and
specifically designed imaging end stations can help mitigate these
limitations in the future.

FUTURE PERSPECTIVES AND
CHALLENGES

Real-time imaging of lung function is highly challenging,
particularly in vivo due to motion blurring and the non-linear
deformation of the lung tissue with breathing and cardiovascular
motion. There is a trade-off between spatial and temporal
resolutions, and both are difficult to achieve simultaneously.
In vivo synchrotron radiation micro-CT also faces limitations
due to radiation dose, and a limited field of view. However, in
KES-CT, limitations due to radiation exposure can be overcome
by reducing the number of projections and using iterative
reconstruction algorithms while maintaining sufficient contrast
resolution for quantitative mapping of ventilation (Strengell et al.,
2014), while PCI has the advantage of reducing the radiation dose
in comparison to conventional X-ray attenuation imaging (Lewis
et al., 2005; Zhao et al., 2012). The radiation beam produced by a
synchrotron source is stationary, which imposes translation and
rotation of the sample through the beam for image acquisition.
Another challenge posed by fast acquisition 3D imaging is
handling the large volume of data, which can rapidly represent

several terabytes. Large data volumes cannot be visualized in
real time with conventional approaches. A change in the data
representation paradigm, from the classical Cartesian grid to a
hierarchical data structure is therefore mandatory to allow a real-
time visualization on different planes as well as morphological
analysis in a reasonable time. This in turn, requires adapting
image processing algorithms. Synchrotrons are large research
infrastructures that are not widely available. However, several
facilities worldwide are accessible to the scientific community
through a competitive peer-reviewed process based on scientific
merit (Quitmann and Rayment, 2020).

A limitation of KES-CT is a contrast sensitivity that is far
smaller than fluorescence or radionuclide imaging. However, an
exciting development is the ability to track high atomic number
nanoparticles loaded within cells (Schültke et al., 2014; Hubert
et al., 2021), or functionalized in order to reveal a specific
molecular target. This would allow taking functional imaging
utilizing synchrotron radiation a step further toward molecular
imaging. Possibilities to achieve these challenging goals exist at
current synchrotron facilities with recent progress in detection,
acquisition and data processing capabilities.

AUTHOR CONTRIBUTIONS

SB wrote the first draft of the manuscript. LF, JC-P, GP, and
AB wrote sections of the manuscript. All authors contributed to
manuscript revision, read, and approved the submitted version.

FUNDING

This work was supported by the Swedish Research Council
(grant 2018-02438), the Swedish Heart-Lung Foundation (grant
20170531), the European Synchrotron Radiation Facility, by
the French Institute of Health and Medical Research (INSERM
UA07), and by the French National Research Agency (ANR-15-
IDEX-02).

REFERENCES
Ashton, J.R., West, J.L., and Badea, C.T. (2015). In vivo small animal micro-CT

using nanoparticle contrast agents. Front. Pharmacol. 6:256. doi: 10.3389/fphar.
2015.00256

Bayat, S., Broche, L., Degrugilliers, L., Porra, L., Paiva, M., and
Verbanck, S. (2021). Fractal analysis reveals functional unit of
ventilation in the lung. J. Physiol. 599, 5121–5132. doi: 10.1113/JP28
2093

Bayat, S., Duc, G.L., Porra, L., Berruyer, G., Nemoz, C., Monfraix, S., Fiedler, S.,
Thomlinson, W., Suortti, P., Standertskjöld-Nordenstam, C.G., and Sovijärvi,
A.R.A. (2001). Quantitative functional lung imaging with synchrotron radiation
using inhaled xenon as contrast agent. Phys. Med. Biol. 46, 3287–3299. doi:
10.1088/0031-9155/46/12/315

Bayat, S., Dullin, C., Kitchen, M.J., and Lovric, G. (2018). "Synchrotron X-Ray-
Based Functional and Anatomical Lung Imaging Techniques," in Advanced
High-Resolution Tomography in Regenerative Medicine (Ed)A. Cedola (Berlin:
Springer), 151–167.

Bayat, S., Porra, L., Albu, G., Suhonen, H., Strengell, S., Suortti, P., Sovijarvi, A.,
Petak, F., and Habre, W. (2013). Effect of positive end-expiratory pressure on

regional ventilation distribution during mechanical ventilation after surfactant
depletion. Anesthesiology 119, 89–100. doi: 10.1097/ALN.0b013e318291c165

Bayat, S., Porra, L., Suortti, P., and Thomlinson, W. (2020). Functional
lung imaging with synchrotron radiation: Methods and preclinical
applications. Phys. Med. 79, 22–35. doi: 10.1016/j.ejmp.2020.
10.001

Bayat, S., Strengell, S., Porra, L., Janosi, T.Z., Petak, F., Suhonen, H., Suortti, P.,
Hantos, Z., Sovijarvi, A.R., and Habre, W. (2009). Methacholine and ovalbumin
challenges assessed by forced oscillations and synchrotron lung imaging.
Am. J. Respir. Crit. Care. Med. 180, 296–303. doi: 10.1164/rccm.200808-1
211OC

Bravin, A., Coan, P., and Suortti, P. (2013). X-ray phase-contrast imaging: from
pre-clinical applications towards clinics. Phys. Med. Biol. 58, R1–35. doi: 10.
1088/0031-9155/58/1/R1

Clark, D.P., and Badea, C.T. (2021). Advances in micro-CT imaging of small
animals. Phys.Med. 88, 175–192. doi: 10.1016/j.ejmp.2021.07.005

Fardin, L., Broche, L., Lovric, G., Mittone, A., Stephanov, O., Larsson, A., Bravin,
A., and Bayat, S. (2021). Imaging atelectrauma in Ventilator-Induced Lung
Injury using 4D X-ray microscopy. Sci. Rep. 11, 4236. doi: 10.1038/s41598-020-7
7300-x

Frontiers in Physiology | www.frontiersin.org 6 March 2022 | Volume 13 | Article 825433123

https://doi.org/10.3389/fphar.2015.00256
https://doi.org/10.3389/fphar.2015.00256
https://doi.org/10.1113/JP282093
https://doi.org/10.1113/JP282093
https://doi.org/10.1088/0031-9155/46/12/315
https://doi.org/10.1088/0031-9155/46/12/315
https://doi.org/10.1097/ALN.0b013e318291c165
https://doi.org/10.1016/j.ejmp.2020.10.001
https://doi.org/10.1016/j.ejmp.2020.10.001
https://doi.org/10.1164/rccm.200808-1211OC
https://doi.org/10.1164/rccm.200808-1211OC
https://doi.org/10.1088/0031-9155/58/1/R1
https://doi.org/10.1088/0031-9155/58/1/R1
https://doi.org/10.1016/j.ejmp.2021.07.005
https://doi.org/10.1038/s41598-020-77300-x
https://doi.org/10.1038/s41598-020-77300-x
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-825433 March 2, 2022 Time: 17:35 # 7

Bayat et al. Synchrotron Radiation Functional Lung Imaging

Frumin, M.J., Epstein, R.M., and Cohen, G. (1959). Apneic oxygenation in man.
Anesthesiology 20, 789–798.

Hubert, V., Hristovska, I., Karpati, S., Benkeder, S., Dey, A., Dumot, C.,
Amaz, C., Chounlamountri, N., Watrin, C., Comte, J.C., Chauveau, F., Brun,
E., Marche, P., Lerouge, F., Parola, S., Berthezene, Y., Vorup-Jensen, T.,
Pascual, O., and Wiart, M. (2021). Multimodal Imaging with NanoGd Reveals
Spatiotemporal Features of Neuroinflammation after Experimental Stroke.Adv.
Sci. 8, e2101433. doi: 10.1002/advs.202101433

Kitchen, M.J., Paganin, D., Lewis, R.A., Yagi, N., Uesugi, K., and Mudie, S.T. (2004).
On the origin of speckle in X-ray phase contrast images of lung tissue. Phys.
Med. Biol. 49, 4335–4348. doi: 10.1088/0031-9155/49/18/010

Layachi, S., Porra, L., Albu, G., Trouillet, N., Suhonen, H., Petak, F.,
Sevestre, H., Suortti, P., Sovijarvi, A., Habre, W., and Bayat, S. (2013).
Role of cellular effectors in the emergence of ventilation defects during
allergic bronchoconstriction. J. Appl. Physiol. 115, 1057–1064. doi: 10.1152/
japplphysiol.00844.2012

Lewis, R.A., Yagi, N., Kitchen, M.J., Morgan, M.J., Paganin, D., Siu, K.K.W., Pavlov,
K., Williams, I., Uesugi, K., Wallace, M.J., Hall, C.J., Whitley, J., and Hooper,
S.B. (2005). Dynamic imaging of the lungs using X-ray phase contrast. Phys.
Med. Biol. 50, 5031–5040. doi: 10.1088/0031-9155/50/21/006

Lovric, G., Mokso, R., Arcadu, F., Oikonomidis, I.V., Schittny, J.C., Roth-Kleiner,
M., and Stampanoni, M. (2017). Tomographic in vivo microscopy for the study
of lung physiology at the alveolar level. Sci. Rep. 7:12545. doi: 10.1038/s41598-
017-12886-3

Nesterets, Y.I., Gureyev, T.E., Mayo, S.C., Stevenson, A.W., Thompson, D., Brown,
J.M.C., Kitchen, M.J., Pavlov, K.M., Lockie, D., Brun, F., and Tromba, G. (2015).
A feasibility study of X-ray phase-contrast mammographic tomography at the
Imaging and Medical beamline of the Australian Synchrotron. J. Synchrotron
Radiat. 22, 1509–1523. doi: 10.1107/S160057751501766X

Porra, L., Bayat, S., Malaspinas, I., Albu, G., Doras, C., Broche, L., Strengell, S.,
Petak, F., and Habre, W. (2016). Pressure-regulated volume control vs. volume
control ventilation in healthy and injured rabbit lung: An experimental study.
Eur. J. Anaesthesiol. 33, 767–775. doi: 10.1097/EJA.0000000000000485

Porra, L., Monfraix, S., Berruyer, G., Le Duc, G., Nemoz, C., Thomlinson, W.,
Suortti, P., Sovijarvi, A.R., and Bayat, S. (2004). Effect of tidal volume on
distribution of ventilation assessed by synchrotron radiation CT in rabbit.
J. Appl. Physiol. 96, 1899–1908. doi: 10.1152/japplphysiol.00866.2003

Quitmann, C., and Rayment, T. (2020). Synchrotron radiation. CERN Yellow Rep.
1, 5–5.

Roan, E., and Waters, C.M. (2011). What do we know about mechanical strain
in lung alveoli? Am. J. Physiol. Lung. Cell. Mol. Physiol. 301, L625–L635. doi:
10.1152/ajplung.00105.2011

Schültke, E., Menk, R., Pinzer, B., Astolfo, A., Stampanoni, M., Arfelli, F.,
Harsan, L.-A., and Nikkhah, G. (2014). Single-cell resolution in high-
resolution synchrotron X-ray CT imaging with gold nanoparticles.
J. Synchrotron Radiat. 21, 242–250. doi: 10.1107/S160057751302
9007

Smaldone, G.C., and Mitzner, W. (2012). Viewpoint: unresolved mysteries. J. Appl.
Physiol. 113, 1945–1947.

Strengell, S., Keyrilainen, J., Suortti, P., Bayat, S., Sovijarvi, A.R., and Porra, L.
(2014). Radiation dose and image quality in K-edge subtraction computed
tomography of lung in vivo. J. Synchrotron Radiat. 21, 1305–1313. doi: 10.1107/
S160057751401697X

Suhonen, H., Porra, L., Bayat, S., Sovijarvi, A.R., and Suortti, P. (2008).
Simultaneous in vivo synchrotron radiation computed tomography of regional
ventilation and blood volume in rabbit lung using combined K-edge and
temporal subtraction. Phys. Med. Biol. 53, 775–791. doi: 10.1088/0031-9155/53/
3/016

Suki, B., and Bates, J.H. (2011). Lung tissue mechanics as an emergent
phenomenon. J. Appl. Physiol. 110, 1111–1118. doi: 10.1152/japplphysiol.01244.
2010

Zhao, Y., Brun, E., Coan, P., Huang, Z., Sztrokay, A., Diemoz, P.C., Liebhardt,
S., Mittone, A., Gasilov, S., Miao, J., and Bravin, A. (2012). High-resolution,
low-dose phase contrast X-ray tomography for 3D diagnosis of human breast
cancers. Proc. Natl. Acad. Sci. U.S.A. 109, 18290–18294. doi: 10.1073/pnas.
1204460109

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bayat, Fardin, Cercos-Pita, Perchiazzi and Bravin. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physiology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 825433124

https://doi.org/10.1002/advs.202101433
https://doi.org/10.1088/0031-9155/49/18/010
https://doi.org/10.1152/japplphysiol.00844.2012
https://doi.org/10.1152/japplphysiol.00844.2012
https://doi.org/10.1088/0031-9155/50/21/006
https://doi.org/10.1038/s41598-017-12886-3
https://doi.org/10.1038/s41598-017-12886-3
https://doi.org/10.1107/S160057751501766X
https://doi.org/10.1097/EJA.0000000000000485
https://doi.org/10.1152/japplphysiol.00866.2003
https://doi.org/10.1152/ajplung.00105.2011
https://doi.org/10.1152/ajplung.00105.2011
https://doi.org/10.1107/S1600577513029007
https://doi.org/10.1107/S1600577513029007
https://doi.org/10.1107/S160057751401697X
https://doi.org/10.1107/S160057751401697X
https://doi.org/10.1088/0031-9155/53/3/016
https://doi.org/10.1088/0031-9155/53/3/016
https://doi.org/10.1152/japplphysiol.01244.2010
https://doi.org/10.1152/japplphysiol.01244.2010
https://doi.org/10.1073/pnas.1204460109
https://doi.org/10.1073/pnas.1204460109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-811129 March 23, 2022 Time: 15:35 # 1

HYPOTHESIS AND THEORY
published: 28 March 2022

doi: 10.3389/fphys.2022.811129

Edited by:
Walter Araujo Zin,

Federal University of Rio de Janeiro,
Brazil

Reviewed by:
Paulo Hilario Nascimento Saldiva,

University of São Paulo, Brazil
Lars Knudsen,

Hannover Medical School, Germany

*Correspondence:
Giuseppe Miserocchi

giuseppe.miserocchi@unimib.it

Specialty section:
This article was submitted to

Respiratory Physiology
and Pathophysiology,

a section of the journal
Frontiers in Physiology

Received: 08 November 2021
Accepted: 24 February 2022

Published: 28 March 2022

Citation:
Miserocchi G, Beretta E, Rivolta I

and Bartesaghi M (2022) Role of the
Air-Blood Barrier Phenotype in Lung

Oxygen Uptake and Control
of Extravascular Water.

Front. Physiol. 13:811129.
doi: 10.3389/fphys.2022.811129

Role of the Air-Blood Barrier
Phenotype in Lung Oxygen Uptake
and Control of Extravascular Water
Giuseppe Miserocchi* , Egidio Beretta, Ilaria Rivolta and Manuela Bartesaghi

Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Monza, Italy

The air blood barrier phenotype can be reasonably described by the ratio of lung capillary
blood volume to the diffusion capacity of the alveolar membrane (Vc/Dm), which can be
determined at rest in normoxia. The distribution of the Vc/Dm ratio in the population is
normal; Vc/Dm shifts from ∼1, reflecting a higher number of alveoli of smaller radius,
providing a high alveolar surface and a limited extension of the capillary network, to just
opposite features on increasing Vc/Dm up to ∼6. We studied the kinetics of alveolar-
capillary equilibration on exposure to edemagenic conditions (work at ∼60% maximum
aerobic power) in hypoxia (HA) (PIO2 90 mmHg), based on an estimate of time constant
of equilibration (τ) and blood capillary transit time (Tt). A shunt-like effect was described
for subjects having a high Vc/Dm ratio, reflecting a longer τ (>0.5 s) and a shorter
Tt (<0.8 s) due to pulmonary vasoconstriction and a larger increase in cardiac output
(>3-fold). The tendency to develop lung edema in edemagenic conditions (work in
HA) was found to be directly proportional to the value of Vc/Dm as suggested by
an estimate of the mechanical properties of the respiratory system with the forced
frequency oscillation technique.

Keywords: alveolar-capillary equilibration, hypoxia, exercise, alveolar diffusion, alveolar perfusion, shunt effect

INTRODUCTION

It is a common experience that, in edemagenic conditions, inter-individual differences in the
control of lung fluid balance are observed; the characteristic example is the proneness to develop
lung edema on exposure to high altitude (Busch et al., 2001; Dehnert et al., 2006; Richalet et al.,
2012, 2021; Eichstaedt et al., 2020a,b).

Finding the reason for these differences relating to the lung fluid balance has remained elusive
for a long time. A line of research from our laboratory analyzed this problem and developed a
project along the following lines of research:

(1) To determine the inter-individual differences in the morpho-functional features of the air-
blood barrier in terms of membrane diffusion capacity (Dm) and extension of the capillary
network from the estimate of capillary blood volume (Vc).

(2) To estimate the phenotype-dependent adaptive functional response of the air-blood barrier
on exposure to edemagenic factors.

(3) To estimate the impact of points 1 and 2 on oxygen alveolar-capillary equilibration.

The results supported the hypothesis that the tendency to develop lung edema can be explained,
considering a functional link between inborn features, perturbation in the capillary-to-interstitial
fluid exchange, and the corresponding impact on the efficiency of gas exchange.
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We shall, therefore, start this review by summarizing key
principles of control of extravascular lung water as they represent
the basis to understand the individual phenotype-dependent
functional response to the edemagenic condition.

THE CONTROL OF EXTRAVASCULAR
WATER IN THE AIR-BLOOD BARRIER

The time course of the events leading to the development of
lung edema has been described in a recent review (Beretta
et al., 2021). We summarized here only the basic concepts
useful to delineate the inter-individual differences in response to
edemagenic conditions.

The very high surface area of the air-blood barrier
(∼2,000 cm2/g) and its extreme thinness (∼0.1 µm in its
thin portion) serve the gas diffusion function. The thinness of
the air-blood barrier reflects a strict control of extravascular
water volume that is kept at minimum, thanks to the extremely
low water permeability across the endothelial and the epithelial
barriers that strongly limit water fluxes. The water content
of the lung is well defined by the wet weight to the dry
weight ratio (W/D) that, in physiological conditions, is ∼5.
Trans-capillary and trans-epithelial water exchanges (Jv) are
governed by the Starling law (Eq. 1), where P and 5 are the
hydraulic and the colloidosmotic pressures across any two
compartments, Kf

(
filtration coefficient

)
= Lp · A, being Lp

the water conductance, A the surface area available for flow,
[(P1 − P2)− σ (51 −52)] is the Starling pressure gradient
generating flows, σ being the protein reflection coefficient that
defines the selectivity of the barriers to plasma proteins:

Jv = Kf · [(P1 − P2)− σ (51 −52)] (1)

A valid representative model of structure-function of the air-
blood barrier rests on the comparison between oxygen diffusion
that is in the range of 15 × 10−2 ml/(min cm2) in resting
conditions, with capillary microvascular filtration that would
be at least 10,000 less (Miserocchi, 2009); in other words, the
air-blood barrier is very permeable to gases but minimally
permeable to water. Edemagenic conditions include the increase
in pulmonary blood flow, causing an increase in Kf due to
the increase in both water conductance (Lp), the surface area
of fluid exchange (A), as well as protein permeability (decrease
in σ). The lung is normally well equipped to respond to
increased microvascular filtration due to a specific morpho-
functional feature, namely, the very low compliance of the
interstitial structure, ∼0.5 ml mmHg−1

·100 g of wet weight−1

(Miserocchi et al., 1993). The latter reflects the macromolecular
organization of the proteoglycan component (Negrini et al., 1996;
Miserocchi et al., 1999). In case of increased filtration in the
interstitial space, water is captured by hyaluronan to form a gel,
whose increase in steric hindrance causes a remarkable increase
in interstitial pressure from ∼ −10 cm H2O (physiological
condition) up to ∼ +5 cm H2O (Miserocchi et al., 1993). Gel
formation, as long as the filtration coefficient and the protein
reflection coefficient remain within physiological values, provides
a “safety factor” against edema formation as the increase in

interstitial pressure buffers further filtration and may actually
favor fluid reabsorption. To offset an increase in microvascular
filtration rate, lymphatics can provide a passive negative-feedback
control loop (Miserocchi, 2009). Lymph flow increases in
proportion with the rate of increase in lung weight, which reflects
the microvascular filtration (Roselli et al., 1984; Mitzner and
Sylvester, 1986).

With the “safety factor” on, the water accumulation in the
interstitial compartment is maintained within 10% of the control
value; thus, the W/D ratio is kept at ∼ 5.5 (Miserocchi et al.,
2001; Negrini et al., 2001). Inflammatory states (e.g., severe
hypoxia, hyperoxia, surgery, excessive parenchymal stress/strain,
and bacterial/viral infection) may cause severe damage to the
native architecture of the proteoglycan family (Negrini et al.,
1996; Miserocchi et al., 1999; Passi et al., 1999); the ensuing result
is an uncontrolled increase of water and protein permeability.
The critical phase of developing edema pivots on reaching a
W/D of ∼ 6.5 (Beretta et al., 2021); modeling of this phase
reveals an abrupt onset of edema with a short time constant
(∼4–6 min) (Parker and Townsley, 2004; Mazzuca et al., 2016).
Neither CT scan nor ultrasound can correlate with W/D ratios,
corresponding to the early stages of perturbation in lung fluid
balance before the condition becomes life-threatening.

INTER-INDIVIDUAL DIFFERENCES IN
DIFFUSION LUNG CAPACITANCE AND
MICROVASCULAR PERFUSION OF THE
AIR-BLOOD BARRIER

Wide inter-individual differences have been reported for alveolar
oxygen uptake, even after normalizing diffusive parameters
to individual total lung volume (Hughes and Pride, 2001).
A breakthrough to interpret these differences came from the
measurement of DO2, Dm, and Vc (oxygen diffusion capacitance,
membrane diffusive capacitance, and capillary blood volume,
respectively, Roughton and Forster, 1957) at different lung
volumes from functional residual volume up to total lung
volume. The lung volume dependence of these parameters allows
delineation of the individual morpho-functional features of
the air-blood barrier and to relate the differences in oxygen
uptake and transport to match oxygen requirement, reflecting the
individual phenotype (Miserocchi et al., 2008).

Figure 1A shows that the increase in Dm on increasing
lung volume remarkably differs among subjects. The highest
Dm values at total lung capacity (TLC) were found in subjects
displaying the highest increase in Dm on increasing lung volume.
These differences have been interpreted, considering that Dm
is proportional to SA

d , SA being the overall surface of the air-
blood barrier and d its thickness. The decrease in d of the air–
blood barrier on increasing lung volume was calculated as 1/SA,
considering the air-blood barrier as a lamina of constant volume
(for details of the computational model, refer to Miserocchi
et al., 2008). The simple geometrical reasoning is that lung
diffusion is proportional to the alveolar surface; for a given lung
volume, a greater increase in the lung surface on increasing
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FIGURE 1 | (A) Individual plots of Dm (a membrane diffusing capacity) vs. lung volume (VA) from FRC (about 40% TLC) up to 100% TLC. (B) Numerical simulation to
show the lung volume dependence of surface to the thickness ratio of the air-blood barrier (SA/d). The various relationships were obtained by changing Nalv (number
of alveoli) that affects SA/d, as indicated; for the reference condition, SA, Nalv, and d are set to unity (from Miserocchi et al., 2008).

lung volume is expected the higher the number of alveoli.
A numerical simulation (Figure 1B) allows estimation of the
dependence of SA

d on lung volume by considering different
phenotypes having different numbers of alveoli Nalv and/or
different values of d, as specified in the figure. One can appreciate
that a ∼3-fold difference (say from 0.25 to 0.75) in SA/d
at Functional Residual Capacity (FRC) may justify a similar
difference found in Dm on increasing lung volume up to TLC
(Panel A). Accordingly, an inter-individual difference in alveolar
number and thickness of the air-blood barrier can justify a
corresponding difference in Dm. Regardless of an individual
number of alveoli, we may recall that (Miserocchi et al., 2008),
up to a volume of ∼70% TLC, most of the increase in SA

d is
due to the increase in SA; above this volume, the increase in
SA
d mostly reflects the decrease in d (the unfolding/folding zone,

Beretta et al., 2021).
Figure 2 shows that Vc (normalized to lung volume VA)

decreases on increasing lung volume (as % TLC) due to the
parenchymal stretching, squeezing the pulmonary capillaries and,
thus, reducing their patency (Glazier et al., 1969; Mazzone et al.,
1978; Brower et al., 1990; Koyama and Hildebrandt, 1991).
Large inter-individual differences of Vc were also found; higher
values at FRC suggest a greater extension of the alveolar-capillary
network. Furthermore, the higher the Vc value at FRC, the greater
its decease in increasing lung volume.

We rely on the Vc/Dm ratio to identify the differences in the
phenotype of the air-blood barrier to derive indications on the
geometry of the alveoli and the extension of the capillary network.
Note that, at FRC, this ratio would be mostly affected by the value
of Vc, while, at 100% TLC, the ratio would be most affected by
the increase in Dm. Since lung diffusion and subcomponents are

routinely measured at 100% TLC, we present in Figure 3 the
distribution of Vc/Dm, referring to 100% TLC at sea level (SL)
at rest that appears to be normal (Shapiro-Wilk test, Orgin pro-
2020; at the 0.05% level, the data were significantly drawn from
a normally distributed population). The coefficient of variation
for repeated intra-subject measurements did not exceed 12%,

FIGURE 2 | Individual plots of the ratio of pulmonary capillary blood volume
(Vc) vs. lung volume (VA) as % of total lung capacity VA (% TLC) (from
Miserocchi et al., 2008).
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FIGURE 3 | Distribution of Vc/Dm in the population studied at the sea level rest at 100% TLC [data from Bartesaghi et al. (2014)]. Values are expressed as
ml/(ml ·min−1

·mmHg−1).

while, on pooled data, the coefficient of variation approached
50%, confirming the inter-individual differences.

Thus, subjects with low Vc/Dm on the left tail have a less
developed capillary network and a relatively high number of
small alveoli, providing a high surface of the air-blood barrier,
while subjects with high Vc/Dm on the right tail have a more
extended capillary network and a lower number of larger alveoli.

INTER-INDIVIDUAL DIFFERENCES IN
VASOMOTION IN EDEMAGENIC
CONDITIONS

Given the differences in the air-blood barrier phenotype based
on the Vc/Dm ratio, a reasonable question was to estimate
how edemagenic conditions would affect pulmonary vasomotion
in the capillary bed. The experimental model has shown that
precapillary vasoconstriction involves vessels with a diameter
of about 80 µm (Negrini et al., 2001). The question appeared
justified, considering that subjects with a high Vc/Dm ratio would
be more exposed to edemagenic conditions, being endowed with
a more extended alveolar capillary network and, thus, a greater
overall capillary surface (A). Subjects were studied at rest and
in various conditions, implying exposure to edemagenic factors,
namely, work at an SL, hypobaric HA at rest, and during work
[∼ 60% maximum aerobic power at two heights (3,269 m, PIO2
107 mmHg and at 3,840 m, PIO290 mmHg)]. Work represents
an edemagenic factor as it implies increased lung blood flow
(McKenzie et al., 2005; Hodges et al., 2007), and HA is a
well-known potent factor causing an increase in microvascular

permeability to water and solutes (Hansen et al., 1994; Dehler
et al., 2006).

On exposure to edemagenic factors, remarkable de-
recruitment of pulmonary capillaries was found in the
subjects with high Vc/Dm while minor-derecruitment or
some recruitment was documented in the subjects with low
Vc/Dm (Bartesaghi et al., 2014; Beretta et al., 2017). The
mechanical properties of the respiratory system were also
determined on hypoxia exposure with the forced frequency
oscillation technique; results showed that, relative to the SL at
rest, the respiratory reactance decreased to a greater extent in
the subjects with high Vc/Dm; furthermore, in the same subjects,
a 4-fold increase in the frequency dependence of respiratory
resistance was found (Bartesaghi et al., 2014). Both results may
be considered as indexes of greater perturbation of lung fluid
balance (Dellacà et al., 2008).

The effect of pulmonary precapillary vasomotion should
be considered specifically in relation to the change in water
permeability (Lp). In case Lp remains unmodified, capillary
recruitment favors gas diffusion by increasing the capillary
gas exchange surface area (A) and the pool of hemoglobin to
bind oxygen. On the other hand, if Lp is increased, capillary
recruitment would lead to a remarkable increase in Kf due to the
multiplicative effect of Lp · A (Mazzuca et al., 2016). As stressed
in the recent paper (Beretta et al., 2021), massive filtration may
occur down a large increase in Kf but a small Starling driving
pressure gradient.

The advantage of capillary recruitment seems to prevail in the
subjects with low Vc/Dm while, in the high Vc/Dm subjects, the
disadvantage may justify the capillary de-recruitment.
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A computational model of a morphologically based alveolar-
capillary unit showed that, besides precapillary vasoconstriction,
a further mechanism contributes to capillary de-recruitment.
This resides in the compressive effect of positive interstitial
pressure acting on the capillary surface during edema formation
(Mazzuca et al., 2016). This phenomenon may also well occur
in humans as the administration of a vasodilator agent cannot
restore blood flow in edematous lung regions (Scherrer et al.,
1996). In the presence of capillary derecruitment, blood flow
is directed toward nonedematous regions and corner vessels
(Koyama et al., 1989; Rivolta et al., 2011; Mazzuca et al., 2019).
Interestingly, in unperfused capillaries, fluid reabsorption from
the interstitial compartment may occur due to a decrease in
capillary hydraulic pressure, thus, favoring recovery from edema
(Kurbel et al., 2001).

In vivo imaging data from an experimental model were
also used to derive semi-quantitative estimates of the role of
vasomotion in the control of blood flow and microvascular
filtration (Mazzuca et al., 2019). Based on the model developed
by Mazzuca et al. (2016), the results indicated that in alveolar
units with larger alveoli and a greater extension of the septal
network, microvascular filtration flow was greater on exposure
to HA, as indicated by the increase in thickness of the interstitial
space, and in these units, blood flow limitation increased over
time. This can be appreciated in Figure 4, showing a 2D
image-based model of the decrease in capillary blood flow as a
change in color from yellow to blue (Mazzuca et al., 2019) in
regions becoming edematous on exposure to hypoxia (12% of O2
balanced nitrogen). The model also showed that flow limitation
in the alveolar-capillary network caused greater perfusion of
alveolar corner vessels.

From the experimental model to humans, the point can be
made that the subjects having a high Vc/Dm ratio appear to
be endowed with larger alveoli compared to the subjects with a
low Vc/Dm ratio and, thus, for this reason, more exposed to the
risk of edema. Precapillary vasoconstriction has been reported
as the reflex response to stimulation of interstitial vagal “J”
(juxta-capillary) receptors whose afferent discharge was found to
increase in exposure to edemagenic factors (Paintal, 1969).

It appears, therefore, tempting to hypothesize that precapillary
vasoconstriction in the high Vc/Dm subjects represents a
functional response aimed at limiting microvascular filtration to
prevent/attenuate edema formation in edemagenic conditions.
Inborn differences in microvascular permeability may also be
invoked to justify differences in a tendency to develop edema.

Notably, the subjects more prone to develop lung edema in
HA have a greater increase in pulmonary arterial pressure. In this
respect, the clinical overlap of high-altitude pulmonary edema
and pulmonary arterial hypertension has been recently discussed
in terms of genetic background (Sharma et al., 2014; Eichstaedt
et al., 2020a,b). Interestingly, the opposite behavior concerning
lung vasomotion in hypoxia was also described for the
systemic circulation. Indeed, in high-altitude pulmonary edema-
susceptible (HAPE-S) mountaineers, a decrease in forearm
blood flow was found on HA exposure, unlike in non HAPE-
S subjects. This finding was attributed to impaired vascular
endothelial function due to decreased bioavailability of NO

(Berger et al., 2005). A decrease in exhaled NO was also found
in HAPE-S subjects on exposure to normobaric hypoxia (Busch
et al., 2001), as well as in patients with HAPE (Duplain et al.,
2000). On a causative basis, it remains to be established whether
the low bioavailability of NO depends on impairment of the
biochemical pathway or, conversely, represents the functional
response to counteract edema formation.

INTER-INDIVIDUAL DIFFERENCES IN
THE KINETICS OF
ALVEOLAR-CAPILLARY EQUILIBRATION

The venous admixture, which includes the mismatch of
ventilation to blood perfusion, V̇A/Q̇ (Domino et al., 1993), and
shunt (Stickland et al., 2004; Lovering et al., 2006, 2008) are well-
known causes leading to incomplete alveolar-capillary oxygen
equilibration. We present here the relevance of a shunt-like effect,
depending on the transit time in the pulmonary capillaries that
reflect the increase in a cardiac output and the individual control
of lung vasomotion in edemagenic conditions. A valid model
defining the alveolar-capillary equilibration across the air-blood
barrier (Piiper and Scheid, 1981) has been presented based on a
mass balance equation. Defining dṀ, the oxygen mass transport
across the air-blood barrier; Q̇, the cardiac output; and dC, the
increase in blood oxygen concentration along the length of the
pulmonary capillary (x), the following equation holds:

dṀ (x) = Q̇ · dC(x) (2)

The mathematical development of Equation 2 allows
description of an exponential increase of dC(x) to reach an
equilibrium at the exit of the pulmonary capillary (Leq) given by:

Leq = e−
DO2
βQ̇ , (3)

where DO2 is the O2 diffusive capacity and β is the Hb-binding
capacity for O2.

A development of this model allows the definition of the
equilibration process as a function of time (t) as blood flows along
the capillary, thus:

dṀ (t) = Q̇ · dC(t) (4)

Based on Equation 4, the equilibrium at the exit from the
capillary may be written as (Beretta et al., 2019):

Leq = e−
Tt
τ , (5)

Being Tt the blood transit time in the pulmonary capillary
estimated as the ratio of the lung capillary volume (Vc) to a
cardiac output (Q̇):

Tt =
Vc
Q̇

(6)

and the time constant of the equilibration process is defined as:

τ =
βVc
DO2

(7)
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At the exit from the pulmonary capillary, the value of
Leq is the same from Equations 3 and 5. The Leq can vary
from 0 (the case of perfect equilibration) to 1 (the case
of 100% shunt).

Equation 5 allows the definition of the time course of the
equilibration process in response to increased oxygen demand
based on the blood transit time in the pulmonary capillary,
resulting from the interaction between the increase in cardiac
output and the available lung capillary network.

Continuous lines in Figure 5 show the time course of alveolar-
capillary equilibration for the two subjects at rest in normoxia
Vc/Dm of 4.28 (Panel A) and 1.08 (Panel B), respectively. For
the sake of graphical representation, we put on the ordinate
1-Leq, meaning that the case of perfect equilibration implies
Leq = 1. In normoxia at rest, equilibration kinetics were
remarkably slower in the subjects with a high Vc/Dm due
to a correspondingly longer time constant (Eq. 7); in both
subjects, Tt was long enough to allow complete equilibration.
During work in severe HA (3,840 m, PIO290 mmHg, dashed

lines) in both subjects, the time constant was increased,
slowing down the kinetics of equilibration. However, the
remarkable shortening of Tt (Panel A), reflecting precapillary
vasoconstriction, limited the equilibration at 0.6, while, in Panel
B, equilibration was only slightly decreased due to a longer Tt.
Thus, during work performed in hypoxia, facing an average
PAO2 ∼ 55 mmHg (Beretta et al., 2017), some individuals
can still reach a satisfactory alveolar-capillary equilibration,
while, in other subjects, this process may be strongly limited
by precapillary vasoconstriction (Mazzuca et al., 2016; see also
Figure 4).

Figure 6A shows the pooled data of Leq vs. Tt in various
conditions, as indicated by the legend. It appears that Leq
remains at zero (complete alveolar-capillary equilibration for
O2) as long as Tt is greater than ∼1.5 s, while it increases
exponentially for Tt <1.5 s. Of course, we refer to an average
value of Tt along the pulmonary vascular tree, although a regional
dispersion of this index has been reported (Capen et al., 1990;
Clough et al., 1998).

FIGURE 4 | Results from modeling of alveolar perfusion in edemagenic condition (12% O2 exposure). Red and light blue dots identify, respectively, arteriolar
accesses and venular exits. The color panels show capillary blood flow rates at different time points (baseline, 30; and 120 min) with color-coded log-scale intensity.
In regions where edema develops, capillary blood flow is progressively reduced, approaching zero (from Mazzuca et al., 2019).

FIGURE 5 | Time course of 1-Leq (an index of alveolar-capillary equilibration) in normoxia at rest (a continuous line) and on exposure to severe hypoxia (3,840 m,
PIO290 mmHg, a dashed line) in two representative subjects having a high (A) or a low (B) Vc/Dm ratio at the sea level (SL) in resting condition (data from Beretta
et al., 2019).
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FIGURE 6 | (A) Correlation between transit time (Tt) and Leq in various conditions as indicated in the inset. (B) A plot of Leq vs. 1/Tt (an index of blood velocity). Red
and blue dots refer to the two subjects shown in Figures 5A,B, respectively (data from Beretta et al., 2019).

One may further consider that blood flow velocity in the
alveolar capillaries can be expressed as: Vel∝1/Tt; Figure 6B
shows the values of Leq plotted vs. 1/Tt.

The shear rate at the endothelial capillary wall is a recognized
cause of the increase in microvascular and protein permeability
and is expected to increase with increasing blood flow velocity
(Sill et al., 1995; Lakshminarayanan et al., 2000; Kang et al., 2014).
Looking at the dispersion of the data in Figure 6B, one shall
comment that the balance between an anti-edemagenic response
(precapillary vasoconstriction) and its inevitable edemagenic
consequence (the increase in the shear rate) might vary among
individuals. One can hypothesize that, for a given value
of 1/Tt, the prevalence of the shear-dependent increase in
permeability may justify a greater value of Leq due to some
degree of interstitial fluid accumulation. This may be the case
for the subjects with high Vc/Dm (a red dot, Figure 6B)

FIGURE 7 | Correlation between Leq and a cardiac output (Q̇) in the condition
indicated. Red and blue dots refer to the two subjects shown in
Figures 5A,B, respectively (from Beretta et al., 2019).

as opposed to the subjects with low Vc/Dm (a blue dot,
Figure 6B).

It should be considered that Tt reflects both a local
phenomenon relating to vasomotion as well as the increase in
cardiac output (Eq. 6). The latter varied remarkably among
subjects. The impact of the increase in the cardiac output on
Leq can be appreciated in Figure 7, showing the relationships
between the cardiac output vs. Leq in the same conditions
reported in Figure 6A. The remarkable shift to the right of the
relationship referring to work in normoxia at an SL to work in
HA reflects the effect of precapillary vasoconstriction for a given
cardiac output. During work in hypoxia at a similar percentage of
oxygen consumption (relative to maximum), the cardiac output

FIGURE 8 | Distribution of Leq values in all subjects at the end of exercise in
severe hypoxia (HA) (3,840 m, PIO2 90 mmHg). Red and blue dots refer to the
two subjects shown in Figures 5A,B, respectively (data from Beretta et al.,
2019).
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(normalized to body weight) was ∼50% greater in the subjects
with high Vc/Dm (a red dot) compared to the subjects with low
Vc/Dm (a blue dot).

Figure 8 shows that, in healthy people, in the most edemagenic
conditions (work in severe HA, PAO2 ∼ 55 mmHg), the
distribution of Leq is normal. The positions of the two subjects
referring to Figure 5 within the distribution (red and blue dots)
reflect the inter-individual variability.

SUMMARY

The conceptual contribution of the research studies referred to in
this review may be summarized as follows:

1. The air-blood barrier phenotype can be described by the
distribution of the Vc/Dm ratio. Vc/Dm shifts from ∼1,
reflecting a higher number of alveoli of smaller radius,
providing a high alveolar surface and a limited extension
of the capillary network, to opposite features for Vc/Dm
increasing up to∼ 4.

2. Differences in air-blood barrier phenotype impact the
efficiency in gas exchange and control of extravascular
lung water when facing an increase in oxygen demand
in edemagenic conditions. A lower Vc/Dm appears to be
more efficient to guarantee gas exchange, as predicted by a
theoretical morpho-functional model (Sapoval et al., 2002).
There are indications that a lower/Dm is more protective
against the risk of lung edema; conversely, a high Vc/Dm
implies a greater tendency to develop lung edema.

3. A shunt-like effect can be described based on capillary
blood kinetics that reflects the individual lung vasomotor
control and the increase in cardiac output. This effect
is minimal for low Vc/Dm, while it may remarkably
increase in the subjects with high Vc/Dm due to increasing
lung capillary blood velocity, reflecting precapillary
vasoconstriction and a greater increase in cardiac output.

4. The data confirm that the lung response to an edemagenic
condition is functionally aimed at protecting the air blood
barrier to avoid a perturbation of fluid balance.

CONCLUSION

As far as we know, the present studies are the first ones of this
nature, and we think they may provide a valuable contribution in
terms of “human integrative and translational physiology across a
range of applied contexts, including exercise and environmental.”
Studies were performed in healthy subjects; accordingly, there is
a potential interest to consider people reaching high altitudes on
trekking expeditions being exposed to the risk of HAPE. Potential
clinical relevance may also be considered as cardio-pulmonary
disorders as well as conditions of decrease in vascular bed (lung
resection and thrombosis) are at risk of developing lung edema.
Defining the Vc/Dm ratio through ambulatory pneumological
evaluation may turn useful to define the patient’s tendency to
develop edema before an acute severe disease occurs.

From an operational point of view, the subject’s functional
evaluation requires:

- The estimate of Vc/Dm at 100% TLC, relying on the
DLNO/DLCO technique, at the SL at rest, and on exercise.

- The estimate of Tt that requires the measurement
of cardiac output (by echocardiography with a semi-
recumbent set-up at rest and on exercise).

- A valid potentiation of the trial requires the same
determinations on exposure to normobaric HA.
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Surfactant Treatment Shows Higher
Correlation Between Ventilator and
EIT Tidal Volumes in an RDS Animal
Model
Yoon Zi Kim1, Hee Yoon Choi1, Yong Sung Choi1*, Chae Young Kim1, Young Joo Lee2 and
Sung Hoon Chung1

1Department of Pediatrics, College of Medicine Kyung Hee University, Seoul, South Korea, 2Department of Obstetrics and
Gynecology, College of Medicine Kyung Hee University, Seoul, South Korea

Neonatal respiratory distress syndrome (RDS) is a condition of pulmonary surfactant
insufficiency in the premature newborn. As such, artificial pulmonary surfactant
administration is a key treatment. Despite continued improvement in the clinical
outcomes of RDS, there are currently no established bedside tools to monitor
whether pulmonary surfactant is effectively instilled throughout the lungs. Electrical
impedance tomography (EIT) is an emerging technique in which physiological
functions are monitored on the basis of temporal changes in conductivity of
different tissues in the body. In this preliminary study, we aimed to assess how EIT
tidal volumes correlate with ventilator tidal volumes in an RDS animal model, namely
untreated, surfactant-treated, and normal control rabbit pups. Tidal volumes were
measured simultaneously on an EIT system and a mechanical ventilator and compared
at different peak inspiratory pressures. The linear correlation between tidal volumes
measured by EIT and by ventilator had an R2 of 0.71, 0.76 and 0.86 in the untreated,
surfactant-treated, and normal control groups, respectively. Bland–Altman analysis
showed a good correlation between the measurements obtained with these two
modalities. The intraclass correlation coefficients (ICC) between ventilator tidal volume
and EIT tidal volume were 0.83, 0.87, and 0.93 (all p < 0.001) in the untreated,
surfactant-treated, and normal control groups, respectively, indicating that the higher
ICC value, the better inflated status of the lung. In conclusion, we demonstrated that
EIT tidal volume correlated with ventilator tidal volume. ICC was higher in the
surfactant treated group.

Keywords: electronic impedance tomography, respiratory distress syndrome, premature infant, neonatal intensive
care unit (NICU), mechanical ventilator, alveoli collapse, homogeneity

INTRODUCTION

Neonatal respiratory distress syndrome (RDS) is a condition of pulmonary surfactant
insufficiency in the premature newborn; without treatment, morbidity and mortality
increase during the first 2 days of life. Administration of artificial pulmonary surfactant
reduces surface tension of the alveoli and improves functional residual capacity by
expanding the collapsed alveoli (Knudsen and Ochs, 2018).
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Despite continued improvement of the clinical outcomes in
RDS, there is a scarcity of bedside tools that can be used to
monitor the state of the instilled surfactant throughout the
lungs, excepting chest x-ray and blood gas analysis. Electrical

impedance tomography (EIT) is an emerging technique in
which ventilation is monitored on the basis of temporal
changes in conductivity of different tissues in the body.
With small currents, conducting electrodes attached to the
skin can analyze body composition during ventilation without
radiation exposure (Metherall et al., 1996; Adler and Boyle,
2017; Kallio et al., 2019). However, its application to neonatal
RDS is not yet established.

We analyzed the calculated tidal volumes using the EIT
technique. The aim of this study was to determine how
pulmonary surfactant administration affects tidal volume
parameters measured by mechanical ventilator and EIT in a
preterm rabbit model of RDS.

MATERIALS AND METHODS

Animals
According to the ARRIVE guidelines, we obtained approval
from the Institutional Animal Review Board of Kyung Hee
University Hospital (KHMC-IACUC-2017-026). Zoletil®
(15 mg/kg) was used to induce sedative anesthesia of the
mother rabbit (intravascular injection, marginal ear vein)
and each pup (intramuscular injection, unilateral thigh
muscle) before procedures. We harvested preterm rabbit
pups on day 27 (D27) of gestation and term pups on day 31
(D31) via caesarean section of pregnant New Zealand white

FIGURE 1 | An example of tidal volume measurement and EIT images in
a subject from preterm treated group (A) Pressure-volume curves of ventilator
tidal volume and EIT tidal volume. (B) The reconstructed chest cross-section
EIT according to PIP change. PIP, peak inspiratory pressure.

TABLE 1 | Measured tidal volumes according to stepwise inflation and deflation.

Ventilatora Untreated preterm (n = 9) Treated preterm (n = 6) Term (n = 3)

Median Range Median Range Median Range

Inflation peak inspiratory pressure (cmH2O) 10 186 (32–709) 161 107–397 194 110–266
15 316 (110–997) 288.5 (232–553) 342 (188–396)
20 419 (160–1,252) 419 (338–681) 477 (266–552)
25 496 (214–1,467) 523 (444–788) 631 (370–812)
30 599 (370–1754) 655 (545–913) 865 (600–1,097)
35 781 (604–1929) 776 (705–1,026) 1,261 (916–1,435)

Deflation peak inspiratory pressure (cmH2O) 30 607 (499–1726) 628 (547–890) 1,076 (788–1,253)
25 471 (318–1,519) 539 (444–766) 896 (682–1,071)
20 393 (214–1,334) 408 (340–626) 717 (552–864)
15 289 (134–1,157) 292.5 (237–496) 506 (396–604)
10 210 (31–944) 189 (154–368) 291 (214–344)

EITb Untreated preterm Treated preterm Term

Median Range Median Range Median Range

Inflation peak inspiratory pressure (cmH2O) 10 81.8 (10.5–735.7) 222.2 (154.4–293.0) 277.2 (208.3–316.2)
15 65.2c (17.9–541.0) 316.2c (257.3–386.8) 397.3 (247.6–562.0)
20 299.8 (29.8–833.1) 443.4 (317.9–587.5) 564.0 (308.7–825.7)
25 391.9 (51.1–1,114.0) 536.45 (470.4–804.4) 819.9 (375.5–1,028.0)
30 515.9 (190.3–1,632.5) 650.12 (591.2–925.9) 1,102.9 (654.9–1,109.9)
35 781.0 (632.0–1,632.5) 776.0 (705.0–1,026.0) 1,261.0 (825.6–1,444.0)

Deflation peak inspiratory pressure (cmH2O) 30 637.1 (542.0–1,594.7) 709.8 (540.4–914.1) 848.8 (721.0–1,257.9)
25 468.9 (325.5–1929.0) 579.9 (439.3–729.9) 723.3 (625.8–1,079.6)
20 354.9 (56.4–1926.1) 454.5 (319.6–517.9) 519.6 (485.2–870.3)
15 212.3c (17.9–1754.6) 375.0c (226.2–454.5) 541.5 (371.8–618.3)
10 88.89 (4.9–1812.7) 253.7 (149.6–332.1) 282.9 (223.1–350.8)

aTidal volumes were recorded as shown by the small animal ventilator panel, according to peak inspiratory pressure changes.
bTidal volumes were calculated through the EIT, signals analysis.
cMeans statistical significance between untreated preterm group and surfactant treated preterm group (p = 0.018, 0.026, Mann-Whitney U test).
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rabbits. The study groups were as follows: 1) Untreated
(preterm pups), 2) surfactant-treated (preterm pups), and 3)
normal controls (term pups). Soon after delivery, we
performed a tracheostomy procedure on the pups using a
24G intravenous catheter and applied a small animal
ventilator (VentElite, Harvard Apparatus, Holliston, MA,
United States) set to the pressure-controlled mandatory
ventilation mode (Supplementary Figure S1). The treated
group were given 100 mg/kg of Curosuf ® (Chiesi
Farmaceutici, Parma, Italy) by the intratracheal route,
immediately after application of the ventilator.

Electrical Impedance Measurement
We used the KHU Mark2.5 EIT system, a non-commercial
prototype designed by the Impedance Imaging Research
Center of Kyung Hee University. Since the rabbit pups

were small and had an average weight of 43.06 ± 14.75 g
and a chest circumference of 7.64 ± 0.61 mm, we prepared a
specialized bed that had an electrode interface
(Supplementary Figure S1). The pups were placed in the
interface with sixteen spring-loaded pin electrodes that
surrounded the chest, just below the level of the forelimbs.
The zigzag electrode attachment and a measurement protocol
robust against noise and electrode attachment position error
were selected because of the small chest circumference of the
preterm pups (Graham and Adler, 2007). To collect time
series of EIT images at 50 frames/s, 16 electrode leads were
connected in two layers at the perimeter of the thorax of each
rabbit pup.

The EIT measurement was undertaken during the
following ventilator maneuver: An initial respiratory rate
set at 120 breaths/min and positive end-expiratory pressure

FIGURE 2 | Pressure-volume curves. The graphs were based on the median values of the untreated preterm group (n = 9), surfactant treated group (n = 6), and
term group (n = 3). Maximum and minimum values are shown in Table 1. * means statistical significance between the untreated preterm group and surfactant treated
preterm group (p = 0.018, 0.026, Mann-Whitney U test). PIP, peak inspiratory pressure; Inf, inflation; Def, deflation.

FIGURE 3 | Linear regression analysis and intraclass correlation coefficient (ICC) of tidal volumes determined by the ventilator and EIT VT in each group.
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of 5 cm H2O (Basoalto, et al., 2021; Ferrini, et al., 2021;
Joelsson et al., 2021). Over 120 s, PIP was increased from
10 to 35 cm H2O in 5 cm H2O increments (stepwise inflation)
and thereafter returned in 5 cm H2O steps back to the baseline
(stepwise deflation). EIT images were reconstructed from the
difference in voltage data measured between adjacent
electrode pairs using the 3D GREIT algorithm (Figures
1A,B) (Adler and Lionheart, 2006). At each PIP level, the
tidal volumes (VT) measured by the ventilator were recorded,
and the EIT signals were transformed into aeration area and
calculated tidal volumes. The calculation was done by
subtracting the individual pixel values of relative
impedance changes in EIT during each PIP step. Finally,
the local impedance change was plotted in the selected
regions of interest.

Statistical Analysis
The volume of air in the lungs and the tidal volume, was the
major determinant of thoracic impedance change. Within each
group, we calculated the differences in tidal volume (Diff VT)
measured by the ventilator and EIT during PIP changes as
follows:

Diff VT (µL) � Vent VT − EIT VT

The relationship between ventilator tidal volume (Vent VT)
and EIT tidal volume (EIT VT) was assessed by Spearman’s
correlation and linear regression. Agreement between Diff VT

in the same PIP was analyzed by Wilcoxon signed rank test
with paired test and equivalence test. In addition, the
agreement was confirmed through the Bland–Altman plot.
The intraclass correlation coefficient (ICC) was calculated
for each group, and the ICCs were compared between
different groups using Kruskal-Wallis test. Mann-Whitney
U test was used in between-group comparisons. Statistical
significance was set at p < 0.05 and SAS version 9.4 (SAS
Institute Inc., Cary, NC, United States) as well as the R4.0.4
program was used for analyses.

RESULTS

Twenty three newborn pups were harvested from 6 mother
rabbits. Five pups were excluded as a result of early death (n =
2) or measurement failure due to pneumothorax, which was
recognizable by sight (n = 3). Among 18 pups, 3 were term, 9
were untreated preterm and 6 were surfactant treated preterm
pups. We obtained 198 tidal volume sets in total (99 in treated,
66 in untreated and 33 in term group). One tidal volume set
was made from 120 s of the specific PIP level.

Assessment of Changes in Tidal Volume
and Electrical Impedance Tomography
We obtained pressure-volume curves according to inflation and
deflation pressures. Table 1 and Figure 2 show the median values
in the curves of Vent VT and EIT VT. There was a significant
difference between the untreated and surfactant-treated preterm
pups in both inflation and deflation curves at PIP of 15 cm H2O
(p = 0.018, 0.026).

Correlation Analysis of Tidal Volume
Measured by the Ventilator and Electrical
Impedance Tomography
An increase in PIP increased the tidal volume and lung
impedance. A highly positive correlation between ventilator
tidal volume and EIT tidal volume was found in all 18 pups;
linear regression equations for each group are shown in
Figure 3. The determination coefficients (R2) of all groups
were greater than 0.7, showing good correlation between
ventilator and EIT. Moreover, the ICC between Vent VT

and EIT VT was 0.85 (p < 0.001) in all groups, indicating
very good agreement. The ICC values of each group were 0.83
(p < 0.001), 0.87 (p < 0.001), and 0.93 (p < 0.001) in the
untreated, surfactant-treated, and normal control groups,
respectively. ICCs of inflation PIP 10, 20, 25 cm H2O (p <

FIGURE 4 | A Bland–Altman plot (A) and violin plot (B) showing differences between the ventilator and EIT with the 95% limits of agreement. PIP, peak inspiratory
pressure; Vent VT, ventilator tidal volume; EIT VT, EIT tidal volume.
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0.001) and deflation PIP 20, 15 and 10 cm H2O (p < 0.001)
were significantly different between untreated and surfactant
treated groups. The Diff VT values at different PIP were
analyzed by the Bland–Altman plot and the violin plot
chart (Figure 4). The mean Diff VT was 72.50 μL (range,
14.61 to 109.88 μL) in the untreated preterm group, −21.76 μL
(−31.87 to 24.51 μL) in the surfactant-treated preterm group,
and −7.88 μL (−71.46 to 21.96 μL) in the normal
control group.

DISCUSSION

In our study, New Zealand white rabbit pups were used as a
model of both premature lung physiology as well as RDS
pathology. Rabbit pups harvested on D27 correspond to
preterm births with RDS and those harvested on D31
correspond to normal term births (Kikkawa et al., 1968; Choi
et al., 2017). Human infant RDS is a disease of prematurity. Its
incidence is 92% at 24–25 weeks’ gestation, 88% at 26–27 weeks,
76% at 28–29 weeks, and 57% at 30–31 weeks of gestation (Sweet
et al., 2013). As pulmonary surfactant is not ready to function in
RDS infants, the mainstay of treatment is artificial surfactant
instillation through the trachea. It recruits alveolar volume and
hence increases lung residual functional capacity by reducing
surface tension in the alveoli and equilibrating the uneven
pressures of different parts of the lungs, present in RDS.

The purpose of this study was to determine whether EIT can
generate some sort of practical benefit in the bedside treatment of
artificial surfactant in the rabbit pup model of RDS. Overall, our
findings show good correlations and agreement analysis between
the measurements of tidal volumes that were obtained from the
two modalities, small animal ventilator and EIT. The most
interesting finding was of higher ICC values in the surfactant
treated group (0.87) compared to the untreated group (0.83), not
to mention the highest ICC values in the term group (0.93,
Figure 3) and its narrow distribution in the treated group
(Figure 4). Although our study design precludes before and
after intervention comparisons, it is feasible to assume that
surfactant instillation could increase the ICC from a lower
pretreatment state, in mechanically ventilated pups. We
attempted for pre- and post-intervention comparisons,
however, the preterm pups could not survive long enough for
the measurements. As such, we simplified our model into 3
groups instead of performing longitudinal analyses.

In terms of the ICC differences, a possible explanation
could be that unlike untreated pups, unevenly inflated or
collapsed alveoli were minimized in the surfactant treated
preterm pup lungs, as opposed to the untreated pups,
eventually empowering the agreement analysis. Accordingly,
the higher ICC values and R2 may indicate more recruited
alveoli.

EIT technology is already an emerging option in various
ICU environments such as adult type acute respiratory distress
syndrome, pneumothorax, atelectasis, and pleural effusion
(Bodenstein et al., 2009; Burkhardt et al.,. 2013; Davies
et al., 2019; Jang et al., 2019; Tomicic and Cornejo, 2019).

In neonatal settings, there are several publications regarding
infants with RDS (Frerichs et al., 2001; Chatziioannidis et al.,
2011; Miedema et al., 2011; Chatziioannidis et al., 2013).
Unlike these studies, however, we analyzed tidal volumes
from two different modalities and observed higher ICC in
the surfactant treated group. We suggest that EIT technology
may be a promising option as a real-time bedside monitoring
tool in mechanically ventilated RDS infants, but further study
is needed.

The most challenging problem of the rabbit pup model in our
study, especially the preterm model, is that they are very small
(42.1 ± 14 g in this study). They cannot be cannulated, blood gas
analyses are not available, and imaging studies are limited.
However, the premature lung physiology that encompasses
RDS pathology is a great strength that allows for testing of
artificial surfactant efficacy (Almlén et al., 2010; Otsubo and
Takei, 2002).

This study has several limitations. First, our study lacks
assessment of pre and post effects of surfactant administration.
The pups were small and premature, and they could not survive
long enough to endure another set of procedures. Second, this was
a preliminary study using animal subjects, conducted with a small
sample size. In addition, we regarded all measured tidal volumes
to be a result of intact ventilation without any leakage. Finally, we
compared only the tidal volume sets without the regional
ventilation data of EIT.

CONCLUSION

In conclusion, in this preliminary animal study, we observed
good correlation of tidal volumes between Vent VT and EIT
VT. Furthermore, there were better ICC and Diff VT in
surfactant treated RDS group than in the untreated group.
EIT can detect an improvement in lung ventilation in
surfactant treated and term pups, compared to untreated
rabbit pups.
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Thoracic Computed Tomography to
Assess ARDS and COVID-19 Lungs
Carmen Silvia Valente Barbas*

Associate Professor of Pneumology, University of São PauloMedical School, Medical Staff Adult ICU Albert Einstein Hospital, São
Paulo, Brazil

This review was designed to discuss the role of thoracic-computed tomography (CT) in the
evaluation and treatment of patients with ARDS and COVID-19 lung disease. Non-aerated
lungs characterize the ARDS lungs, compared to normal lungs in the lowermost lung regions,
compressive atelectasis. Heterogenous ARDS lungs have a tomographic vertical gradient
characterized by progressively more aerated lung tissues from the gravity-dependent to
gravity-independent lungs levels. The application of positive pressure ventilation to these
heterogeneous ARDS lungs provides some areas of high shear stress, others of tidal
hyperdistension or tidal recruitment that increases the chances of appearance and
perpetuation of ventilator-induced lung injury. Other than helping to the correct diagnosis
of ARDS, thoracic-computed tomography can help to the adjustments of PEEP, ideal tidal
volume, and a better choice of patient position during invasivemechanical ventilation. Thoracic
tomography can also help detect possible intra-thoracic complications and in the follow-up of
the ARDS patients’ evolution during their hospital stay. In COVID-19 patients, thoracic-
computed tomography was the most sensitive imaging technique for diagnosing
pulmonary involvement. The most common finding is diffuse pulmonary infiltrates, ranging
from ground-glass opacities to parenchymal consolidations, especially in the lower portions of
the lungs’ periphery. Tomographic lung volume loss was associated with an increased risk for
oxygenation support and patient intubation and the use of invasive mechanical ventilation.
Pulmonary dual-energy angio-tomography in COVID-19 patients showed a significant number
of pulmonary ischemic areas even in the absence of visible pulmonary arterial thrombosis,
whichmay reflectmicro-thrombosis associatedwith COVID-19 pneumonia. A greater thoracic
tomography severity score in ARDS was independently related to poor outcomes.

Keywords: ARDS, COVID-19, thoracic-computed tomography, pulmonary dual-energy angio-tomography,
mechanical ventilation, patient position, PEEP, recruitment

INTRODUCTION

Since 2012, the diagnosis of acute respiratory distress syndrome (ARDS) is made by the finding of a recent
(less than 1 week) bilateral lung infiltrates in the chest radiography of a patient with PaO2/FIO2 less than
300 and a risk factor for ARDS according to Berlin definition (Ranieri et al., 2012). This new re-
classification of ARDS (Ranieri et al., 2012) recognized that bilateral opacities consistent with pulmonary
edema on the chest radiograph as defining criteria for ARDS could also be demonstrated on thoracic-
computed tomography. The images of thoracic-computed tomography in patients with ARDS helped to
confirm the diagnosis of ARDS (Bombino et al., 1991; Barbas et al., 2003; Caser et al., 2014; Barbas et al.,
2014; Pesenti et al., 2016) (Figure 1), detecting parenchymal and interstitial alterations as well as the
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quantification of the amount and regional lung distribution of the
non-aerated, poorly-aerated, aerated, and hyperinflated lung tissue
(Pesenti et al., 2016). Moreover, thoracic-computed tomography can
help to differentiate ARDS from cardiogenic pulmonary edema,
alveolar hemorrhage, and acute interstitial pneumonia (Barbas
et al., 2003).

In 2003, Pelosi et al. (2003) reviewed pulmonary (caused by
pneumonia, aspiration) and extra-pulmonary (caused by sepsis,
pancreatitis) ARDS, they reported that a prevalent alveolar
consolidation characterized the radiological presentation of
pulmonary ARDS while the extra-pulmonary ARDS was
characterized by ground-glass opacities. They also reported
that in pulmonary ARDS the lung compliance was decreased,
while in extra-pulmonary ARDS the chest wall and intra-
abdominal chest compliance were decreased. They also showed
that the effects of positive end-expiratory pressure (PEEP),
recruitment maneuvers, and prone position were greater in
extra-pulmonary ARDS (Pelosi et al., 1994).

So, this mini-review aims to discuss crucial articles that helped
to better understand the role of thoracic-computed tomography
to improve the diagnosis of the syndrome ARDS and COVID-19
lungs, to better understand its pathophysiology and the
distribution of pulmonary edema according to the gravity
force in different positions of the patients in the ICU bed and
the ARDS lungs heterogeneity that could induce and perpetuate
ventilator lung injury during inadequate positive pressure
ventilation. This mini-review also discusses the role of thoracic
tomography in detecting complications, prognosticating ARDS,
and the part of dual-energy angio-tomography in COVID-19
patients.

QUANTITATIVE THORACIC-COMPUTED
TOMOGRAPHY ANALYSIS IN ARDS

A pathophysiological hallmark of ARDS is the increased
permeability of the alveolo-capillary membrane, leading to
interstitial and alveolar flooding with edema rich in proteins
and consequent collapse of the bottom areas of the lungs
(Pesenti et al., 2016), shunt, and hypoxemia. In studying
thoracic tomography of ARDS patients, the Gattinoni’ s group
showed a greater vertical gradient of regional lung inflation in
ARDS patients than normal patients (Cressoni et al., 2014). ARDS
lungs compared to normal lungs are characterized by non-aerated
lungs in the lowermost lung regions, compressive atelectasis, and
progressively more aerated lung tissues from the lower to upper
lung levels characterizing the ARDS heterogenous lungs (Cressoni
et al., 2014), with areas of possible high shear stress and possible
ventilator-induced lung injury during positive pressure ventilation.

The Gattinoni’s group reported the effects of PEEP on regional
distribution of tidal volume and recruitment, while increasing PEEP
from 0 to 20 cm H20, they observed that tidal volume distribution
decreased significantly in the upper lungs regions, did not change in
the middle levels, and increased significantly in the lower lungs
regions. Studying ARDS patient’s lung recruitability and CT scan-
derived PEEP, they observed that to overcome ARDS lungs
compressive forces and to lift up the thoracic cage, a similar
amount of PEEP was required in higher and lower recruiters
(16.8 ± 4 vs. 16.6 ± 5.6 cm H20, p = 1) (Gattinoni et al., 1995).
The Gattinoni’s group also reported the analysis of 68 patients who
underwent whole-lung CT during breathing–holding sessions at
airway pressures of 5, 15, and 45 cm H20, showing that the lung

FIGURE 1 | Thoracic tomography of a normal person (A), person with ARDS (B), person with COVID-19 (C), and angio-tomography with pulmonary embolism (D)
(authors own material from reference 14,17 and 45).
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recruitability is heterogeneous and associated with the response to
PEEP (Gattinoni et al., 2006).

Studies from Borges et al. (2006) and de Matos et al. (2012)
reported that most of the collapsed lung tissue observed in early
ARDS could be reversed using an image-monitored recruitment
maneuver. After the lungs were opened up, a decremental PEEP
titration maneuver guided by thoracic tomography was made to
guarantee the lungs open, with less than 5% of collapsed lungs tissue.
DeMatos reported a case series of 51 ARDS patients, in which PEEP
titration was guided by CT scan suggesting that it could be a good
option to adjust PEEP and positive pressure ventilation in difficult
and complex cases of ARDS (de Matos et al., 2012) (Figure 2). The
ART, prospective, controlled, and clinical trial in ARDS patients
(Cavalcanti et al., 2017) reported that unmonitored recruitment
maneuvers with PEEP titration to the best compliance (titrated by
respiratory mechanics and not guided by thoracic tomography)
resulted in increased mortality compared to the control group.
Therefore, it is not recommended carrying out lung recruitment
maneuvers in invasively ventilated ARDS patients without
respiratory image monitoring in ARDS patients.

By studying thoracic tomography of ARDS patients in the prone
position (Langer et al., 1988; Gattinoni et al., 2013a; Gattinoni et al.,
2013b), it has been shown that in the prone position, computed thoracic
tomography scandensities redistribute from the dorsal to ventral regions
of the lungs as thedorsal region tends to reexpandpreventing the ventral
zone to hyperinflate. Recently, Guérin et al. (2013) studied early ARDS
patients with PaO2/FIO2 less than 150, with PEEP > than 5 cm H20
comparing mechanical ventilation in the prone position (periods of
16 h) vs. the supine position showed a significant improvement in
survival rates in the patients submitted to the prone position.

The quantitative thoracic-computed tomography inARDSpatients
improved the knowledge of pathophysiology of ARDS, showing a

vertical gradient from the most gravity-dependent parts of the lung to
the independent parts of the lungs, and the studies of different tidal
volumes, PEEPs, recruitment maneuvers, and the influence of the
prone position helped to guide clinical studies testing different
approaches of invasive mechanical ventilation in the evolution and
prognosis of ARDS patients (Amato et al., 1998; Barbas et al., 2012;
Barbas and Nemer, 2018; Barbas et al., 2019; Pelosi et al., 2021).

THORACIC-COMPUTED TOMOGRAPHY
TO DETECT COMPLICATIONS OF ARDS
AND POSSIBLE COMPLICATIONS
RELATED TO RADIATION EXPOSURE

Simon et al. (2016), analyzing 204 thoracic-computed
tomography of ARDS patients that full filled the Berlin
definition criteria reported that the most common alterations
of the lungs parenchyma were consolidations (94.1% of cases)
and ground-glass opacities (85.3%). They also observed pleural
effusions, mediastinal lymphadenopathy, signs of right
ventricular strain and pulmonary hypertension, pericardial
effusion, emphysema of the chest wall, pneumothorax,
emphysema of the mediastinum, and pulmonary embolism,
resulting in the change of ARDS patients’ management about
26.5% of cases. Chest CT allows the localization of invasive chest
devices. Patients with more than 80% of involvement of the lung
parenchyma had a significant increase in mortality (p < 0.004.
Intrahospital transport was associated with critical incidents in
8.3% of cases (Simon et al., 2016).

Regarding the risks of radiation exposure, Chiumello et al. (2014)
showed that a 70% reduction in the effective dose of radiation can be

FIGURE 2 | Thoracic-computed tomography guided recruitment and PEEP titration in a patient with ARDS (authors own material from reference 14).
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achieved in patients with ARDS during the acquisition of low-dose
chest CT images, maintaining lung quantitative and anatomical
results. The use of low-dose chest CT could reduce the risks
associated with radiation exposure, and therefore potentially allow
a more frequent application of CT to characterize the lungs and
optimize mechanical ventilation in patients with ARDS.

THORACIC-COMPUTED TOMOGRAPHY
ANALYSIS IN COVID-19 PATIENTS

Thoracic-computed tomography is the most sensitive imaging
technique for the diagnosis of COVID-19 lung involvement
(Chung et al., 2020; Shi et al., 2020), showing diffuse infiltrates,
especially in lungs periphery, ranging from ground-glass opacities
to parenchymal consolidations. Multiple radiological patterns were
observed at different times throughout the course of the disease.
Lanza et al. (2020) analyzed 222 patients with RT-PCR positive for
SARS-COV 2 virus who received a thoracic-computed tomography
at admission because of dyspnea or desaturation. Compromised
lung volume was the most accurate outcome predictor (logistic
regression, p < 0.001). Tomographic lung volume loss in the range
of 6–23% increased the risk for oxygenation support and ranges
above 23% increased the risk for patient intubation. Compromised
lung volume % showed a negative correlation with PaO2/FiO2
ratio (p < 0.001) and was a risk factor for inhospital mortality (p <
0.001).

The Fleischner Society published a consensus statement on the
use of chest radiography and computed tomography during the
COVID-19 pandemic to guide physicians in the use of chest imaging
in the management of COVID-19 (Kwee and Kwee, 2020; Rubin
et al., 2020). The statement noted that uncertainty still exists whether
thoracic tomography should be used as a stand-alone screening tool,
or as an adjunct tool to RT-PCR tests, to exclude occult infection
before immunosuppression or surgery in regions with high
prevalence of COVID-19 (Kwee and Kwee, 2020; Rubin et al., 2020).

The statement indicated thoracic tomography for patients with
moderate to severe respiratory symptoms to demonstrate features of
SARS-COV2 infection or alternative diagnosis (Rubin et al., 2020). The
statement also suggested guidance in reporting thoracic tomography
findings are potentially attributable to COVID-19 pneumonia (Rubin
et al., 2020) 1. typical appearance, 2. indeterminate appearance, 3.
atypical appearance, and 4. negative for pneumonia. For a proper
COVID-19 pneumonia diagnosis it is decisive to associate thoracic
tomography findings with RT-PCR results, clinical manifestations, and
epidemiological data (Kwee and Kwee, 2020).

A total of 1,431 symptomatic and at a high risk for COVID-19
patients, reported in a meta-analysis, revealed a thoracic CT-
pooled sensitivity of 94.6% (95% CI: 91.9% and 96.4%) and a
pooled specificity of 46.0% (95% CI: 31.9% and 60.7%) in the
detection of COVID-19 (Adams et al., 2020). Another meta-
analysis showed that 10.6% of symptomatic patients with positive
RT-PCR for SARS-COV-2 infection had normal thoracic
tomography (Raptis et al., 2020).

Patients with COVID-19 and respiratory failure have an
increased rate of 11.8% of pulmonary embolism. COVID-19
patients diagnosed with thrombo-embolic complications have

a more than 5-fold increase in mortality (Berger et al., 2020;
Zhang et al., 2020). In COVID-19 patients with hypoxemia and
relatively poor lung parenchymal alterations in thoracic
tomography, high D-dimer, low (Sakr et al., 2020) plasmatic
fibrinogen, signs of pulmonary hypertension, or signs of
venous thrombosis (lower legs or intravenous devices)
should be investigated with angio-thoracic tomography or
dual-energy CT scan to the possible diagnosis of pulmonary
embolism (McFadyen et al., 2020; Yu et al., 2020; Zhou et al.,
2020).

DUAL-ENERGY CT SCAN IN COVID-19

Dual-energy tomography, also known as spectral CT or dual source
CT, is a computed tomography technique that uses two separate x-
ray photon energy spectra, allowing the interrogation of materials
that have different attenuation properties at different energies,
being used to reconstruct numerous images type, including iodine
maps of lungs perfusion. A dual-energy CT scan has been recently
studied to investigate ventilation–perfusion relationships in
COVID-19 patients. Ball et al. (2021) analyzed pulmonary gas
and blood distribution using a technique for quantitative analysis
of dual-energy computed tomography in 35 COVID-patients
needing non-invasive or invasive mechanical ventilation. Lung
aeration loss (percentage of normally aerated lung tissue) and
the extent of gas/blood volume mismatch (percentage of non-
aerated, perfused lung tissue—shunt; aerated, non-perfused dead
space; and non-aerated/non-perfused regions) were evaluated.
Compared to patients requiring non-invasive ventilation,
patients requiring invasive ventilation had both a lower
percentage of normally aerated lung tissue [median
(interquartile range) 33% (24–49%) vs. 63% (44–68%), p < 0.
001]; and a larger extent of gas/blood volume mismatch [43%
(30–49%) vs. 25% (14–28%), p = 0.001], due to higher shunt [23%
(15–32%) vs. 5% (2–16%), p = 0.001] and non-aerated/non-
perfused regions [5% (3–10%) vs. 1% (0–2%), p = 0.001]. The
PaO2/FiO2 ratio correlated positively with normally aerated tissue
(ρ = 0.730, p < 0.001). In patients with severe COVID-19
pneumonia, the need for invasive mechanical ventilation and
the degree of hypoxemia were associated with loss of lungs
aeration and the extent of gas/blood volume mismatch.

Aydin et al. (2021) studied 40 patients with positive RT-PCR
to SARS-COV-2 with dual-energy thoracic tomography. All the
patients had perfusion deficits at dual-CT images. Their mean
perfusion deficit severity score was 8.45 ± 4.66 (min.-max, 1–19).
In 24 of the 40 patients (60%), perfusion deficits and parenchymal
lesions matched completely. In 15 of the 40 patients (37.5%),
there was a partial match. The perfusion deficit severity score had
a significantly positive correlation with D-dimer, reactive-C-
protein levels, and thoracic tomography severity score (a score
that is used in ARDS patients to assess severity and
prognostication of patients) (Abbasi et al., 2020). The authors
observed that perfusion deficits are seen not only in opacification
areas but also in parenchyma of normal appearance.

Grillet et al. (2020) studied 85 patients with COVID-19 with
dual-energy angio-tomography with iodine contrast and
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pulmonary iodine map. They observed that twenty-nine patients
(34%) were diagnosed with pulmonary artery thrombosis, mainly
segmental (83%). Semi-quantitative analysis revealed
parenchymal ischemia in 68% of the 85 patients with no
significant difference between the patients with or without
pulmonary artery thrombosis (23 vs. 35, p = 0.144). Volume
of ischemia was greater in patients with pulmonary artery
thrombosis [29 (IQR, 8–100) vs. 8 (IQR, 0–45) cm3, p =
0.041]. Pulmonary perfusion evaluated by iodine maps shows
extreme heterogeneity in COVID-19 patients and lower iodine
levels in normal parenchyma. Pulmonary dual-energy angio-
tomography revealed a significant number of pulmonary
ischemic areas even in the absence of visible pulmonary
arterial thrombosis, which may reflect micro-thrombosis
associated with COVID-19 pneumonia.

Dual-energy angio-tomography studies in COVID-19 patients
helped to understand the macro- and microvasculature
involvement of the lungs in this disease. This vascular micro-
thrombosis leads to severe alterations in the ventilation/perfusion
ratio of the lungs and to high percentages of patients with
hypoxemia and challenging to ventilate lungs (Abbasi et al.,
2020; Grillet et al., 2020; Aydin et al., 2021; Ball et al., 2021).

ALTERNATIVE DIAGNOSIS TO COVID-19
AND COMPLICATIONS REVEALED BY
THORACIC-COMPUTED TOMOGRAPHY
The finding of peripheral, bilateral, ground-glass opacities,
predominantly in the lower lobes of the lungs is the typical
finding of COVID-19 pneumonia, but can be the presentation
features of other types of viral pneumonia, especially influenza
(Yin et al., 2020). In the cases of typical findings of COVID
pneumonia in the thoracic CT, but a negative RT-PCR for SARS-
COV 2, a second RT-PCR for SARS-COV-2 must be made, and if
negative, a molecular panel for respiratory virus must be asked for
a correct diagnosis. Other alternative diagnosis includes: acute
interstitial pneumonias, drug-induced lung diseases, alveolar
hemorrhage, and ANCA-associated vasculitis.

In the cases of confirmed COVID-19 pneumonia, thoracic CT
and angio-tomography is very helpful in diagnosing
complications such as pulmonary embolism, acute respiratory
distress syndrome, superimposed pneumonia, barotrauma
(pneumomediastinum, pneumothorax, subcutaneous
emphysema, pleural effusion, and pericardial effusions),
organizing pneumonia, COVID-19 progression lung disease,
secondary fungal infections, signs of pulmonary fibrosis, and
mechanical ventilation-induced lung injury (barotrauma, lung
cavitation, and cysts) (Kwee and Kwee, 2020).

COVID-19-associated pulmonary aspergillosis is reported in
around 3. 3% of COVID-19 patients, with severe ARDS-receiving
corticosteroids or tocilizumab (Machado et al., 2021). Diagnosis
is established after a median of 15 days of invasive mechanical
ventilation with bronchoalveolar lavage positive galactomannan
or aspergillus positive culture. Thoracic tomography findings are

compatible with pulmonary aspergilloma or invasive pulmonary
aspergillosis (Machado et al., 2021).

SEVERITY CT SCORE AND
PROGNOSTICATION OF COVID-19
PATIENTS
Abbasi et al. (Yin et al., 2020) retrospectively studied 262 hospitalized
COVID-19 patients with a severity score that divided the lungs into
three zones: upper, middle, and lower zones analyzing the degree of
lung involvement for each zone: score of 0 (no involvement); 1. <25%
involvement; 2. 25% to less than 50% involvement; 3. 50% to less than
75% involvement; and 4. ≥75% involvement. They observed a
significant correlation between the CT severity score and rapidity
of decline under the clinical condition of time to death, time to ICU
admission, and time to intubation. Multivariate regression analysis
showed increasing odds of inhospital death associated with a higher
CT severity score at admission.

Popadic et al. (2021) studied 160 consecutive critically ill patients
with the diagnosis of COVID-19 with moderate to severe ARDS
observed in a multivariate analysis that the factors independently
associated with mortality were IL-6, serum albumin, D-dimer, and
thoracic-computed tomography score at admission.

Recently, Szabó et al. (2021) used artificial intelligence-based
thoracic-computed tomography alterations quantification in
patients with COVID-19 analyzed five lung regions upper right,
middle right, lower right, upper left, and lower left lobes regarding
lung volume and % of affected lung. They built a severity score that
was calculated by a deep learning model based on the quantitative
measurements. They observed that the artificial intelligence severity
score was significantly associated with worse clinical outcomes. They
concluded that their results provided personalized probabilities of
adverse inhospital outcomes that might assist decision making in
patients with COVID-19 lungs involvement that was not
prospectively validated yet (Corrêa et al., 2021).

CONCLUSION

In conclusion, thoracic tomography of the lungs in ARDS or
COVID-19 patients can help to a better diagnosis of pulmonary
involvement, classify its severity and make alternative diagnoses
and detect possible complications. Thoracic-computed
tomography can also help the intensivists adjust PEEP, tidal
volume, and patient position during mechanical ventilation and
follow-up of the ARDS patients during their hospital stay.Whether
severity scores based on thoracic-computed tomography and
artificial intelligence may help the clinical prognosis of patients
with COVID-19 and ARDS remains to be determined.
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Administration of Drugs/Gene
Products to the Respiratory System: A
Historical Perspective of the Use of
Inert Liquids
Deepthi Alapati 1,2* and Thomas H. Shaffer 1,2,3*

1Nemours Children’s Health, Wilmington, DE, United States, 2Sidney Kimmel School of Medicine, Thomas Jefferson University,
Philadelphia, PA, United States, 3Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States

The present review is a historical perspective of methodology and applications using inert
liquids for respiratory support and as a vehicle to deliver biological agents to the respiratory
system. As such, the background of using oxygenated inert liquids (considered a drug
when used in the lungs) opposed to an oxygen-nitrogen gas mixture for respiratory
support is presented. The properties of these inert liquids and the mechanisms of gas
exchange and lung function alterations using this technology are described. In addition,
published preclinical and clinical trial results are discussed with respect to treatment
modalities for respiratory diseases. Finally, this forward-looking review provides a
comprehensive overview of potential methods for administration of drugs/gene
products to the respiratory system and potential biomedical applications.

Keywords: drug delivery, gene delivery, partial liquid ventilation, perfluorochemicals, pulmonary

INTRODUCTION

Aerosol drugs have been delivered to the lungs for several thousand years (Stein and Thiel, 2017).
The use of aerosol delivery is complex, and deposition of drugs in the respiratory system is influenced
by several specific factors: physics of the aerosol (inertia of the aerosol), gravitational factors,
diffusion (airflow patterns in the lungs), and pulmonary defense mechanisms. Pulmonary drug
delivery has been only partly explored in recent decades even though it could represent an alternative
route of administration of drug-based therapies. Pulmonary drug delivery is an attractive route of
administration of drugs, since the lungs are an ideal entry point for drugs to the bloodstream because
of the large surface area, the very short diffusion distances in the alveolar spaces, and exposure to the
entire cardiac output. Today there is an increased need for topical delivery of lung cancer therapy
drugs, anti-inflammatory drugs to treat acute respiratory distress (i.e., COVID-19, H1N1 influenza),
and gene-targeted lung agents for several relatively uncommon (orphan) diseases and pulmonary
arterial hypertension (PAH) (Ali et al., 2015; Muralidharan et al., 2015; Alapati et al., 2019; Keshavarz
et al., 2020; Kumar et al., 2020).

During the last 20 years, the combination of nanocrystal technology combined with an inert
perfluorochemical vehicle has demonstrated the efficacy of large volume drug delivery to the entire
lung because of the vehicle physical-chemical properties (inert properties, low surface tension, and
high respiratory gas solubility) (Cullen et al., 1999). Furthermore, based on this combination delivery
approach, it has been possible to demonstrate increased lung targeted drug delivery as opposed to
systemic delivery. Nanocarriers have been found to be most promising because of their significant
advantages (i.e., cell-specific targeted drug delivery and prolonged drug release). Thus, in
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combination with inert perfluorochemical vehicles, nanocarriers
may provide effective delivery to the entire lung. The advantages
offered by pulmonary drug delivery indicate that the challenges of
such a delivery approach are worth addressing; if successfully
addressed, there are great opportunities to treat unmet clinical
needs. The present review focuses on providing a comprehensive
historical perspective of the use of inert liquids for respiratory
applications.

RESPIRATORY SUPPORT WITH INERT
LIQUIDS

The use of liquids for respiratory support is reviewed in this
section, as well as the physical properties of fluid used and the
rationale for using specific liquids.

The first liquid used as a respiratory medium for lung lavage
was saline (Winternitz and Smith, 1920). It debrides the lung
and eliminates the gas-liquid interface within it. Early saline
studies clarified factors influencing distensibility, alveolar
structure, stability, pulmonary blood flow, and ventilation
(Neergard, 1929; Mead et al., 1957; Avery and Mead, 1959;
Leith andMead, 1966; Hamosh and Luchsinger, 1968; Davidson
et al., 1995; Fournier et al., 1995). Low respiratory gas solubility
(O2; CO2) and diffusion gradients at atmospheric conditions
limited the functional use of saline solution to provide adequate
gas exchange (Kylstra et al., 1966; Kylstra, 1967; Kylstra et al.,
1973; Wessler et al., 1977; Lynch et al., 1983). The hypothesis
that O2-saturated saline solution dissolved under pressure could
possibly sustain submersed mammals was formulated (Stein
and Sonnenschein, 1950), and subsequent research revealed
that adequately oxygenated liquid could be breathed by and
support mammals submerged in hyperbaric oxygenated saline

solution (Goodlin, 1962; Kylstra et al., 1962; Pegg et al., 1963;
Kylstra et al., 1966). However, CO2 retention and profound
acidosis occurred because of the small gradient between arterial
and alveolar CO2 gradients, thus eliminating saline ventilation
for either normobaric or hyperbaric conditions. In addition, it
should be noted that although saline has been used to lavage
debris and inflammatory mediators from the lungs as noted
above, it has also been shown to inactivate pulmonary
surfactant and impair lung function (Shaffer and Wolfson,
2011).

Inert Perfluorochemical Liquid
Physicochemical Properties
As an alternative to saline as a respiratory medium, the utility of
other liquids (silicone, vegetable oils, and animal oils) was
investigated as respiratory media; however, these oils, although
having high gas solubility, also demonstrated toxic effects (Clark,
1970; Sargent and Seffl, 1970). Perfluorochemicals (PFCs) were
initially produced as part of the Manhattan Project during World
War II. In 1966, they were used to support normobaric
respiration on the basis of their high solubility for respiratory
gases (Table 1) (Clark and Gollan, 1966), which delineated their
use as alternative respiratory mediums. True PFCs are formulated
from common organic compounds (e.g., benzene) by substituting
carbon-bound hydrogen atoms with fluorine atoms. They
provide the advantage of easy storage (indefinitely at room
temperature) and can be used under antiseptic conditions
without modification (i.e., autoclave, small-pore filtering).
They are clear, in most cases, not soluble in aqueous media or
nonlipid biologic fluids and are odorless, inert, and
transparent—very inoffensive in their use (Shaffer and
Wolfson, 2011).

TABLE 1 | Physiochemical profile of various perfluorocarbons. Reprinted from Shaffer, T.H., andWolfson, M.R. (2011). “Liquid Ventilation,” in Fetal and Neonatal Physiology,
4th Edition, eds: R. Polin, W.W. Fox, and S. Abman (Philadelphia, PA: WB Saunders), 1063–1081, with permission from Elsevier.

Perfluorocarbon Formula Orientation O2

Solution
(mL/

100 ml)
(25 °C)

Vapor
Pressure
(mm hg)
(37 °C)

Boiling
Point
(°C)

Viscosity
(cSt)
(25 °C)

Mol wt
(g/mol)

Density
(g/ml)
(25°C)

PP2 C7F14 Cyclic 57.2 180 76 0.88 350 1.788
PFOB C8F17Br Aliphatic 52.7 11 140.5 1 499 1.89
PCI C7F15Cl Aliphatic 52.7 48.5 108 0.82 404.5 1.77
P12F C9F20O Aliphatic 52.5 39 121 0.95 504.1 1.721
FC-75F C8F16O Cyclic 52.2 51 102 0.85 416.1 1.783
FC-75P C8F16O Cyclic 52.2 51 102 0.85 416.1 1.783
PFDMA C12F18 Cyclic 39.4 2.6 177.5 4.35 524.1 2
FC47 C12F27N Aliphatic 38.4 2.5 174 2.52 671.1 1.9
PP9 C11F20 Cyclic 38.4 5.2 160 3.32 512.1 1.972
APF-57 C6F14 Cyclic 70 356.4 57.3 — 338 1.58
APF-100 C8F16 Cyclic 42.1 64.6 98.6 1.11 400 1.84
APF-125 C9F18 Cyclic 47.7 30 116.6 1.17 450 1.86
APF-140 C10F18 Cyclic 49 13.6 142 2.9 462 1.93
APF-145 C10F20 Cyclic 45.3 8.9 142.8 1.44 500 1.9
APF-175 C12F22 Cyclic 35 1.4 180 3.5 562 1.98
APF-200 C13F24 Cyclic 41 1.26 200 5.3 612 1.99
APF-215 C14F26 Cyclic 37 0.2 215 8 662 2.02
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Please refer to Table 1 (Shaffer and Wolfson, 2011) for details
regarding the physicochemical profile and structure of various
PFC liquids for PFC ventilation. O2 and CO2 are specific to
respiratory gas exchange and carried only as dissolved gases with
solubilities ranging as much as 16 and three times greater,
respectively, in PFC than in saline. Oxygen solubilities range
from 35 to 70 ml gas per deciliter at 25°C (Riess, 1992). The
carrying capacity for CO2 is known for only a few PFC
compounds, but reported values of CO2 solubility are
approximately four times greater than those for O2

(122–225 ml/dl [i.e., PFOB; perfluorooctylbromide [PFOB] =
225 ml/dl]). It is noteworthy that perflubron (PFOB;
perfluorooctylbromide) is the only medical grade
perfluorochemical approved by the FDA for emergency
medical use. While many properties of PFC liquids vary, they
do provide relatively low surface tension and viscosity, and are
more dense than both water and soft tissue.

Variations in specific physicochemical properties of the PFC
liquids are significant to their use as respiratory media and as
vehicles for the administration of biological agents. Fluids of
higher vapor pressure may volatilize from the lung more rapidly
than liquids having lower vapor pressure. Fluids with greater
spreading coefficients (dependent on surface tension) may
distribute more easily in the lung than fluids whose spreading
coefficients are lower (i.e., FC-75 > PFOB >APF-140) (Weers and
Johnson, 1991; Sekins, 1995). Fluids of higher viscosity or
kinematic viscosity may balk at redistribution in the lung, thus
remaining in contact with a greater area of the alveolar surface for
more time than those stratifying with increased rapidity (Miller
et al., 1999; Miller et al., 2001) resulting in greater flow resistance.

NON-CLINICAL AND CLINICAL STUDIES
WITH INERT LIQUIDS

The initial preclinical studies in liquid spontaneous breathing
and ventilation support were directed at breathing in unusual
environments such as deep sea diving, zero gravity, and space
travel (Clark and Gollan, 1966; Modell et al., 1973; Moskowitz
et al., 1975; Lynch et al., 1983). It was not until the studies with
premature lambs (Shaffer et al., 1976; Shaffer et al., 1983a;
Shaffer et al., 1983b; Shaffer et al., 1984b; Wolfson et al.,
1988) that the application to respiratory distress became
evident because of the advantages of low surface tension,
improved lung compliance, and gas exchange. As a result of
these investigations, the first in extremis FDA-approved total
liquid ventilation study in a near-death premature infant with
severe respiratory distress was performed (Greenspan et al.,
1989). This study and a subsequent study in several critically ill
infants (Greenspan et al., 1990) demonstrated that PFC liquid
ventilation could support gas exchange and residual
improvement in pulmonary function following the return to
conventional gas ventilation. The need for a medically approved
combination liquid ventilator and medical grade PFC breathing
fluid restricted further clinical trials. It is noteworthy, however,
that a corporate-sponsored multicenter trial resulted from the
success of the neonatal and adult animal trials with PFC liquid-

assisted gas ventilation and the initial clinical trials with human
subjects.

Subsequently, several separate investigational new drug
applications were approved by the FDA to investigate the
safety and efficacy of PFCs, mainly PFOB, as a liquid
breathing media in neonates. While animal studies over the
years showed significant efficacy and safety of liquid breathing,
clinical studies using several techniques in humans (infants,
children, and adults) had mixed outcomes. The findings from
non-clinical and clinical studies are summarized below.

Non-Clinical Studies With Inert Liquids
Over the course of the last 50 years, many animal studies
demonstrated liquid ventilation to be an effective approach/
treatment for deep sea diving, zero gravity, severe lung injury,
and congenital diaphragmatic hernia (CDH). These studies
supported the use of liquid ventilation as a superior source of
respiratory support when compared with gas media with
spontaneous breathing or conventional mechanical ventilation
(CMV). Various studies also demonstrated short-term beneficial
physiologic responses in lung function because of improved
alveolar recruitment and significant preservation of normal
histological structure of the lung (Moskowitz et al., 1975;
Shaffer et al., 1983a; Shaffer et al., 1983b; Shaffer et al., 1984a;
Shaffer et al., 1984b; Wolfson et al., 1992; Leach et al., 1993;
Richman et al., 1993; Sekins et al., 1994; Major et al., 1995; Al-
Rahmani et al., 2000; Cox et al., 2003). Non-clinical studies in
newborn animal models of respiratory distress syndrome (RDS)
showed that PFOB enhances uniformity of the lung inflation
consistent with PFOB working as an artificial surfactant (Weis
et al., 1997; Wolfson et al., 1998; Kandler et al., 2001; Hübler et al.,
2002; Merz et al., 2002). Animal studies also showed that PFOB
minimizes functional lung impairment because of the high airway
pressures and sustained FiO2 requirements that are
characteristics of ventilator-induced lung injury (Greenspan
et al., 1990; Wolfson et al., 1992; Bateman et al., 2001; Davies
et al., 2002).

Recent studies continue to show PFOB improves oxygenation
(Hartog et al., 1997; Bleyl et al., 1999; Al-Rahmani et al., 2000;
Bateman et al., 2001; Davies et al., 2002) in animal models of lung
injury consistent with earlier findings. Additionally, recent
studies report that PFOB increases lung compliance (Bleyl
et al., 1999; Al-Rahmani et al., 2000; Kandler et al., 2001;
Davies et al., 2002). Findings from earlier studies indicated
that PFOB may have potential anti-inflammatory properties.
Animal studies showed that administration of PFOB decreased
the expression of known inflammatory markers (Kawamae et al.,
2000; Haeberle et al., 2002; Merz et al., 2002). Two additional
research studies reported PFOB not interfering with cerebral
blood flow (Davies et al., 2010; Davies et al., 2013), suggesting
partial liquid ventilation (PLV) with PFOB will have limited
impact on cardiac output and circulation.

Animal studies consistently support the safety of PFOB, as few
negative effects have been reported. Studies show PFOB is not
absorbed systemically and causes no long-term harm (Holaday
et al., 1972; Shaffer et al., 1996; Cox et al., 2002). Several animal
studies reported final concentrations of PFC measured within the
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blood and tissue after the end of treatment were considered
minimal compared with their baseline control measurements
(Holaday et al., 1972; Modell et al., 1973; Shaffer et al., 1996;
Cox et al., 2002). Additionally, studies revealed initiation of PLV
and removal of PFOB does not produce significant adverse
effects. Pneumothorax, a documented adverse event in adult
PFOB clinical studies, was not reported with any significance
in animal models of severe lung injury employing PFOB.

Clinical Studies in Infants With Inert Liquids
Early clinical studies demonstrated that infants with severe RDS,
meconium aspiration, and CDH tolerated liquid PFC in their
lungs and were able to effectively exchange gas and maintain
cardiovascular stability (Greenspan et al., 1989; Greenspan et al.,
1990; Gross et al., 1995; Pranikoff et al., 1996; Henrichsen et al.,
2012).

Consistent with those studies and animal studies, additional
published reports indicated PFOB increased gas exchange
(Hirschl et al., 1995; Gauger et al., 1996; Hirschl et al., 1996;
Hirschl et al., 2002) in adults and children. Subsequent studies
using PFOB on preterm neonates also reported increases in lung
compliance (Greenspan et al., 1990; Hirschl et al., 1995; Hirschl
et al., 1996). PFOB rapidly improved lung function and increased
survival in a population of neonates with high mortality (Leach
et al., 1996).

Most importantly, the utility of PFOB was demonstrated in a
multicenter study of premature infants with severe RDS
refractory to other available treatments (surfactant therapy,
high frequency, too young for extracorporeal membrane
oxygenation) (Leach et al., 1996). Thirteen (13) infants were
treated with PFOB. Within an hour following the instillation of
PFOB, there was an increase in arterial oxygen tension of 138%.
Dynamic compliance increased by 61% and continued to climb
through the first 24 h (Leach et al., 1996). Furthermore, the mean
oxygenation index, markedly elevated at baseline (49 ± 60), fell to
17 ± 16 within the first hour and continued to fall to 9 ± 7 at 24 h.
Arterial carbon dioxide tension normalized within 4 h after PFOB
treatment. Mean airway pressure decreased from 17 ± 3 to 12 ±
2 cm of water (29%) in the first 24 h despite an increase in tidal
volume (5.0 ± 3.4 ml/kg during gas ventilation to 7.8 ± 3.4 ml/kg
during PFOB ventilation). It should be noted that no serious
adverse events were reported during PFOB-assisted ventilation. It
was determined that PFOB-assisted ventilation could be utilized
for critically ill infants for several days without serious adverse
events. A number of the surviving participants are currently well
and in their twenties.

More recently, lavage with PFC has been shown to be safe for
treatment of persistent and difficult-to-treat lung atelectasis
(Henrichsen et al., 2012). Bronchoalveolar lavage utilizing PFC
liquid was performed without incident in infants with severe
alveolar proteinosis during conventional mechanical ventilation
without necessitating the additional support of extracorporeal
membrane oxygenation. Furthermore, recent PFC liquid studies
have reported safe imaging studies in bronchopulmonary patients
(Degnan et al., 2019).

Follow-up imaging studies up to 20 years after treatment with
PFOB in humans demonstrated no negative effects from this

treatment (Tiruvoipati et al., 2007; Hagerty et al., 2008; Servaes
and Epelman, 2009). The studies demonstrated evidence of
residual PFC specs in the lung, thorax, mediastinum, and
retroperitoneum. These are also cautionary when interpreting
the high-density opacifications associated with Hounsfield unit
densities of some PFCs used with intrapulmonary applications
such as pulmonary calcification (Tiruvoipati et al., 2007) and
stress the necessity of obtaining precise clinical histories in the
light of unusual radiographic findings (Hagerty et al., 2008).

Clinical Studies in Adults With Inert Liquids
In early liquid ventilation studies, it was reported that PFOB
usage in adults increased lung compliance (Hirschl et al., 1996),
which is consistent with preclinical animal studies. However, a
randomized clinical trial in adults with acute respiratory distress
syndrome (ARDS) randomized to protective conventional
mechanical ventilation of the lung, low-dose PFC, or high-
dose PFC and partial liquid ventilation did not result in
improved mortality. Additional ventilator-free days were
realized in the conventional mechanical ventilation group
when compared with the low-dose and high-dose PFC groups
(Hirschl et al., 2002; Degraeuwe and Zimmermann, 2006;
Kacmarek et al., 2006). Improved mortality or ventilator-free
days did not result in another randomized clinical trial in spite of
decreased progression in respiratory insufficiency to ARDS in
patients treated with partial liquid ventilation with PFC.

DRUG/GENE PRODUCT ADMINISTRATION

Systemic administration of therapeutics to target the lung is faced
with numerous challenges secondary to potential degradation by
serum and hepatic enzymes and rapid renal clearance.
Compromised pulmonary blood flow in the injured lung may
further limit passive diffusion of the drug from the blood into the
lung parenchyma. Retention of the therapeutics in the lung is also
often suboptimal. These challenges can be mitigated by local
administration of therapeutics through inhalation or airway
instillation (Bennett et al., 2002). However, many acute and
chronic lung diseases affect distally located alveoli and thus
require delivery of biological agents to the distal lung
parenchyma for optimal therapeutic effect. Distal delivery of
therapeutic agents requires obtaining the correct particle size,
which has been challenging. Furthermore, ventilation
abnormalities in the impaired lung regions also minimize drug
delivery to these target areas.

Drug Delivery With Inert Liquids
Some studies have successfully demonstrated that lungs filled
with PFC liquid have the ability to deliver active and inactive
agents for the diagnosis and treatment of respiratory disorders.

Respiratory infections affect distally located alveoli with
bacteria and viruses multiplying in the alveolar cells. Distal
lung distribution of intra-tracheally delivered anti-infective
agents is essential to halt disease progression. In a newborn
lamb model of acid lung injury, gentamicin administration
during tidal liquid ventilation using PFC resulted in
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significantly higher lung gentamicin levels compared with
intravenous administration (Fox et al., 1997; Zelinka et al.,
1997; Cullen et al., 1999; Cox et al., 2001). This technique also
resulted in greater pulmonary gentamicin levels and lower serum
levels, which are required to achieve therapeutic levels in the lung
while mitigating systemic adverse effects of gentamicin. Similarly,
when utilizing a piglet model of meconium aspiration, greater
pulmonary levels and lower serum levels of vancomycin were
achieved after intrapulmonary instillation of vancomycin and
PFC followed by partial liquid ventilation, compared with
intravenous injection of vancomycin followed by conventional
gas ventilation (Jeng et al., 2007).

In an animal model of meconium aspiration syndrome, partial
liquid ventilation improved regional distribution of
intratracheally administered radio-labelled surfactant
compared with conventional mechanical ventilation. There was
more uniform distribution of surfactant between the lungs as well
as between both ventral and dorsal regions of the lungs. Such
uniform distribution was associated with improved systemic
oxygenation (Chappell et al., 2001). PFC was also an effective
delivery vehicle for pulmonary administration of vasoactive
agents (Wolfson et al., 1996).

Inhalational smoke-induced acute lung injury is
characterized by airway epithelial injury leading to excess
leakage of plasma substrates into large airways and the
formation of fibrin casts. Interventions to prevent or treat
airway casts are limited. In this regard, PFC has been used for
intratracheal administration of plasminogen activators (tissue
plasminogen activator [tPA] and single-chain urokinase
plasminogen activator [scuPA]) for management of airway
clot and fibrinous cast formation associated with smoke-
induced acute lung injury. Enzymatic activities of the
plasminogen activator following dispersion and storage in
PFC were preserved, and PFC administration alone did not
impact physiologic or histological differences. In contrast,
PFC-facilitated plasminogen activator delivery resulted in
significantly better physiologic and histologic outcomes.
PFC-facilitated delivery of plasminogen activator
demonstrated improved outcomes than achieved by
nebulization of plasminogen activators alone (Wolfson
et al., 2020).

Drug delivery during PFC PLV respiratory support has been
demonstrated with other soluble gases in PFOB such as
inspired nitric oxide (NO). NO administration with PLV in
surfactant-depleted adult pigs resulted in a significant
improvement in gas exchange and decrease in pulmonary
artery pressure, most notably without deleterious effects on
systemic hemodynamic conditions (Houmes et al., 1997). In a
congenital diaphragmatic hernia lamb preparation treated
prophylactically with PLV, it was demonstrated that NO
improved oxygenation and reduced pulmonary hypertension
(Wilcox et al., 1994). As such, the ability to deliver NO during
PLV is probably related to distribution of NO in the gas-
ventilated regions of the lung, the solubility and diffusion of
this gas in the PFC, and recruitment of lung volume. Results on
the effective delivery of NO in PFC liquid are consistent with
earlier studies showing the use of PFC liquid as a vehicle to

deliver biologic agents. Based on transport principles, it
appears that the amount of NO delivered to pulmonary
structures is dependent on NO concentration in PFC liquid,
stratification pattern of gas and PFC liquid in the lung,
distribution of pulmonary blood flow, and ventilation-
perfusion matching. Finally, the clearance of NO from the
partially filled PFC lung and potential formation of NO2

during liquid ventilation potentially could be different
compared with the gas-filled lung.

Gene Delivery to the Respiratory System
Twenty-two percent of all pediatric hospital admissions are due
to respiratory illness. Genetic lung diseases account for increased
morbidity and mortality (Nogee, 2010; Tanash et al., 2010; Witt
et al., 2012). Genetic diseases such as surfactant protein disease,
cystic fibrosis, Hermansky-Pudlak syndrome, and
neuroendocrine cell hyperplasia of infancy (NEHI) cause
severe lung disease and are associated with high mortality and
morbidity. No cure currently exists. Pulmonary epithelial cell-
specific genetic mutations and abnormal gene regulation play a
causal role in many genetic lung diseases and are attractive targets
for airway delivery of therapeutic agents. Effective airway-based
delivery of gene therapy vectors is a substantial hurdle to
successful gene therapy for lung diseases.

CRISPR-Cas9 gene editing provides an unprecedented
opportunity to manipulate genes in somatic cells. Editing
technologies have demonstrated clear therapeutic promise in
non-human primates and early human clinical trials (Komor
et al., 2016; Maeder et al., 2019; Frangoul et al., 2021; Musunuru
et al., 2021; Rothgangl et al., 2021). New approaches in base editor
design enable installation of targeted, single-nucleotide mutations
without double strand breaks or the need for donor DNA
templates, an exciting advance that paves the way for
correction of single nucleotide polymorphisms that comprise
the largest class of known pathogenic genetic variants in
humans (Landrum et al., 2016; Stenson et al., 2017). Genetic
surfactant protein diseases are a particularly attractive target
given that the lung is a barrier organ amenable to
intratracheal or nasal treatment applications to selectively
reach pulmonary cell lineages (Alton et al., 2015; Alapati et al.,
2019; Kang et al., 2020).

The postnatal lung presents important limitations to airway
delivery because of the substantial mucus and surfactant barrier at
the air-epithelial interface, repulsive charge interactions at the cell
membrane, and unequal reagent distribution due to the
heterogeneity of lung disease with some areas being
overinflated and others collapsed (Kim et al., 2016; Alapati
and Morrisey, 2017; Roesch and Drumm, 2017). Furthermore,
proteinaceous debris and inflammatory fluids contribute to
additional physical barriers in diseased lungs. These barriers
limit adequate ventilation, particularly to diseased tissues,
resulting in limited delivery of inhaled therapies to needed
locations. Systemic drug delivery to diseased lung may be
affected by the displacement of blood flow away from the
injury site. In contrast, any related absence of such immune
and physical barriers in the fluid-filled fetal lungs has resulted in
systematic gene transfer to the pulmonary epithelial cells
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following prenatal viral vector delivery by intra-amniotic
injection, taking advantage of fetal breathing movements for
lung targeting (Buckley et al., 2005; Endo et al., 2010; Joyeux
et al., 2014; Alapati et al., 2019). Additionally, the fluid-filled fetal
lung supports relatively uniform targeting of most major
pulmonary epithelial cell types, including distal and proximal
lineages (Alapati et al., 2019).

Gene Product Delivery With Inert Liquids
The fluid-filled fetal lung physiology could be partially
mimicked in postnatal lungs with PFC liquids because of
their high spreading coefficients and intriguing properties
for pulmonary distribution of biological agents. The high
O2 and CO2 solubility of PFC liquids allows effective gas
exchange, even in lungs filled with fluid. PFCs also reduce
surface tension, which assists lung volume recruitment at
reduced inspiratory pressures by eliminating the air-liquid
interface. Importantly, PFC liquids effectively penetrate
collapsed regions of the lung to facilitate access to under-
ventilated regions. This is particularly important in non-
homogenous lung diseases such as surfactant protein
diseases, in which PFC liquids could simultaneously
facilitate delivery of therapies, increase gas exchange, and
improve pulmonary function. Several groups have exhibited
the superior effectiveness of PFC liquids as vehicles for
pulmonary distribution of genetic cargo (Lisby et al., 1997;
Weiss et al., 1999a; Weiss et al., 1999b; Weiss et al., 2000;
Kazzaz et al., 2011). PFC liquids instilled during the
intratracheal administration of recombinant viral vector
propelled the vector more effectively into the lung. As a
result, PFC enhanced airway and alveolar epithelial gene
expression in both normal and injured rodent lungs (Weiss
et al., 2001). Use of PFC as vehicle for delivery of genetic cargo
also resulted in earlier detection of gene expression and need
for lesser amounts of vector. In all of these studies, PFC was
administered immediately following administration of
aqueous vector because of immiscibility of PFC with
aqueous solutions. The propulsive effect of PFC resulted in
improved delivery and distribution of the vectors. PFC liquids
also transiently decreased transepithelial resistance and
increased tight junction permeability. This transient
increase in epithelial permeability enhanced access to viral
vectors and gene expression. The peak effect was observed
from 6 h to 1 day following instillation. Notably, alveolar-
capillary permeability was not affected (Weiss et al., 2003).
Many studies have also demonstrated improvement in lung
mechanics and oxygenation in research models of lung injury
following administration of PFC liquids in nebulized or
aerosolized forms (Bleyl et al., 1999; Ragaller et al., 2001;
Kandler et al., 2004; von der Hardt et al., 2004). As such,
administration of nebulized perflubron improved resulting
recombinant viral vector mediated gene expression (Beckett
et al., 2012). By adapting and optimizing PFC liquid strategies
demonstrated to be beneficial for viral vector gene delivery,
PFC liquids hold promise for enhanced airway delivery of
CRISPR systems as therapeutic strategy for a myriad of
respiratory disorders.

Considerations for Improving Drug/Gene
Delivery With Inert Liquids
The fact that aqueous solutions are not readily soluble in PFCs is
an important consideration for PFC drug delivery. Some research
projects have circumvented this barrier by relying on bulk flow
turbulent mixing (Wolfson et al., 1996; Lisby et al., 1997).
However, techniques that improve solubility of the drug or
biologic agent in PFC are advantageous to provide stability
and equivalent disbursement of the drug within the lung and
for more controlled dosing procedures. One such method is
generation of nanocrystals that can then be administered
during partial liquid ventilation. This approach was
successfully utilized by developing gentamicin/
perfluorochemical nanocrystal suspension that was delivered
using two techniques (Cullen et al., 1999). In the first
technique, called the top-fill technique, gentamicin/PFC
nanocrystal suspension was instilled through the sideport of
an endotracheal tube 29 ± 8 min after initiation of partial
liquid ventilation with a bolus of oxygenated perflubron. In
the second technique, called the slow-fill technique, the
gentamicin/PFC nanocrystal suspension was combined with
perflubron, vortexed, and delivered through the sideport of an
endotracheal tube. Thus, in the second technique, partial liquid
ventilation and gentamicin treatment were initiated
simultaneously. Both the techniques resulted in effective
distribution of gentamicin into the lung and greater
gentamicin levels per gram of dry lung tissue compared with
intravenous administration of aqueous gentamicin. The amount
of original gentamicin dose left in the lobes of the lungs adjusted
for dry weight after 4 h and was greater in the slow-fill technique
compared with the top-fill technique.

SUMMARY

When lung parenchymal disease and/or injury are present in the
lung, pulmonary ventilation and perfusion are compromised.
Ventilation can be irregular and perfusion may be inhibited by
ventilation-perfusion mismatch. The route of therapy
administration is hindered by these abnormalities, rendering
standard intravenous and aerosol/endotracheal tube delivery
ineffective in delivering therapeutic agents to the affected area.

Liquid ventilation with an inert respiratory gas solubility is a
revolutionary mode for respiratory support, as well as delivery of
drug/gene product to the respiratory system. As noted, inert
perfluorochemical liquids have low viscosity and high oxygen and
carbon dioxide capabilities (Grotberg, 2001). The physical
properties of PFC liquids improve lung mechanics and gas
exchange and condition the lung parenchymal surface for
optimal administration of drug/gene product.

The use of PFC liquid in the respiratory system enhances
ventilation and perfusion matching, boosting exposure of the
drug/gene product to the circulation, successfully reaching
required therapeutic serum drug levels (Fox et al., 1997).
Studies have demonstrated the utilization of PFCs as adjuncts
for intrapulmonary biological agent delivery both preclinically
and clinically as reported herein.
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Individuals with neuromuscular and chest wall disorders experience respiratory muscle
weakness, reduced lung volume and increases in respiratory elastance and resistance
which lead to increase in work of breathing, impaired gas exchange and respiratory
pump failure. Recently developed methods to assess respiratory muscle weakness,
mechanics and movement supplement traditionally employed spirometry and methods
to evaluate gas exchange. These include recording postural change in vital capacity,
respiratory pressures (mouth and sniff), electromyography and ultrasound evaluation of
diaphragmatic thickness and excursions. In this review, we highlight key aspects of the
pathophysiology of these conditions as they impact the patient and describe measures
to evaluate respiratory dysfunction. We discuss potential areas of physiologic
investigation in the evaluation of respiratory aspects of these disorders.

Keywords: neuromuscular disease, respiratory mechanics, dyspnea, control of ventilation, expiratory flow
limitation, diaphragmatic fatigue, gas exchange, respiratory pressures

1 INTRODUCTION

Neuromuscular and chest wall disorders impact breathing in a manner different from injury to the lungs.
Respiratory muscle weakness, reduced lung volume and increases in respiratory elastance and resistance
lead to increase in work of breathing, respiratory pump failure and impaired gas exchange (Campbell,
1965). The main objective of this review is to highlight key aspects of the pathophysiology of these
conditions as they impact the patient and describe recently developed measures to evaluate respiratory
dysfunction. We describe key aspects of normal respiratory muscle structure and function, how they are
affected in neuromuscular disorders (NMDs), current methods of functional evaluation, and recent
advances in their assessment. We finish with suggestions for potential applications of newer techniques
that may be considered for their evaluation.We focus primarily on the pathophysiology of NMDs as they
impact adults but will refer to changes in children where relevant.

2 PATHOPHYSIOLOGY

2.1 Normal Respiratory Muscle Function
The respiratory system functions to secure gas exchange between ambient air and blood to maintain
arterial blood gas pressures within certain acceptable values. It consists of the lungs, chest wall
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(including respiratory muscles), controllers of breathing, and
spinal cord and peripheral nerves that communicate with the
respiratory system. Neuromuscular and chest wall disorders
affect these structures in varied ways, depending on the age of
onset, distribution of neuro/myopathic involvement and rate of
progression of the disorder.

Respiratory muscles are classified into those with inspiratory
and expiratory function (Figure 1) (Campbell, 1965; Benditt,
2019; Welch et al., 2019). In healthy individuals during quiet
breathing, the diaphragm is the only active inspiratory muscle;
expiration is achieved by passive relaxation of the lungs. During
increased demand such as exercise, other muscles become
selectively active depending on the relative increase in
inspiratory or expiratory requirements, or both. Upper airway
dilator muscles maintain patency of the pharynx and larynx,
preventing upper airway occlusion, an event occuring frequently
with bulbar dysfunction and exacerbated during sleep-disordered
breathing.

2.2 Diaphragm
The diaphragm is a thin sheet of muscle acting as a piston,
decreasing intrathoracic pressure and drawing air into the lungs.
It enables the ribs to move up and outwards (“bucket handle”
action), increasing their transverse span (Benditt, 2019). It is
configured like an elliptical cylindroid with a dome cap. The
cylindrical portion of the diaphragm shortens during inspiration
while the dome changes little. Two components counterbalance the

FIGURE 1 | Muscles involved in normal inspiration and expiration. From Welch et al., 2019.

FIGURE 2 | Zone of apposition of the diaphragm. The muscle fibers of
the diaphragm originate from the circumference of the thoracic outlet, in
particular the lower ribs, and converge to insert into a central tendon). From
their origins on the lower ribs the fibers run mainly cranially and are
directly parallel (apposed) to the inner aspect of the lower rib cage, constituting
the “zone of apposition.” From (Troyer and Wilson, 2016).
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inspiratory action: the appositional and insertional components. The
zone of apposition is represented by the muscular portion inserted
into and parallel to posterolateral aspect of the abdominal wall
(Figure 2). The increase in abdominal pressure on the lower rib cage
constitutes the appositional portion while the action of the
diaphragm in relation to the rib cage constitutes the insertion
portion (Mead, 1979; Loring and Mead, 1982; Troyer and
Wilson, 2016). During tidal breathing in upright position the
diaphragm and intercostal muscles contribute to 70% and 30% of
the Vt, respectively (Druz and Sharp, 1981). In supine posture the
contribution of diaphragm increases to 90% (Mognoni et al., 1969;
Druz and Sharp, 1981), predisposing to orthopnea. The diaphragm
generates only 10–20% of its maximum force generation during
quiet breathing (Benditt, 2019; Welch et al., 2019).

2.3 Intercostal muscles
Intercostal muscles span the intercostal space as two thin layers.
The inner intercostal fibers run in the caudal-dorsal direction
from the sternocostal junction to near the tubercles of the ribs (De
Troyer and Estenne, 1984). Fibers of the external intercostals run
caudal-ventrally, extending from the tubercles of the ribs to the
costochondral junction.

The functions of intercostal muscles have been controversial,
particularly because they cannot be activated individually and are
inaccessible. De Troyer et al. (De Troyer and Estenne, 1984)
found that external intercostal muscles possess a substantial
inspiratory mechanical advantage that decreases in the caudal
and ventral directions until it is reversed into an expiratory
mechanical advantage. The internal intercostals primarily
exhibit an expiratory mechanical advantage (Benditt, 2019)
while the intertriginous portion of the internal (parasternal)
intercostals also possess an inspiratory advantage (De Troyer
and Estenne, 1984; Benditt, 2019). External intercostal muscles
additionally stabilize (stiffen) the rib cage, minimizing its inward
collapse during inspiration while maintaining ventilation-
perfusion relationships (Roussos).

2.4 Accessory Inspiratory Muscles
The accessory inspiratory muscles consist of the
sternocleidomastoids (SCM), scalenes, pectoralis major and
minor, and inferior fibers of serratus anterior and latissimus
dorsi. The sternocleidomastoids elevate the clavicles and first rib,
reducing pleural pressure and cause the abdomen and lateral
ribcage to expand outward (De Troyer and Estenne, 1984;
Roussos). They become active at high tidal volume generation,
such as during exercise (Roussos). Sternocleidomastoid activity
increases during respiratory distress from any cause, but has been
mainly documented in patients with chronic obstructive
pulmonary disease (COPD) (Sarkar et al., 2019): more than a
5 mm upward movement of the clavicle is associated with severe
airflow limitation, reflected by an FEV1 of 0.6 L or less (Sarkar
et al., 2019). The scalenes arise from the transverse processes of
the lower cervical vertebra and insert into the first 2 ribs. They
contract under increased stress and metabolic demand,
expanding the upper rib cage to augment tidal breathing.

Bastir et al. (Bastir et al., 2017) showed that expansion and
contraction (kinematics) of the pulmonary and diaphragmatic

parts of the thorax differed in their modes of shape change during
breathing while the degree of shape change was similar in both
compartments. The diaphragmatic part exhibited expansion
more than the pulmonary part, therefore the upper thorax has
to undergo greater deformation to expand to the same degree as
the lower thorax. This has important implications with regard to
respiratory muscles weakened at different times. For example, in
ascending paralysis, the lower rib cage is likely to exhibit inward
retraction and collapse as the intercostals weaken, while the
diaphragm and accessory neck muscles assume increasing
inspiratory activity. Thus, variability in regional lung
expansion, ventilation-perfusion matching and gas exchange
ensue depending on which thoracic muscles are impaired and
the time over which these changes evolve (Roussos).

2.5 Abdominal Muscles
Four primary abdominal muscles augment expiratory force—the
rectus abdominus, transverse abdominus, internal abdominal
oblique and external abdominal oblique (Welch et al., 2019;
Roussos). They increase intraabdominal pressure by pulling
the abdominal wall inwards and displacing the diaphragm up
into the thoracic cavity. In addition they lower the ribs, pulling
them medially thereby deflating the ribcage, key during forced
expiration such as coughing.

Abdominal muscles indirectly aid with inspiration. They
compress the lungs to below their normal end-expiratory
volume, storing elastic energy in the chest wall during
expiration, facilitating passive inspiration. This action increases
the curvature of the diaphragm and its force generation (based on
Laplace’s Law) (Roussos).

2.6 Upper Airway Dilator Muscles
Dilator muscles of the pharynx and larynx facilitate air flow by
minimizing upper airway resistance during inspiration, an
important function compromised in patients with bulbar
dysfunction, and more so in individuals with obstructive sleep
apnea (Oliven et al., 2018). Airway patency is maintained by
coordinated co-activation of inspiratory and upper airway
muscles, including the genioglossus, and preventing collapse of
pharyngeal soft tissues (Van de Graaff et al., 1984; Kobayashi
et al., 1996; Malhotra et al., 2000; Eckert et al., 2007; Fauroux and
Khirani, 2014; Oliven et al., 2018). Posterior movement of the
hyoid during inspiration can increase airway resistance and limit
airflow, especially during sleep, an action opposed by contraction
of the sternothyroid, thyrohyoid, sternohyoid, and geniohyoid
muscles to preserve upper airway patency (Van de Graaff et al.,
1984).

3 REDUCTIONS IN RESPIRATORY SYSTEM
COMPLIANCE AND VOLUMES

Patients with NMD exhibit reduced vital capacity (Fauroux and
Khirani, 2014; LoMauro and Aliverti, 2016) and respiratory (lung
+ chest wall) compliance (increase in respiratory elastance)
(Figure 3), in part due to alveolar collapse and, when present,
scoliosis. Recurrent aspiration contributes to further reduction in
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lung compliance with loss of aerated alveolar volume, as seen with
acute respiratory distress syndrome, and a serious complication
of aspiration (Zaloga, 2002). Upper airway collapse from bulbar
dysfunction further increases resistance to breathing (Benditt,
2019). Such changes in compliance contribute to increase in work
of breathing. Work of breathing is kept at the lowest level by
adjusting tidal volume and respiratory rate to compensate for the
load. Alveolar hypoventilation results from the respiratory load
exceeding the ability of the central drive and respiratory muscles
to maintain adequate gas exchange (Figure 4).

In supine posture gravitational pressure from abdominal
contents impairs tidal excursions of the diaphragm. In most
NMDs a decrease in VC upon assuming supine posture (by
25% or more) is a sensitive index of diaphragmatic weakness
(Fromageot et al., 2001; Lechtzin et al., 2002; Prigent et al., 2012;
Chen et al., 2013). In this connection, in the upright position,
application of an abdominal wrap below the lower rib margin
displaces the diaphragm cephalad, lengthening its fibers,
increasing its force generation and reducing dyspnea, a
technique widely adopted by poliomyelitis patients during the
epidemic of the 1940s and 1950s to improve activities of daily
living and quality of life (Bach, 2017). Individuals with high
cervical cord injury and others with weak abdominal musculature
also find abdominal wraps to be helpful with breathing (Goldman
et al., 1986; McCool et al., 1986; Scott et al., 1993; Berlowitz et al.,
2016). Their VC increases as diaphragmatic fibers lengthen with

increase in force generation and reversal of platypnea (Fugl-
Meyer and Grimby, 1984; Baydur et al., 2001; Terson de Paleville
et al., 2014). This finding is in line with studies in able-bodied
individuals in which maximal force generation of the
transdiaphragmatic pressure (Pdi) decreases as lung volume
increases (Beck et al., 1998) and would explain the increase in
diaphragmatic strength in the supine spinal cord-injured patient.

4 EFFECTS OF OBESITY

Similar to able-bodied people, individuals with NMD are at risk
for developing chronic diseases resulting from obesity and a
sedentary lifestyle. Aitkens et al. (Aitkens et al., 2005) found
that 55% of their NMD patients met criteria for metabolic
syndrome. Bauman et al. (Bauman et al., 1992) determined
that cardiovascular disease was the leading cause of death in
individuals with spinal cord injury and occurred at a younger age
than in able-bodied persons.

Changes in respiratory mechanics occurring in NMD are
augmented with obesity. Oxygen cost and work of breathing
are increased to overcome respiratory resistance or inertance
(Dempsey et al., 1966; Sharp et al., 1986; Kress et al., 1999).
Despite the increase in gravitational load of the chest wall in the
supine position, functional residual capacity (FRC) does not fall
below seated values in obese subjects with reduced FRC when
seated. In supine position inspiratory muscle activity maintains
dynamic hyperinflation above relaxation volume presumably
because of greater muscle length and force generation (Yap
et al., 1995).

In a retrospective study of 34 patients with Duchenne
muscular dystrophy (DMD, mean age 13.7 years) Chew et al.
(Chew et al., 2016) found that BMI was positively related to FVC,
contrary to what one might expect in obese individuals (Sharp

FIGURE 3 |Respiratory mechanics in individual with muscular dystrophy
compared to that of a healthy individual. Shown are the presumed
pressure–volume curves of the respiratory system (RS, blue curves) and its
two components, the chest wall (CW, green curves) and lung (L, red
curves), for healthy subjects (thin curves on the left panel) and patients with
muscular dystrophy (thick curves on the right panel). The maximal inspiratory
pressure (PImax) is also shown (dashed curves). Key features include 1)
decreased total lung capacity (TLC); 2) decreased compliance of chest wall
(CCW), lungs (CL) and respiratory system, a consequence of reduced thoracic
volume (slopes of the corresponding pressure–volume curves); 3) reduced
PImax; 4) decreased inspiratory capacity (IC = TLC−FRC); and 5) reduced
expiratory reserve volume (ERV = FRC−RV). Functional residual capacity
(FRC) may be reduced or even normal. Residual volume (RV) is usually
preserved. PImax represents the force of inspiratory muscles, while the
volume variations are the resulting action of their contraction. The compliance
of the respiratory system is decreased because of (A) lung atelectasis and
fibrosis, the former a consequence of hypoventilation, and the latter from
recurrent aspirations; and (B) scoliosis, induced by assymmetric involvement
of trunk muscles. Figure caption modified from (Lo Mauro and Aliverti, 2016).

FIGURE 4 | Maintenance of spontaneous ventilation depends on
balance between function of the respiratory muscles on one side and the
respiratory load, determined by respiratory mechanics, on the other. Central
respiratory drive is regulated such that work of breathing is minimized by
adjusting tidal volume and respiratory rate to compensate for the load.
Alveolar hypoventilation ensues when the respiratory load exceeds the ability
of the central drive and respiratory muscles to maintain adequate gas
exchange, often associated with respiratory muscle fatigue. From (Fauroux
and Khirani, 2014).
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et al., 1964; Thomas et al., 1989; Salome et al., 2010). The observed
association may have been the result of corticosteroid therapy
resulting in greater muscle mass and strength, although the study
did not take into account changes in muscle and fat mass, edema
or growth, also known to occur in DMD (Durnin and Rahaman,
1967; Stanbury and Graham, 1998; Pessolano et al., 2003).

5 CONTROL OF VENTILATION AND ITS
RELATION TO RESPIRATORY LOAD
COMPENSATION
The link between the nervous system and respiratory muscles
are the motor neurons located in the brain stem. The ventral
medulla regulates exhalation while the dorsal medulla is
responsible for inhalation. Communication between the two
parts of the medulla is through integration of input from
peripheral and central respiratory muscles to generate a
cyclical respiratory rhythm. The pontine group allows for
regulation of the medullary signals to ensure smooth
inspiration and expiration transition. Central chemoreceptors
located within the medulla and retrotrapezoid nucleus to sense
pH changes related to carbon dioxide concentrations in the
cerebrospinal fluid (Panitch, 2009). Peripheral chemoreceptors
(carotid and aortic bodies) respond primarily to changes in
arterial oxygen tension.

As early as the poliomyelitis epidemic (Whittenberger and
Sarnoff, 1950; Plum and Swanson, 1958), changes in central
control of ventilation have been described in various NMDs
(Kilburn et al., 1959; Carroll et al., 1976; Rosenow and Engel,
1978a; Borel et al., 1993; Rialp et al., 2013). A blunting of the
ventilatory response to hypercapnia implies a decrease in
chemoreceptor sensitivity; however, in the presence of diffuse
muscle weakness and abnormal respiratory mechanics,
determining the exact contribution of the medullary
motoneurons to a decrease in ventilatory response can be a
challenge (Borel et al., 1993; Rialp et al., 2013). Measurement
of occlusion pressure (P0.1) provides a more reliable assessment of
central drive as it is not influenced by change in lung volume and
flow resistance (Whitelaw et al., 1975). Indeed, some studies have
demonstrated normal or increased P0.1 (McCool et al., 1988;
Baydur, 1991), indicating that central drive is intact. In many
cases, sleep-disordered breathing contributes to nocturnal
hypoventilation even as the patient is able to maintain normal
daytime gas exchange (Aboussouan, 2015; Fermin et al., 2016).
An inspiratory vital capacity of less than 60% predicts sleep
disordered breathing in children and adolescents with NMD
[59 Fermin]. Overnight polysomnography confirms presence
of sleep-disordered breathing. Sleep abnormalities of central
origin can be seen in myotonic dystrophy, which may be
separate from the muscular deficit. We refer the reader to
excellent reviews on sleep-disordered breathing for in-depth
discussions of their diagnosis and management (Aboussouan,
2015; Fermin et al., 2016).

Axen (Axen, 1982) described variable changes in
ventilatory control (tidal volume and inspiratory duration)
in cervical cord-injured men in response to elastic and resistive

loads, assuming identical respiratory muscle pressure (Pmus)
wave forms in the unloaded and loaded states. Afferent
pathways from the mouth, lung, and/or diaphragm
modulated the phrenic discharge during the first loaded
breath. In chest wall disorders such as kyphoscoliosis (KS),
respiratory elastance and resistance are increased, and
breathing pattern is rapid and shallow, resulting in defense
of tidal volume (Vt) in the face of inspiratory resistive loading.
Baydur and Carlson (Baydur and Carlson, 1996) computed
passive elastance (Ers) and active elastance and resistance (E′rs
and R′rs, respectively) in anesthetized patients according to
previously described techniques (Behrakis et al., 1983; Baydur
et al., 1989). The difference between passive and active
respiratory elastance represents changes in thoracic
mechanical properties (stiffening) related to chest wall
distortion during added loads. With resistive loading,
driving pressure and inspiratory time were prolonged
compared to healthy subjects, while percent reduction in Vt
and minute ventilation was less in KS. Increased intrinsic
impedance, Pmus, and differences in changes in neural
timing in anesthetized kyphoscoliotics contributed to
modestly greater Vt defense, compared to that of
anesthetized subjects free of cardiorespiratory disease.

5.1 Elastic Load Compensation
If someone were to hold a 20-lb weight with arm outstretched
and had a 1-lb weight added to the load, they are not likely to
feel the added weight as afferent sensory receptors adapt to the
high muscle tension; by contrast, they are more likely to feel
the addition of a 10-lb weight which noticeably adds to the
tension. A similar analogy can be applied in individuals with
increased elastic respiratory loads. To evaluate the effects of
abnormal respiratory mechanics and neuromuscular drive on
the various components of elastic load compensation, Baydur
et al. (Baydur et al., 1989) studied anesthetized patients with
KS whose mean passive and active respiratory elastance, active
respiratory resistance, and peak inspiratory occlusion pressure
were, respectively, 89%, 84%, 100%, and 37% greater, and
inspiratory duration (Ti) 13% less than corresponding
values in anesthetized control subjects. The increased
intrinsic elastance and resistance and decreased Ti
contributed to Vt defense in KS in the absence of vagal
modulation. Characteristics of elastic load compensation in
anesthetized KS patients are nevertheless similar to those of
anesthetized normal subjects.

5.2 Post-Inspiratory Diaphragmatic Braking
Activity
The diaphragm has been shown to exhibit post-inspiratory
activity during passive expiration (pliometric activity) (Muller
et al., 1979; Muller et al., 1980; Zin et al., 1983; Baydur, 1992;
Easton et al., 1999) resulting in preservation of lung volume. Such
activity may be of benefit in patients with chest wall disorders in
preventing airway collapse (Muller et al., 1980; Baydur, 1992).
Absence of pliometric activity may result in reduction in lung
volume and atelectasis.
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6 DYSPNEA IN PATIENTS WITH
NEUROMUSCULAR DISEASE: CONCEPT
OF AIR HUNGER VS. PERCEPTION OF
RESPIRATORY WORK AND EFFORT

The sensation of an urge to breathe is referred to as “air hunger”,
for example, when it develops during a long breath hold (Banzett
et al., 2021) it occurs when urgent homeostatic needs to maintain
gas exchange are not met. Stimuli that increase air hunger include
hypercapnia, hypoxia, exercise, and acidosis; tidal expansion of
the lungs (spontaneous or assisted) reduces air hunger. As such, it
is not affected by respiratory muscle activity and is thought to be
regulated by central chemoreceptors in the brain stem (Banzett
et al., 1990). By contrast, when respiratory muscle fatigue or an
increase in breathing load (such as occurs with pneumonia) calls
for increase in muscle contraction, a sensation of increased work
or effort is described; it likely arises from respiratory muscle
afferents or from the brainstem or cerebral cortex.

A striking example of these events is that of a chronically over-
ventilated muscular dystrophy patient whose PaCO2 has gradually
decreased to the 20–30mm Hg range (a common issue as patients
feels better with sensation of increase in chest wall expansion with
increase in Vt. Patients receiving nocturnal ventilation often
maintain a lower PCO2 during the following day. Possible
explanations include: 1) Reducing daytime work of breathing by
resting respiratory muscles at night, and 2) CO2 elimination at night
promotes bicarbonate excretion with a lower set point for ventilatory
control as metabolic alkalosis is corrected. Allowing the PCO2 to
increase by intermittently reducing the delivered Vt (even by
30–50ml at a time) or respiratory rate become uncomfortable for
the patient, increasing demand that ventilator settings be restored to
their original state (personal observation). These symptoms suggest a
re-set of the threshold for CO2 sensitivity such that even a slight rise
in PCO2 induces air hunger despite (or because of) the chronic
hypocapnia. Coughing induced by airway irritation can aggravate
the sensation of air hunger andmight be vagallymediated but central
mechanisms cannot be ruled out (Nishino et al., 2008).

By contrast, individuals will describe a sensation of feeling
“hard to breathe” when experiencing a respiratory infection
because of alterations in respiratory compliance and resistance
(with little or no change in blood gases). Changing ventilator
settings by increasing the Vt or respiratory rate relieves their
symptoms, but at the cost of inducing a chronic respiratory
alkalosis. The resulting reduction in plasma bicarbonate stores
increases vulnerability to metabolic acidosis resulting from sepsis,
shock and other causes.

7 RESPIRATORY MUSCLE FATIGUE

Respiratory muscle fatigue is defined by loss in capacity for
developing force against a constant load (Roussos and
Koutsoukou, 2003). The higher the diaphragmatic force
generation is as a function of maximal pressure the diaphragm
can sustain, the greater the chance the diaphragm is likely to
fatigue. Multiple factors contribute depending on how the NMD

affects the central nervous system, transmission of signals
between the CNS and muscle (central fatigue) or even the
muscle itself (peripheral fatigue). Central muscle fatigue results
from a deficit in the capacity to recruit all muscle units, while
peripheral fatigue is due to a failure of muscle fibers to respond
maximally during full activation (Edwards, 1979). Weakening of
respiratory muscles produces paradoxical breathing
(asynchronous movement) between abdomen and ribcage
(Troyer and Wilson, 2016). As the diaphragm fatigues,
inspiratory action assumed by the accessory muscles of the
neck results in inward retraction of the ribcage and outward
displacement of the abdominal wall (Benditt, 2019).

Measurement of transdiaphragmatic pressure (Pdi) (using
esophageal and gastric balloons) is a more precise means of
recording diaphragmatic force generation (Pdi) and endurance
(Roussos et al., 1979a; Bellemare and Grassino, 1982). It is,
however, invasive and requires coaching for naïve individuals,
and therefore primarily used in research. The individual is asked
to breathe through a series of inspiratory flow resistors to achieve
a target pressure on an oscilloscope or computer screen. From
these measurements, the tension-time index [TTdi = (Pdi/
Pdimax) (Ti/Ttot), where Ti is the inspiratory time and Ttot is
the duration of respiratory cycle] can be computed. TTdi values
of >0.18 are associated with respiratory muscle fatigue and
reduced endurance (Roussos et al., 1979a; Bellemare and
Grassino, 1982). The technique is capable of producing
inspiratory pressures generated by rib cage muscles in the
absence of diaphragmatic contribution. A potential clinical
application of Pdi in individuals with NMD is to determine
which inspiratory muscles contribute to respiratory
insufficiency and cough impairment (as a result of loss of lung
volume and elastic recoil): Alternating amplitude of Pdi and
gastric pressure (Pga) indicates recruitment and derecruitment of
different groups of inspiratory muscles (Roussos et al., 1979a).

A non-invasive alternative is to measure the tension-time
index of the inspiratory muscles as a whole (TTlim) during
mouth breathing without the use of esophageal and gastric
balloons (Ramonatxo et al., 1995). An increase in mean
inspiratory pressure in relation to the maximal inspiratory
pressure produces an increase in TTlim. Another noninvasive
tool analogous to the TTdi is the breathing intolerance index
(BIT), used to assess the ability of patients with NMD and other
conditions to wean off ventilation (Koga et al., 2206). It makes use
of the relation of breathing pattern to vital capacity (VC) [(Vt/
VC) (Ti/Ttot)]. In this analysis, lung volumes replace respiratory
muscle pressures so that the ratios comprising BIT can be affected
by lung and chest wall mechanics in addition to respiratory
muscle strength. Later, Baydur and Chen (Baydur and Chen,
2013) found BIT in patients with obesity (a chest wall disorder)
tended to be higher than in healthy controls in contrast to
patients with chronic obstructive pulmonary disease.

Sarmento and colleagues (Sarmento et al., 2021) found that 1)
inspiratory rib cage muscles (sternocleidomastoids, scalenes and
parasternals) differed in their responses to fatigue and recovery,
as reflected by changes in spectral surface EMG variables, 2) loss of
mechanical power in rib cage muscles resulted from reduced
shortening velocity, and 3) relaxation properties recovered better
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from fatigue than do contractile characteristics. Recovery of fatigue
varied, with median frequency returning to pre-fatigue values faster
than the high/low (H/L) frequency spectrum suggesting that
mechanisms of fatigue differed depending on the specific
inspiratory muscle. Furthermore, changes in relaxation rates were
strongly associated with the H/L frequency spectrum and predicted
inspiratory ribcagemuscle recovery. Again, the rate of progression of
respiratory impairment (or stabilization) will vary depending on
which groups of muscles are involved and their characteristics of
fatigability. In addition to twitch characteristics assessed by EMG
(Bellemare and Roussos, 1995), muscle fatigue characteristicsmay be
presaged by periodic analysis of their H/L frequency spectrum.

8 PHYSIOLOGY OF COUGH:
NEUROMECHANICAL COUPLING

Patients with NMD experience difficulty clearing airway
secretions due to ineffective cough (Perrin et al., 2204; Yang
and Finkel, 2010; Sahni and Wolfe, 2018; Allen, 2010). For an
effective cough, one needs to take a deep breath, while the glottis
closes to increase intrathoracic pressure, followed by its opening
explosively in conjunction with abdominal contraction to expel
air. Peak cough flows below 160 L/min are considered ineffective
(Bach, 2017). Glottic and bulbar dysfunction lead to
accumulation of saliva in the valleculae and pyriform sinuses
(Silbergleit et al., 1991; Sonies and Dalakas, 1991). As a result,
ineffective airway clearance predispose to recurrent pneumonia a
major cause of mortality and morbidity (Chatwin et al., 2018).

The cough reflex is chiefly mediated by vagal afferent nerve
fibers innervating the larynx, large airways and parenchyma; its
components comprise both myelinated (rapidly and slowly
adapting receptors) and unmyelinated rapidly adapting and
noniceptive pulmonary fiber (C-fiber) receptors (Widdicombe,
1954; Paintal et al., 1986). The latter fibers assume a major role in
cough and related reflexes. Deep inspiration stimulates airway
irritant receptors, therefore an impaired inspiratory effort will
diminish triggers to cough as well as the effort. Other neural
pathways regulating the cough reflex include the
glossopharyngeal and phrenic nerves which have many
sensory as well as motor fibers. Efferent pathways include
(again) the 1) vagus (motor nerve for the muscles of the
pharynx and larynx); 2) the spinal motor nerves of which the
thoracic supply the intercostal muscles and the lumbar nerves the
abdominal muscles; and 3) the trigeminal, facial, hypoglossal and
accessory nerves innervating the upper airway and accessory
muscles, called into play during cough (Bouros and Green, 1971).

Patients with spinal cord injury exhibit respiratory muscle
dysfunction to the extent reflected by the level of cord injury
(Ledsome and Sharp, 1981; Fugl-Meyer and Grimby, 1984;
Baydur et al., 2001). High cord injuries leave intact residual
action by the diaphragm and accessory muscles with cough
generation dependent on high lung elastic recoil. Even with such
injuries, however, active expiration in quadriplegic individuals can be
augmented by contraction of the clavicular portion of the pectoralis
major (innervated by the 5th through 7th cervical segments) which
displaces the manubrium and upper ribs downward, contracting the

upper rib cage (De Troyer et al., 1986), an important consideration
for cough generation. By contrast, the lower rib cage expanded, at
least in early inspiration, as a result of increase in abdominal
pressure. Estenne et al. (Estenne et al., 1994) later showed that
despite weak expiratory muscles, quadriplegic individuals were able
to enhance their cough ability as a result of dynamic compression of
tracheal and large airways enabling marked increase in expiratory
flow, even though peak pleural pressures were 74–92% less than in
normal subjects.

9 RESPIRATORY FAILURE

Respiratory failure develops from impairment of ventilation and
gas exchange due to lung or chest wall dysfunction. Increases in
respiratory elastance and resistance due to lung volume reduction
and thoracic cage distortion lead to increase in work of breathing
and respiratory muscle fatigue. Typically, arterial oxygen tensions
lower than 8.0 kPa and arterial carbon dioxide tensions above
6.0 kPa define respiratory failure. These values should serve as
guides to identifying respiratory failure, not as rigid cut-offs
(Roussos and Koutsoukou, 2003; Welch et al., 2019).

There are two types of respiratory failure—hypoxemia with
and without hypercapnia (Roussos and Koutsoukou, 2003). The
former is a result of inadequate ventilation due to reduced neural
drive and muscular power as occurs with progressive NMDs.
Hypercapnic failure reflects increase in physiological dead space,
manifested during rapid, shallowing breathing due to abnormal
chest wall mechanics (Welch et al., 2019). Hypoxemia without
hypercapnia results from impaired oxygen transfer, a
consequence of atelectasis and chest wall distortion (Campbell,
1965;Welch et al., 2019). Microatelectasis results in an increase in
the alveolar-arterial oxygen difference (AaDO2), reflected by a
normal PaO2, sometimes in conjunction with a reduced PaCO2

while breathing room air. In individuals with sleep apnea, loss of
upper airway muscle tone and collapse coupled with weakening
thoracic cage muscles lead to impaired gas exchange, exaggerated
during REM sleep (Benditt, 2019). As sleep disordered breathing
worsens, hypercapnia persists throughout day and night.

Acute decompensation may result from aspiration due to bulbar
dysfunction-induced dysphagia or gastroesophageal reflux (Allen,
2010; Wijdicks, 2017; Welch et al., 2019), requiring assisted
ventilation. In this connection, long-term ventilatory support can
result in further weakening of the diaphragm due to muscle atrophy
(Roussos et al., 1979b; Jaber et al., 2011) and passive increase in end-
expiratory volume by application of positive end-expiratory pressure
(PEEP) (Jansen et al., 2021).

10 EVALUATION OF RESPIRATORY
MUSCLE FUNCTION AND PHYSIOLOGIC
CHANGES IN NMD
10.1 Electrophysiologic Techniques
Relating the electrical activity of the diaphragm to its force
generation during quiet breathing or maximal respiratory
efforts is used to assess diaphragmatic weakness and its
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propensity to fatigue under conditions of increased load
(Bellemare and Grassino, 1982; Bellemare and Roussos, 1995;
Sarmento et al., 2021). Assessing the ratio of diaphragm
compound muscle action potential (CMAP) amplitude to
transdiaphragmatic twitch pressure is also used to distinguish
between defects in neuromuscular transmission defects (when
both quantities decrease) and defects in muscle contractility
(when twitch pressure is decreased in presence of a normal
CMAP) (Aldrich et al., 1986).

10.2 Respiratory Pressures
Traditionally, respiratory muscle strength has been measured with
maximal inspiratory and expiratory mouth pressures (Black and
Hyatt, 1971; Leech et al., 1983; Vincken et al., 1987). Padkao and
Boonla (Padkao and Boonla, 2020) showed that Pimax and Pemax
were significantly related to middle and lower thoracic wall
expansion, suggesting that respiratory muscle strength was more
closely associated with chest wall expansion and diaphragmatic
descent than with expiratory muscle strength. If thoracic cage
muscles are weakened by disease, rib cage expansion is impaired
and the rib cage fails to expand, these maneuvers are, however,
difficult to perform by patients with weak muscles, as they require
cooperation and coordination, Pimax (MIP) and Pemax (MEP) are
ideally generated at residual volume and total capacity, respectively,
and need to be maintained for 4 s, a challenge even for able-bodied
individuals (Aldrich and Spiro, 1995).

As alluded to earlier, respiratory impairment depends on the
pattern of muscle and/or nerve involvement and on the rate of
progression of disease. Respiratory muscles are often involved in
patients with proximal limb weakness, as in certain myopathies
(Rosenow and Engel, 1978b; Braun et al., 1983; Mellies et al.,
2005; Bi et al., 2021). Braun et al. (Braun et al., 1983) studied 53
patients with proximal myopathy (16 with lung disease).
Hypercapnia was inversely related to VC (which, however,
could be as high as 55% predicted), as well as to respiratory
muscle strength (RMS, average of Pimax and Pemax). The latter
relationship (an occlusive maneuver devoid of airflow and with
negligible change in lung volume) reflected respiratory muscle
weakness more than a decrease in VC which is affected by lung
disease. Carbon dioxide retention did not occur until RMS was
less than 50% predicted (Braun et al., 1983).

More recently, measurement of sniff nasal inspiratory pressures
(SNIP) have been found to be better tolerated and reproducible (Ti
and Fit Ting, 1999; Sarmento et al., 2021). Nasal pressure is
measured in an occluded nostril as the patient sniffs through the
opposite nasal passage and is closely associated with and easier to
perform than Pimax (Laroche et al., 1988; Ti and Fit Ting, 1999) and
FVC (Nicot et al., 2006)measurements. In a study of 61 patients with
NMD and COPD, recording of esophageal pressure during a
maximal sniff was found to be useful in assessing inspiratory
muscle strength and easier to perform than the MIP (Sarmento
et al., 2021). Many patients had normal sniff Pes despite low MIPs,
suggesting that performingMIP was challenging because of dyspnea
and weakness of facial muscles with difficulty in maintaining static
pressures.

Transdiaphragmatic pressure (Pdi) can be recorded while
breathing spontaneously or during maximal inspiratory

maneuvers, such as a sniff (Perrin et al., 2204; Yang and
Finkel, 2010). It can also be measured during magnetic
stimulation of the phrenic nerve and has the advantage of
greater accuracy for measuring diaphragm strength, especially
in individuals with airflow limitation in whom airway opening
pressure or SNIP would not accurately reflect esophageal pressure
because of reduced lung elastic recoil and gas decompression.
Measurement of Pdi and its role in the evaluation of
diaphragmatic fatigue is described in detail in section 7.

10.3 Spirometry and Lung Volumes
Spirometry is essential in the diagnosis and management of
pulmonary diseases and can be performed in children as
young as 6 years old (Table 1) (Steier et al., 2007; Sharma,
2009; Caruso et al., 2015; Chiang et al., 2018). It facilitates
assessment of functional capacity, following the course of
illness, and response to management.

The forced expiratory volume in one second (FEV1) and FVCwill
show different rates of decline, depending on the course of illness.
However, the ratio FEV1/FVC remains within normal range
(80–100%). Using FEV1, respiratory health can be graded from
mild to very severe: mild >70% predicted; moderate 60–69%;
moderately severe 50–59%; severe ranging 35–49%; and very
severe <35% (Sahni and Wolfe, 2018; Allen, 2010). Table 1 lists
tests useful for evaluating respiratory function in patients with NMD
and chest wall disorders. In a study of 60 patients with Duchenne
muscular dystrophy, FVC and peak expiratory flow (PEF or Pemax)
decreased linearly by 5 percent per year (Mayer et al., 2015). An FVC
of <40% predicted was associated with a PaCO2 ≥45mm Hg and a
base excess of >4mmol/L. Some have reported the value of
determining the plateau VC which correlates with severity of
Duchenne dystrophy (DMD) and risk of developing severe
scoliosis (Welch et al., 2019). Following the VC plateau may
indicate the best point to initiate air stacking to maximum lung
insufflations (Benditt, 2019). Inspiratorymuscle weakness is detected
by a 20% or more reduction in VC upon assuming supine posture
(Fromageot et al., 2001; Lechtzin et al., 2002; Prigent et al., 2012;
Chen et al., 2013) and indicates need for assisted ventilation (Chen
et al., 2013) (Figure 5). The reduction in lung volume also results in a
decrease in maximal transdiaphragmatic sniff pressure (Pdimax
sniff) (Figure 6). In general, assisted ventilation is indicated for
patients whose VC has decreased below 1 L or 30% predicted (Steier
et al., 2007; Sharma, 2009; Mayer et al., 2015; Chiang et al., 2018).
Decline in FVC can be variable in patients with amyotrophic lateral
sclerosis (ALS) (Ackrivo et al., 2019a), indicating phenotypes with
differing prognostic implications (Elamin et al., 2015; Ackrivo et al.,
2019b) (Figure 7).

Lung volume subdivisions can be measured using body
plethysmography, gas dilution, or washout techniques
(Table 1). If airflow limitation is suspected, plethysmography
is the preferred method to avoid underestimating volume of
trapped gas (Sharma, 2009; Mayer et al., 2015; Chiang et al.,
2018). The method distinguishes air trapping from effects of
obesity; both conditions result in reduction of expiratory reserve
volume, while inspiratory capacity is reduced with air trapping
but is increased with obesity. In advanced stages, preferential
weakening of abdominal muscles with decrease in maximal
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expiratory pressure (Pemax) may explain the preservation or
increase in residual volume. Spasticity of rib cage muscles
prevents outward recoil of the chest wall from being reduced
further helping to maintain FRC and preserve residual volume
(RV). Patients may experience difficulty in performing panting
maneuvers in the body box because of bulbar weakness. Excessive
upper airway and cheek compliance may also result in
underestimation of FRC and RV (Jaeger, 1982).

10.4 Measurement of Flow Limitation and
Airway Resistance--Old and New
Techniques
The presence of intrathoracic airflow limitation has been
determined using the negative expiratory pressure (NEP)

technique (Figure 8) in patients with NMDs (Baydur,
2013). It avoids technical challenges posed by spirometry
such as lung history and inhomogeneity, forced expiratory
maneuvers, and the speed of forced expiration, all influenced
by viscoelastic properties of the lung and chest wall. NEP
consists of comparing the tidal expiratory flow during
application of gentle negative pressure (about −5 cm H2O)
at the onset of expiration to the immediately preceding tidal
expiratory flow. Expiratory flow should increase in healthy
individuals while it changes little or not all in airflow
limitation. Obese individuals or those with weakened bulbar
musculature may exhibit transient decreases in tidal expiratory
flow as upper airway soft tissues appose each other during
application of NEP (Figure 8C). Such patients may be at risk
for obstructive apneas during sleep as the upper airway may
collapse during inspiratory efforts.

The forced oscillation technique (FOT) or impulse
oscillometry (IOS) until recently was employed in infants
and young children as a useful alternative to spirometry to
assess airway mechanics. More recently, it has been
increasingly used to assess respiratory resistance and
impedance in older individuals with obstructive and
restrictive disorders (Lappas et al., 2016). Even fewer
studies have evaluated respiratory mechanics in individuals
with neuromuscular disorders. Impedance measurements can
be easily obtained as they require little cooperation and no
forced respiratory maneuvers. In one study normal respiratory
impedance (Xrs) characteristics were found, while respiratory
resistance (Rrs) was somewhat higher than those found in
normal subjects (Wesseling et al., 1992). Van Noord et al. (Van
Noord et al., 1991) found that patients with kyphoscoliosis
(TLC 41% based on arm span) exhibited an increase in total
respiratory resistance and elastance.

TABLE 1 | Respiratory function tests commonly used to evaluate individuals with
neuromuscular disorders.

Lung Volumes
Total lung capacity (TLC)
Residual volume (RV)

Spirometry
Peak flow rate (PFR)
Cough peak flow (CPF)
Forced vital capacity (FVC) (preferably in seated and supine positions)
Forced expiratory volume in 1 s (FEV1)
Maximum insufflation capacity (MIC)

Respiratory muscle strength
Maximal expiratory pressure (MEP) (preferably in seated and supine positions)
Maximal inspiratory pressure (MIP) (preferably in seated and supine positions)
Sniff test (SNIP)

Gas exchange
Oxyhemoglobin saturation by pulse oximetry
Capnography: end-tidal CO2 (PetCO2) measurement
Arterial or venous blood gas profile

Modified from (Sharma, 2009).

FIGURE 5 | Relationship between % change in forced vital capacity
(FVC) from seated (sit) to supine (sup) posture and baseline FVC in seated
position in patients with neuromuscular disease (FVCsit, % predicted). Black
diamonds, spontaneous breathing (SB); grey squares, noninvasive
ventilation (NIV). Patients with greater than 20% decrease in FVC when supine
required NIV. From (Chen et al., 2013).

FIGURE 6 | Relation between transdiaphragmatic sniff pressure (Pdi
sniff) and supine fall in VC. Open symbols indicate patients with paradoxical
diaphragmatic motion and closed symbols indicate patients without
paradoxical diaphragmatic motion. From (Fromageot et al., 2001).
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10.5 Assessment of Control of Ventilation
The measurement of ventilatory drive by occlusion pressure
recorded 100 msec after the onset of inspiratory effort (P0.1) is
a noninvasive method that assesses central drive and has been
measured in NMD(Whitelaw et al., 1975; Baydur, 1991).
Several factors, however, can alter the relation between P0.
1 and central drive, including presence of dynamic
hyperinflation, expiratory muscle activity, chest wall
distortion, respiratory muscle weakness, neuromuscular
junction blockade, and the shape of the inspiratory
pressure waveform (Whitelaw and Derenne, 1993). Central
respiratory drive is blunted in patients with hypercapnic
respiratory failure associated with NMD. In one study,
NMD patients exhibited a hypercapnic drive response of
only 30% that of normal subjects (García Río et al., 1994).
The difference could be attributed to the reduced sensitivity of
the chemoreceptors to chemical CO2.

10.6 Peak Expiratory and Cough Flows
Peak expiratory flow and cough flow (PEF and PCF, respectively)
are used to assess ability to cough and clear airway secretions.
Values of PEF less than 160 L/min are associated with increased
risk for retained secretions, atelectasis and pneumonia (Bach and
Saporito, 1996; Bach et al., 1997; Bach, 2017). Suarez and
colleagues (Suárez et al., 2002) found differences between PEF
and PCF to be 46%, 43% and 11% in normal subjects, patients
with DMD and those with ALS, respectively, the last finding
because of poor glottic closure. Determination of PEF and PCF
can be applied to estimate respiratory muscle strength if maximal
static mouth pressures cannot be performed (Suárez et al., 2002).
Patients with PCF below 160 L/min benefit from mechanical in-
exsufflation (Bach and Saporito, 1996; Bach et al., 1997; Polkey
and Moxham, 2001; Suárez et al., 2002; Miller and Mayer, 2021).

FIGURE 7 | The Penn Comprehensive ALS Center cohort trajectories of
forced vital capacity (FVC) percent predicted with 95% confidence intervals.
Three groups of patients with amyotrophic lateral sclerosis (ALS) are indicated
by slow progressors (green), rapid progressors (red), and stable low
(blue). Percentages represent proportion of the cohort with the corresponding
group number as the highest predicted posterior probability. From (Ackrivo
et al., 2019a).

FIGURE 8 | Technique of negative expiratory pressure (NEP) (A)
Equipment setup for assessment of expiratory flow limitation during
spontaneous breathing. NEP is applied at beginning of tidal expirartion (B)
Tracings of airway pressure, volume and flow during quiet breathing in a
healthy supine individual. Application of negative expiratory pressure at the
onset of expiration is indicated by NEP (C) Tracings of airway pressure,
volume and flow during quiet breathing in a supine individual with amyotrophic
lateral sclerosis. Application of negative expiratory pressure at the onset of
expiration is indicated by NEP. In C, the “dip” in expiratory flow during NEP
indicates upper airway narrowing, suggestive of bulbar impairment. From
(Baydur, 2013).
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10.7 Dyspnea and Sleep Quality
The reporting of dyspnea in patients with NMDmay be related to
sleep deprivation. Rault et al. (Rault et al., 2020) recently reported
that a single night of sleep deprivation in a cohort of 20 healthy
subjects reduced respiratory endurance during an inspiratory
loading trial, accompanied by an increased sensation of
dyspnea. More recently, using a questionnaire survey, the
same group showed that the same individuals described a
sensation of smothering more often than in a non-sleep-
deprived control group (Rault et al., 2021). Thus, sleep
deprivation modifies the sensation of dyspnea. While similar
studies have yet to be done in individuals with NMD, increased
respiratory elastance, and resistance, sleep deprivation should
result in an increased sensation of breathlessness.

10.8 Oximetry and Capnography
Oximetry and capnography are useful to monitor gas exchange
during studies of sleep disordered breathing. In patients with
OSA (a chest wall disorder), oximetry may exhibit a sawtooth
pattern during oxygen desaturation (Won et al., 2016) which
represents cyclical variation in chemoreceptor response to
fluctuations in ventilation or cardiac output (slow circulation
time). Oximetry is more reliable when used in junction with
capnography. While not as reliable as arterial blood gas analysis
(because of changes in pH and CO2), the latter is invasive and
increases work for the technologist and/or nursing. Capnography
records CO2 tensions continuously using an end-tidal sensor or
transcutaneous sensor. Disadvantages include expense, need for
repeated calibration and susceptibility to external influences. A
study simultaneously recording end-tidal and transcutaneous
CO2 found that transcutaneous capnometry registered higher
values of CO2 than the end-tidal method (Won et al., 2016).
Using only end-tidal capnometry, the patient would not have
been considered hypercapnic and thereby not offered assisted
ventilation. Differences in recorded values should be considered
when deciding to give a patient end-tidal or transcutaneous
capnometry.

11 RECENT ANDFUTUREDEVELOPMENTS

A number of recent molecular and physiologic approaches have
demonstrated potential roles in further evaluation of respiratory
function and treatment in NMD. Their continued role in clinical
evaluation and management of neuromuscular-respiratory issues
remains to be determined with more extended trials and clinical
experience.

11.1 Gene Therapy
Recent developments in gene therapy have markedly improved
care for NMDs (Markham et al., 2015; Harada et al., 2020;
Oechsel and Cartwright, 2021; Paul et al., 2021). For instance,
a new therapy called Poloxamer 188 NF improved respiratory
function and measurements in dystrophic mice by targeting
cardiomyocytes and improving intracellular calcium
concentrations (Vincken et al., 1987). Plethysmographic
measurements of dystrophic mice were similar to wild-type

mice showing that the effects of muscular dystrophy could be
minimized with the Poloxamer. Nusinersen, and onasemnogene
aveparvovec (AVCS-101), a gene replacement therapy, have
resulted in promising improvements in respiratory function
and quality of life (Harada et al., 2020; Oechsel and
Cartwright, 2021; Paul et al., 2021).

11.2 Electrical Stimulation of Muscles
In ALS reinnervation of denervated muscle fibers is crucial for
preserving motor function as a means of compensating for
motor neuron degeneration in long-term survivors.
Diaphragm pacing has been advocated as a means of
preserving respiratory muscle function, or at least, slowing
its deterioration, but remains controversial (DiPALS, writing
committee, DiPALS, Study Group Collaborators, 2015;
Bermejo et al., 2016). Its mechanism was originally thought
to be related to an increase in muscle fiber tone, thereby
increasing its contractile properties.

Electrical stimulation of motor nerves leads to a reverse
recruitment of motor units, in which larger fibers with less
input resistance are activated before the smaller fibers. Recent
studies in ALS have shown the opposite effect with an accelerated
deterioration in respiratory function and increase in mortality
(Bermejo et al., 2016). The RespistimALS group (Bermejo et al.,
2016) reported that pacing in individuals with ALS failed to
exhibit, over time, a significant increase in maximal amplitude of
motor unit potentials (MUPs). These patients eventually required
noninvasive ventilation and experienced decreased survival. By
contrast, those who did not receive muscle stimulation showed a
progressive increase in MUPs over time. Because efficient
reinnervation leads to motor unit enlargement with an
increase in muscle fiber content of surviving units, the authors
concluded that the absence of increase in MUP amplitude over
time in the active stimulation group supported the concept of a
pacing-induced defective reinnervation.

In contrast to directly stimulating the muscle, the phrenic
nerve can also be stimulated in cases of muscle deterioration to
strengthen the diaphragm. However, the efficacy of this technique
is disputed by some. In a study assessing the effects of phrenic
nerve stimulation in 13 patients with myasthenia gravis, Mier
et al. (Mier et al., 1992) demonstrated absence of change in
diaphragmatic action potentials and even a reduction in 5 of the
patients’ action potentials. A study testing phrenic nerve
stimulation in humans with ALS was terminated early because
of an excessive mortality rate and complications such as
pneumothorax and acute respiratory failure occurring in the
test group (Gonzalez-Bermejo et al., 2016).

11.3 Magnetic Stimulation of Respiratory
Muscles
Contrary to electrical stimulation, magnetic stimulation is more
of a diagnostic tool. Through different positions and placements
of electrodes, the phrenic nerve can be stimulated by cervical,
anterior pre-sternal and unilateral/bilateral anterolateral
magnetic stimulation, and CMAP can be recorded (Man et al.,
2004). These assessments indicate which parts of the diaphragm
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would benefit from rehabilitation and prognosticate the muscle’s
recovery.

11.4 Imaging of Respiratory Muscles
Ultrasound imaging of the diaphragm is a non-invasive means of
measuring diaphragm thickness and inspiratory thickening
because an increase in diaphragm thickness leads to
inspiratory strength (Roussos et al., 1979b; Boussuges et al.,
2021). When applied by experienced users it provides
reproducible results, with good inter- and intra-observer
reliability (Cohn et al., 1997; Schepens et al., 2015). The
thickness of the diaphragm can be determined in more than
85% of measurements, with a low coefficient of variation
(0.09–0.14). Goligher et al. (Roussos et al., 1979b) assessed the
validity of ultrasound in assessing diaphragm thickness and
function in patients on mechanical ventilation. They found
that only the right hemidiaphragm thickness is able to be
measured, not the left, to help track the patient’s status while
on mechanical ventilation unless the patent had a unilateral
injury. Thickness of the right hemidiaphragm is also related to
the degree of contractile activation of muscle during ventilation,
so this technique can be used to assess diaphragm atrophy
(Roussos et al., 1979b). The technique has the potential to be
applied in NMD to assess changes in diaphragm thickness and
motion over time, but requires skill and experience. It would be
best applied in individuals who have not received assisted
ventilation in order to monitor any progressive muscle loss
from the NMD itself.

More recently kinematic analysis of the diaphragm from
three-dimensional magnetic resonance images has been able to
assess diaphragm mechanics (Mogalle et al., 2016) and is more
sensitive than lung function testing in detecting weakness of the
muscle; individuals with Pompé disease compensate for impaired
diaphragm function with increase in chest wall movement.

11.5 Evaluation of Respiratory Mechanics
During Mechanical Ventilation in NMD and
Chest Wall Disorders
An interesting concept to consider is the phenomenon of airway
opening pressure (AOP) during inspiration from FRC to total
lung capacity (TLC) in individuals with restrictive respiratory
disorders such as NMD and chest wall deformities receiving
mechanical ventilation. As noted above, such patients may exhibit
expiratory flow limitation (EFL) (Baydur, 2013). In such
situations, it is possible to record the pressure-volume
relationships to assess respiratory compliance and the AOP to
facilitate adjustment of tidal volume and positive end-expiratory
pressure (PEEP) and optimize gas exchange.

The question arises as to the relation of AOP to expiratory flow
limitation (EFL): do they correspond? An analogy of this feature
can be made with acute respiratory distress syndrome (ARDS).
Using the airway occlusion technique, Guerin et al. (Guérin et al.,
2020) showed that in semi-recumbent ARDS patients at PEEP
5 cm H2O, EFL and AOP did not occur simultaneously. While
most patients with EFL exhibited an AOP, nearly half of patients
with AOP did not have EFL. The additional tissue resistance

measured at the end of inspiration was higher in patients with
EFL than in those without EFL but did not differ amongst patients
with and without AOP. Meanwhile, the interrupter resistance (of
the conducting airways) did not differ between EFL and non-EFL
patients, suggesting that EFL occurred in small airways. Thus,
applying increasing levels of PEEP results in higher AOP without
abolishing EFL. In addition, lung dynamic elastance was higher in
FL than in non-FL patients and had a good accuracy for
detecting EFL.

While the histopathologic features of ARDS are different
from that of the microatelectatic changes seen with thoracic
cage disorders, the lung mechanical properties of the latter
conditions should be similar to that of ARDS with increases in
respiratory resistance and elastance. If the curve depicting the
lung transpulmonary pressure-volume relationship in a
ventilated neuromuscular or scoliotic patient shown in
Figure 3 were recorded at lower lung volumes, a discreet
inflection point and its relationship to the presence or
absence of EFL could be detected. Thus, application of
PEEP would be expected to shift AOP towards higher
airway pressures. In turn, determination of the location of
AOP would optimize ventilator settings to improve gas
exchange while avoiding volutrauma. It is not known how
differences in lung mechanics between ARDS and NMD/chest
wall disorder patients would influence the relation between
EFL and AOP. This aspect of respiratory mechanics is a
suggested opportunity for further study.

12 OPPORTUNITIES FOR FUTURE
RESEARCH

12.1 Serum Biomarkers for Inflammation
COPD causes inflammation resulting in skeletal muscle
dysfunction. COPD increases inflammatory factors such as IL-
6, TNF-α, IL-8, and C-reactive protein, as well as an increase in
the generation of reactive oxygen species (ROS) (Kim et al., 2008).
The combination of inflammatory factors and ROS may be the
cause of muscle wasting in COPD. Muscle atrophy from COPD
can also severely affect inspiratory muscles, limiting their
function. These events are similar in patients with NMDs
depending on the etiologic origin of muscle weakness, so in
both diseases, serum biomarkers can be used to noninvasively
evaluate muscle breakdown and effects on the inspiratory
muscles. Therefore, future research could evaluate the
association between respiratory impairment and these
biomarkers.

The neurodegenerative changes associated with NMD are, in
some ways, similar to the myriad changes documented with
COPD and aging (Kim et al., 2008; Dobrowolny et al., 2021).
Neuromuscular junctions (NMJ) undergo functional,
morphological, and molecular alterations during aging,
resulting in a progressive decrease in skeletal muscle mass and
strength (sarcopenia), changes common in NMD. In addition to
the intrinsic myoneural changes inherent of NMDs, ROS
homeostasis can contribute to changes in the neuromuscular
junction morphology and stability, leading to reduction in fiber
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number and innervation. For example, Puig-Vilanova et al. (Puig-
Vilanova et al., 2014) found that in the diaphragm of COPD
patients, compared to control subjects, muscle-specific
microRNA expression was downregulated, while histone
acetyltransferases (HATs) and deacetylases and myocyte
enhancer factor 2C protein levels were higher; by contrast,
DNA methylation levels, muscle fiber types and sizes did not
differ between patients and controls. The authors concluded that
these epigenetic events act as adaptive mechanisms used to
overcome the continuous inspiratory loads of the respiratory
system in COPD. As respiratory muscles in NMDs are subject to
mechanical and oxidative stresses similar to those observed in
COPD, epigenetic events may also regulate respiratory muscle
dysfunction and are a potential fertile area of investigation in this
group of disorders.

12.2 Changes in Respiratory Pressures
Influenced by Inspiratory Maneuvers
The updated guidelines by the ERS in 2019 (Laveneziana et al.,
2019) do not provide much detail about performance of the SNIP
test, limiting the instructions to: “the test is performed at FRC and
the subject is instructed to sniff quickly and deeply”. Although
considered a more physiological maneuver, an individual can
perform a sniff test suboptimally when not appropriately
instructed. In the evaluation of respiratory muscle strength,
the diaphragmatic control performed during the SNIP test
influences the inspiratory pressure and contractile properties
of inspiratory muscles This occurs due to changes in the
pattern of muscle recruitment, which change the force velocity
characteristics of muscles. Benicio et al. instructed patients to
perform a maximal effort starting from relaxed FRC according to
ATS/ERS guidelines (Laveneziana et al., 2019). Participants were
initially trained to breathe with a slow diaphragmatic breathing
pattern, allowing bulging of the anterior abdominal wall (also
known as ballistic contraction, diaphC). They were then
instructed to inhale deeply through the nose, while
simultaneously moving the abdominal wall outward (ballistic
inspiratory maneuver). The main findings of this study
showed that the maneuver with diaphC compared to without
diaphC 1) significantly reduced the SNIP value, 2) reduced
contraction times and electrical activity of accessory
inspiratory muscles, and 3) decreased absolute values of
maximum relaxation rate (p < 0.01), maximum rate of
pressure development (MRPD). These findings confirmed that
SNIP values diminish when a ballistic contraction of the
diaphragm muscle is performed during a sniff maneuver.
Thus, instructions on diaphC are recommended for specifically
targeting diaphragm activity and better performance of the
SNIP test.

12.3 Power Spectrum of EMG
Analysis of the power spectrum of EMG is a relatively old
technique to assess muscle fatigue in patients during and after
exercise with and without COPD and has not been employed in
NMDs. Casabona et al. (Casabona et al., 2021) studied the
possibility of using the power spectrum of EMG with non-

fatigueable exercises to estimate muscle fiber composition in
patients with COPD due to the different spectral content of
the sEMG signal, which depends on the fiber type
composition. The conclusion was that the power spectrum of
COPD patients was at higher frequencies, which aligned with the
severity of the disease. Even though this experiment was done on
leg muscles, the same principle may be applied to the diaphragm
and other inspiratory muscles by using surface electrodes, or
better, esophageal electrodes situated at the cardia. Profiles of
electromyographic power spectrum can be generated during
repetitive maximal diaphragmatic contractions during deep
breathing maneuvers. Future research could focus on this
potential for detecting respiratory muscle fatigue before it
affects VC, Pimax or Pdi.

12.4 Muscle Fiber Type
Changes in fiber type composition occur in NMDs (Glaser et al.,
2018). New investigational approaches may elucidate howmuscle
fiber type specification occurs during disease conditions. For
example, skeletal muscle cell culture from human pluripotent
cell resources can provide a new instrument to study
differentiation of human skeletal myocytes into myotubes with
specific fiber types in culture (Hosoyama et al., 2014; Jiwlawat
et al., 2017). Such studies could elucidate mechanisms involved in
changes of fiber composition and ratio in the skeletal muscle of
certain NMDs, and how they influence respiratory muscle
kinematics and pathology. Such work carries the potential to
create an in vitro model of contractile sarcomeric myofibrils for
disease modeling and drug screening to study neuromuscular
diseases.

13 CONCLUSION

Thoracic cage disorders are characterized by reduced lung
volumes and respiratory compliance. Both upper and lower
airway changes contribute to increase in airway resistance.
While respiratory muscle weakness is a key feature that
contributes to respiratory failure, central drive may be
increased as characterized by increase in P0.1. Changes in
respiratory mechanics contribute to elastic and resistive load
compensation. Diaphragmatic braking action during expiration
helps prevent further reduction in lung volume and atelectasis.
Diagnostic studies focus on the evaluation of lung volumes and
flows, respiratory muscle strength, ventilatory drive and
recording of electromechanical dissociation of respiratory
muscles. Ultrasound evaluation of diaphragmatic thickness and
motion may prove useful in predicting respiratory muscle fatigue
and failure. Mechanical ventilation affords an opportunity for
further assessment of diaphragmatic function and airway
properties such as expiratory flow limitation and airway
opening pressure, which may provide guidance in applying
appropriate ventilator settings. Finally, utilizing biochemical,
genetic modeling and cell culture techniques have the
potential to elucidate mechanisms of neuromuscular
degeneration and the potential for discovering therapeutic
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approaches to halting or even stabilizing the loss of skeletal
muscle, including respiratory muscles.
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Lung Mechanics Over the Century:
From Bench to Bedside and Back to
Bench
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Renato Fraga Righetti 2,3, Henrique Takachi Moriya4, Iolanda Fátima Lopes Calvo Tibério2

and Milton Arruda Martins2

1Intensive Care Unit, University Hospital, University of Sao Paulo, Sao Paulo, Brazil, 2Laboratory of Experimental Therapeutics,
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de Reabilitação, São Paulo, Brazil, 4Biomedical Engineering Laboratory, Escola Politecnica, University of Sao Paulo, Sao Paulo,
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Lung physiology research advanced significantly over the last 100 years. Respiratory
mechanics applied to animal models of lung disease extended the knowledge of the
workings of respiratory system. In human research, a better understanding of respiratory
mechanics has contributed to development of mechanical ventilators. In this review, we
explore the use of respiratory mechanics in basic science to investigate asthma and
chronic obstructive pulmonary disease (COPD). We also discuss the use of lung
mechanics in clinical care and its role on the development of modern mechanical
ventilators. Additionally, we analyse some bench-developed technologies that are not
in widespread use in the present but can become part of the clinical arsenal in the future.
Finally, we explore some of the difficult questions that intensive care doctors still face when
managing respiratory failure. Bringing back these questions to bench can help to solve
them. Interaction between basic and translational science and human subject investigation
can be very rewarding, as in the conceptualization of “Lung Protective Ventilation”
principles. We expect this interaction to expand further generating new treatments and
managing strategies for patients with respiratory disease.

Keywords: lung mechanics modelling, equation of motion, constant-phase model, respiratory diseases, animal
models—rodent, critical care, mechanical ventilalion, lung physiology

INTRODUCTION

Respiratory mechanics has been extensively studied during the last century (RAHN et al., 1946; Otis,
1977; Collett et al., 1985; Bates, 2005) with resultant improvement in our understanding of the
function of the respiratory system in health and disease states (MEAD et al., 1955; Reinert and
Trendelenburg, 1972; Dodd et al., 1988; Mador, 1991). Newfound knowledge of respiratory
mechanics has also been applied to different animal models of respiratory disease (Wanner and
Abraham, 1982; Wanner et al., 1990; Irvin and Bates, 2003).

Over the years, accumulated knowledge in respiratory mechanics has been incorporated into
mechanical ventilators and respiratory functional assessment of patients (Younes, 1992; Sinderby
et al., 1999; Jonkman et al., 2020). Respiratory mechanics became not only a tool for investigating
lung disorders. It was also used in developing treatments for failing respiratory system and in
designing strategies to prevent lung injury (Henderson et al., 2017).
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In this review, we describe some of the mathematical
approaches used in respiratory mechanics in animal models
and in patients and their application in the development of
mechanical ventilation. Finally, we will discuss how respiratory
mechanics is still important for both research and clinical care
and how it can provide insightful information moving respiratory
science forward.

RESPIRATORY MECHANICS IN ANIMAL
MODELS

Animal models have been extensively used to elucidate different
physiological mechanisms leading to respiratory disease
development, such as asthma and chronic obstructive
pulmonary disease (COPD).

Generally, the assessment of respiratory mechanics in animal
models is based on the acquisition of pressure and volume/flow
data. From these data, mathematical models whose parameters
have physiological significance are applied (Bates, 2005).

The most used model for evaluating respiratory mechanics is
known as the “equation of motion.” It is a linear one-
compartment model that assumes the respiratory system is
excited at a single frequency, usually very close to the
respiratory rate (Figure 1) (Bates, 2005). The parameters of
this model are respiratory system resistance, representing the
amount of pressure required to generate flows; and respiratory
system elastance, which is the amount of pressure required to
maintain volume changes in the respiratory system.

The equation of motion does not contemplate viscoelastic
phenomenon. Viscoelasticity is the property to accommodate
stress following changes in volume (stress relaxation) (Faffe and

Zin, 2009). It can be observed in pressure-time graph once
inspiratory flow is abruptly stopped. The slow pressure
decrease after inspiratory pause reveals stress relaxation
(Figure 2A). It results from parenchymal fiber conformational
adaptation (Faffe and Zin, 2009), changes in surface tension in
water-air interfaces or redistribution of air within lung regions
(Bates, 2009). Measurements in viscoelasticity add complexity to
equation of motion model.

The respiratory system has a high frequency dependence. This
led to the use of excitations with more than one frequency in
order to calculate the respiratory impedance that basically
characterizes the biomechanical behaviour of the respiratory
system in the frequencies contained in the excitation
(Figure 1) (Hantos et al., 1992).

For a better physiological understanding of respiratory
impedance, models are used whose parameters are correlated
with dissipative (airway resistance and tissue viscosity) and
conservative (elastance or tissue compliance) components. The
most used model for understanding respiratory impedance in
small rodents is the constant-phase model (Bates and Irvin,
2003). This model provides more detailed information on lung
mechanics comparing to equation of motion. It describes
proximal and distal airways with different parameters, which
can be useful to evaluate obstructive diseases.

Respiratory Mechanics in Animal Models of
Lung Disease
Respiratory mechanics have been studied in several animal
models of respiratory diseases. In experimental emphysema,
researchers observed a decrease in tissue elastance and
viscosity (see section “Respiratory mechanics in animal

FIGURE 1 |Mathematical models used to obtain functional parameters. (A). The equation of Motion: Paw (cmH2O) is airway pressure, measured at airway opening,
Flow (mL/s) is airway flow, R is Respiratory SystemResistance (cmH2O.s/mL), Vol (mL) is the Volume of air that has entered the lungs since the beginning of inspiration, E
(cmH2O/mL) is Respiratory System Elastance and P0 (cmH2O) is the airway pressure at the beginning of inspiration. (B). The Constant Phase Model (Z(f), cmH2O.s/mL)
is calculated as the pressure response (P(f), cmH2O) divided by ventilator generated flow (Flow(f), mL/s) at each frequency (f). Raw represents Newtonian resistance
(cmH2O.s/mL); i is imaginary number; Iaw is airway inertance (cmH2O.s

2/mL), Gtis is tissue viscance (cm H2O.s
(1−α)/mL); Htis is tissue elastance (cm H2O.s

(1−α)/mL).
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models”) related to alveolar destruction and loss of viscoelastic
properties (Bates, 2009; Ito et al., 2019a, 2019b). On the other
hand, repairing lung tissue with different components of
extracellular matrix also alters lung function. Changes in
collagen fibers types I and III and elastin in lung parenchyma
leads to loss of lung elasticity (Fietzek and Kuehn, 1976; Shifren
et al., 2007; Suki and Bates, 2008; Koenders, 2009).

Airway resistance increase is usually detected in experimental
models of asthma where structural changes in airways are the
major histological finding (Bates, 2009). Edema in
peribronchovascular areas also increases viscoelastic properties.
Airway hyperresponsiveness can be detected with a dose-
response curve to methacholine or the antigen itself (Wang
et al., 1986). Both constant phase model and equation of
motion can be used to describe respiratory function in these
animals (Bates, 2009) (see Figure 1 and section “Respiratory
mechanics in animal models” above).

Camargo et al. (2020) showed in an experimental model of
asthma in mice sensitized with ovalbumin that there was an

increased response of airway resistance when compared to the
control group. In addition, Possa et al. (2012); Righetti et al.
(2014) and Pigati et al. (2015), in an experimental model of
asthma showed that the worsening in mechanical parameters had
a positive correlation with markers of eosinophilic inflammation,
Th2 profile cytokines, oxidative stress (iNOS and 8- iso-
PGF2alpha), and extracellular matrix remodelling.

Oscillatory mechanics and the constant phase model (see
Figure 1 and section “Respiratory mechanics in animal
models” above) can be applied not only to whole lung, but
also to lung tissue in vitro. Using this technique, it is possible
to calculate resistance and elastance of lung tissue strips (Leite-
Júnior et al., 2003). For oscillatory mechanics, subpleural
parenchyma strips of the lower lobes are cut and the resting
length (Lr) and wet weight (W0) of each strip are measured
(Aristoteles et al., 2013; Righetti et al., 2014). Lung tissue strips are
composed of 86–90% alveoli, 5–8% blood vessels and 0.4–5%
airways (Ludwig and Dallaire, 1994; Aristoteles et al., 2013). The
tissue lungs are infused with Krebs solution (in mM: NaCl, 118;

FIGURE 2 |Respiratory mechanics in paralyzed and spontaneously breathing patients. (A). This is a representation of Flow, Volume and Pressure signals over time
for a patient under sedation and neuromuscular blockage. Since there is no respiratory muscle activity, equation of motion (see Figure 1A) can be applied. Compliance
(inverse of Elastance, displayed in Figure 1) and Resistance can be found using minimum square method or by the inspiratory pause special case displayed in (A).
Applying an inspiratory pause will simplify the equation allowing measurement of Static Compliance and Resistance. It also allows observation of viscoelastic
properties of the respiratory system, with the slow decrease in pressure (Stress Relaxation) once flow is abruptly stopped. (B). In non-sedated patients, respiratory
muscles interact with the ventilator. In this example, we show Pressure, Flow, Volume and Esophageal Pressure signal over time in a patient ventilated in Pressure
Support Mode. Muscle activity can bemeasured with an esophageal catheter. In this scenario, equation of motion needs to be adapted to include pressure generated by
respiratory muscles (Pmus). The model becomes less stable but esophageal pressure reveals several features of patient ventilator interaction. The observed changes in
tidal volumes over several breaths is caused by a change in patient’s effort detected by esophageal pressure. Additionally, we can observe the inspiratory effort triggering
mechanical ventilator (line α) and the prolongation of patient’s inspiratory effort into ventilator expiration (line β), distorting expiratory flow curve (arrow).
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KCl, 4.5; NaHCO3, 25.5; CaCl2, 2.5; MgSO4, 1.2; KH2PO4, 1.2;
glucose 10) and metal clips are glued to either end of the tissue
strips with cyanoacrylate. Steel wires are attached to the clips; one
side is connected to a force transducer and the other side is
connected to a servo-controlled lever arm. The lever arm is
capable of peak-to-peak length excursions. It is connected to a
function generator, which controlled the frequency, amplitude,
and waveform of the device oscillation (Ebihara et al., 2000; Pigati
et al., 2015). The resting tension (T) is set by the movement of a
screw thumb wheel system, which effected slow vertical
displacements of the force transducer. Length and force signals
are converted from analog to digital with an analog-to-digital
converter and recorded by a compatible computer. The resistance
(R) and elastance (E) of the lung tissue strip are estimate by the
recursive least-squares algorithm to the equation of motion
(Ludwig and Dallaire, 1994; Aristoteles et al., 2013; Righetti
et al., 2014; Pigati et al., 2015).

T � EΔ1 + R (Δ1/Δt) + K

Where T is tension, l is length, Δl/Δt is the length change per unit
of time, and K is a constant reflecting resting tension. The
unstressed cross-sectional area (A0) of the strip was obtained
from the formula:

A0 (cm2) � W0/(p x Lr)

In this sense, Nakashima et al. (Nakashima et al., 2008)
evaluated the active process of lung immune unresponsiveness
with oral ingestion of ovalbumin (oral tolerance) in guinea pigs
sensitized with ovalbumin and Starling (Starling et al., 2009)
evaluated the use of nitric oxide synthetase inhibitor in an
experimental model of asthma. In both studies oscillatory
mechanics identified the improvement in lung tissue resistance
and elastance parameters as a result of treatment. Furthermore,
changes in lung resistance and elastance also correlate with
changes in inflammation, oxidative stress, and remodelling in
the lung parenchyma (Righetti et al., 2014; Pigati et al., 2015).
Pigati et al. 2015 showed similar changes in resistance and
elastance of the respiratory system and lung tissue
strip. Moreover, tissue strip oscillatory mechanics can also
include dose-response curves after challenges with antigen or
methacholine. (Lanças et al., 2006). In recent decades, several
studies used this technique for measuring lung tissue resistance
and elastance in vitro (Xisto et al., 2005; Santos et al., 2008;
Starling et al., 2009; Aristoteles et al., 2013; Righetti et al., 2014;
Pigati et al., 2015) and these studies helped to support the
importance of alterations in the lung parenchyma of asthmatic
patients (Tulić and Hamid, 2003; Mauad et al., 2004; Martin,
2008).

Lung mechanics produces a simple description of the function
of the lungs and can be used to detect diseases and to analyse the
effects of potential treatments. The newmethodologies (lung strip
mechanics and oscillatory mechanics) described above allowed a
more complex and accurate description of lung function (Bates
and Irvin, 2003; Leite-Júnior et al., 2003; Lanças et al., 2006). In

the decades to come, lung mechanics will continue to play a
fundamental role in respiratory research and clinical care.

LUNG PHYSIOLOGY IN HUMAN
SUBJECTS: MECHANICAL VENTILATION
AND LUNG ASSESSMENT
Lung Physiology and Evolution of
Mechanical Ventilators
Besides allowing mechanistic investigation on several lung
diseases, respiratory physiology largely contributed to
evolution of mechanical ventilation. In the past century,
mechanical ventilation evolved from bulky and cumbersome
negative pressure chambers (iron lungs) to modern positive
pressure ventilators (Kacmarek, 2011). Over decades, many
features and ventilatory modes were added to ventilators. This
process was greatly assisted by knowledge gained in basic lung
physiology.

Incorporation of positive end expiratory pressure (PEEP) to
mechanical ventilators became widespread after the description
of Acute Respiratory Distress Syndrome (ARDS) in 1967
(Ashbaugh et al., 1967) and observations of hypoxemia
improvement with the use of PEEP (Ashbaugh et al., 1969).
Measurements of lung compliance using equation of motion and
responses to PEEP were important for defining the new
syndrome. Although compliance is not part of current ARDS
definition (Ranieri et al., 2012), it has been used in initial
characterizations of the syndrome (Ashbaugh et al., 1967;
Murray et al., 1988). Later, investigations on the role of PEEP
and tidal volume in ARDS contributed to understanding
Ventilation Induced Lung Injury (VILI) (Parker et al., 1990a;
Corbridge et al., 1990; Dreyfuss and Saumon, 1993); and were the
basis for developing Lung Protective Ventilation (Amato et al.,
1998; The Acute Respiratory Distress Syndrome Network, 2000).

Some ventilatory modes added in time to ventilators were
largely based on lung physiology. In Proportional Assist
Ventilation (PAV), lung compliance and resistance are used to
determine the amount of airway pressure delivered by the
ventilator (Younes, 1992). In Neurally-Adjusted Ventilatory
Assist (NAVA), electrical impulses generated by depolarization
of diaphragm fibers are captured and control the level of
ventilatory support (Sinderby et al., 1999). In Automatic Tube
Compensation (ATC), mechanical ventilators provide additional
pressure proportional to flow and endotracheal tube resistance
(Guttmann et al., 1993; L’Her, 2012).

Respiratory Mechanics Applied to Clinical
Care
Assessment of lung mechanics is used in daily clinical care. In
patients receiving invasive mechanical ventilation, the equation of
motion is used to describe lung mechanics and to assist in the
characterization of respiratory failure (Pham et al., 2017).
Physicians can measure increases in resistance (Figure 2) in
respiratory failure in patients with obstructive disease. Changes
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in resistance over the course of treatment can indicate worsening
or improvement of disease status and guide ventilatory support.

In ARDS, measurements of lung compliance (Figure 2)
inform the clinician about disease severity (Morales-Quinteros
et al., 2019; Panwar et al., 2020; Boscolo et al., 2021). In COVID
pandemic, lung compliance was employed to describe specific
phenotypes: patients with hypoxemia but little amount of lung
collapse and high compliance versus very low compliant lungs
with large amount of lung collapse (Gattinoni et al., 2020b). The
authors suggested different phenotypes could benefit from
different ventilatory strategies (Gattinoni et al., 2020a). This
approach was disputed by other researchers, who
demonstrated respiratory compliance in COVID patients were
similar to values previously reported in ARDS (Tobin, 2020; Ziehr
et al., 2020; Sjoding et al., 2021) and treatment should not be
changed. Early findings during a pandemic should be carefully
evaluated before changing current practice (Meyer et al., 2021).
Despite the controversy, use of physiological parameters to
further classify ARDS patients highlights the heterogeneity of
the disease (Khan et al., 2021). In the future, we might be able to
learn what parameters could determine changes in treatment
strategies.

Over decades, different physiological approaches have been
proposed to properly set PEEP levels in ARDS patients. Obtaining
lung pressure-volume curve and selecting PEEP levels according
to best compliance was initially used by Amato (Amato et al.,
1998). This is rather laborious and measuring lung compliance at
different PEEP levels after lung recruitment could be a suitable
simplification of this method. Calculating dead space and shunt
fraction was also used for PEEP selection (Ferluga et al., 2018;
Karbing et al., 2020; Tusman et al., 2020). Recently, measuring
potential recruitment has also been proposed (Chen et al., 2020).
And Talmor et al. (2008) proposed setting PEEP levels to
maintain a positive transpulmonary pressure, measured using

an esophageal catheter. They have shown improvements in
oxygenation but failed to demonstrate decrease in mortality
with this technique (Beitler et al., 2019). Unfortunately, an
ideal method for PEEP selection has not been found. Some
authors have used a FiO2-based table to guide PEEP setting.
This method can be suitable in the busy ICU environment but did
not reduce ARDS mortality (Brower et al., 2004). Additionally,
setting PEEP based on FiO2 level ignores that patients might
respond very differently. Physiological approaches could still be
useful in addressing this problem.

More recently, Gattinoni proposed the use of Mechanical
power, a new measurement of stress applied to lungs based on
energy delivered during mechanical ventilation (Gattinoni et al.,
2016). Mechanical power was based on equation of motion and
incorporated concepts of mechanical work displayed on
Campbell’s diagram (Cabello and Mancebo, 2006). Each
component of the equation of motion was multiplied by the
change in volume and Respiratory rate (Figure 3) to evaluate the
individual contribution to lung injury (Silva et al., 2019). The
usefulness of this new analysis is still under investigation. Some
authors believe it does not add substantial new information to
mechanical ventilation management (Costa et al., 2021). On the
other hand, mechanical power can be associated to biomarkers of
lung deterioration (Rocco et al., 2020). At a minimum, it
underscored the importance of respiratory rate as a source of
stress to lungs during ventilation.

The assessment of respiratory mechanics in spontaneously
breathing patients has always been a challenge. Respiratory effort
should be accounted for when applying equation of motion
(Grinnan and Truwit, 2005). Esophageal catheters can be used
to measure patients’ effort (Baydur et al., 1982), allowing the use
of equation of motion even in non-paralyzed patients (Figure 2).
On the other hand, new lungmechanics techniques evolving from
experimental physiology can be used in spontaneously ventilated

FIGURE 3 | Schematic representation of Mechanical Power. In panel (A)we display a single breath of a patient ventilated with Volume Assist Control. Graphs show
changes in Pressure, Flow and Volume over time and highlight points of interest: PEEP, peak pressure (Ppeak) and plateau pressure (Pplat, at end of inspiratory pause).
In figure (B), we display a Volume-Pressure loop with the same points of interest observed in panel (A). Dark gray area represents Resistive Mechanical Power, change in
pressure to overcome resistive respiratory forces integrated over change in volume (tidal volume); middle gray area represents Elastic mechanical power, change in
pressure to overcome elastic respiratory forces integrated over change in volume; light gray area represents PEEP mechanical power, a static component of pressure
representing baseline tension on the respiratory system also integrated over change in tidal volume. (Adapted from Silva et al., 2019).
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patients. Notably, forced oscillation technique, or oscillometry,
has contributed to a better understanding of lung function in
clinical routine and in research, particularly in patients with
obstructive disease (Peterson-Carmichael et al., 2016; Hantos,
2021; Lundblad and Robichaud, 2021).

Lung Protective Ventilation. Tidal Volume
Challenge
Initial basic research on the effects of PEEP and tidal volume in
ARDS (Parker et al., 1990b; Carlton et al., 1990; Corbridge et al.,
1990; Dreyfuss and Saumon, 1993) later translated in trials
investigating mechanical ventilation management strategies
(Amato et al., 1998; The Acute Respiratory Distress Syndrome
Network, 2000). Current guidelines for ARDS management
suggest limiting tidal volume to 6 ml/kg and plateau pressure
to 30 cm H2O (Griffiths et al., 2019; Papazian et al., 2019). This
strategy was named lung protective ventilation. It revealed that
mechanical ventilation can be harmful to lungs and defined new
targets for the health team. It also introduced the challenging idea
that aiming normal blood gas values during mechanical
ventilation could lead to worse outcomes. Higher pCO2 levels
(permissive hypercapnia) generated by reduction tidal volume
were initially regarded as benign. Later, some authors recognized
hypercapnia was associated to impaired immunologic response
and vascular tonus dysfunction. Hypercapnia increases
pulmonary resistance and can contribute to acute cor
pulmonale (Repessé and Vieillard-Baron, 2017; Barnes et al.,
2018). Nevertheless, the best current evidence still
recommends limiting tidal volume for ARDS patients despite
CO2 elevation. Patients with hypercapnia in this setting could be
managed with additional rescue strategies (Repessé and Vieillard-
Baron, 2017).

Lung protective ventilation concepts were further explored in
a later reanalysis of the initial ARDS trials (Amato et al., 2015).
The authors used a multilevel mediation analysis to conclude that
driving pressure (plateau pressure—PEEP) was the variable most
significantly associated to mortality. Although ARDS guidelines
advised against the use of targets of driving pressure (Papazian
et al., 2019), this measurement integrates the concepts of disease
severity (lung compliance) and ventilator management (tidal
volume). Further prospective trials are required but driving
pressure could become an essential parameter to monitor in
the future.

The success of managing mechanical ventilation during ARDS
led several authors to suggest the use of lung protective
ventilation in all patients receiving mechanical ventilation.
Indeed, initial observational studies suggested better outcomes
or decreased inflammatory cytokine production when limiting
tidal volume in non-ARDS patients (Determann et al., 2010; Neto
et al., 2012; Fuller et al., 2013). The initial observations were not
confirmed in a properly conducted clinical trial (Simonis et al.,
2018). As surprising this might look, one must remember that
patients with ARDS have lungs very different from normal and
from other patients on mechanical ventilation. Limiting tidal
volume can be useful in some scenarios, as operating rooms, but
can be very challenging in ICU. Some individuals would require

deep sedation and muscle paralysis to limit tidal volume
regardless of the ventilatory mode selected, adding significant
morbidity to patient care. Patients waking from sedation after
uneventful surgery that develop large tidal volume on
spontaneous breathing should probably be extubated and not
deeply sedated. COPD patients could benefit from lowering tidal
volume and minute ventilation, but probably would handle very
poorly high respiratory rates that might be required if tidal
volumes are greatly reduced (Marini, 2011).

Even in ARDS patients, duration of strict protective
ventilation can bring challenges to caring team. Although
essential in the beginning of care, limiting tidal volumes can
be difficult in some patients once sedation and muscle paralysis
are withdrawn. Maintaining long periods of sedation and
paralysis can lead to muscle weakening and prolong time on
mechanical ventilation (Kress et al., 2000; Girard et al., 2008;
Reade and Finfer, 2014). On the other hand, patients with high
ventilatory drive will produce large tidal volumes regardless of
ventilatory mode selected (Yoshida et al., 2013; Papazian et al.,
2019).

The importance of ventilatory drive and its contribution to
lung injury is still under investigation. It has been recognized that
patients can generate significant amount of inspiratory pressure
during respiratory failure, both before and after being intubated.
Large inspiratory pressure swings will translate into large
transpulmonary pressure irrespective of the settings on non-
invasive ventilation device (before intubation) or mechanical
ventilator (after intubation) (Brochard et al., 2017). Even when
volume assist control mode is selected, patients with large swings
generate intrathoracic pressure reduction that can produce lung
edema, increases in left ventricle afterload and double triggering
in ventilator, which doubles or triples tidal volumes (Pohlman
et al., 2008; Pinsky, 2018; Sottile et al., 2020). The contribution or
spontaneous breathing patterns to lung injury has been named
P-SILI (Patient Self Inflicted Lung Injury). Although some
authors have advised against using those new concepts to
manage ventilator at this stage due to lack of experimental
and clinical data (Tobin et al., 2020), this will be an important
topic to explore. The relative importance of spontaneous effort in
producing lung injury will need to be balanced against the
deleterious effects of extending sedation and muscle paralysis.

Guidelines for properly managing those patients are still
missing. We will need further cooperation between basic and
clinical science to understand the limits of lung protective
ventilation. We need to understand when this strategy is
absolutely required warranting muscle paralysis; and when we
can be more flexible on these rules. We also need to understand
what other lung disorders require limiting tidal volume.

Respiratory Mechanics in Obstructive Lung
Diseases
Patients with respiratory failure secondary to obstructive lung
disease can require mechanical ventilation. Ventilatory strategies
for these patients are designed to avoid air trapping and intrinsic
PEEP (PEEPi) generation (Reddy and Guntupalli, 2007). PEEPi is
produced when expiratory time is insufficient to allow complete
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tidal volume exhalation, usually when both airway resistance and
respiratory rate increase. Air is trapped inside the lungs,
increasing intrathoracic pressure, decreasing venous return and
increasing patients’ effort to trigger the ventilator and generate
inspiratory flows (Pepe and Marini, 1982; Marini, 2011).
Mechanical ventilator settings should allow enough expiratory
time to minimize the impact of PEEPi. Although limiting tidal
volume can be beneficial, low minute ventilation and high
expiratory time should be main targets (Reddy and Guntupalli,
2007).

In obstructive patients, equation of motion can be used to
measure lung resistance and monitor the response to treatments:
bronchodilators, antibiotics andmanagement of airway secretion.
PEEPi can be measured with expiratory pause, informing bedside
decisions on setting ventilator parameters.

However, there are limitations for the use of lungmechanics in
those patients. Equation of motion is usually applied only to
inspiratory phase, where airway pressure variation is significant.
Measurement of airway resistance during expiration is often
neglected despite its importance in generating PEEPi. Some
patients in respiratory failure reach a condition of expiratory
flow limitation, where airways collapse at the mid-end expiration
(Bates, 2009). In this scenario, expiratory flow becomes
independent of pressure gradient and expiratory airway
resistance cannot be defined using equation of motion.

Additionally, patients on mechanical ventilators are often
awake and have spontaneous breathing. In this setting, if
pressure generated by respiratory muscles is not measured
(Figure 2B), lung mechanics cannot be properly assessed.
PEEPi measurement requires long expiratory pause which is
usually not possible in patients with spontaneous breathing
(Grinnan and Truwit, 2005). And since PEEPi is highly
dependent on respiratory rate, values of PEEPi obtained
during neuromuscular block are hardly valid when patients
resume respiratory effort.

In the future, widespread use of esophageal pressure
catheters can allow monitoring of respiratory effort and
assessment of lung mechanics in patients with spontaneous
breathing (Grinnan and Truwit, 2005). PEEPi can also be
measured using esophageal pressure monitoring (Marini,
2011). Methods for measuring expiratory resistance and
detecting expiratory flow limitation can become easier.
Finally, oscillatory mechanics at the bedside can provide
information on dissipative forces of the respiratory system
even in patients with spontaneous breathing (see section
Oscillometry). It could then allow the analysis of lung
resistance in patients with obstructive lung disease without
the requirement of deep sedation.

LUNG PHYSIOLOGY STILL NOT AT
BEDSIDE PRIMETIME

For different reasons, several physiological approaches developed
in the lab did not reach bedside yet and will be discussed in the
paragraphs below. Some of these techniques are laborious or
provide data clinicians are not ready to use. Some techniques, on

the other hand, did become commercially available but are still
seldom employed.

Multiple inert gas elimination technique (MIGET) was
designed for determining ventilation/perfusion distribution
throughout the lungs using several gases with different
solubility on blood. MIGET advanced knowledge of
respiratory physiology in different species and elucidated
mechanisms of hypoxia in different disorders (Wagner, 2008).
The technique is very laborious and requires not only injection of
several gases but also a pulmonary catheter for measuring cardiac
output and gas detector. It provides useful clinical information
and could be used to select PEEP levels or describe functional
lung behaviour during treatment. Its complexity, however,
prevented widespread clinical application.

Electrical Impedance Tomography (EIT) evolved from very
simple and inaccurate devices to monitor respiratory rate into
complex continuous monitors of lung ventilation. Recent
advances in the technique also included perfusion and V/Q
distribution measurement using electrocardiography-gated
impedance signals or following hypertonic saline infusion
(Costa et al., 2009; Nguyen et al., 2012). There should be
some caution in interpreting perfusion measured by
impedance technique. Impedance signals should not be able
to detect perfusion defects in small capillaries if pulmonary
blood flow to major arteries remains unchanged (Deibele
et al., 2008). Therefore, some authors believe perfusion EIT
will be more useful as a non-invasive tool for diagnosing
pulmonary embolism rather than small V/Q mismatch
(Maciejewski et al., 2021). However, the technology is still
evolving and methods for diagnosing small perfusion defects
could arise.

Although not used in many ICUs, EIT became commercially
available and can provide useful information on ventilation
during patient care. It can be used to improve PEEP titration
since it displays both overdistention and lung collapse. It also
provides a visual and numerical analysis of ventilation
homogeneity, can detect pneumothorax in real time and
displays patterns of ventilation during spontaneous efforts
(Coppadoro et al., 2020; Maciejewski et al., 2021). In the
present, there is not enough supporting evidence for the use of
EIT, but it can become an important monitoring device in the
future.

Measuring resting lung volumes has always been difficult in
clinical and research settings. Nitrogen-washout measurements
have been proposed by some authors. The technique uses changes
in FiO2 concentrations and nitrogen dilution to estimate lung
volumes (Olegård et al., 2005; Dellamonica et al., 2011). The
process, however, is time-consuming and cannot be applied
continuously in a busy ICU. Nevertheless, measuring resting
lung volumes can be used to properly set tidal volumes.
Guidelines for ARDS management suggest limiting tidal
volumes to 6 ml/kg of ideal body weight, which is calculated
based on patient height to correct for different lung sizes
(Papazian et al., 2019). However, ARDS patients have different
lung volumes not only because of different body constitution but
also because of extension of the disease (Chiumello et al., 2008;
Mattingley et al., 2011). Scaling tidal volume to actual size of lungs
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could allow settings targeted not only to each patient, but also to
each phase of the disease (Chiumello et al., 2008; Macintyre, 2016;
Umbrello et al., 2017; Pelosi et al., 2021).

Patients’ effort monitoring has been possible to measure for
decades using esophageal catheters (Baydur et al., 1982).
Although commercially available and proposed by many
different research groups, the technique is seldom employed
(Akoumianaki et al., 2014). Misplacement of the catheter,
patients’ discomfort and lack of clear clinical benefit could
explain the low enthusiasm for the approach. On the other
hand, as we manage patients with less sedation and greater
levels of interaction with ventilators, measuring effort can
become important. If future research relates respiratory effort
to lung injury, spontaneous breathing should be carefully
handled.

Oscillometry
Oscillometry or forced oscillation technique consists of
applying flow or pressure oscillations at the entrance of the
airways and monitoring the response obtained with the
oscillations in order to calculate the impedance of the
respiratory system. Impedance is the mechanical load of the
respiratory system to ventilation.

Initially, the forced oscillation technique was used in apnea
situations so that voluntary respiratory efforts did not mask the
actual physiological condition of the respiratory system.
However, with signal processing techniques, it became possible
to use oscillometry in spontaneously ventilating patients by
superimposing a high-frequency pressure waveform on the
tidal breathing pattern (Peterson-Carmichael et al., 2016) and
still calculate the impedance of the respiratory system with the
effects of breathing minimized.

The constant-phase model (see section ‘Respiratory
mechanics in animal models’ and Figure 1) applied in small
rodents is not suitable for patients because of the low
frequency broadband excitation needed (Lundblad and
Robichaud, 2021). So, the analysis of the human respiratory
impedance is based mostly on the frequency response
behaviour of impedance, a complex mathematical function
with real and imaginary components. This analysis strongly
helps the understanding of respiratory physiology, as the real
component is related to dissipative energy (resistance) and the
imaginary component is related to conservative energy
(elastance) of the respiratory system (Lundblad and
Robichaud, 2021).

According to Hantos (Hantos, 2021), manoeuvres using
oscillometry involving large but slow changes in lung volume
allows for fine mapping of respiratory mechanics exceeding the
tidal range and a novel intra-breath modality is capable of
tracking the dynamic changes in respiratory system.

Technical standards for respiratory oscillometry have been
published (King et al., 2020) and commercial devices are
becoming popular.

BACK TO BENCH

Basic science and lung physiology helped to develop and advance
mechanical ventilation at bedside and they still can be very
important for the challenges ahead.

Lung protective ventilation does not answer all questions in
respiratory failure. It was crafted long ago, when mechanical
ventilation care was substantially different. Awake patients
interacting with ventilators bring additional challenges. How
far should we go to limit tidal volume? Should we continue to
keep low levels of sedation in patients with high respiratory drive?
Should we tolerate higher tidal volumes once the initial
inflammatory phase of ARDS is over and oxygenation starts to
improve? And how should we handle patients without ARDS
with high respiratory drive and tidal volumes?

Measuring effort, lung volumes, lung inhomogeneities, pattern
of ventilation and V/Q distribution or mechanical power can
provide some of these answers. At the same time, ventilators used
for small animals incorporated some of the technologies
developed at the bedside, as pressure support ventilation.
P-SILI and the effects of respiratory effort can be further
investigated in animal models.

The advent of ECMO (extracorporeal membrane
oxygenation) has brough additional complexity to the field.
Once limited to operating rooms, ECMO use in ICU became
more popular after influenza (H1N1 in 2009) and COVID (2020)
pandemics (Combes et al., 2018; Barbaro et al., 2020). Although
very expensive and invasive, ECMO can provide all the
respiratory support required by some patients. Ventilators can
then be adjusted to provide very minimum ventilation. The
optimal setting and how long a patient should be maintained
in ECMO are still under investigation (Tonna et al., 2021).

CONCLUSION

The study of lung mechanics has substantially contributed to
development of knowledge of respiratory diseases. It was also a
cornerstone in the creation and evolution of mechanical
ventilation. The combination of basic, translational and
applied sciences has proved very useful in respiratory
physiology leading not only to better understanding
physiopathology but also to designing supportive treatment. In
the years to come, we expect this partnership to continue as we
face new challenges in managing patients with respiratory failure.
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Pooled Analysis of Central Venous
Pressure and Brain Natriuretic Peptide
Levels in Patients With Extubation
Failure
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People’s Hospital of Jinzhong, Jinzhong, China

Purpose: Cardiac insufficiency has been considered to be a common cause of
extubation failure. Some studies have shown that central venous pressure (CVP)
and brain natriuretic peptide (BNP) are able to predict extubation outcomes.
Therefore, we conducted a pooled analysis to evaluate the potential of CVP and
BNP levels as predictors of extubation outcomes, using a cohort of critically ill patients
who were on mechanical ventilation (MV).

Methods: We searched three online electronic databases up to October 2021. All data
were analyzed using Review Manager 5.4. For each study, the analysis was performed
using standardized mean differences (SMD) with 95% confidence intervals (CI).

Results: The pooled analysis of seven studies on CVP levels and extubation outcomes
showed that elevated CVP levels were significantly associated with extubation failure
(SMD:0.47, 95% CI: 0. 43–0.51, p < 0.00001). This association also appeared before
extubation (SMD:0.47, 95% CI: 0. 43–0.51, p < 0.00001), but it did not appear after
extubation (SMD: 0.63, 95% CI: −0.05–1.31, p=0.07). Similarly, pooled analysis of eight
studies on BNP levels and extubation outcomes showed that increased BNP levels are
closely related to extubation failure (SMD:0.68, 95% CI: 0.49–0.86, p < 0.00001). This
relationship also occurs before (SMD: 0.57, 95% CI: 0.35–0.79, p < 0.00001) and after
(SMD: 0.91, 95% CI: 0.59–1.23, p < 0.00001) extubation.

Conclusions: This study showed that elevated CVP and BNP levels are associated with
extubation failure in critically ill patients. However, BNP levels are more valuable than CVP
levels in predicting extubation outcomes.

Keywords: central venous pressure, brain natriuretic peptide, extubation failure, pooled-analysis, cardiac
insufficiency

INTRODUCTION

Liberation from mechanical ventilation (MV) is a very challenging process for clinicians in the
Intensive Care Unit (ICU). Premature extubation is associated with the probability of reintubation,
extended ICU stay, and mortality (Harrison et al., 2002; Perren et al., 2010). Delayed extubation may
lead to ventilator-acquired pneumonia, prolonged hospital stay, and high mortality (Esteban et al.,
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2002; Thille et al., 2011; Fernandez-Zamora et al., 2018).
Therefore, it is extremely important to identify reliable and
accurate markers for predicting extubation outcomes.

Traditionally, respiratory failure was considered to be the
main cause of extubation failure. Consequently, predictive
markers for extubation outcomes have focused primarily on
breathing-related parameters, including rapid shallow
breathing index (f/Vt), respiratory rate, minute ventilation,
and cough intensity (Khamiees et al., 2001; Frutos-Vivar et al.,
2006). Unfortunately, these predictors do not accurately predict
extubation outcomes (Hsieh et al., 2018). Recently, other studies
have shown that cardiac dysfunction plays an important role in
extubation outcomes, and respiratory diseases have a certain
impact on cardiac function (Chatila et al., 1996; Frazier et al.,
2006). Moreover, some reports have shown that cardiac
insufficiency is a cause of failure in as many as 50% of
patients who have failed extubation. Thus, a simple and
effective method is urgently needed to predict extubation
outcomes for those with cardiac dysfunction.

Central venous pressure (CVP) reflects right atrial force,
which is influenced by cardiac function, blood volume and
vascular tension. Brain natriuretic peptide (BNP) is mainly
secreted by cardiomyocytes to compensate for myocardial
stretch and volume overload. Both CVP and BNP are
important markers for monitoring cardiac function and
volume, which can be affected by disconnection from MV.
Previous studies have shown that the predictive value of BNP
levels on extubation outcomes is controversial. There are few
studies on the predictive value of CVP levels on extubation
outcomes. Thus, we systematically reviewed the literature and
conducted a pooled analysis to determine the association and
predictive value of BNP and CVP levels on extubation outcomes.

MATERIALS AND METHODS

Search Strategy
To identify qualified published studies, two independent
researchers (ZLL and SL) systematically searched the Web of
Science, EMBASE, and Cochrane Library, using the following
keywords: “extubation,” “weaning,” “disconnect of mechanical
ventilation,” “discontinuation of mechanical ventilation,”
“central venous pressure,” “CVP,” “Brain natriuretic peptide,”
“BNP,” and “brain natriuretic peptide”. The searches
encompassed studies up to October 2021 and were limited to
those published in English. In addition, we manually searched
relevant reviews and references within those publications to
identify potentially relevant studies. If there was a
disagreement about inclusion, a third researcher (CJH) was
called to discuss the decision.

Inclusion and Exclusion Criteria
The inclusion criteria were as follows: patients were adults
hospitalized in the ICU for underlying cardiovascular or
respiratory disease who received MV for no less than 24 h.
Patients were extubated after adequate evaluation and followed
for at least 24 h after weaning from MV. CVP or BNP levels were

monitored before or after extubation. Extubation failure was
defined as re-intubation within 48 h, spontaneous respiratory
failure, noninvasive or invasive ventilation within 48 h after
extubation, or death within 48 h. The exclusion criteria were
as follows: potential confounding variables for CVP, such as lax
measurement of CVP, potential confounding factors for BNP
such as renal insufficiency, studies lacking the necessary data,
duplicate studies, reviews, case reports, abstracts or letters.

Data Extraction and Quality Assessment
Two researchers (ZLL and SL) independently screened the titles
and abstracts using set keywords, and then checked the full text
according to inclusion and exclusion criteria. The following
information was extracted: the first author’s name, publication
year, age, sex (%), country, sample size, timing of BNP and CVP
measurement, methods and durations of SBT and definition of
extubation failure. When there were differences in data
extraction, it was discussed with the third researcher (CJH).
The Newcastle-Ottawa scale (NOS) was used to assess the
quality of the included studies (Stang, 2010). Studies that had
a score ≥6 points were considered a “high-quality study.” This
study was approved by the Ethics Committee of Shanxi Provincial
People's Hospital (No. 223, 2022).

Statistical Analysis
The pooled analysis was analyzed by Review Manager 5.4.
Standardized mean differences (SMD) and corresponding 95%
confidence intervals (CIs) of the CVP and BNP levels were
collected and calculated for each study. When the median and
interquartile range (IQR) was provided, the mean and standard
deviation (M ± SD) was estimated using Luo’s approach and
Wan’s method, respectively (Wan et al., 2014; Luo et al., 2018).
Heterogeneity is evaluated by calculating the I- squared (I2)
index. I2 values of 75%–100%, 50%–75%, 25%–50%
and < 25% were considered as high, moderate, low
heterogeneous and homogeneous, respectively. If there was
significant heterogeneity (I2 > 50% or p < 0.05), a random
effect model was used, otherwise, a fixed effect model was applied.

In order to identify the potential heterogeneity, we performed
subgroup analysis based on the levels of CVP and BNP before and
after extubation. Moreover, we deleted one study at a time and
repeated the analysis, namely the leave-one-out method for
sensitivity analysis. Egger’s and Begg’s tests were used to find
potential publication bias. When the p value was less than 0.05, it
was considered statistically significant.

RESULTS

Study Processing
Using our search strategy, a total of 1,234 potentially original
studies were identified and excluding duplications, 874 studies
remained. Careful screening of titles and abstracts, identified 841
studies that did not meet the inclusion and exclusion criteria, and
these were also excluded. Finally, after carefully reading the main
body of the remaining 33 studies, 20 studies were eventually
excluded. In the end, 12 qualified studies were inclued (Chien

Frontiers in Physiology | www.frontiersin.org July 2022 | Volume 13 | Article 8580462

Cao et al. Cardiac Insufficiency and Extubation Outcomes

188

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


et al., 2008; Zapata et al., 2011; Saugel et al., 2012; Soummer et al.,
2012; Ma et al., 2013; Maraghi et al., 2014; Farghaly et al., 2015;
Konomi et al., 2016; Tanios et al., 2016; Haji et al., 2018; Dubo
et al., 2019; Zhao et al., 2021). The screening process of these
studies is shown in Figure 1. Meanwhile, Table 1 listed the basic
characteristics of the included studies. As NOS scores of these
studies were at least 6, all were considered of high quality.

Central Venous Pressure Levels and
Extubation Outcomes
We found seven studies that described a relationship between the
CVP levels and extubation outcomes. Since there was no
significant heterogeneity (I2 < 50%), the fixed effect model was
applied. The fixed effect pooled SMD was 0.47 (95% CI:
0.43–0.51, p < 0.00001) (Figure 2). Subgroup analysis based

on extubation time showed that the results of pooled analysis
were consistent with the association between elevated CVP levels
and extubation failure before extubation (SMD:0.47,95% CI:
0.43–0.51, p < 0.00001). However, this association had
no significant correlation after extubation (SMD: 0.63, 95%
CI: −0.05–1.31, p=0.07).

Due to the limited studies included, potential publication bias
was not carried out. Since none of the studies had a significant
influence on the pooled results, the leave-one-out sensitivity
analyses suggested robust results.

Brain Natriuretic Peptide Levels and
Extubation Outcomes
We also found eight studies that contained information about the
association between the BNP levels and extubation outcomes.

FIGURE 1 | Selection process for studies included in the pooled- analysis.
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Since there was no significant heterogeneity (I2 < 50%), the fixed
effect model was applied. The fixed effect pooled SMD was 0.68
(95% CI: 0.49–0.86, p < 0.00001) (Figure 3). Based on the
subgroup analysis of extubation time, we found that the
pooled results were consistent with the relationship between
high BNP levels and extubation failure before extubation
(SMD: 0.57, 95% CI: 0.35–0.79, p < 0.00001) and after
extubation (SMD: 0.91, 95% CI: 0.59–1.23, p < 0.00001).

No potential publication bias was observed with respect to the
relationship between BNP levels and extubation outcomes,
according to the results of the Egger’s test (P > 0.05) and

Begg’s test (P > 0.05). The leave-one-out sensitivity also
showed robust results, as none of the studies had a significant
effect on the overall outcomes.

DISCUSSION

In this study, we identified an association between high CVP and
BNP levels with extubation failure in critically ill patients. An
association was also found with both elevated BNP and CVP
levels before extubation and elevated BNP levels after extubation.

TABLE 1 | Characteristics of studies.

Study Country Age
(ES/EF)

Male
(%)

Setting N
(ES/EF)

Indicator Timing
of

extubation

Methods
and

durations
of SBT

Definition
of EF

NOS

Chien2008
testing group
(Chien et al.,
2008)

China 79.1 ± 8.6/
81.5 ± 7.4

53 ICU 33/8 BNP Before
extubation

2 h SBT SBT failure or
reintubation
within 48 h

7

Chien2008
validation group
(Chien et al.,
2008)

China 79.7 ± 9.2/
76.3 ± 7.3

57 ICU 38/11 BNP Before
extubation

2 h SBT SBT failure or
reintubation
within 48 h

7

Dubo 2019 (Dubo
et al., 2019)

Chile 54 ± 21/
47 ± 24

81 medical-
surgical ICU

154/11 CVP Before and
after
extubation

T- piece and
60–120 min
SBT

Reintubation
within 48 h

7

Konomi 2016
(Konomi et al.,
2016)

Greece 54 ± 21/
69 ± 16

40 Multidisciplinary
ICU

27/15 CVP
and BNP

Before and
after
extubation

T- piece and
2 h SBT

SBT failure or
reintubation
within 48 h

6

Ma 2013 (Ma
et al., 2013)

China 62.3 ±
12.0/

59.1 ± 3.9

85.7 ICU 22/7 CVP Before
extubation

T- piece and
120 min SBT

Reintubation
within 48 h

6

Saugel 2012
(Saugel et al.,
2012)

Germany 63.5 ±
14.5/

64.6 ± 8.4

86 medical ICU 54/7 CVP Before
extubation

NG Reintubation
within 48 h

7

Zapata 2011
(Zapata et al.,
2011)

Spain 61.6 ±
14.7/

66.7 ± 9.7

68 ICU 58/10 CVP
and BNP

Before and
after
extubation

T- piece and
30–120 min
SBT

Reintubation
within 48 h

8

Zhao
2021 MIMIC-IV
(Zhao et al., 2021)

NG 64 ± 16/
68 ± 15

NG ICU 13,433/
2,756

CVP Before
extubation

NG Reintubation 7

Zhao 2021 ZS
(Zhao et al., 2021)

China 60 ± 13/
63 ± 12

NG ICU 451/51 CVP Before
extubation

NG NIV、 reintubation or
death within 48 h

8

Farghaly 2015
(Farghaly et al.,
2015)

Australia 53.81 ±
18.9/

57.14 ±
12.9

43 Respiratory ICU 16/14 BNP Before and
after
extubation

PSV and
2 h SBT

SBT failure or
reintubation
within 48 h

8

Maraghi 2014
(Maraghi et al.,
2014)

Egypt 46 ±
10.35/

54 ± 9.25

32 ICU 25/7 BNP Before and
after
extubation

T-piece and
2 h SBT

SBT failure or
reintubation
within 48 h

6

Soummer 2012
(Soummer et al.,
2012)

France 59 ±
14± 15

59 Multidisciplinary
ICU

57/29 BNP Before and
after
extubation

T- piece and
60- min SBT

Noninvasive or
invasive ventilation)
within 48 h after
extubation

7

Tanios 2016
(Tanios et al.,
2016)

United States NA 48 ICU 56/29 BNP Before
extubation

PSV and
2 h SBT

SBT failure 6

Haji 2018 (Haji
et al., 2018)

Australia 63.5 ± 4.6/
77 ± 2.7

64 ICU 42/11 BNP after
extubation

PSV and
60min SBT

Nonscheduled NIVM,
or death within 48 h

7

Abbreviations: EF, extubation failure; ES, extubation successI; ICU, intensive care unit; SBT, spontaneous breathing trail; BNP, brain natriuretic peptide; CVP: central venous pressure; NG:
not given.
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However, this association did not appear in elevated CVP levels
after extubation. Thus, these results suggested that the
measurement of CVP and BNP levels may be useful indicators
for patients undergoing extubation from MV. Moreover,
compared with CVP levels, BNP levels are a more valuable
predictor of extubation outcomes. The values of I2 = 0% for
CVP and I2 = 23% for BNP showed that our pooled analysis was
homogeneous, and the leave-one-out sensitivity showed our
results are robust.

In the process of liberation from MV, the intrathoracic
pressure develops from positive to negative. This promotes the
systemic venous blood reflux increases the right ventricular
preload and augmented left ventricular transmural pressure
and afterload (Buda et al., 1979). Moreover, emotional stress
and potential hypoxia during extubation may lead to sympathetic
excitation. Many critically ill patients have undiagnosed or
subclinical cardiovascular diseases, which often hiderfluid
management and cardiovascular compensation. Thus,

FIGURE 2 | The CVP levels standard mean difference between extubation failure and extubation success groups.

FIGURE 3 | The BNP levels standard mean difference between extubation failure and extubation success groups.
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insufficient cardiac reserve may lead to subsequent respiratory
insufficiency and failed extubation (Jubran et al., 1998). In
particular, marked or even asymptomatic, diastolic or systolic
dysfunction, as well as arrhythmias, coronary heart disease, and
other heart conditions increase the likelihood of extubation
failure.

Both CVP and BNP levels are able to monitor heart function
and volume. Critically ill patients in the ICU often require an
indwelling central venous catheter to monitor cardiac function
and fluid replacement. There are only a few studies describing
the association between CVP levels and extubation outcomes.
Our analysis suggested that elevated CVP levels are associated
with extubation failure, and that this association was observed
before extubation. This result is consistent with the results of
Dubo et al. (2019), which demonstrated that an early rise in
CVP levels before extubation, increased the risk of extubation
failure. However, this association was not observed after
extubation. We believe that this conclusion is controversial
for two main reasons: first, after adequate treatment, most
patients’ cardiac function improved significantly after
extubation. Potential cardiac insufficiency could not be
detected due to the poor sensitivity of CVP in monitoring
cardiac function and volume. Second, the lack of data may be
one reason for conflicting results, as only one studies were
included. Therefore, more well-designed studies should be
carried out.

BNP has been proven to be a sensitive serum marker of
cardiac dysfunction (Win et al., 2005). Zapata et al. (2011)
and Lara et al. (2013) found compared with patients with
successful extubation, patients with extubation failure had
higher BNP levels before and after extubation. Our study also
confirmed that elevated BNP levels were significantly
associated with extubation failure. Our anlaysis also
showed that elevated BNP levels before extubation were
closely related to extubation failure, consistent with studies
by Chien et al. and Konomi et al. Unlike CVP, this association
also appeared after extubation. Some studies have shown that
increased BNP levels after extubation are a predictive factor
for extubation failure (Lemaire et al., 1988; Jubran et al.,
1998). Since BNP is a sensitive indicator of cardiac
insufficiency, potential cardiac insufficiency can be
detected early on.

Strengths and Limitations
The measurement of CVP levels is affected by the observer’s
mode of measurement and the patient’s condition. For example,
intra-thoracic pressure, intra-abdominal pressure, position, or
depth of venous catheter placement can affect the results.
Although we can standardize the observer’s measurement and
try to avoid a patient influence on the CVP measurements, there
is poor predictive value for extubation outcomes. As ICU patients
often have in-dwelling central venous catheters, CVP could easily
and quickly be evaluated at the bedside. BNP is a sensitive marker
for monitoring cardiac insufficiency and accurately predicts
extubation outcomes. However, the utility of BNP as a marker
also has its limitations. The detection of BNP is affected by age,
renal insufficiency, drugs and other unavoidable factors. In
conclusion, although CVP is able to identify early extubation
outcomes, its predictive value is poor. In contrast, BNP has high
predictive value, but the detection of extubation outcomes is
inferior. Finally, the accuracy of our results may be affected by the
limited number of studies we included. Since we do not have
access to the original data for drawing ROC curves, we cannot
determine a reliable cut-off point fot the CVP and BNP tests.

CONCLUSION

Our study showed that elevated CVP and BNP levels are related
to the risk of extubation failure. More importantly, compared
with CVP levels, BNP levels are more valuable than CVP levels in
predicting extubation outcomes.
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Resting Physiologic Dead Space as
Predictor of Postoperative Pulmonary
Complications After Robotic-Assisted
Lung Resection: A Pilot Study
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Lung resection surgery carries significant risks of postoperative pulmonary complications
(PPC). Cardiopulmonary exercise testing (CPET) is performed to predict risk of PPC in
patients with severely reduced predicted postoperative forced expiratory volume in one
second (FEV1) and diffusion of carbonmonoxide (DLCO). Recently, resting end-tidal partial
pressure of carbon dioxide (PETCO2) has been shown as a good predictor for increased
risk of PPC. However, breath-breath breathing pattern significantly affects PETCO2.
Resting physiologic dead space (VD), and physiologic dead space to tidal volume ratio
(VD/VT), may be a better predictor of PPC than PETCO2. The objective of this study was to
prospectively determine the utility of resting measurements of VD and VD/VT in predicting
PPC in patients who underwent robotic-assisted lung resection for suspected or biopsy-
proven lung malignancy. Thirty-five consecutive patients were included in the study.
Patients underwent preoperative pulmonary function testing, symptom-limited CPET,
and a 6-min walk test. In the first 2 min prior to the exercise portion of the CPET, we
obtained resting VT, minute ventilation ( _VE), VD (less instrument dead space), VD/VT,
PETCO2, and arterial blood gases. PPC within 90 days were recorded. Fourteen (40%)
patients had one or more PPC. Patients with PPC had significantly elevated resting VD
compared to those without (0.318 ± 0.028 L vs. 0.230 ± 0.017 L (± SE), p < 0.006), and a
trend toward increased VD/VT (0.35 ± 0.02 vs. 0.31 ± 0.02, p = 0.051). Area under the
receiver operating characteristic (ROC) for VD was 0.81 (p < 0.002), VD/VT was 0.68 (p =
0.077), and PETCO2was 0.52 (p = 0.840). Peak _VO2, _VE/ _VCO2 slope, pulmonary function
tests, 6-min walk distance and arterial blood gases were similar between the two groups.
Intensive care unit and total hospital length of stay was significantly longer in those with
PPC. In conclusion, preoperative resting VD was significantly elevated in patients with
PPC. The observed increase in resting VD may be a potentially useful predictor of PPC in
patients undergoing robotic-assisted lung resection surgery for suspected or biopsy-
proven lung malignancy. A large prospective study is needed for confirmation.

Keywords: physiologic dead space, postoperative predictor, pulmonary complications, robotic-assisted lung
resection, lung cancer
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INTRODUCTION

Preoperative evaluation of lung function is the standard of care to
estimate the risks of postoperative pulmonary complications
(PPC) following lung resection for lung nodules, either biopsy-
proven, or suspicious for cancer. Lung resection surgery carries
significant risks, including postoperative respiratory failure,
pneumonia, and atelectasis, resulting in prolonged hospital
length of stay and mortality. Preoperatively, cardiopulmonary
exercise testing (CPET), stair climb or shuttle-walk tests, as well
as forced expiratory volume in 1 s (FEV1), diffusion capacity for
carbon monoxide (DLCO) have been utilized to assess patients’
risks of PPC. If there is no increased cardiac risk for lung resection
surgery, but severely reduced postoperative predicted FEV1 and/
or DLCO, or poor performance of stair climb or shuttle-walk test,
current guidelines recommend CPET (Brunelli et al., 2013). With
CPET, subjects who underwent lobectomy or pneumonectomy,
maximum oxygen utilization or peak oxygen uptake (Peak _VO2)
has been shown as a good predictor of morbidity and mortality
(Brunelli et al., 2009). Subsequently, the same group of
investigators reported the advantage of minute ventilation to
carbon dioxide production ( _VE/ _VCO2) slope as predictor of PPC
risks independent of Peak _VO2 (Brunelli et al., 2012). Patients
with _VE/ _VCO2 slope greater than 35 had high morbidity and
mortality.

In healthy individuals, _VE/ _VCO2 ratio decreases during
exercise with increasing workload (Wasserman et al., 1967).
The ratio increases when _VE is greater than _VCO2 in response
to metabolic acidosis. _VE/ _VCO2 is also dependent on physiologic
dead space to tidal volume ratio (VD/VT) (Roman et al., 2013).
According to balance of masses (Whipp, 2006), this can be
demonstrated from the relationship between arterial partial
pressure of carbon dioxide (PaCO2), _VCO2, and _VE/ _VCO2 in
which:

_VE/ _VCO2 � k

[PaCO2x(1 − VD/VT)] (1)

where k is constant, equals to 863. From Eq. 1, as Roman et al.
(2013) demonstrated, high resting _VE/ _VCO2 is associated with
high VD/VT, low PaCO2, end-tidal PCO2 (PETCO2), or both.

In a recent retrospective study, Brat et al. (2016) demonstrated
elevated _VE/ _VCO2 slope and reduced end-tidal PCO2 (PETCO2)
at both peak exercise and rest in patients with PPC, with resting
PETCO2 as the strongest independent predictor. However,
PETCO2, is affected by regional ventilation-perfusion
mismatch and breathing pattern (Lewis et al., 1994). Resting
VD or VD/VT has not been explored as a predictor of PPC risk
after lung resection. Whereas the safety of symptom-limited
CPET has been well documented, there is a substantial
number of patients who are unable or unwilling to perform
CPET (Keteyian et al., 2009). In this regard, the addition of
resting test(s) that can effectively predict risks of PPC after lung
resection will be beneficial.

The primary objective of our study was to determine if resting
VD or VD/VT could reliably predict the risk of PPC within
90 days of robotic-assisted lung resection surgery in patients with

a suspicious or biopsy-proven lung malignancy. The secondary
objective was to compare the utility of resting VD or VD/VT with
resting PETCO2 as a predictor of PPC in our population. We
hypothesized that elevated resting VD or VD/VT will be useful
and a better predictor of PPC risk than PETCO2.

MATERIALS AND METHODS

Participants
Seventy-four patients with suspected or biopsy-proven lung
malignancy were referred for lobectomy or segmentectomy by
the multi-disciplinary team for lung cancer management at the
Veteran Affairs Healthcare System, Long Beach, from January 2018
to January 2019. Thirty-nine patients were excluded for the following
reasons: 1) declined to consent for the study (n = 11), declined or
unable to perform CPET (n = 22), declined lung resection (n = 4), or
had lung resection at another institution (n = 2). We studied the
remaining 35 patients consecutively. Prior to the study each patient
signed a written informed consent. Patients had to meet the
following criteria: age greater than 18 years, non-pregnant, and
ability to perform pulmonary function tests, six-minute walk test
(6MWT), and CPET with no contraindications (Datta et al., 2015).

Study Design
This was a prospective observational study approved by the
institutional review board of the Veteran Affairs Healthcare
System, Long Beach. Patients underwent preoperative
pulmonary function testing, 6MWT, and CPET.

Spirometry and breath-by-breath gas analysis during CPET
was performed using Vmax EncoreTM System (Vyaire Medical,
Irvine, CA, United States). CPET was performed on average
12 days prior to surgery on incremental cycle ergometer
(VIAsprint 150PTM, AIM, Sylmar, CA, United States). All
equipment was calibrated prior to every test. After allowing
the patient to adapt to the breathing apparatus and seated
quietly on the cycle ergometer for at least 15 min, CPET
commenced. CPET involved 2 min of rest, followed by 2 min
of unloaded pedaling, then continued with application of ramp-
incremental work-rate profile (5–15W/min) to the point of
symptom limitation (Datta et al., 2015). During CPET an
average of 10 s data points were displayed. No patients
discontinued CPET for cardiac events. Single arterial blood
sample was obtained from each patient proximate to the
CPET 2-min rest period via radial artery puncture using
standard technique, and immediately analyzed via blood gas
analyzer (RapidPoint 400 Series, Bayer Healthcare Systems,
Oxnard, CA). Samples were obtained at room temperature
and corrected for body temperature of 37°C. From Eq. 1,
utilizing resting _VE/ _VCO2 averaged over 2-min and PaCO2

obtained from arterial blood gases, resting VD and VD/VT were
calculated. Instrument dead-space measured by water
displacement method three times, and the average value
amounted to 169 ml was subtracted from the calculated VD.
_VE/ _VCO2 slope was calculated using linear regression with _VE as
the dependent, and _VCO2 the independent variable with onset of
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workload as the initial point to the peak workload as the end
point. Nadir _VE/ _VCO2 was calculated, when available, at the
ventilatory compensation threshold and average over 30 s
(Mezzani, 2017). Finally, the 6MWT was conducted following
complete resolution of symptoms from CPET.

One board-certified cardiothoracic surgeon (AA) performed
all lung resections using robotic-assisted surgery. The surgical
teammanaged patients postoperatively with patients mobilized as
soon as tolerated. PPCs were recorded after a thorough chart
review and included events immediately after surgery up to
90 days post-surgery. The PPCs included 1) pneumonia
defined as increased sputum production, leukocytosis, fever,
positive sputum culture, and consolidation on chest x-ray, 2)
respiratory failure requiring invasive or non-invasive mechanical
ventilation, or 3) atelectasis requiring bronchoscopy.

Statistical Analysis
For this pilot study, a sample size of 24 subjects was required
as determined using a mean difference of 25% according to the
morbidity of postoperative lung resection reported by Brunelli
et al. (2012), standard deviation of 30%, power of 0.80, and
alpha of 0.05. Patients were grouped into those with and
without PPC. Continuous variables were expressed as mean
and standard deviation or standard error of the mean as
appropriate; and compared using the unpaired two-tailed
Student’s t test. Categorical variables, or those that did not
pass the normality test and/or equal variance test, were
compared using the Mann-Whitney Rank Sum test, and
median with interquartile range values are reported.
Differences in proportion were evaluated using the Fisher
exact test. Receiver operating characteristic (ROC) curves
were evaluated for threshold values for variables of interest,
i.e., VD, VD/VT and PETCO2. In ROC, sensitivity, the
dependent variable is the ability of a test to correctly
identify patients with PPC, while specificity is the ability of
a test to correctly identify those without PPC. Ideally, the
threshold value has a sensitivity proximate 1.0 and 1-
specificity (the independent variable) proximate 0, or the
area under the ROC curve is close to 1.0. When the area
under the ROC is statistically significant, the threshold value
was determined from the highest sum of sensitivity and
specificity according to the Youden approach (Bewick

et al., 2004). Data were analyzed using Sigmaplot v.14
software (Systat Software Inc., San Jose, CA, United States).

RESULTS

Postoperative pulmonary complications occurred in 14 (40%) out
of 35 patients with one or more complications occurring in the
same patient. There was no mortality. All patients underwent
lobectomy, except one patient in each group, with and without
PPC, had segmentectomy.

Table 1 shows the baseline characteristics of patients in both
groups with and without PPC. Average age in both groups was
70 years, and all patients were male Veterans. Tobacco use did not
differ between groups, but was somewhat higher in those with (40
packyears) than without (25 packyears) PPC. A similar trend was
shown in the prevalence of COPD with 79% of those having PPC
compared to 52% in those without PPC. The prebronchodilator
spirometry, DLCO, and 6-minWalk distance were similar in both
groups (Table 2).

Table 3 demonstrates the measured variables at rest and with
exercise during CPET. At rest, the PPC group had significantly
elevated VD, average was 0.318 L versus 0.230 L in those without
PPC (p < 0.006). VD/VT tended to be greater (p = 0.051) in the
PPC group, while PETCO2, other ventilatory variables, and
arterial blood gases were not significantly different from those
without PPC (Table 3). Resting hyperventilation was not
observed during CPET as corroborated by the pH and PaCO2.

With exercise, peak _VO2, _VO2 at lactate threshold, peak
power, _VE/ _VCO2 slope, and nadir _VE/ _VCO2 were similar in
both groups. Nadir _VE/ _VCO2 was estimated in only those who
attained ventilator compensation threshold, 12 and 15 patients in
the group with and without PPC, respectively.

Postoperative pneumonia and atelectasis requiring therapeutic
bronchoscopy were the most common PPCs (Table 4). As
expected, patients with PPCs had significantly extended ICU
and hospital length of stay compared with the group
without PPC.

Figure 1 shows the ROC analysis for VD, VD/VT and
PETCO2. The area under the ROC curve (AUC) was
statistically significant for VD only (0.81, p = 0.002). The
AUC for VD/VT and PETCO2 was 0.68 (p = 0.077) and 0.53

TABLE 1 | Subjects characteristics.

Characteristics Subjects with post-operative
pulmonary complications (n = 14)

Subjects without post-operative
pulmonary complications (n = 21)

p

Age (years) 70.3 ± 1.8 70.7 ± 1.5 0.859
Male (%) 100 100
Height (m) 1.78 ± 0.02 1.78 ± 0.01 0.753
Weight (Kg) 84.4 ± 4.1 82.0 ± 3.0 0.626
Tobacco Use (packyears) † 40 (15, 80) 25 (1, 50) 0.181
COPD, n (%) 11 (78.6) 10 (52.4) 0.163
CHF, n (%) 2 (14.3) 2 (9.5) 1.00

Values are mean ± SE, † is median with 25 and 75 percentiles in parenthesis.
Definition of abbreviations: COPD, chronic obstructive pulmonary disease; CHF, congestive heart failure.
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TABLE 2 | Pulmonary function and six-minute walk tests.

Variables Subjects with post-operative
pulmonary complications (n = 14)

Subjects without post-operative
pulmonary complications (n = 21)

p

FEV1/FVC (%) 65.8 ± 3.3 70.0 ± 2.9 0.352
FEV1 (L) 2.33 ± 0.22 2.73 ± 0.15 0.120
FEV1 (% predicted) 73.5 ± 7.2 85.1 ± 4.1 0.143
FVC (L) 3.65 ± 0.27 3.96 ± 0.19 0.342
FVC (% predicted) 83.4 ± 5.7 92.0 ± 3.1 0.166
DLCO (ml/min/mm Hg) 20.3 ± 2.0 22.1 ± 1.8 0.517
DLCO (% predicted) 77.6 ± 8.6 83.5 ± 6.9 0.598
6 MWT (m) 400.4 ± 21.5 408.0 ± 14.8 0.766

Values are mean ± SE.
Definition of abbreviations: FEV1, forced expiratory volume in 1 s; FVC, forced expiratory vital capacity; DLCO, diffusing capacity for carbon monoxide; 6 MWT, six-minute walk test.

TABLE 3 | Cardiopulmonary exercise test at rest and exercise.

At rest

Variables Subjects with post-operative pulmonary complications
(n = 14)

Subjects without post-operative pulmonary complications
(n = 21)

p

VT (L) 0.904 ± 0.071 0.764 ± 0.043 0.084
Frequency (breaths/min) 20.1 ± 1.4 19.7 ± 0.9 0.816
V_ E (L/min) 17.4 ± 1.1 14.9 ± 1.0 0.110
V_CO2 (L/min) 0.382 ± 0.03 0.348 ± 0.02 0.376
V_O2 (L/min) 0.470 ± 0.04 0.395 ± 0.03 0.097
Respiratory Quotient 0.82 ± 0.02 0.81 ± 0.01 0.735
V_ E/V_CO2 47.0 ± 2.6 43.6 ± 1.6 0.250
VD (L) 0.318 ± 0.03 0.230 ± 0.02 0.006*
VD/VT 0.35 ± 0.02 0.31 ± 0.02 0.051
PETCO2 (mm Hg) 32.0 ± 1.4 31.5 ± 1.0 0.763
pH (unit) 7.43 ± 0.01 7.43 ± 0.01 0.666
PaCO2 (mm Hg) 37.9 ± 1.9 35.6 ± 1.3 0.312
PaO2 (mm Hg) 78.5 ± 3.3 86.0 ± 3.5 0.153
SaO2 (%) 92.7 ± 0.7 92.8 ± 1.3 0.977
PETCO2-PaCO2 5.9 ± 0.9 4.02 ± 0.7 0.134
With Exercise
Peak V_O2 (L/min) 1.646 ± 0.127 1.686 ± 0.090 0.792
Peak V_O2 (% PRED) 77.9 ± 5.6 77.7 ± 3.8 0.969
Peak V_O2 (L/min/Kg) 19.6 ± 1.3 20.2 ± 1.1 0.494
V_O2 at LT (L/min) 1.29 ± 0.10 1.38 ± 0.07 0.446
V_O2 at LT (% of Peak V_O2) 78.9 ± 2.5 81.2 ± 1.9 0.334
Peak Power (watts/min) 84.0 ± 6.3 95.0 ± 5.9 0.222
V_ E/V_CO2 slope 33.0 ± 2.3 31.2 ± 1.1 0.446
Nadir V_ E/V__CO2

† 34.3 ± 1.1 32.4 ± 1.4 0.333

Values are mean ± SE. *p < 0.05.
Definition of abbreviations: VT, tidal volume; V_ E, minute ventilation; V_ O2, oxygen consumption; V_ CO2, carbon dioxide production; PETCO2, end-tidal carbon dioxide; VD, physiologic dead
space volume; VD/VT, physiologic dead space to tidal volume ratio; LT, lactate threshold. † Measured at ventilatory compensation threshold, subjects with post-operative pulmonary
complications (n = 12); without post-operative pulmonary complications (n = 16). See text for further explanation.

TABLE 4 | ICU, hospital length of stay, and types of post-surgical complications.

Subjects with post-operative
pulmonary complications

(n = 14)

Subjects without post-operative
pulmonary complications

(n = 21)

p

Pneumonia, n (%) 8 (57.1) 0 (0.0) < 0.001
Atelectasis Requiring Bronchoscopy, n (%) 5 (35.7) 0 (0.0) < 0.01
Respiratory Failure Requiring IMV, n (%) 3 (21.4) 0 (0.0) 0.06
Respiratory Failure Requiring NIV, n (%) 2 (14.3) 0 (0.0) 0.153
ICU Length of Stay (days) † 4 (4, 7) 2 (1, 3) < 0.001
Hospital Length of Stay (days)† 9 (7, 13) 4 (4, 8) < 0.001

†Values are median with 25 and 75 percentiles in parenthesis.
Definition of abbreviations: ICU, intensive care unit; IMV, invasive mechanical ventilation; NIV, noninvasive mechanical ventilation.
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(p = 0.839), respectively. A threshold value for VD at or below
0.229 L appears to be an acceptable predictor for the lack of PPC
with sensitivity of 62% (95% Confidence Interval (CI):
38%–82%), and specificity of 93% (95% CI: 66%–100%). The
positive and negative likelihood ratio was 8.7 and 0.4,
respectively.

DISCUSSION

In this pilot study, our major findings were, 1) the
preoperatively measured resting physiological dead space
volume (VD) was the only variable separating groups of
patients with and without PPC; 2) resting VD was also a
significant predictor of PPC after robotic-assisted lung
cancer resection surgery with a threshold value of 0.229 L;
3) resting end-tidal PCO2 was not useful in predicting the
frequency of PPC; and 4) the PPC following robotic-assisted
lung resection surgery was relatively high of 40%.

Resting Physiological Dead Space
Resting VD, the sum of anatomical and alveolar dead space, was
obtained from ventilatory efficiency ( _VE/ _VCO2) via breath-by-
breath gas analysis and arterial PCO2 rather than PETCO2, and
therefore, avoiding inaccurate estimate (Lewis et al., 1994). The
elevated resting VD in the PPC group might be accounted for by
an increase in ventilation-perfusion inequalities despite similar
spirometry and DLCO indices (Sinha et al., 2011; Robertson,
2015). A crude estimate of ventilation-perfusion inequalities,
PaCO2-PETCO2 difference was similar in both groups
(Table 3). However, on a closer observation there were subtle
differences in the measures of airflow limitation (FEV1/FVC,
FEV1 and FVC) between those with and without PPC; with a
higher prevalence of patients with COPD in the PPC group (79%
vs. 52% without PPC). The underlying COPD cannot be
dismissed to account for the high VD in the PPC group (Table 1).

While VD differed significantly between groups with and
without PPC, VD/VT did not. The lack of significant difference
in VD/VT was possibly related to the mildly elevated VT in the PPC
group despite statistically insignificant (Table 3). Patients with a high
resting VDmay require higher compensatory VT to achieve effective
ventilation and removal of CO2. Thus, the VD/VT ratio was similar
for both groups with and without PPC. There have been several
studies in healthy subjects describing this phenomenon of elevated
VT in response to elevated VD during exercise (Wasserman et al.,
1967), and at rest (Krishnan et al., 1997). The possible mechanisms
may include alterations in the PCO2 time profile or oscillations
sensed by airway and/or pulmonary receptors, carotid
chemoreceptors, or the central chemoreceptors (McParland et al.,
1991). However, studies have shown that airway receptors (Krishnan
et al., 1997) and carotid chemoreceptors (Syabbalo et al., 1993) do
not play a major role in the mechanism of increased VT in response
to elevated VD. Central chemoreceptors may possibly have a
predominant role.

As shown inTable 2, a large percentage of our patients with PPC
had mild COPD (prebronchodilator FEV1/FVC of 65.8%) with an
average resting VD/VT of 0.35. Our findings were comparable to
that of Elbehairy et al. (2015) with their mild COPD patients. The
average prebronchodilator FEV1/FVC was 59.5% and resting VD/
VT of 0.37. VT and frequency were not reported; however, minute
ventilation ( _VE) was lower, 11.8 L/min compared to 17.4 L/min in
our patients. The lack of increased _VE in their study was not
apparent, however, altered breathing pattern with ventilatory
constraint such as low VT and high frequency would increase
VD/VT (Whipp, 2006; Smith and Olson, 2019).

In this trial or experimental cohort, resting VD appears a useful
predictor of PPC following lung resection surgery at a threshold value
of 0.229 L, with area under ROC curve of 0.81 (Figure 1). This
confers the advantage for those patients who cannot or decline to
perform CPET in the preoperative evaluation of postoperative
complications risk after lung resection surgery. The positive
likelihood ratio was 8.7, suggesting that a positive result is

FIGURE 1 | The area under the Receiver Operating Characteristic Curves for resting VD, VD/VT and PETCO2. (A). Area under the curve (AUC) for VD: 0.81 (p =
002); (B). AUC for VD/VT: 0.68 (p = 0.077); (C). AUC for PETCO2: 0.52 (p = 0.839). Definition of abbreviations: VD, dead space volume; VD/VT, dead space to tidal
volume ratio; PETCO2, end-tidal CO2 pressure. NS, not significant.
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8.7 times as likely for a patient who experienced PPC as one who did
not. At the above threshold value, we obtained a sensitivity of 62%
and specificity of 93%. The Youden index is 55% [(62% +
93%)−100%] suggesting that the resting VD threshold value yields
an appreciable fraction thatmay bemisclassified (Bewick et al., 2004).
For this reason, this threshold value needs to be prospectively
validated in a large number of patients.

Resting End-Tidal PCO2
A recent study of Brat et al. (2016) demonstrated that resting
PETCO2 was a strong predictor of PPC following lung resection
surgery. In contrast, our results differed in that resting PETCO2 was
similar for both groups with and without PPC (Table 3). Differences
might be related to patient characteristics such as 36% of their cohort
were female; and/or variability in PETCO2 estimate. PETCO2 is
critically influenced by breath-by-breath changes in the pattern of
breathing. It is determined by the timing of end-exhalation during
the alveolar phase-III of CO2 of each breath. In patients with airflow
limitation a plateau of alveolar phase-III could not be attained
resulting in large variability of its measurement and a large
gradient between PaCO2 and PETCO2 (Sinha et al., 2011).
Furthermore, particularly in COPD patients, wasted ventilation
contaminates the measurements, as inhaled CO2 that doesn’t take
part in gas-exchange is exhaled and dilutes the mixed expired CO2.
Our study did not show significant difference in PaCO2-PETCO2

between both groups, probably related to variability of PETCO2.

Postoperative Pulmonary Complications
Following Robotic-Assisted Lung Surgery
CPET has been considered as the gold standard in the evaluation of
PPC following lung resection (Brunelli et al., 2013). Interestingly,
neither Peak _VO2 nor _VE/ _VCO2 slope were able to preoperatively
distinguish patients with and without PPC. Peak _VO2 for both
groups averaged 20 L/min/Kg and _VE/ _VCO2 averaged less than 34
(Table 3). Most likely this was due to our patients’ absence of, or
mild airflow limitation; or compensated stable heart failure. The PPC
rate in our cohort was considered relatively high of 40%. However,
this complication rate in the older patients as in our cohort, were
within the range of others, 33%–44% (Velez-Cubian, et al., 2015;
Veluswamy et al., 2020).

Study Strength and Limitation
The strength of our study is the prospective design of the study
and the use of PaCO2 rather than PETCO2 in the calculation of
VD. However, our study has several shortcomings. First, our
population consists of only male gender from a single institution,
the Veterans Affairs Healthcare System. The results of this study,
therefore, may not be applicable to the female population and a
multi-center study would be desirable. Second, although the
number of subjects studied exceeded the calculated sample
size, the present study is relatively small involving a trial
cohort and will require a validation cohort to test whether
resting VD will hold as a reliable predictor of PPC risk.
Furthermore, a multivariate analysis to assess the confounding
effects of COPD cannot be performed. Nonetheless, resting VD
stood out as a potentially useful predictor of PPC risk after

robotic-assisted lung surgery. Third, all lung resections
involved lobectomy except for two segmentectomies, and no
pneumectomy was performed. Hence, resting VD as predictor
of PPC is only applicable in those patients with lobectomies.

Conclusion
In summary, our prospective study demonstrated that following
robotic-assisted lung resection for suspected or biopsy-proven lung
cancer, resting VD obtained preoperatively separated those patients
with and without postoperative pulmonary complications. Resting
VD is also a potential predictor for postoperative pulmonary
complications risk. However, this will have to be further validated
with a large number of patients.
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We applied quantitative CT image matching to assess the degree of motion in

the idiopathic ILD such as usual interstitial pneumonia (UIP) and nonspecific

interstitial pneumonia (NSIP). Twenty-one normal subjects and 42 idiopathic

ILD (31 UIP and 11 NSIP) patients were retrospectively included. Inspiratory and

expiratory CT images, reviewed by two experienced radiologists, were used to

compute displacement vectors at local lung regions matched by image

registration. Normalized three-dimensional and two-dimensional (dorsal-

basal) displacements were computed at a sub-acinar scale. Displacements,

volume changes, and tissue fractions in the whole lung and the lobes were

compared between normal, UIP, and NSIP subjects. The dorsal-basal

displacement in lower lobes was smaller in UIP patients than in NSIP or

normal subjects (p = 0.03, p = 0.04). UIP and NSIP were not differentiated

by volume changes in the whole lung or upper and lower lobes (p = 0.53, p =

0.12, p = 0.97), whereas the lower lobe air volume change was smaller in both

UIP and NSIP than normal subjects (p = 0.02, p = 0.001). Regional expiratory
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tissue fractions and displacements showed positive correlations in normal and

UIP subjects but not in NSIP subjects. In summary, lung motionography

quantified by image registration-based lower lobe dorsal-basal displacement

may be used to assess the degree of motion, reflecting limited motion due to

fibrosis in the ILD such as UIP and NSIP.

KEYWORDS

interstitial lung disease, idiopathic pulmonary fibrosis, usual interstitial pneumonia,
computed tomography, lung motionography, quantitative computed tomography
image matching, image registration, computational biomechanics

1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive

fibrosing interstitial pneumonia of unknown cause in adults

characterized by the progressive worsening of dyspnea and

lung function and is associated with poor prognosis. CT

features of fibrosis and honeycombing are strongly correlated

with forced vital capacity (FVC) and diffusion capacity of carbon

monoxide (DLCO) measurements (Lynch et al., 2005). It has been

known that the extent of fibrosis and honeycombing on CT is

predictive of survival in IPF (Flaherty et al., 2003; Jeong et al.,

2005; Best et al., 2008; Shin et al., 2008; Sumikawa et al., 2008;

Raghu et al., 2018, 2022).

Elastography is a technique that uses the fact that a

pathological process alters the elastic properties of the involved

tissue or organ and is applied for the non-invasive evaluation of the

stiffness of a lesion in the breast and fibrosis in the liver (Goddi

et al., 2012; Barr et al., 2015). The degree of fibrosis in the lung

parenchyma is also critical for the survival, prognosis, and

treatment of interstitial lung disease (ILD) (Raghu et al., 2022).

Elastography has been used with ultrasonography andMRI for the

breast and liver; however, the lung parenchyma is not easily

evaluated with this application due to the presence of air and

respiratory motion artifacts. In the lung, the local lung motion can

be computed using the image registration of volumetric CT images

at different lung volumes (Yin et al., 2009; Choi, 2011; Yin et al.,

2013; Jahani et al., 2014; Jahani et al., 2015; Jahani et al., 2017; Shin

et al., 2020; Kang et al., 2021).

Recent advances in quantitative CT imaging and image

matching techniques enabled the utilization of local lung

information of inspiration and expiration CT scans in the

computation of changes between the scans (Choi et al., 2010;

Yin et al., 2010; Galban et al., 2012). Quantitative analysis of

regional lung structures and functions of airway segments and

lung parenchyma have been utilized to assess the regional lung

characteristics, mostly for obstructive lung diseases such as

asthma and chronic obstructive pulmonary disease (COPD)

(Chae et al., 2020; Choi J et al., 2017; Choi et al., 2013; Choi

et al., 2015; Galban et al., 2012; Jahani et al., 2017). Attempts to

utilize these quantification methods for ILD are also increasing

(Flaherty et al., 2003; Jeong et al., 2005; Best et al., 2008; Shin

et al., 2008; Sumikawa et al., 2008). A mass preserving non-rigid

image registration technique (Yin et al., 2009) can provide the

matching of local lung regions between CT images at two

different lung volumes. The method has been utilized to

compute the regional displacement of local lung parenchyma

between inspiration and expiration (Yin et al., 2013). The recent

application of the cross-volume (inspiratory-expiratory) CT

image matching-derived three-dimensional (3D) lung motion

map differentiated regional lung motions between supine and

prone positing in healthy subjects (Shin et al., 2020) and impaired

diaphragm motion in patients with COPD and idiopathic

pulmonary fibrosis (IPF) compared to healthy controls (Kang

et al., 2021).

In this study, we applied this local lung “motionography”

information based on cross-volume image matching technique

to investigate if it can differentiate between the usual interstitial

pneumonia (UIP) and nonspecific interstitial pneumonia

(NSIP).

2 Materials and methods

2.1 Patient selection and data acquisition

This study was retrospectively designed and approved by the

institutional review board, and informed consent was waived.

From January 2013 to December 2017, we retrieved

361 idiopathic interstitial pneumonia (IIP) patients who

underwent CT scans and pulmonary function tests (PFTs) from

the hospital information system. Two chest radiologists (K.J.C. and

C.H.L. with 5 and 20 years of experiences, respectively) reviewed

CT images with four categories (UIP, probable UIP, indeterminate

UIP, and alternative diagnosis) for UIP diagnosis according to the

ATS/ERS guideline in consensus (Raghu et al., 2018). Twenty

patients with definite UIP pattern on the CT scan and 11 patients

with pathologic UIP were regarded as IPF on multidisciplinary

diagnosis (age = 71.6 ± 6.7, M:F = 19:12). Pathologic confirmed

NSIP patients were included as the NSIP group (age = 61.9 ± 8.6,

M:F = 3:8) (Supplementary Figure S1). For the comparison, data of

additional 21 normal subjects (age = 58.0 ± 13.4, M:F = 10:11) who

participated in a previous study (Kim et al., 2017) were included in

our analysis. The normal subjects had normal PFT results, normal

chest CT scans, and no known history of lung disease or surgery.
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Imaging was performed using a 128 multi-detector CT

scanner (Ingenuity, Philips Healthcare, Best, Netherlands)

under full inspiration and full expiration of the patients. The

patients were coached by the radiology technician to take a full

inhalation and full exhalation, respectivley. CT parameters were

as follows: 120 kVp tube voltage, 170 reference mAs tube

current-time product, z-dome, 3D dose modulation, 1.0 mm

slice thickness, 1.0 mm reconstruction increment, YC

0 reconstruction filter, 0.5 s rotation time. The average voxel

volume was 0.294 mm3. PFTs were performed according to the

American Thoracic Society (ATS)/European Respiratory Society

(ERS) guidelines (Miller et al., 2005). Dynamic study was first

done. Then, static lung volumes were measured, followed by a

bronchodilator test. Finally, DLCO was measured. From the

spirometry data, forced expiratory volume in 1 s (FEV1), FVC,

and the FEV1/FVC ratio were assessed.

2.2 Inspiratory and expiratory CT image
segmentation and registration

Supplementary Figure S2 shows the flow chart to compute

the displacement at local lung regions from a pair of volumetric

CT images at inspiration and expiration. First, individual

volumetric CT images at inspiration and expiration were

segmented and measured for the airway, vessels, lungs, and

lobes, utilizing Apollo 2.0 (VIDA Diagnostics, Coralville, Iowa,

United States). Then, a mass preserving non-rigid image

registration method (Yin et al., 2009) was employed to obtain

the local-to-local image matching between inspiration and

expiration. The method determines a spatial transformation

that matches the two images by minimizing a cost function that

is the sum of the squared tissue volume difference (SSTVD). The

cost function serves to minimize the local tissue volume difference

within the lungs between matched regions, preserving the tissue

mass of the lungs if the tissue density is assumed to be constant in

the lung. This is particularly appropriate because air changes in the

lung while the change of tissue components is minimal. The

multiresolution approach adds the quality of local lung matching.

2.3 Local lung displacement

From matched local lung parenchymal units at a sub-

acinar scale, 3D displacement vectors from expiration to

inspiration were computed by the voxel-wise subtraction of

the position vector on expiratory CT xEX from the matched

position vector on inspiratory CT xIN, where x, EX, and IN

denote the position vector, expiratory CT, and inspiratory CT,

respectively. Two-dimensional (2D) dorso-basal (DB)

displacements were also computed using only dorso-ventral

and apico-basal components and neglecting transverse

changes. 3D displacements and DB displacement

magnitudes were both normalized by the cubic root of the

global lung volume change from expiration to inspiration CT

scans (ΔV) (Eq. 1), in order to reduce the effect of inter-

subject variability by inspiration and expiration lung volumes

in quantification. Normalized 3D local displacement was

denoted by sp

sp � s/
���
ΔV3

√ � ∣∣∣∣xIN − xEX
∣∣∣∣/

���
ΔV3

√
(1)

DB displacement that excludes the transverse direction was

denoted by syz*, where the y and z directions are ventral to the

dorsal and apical to basal directions, respectively, as indicated in

Supplementary Figure S3. From DB vector, the displacement

angle from y axis, θ, was computed. For visual interpretation, 3D

displacement vectors were plotted on inspiration image color-

coded by s*.

2.4 Other functional imaging metrics

As imaging-based large-scale functional indicators, air

volumes in the whole lung and the lobes were measured on

inspiration and expiration. Mean local tissue fractions (TFs) on

inspiration and expiration, which may also indicate the degree of

fibrosis, were computed and compared with displacement

variables. TFs in individual parenchymal units were averaged

in the five lobes and combined regions.

2.5 Statistical analysis

Student’s t-tests were conducted for comparison between the

groups of normal and ILD patients. When categorizing the ILD

patients into NSIP and UIP, and comparing between the groups

of normal, NSIP, and UIP, the analysis of variance (ANOVA)

was done along with Tukey’s post hoc test to determine

significant pairwise comparisons. Statistical analyses were

performed using the R statistical programming environment,

version 3.0.2 (the R Foundation, Vienna, Austria). p

values <0.05 were considered significant.

3 Results

3.1 Global and regional lung functions

Lung function test values and CT-based volumetric parameters

were compared between normal, NSIP, and UIP subjects. ILD

(both NSIP and UIP) patients were differentiated from normal

subjects. In ILD, FEV1 and FVC were decreased (p < 0.001, both),

while FEV1/FVC was not different. DLCO was also decreased (p =

0.001) (Table 1). The static air volumes at inspiration were

decreased in the whole lung (p < 0.001), the upper lobes (p =

0.011), and the lower lobes (p < 0.001). In regard to the dynamics
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between inspiration and expiration, the air volume change was

decreased in the whole lung (p < 0.001) and in the lower lobes (p <
0.001) but not in the upper lobes (Figure 1). Noticeably, only FVC

differentiated between NSIP and UIP within ILD and no other

parameters in PFT or volumetric lung did. Only the inter-subject

variability of the upper lobe air volumes was found greater among

UIP subjects than normal or NSIP subjects.

3.2 Displacement magnitude and vectors

Local lung displacements are presented for the normal,

NSIP, and UIP subjects in Figure 2, demonstrating a hundred

DB displacement vectors and magnitude maps in the entire

conducting airway models, as well as CT axial views. In the

normal subject, the local displacement of the lower lobe near

the posterior costophrenic angle was the highest with the

dorso-basal distribution. We speculated that the DB

displacement is greater in the more gravitationally

dependent lung regions and directions of the displacement

vectors reflected regional lung deformation characteristics,

similar to regional relative ventilation. In the UIP pattern, the

local displacement of the lower lobe was significantly

decreased near the posterior costophrenic angle and basal

lung, which may represent the advanced fibrosis showing

limited lung motions in the lung parenchyma. Lung regions

moved more in the ventral direction, which could be

attributable to a significant decrease in the movement

toward the basal direction. The NSIP subject shows the

intermediate characteristics of the displacement distribution

toward the posterior costophrenic angle in between the

normal and UIP subjects.

TABLE 1 Comparison of the lung function test results and volumetric parameters between normal, NSIP, and UIP patients.

Normal
(n = 21)

NSIP
(n = 11)

UIP
(n = 31)

NSIP + UIP
vs.
Normala

NSIP vs.
Normalb

UIP vs.
Normalb

UIP vs.
NSIPb

FEV1 (%pred) 110.1 ± 16.2 97.7 ± 20.0 84.9 ± 21.0 < 0.001 0.230 < 0.001 NA

FEV1/FVC (%pred) 80.9 ± 4.6 80.5 ± 3.9 83.1 ± 7.6 0.290 NA NA NA

FVC (%pred) 99.6 ± 13.5 87.4 ± 18.7 69.3 ± 16.6 < 0.001 0.120 < 0.001 0.009

DLCO (%pred) 86.6 ± 24.3 66.9 ± 15.6 57.1 ± 21.4 0.001 0.130 0.003 0.420

Air volume, IN, whole (ml) 3792 ± 1194 2373 ± 906 2415 ± 894 < 0.001 0.001 < 0.001 NA

Air volume, IN, upper (ml) 1993 ± 639 1644 ± 559 1516 ± 564 0.011 NA 0.0160 NA

Air volume, IN, lower (ml) 1799 ± 596 729 ± 396 899 ± 430 < 0.001 < 0.001 < 0.001 NA

Air volume change, upper
(%TLC)

19.2 ± 6.1 19.3 ± 9.9 16.3 ± 7.6 0.270 NA NA NA

Air volume change, lower
(%TLC)

27.6 ± 8.1 15.2 ± 7.1 15.8 ± 6.7 < 0.001 < 0.001 < 0.001 NA

ap –values of Student’s t-test.
bp –values of ANOVA post hoc test (NA stands for “not applicable” and denotes p > 0.05 by ANOVA).

FIGURE 1
Air volumes at (A) inspiration and at (B) expiration, and (C) air volume changes between inspiration and expiration in the whole lung of normal,
NSIP, and UIP subjects. ** denotes p < 0.05.
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3.3 Displacement and angle

Local lung displacements between inspiration and expiration

for all 3D components and for DBmotions were compared in the

whole lung, the upper lobes, and the lower lobes between normal,

NSIP, and UIP patients (Table 2; Figure 3). DB (2D) relative

displacement magnitudes in the lower lobes were found smaller

in UIP lungs than not only normal lungs (p = 0.007) but also

NSIP lungs (p = 0.036). The local displacement magnitude of the

lower lobes near the posterior costophrenic angle noticeably

decreased in the UIP subjects than NSIP (p = 0.040). ILD

patients had a decreased DB displacement angle, θ, in the

whole lung (p = 0.008) and in the lower lobes (p < 0.001)

than normal subjects. UIP subjects show the same results that

θ decreased in the whole lung (p = 0.012) and in the lower lobes

(p < 0.001), which reflects limited lung motions toward the basal

(z) direction. In the upper lobes, DB displacement increased in

NSIP lungs than in UIP lungs (p = 0.032), while it is similar

between normal and UIP lungs.

3.4 Tissue fractions

Mean local TFs were also compared (Table 3 and Figure 4).

TFs increased in ILD (both NSIP and UIP) patients compared to

those in normal subjects in the upper and the lower lobes and

consequently in the whole lung on both inspiration and expiration

(p < 0.001 for all). Between NSIP and UIP, TFs do not significantly

differ in all individual lung regions. However, the upper lobe to

lower lobe ratio is significantly smaller in NSIP than in UIP and

also than normal subjects both on inspiration (p = 0.002) and on

expiration (p < 0.001). The upper–lower ratio is significantly

FIGURE 2
CT axial views (top), displacement vectors from expiration to inspiration (middle), and normalized dorsal and basal displacement magnitude
maps on the entire conducting airway model (bottom) in representative (A) normal, (B) NSIP, and (C) UIP subjects.
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smaller in IPF than normal subjects on inspiration (p < 0.001) but

not on expiration (p = 0.240). In NSIP, the upper–lower ratio of

local TF is significantly smaller than normal subjects both on

inspiration (p < 0.001) and expiration (p < 0.001).

3.5 Correlation between displacement
and tissue fraction

Correlations of the TFs with displacements (3D and DB) were

analyzed in normal subjects, NSIP, UIP, ILD (UIP + NSIP), and

the entire subjects. In normal subjects, TFs on expiration showed

high positive correlations with both 3D and DB displacements in

all regions (Table 4). The correlations were slightly higher with 3D

displacement (r = 0.72 for the whole lung) than with DB

displacement (r = 0.71 for the whole lung). In four lobes, the

left upper lobe (LUL), the right upper lobe (RUL), the right middle

lobe (RML), and the right lower lobe (RLL), the correlations range

between 0.68 and 0.71, while it is relatively lower in the left lower

lobe (LLL) (r = 0.51) than the other lobes. Correlations between

upper–lower ratios of TF and displacement (3D andDB) also show

positive correlation (r = 0.59 and r = 0.58, respectively). On

inspiration, no significant correlation between TFs and

displacements was found in any region. Compared to the

normal subjects, the correlations decreased in UIP lungs,

particurly in the RML (r = 0.71 and r = 0.42 in normal and

UIP, respectively, with 3D displacement). In contrast to normal

subjects, the correlation with DB displacement became greater

TABLE 2 Comparison of the motionographic variables between normal, NSIP, and UIP patients.

Normal (n = 21) NSIP (n = 11) UIP (n = 31) NSIP + UIP vs.
Normala

NSIP vs.
Normalb

UIP vs. Normalb UIP vs. NSIPb

s* 0.21 ± 0.06 0.22 ± 0.07 0.17 ± 0.08 0.048 0.920 0.030 0.040

s*, upper 0.10 ± 0.03 0.15 ± 0.05 0.10 ± 0.06 0.770 0.140 0.830 0.037

s*, lower 0.29 ± 0.09 0.32 ± 0.11 0.23 ± 0.11 0.015 1.000 0.009 0.038

s*yz 0.20 ± 0.06 0.21 ± 0.07 0.15 ± 0.07 0.031 0.950 0.018 0.032

s*yz,
upper

0.10 ± 0.03 0.14 ± 0.05 0.09 ± 0.06 0.950 0.140 0.690 0.024

s*yz, lower 0.27 ± 0.09 0.29 ± 0.11 0.20 ± 0.10 0.012 1.000 0.007 0.036

θ 37.6 ± 13.5 33.7 ± 14.8 23.7 ± 18.9 0.008 NA 0.012 NA

θ, upper 17.6 ± 20.5 22.0 ± 17.1 12.4 ± 20.8 0.630 NA NA NA

θ, lower 52.9 ± 10.3 47.4 ± 16.9 32.4 ± 21.9 < 0.001 0.680 < 0.001 NA

ap –values of Student’s t-test.
bp –values of ANOVA post hoc test (NA denotes p > 0.05 by ANOVA).

Values in columns 2–4 are means ± SD. Values in columns 5–8 are the p values.

s*: 3D displacement magnitude calculated from the x, y, and z components.

s*yz: DB displacement magnitude from the y and z components indicatinghe tdorsal and basal lung motion.

upper: upper and middle lobes; lower: lower lobes

FIGURE 3
Dorsal basal displacement in (A) the whole lung, (B) the upper lobes, and (C) the lower lobes of normal, NSIP, and UIP subjects. ** denotes
p < 0.05.
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than with 3D displacement in all five lobes of UIP patients.

Upper–lower ratios were not linearly correlated with

displacements in either UIP or NSIP.

4 Discussion

This study shows that imaging-based regional lung DB

displacement can distinguish mechanical behaviors between

UIP and NSIP. The gross measurement of the degree or

extent of fibrosis on the CT scan could be an important

biomarker for the assessment of idiopathic interstitial

pneumonia. Although honeycombing on CT is one of the

prognostic factors in IPF, the concordance rate between

radiologists is not high (Watadani et al., 2013). Additionally,

the high-resolution CT (HRCT) scan alone does not accurately

reveal micro-honeycombing that could be one of the findings to

make a diagnosis as UIP classified as a possible UIP on the CT

scan (Travis et al., 2013). The lung motionography using the

cross-volume imaging registration technique used in the present

study may be one of the unique methods to reflect the degree and

extent of lung motion limitations, which may enable the

detection of the early stage of fibrosis and reflect the whole

lung fibrosis or restricted lung function for the assessment of

interstitial fibrotic lung disease.

4.1 Normalized displacement

CT findings of ILD could be affected by the lung volumes at the

level of inspiration and expiration. In a clinical environment,

inflation levels at which inspiration and expiration CT images

are acquired may vary for many reasons, which could add

uncertainty to the CT reading of individual images or

quantitative analysis of changes between the two images. We

propose a normalization of displacement by a cubic root of the

lung volume change between two images, to minimize the effect of

uncertainty due to lung inflation level, and to conduct

standardized relative regional characteristics of local lung

motion. We used the length scale for normalization to

nondimensionalize the measure. The parenchymal unit volume

to measure the local lung motion is at an acinar scale, which may

reflect characteristics at the scale of the functional unit of the lung

in addition to the smooth possible noise of information from

smaller voxels. It has been shown that the normalization of image-

registration-based regional lung functions using the global lung

volumes has shown successful inter-subject quantitative CT

analysis (Chae et al., 2020; Choi S et al., 2017; Shin et al., 2020;

Kang et al., 2021).

4.2 Lower lobe functional limitation

As expected, the limitation of motion in the lower lobes

corresponded to the distribution of honeycombing on CT scan.

Dorsal-basal movement of the lung in the supine position for the CT

scan is highest in the normal subjects and accordingly the dorsal-

basal movement of the lung was mostly restricted in the patients

with ILD. In addition to the motion limitation, the air volume

change also decreased in the lower lobes in patients with ILD. All the

patients were scanned in the supine position in this study. However,

the lung motion and air volume change between inspiration and

expiration in prone position could be interesting because the prone

position improves arterial oxygenation, reduces shunts, and can

affect diaphragmatic motions (Albert et al., 1987; Tomita et al.,

2004). It is speculated that the increased stiffness due to excessive

TABLE 3 Comparison of TFs between normal, NSIP, and UIP patients.

Normal
(n = 21)

NSIP
(n = 11)

UIP
(n = 31)

NSIP + UIP
vs.
Normalb

NSIP vs.
Normalb

UIP vs.
Normalb

UIP vs.
NSIPb

IN, all lobes (%) 14.6 ± 2.7 20.0 ± 5.6 20.9 ± 4.3 < 0.001 0.011 < 0.001 0.660

IN, upper lobes (%) 13.8 ± 2.5 17.5 ± 5.3 19.1 ± 4.1 < 0.001 0.050 < 0.001 0.380

IN, lower lobes (%) 15.6 ± 3.1 25.5 ± 6.9 24.3 ± 5.4 < 0.001 < 0.001 < 0.001 0.590

IN, upper/lower
lobes

0.896 ± 0.076 0.690 ± 0.080 0.797 ± 0.109 < 0.001 < 0.001 < 0.001 0.002

EX, all lobes (%) 24.6 ± 5.2 34.1 ± 4.9 33.1 ± 9.8 < 0.001 < 0.001 < 0.001 0.640

EX, upper
lobes (%)

20.9 ± 4.5 27.9 ± 4.5 28.5 ± 8.3 < 0.001 < 0.001 < 0.001 0.770

EX, lower lobes (%) 28.6 ± 6.2 47.7 ± 8.7 41.5 ± 13.4 < 0.001 < 0.001 < 0.001 0.094

EX, upper/lower
lobes

0.737 ± 0.090 0.591 ± 0.067 0.704 ± 0.108 0.020 < 0.001 0.240 < 0.001

ap –values of Student’s t-test.
bp –values of ANOVA post hoc test.

Values in columns 2–4 are means ± SD. Values in columns 5–8 are the p values.
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FIGURE 4
Local TFs on (A,C,E,G) inspiration and on (B,D,F,H) expiration in the whole lung (A,B), upper and middle lobes (C,D), lower lobes (E,F), and
upper–lower ratio (G,H) in normal, NSIP, and UIP subjects. ** denotes p < 0.05.
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fibrosis with honeycombing limited regional lung motions in the

lower lobes of UIP patients compared to normal and even to NSIP,

as demonstrated in Figure 2.

4.3 Direction of lung movement

The motivation of using 3D and 2D displacements originated

from the idea that the degree of fibrosis in the lung may be

associated with the reduced capability of lung motion, because

regional lung motion is based upon the cumulative deformation of

local lung regions, which are limited in the restrictive changes in

UIP and NSIP. Since the 3D volumetric analysis is available and

the nature of lung deformation is three-dimensional, we used 3D

displacement. Considering that the regional lung deformation

primarily varies through dorsoventral and apicobasal axes, but

not necessarily through the lateromedial axis, with gravitational

dependency, we used 2D formulation as well.

From normal to NSIP and UIP, the direction of the lung

movement also changes from the posterior costophrenic angle

direction to the anterior costophrenic angle direction with the

deformation of the lung morphology. This may mainly be

attributable to the distribution of honeycombing or lung

fibrosis in the dorsal and basal regions of the lung. As

demonstrated in Figure 2, the proposed method can illustrate

the morphologic deformation of the whole lung in patients with

restricted lung function compared to the normal subjects.

4.4 Association with pulmonary function
test analysis

Among the PFT results presented in Table 1, only FVC (%

pred) differentiated UIP against NSIP. However, other measures

including DLCO were not significantly different between UIP and

NSIP. This may imply that the earlier stage of fibrosis, septal

thickening, or inflammatory process may all contribute to a

decrease in DLCO, and the progression of fibrosis decreases

the lung motion, in association with the decline of the full

ventilation capacity (decreased FVC). A lower lobe

predominance of air volume change between inspiration and

expiration also supports this argument. With this interpretation,

the proposed CT-based lung motionography is considered useful

for capturing the progression of the fibrotic disease, since the

contribution of CT imaging in the characterization of IPF is

gaining more attention and acceptance in clinical use (Raghu

et al., 2018, 2022) and the proposed method provides regional

alteration of lung motion at such small scales as acini or voxels.

4.5 Tissue fraction

Regional TF analysis results support the above discussion.

Regional characteristics of local TFs on inspiration and on

expiration can be interpreted as indicators of small-scale structural

alteration, and regional characteristics of local displacements serve as

indicators of small-scale functional alteration. We speculated that the

increase of TF seen in NSIP might be explained by the structural

alterationwith the early stage of fibrosis and relatively lower functional

decrease compensated by regional hyperinflations in contrast to UIP

with advanced fibrosis and restricted lung function. In this study, the

result of increased expiratory TF in UIP is also in agreement with the

report of a previous study (Petroulia et al., 2018). The correlation of

the results between displacements and TFs suggests the following

interpretation. In normal subjects, the positive correlation of

displacements only with expiratory TF and not with inspiratory

TF reflects deformation characteristics of healthy lungs. On

inspiration near the total lung capacity (TLC), TFs are relatively

uniform due to the full recruitment of alveoli; the deflation from TLC

is greater in more dorsal and basal regions along with more

displacement and more expiratory TFs (less air fractions) in these

regions. This may imply that the mechanical property of local lung

structure is presumably homogeneous in normal subjects. TF increase

in NSIP and UIP patients may indicate the presence of fibrosis or

TABLE 4 Regional correlation of TF with 3D and dorso-basal displacements.

Normal, 3D Normal, DB UIP, 3D UIP, DB

LUL 0.71 0.69 0.62 0.66

LLL 0.51 0.5 0.46 0.47

RUL 0.68 0.64 0.54 0.62

RML 0.71 0.7 0.42 0.47

RLL 0.7 0.69 0.6 0.62

Upper lobes 0.75 0.73 0.58 0.64

Lower lobes 0.66 0.65 0.56 0.57

All lobes 0.72 0.71 0.59 0.62

upper/lower lobes 0.59 0.58 0.06 −0.05

Values are Pearson’s correlation coefficients.
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thickening of the interlobular septum and/or intralobular septum in

the lung parenchyma. TF was better correlated with DB displacement

than 3D displacement in all five lobes of UIP patients. This supports

that DB displacement may better characterize the UIP-associated

structural alteration such as fibrosis or intra- and interlobular septal

thickening than 3D displacement.

4.6 Study limitations

One of the limitations of the current study is that the inspiration

to expiration volume change could be affected by the level of

respiration of the patients. This may limit the accurate

assessment of the ILD. However, the disease itself may manifest

a decreased volume change between inspiration and expiration and

also due to the decreased lung volume with fibrosis. We tried to

minimize the effect of variability in lung volumes between

inspiration and expiration. Further studies may be needed to

better understand the relationship of the degree of fibrosis and

lung volumes and to compare normalization based on other

quantities, which requires more subjects. The clinically diagnosed

NSIP group without CT honeycombing may have pathological UIP

with micro-honeycombing or atypical UIP. But the purpose of this

study was to assess the lung motion related to the degree of fibrosis

presented as honeycombing on CT scan, which represents a more

advanced stage of interstitial fibrosis compared to reticular opacity

or ground-glass opacity on CT scan.

The focus of the current study is limited to the discriminative

characterization of lung motionography between UIP and NSIP.

Characterization of the associated nature between impaired lung

motionography with common clinical measures including PFTs,

such as linear or nonlinear relationship, is not fully understood and

remains for future study with a greater sample size. The scope of

the current work does not include the connected tissue disease

(CTD)-associated ILD. It may be worth applying the regional lung

motionography analysis for RA-ILD, SSc-ILD, and Sjogren disease,

which remains for future studies. Also, themethods for the analysis

of lung motion in the current study is limited to CT-based

approaches. However, further investigation of lung motion in

ILD associating with other radiological methods such as

ultrasound B-lines (Manolescu et al., 2020, Tardella et al., 2018)

may provide additional understanding of impaired lung

motionography that can expand the lung motion assessment

for more clinical applications.

4.7 Concluding remarks

In conclusion, CT-based regional lung motionography may

be used to illustrate the restricted lung motion or indirectly

reflect the degree or extent of lung fibrosis. Lower lobe lung

motions using image registration technique were significantly

different between normal, NSIP, and UIP patterns on CT scans.
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